summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/Sema/SemaLambda.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/Sema/SemaLambda.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaLambda.cpp1535
1 files changed, 1535 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaLambda.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaLambda.cpp
new file mode 100644
index 0000000..a7d5b65
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaLambda.cpp
@@ -0,0 +1,1535 @@
+//===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements semantic analysis for C++ lambda expressions.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/Sema/DeclSpec.h"
+#include "clang/AST/ASTLambda.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Sema/Initialization.h"
+#include "clang/Sema/Lookup.h"
+#include "clang/Sema/Scope.h"
+#include "clang/Sema/ScopeInfo.h"
+#include "clang/Sema/SemaInternal.h"
+#include "clang/Sema/SemaLambda.h"
+#include "TypeLocBuilder.h"
+using namespace clang;
+using namespace sema;
+
+// returns -1 if none of the lambdas on the scope stack can capture.
+// A lambda 'L' is capture-ready for a certain variable 'V' if,
+// - its enclosing context is non-dependent
+// - and if the chain of lambdas between L and the lambda in which
+// V is potentially used, call all capture or have captured V.
+static inline int GetScopeIndexOfNearestCaptureReadyLambda(
+ ArrayRef<clang::sema::FunctionScopeInfo*> FunctionScopes,
+ DeclContext *const CurContext, VarDecl *VD) {
+
+ DeclContext *EnclosingDC = CurContext;
+ // If VD is null, we are attempting to capture 'this'
+ const bool IsCapturingThis = !VD;
+ const bool IsCapturingVariable = !IsCapturingThis;
+ int RetIndex = -1;
+ unsigned CurScopeIndex = FunctionScopes.size() - 1;
+ while (!EnclosingDC->isTranslationUnit() &&
+ EnclosingDC->isDependentContext() && isLambdaCallOperator(EnclosingDC)) {
+ RetIndex = CurScopeIndex;
+ clang::sema::LambdaScopeInfo *LSI =
+ cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]);
+ // We have crawled up to an intervening lambda that contains the
+ // variable declaration - so not only does it not need to capture;
+ // none of the enclosing lambdas need to capture it, and since all
+ // other nested lambdas are dependent (otherwise we wouldn't have
+ // arrived here) - we don't yet have a lambda that can capture the
+ // variable.
+ if (IsCapturingVariable && VD->getDeclContext()->Equals(EnclosingDC))
+ return -1;
+ // All intervening lambda call operators have to be able to capture.
+ // If they do not have a default implicit capture, check to see
+ // if the entity has already been explicitly captured.
+ // If even a single dependent enclosing lambda lacks the capability
+ // to ever capture this variable, there is no further enclosing
+ // non-dependent lambda that can capture this variable.
+ if (LSI->ImpCaptureStyle == sema::LambdaScopeInfo::ImpCap_None) {
+ if (IsCapturingVariable && !LSI->isCaptured(VD))
+ return -1;
+ if (IsCapturingThis && !LSI->isCXXThisCaptured())
+ return -1;
+ }
+ EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC);
+ --CurScopeIndex;
+ }
+ // If the enclosingDC is not dependent, then the immediately nested lambda
+ // is capture-ready.
+ if (!EnclosingDC->isDependentContext())
+ return RetIndex;
+ return -1;
+}
+// Given a lambda's call operator and a variable (or null for 'this'),
+// compute the nearest enclosing lambda that is capture-ready (i.e
+// the enclosing context is not dependent, and all intervening lambdas can
+// either implicitly or explicitly capture Var)
+//
+// The approach is as follows, for the entity VD ('this' if null):
+// - start with the current lambda
+// - if it is non-dependent and can capture VD, return it.
+// - if it is dependent and has an implicit or explicit capture, check its parent
+// whether the parent is non-depdendent and all its intervening lambdas
+// can capture, if so return the child.
+// [Note: When we hit a generic lambda specialization, do not climb up
+// the scope stack any further since not only do we not need to,
+// the scope stack will often not be synchronized with any lambdas
+// enclosing the specialized generic lambda]
+//
+// Return the CallOperator of the capturable lambda and set function scope
+// index to the correct index within the function scope stack to correspond
+// to the capturable lambda.
+// If VarDecl *VD is null, we check for 'this' capture.
+CXXMethodDecl* clang::GetInnermostEnclosingCapturableLambda(
+ ArrayRef<sema::FunctionScopeInfo*> FunctionScopes,
+ unsigned &FunctionScopeIndex,
+ DeclContext *const CurContext, VarDecl *VD,
+ Sema &S) {
+
+ const int IndexOfCaptureReadyLambda =
+ GetScopeIndexOfNearestCaptureReadyLambda(FunctionScopes,CurContext, VD);
+ if (IndexOfCaptureReadyLambda == -1) return 0;
+ assert(IndexOfCaptureReadyLambda >= 0);
+ const unsigned IndexOfCaptureReadyLambdaU =
+ static_cast<unsigned>(IndexOfCaptureReadyLambda);
+ sema::LambdaScopeInfo *const CaptureReadyLambdaLSI =
+ cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambdaU]);
+ // If VD is null, we are attempting to capture 'this'
+ const bool IsCapturingThis = !VD;
+ const bool IsCapturingVariable = !IsCapturingThis;
+
+ if (IsCapturingVariable) {
+ // Now check to see if this lambda can truly capture, and also
+ // if all enclosing lambdas of this lambda allow this capture.
+ QualType CaptureType, DeclRefType;
+ const bool CanCaptureVariable = !S.tryCaptureVariable(VD,
+ /*ExprVarIsUsedInLoc*/SourceLocation(), clang::Sema::TryCapture_Implicit,
+ /*EllipsisLoc*/ SourceLocation(),
+ /*BuildAndDiagnose*/false, CaptureType, DeclRefType,
+ &IndexOfCaptureReadyLambdaU);
+ if (!CanCaptureVariable) return 0;
+ } else {
+ const bool CanCaptureThis = !S.CheckCXXThisCapture(
+ CaptureReadyLambdaLSI->PotentialThisCaptureLocation, false, false,
+ &IndexOfCaptureReadyLambdaU);
+ if (!CanCaptureThis) return 0;
+ } // end 'this' capture test
+ FunctionScopeIndex = IndexOfCaptureReadyLambdaU;
+ return CaptureReadyLambdaLSI->CallOperator;
+}
+
+static inline TemplateParameterList *
+getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef) {
+ if (LSI->GLTemplateParameterList)
+ return LSI->GLTemplateParameterList;
+
+ if (LSI->AutoTemplateParams.size()) {
+ SourceRange IntroRange = LSI->IntroducerRange;
+ SourceLocation LAngleLoc = IntroRange.getBegin();
+ SourceLocation RAngleLoc = IntroRange.getEnd();
+ LSI->GLTemplateParameterList = TemplateParameterList::Create(
+ SemaRef.Context,
+ /*Template kw loc*/SourceLocation(),
+ LAngleLoc,
+ (NamedDecl**)LSI->AutoTemplateParams.data(),
+ LSI->AutoTemplateParams.size(), RAngleLoc);
+ }
+ return LSI->GLTemplateParameterList;
+}
+
+
+
+CXXRecordDecl *Sema::createLambdaClosureType(SourceRange IntroducerRange,
+ TypeSourceInfo *Info,
+ bool KnownDependent,
+ LambdaCaptureDefault CaptureDefault) {
+ DeclContext *DC = CurContext;
+ while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
+ DC = DC->getParent();
+ bool IsGenericLambda = getGenericLambdaTemplateParameterList(getCurLambda(),
+ *this);
+ // Start constructing the lambda class.
+ CXXRecordDecl *Class = CXXRecordDecl::CreateLambda(Context, DC, Info,
+ IntroducerRange.getBegin(),
+ KnownDependent,
+ IsGenericLambda,
+ CaptureDefault);
+ DC->addDecl(Class);
+
+ return Class;
+}
+
+/// \brief Determine whether the given context is or is enclosed in an inline
+/// function.
