summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/Sema/SemaExprCXX.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/Sema/SemaExprCXX.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaExprCXX.cpp3031
1 files changed, 3031 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaExprCXX.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaExprCXX.cpp
new file mode 100644
index 0000000..97de96a
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaExprCXX.cpp
@@ -0,0 +1,3031 @@
+//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements semantic analysis for C++ expressions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Sema.h"
+#include "SemaInit.h"
+#include "Lookup.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/Basic/PartialDiagnostic.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Parse/DeclSpec.h"
+#include "clang/Parse/Template.h"
+#include "llvm/ADT/STLExtras.h"
+using namespace clang;
+
+Action::TypeTy *Sema::getDestructorName(SourceLocation TildeLoc,
+ IdentifierInfo &II,
+ SourceLocation NameLoc,
+ Scope *S, CXXScopeSpec &SS,
+ TypeTy *ObjectTypePtr,
+ bool EnteringContext) {
+ // Determine where to perform name lookup.
+
+ // FIXME: This area of the standard is very messy, and the current
+ // wording is rather unclear about which scopes we search for the
+ // destructor name; see core issues 399 and 555. Issue 399 in
+ // particular shows where the current description of destructor name
+ // lookup is completely out of line with existing practice, e.g.,
+ // this appears to be ill-formed:
+ //
+ // namespace N {
+ // template <typename T> struct S {
+ // ~S();
+ // };
+ // }
+ //
+ // void f(N::S<int>* s) {
+ // s->N::S<int>::~S();
+ // }
+ //
+ // See also PR6358 and PR6359.
+ QualType SearchType;
+ DeclContext *LookupCtx = 0;
+ bool isDependent = false;
+ bool LookInScope = false;
+
+ // If we have an object type, it's because we are in a
+ // pseudo-destructor-expression or a member access expression, and
+ // we know what type we're looking for.
+ if (ObjectTypePtr)
+ SearchType = GetTypeFromParser(ObjectTypePtr);
+
+ if (SS.isSet()) {
+ NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
+
+ bool AlreadySearched = false;
+ bool LookAtPrefix = true;
+ if (!getLangOptions().CPlusPlus0x) {
+ // C++ [basic.lookup.qual]p6:
+ // If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
+ // the type-names are looked up as types in the scope designated by the
+ // nested-name-specifier. In a qualified-id of the form:
+ //
+ // ::[opt] nested-name-specifier ̃ class-name
+ //
+ // where the nested-name-specifier designates a namespace scope, and in
+ // a qualified-id of the form:
+ //
+ // ::opt nested-name-specifier class-name :: ̃ class-name
+ //
+ // the class-names are looked up as types in the scope designated by
+ // the nested-name-specifier.
+ //
+ // Here, we check the first case (completely) and determine whether the
+ // code below is permitted to look at the prefix of the
+ // nested-name-specifier (as we do in C++0x).
+ DeclContext *DC = computeDeclContext(SS, EnteringContext);
+ if (DC && DC->isFileContext()) {
+ AlreadySearched = true;
+ LookupCtx = DC;
+ isDependent = false;
+ } else if (DC && isa<CXXRecordDecl>(DC))
+ LookAtPrefix = false;
+ }
+
+ // C++0x [basic.lookup.qual]p6:
+ // If a pseudo-destructor-name (5.2.4) contains a
+ // nested-name-specifier, the type-names are looked up as types
+ // in the scope designated by the nested-name-specifier. Similarly, in
+ // a qualified-id of the form:
+ //
+ // :: [opt] nested-name-specifier[opt] class-name :: ~class-name
+ //
+ // the second class-name is looked up in the same scope as the first.
+ //
+ // To implement this, we look at the prefix of the
+ // nested-name-specifier we were given, and determine the lookup
+ // context from that.
+ //
+ // We also fold in the second case from the C++03 rules quoted further
+ // above.
+ NestedNameSpecifier *Prefix = 0;
+ if (AlreadySearched) {
+ // Nothing left to do.
+ } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
+ CXXScopeSpec PrefixSS;
+ PrefixSS.setScopeRep(Prefix);
+ LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
+ isDependent = isDependentScopeSpecifier(PrefixSS);
+ } else if (getLangOptions().CPlusPlus0x &&
+ (LookupCtx = computeDeclContext(SS, EnteringContext))) {
+ if (!LookupCtx->isTranslationUnit())
+ LookupCtx = LookupCtx->getParent();
+ isDependent = LookupCtx && LookupCtx->isDependentContext();
+ } else if (ObjectTypePtr) {
+ LookupCtx = computeDeclContext(SearchType);
+ isDependent = SearchType->isDependentType();
+ } else {
+ LookupCtx = computeDeclContext(SS, EnteringContext);
+ isDependent = LookupCtx && LookupCtx->isDependentContext();
+ }
+
+ LookInScope = false;
+ } else if (ObjectTypePtr) {
+ // C++ [basic.lookup.classref]p3:
+ // If the unqualified-id is ~type-name, the type-name is looked up
+ // in the context of the entire postfix-expression. If the type T
+ // of the object expression is of a class type C, the type-name is
+ // also looked up in the scope of class C. At least one of the
+ // lookups shall find a name that refers to (possibly
+ // cv-qualified) T.
+ LookupCtx = computeDeclContext(SearchType);
+ isDependent = SearchType->isDependentType();
+ assert((isDependent || !SearchType->isIncompleteType()) &&
+ "Caller should have completed object type");
+
+ LookInScope = true;
+ } else {
+ // Perform lookup into the current scope (only).
+ LookInScope = true;
+ }
+
+ LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
+ for (unsigned Step = 0; Step != 2; ++Step) {
+ // Look for the name first in the computed lookup context (if we
+ // have one) and, if that fails to find a match, in the sope (if
+ // we're allowed to look there).
+ Found.clear();
+ if (Step == 0 && LookupCtx)
+ LookupQualifiedName(Found, LookupCtx);
+ else if (Step == 1 && LookInScope && S)
+ LookupName(Found, S);
+ else
+ continue;
+
+ // FIXME: Should we be suppressing ambiguities here?
+ if (Found.isAmbiguous())
+ return 0;
+
+ if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
+ QualType T = Context.getTypeDeclType(Type);
+
+ if (SearchType.isNull() || SearchType->isDependentType() ||
+ Context.hasSameUnqualifiedType(T, SearchType)) {
+ // We found our type!
+
+ return T.getAsOpaquePtr();
+ }
+ }
+
+ // If the name that we found is a class template name, and it is
+ // the same name as the template name in the last part of the
+ // nested-name-specifier (if present) or the object type, then
+ // this is the destructor for that class.
+ // FIXME: This is a workaround until we get real drafting for core
+ // issue 399, for which there isn't even an obvious direction.
+ if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
+ QualType MemberOfType;
+ if (SS.isSet()) {
+ if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
+ // Figure out the type of the context, if it has one.
+ if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
+ MemberOfType = Context.getTypeDeclType(Record);
+ }
+ }
+ if (MemberOfType.isNull())
+ MemberOfType = SearchType;
+
+ if (MemberOfType.isNull())
+ continue;
+
+ // We're referring into a class template specialization. If the
+ // class template we found is the same as the template being
+ // specialized, we found what we are looking for.
+ if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
+ if (ClassTemplateSpecializationDecl *Spec
+ = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
+ if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
+ Template->getCanonicalDecl())
+ return MemberOfType.getAsOpaquePtr();
+ }
+
+ continue;
+ }
+
+ // We're referring to an unresolved class template
+ // specialization. Determine whether we class template we found
+ // is the same as the template being specialized or, if we don't
+ // know which template is being specialized, that it at least
+ // has the same name.
+ if (const TemplateSpecializationType *SpecType
+ = MemberOfType->getAs<TemplateSpecializationType>()) {
+ TemplateName SpecName = SpecType->getTemplateName();
+
+ // The class template we found is the same template being
+ // specialized.
+ if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
+ if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
+ return MemberOfType.getAsOpaquePtr();
+
+ continue;
+ }
+
+ // The class template we found has the same name as the
+ // (dependent) template name being specialized.
+ if (DependentTemplateName *DepTemplate
+ = SpecName.getAsDependentTemplateName()) {
+ if (DepTemplate->isIdentifier() &&
+ DepTemplate->getIdentifier() == Template->getIdentifier())
+ return MemberOfType.getAsOpaquePtr();
+
+ continue;
+ }
+ }
+ }
+ }
+
+ if (isDependent) {
+ // We didn't find our type, but that's okay: it's dependent
+ // anyway.
+ NestedNameSpecifier *NNS = 0;
+ SourceRange Range;
+ if (SS.isSet()) {
+ NNS = (NestedNameSpecifier *)SS.getScopeRep();
+ Range = SourceRange(SS.getRange().getBegin(), NameLoc);
+ } else {
+ NNS = NestedNameSpecifier::Create(Context, &II);
+ Range = SourceRange(NameLoc);
+ }
+
+ return CheckTypenameType(ETK_None, NNS, II, SourceLocation(),
+ Range, NameLoc).getAsOpaquePtr();
+ }
+
+ if (ObjectTypePtr)
+ Diag(NameLoc, diag::err_ident_in_pseudo_dtor_not_a_type)
+ << &II;
+ else
+ Diag(NameLoc, diag::err_destructor_class_name);
+
+ return 0;
+}
+
+/// \brief Build a C++ typeid expression with a type operand.
+Sema::OwningExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
+ SourceLocation TypeidLoc,
+ TypeSourceInfo *Operand,
+ SourceLocation RParenLoc) {
+ // C++ [expr.typeid]p4:
+ // The top-level cv-qualifiers of the lvalue expression or the type-id
+ // that is the operand of typeid are always ignored.
+ // If the type of the type-id is a class type or a reference to a class
+ // type, the class shall be completely-defined.
+ QualType T = Operand->getType().getNonReferenceType();
+ if (T->getAs<RecordType>() &&
+ RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
+ return ExprError();
+
+ return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
+ Operand,
+ SourceRange(TypeidLoc, RParenLoc)));
+}
+
+/// \brief Build a C++ typeid expression with an expression operand.
+Sema::OwningExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
+ SourceLocation TypeidLoc,
+ ExprArg Operand,
+ SourceLocation RParenLoc) {
+ bool isUnevaluatedOperand = true;
+ Expr *E = static_cast<Expr *>(Operand.get());
+ if (E && !E->isTypeDependent()) {
+ QualType T = E->getType();
+ if (const RecordType *RecordT = T->getAs<RecordType>()) {
+ CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
+ // C++ [expr.typeid]p3:
+ // [...] If the type of the expression is a class type, the class
+ // shall be completely-defined.
+ if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
+ return ExprError();
+
+ // C++ [expr.typeid]p3:
+ // When typeid is applied to an expression other than an lvalue of a
+ // polymorphic class type [...] [the] expression is an unevaluated
+ // operand. [...]
+ if (RecordD->isPolymorphic() && E->isLvalue(Context) == Expr::LV_Valid) {
+ isUnevaluatedOperand = false;
+
+ // We require a vtable to query the type at run time.
+ MarkVTableUsed(TypeidLoc, RecordD);
+ }
+ }
+
+ // C++ [expr.typeid]p4:
+ // [...] If the type of the type-id is a reference to a possibly
+ // cv-qualified type, the result of the typeid expression refers to a
+ // std::type_info object representing the cv-unqualified referenced
+ // type.
+ if (T.hasQualifiers()) {
+ ImpCastExprToType(E, T.getUnqualifiedType(), CastExpr::CK_NoOp,
+ E->isLvalue(Context));
+ Operand.release();
+ Operand = Owned(E);
+ }
+ }
+
+ // If this is an unevaluated operand, clear out the set of
+ // declaration references we have been computing and eliminate any
+ // temporaries introduced in its computation.
+ if (isUnevaluatedOperand)
+ ExprEvalContexts.back().Context = Unevaluated;
+
+ return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
+ Operand.takeAs<Expr>(),
+ SourceRange(TypeidLoc, RParenLoc)));
+}
+
+/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
+Action::OwningExprResult
+Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
+ bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
+ // Find the std::type_info type.
+ if (!StdNamespace)
+ return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
+
+ IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
+ LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
+ LookupQualifiedName(R, StdNamespace);
+ RecordDecl *TypeInfoRecordDecl = R.getAsSingle<RecordDecl>();
+ if (!TypeInfoRecordDecl)
+ return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
+
+ QualType TypeInfoType = Context.getTypeDeclType(TypeInfoRecordDecl);
+
+ if (isType) {
+ // The operand is a type; handle it as such.
+ TypeSourceInfo *TInfo = 0;
+ QualType T = GetTypeFromParser(TyOrExpr, &TInfo);
+ if (T.isNull())
+ return ExprError();
+
+ if (!TInfo)
+ TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
+
+ return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
+ }
+
+ // The operand is an expression.
+ return BuildCXXTypeId(TypeInfoType, OpLoc, Owned((Expr*)TyOrExpr), RParenLoc);
+}
+
+/// ActOnCXXBoolLiteral - Parse {true,false} literals.
+Action::OwningExprResult
+Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
+ assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
+ "Unknown C++ Boolean value!");
+ return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
+ Context.BoolTy, OpLoc));
+}
+
+/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
+Action::OwningExprResult
+Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
+ return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
+}
+
+/// ActOnCXXThrow - Parse throw expressions.
+Action::OwningExprResult
+Sema::ActOnCXXThrow(SourceLocation OpLoc, ExprArg E) {
+ Expr *Ex = E.takeAs<Expr>();
+ if (Ex && !Ex->isTypeDependent() && CheckCXXThrowOperand(OpLoc, Ex))
+ return ExprError();
+ return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc));
+}
+
+/// CheckCXXThrowOperand - Validate the operand of a throw.
+bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *&E) {
+ // C++ [except.throw]p3:
+ // A throw-expression initializes a temporary object, called the exception
+ // object, the type of which is determined by removing any top-level
+ // cv-qualifiers from the static type of the operand of throw and adjusting
+ // the type from "array of T" or "function returning T" to "pointer to T"
+ // or "pointer to function returning T", [...]
+ if (E->getType().hasQualifiers())
+ ImpCastExprToType(E, E->getType().getUnqualifiedType(), CastExpr::CK_NoOp,
+ E->isLvalue(Context) == Expr::LV_Valid);
+
+ DefaultFunctionArrayConversion(E);
+
+ // If the type of the exception would be an incomplete type or a pointer
+ // to an incomplete type other than (cv) void the program is ill-formed.
+ QualType Ty = E->getType();
+ bool isPointer = false;
+ if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
+ Ty = Ptr->getPointeeType();
+ isPointer = true;
+ }
+ if (!isPointer || !Ty->isVoidType()) {
+ if (RequireCompleteType(ThrowLoc, Ty,
+ PDiag(isPointer ? diag::err_throw_incomplete_ptr
+ : diag::err_throw_incomplete)
+ << E->getSourceRange()))
+ return true;
+
+ if (RequireNonAbstractType(ThrowLoc, E->getType(),
+ PDiag(diag::err_throw_abstract_type)
+ << E->getSourceRange()))
+ return true;
+ }
+
+ // Initialize the exception result. This implicitly weeds out
+ // abstract types or types with inaccessible copy constructors.
+ // FIXME: Determine whether we can elide this copy per C++0x [class.copy]p34.
+ InitializedEntity Entity =
+ InitializedEntity::InitializeException(ThrowLoc, E->getType(),
+ /*NRVO=*/false);
+ OwningExprResult Res = PerformCopyInitialization(Entity,
+ SourceLocation(),
+ Owned(E));
+ if (Res.isInvalid())
+ return true;
+ E = Res.takeAs<Expr>();
+
+ // If we are throwing a polymorphic class type or pointer thereof,
+ // exception handling will make use of the vtable.
+ if (const RecordType *RecordTy = Ty->getAs<RecordType>())
+ MarkVTableUsed(ThrowLoc, cast<CXXRecordDecl>(RecordTy->getDecl()));
+
+ return false;
+}
+
+Action::OwningExprResult Sema::ActOnCXXThis(SourceLocation ThisLoc) {
+ /// C++ 9.3.2: In the body of a non-static member function, the keyword this
+ /// is a non-lvalue expression whose value is the address of the object for
+ /// which the function is called.
+
+ DeclContext *DC = getFunctionLevelDeclContext();
+ if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
+ if (MD->isInstance())
+ return Owned(new (Context) CXXThisExpr(ThisLoc,
+ MD->getThisType(Context),
+ /*isImplicit=*/false));
+
+ return ExprError(Diag(ThisLoc, diag::err_invalid_this_use));
+}
+
+/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
+/// Can be interpreted either as function-style casting ("int(x)")
+/// or class type construction ("ClassType(x,y,z)")
+/// or creation of a value-initialized type ("int()").
+Action::OwningExprResult
+Sema::ActOnCXXTypeConstructExpr(SourceRange TypeRange, TypeTy *TypeRep,
+ SourceLocation LParenLoc,
+ MultiExprArg exprs,
+ SourceLocation *CommaLocs,
+ SourceLocation RParenLoc) {
+ if (!TypeRep)
+ return ExprError();
+
+ TypeSourceInfo *TInfo;
+ QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
+ if (!TInfo)
+ TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
+ unsigned NumExprs = exprs.size();
+ Expr **Exprs = (Expr**)exprs.get();
+ SourceLocation TyBeginLoc = TypeRange.getBegin();
+ SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc);
+
+ if (Ty->isDependentType() ||
+ CallExpr::hasAnyTypeDependentArguments(Exprs, NumExprs)) {
+ exprs.release();
+
+ return Owned(CXXUnresolvedConstructExpr::Create(Context,
+ TypeRange.getBegin(), Ty,
+ LParenLoc,
+ Exprs, NumExprs,
+ RParenLoc));
+ }
+
+ if (Ty->isArrayType())
+ return ExprError(Diag(TyBeginLoc,
+ diag::err_value_init_for_array_type) << FullRange);
+ if (!Ty->isVoidType() &&
+ RequireCompleteType(TyBeginLoc, Ty,
+ PDiag(diag::err_invalid_incomplete_type_use)
+ << FullRange))
+ return ExprError();
+
+ if (RequireNonAbstractType(TyBeginLoc, Ty,
+ diag::err_allocation_of_abstract_type))
+ return ExprError();
+
+
+ // C++ [expr.type.conv]p1:
+ // If the expression list is a single expression, the type conversion
+ // expression is equivalent (in definedness, and if defined in meaning) to the
+ // corresponding cast expression.
+ //
+ if (NumExprs == 1) {
+ CastExpr::CastKind Kind = CastExpr::CK_Unknown;
+ CXXBaseSpecifierArray BasePath;
+ if (CheckCastTypes(TypeRange, Ty, Exprs[0], Kind, BasePath,
+ /*FunctionalStyle=*/true))
+ return ExprError();
+
+ exprs.release();
+
+ return Owned(new (Context) CXXFunctionalCastExpr(Ty.getNonReferenceType(),
+ TInfo, TyBeginLoc, Kind,
+ Exprs[0], BasePath,
+ RParenLoc));
+ }
+
+ if (const RecordType *RT = Ty->getAs<RecordType>()) {
+ CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
+
+ if (NumExprs > 1 || !Record->hasTrivialConstructor() ||
+ !Record->hasTrivialDestructor()) {
+ InitializedEntity Entity = InitializedEntity::InitializeTemporary(Ty);
+ InitializationKind Kind
+ = NumExprs ? InitializationKind::CreateDirect(TypeRange.getBegin(),
+ LParenLoc, RParenLoc)
+ : InitializationKind::CreateValue(TypeRange.getBegin(),
+ LParenLoc, RParenLoc);
+ InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
+ OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
+ move(exprs));
+
+ // FIXME: Improve AST representation?
+ return move(Result);
+ }
+
+ // Fall through to value-initialize an object of class type that
+ // doesn't have a user-declared default constructor.
+ }
+
+ // C++ [expr.type.conv]p1:
+ // If the expression list specifies more than a single value, the type shall
+ // be a class with a suitably declared constructor.
+ //
+ if (NumExprs > 1)
+ return ExprError(Diag(CommaLocs[0],
+ diag::err_builtin_func_cast_more_than_one_arg)
+ << FullRange);
+
+ assert(NumExprs == 0 && "Expected 0 expressions");
+ // C++ [expr.type.conv]p2:
+ // The expression T(), where T is a simple-type-specifier for a non-array
+ // complete object type or the (possibly cv-qualified) void type, creates an
+ // rvalue of the specified type, which is value-initialized.
+ //
+ exprs.release();
+ return Owned(new (Context) CXXZeroInitValueExpr(Ty, TyBeginLoc, RParenLoc));
+}
+
+
+/// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.:
+/// @code new (memory) int[size][4] @endcode
+/// or
+/// @code ::new Foo(23, "hello") @endcode
+/// For the interpretation of this heap of arguments, consult the base version.
+Action::OwningExprResult
+Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
+ SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
+ SourceLocation PlacementRParen, bool ParenTypeId,
+ Declarator &D, SourceLocation ConstructorLParen,
+ MultiExprArg ConstructorArgs,
+ SourceLocation ConstructorRParen) {
+ Expr *ArraySize = 0;
+ // If the specified type is an array, unwrap it and save the expression.
+ if (D.getNumTypeObjects() > 0 &&
+ D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
+ DeclaratorChunk &Chunk = D.getTypeObject(0);
+ if (Chunk.Arr.hasStatic)
+ return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
+ << D.getSourceRange());
+ if (!Chunk.Arr.NumElts)
+ return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
+ << D.getSourceRange());
+
+ if (ParenTypeId) {
+ // Can't have dynamic array size when the type-id is in parentheses.
+ Expr *NumElts = (Expr *)Chunk.Arr.NumElts;
+ if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() &&
+ !NumElts->isIntegerConstantExpr(Context)) {
+ Diag(D.getTypeObject(0).Loc, diag::err_new_paren_array_nonconst)
+ << NumElts->getSourceRange();
+ return ExprError();
+ }
+ }
+
+ ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
+ D.DropFirstTypeObject();
+ }
+
+ // Every dimension shall be of constant size.
+ if (ArraySize) {
+ for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
+ if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
+ break;
+
+ DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
+ if (Expr *NumElts = (Expr *)Array.NumElts) {
+ if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() &&
+ !NumElts->isIntegerConstantExpr(Context)) {
+ Diag(D.getTypeObject(I).Loc, diag::err_new_array_nonconst)
+ << NumElts->getSourceRange();
+ return ExprError();
+ }
+ }
+ }
+ }
+
+ //FIXME: Store TypeSourceInfo in CXXNew expression.
+ TypeSourceInfo *TInfo = 0;
+ QualType AllocType = GetTypeForDeclarator(D, /*Scope=*/0, &TInfo);
+ if (D.isInvalidType())
+ return ExprError();
+
+ return BuildCXXNew(StartLoc, UseGlobal,
+ PlacementLParen,
+ move(PlacementArgs),
+ PlacementRParen,
+ ParenTypeId,
+ AllocType,
+ D.getSourceRange().getBegin(),
+ D.getSourceRange(),
+ Owned(ArraySize),
+ ConstructorLParen,
+ move(ConstructorArgs),
+ ConstructorRParen);
+}
+
+Sema::OwningExprResult
+Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
+ SourceLocation PlacementLParen,
+ MultiExprArg PlacementArgs,
+ SourceLocation PlacementRParen,
+ bool ParenTypeId,
+ QualType AllocType,
+ SourceLocation TypeLoc,
+ SourceRange TypeRange,
+ ExprArg ArraySizeE,
+ SourceLocation ConstructorLParen,
+ MultiExprArg ConstructorArgs,
+ SourceLocation ConstructorRParen) {
+ if (CheckAllocatedType(AllocType, TypeLoc, TypeRange))
+ return ExprError();
+
+ // Per C++0x [expr.new]p5, the type being constructed may be a
+ // typedef of an array type.
+ if (!ArraySizeE.get()) {
+ if (const ConstantArrayType *Array
+ = Context.getAsConstantArrayType(AllocType)) {
+ ArraySizeE = Owned(new (Context) IntegerLiteral(Array->getSize(),
+ Context.getSizeType(),
+ TypeRange.getEnd()));
+ AllocType = Array->getElementType();
+ }
+ }
+
+ QualType ResultType = Context.getPointerType(AllocType);
+
+ // C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral
+ // or enumeration type with a non-negative value."
+ Expr *ArraySize = (Expr *)ArraySizeE.get();
+ if (ArraySize && !ArraySize->isTypeDependent()) {
+ QualType SizeType = ArraySize->getType();
+ if (!SizeType->isIntegralType() && !SizeType->isEnumeralType())
+ return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
+ diag::err_array_size_not_integral)
+ << SizeType << ArraySize->getSourceRange());
+ // Let's see if this is a constant < 0. If so, we reject it out of hand.
+ // We don't care about special rules, so we tell the machinery it's not
+ // evaluated - it gives us a result in more cases.
+ if (!ArraySize->isValueDependent()) {
+ llvm::APSInt Value;
+ if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) {
+ if (Value < llvm::APSInt(
+ llvm::APInt::getNullValue(Value.getBitWidth()),
+ Value.isUnsigned()))
+ return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
+ diag::err_typecheck_negative_array_size)
+ << ArraySize->getSourceRange());
+ }
+ }
+
+ ImpCastExprToType(ArraySize, Context.getSizeType(),
+ CastExpr::CK_IntegralCast);
+ }
+
+ FunctionDecl *OperatorNew = 0;
+ FunctionDecl *OperatorDelete = 0;
+ Expr **PlaceArgs = (Expr**)PlacementArgs.get();
+ unsigned NumPlaceArgs = PlacementArgs.size();
+
+ if (!AllocType->isDependentType() &&
+ !Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) &&
+ FindAllocationFunctions(StartLoc,
+ SourceRange(PlacementLParen, PlacementRParen),
+ UseGlobal, AllocType, ArraySize, PlaceArgs,
+ NumPlaceArgs, OperatorNew, OperatorDelete))
+ return ExprError();
+ llvm::SmallVector<Expr *, 8> AllPlaceArgs;
+ if (OperatorNew) {
+ // Add default arguments, if any.
+ const FunctionProtoType *Proto =
+ OperatorNew->getType()->getAs<FunctionProtoType>();
+ VariadicCallType CallType =
+ Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
+
+ if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
+ Proto, 1, PlaceArgs, NumPlaceArgs,
+ AllPlaceArgs, CallType))
+ return ExprError();
+
+ NumPlaceArgs = AllPlaceArgs.size();
+ if (NumPlaceArgs > 0)
+ PlaceArgs = &AllPlaceArgs[0];
+ }
+
+ bool Init = ConstructorLParen.isValid();
+ // --- Choosing a constructor ---
+ CXXConstructorDecl *Constructor = 0;
+ Expr **ConsArgs = (Expr**)ConstructorArgs.get();
+ unsigned NumConsArgs = ConstructorArgs.size();
+ ASTOwningVector<&ActionBase::DeleteExpr> ConvertedConstructorArgs(*this);
+
+ // Array 'new' can't have any initializers.
+ if (NumConsArgs && (ResultType->isArrayType() || ArraySize)) {
+ SourceRange InitRange(ConsArgs[0]->getLocStart(),
+ ConsArgs[NumConsArgs - 1]->getLocEnd());
+
+ Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
+ return ExprError();
+ }
+
+ if (!AllocType->isDependentType() &&
+ !Expr::hasAnyTypeDependentArguments(ConsArgs, NumConsArgs)) {
+ // C++0x [expr.new]p15:
+ // A new-expression that creates an object of type T initializes that
+ // object as follows:
+ InitializationKind Kind
+ // - If the new-initializer is omitted, the object is default-
+ // initialized (8.5); if no initialization is performed,
+ // the object has indeterminate value
+ = !Init? InitializationKind::CreateDefault(TypeLoc)
+ // - Otherwise, the new-initializer is interpreted according to the
+ // initialization rules of 8.5 for direct-initialization.
