diff options
Diffstat (limited to 'contrib/llvm/tools/clang/lib/Sema/SemaExprCXX.cpp')
-rw-r--r-- | contrib/llvm/tools/clang/lib/Sema/SemaExprCXX.cpp | 3031 |
1 files changed, 3031 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaExprCXX.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaExprCXX.cpp new file mode 100644 index 0000000..97de96a --- /dev/null +++ b/contrib/llvm/tools/clang/lib/Sema/SemaExprCXX.cpp @@ -0,0 +1,3031 @@ +//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements semantic analysis for C++ expressions. +// +//===----------------------------------------------------------------------===// + +#include "Sema.h" +#include "SemaInit.h" +#include "Lookup.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/CXXInheritance.h" +#include "clang/AST/ExprCXX.h" +#include "clang/AST/TypeLoc.h" +#include "clang/Basic/PartialDiagnostic.h" +#include "clang/Basic/TargetInfo.h" +#include "clang/Lex/Preprocessor.h" +#include "clang/Parse/DeclSpec.h" +#include "clang/Parse/Template.h" +#include "llvm/ADT/STLExtras.h" +using namespace clang; + +Action::TypeTy *Sema::getDestructorName(SourceLocation TildeLoc, + IdentifierInfo &II, + SourceLocation NameLoc, + Scope *S, CXXScopeSpec &SS, + TypeTy *ObjectTypePtr, + bool EnteringContext) { + // Determine where to perform name lookup. + + // FIXME: This area of the standard is very messy, and the current + // wording is rather unclear about which scopes we search for the + // destructor name; see core issues 399 and 555. Issue 399 in + // particular shows where the current description of destructor name + // lookup is completely out of line with existing practice, e.g., + // this appears to be ill-formed: + // + // namespace N { + // template <typename T> struct S { + // ~S(); + // }; + // } + // + // void f(N::S<int>* s) { + // s->N::S<int>::~S(); + // } + // + // See also PR6358 and PR6359. + QualType SearchType; + DeclContext *LookupCtx = 0; + bool isDependent = false; + bool LookInScope = false; + + // If we have an object type, it's because we are in a + // pseudo-destructor-expression or a member access expression, and + // we know what type we're looking for. + if (ObjectTypePtr) + SearchType = GetTypeFromParser(ObjectTypePtr); + + if (SS.isSet()) { + NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); + + bool AlreadySearched = false; + bool LookAtPrefix = true; + if (!getLangOptions().CPlusPlus0x) { + // C++ [basic.lookup.qual]p6: + // If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier, + // the type-names are looked up as types in the scope designated by the + // nested-name-specifier. In a qualified-id of the form: + // + // ::[opt] nested-name-specifier ̃ class-name + // + // where the nested-name-specifier designates a namespace scope, and in + // a qualified-id of the form: + // + // ::opt nested-name-specifier class-name :: ̃ class-name + // + // the class-names are looked up as types in the scope designated by + // the nested-name-specifier. + // + // Here, we check the first case (completely) and determine whether the + // code below is permitted to look at the prefix of the + // nested-name-specifier (as we do in C++0x). + DeclContext *DC = computeDeclContext(SS, EnteringContext); + if (DC && DC->isFileContext()) { + AlreadySearched = true; + LookupCtx = DC; + isDependent = false; + } else if (DC && isa<CXXRecordDecl>(DC)) + LookAtPrefix = false; + } + + // C++0x [basic.lookup.qual]p6: + // If a pseudo-destructor-name (5.2.4) contains a + // nested-name-specifier, the type-names are looked up as types + // in the scope designated by the nested-name-specifier. Similarly, in + // a qualified-id of the form: + // + // :: [opt] nested-name-specifier[opt] class-name :: ~class-name + // + // the second class-name is looked up in the same scope as the first. + // + // To implement this, we look at the prefix of the + // nested-name-specifier we were given, and determine the lookup + // context from that. + // + // We also fold in the second case from the C++03 rules quoted further + // above. + NestedNameSpecifier *Prefix = 0; + if (AlreadySearched) { + // Nothing left to do. + } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) { + CXXScopeSpec PrefixSS; + PrefixSS.setScopeRep(Prefix); + LookupCtx = computeDeclContext(PrefixSS, EnteringContext); + isDependent = isDependentScopeSpecifier(PrefixSS); + } else if (getLangOptions().CPlusPlus0x && + (LookupCtx = computeDeclContext(SS, EnteringContext))) { + if (!LookupCtx->isTranslationUnit()) + LookupCtx = LookupCtx->getParent(); + isDependent = LookupCtx && LookupCtx->isDependentContext(); + } else if (ObjectTypePtr) { + LookupCtx = computeDeclContext(SearchType); + isDependent = SearchType->isDependentType(); + } else { + LookupCtx = computeDeclContext(SS, EnteringContext); + isDependent = LookupCtx && LookupCtx->isDependentContext(); + } + + LookInScope = false; + } else if (ObjectTypePtr) { + // C++ [basic.lookup.classref]p3: + // If the unqualified-id is ~type-name, the type-name is looked up + // in the context of the entire postfix-expression. If the type T + // of the object expression is of a class type C, the type-name is + // also looked up in the scope of class C. At least one of the + // lookups shall find a name that refers to (possibly + // cv-qualified) T. + LookupCtx = computeDeclContext(SearchType); + isDependent = SearchType->isDependentType(); + assert((isDependent || !SearchType->isIncompleteType()) && + "Caller should have completed object type"); + + LookInScope = true; + } else { + // Perform lookup into the current scope (only). + LookInScope = true; + } + + LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName); + for (unsigned Step = 0; Step != 2; ++Step) { + // Look for the name first in the computed lookup context (if we + // have one) and, if that fails to find a match, in the sope (if + // we're allowed to look there). + Found.clear(); + if (Step == 0 && LookupCtx) + LookupQualifiedName(Found, LookupCtx); + else if (Step == 1 && LookInScope && S) + LookupName(Found, S); + else + continue; + + // FIXME: Should we be suppressing ambiguities here? + if (Found.isAmbiguous()) + return 0; + + if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) { + QualType T = Context.getTypeDeclType(Type); + + if (SearchType.isNull() || SearchType->isDependentType() || + Context.hasSameUnqualifiedType(T, SearchType)) { + // We found our type! + + return T.getAsOpaquePtr(); + } + } + + // If the name that we found is a class template name, and it is + // the same name as the template name in the last part of the + // nested-name-specifier (if present) or the object type, then + // this is the destructor for that class. + // FIXME: This is a workaround until we get real drafting for core + // issue 399, for which there isn't even an obvious direction. + if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) { + QualType MemberOfType; + if (SS.isSet()) { + if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) { + // Figure out the type of the context, if it has one. + if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) + MemberOfType = Context.getTypeDeclType(Record); + } + } + if (MemberOfType.isNull()) + MemberOfType = SearchType; + + if (MemberOfType.isNull()) + continue; + + // We're referring into a class template specialization. If the + // class template we found is the same as the template being + // specialized, we found what we are looking for. + if (const RecordType *Record = MemberOfType->getAs<RecordType>()) { + if (ClassTemplateSpecializationDecl *Spec + = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) { + if (Spec->getSpecializedTemplate()->getCanonicalDecl() == + Template->getCanonicalDecl()) + return MemberOfType.getAsOpaquePtr(); + } + + continue; + } + + // We're referring to an unresolved class template + // specialization. Determine whether we class template we found + // is the same as the template being specialized or, if we don't + // know which template is being specialized, that it at least + // has the same name. + if (const TemplateSpecializationType *SpecType + = MemberOfType->getAs<TemplateSpecializationType>()) { + TemplateName SpecName = SpecType->getTemplateName(); + + // The class template we found is the same template being + // specialized. + if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) { + if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl()) + return MemberOfType.getAsOpaquePtr(); + + continue; + } + + // The class template we found has the same name as the + // (dependent) template name being specialized. + if (DependentTemplateName *DepTemplate + = SpecName.getAsDependentTemplateName()) { + if (DepTemplate->isIdentifier() && + DepTemplate->getIdentifier() == Template->getIdentifier()) + return MemberOfType.getAsOpaquePtr(); + + continue; + } + } + } + } + + if (isDependent) { + // We didn't find our type, but that's okay: it's dependent + // anyway. + NestedNameSpecifier *NNS = 0; + SourceRange Range; + if (SS.isSet()) { + NNS = (NestedNameSpecifier *)SS.getScopeRep(); + Range = SourceRange(SS.getRange().getBegin(), NameLoc); + } else { + NNS = NestedNameSpecifier::Create(Context, &II); + Range = SourceRange(NameLoc); + } + + return CheckTypenameType(ETK_None, NNS, II, SourceLocation(), + Range, NameLoc).getAsOpaquePtr(); + } + + if (ObjectTypePtr) + Diag(NameLoc, diag::err_ident_in_pseudo_dtor_not_a_type) + << &II; + else + Diag(NameLoc, diag::err_destructor_class_name); + + return 0; +} + +/// \brief Build a C++ typeid expression with a type operand. +Sema::OwningExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, + SourceLocation TypeidLoc, + TypeSourceInfo *Operand, + SourceLocation RParenLoc) { + // C++ [expr.typeid]p4: + // The top-level cv-qualifiers of the lvalue expression or the type-id + // that is the operand of typeid are always ignored. + // If the type of the type-id is a class type or a reference to a class + // type, the class shall be completely-defined. + QualType T = Operand->getType().getNonReferenceType(); + if (T->getAs<RecordType>() && + RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) + return ExprError(); + + return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(), + Operand, + SourceRange(TypeidLoc, RParenLoc))); +} + +/// \brief Build a C++ typeid expression with an expression operand. +Sema::OwningExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, + SourceLocation TypeidLoc, + ExprArg Operand, + SourceLocation RParenLoc) { + bool isUnevaluatedOperand = true; + Expr *E = static_cast<Expr *>(Operand.get()); + if (E && !E->isTypeDependent()) { + QualType T = E->getType(); + if (const RecordType *RecordT = T->getAs<RecordType>()) { + CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl()); + // C++ [expr.typeid]p3: + // [...] If the type of the expression is a class type, the class + // shall be completely-defined. + if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) + return ExprError(); + + // C++ [expr.typeid]p3: + // When typeid is applied to an expression other than an lvalue of a + // polymorphic class type [...] [the] expression is an unevaluated + // operand. [...] + if (RecordD->isPolymorphic() && E->isLvalue(Context) == Expr::LV_Valid) { + isUnevaluatedOperand = false; + + // We require a vtable to query the type at run time. + MarkVTableUsed(TypeidLoc, RecordD); + } + } + + // C++ [expr.typeid]p4: + // [...] If the type of the type-id is a reference to a possibly + // cv-qualified type, the result of the typeid expression refers to a + // std::type_info object representing the cv-unqualified referenced + // type. + if (T.hasQualifiers()) { + ImpCastExprToType(E, T.getUnqualifiedType(), CastExpr::CK_NoOp, + E->isLvalue(Context)); + Operand.release(); + Operand = Owned(E); + } + } + + // If this is an unevaluated operand, clear out the set of + // declaration references we have been computing and eliminate any + // temporaries introduced in its computation. + if (isUnevaluatedOperand) + ExprEvalContexts.back().Context = Unevaluated; + + return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(), + Operand.takeAs<Expr>(), + SourceRange(TypeidLoc, RParenLoc))); +} + +/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression); +Action::OwningExprResult +Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc, + bool isType, void *TyOrExpr, SourceLocation RParenLoc) { + // Find the std::type_info type. + if (!StdNamespace) + return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); + + IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info"); + LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName); + LookupQualifiedName(R, StdNamespace); + RecordDecl *TypeInfoRecordDecl = R.getAsSingle<RecordDecl>(); + if (!TypeInfoRecordDecl) + return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); + + QualType TypeInfoType = Context.getTypeDeclType(TypeInfoRecordDecl); + + if (isType) { + // The operand is a type; handle it as such. + TypeSourceInfo *TInfo = 0; + QualType T = GetTypeFromParser(TyOrExpr, &TInfo); + if (T.isNull()) + return ExprError(); + + if (!TInfo) + TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); + + return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc); + } + + // The operand is an expression. + return