+static bool isInInlineFunction(const DeclContext *DC) {
+ while (!DC->isFileContext()) {
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
+ if (FD->isInlined())
+ return true;
+
+ DC = DC->getLexicalParent();
+ }
+
+ return false;
+}
+
+MangleNumberingContext *
+Sema::getCurrentMangleNumberContext(const DeclContext *DC,
+ Decl *&ManglingContextDecl) {
+ // Compute the context for allocating mangling numbers in the current
+ // expression, if the ABI requires them.
+ ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl;
+
+ enum ContextKind {
+ Normal,
+ DefaultArgument,
+ DataMember,
+ StaticDataMember
+ } Kind = Normal;
+
+ // Default arguments of member function parameters that appear in a class
+ // definition, as well as the initializers of data members, receive special
+ // treatment. Identify them.
+ if (ManglingContextDecl) {
+ if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) {
+ if (const DeclContext *LexicalDC
+ = Param->getDeclContext()->getLexicalParent())
+ if (LexicalDC->isRecord())
+ Kind = DefaultArgument;
+ } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) {
+ if (Var->getDeclContext()->isRecord())
+ Kind = StaticDataMember;
+ } else if (isa<FieldDecl>(ManglingContextDecl)) {
+ Kind = DataMember;
+ }
+ }
+
+ // Itanium ABI [5.1.7]:
+ // In the following contexts [...] the one-definition rule requires closure
+ // types in different translation units to "correspond":
+ bool IsInNonspecializedTemplate =
+ !ActiveTemplateInstantiations.empty() || CurContext->isDependentContext();
+ switch (Kind) {
+ case Normal:
+ // -- the bodies of non-exported nonspecialized template functions
+ // -- the bodies of inline functions
+ if ((IsInNonspecializedTemplate &&
+ !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) ||
+ isInInlineFunction(CurContext)) {
+ ManglingContextDecl = 0;
+ return &Context.getManglingNumberContext(DC);
+ }
+
+ ManglingContextDecl = 0;
+ return 0;
+
+ case StaticDataMember:
+ // -- the initializers of nonspecialized static members of template classes
+ if (!IsInNonspecializedTemplate) {
+ ManglingContextDecl = 0;
+ return 0;
+ }
+ // Fall through to get the current context.
+
+ case DataMember:
+ // -- the in-class initializers of class members
+ case DefaultArgument:
+ // -- default arguments appearing in class definitions
+ return &ExprEvalContexts.back().getMangleNumberingContext(Context);
+ }
+
+ llvm_unreachable("unexpected context");
+}
+
+MangleNumberingContext &
+Sema::ExpressionEvaluationContextRecord::getMangleNumberingContext(
+ ASTContext &Ctx) {
+ assert(ManglingContextDecl && "Need to have a context declaration");
+ if (!MangleNumbering)
+ MangleNumbering = Ctx.createMangleNumberingContext();
+ return *MangleNumbering;
+}
+
+CXXMethodDecl *Sema::startLambdaDefinition(CXXRecordDecl *Class,
+ SourceRange IntroducerRange,
+ TypeSourceInfo *MethodTypeInfo,
+ SourceLocation EndLoc,
+ ArrayRef<ParmVarDecl *> Params) {
+ QualType MethodType = MethodTypeInfo->getType();
+ TemplateParameterList *TemplateParams =
+ getGenericLambdaTemplateParameterList(getCurLambda(), *this);
+ // If a lambda appears in a dependent context or is a generic lambda (has
+ // template parameters) and has an 'auto' return type, deduce it to a
+ // dependent type.
+ if (Class->isDependentContext() || TemplateParams) {
+ const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>();
+ QualType Result = FPT->getResultType();
+ if (Result->isUndeducedType()) {
+ Result = SubstAutoType(Result, Context.DependentTy);
+ MethodType = Context.getFunctionType(Result, FPT->getArgTypes(),
+ FPT->getExtProtoInfo());
+ }
+ }
+
+ // C++11 [expr.prim.lambda]p5:
+ // The closure type for a lambda-expression has a public inline function
+ // call operator (13.5.4) whose parameters and return type are described by
+ // the lambda-expression's parameter-declaration-clause and
+ // trailing-return-type respectively.
+ DeclarationName MethodName
+ = Context.DeclarationNames.getCXXOperatorName(OO_Call);
+ DeclarationNameLoc MethodNameLoc;
+ MethodNameLoc.CXXOperatorName.BeginOpNameLoc
+ = IntroducerRange.getBegin().getRawEncoding();
+ MethodNameLoc.CXXOperatorName.EndOpNameLoc
+ = IntroducerRange.getEnd().getRawEncoding();
+ CXXMethodDecl *Method
+ = CXXMethodDecl::Create(Context, Class, EndLoc,
+ DeclarationNameInfo(MethodName,
+ IntroducerRange.getBegin(),
+ MethodNameLoc),
+ MethodType, MethodTypeInfo,
+ SC_None,
+ /*isInline=*/true,
+ /*isConstExpr=*/false,
+ EndLoc);
+ Method->setAccess(AS_public);
+
+ // Temporarily set the lexical declaration context to the current
+ // context, so that the Scope stack matches the lexical nesting.
+ Method->setLexicalDeclContext(CurContext);
+ // Create a function template if we have a template parameter list
+ FunctionTemplateDecl *const TemplateMethod = TemplateParams ?
+ FunctionTemplateDecl::Create(Context, Class,
+ Method->getLocation(), MethodName,
+ TemplateParams,
+ Method) : 0;
+ if (TemplateMethod) {
+ TemplateMethod->setLexicalDeclContext(CurContext);
+ TemplateMethod->setAccess(AS_public);
+ Method->setDescribedFunctionTemplate(TemplateMethod);
+ }
+
+ // Add parameters.
+ if (!Params.empty()) {
+ Method->setParams(Params);
+ CheckParmsForFunctionDef(const_cast<ParmVarDecl **>(Params.begin()),
+ const_cast<ParmVarDecl **>(Params.end()),
+ /*CheckParameterNames=*/false);
+
+ for (CXXMethodDecl::param_iterator P = Method->param_begin(),
+ PEnd = Method->param_end();
+ P != PEnd; ++P)
+ (*P)->setOwningFunction(Method);
+ }
+
+ Decl *ManglingContextDecl;
+ if (MangleNumberingContext *MCtx =
+ getCurrentMangleNumberContext(Class->getDeclContext(),
+ ManglingContextDecl)) {
+ unsigned ManglingNumber = MCtx->getManglingNumber(Method);
+ Class->setLambdaMangling(ManglingNumber, ManglingContextDecl);
+ }
+
+ return Method;
+}
+
+void Sema::buildLambdaScope(LambdaScopeInfo *LSI,
+ CXXMethodDecl *CallOperator,
+ SourceRange IntroducerRange,
+ LambdaCaptureDefault CaptureDefault,
+ SourceLocation CaptureDefaultLoc,
+ bool ExplicitParams,
+ bool ExplicitResultType,
+ bool Mutable) {
+ LSI->CallOperator = CallOperator;
+ CXXRecordDecl *LambdaClass = CallOperator->getParent();
+ LSI->Lambda = LambdaClass;
+ if (CaptureDefault == LCD_ByCopy)
+ LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval;
+ else if (CaptureDefault == LCD_ByRef)
+ LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref;
+ LSI->CaptureDefaultLoc = CaptureDefaultLoc;
+ LSI->IntroducerRange = IntroducerRange;
+ LSI->ExplicitParams = ExplicitParams;
+ LSI->Mutable = Mutable;
+
+ if (ExplicitResultType) {
+ LSI->ReturnType = CallOperator->getResultType();
+
+ if (!LSI->ReturnType->isDependentType() &&
+ !LSI->ReturnType->isVoidType()) {
+ if (RequireCompleteType(CallOperator->getLocStart(), LSI->ReturnType,
+ diag::err_lambda_incomplete_result)) {
+ // Do nothing.