+ : InitializationKind::CreateDirect(TypeLoc,
+ ConstructorLParen,
+ ConstructorRParen);
+
+ InitializedEntity Entity
+ = InitializedEntity::InitializeNew(StartLoc, AllocType);
+ InitializationSequence InitSeq(*this, Entity, Kind, ConsArgs, NumConsArgs);
+ OwningExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
+ move(ConstructorArgs));
+ if (FullInit.isInvalid())
+ return ExprError();
+
+ // FullInit is our initializer; walk through it to determine if it's a
+ // constructor call, which CXXNewExpr handles directly.
+ if (Expr *FullInitExpr = (Expr *)FullInit.get()) {
+ if (CXXBindTemporaryExpr *Binder
+ = dyn_cast<CXXBindTemporaryExpr>(FullInitExpr))
+ FullInitExpr = Binder->getSubExpr();
+ if (CXXConstructExpr *Construct
+ = dyn_cast<CXXConstructExpr>(FullInitExpr)) {
+ Constructor = Construct->getConstructor();
+ for (CXXConstructExpr::arg_iterator A = Construct->arg_begin(),
+ AEnd = Construct->arg_end();
+ A != AEnd; ++A)
+ ConvertedConstructorArgs.push_back(A->Retain());
+ } else {
+ // Take the converted initializer.
+ ConvertedConstructorArgs.push_back(FullInit.release());
+ }
+ } else {
+ // No initialization required.
+ }
+
+ // Take the converted arguments and use them for the new expression.
+ NumConsArgs = ConvertedConstructorArgs.size();
+ ConsArgs = (Expr **)ConvertedConstructorArgs.take();
+ }
+
+ // Mark the new and delete operators as referenced.
+ if (OperatorNew)
+ MarkDeclarationReferenced(StartLoc, OperatorNew);
+ if (OperatorDelete)
+ MarkDeclarationReferenced(StartLoc, OperatorDelete);
+
+ // FIXME: Also check that the destructor is accessible. (C++ 5.3.4p16)
+
+ PlacementArgs.release();
+ ConstructorArgs.release();
+ ArraySizeE.release();
+ return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
+ PlaceArgs, NumPlaceArgs, ParenTypeId,
+ ArraySize, Constructor, Init,
+ ConsArgs, NumConsArgs, OperatorDelete,
+ ResultType, StartLoc,
+ Init ? ConstructorRParen :
+ SourceLocation()));
+}
+
+/// CheckAllocatedType - Checks that a type is suitable as the allocated type
+/// in a new-expression.
+/// dimension off and stores the size expression in ArraySize.
+bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
+ SourceRange R) {
+ // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
+ // abstract class type or array thereof.
+ if (AllocType->isFunctionType())
+ return Diag(Loc, diag::err_bad_new_type)
+ << AllocType << 0 << R;
+ else if (AllocType->isReferenceType())
+ return Diag(Loc, diag::err_bad_new_type)
+ << AllocType << 1 << R;
+ else if (!AllocType->isDependentType() &&
+ RequireCompleteType(Loc, AllocType,
+ PDiag(diag::err_new_incomplete_type)
+ << R))
+ return true;
+ else if (RequireNonAbstractType(Loc, AllocType,
+ diag::err_allocation_of_abstract_type))
+ return true;
+
+ return false;
+}
+
+/// \brief Determine whether the given function is a non-placement
+/// deallocation function.
+static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
+ if (FD->isInvalidDecl())
+ return false;
+
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
+ return Method->isUsualDeallocationFunction();
+
+ return ((FD->getOverloadedOperator() == OO_Delete ||
+ FD->getOverloadedOperator() == OO_Array_Delete) &&
+ FD->getNumParams() == 1);
+}
+
+/// FindAllocationFunctions - Finds the overloads of operator new and delete
+/// that are appropriate for the allocation.
+bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
+ bool UseGlobal, QualType AllocType,
+ bool IsArray, Expr **PlaceArgs,
+ unsigned NumPlaceArgs,
+ FunctionDecl *&OperatorNew,
+ FunctionDecl *&OperatorDelete) {
+ // --- Choosing an allocation function ---
+ // C++ 5.3.4p8 - 14 & 18
+ // 1) If UseGlobal is true, only look in the global scope. Else, also look
+ // in the scope of the allocated class.
+ // 2) If an array size is given, look for operator new[], else look for
+ // operator new.
+ // 3) The first argument is always size_t. Append the arguments from the
+ // placement form.
+
+ llvm::SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
+ // We don't care about the actual value of this argument.
+ // FIXME: Should the Sema create the expression and embed it in the syntax
+ // tree? Or should the consumer just recalculate the value?
+ IntegerLiteral Size(llvm::APInt::getNullValue(
+ Context.Target.getPointerWidth(0)),
+ Context.getSizeType(),
+ SourceLocation());
+ AllocArgs[0] = &Size;
+ std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
+
+ // C++ [expr.new]p8:
+ // If the allocated type is a non-array type, the allocation
+ // function’s name is operator new and the deallocation function’s
+ // name is operator delete. If the allocated type is an array
+ // type, the allocation function’s name is operator new[] and the
+ // deallocation function’s name is operator delete[].
+ DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
+ IsArray ? OO_Array_New : OO_New);
+ DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
+ IsArray ? OO_Array_Delete : OO_Delete);
+
+ if (AllocType->isRecordType() && !UseGlobal) {
+ CXXRecordDecl *Record
+ = cast<CXXRecordDecl>(AllocType->getAs<RecordType>()->getDecl());
+ if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
+ AllocArgs.size(), Record, /*AllowMissing=*/true,
+ OperatorNew))
+ return true;
+ }
+ if (!OperatorNew) {
+ // Didn't find a member overload. Look for a global one.
+ DeclareGlobalNewDelete();
+ DeclContext *TUDecl = Context.getTranslationUnitDecl();
+ if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
+ AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
+ OperatorNew))
+ return true;
+ }
+
+ // We don't need an operator delete if we're running under
+ // -fno-exceptions.
+ if (!getLangOptions().Exceptions) {
+ OperatorDelete = 0;
+ return false;
+ }
+
+ // FindAllocationOverload can change the passed in arguments, so we need to
+ // copy them back.
+ if (NumPlaceArgs > 0)
+ std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
+
+ // C++ [expr.new]p19:
+ //
+ // If the new-expression begins with a unary :: operator, the
+ // deallocation function’s name is looked up in the global
+ // scope. Otherwise, if the allocated type is a class type T or an
+ // array thereof, the deallocation function’s name is looked up in
+ // the scope of T. If this lookup fails to find the name, or if
+ // the allocated type is not a class type or array thereof, the
+ // deallocation function’s name is looked up in the global scope.
+ LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
+ if (AllocType->isRecordType() && !UseGlobal) {
+ CXXRecordDecl *RD
+ = cast<CXXRecordDecl>(AllocType->getAs<RecordType>()->getDecl());
+ LookupQualifiedName(FoundDelete, RD);
+ }
+ if (FoundDelete.isAmbiguous())
+ return true; // FIXME: clean up expressions?
+
+ if (FoundDelete.empty()) {
+ DeclareGlobalNewDelete();
+ LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
+ }
+
+ FoundDelete.suppressDiagnostics();
+
+ llvm::SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
+
+ if (NumPlaceArgs > 0) {
+ // C++ [expr.new]p20:
+ // A declaration of a placement deallocation function matches the
+ // declaration of a placement allocation function if it has the
+ // same number of parameters and, after parameter transformations
+ // (8.3.5), all parameter types except the first are
+ // identical. [...]
+ //
+ // To perform this comparison, we compute the function type that
+ // the deallocation function should have, and use that type both
+ // for template argument deduction and for comparison purposes.
+ QualType ExpectedFunctionType;
+ {
+ const FunctionProtoType *Proto
+ = OperatorNew->getType()->getAs<FunctionProtoType>();
+ llvm::SmallVector<QualType, 4> ArgTypes;
+ ArgTypes.push_back(Context.VoidPtrTy);
+ for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
+ ArgTypes.push_back(Proto->getArgType(I));
+
+ ExpectedFunctionType
+ = Context.getFunctionType(Context.VoidTy, ArgTypes.data(),
+ ArgTypes.size(),
+ Proto->isVariadic(),
+ 0, false, false, 0, 0,
+ FunctionType::ExtInfo());
+ }
+
+ for (LookupResult::iterator D = FoundDelete.begin(),
+ DEnd = FoundDelete.end();
+ D != DEnd; ++D) {
+ FunctionDecl *Fn = 0;
+ if (FunctionTemplateDecl *FnTmpl
+ = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
+ // Perform template argument deduction to try to match the
+ // expected function type.
+ TemplateDeductionInfo Info(Context, StartLoc);
+ if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
+ continue;
+ } else
+ Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
+
+ if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
+ Matches.push_back(std::make_pair(D.getPair(), Fn));
+ }
+ } else {
+ // C++ [expr.new]p20:
+ // [...] Any non-placement deallocation function matches a
+ // non-placement allocation function. [...]
+ for (LookupResult::iterator D = FoundDelete.begin(),
+ DEnd = FoundDelete.end();
+ D != DEnd; ++D) {
+ if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
+ if (isNonPlacementDeallocationFunction(Fn))
+ Matches.push_back(std::make_pair(D.getPair(), Fn));
+ }
+ }
+
+ // C++ [expr.new]p20:
+ // [...] If the lookup finds a single matching deallocation
+ // function, that function will be called; otherwise, no
+ // deallocation function will be called.
+ if (Matches.size() == 1) {
+ OperatorDelete = Matches[0].second;
+
+ // C++0x [expr.new]p20:
+ // If the lookup finds the two-parameter form of a usual
+ // deallocation function (3.7.4.2) and that function, considered
+ // as a placement deallocation function, would have been
+ // selected as a match for the allocation function, the program
+ // is ill-formed.
+ if (NumPlaceArgs && getLangOptions().CPlusPlus0x &&
+ isNonPlacementDeallocationFunction(OperatorDelete)) {
+ Diag(StartLoc, diag::err_placement_new_non_placement_delete)
+ << SourceRange(PlaceArgs[0]->getLocStart(),
+ PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
+ Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
+ << DeleteName;
+ } else {
+ CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
+ Matches[0].first);
+ }
+ }
+
+ return false;
+}
+
+/// FindAllocationOverload - Find an fitting overload for the allocation
+/// function in the specified scope.
+bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
+ DeclarationName Name, Expr** Args,
+ unsigned NumArgs, DeclContext *Ctx,
+ bool AllowMissing, FunctionDecl *&Operator) {
+ LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
+ LookupQualifiedName(R, Ctx);
+ if (R.empty()) {
+ if (AllowMissing)
+ return false;
+ return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
+ << Name << Range;
+ }
+
+ if (R.isAmbiguous())
+ return true;
+
+ R.suppressDiagnostics();
+
+ OverloadCandidateSet Candidates(StartLoc);
+ for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
+ Alloc != AllocEnd; ++Alloc) {
+ // Even member operator new/delete are implicitly treated as
+ // static, so don't use AddMemberCandidate.
+ NamedDecl *D = (*Alloc)->getUnderlyingDecl();
+
+ if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
+ AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
+ /*ExplicitTemplateArgs=*/0, Args, NumArgs,
+ Candidates,
+ /*SuppressUserConversions=*/false);
+ continue;
+ }
+
+ FunctionDecl *Fn = cast<FunctionDecl>(D);
+ AddOverloadCandidate(Fn, Alloc.getPair(), Args, NumArgs, Candidates,
+ /*SuppressUserConversions=*/false);
+ }
+
+ // Do the resolution.
+ OverloadCandidateSet::iterator Best;
+ switch(BestViableFunction(Candidates, StartLoc, Best)) {
+ case OR_Success: {
+ // Got one!
+ FunctionDecl *FnDecl = Best->Function;
+ // The first argument is size_t, and the first parameter must be size_t,
+ // too. This is checked on declaration and can be assumed. (It can't be
+ // asserted on, though, since invalid decls are left in there.)
+ // Watch out for variadic allocator function.
+ unsigned NumArgsInFnDecl = FnDecl->getNumParams();
+ for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
+ OwningExprResult Result
+ = PerformCopyInitialization(InitializedEntity::InitializeParameter(
+ FnDecl->getParamDecl(i)),
+ SourceLocation(),
+ Owned(Args[i]->Retain()));
+ if (Result.isInvalid())
+ return true;
+
+ Args[i] = Result.takeAs<Expr>();
+ }
+ Operator = FnDecl;
+ CheckAllocationAccess(StartLoc, Range, R.getNamingClass(), Best->FoundDecl);
+ return false;
+ }
+
+ case OR_No_Viable_Function:
+ Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
+ << Name << Range;
+ PrintOverloadCandidates(Candidates, OCD_AllCandidates, Args, NumArgs);
+ return true;
+
+ case OR_Ambiguous:
+ Diag(StartLoc, diag::err_ovl_ambiguous_call)
+ << Name << Range;
+ PrintOverloadCandidates(Candidates, OCD_ViableCandidates, Args, NumArgs);
+ return true;
+
+ case OR_Deleted:
+ Diag(StartLoc, diag::err_ovl_deleted_call)
+ << Best->Function->isDeleted()
+ << Name << Range;
+ PrintOverloadCandidates(Candidates, OCD_AllCandidates, Args, NumArgs);
+ return true;
+ }
+ assert(false && "Unreachable, bad result from BestViableFunction");
+ return true;
+}
+
+
+/// DeclareGlobalNewDelete - Declare the global forms of operator new and
+/// delete. These are:
+/// @code
+/// void* operator new(std::size_t) throw(std::bad_alloc);
+/// void* operator new[](std::size_t) throw(std::bad_alloc);
+/// void operator delete(void *) throw();
+/// void operator delete[](void *) throw();
+/// @endcode
+/// Note that the placement and nothrow forms of new are *not* implicitly
+/// declared. Their use requires including \<new\>.