BuildCXXTypeId(TypeInfoType, OpLoc, Owned((Expr*)TyOrExpr), RParenLoc); +} + +/// ActOnCXXBoolLiteral - Parse {true,false} literals. +Action::OwningExprResult +Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) { + assert((Kind == tok::kw_true || Kind == tok::kw_false) && + "Unknown C++ Boolean value!"); + return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true, + Context.BoolTy, OpLoc)); +} + +/// ActOnCXXNullPtrLiteral - Parse 'nullptr'. +Action::OwningExprResult +Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) { + return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc)); +} + +/// ActOnCXXThrow - Parse throw expressions. +Action::OwningExprResult +Sema::ActOnCXXThrow(SourceLocation OpLoc, ExprArg E) { + Expr *Ex = E.takeAs<Expr>(); + if (Ex && !Ex->isTypeDependent() && CheckCXXThrowOperand(OpLoc, Ex)) + return ExprError(); + return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc)); +} + +/// CheckCXXThrowOperand - Validate the operand of a throw. +bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *&E) { + // C++ [except.throw]p3: + // A throw-expression initializes a temporary object, called the exception + // object, the type of which is determined by removing any top-level + // cv-qualifiers from the static type of the operand of throw and adjusting + // the type from "array of T" or "function returning T" to "pointer to T" + // or "pointer to function returning T", [...] + if (E->getType().hasQualifiers()) + ImpCastExprToType(E, E->getType().getUnqualifiedType(), CastExpr::CK_NoOp, + E->isLvalue(Context) == Expr::LV_Valid); + + DefaultFunctionArrayConversion(E); + + // If the type of the exception would be an incomplete type or a pointer + // to an incomplete type other than (cv) void the program is ill-formed. + QualType Ty = E->getType(); + bool isPointer = false; + if (const PointerType* Ptr = Ty->getAs<PointerType>()) { + Ty = Ptr->getPointeeType(); + isPointer = true; + } + if (!isPointer || !Ty->isVoidType()) { + if (RequireCompleteType(ThrowLoc, Ty, + PDiag(isPointer ? diag::err_throw_incomplete_ptr + : diag::err_throw_incomplete) + << E->getSourceRange())) + return true; + + if (RequireNonAbstractType(ThrowLoc, E->getType(), + PDiag(diag::err_throw_abstract_type) + << E->getSourceRange())) + return true; + } + + // Initialize the exception result. This implicitly weeds out + // abstract types or types with inaccessible copy constructors. + // FIXME: Determine whether we can elide this copy per C++0x [class.copy]p34. + InitializedEntity Entity = + InitializedEntity::InitializeException(ThrowLoc, E->getType(), + /*NRVO=*/false); + OwningExprResult Res = PerformCopyInitialization(Entity, + SourceLocation(), + Owned(E)); + if (Res.isInvalid()) + return true; + E = Res.takeAs<Expr>(); + + // If we are throwing a polymorphic class type or pointer thereof, + // exception handling will make use of the vtable. + if (const RecordType *RecordTy = Ty->getAs<RecordType>()) + MarkVTableUsed(ThrowLoc, cast<CXXRecordDecl>(RecordTy->getDecl())); + + return false; +} + +Action::OwningExprResult Sema::ActOnCXXThis(SourceLocation ThisLoc) { + /// C++ 9.3.2: In the body of a non-static member function, the keyword this + /// is a non-lvalue expression whose value is the address of the object for + /// which the function is called. + + DeclContext *DC = getFunctionLevelDeclContext(); + if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) + if (MD->isInstance()) + return Owned(new (Context) CXXThisExpr(ThisLoc, + MD->getThisType(Context), + /*isImplicit=*/false)); + + return ExprError(Diag(ThisLoc, diag::err_invalid_this_use)); +} + +/// ActOnCXXTypeConstructExpr - Parse construction of a specified type. +/// Can be interpreted either as function-style casting ("int(x)") +/// or class type construction ("ClassType(x,y,z)") +/// or creation of a value-initialized type ("int()"). +Action::OwningExprResult +Sema::ActOnCXXTypeConstructExpr(SourceRange TypeRange, TypeTy *TypeRep, + SourceLocation LParenLoc, + MultiExprArg exprs, + SourceLocation *CommaLocs, + SourceLocation RParenLoc) { + if (!TypeRep) + return ExprError(); + + TypeSourceInfo *TInfo; + QualType Ty = GetTypeFromParser(TypeRep, &TInfo); + if (!TInfo) + TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation()); + unsigned NumExprs = exprs.size(); + Expr **Exprs = (Expr**)exprs.get(); + SourceLocation TyBeginLoc = TypeRange.getBegin(); + SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc); + + if (Ty->isDependentType() || + CallExpr::hasAnyTypeDependentArguments(Exprs, NumExprs)) { + exprs.release(); + + return Owned(CXXUnresolvedConstructExpr::Create(Context, + TypeRange.getBegin(), Ty, + LParenLoc, + Exprs, NumExprs, + RParenLoc)); + } + + if (Ty->isArrayType()) + return ExprError(Diag(TyBeginLoc, + diag::err_value_init_for_array_type) << FullRange); + if (!Ty->isVoidType() && + RequireCompleteType(TyBeginLoc, Ty, + PDiag(diag::err_invalid_incomplete_type_use) + << FullRange)) + return ExprError(); + + if (RequireNonAbstractType(TyBeginLoc, Ty, + diag::err_allocation_of_abstract_type)) + return ExprError(); + + + // C++ [expr.type.conv]p1: + // If the expression list is a single expression, the type conversion + // expression is equivalent (in definedness, and if defined in meaning) to the + // corresponding cast expression. + // + if (NumExprs == 1) { + CastExpr::CastKind Kind = CastExpr::CK_Unknown; + CXXBaseSpecifierArray BasePath; + if (CheckCastTypes(TypeRange, Ty, Exprs[0], Kind, BasePath, + /*FunctionalStyle=*/true)) + return ExprError(); + + exprs.release(); + + return Owned(new (Context) CXXFunctionalCastExpr(Ty.getNonReferenceType(), + TInfo, TyBeginLoc, Kind, + Exprs[0], BasePath, + RParenLoc)); + } + + if (const RecordType *RT = Ty->getAs<RecordType>()) { + CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); + + if (NumExprs > 1 || !Record->hasTrivialConstructor() || + !Record->hasTrivialDestructor()) { + InitializedEntity Entity = InitializedEntity::InitializeTemporary(Ty); + InitializationKind Kind + = NumExprs ? InitializationKind::CreateDirect(TypeRange.getBegin(), + LParenLoc, RParenLoc) + : InitializationKind::CreateValue(TypeRange.getBegin(), + LParenLoc, RParenLoc); + InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs); + OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, + move(exprs)); + + // FIXME: Improve AST representation? + return move(Result); + } + + // Fall through to value-initialize an object of class type that + // doesn't have a user-declared default constructor. + } + + // C++ [expr.type.conv]p1: + // If the expression list specifies more than a single value, the type shall + // be a class with a suitably declared constructor. + // + if (NumExprs > 1) + return ExprError(Diag(CommaLocs[0], + diag::err_builtin_func_cast_more_than_one_arg) + << FullRange); + + assert(NumExprs == 0 && "Expected 0 expressions"); + // C++ [expr.type.conv]p2: + // The expression T(), where T is a simple-type-specifier for a non-array + // complete object type or the (possibly cv-qualified) void type, creates an + // rvalue of the specified type, which is value-initialized. + // + exprs.release(); + return Owned(new (Context) CXXZeroInitValueExpr(Ty, TyBeginLoc, RParenLoc)); +} + + +/// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.: +/// @code new (memory) int[size][4] @endcode +/// or +/// @code ::new Foo(23, "hello") @endcode +/// For the interpretation of this heap of arguments, consult the base version. +Action::OwningExprResult +Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, + SourceLocation PlacementLParen, MultiExprArg PlacementArgs, + SourceLocation PlacementRParen, bool ParenTypeId, + Declarator &D, SourceLocation ConstructorLParen, + MultiExprArg ConstructorArgs, + SourceLocation ConstructorRParen) { + Expr *ArraySize = 0; + // If the specified type is an array, unwrap it and save the expression. + if (D.getNumTypeObjects() > 0 && + D.getTypeObject(0).Kind == DeclaratorChunk::Array) { + DeclaratorChunk &Chunk = D.getTypeObject(0); + if (Chunk.Arr.hasStatic) + return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new) + << D.getSourceRange()); + if (!Chunk.Arr.NumElts) + return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size) + << D.getSourceRange()); + + if (ParenTypeId) { + // Can't have dynamic array size when the type-id is in parentheses. + Expr *NumElts = (Expr *)Chunk.Arr.NumElts; + if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() && + !NumElts->isIntegerConstantExpr(Context)) { + Diag(D.getTypeObject(0).Loc, diag::err_new_paren_array_nonconst) + << NumElts->getSourceRange(); + return ExprError(); + } + } + + ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts); + D.DropFirstTypeObject(); + } + + // Every dimension shall be of constant size. + if (ArraySize) { + for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) { + if (D.getTypeObject(I).Kind != DeclaratorChunk::Array) + break; + + DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr; + if (Expr *NumElts = (Expr *)Array.NumElts) { + if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() && + !NumElts->isIntegerConstantExpr(Context)) { + Diag(D.getTypeObject(I).Loc, diag::err_new_array_nonconst) + << NumElts->getSourceRange(); + return ExprError(); + } + } + } + } + + //FIXME: Store TypeSourceInfo in CXXNew expression. + TypeSourceInfo *TInfo = 0; + QualType AllocType = GetTypeForDeclarator(D, /*Scope=*/0, &TInfo); + if (D.isInvalidType()) + return ExprError(); + + return BuildCXXNew(StartLoc, UseGlobal, + PlacementLParen, + move(PlacementArgs), + PlacementRParen, + ParenTypeId, + AllocType, + D.getSourceRange().getBegin(), + D.getSourceRange(), + Owned(ArraySize), + ConstructorLParen, + move(ConstructorArgs), + ConstructorRParen); +} + +Sema::OwningExprResult +Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal, + SourceLocation PlacementLParen, + MultiExprArg PlacementArgs, + SourceLocation PlacementRParen, + bool ParenTypeId, + QualType AllocType, + SourceLocation TypeLoc, + SourceRange TypeRange, + ExprArg ArraySizeE, + SourceLocation ConstructorLParen, + MultiExprArg ConstructorArgs, + SourceLocation ConstructorRParen) { + if (CheckAllocatedType(AllocType, TypeLoc, TypeRange)) + return ExprError(); + + // Per C++0x [expr.new]p5, the type being constructed may be a + // typedef of an array type. + if (!ArraySizeE.get()) { + if (const ConstantArrayType *Array + = Context.getAsConstantArrayType(AllocType)) { + ArraySizeE = Owned(new (Context) IntegerLiteral(Array->getSize(), + Context.getSizeType(), + TypeRange.getEnd())); + AllocType = Array->getElementType(); + } + } + + QualType ResultType = Context.getPointerType(AllocType); + + // C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral + // or enumeration type with a non-negative value." + Expr *ArraySize = (Expr *)ArraySizeE.get(); + if (ArraySize && !ArraySize->isTypeDependent()) { + QualType SizeType = ArraySize->getType(); + if (!SizeType->isIntegralType() && !SizeType->isEnumeralType()) + return ExprError(Diag(ArraySize->getSourceRange().getBegin(), + diag::err_array_size_not_integral) + << SizeType << ArraySize->getSourceRange()); + // Let's see if this is a constant < 0. If so, we reject it out of hand. + // We don't care about special rules, so we tell the machinery it's not + // evaluated - it gives us a result in more cases. + if (!ArraySize->isValueDependent()) { + llvm::APSInt Value; + if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) { + if (Value < llvm::APSInt( + llvm::APInt::getNullValue(Value.getBitWidth()), + Value.isUnsigned())) + return ExprError(Diag(ArraySize->getSourceRange().getBegin(), + diag::err_typecheck_negative_array_size) + << ArraySize->getSourceRange()); + } + } + + ImpCastExprToType(ArraySize, Context.getSizeType(), + CastExpr::CK_IntegralCast); + } + + FunctionDecl *OperatorNew = 0; + FunctionDecl *OperatorDelete = 0; + Expr **PlaceArgs = (Expr**)PlacementArgs.get(); + unsigned NumPlaceArgs = PlacementArgs.size(); + + if (!AllocType->isDependentType() && + !Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) && + FindAllocationFunctions(StartLoc, + SourceRange(PlacementLParen, PlacementRParen), + UseGlobal, AllocType, ArraySize, PlaceArgs, + NumPlaceArgs, OperatorNew, OperatorDelete)) + return ExprError(); + llvm::SmallVector<Expr *, 8> AllPlaceArgs; + if (OperatorNew) { + // Add default arguments, if any. + const FunctionProtoType *Proto = + OperatorNew->getType()->getAs<FunctionProtoType>(); + VariadicCallType CallType = + Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply; + + if (GatherArgumentsForCall(PlacementLParen, OperatorNew, + Proto, 1, PlaceArgs, NumPlaceArgs, + AllPlaceArgs, CallType)) + return ExprError(); + + NumPlaceArgs = AllPlaceArgs.size(); + if (NumPlaceArgs > 0) + PlaceArgs = &AllPlaceArgs[0]; + } + + bool Init = ConstructorLParen.isValid(); + // --- Choosing a constructor --- + CXXConstructorDecl *Constructor = 0; + Expr **ConsArgs = (Expr**)ConstructorArgs.get(); + unsigned NumConsArgs = ConstructorArgs.size(); + ASTOwningVector<&ActionBase::DeleteExpr> ConvertedConstructorArgs(*this); + + // Array 'new' can't have any initializers. + if (NumConsArgs && (ResultType->isArrayType() || ArraySize)) { + SourceRange InitRange(ConsArgs[0]->getLocStart(), + ConsArgs[NumConsArgs - 1]->getLocEnd()); + + Diag(StartLoc, diag::err_new_array_init_args) << InitRange; + return ExprError(); + } + + if (!AllocType->isDependentType() && + !Expr::hasAnyTypeDependentArguments(ConsArgs, NumConsArgs)) { + // C++0x [expr.new]p15: + // A new-expression that creates an object of type T initializes that + // object as follows: + InitializationKind Kind + // - If the new-initializer is omitted, the object is default- + // initialized (8.5); if no initialization is performed, + // the object has indeterminate value + = !Init? InitializationKind::CreateDefault(TypeLoc) + // - Otherwise, the new-initializer is interpreted according to the + // initialization rules of 8.5 for direct-initialization. + : InitializationKind::CreateDirect(TypeLoc, + ConstructorLParen, + ConstructorRParen); + + InitializedEntity Entity + = InitializedEntity::InitializeNew(StartLoc, AllocType); + InitializationSequence InitSeq(*this, Entity, Kind, ConsArgs, NumConsArgs); + OwningExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, + move(ConstructorArgs)); + if (FullInit.isInvalid()) + return ExprError(); + + // FullInit is our initializer; walk through it to determine if it's a + // constructor call, which CXXNewExpr handles directly. + if (Expr *FullInitExpr = (Expr *)FullInit.get()) { + if (CXXBindTemporaryExpr *Binder + = dyn_cast<CXXBindTemporaryExpr>(FullInitExpr)) + FullInitExpr = Binder->getSubExpr(); + if (CXXConstructExpr *Construct + = dyn_cast<CXXConstructExpr>(FullInitExpr)) { + Constructor = Construct->getConstructor(); + for (CXXConstructExpr::arg_iterator A = Construct->arg_begin(), + AEnd = Construct->arg_end(); + A != AEnd; ++A) + ConvertedConstructorArgs.push_back(A->Retain()); + } else { + // Take the converted initializer. + ConvertedConstructorArgs.push_back(FullInit.release()); + } + } else { + // No initialization required. + } + + // Take the converted arguments and use them for the new expression. + NumConsArgs = ConvertedConstructorArgs.size(); + ConsArgs = (Expr **)ConvertedConstructorArgs.take(); + } + + // Mark the new and delete operators as referenced. + if (OperatorNew) + MarkDeclarationReferenced(StartLoc, OperatorNew); + if (OperatorDelete) + MarkDeclarationReferenced(StartLoc, OperatorDelete); + + // FIXME: Also check that the destructor is accessible. (C++ 5.3.4p16) + + PlacementArgs.release(); + ConstructorArgs.release(); + ArraySizeE.release(); + return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew, + PlaceArgs, NumPlaceArgs, ParenTypeId, + ArraySize, Constructor, Init, + ConsArgs, NumConsArgs, OperatorDelete, + ResultType, StartLoc, + Init ? ConstructorRParen : + SourceLocation())); +} + +/// CheckAllocatedType - Checks that a type is suitable as the allocated type +/// in a new-expression. +/// dimension off and stores the size expression in ArraySize. +bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc, + SourceRange R) { + // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an + // abstract class type or array thereof. + if (AllocType->isFunctionType()) + return Diag(Loc, diag::err_bad_new_type) + << AllocType << 0 << R; + else if (AllocType->isReferenceType()) + return Diag(Loc, diag::err_bad_new_type) + << AllocType << 1 << R; + else if (!AllocType->isDependentType() && + RequireCompleteType(Loc, AllocType, + PDiag(diag::err_new_incomplete_type) + << R)) + return true; + else if (RequireNonAbstractType(Loc, AllocType, + diag::err_allocation_of_abstract_type)) + return true; + + return false; +} + +/// \brief Determine whether the given function is a non-placement +/// deallocation function. +static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) { + if (FD->isInvalidDecl()) + return false; + + if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD)) + return Method->isUsualDeallocationFunction(); + + return ((FD->getOverloadedOperator() == OO_Delete || + FD->getOverloadedOperator() == OO_Array_Delete) && + FD->getNumParams() == 1); +} + +/// FindAllocationFunctions - Finds the overloads of operator new and delete +/// that are appropriate for the allocation. +bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, + bool UseGlobal, QualType AllocType, + bool IsArray, Expr **PlaceArgs, + unsigned NumPlaceArgs, + FunctionDecl *&OperatorNew, + FunctionDecl *&OperatorDelete) { + // --- Choosing an allocation function --- + // C++ 5.3.4p8 - 14 & 18 + // 1) If UseGlobal is true, only look in the global scope. Else, also look + // in the scope of the allocated class. + // 2) If an array size is given, look for operator new[], else look for + // operator new. + // 3) The first argument is always size_t. Append the arguments from the + // placement form. + + llvm::SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs); + // We don't care about the actual value of this argument. + // FIXME: Should the Sema create the expression and embed it in the syntax + // tree? Or should the consumer just recalculate the value? + IntegerLiteral Size(llvm::APInt::getNullValue( + Context.Target.getPointerWidth(0)), + Context.getSizeType(), + SourceLocation()); + AllocArgs[0] = &Size; + std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1); + + // C++ [expr.new]p8: + // If the allocated type is a non-array type, the allocation + // function’s name is operator new and the deallocation function’s + // name is operator delete. If the allocated type is an array + // type, the allocation function’s name is operator new[] and the + // deallocation function’s name is operator delete[]. + DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName( + IsArray ? OO_Array_New : OO_New); + DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( + IsArray ? OO_Array_Delete : OO_Delete); + + if (AllocType->isRecordType() && !UseGlobal) { + CXXRecordDecl *Record + = cast<CXXRecordDecl>(AllocType->getAs<RecordType>()->getDecl()); + if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0], + AllocArgs.size(), Record, /*AllowMissing=*/true, + OperatorNew)) + return true; + } + if (!OperatorNew) { + // Didn't find a member overload. Look for a global one. + DeclareGlobalNewDelete(); + DeclContext *TUDecl = Context.getTranslationUnitDecl(); + if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0], + AllocArgs.size(), TUDecl, /*AllowMissing=*/false, + OperatorNew)) + return true; + } + + // We don't need an operator delete if we're running under + // -fno-exceptions. + if (!getLangOptions().Exceptions) { + OperatorDelete = 0; + return false; + } + + // FindAllocationOverload can change the passed in arguments, so we need to + // copy them back. + if (NumPlaceArgs > 0) + std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs); + + // C++ [expr.new]p19: + // + // If the new-expression begins with a unary :: operator, the + // deallocation function’s name is looked up in the global + // scope. Otherwise, if the allocated type is a class type T or an + // array thereof, the deallocation function’s name is looked up in + // the scope of T. If this lookup fails to find the name, or if + // the allocated type is not a class type or array thereof, the + // deallocation function’s name is looked up in the global scope. + LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName); + if (AllocType->isRecordType() && !UseGlobal) { + CXXRecordDecl *RD + = cast<CXXRecordDecl>(AllocType->getAs<RecordType>()->getDecl()); + LookupQualifiedName(FoundDelete, RD); + } + if (FoundDelete.isAmbiguous()) + return true; // FIXME: clean up expressions? + + if (FoundDelete.empty()) { + DeclareGlobalNewDelete(); + LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); + } + + FoundDelete.suppressDiagnostics(); + + llvm::SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches; + + if (NumPlaceArgs > 0) { + // C++ [expr.new]p20: + // A declaration of a placement deallocation function matches the + // declaration of a placement allocation function if it has the + // same number of parameters and, after parameter transformations + // (8.3.5), all parameter types except the first are + // identical. [...] + // + // To perform this comparison, we compute the function type that + // the deallocation function should have, and use that type both + // for template argument deduction and for comparison purposes. + QualType ExpectedFunctionType; + { + const FunctionProtoType *Proto + = OperatorNew->getType()->getAs<FunctionProtoType>(); + llvm::SmallVector<QualType, 4> ArgTypes; + ArgTypes.push_back(Context.VoidPtrTy); + for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I) + ArgTypes.push_back(Proto->getArgType(I)); + + ExpectedFunctionType + = Context.getFunctionType(Context.VoidTy, ArgTypes.data(), + ArgTypes.size(), + Proto->isVariadic(), + 0, false, false, 0, 0, + FunctionType::ExtInfo()); + } + + for (LookupResult::iterator D = FoundDelete.begin(), + DEnd = FoundDelete.end(); + D != DEnd; ++D) { + FunctionDecl *Fn = 0; + if (FunctionTemplateDecl *FnTmpl + = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) { + // Perform template argument deduction to try to match the + // expected function type. + TemplateDeductionInfo Info(Context, StartLoc); + if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info)) + continue; + } else + Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl()); + + if (Context.hasSameType(Fn->getType(), ExpectedFunctionType)) + Matches.push_back(std::make_pair(D.getPair(), Fn)); + } + } else { + // C++ [expr.new]p20: + // [...] Any non-placement deallocation function matches a + // non-placement allocation function. [...] + for (LookupResult::iterator D = FoundDelete.begin(), + DEnd = FoundDelete.end(); + D != DEnd; ++D) { + if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl())) + if (isNonPlacementDeallocationFunction(Fn)) + Matches.push_back(std::make_pair(D.getPair(), Fn)); + } + } + + // C++ [expr.new]p20: + // [...] If the lookup finds a single matching deallocation + // function, that function will be called; otherwise, no + // deallocation function will be called. + if (Matches.size() == 1) { + OperatorDelete = Matches[0].second; + + // C++0x [expr.new]p20: + // If the lookup finds the two-parameter form of a usual + // deallocation function (3.7.4.2) and that function, considered + // as a placement deallocation function, would have been + // selected as a match for the allocation function, the program + // is ill-formed. + if (NumPlaceArgs && getLangOptions().CPlusPlus0x && + isNonPlacementDeallocationFunction(OperatorDelete)) { + Diag(StartLoc, diag::err_placement_new_non_placement_delete) + << SourceRange(PlaceArgs[0]->getLocStart(), + PlaceArgs[NumPlaceArgs - 1]->getLocEnd()); + Diag(OperatorDelete->getLocation(), diag::note_previous_decl) + << DeleteName; + } else { + CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(), + Matches[0].first); + } + } + + return false; +} + +/// FindAllocationOverload - Find an fitting overload for the allocation +/// function in the specified scope. +bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range, + DeclarationName Name, Expr** Args, + unsigned NumArgs, DeclContext *Ctx, + bool AllowMissing, FunctionDecl *&Operator) { + LookupResult R(*this, Name, StartLoc, LookupOrdinaryName); + LookupQualifiedName(R, Ctx); + if (R.empty()) { + if (AllowMissing) + return false; + return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call) + << Name << Range; + } + + if (R.isAmbiguous()) + return true; + + R.suppressDiagnostics(); + + OverloadCandidateSet Candidates(StartLoc); + for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end(); + Alloc != AllocEnd; ++Alloc) { + // Even member operator new/delete are implicitly treated as + // static, so don't use AddMemberCandidate. + NamedDecl *D = (*Alloc)->getUnderlyingDecl(); + + if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { + AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(), + /*ExplicitTemplateArgs=*/0, Args, NumArgs, + Candidates, + /*SuppressUserConversions=*/false); + continue; + } + + FunctionDecl *Fn = cast<FunctionDecl>(D); + AddOverloadCandidate(Fn, Alloc.getPair(), Args, NumArgs, Candidates, + /*SuppressUserConversions=*/false); + } + + // Do the resolution. + OverloadCandidateSet::iterator Best; + switch(BestViableFunction(Candidates, StartLoc, Best)) { + case OR_Success: { + // Got one! + FunctionDecl *FnDecl = Best->Function; + // The first argument is size_t, and the first parameter must be size_t, + // too. This is checked on declaration and can be assumed. (It can't be + // asserted on, though, since invalid decls are left in there.) + // Watch out for variadic allocator function. + unsigned NumArgsInFnDecl = FnDecl->getNumParams(); + for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) { + OwningExprResult Result + = PerformCopyInitialization(InitializedEntity::InitializeParameter( + FnDecl->getParamDecl(i)), + SourceLocation(), + Owned(Args[i]->Retain())); + if (Result.isInvalid()) + return true; + + Args[i] = Result.takeAs<Expr>(); + } + Operator = FnDecl; + CheckAllocationAccess(StartLoc, Range, R.getNamingClass(), Best->FoundDecl); + return false; + } + + case OR_No_Viable_Function: + Diag(StartLoc, diag::err_ovl_no_viable_function_in_call) + << Name << Range; + PrintOverloadCandidates(Candidates, OCD_AllCandidates, Args, NumArgs); + return true; + + case OR_Ambiguous: + Diag(StartLoc, diag::err_ovl_ambiguous_call) + << Name << Range; + PrintOverloadCandidates(Candidates, OCD_ViableCandidates, Args, NumArgs); + return true; + + case OR_Deleted: + Diag(StartLoc, diag::err_ovl_deleted_call) + << Best->Function->isDeleted() + << Name << Range; + PrintOverloadCandidates(Candidates, OCD_AllCandidates, Args, NumArgs); + return true; + } + assert(false && "Unreachable, bad result from BestViableFunction"); + return true; +} + + +/// DeclareGlobalNewDelete - Declare the global forms of operator new and +/// delete. These are: +/// @code +/// void* operator new(std::size_t) throw(std::bad_alloc); +/// void* operator new[](std::size_t) throw(std::bad_alloc); +/// void operator delete(void *) throw(); +/// void operator delete[](void *) throw(); +/// @endcode +/// Note that the placement and nothrow forms of new are *not* implicitly +/// declared. Their use requires including \<new\>. +void Sema::DeclareGlobalNewDelete() { + if (GlobalNewDeleteDeclared) + return; + + // C++ [basic.std.dynamic]p2: + // [...] The following allocation and deallocation functions (18.4) are + // implicitly declared in global scope in each translation unit of a + // program + // + // void* operator new(std::size_t) throw(std::bad_alloc); + // void* operator new[](std::size_t) throw(std::bad_alloc); + // void operator delete(void*) throw(); + // void operator delete[](void*) throw(); + // + // These implicit declarations introduce only the function names operator + // new, operator new[], operator delete, operator delete[]. + // + // Here, we need to refer to std::bad_alloc, so we will implicitly declare + // "std" or "bad_alloc" as necessary to form the exception specification. + // However, we do not make these implicit declarations visible to name + // lookup. + if (!StdNamespace) { + // The "std" namespace has not yet been defined, so build one implicitly. + StdNamespace = NamespaceDecl::Create(Context, + Context.getTranslationUnitDecl(), + SourceLocation(), + &PP.getIdentifierTable().get("std")); + StdNamespace->setImplicit(true); + } + + if (!StdBadAlloc) { + // The "std::bad_alloc" class has not yet been declared, so build it + // implicitly. + StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class, + StdNamespace, + SourceLocation(), + &PP.getIdentifierTable().get("bad_alloc"), + SourceLocation(), 0); + StdBadAlloc->setImplicit(true); + } + + GlobalNewDeleteDeclared = true; + + QualType VoidPtr = Context.getPointerType(Context.VoidTy); + QualType SizeT = Context.getSizeType(); + bool AssumeSaneOperatorNew = getLangOptions().AssumeSaneOperatorNew; + + DeclareGlobalAllocationFunction( + Context.DeclarationNames.getCXXOperatorName(OO_New), + VoidPtr, SizeT, AssumeSaneOperatorNew); + DeclareGlobalAllocationFunction( + Context.DeclarationNames.getCXXOperatorName(OO_Array_New), + VoidPtr, SizeT, AssumeSaneOperatorNew); + DeclareGlobalAllocationFunction( + Context.DeclarationNames.getCXXOperatorName(OO_Delete), + Context.VoidTy, VoidPtr); + DeclareGlobalAllocationFunction( + Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete), + Context.VoidTy, VoidPtr); +} + +/// DeclareGlobalAllocationFunction - Declares a single implicit global +/// allocation function if it doesn't already exist. +void Sema::DeclareGlobalAllocationFunction(DeclarationName Name, + QualType Return, QualType Argument, + bool AddMallocAttr) { + DeclContext *GlobalCtx = Context.getTranslationUnitDecl(); + + // Check if this function is already declared. + { + DeclContext::lookup_iterator Alloc, AllocEnd; + for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name); + Alloc != AllocEnd; ++Alloc) { + // Only look at non-template functions, as it is the predefined, + // non-templated allocation function we are trying to declare here. + if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) { + QualType InitialParamType = + Context.getCanonicalType( + Func->getParamDecl(0)->getType().getUnqualifiedType()); + // FIXME: Do we need to check for default arguments here? + if (Func->getNumParams() == 1 && InitialParamType == Argument) + return; + } + } + } + + QualType BadAllocType; + bool HasBadAllocExceptionSpec + = (Name.getCXXOverloadedOperator() == OO_New || + Name.getCXXOverloadedOperator() == OO_Array_New); + if (HasBadAllocExceptionSpec) { + assert(StdBadAlloc && "Must have std::bad_alloc declared"); + BadAllocType = Context.getTypeDeclType(StdBadAlloc); + } + + QualType FnType = Context.getFunctionType(Return, &Argument, 1, false, 0, + true, false, + HasBadAllocExceptionSpec? 1 : 0, + &BadAllocType, + FunctionType::ExtInfo()); + FunctionDecl *Alloc = + FunctionDecl::Create(Context, GlobalCtx, SourceLocation(), Name, + FnType, /*TInfo=*/0, FunctionDecl::None, + FunctionDecl::None, false, true); + Alloc->setImplicit(); + + if (AddMallocAttr) + Alloc->addAttr(::new (Context) MallocAttr()); + + ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(), + 0, Argument, /*TInfo=*/0, + VarDecl::None, + VarDecl::None, 0); + Alloc->setParams(&Param, 1); + + // FIXME: Also add this declaration to the IdentifierResolver, but + // make sure it is at the end of the chain to coincide with the + // global scope. + ((DeclContext *)TUScope->getEntity())->addDecl(Alloc); +} + +bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD, + DeclarationName Name, + FunctionDecl* &Operator) { + LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName); + // Try to find operator delete/operator delete[] in class scope. + LookupQualifiedName(Found, RD); + + if (Found.isAmbiguous()) + return true; + + for (LookupResult::iterator F = Found.begin(), FEnd = Found.end(); + F != FEnd; ++F) { + if (CXXMethodDecl *Delete = dyn_cast<CXXMethodDecl>(*F)) + if (Delete->isUsualDeallocationFunction()) { + Operator = Delete; + return false; + } + } + + // We did find operator delete/operator delete[] declarations, but + // none of them were suitable. + if (!Found.empty()) { + Diag(StartLoc, diag::err_no_suitable_delete_member_function_found) + << Name << RD; + + for (LookupResult::iterator F = Found.begin(), FEnd = Found.end(); + F != FEnd; ++F) { + Diag((*F)->getLocation(), diag::note_member_declared_here) + << Name; + } + + return true; + } + + // Look for a global declaration. + DeclareGlobalNewDelete(); + DeclContext *TUDecl = Context.getTranslationUnitDecl(); + + CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation()); + Expr* DeallocArgs[1]; + DeallocArgs[0] = &Null; + if (FindAllocationOverload(StartLoc, SourceRange(), Name, + DeallocArgs, 1, TUDecl, /*AllowMissing=*/false, + Operator)) + return true; + + assert(Operator && "Did not find a deallocation function!"); + return false; +} + +/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in: +/// @code ::delete ptr; @endcode +/// or +/// @code delete [] ptr; @endcode +Action::OwningExprResult +Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, + bool ArrayForm, ExprArg Operand) { + // C++ [expr.delete]p1: + // The operand shall have a pointer type, or a class type having a single + // conversion function to a pointer type. The result has type void. + // + // DR599 amends "pointer type" to "pointer to object type" in both cases. + + FunctionDecl *OperatorDelete = 0; + + Expr *Ex = (Expr *)Operand.get(); + if (!Ex->isTypeDependent()) { + QualType Type = Ex->getType(); + + if (const RecordType *Record = Type->getAs<RecordType>()) { + llvm::SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions; + + CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()); + const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions(); + for (UnresolvedSetImpl::iterator I = Conversions->begin(), + E = Conversions->end(); I != E; ++I) { + NamedDecl *D = I.getDecl(); + if (isa<UsingShadowDecl>(D)) + D = cast<UsingShadowDecl>(D)->getTargetDecl(); + + // Skip over templated conversion functions; they aren't considered. + if (isa<FunctionTemplateDecl>(D)) + continue; + + CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); + + QualType ConvType = Conv->getConversionType().getNonReferenceType(); + if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) + if (ConvPtrType->getPointeeType()->isObjectType()) + ObjectPtrConversions.push_back(Conv); + } + if (ObjectPtrConversions.size() == 1) { + // We have a single conversion to a pointer-to-object type. Perform + // that conversion. + // TODO: don't redo the conversion calculation. + Operand.release(); + if (!PerformImplicitConversion(Ex, + ObjectPtrConversions.front()->getConversionType(), + AA_Converting)) { + Operand = Owned(Ex); + Type = Ex->getType(); + } + } + else if (ObjectPtrConversions.size() > 1) { + Diag(StartLoc, diag::err_ambiguous_delete_operand) + << Type << Ex->getSourceRange(); + for (unsigned i= 0; i < ObjectPtrConversions.size(); i++) + NoteOverloadCandidate(ObjectPtrConversions[i]); + return ExprError(); + } + } + + if (!Type->isPointerType()) + return ExprError(Diag(StartLoc, diag::err_delete_operand) + << Type << Ex->getSourceRange()); + + QualType Pointee = Type->getAs<PointerType>()->getPointeeType(); + if (Pointee->isVoidType() && !isSFINAEContext()) { + // The C++ standard bans deleting a pointer to a non-object type, which + // effectively bans deletion of "void*". However, most compilers support + // this, so we treat it as a warning unless we're in a SFINAE context. + Diag(StartLoc, diag::ext_delete_void_ptr_operand) + << Type << Ex->getSourceRange(); + } else if (Pointee->isFunctionType() || Pointee->isVoidType()) + return ExprError(Diag(StartLoc, diag::err_delete_operand) + << Type << Ex->getSourceRange()); + else if (!Pointee->isDependentType() && + RequireCompleteType(StartLoc, Pointee, + PDiag(diag::warn_delete_incomplete) + << Ex->getSourceRange())) + return ExprError(); + + // C++ [expr.delete]p2: + // [Note: a pointer to a const type can be the operand of a + // delete-expression; it is not necessary to cast away the constness + // (5.2.11) of the pointer expression before it is used as the operand + // of the delete-expression. ] + ImpCastExprToType(Ex, Context.getPointerType(Context.VoidTy), + CastExpr::CK_NoOp); + + // Update the operand. + Operand.take(); + Operand = ExprArg(*this, Ex); + + DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( + ArrayForm ? OO_Array_Delete : OO_Delete); + + if (const RecordType *RT = Pointee->getAs<RecordType>()) { + CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); + + if (!UseGlobal && + FindDeallocationFunction(StartLoc, RD, DeleteName, OperatorDelete)) + return ExprError(); + + if (!RD->hasTrivialDestructor()) + if (const CXXDestructorDecl *Dtor = RD->getDestructor(Context)) + MarkDeclarationReferenced(StartLoc, + const_cast<CXXDestructorDecl*>(Dtor)); + } + + if (!OperatorDelete) { + // Look for a global declaration. + DeclareGlobalNewDelete(); + DeclContext *TUDecl = Context.getTranslationUnitDecl(); + if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName, + &Ex, 1, TUDecl, /*AllowMissing=*/false, + OperatorDelete)) + return ExprError(); + } + + MarkDeclarationReferenced(StartLoc, OperatorDelete); + + // FIXME: Check access and ambiguity of operator delete and destructor. + } + + Operand.release(); + return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm, + OperatorDelete, Ex, StartLoc)); +} + +/// \brief Check the use of the given variable as a C++ condition in an if, +/// while, do-while, or switch statement. +Action::OwningExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar, + SourceLocation StmtLoc, + bool ConvertToBoolean) { + QualType T = ConditionVar->getType(); + + // C++ [stmt.select]p2: + // The declarator shall not specify a function or an array. + if (T->isFunctionType()) + return ExprError(Diag(ConditionVar->getLocation(), + diag::err_invalid_use_of_function_type) + << ConditionVar->getSourceRange()); + else if (T->isArrayType()) + return ExprError(Diag(ConditionVar->getLocation(), + diag::err_invalid_use_of_array_type) + << ConditionVar->getSourceRange()); + + Expr *Condition = DeclRefExpr::Create(Context, 0, SourceRange(), ConditionVar, + ConditionVar->getLocation(), + ConditionVar->getType().getNonReferenceType()); + if (ConvertToBoolean && CheckBooleanCondition(Condition, StmtLoc)) { + Condition->Destroy(Context); + return ExprError(); + } + + return Owned(Condition); +} + +/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid. +bool Sema::CheckCXXBooleanCondition(Expr *&CondExpr) { + // C++ 6.4p4: + // The value of a condition that is an initialized declaration in a statement + // other than a switch statement is the value of the declared variable + // implicitly converted to type bool. If that conversion is ill-formed, the + // program is ill-formed. + // The value of a condition that is an expression is the value of the + // expression, implicitly converted to bool. + // + return PerformContextuallyConvertToBool(CondExpr); +} + +/// Helper function to determine whether this is the (deprecated) C++ +/// conversion from a string literal to a pointer to non-const char or +/// non-const wchar_t (for narrow and wide string literals, +/// respectively). +bool +Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) { + // Look inside the implicit cast, if it exists. + if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From)) + From = Cast->getSubExpr(); + + // A string literal (2.13.4) that is not a wide string literal can + // be converted to an rvalue of type "pointer to char"; a wide + // string literal can be converted to an rvalue of type "pointer + // to wchar_t" (C++ 4.2p2). + if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From)) + if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) + if (const BuiltinType *ToPointeeType + = ToPtrType->getPointeeType()->getAs<BuiltinType>()) { + // This conversion is considered only when there is an + // explicit appropriate pointer target type (C++ 4.2p2). + if (!ToPtrType->getPointeeType().hasQualifiers() && + ((StrLit->isWide() && ToPointeeType->isWideCharType()) || + (!StrLit->isWide() && + (ToPointeeType->getKind() == BuiltinType::Char_U || + ToPointeeType->getKind() == BuiltinType::Char_S)))) + return true; + } + + return false; +} + +static Sema::OwningExprResult BuildCXXCastArgument(Sema &S, + SourceLocation CastLoc, + QualType Ty, + CastExpr::CastKind Kind, + CXXMethodDecl *Method, + Sema::ExprArg Arg) { + Expr *From = Arg.takeAs<Expr>(); + + switch (Kind) { + default: assert(0 && "Unhandled cast kind!"); + case CastExpr::CK_ConstructorConversion: { + ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(S); + + if (S.CompleteConstructorCall(cast<CXXConstructorDecl>(Method), + Sema::MultiExprArg(S, (void **)&From, 1), + CastLoc, ConstructorArgs)) + return S.ExprError(); + + Sema::OwningExprResult Result = + S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method), + move_arg(ConstructorArgs)); + if (Result.isInvalid()) + return S.ExprError(); + + return S.MaybeBindToTemporary(Result.takeAs<Expr>()); + } + + case CastExpr::CK_UserDefinedConversion: { + assert(!From->getType()->isPointerType() && "Arg can't have pointer type!"); + + // Create an implicit call expr that calls it. + // FIXME: pass the FoundDecl for the user-defined conversion here + CXXMemberCallExpr *CE = S.BuildCXXMemberCallExpr(From, Method, Method); + return S.MaybeBindToTemporary(CE); + } + } +} + +/// PerformImplicitConversion - Perform an implicit conversion of the +/// expression From to the type ToType using the pre-computed implicit +/// conversion sequence ICS. Returns true if there was an error, false +/// otherwise. The expression From is replaced with the converted +/// expression. Action is the kind of conversion we're performing, +/// used in the error message. +bool +Sema::PerformImplicitConversion(Expr *&From, QualType ToType, + const ImplicitConversionSequence &ICS, + AssignmentAction Action, bool IgnoreBaseAccess) { + switch (ICS.getKind()) { + case ImplicitConversionSequence::StandardConversion: + if (PerformImplicitConversion(From, ToType, ICS.Standard, Action, + IgnoreBaseAccess)) + return true; + break; + + case ImplicitConversionSequence::UserDefinedConversion: { + + FunctionDecl *FD = ICS.UserDefined.ConversionFunction; + CastExpr::CastKind CastKind = CastExpr::CK_Unknown; + QualType BeforeToType; + if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) { + CastKind = CastExpr::CK_UserDefinedConversion; + + // If the user-defined conversion is specified by a conversion function, + // the initial standard conversion sequence converts the source type to + // the implicit object parameter of the conversion function. + BeforeToType = Context.getTagDeclType(Conv->getParent()); + } else if (const CXXConstructorDecl *Ctor = + dyn_cast<CXXConstructorDecl>(FD)) { + CastKind = CastExpr::CK_ConstructorConversion; + // Do no conversion if dealing with ... for the first conversion. + if (!ICS.UserDefined.EllipsisConversion) { + // If the user-defined conversion is specified by a constructor, the + // initial standard conversion sequence converts the source type to the + // type required by the argument of the constructor + BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType(); + } + } + else + assert(0 && "Unknown conversion function kind!"); + // Whatch out for elipsis conversion. + if (!ICS.UserDefined.EllipsisConversion) { + if (PerformImplicitConversion(From, BeforeToType, + ICS.UserDefined.Before, AA_Converting, + IgnoreBaseAccess)) + return true; + } + + OwningExprResult CastArg + = BuildCXXCastArgument(*this, + From->getLocStart(), + ToType.getNonReferenceType(), + CastKind, cast<CXXMethodDecl>(FD), + Owned(From)); + + if (CastArg.isInvalid()) + return true; + + From = CastArg.takeAs<Expr>(); + + return PerformImplicitConversion(From, ToType, ICS.UserDefined.After, + AA_Converting, IgnoreBaseAccess); + } + + case ImplicitConversionSequence::AmbiguousConversion: + DiagnoseAmbiguousConversion(ICS, From->getExprLoc(), + PDiag(diag::err_typecheck_ambiguous_condition) + << From->getSourceRange()); + return true; + + case ImplicitConversionSequence::EllipsisConversion: + assert(false && "Cannot perform an ellipsis conversion"); + return false; + + case ImplicitConversionSequence::BadConversion: + return true; + } + + // Everything went well. + return false; +} + +/// PerformImplicitConversion - Perform an implicit conversion of the +/// expression From to the type ToType by following the standard +/// conversion sequence SCS. Returns true if there was an error, false +/// otherwise. The expression From is replaced with the converted +/// expression. Flavor is the context in which we're performing this +/// conversion, for use in error messages. +bool +Sema::PerformImplicitConversion(Expr *&From, QualType ToType, + const StandardConversionSequence& SCS, + AssignmentAction Action, bool IgnoreBaseAccess) { + // Overall FIXME: we are recomputing too many types here and doing far too + // much extra work. What this means is that we need to keep track of more + // information that is computed when we try the implicit conversion initially, + // so that we don't need to recompute anything here. + QualType FromType = From->getType(); + + if (SCS.CopyConstructor) { + // FIXME: When can ToType be a reference type? + assert(!ToType->isReferenceType()); + if (SCS.Second == ICK_Derived_To_Base) { + ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this); + if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor), + MultiExprArg(*this, (void **)&From, 1), + /*FIXME:ConstructLoc*/SourceLocation(), + ConstructorArgs)) + return true; + OwningExprResult FromResult = + BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(), + ToType, SCS.CopyConstructor, + move_arg(ConstructorArgs)); + if (FromResult.isInvalid()) + return true; + From = FromResult.takeAs<Expr>(); + return false; + } + OwningExprResult FromResult = + BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(), + ToType, SCS.CopyConstructor, + MultiExprArg(*this, (void**)&From, 1)); + + if (FromResult.isInvalid()) + return true; + + From = FromResult.takeAs<Expr>(); + return false; + } + + // Resolve overloaded function references. + if (Context.hasSameType(FromType, Context.OverloadTy)) { + DeclAccessPair Found; + FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, + true, Found); + if (!Fn) + return true; + + if (DiagnoseUseOfDecl(Fn, From->getSourceRange().getBegin())) + return true; + + From = FixOverloadedFunctionReference(From, Found, Fn); + FromType = From->getType(); + } + + // Perform the first implicit conversion. + switch (SCS.First) { + case ICK_Identity: + case ICK_Lvalue_To_Rvalue: + // Nothing to do. + break; + + case ICK_Array_To_Pointer: + FromType = Context.getArrayDecayedType(FromType); + ImpCastExprToType(From, FromType, CastExpr::CK_ArrayToPointerDecay); + break; + + case ICK_Function_To_Pointer: + FromType = Context.getPointerType(FromType); + ImpCastExprToType(From, FromType, CastExpr::CK_FunctionToPointerDecay); + break; + + default: + assert(false && "Improper first standard conversion"); + break; + } + + // Perform the second implicit conversion + switch (SCS.Second) { + case ICK_Identity: + // If both sides are functions (or pointers/references to them), there could + // be incompatible exception declarations. + if (CheckExceptionSpecCompatibility(From, ToType)) + return true; + // Nothing else to do. + break; + + case ICK_NoReturn_Adjustment: + // If both sides are functions (or pointers/references to them), there could + // be incompatible exception declarations. + if (CheckExceptionSpecCompatibility(From, ToType)) + return true; + + ImpCastExprToType(From, Context.getNoReturnType(From->getType(), false), + CastExpr::CK_NoOp); + break; + + case ICK_Integral_Promotion: + case ICK_Integral_Conversion: + ImpCastExprToType(From, ToType, CastExpr::CK_IntegralCast); + break; + + case ICK_Floating_Promotion: + case ICK_Floating_Conversion: + ImpCastExprToType(From, ToType, CastExpr::CK_FloatingCast); + break; + + case ICK_Complex_Promotion: + case ICK_Complex_Conversion: + ImpCastExprToType(From, ToType, CastExpr::CK_Unknown); + break; + + case ICK_Floating_Integral: + if (ToType->isFloatingType()) + ImpCastExprToType(From, ToType, CastExpr::CK_IntegralToFloating); + else + ImpCastExprToType(From, ToType, CastExpr::CK_FloatingToIntegral); + break; + + case ICK_Compatible_Conversion: + ImpCastExprToType(From, ToType, CastExpr::CK_NoOp); + break; + + case ICK_Pointer_Conversion: { + if (SCS.IncompatibleObjC) { + // Diagnose incompatible Objective-C conversions + Diag(From->getSourceRange().getBegin(), + diag::ext_typecheck_convert_incompatible_pointer) + << From->getType() << ToType << Action + << From->getSourceRange(); + } + + + CastExpr::CastKind Kind = CastExpr::CK_Unknown; + CXXBaseSpecifierArray BasePath; + if (CheckPointerConversion(From, ToType, Kind, BasePath, IgnoreBaseAccess)) + return true; + ImpCastExprToType(From, ToType, Kind, /*isLvalue=*/false, BasePath); + break; + } + + case ICK_Pointer_Member: { + CastExpr::CastKind Kind = CastExpr::CK_Unknown; + CXXBaseSpecifierArray BasePath; + if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, + IgnoreBaseAccess)) + return true; + if (CheckExceptionSpecCompatibility(From, ToType)) + return true; + ImpCastExprToType(From, ToType, Kind, /*isLvalue=*/false, BasePath); + break; + } + case ICK_Boolean_Conversion: { + CastExpr::CastKind Kind = CastExpr::CK_Unknown; + if (FromType->isMemberPointerType()) + Kind = CastExpr::CK_MemberPointerToBoolean; + + ImpCastExprToType(From, Context.BoolTy, Kind); + break; + } + + case ICK_Derived_To_Base: { + CXXBaseSpecifierArray BasePath; + if (CheckDerivedToBaseConversion(From->getType(), + ToType.getNonReferenceType(), + From->getLocStart(), + From->getSourceRange(), + &BasePath, + IgnoreBaseAccess)) + return true; + + ImpCastExprToType(From, ToType.getNonReferenceType(), + CastExpr::CK_DerivedToBase, + /*isLvalue=*/(From->getType()->isRecordType() && + From->isLvalue(Context) == Expr::LV_Valid), + BasePath); + break; + } + + case ICK_Vector_Conversion: + ImpCastExprToType(From, ToType, CastExpr::CK_BitCast); + break; + + case ICK_Vector_Splat: + ImpCastExprToType(From, ToType, CastExpr::CK_VectorSplat); + break; + + case ICK_Complex_Real: + ImpCastExprToType(From, ToType, CastExpr::CK_Unknown); + break; + + case ICK_Lvalue_To_Rvalue: + case ICK_Array_To_Pointer: + case ICK_Function_To_Pointer: + case ICK_Qualification: + case ICK_Num_Conversion_Kinds: + assert(false && "Improper second standard conversion"); + break; + } + + switch (SCS.Third) { + case ICK_Identity: + // Nothing to do. + break; + + case ICK_Qualification: + // FIXME: Not sure about lvalue vs rvalue here in the presence of rvalue + // references. + ImpCastExprToType(From, ToType.getNonReferenceType(), + CastExpr::CK_NoOp, ToType->isLValueReferenceType()); + + if (SCS.DeprecatedStringLiteralToCharPtr) + Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion) + << ToType.getNonReferenceType(); + + break; + + default: + assert(false && "Improper third standard conversion"); + break; + } + + return false; +} + +Sema::OwningExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait OTT, + SourceLocation KWLoc, + SourceLocation LParen, + TypeTy *Ty, + SourceLocation RParen) { + QualType T = GetTypeFromParser(Ty); + + // According to http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html + // all traits except __is_class, __is_enum and __is_union require a the type + // to be complete. + if (OTT != UTT_IsClass && OTT != UTT_IsEnum && OTT != UTT_IsUnion) { + if (RequireCompleteType(KWLoc, T, + diag::err_incomplete_type_used_in_type_trait_expr)) + return ExprError(); + } + + // There is no point in eagerly computing the value. The traits are designed + // to be used from type trait templates, so Ty will be a template parameter + // 99% of the time. + return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, OTT, T, + RParen, Context.BoolTy)); +} + +QualType Sema::CheckPointerToMemberOperands( + Expr *&lex, Expr *&rex, SourceLocation Loc, bool isIndirect) { + const char *OpSpelling = isIndirect ? "->*" : ".*"; + // C++ 5.5p2 + // The binary operator .* [p3: ->*] binds its second operand, which shall + // be of type "pointer to member of T" (where T is a completely-defined + // class type) [...] + QualType RType = rex->getType(); + const MemberPointerType *MemPtr = RType->getAs<MemberPointerType>(); + if (!MemPtr) { + Diag(Loc, diag::err_bad_memptr_rhs) + << OpSpelling << RType << rex->getSourceRange(); + return QualType(); + } + + QualType Class(MemPtr->getClass(), 0); + + if (RequireCompleteType(Loc, Class, diag::err_memptr_rhs_to_incomplete)) + return QualType(); + + // C++ 5.5p2 + // [...] to its first operand, which shall be of class T or of a class of + // which T is an unambiguous and accessible base class. [p3: a pointer to + // such a class] + QualType LType = lex->getType(); + if (isIndirect) { + if (const PointerType *Ptr = LType->getAs<PointerType>()) + LType = Ptr->getPointeeType().getNonReferenceType(); + else { + Diag(Loc, diag::err_bad_memptr_lhs) + << OpSpelling << 1 << LType + << FixItHint::CreateReplacement(SourceRange(Loc), ".