summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/Sema/SemaExpr.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/Sema/SemaExpr.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaExpr.cpp10737
1 files changed, 10737 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaExpr.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaExpr.cpp
new file mode 100644
index 0000000..20b92b8
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaExpr.cpp
@@ -0,0 +1,10737 @@
+//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements semantic analysis for expressions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Sema/SemaInternal.h"
+#include "clang/Sema/Initialization.h"
+#include "clang/Sema/Lookup.h"
+#include "clang/Sema/AnalysisBasedWarnings.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTMutationListener.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/EvaluatedExprVisitor.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/AST/RecursiveASTVisitor.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/Basic/PartialDiagnostic.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Lex/LiteralSupport.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Sema/DeclSpec.h"
+#include "clang/Sema/Designator.h"
+#include "clang/Sema/Scope.h"
+#include "clang/Sema/ScopeInfo.h"
+#include "clang/Sema/ParsedTemplate.h"
+#include "clang/Sema/Template.h"
+using namespace clang;
+using namespace sema;
+
+
+/// \brief Determine whether the use of this declaration is valid, and
+/// emit any corresponding diagnostics.
+///
+/// This routine diagnoses various problems with referencing
+/// declarations that can occur when using a declaration. For example,
+/// it might warn if a deprecated or unavailable declaration is being
+/// used, or produce an error (and return true) if a C++0x deleted
+/// function is being used.
+///
+/// If IgnoreDeprecated is set to true, this should not warn about deprecated
+/// decls.
+///
+/// \returns true if there was an error (this declaration cannot be
+/// referenced), false otherwise.
+///
+bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
+ const ObjCInterfaceDecl *UnknownObjCClass) {
+ if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
+ // If there were any diagnostics suppressed by template argument deduction,
+ // emit them now.
+ llvm::DenseMap<Decl *, llvm::SmallVector<PartialDiagnosticAt, 1> >::iterator
+ Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
+ if (Pos != SuppressedDiagnostics.end()) {
+ llvm::SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
+ for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
+ Diag(Suppressed[I].first, Suppressed[I].second);
+
+ // Clear out the list of suppressed diagnostics, so that we don't emit
+ // them again for this specialization. However, we don't obsolete this
+ // entry from the table, because we want to avoid ever emitting these
+ // diagnostics again.
+ Suppressed.clear();
+ }
+ }
+
+ // See if this is an auto-typed variable whose initializer we are parsing.
+ if (ParsingInitForAutoVars.count(D)) {
+ Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
+ << D->getDeclName();
+ return true;
+ }
+
+ // See if this is a deleted function.
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ if (FD->isDeleted()) {
+ Diag(Loc, diag::err_deleted_function_use);
+ Diag(D->getLocation(), diag::note_unavailable_here) << true;
+ return true;
+ }
+ }
+
+ // See if this declaration is unavailable or deprecated.
+ std::string Message;
+ switch (D->getAvailability(&Message)) {
+ case AR_Available:
+ case AR_NotYetIntroduced:
+ break;
+
+ case AR_Deprecated:
+ EmitDeprecationWarning(D, Message, Loc, UnknownObjCClass);
+ break;
+
+ case AR_Unavailable:
+ if (Message.empty()) {
+ if (!UnknownObjCClass)
+ Diag(Loc, diag::err_unavailable) << D->getDeclName();
+ else
+ Diag(Loc, diag::warn_unavailable_fwdclass_message)
+ << D->getDeclName();
+ }
+ else
+ Diag(Loc, diag::err_unavailable_message)
+ << D->getDeclName() << Message;
+ Diag(D->getLocation(), diag::note_unavailable_here) << 0;
+ break;
+ }
+
+ // Warn if this is used but marked unused.
+ if (D->hasAttr<UnusedAttr>())
+ Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
+
+ return false;
+}
+
+/// \brief Retrieve the message suffix that should be added to a
+/// diagnostic complaining about the given function being deleted or
+/// unavailable.
+std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
+ // FIXME: C++0x implicitly-deleted special member functions could be
+ // detected here so that we could improve diagnostics to say, e.g.,
+ // "base class 'A' had a deleted copy constructor".
+ if (FD->isDeleted())
+ return std::string();
+
+ std::string Message;
+ if (FD->getAvailability(&Message))
+ return ": " + Message;
+
+ return std::string();
+}
+
+/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
+/// (and other functions in future), which have been declared with sentinel
+/// attribute. It warns if call does not have the sentinel argument.
+///
+void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
+ Expr **Args, unsigned NumArgs) {
+ const SentinelAttr *attr = D->getAttr<SentinelAttr>();
+ if (!attr)
+ return;
+
+ // FIXME: In C++0x, if any of the arguments are parameter pack
+ // expansions, we can't check for the sentinel now.
+ int sentinelPos = attr->getSentinel();
+ int nullPos = attr->getNullPos();
+
+ // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
+ // base class. Then we won't be needing two versions of the same code.
+ unsigned int i = 0;
+ bool warnNotEnoughArgs = false;
+ int isMethod = 0;
+ if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
+ // skip over named parameters.
+ ObjCMethodDecl::param_iterator P, E = MD->param_end();
+ for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
+ if (nullPos)
+ --nullPos;
+ else
+ ++i;
+ }
+ warnNotEnoughArgs = (P != E || i >= NumArgs);
+ isMethod = 1;
+ } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ // skip over named parameters.
+ ObjCMethodDecl::param_iterator P, E = FD->param_end();
+ for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
+ if (nullPos)
+ --nullPos;
+ else
+ ++i;
+ }
+ warnNotEnoughArgs = (P != E || i >= NumArgs);
+ } else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
+ // block or function pointer call.
+ QualType Ty = V->getType();
+ if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
+ const FunctionType *FT = Ty->isFunctionPointerType()
+ ? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>()
+ : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
+ if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
+ unsigned NumArgsInProto = Proto->getNumArgs();
+ unsigned k;
+ for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
+ if (nullPos)
+ --nullPos;
+ else
+ ++i;
+ }
+ warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
+ }
+ if (Ty->isBlockPointerType())
+ isMethod = 2;
+ } else
+ return;
+ } else
+ return;
+
+ if (warnNotEnoughArgs) {
+ Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
+ Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
+ return;
+ }
+ int sentinel = i;
+ while (sentinelPos > 0 && i < NumArgs-1) {
+ --sentinelPos;
+ ++i;
+ }
+ if (sentinelPos > 0) {
+ Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
+ Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
+ return;
+ }
+ while (i < NumArgs-1) {
+ ++i;
+ ++sentinel;
+ }
+ Expr *sentinelExpr = Args[sentinel];
+ if (!sentinelExpr) return;
+ if (sentinelExpr->isTypeDependent()) return;
+ if (sentinelExpr->isValueDependent()) return;
+
+ // nullptr_t is always treated as null.
+ if (sentinelExpr->getType()->isNullPtrType()) return;
+
+ if (sentinelExpr->getType()->isAnyPointerType() &&
+ sentinelExpr->IgnoreParenCasts()->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNull))
+ return;
+
+ // Unfortunately, __null has type 'int'.
+ if (isa<GNUNullExpr>(sentinelExpr)) return;
+
+ Diag(Loc, diag::warn_missing_sentinel) << isMethod;
+ Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
+}
+
+SourceRange Sema::getExprRange(ExprTy *E) const {
+ Expr *Ex = (Expr *)E;
+ return Ex? Ex->getSourceRange() : SourceRange();
+}
+
+//===----------------------------------------------------------------------===//
+// Standard Promotions and Conversions
+//===----------------------------------------------------------------------===//
+
+/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
+ExprResult Sema::DefaultFunctionArrayConversion(Expr *E) {
+ QualType Ty = E->getType();
+ assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
+
+ if (Ty->isFunctionType())
+ E = ImpCastExprToType(E, Context.getPointerType(Ty),
+ CK_FunctionToPointerDecay).take();
+ else if (Ty->isArrayType()) {
+ // In C90 mode, arrays only promote to pointers if the array expression is
+ // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
+ // type 'array of type' is converted to an expression that has type 'pointer
+ // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
+ // that has type 'array of type' ...". The relevant change is "an lvalue"
+ // (C90) to "an expression" (C99).
+ //
+ // C++ 4.2p1:
+ // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
+ // T" can be converted to an rvalue of type "pointer to T".
+ //
+ if (getLangOptions().C99 || getLangOptions().CPlusPlus || E->isLValue())
+ E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
+ CK_ArrayToPointerDecay).take();
+ }
+ return Owned(E);
+}
+
+static void CheckForNullPointerDereference(Sema &S, Expr *E) {
+ // Check to see if we are dereferencing a null pointer. If so,
+ // and if not volatile-qualified, this is undefined behavior that the
+ // optimizer will delete, so warn about it. People sometimes try to use this
+ // to get a deterministic trap and are surprised by clang's behavior. This
+ // only handles the pattern "*null", which is a very syntactic check.
+ if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
+ if (UO->getOpcode() == UO_Deref &&
+ UO->getSubExpr()->IgnoreParenCasts()->
+ isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
+ !UO->getType().isVolatileQualified()) {
+ S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
+ S.PDiag(diag::warn_indirection_through_null)
+ << UO->getSubExpr()->getSourceRange());
+ S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
+ S.PDiag(diag::note_indirection_through_null));
+ }
+}
+
+ExprResult Sema::DefaultLvalueConversion(Expr *E) {
+ // C++ [conv.lval]p1:
+ // A glvalue of a non-function, non-array type T can be
+ // converted to a prvalue.
+ if (!E->isGLValue()) return Owned(E);
+
+ QualType T = E->getType();
+ assert(!T.isNull() && "r-value conversion on typeless expression?");
+
+ // Create a load out of an ObjCProperty l-value, if necessary.
+ if (E->getObjectKind() == OK_ObjCProperty) {
+ ExprResult Res = ConvertPropertyForRValue(E);
+ if (Res.isInvalid())
+ return Owned(E);
+ E = Res.take();
+ if (!E->isGLValue())
+ return Owned(E);
+ }
+
+ // We don't want to throw lvalue-to-rvalue casts on top of
+ // expressions of certain types in C++.
+ if (getLangOptions().CPlusPlus &&
+ (E->getType() == Context.OverloadTy ||
+ T->isDependentType() ||
+ T->isRecordType()))
+ return Owned(E);
+
+ // The C standard is actually really unclear on this point, and
+ // DR106 tells us what the result should be but not why. It's
+ // generally best to say that void types just doesn't undergo
+ // lvalue-to-rvalue at all. Note that expressions of unqualified
+ // 'void' type are never l-values, but qualified void can be.
+ if (T->isVoidType())
+ return Owned(E);
+
+ CheckForNullPointerDereference(*this, E);
+
+ // C++ [conv.lval]p1:
+ // [...] If T is a non-class type, the type of the prvalue is the
+ // cv-unqualified version of T. Otherwise, the type of the
+ // rvalue is T.
+ //
+ // C99 6.3.2.1p2:
+ // If the lvalue has qualified type, the value has the unqualified
+ // version of the type of the lvalue; otherwise, the value has the
+ // type of the lvalue.
+ if (T.hasQualifiers())
+ T = T.getUnqualifiedType();
+
+ CheckArrayAccess(E);
+
+ return Owned(ImplicitCastExpr::Create(Context, T, CK_LValueToRValue,
+ E, 0, VK_RValue));
+}
+
+ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E) {
+ ExprResult Res = DefaultFunctionArrayConversion(E);
+ if (Res.isInvalid())
+ return ExprError();
+ Res = DefaultLvalueConversion(Res.take());
+ if (Res.isInvalid())
+ return ExprError();
+ return move(Res);
+}
+
+
+/// UsualUnaryConversions - Performs various conversions that are common to most
+/// operators (C99 6.3). The conversions of array and function types are
+/// sometimes suppressed. For example, the array->pointer conversion doesn't
+/// apply if the array is an argument to the sizeof or address (&) operators.
+/// In these instances, this routine should *not* be called.
+ExprResult Sema::UsualUnaryConversions(Expr *E) {
+ // First, convert to an r-value.
+ ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
+ if (Res.isInvalid())
+ return Owned(E);
+ E = Res.take();
+
+ QualType Ty = E->getType();
+ assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
+
+ // Try to perform integral promotions if the object has a theoretically
+ // promotable type.
+ if (Ty->isIntegralOrUnscopedEnumerationType()) {
+ // C99 6.3.1.1p2:
+ //
+ // The following may be used in an expression wherever an int or
+ // unsigned int may be used:
+ // - an object or expression with an integer type whose integer
+ // conversion rank is less than or equal to the rank of int
+ // and unsigned int.
+ // - A bit-field of type _Bool, int, signed int, or unsigned int.
+ //
+ // If an int can represent all values of the original type, the
+ // value is converted to an int; otherwise, it is converted to an
+ // unsigned int. These are called the integer promotions. All
+ // other types are unchanged by the integer promotions.
+
+ QualType PTy = Context.isPromotableBitField(E);
+ if (!PTy.isNull()) {
+ E = ImpCastExprToType(E, PTy, CK_IntegralCast).take();
+ return Owned(E);
+ }
+ if (Ty->isPromotableIntegerType()) {
+ QualType PT = Context.getPromotedIntegerType(Ty);
+ E = ImpCastExprToType(E, PT, CK_IntegralCast).take();
+ return Owned(E);
+ }
+ }
+ return Owned(E);
+}
+
+/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
+/// do not have a prototype. Arguments that have type float are promoted to
+/// double. All other argument types are converted by UsualUnaryConversions().
+ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
+ QualType Ty = E->getType();
+ assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
+
+ ExprResult Res = UsualUnaryConversions(E);
+ if (Res.isInvalid())
+ return Owned(E);
+ E = Res.take();
+
+ // If this is a 'float' (CVR qualified or typedef) promote to double.
+ if (Ty->isSpecificBuiltinType(BuiltinType::Float))
+ E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).take();
+
+ return Owned(E);
+}
+
+/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
+/// will warn if the resulting type is not a POD type, and rejects ObjC
+/// interfaces passed by value.
+ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
+ FunctionDecl *FDecl) {
+ ExprResult ExprRes = DefaultArgumentPromotion(E);
+ if (ExprRes.isInvalid())
+ return ExprError();
+ E = ExprRes.take();
+
+ // __builtin_va_start takes the second argument as a "varargs" argument, but
+ // it doesn't actually do anything with it. It doesn't need to be non-pod
+ // etc.
+ if (FDecl && FDecl->getBuiltinID() == Builtin::BI__builtin_va_start)
+ return Owned(E);
+
+ if (E->getType()->isObjCObjectType() &&
+ DiagRuntimeBehavior(E->getLocStart(), 0,
+ PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
+ << E->getType() << CT))
+ return ExprError();
+
+ if (!E->getType()->isPODType() &&
+ DiagRuntimeBehavior(E->getLocStart(), 0,
+ PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
+ << E->getType() << CT))
+ return ExprError();
+
+ return Owned(E);
+}
+
+/// UsualArithmeticConversions - Performs various conversions that are common to
+/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
+/// routine returns the first non-arithmetic type found. The client is
+/// responsible for emitting appropriate error diagnostics.
+/// FIXME: verify the conversion rules for "complex int" are consistent with
+/// GCC.
+QualType Sema::UsualArithmeticConversions(ExprResult &lhsExpr, ExprResult &rhsExpr,
+ bool isCompAssign) {
+ if (!isCompAssign) {
+ lhsExpr = UsualUnaryConversions(lhsExpr.take());
+ if (lhsExpr.isInvalid())
+ return QualType();
+ }
+
+ rhsExpr = UsualUnaryConversions(rhsExpr.take());
+ if (rhsExpr.isInvalid())
+ return QualType();
+
+ // For conversion purposes, we ignore any qualifiers.
+ // For example, "const float" and "float" are equivalent.
+ QualType lhs =
+ Context.getCanonicalType(lhsExpr.get()->getType()).getUnqualifiedType();
+ QualType rhs =
+ Context.getCanonicalType(rhsExpr.get()->getType()).getUnqualifiedType();
+
+ // If both types are identical, no conversion is needed.
+ if (lhs == rhs)
+ return lhs;
+
+ // If either side is a non-arithmetic type (e.g. a pointer), we are done.
+ // The caller can deal with this (e.g. pointer + int).
+ if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
+ return lhs;
+
+ // Apply unary and bitfield promotions to the LHS's type.