+void Sema::DeclareGlobalNewDelete() {
+ if (GlobalNewDeleteDeclared)
+ return;
+
+ // C++ [basic.std.dynamic]p2:
+ // [...] The following allocation and deallocation functions (18.4) are
+ // implicitly declared in global scope in each translation unit of a
+ // program
+ //
+ // void* operator new(std::size_t) throw(std::bad_alloc);
+ // void* operator new[](std::size_t) throw(std::bad_alloc);
+ // void operator delete(void*) throw();
+ // void operator delete[](void*) throw();
+ //
+ // These implicit declarations introduce only the function names operator
+ // new, operator new[], operator delete, operator delete[].
+ //
+ // Here, we need to refer to std::bad_alloc, so we will implicitly declare
+ // "std" or "bad_alloc" as necessary to form the exception specification.
+ // However, we do not make these implicit declarations visible to name
+ // lookup.
+ if (!StdNamespace) {
+ // The "std" namespace has not yet been defined, so build one implicitly.
+ StdNamespace = NamespaceDecl::Create(Context,
+ Context.getTranslationUnitDecl(),
+ SourceLocation(),
+ &PP.getIdentifierTable().get("std"));
+ StdNamespace->setImplicit(true);
+ }
+
+ if (!StdBadAlloc) {
+ // The "std::bad_alloc" class has not yet been declared, so build it
+ // implicitly.
+ StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
+ StdNamespace,
+ SourceLocation(),
+ &PP.getIdentifierTable().get("bad_alloc"),
+ SourceLocation(), 0);
+ StdBadAlloc->setImplicit(true);
+ }
+
+ GlobalNewDeleteDeclared = true;
+
+ QualType VoidPtr = Context.getPointerType(Context.VoidTy);
+ QualType SizeT = Context.getSizeType();
+ bool AssumeSaneOperatorNew = getLangOptions().AssumeSaneOperatorNew;
+
+ DeclareGlobalAllocationFunction(
+ Context.DeclarationNames.getCXXOperatorName(OO_New),
+ VoidPtr, SizeT, AssumeSaneOperatorNew);
+ DeclareGlobalAllocationFunction(
+ Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
+ VoidPtr, SizeT, AssumeSaneOperatorNew);
+ DeclareGlobalAllocationFunction(
+ Context.DeclarationNames.getCXXOperatorName(OO_Delete),
+ Context.VoidTy, VoidPtr);
+ DeclareGlobalAllocationFunction(
+ Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
+ Context.VoidTy, VoidPtr);
+}
+
+/// DeclareGlobalAllocationFunction - Declares a single implicit global
+/// allocation function if it doesn't already exist.
+void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
+ QualType Return, QualType Argument,
+ bool AddMallocAttr) {
+ DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
+
+ // Check if this function is already declared.
+ {
+ DeclContext::lookup_iterator Alloc, AllocEnd;
+ for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
+ Alloc != AllocEnd; ++Alloc) {
+ // Only look at non-template functions, as it is the predefined,
+ // non-templated allocation function we are trying to declare here.
+ if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
+ QualType InitialParamType =
+ Context.getCanonicalType(
+ Func->getParamDecl(0)->getType().getUnqualifiedType());
+ // FIXME: Do we need to check for default arguments here?
+ if (Func->getNumParams() == 1 && InitialParamType == Argument)
+ return;
+ }
+ }
+ }
+
+ QualType BadAllocType;
+ bool HasBadAllocExceptionSpec
+ = (Name.getCXXOverloadedOperator() == OO_New ||
+ Name.getCXXOverloadedOperator() == OO_Array_New);
+ if (HasBadAllocExceptionSpec) {
+ assert(StdBadAlloc && "Must have std::bad_alloc declared");
+ BadAllocType = Context.getTypeDeclType(StdBadAlloc);
+ }
+
+ QualType FnType = Context.getFunctionType(Return, &Argument, 1, false, 0,
+ true, false,
+ HasBadAllocExceptionSpec? 1 : 0,
+ &BadAllocType,
+ FunctionType::ExtInfo());
+ FunctionDecl *Alloc =
+ FunctionDecl::Create(Context, GlobalCtx, SourceLocation(), Name,
+ FnType, /*TInfo=*/0, FunctionDecl::None,
+ FunctionDecl::None, false, true);
+ Alloc->setImplicit();
+
+ if (AddMallocAttr)
+ Alloc->addAttr(::new (Context) MallocAttr());
+
+ ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
+ 0, Argument, /*TInfo=*/0,
+ VarDecl::None,
+ VarDecl::None, 0);
+ Alloc->setParams(&Param, 1);
+
+ // FIXME: Also add this declaration to the IdentifierResolver, but
+ // make sure it is at the end of the chain to coincide with the
+ // global scope.
+ ((DeclContext *)TUScope->getEntity())->addDecl(Alloc);
+}
+
+bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
+ DeclarationName Name,
+ FunctionDecl* &Operator) {
+ LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
+ // Try to find operator delete/operator delete[] in class scope.
+ LookupQualifiedName(Found, RD);
+
+ if (Found.isAmbiguous())
+ return true;
+
+ for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
+ F != FEnd; ++F) {
+ if (CXXMethodDecl *Delete = dyn_cast<CXXMethodDecl>(*F))
+ if (Delete->isUsualDeallocationFunction()) {
+ Operator = Delete;
+ return false;
+ }
+ }
+
+ // We did find operator delete/operator delete[] declarations, but
+ // none of them were suitable.
+ if (!Found.empty()) {
+ Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
+ << Name << RD;
+
+ for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
+ F != FEnd; ++F) {
+ Diag((*F)->getLocation(), diag::note_member_declared_here)
+ << Name;
+ }
+
+ return true;
+ }
+
+ // Look for a global declaration.
+ DeclareGlobalNewDelete();
+ DeclContext *TUDecl = Context.getTranslationUnitDecl();
+
+ CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
+ Expr* DeallocArgs[1];
+ DeallocArgs[0] = &Null;
+ if (FindAllocationOverload(StartLoc, SourceRange(), Name,
+ DeallocArgs, 1, TUDecl, /*AllowMissing=*/false,
+ Operator))
+ return true;
+
+ assert(Operator && "Did not find a deallocation function!");
+ return false;
+}
+
+/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
+/// @code ::delete ptr; @endcode
+/// or
+/// @code delete [] ptr; @endcode
+Action::OwningExprResult
+Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
+ bool ArrayForm, ExprArg Operand) {
+ // C++ [expr.delete]p1:
+ // The operand shall have a pointer type, or a class type having a single
+ // conversion function to a pointer type. The result has type void.
+ //
+ // DR599 amends "pointer type" to "pointer to object type" in both cases.
+
+ FunctionDecl *OperatorDelete = 0;
+
+ Expr *Ex = (Expr *)Operand.get();
+ if (!Ex->isTypeDependent()) {
+ QualType Type = Ex->getType();
+
+ if (const RecordType *Record = Type->getAs<RecordType>()) {
+ llvm::SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
+
+ CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
+ const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions();
+ for (UnresolvedSetImpl::iterator I = Conversions->begin(),
+ E = Conversions->end(); I != E; ++I) {
+ NamedDecl *D = I.getDecl();
+ if (isa<UsingShadowDecl>(D))
+ D = cast<UsingShadowDecl>(D)->getTargetDecl();
+
+ // Skip over templated conversion functions; they aren't considered.
+ if (isa<FunctionTemplateDecl>(D))
+ continue;
+
+ CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
+
+ QualType ConvType = Conv->getConversionType().getNonReferenceType();
+ if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
+ if (ConvPtrType->getPointeeType()->isObjectType())
+ ObjectPtrConversions.push_back(Conv);
+ }
+ if (ObjectPtrConversions.size() == 1) {
+ // We have a single conversion to a pointer-to-object type. Perform
+ // that conversion.
+ // TODO: don't redo the conversion calculation.
+ Operand.release();
+ if (!PerformImplicitConversion(Ex,
+ ObjectPtrConversions.front()->getConversionType(),
+ AA_Converting)) {
+ Operand = Owned(Ex);
+ Type = Ex->getType();
+ }
+ }
+ else if (ObjectPtrConversions.size() > 1) {
+ Diag(StartLoc, diag::err_ambiguous_delete_operand)
+ << Type << Ex->getSourceRange();
+ for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
+ NoteOverloadCandidate(ObjectPtrConversions[i]);
+ return ExprError();
+ }
+ }
+
+ if (!Type->isPointerType())
+ return ExprError(Diag(StartLoc, diag::err_delete_operand)
+ << Type << Ex->getSourceRange());
+
+ QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
+ if (Pointee->isVoidType() && !isSFINAEContext()) {
+ // The C++ standard bans deleting a pointer to a non-object type, which
+ // effectively bans deletion of "void*". However, most compilers support
+ // this, so we treat it as a warning unless we're in a SFINAE context.
+ Diag(StartLoc, diag::ext_delete_void_ptr_operand)
+ << Type << Ex->getSourceRange();
+ } else if (Pointee->isFunctionType() || Pointee->isVoidType())
+ return ExprError(Diag(StartLoc, diag::err_delete_operand)
+ << Type << Ex->getSourceRange());
+ else if (!Pointee->isDependentType() &&
+ RequireCompleteType(StartLoc, Pointee,
+ PDiag(diag::warn_delete_incomplete)
+ << Ex->getSourceRange()))
+ return ExprError();
+
+ // C++ [expr.delete]p2:
+ // [Note: a pointer to a const type can be the operand of a
+ // delete-expression; it is not necessary to cast away the constness
+ // (5.2.11) of the pointer expression before it is used as the operand
+ // of the delete-expression. ]
+ ImpCastExprToType(Ex, Context.getPointerType(Context.VoidTy),
+ CastExpr::CK_NoOp);
+
+ // Update the operand.
+ Operand.take();
+ Operand = ExprArg(*this, Ex);
+
+ DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
+ ArrayForm ? OO_Array_Delete : OO_Delete);
+
+ if (const RecordType *RT = Pointee->getAs<RecordType>()) {
+ CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
+
+ if (!UseGlobal &&
+ FindDeallocationFunction(StartLoc, RD, DeleteName, OperatorDelete))
+ return ExprError();
+
+ if (!RD->hasTrivialDestructor())
+ if (const CXXDestructorDecl *Dtor = RD->getDestructor(Context))
+ MarkDeclarationReferenced(StartLoc,
+ const_cast<CXXDestructorDecl*>(Dtor));
+ }
+
+ if (!OperatorDelete) {
+ // Look for a global declaration.
+ DeclareGlobalNewDelete();
+ DeclContext *TUDecl = Context.getTranslationUnitDecl();
+ if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
+ &Ex, 1, TUDecl, /*AllowMissing=*/false,
+ OperatorDelete))
+ return ExprError();
+ }
+
+ MarkDeclarationReferenced(StartLoc, OperatorDelete);
+
+ // FIXME: Check access and ambiguity of operator delete and destructor.
+ }
+
+ Operand.release();
+ return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
+ OperatorDelete, Ex, StartLoc));
+}
+
+/// \brief Check the use of the given variable as a C++ condition in an if,
+/// while, do-while, or switch statement.
+Action::OwningExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
+ SourceLocation StmtLoc,
+ bool ConvertToBoolean) {
+ QualType T = ConditionVar->getType();
+
+ // C++ [stmt.select]p2:
+ // The declarator shall not specify a function or an array.
+ if (T->isFunctionType())
+ return ExprError(Diag(ConditionVar->getLocation(),
+ diag::err_invalid_use_of_function_type)
+ << ConditionVar->getSourceRange());
+ else if (T->isArrayType())
+ return ExprError(Diag(ConditionVar->getLocation(),
+ diag::err_invalid_use_of_array_type)
+ << ConditionVar->getSourceRange());
+
+ Expr *Condition = DeclRefExpr::Create(Context, 0, SourceRange(), ConditionVar,
+ ConditionVar->getLocation(),
+ ConditionVar->getType().getNonReferenceType());
+ if (ConvertToBoolean && CheckBooleanCondition(Condition, StmtLoc)) {
+ Condition->Destroy(Context);
+ return ExprError();
+ }
+
+ return Owned(Condition);
+}
+
+/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
+bool Sema::CheckCXXBooleanCondition(Expr *&CondExpr) {
+ // C++ 6.4p4:
+ // The value of a condition that is an initialized declaration in a statement
+ // other than a switch statement is the value of the declared variable
+ // implicitly converted to type bool. If that conversion is ill-formed, the
+ // program is ill-formed.
+ // The value of a condition that is an expression is the value of the
+ // expression, implicitly converted to bool.
+ //
+ return PerformContextuallyConvertToBool(CondExpr);
+}
+
+/// Helper function to determine whether this is the (deprecated) C++
+/// conversion from a string literal to a pointer to non-const char or
+/// non-const wchar_t (for narrow and wide string literals,
+/// respectively).
+bool
+Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
+ // Look inside the implicit cast, if it exists.
+ if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
+ From = Cast->getSubExpr();
+
+ // A string literal (2.13.4) that is not a wide string literal can
+ // be converted to an rvalue of type "pointer to char"; a wide
+ // string literal can be converted to an rvalue of type "pointer
+ // to wchar_t" (C++ 4.2p2).
+ if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From))
+ if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
+ if (const BuiltinType *ToPointeeType
+ = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
+ // This conversion is considered only when there is an
+ // explicit appropriate pointer target type (C++ 4.2p2).