*"); + return QualType(); + } + } + + if (!Context.hasSameUnqualifiedType(Class, LType)) { + // If we want to check the hierarchy, we need a complete type. + if (RequireCompleteType(Loc, LType, PDiag(diag::err_bad_memptr_lhs) + << OpSpelling << (int)isIndirect)) { + return QualType(); + } + CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, + /*DetectVirtual=*/false); + // FIXME: Would it be useful to print full ambiguity paths, or is that + // overkill? + if (!IsDerivedFrom(LType, Class, Paths) || + Paths.isAmbiguous(Context.getCanonicalType(Class))) { + Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling + << (int)isIndirect << lex->getType(); + return QualType(); + } + // Cast LHS to type of use. + QualType UseType = isIndirect ? Context.getPointerType(Class) : Class; + bool isLValue = !isIndirect && lex->isLvalue(Context) == Expr::LV_Valid; + + CXXBaseSpecifierArray BasePath; + BuildBasePathArray(Paths, BasePath); + ImpCastExprToType(lex, UseType, CastExpr::CK_DerivedToBase, isLValue, + BasePath); + } + + if (isa<CXXZeroInitValueExpr>(rex->IgnoreParens())) { + // Diagnose use of pointer-to-member type which when used as + // the functional cast in a pointer-to-member expression. + Diag(Loc, diag::err_pointer_to_member_type) << isIndirect; + return QualType(); + } + // C++ 5.5p2 + // The result is an object or a function of the type specified by the + // second operand. + // The cv qualifiers are the union of those in the pointer and the left side, + // in accordance with 5.5p5 and 5.2.5. + // FIXME: This returns a dereferenced member function pointer as a normal + // function type. However, the only operation valid on such functions is + // calling them. There's also a GCC extension to get a function pointer to the + // thing, which is another complication, because this type - unlike the type + // that is the result of this expression - takes the class as the first + // argument. + // We probably need a "MemberFunctionClosureType" or something like that. + QualType Result = MemPtr->getPointeeType(); + Result = Context.getCVRQualifiedType(Result, LType.getCVRQualifiers()); + return Result; +} + +/// \brief Try to convert a type to another according to C++0x 5.16p3. +/// +/// This is part of the parameter validation for the ? operator. If either +/// value operand is a class type, the two operands are attempted to be +/// converted to each other. This function does the conversion in one direction. +/// It returns true if the program is ill-formed and has already been diagnosed +/// as such. +static bool TryClassUnification(Sema &Self, Expr *From, Expr *To, + SourceLocation QuestionLoc, + bool &HaveConversion, + QualType &ToType) { + HaveConversion = false; + ToType = To->getType(); + + InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(), + SourceLocation()); + // C++0x 5.16p3 + // The process for determining whether an operand expression E1 of type T1 + // can be converted to match an operand expression E2 of type T2 is defined + // as follows: + // -- If E2 is an lvalue: + bool ToIsLvalue = (To->isLvalue(Self.Context) == Expr::LV_Valid); + if (ToIsLvalue) { + // E1 can be converted to match E2 if E1 can be implicitly converted to + // type "lvalue reference to T2", subject to the constraint that in the + // conversion the reference must bind directly to E1. + QualType T = Self.Context.getLValueReferenceType(ToType); + InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); + + InitializationSequence InitSeq(Self, Entity, Kind, &From, 1); + if (InitSeq.isDirectReferenceBinding()) { + ToType = T; + HaveConversion = true; + return false; + } + + if (InitSeq.isAmbiguous()) + return InitSeq.Diagnose(Self, Entity, Kind, &From, 1); + } + + // -- If E2 is an rvalue, or if the conversion above cannot be done: + // -- if E1 and E2 have class type, and the underlying class types are + // the same or one is a base class of the other: + QualType FTy = From->getType(); + QualType TTy = To->getType(); + const RecordType *FRec = FTy->getAs<RecordType>(); + const RecordType *TRec = TTy->getAs<RecordType>(); + bool FDerivedFromT = FRec && TRec && FRec != TRec && + Self.IsDerivedFrom(FTy, TTy); + if (FRec && TRec && + (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) { + // E1 can be converted to match E2 if the class of T2 is the + // same type as, or a base class of, the class of T1, and + // [cv2 > cv1]. + if (FRec == TRec || FDerivedFromT) { + if (TTy.isAtLeastAsQualifiedAs(FTy)) { + InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); + InitializationSequence InitSeq(Self, Entity, Kind, &From, 1); + if (InitSeq.getKind() != InitializationSequence::FailedSequence) { + HaveConversion = true; + return false; + } + + if (InitSeq.isAmbiguous()) + return InitSeq.Diagnose(Self, Entity, Kind, &From, 1); + } + } + + return false; + } + + // -- Otherwise: E1 can be converted to match E2 if E1 can be + // implicitly converted to the type that expression E2 would have + // if E2 were converted to an rvalue (or the type it has, if E2 is + // an rvalue). + // + // This actually refers very narrowly to the lvalue-to-rvalue conversion, not + // to the array-to-pointer or function-to-pointer conversions. + if (!TTy->getAs<TagType>()) + TTy = TTy.getUnqualifiedType(); + + InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); + InitializationSequence InitSeq(Self, Entity, Kind, &From, 1); + HaveConversion = InitSeq.getKind() != InitializationSequence::FailedSequence; + ToType = TTy; + if (InitSeq.isAmbiguous()) + return InitSeq.Diagnose(Self, Entity, Kind, &From, 1); + + return false; +} + +/// \brief Try to find a common type for two according to C++0x 5.16p5. +/// +/// This is part of the parameter validation for the ? operator. If either +/// value operand is a class type, overload resolution is used to find a +/// conversion to a common type. +static bool FindConditionalOverload(Sema &Self, Expr *&LHS, Expr *&RHS, + SourceLocation Loc) { + Expr *Args[2] = { LHS, RHS }; + OverloadCandidateSet CandidateSet(Loc); + Self.AddBuiltinOperatorCandidates(OO_Conditional, Loc, Args, 2, CandidateSet); + + OverloadCandidateSet::iterator Best; + switch (Self.BestViableFunction(CandidateSet, Loc, Best)) { + case OR_Success: + // We found a match. Perform the conversions on the arguments and move on. + if (Self.PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0], + Best->Conversions[0], Sema::AA_Converting) || + Self.PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1], + Best->Conversions[1], Sema::AA_Converting)) + break; + return false; + + case OR_No_Viable_Function: + Self.Diag(Loc, diag::err_typecheck_cond_incompatible_operands) + << LHS->getType() << RHS->getType() + << LHS->getSourceRange() << RHS->getSourceRange(); + return true; + + case OR_Ambiguous: + Self.Diag(Loc, diag::err_conditional_ambiguous_ovl) + << LHS->getType() << RHS->getType() + << LHS->getSourceRange() << RHS->getSourceRange(); + // FIXME: Print the possible common types by printing the return types of + // the viable candidates. + break; + + case OR_Deleted: + assert(false && "Conditional operator has only built-in overloads"); + break; + } + return true; +} + +/// \brief Perform an "extended" implicit conversion as returned by +/// TryClassUnification. +static bool ConvertForConditional(Sema &Self, Expr *&E, QualType T) { + InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); + InitializationKind Kind = InitializationKind::CreateCopy(E->getLocStart(), + SourceLocation()); + InitializationSequence InitSeq(Self, Entity, Kind, &E, 1); + Sema::OwningExprResult Result = InitSeq.Perform(Self, Entity, Kind, + Sema::MultiExprArg(Self, (void **)&E, 1)); + if (Result.isInvalid()) + return true; + + E = Result.takeAs<Expr>(); + return false; +} + +/// \brief Check the operands of ?: under C++ semantics. +/// +/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y +/// extension. In this case, LHS == Cond. (But they're not aliases.) +QualType Sema::CXXCheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS, + SourceLocation QuestionLoc) { + // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++ + // interface pointers. + + // C++0x 5.16p1 + // The first expression is contextually converted to bool. + if (!Cond->isTypeDependent()) { + if (CheckCXXBooleanCondition(Cond)) + return QualType(); + } + + // Either of the arguments dependent? + if (LHS->isTypeDependent() || RHS->isTypeDependent()) + return Context.DependentTy; + + // C++0x 5.16p2 + // If either the second or the third operand has type (cv) void, ... + QualType LTy = LHS->getType(); + QualType RTy = RHS->getType(); + bool LVoid = LTy->isVoidType(); + bool RVoid = RTy->isVoidType(); + if (LVoid || RVoid) { + // ... then the [l2r] conversions are performed on the second and third + // operands ... + DefaultFunctionArrayLvalueConversion(LHS); + DefaultFunctionArrayLvalueConversion(RHS); + LTy = LHS->getType(); + RTy = RHS->getType(); + + // ... and one of the following shall hold: + // -- The second or the third operand (but not both) is a throw- + // expression; the result is of the type of the other and is an rvalue. + bool LThrow = isa<CXXThrowExpr>(LHS); + bool RThrow = isa<CXXThrowExpr>(RHS); + if (LThrow && !RThrow) + return RTy; + if (RThrow && !LThrow) + return LTy; + + // -- Both the second and third operands have type void; the result is of + // type void and is an rvalue. + if (LVoid && RVoid) + return Context.VoidTy; + + // Neither holds, error. + Diag(QuestionLoc, diag::err_conditional_void_nonvoid) + << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1) + << LHS->getSourceRange() << RHS->getSourceRange(); + return QualType(); + } + + // Neither is void. + + // C++0x 5.16p3 + // Otherwise, if the second and third operand have different types, and + // either has (cv) class type, and attempt is made to convert each of those + // operands to the other. + if (!Context.hasSameType(LTy, RTy) && + (LTy->isRecordType() || RTy->isRecordType())) { + ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft; + // These return true if a single direction is already ambiguous. + QualType L2RType, R2LType; + bool HaveL2R, HaveR2L; + if (TryClassUnification(*this, LHS, RHS, QuestionLoc, HaveL2R, L2RType)) + return QualType(); + if (TryClassUnification(*this, RHS, LHS, QuestionLoc, HaveR2L, R2LType)) + return QualType(); + + // If both can be converted, [...] the program is ill-formed. + if (HaveL2R && HaveR2L) { + Diag(QuestionLoc, diag::err_conditional_ambiguous) + << LTy << RTy << LHS->getSourceRange() << RHS->getSourceRange(); + return QualType(); + } + + // If exactly one conversion is possible, that conversion is applied to + // the chosen operand and the converted operands are used in place of the + // original operands for the remainder of this section. + if (HaveL2R) { + if (ConvertForConditional(*this, LHS, L2RType)) + return QualType(); + LTy = LHS->getType(); + } else if (HaveR2L) { + if (ConvertForConditional(*this, RHS, R2LType)) + return QualType(); + RTy = RHS->getType(); + } + } + + // C++0x 5.16p4 + // If the second and third operands are lvalues and have the same type, + // the result is of that type [...] + bool Same = Context.hasSameType(LTy, RTy); + if (Same && LHS->isLvalue(Context) == Expr::LV_Valid && + RHS->isLvalue(Context) == Expr::LV_Valid) + return LTy; + + // C++0x 5.16p5 + // Otherwise, the result is an rvalue. If the second and third operands + // do not have the same type, and either has (cv) class type, ... + if (!Same && (LTy->isRecordType() || RTy->isRecordType())) { + // ... overload resolution is used to determine the conversions (if any) + // to be applied to the operands. If the overload resolution fails, the + // program is ill-formed. + if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc)) + return QualType(); + } + + // C++0x 5.16p6 + // LValue-to-rvalue, array-to-pointer, and function-to-pointer standard + // conversions are performed on the second and third operands. + DefaultFunctionArrayLvalueConversion(LHS); + DefaultFunctionArrayLvalueConversion(RHS); + LTy = LHS->getType(); + RTy = RHS->getType(); + + // After those conversions, one of the following shall hold: + // -- The second and third operands have the same type; the result + // is of that type. If the operands have class type, the result + // is a prvalue temporary of the result type, which is + // copy-initialized from either the second operand or the third + // operand depending on the value of the first operand. + if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) { + if (LTy->isRecordType()) { + // The operands have class type. Make a temporary copy. + InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy); + OwningExprResult LHSCopy = PerformCopyInitialization(Entity, + SourceLocation(), + Owned(LHS)); + if (LHSCopy.isInvalid()) + return QualType(); + + OwningExprResult RHSCopy = PerformCopyInitialization(Entity, + SourceLocation(), + Owned(RHS)); + if (RHSCopy.isInvalid()) + return QualType(); + + LHS = LHSCopy.takeAs<Expr>(); + RHS = RHSCopy.takeAs<Expr>(); + } + + return LTy; + } + + // Extension: conditional operator involving vector types. + if (LTy->isVectorType() || RTy->isVectorType()) + return CheckVectorOperands(QuestionLoc, LHS, RHS); + + // -- The second and third operands have arithmetic or enumeration type; + // the usual arithmetic conversions are performed to bring them to a + // common type, and the result is of that type. + if (LTy->isArithmeticType() && RTy->isArithmeticType()) { + UsualArithmeticConversions(LHS, RHS); + return LHS->getType(); + } + + // -- The second and third operands have pointer type, or one has pointer + // type and the other is a null pointer constant; pointer conversions + // and qualification conversions are performed to bring them to their + // composite pointer type. The result is of the composite pointer type. + // -- The second and third operands have pointer to member type, or one has + // pointer to member type and the other is a null pointer constant; + // pointer to member conversions and qualification conversions are + // performed to bring them to a common type, whose cv-qualification + // shall match the cv-qualification of either the second or the third + // operand. The result is of the common type. + bool NonStandardCompositeType = false; + QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS, + isSFINAEContext()? 