+ QualType lhs_unpromoted = lhs;
+ if (lhs->isPromotableIntegerType())
+ lhs = Context.getPromotedIntegerType(lhs);
+ QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr.get());
+ if (!LHSBitfieldPromoteTy.isNull())
+ lhs = LHSBitfieldPromoteTy;
+ if (lhs != lhs_unpromoted && !isCompAssign)
+ lhsExpr = ImpCastExprToType(lhsExpr.take(), lhs, CK_IntegralCast);
+
+ // If both types are identical, no conversion is needed.
+ if (lhs == rhs)
+ return lhs;
+
+ // At this point, we have two different arithmetic types.
+
+ // Handle complex types first (C99 6.3.1.8p1).
+ bool LHSComplexFloat = lhs->isComplexType();
+ bool RHSComplexFloat = rhs->isComplexType();
+ if (LHSComplexFloat || RHSComplexFloat) {
+ // if we have an integer operand, the result is the complex type.
+
+ if (!RHSComplexFloat && !rhs->isRealFloatingType()) {
+ if (rhs->isIntegerType()) {
+ QualType fp = cast<ComplexType>(lhs)->getElementType();
+ rhsExpr = ImpCastExprToType(rhsExpr.take(), fp, CK_IntegralToFloating);
+ rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_FloatingRealToComplex);
+ } else {
+ assert(rhs->isComplexIntegerType());
+ rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralComplexToFloatingComplex);
+ }
+ return lhs;
+ }
+
+ if (!LHSComplexFloat && !lhs->isRealFloatingType()) {
+ if (!isCompAssign) {
+ // int -> float -> _Complex float
+ if (lhs->isIntegerType()) {
+ QualType fp = cast<ComplexType>(rhs)->getElementType();
+ lhsExpr = ImpCastExprToType(lhsExpr.take(), fp, CK_IntegralToFloating);
+ lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_FloatingRealToComplex);
+ } else {
+ assert(lhs->isComplexIntegerType());
+ lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralComplexToFloatingComplex);
+ }
+ }
+ return rhs;
+ }
+
+ // This handles complex/complex, complex/float, or float/complex.
+ // When both operands are complex, the shorter operand is converted to the
+ // type of the longer, and that is the type of the result. This corresponds
+ // to what is done when combining two real floating-point operands.
+ // The fun begins when size promotion occur across type domains.
+ // From H&S 6.3.4: When one operand is complex and the other is a real
+ // floating-point type, the less precise type is converted, within it's
+ // real or complex domain, to the precision of the other type. For example,
+ // when combining a "long double" with a "double _Complex", the
+ // "double _Complex" is promoted to "long double _Complex".
+ int order = Context.getFloatingTypeOrder(lhs, rhs);
+
+ // If both are complex, just cast to the more precise type.
+ if (LHSComplexFloat && RHSComplexFloat) {
+ if (order > 0) {
+ // _Complex float -> _Complex double
+ rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_FloatingComplexCast);
+ return lhs;
+
+ } else if (order < 0) {
+ // _Complex float -> _Complex double
+ if (!isCompAssign)
+ lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_FloatingComplexCast);
+ return rhs;
+ }
+ return lhs;
+ }
+
+ // If just the LHS is complex, the RHS needs to be converted,
+ // and the LHS might need to be promoted.
+ if (LHSComplexFloat) {
+ if (order > 0) { // LHS is wider
+ // float -> _Complex double
+ QualType fp = cast<ComplexType>(lhs)->getElementType();
+ rhsExpr = ImpCastExprToType(rhsExpr.take(), fp, CK_FloatingCast);
+ rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_FloatingRealToComplex);
+ return lhs;
+ }
+
+ // RHS is at least as wide. Find its corresponding complex type.
+ QualType result = (order == 0 ? lhs : Context.getComplexType(rhs));
+
+ // double -> _Complex double
+ rhsExpr = ImpCastExprToType(rhsExpr.take(), result, CK_FloatingRealToComplex);
+
+ // _Complex float -> _Complex double
+ if (!isCompAssign && order < 0)
+ lhsExpr = ImpCastExprToType(lhsExpr.take(), result, CK_FloatingComplexCast);
+
+ return result;
+ }
+
+ // Just the RHS is complex, so the LHS needs to be converted
+ // and the RHS might need to be promoted.
+ assert(RHSComplexFloat);
+
+ if (order < 0) { // RHS is wider
+ // float -> _Complex double
+ if (!isCompAssign) {
+ QualType fp = cast<ComplexType>(rhs)->getElementType();
+ lhsExpr = ImpCastExprToType(lhsExpr.take(), fp, CK_FloatingCast);
+ lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_FloatingRealToComplex);
+ }
+ return rhs;
+ }
+
+ // LHS is at least as wide. Find its corresponding complex type.
+ QualType result = (order == 0 ? rhs : Context.getComplexType(lhs));
+
+ // double -> _Complex double
+ if (!isCompAssign)
+ lhsExpr = ImpCastExprToType(lhsExpr.take(), result, CK_FloatingRealToComplex);
+
+ // _Complex float -> _Complex double
+ if (order > 0)
+ rhsExpr = ImpCastExprToType(rhsExpr.take(), result, CK_FloatingComplexCast);
+
+ return result;
+ }
+
+ // Now handle "real" floating types (i.e. float, double, long double).
+ bool LHSFloat = lhs->isRealFloatingType();
+ bool RHSFloat = rhs->isRealFloatingType();
+ if (LHSFloat || RHSFloat) {
+ // If we have two real floating types, convert the smaller operand
+ // to the bigger result.
+ if (LHSFloat && RHSFloat) {
+ int order = Context.getFloatingTypeOrder(lhs, rhs);
+ if (order > 0) {
+ rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_FloatingCast);
+ return lhs;
+ }
+
+ assert(order < 0 && "illegal float comparison");
+ if (!isCompAssign)
+ lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_FloatingCast);
+ return rhs;
+ }
+
+ // If we have an integer operand, the result is the real floating type.
+ if (LHSFloat) {
+ if (rhs->isIntegerType()) {
+ // Convert rhs to the lhs floating point type.
+ rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralToFloating);
+ return lhs;
+ }
+
+ // Convert both sides to the appropriate complex float.
+ assert(rhs->isComplexIntegerType());
+ QualType result = Context.getComplexType(lhs);
+
+ // _Complex int -> _Complex float
+ rhsExpr = ImpCastExprToType(rhsExpr.take(), result, CK_IntegralComplexToFloatingComplex);
+
+ // float -> _Complex float
+ if (!isCompAssign)
+ lhsExpr = ImpCastExprToType(lhsExpr.take(), result, CK_FloatingRealToComplex);
+
+ return result;
+ }
+
+ assert(RHSFloat);
+ if (lhs->isIntegerType()) {
+ // Convert lhs to the rhs floating point type.
+ if (!isCompAssign)
+ lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralToFloating);
+ return rhs;
+ }
+
+ // Convert both sides to the appropriate complex float.
+ assert(lhs->isComplexIntegerType());
+ QualType result = Context.getComplexType(rhs);
+
+ // _Complex int -> _Complex float
+ if (!isCompAssign)
+ lhsExpr = ImpCastExprToType(lhsExpr.take(), result, CK_IntegralComplexToFloatingComplex);
+
+ // float -> _Complex float
+ rhsExpr = ImpCastExprToType(rhsExpr.take(), result, CK_FloatingRealToComplex);
+
+ return result;
+ }
+
+ // Handle GCC complex int extension.
+ // FIXME: if the operands are (int, _Complex long), we currently
+ // don't promote the complex. Also, signedness?
+ const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
+ const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
+ if (lhsComplexInt && rhsComplexInt) {
+ int order = Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
+ rhsComplexInt->getElementType());
+ assert(order && "inequal types with equal element ordering");
+ if (order > 0) {
+ // _Complex int -> _Complex long
+ rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralComplexCast);
+ return lhs;
+ }
+
+ if (!isCompAssign)
+ lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralComplexCast);
+ return rhs;
+ } else if (lhsComplexInt) {
+ // int -> _Complex int
+ rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralRealToComplex);
+ return lhs;
+ } else if (rhsComplexInt) {
+ // int -> _Complex int
+ if (!isCompAssign)
+ lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralRealToComplex);
+ return rhs;
+ }
+
+ // Finally, we have two differing integer types.
+ // The rules for this case are in C99 6.3.1.8
+ int compare = Context.getIntegerTypeOrder(lhs, rhs);
+ bool lhsSigned = lhs->hasSignedIntegerRepresentation(),
+ rhsSigned = rhs->hasSignedIntegerRepresentation();
+ if (lhsSigned == rhsSigned) {
+ // Same signedness; use the higher-ranked type
+ if (compare >= 0) {
+ rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralCast);
+ return lhs;
+ } else if (!isCompAssign)
+ lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralCast);
+ return rhs;
+ } else if (compare != (lhsSigned ? 1 : -1)) {
+ // The unsigned type has greater than or equal rank to the
+ // signed type, so use the unsigned type
+ if (rhsSigned) {
+ rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralCast);
+ return lhs;
+ } else if (!isCompAssign)
+ lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralCast);
+ return rhs;
+ } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
+ // The two types are different widths; if we are here, that
+ // means the signed type is larger than the unsigned type, so
+ // use the signed type.
+ if (lhsSigned) {
+ rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralCast);
+ return lhs;
+ } else if (!isCompAssign)
+ lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralCast);
+ return rhs;
+ } else {
+ // The signed type is higher-ranked than the unsigned type,
+ // but isn't actually any bigger (like unsigned int and long
+ // on most 32-bit systems). Use the unsigned type corresponding
+ // to the signed type.
+ QualType result =
+ Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
+ rhsExpr = ImpCastExprToType(rhsExpr.take(), result, CK_IntegralCast);
+ if (!isCompAssign)
+ lhsExpr = ImpCastExprToType(lhsExpr.take(), result, CK_IntegralCast);
+ return result;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Semantic Analysis for various Expression Types
+//===----------------------------------------------------------------------===//
+
+
+ExprResult
+Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
+ SourceLocation DefaultLoc,
+ SourceLocation RParenLoc,
+ Expr *ControllingExpr,
+ MultiTypeArg types,
+ MultiExprArg exprs) {
+ unsigned NumAssocs = types.size();
+ assert(NumAssocs == exprs.size());
+
+ ParsedType *ParsedTypes = types.release();
+ Expr **Exprs = exprs.release();
+
+ TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
+ for (unsigned i = 0; i < NumAssocs; ++i) {
+ if (ParsedTypes[i])
+ (void) GetTypeFromParser(ParsedTypes[i], &Types[i]);
+ else
+ Types[i] = 0;
+ }
+
+ ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
+ ControllingExpr, Types, Exprs,
+ NumAssocs);
+ delete [] Types;
+ return ER;
+}
+
+ExprResult
+Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
+ SourceLocation DefaultLoc,
+ SourceLocation RParenLoc,
+ Expr *ControllingExpr,
+ TypeSourceInfo **Types,
+ Expr **Exprs,
+ unsigned NumAssocs) {
+ bool TypeErrorFound = false,
+ IsResultDependent = ControllingExpr->isTypeDependent(),
+ ContainsUnexpandedParameterPack
+ = ControllingExpr->containsUnexpandedParameterPack();
+
+ for (unsigned i = 0; i < NumAssocs; ++i) {
+ if (Exprs[i]->containsUnexpandedParameterPack())
+ ContainsUnexpandedParameterPack = true;
+
+ if (Types[i]) {
+ if (Types[i]->getType()->containsUnexpandedParameterPack())
+ ContainsUnexpandedParameterPack = true;
+
+ if (Types[i]->getType()->isDependentType()) {
+ IsResultDependent = true;
+ } else {
+ // C1X 6.5.1.1p2 "The type name in a generic association shall specify a
+ // complete object type other than a variably modified type."
+ unsigned D = 0;
+ if (Types[i]->getType()->isIncompleteType())
+ D = diag::err_assoc_type_incomplete;
+ else if (!Types[i]->getType()->isObjectType())
+ D = diag::err_assoc_type_nonobject;
+ else if (Types[i]->getType()->isVariablyModifiedType())
+ D = diag::err_assoc_type_variably_modified;
+
+ if (D != 0) {
+ Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
+ << Types[i]->getTypeLoc().getSourceRange()
+ << Types[i]->getType();
+ TypeErrorFound = true;
+ }
+
+ // C1X 6.5.1.1p2 "No two generic associations in the same generic
+ // selection shall specify compatible types."
+ for (unsigned j = i+1; j < NumAssocs; ++j)
+ if (Types[j] && !Types[j]->getType()->isDependentType() &&
+ Context.typesAreCompatible(Types[i]->getType(),
+ Types[j]->getType())) {
+ Diag(Types[j]->getTypeLoc().getBeginLoc(),
+ diag::err_assoc_compatible_types)
+ << Types[j]->getTypeLoc().getSourceRange()
+ << Types[j]->getType()
+ << Types[i]->getType();
+ Diag(Types[i]->getTypeLoc().getBeginLoc(),
+ diag::note_compat_assoc)
+ << Types[i]->getTypeLoc().getSourceRange()
+ << Types[i]->getType();
+ TypeErrorFound = true;
+ }
+ }
+ }
+ }
+ if (TypeErrorFound)
+ return ExprError();
+
+ // If we determined that the generic selection is result-dependent, don't
+ // try to compute the result expression.
+ if (IsResultDependent)
+ return Owned(new (Context) GenericSelectionExpr(
+ Context, KeyLoc, ControllingExpr,
+ Types, Exprs, NumAssocs, DefaultLoc,
+ RParenLoc, ContainsUnexpandedParameterPack));
+
+ llvm::SmallVector<unsigned, 1> CompatIndices;
+ unsigned DefaultIndex = -1U;
+ for (unsigned i = 0; i < NumAssocs; ++i) {
+ if (!Types[i])
+ DefaultIndex = i;
+ else if (Context.typesAreCompatible(ControllingExpr->getType(),
+ Types[i]->getType()))
+ CompatIndices.push_back(i);
+ }
+
+ // C1X 6.5.1.1p2 "The controlling expression of a generic selection shall have
+ // type compatible with at most one of the types named in its generic
+ // association list."
+ if (CompatIndices.size() > 1) {
+ // We strip parens here because the controlling expression is typically
+ // parenthesized in macro definitions.
+ ControllingExpr = ControllingExpr->IgnoreParens();
+ Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
+ << ControllingExpr->getSourceRange() << ControllingExpr->getType()
+ << (unsigned) CompatIndices.size();
+ for (llvm::SmallVector<unsigned, 1>::iterator I = CompatIndices.begin(),
+ E = CompatIndices.end(); I != E; ++I) {
+ Diag(Types[*I]->getTypeLoc().getBeginLoc(),
+ diag::note_compat_assoc)
+ << Types[*I]->getTypeLoc().getSourceRange()
+ << Types[*I]->getType();
+ }
+ return ExprError();
+ }
+
+ // C1X 6.5.1.1p2 "If a generic selection has no default generic association,
+ // its controlling expression shall have type compatible with exactly one of
+ // the types named in its generic association list."
+ if (DefaultIndex == -1U && CompatIndices.size() == 0) {
+ // We strip parens here because the controlling expression is typically
+ // parenthesized in macro definitions.
+ ControllingExpr = ControllingExpr->IgnoreParens();
+ Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
+ << ControllingExpr->getSourceRange() << ControllingExpr->getType();
+ return ExprError();
+ }
+
+ // C1X 6.5.1.1p3 "If a generic selection has a generic association with a
+ // type name that is compatible with the type of the controlling expression,
+ // then the result expression of the generic selection is the expression
+ // in that generic association. Otherwise, the result expression of the
+ // generic selection is the expression in the default generic association."
+ unsigned ResultIndex =
+ CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
+
+ return Owned(new (Context) GenericSelectionExpr(
+ Context, KeyLoc, ControllingExpr,
+ Types, Exprs, NumAssocs, DefaultLoc,
+ RParenLoc, ContainsUnexpandedParameterPack,
+ ResultIndex));
+}
+
+/// ActOnStringLiteral - The specified tokens were lexed as pasted string
+/// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
+/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
+/// multiple tokens. However, the common case is that StringToks points to one
+/// string.