+ }
+ }
+ } else {
+ LSI->HasImplicitReturnType = true;
+ }
+}
+
+void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) {
+ LSI->finishedExplicitCaptures();
+}
+
+void Sema::addLambdaParameters(CXXMethodDecl *CallOperator, Scope *CurScope) {
+ // Introduce our parameters into the function scope
+ for (unsigned p = 0, NumParams = CallOperator->getNumParams();
+ p < NumParams; ++p) {
+ ParmVarDecl *Param = CallOperator->getParamDecl(p);
+
+ // If this has an identifier, add it to the scope stack.
+ if (CurScope && Param->getIdentifier()) {
+ CheckShadow(CurScope, Param);
+
+ PushOnScopeChains(Param, CurScope);
+ }
+ }
+}
+
+/// If this expression is an enumerator-like expression of some type
+/// T, return the type T; otherwise, return null.
+///
+/// Pointer comparisons on the result here should always work because
+/// it's derived from either the parent of an EnumConstantDecl
+/// (i.e. the definition) or the declaration returned by
+/// EnumType::getDecl() (i.e. the definition).
+static EnumDecl *findEnumForBlockReturn(Expr *E) {
+ // An expression is an enumerator-like expression of type T if,
+ // ignoring parens and parens-like expressions:
+ E = E->IgnoreParens();
+
+ // - it is an enumerator whose enum type is T or
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
+ if (EnumConstantDecl *D
+ = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
+ return cast<EnumDecl>(D->getDeclContext());
+ }
+ return 0;
+ }
+
+ // - it is a comma expression whose RHS is an enumerator-like
+ // expression of type T or
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
+ if (BO->getOpcode() == BO_Comma)
+ return findEnumForBlockReturn(BO->getRHS());
+ return 0;
+ }
+
+ // - it is a statement-expression whose value expression is an
+ // enumerator-like expression of type T or
+ if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
+ if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back()))
+ return findEnumForBlockReturn(last);
+ return 0;
+ }
+
+ // - it is a ternary conditional operator (not the GNU ?:
+ // extension) whose second and third operands are
+ // enumerator-like expressions of type T or
+ if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
+ if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr()))
+ if (ED == findEnumForBlockReturn(CO->getFalseExpr()))
+ return ED;
+ return 0;
+ }
+
+ // (implicitly:)
+ // - it is an implicit integral conversion applied to an
+ // enumerator-like expression of type T or
+ if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
+ // We can sometimes see integral conversions in valid
+ // enumerator-like expressions.
+ if (ICE->getCastKind() == CK_IntegralCast)
+ return findEnumForBlockReturn(ICE->getSubExpr());
+
+ // Otherwise, just rely on the type.
+ }
+
+ // - it is an expression of that formal enum type.
+ if (const EnumType *ET = E->getType()->getAs<EnumType>()) {
+ return ET->getDecl();
+ }
+
+ // Otherwise, nope.
+ return 0;
+}
+
+/// Attempt to find a type T for which the returned expression of the
+/// given statement is an enumerator-like expression of that type.
+static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) {
+ if (Expr *retValue = ret->getRetValue())
+ return findEnumForBlockReturn(retValue);
+ return 0;
+}
+
+/// Attempt to find a common type T for which all of the returned
+/// expressions in a block are enumerator-like expressions of that
+/// type.
+static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) {
+ ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end();
+
+ // Try to find one for the first return.
+ EnumDecl *ED = findEnumForBlockReturn(*i);
+ if (!ED) return 0;
+
+ // Check that the rest of the returns have the same enum.
+ for (++i; i != e; ++i) {
+ if (findEnumForBlockReturn(*i) != ED)
+ return 0;
+ }
+
+ // Never infer an anonymous enum type.
+ if (!ED->hasNameForLinkage()) return 0;
+
+ return ED;
+}
+
+/// Adjust the given return statements so that they formally return
+/// the given type. It should require, at most, an IntegralCast.
+static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns,
+ QualType returnType) {
+ for (ArrayRef<ReturnStmt*>::iterator
+ i = returns.begin(), e = returns.end(); i != e; ++i) {
+ ReturnStmt *ret = *i;
+ Expr *retValue = ret->getRetValue();
+ if (S.Context.hasSameType(retValue->getType(), returnType))
+ continue;
+
+ // Right now we only support integral fixup casts.
+ assert(returnType->isIntegralOrUnscopedEnumerationType());
+ assert(retValue->getType()->isIntegralOrUnscopedEnumerationType());
+
+ ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue);
+
+ Expr *E = (cleanups ? cleanups->getSubExpr() : retValue);
+ E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast,
+ E, /*base path*/ 0, VK_RValue);
+ if (cleanups) {
+ cleanups->setSubExpr(E);
+ } else {
+ ret->setRetValue(E);
+ }
+ }
+}
+
+void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) {
+ assert(CSI.HasImplicitReturnType);
+ // If it was ever a placeholder, it had to been deduced to DependentTy.
+ assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType());
+
+ // C++ Core Issue #975, proposed resolution:
+ // If a lambda-expression does not include a trailing-return-type,
+ // it is as if the trailing-return-type denotes the following type:
+ // - if there are no return statements in the compound-statement,
+ // or all return statements return either an expression of type
+ // void or no expression or braced-init-list, the type void;
+ // - otherwise, if all return statements return an expression
+ // and the types of the returned expressions after
+ // lvalue-to-rvalue conversion (4.1 [conv.lval]),
+ // array-to-pointer conversion (4.2 [conv.array]), and
+ // function-to-pointer conversion (4.3 [conv.func]) are the
+ // same, that common type;
+ // - otherwise, the program is ill-formed.
+ //
+ // In addition, in blocks in non-C++ modes, if all of the return
+ // statements are enumerator-like expressions of some type T, where
+ // T has a name for linkage, then we infer the return type of the
+ // block to be that type.
+
+ // First case: no return statements, implicit void return type.
+ ASTContext &Ctx = getASTContext();
+ if (CSI.Returns.empty()) {
+ // It's possible there were simply no /valid/ return statements.
+ // In this case, the first one we found may have at least given us a type.
+ if (CSI.ReturnType.isNull())
+ CSI.ReturnType = Ctx.VoidTy;
+ return;
+ }
+
+ // Second case: at least one return statement has dependent type.
+ // Delay type checking until instantiation.
+ assert(!CSI.ReturnType.isNull() && "We should have a tentative return type.");
+ if (CSI.ReturnType->isDependentType())
+ return;
+
+ // Try to apply the enum-fuzz rule.
+ if (!getLangOpts().CPlusPlus) {
+ assert(isa<BlockScopeInfo>(CSI));
+ const EnumDecl *ED = findCommonEnumForBlockReturns(CSI.Returns);
+ if (ED) {
+ CSI.ReturnType = Context.getTypeDeclType(ED);
+ adjustBlockReturnsToEnum(*this, CSI.Returns, CSI.ReturnType);
+ return;
+ }
+ }
+
+ // Third case: only one return statement. Don't bother doing extra work!
+ SmallVectorImpl<ReturnStmt*>::iterator I = CSI.Returns.begin(),
+ E = CSI.Returns.end();
+ if (I+1 == E)
+ return;
+
+ // General case: many return statements.
+ // Check that they all have compatible return types.
+
+ // We require the return types to strictly match here.
+ // Note that we've already done the required promotions as part of
+ // processing the return statement.
+ for (; I != E; ++I) {
+ const ReturnStmt *RS = *I;
+ const Expr *RetE = RS->getRetValue();
+
+ QualType ReturnType = (RetE ? RetE->getType() : Context.VoidTy);
+ if (Context.hasSameType(ReturnType, CSI.ReturnType))
+ continue;
+
+ // FIXME: This is a poor diagnostic for ReturnStmts without expressions.