+ if (!ToPtrType->getPointeeType().hasQualifiers() &&
+ ((StrLit->isWide() && ToPointeeType->isWideCharType()) ||
+ (!StrLit->isWide() &&
+ (ToPointeeType->getKind() == BuiltinType::Char_U ||
+ ToPointeeType->getKind() == BuiltinType::Char_S))))
+ return true;
+ }
+
+ return false;
+}
+
+static Sema::OwningExprResult BuildCXXCastArgument(Sema &S,
+ SourceLocation CastLoc,
+ QualType Ty,
+ CastExpr::CastKind Kind,
+ CXXMethodDecl *Method,
+ Sema::ExprArg Arg) {
+ Expr *From = Arg.takeAs<Expr>();
+
+ switch (Kind) {
+ default: assert(0 && "Unhandled cast kind!");
+ case CastExpr::CK_ConstructorConversion: {
+ ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(S);
+
+ if (S.CompleteConstructorCall(cast<CXXConstructorDecl>(Method),
+ Sema::MultiExprArg(S, (void **)&From, 1),
+ CastLoc, ConstructorArgs))
+ return S.ExprError();
+
+ Sema::OwningExprResult Result =
+ S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
+ move_arg(ConstructorArgs));
+ if (Result.isInvalid())
+ return S.ExprError();
+
+ return S.MaybeBindToTemporary(Result.takeAs<Expr>());
+ }
+
+ case CastExpr::CK_UserDefinedConversion: {
+ assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
+
+ // Create an implicit call expr that calls it.
+ // FIXME: pass the FoundDecl for the user-defined conversion here
+ CXXMemberCallExpr *CE = S.BuildCXXMemberCallExpr(From, Method, Method);
+ return S.MaybeBindToTemporary(CE);
+ }
+ }
+}
+
+/// PerformImplicitConversion - Perform an implicit conversion of the
+/// expression From to the type ToType using the pre-computed implicit
+/// conversion sequence ICS. Returns true if there was an error, false
+/// otherwise. The expression From is replaced with the converted
+/// expression. Action is the kind of conversion we're performing,
+/// used in the error message.
+bool
+Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
+ const ImplicitConversionSequence &ICS,
+ AssignmentAction Action, bool IgnoreBaseAccess) {
+ switch (ICS.getKind()) {
+ case ImplicitConversionSequence::StandardConversion:
+ if (PerformImplicitConversion(From, ToType, ICS.Standard, Action,
+ IgnoreBaseAccess))
+ return true;
+ break;
+
+ case ImplicitConversionSequence::UserDefinedConversion: {
+
+ FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
+ CastExpr::CastKind CastKind = CastExpr::CK_Unknown;
+ QualType BeforeToType;
+ if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
+ CastKind = CastExpr::CK_UserDefinedConversion;
+
+ // If the user-defined conversion is specified by a conversion function,
+ // the initial standard conversion sequence converts the source type to
+ // the implicit object parameter of the conversion function.
+ BeforeToType = Context.getTagDeclType(Conv->getParent());
+ } else if (const CXXConstructorDecl *Ctor =
+ dyn_cast<CXXConstructorDecl>(FD)) {
+ CastKind = CastExpr::CK_ConstructorConversion;
+ // Do no conversion if dealing with ... for the first conversion.
+ if (!ICS.UserDefined.EllipsisConversion) {
+ // If the user-defined conversion is specified by a constructor, the
+ // initial standard conversion sequence converts the source type to the
+ // type required by the argument of the constructor
+ BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
+ }
+ }
+ else
+ assert(0 && "Unknown conversion function kind!");
+ // Whatch out for elipsis conversion.
+ if (!ICS.UserDefined.EllipsisConversion) {
+ if (PerformImplicitConversion(From, BeforeToType,
+ ICS.UserDefined.Before, AA_Converting,
+ IgnoreBaseAccess))
+ return true;
+ }
+
+ OwningExprResult CastArg
+ = BuildCXXCastArgument(*this,
+ From->getLocStart(),
+ ToType.getNonReferenceType(),
+ CastKind, cast<CXXMethodDecl>(FD),
+ Owned(From));
+
+ if (CastArg.isInvalid())
+ return true;
+
+ From = CastArg.takeAs<Expr>();
+
+ return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
+ AA_Converting, IgnoreBaseAccess);
+ }
+
+ case ImplicitConversionSequence::AmbiguousConversion:
+ DiagnoseAmbiguousConversion(ICS, From->getExprLoc(),
+ PDiag(diag::err_typecheck_ambiguous_condition)
+ << From->getSourceRange());
+ return true;
+
+ case ImplicitConversionSequence::EllipsisConversion:
+ assert(false && "Cannot perform an ellipsis conversion");
+ return false;
+
+ case ImplicitConversionSequence::BadConversion:
+ return true;
+ }
+
+ // Everything went well.
+ return false;
+}
+
+/// PerformImplicitConversion - Perform an implicit conversion of the
+/// expression From to the type ToType by following the standard
+/// conversion sequence SCS. Returns true if there was an error, false
+/// otherwise. The expression From is replaced with the converted
+/// expression. Flavor is the context in which we're performing this
+/// conversion, for use in error messages.
+bool
+Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
+ const StandardConversionSequence& SCS,
+ AssignmentAction Action, bool IgnoreBaseAccess) {
+ // Overall FIXME: we are recomputing too many types here and doing far too
+ // much extra work. What this means is that we need to keep track of more
+ // information that is computed when we try the implicit conversion initially,
+ // so that we don't need to recompute anything here.
+ QualType FromType = From->getType();
+
+ if (SCS.CopyConstructor) {
+ // FIXME: When can ToType be a reference type?
+ assert(!ToType->isReferenceType());
+ if (SCS.Second == ICK_Derived_To_Base) {
+ ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
+ if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
+ MultiExprArg(*this, (void **)&From, 1),
+ /*FIXME:ConstructLoc*/SourceLocation(),
+ ConstructorArgs))
+ return true;
+ OwningExprResult FromResult =
+ BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
+ ToType, SCS.CopyConstructor,
+ move_arg(ConstructorArgs));
+ if (FromResult.isInvalid())
+ return true;
+ From = FromResult.takeAs<Expr>();
+ return false;
+ }
+ OwningExprResult FromResult =
+ BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
+ ToType, SCS.CopyConstructor,
+ MultiExprArg(*this, (void**)&From, 1));
+
+ if (FromResult.isInvalid())
+ return true;
+
+ From = FromResult.takeAs<Expr>();
+ return false;
+ }
+
+ // Resolve overloaded function references.
+ if (Context.hasSameType(FromType, Context.OverloadTy)) {
+ DeclAccessPair Found;
+ FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
+ true, Found);
+ if (!Fn)
+ return true;
+
+ if (DiagnoseUseOfDecl(Fn, From->getSourceRange().getBegin()))
+ return true;
+
+ From = FixOverloadedFunctionReference(From, Found, Fn);
+ FromType = From->getType();
+ }
+
+ // Perform the first implicit conversion.
+ switch (SCS.First) {
+ case ICK_Identity:
+ case ICK_Lvalue_To_Rvalue:
+ // Nothing to do.
+ break;
+
+ case ICK_Array_To_Pointer:
+ FromType = Context.getArrayDecayedType(FromType);
+ ImpCastExprToType(From, FromType, CastExpr::CK_ArrayToPointerDecay);
+ break;
+
+ case ICK_Function_To_Pointer:
+ FromType = Context.getPointerType(FromType);
+ ImpCastExprToType(From, FromType, CastExpr::CK_FunctionToPointerDecay);
+ break;
+
+ default:
+ assert(false && "Improper first standard conversion");
+ break;
+ }
+
+ // Perform the second implicit conversion
+ switch (SCS.Second) {
+ case ICK_Identity:
+ // If both sides are functions (or pointers/references to them), there could
+ // be incompatible exception declarations.
+ if (CheckExceptionSpecCompatibility(From, ToType))
+ return true;
+ // Nothing else to do.
+ break;
+
+ case ICK_NoReturn_Adjustment:
+ // If both sides are functions (or pointers/references to them), there could
+ // be incompatible exception declarations.
+ if (CheckExceptionSpecCompatibility(From, ToType))
+ return true;
+
+ ImpCastExprToType(From, Context.getNoReturnType(From->getType(), false),
+ CastExpr::CK_NoOp);
+ break;
+
+ case ICK_Integral_Promotion:
+ case ICK_Integral_Conversion:
+ ImpCastExprToType(From, ToType, CastExpr::CK_IntegralCast);
+ break;
+
+ case ICK_Floating_Promotion:
+ case ICK_Floating_Conversion:
+ ImpCastExprToType(From, ToType, CastExpr::CK_FloatingCast);
+ break;
+
+ case ICK_Complex_Promotion:
+ case ICK_Complex_Conversion:
+ ImpCastExprToType(From, ToType, CastExpr::CK_Unknown);
+ break;
+
+ case ICK_Floating_Integral:
+ if (ToType->isFloatingType())
+ ImpCastExprToType(From, ToType, CastExpr::CK_IntegralToFloating);
+ else
+ ImpCastExprToType(From, ToType, CastExpr::CK_FloatingToIntegral);
+ break;
+
+ case ICK_Compatible_Conversion:
+ ImpCastExprToType(From, ToType, CastExpr::CK_NoOp);
+ break;
+
+ case ICK_Pointer_Conversion: {
+ if (SCS.IncompatibleObjC) {
+ // Diagnose incompatible Objective-C conversions
+ Diag(From->getSourceRange().getBegin(),
+ diag::ext_typecheck_convert_incompatible_pointer)
+ << From->getType() << ToType << Action
+ << From->getSourceRange();
+ }
+
+
+ CastExpr::CastKind Kind = CastExpr::CK_Unknown;
+ CXXBaseSpecifierArray BasePath;
+ if (CheckPointerConversion(From, ToType, Kind, BasePath, IgnoreBaseAccess))
+ return true;
+ ImpCastExprToType(From, ToType, Kind, /*isLvalue=*/false, BasePath);
+ break;
+ }
+
+ case ICK_Pointer_Member: {
+ CastExpr::CastKind Kind = CastExpr::CK_Unknown;
+ CXXBaseSpecifierArray BasePath;
+ if (CheckMemberPointerConversion(From, ToType, Kind, BasePath,
+ IgnoreBaseAccess))
+ return true;
+ if (CheckExceptionSpecCompatibility(From, ToType))
+ return true;
+ ImpCastExprToType(From, ToType, Kind, /*isLvalue=*/false, BasePath);
+ break;
+ }
+ case ICK_Boolean_Conversion: {
+ CastExpr::CastKind Kind = CastExpr::CK_Unknown;
+ if (FromType->isMemberPointerType())
+ Kind = CastExpr::CK_MemberPointerToBoolean;
+
+ ImpCastExprToType(From, Context.BoolTy, Kind);
+ break;
+ }
+
+ case ICK_Derived_To_Base: {
+ CXXBaseSpecifierArray BasePath;
+ if (CheckDerivedToBaseConversion(From->getType(),
+ ToType.getNonReferenceType(),
+ From->getLocStart(),
+ From->getSourceRange(),
+ &BasePath,
+ IgnoreBaseAccess))
+ return true;
+
+ ImpCastExprToType(From, ToType.getNonReferenceType(),
+ CastExpr::CK_DerivedToBase,
+ /*isLvalue=*/(From->getType()->isRecordType() &&
+ From->isLvalue(Context) == Expr::LV_Valid),
+ BasePath);
+ break;
+ }
+
+ case ICK_Vector_Conversion:
+ ImpCastExprToType(From, ToType, CastExpr::CK_BitCast);
+ break;
+
+ case ICK_Vector_Splat:
+ ImpCastExprToType(From, ToType, CastExpr::CK_VectorSplat);
+ break;
+
+ case ICK_Complex_Real:
+ ImpCastExprToType(From, ToType, CastExpr::CK_Unknown);
+ break;
+
+ case ICK_Lvalue_To_Rvalue:
+ case ICK_Array_To_Pointer:
+ case ICK_Function_To_Pointer:
+ case ICK_Qualification:
+ case ICK_Num_Conversion_Kinds:
+ assert(false && "Improper second standard conversion");
+ break;
+ }
+
+ switch (SCS.Third) {
+ case ICK_Identity:
+ // Nothing to do.
+ break;
+
+ case ICK_Qualification:
+ // FIXME: Not sure about lvalue vs rvalue here in the presence of rvalue
+ // references.
+ ImpCastExprToType(From, ToType.getNonReferenceType(),
+ CastExpr::CK_NoOp, ToType->isLValueReferenceType());
+
+ if (SCS.DeprecatedStringLiteralToCharPtr)
+ Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
+ << ToType.getNonReferenceType();
+
+ break;
+
+ default:
+ assert(false && "Improper third standard conversion");
+ break;
+ }
+
+ return false;
+}
+
+Sema::OwningExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait OTT,
+ SourceLocation KWLoc,
+ SourceLocation LParen,
+ TypeTy *Ty,
+ SourceLocation RParen) {
+ QualType T = GetTypeFromParser(Ty);
+
+ // According to http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
+ // all traits except __is_class, __is_enum and __is_union require a the type
+ // to be complete.
+ if (OTT != UTT_IsClass && OTT != UTT_IsEnum && OTT != UTT_IsUnion) {
+ if (RequireCompleteType(KWLoc, T,
+ diag::err_incomplete_type_used_in_type_trait_expr))
+ return ExprError();
+ }
+
+ // There is no point in eagerly computing the value. The traits are designed
+ // to be used from type trait templates, so Ty will be a template parameter
+ // 99% of the time.
+ return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, OTT, T,
+ RParen, Context.BoolTy));
+}
+
+QualType Sema::CheckPointerToMemberOperands(
+ Expr *&lex, Expr *&rex, SourceLocation Loc, bool isIndirect) {
+ const char *OpSpelling = isIndirect ? "->*" : ".*";
+ // C++ 5.5p2
+ // The binary operator .* [p3: ->*] binds its second operand, which shall
+ // be of type "pointer to member of T" (where T is a completely-defined
+ // class type) [...]