+///
+ExprResult
+Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
+ assert(NumStringToks && "Must have at least one string!");
+
+ StringLiteralParser Literal(StringToks, NumStringToks, PP);
+ if (Literal.hadError)
+ return ExprError();
+
+ llvm::SmallVector<SourceLocation, 4> StringTokLocs;
+ for (unsigned i = 0; i != NumStringToks; ++i)
+ StringTokLocs.push_back(StringToks[i].getLocation());
+
+ QualType StrTy = Context.CharTy;
+ if (Literal.AnyWide)
+ StrTy = Context.getWCharType();
+ else if (Literal.Pascal)
+ StrTy = Context.UnsignedCharTy;
+
+ // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
+ if (getLangOptions().CPlusPlus || getLangOptions().ConstStrings)
+ StrTy.addConst();
+
+ // Get an array type for the string, according to C99 6.4.5. This includes
+ // the nul terminator character as well as the string length for pascal
+ // strings.
+ StrTy = Context.getConstantArrayType(StrTy,
+ llvm::APInt(32, Literal.GetNumStringChars()+1),
+ ArrayType::Normal, 0);
+
+ // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
+ return Owned(StringLiteral::Create(Context, Literal.GetString(),
+ Literal.GetStringLength(),
+ Literal.AnyWide, Literal.Pascal, StrTy,
+ &StringTokLocs[0],
+ StringTokLocs.size()));
+}
+
+enum CaptureResult {
+ /// No capture is required.
+ CR_NoCapture,
+
+ /// A capture is required.
+ CR_Capture,
+
+ /// A by-ref capture is required.
+ CR_CaptureByRef,
+
+ /// An error occurred when trying to capture the given variable.
+ CR_Error
+};
+
+/// Diagnose an uncapturable value reference.
+///
+/// \param var - the variable referenced
+/// \param DC - the context which we couldn't capture through
+static CaptureResult
+diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
+ VarDecl *var, DeclContext *DC) {
+ switch (S.ExprEvalContexts.back().Context) {
+ case Sema::Unevaluated:
+ // The argument will never be evaluated, so don't complain.
+ return CR_NoCapture;
+
+ case Sema::PotentiallyEvaluated:
+ case Sema::PotentiallyEvaluatedIfUsed:
+ break;
+
+ case Sema::PotentiallyPotentiallyEvaluated:
+ // FIXME: delay these!
+ break;
+ }
+
+ // Don't diagnose about capture if we're not actually in code right
+ // now; in general, there are more appropriate places that will
+ // diagnose this.
+ if (!S.CurContext->isFunctionOrMethod()) return CR_NoCapture;
+
+ // Certain madnesses can happen with parameter declarations, which
+ // we want to ignore.
+ if (isa<ParmVarDecl>(var)) {
+ // - If the parameter still belongs to the translation unit, then
+ // we're actually just using one parameter in the declaration of
+ // the next. This is useful in e.g. VLAs.
+ if (isa<TranslationUnitDecl>(var->getDeclContext()))
+ return CR_NoCapture;
+
+ // - This particular madness can happen in ill-formed default
+ // arguments; claim it's okay and let downstream code handle it.
+ if (S.CurContext == var->getDeclContext()->getParent())
+ return CR_NoCapture;
+ }
+
+ DeclarationName functionName;
+ if (FunctionDecl *fn = dyn_cast<FunctionDecl>(var->getDeclContext()))
+ functionName = fn->getDeclName();
+ // FIXME: variable from enclosing block that we couldn't capture from!
+
+ S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function)
+ << var->getIdentifier() << functionName;
+ S.Diag(var->getLocation(), diag::note_local_variable_declared_here)
+ << var->getIdentifier();
+
+ return CR_Error;
+}
+
+/// There is a well-formed capture at a particular scope level;
+/// propagate it through all the nested blocks.
+static CaptureResult propagateCapture(Sema &S, unsigned validScopeIndex,
+ const BlockDecl::Capture &capture) {
+ VarDecl *var = capture.getVariable();
+
+ // Update all the inner blocks with the capture information.
+ for (unsigned i = validScopeIndex + 1, e = S.FunctionScopes.size();
+ i != e; ++i) {
+ BlockScopeInfo *innerBlock = cast<BlockScopeInfo>(S.FunctionScopes[i]);
+ innerBlock->Captures.push_back(
+ BlockDecl::Capture(capture.getVariable(), capture.isByRef(),
+ /*nested*/ true, capture.getCopyExpr()));
+ innerBlock->CaptureMap[var] = innerBlock->Captures.size(); // +1
+ }
+
+ return capture.isByRef() ? CR_CaptureByRef : CR_Capture;
+}
+
+/// shouldCaptureValueReference - Determine if a reference to the
+/// given value in the current context requires a variable capture.
+///
+/// This also keeps the captures set in the BlockScopeInfo records
+/// up-to-date.
+static CaptureResult shouldCaptureValueReference(Sema &S, SourceLocation loc,
+ ValueDecl *value) {
+ // Only variables ever require capture.
+ VarDecl *var = dyn_cast<VarDecl>(value);
+ if (!var) return CR_NoCapture;
+
+ // Fast path: variables from the current context never require capture.
+ DeclContext *DC = S.CurContext;
+ if (var->getDeclContext() == DC) return CR_NoCapture;
+
+ // Only variables with local storage require capture.
+ // FIXME: What about 'const' variables in C++?
+ if (!var->hasLocalStorage()) return CR_NoCapture;
+
+ // Otherwise, we need to capture.
+
+ unsigned functionScopesIndex = S.FunctionScopes.size() - 1;
+ do {
+ // Only blocks (and eventually C++0x closures) can capture; other
+ // scopes don't work.
+ if (!isa<BlockDecl>(DC))
+ return diagnoseUncapturableValueReference(S, loc, var, DC);
+
+ BlockScopeInfo *blockScope =
+ cast<BlockScopeInfo>(S.FunctionScopes[functionScopesIndex]);
+ assert(blockScope->TheDecl == static_cast<BlockDecl*>(DC));
+
+ // Check whether we've already captured it in this block. If so,
+ // we're done.
+ if (unsigned indexPlus1 = blockScope->CaptureMap[var])
+ return propagateCapture(S, functionScopesIndex,
+ blockScope->Captures[indexPlus1 - 1]);
+
+ functionScopesIndex--;
+ DC = cast<BlockDecl>(DC)->getDeclContext();
+ } while (var->getDeclContext() != DC);
+
+ // Okay, we descended all the way to the block that defines the variable.
+ // Actually try to capture it.
+ QualType type = var->getType();
+
+ // Prohibit variably-modified types.
+ if (type->isVariablyModifiedType()) {
+ S.Diag(loc, diag::err_ref_vm_type);
+ S.Diag(var->getLocation(), diag::note_declared_at);
+ return CR_Error;
+ }
+
+ // Prohibit arrays, even in __block variables, but not references to
+ // them.
+ if (type->isArrayType()) {
+ S.Diag(loc, diag::err_ref_array_type);
+ S.Diag(var->getLocation(), diag::note_declared_at);
+ return CR_Error;
+ }
+
+ S.MarkDeclarationReferenced(loc, var);
+
+ // The BlocksAttr indicates the variable is bound by-reference.
+ bool byRef = var->hasAttr<BlocksAttr>();
+
+ // Build a copy expression.
+ Expr *copyExpr = 0;
+ const RecordType *rtype;
+ if (!byRef && S.getLangOptions().CPlusPlus && !type->isDependentType() &&
+ (rtype = type->getAs<RecordType>())) {
+
+ // The capture logic needs the destructor, so make sure we mark it.
+ // Usually this is unnecessary because most local variables have
+ // their destructors marked at declaration time, but parameters are
+ // an exception because it's technically only the call site that
+ // actually requires the destructor.
+ if (isa<ParmVarDecl>(var))
+ S.FinalizeVarWithDestructor(var, rtype);
+
+ // According to the blocks spec, the capture of a variable from
+ // the stack requires a const copy constructor. This is not true
+ // of the copy/move done to move a __block variable to the heap.
+ type.addConst();
+
+ Expr *declRef = new (S.Context) DeclRefExpr(var, type, VK_LValue, loc);
+ ExprResult result =
+ S.PerformCopyInitialization(
+ InitializedEntity::InitializeBlock(var->getLocation(),
+ type, false),
+ loc, S.Owned(declRef));
+
+ // Build a full-expression copy expression if initialization
+ // succeeded and used a non-trivial constructor. Recover from
+ // errors by pretending that the copy isn't necessary.
+ if (!result.isInvalid() &&
+ !cast<CXXConstructExpr>(result.get())->getConstructor()->isTrivial()) {
+ result = S.MaybeCreateExprWithCleanups(result);
+ copyExpr = result.take();
+ }
+ }
+
+ // We're currently at the declarer; go back to the closure.
+ functionScopesIndex++;
+ BlockScopeInfo *blockScope =
+ cast<BlockScopeInfo>(S.FunctionScopes[functionScopesIndex]);
+
+ // Build a valid capture in this scope.
+ blockScope->Captures.push_back(
+ BlockDecl::Capture(var, byRef, /*nested*/ false, copyExpr));
+ blockScope->CaptureMap[var] = blockScope->Captures.size(); // +1
+
+ // Propagate that to inner captures if necessary.
+ return propagateCapture(S, functionScopesIndex,
+ blockScope->Captures.back());
+}
+
+static ExprResult BuildBlockDeclRefExpr(Sema &S, ValueDecl *vd,
+ const DeclarationNameInfo &NameInfo,
+ bool byRef) {
+ assert(isa<VarDecl>(vd) && "capturing non-variable");
+
+ VarDecl *var = cast<VarDecl>(vd);
+ assert(var->hasLocalStorage() && "capturing non-local");
+ assert(byRef == var->hasAttr<BlocksAttr>() && "byref set wrong");
+
+ QualType exprType = var->getType().getNonReferenceType();
+
+ BlockDeclRefExpr *BDRE;
+ if (!byRef) {
+ // The variable will be bound by copy; make it const within the
+ // closure, but record that this was done in the expression.
+ bool constAdded = !exprType.isConstQualified();
+ exprType.addConst();
+
+ BDRE = new (S.Context) BlockDeclRefExpr(var, exprType, VK_LValue,
+ NameInfo.getLoc(), false,
+ constAdded);
+ } else {
+ BDRE = new (S.Context) BlockDeclRefExpr(var, exprType, VK_LValue,
+ NameInfo.getLoc(), true);
+ }
+
+ return S.Owned(BDRE);
+}
+
+ExprResult
+Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
+ SourceLocation Loc,
+ const CXXScopeSpec *SS) {
+ DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
+ return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
+}
+
+/// BuildDeclRefExpr - Build an expression that references a
+/// declaration that does not require a closure capture.
+ExprResult
+Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
+ const DeclarationNameInfo &NameInfo,
+ const CXXScopeSpec *SS) {
+ MarkDeclarationReferenced(NameInfo.getLoc(), D);
+
+ Expr *E = DeclRefExpr::Create(Context,
+ SS? SS->getWithLocInContext(Context)
+ : NestedNameSpecifierLoc(),
+ D, NameInfo, Ty, VK);
+
+ // Just in case we're building an illegal pointer-to-member.
+ if (isa<FieldDecl>(D) && cast<FieldDecl>(D)->getBitWidth())
+ E->setObjectKind(OK_BitField);
+
+ return Owned(E);
+}
+
+static ExprResult
+BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
+ const CXXScopeSpec &SS, FieldDecl *Field,
+ DeclAccessPair FoundDecl,
+ const DeclarationNameInfo &MemberNameInfo);
+
+ExprResult
+Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
+ SourceLocation loc,
+ IndirectFieldDecl *indirectField,
+ Expr *baseObjectExpr,
+ SourceLocation opLoc) {
+ // First, build the expression that refers to the base object.
+
+ bool baseObjectIsPointer = false;
+ Qualifiers baseQuals;
+
+ // Case 1: the base of the indirect field is not a field.
+ VarDecl *baseVariable = indirectField->getVarDecl();
+ CXXScopeSpec EmptySS;
+ if (baseVariable) {
+ assert(baseVariable->getType()->isRecordType());
+
+ // In principle we could have a member access expression that
+ // accesses an anonymous struct/union that's a static member of
+ // the base object's class. However, under the current standard,
+ // static data members cannot be anonymous structs or unions.
+ // Supporting this is as easy as building a MemberExpr here.
+ assert(!baseObjectExpr && "anonymous struct/union is static data member?");
+
+ DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
+
+ ExprResult result =
+ BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
+ if (result.isInvalid()) return ExprError();
+
+ baseObjectExpr = result.take();
+ baseObjectIsPointer = false;
+ baseQuals = baseObjectExpr->getType().getQualifiers();
+
+ // Case 2: the base of the indirect field is a field and the user
+ // wrote a member expression.
+ } else if (baseObjectExpr) {
+ // The caller provided the base object expression. Determine
+ // whether its a pointer and whether it adds any qualifiers to the
+ // anonymous struct/union fields we're looking into.
+ QualType objectType = baseObjectExpr->getType();
+
+ if (const PointerType *ptr = objectType->getAs<PointerType>()) {
+ baseObjectIsPointer = true;
+ objectType = ptr->getPointeeType();
+ } else {
+ baseObjectIsPointer = false;
+ }
+ baseQuals = objectType.getQualifiers();
+
+ // Case 3: the base of the indirect field is a field and we should
+ // build an implicit member access.
+ } else {
+ // We've found a member of an anonymous struct/union that is
+ // inside a non-anonymous struct/union, so in a well-formed
+ // program our base object expression is "this".
+ CXXMethodDecl *method = tryCaptureCXXThis();
+ if (!method) {
+ Diag(loc, diag::err_invalid_member_use_in_static_method)
+ << indirectField->getDeclName();
+ return ExprError();
+ }
+
+ // Our base object expression is "this".
+ baseObjectExpr =
+ new (Context) CXXThisExpr(loc, method->getThisType(Context),
+ /*isImplicit=*/ true);
+ baseObjectIsPointer = true;
+ baseQuals = Qualifiers::fromCVRMask(method->getTypeQualifiers());
+ }
+
+ // Build the implicit member references to the field of the
+ // anonymous struct/union.
+ Expr *result = baseObjectExpr;
+ IndirectFieldDecl::chain_iterator
+ FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
+
+ // Build the first member access in the chain with full information.
+ if (!baseVariable) {
+ FieldDecl *field = cast<FieldDecl>(*FI);
+
+ // FIXME: use the real found-decl info!
+ DeclAccessPair foundDecl = DeclAccessPair::make(field, field->getAccess());
+
+ // Make a nameInfo that properly uses the anonymous name.
+ DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
+
+ result = BuildFieldReferenceExpr(*this, result, baseObjectIsPointer,
+ EmptySS, field, foundDecl,
+ memberNameInfo).take();
+ baseObjectIsPointer = false;
+
+ // FIXME: check qualified member access
+ }
+
+ // In all cases, we should now skip the first declaration in the chain.
+ ++FI;
+
+ while (FI != FEnd) {
+ FieldDecl *field = cast<FieldDecl>(*FI++);
+
+ // FIXME: these are somewhat meaningless
+ DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
+ DeclAccessPair foundDecl = DeclAccessPair::make(field, field->getAccess());
+
+ result = BuildFieldReferenceExpr(*this, result, /*isarrow*/ false,
+ (FI == FEnd? SS : EmptySS), field,
+ foundDecl, memberNameInfo)
+ .take();
+ }
+
+ return Owned(result);
+}
+
+/// Decomposes the given name into a DeclarationNameInfo, its location, and
+/// possibly a list of template arguments.
+///
+/// If this produces template arguments, it is permitted to call
+/// DecomposeTemplateName.
+///
+/// This actually loses a lot of source location information for
+/// non-standard name kinds; we should consider preserving that in
+/// some way.
+static void DecomposeUnqualifiedId(Sema &SemaRef,
+ const UnqualifiedId &Id,
+ TemplateArgumentListInfo &Buffer,
+ DeclarationNameInfo &NameInfo,
+ const TemplateArgumentListInfo *&TemplateArgs) {
+ if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
+ Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
+ Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
+
+ ASTTemplateArgsPtr TemplateArgsPtr(SemaRef,
+ Id.TemplateId->getTemplateArgs(),
+ Id.TemplateId->NumArgs);
+ SemaRef.translateTemplateArguments(TemplateArgsPtr, Buffer);
+ TemplateArgsPtr.release();
+
+ TemplateName TName = Id.TemplateId->Template.get();
+ SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
+ NameInfo = SemaRef.Context.getNameForTemplate(TName, TNameLoc);
+ TemplateArgs = &Buffer;
+ } else {
+ NameInfo = SemaRef.GetNameFromUnqualifiedId(Id);
+ TemplateArgs = 0;
+ }
+}
+
+/// Determines if the given class is provably not derived from all of
+/// the prospective base classes.