+ // TODO: It's possible that the *first* return is the divergent one.
+ Diag(RS->getLocStart(),
+ diag::err_typecheck_missing_return_type_incompatible)
+ << ReturnType << CSI.ReturnType
+ << isa<LambdaScopeInfo>(CSI);
+ // Continue iterating so that we keep emitting diagnostics.
+ }
+}
+
+QualType Sema::performLambdaInitCaptureInitialization(SourceLocation Loc,
+ bool ByRef,
+ IdentifierInfo *Id,
+ Expr *&Init) {
+
+ // We do not need to distinguish between direct-list-initialization
+ // and copy-list-initialization here, because we will always deduce
+ // std::initializer_list<T>, and direct- and copy-list-initialization
+ // always behave the same for such a type.
+ // FIXME: We should model whether an '=' was present.
+ const bool IsDirectInit = isa<ParenListExpr>(Init) || isa<InitListExpr>(Init);
+
+ // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to
+ // deduce against.
+ QualType DeductType = Context.getAutoDeductType();
+ TypeLocBuilder TLB;
+ TLB.pushTypeSpec(DeductType).setNameLoc(Loc);
+ if (ByRef) {
+ DeductType = BuildReferenceType(DeductType, true, Loc, Id);
+ assert(!DeductType.isNull() && "can't build reference to auto");
+ TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc);
+ }
+ TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType);
+
+ // Are we a non-list direct initialization?
+ ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
+
+ Expr *DeduceInit = Init;
+ // Initializer could be a C++ direct-initializer. Deduction only works if it
+ // contains exactly one expression.
+ if (CXXDirectInit) {
+ if (CXXDirectInit->getNumExprs() == 0) {
+ Diag(CXXDirectInit->getLocStart(), diag::err_init_capture_no_expression)
+ << DeclarationName(Id) << TSI->getType() << Loc;
+ return QualType();
+ } else if (CXXDirectInit->getNumExprs() > 1) {
+ Diag(CXXDirectInit->getExpr(1)->getLocStart(),
+ diag::err_init_capture_multiple_expressions)
+ << DeclarationName(Id) << TSI->getType() << Loc;
+ return QualType();
+ } else {
+ DeduceInit = CXXDirectInit->getExpr(0);
+ }
+ }
+
+ // Now deduce against the initialization expression and store the deduced
+ // type below.
+ QualType DeducedType;
+ if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) {
+ if (isa<InitListExpr>(Init))
+ Diag(Loc, diag::err_init_capture_deduction_failure_from_init_list)
+ << DeclarationName(Id)
+ << (DeduceInit->getType().isNull() ? TSI->getType()
+ : DeduceInit->getType())
+ << DeduceInit->getSourceRange();
+ else
+ Diag(Loc, diag::err_init_capture_deduction_failure)
+ << DeclarationName(Id) << TSI->getType()
+ << (DeduceInit->getType().isNull() ? TSI->getType()
+ : DeduceInit->getType())
+ << DeduceInit->getSourceRange();
+ }
+ if (DeducedType.isNull())
+ return QualType();
+
+ // Perform initialization analysis and ensure any implicit conversions
+ // (such as lvalue-to-rvalue) are enforced.
+ InitializedEntity Entity =
+ InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc);
+ InitializationKind Kind =
+ IsDirectInit
+ ? (CXXDirectInit ? InitializationKind::CreateDirect(
+ Loc, Init->getLocStart(), Init->getLocEnd())
+ : InitializationKind::CreateDirectList(Loc))
+ : InitializationKind::CreateCopy(Loc, Init->getLocStart());
+
+ MultiExprArg Args = Init;
+ if (CXXDirectInit)
+ Args =
+ MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs());
+ QualType DclT;
+ InitializationSequence InitSeq(*this, Entity, Kind, Args);
+ ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
+
+ if (Result.isInvalid())
+ return QualType();
+ Init = Result.takeAs<Expr>();
+
+ // The init-capture initialization is a full-expression that must be
+ // processed as one before we enter the declcontext of the lambda's
+ // call-operator.
+ Result = ActOnFinishFullExpr(Init, Loc, /*DiscardedValue*/ false,
+ /*IsConstexpr*/ false,
+ /*IsLambdaInitCaptureInitalizer*/ true);
+ if (Result.isInvalid())
+ return QualType();
+
+ Init = Result.takeAs<Expr>();
+ return DeducedType;
+}
+
+VarDecl *Sema::createLambdaInitCaptureVarDecl(SourceLocation Loc,
+ QualType InitCaptureType, IdentifierInfo *Id, Expr *Init) {
+
+ TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType,
+ Loc);
+ // Create a dummy variable representing the init-capture. This is not actually
+ // used as a variable, and only exists as a way to name and refer to the
+ // init-capture.
+ // FIXME: Pass in separate source locations for '&' and identifier.
+ VarDecl *NewVD = VarDecl::Create(Context, CurContext, Loc,
+ Loc, Id, InitCaptureType, TSI, SC_Auto);
+ NewVD->setInitCapture(true);
+ NewVD->setReferenced(true);
+ NewVD->markUsed(Context);
+ NewVD->setInit(Init);
+ return NewVD;
+
+}
+
+FieldDecl *Sema::buildInitCaptureField(LambdaScopeInfo *LSI, VarDecl *Var) {
+ FieldDecl *Field = FieldDecl::Create(
+ Context, LSI->Lambda, Var->getLocation(), Var->getLocation(),
+ 0, Var->getType(), Var->getTypeSourceInfo(), 0, false, ICIS_NoInit);
+ Field->setImplicit(true);
+ Field->setAccess(AS_private);
+ LSI->Lambda->addDecl(Field);
+
+ LSI->addCapture(Var, /*isBlock*/false, Var->getType()->isReferenceType(),
+ /*isNested*/false, Var->getLocation(), SourceLocation(),
+ Var->getType(), Var->getInit());
+ return Field;
+}
+
+void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
+ Declarator &ParamInfo, Scope *CurScope) {
+ // Determine if we're within a context where we know that the lambda will
+ // be dependent, because there are template parameters in scope.
+ bool KnownDependent = false;
+ LambdaScopeInfo *const LSI = getCurLambda();
+ assert(LSI && "LambdaScopeInfo should be on stack!");
+ TemplateParameterList *TemplateParams =
+ getGenericLambdaTemplateParameterList(LSI, *this);
+
+ if (Scope *TmplScope = CurScope->getTemplateParamParent()) {
+ // Since we have our own TemplateParams, so check if an outer scope
+ // has template params, only then are we in a dependent scope.
+ if (TemplateParams) {
+ TmplScope = TmplScope->getParent();
+ TmplScope = TmplScope ? TmplScope->getTemplateParamParent() : 0;
+ }
+ if (TmplScope && !TmplScope->decl_empty())
+ KnownDependent = true;
+ }
+ // Determine the signature of the call operator.
+ TypeSourceInfo *MethodTyInfo;
+ bool ExplicitParams = true;
+ bool ExplicitResultType = true;
+ bool ContainsUnexpandedParameterPack = false;
+ SourceLocation EndLoc;
+ SmallVector<ParmVarDecl *, 8> Params;
+ if (ParamInfo.getNumTypeObjects() == 0) {
+ // C++11 [expr.prim.lambda]p4:
+ // If a lambda-expression does not include a lambda-declarator, it is as
+ // if the lambda-declarator were ().
+ FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
+ /*IsVariadic=*/false, /*IsCXXMethod=*/true));
+ EPI.HasTrailingReturn = true;
+ EPI.TypeQuals |= DeclSpec::TQ_const;
+ // C++1y [expr.prim.lambda]:
+ // The lambda return type is 'auto', which is replaced by the
+ // trailing-return type if provided and/or deduced from 'return'
+ // statements
+ // We don't do this before C++1y, because we don't support deduced return
+ // types there.