+ QualType RType = rex->getType();
+ const MemberPointerType *MemPtr = RType->getAs<MemberPointerType>();
+ if (!MemPtr) {
+ Diag(Loc, diag::err_bad_memptr_rhs)
+ << OpSpelling << RType << rex->getSourceRange();
+ return QualType();
+ }
+
+ QualType Class(MemPtr->getClass(), 0);
+
+ if (RequireCompleteType(Loc, Class, diag::err_memptr_rhs_to_incomplete))
+ return QualType();
+
+ // C++ 5.5p2
+ // [...] to its first operand, which shall be of class T or of a class of
+ // which T is an unambiguous and accessible base class. [p3: a pointer to
+ // such a class]
+ QualType LType = lex->getType();
+ if (isIndirect) {
+ if (const PointerType *Ptr = LType->getAs<PointerType>())
+ LType = Ptr->getPointeeType().getNonReferenceType();
+ else {
+ Diag(Loc, diag::err_bad_memptr_lhs)
+ << OpSpelling << 1 << LType
+ << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
+ return QualType();
+ }
+ }
+
+ if (!Context.hasSameUnqualifiedType(Class, LType)) {
+ // If we want to check the hierarchy, we need a complete type.
+ if (RequireCompleteType(Loc, LType, PDiag(diag::err_bad_memptr_lhs)
+ << OpSpelling << (int)isIndirect)) {
+ return QualType();
+ }
+ CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
+ /*DetectVirtual=*/false);
+ // FIXME: Would it be useful to print full ambiguity paths, or is that
+ // overkill?
+ if (!IsDerivedFrom(LType, Class, Paths) ||
+ Paths.isAmbiguous(Context.getCanonicalType(Class))) {
+ Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
+ << (int)isIndirect << lex->getType();
+ return QualType();
+ }
+ // Cast LHS to type of use.
+ QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
+ bool isLValue = !isIndirect && lex->isLvalue(Context) == Expr::LV_Valid;
+
+ CXXBaseSpecifierArray BasePath;
+ BuildBasePathArray(Paths, BasePath);
+ ImpCastExprToType(lex, UseType, CastExpr::CK_DerivedToBase, isLValue,
+ BasePath);
+ }
+
+ if (isa<CXXZeroInitValueExpr>(rex->IgnoreParens())) {
+ // Diagnose use of pointer-to-member type which when used as
+ // the functional cast in a pointer-to-member expression.
+ Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
+ return QualType();
+ }
+ // C++ 5.5p2
+ // The result is an object or a function of the type specified by the
+ // second operand.
+ // The cv qualifiers are the union of those in the pointer and the left side,
+ // in accordance with 5.5p5 and 5.2.5.
+ // FIXME: This returns a dereferenced member function pointer as a normal
+ // function type. However, the only operation valid on such functions is
+ // calling them. There's also a GCC extension to get a function pointer to the
+ // thing, which is another complication, because this type - unlike the type
+ // that is the result of this expression - takes the class as the first
+ // argument.
+ // We probably need a "MemberFunctionClosureType" or something like that.
+ QualType Result = MemPtr->getPointeeType();
+ Result = Context.getCVRQualifiedType(Result, LType.getCVRQualifiers());
+ return Result;
+}
+
+/// \brief Try to convert a type to another according to C++0x 5.16p3.
+///
+/// This is part of the parameter validation for the ? operator. If either
+/// value operand is a class type, the two operands are attempted to be
+/// converted to each other. This function does the conversion in one direction.
+/// It returns true if the program is ill-formed and has already been diagnosed
+/// as such.
+static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
+ SourceLocation QuestionLoc,
+ bool &HaveConversion,
+ QualType &ToType) {
+ HaveConversion = false;
+ ToType = To->getType();
+
+ InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
+ SourceLocation());
+ // C++0x 5.16p3
+ // The process for determining whether an operand expression E1 of type T1
+ // can be converted to match an operand expression E2 of type T2 is defined
+ // as follows:
+ // -- If E2 is an lvalue:
+ bool ToIsLvalue = (To->isLvalue(Self.Context) == Expr::LV_Valid);
+ if (ToIsLvalue) {
+ // E1 can be converted to match E2 if E1 can be implicitly converted to
+ // type "lvalue reference to T2", subject to the constraint that in the
+ // conversion the reference must bind directly to E1.
+ QualType T = Self.Context.getLValueReferenceType(ToType);
+ InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
+
+ InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
+ if (InitSeq.isDirectReferenceBinding()) {
+ ToType = T;
+ HaveConversion = true;
+ return false;
+ }
+
+ if (InitSeq.isAmbiguous())
+ return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
+ }
+
+ // -- If E2 is an rvalue, or if the conversion above cannot be done:
+ // -- if E1 and E2 have class type, and the underlying class types are
+ // the same or one is a base class of the other:
+ QualType FTy = From->getType();
+ QualType TTy = To->getType();
+ const RecordType *FRec = FTy->getAs<RecordType>();
+ const RecordType *TRec = TTy->getAs<RecordType>();
+ bool FDerivedFromT = FRec && TRec && FRec != TRec &&
+ Self.IsDerivedFrom(FTy, TTy);
+ if (FRec && TRec &&
+ (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
+ // E1 can be converted to match E2 if the class of T2 is the
+ // same type as, or a base class of, the class of T1, and
+ // [cv2 > cv1].
+ if (FRec == TRec || FDerivedFromT) {
+ if (TTy.isAtLeastAsQualifiedAs(FTy)) {
+ InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
+ InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
+ if (InitSeq.getKind() != InitializationSequence::FailedSequence) {
+ HaveConversion = true;
+ return false;
+ }
+
+ if (InitSeq.isAmbiguous())
+ return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
+ }
+ }
+
+ return false;
+ }
+
+ // -- Otherwise: E1 can be converted to match E2 if E1 can be
+ // implicitly converted to the type that expression E2 would have
+ // if E2 were converted to an rvalue (or the type it has, if E2 is
+ // an rvalue).
+ //
+ // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
+ // to the array-to-pointer or function-to-pointer conversions.
+ if (!TTy->getAs<TagType>())
+ TTy = TTy.getUnqualifiedType();
+
+ InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
+ InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
+ HaveConversion = InitSeq.getKind() != InitializationSequence::FailedSequence;
+ ToType = TTy;
+ if (InitSeq.isAmbiguous())
+ return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
+
+ return false;
+}
+
+/// \brief Try to find a common type for two according to C++0x 5.16p5.
+///
+/// This is part of the parameter validation for the ? operator. If either
+/// value operand is a class type, overload resolution is used to find a
+/// conversion to a common type.
+static bool FindConditionalOverload(Sema &Self, Expr *&LHS, Expr *&RHS,
+ SourceLocation Loc) {
+ Expr *Args[2] = { LHS, RHS };
+ OverloadCandidateSet CandidateSet(Loc);
+ Self.AddBuiltinOperatorCandidates(OO_Conditional, Loc, Args, 2, CandidateSet);
+
+ OverloadCandidateSet::iterator Best;
+ switch (Self.BestViableFunction(CandidateSet, Loc, Best)) {
+ case OR_Success:
+ // We found a match. Perform the conversions on the arguments and move on.
+ if (Self.PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
+ Best->Conversions[0], Sema::AA_Converting) ||
+ Self.PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
+ Best->Conversions[1], Sema::AA_Converting))
+ break;
+ return false;
+
+ case OR_No_Viable_Function:
+ Self.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
+ << LHS->getType() << RHS->getType()
+ << LHS->getSourceRange() << RHS->getSourceRange();
+ return true;
+
+ case OR_Ambiguous:
+ Self.Diag(Loc, diag::err_conditional_ambiguous_ovl)
+ << LHS->getType() << RHS->getType()
+ << LHS->getSourceRange() << RHS->getSourceRange();
+ // FIXME: Print the possible common types by printing the return types of
+ // the viable candidates.
+ break;
+
+ case OR_Deleted:
+ assert(false && "Conditional operator has only built-in overloads");
+ break;
+ }
+ return true;
+}
+
+/// \brief Perform an "extended" implicit conversion as returned by
+/// TryClassUnification.
+static bool ConvertForConditional(Sema &Self, Expr *&E, QualType T) {
+ InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
+ InitializationKind Kind = InitializationKind::CreateCopy(E->getLocStart(),
+ SourceLocation());
+ InitializationSequence InitSeq(Self, Entity, Kind, &E, 1);
+ Sema::OwningExprResult Result = InitSeq.Perform(Self, Entity, Kind,
+ Sema::MultiExprArg(Self, (void **)&E, 1));
+ if (Result.isInvalid())
+ return true;
+
+ E = Result.takeAs<Expr>();
+ return false;
+}
+
+/// \brief Check the operands of ?: under C++ semantics.
+///
+/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
+/// extension. In this case, LHS == Cond. (But they're not aliases.)
+QualType Sema::CXXCheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
+ SourceLocation QuestionLoc) {
+ // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
+ // interface pointers.
+
+ // C++0x 5.16p1
+ // The first expression is contextually converted to bool.
+ if (!Cond->isTypeDependent()) {
+ if (CheckCXXBooleanCondition(Cond))
+ return QualType();
+ }
+
+ // Either of the arguments dependent?
+ if (LHS->isTypeDependent() || RHS->isTypeDependent())
+ return Context.DependentTy;
+
+ // C++0x 5.16p2
+ // If either the second or the third operand has type (cv) void, ...
+ QualType LTy = LHS->getType();
+ QualType RTy = RHS->getType();
+ bool LVoid = LTy->isVoidType();
+ bool RVoid = RTy->isVoidType();
+ if (LVoid || RVoid) {
+ // ... then the [l2r] conversions are performed on the second and third
+ // operands ...
+ DefaultFunctionArrayLvalueConversion(LHS);
+ DefaultFunctionArrayLvalueConversion(RHS);
+ LTy = LHS->getType();
+ RTy = RHS->getType();
+
+ // ... and one of the following shall hold:
+ // -- The second or the third operand (but not both) is a throw-
+ // expression; the result is of the type of the other and is an rvalue.
+ bool LThrow = isa<CXXThrowExpr>(LHS);
+ bool RThrow = isa<CXXThrowExpr>(RHS);
+ if (LThrow && !RThrow)
+ return RTy;
+ if (RThrow && !LThrow)
+ return LTy;
+
+ // -- Both the second and third operands have type void; the result is of
+ // type void and is an rvalue.
+ if (LVoid && RVoid)
+ return Context.VoidTy;
+
+ // Neither holds, error.
+ Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
+ << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
+ << LHS->getSourceRange() << RHS->getSourceRange();
+ return QualType();
+ }
+
+ // Neither is void.
+
+ // C++0x 5.16p3
+ // Otherwise, if the second and third operand have different types, and
+ // either has (cv) class type, and attempt is made to convert each of those
+ // operands to the other.
+ if (!Context.hasSameType(LTy, RTy) &&
+ (LTy->isRecordType() || RTy->isRecordType())) {
+ ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
+ // These return true if a single direction is already ambiguous.
+ QualType L2RType, R2LType;
+ bool HaveL2R, HaveR2L;
+ if (TryClassUnification(*this, LHS, RHS, QuestionLoc, HaveL2R, L2RType))
+ return QualType();
+ if (TryClassUnification(*this, RHS, LHS, QuestionLoc, HaveR2L, R2LType))
+ return QualType();
+
+ // If both can be converted, [...] the program is ill-formed.
+ if (HaveL2R && HaveR2L) {
+ Diag(QuestionLoc, diag::err_conditional_ambiguous)
+ << LTy << RTy << LHS->getSourceRange() << RHS->getSourceRange();
+ return QualType();
+ }
+
+ // If exactly one conversion is possible, that conversion is applied to
+ // the chosen operand and the converted operands are used in place of the
+ // original operands for the remainder of this section.
+ if (HaveL2R) {
+ if (ConvertForConditional(*this, LHS, L2RType))
+ return QualType();
+ LTy = LHS->getType();
+ } else if (HaveR2L) {
+ if (ConvertForConditional(*this, RHS, R2LType))
+ return QualType();
+ RTy = RHS->getType();
+ }
+ }
+
+ // C++0x 5.16p4
+ // If the second and third operands are lvalues and have the same type,
+ // the result is of that type [...]
+ bool Same = Context.hasSameType(LTy, RTy);
+ if (Same && LHS->isLvalue(Context) == Expr::LV_Valid &&
+ RHS->isLvalue(Context) == Expr::LV_Valid)
+ return LTy;
+
+ // C++0x 5.16p5
+ // Otherwise, the result is an rvalue. If the second and third operands
+ // do not have the same type, and either has (cv) class type, ...
+ if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
+ // ... overload resolution is used to determine the conversions (if any)
+ // to be applied to the operands. If the overload resolution fails, the
+ // program is ill-formed.
+ if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
+ return QualType();
+ }
+
+ // C++0x 5.16p6
+ // LValue-to-rvalue, array-to-pointer, and function-to-pointer standard
+ // conversions are performed on the second and third operands.
+ DefaultFunctionArrayLvalueConversion(LHS);
+ DefaultFunctionArrayLvalueConversion(RHS);
+ LTy = LHS->getType();
+ RTy = RHS->getType();
+
+ // After those conversions, one of the following shall hold:
+ // -- The second and third operands have the same type; the result
+ // is of that type. If the operands have class type, the result
+ // is a prvalue temporary of the result type, which is
+ // copy-initialized from either the second operand or the third
+ // operand depending on the value of the first operand.
+ if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
+ if (LTy->isRecordType()) {
+ // The operands have class type. Make a temporary copy.
+ InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
+ OwningExprResult LHSCopy = PerformCopyInitialization(Entity,
+ SourceLocation(),
+ Owned(LHS));
+ if (LHSCopy.isInvalid())
+ return QualType();
+
+ OwningExprResult RHSCopy = PerformCopyInitialization(Entity,
+ SourceLocation(),
+ Owned(RHS));
+ if (RHSCopy.isInvalid())
+ return QualType();
+
+ LHS = LHSCopy.takeAs<Expr>();
+ RHS = RHSCopy.takeAs<Expr>();
+ }
+
+ return LTy;
+ }
+
+ // Extension: conditional operator involving vector types.
+ if (LTy->isVectorType() || RTy->isVectorType())
+ return CheckVectorOperands(QuestionLoc, LHS, RHS);
+
+ // -- The second and third operands have arithmetic or enumeration type;
+ // the usual arithmetic conversions are performed to bring them to a
+ // common type, and the result is of that type.
+ if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
+ UsualArithmeticConversions(LHS, RHS);
+ return LHS->getType();
+ }
+
+ // -- The second and third operands have pointer type, or one has pointer
+ // type and the other is a null pointer constant; pointer conversions
+ // and qualification conversions are performed to bring them to their
+ // composite pointer type. The result is of the composite pointer type.
+ // -- The second and third operands have pointer to member type, or one has
+ // pointer to member type and the other is a null pointer constant;
+ // pointer to member conversions and qualification conversions are
+ // performed to bring them to a common type, whose cv-qualification
+ // shall match the cv-qualification of either the second or the third
+ // operand. The result is of the common type.
+ bool NonStandardCompositeType = false;
+ QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
+ isSFINAEContext()? 0 : &NonStandardCompositeType);
+ if (!Composite.isNull()) {
+ if (NonStandardCompositeType)
+ Diag(QuestionLoc,
+ diag::ext_typecheck_cond_incompatible_operands_nonstandard)
+ << LTy << RTy << Composite
+ << LHS->getSourceRange() << RHS->getSourceRange();
+
+ return Composite;
+ }
+
+ // Similarly, attempt to find composite type of two objective-c pointers.
+ Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
+ if (!Composite.isNull())
+ return Composite;
+
+ Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
+ << LHS->getType() << RHS->getType()
+ << LHS->getSourceRange() << RHS->getSourceRange();
+ return QualType();
+}
+
+/// \brief Find a merged pointer type and convert the two expressions to it.
+///
+/// This finds the composite pointer type (or member pointer type) for @p E1
+/// and @p E2 according to C++0x 5.9p2. It converts both expressions to this
+/// type and returns it.
+/// It does not emit diagnostics.
+///
+/// \param Loc The location of the operator requiring these two expressions to
+/// be converted to the composite pointer type.
+///
+/// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
+/// a non-standard (but still sane) composite type to which both expressions
+/// can be converted. When such a type is chosen, \c *NonStandardCompositeType
+/// will be set true.
+QualType Sema::FindCompositePointerType(SourceLocation Loc,
+ Expr *&E1, Expr *&E2,
+ bool *NonStandardCompositeType) {
+ if (NonStandardCompositeType)
+ *NonStandardCompositeType = false;
+
+ assert(getLangOptions().CPlusPlus && "This function assumes C++");
+ QualType T1 = E1->getType(), T2 = E2->getType();
+
+ if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
+ !T2->isAnyPointerType() && !T2->isMemberPointerType())
+ return QualType();
+
+ // C++0x 5.9p2
+ // Pointer conversions and qualification conversions are performed on
+ // pointer operands to bring them to their composite pointer type. If
+ // one operand is a null pointer constant, the composite pointer type is
+ // the type of the other operand.
+ if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
+ if (T2->isMemberPointerType())
+ ImpCastExprToType(E1, T2, CastExpr::CK_NullToMemberPointer);
+ else
+ ImpCastExprToType(E1, T2, CastExpr::CK_IntegralToPointer);
+ return T2;
+ }
+ if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
+ if (T1->isMemberPointerType())
+ ImpCastExprToType(E2, T1, CastExpr::CK_NullToMemberPointer);
+ else
+ ImpCastExprToType(E2, T1, CastExpr::CK_IntegralToPointer);
+ return T1;
+ }
+
+ // Now both have to be pointers or member pointers.
+ if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
+ (!T2->isPointerType() && !T2->isMemberPointerType()))
+ return QualType();
+
+ // Otherwise, of one of the operands has type "pointer to cv1 void," then
+ // the other has type "pointer to cv2 T" and the composite pointer type is
+ // "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
+ // Otherwise, the composite pointer type is a pointer type similar to the
+ // type of one of the operands, with a cv-qualification signature that is
+ // the union of the cv-qualification signatures of the operand types.
+ // In practice, the first part here is redundant; it's subsumed by the second.
+ // What we do here is, we build the two possible composite types, and try the
+ // conversions in both directions. If only one works, or if the two composite
+ // types are the same, we have succeeded.
+ // FIXME: extended qualifiers?
+ typedef llvm::SmallVector<unsigned, 4> QualifierVector;
+ QualifierVector QualifierUnion;
+ typedef llvm::SmallVector<std::pair<const Type *, const Type *>, 4>
+ ContainingClassVector;
+ ContainingClassVector MemberOfClass;
+ QualType Composite1 = Context.getCanonicalType(T1),
+ Composite2 = Context.getCanonicalType(T2);
+ unsigned NeedConstBefore = 0;
+ do {
+ const PointerType *Ptr1, *Ptr2;
+ if ((Ptr1 = Composite1->getAs<PointerType>()) &&
+ (Ptr2 = Composite2->getAs<PointerType>())) {
+ Composite1 = Ptr1->getPointeeType();
+ Composite2 = Ptr2->getPointeeType();
+
+ // If we're allowed to create a non-standard composite type, keep track
+ // of where we need to fill in additional 'const' qualifiers.
+ if (NonStandardCompositeType &&
+ Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
+ NeedConstBefore = QualifierUnion.size();
+
+ QualifierUnion.push_back(
+ Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
+ MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
+ continue;
+ }
+
+ const MemberPointerType *MemPtr1, *MemPtr2;
+ if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
+ (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
+ Composite1 = MemPtr1->getPointeeType();
+ Composite2 = MemPtr2->getPointeeType();
+
+ // If we're allowed to create a non-standard composite type, keep track
+ // of where we need to fill in additional 'const' qualifiers.
+ if (NonStandardCompositeType &&
+ Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
+ NeedConstBefore = QualifierUnion.size();
+
+ QualifierUnion.push_back(
+ Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
+ MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
+ MemPtr2->getClass()));
+ continue;
+ }
+
+ // FIXME: block pointer types?
+
+ // Cannot unwrap any more types.
+ break;
+ } while (true);
+
+ if (NeedConstBefore && NonStandardCompositeType) {
+ // Extension: Add 'const' to qualifiers that come before the first qualifier
+ // mismatch, so that our (non-standard!) composite type meets the
+ // requirements of C++ [conv.qual]p4 bullet 3.
+ for (unsigned I = 0; I != NeedConstBefore; ++I) {
+ if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
+ QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
+ *NonStandardCompositeType = true;
+ }
+ }
+ }
+
+ // Rewrap the composites as pointers or member pointers with the union CVRs.
+ ContainingClassVector::reverse_iterator MOC
+ = MemberOfClass.rbegin();
+ for (QualifierVector::reverse_iterator
+ I = QualifierUnion.rbegin(),
+ E = QualifierUnion.rend();
+ I != E; (void)++I, ++MOC) {
+ Qualifiers Quals = Qualifiers::fromCVRMask(*I);
+ if (MOC->first && MOC->second) {
+ // Rebuild member pointer type
+ Composite1 = Context.getMemberPointerType(
+ Context.getQualifiedType(Composite1, Quals),
+ MOC->first);
+ Composite2 = Context.getMemberPointerType(
+ Context.getQualifiedType(Composite2, Quals),
+ MOC->second);
+ } else {
+ // Rebuild pointer type
+ Composite1
+ = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
+ Composite2
+ = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
+ }
+ }
+
+ // Try to convert to the first composite pointer type.
+ InitializedEntity Entity1
+ = InitializedEntity::InitializeTemporary(Composite1);
+ InitializationKind Kind
+ = InitializationKind::CreateCopy(Loc, SourceLocation());
+ InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1);
+ InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1);
+
+ if (E1ToC1 && E2ToC1) {
+ // Conversion to Composite1 is viable.
+ if (!Context.hasSameType(Composite1, Composite2)) {
+ // Composite2 is a different type from Composite1. Check whether
+ // Composite2 is also viable.
+ InitializedEntity Entity2
+ = InitializedEntity::InitializeTemporary(Composite2);
+ InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
+ InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
+ if (E1ToC2 && E2ToC2) {
+ // Both Composite1 and Composite2 are viable and are different;
+ // this is an ambiguity.
+ return QualType();
+ }
+ }
+
+ // Convert E1 to Composite1
+ OwningExprResult E1Result
+ = E1ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,(void**)&E1,1));
+ if (E1Result.isInvalid())
+ return QualType();
+ E1 = E1Result.takeAs<Expr>();
+
+ // Convert E2 to Composite1
+ OwningExprResult E2Result
+ = E2ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,(void**)&E2,1));
+ if (E2Result.isInvalid())
+ return QualType();
+ E2 = E2Result.takeAs<Expr>();
+
+ return Composite1;
+ }
+
+ // Check whether Composite2 is viable.
+ InitializedEntity Entity2
+ = InitializedEntity::InitializeTemporary(Composite2);
+ InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
+ InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
+ if (!E1ToC2 || !E2ToC2)
+ return QualType();
+
+ // Convert E1 to Composite2
+ OwningExprResult E1Result
+ = E1ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, (void**)&E1, 1));
+ if (E1Result.isInvalid())
+ return QualType();
+ E1 = E1Result.takeAs<Expr>();
+
+ // Convert E2 to Composite2
+ OwningExprResult E2Result
+ = E2ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, (void**)&E2, 1));
+ if (E2Result.isInvalid())
+ return QualType();
+ E2 = E2Result.takeAs<Expr>();
+
+ return Composite2;
+}
+
+Sema::OwningExprResult Sema::MaybeBindToTemporary(Expr *E) {
+ if (!Context.getLangOptions().CPlusPlus)
+ return Owned(E);
+
+ assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
+
+ const RecordType *RT = E->getType()->getAs<RecordType>();
+ if (!RT)
+ return Owned(E);
+
+ // If this is the result of a call expression, our source might
+ // actually be a reference, in which case we shouldn't bind.
+ if (CallExpr *CE = dyn_cast<CallExpr>(E)) {
+ QualType Ty = CE->getCallee()->getType();
+ if (const PointerType *PT = Ty->getAs<PointerType>())
+ Ty = PT->getPointeeType();
+ else if (const BlockPointerType *BPT = Ty->getAs<BlockPointerType>())
+ Ty = BPT->getPointeeType();
+
+ const FunctionType *FTy = Ty->getAs<FunctionType>();
+ if (FTy->getResultType()->isReferenceType())
+ return Owned(E);
+ }
+
+ // That should be enough to guarantee that this type is complete.
+ // If it has a trivial destructor, we can avoid the extra copy.
+ CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
+ if (RD->hasTrivialDestructor())
+ return Owned(E);
+
+ CXXTemporary *Temp = CXXTemporary::Create(Context,
+ RD->getDestructor(Context));
+ ExprTemporaries.push_back(Temp);
+ if (CXXDestructorDecl *Destructor =
+ const_cast<CXXDestructorDecl*>(RD->getDestructor(Context))) {
+ MarkDeclarationReferenced(E->getExprLoc(), Destructor);
+ CheckDestructorAccess(E->getExprLoc(), Destructor,
+ PDiag(diag::err_access_dtor_temp)
+ << E->getType());
+ }
+ // FIXME: Add the temporary to the temporaries vector.
+ return Owned(CXXBindTemporaryExpr::Create(Context, Temp, E));
+}
+
+Expr *Sema::MaybeCreateCXXExprWithTemporaries(Expr *SubExpr) {
+ assert(SubExpr && "sub expression can't be null!");
+
+ // Check any implicit conversions within the expression.
+ CheckImplicitConversions(SubExpr);
+
+ unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
+ assert(ExprTemporaries.size() >= FirstTemporary);
+ if (ExprTemporaries.size() == FirstTemporary)
+ return SubExpr;
+
+ Expr *E = CXXExprWithTemporaries::Create(Context, SubExpr,
+ &ExprTemporaries[FirstTemporary],
+ ExprTemporaries.size() - FirstTemporary);
+ ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary,
+ ExprTemporaries.end());
+
+ return E;
+}
+
+Sema::OwningExprResult
+Sema::MaybeCreateCXXExprWithTemporaries(OwningExprResult SubExpr) {
+ if (SubExpr.isInvalid())
+ return ExprError();
+
+ return Owned(MaybeCreateCXXExprWithTemporaries(SubExpr.takeAs<Expr>()));
+}
+
+FullExpr Sema::CreateFullExpr(Expr *SubExpr) {
+ unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
+ assert(ExprTemporaries.size() >= FirstTemporary);
+
+ unsigned NumTemporaries = ExprTemporaries.size() - FirstTemporary;
+ CXXTemporary **Temporaries =
+ NumTemporaries == 0 ? 0 : &ExprTemporaries[FirstTemporary];
+
+ FullExpr E = FullExpr::Create(Context, SubExpr, Temporaries, NumTemporaries);
+
+ ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary,
+ ExprTemporaries.end());
+
+ return E;
+}
+
+Sema::OwningExprResult
+Sema::ActOnStartCXXMemberReference(Scope *S, ExprArg Base, SourceLocation OpLoc,
+ tok::TokenKind OpKind, TypeTy *&ObjectType,
+ bool &MayBePseudoDestructor) {
+ // Since this might be a postfix expression, get rid of ParenListExprs.