+static bool IsProvablyNotDerivedFrom(Sema &SemaRef,
+ CXXRecordDecl *Record,
+ const llvm::SmallPtrSet<CXXRecordDecl*, 4> &Bases) {
+ if (Bases.count(Record->getCanonicalDecl()))
+ return false;
+
+ RecordDecl *RD = Record->getDefinition();
+ if (!RD) return false;
+ Record = cast<CXXRecordDecl>(RD);
+
+ for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
+ E = Record->bases_end(); I != E; ++I) {
+ CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
+ CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
+ if (!BaseRT) return false;
+
+ CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
+ if (!IsProvablyNotDerivedFrom(SemaRef, BaseRecord, Bases))
+ return false;
+ }
+
+ return true;
+}
+
+enum IMAKind {
+ /// The reference is definitely not an instance member access.
+ IMA_Static,
+
+ /// The reference may be an implicit instance member access.
+ IMA_Mixed,
+
+ /// The reference may be to an instance member, but it is invalid if
+ /// so, because the context is not an instance method.
+ IMA_Mixed_StaticContext,
+
+ /// The reference may be to an instance member, but it is invalid if
+ /// so, because the context is from an unrelated class.
+ IMA_Mixed_Unrelated,
+
+ /// The reference is definitely an implicit instance member access.
+ IMA_Instance,
+
+ /// The reference may be to an unresolved using declaration.
+ IMA_Unresolved,
+
+ /// The reference may be to an unresolved using declaration and the
+ /// context is not an instance method.
+ IMA_Unresolved_StaticContext,
+
+ /// All possible referrents are instance members and the current
+ /// context is not an instance method.
+ IMA_Error_StaticContext,
+
+ /// All possible referrents are instance members of an unrelated
+ /// class.
+ IMA_Error_Unrelated
+};
+
+/// The given lookup names class member(s) and is not being used for
+/// an address-of-member expression. Classify the type of access
+/// according to whether it's possible that this reference names an
+/// instance member. This is best-effort; it is okay to
+/// conservatively answer "yes", in which case some errors will simply
+/// not be caught until template-instantiation.
+static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
+ const LookupResult &R) {
+ assert(!R.empty() && (*R.begin())->isCXXClassMember());
+
+ DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
+ bool isStaticContext =
+ (!isa<CXXMethodDecl>(DC) ||
+ cast<CXXMethodDecl>(DC)->isStatic());
+
+ if (R.isUnresolvableResult())
+ return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
+
+ // Collect all the declaring classes of instance members we find.
+ bool hasNonInstance = false;
+ bool hasField = false;
+ llvm::SmallPtrSet<CXXRecordDecl*, 4> Classes;
+ for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
+ NamedDecl *D = *I;
+
+ if (D->isCXXInstanceMember()) {
+ if (dyn_cast<FieldDecl>(D))
+ hasField = true;
+
+ CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
+ Classes.insert(R->getCanonicalDecl());
+ }
+ else
+ hasNonInstance = true;
+ }
+
+ // If we didn't find any instance members, it can't be an implicit
+ // member reference.
+ if (Classes.empty())
+ return IMA_Static;
+
+ // If the current context is not an instance method, it can't be
+ // an implicit member reference.
+ if (isStaticContext) {
+ if (hasNonInstance)
+ return IMA_Mixed_StaticContext;
+
+ if (SemaRef.getLangOptions().CPlusPlus0x && hasField) {
+ // C++0x [expr.prim.general]p10:
+ // An id-expression that denotes a non-static data member or non-static
+ // member function of a class can only be used:
+ // (...)
+ // - if that id-expression denotes a non-static data member and it appears in an unevaluated operand.
+ const Sema::ExpressionEvaluationContextRecord& record = SemaRef.ExprEvalContexts.back();
+ bool isUnevaluatedExpression = record.Context == Sema::Unevaluated;
+ if (isUnevaluatedExpression)
+ return IMA_Mixed_StaticContext;
+ }
+
+ return IMA_Error_StaticContext;
+ }
+
+ CXXRecordDecl *
+ contextClass = cast<CXXMethodDecl>(DC)->getParent()->getCanonicalDecl();
+
+ // [class.mfct.non-static]p3:
+ // ...is used in the body of a non-static member function of class X,
+ // if name lookup (3.4.1) resolves the name in the id-expression to a
+ // non-static non-type member of some class C [...]
+ // ...if C is not X or a base class of X, the class member access expression
+ // is ill-formed.
+ if (R.getNamingClass() &&
+ contextClass != R.getNamingClass()->getCanonicalDecl() &&
+ contextClass->isProvablyNotDerivedFrom(R.getNamingClass()))
+ return (hasNonInstance ? IMA_Mixed_Unrelated : IMA_Error_Unrelated);
+
+ // If we can prove that the current context is unrelated to all the
+ // declaring classes, it can't be an implicit member reference (in
+ // which case it's an error if any of those members are selected).
+ if (IsProvablyNotDerivedFrom(SemaRef, contextClass, Classes))
+ return (hasNonInstance ? IMA_Mixed_Unrelated : IMA_Error_Unrelated);
+
+ return (hasNonInstance ? IMA_Mixed : IMA_Instance);
+}
+
+/// Diagnose a reference to a field with no object available.
+static void DiagnoseInstanceReference(Sema &SemaRef,
+ const CXXScopeSpec &SS,
+ NamedDecl *rep,
+ const DeclarationNameInfo &nameInfo) {
+ SourceLocation Loc = nameInfo.getLoc();
+ SourceRange Range(Loc);
+ if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
+
+ if (isa<FieldDecl>(rep) || isa<IndirectFieldDecl>(rep)) {
+ if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(SemaRef.CurContext)) {
+ if (MD->isStatic()) {
+ // "invalid use of member 'x' in static member function"
+ SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
+ << Range << nameInfo.getName();
+ return;
+ }
+ }
+
+ SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
+ << nameInfo.getName() << Range;
+ return;
+ }
+
+ SemaRef.Diag(Loc, diag::err_member_call_without_object) << Range;
+}
+
+/// Diagnose an empty lookup.
+///
+/// \return false if new lookup candidates were found
+bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
+ CorrectTypoContext CTC) {
+ DeclarationName Name = R.getLookupName();
+
+ unsigned diagnostic = diag::err_undeclared_var_use;
+ unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
+ if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
+ Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
+ Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
+ diagnostic = diag::err_undeclared_use;
+ diagnostic_suggest = diag::err_undeclared_use_suggest;
+ }
+
+ // If the original lookup was an unqualified lookup, fake an
+ // unqualified lookup. This is useful when (for example) the
+ // original lookup would not have found something because it was a
+ // dependent name.
+ for (DeclContext *DC = SS.isEmpty() ? CurContext : 0;
+ DC; DC = DC->getParent()) {
+ if (isa<CXXRecordDecl>(DC)) {
+ LookupQualifiedName(R, DC);
+
+ if (!R.empty()) {
+ // Don't give errors about ambiguities in this lookup.
+ R.suppressDiagnostics();
+
+ CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
+ bool isInstance = CurMethod &&
+ CurMethod->isInstance() &&
+ DC == CurMethod->getParent();
+
+ // Give a code modification hint to insert 'this->'.
+ // TODO: fixit for inserting 'Base<T>::' in the other cases.
+ // Actually quite difficult!
+ if (isInstance) {
+ UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
+ CallsUndergoingInstantiation.back()->getCallee());
+ CXXMethodDecl *DepMethod = cast_or_null<CXXMethodDecl>(
+ CurMethod->getInstantiatedFromMemberFunction());
+ if (DepMethod) {
+ Diag(R.getNameLoc(), diagnostic) << Name
+ << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
+ QualType DepThisType = DepMethod->getThisType(Context);
+ CXXThisExpr *DepThis = new (Context) CXXThisExpr(
+ R.getNameLoc(), DepThisType, false);
+ TemplateArgumentListInfo TList;
+ if (ULE->hasExplicitTemplateArgs())
+ ULE->copyTemplateArgumentsInto(TList);
+
+ CXXScopeSpec SS;
+ SS.Adopt(ULE->getQualifierLoc());
+ CXXDependentScopeMemberExpr *DepExpr =
+ CXXDependentScopeMemberExpr::Create(
+ Context, DepThis, DepThisType, true, SourceLocation(),
+ SS.getWithLocInContext(Context), NULL,
+ R.getLookupNameInfo(), &TList);
+ CallsUndergoingInstantiation.back()->setCallee(DepExpr);
+ } else {
+ // FIXME: we should be able to handle this case too. It is correct
+ // to add this-> here. This is a workaround for PR7947.
+ Diag(R.getNameLoc(), diagnostic) << Name;
+ }
+ } else {
+ Diag(R.getNameLoc(), diagnostic) << Name;
+ }
+
+ // Do we really want to note all of these?
+ for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
+ Diag((*I)->getLocation(), diag::note_dependent_var_use);
+
+ // Tell the callee to try to recover.
+ return false;
+ }
+
+ R.clear();
+ }
+ }
+
+ // We didn't find anything, so try to correct for a typo.
+ DeclarationName Corrected;
+ if (S && (Corrected = CorrectTypo(R, S, &SS, 0, false, CTC))) {
+ if (!R.empty()) {
+ if (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin())) {
+ if (SS.isEmpty())
+ Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName()
+ << FixItHint::CreateReplacement(R.getNameLoc(),
+ R.getLookupName().getAsString());
+ else
+ Diag(R.getNameLoc(), diag::err_no_member_suggest)
+ << Name << computeDeclContext(SS, false) << R.getLookupName()
+ << SS.getRange()
+ << FixItHint::CreateReplacement(R.getNameLoc(),
+ R.getLookupName().getAsString());
+ if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
+ Diag(ND->getLocation(), diag::note_previous_decl)
+ << ND->getDeclName();
+
+ // Tell the callee to try to recover.
+ return false;
+ }
+
+ if (isa<TypeDecl>(*R.begin()) || isa<ObjCInterfaceDecl>(*R.begin())) {
+ // FIXME: If we ended up with a typo for a type name or
+ // Objective-C class name, we're in trouble because the parser
+ // is in the wrong place to recover. Suggest the typo
+ // correction, but don't make it a fix-it since we're not going
+ // to recover well anyway.
+ if (SS.isEmpty())
+ Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName();
+ else
+ Diag(R.getNameLoc(), diag::err_no_member_suggest)
+ << Name << computeDeclContext(SS, false) << R.getLookupName()
+ << SS.getRange();
+
+ // Don't try to recover; it won't work.
+ return true;
+ }
+ } else {
+ // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
+ // because we aren't able to recover.
+ if (SS.isEmpty())
+ Diag(R.getNameLoc(), diagnostic_suggest) << Name << Corrected;
+ else
+ Diag(R.getNameLoc(), diag::err_no_member_suggest)
+ << Name << computeDeclContext(SS, false) << Corrected
+ << SS.getRange();
+ return true;
+ }
+ R.clear();
+ }
+
+ // Emit a special diagnostic for failed member lookups.
+ // FIXME: computing the declaration context might fail here (?)
+ if (!SS.isEmpty()) {
+ Diag(R.getNameLoc(), diag::err_no_member)
+ << Name << computeDeclContext(SS, false)
+ << SS.getRange();
+ return true;
+ }
+
+ // Give up, we can't recover.
+ Diag(R.getNameLoc(), diagnostic) << Name;
+ return true;
+}
+
+ObjCPropertyDecl *Sema::canSynthesizeProvisionalIvar(IdentifierInfo *II) {
+ ObjCMethodDecl *CurMeth = getCurMethodDecl();
+ ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
+ if (!IDecl)
+ return 0;
+ ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
+ if (!ClassImpDecl)
+ return 0;
+ ObjCPropertyDecl *property = LookupPropertyDecl(IDecl, II);
+ if (!property)
+ return 0;
+ if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II))
+ if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic ||
+ PIDecl->getPropertyIvarDecl())
+ return 0;
+ return property;
+}
+
+bool Sema::canSynthesizeProvisionalIvar(ObjCPropertyDecl *Property) {
+ ObjCMethodDecl *CurMeth = getCurMethodDecl();
+ ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
+ if (!IDecl)
+ return false;
+ ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
+ if (!ClassImpDecl)
+ return false;
+ if (ObjCPropertyImplDecl *PIDecl
+ = ClassImpDecl->FindPropertyImplDecl(Property->getIdentifier()))
+ if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic ||
+ PIDecl->getPropertyIvarDecl())
+ return false;
+
+ return true;
+}
+
+ObjCIvarDecl *Sema::SynthesizeProvisionalIvar(LookupResult &Lookup,
+ IdentifierInfo *II,
+ SourceLocation NameLoc) {
+ ObjCMethodDecl *CurMeth = getCurMethodDecl();
+ bool LookForIvars;
+ if (Lookup.empty())
+ LookForIvars = true;
+ else if (CurMeth->isClassMethod())
+ LookForIvars = false;
+ else
+ LookForIvars = (Lookup.isSingleResult() &&
+ Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod() &&
+ (Lookup.getAsSingle<VarDecl>() != 0));
+ if (!LookForIvars)
+ return 0;
+
+ ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
+ if (!IDecl)
+ return 0;
+ ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
+ if (!ClassImpDecl)
+ return 0;
+ bool DynamicImplSeen = false;
+ ObjCPropertyDecl *property = LookupPropertyDecl(IDecl, II);
+ if (!property)
+ return 0;
+ if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II)) {
+ DynamicImplSeen =
+ (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic);
+ // property implementation has a designated ivar. No need to assume a new
+ // one.
+ if (!DynamicImplSeen && PIDecl->getPropertyIvarDecl())
+ return 0;
+ }
+ if (!DynamicImplSeen) {
+ QualType PropType = Context.getCanonicalType(property->getType());
+ ObjCIvarDecl *Ivar = ObjCIvarDecl::Create(Context, ClassImpDecl,
+ NameLoc, NameLoc,
+ II, PropType, /*Dinfo=*/0,
+ ObjCIvarDecl::Private,
+ (Expr *)0, true);
+ ClassImpDecl->addDecl(Ivar);
+ IDecl->makeDeclVisibleInContext(Ivar, false);
+ property->setPropertyIvarDecl(Ivar);
+ return Ivar;
+ }
+ return 0;
+}
+
+ExprResult Sema::ActOnIdExpression(Scope *S,
+ CXXScopeSpec &SS,
+ UnqualifiedId &Id,
+ bool HasTrailingLParen,
+ bool isAddressOfOperand) {
+ assert(!(isAddressOfOperand && HasTrailingLParen) &&
+ "cannot be direct & operand and have a trailing lparen");
+
+ if (SS.isInvalid())
+ return ExprError();
+
+ TemplateArgumentListInfo TemplateArgsBuffer;
+
+ // Decompose the UnqualifiedId into the following data.
+ DeclarationNameInfo NameInfo;
+ const TemplateArgumentListInfo *TemplateArgs;
+ DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
+
+ DeclarationName Name = NameInfo.getName();
+ IdentifierInfo *II = Name.getAsIdentifierInfo();
+ SourceLocation NameLoc = NameInfo.getLoc();
+
+ // C++ [temp.dep.expr]p3:
+ // An id-expression is type-dependent if it contains:
+ // -- an identifier that was declared with a dependent type,
+ // (note: handled after lookup)
+ // -- a template-id that is dependent,
+ // (note: handled in BuildTemplateIdExpr)
+ // -- a conversion-function-id that specifies a dependent type,
+ // -- a nested-name-specifier that contains a class-name that
+ // names a dependent type.
+ // Determine whether this is a member of an unknown specialization;
+ // we need to handle these differently.
+ bool DependentID = false;
+ if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
+ Name.getCXXNameType()->isDependentType()) {
+ DependentID = true;
+ } else if (SS.isSet()) {
+ if (DeclContext *DC = computeDeclContext(SS, false)) {
+ if (RequireCompleteDeclContext(SS, DC))
+ return ExprError();
+ } else {
+ DependentID = true;
+ }
+ }
+
+ if (DependentID)
+ return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand,
+ TemplateArgs);
+
+ bool IvarLookupFollowUp = false;
+ // Perform the required lookup.