0 : &NonStandardCompositeType); + if (!Composite.isNull()) { + if (NonStandardCompositeType) + Diag(QuestionLoc, + diag::ext_typecheck_cond_incompatible_operands_nonstandard) + << LTy << RTy << Composite + << LHS->getSourceRange() << RHS->getSourceRange(); + + return Composite; + } + + // Similarly, attempt to find composite type of two objective-c pointers. + Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc); + if (!Composite.isNull()) + return Composite; + + Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) + << LHS->getType() << RHS->getType() + << LHS->getSourceRange() << RHS->getSourceRange(); + return QualType(); +} + +/// \brief Find a merged pointer type and convert the two expressions to it. +/// +/// This finds the composite pointer type (or member pointer type) for @p E1 +/// and @p E2 according to C++0x 5.9p2. It converts both expressions to this +/// type and returns it. +/// It does not emit diagnostics. +/// +/// \param Loc The location of the operator requiring these two expressions to +/// be converted to the composite pointer type. +/// +/// If \p NonStandardCompositeType is non-NULL, then we are permitted to find +/// a non-standard (but still sane) composite type to which both expressions +/// can be converted. When such a type is chosen, \c *NonStandardCompositeType +/// will be set true. +QualType Sema::FindCompositePointerType(SourceLocation Loc, + Expr *&E1, Expr *&E2, + bool *NonStandardCompositeType) { + if (NonStandardCompositeType) + *NonStandardCompositeType = false; + + assert(getLangOptions().CPlusPlus && "This function assumes C++"); + QualType T1 = E1->getType(), T2 = E2->getType(); + + if (!T1->isAnyPointerType() && !T1->isMemberPointerType() && + !T2->isAnyPointerType() && !T2->isMemberPointerType()) + return QualType(); + + // C++0x 5.9p2 + // Pointer conversions and qualification conversions are performed on + // pointer operands to bring them to their composite pointer type. If + // one operand is a null pointer constant, the composite pointer type is + // the type of the other operand. + if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { + if (T2->isMemberPointerType()) + ImpCastExprToType(E1, T2, CastExpr::CK_NullToMemberPointer); + else + ImpCastExprToType(E1, T2, CastExpr::CK_IntegralToPointer); + return T2; + } + if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { + if (T1->isMemberPointerType()) + ImpCastExprToType(E2, T1, CastExpr::CK_NullToMemberPointer); + else + ImpCastExprToType(E2, T1, CastExpr::CK_IntegralToPointer); + return T1; + } + + // Now both have to be pointers or member pointers. + if ((!T1->isPointerType() && !T1->isMemberPointerType()) || + (!T2->isPointerType() && !T2->isMemberPointerType())) + return QualType(); + + // Otherwise, of one of the operands has type "pointer to cv1 void," then + // the other has type "pointer to cv2 T" and the composite pointer type is + // "pointer to cv12 void," where cv12 is the union of cv1 and cv2. + // Otherwise, the composite pointer type is a pointer type similar to the + // type of one of the operands, with a cv-qualification signature that is + // the union of the cv-qualification signatures of the operand types. + // In practice, the first part here is redundant; it's subsumed by the second. + // What we do here is, we build the two possible composite types, and try the + // conversions in both directions. If only one works, or if the two composite + // types are the same, we have succeeded. + // FIXME: extended qualifiers? + typedef llvm::SmallVector<unsigned, 4> QualifierVector; + QualifierVector QualifierUnion; + typedef llvm::SmallVector<std::pair<const Type *, const Type *>, 4> + ContainingClassVector; + ContainingClassVector MemberOfClass; + QualType Composite1 = Context.getCanonicalType(T1), + Composite2 = Context.getCanonicalType(T2); + unsigned NeedConstBefore = 0; + do { + const PointerType *Ptr1, *Ptr2; + if ((Ptr1 = Composite1->getAs<PointerType>()) && + (Ptr2 = Composite2->getAs<PointerType>())) { + Composite1 = Ptr1->getPointeeType(); + Composite2 = Ptr2->getPointeeType(); + + // If we're allowed to create a non-standard composite type, keep track + // of where we need to fill in additional 'const' qualifiers. + if (NonStandardCompositeType && + Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers()) + NeedConstBefore = QualifierUnion.size(); + + QualifierUnion.push_back( + Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers()); + MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0)); + continue; + } + + const MemberPointerType *MemPtr1, *MemPtr2; + if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) && + (MemPtr2 = Composite2->getAs<MemberPointerType>())) { + Composite1 = MemPtr1->getPointeeType(); + Composite2 = MemPtr2->getPointeeType(); + + // If we're allowed to create a non-standard composite type, keep track + // of where we need to fill in additional 'const' qualifiers. + if (NonStandardCompositeType && + Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers()) + NeedConstBefore = QualifierUnion.size(); + + QualifierUnion.push_back( + Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers()); + MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(), + MemPtr2->getClass())); + continue; + } + + // FIXME: block pointer types? + + // Cannot unwrap any more types. + break; + } while (true); + + if (NeedConstBefore && NonStandardCompositeType) { + // Extension: Add 'const' to qualifiers that come before the first qualifier + // mismatch, so that our (non-standard!) composite type meets the + // requirements of C++ [conv.qual]p4 bullet 3. + for (unsigned I = 0; I != NeedConstBefore; ++I) { + if ((QualifierUnion[I] & Qualifiers::Const) == 0) { + QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const; + *NonStandardCompositeType = true; + } + } + } + + // Rewrap the composites as pointers or member pointers with the union CVRs. + ContainingClassVector::reverse_iterator MOC + = MemberOfClass.rbegin(); + for (QualifierVector::reverse_iterator + I = QualifierUnion.rbegin(), + E = QualifierUnion.rend(); + I != E; (void)++I, ++MOC) { + Qualifiers Quals = Qualifiers::fromCVRMask(*I); + if (MOC->first && MOC->second) { + // Rebuild member pointer type + Composite1 = Context.getMemberPointerType( + Context.getQualifiedType(Composite1, Quals), + MOC->first); + Composite2 = Context.getMemberPointerType( + Context.getQualifiedType(Composite2, Quals), + MOC->second); + } else { + // Rebuild pointer type + Composite1 + = Context.getPointerType(Context.getQualifiedType(Composite1, Quals)); + Composite2 + = Context.getPointerType(Context.getQualifiedType(Composite2, Quals)); + } + } + + // Try to convert to the first composite pointer type. + InitializedEntity Entity1 + = InitializedEntity::InitializeTemporary(Composite1); + InitializationKind Kind + = InitializationKind::CreateCopy(Loc, SourceLocation()); + InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1); + InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1); + + if (E1ToC1 && E2ToC1) { + // Conversion to Composite1 is viable. + if (!Context.hasSameType(Composite1, Composite2)) { + // Composite2 is a different type from Composite1. Check whether + // Composite2 is also viable. + InitializedEntity Entity2 + = InitializedEntity::InitializeTemporary(Composite2); + InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1); + InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1); + if (E1ToC2 && E2ToC2) { + // Both Composite1 and Composite2 are viable and are different; + // this is an ambiguity. + return QualType(); + } + } + + // Convert E1 to Composite1 + OwningExprResult E1Result + = E1ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,(void**)&E1,1)); + if (E1Result.isInvalid()) + return QualType(); + E1 = E1Result.takeAs<Expr>(); + + // Convert E2 to Composite1 + OwningExprResult E2Result + = E2ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,(void**)&E2,1)); + if (E2Result.isInvalid()) + return QualType(); + E2 = E2Result.takeAs<Expr>(); + + return Composite1; + } + + // Check whether Composite2 is viable. + InitializedEntity Entity2 + = InitializedEntity::InitializeTemporary(Composite2); + InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1); + InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1); + if (!E1ToC2 || !E2ToC2) + return QualType(); + + // Convert E1 to Composite2 + OwningExprResult E1Result + = E1ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, (void**)&E1, 1)); + if (E1Result.isInvalid()) + return QualType(); + E1 = E1Result.takeAs<Expr>(); + + // Convert E2 to Composite2 + OwningExprResult E2Result + = E2ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, (void**)&E2, 1)); + if (E2Result.isInvalid()) + return QualType(); + E2 = E2Result.takeAs<Expr>(); + + return Composite2; +} + +Sema::OwningExprResult Sema::MaybeBindToTemporary(Expr *E) { + if (!Context.getLangOptions().CPlusPlus) + return Owned(E); + + assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?"); + + const RecordType *RT = E->getType()->getAs<RecordType>(); + if (!RT) + return Owned(E); + + // If this is the result of a call expression, our source might + // actually be a reference, in which case we shouldn't bind. + if (CallExpr *CE = dyn_cast<CallExpr>(E)) { + QualType Ty = CE->getCallee()->getType(); + if (const PointerType *PT = Ty->getAs<PointerType>()) + Ty = PT->getPointeeType(); + else if (const BlockPointerType *BPT = Ty->getAs<BlockPointerType>()) + Ty = BPT->getPointeeType(); + + const FunctionType *FTy = Ty->getAs<FunctionType>(); + if (FTy->getResultType()->isReferenceType()) + return Owned(E); + } + + // That should be enough to guarantee that this type is complete. + // If it has a trivial destructor, we can avoid the extra copy. + CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); + if (RD->hasTrivialDestructor()) + return Owned(E); + + CXXTemporary *Temp = CXXTemporary::Create(Context, + RD->getDestructor(Context)); + ExprTemporaries.push_back(Temp); + if (CXXDestructorDecl *Destructor = + const_cast<CXXDestructorDecl*>(RD->getDestructor(Context))) { + MarkDeclarationReferenced(E->getExprLoc(), Destructor); + CheckDestructorAccess(E->getExprLoc(), Destructor, + PDiag(diag::err_access_dtor_temp) + << E->getType()); + } + // FIXME: Add the temporary to the temporaries vector. + return Owned(CXXBindTemporaryExpr::Create(Context, Temp, E)); +} + +Expr *Sema::MaybeCreateCXXExprWithTemporaries(Expr *SubExpr) { + assert(SubExpr && "sub expression can't be null!"); + + // Check any implicit conversions within the expression. + CheckImplicitConversions(SubExpr); + + unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries; + assert(ExprTemporaries.size() >= FirstTemporary); + if (ExprTemporaries.size() == FirstTemporary) + return SubExpr; + + Expr *E = CXXExprWithTemporaries::Create(Context, SubExpr, + &ExprTemporaries[FirstTemporary], + ExprTemporaries.size() - FirstTemporary); + ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary, + ExprTemporaries.end()); + + return E; +} + +Sema::OwningExprResult +Sema::MaybeCreateCXXExprWithTemporaries(OwningExprResult SubExpr) { + if (SubExpr.isInvalid()) + return ExprError(); + + return Owned(MaybeCreateCXXExprWithTemporaries(SubExpr.takeAs<Expr>())); +} + +FullExpr Sema::CreateFullExpr(Expr *SubExpr) { + unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries; + assert(ExprTemporaries.size() >= FirstTemporary); + + unsigned NumTemporaries = ExprTemporaries.size() - FirstTemporary; + CXXTemporary **Temporaries = + NumTemporaries == 0 ? 