+ QualType DefaultTypeForNoTrailingReturn =
+ getLangOpts().CPlusPlus1y ? Context.getAutoDeductType()
+ : Context.DependentTy;
+ QualType MethodTy =
+ Context.getFunctionType(DefaultTypeForNoTrailingReturn, None, EPI);
+ MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy);
+ ExplicitParams = false;
+ ExplicitResultType = false;
+ EndLoc = Intro.Range.getEnd();
+ } else {
+ assert(ParamInfo.isFunctionDeclarator() &&
+ "lambda-declarator is a function");
+ DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo();
+
+ // C++11 [expr.prim.lambda]p5:
+ // This function call operator is declared const (9.3.1) if and only if
+ // the lambda-expression's parameter-declaration-clause is not followed
+ // by mutable. It is neither virtual nor declared volatile. [...]
+ if (!FTI.hasMutableQualifier())
+ FTI.TypeQuals |= DeclSpec::TQ_const;
+
+ MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope);
+ assert(MethodTyInfo && "no type from lambda-declarator");
+ EndLoc = ParamInfo.getSourceRange().getEnd();
+
+ ExplicitResultType = FTI.hasTrailingReturnType();
+
+ if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
+ cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
+ // Empty arg list, don't push any params.
+ checkVoidParamDecl(cast<ParmVarDecl>(FTI.ArgInfo[0].Param));
+ } else {
+ Params.reserve(FTI.NumArgs);
+ for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
+ Params.push_back(cast<ParmVarDecl>(FTI.ArgInfo[i].Param));
+ }
+
+ // Check for unexpanded parameter packs in the method type.
+ if (MethodTyInfo->getType()->containsUnexpandedParameterPack())
+ ContainsUnexpandedParameterPack = true;
+ }
+
+ CXXRecordDecl *Class = createLambdaClosureType(Intro.Range, MethodTyInfo,
+ KnownDependent, Intro.Default);
+
+ CXXMethodDecl *Method = startLambdaDefinition(Class, Intro.Range,
+ MethodTyInfo, EndLoc, Params);
+ if (ExplicitParams)
+ CheckCXXDefaultArguments(Method);
+
+ // Attributes on the lambda apply to the method.
+ ProcessDeclAttributes(CurScope, Method, ParamInfo);
+
+ // Introduce the function call operator as the current declaration context.
+ PushDeclContext(CurScope, Method);
+
+ // Build the lambda scope.
+ buildLambdaScope(LSI, Method,
+ Intro.Range,
+ Intro.Default, Intro.DefaultLoc,
+ ExplicitParams,
+ ExplicitResultType,
+ !Method->isConst());
+
+ // Distinct capture names, for diagnostics.
+ llvm::SmallSet<IdentifierInfo*, 8> CaptureNames;
+
+ // Handle explicit captures.
+ SourceLocation PrevCaptureLoc
+ = Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc;
+ for (SmallVectorImpl<LambdaCapture>::const_iterator
+ C = Intro.Captures.begin(),
+ E = Intro.Captures.end();
+ C != E;
+ PrevCaptureLoc = C->Loc, ++C) {
+ if (C->Kind == LCK_This) {
+ // C++11 [expr.prim.lambda]p8:
+ // An identifier or this shall not appear more than once in a
+ // lambda-capture.
+ if (LSI->isCXXThisCaptured()) {
+ Diag(C->Loc, diag::err_capture_more_than_once)
+ << "'this'"
+ << SourceRange(LSI->getCXXThisCapture().getLocation())
+ << FixItHint::CreateRemoval(
+ SourceRange(PP.getLocForEndOfToken(PrevCaptureLoc), C->Loc));
+ continue;
+ }
+
+ // C++11 [expr.prim.lambda]p8:
+ // If a lambda-capture includes a capture-default that is =, the
+ // lambda-capture shall not contain this [...].
+ if (Intro.Default == LCD_ByCopy) {
+ Diag(C->Loc, diag::err_this_capture_with_copy_default)
+ << FixItHint::CreateRemoval(
+ SourceRange(PP.getLocForEndOfToken(PrevCaptureLoc), C->Loc));
+ continue;
+ }
+
+ // C++11 [expr.prim.lambda]p12:
+ // If this is captured by a local lambda expression, its nearest
+ // enclosing function shall be a non-static member function.
+ QualType ThisCaptureType = getCurrentThisType();
+ if (ThisCaptureType.isNull()) {
+ Diag(C->Loc, diag::err_this_capture) << true;
+ continue;
+ }
+
+ CheckCXXThisCapture(C->Loc, /*Explicit=*/true);
+ continue;
+ }
+
+ assert(C->Id && "missing identifier for capture");
+
+ if (C->Init.isInvalid())
+ continue;
+
+ VarDecl *Var = 0;
+ if (C->Init.isUsable()) {
+ Diag(C->Loc, getLangOpts().CPlusPlus1y
+ ? diag::warn_cxx11_compat_init_capture
+ : diag::ext_init_capture);
+
+ if (C->Init.get()->containsUnexpandedParameterPack())
+ ContainsUnexpandedParameterPack = true;
+ // If the initializer expression is usable, but the InitCaptureType
+ // is not, then an error has occurred - so ignore the capture for now.
+ // for e.g., [n{0}] { }; <-- if no <initializer_list> is included.
+ // FIXME: we should create the init capture variable and mark it invalid
+ // in this case.
+ if (C->InitCaptureType.get().isNull())
+ continue;
+ Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(),
+ C->Id, C->Init.take());
+ // C++1y [expr.prim.lambda]p11:
+ // An init-capture behaves as if it declares and explicitly
+ // captures a variable [...] whose declarative region is the
+ // lambda-expression's compound-statement
+ if (Var)
+ PushOnScopeChains(Var, CurScope, false);
+ } else {
+ // C++11 [expr.prim.lambda]p8:
+ // If a lambda-capture includes a capture-default that is &, the
+ // identifiers in the lambda-capture shall not be preceded by &.
+ // If a lambda-capture includes a capture-default that is =, [...]
+ // each identifier it contains shall be preceded by &.
+ if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) {
+ Diag(C->Loc, diag::err_reference_capture_with_reference_default)
+ << FixItHint::CreateRemoval(
+ SourceRange(PP.getLocForEndOfToken(PrevCaptureLoc), C->Loc));
+ continue;
+ } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) {
+ Diag(C->Loc, diag::err_copy_capture_with_copy_default)
+ << FixItHint::CreateRemoval(
+ SourceRange(PP.getLocForEndOfToken(PrevCaptureLoc), C->Loc));
+ continue;
+ }
+
+ // C++11 [expr.prim.lambda]p10:
+ // The identifiers in a capture-list are looked up using the usual
+ // rules for unqualified name lookup (3.4.1)
+ DeclarationNameInfo Name(C->Id, C->Loc);
+ LookupResult R(*this, Name, LookupOrdinaryName);
+ LookupName(R, CurScope);
+ if (R.isAmbiguous())
+ continue;
+ if (R.empty()) {
+ // FIXME: Disable corrections that would add qualification?
+ CXXScopeSpec ScopeSpec;
+ DeclFilterCCC<VarDecl> Validator;
+ if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R, Validator))
+ continue;
+ }
+
+ Var = R.getAsSingle<VarDecl>();
+ }
+
+ // C++11 [expr.prim.lambda]p8:
+ // An identifier or this shall not appear more than once in a
+ // lambda-capture.
+ if (!CaptureNames.insert(C->Id)) {
+ if (Var && LSI->isCaptured(Var)) {
+ Diag(C->Loc, diag::err_capture_more_than_once)
+ << C->Id << SourceRange(LSI->getCapture(Var).getLocation())
+ << FixItHint::CreateRemoval(
+ SourceRange(PP.getLocForEndOfToken(PrevCaptureLoc), C->Loc));
+ } else
+ // Previous capture captured something different (one or both was
+ // an init-cpature): no fixit.