+ LookupResult R(*this, NameInfo, LookupOrdinaryName);
+ if (TemplateArgs) {
+ // Lookup the template name again to correctly establish the context in
+ // which it was found. This is really unfortunate as we already did the
+ // lookup to determine that it was a template name in the first place. If
+ // this becomes a performance hit, we can work harder to preserve those
+ // results until we get here but it's likely not worth it.
+ bool MemberOfUnknownSpecialization;
+ LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
+ MemberOfUnknownSpecialization);
+
+ if (MemberOfUnknownSpecialization ||
+ (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
+ return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand,
+ TemplateArgs);
+ } else {
+ IvarLookupFollowUp = (!SS.isSet() && II && getCurMethodDecl());
+ LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
+
+ // If the result might be in a dependent base class, this is a dependent
+ // id-expression.
+ if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
+ return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand,
+ TemplateArgs);
+
+ // If this reference is in an Objective-C method, then we need to do
+ // some special Objective-C lookup, too.
+ if (IvarLookupFollowUp) {
+ ExprResult E(LookupInObjCMethod(R, S, II, true));
+ if (E.isInvalid())
+ return ExprError();
+
+ if (Expr *Ex = E.takeAs<Expr>())
+ return Owned(Ex);
+
+ // Synthesize ivars lazily.
+ if (getLangOptions().ObjCDefaultSynthProperties &&
+ getLangOptions().ObjCNonFragileABI2) {
+ if (SynthesizeProvisionalIvar(R, II, NameLoc)) {
+ if (const ObjCPropertyDecl *Property =
+ canSynthesizeProvisionalIvar(II)) {
+ Diag(NameLoc, diag::warn_synthesized_ivar_access) << II;
+ Diag(Property->getLocation(), diag::note_property_declare);
+ }
+ return ActOnIdExpression(S, SS, Id, HasTrailingLParen,
+ isAddressOfOperand);
+ }
+ }
+ // for further use, this must be set to false if in class method.
+ IvarLookupFollowUp = getCurMethodDecl()->isInstanceMethod();
+ }
+ }
+
+ if (R.isAmbiguous())
+ return ExprError();
+
+ // Determine whether this name might be a candidate for
+ // argument-dependent lookup.
+ bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
+
+ if (R.empty() && !ADL) {
+ // Otherwise, this could be an implicitly declared function reference (legal
+ // in C90, extension in C99, forbidden in C++).
+ if (HasTrailingLParen && II && !getLangOptions().CPlusPlus) {
+ NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
+ if (D) R.addDecl(D);
+ }
+
+ // If this name wasn't predeclared and if this is not a function
+ // call, diagnose the problem.
+ if (R.empty()) {
+ if (DiagnoseEmptyLookup(S, SS, R, CTC_Unknown))
+ return ExprError();
+
+ assert(!R.empty() &&
+ "DiagnoseEmptyLookup returned false but added no results");
+
+ // If we found an Objective-C instance variable, let
+ // LookupInObjCMethod build the appropriate expression to
+ // reference the ivar.
+ if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
+ R.clear();
+ ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
+ assert(E.isInvalid() || E.get());
+ return move(E);
+ }
+ }
+ }
+
+ // This is guaranteed from this point on.
+ assert(!R.empty() || ADL);
+
+ // Check whether this might be a C++ implicit instance member access.
+ // C++ [class.mfct.non-static]p3:
+ // When an id-expression that is not part of a class member access
+ // syntax and not used to form a pointer to member is used in the
+ // body of a non-static member function of class X, if name lookup
+ // resolves the name in the id-expression to a non-static non-type
+ // member of some class C, the id-expression is transformed into a
+ // class member access expression using (*this) as the
+ // postfix-expression to the left of the . operator.
+ //
+ // But we don't actually need to do this for '&' operands if R
+ // resolved to a function or overloaded function set, because the
+ // expression is ill-formed if it actually works out to be a
+ // non-static member function:
+ //
+ // C++ [expr.ref]p4:
+ // Otherwise, if E1.E2 refers to a non-static member function. . .
+ // [t]he expression can be used only as the left-hand operand of a
+ // member function call.
+ //
+ // There are other safeguards against such uses, but it's important
+ // to get this right here so that we don't end up making a
+ // spuriously dependent expression if we're inside a dependent
+ // instance method.
+ if (!R.empty() && (*R.begin())->isCXXClassMember()) {
+ bool MightBeImplicitMember;
+ if (!isAddressOfOperand)
+ MightBeImplicitMember = true;
+ else if (!SS.isEmpty())
+ MightBeImplicitMember = false;
+ else if (R.isOverloadedResult())
+ MightBeImplicitMember = false;
+ else if (R.isUnresolvableResult())
+ MightBeImplicitMember = true;
+ else
+ MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
+ isa<IndirectFieldDecl>(R.getFoundDecl());
+
+ if (MightBeImplicitMember)
+ return BuildPossibleImplicitMemberExpr(SS, R, TemplateArgs);
+ }
+
+ if (TemplateArgs)
+ return BuildTemplateIdExpr(SS, R, ADL, *TemplateArgs);
+
+ return BuildDeclarationNameExpr(SS, R, ADL);
+}
+
+/// Builds an expression which might be an implicit member expression.
+ExprResult
+Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
+ LookupResult &R,
+ const TemplateArgumentListInfo *TemplateArgs) {
+ switch (ClassifyImplicitMemberAccess(*this, R)) {
+ case IMA_Instance:
+ return BuildImplicitMemberExpr(SS, R, TemplateArgs, true);
+
+ case IMA_Mixed:
+ case IMA_Mixed_Unrelated:
+ case IMA_Unresolved:
+ return BuildImplicitMemberExpr(SS, R, TemplateArgs, false);
+
+ case IMA_Static:
+ case IMA_Mixed_StaticContext:
+ case IMA_Unresolved_StaticContext:
+ if (TemplateArgs)
+ return BuildTemplateIdExpr(SS, R, false, *TemplateArgs);
+ return BuildDeclarationNameExpr(SS, R, false);
+
+ case IMA_Error_StaticContext:
+ case IMA_Error_Unrelated:
+ DiagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
+ R.getLookupNameInfo());
+ return ExprError();
+ }
+
+ llvm_unreachable("unexpected instance member access kind");
+ return ExprError();
+}
+
+/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
+/// declaration name, generally during template instantiation.
+/// There's a large number of things which don't need to be done along
+/// this path.
+ExprResult
+Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
+ const DeclarationNameInfo &NameInfo) {
+ DeclContext *DC;
+ if (!(DC = computeDeclContext(SS, false)) || DC->isDependentContext())
+ return BuildDependentDeclRefExpr(SS, NameInfo, 0);
+
+ if (RequireCompleteDeclContext(SS, DC))
+ return ExprError();
+
+ LookupResult R(*this, NameInfo, LookupOrdinaryName);
+ LookupQualifiedName(R, DC);
+
+ if (R.isAmbiguous())
+ return ExprError();
+
+ if (R.empty()) {
+ Diag(NameInfo.getLoc(), diag::err_no_member)
+ << NameInfo.getName() << DC << SS.getRange();
+ return ExprError();
+ }
+
+ return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
+}
+
+/// LookupInObjCMethod - The parser has read a name in, and Sema has
+/// detected that we're currently inside an ObjC method. Perform some
+/// additional lookup.
+///
+/// Ideally, most of this would be done by lookup, but there's
+/// actually quite a lot of extra work involved.
+///
+/// Returns a null sentinel to indicate trivial success.
+ExprResult
+Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
+ IdentifierInfo *II, bool AllowBuiltinCreation) {
+ SourceLocation Loc = Lookup.getNameLoc();
+ ObjCMethodDecl *CurMethod = getCurMethodDecl();
+
+ // There are two cases to handle here. 1) scoped lookup could have failed,
+ // in which case we should look for an ivar. 2) scoped lookup could have
+ // found a decl, but that decl is outside the current instance method (i.e.
+ // a global variable). In these two cases, we do a lookup for an ivar with
+ // this name, if the lookup sucedes, we replace it our current decl.
+
+ // If we're in a class method, we don't normally want to look for
+ // ivars. But if we don't find anything else, and there's an
+ // ivar, that's an error.
+ bool IsClassMethod = CurMethod->isClassMethod();
+
+ bool LookForIvars;
+ if (Lookup.empty())
+ LookForIvars = true;
+ else if (IsClassMethod)
+ LookForIvars = false;
+ else
+ LookForIvars = (Lookup.isSingleResult() &&
+ Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
+ ObjCInterfaceDecl *IFace = 0;
+ if (LookForIvars) {
+ IFace = CurMethod->getClassInterface();
+ ObjCInterfaceDecl *ClassDeclared;
+ if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
+ // Diagnose using an ivar in a class method.
+ if (IsClassMethod)
+ return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
+ << IV->getDeclName());
+
+ // If we're referencing an invalid decl, just return this as a silent
+ // error node. The error diagnostic was already emitted on the decl.
+ if (IV->isInvalidDecl())
+ return ExprError();
+
+ // Check if referencing a field with __attribute__((deprecated)).
+ if (DiagnoseUseOfDecl(IV, Loc))
+ return ExprError();
+
+ // Diagnose the use of an ivar outside of the declaring class.
+ if (IV->getAccessControl() == ObjCIvarDecl::Private &&
+ ClassDeclared != IFace)
+ Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
+
+ // FIXME: This should use a new expr for a direct reference, don't
+ // turn this into Self->ivar, just return a BareIVarExpr or something.
+ IdentifierInfo &II = Context.Idents.get("self");
+ UnqualifiedId SelfName;
+ SelfName.setIdentifier(&II, SourceLocation());
+ CXXScopeSpec SelfScopeSpec;
+ ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec,
+ SelfName, false, false);
+ if (SelfExpr.isInvalid())
+ return ExprError();
+
+ SelfExpr = DefaultLvalueConversion(SelfExpr.take());
+ if (SelfExpr.isInvalid())
+ return ExprError();
+
+ MarkDeclarationReferenced(Loc, IV);
+ Expr *base = SelfExpr.take();
+ base = base->IgnoreParenImpCasts();
+ if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(base)) {
+ const NamedDecl *ND = DE->getDecl();
+ if (!isa<ImplicitParamDecl>(ND)) {
+ // relax the rule such that it is allowed to have a shadow 'self'
+ // where stand-alone ivar can be found in this 'self' object.
+ // This is to match gcc's behavior.
+ ObjCInterfaceDecl *selfIFace = 0;
+ if (const ObjCObjectPointerType *OPT =
+ base->getType()->getAsObjCInterfacePointerType())
+ selfIFace = OPT->getInterfaceDecl();
+ if (!selfIFace ||
+ !selfIFace->lookupInstanceVariable(IV->getIdentifier())) {
+ Diag(Loc, diag::error_implicit_ivar_access)
+ << IV->getDeclName();
+ Diag(ND->getLocation(), diag::note_declared_at);
+ return ExprError();
+ }
+ }
+ }
+ return Owned(new (Context)
+ ObjCIvarRefExpr(IV, IV->getType(), Loc,
+ SelfExpr.take(), true, true));
+ }
+ } else if (CurMethod->isInstanceMethod()) {
+ // We should warn if a local variable hides an ivar.
+ ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
+ ObjCInterfaceDecl *ClassDeclared;
+ if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
+ if (IV->getAccessControl() != ObjCIvarDecl::Private ||
+ IFace == ClassDeclared)
+ Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
+ }
+ }
+
+ if (Lookup.empty() && II && AllowBuiltinCreation) {
+ // FIXME. Consolidate this with similar code in LookupName.
+ if (unsigned BuiltinID = II->getBuiltinID()) {
+ if (!(getLangOptions().CPlusPlus &&
+ Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
+ NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
+ S, Lookup.isForRedeclaration(),
+ Lookup.getNameLoc());
+ if (D) Lookup.addDecl(D);
+ }
+ }
+ }
+ // Sentinel value saying that we didn't do anything special.
+ return Owned((Expr*) 0);
+}
+
+/// \brief Cast a base object to a member's actual type.
+///
+/// Logically this happens in three phases:
+///
+/// * First we cast from the base type to the naming class.
+/// The naming class is the class into which we were looking
+/// when we found the member; it's the qualifier type if a
+/// qualifier was provided, and otherwise it's the base type.
+///
+/// * Next we cast from the naming class to the declaring class.
+/// If the member we found was brought into a class's scope by
+/// a using declaration, this is that class; otherwise it's
+/// the class declaring the member.
+///
+/// * Finally we cast from the declaring class to the "true"
+/// declaring class of the member. This conversion does not
+/// obey access control.
+ExprResult
+Sema::PerformObjectMemberConversion(Expr *From,
+ NestedNameSpecifier *Qualifier,
+ NamedDecl *FoundDecl,
+ NamedDecl *Member) {
+ CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
+ if (!RD)
+ return Owned(From);
+
+ QualType DestRecordType;
+ QualType DestType;
+ QualType FromRecordType;
+ QualType FromType = From->getType();
+ bool PointerConversions = false;
+ if (isa<FieldDecl>(Member)) {
+ DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
+
+ if (FromType->getAs<PointerType>()) {
+ DestType = Context.getPointerType(DestRecordType);
+ FromRecordType = FromType->getPointeeType();
+ PointerConversions = true;
+ } else {
+ DestType = DestRecordType;
+ FromRecordType = FromType;
+ }
+ } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
+ if (Method->isStatic())
+ return Owned(From);
+
+ DestType = Method->getThisType(Context);
+ DestRecordType = DestType->getPointeeType();
+
+ if (FromType->getAs<PointerType>()) {
+ FromRecordType = FromType->getPointeeType();
+ PointerConversions = true;
+ } else {
+ FromRecordType = FromType;
+ DestType = DestRecordType;
+ }
+ } else {
+ // No conversion necessary.
+ return Owned(From);
+ }
+
+ if (DestType->isDependentType() || FromType->isDependentType())
+ return Owned(From);
+
+ // If the unqualified types are the same, no conversion is necessary.
+ if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
+ return Owned(From);
+
+ SourceRange FromRange = From->getSourceRange();
+ SourceLocation FromLoc = FromRange.getBegin();
+
+ ExprValueKind VK = CastCategory(From);
+
+ // C++ [class.member.lookup]p8:
+ // [...] Ambiguities can often be resolved by qualifying a name with its
+ // class name.
+ //
+ // If the member was a qualified name and the qualified referred to a
+ // specific base subobject type, we'll cast to that intermediate type
+ // first and then to the object in which the member is declared. That allows
+ // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
+ //
+ // class Base { public: int x; };
+ // class Derived1 : public Base { };
+ // class Derived2 : public Base { };
+ // class VeryDerived : public Derived1, public Derived2 { void f(); };
+ //
+ // void VeryDerived::f() {
+ // x = 17; // error: ambiguous base subobjects
+ // Derived1::x = 17; // okay, pick the Base subobject of Derived1
+ // }
+ if (Qualifier) {
+ QualType QType = QualType(Qualifier->getAsType(), 0);
+ assert(!QType.isNull() && "lookup done with dependent qualifier?");
+ assert(QType->isRecordType() && "lookup done with non-record type");
+
+ QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
+
+ // In C++98, the qualifier type doesn't actually have to be a base
+ // type of the object type, in which case we just ignore it.
+ // Otherwise build the appropriate casts.
+ if (IsDerivedFrom(FromRecordType, QRecordType)) {
+ CXXCastPath BasePath;
+ if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
+ FromLoc, FromRange, &BasePath))
+ return ExprError();
+
+ if (PointerConversions)
+ QType = Context.getPointerType(QType);
+ From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
+ VK, &BasePath).take();
+
+ FromType = QType;
+ FromRecordType = QRecordType;
+
+ // If the qualifier type was the same as the destination type,
+ // we're done.
+ if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
+ return Owned(From);
+ }
+ }
+
+ bool IgnoreAccess = false;
+
+ // If we actually found the member through a using declaration, cast
+ // down to the using declaration's type.
+ //
+ // Pointer equality is fine here because only one declaration of a
+ // class ever has member declarations.
+ if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
+ assert(isa<UsingShadowDecl>(FoundDecl));
+ QualType URecordType = Context.getTypeDeclType(
+ cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
+
+ // We only need to do this if the naming-class to declaring-class
+ // conversion is non-trivial.