+ Base = MaybeConvertParenListExprToParenExpr(S, move(Base));
+
+ Expr *BaseExpr = (Expr*)Base.get();
+ assert(BaseExpr && "no record expansion");
+
+ QualType BaseType = BaseExpr->getType();
+ MayBePseudoDestructor = false;
+ if (BaseType->isDependentType()) {
+ // If we have a pointer to a dependent type and are using the -> operator,
+ // the object type is the type that the pointer points to. We might still
+ // have enough information about that type to do something useful.
+ if (OpKind == tok::arrow)
+ if (const PointerType *Ptr = BaseType->getAs<PointerType>())
+ BaseType = Ptr->getPointeeType();
+
+ ObjectType = BaseType.getAsOpaquePtr();
+ MayBePseudoDestructor = true;
+ return move(Base);
+ }
+
+ // C++ [over.match.oper]p8:
+ // [...] When operator->returns, the operator-> is applied to the value
+ // returned, with the original second operand.
+ if (OpKind == tok::arrow) {
+ // The set of types we've considered so far.
+ llvm::SmallPtrSet<CanQualType,8> CTypes;
+ llvm::SmallVector<SourceLocation, 8> Locations;
+ CTypes.insert(Context.getCanonicalType(BaseType));
+
+ while (BaseType->isRecordType()) {
+ Base = BuildOverloadedArrowExpr(S, move(Base), OpLoc);
+ BaseExpr = (Expr*)Base.get();
+ if (BaseExpr == NULL)
+ return ExprError();
+ if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(BaseExpr))
+ Locations.push_back(OpCall->getDirectCallee()->getLocation());
+ BaseType = BaseExpr->getType();
+ CanQualType CBaseType = Context.getCanonicalType(BaseType);
+ if (!CTypes.insert(CBaseType)) {
+ Diag(OpLoc, diag::err_operator_arrow_circular);
+ for (unsigned i = 0; i < Locations.size(); i++)
+ Diag(Locations[i], diag::note_declared_at);
+ return ExprError();
+ }
+ }
+
+ if (BaseType->isPointerType())
+ BaseType = BaseType->getPointeeType();
+ }
+
+ // We could end up with various non-record types here, such as extended
+ // vector types or Objective-C interfaces. Just return early and let
+ // ActOnMemberReferenceExpr do the work.
+ if (!BaseType->isRecordType()) {
+ // C++ [basic.lookup.classref]p2:
+ // [...] If the type of the object expression is of pointer to scalar
+ // type, the unqualified-id is looked up in the context of the complete
+ // postfix-expression.
+ //
+ // This also indicates that we should be parsing a
+ // pseudo-destructor-name.
+ ObjectType = 0;
+ MayBePseudoDestructor = true;
+ return move(Base);
+ }
+
+ // The object type must be complete (or dependent).
+ if (!BaseType->isDependentType() &&
+ RequireCompleteType(OpLoc, BaseType,
+ PDiag(diag::err_incomplete_member_access)))
+ return ExprError();
+
+ // C++ [basic.lookup.classref]p2:
+ // If the id-expression in a class member access (5.2.5) is an
+ // unqualified-id, and the type of the object expression is of a class
+ // type C (or of pointer to a class type C), the unqualified-id is looked
+ // up in the scope of class C. [...]
+ ObjectType = BaseType.getAsOpaquePtr();
+ return move(Base);
+}
+
+Sema::OwningExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
+ ExprArg MemExpr) {
+ Expr *E = (Expr *) MemExpr.get();
+ SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
+ Diag(E->getLocStart(), diag::err_dtor_expr_without_call)
+ << isa<CXXPseudoDestructorExpr>(E)
+ << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
+
+ return ActOnCallExpr(/*Scope*/ 0,
+ move(MemExpr),
+ /*LPLoc*/ ExpectedLParenLoc,
+ Sema::MultiExprArg(*this, 0, 0),
+ /*CommaLocs*/ 0,
+ /*RPLoc*/ ExpectedLParenLoc);
+}
+
+Sema::OwningExprResult Sema::BuildPseudoDestructorExpr(ExprArg Base,
+ SourceLocation OpLoc,
+ tok::TokenKind OpKind,
+ const CXXScopeSpec &SS,
+ TypeSourceInfo *ScopeTypeInfo,
+ SourceLocation CCLoc,
+ SourceLocation TildeLoc,
+ PseudoDestructorTypeStorage Destructed,
+ bool HasTrailingLParen) {
+ TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
+
+ // C++ [expr.pseudo]p2:
+ // The left-hand side of the dot operator shall be of scalar type. The
+ // left-hand side of the arrow operator shall be of pointer to scalar type.
+ // This scalar type is the object type.
+ Expr *BaseE = (Expr *)Base.get();
+ QualType ObjectType = BaseE->getType();
+ if (OpKind == tok::arrow) {
+ if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
+ ObjectType = Ptr->getPointeeType();
+ } else if (!BaseE->isTypeDependent()) {
+ // The user wrote "p->" when she probably meant "p."; fix it.
+ Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
+ << ObjectType << true
+ << FixItHint::CreateReplacement(OpLoc, ".");
+ if (isSFINAEContext())
+ return ExprError();
+
+ OpKind = tok::period;
+ }
+ }
+
+ if (!ObjectType->isDependentType() && !ObjectType->isScalarType()) {
+ Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
+ << ObjectType << BaseE->getSourceRange();
+ return ExprError();
+ }
+
+ // C++ [expr.pseudo]p2:
+ // [...] The cv-unqualified versions of the object type and of the type
+ // designated by the pseudo-destructor-name shall be the same type.
+ if (DestructedTypeInfo) {
+ QualType DestructedType = DestructedTypeInfo->getType();
+ SourceLocation DestructedTypeStart
+ = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
+ if (!DestructedType->isDependentType() && !ObjectType->isDependentType() &&
+ !Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
+ Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
+ << ObjectType << DestructedType << BaseE->getSourceRange()
+ << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
+
+ // Recover by setting the destructed type to the object type.
+ DestructedType = ObjectType;
+ DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
+ DestructedTypeStart);
+ Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
+ }
+ }
+
+ // C++ [expr.pseudo]p2:
+ // [...] Furthermore, the two type-names in a pseudo-destructor-name of the
+ // form
+ //
+ // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
+ //
+ // shall designate the same scalar type.
+ if (ScopeTypeInfo) {
+ QualType ScopeType = ScopeTypeInfo->getType();
+ if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
+ !Context.hasSameType(ScopeType, ObjectType)) {
+
+ Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
+ diag::err_pseudo_dtor_type_mismatch)
+ << ObjectType << ScopeType << BaseE->getSourceRange()
+ << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
+
+ ScopeType = QualType();
+ ScopeTypeInfo = 0;
+ }
+ }
+
+ OwningExprResult Result
+ = Owned(new (Context) CXXPseudoDestructorExpr(Context,
+ Base.takeAs<Expr>(),
+ OpKind == tok::arrow,
+ OpLoc,
+ (NestedNameSpecifier *) SS.getScopeRep(),
+ SS.getRange(),
+ ScopeTypeInfo,
+ CCLoc,
+ TildeLoc,
+ Destructed));
+
+ if (HasTrailingLParen)
+ return move(Result);
+
+ return DiagnoseDtorReference(Destructed.getLocation(), move(Result));
+}
+
+Sema::OwningExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, ExprArg Base,
+ SourceLocation OpLoc,
+ tok::TokenKind OpKind,
+ CXXScopeSpec &SS,
+ UnqualifiedId &FirstTypeName,
+ SourceLocation CCLoc,
+ SourceLocation TildeLoc,
+ UnqualifiedId &SecondTypeName,
+ bool HasTrailingLParen) {
+ assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
+ FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
+ "Invalid first type name in pseudo-destructor");
+ assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
+ SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
+ "Invalid second type name in pseudo-destructor");
+
+ Expr *BaseE = (Expr *)Base.get();
+
+ // C++ [expr.pseudo]p2:
+ // The left-hand side of the dot operator shall be of scalar type. The
+ // left-hand side of the arrow operator shall be of pointer to scalar type.
+ // This scalar type is the object type.
+ QualType ObjectType = BaseE->getType();
+ if (OpKind == tok::arrow) {
+ if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
+ ObjectType = Ptr->getPointeeType();
+ } else if (!ObjectType->isDependentType()) {
+ // The user wrote "p->" when she probably meant "p."; fix it.
+ Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
+ << ObjectType << true
+ << FixItHint::CreateReplacement(OpLoc, ".");
+ if (isSFINAEContext())
+ return ExprError();
+
+ OpKind = tok::period;
+ }
+ }
+
+ // Compute the object type that we should use for name lookup purposes. Only
+ // record types and dependent types matter.
+ void *ObjectTypePtrForLookup = 0;
+ if (!SS.isSet()) {
+ ObjectTypePtrForLookup = (void *)ObjectType->getAs<RecordType>();
+ if (!ObjectTypePtrForLookup && ObjectType->isDependentType())
+ ObjectTypePtrForLookup = Context.DependentTy.getAsOpaquePtr();
+ }
+
+ // Convert the name of the type being destructed (following the ~) into a
+ // type (with source-location information).
+ QualType DestructedType;
+ TypeSourceInfo *DestructedTypeInfo = 0;
+ PseudoDestructorTypeStorage Destructed;
+ if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
+ TypeTy *T = getTypeName(*SecondTypeName.Identifier,
+ SecondTypeName.StartLocation,
+ S, &SS, true, ObjectTypePtrForLookup);
+ if (!T &&
+ ((SS.isSet() && !computeDeclContext(SS, false)) ||
+ (!SS.isSet() && ObjectType->isDependentType()))) {
+ // The name of the type being destroyed is a dependent name, and we
+ // couldn't find anything useful in scope. Just store the identifier and
+ // it's location, and we'll perform (qualified) name lookup again at
+ // template instantiation time.
+ Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
+ SecondTypeName.StartLocation);
+ } else if (!T) {
+ Diag(SecondTypeName.StartLocation,
+ diag::err_pseudo_dtor_destructor_non_type)
+ << SecondTypeName.Identifier << ObjectType;
+ if (isSFINAEContext())
+ return ExprError();
+
+ // Recover by assuming we had the right type all along.
+ DestructedType = ObjectType;
+ } else
+ DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
+ } else {
+ // Resolve the template-id to a type.
+ TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
+ ASTTemplateArgsPtr TemplateArgsPtr(*this,
+ TemplateId->getTemplateArgs(),
+ TemplateId->NumArgs);
+ TypeResult T = ActOnTemplateIdType(TemplateTy::make(TemplateId->Template),
+ TemplateId->TemplateNameLoc,
+ TemplateId->LAngleLoc,
+ TemplateArgsPtr,
+ TemplateId->RAngleLoc);
+ if (T.isInvalid() || !T.get()) {
+ // Recover by assuming we had the right type all along.
+ DestructedType = ObjectType;
+ } else
+ DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
+ }
+
+ // If we've performed some kind of recovery, (re-)build the type source
+ // information.
+ if (!DestructedType.isNull()) {
+ if (!DestructedTypeInfo)
+ DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
+ SecondTypeName.StartLocation);
+ Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
+ }
+
+ // Convert the name of the scope type (the type prior to '::') into a type.
+ TypeSourceInfo *ScopeTypeInfo = 0;
+ QualType ScopeType;
+ if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
+ FirstTypeName.Identifier) {
+ if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
+ TypeTy *T = getTypeName(*FirstTypeName.Identifier,
+ FirstTypeName.StartLocation,
+ S, &SS, false, ObjectTypePtrForLookup);
+ if (!T) {
+ Diag(FirstTypeName.StartLocation,
+ diag::err_pseudo_dtor_destructor_non_type)
+ << FirstTypeName.Identifier << ObjectType;
+
+ if (isSFINAEContext())
+ return ExprError();
+
+ // Just drop this type. It's unnecessary anyway.
+ ScopeType = QualType();
+ } else
+ ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
+ } else {
+ // Resolve the template-id to a type.
+ TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
+ ASTTemplateArgsPtr TemplateArgsPtr(*this,
+ TemplateId->getTemplateArgs(),
+ TemplateId->NumArgs);
+ TypeResult T = ActOnTemplateIdType(TemplateTy::make(TemplateId->Template),
+ TemplateId->TemplateNameLoc,
+ TemplateId->LAngleLoc,
+ TemplateArgsPtr,
+ TemplateId->RAngleLoc);
+ if (T.isInvalid() || !T.get()) {
+ // Recover by dropping this type.
+ ScopeType = QualType();
+ } else
+ ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
+ }
+ }
+
+ if (!ScopeType.isNull() && !ScopeTypeInfo)
+ ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
+ FirstTypeName.StartLocation);
+
+
+ return BuildPseudoDestructorExpr(move(Base), OpLoc, OpKind, SS,
+ ScopeTypeInfo, CCLoc, TildeLoc,
+ Destructed, HasTrailingLParen);
+}
+
+CXXMemberCallExpr *Sema::BuildCXXMemberCallExpr(Expr *Exp,
+ NamedDecl *FoundDecl,
+ CXXMethodDecl *Method) {
+ if (PerformObjectArgumentInitialization(Exp, /*Qualifier=*/0,
+ FoundDecl, Method))
+ assert(0 && "Calling BuildCXXMemberCallExpr with invalid call?");
+
+ MemberExpr *ME =
+ new (Context) MemberExpr(Exp, /*IsArrow=*/false, Method,
+ SourceLocation(), Method->getType());
+ QualType ResultType = Method->getResultType().getNonReferenceType();
+ MarkDeclarationReferenced(Exp->getLocStart(), Method);
+ CXXMemberCallExpr *CE =
+ new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType,
+ Exp->getLocEnd());
+ return CE;
+}
+
+Sema::OwningExprResult Sema::ActOnFinishFullExpr(ExprArg Arg) {
+ Expr *FullExpr = Arg.takeAs<Expr>();
+ if (FullExpr)
+ FullExpr = MaybeCreateCXXExprWithTemporaries(FullExpr);
+ else
+ return ExprError();
+
+ return Owned(FullExpr);
+}
OpenPOWER on IntegriCloud