+ Diag(C->Loc, diag::err_capture_more_than_once) << C->Id;
+ continue;
+ }
+
+ // C++11 [expr.prim.lambda]p10:
+ // [...] each such lookup shall find a variable with automatic storage
+ // duration declared in the reaching scope of the local lambda expression.
+ // Note that the 'reaching scope' check happens in tryCaptureVariable().
+ if (!Var) {
+ Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id;
+ continue;
+ }
+
+ // Ignore invalid decls; they'll just confuse the code later.
+ if (Var->isInvalidDecl())
+ continue;
+
+ if (!Var->hasLocalStorage()) {
+ Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id;
+ Diag(Var->getLocation(), diag::note_previous_decl) << C->Id;
+ continue;
+ }
+
+ // C++11 [expr.prim.lambda]p23:
+ // A capture followed by an ellipsis is a pack expansion (14.5.3).
+ SourceLocation EllipsisLoc;
+ if (C->EllipsisLoc.isValid()) {
+ if (Var->isParameterPack()) {
+ EllipsisLoc = C->EllipsisLoc;
+ } else {
+ Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
+ << SourceRange(C->Loc);
+
+ // Just ignore the ellipsis.
+ }
+ } else if (Var->isParameterPack()) {
+ ContainsUnexpandedParameterPack = true;
+ }
+
+ if (C->Init.isUsable()) {
+ buildInitCaptureField(LSI, Var);
+ } else {
+ TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef :
+ TryCapture_ExplicitByVal;
+ tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc);
+ }
+ }
+ finishLambdaExplicitCaptures(LSI);
+
+ LSI->ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
+
+ // Add lambda parameters into scope.
+ addLambdaParameters(Method, CurScope);
+
+ // Enter a new evaluation context to insulate the lambda from any
+ // cleanups from the enclosing full-expression.
+ PushExpressionEvaluationContext(PotentiallyEvaluated);
+}
+
+void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope,
+ bool IsInstantiation) {
+ // Leave the expression-evaluation context.
+ DiscardCleanupsInEvaluationContext();
+ PopExpressionEvaluationContext();
+
+ // Leave the context of the lambda.
+ if (!IsInstantiation)
+ PopDeclContext();
+
+ // Finalize the lambda.
+ LambdaScopeInfo *LSI = getCurLambda();
+ CXXRecordDecl *Class = LSI->Lambda;
+ Class->setInvalidDecl();
+ SmallVector<Decl*, 4> Fields;
+ for (RecordDecl::field_iterator i = Class->field_begin(),
+ e = Class->field_end(); i != e; ++i)
+ Fields.push_back(*i);
+ ActOnFields(0, Class->getLocation(), Class, Fields,
+ SourceLocation(), SourceLocation(), 0);
+ CheckCompletedCXXClass(Class);
+
+ PopFunctionScopeInfo();
+}
+
+/// \brief Add a lambda's conversion to function pointer, as described in
+/// C++11 [expr.prim.lambda]p6.
+static void addFunctionPointerConversion(Sema &S,
+ SourceRange IntroducerRange,
+ CXXRecordDecl *Class,
+ CXXMethodDecl *CallOperator) {
+ // Add the conversion to function pointer.
+ const FunctionProtoType *CallOpProto =
+ CallOperator->getType()->getAs<FunctionProtoType>();
+ const FunctionProtoType::ExtProtoInfo CallOpExtInfo =
+ CallOpProto->getExtProtoInfo();
+ QualType PtrToFunctionTy;
+ QualType InvokerFunctionTy;
+ {
+ FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo;
+ CallingConv CC = S.Context.getDefaultCallingConvention(
+ CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
+ InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC);
+ InvokerExtInfo.TypeQuals = 0;
+ assert(InvokerExtInfo.RefQualifier == RQ_None &&
+ "Lambda's call operator should not have a reference qualifier");
+ InvokerFunctionTy = S.Context.getFunctionType(CallOpProto->getResultType(),
+ CallOpProto->getArgTypes(), InvokerExtInfo);
+ PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy);
+ }
+
+ // Create the type of the conversion function.
+ FunctionProtoType::ExtProtoInfo ConvExtInfo(
+ S.Context.getDefaultCallingConvention(
+ /*IsVariadic=*/false, /*IsCXXMethod=*/true));
+ // The conversion function is always const.
+ ConvExtInfo.TypeQuals = Qualifiers::Const;
+ QualType ConvTy =
+ S.Context.getFunctionType(PtrToFunctionTy, None, ConvExtInfo);
+
+ SourceLocation Loc = IntroducerRange.getBegin();
+ DeclarationName ConversionName
+ = S.Context.DeclarationNames.getCXXConversionFunctionName(
+ S.Context.getCanonicalType(PtrToFunctionTy));
+ DeclarationNameLoc ConvNameLoc;
+ // Construct a TypeSourceInfo for the conversion function, and wire
+ // all the parameters appropriately for the FunctionProtoTypeLoc
+ // so that everything works during transformation/instantiation of
+ // generic lambdas.
+ // The main reason for wiring up the parameters of the conversion
+ // function with that of the call operator is so that constructs
+ // like the following work:
+ // auto L = [](auto b) { <-- 1
+ // return [](auto a) -> decltype(a) { <-- 2
+ // return a;
+ // };
+ // };
+ // int (*fp)(int) = L(5);
+ // Because the trailing return type can contain DeclRefExprs that refer
+ // to the original call operator's variables, we hijack the call
+ // operators ParmVarDecls below.
+ TypeSourceInfo *ConvNamePtrToFunctionTSI =
+ S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc);
+ ConvNameLoc.NamedType.TInfo = ConvNamePtrToFunctionTSI;
+
+ // The conversion function is a conversion to a pointer-to-function.
+ TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc);
+ FunctionProtoTypeLoc ConvTL =
+ ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>();
+ // Get the result of the conversion function which is a pointer-to-function.
+ PointerTypeLoc PtrToFunctionTL =
+ ConvTL.getResultLoc().getAs<PointerTypeLoc>();
+ // Do the same for the TypeSourceInfo that is used to name the conversion
+ // operator.
+ PointerTypeLoc ConvNamePtrToFunctionTL =
+ ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>();
+
+ // Get the underlying function types that the conversion function will
+ // be converting to (should match the type of the call operator).
+ FunctionProtoTypeLoc CallOpConvTL =
+ PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
+ FunctionProtoTypeLoc CallOpConvNameTL =
+ ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
+
+ // Wire up the FunctionProtoTypeLocs with the call operator's parameters.
+ // These parameter's are essentially used to transform the name and
+ // the type of the conversion operator. By using the same parameters
+ // as the call operator's we don't have to fix any back references that
+ // the trailing return type of the call operator's uses (such as
+ // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.)
+ // - we can simply use the return type of the call operator, and
+ // everything should work.
+ SmallVector<ParmVarDecl *, 4> InvokerParams;
+ for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
+ ParmVarDecl *From = CallOperator->getParamDecl(I);
+
+ InvokerParams.push_back(ParmVarDecl::Create(S.Context,
+ // Temporarily add to the TU. This is set to the invoker below.
+ S.Context.getTranslationUnitDecl(),
+ From->getLocStart(),
+ From->getLocation(),
+ From->getIdentifier(),
+ From->getType(),
+ From->getTypeSourceInfo(),
+ From->getStorageClass(),
+ /*DefaultArg=*/0));
+ CallOpConvTL.setArg(I, From);
+ CallOpConvNameTL.setArg(I, From);
+ }
+
+ CXXConversionDecl *Conversion
+ = CXXConversionDecl::Create(S.Context, Class, Loc,
+ DeclarationNameInfo(ConversionName,
+ Loc, ConvNameLoc),
+ ConvTy,
+ ConvTSI,
+ /*isInline=*/true, /*isExplicit=*/false,
+ /*isConstexpr=*/false,
+ CallOperator->getBody()->getLocEnd());
+ Conversion->setAccess(AS_public);
+ Conversion->setImplicit(true);
+
+ if (Class->isGenericLambda()) {
+ // Create a template version of the conversion operator, using the template
+ // parameter list of the function call operator.