+ if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
+ assert(IsDerivedFrom(FromRecordType, URecordType));
+ CXXCastPath BasePath;
+ if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
+ FromLoc, FromRange, &BasePath))
+ return ExprError();
+
+ QualType UType = URecordType;
+ if (PointerConversions)
+ UType = Context.getPointerType(UType);
+ From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
+ VK, &BasePath).take();
+ FromType = UType;
+ FromRecordType = URecordType;
+ }
+
+ // We don't do access control for the conversion from the
+ // declaring class to the true declaring class.
+ IgnoreAccess = true;
+ }
+
+ CXXCastPath BasePath;
+ if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
+ FromLoc, FromRange, &BasePath,
+ IgnoreAccess))
+ return ExprError();
+
+ return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
+ VK, &BasePath);
+}
+
+/// \brief Build a MemberExpr AST node.
+static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow,
+ const CXXScopeSpec &SS, ValueDecl *Member,
+ DeclAccessPair FoundDecl,
+ const DeclarationNameInfo &MemberNameInfo,
+ QualType Ty,
+ ExprValueKind VK, ExprObjectKind OK,
+ const TemplateArgumentListInfo *TemplateArgs = 0) {
+ return MemberExpr::Create(C, Base, isArrow, SS.getWithLocInContext(C),
+ Member, FoundDecl, MemberNameInfo,
+ TemplateArgs, Ty, VK, OK);
+}
+
+static ExprResult
+BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
+ const CXXScopeSpec &SS, FieldDecl *Field,
+ DeclAccessPair FoundDecl,
+ const DeclarationNameInfo &MemberNameInfo) {
+ // x.a is an l-value if 'a' has a reference type. Otherwise:
+ // x.a is an l-value/x-value/pr-value if the base is (and note
+ // that *x is always an l-value), except that if the base isn't
+ // an ordinary object then we must have an rvalue.
+ ExprValueKind VK = VK_LValue;
+ ExprObjectKind OK = OK_Ordinary;
+ if (!IsArrow) {
+ if (BaseExpr->getObjectKind() == OK_Ordinary)
+ VK = BaseExpr->getValueKind();
+ else
+ VK = VK_RValue;
+ }
+ if (VK != VK_RValue && Field->isBitField())
+ OK = OK_BitField;
+
+ // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
+ QualType MemberType = Field->getType();
+ if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
+ MemberType = Ref->getPointeeType();
+ VK = VK_LValue;
+ } else {
+ QualType BaseType = BaseExpr->getType();
+ if (IsArrow) BaseType = BaseType->getAs<PointerType>()->getPointeeType();
+
+ Qualifiers BaseQuals = BaseType.getQualifiers();
+
+ // GC attributes are never picked up by members.
+ BaseQuals.removeObjCGCAttr();
+
+ // CVR attributes from the base are picked up by members,
+ // except that 'mutable' members don't pick up 'const'.
+ if (Field->isMutable()) BaseQuals.removeConst();
+
+ Qualifiers MemberQuals
+ = S.Context.getCanonicalType(MemberType).getQualifiers();
+
+ // TR 18037 does not allow fields to be declared with address spaces.
+ assert(!MemberQuals.hasAddressSpace());
+
+ Qualifiers Combined = BaseQuals + MemberQuals;
+ if (Combined != MemberQuals)
+ MemberType = S.Context.getQualifiedType(MemberType, Combined);
+ }
+
+ S.MarkDeclarationReferenced(MemberNameInfo.getLoc(), Field);
+ ExprResult Base =
+ S.PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
+ FoundDecl, Field);
+ if (Base.isInvalid())
+ return ExprError();
+ return S.Owned(BuildMemberExpr(S.Context, Base.take(), IsArrow, SS,
+ Field, FoundDecl, MemberNameInfo,
+ MemberType, VK, OK));
+}
+
+/// Builds an implicit member access expression. The current context
+/// is known to be an instance method, and the given unqualified lookup
+/// set is known to contain only instance members, at least one of which
+/// is from an appropriate type.
+ExprResult
+Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
+ LookupResult &R,
+ const TemplateArgumentListInfo *TemplateArgs,
+ bool IsKnownInstance) {
+ assert(!R.empty() && !R.isAmbiguous());
+
+ SourceLocation loc = R.getNameLoc();
+
+ // We may have found a field within an anonymous union or struct
+ // (C++ [class.union]).
+ // FIXME: template-ids inside anonymous structs?
+ if (IndirectFieldDecl *FD = R.getAsSingle<IndirectFieldDecl>())
+ return BuildAnonymousStructUnionMemberReference(SS, R.getNameLoc(), FD);
+
+ // If this is known to be an instance access, go ahead and build an
+ // implicit 'this' expression now.
+ // 'this' expression now.
+ CXXMethodDecl *method = tryCaptureCXXThis();
+ assert(method && "didn't correctly pre-flight capture of 'this'");
+
+ QualType thisType = method->getThisType(Context);
+ Expr *baseExpr = 0; // null signifies implicit access
+ if (IsKnownInstance) {
+ SourceLocation Loc = R.getNameLoc();
+ if (SS.getRange().isValid())
+ Loc = SS.getRange().getBegin();
+ baseExpr = new (Context) CXXThisExpr(loc, thisType, /*isImplicit=*/true);
+ }
+
+ return BuildMemberReferenceExpr(baseExpr, thisType,
+ /*OpLoc*/ SourceLocation(),
+ /*IsArrow*/ true,
+ SS,
+ /*FirstQualifierInScope*/ 0,
+ R, TemplateArgs);
+}
+
+bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
+ const LookupResult &R,
+ bool HasTrailingLParen) {
+ // Only when used directly as the postfix-expression of a call.
+ if (!HasTrailingLParen)
+ return false;
+
+ // Never if a scope specifier was provided.
+ if (SS.isSet())
+ return false;
+
+ // Only in C++ or ObjC++.
+ if (!getLangOptions().CPlusPlus)
+ return false;
+
+ // Turn off ADL when we find certain kinds of declarations during
+ // normal lookup:
+ for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
+ NamedDecl *D = *I;
+
+ // C++0x [basic.lookup.argdep]p3:
+ // -- a declaration of a class member
+ // Since using decls preserve this property, we check this on the
+ // original decl.
+ if (D->isCXXClassMember())
+ return false;
+
+ // C++0x [basic.lookup.argdep]p3:
+ // -- a block-scope function declaration that is not a
+ // using-declaration
+ // NOTE: we also trigger this for function templates (in fact, we
+ // don't check the decl type at all, since all other decl types
+ // turn off ADL anyway).
+ if (isa<UsingShadowDecl>(D))
+ D = cast<UsingShadowDecl>(D)->getTargetDecl();
+ else if (D->getDeclContext()->isFunctionOrMethod())
+ return false;
+
+ // C++0x [basic.lookup.argdep]p3:
+ // -- a declaration that is neither a function or a function
+ // template
+ // And also for builtin functions.
+ if (isa<FunctionDecl>(D)) {
+ FunctionDecl *FDecl = cast<FunctionDecl>(D);
+
+ // But also builtin functions.
+ if (FDecl->getBuiltinID() && FDecl->isImplicit())
+ return false;
+ } else if (!isa<FunctionTemplateDecl>(D))
+ return false;
+ }
+
+ return true;
+}
+
+
+/// Diagnoses obvious problems with the use of the given declaration
+/// as an expression. This is only actually called for lookups that
+/// were not overloaded, and it doesn't promise that the declaration
+/// will in fact be used.
+static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
+ if (isa<TypedefNameDecl>(D)) {
+ S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
+ return true;
+ }
+
+ if (isa<ObjCInterfaceDecl>(D)) {
+ S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
+ return true;
+ }
+
+ if (isa<NamespaceDecl>(D)) {
+ S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
+ return true;
+ }
+
+ return false;
+}
+
+ExprResult
+Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
+ LookupResult &R,
+ bool NeedsADL) {
+ // If this is a single, fully-resolved result and we don't need ADL,
+ // just build an ordinary singleton decl ref.
+ if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
+ return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(),
+ R.getFoundDecl());
+
+ // We only need to check the declaration if there's exactly one
+ // result, because in the overloaded case the results can only be
+ // functions and function templates.
+ if (R.isSingleResult() &&
+ CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
+ return ExprError();
+
+ // Otherwise, just build an unresolved lookup expression. Suppress
+ // any lookup-related diagnostics; we'll hash these out later, when
+ // we've picked a target.
+ R.suppressDiagnostics();
+
+ UnresolvedLookupExpr *ULE
+ = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
+ SS.getWithLocInContext(Context),
+ R.getLookupNameInfo(),
+ NeedsADL, R.isOverloadedResult(),
+ R.begin(), R.end());
+
+ return Owned(ULE);
+}
+
+/// \brief Complete semantic analysis for a reference to the given declaration.
+ExprResult
+Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
+ const DeclarationNameInfo &NameInfo,
+ NamedDecl *D) {
+ assert(D && "Cannot refer to a NULL declaration");
+ assert(!isa<FunctionTemplateDecl>(D) &&
+ "Cannot refer unambiguously to a function template");
+
+ SourceLocation Loc = NameInfo.getLoc();
+ if (CheckDeclInExpr(*this, Loc, D))
+ return ExprError();
+
+ if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
+ // Specifically diagnose references to class templates that are missing
+ // a template argument list.
+ Diag(Loc, diag::err_template_decl_ref)
+ << Template << SS.getRange();
+ Diag(Template->getLocation(), diag::note_template_decl_here);
+ return ExprError();
+ }
+
+ // Make sure that we're referring to a value.
+ ValueDecl *VD = dyn_cast<ValueDecl>(D);
+ if (!VD) {
+ Diag(Loc, diag::err_ref_non_value)
+ << D << SS.getRange();
+ Diag(D->getLocation(), diag::note_declared_at);
+ return ExprError();
+ }
+
+ // Check whether this declaration can be used. Note that we suppress
+ // this check when we're going to perform argument-dependent lookup
+ // on this function name, because this might not be the function
+ // that overload resolution actually selects.
+ if (DiagnoseUseOfDecl(VD, Loc))
+ return ExprError();
+
+ // Only create DeclRefExpr's for valid Decl's.
+ if (VD->isInvalidDecl())
+ return ExprError();
+
+ // Handle members of anonymous structs and unions. If we got here,
+ // and the reference is to a class member indirect field, then this
+ // must be the subject of a pointer-to-member expression.
+ if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
+ if (!indirectField->isCXXClassMember())
+ return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
+ indirectField);
+
+ // If the identifier reference is inside a block, and it refers to a value
+ // that is outside the block, create a BlockDeclRefExpr instead of a
+ // DeclRefExpr. This ensures the value is treated as a copy-in snapshot when
+ // the block is formed.
+ //
+ // We do not do this for things like enum constants, global variables, etc,
+ // as they do not get snapshotted.
+ //
+ switch (shouldCaptureValueReference(*this, NameInfo.getLoc(), VD)) {
+ case CR_Error:
+ return ExprError();
+
+ case CR_Capture:
+ assert(!SS.isSet() && "referenced local variable with scope specifier?");
+ return BuildBlockDeclRefExpr(*this, VD, NameInfo, /*byref*/ false);
+
+ case CR_CaptureByRef:
+ assert(!SS.isSet() && "referenced local variable with scope specifier?");
+ return BuildBlockDeclRefExpr(*this, VD, NameInfo, /*byref*/ true);
+
+ case CR_NoCapture: {
+ // If this reference is not in a block or if the referenced
+ // variable is within the block, create a normal DeclRefExpr.
+
+ QualType type = VD->getType();
+ ExprValueKind valueKind = VK_RValue;
+
+ switch (D->getKind()) {
+ // Ignore all the non-ValueDecl kinds.
+#define ABSTRACT_DECL(kind)
+#define VALUE(type, base)
+#define DECL(type, base) \
+ case Decl::type:
+#include "clang/AST/DeclNodes.inc"
+ llvm_unreachable("invalid value decl kind");
+ return ExprError();
+
+ // These shouldn't make it here.
+ case Decl::ObjCAtDefsField:
+ case Decl::ObjCIvar:
+ llvm_unreachable("forming non-member reference to ivar?");
+ return ExprError();
+
+ // Enum constants are always r-values and never references.
+ // Unresolved using declarations are dependent.
+ case Decl::EnumConstant:
+ case Decl::UnresolvedUsingValue:
+ valueKind = VK_RValue;
+ break;
+
+ // Fields and indirect fields that got here must be for
+ // pointer-to-member expressions; we just call them l-values for
+ // internal consistency, because this subexpression doesn't really
+ // exist in the high-level semantics.
+ case Decl::Field:
+ case Decl::IndirectField:
+ assert(getLangOptions().CPlusPlus &&
+ "building reference to field in C?");
+
+ // These can't have reference type in well-formed programs, but
+ // for internal consistency we do this anyway.
+ type = type.getNonReferenceType();
+ valueKind = VK_LValue;
+ break;
+
+ // Non-type template parameters are either l-values or r-values
+ // depending on the type.
+ case Decl::NonTypeTemplateParm: {
+ if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
+ type = reftype->getPointeeType();
+ valueKind = VK_LValue; // even if the parameter is an r-value reference
+ break;
+ }
+
+ // For non-references, we need to strip qualifiers just in case
+ // the template parameter was declared as 'const int' or whatever.
+ valueKind = VK_RValue;
+ type = type.getUnqualifiedType();
+ break;
+ }
+
+ case Decl::Var:
+ // In C, "extern void blah;" is valid and is an r-value.
+ if (!getLangOptions().CPlusPlus &&
+ !type.hasQualifiers() &&
+ type->isVoidType()) {
+ valueKind = VK_RValue;
+ break;
+ }
+ // fallthrough
+
+ case Decl::ImplicitParam:
+ case Decl::ParmVar:
+ // These are always l-values.
+ valueKind = VK_LValue;
+ type = type.getNonReferenceType();
+ break;
+
+ case Decl::Function: {
+ const FunctionType *fty = type->castAs<FunctionType>();
+
+ // If we're referring to a function with an __unknown_anytype
+ // result type, make the entire expression __unknown_anytype.
+ if (fty->getResultType() == Context.UnknownAnyTy) {
+ type = Context.UnknownAnyTy;
+ valueKind = VK_RValue;
+ break;
+ }
+
+ // Functions are l-values in C++.
+ if (getLangOptions().CPlusPlus) {
+ valueKind = VK_LValue;
+ break;
+ }
+
+ // C99 DR 316 says that, if a function type comes from a
+ // function definition (without a prototype), that type is only
+ // used for checking compatibility. Therefore, when referencing
+ // the function, we pretend that we don't have the full function
+ // type.
+ if (!cast<FunctionDecl>(VD)->hasPrototype() &&
+ isa<FunctionProtoType>(fty))
+ type = Context.getFunctionNoProtoType(fty->getResultType(),
+ fty->getExtInfo());
+
+ // Functions are r-values in C.
+ valueKind = VK_RValue;
+ break;
+ }
+
+ case Decl::CXXMethod:
+ // If we're referring to a method with an __unknown_anytype
+ // result type, make the entire expression __unknown_anytype.
+ // This should only be possible with a type written directly.
+ if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(VD->getType()))
+ if (proto->getResultType() == Context.UnknownAnyTy) {
+ type = Context.UnknownAnyTy;
+ valueKind = VK_RValue;
+ break;
+ }
+
+ // C++ methods are l-values if static, r-values if non-static.
+ if (cast<CXXMethodDecl>(VD)->isStatic()) {
+ valueKind = VK_LValue;
+ break;
+ }
+ // fallthrough
+
+ case Decl::CXXConversion:
+ case Decl::CXXDestructor:
+ case Decl::CXXConstructor:
+ valueKind = VK_RValue;
+ break;
+ }
+
+ return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS);
+ }
+
+ }
+
+ llvm_unreachable("unknown capture result");
+ return ExprError();
+}
+
+ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
+ PredefinedExpr::IdentType IT;
+
+ switch (Kind) {
+ default: assert(0 && "Unknown simple primary expr!");
+ case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
+ case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
+ case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
+ }
+
+ // Pre-defined identifiers are of type char[x], where x is the length of the
+ // string.