0 : &ExprTemporaries[FirstTemporary]; + + FullExpr E = FullExpr::Create(Context, SubExpr, Temporaries, NumTemporaries); + + ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary, + ExprTemporaries.end()); + + return E; +} + +Sema::OwningExprResult +Sema::ActOnStartCXXMemberReference(Scope *S, ExprArg Base, SourceLocation OpLoc, + tok::TokenKind OpKind, TypeTy *&ObjectType, + bool &MayBePseudoDestructor) { + // Since this might be a postfix expression, get rid of ParenListExprs. + Base = MaybeConvertParenListExprToParenExpr(S, move(Base)); + + Expr *BaseExpr = (Expr*)Base.get(); + assert(BaseExpr && "no record expansion"); + + QualType BaseType = BaseExpr->getType(); + MayBePseudoDestructor = false; + if (BaseType->isDependentType()) { + // If we have a pointer to a dependent type and are using the -> operator, + // the object type is the type that the pointer points to. We might still + // have enough information about that type to do something useful. + if (OpKind == tok::arrow) + if (const PointerType *Ptr = BaseType->getAs<PointerType>()) + BaseType = Ptr->getPointeeType(); + + ObjectType = BaseType.getAsOpaquePtr(); + MayBePseudoDestructor = true; + return move(Base); + } + + // C++ [over.match.oper]p8: + // [...] When operator->returns, the operator-> is applied to the value + // returned, with the original second operand. + if (OpKind == tok::arrow) { + // The set of types we've considered so far. + llvm::SmallPtrSet<CanQualType,8> CTypes; + llvm::SmallVector<SourceLocation, 8> Locations; + CTypes.insert(Context.getCanonicalType(BaseType)); + + while (BaseType->isRecordType()) { + Base = BuildOverloadedArrowExpr(S, move(Base), OpLoc); + BaseExpr = (Expr*)Base.get(); + if (BaseExpr == NULL) + return ExprError(); + if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(BaseExpr)) + Locations.push_back(OpCall->getDirectCallee()->getLocation()); + BaseType = BaseExpr->getType(); + CanQualType CBaseType = Context.getCanonicalType(BaseType); + if (!CTypes.insert(CBaseType)) { + Diag(OpLoc, diag::err_operator_arrow_circular); + for (unsigned i = 0; i < Locations.size(); i++) + Diag(Locations[i], diag::note_declared_at); + return ExprError(); + } + } + + if (BaseType->isPointerType()) + BaseType = BaseType->getPointeeType(); + } + + // We could end up with various non-record types here, such as extended + // vector types or Objective-C interfaces. Just return early and let + // ActOnMemberReferenceExpr do the work. + if (!BaseType->isRecordType()) { + // C++ [basic.lookup.classref]p2: + // [...] If the type of the object expression is of pointer to scalar + // type, the unqualified-id is looked up in the context of the complete + // postfix-expression. + // + // This also indicates that we should be parsing a + // pseudo-destructor-name. + ObjectType = 0; + MayBePseudoDestructor = true; + return move(Base); + } + + // The object type must be complete (or dependent). + if (!BaseType->isDependentType() && + RequireCompleteType(OpLoc, BaseType, + PDiag(diag::err_incomplete_member_access))) + return ExprError(); + + // C++ [basic.lookup.classref]p2: + // If the id-expression in a class member access (5.2.5) is an + // unqualified-id, and the type of the object expression is of a class + // type C (or of pointer to a class type C), the unqualified-id is looked + // up in the scope of class C. [...] + ObjectType = BaseType.getAsOpaquePtr(); + return move(Base); +} + +Sema::OwningExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc, + ExprArg MemExpr) { + Expr *E = (Expr *) MemExpr.get(); + SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc); + Diag(E->getLocStart(), diag::err_dtor_expr_without_call) + << isa<CXXPseudoDestructorExpr>(E) + << FixItHint::CreateInsertion(ExpectedLParenLoc, "()"); + + return ActOnCallExpr(/*Scope*/ 0, + move(MemExpr), + /*LPLoc*/ ExpectedLParenLoc, + Sema::MultiExprArg(*this, 0, 0), + /*CommaLocs*/ 0, + /*RPLoc*/ ExpectedLParenLoc); +} + +Sema::OwningExprResult Sema::BuildPseudoDestructorExpr(ExprArg Base, + SourceLocation OpLoc, + tok::TokenKind OpKind, + const CXXScopeSpec &SS, + TypeSourceInfo *ScopeTypeInfo, + SourceLocation CCLoc, + SourceLocation TildeLoc, + PseudoDestructorTypeStorage Destructed, + bool HasTrailingLParen) { + TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo(); + + // C++ [expr.pseudo]p2: + // The left-hand side of the dot operator shall be of scalar type. The + // left-hand side of the arrow operator shall be of pointer to scalar type. + // This scalar type is the object type. + Expr *BaseE = (Expr *)Base.get(); + QualType ObjectType = BaseE->getType(); + if (OpKind == tok::arrow) { + if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) { + ObjectType = Ptr->getPointeeType(); + } else if (!BaseE->isTypeDependent()) { + // The user wrote "p->" when she probably meant "p."; fix it. + Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) + << ObjectType << true + << FixItHint::CreateReplacement(OpLoc, "."); + if (isSFINAEContext()) + return ExprError(); + + OpKind = tok::period; + } + } + + if (!ObjectType->isDependentType() && !ObjectType->isScalarType()) { + Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar) + << ObjectType << BaseE->getSourceRange(); + return ExprError(); + } + + // C++ [expr.pseudo]p2: + // [...] The cv-unqualified versions of the object type and of the type + // designated by the pseudo-destructor-name shall be the same type. + if (DestructedTypeInfo) { + QualType DestructedType = DestructedTypeInfo->getType(); + SourceLocation DestructedTypeStart + = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(); + if (!DestructedType->isDependentType() && !ObjectType->isDependentType() && + !Context.hasSameUnqualifiedType(DestructedType, ObjectType)) { + Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch) + << ObjectType << DestructedType << BaseE->getSourceRange() + << DestructedTypeInfo->getTypeLoc().getLocalSourceRange(); + + // Recover by setting the destructed type to the object type. + DestructedType = ObjectType; + DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType, + DestructedTypeStart); + Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); + } + } + + // C++ [expr.pseudo]p2: + // [...] Furthermore, the two type-names in a pseudo-destructor-name of the + // form + // + // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name + // + // shall designate the same scalar type. + if (ScopeTypeInfo) { + QualType ScopeType = ScopeTypeInfo->getType(); + if (!ScopeType->isDependentType() && !ObjectType->isDependentType() && + !Context.hasSameType(ScopeType, ObjectType)) { + + Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(), + diag::err_pseudo_dtor_type_mismatch) + << ObjectType << ScopeType << BaseE->getSourceRange() + << ScopeTypeInfo->getTypeLoc().getLocalSourceRange(); + + ScopeType = QualType(); + ScopeTypeInfo = 0; + } + } + + OwningExprResult Result + = Owned(new (Context) CXXPseudoDestructorExpr(Context, + Base.takeAs<Expr>(), + OpKind == tok::arrow, + OpLoc, + (NestedNameSpecifier *) SS.getScopeRep(), + SS.getRange(), + ScopeTypeInfo, + CCLoc, + TildeLoc, + Destructed)); + + if (HasTrailingLParen) + return move(Result); + + return DiagnoseDtorReference(Destructed.getLocation(), move(Result)); +} + +Sema::OwningExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, ExprArg Base, + SourceLocation OpLoc, + tok::TokenKind OpKind, + CXXScopeSpec &SS, + UnqualifiedId &FirstTypeName, + SourceLocation CCLoc, + SourceLocation TildeLoc, + UnqualifiedId &SecondTypeName, + bool HasTrailingLParen) { + assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId || + FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) && + "Invalid first type name in pseudo-destructor"); + assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId || + SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) && + "Invalid second type name in pseudo-destructor"); + + Expr *BaseE = (Expr *)Base.get(); + + // C++ [expr.pseudo]p2: + // The left-hand side of the dot operator shall be of scalar type. The + // left-hand side of the arrow operator shall be of pointer to scalar type. + // This scalar type is the object type. + QualType ObjectType = BaseE->getType(); + if (OpKind == tok::arrow) { + if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) { + ObjectType = Ptr->getPointeeType(); + } else if (!ObjectType->isDependentType()) { + // The user wrote "p->" when she probably meant "p."; fix it. + Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) + << ObjectType << true + << FixItHint::CreateReplacement(OpLoc, "."); + if (isSFINAEContext()) + return ExprError(); + + OpKind = tok::period; + } + } + + // Compute the object type that we should use for name lookup purposes. Only + // record types and dependent types matter. + void *ObjectTypePtrForLookup = 0; + if (!SS.isSet()) { + ObjectTypePtrForLookup = (void *)ObjectType->getAs<RecordType>(); + if (!ObjectTypePtrForLookup && ObjectType->isDependentType()) + ObjectTypePtrForLookup = Context.DependentTy.getAsOpaquePtr(); + } + + // Convert the name of the type being destructed (following the ~) into a + // type (with source-location information). + QualType DestructedType; + TypeSourceInfo *DestructedTypeInfo = 0; + PseudoDestructorTypeStorage Destructed; + if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) { + TypeTy *T = getTypeName(*SecondTypeName.Identifier, + SecondTypeName.StartLocation, + S, &SS, true, ObjectTypePtrForLookup); + if (!T && + ((SS.isSet() && !computeDeclContext(SS, false)) || + (!SS.isSet() && ObjectType->isDependentType()))) { + // The name of the type being destroyed is a dependent name, and we + // couldn't find anything useful in scope. Just store the identifier and + // it's location, and we'll perform (qualified) name lookup again at + // template instantiation time. + Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier, + SecondTypeName.StartLocation); + } else if (!T) { + Diag(SecondTypeName.StartLocation, + diag::err_pseudo_dtor_destructor_non_type) + << SecondTypeName.Identifier << ObjectType; + if (isSFINAEContext()) + return ExprError(); + + // Recover by assuming we had the right type all along. + DestructedType = ObjectType; + } else + DestructedType = GetTypeFromParser(T, &DestructedTypeInfo); + } else { + // Resolve the template-id to a type. + TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId; + ASTTemplateArgsPtr TemplateArgsPtr(*this, + TemplateId->getTemplateArgs(), + TemplateId->NumArgs); + TypeResult T = ActOnTemplateIdType(TemplateTy::make(TemplateId->Template), + TemplateId->TemplateNameLoc, + TemplateId->LAngleLoc, + TemplateArgsPtr, + TemplateId->RAngleLoc); + if (T.isInvalid() || !T.get()) { + // Recover by assuming we had the right type all along. + DestructedType = ObjectType; + } else + DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo); + } + + // If we've performed some kind of recovery, (re-)build the type source + // information. + if (!DestructedType.isNull()) { + if (!DestructedTypeInfo) + DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType, + SecondTypeName.StartLocation); + Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); + } + + // Convert the name of the scope type (the type prior to '::') into a type. + TypeSourceInfo *ScopeTypeInfo = 0; + QualType ScopeType; + if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId || + FirstTypeName.Identifier) { + if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) { + TypeTy *T = getTypeName(*FirstTypeName.Identifier, + FirstTypeName.StartLocation, + S, &SS, false, ObjectTypePtrForLookup); + if (!T) { + Diag(FirstTypeName.StartLocation, + diag::err_pseudo_dtor_destructor_non_type) + << FirstTypeName.Identifier << ObjectType; + + if (isSFINAEContext()) + return ExprError(); + + // Just drop this type. It's unnecessary anyway. + ScopeType = QualType(); + } else + ScopeType = GetTypeFromParser(T, &ScopeTypeInfo); + } else { + // Resolve the template-id to a type. + TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId; + ASTTemplateArgsPtr TemplateArgsPtr(*this, + TemplateId->getTemplateArgs(), + TemplateId->NumArgs); + TypeResult T = ActOnTemplateIdType(TemplateTy::make(TemplateId->Template), + TemplateId->TemplateNameLoc, + TemplateId->LAngleLoc, + TemplateArgsPtr, + TemplateId->RAngleLoc); + if (T.isInvalid() || !T.get()) { + // Recover by dropping this type. + ScopeType = QualType(); + } else + ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo); + } + } + + if (!ScopeType.isNull() && !ScopeTypeInfo) + ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType, + FirstTypeName.StartLocation); + + + return BuildPseudoDestructorExpr(move(Base), OpLoc, OpKind, SS, + ScopeTypeInfo, CCLoc, TildeLoc, + Destructed, HasTrailingLParen); +} + +CXXMemberCallExpr *Sema::BuildCXXMemberCallExpr(Expr *Exp, + NamedDecl *FoundDecl, + CXXMethodDecl *Method) { + if (PerformObjectArgumentInitialization(Exp, /*Qualifier=*/0, + FoundDecl, Method)) + assert(0 && "Calling BuildCXXMemberCallExpr with invalid call?"); + + MemberExpr *ME = + new (Context) MemberExpr(Exp, /*IsArrow=*/false, Method, + SourceLocation(), Method->getType()); + QualType ResultType = Method->getResultType().getNonReferenceType(); + MarkDeclarationReferenced(Exp->getLocStart(), Method); + CXXMemberCallExpr *CE = + new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType, + Exp->getLocEnd()); + return CE; +} + +Sema::OwningExprResult Sema::ActOnFinishFullExpr(ExprArg Arg) { + Expr *FullExpr = Arg.takeAs<Expr>(); + if (FullExpr) + FullExpr = MaybeCreateCXXExprWithTemporaries(FullExpr); + else + return ExprError(); + + return Owned(FullExpr); +} |