+ FunctionTemplateDecl *TemplateCallOperator =
+ CallOperator->getDescribedFunctionTemplate();
+ FunctionTemplateDecl *ConversionTemplate =
+ FunctionTemplateDecl::Create(S.Context, Class,
+ Loc, ConversionName,
+ TemplateCallOperator->getTemplateParameters(),
+ Conversion);
+ ConversionTemplate->setAccess(AS_public);
+ ConversionTemplate->setImplicit(true);
+ Conversion->setDescribedFunctionTemplate(ConversionTemplate);
+ Class->addDecl(ConversionTemplate);
+ } else
+ Class->addDecl(Conversion);
+ // Add a non-static member function that will be the result of
+ // the conversion with a certain unique ID.
+ DeclarationName InvokerName = &S.Context.Idents.get(
+ getLambdaStaticInvokerName());
+ // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo()
+ // we should get a prebuilt TrivialTypeSourceInfo from Context
+ // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc
+ // then rewire the parameters accordingly, by hoisting up the InvokeParams
+ // loop below and then use its Params to set Invoke->setParams(...) below.
+ // This would avoid the 'const' qualifier of the calloperator from
+ // contaminating the type of the invoker, which is currently adjusted
+ // in SemaTemplateDeduction.cpp:DeduceTemplateArguments. Fixing the
+ // trailing return type of the invoker would require a visitor to rebuild
+ // the trailing return type and adjusting all back DeclRefExpr's to refer
+ // to the new static invoker parameters - not the call operator's.
+ CXXMethodDecl *Invoke
+ = CXXMethodDecl::Create(S.Context, Class, Loc,
+ DeclarationNameInfo(InvokerName, Loc),
+ InvokerFunctionTy,
+ CallOperator->getTypeSourceInfo(),
+ SC_Static, /*IsInline=*/true,
+ /*IsConstexpr=*/false,
+ CallOperator->getBody()->getLocEnd());
+ for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I)
+ InvokerParams[I]->setOwningFunction(Invoke);
+ Invoke->setParams(InvokerParams);
+ Invoke->setAccess(AS_private);
+ Invoke->setImplicit(true);
+ if (Class->isGenericLambda()) {
+ FunctionTemplateDecl *TemplateCallOperator =
+ CallOperator->getDescribedFunctionTemplate();
+ FunctionTemplateDecl *StaticInvokerTemplate = FunctionTemplateDecl::Create(
+ S.Context, Class, Loc, InvokerName,
+ TemplateCallOperator->getTemplateParameters(),
+ Invoke);
+ StaticInvokerTemplate->setAccess(AS_private);
+ StaticInvokerTemplate->setImplicit(true);
+ Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate);
+ Class->addDecl(StaticInvokerTemplate);
+ } else
+ Class->addDecl(Invoke);
+}
+
+/// \brief Add a lambda's conversion to block pointer.
+static void addBlockPointerConversion(Sema &S,
+ SourceRange IntroducerRange,
+ CXXRecordDecl *Class,
+ CXXMethodDecl *CallOperator) {
+ const FunctionProtoType *Proto
+ = CallOperator->getType()->getAs<FunctionProtoType>();
+ QualType BlockPtrTy;
+ {
+ FunctionProtoType::ExtProtoInfo ExtInfo = Proto->getExtProtoInfo();
+ ExtInfo.TypeQuals = 0;
+ QualType FunctionTy = S.Context.getFunctionType(
+ Proto->getResultType(), Proto->getArgTypes(), ExtInfo);
+ BlockPtrTy = S.Context.getBlockPointerType(FunctionTy);
+ }
+
+ FunctionProtoType::ExtProtoInfo ExtInfo(S.Context.getDefaultCallingConvention(
+ /*IsVariadic=*/false, /*IsCXXMethod=*/true));
+ ExtInfo.TypeQuals = Qualifiers::Const;
+ QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, None, ExtInfo);
+
+ SourceLocation Loc = IntroducerRange.getBegin();
+ DeclarationName Name
+ = S.Context.DeclarationNames.getCXXConversionFunctionName(
+ S.Context.getCanonicalType(BlockPtrTy));
+ DeclarationNameLoc NameLoc;
+ NameLoc.NamedType.TInfo = S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc);
+ CXXConversionDecl *Conversion
+ = CXXConversionDecl::Create(S.Context, Class, Loc,
+ DeclarationNameInfo(Name, Loc, NameLoc),
+ ConvTy,
+ S.Context.getTrivialTypeSourceInfo(ConvTy, Loc),
+ /*isInline=*/true, /*isExplicit=*/false,
+ /*isConstexpr=*/false,
+ CallOperator->getBody()->getLocEnd());
+ Conversion->setAccess(AS_public);
+ Conversion->setImplicit(true);
+ Class->addDecl(Conversion);
+}
+
+ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body,
+ Scope *CurScope,
+ bool IsInstantiation) {
+ // Collect information from the lambda scope.
+ SmallVector<LambdaExpr::Capture, 4> Captures;
+ SmallVector<Expr *, 4> CaptureInits;
+ LambdaCaptureDefault CaptureDefault;
+ SourceLocation CaptureDefaultLoc;
+ CXXRecordDecl *Class;
+ CXXMethodDecl *CallOperator;
+ SourceRange IntroducerRange;
+ bool ExplicitParams;
+ bool ExplicitResultType;
+ bool LambdaExprNeedsCleanups;
+ bool ContainsUnexpandedParameterPack;
+ SmallVector<VarDecl *, 4> ArrayIndexVars;
+ SmallVector<unsigned, 4> ArrayIndexStarts;
+ {
+ LambdaScopeInfo *LSI = getCurLambda();
+ CallOperator = LSI->CallOperator;
+ Class = LSI->Lambda;
+ IntroducerRange = LSI->IntroducerRange;
+ ExplicitParams = LSI->ExplicitParams;
+ ExplicitResultType = !LSI->HasImplicitReturnType;
+ LambdaExprNeedsCleanups = LSI->ExprNeedsCleanups;
+ ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack;
+ ArrayIndexVars.swap(LSI->ArrayIndexVars);
+ ArrayIndexStarts.swap(LSI->ArrayIndexStarts);
+
+ // Translate captures.
+ for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I) {
+ LambdaScopeInfo::Capture From = LSI->Captures[I];
+ assert(!From.isBlockCapture() && "Cannot capture __block variables");
+ bool IsImplicit = I >= LSI->NumExplicitCaptures;
+
+ // Handle 'this' capture.
+ if (From.isThisCapture()) {
+ Captures.push_back(LambdaExpr::Capture(From.getLocation(),
+ IsImplicit,
+ LCK_This));
+ CaptureInits.push_back(new (Context) CXXThisExpr(From.getLocation(),
+ getCurrentThisType(),
+ /*isImplicit=*/true));
+ continue;
+ }
+
+ VarDecl *Var = From.getVariable();
+ LambdaCaptureKind Kind = From.isCopyCapture()? LCK_ByCopy : LCK_ByRef;
+ Captures.push_back(LambdaExpr::Capture(From.getLocation(), IsImplicit,
+ Kind, Var, From.getEllipsisLoc()));
+ CaptureInits.push_back(From.getInitExpr());
+ }
+
+ switch (LSI->ImpCaptureStyle) {
+ case CapturingScopeInfo::ImpCap_None:
+ CaptureDefault = LCD_None;
+ break;
+
+ case CapturingScopeInfo::ImpCap_LambdaByval:
+ CaptureDefault = LCD_ByCopy;
+ break;
+
+ case CapturingScopeInfo::ImpCap_CapturedRegion:
+ case CapturingScopeInfo::ImpCap_LambdaByref:
+ CaptureDefault = LCD_ByRef;
+ break;
+
+ case CapturingScopeInfo::ImpCap_Block:
+ llvm_unreachable("block capture in lambda");
+ break;
+ }
+ CaptureDefaultLoc = LSI->CaptureDefaultLoc;
+
+ // C++11 [expr.prim.lambda]p4:
+ // If a lambda-expression does not include a
+ // trailing-return-type, it is as if the trailing-return-type
+ // denotes the following type:
+ //
+ // Skip for C++1y return type deduction semantics which uses
+ // different machinery.