+
+ Decl *currentDecl = getCurFunctionOrMethodDecl();
+ if (!currentDecl && getCurBlock())
+ currentDecl = getCurBlock()->TheDecl;
+ if (!currentDecl) {
+ Diag(Loc, diag::ext_predef_outside_function);
+ currentDecl = Context.getTranslationUnitDecl();
+ }
+
+ QualType ResTy;
+ if (cast<DeclContext>(currentDecl)->isDependentContext()) {
+ ResTy = Context.DependentTy;
+ } else {
+ unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
+
+ llvm::APInt LengthI(32, Length + 1);
+ ResTy = Context.CharTy.withConst();
+ ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
+ }
+ return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
+}
+
+ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
+ llvm::SmallString<16> CharBuffer;
+ bool Invalid = false;
+ llvm::StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
+ if (Invalid)
+ return ExprError();
+
+ CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
+ PP);
+ if (Literal.hadError())
+ return ExprError();
+
+ QualType Ty;
+ if (!getLangOptions().CPlusPlus)
+ Ty = Context.IntTy; // 'x' and L'x' -> int in C.
+ else if (Literal.isWide())
+ Ty = Context.WCharTy; // L'x' -> wchar_t in C++.
+ else if (Literal.isMultiChar())
+ Ty = Context.IntTy; // 'wxyz' -> int in C++.
+ else
+ Ty = Context.CharTy; // 'x' -> char in C++
+
+ return Owned(new (Context) CharacterLiteral(Literal.getValue(),
+ Literal.isWide(),
+ Ty, Tok.getLocation()));
+}
+
+ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
+ // Fast path for a single digit (which is quite common). A single digit
+ // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
+ if (Tok.getLength() == 1) {
+ const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
+ unsigned IntSize = Context.Target.getIntWidth();
+ return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val-'0'),
+ Context.IntTy, Tok.getLocation()));
+ }
+
+ llvm::SmallString<512> IntegerBuffer;
+ // Add padding so that NumericLiteralParser can overread by one character.
+ IntegerBuffer.resize(Tok.getLength()+1);
+ const char *ThisTokBegin = &IntegerBuffer[0];
+
+ // Get the spelling of the token, which eliminates trigraphs, etc.
+ bool Invalid = false;
+ unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
+ if (Invalid)
+ return ExprError();
+
+ NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
+ Tok.getLocation(), PP);
+ if (Literal.hadError)
+ return ExprError();
+
+ Expr *Res;
+
+ if (Literal.isFloatingLiteral()) {
+ QualType Ty;
+ if (Literal.isFloat)
+ Ty = Context.FloatTy;
+ else if (!Literal.isLong)
+ Ty = Context.DoubleTy;
+ else
+ Ty = Context.LongDoubleTy;
+
+ const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
+
+ using llvm::APFloat;
+ APFloat Val(Format);
+
+ APFloat::opStatus result = Literal.GetFloatValue(Val);
+
+ // Overflow is always an error, but underflow is only an error if
+ // we underflowed to zero (APFloat reports denormals as underflow).
+ if ((result & APFloat::opOverflow) ||
+ ((result & APFloat::opUnderflow) && Val.isZero())) {
+ unsigned diagnostic;
+ llvm::SmallString<20> buffer;
+ if (result & APFloat::opOverflow) {
+ diagnostic = diag::warn_float_overflow;
+ APFloat::getLargest(Format).toString(buffer);
+ } else {
+ diagnostic = diag::warn_float_underflow;
+ APFloat::getSmallest(Format).toString(buffer);
+ }
+
+ Diag(Tok.getLocation(), diagnostic)
+ << Ty
+ << llvm::StringRef(buffer.data(), buffer.size());
+ }
+
+ bool isExact = (result == APFloat::opOK);
+ Res = FloatingLiteral::Create(Context, Val, isExact, Ty, Tok.getLocation());
+
+ if (Ty == Context.DoubleTy) {
+ if (getLangOptions().SinglePrecisionConstants) {
+ Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
+ } else if (getLangOptions().OpenCL && !getOpenCLOptions().cl_khr_fp64) {
+ Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
+ Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
+ }
+ }
+ } else if (!Literal.isIntegerLiteral()) {
+ return ExprError();
+ } else {
+ QualType Ty;
+
+ // long long is a C99 feature.
+ if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
+ Literal.isLongLong)
+ Diag(Tok.getLocation(), diag::ext_longlong);
+
+ // Get the value in the widest-possible width.
+ llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
+
+ if (Literal.GetIntegerValue(ResultVal)) {
+ // If this value didn't fit into uintmax_t, warn and force to ull.
+ Diag(Tok.getLocation(), diag::warn_integer_too_large);
+ Ty = Context.UnsignedLongLongTy;
+ assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
+ "long long is not intmax_t?");
+ } else {
+ // If this value fits into a ULL, try to figure out what else it fits into
+ // according to the rules of C99 6.4.4.1p5.
+
+ // Octal, Hexadecimal, and integers with a U suffix are allowed to
+ // be an unsigned int.
+ bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
+
+ // Check from smallest to largest, picking the smallest type we can.
+ unsigned Width = 0;
+ if (!Literal.isLong && !Literal.isLongLong) {
+ // Are int/unsigned possibilities?
+ unsigned IntSize = Context.Target.getIntWidth();
+
+ // Does it fit in a unsigned int?
+ if (ResultVal.isIntN(IntSize)) {
+ // Does it fit in a signed int?
+ if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
+ Ty = Context.IntTy;
+ else if (AllowUnsigned)
+ Ty = Context.UnsignedIntTy;
+ Width = IntSize;
+ }
+ }
+
+ // Are long/unsigned long possibilities?
+ if (Ty.isNull() && !Literal.isLongLong) {
+ unsigned LongSize = Context.Target.getLongWidth();
+
+ // Does it fit in a unsigned long?
+ if (ResultVal.isIntN(LongSize)) {
+ // Does it fit in a signed long?
+ if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
+ Ty = Context.LongTy;
+ else if (AllowUnsigned)
+ Ty = Context.UnsignedLongTy;
+ Width = LongSize;
+ }
+ }
+
+ // Finally, check long long if needed.
+ if (Ty.isNull()) {
+ unsigned LongLongSize = Context.Target.getLongLongWidth();
+
+ // Does it fit in a unsigned long long?
+ if (ResultVal.isIntN(LongLongSize)) {
+ // Does it fit in a signed long long?
+ // To be compatible with MSVC, hex integer literals ending with the
+ // LL or i64 suffix are always signed in Microsoft mode.
+ if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
+ (getLangOptions().Microsoft && Literal.isLongLong)))
+ Ty = Context.LongLongTy;
+ else if (AllowUnsigned)
+ Ty = Context.UnsignedLongLongTy;
+ Width = LongLongSize;
+ }
+ }
+
+ // If we still couldn't decide a type, we probably have something that
+ // does not fit in a signed long long, but has no U suffix.
+ if (Ty.isNull()) {
+ Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
+ Ty = Context.UnsignedLongLongTy;
+ Width = Context.Target.getLongLongWidth();
+ }
+
+ if (ResultVal.getBitWidth() != Width)
+ ResultVal = ResultVal.trunc(Width);
+ }
+ Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
+ }
+
+ // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
+ if (Literal.isImaginary)
+ Res = new (Context) ImaginaryLiteral(Res,
+ Context.getComplexType(Res->getType()));
+
+ return Owned(Res);
+}
+
+ExprResult Sema::ActOnParenExpr(SourceLocation L,
+ SourceLocation R, Expr *E) {
+ assert((E != 0) && "ActOnParenExpr() missing expr");
+ return Owned(new (Context) ParenExpr(L, R, E));
+}
+
+/// The UsualUnaryConversions() function is *not* called by this routine.
+/// See C99 6.3.2.1p[2-4] for more details.
+bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType exprType,
+ SourceLocation OpLoc,
+ SourceRange ExprRange,
+ UnaryExprOrTypeTrait ExprKind) {
+ if (exprType->isDependentType())
+ return false;
+
+ // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
+ // the result is the size of the referenced type."
+ // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
+ // result shall be the alignment of the referenced type."
+ if (const ReferenceType *Ref = exprType->getAs<ReferenceType>())
+ exprType = Ref->getPointeeType();
+
+ // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
+ // scalar or vector data type argument..."
+ // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
+ // type (C99 6.2.5p18) or void.
+ if (ExprKind == UETT_VecStep) {
+ if (!(exprType->isArithmeticType() || exprType->isVoidType() ||
+ exprType->isVectorType())) {
+ Diag(OpLoc, diag::err_vecstep_non_scalar_vector_type)
+ << exprType << ExprRange;
+ return true;
+ }
+ }
+
+ // C99 6.5.3.4p1:
+ if (exprType->isFunctionType()) {
+ // alignof(function) is allowed as an extension.
+ if (ExprKind == UETT_SizeOf)
+ Diag(OpLoc, diag::ext_sizeof_function_type)
+ << ExprRange;
+ return false;
+ }
+
+ // Allow sizeof(void)/alignof(void) as an extension. vec_step(void) is not
+ // an extension, as void is a built-in scalar type (OpenCL 1.1 6.1.1).
+ if (exprType->isVoidType()) {
+ if (ExprKind != UETT_VecStep)
+ Diag(OpLoc, diag::ext_sizeof_void_type)
+ << ExprKind << ExprRange;
+ return false;
+ }
+
+ if (RequireCompleteType(OpLoc, exprType,
+ PDiag(diag::err_sizeof_alignof_incomplete_type)
+ << ExprKind << ExprRange))
+ return true;
+
+ // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
+ if (LangOpts.ObjCNonFragileABI && exprType->isObjCObjectType()) {
+ Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
+ << exprType << (ExprKind == UETT_SizeOf)
+ << ExprRange;
+ return true;
+ }
+
+ return false;
+}
+
+static bool CheckAlignOfExpr(Sema &S, Expr *E, SourceLocation OpLoc,
+ SourceRange ExprRange) {
+ E = E->IgnoreParens();
+
+ // alignof decl is always ok.
+ if (isa<DeclRefExpr>(E))
+ return false;
+
+ // Cannot know anything else if the expression is dependent.
+ if (E->isTypeDependent())
+ return false;
+
+ if (E->getBitField()) {
+ S. Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
+ return true;
+ }
+
+ // Alignment of a field access is always okay, so long as it isn't a
+ // bit-field.
+ if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
+ if (isa<FieldDecl>(ME->getMemberDecl()))
+ return false;
+
+ return S.CheckUnaryExprOrTypeTraitOperand(E->getType(), OpLoc, ExprRange,
+ UETT_AlignOf);
+}
+
+bool Sema::CheckVecStepExpr(Expr *E, SourceLocation OpLoc,
+ SourceRange ExprRange) {
+ E = E->IgnoreParens();
+
+ // Cannot know anything else if the expression is dependent.
+ if (E->isTypeDependent())
+ return false;
+
+ return CheckUnaryExprOrTypeTraitOperand(E->getType(), OpLoc, ExprRange,
+ UETT_VecStep);
+}
+
+/// \brief Build a sizeof or alignof expression given a type operand.
+ExprResult
+Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
+ SourceLocation OpLoc,
+ UnaryExprOrTypeTrait ExprKind,
+ SourceRange R) {
+ if (!TInfo)
+ return ExprError();
+
+ QualType T = TInfo->getType();
+
+ if (!T->isDependentType() &&
+ CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
+ return ExprError();
+
+ // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
+ return Owned(new (Context) UnaryExprOrTypeTraitExpr(ExprKind, TInfo,
+ Context.getSizeType(),
+ OpLoc, R.getEnd()));
+}
+
+/// \brief Build a sizeof or alignof expression given an expression
+/// operand.
+ExprResult
+Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
+ UnaryExprOrTypeTrait ExprKind,
+ SourceRange R) {
+ // Verify that the operand is valid.
+ bool isInvalid = false;
+ if (E->isTypeDependent()) {
+ // Delay type-checking for type-dependent expressions.
+ } else if (ExprKind == UETT_AlignOf) {
+ isInvalid = CheckAlignOfExpr(*this, E, OpLoc, R);
+ } else if (ExprKind == UETT_VecStep) {
+ isInvalid = CheckVecStepExpr(E, OpLoc, R);
+ } else if (E->getBitField()) { // C99 6.5.3.4p1.
+ Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
+ isInvalid = true;
+ } else if (E->getType()->isPlaceholderType()) {
+ ExprResult PE = CheckPlaceholderExpr(E);
+ if (PE.isInvalid()) return ExprError();
+ return CreateUnaryExprOrTypeTraitExpr(PE.take(), OpLoc, ExprKind, R);
+ } else {
+ isInvalid = CheckUnaryExprOrTypeTraitOperand(E->getType(), OpLoc, R,
+ UETT_SizeOf);
+ }
+
+ if (isInvalid)
+ return ExprError();
+
+ // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
+ return Owned(new (Context) UnaryExprOrTypeTraitExpr(ExprKind, E,
+ Context.getSizeType(),
+ OpLoc, R.getEnd()));
+}
+
+/// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
+/// expr and the same for @c alignof and @c __alignof
+/// Note that the ArgRange is invalid if isType is false.
+ExprResult
+Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
+ UnaryExprOrTypeTrait ExprKind, bool isType,
+ void *TyOrEx, const SourceRange &ArgRange) {
+ // If error parsing type, ignore.
+ if (TyOrEx == 0) return ExprError();
+
+ if (isType) {
+ TypeSourceInfo *TInfo;
+ (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
+ return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
+ }
+
+ Expr *ArgEx = (Expr *)TyOrEx;
+ ExprResult Result
+ = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind,
+ ArgEx->getSourceRange());
+
+ return move(Result);
+}
+
+static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
+ bool isReal) {
+ if (V.get()->isTypeDependent())
+ return S.Context.DependentTy;
+
+ // _Real and _Imag are only l-values for normal l-values.
+ if (V.get()->getObjectKind() != OK_Ordinary) {
+ V = S.DefaultLvalueConversion(V.take());
+ if (V.isInvalid())
+ return QualType();
+ }
+
+ // These operators return the element type of a complex type.
+ if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
+ return CT->getElementType();
+
+ // Otherwise they pass through real integer and floating point types here.
+ if (V.get()->getType()->isArithmeticType())
+ return V.get()->getType();
+
+ // Test for placeholders.
+ ExprResult PR = S.CheckPlaceholderExpr(V.get());
+ if (PR.isInvalid()) return QualType();
+ if (PR.get() != V.get()) {
+ V = move(PR);
+ return CheckRealImagOperand(S, V, Loc, isReal);
+ }
+
+ // Reject anything else.
+ S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
+ << (isReal ? "__real" : "__imag");
+ return QualType();
+}
+
+
+
+ExprResult
+Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
+ tok::TokenKind Kind, Expr *Input) {
+ UnaryOperatorKind Opc;
+ switch (Kind) {
+ default: assert(0 && "Unknown unary op!");
+ case tok::plusplus: Opc = UO_PostInc; break;
+ case tok::minusminus: Opc = UO_PostDec; break;
+ }
+
+ return BuildUnaryOp(S, OpLoc, Opc, Input);
+}
+
+/// Expressions of certain arbitrary types are forbidden by C from
+/// having l-value type. These are:
+/// - 'void', but not qualified void
+/// - function types
+///
+/// The exact rule here is C99 6.3.2.1:
+/// An lvalue is an expression with an object type or an incomplete
+/// type other than void.
+static bool IsCForbiddenLValueType(ASTContext &C, QualType T) {
+ return ((T->isVoidType() && !T.hasQualifiers()) ||
+ T->isFunctionType());
+}
+
+ExprResult
+Sema::ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
+ Expr *Idx, SourceLocation RLoc) {
+ // Since this might be a postfix expression, get rid of ParenListExprs.
+ ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
+ if (Result.isInvalid()) return ExprError();
+ Base = Result.take();
+
+ Expr *LHSExp = Base, *RHSExp = Idx;
+
+ if (getLangOptions().CPlusPlus &&
+ (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
+ return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
+ Context.DependentTy,
+ VK_LValue, OK_Ordinary,
+ RLoc));
+ }
+
+ if (getLangOptions().CPlusPlus &&
+ (LHSExp->getType()->isRecordType() ||
+ LHSExp->getType()->isEnumeralType() ||
+ RHSExp->getType()->isRecordType() ||
+ RHSExp->getType()->isEnumeralType())) {
+ return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, Base, Idx);
+ }
+
+ return CreateBuiltinArraySubscriptExpr(Base, LLoc, Idx, RLoc);
+}
+
+
+ExprResult
+Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
+ Expr *Idx, SourceLocation RLoc) {
+ Expr *LHSExp = Base;
+ Expr *RHSExp = Idx;
+
+ // Perform default conversions.