+ // FIXME: Refactor and Merge the return type deduction machinery.
+ // FIXME: Assumes current resolution to core issue 975.
+ if (LSI->HasImplicitReturnType && !getLangOpts().CPlusPlus1y) {
+ deduceClosureReturnType(*LSI);
+
+ // - if there are no return statements in the
+ // compound-statement, or all return statements return
+ // either an expression of type void or no expression or
+ // braced-init-list, the type void;
+ if (LSI->ReturnType.isNull()) {
+ LSI->ReturnType = Context.VoidTy;
+ }
+
+ // Create a function type with the inferred return type.
+ const FunctionProtoType *Proto
+ = CallOperator->getType()->getAs<FunctionProtoType>();
+ QualType FunctionTy = Context.getFunctionType(
+ LSI->ReturnType, Proto->getArgTypes(), Proto->getExtProtoInfo());
+ CallOperator->setType(FunctionTy);
+ }
+ // C++ [expr.prim.lambda]p7:
+ // The lambda-expression's compound-statement yields the
+ // function-body (8.4) of the function call operator [...].
+ ActOnFinishFunctionBody(CallOperator, Body, IsInstantiation);
+ CallOperator->setLexicalDeclContext(Class);
+ Decl *TemplateOrNonTemplateCallOperatorDecl =
+ CallOperator->getDescribedFunctionTemplate()
+ ? CallOperator->getDescribedFunctionTemplate()
+ : cast<Decl>(CallOperator);
+
+ TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class);
+ Class->addDecl(TemplateOrNonTemplateCallOperatorDecl);
+
+ PopExpressionEvaluationContext();
+
+ // C++11 [expr.prim.lambda]p6:
+ // The closure type for a lambda-expression with no lambda-capture
+ // has a public non-virtual non-explicit const conversion function
+ // to pointer to function having the same parameter and return
+ // types as the closure type's function call operator.
+ if (Captures.empty() && CaptureDefault == LCD_None)
+ addFunctionPointerConversion(*this, IntroducerRange, Class,
+ CallOperator);
+
+ // Objective-C++:
+ // The closure type for a lambda-expression has a public non-virtual
+ // non-explicit const conversion function to a block pointer having the
+ // same parameter and return types as the closure type's function call
+ // operator.
+ // FIXME: Fix generic lambda to block conversions.
+ if (getLangOpts().Blocks && getLangOpts().ObjC1 &&
+ !Class->isGenericLambda())
+ addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator);
+
+ // Finalize the lambda class.
+ SmallVector<Decl*, 4> Fields;
+ for (RecordDecl::field_iterator i = Class->field_begin(),
+ e = Class->field_end(); i != e; ++i)
+ Fields.push_back(*i);
+ ActOnFields(0, Class->getLocation(), Class, Fields,
+ SourceLocation(), SourceLocation(), 0);
+ CheckCompletedCXXClass(Class);
+ }
+
+ if (LambdaExprNeedsCleanups)
+ ExprNeedsCleanups = true;
+
+ LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange,
+ CaptureDefault, CaptureDefaultLoc,
+ Captures,
+ ExplicitParams, ExplicitResultType,
+ CaptureInits, ArrayIndexVars,
+ ArrayIndexStarts, Body->getLocEnd(),
+ ContainsUnexpandedParameterPack);
+
+ if (!CurContext->isDependentContext()) {
+ switch (ExprEvalContexts.back().Context) {
+ // C++11 [expr.prim.lambda]p2:
+ // A lambda-expression shall not appear in an unevaluated operand
+ // (Clause 5).
+ case Unevaluated:
+ case UnevaluatedAbstract:
+ // C++1y [expr.const]p2:
+ // A conditional-expression e is a core constant expression unless the
+ // evaluation of e, following the rules of the abstract machine, would
+ // evaluate [...] a lambda-expression.
+ //
+ // This is technically incorrect, there are some constant evaluated contexts
+ // where this should be allowed. We should probably fix this when DR1607 is
+ // ratified, it lays out the exact set of conditions where we shouldn't
+ // allow a lambda-expression.
+ case ConstantEvaluated:
+ // We don't actually diagnose this case immediately, because we
+ // could be within a context where we might find out later that
+ // the expression is potentially evaluated (e.g., for typeid).
+ ExprEvalContexts.back().Lambdas.push_back(Lambda);
+ break;
+
+ case PotentiallyEvaluated:
+ case PotentiallyEvaluatedIfUsed:
+ break;
+ }
+ }
+
+ return MaybeBindToTemporary(Lambda);
+}
+
+ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation,
+ SourceLocation ConvLocation,
+ CXXConversionDecl *Conv,
+ Expr *Src) {
+ // Make sure that the lambda call operator is marked used.
+ CXXRecordDecl *Lambda = Conv->getParent();
+ CXXMethodDecl *CallOperator
+ = cast<CXXMethodDecl>(
+ Lambda->lookup(
+ Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
+ CallOperator->setReferenced();
+ CallOperator->markUsed(Context);
+
+ ExprResult Init = PerformCopyInitialization(
+ InitializedEntity::InitializeBlock(ConvLocation,
+ Src->getType(),
+ /*NRVO=*/false),
+ CurrentLocation, Src);
+ if (!Init.isInvalid())
+ Init = ActOnFinishFullExpr(Init.take());
+
+ if (Init.isInvalid())
+ return ExprError();
+
+ // Create the new block to be returned.
+ BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation);
+
+ // Set the type information.
+ Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo());
+ Block->setIsVariadic(CallOperator->isVariadic());
+ Block->setBlockMissingReturnType(false);
+
+ // Add parameters.
+ SmallVector<ParmVarDecl *, 4> BlockParams;
+ for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
+ ParmVarDecl *From = CallOperator->getParamDecl(I);
+ BlockParams.push_back(ParmVarDecl::Create(Context, Block,
+ From->getLocStart(),
+ From->getLocation(),
+ From->getIdentifier(),
+ From->getType(),
+ From->getTypeSourceInfo(),
+ From->getStorageClass(),
+ /*DefaultArg=*/0));
+ }
+ Block->setParams(BlockParams);
+
+ Block->setIsConversionFromLambda(true);
+
+ // Add capture. The capture uses a fake variable, which doesn't correspond
+ // to any actual memory location. However, the initializer copy-initializes
+ // the lambda object.
+ TypeSourceInfo *CapVarTSI =
+ Context.getTrivialTypeSourceInfo(Src->getType());
+ VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation,
+ ConvLocation, 0,
+ Src->getType(), CapVarTSI,
+ SC_None);
+ BlockDecl::Capture Capture(/*Variable=*/CapVar, /*ByRef=*/false,
+ /*Nested=*/false, /*Copy=*/Init.take());
+ Block->setCaptures(Context, &Capture, &Capture + 1,
+ /*CapturesCXXThis=*/false);
+
+ // Add a fake function body to the block. IR generation is responsible
+ // for filling in the actual body, which cannot be expressed as an AST.
+ Block->setBody(new (Context) CompoundStmt(ConvLocation));
+
+ // Create the block literal expression.
+ Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType());
+ ExprCleanupObjects.push_back(Block);
+ ExprNeedsCleanups = true;
+
+ return BuildBlock;
+}
OpenPOWER on IntegriCloud