+ if (!LHSExp->getType()->getAs<VectorType>()) {
+ ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
+ if (Result.isInvalid())
+ return ExprError();
+ LHSExp = Result.take();
+ }
+ ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
+ if (Result.isInvalid())
+ return ExprError();
+ RHSExp = Result.take();
+
+ QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
+ ExprValueKind VK = VK_LValue;
+ ExprObjectKind OK = OK_Ordinary;
+
+ // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
+ // to the expression *((e1)+(e2)). This means the array "Base" may actually be
+ // in the subscript position. As a result, we need to derive the array base
+ // and index from the expression types.
+ Expr *BaseExpr, *IndexExpr;
+ QualType ResultType;
+ if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
+ BaseExpr = LHSExp;
+ IndexExpr = RHSExp;
+ ResultType = Context.DependentTy;
+ } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
+ BaseExpr = LHSExp;
+ IndexExpr = RHSExp;
+ ResultType = PTy->getPointeeType();
+ } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
+ // Handle the uncommon case of "123[Ptr]".
+ BaseExpr = RHSExp;
+ IndexExpr = LHSExp;
+ ResultType = PTy->getPointeeType();
+ } else if (const ObjCObjectPointerType *PTy =
+ LHSTy->getAs<ObjCObjectPointerType>()) {
+ BaseExpr = LHSExp;
+ IndexExpr = RHSExp;
+ ResultType = PTy->getPointeeType();
+ } else if (const ObjCObjectPointerType *PTy =
+ RHSTy->getAs<ObjCObjectPointerType>()) {
+ // Handle the uncommon case of "123[Ptr]".
+ BaseExpr = RHSExp;
+ IndexExpr = LHSExp;
+ ResultType = PTy->getPointeeType();
+ } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
+ BaseExpr = LHSExp; // vectors: V[123]
+ IndexExpr = RHSExp;
+ VK = LHSExp->getValueKind();
+ if (VK != VK_RValue)
+ OK = OK_VectorComponent;
+
+ // FIXME: need to deal with const...
+ ResultType = VTy->getElementType();
+ } else if (LHSTy->isArrayType()) {
+ // If we see an array that wasn't promoted by
+ // DefaultFunctionArrayLvalueConversion, it must be an array that
+ // wasn't promoted because of the C90 rule that doesn't
+ // allow promoting non-lvalue arrays. Warn, then
+ // force the promotion here.
+ Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
+ LHSExp->getSourceRange();
+ LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
+ CK_ArrayToPointerDecay).take();
+ LHSTy = LHSExp->getType();
+
+ BaseExpr = LHSExp;
+ IndexExpr = RHSExp;
+ ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
+ } else if (RHSTy->isArrayType()) {
+ // Same as previous, except for 123[f().a] case
+ Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
+ RHSExp->getSourceRange();
+ RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
+ CK_ArrayToPointerDecay).take();
+ RHSTy = RHSExp->getType();
+
+ BaseExpr = RHSExp;
+ IndexExpr = LHSExp;
+ ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
+ } else {
+ return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
+ << LHSExp->getSourceRange() << RHSExp->getSourceRange());
+ }
+ // C99 6.5.2.1p1
+ if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
+ return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
+ << IndexExpr->getSourceRange());
+
+ if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
+ IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
+ && !IndexExpr->isTypeDependent())
+ Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
+
+ // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
+ // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
+ // type. Note that Functions are not objects, and that (in C99 parlance)
+ // incomplete types are not object types.
+ if (ResultType->isFunctionType()) {
+ Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
+ << ResultType << BaseExpr->getSourceRange();
+ return ExprError();
+ }
+
+ if (ResultType->isVoidType() && !getLangOptions().CPlusPlus) {
+ // GNU extension: subscripting on pointer to void
+ Diag(LLoc, diag::ext_gnu_void_ptr)
+ << BaseExpr->getSourceRange();
+
+ // C forbids expressions of unqualified void type from being l-values.
+ // See IsCForbiddenLValueType.
+ if (!ResultType.hasQualifiers()) VK = VK_RValue;
+ } else if (!ResultType->isDependentType() &&
+ RequireCompleteType(LLoc, ResultType,
+ PDiag(diag::err_subscript_incomplete_type)
+ << BaseExpr->getSourceRange()))
+ return ExprError();
+
+ // Diagnose bad cases where we step over interface counts.
+ if (ResultType->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
+ Diag(LLoc, diag::err_subscript_nonfragile_interface)
+ << ResultType << BaseExpr->getSourceRange();
+ return ExprError();
+ }
+
+ assert(VK == VK_RValue || LangOpts.CPlusPlus ||
+ !IsCForbiddenLValueType(Context, ResultType));
+
+ return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
+ ResultType, VK, OK, RLoc));
+}
+
+/// Check an ext-vector component access expression.
+///
+/// VK should be set in advance to the value kind of the base
+/// expression.
+static QualType
+CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
+ SourceLocation OpLoc, const IdentifierInfo *CompName,
+ SourceLocation CompLoc) {
+ // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
+ // see FIXME there.
+ //
+ // FIXME: This logic can be greatly simplified by splitting it along
+ // halving/not halving and reworking the component checking.
+ const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
+
+ // The vector accessor can't exceed the number of elements.
+ const char *compStr = CompName->getNameStart();
+
+ // This flag determines whether or not the component is one of the four
+ // special names that indicate a subset of exactly half the elements are
+ // to be selected.
+ bool HalvingSwizzle = false;
+
+ // This flag determines whether or not CompName has an 's' char prefix,
+ // indicating that it is a string of hex values to be used as vector indices.
+ bool HexSwizzle = *compStr == 's' || *compStr == 'S';
+
+ bool HasRepeated = false;
+ bool HasIndex[16] = {};
+
+ int Idx;
+
+ // Check that we've found one of the special components, or that the component
+ // names must come from the same set.
+ if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
+ !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
+ HalvingSwizzle = true;
+ } else if (!HexSwizzle &&
+ (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
+ do {
+ if (HasIndex[Idx]) HasRepeated = true;
+ HasIndex[Idx] = true;
+ compStr++;
+ } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
+ } else {
+ if (HexSwizzle) compStr++;
+ while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
+ if (HasIndex[Idx]) HasRepeated = true;
+ HasIndex[Idx] = true;
+ compStr++;
+ }
+ }
+
+ if (!HalvingSwizzle && *compStr) {
+ // We didn't get to the end of the string. This means the component names
+ // didn't come from the same set *or* we encountered an illegal name.
+ S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
+ << llvm::StringRef(compStr, 1) << SourceRange(CompLoc);
+ return QualType();
+ }
+
+ // Ensure no component accessor exceeds the width of the vector type it
+ // operates on.
+ if (!HalvingSwizzle) {
+ compStr = CompName->getNameStart();
+
+ if (HexSwizzle)
+ compStr++;
+
+ while (*compStr) {
+ if (!vecType->isAccessorWithinNumElements(*compStr++)) {
+ S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
+ << baseType << SourceRange(CompLoc);
+ return QualType();
+ }
+ }
+ }
+
+ // The component accessor looks fine - now we need to compute the actual type.
+ // The vector type is implied by the component accessor. For example,
+ // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
+ // vec4.s0 is a float, vec4.s23 is a vec3, etc.
+ // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
+ unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
+ : CompName->getLength();
+ if (HexSwizzle)
+ CompSize--;
+
+ if (CompSize == 1)
+ return vecType->getElementType();
+
+ if (HasRepeated) VK = VK_RValue;
+
+ QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
+ // Now look up the TypeDefDecl from the vector type. Without this,
+ // diagostics look bad. We want extended vector types to appear built-in.
+ for (unsigned i = 0, E = S.ExtVectorDecls.size(); i != E; ++i) {
+ if (S.ExtVectorDecls[i]->getUnderlyingType() == VT)
+ return S.Context.getTypedefType(S.ExtVectorDecls[i]);
+ }
+ return VT; // should never get here (a typedef type should always be found).
+}
+
+static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
+ IdentifierInfo *Member,
+ const Selector &Sel,
+ ASTContext &Context) {
+ if (Member)
+ if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
+ return PD;
+ if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
+ return OMD;
+
+ for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
+ E = PDecl->protocol_end(); I != E; ++I) {
+ if (Decl *D = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
+ Context))
+ return D;
+ }
+ return 0;
+}
+
+static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
+ IdentifierInfo *Member,
+ const Selector &Sel,
+ ASTContext &Context) {
+ // Check protocols on qualified interfaces.
+ Decl *GDecl = 0;
+ for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
+ E = QIdTy->qual_end(); I != E; ++I) {
+ if (Member)
+ if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
+ GDecl = PD;
+ break;
+ }
+ // Also must look for a getter or setter name which uses property syntax.
+ if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
+ GDecl = OMD;
+ break;
+ }
+ }
+ if (!GDecl) {
+ for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
+ E = QIdTy->qual_end(); I != E; ++I) {
+ // Search in the protocol-qualifier list of current protocol.
+ GDecl = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
+ Context);
+ if (GDecl)
+ return GDecl;
+ }
+ }
+ return GDecl;
+}
+
+ExprResult
+Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
+ bool IsArrow, SourceLocation OpLoc,
+ const CXXScopeSpec &SS,
+ NamedDecl *FirstQualifierInScope,
+ const DeclarationNameInfo &NameInfo,
+ const TemplateArgumentListInfo *TemplateArgs) {
+ // Even in dependent contexts, try to diagnose base expressions with
+ // obviously wrong types, e.g.:
+ //
+ // T* t;
+ // t.f;
+ //
+ // In Obj-C++, however, the above expression is valid, since it could be
+ // accessing the 'f' property if T is an Obj-C interface. The extra check
+ // allows this, while still reporting an error if T is a struct pointer.
+ if (!IsArrow) {
+ const PointerType *PT = BaseType->getAs<PointerType>();
+ if (PT && (!getLangOptions().ObjC1 ||
+ PT->getPointeeType()->isRecordType())) {
+ assert(BaseExpr && "cannot happen with implicit member accesses");
+ Diag(NameInfo.getLoc(), diag::err_typecheck_member_reference_struct_union)
+ << BaseType << BaseExpr->getSourceRange();
+ return ExprError();
+ }
+ }
+
+ assert(BaseType->isDependentType() ||
+ NameInfo.getName().isDependentName() ||
+ isDependentScopeSpecifier(SS));
+
+ // Get the type being accessed in BaseType. If this is an arrow, the BaseExpr
+ // must have pointer type, and the accessed type is the pointee.
+ return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType,
+ IsArrow, OpLoc,
+ SS.getWithLocInContext(Context),
+ FirstQualifierInScope,
+ NameInfo, TemplateArgs));
+}
+
+/// We know that the given qualified member reference points only to
+/// declarations which do not belong to the static type of the base
+/// expression. Diagnose the problem.
+static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
+ Expr *BaseExpr,
+ QualType BaseType,
+ const CXXScopeSpec &SS,
+ NamedDecl *rep,
+ const DeclarationNameInfo &nameInfo) {
+ // If this is an implicit member access, use a different set of
+ // diagnostics.
+ if (!BaseExpr)
+ return DiagnoseInstanceReference(SemaRef, SS, rep, nameInfo);
+
+ SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
+ << SS.getRange() << rep << BaseType;
+}
+
+// Check whether the declarations we found through a nested-name
+// specifier in a member expression are actually members of the base
+// type. The restriction here is:
+//
+// C++ [expr.ref]p2:
+// ... In these cases, the id-expression shall name a
+// member of the class or of one of its base classes.
+//
+// So it's perfectly legitimate for the nested-name specifier to name
+// an unrelated class, and for us to find an overload set including
+// decls from classes which are not superclasses, as long as the decl
+// we actually pick through overload resolution is from a superclass.
+bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
+ QualType BaseType,
+ const CXXScopeSpec &SS,
+ const LookupResult &R) {
+ const RecordType *BaseRT = BaseType->getAs<RecordType>();
+ if (!BaseRT) {
+ // We can't check this yet because the base type is still
+ // dependent.
+ assert(BaseType->isDependentType());
+ return false;
+ }
+ CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
+
+ for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
+ // If this is an implicit member reference and we find a
+ // non-instance member, it's not an error.
+ if (!BaseExpr && !(*I)->isCXXInstanceMember())
+ return false;
+
+ // Note that we use the DC of the decl, not the underlying decl.
+ DeclContext *DC = (*I)->getDeclContext();
+ while (DC->isTransparentContext())
+ DC = DC->getParent();
+
+ if (!DC->isRecord())
+ continue;
+
+ llvm::SmallPtrSet<CXXRecordDecl*,4> MemberRecord;
+ MemberRecord.insert(cast<CXXRecordDecl>(DC)->getCanonicalDecl());
+
+ if (!IsProvablyNotDerivedFrom(*this, BaseRecord, MemberRecord))
+ return false;
+ }
+
+ DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
+ R.getRepresentativeDecl(),
+ R.getLookupNameInfo());
+ return true;
+}
+
+static bool
+LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
+ SourceRange BaseRange, const RecordType *RTy,
+ SourceLocation OpLoc, CXXScopeSpec &SS,
+ bool HasTemplateArgs) {
+ RecordDecl *RDecl = RTy->getDecl();
+ if (SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
+ SemaRef.PDiag(diag::err_typecheck_incomplete_tag)
+ << BaseRange))
+ return true;
+
+ if (HasTemplateArgs) {
+ // LookupTemplateName doesn't expect these both to exist simultaneously.
+ QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
+
+ bool MOUS;
+ SemaRef.LookupTemplateName(R, 0, SS, ObjectType, false, MOUS);
+ return false;
+ }
+
+ DeclContext *DC = RDecl;
+ if (SS.isSet()) {
+ // If the member name was a qualified-id, look into the
+ // nested-name-specifier.
+ DC = SemaRef.computeDeclContext(SS, false);
+
+ if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
+ SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
+ << SS.getRange() << DC;
+ return true;
+ }
+
+ assert(DC && "Cannot handle non-computable dependent contexts in lookup");
+
+ if (!isa<TypeDecl>(DC)) {
+ SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
+ << DC << SS.getRange();
+ return true;
+ }
+ }
+
+ // The record definition is complete, now look up the member.
+ SemaRef.LookupQualifiedName(R, DC);
+
+ if (!R.empty())
+ return false;
+
+ // We didn't find anything with the given name, so try to correct
+ // for typos.
+ DeclarationName Name = R.getLookupName();
+ if (SemaRef.CorrectTypo(R, 0, &SS, DC, false, Sema::CTC_MemberLookup) &&
+ !R.empty() &&
+ (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin()))) {
+ SemaRef.Diag(R.getNameLoc(), diag::err_no_member_suggest)
+ << Name << DC << R.getLookupName() << SS.getRange()
+ << FixItHint::CreateReplacement(R.getNameLoc(),
+ R.getLookupName().getAsString());
+ if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
+ SemaRef.Diag(ND->getLocation(), diag::note_previous_decl)
+ << ND->getDeclName();
+ return false;
+ } else {
+ R.clear();
+ R.setLookupName(Name);
+ }
+
+ return false;
+}
+
+ExprResult
+Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
+ SourceLocation OpLoc, bool IsArrow,
+ CXXScopeSpec &SS,
+ NamedDecl *FirstQualifierInScope,
+ const DeclarationNameInfo &NameInfo,
+ const TemplateArgumentListInfo *TemplateArgs) {
+ if (BaseType->isDependentType() ||
+ (SS.isSet() && isDependentScopeSpecifier(SS)))
+ return ActOnDependentMemberExpr(Base, BaseType,
+ IsArrow, OpLoc,
+ SS, FirstQualifierInScope,
+ NameInfo, TemplateArgs);
+
+ LookupResult R(*this, NameInfo, LookupMemberName);
+
+ // Implicit member accesses.
+ if (!Base) {
+ QualType RecordTy = BaseType;
+ if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
+ if (LookupMemberExprInRecord(*this, R, SourceRange(),
+ RecordTy->getAs<RecordType>(),
+ OpLoc, SS, TemplateArgs != 0))
+ return ExprError();
+
+ // Explicit member accesses.
+ } else {
+ ExprResult BaseResult = Owned(Base);
+ ExprResult Result =
+ LookupMemberExpr(R, BaseResult, IsArrow, OpLoc,
+ SS, /*ObjCImpDecl*/ 0, TemplateArgs != 0);
+
+ if (BaseResult.isInvalid())
+ return ExprError();
+ Base = BaseResult.take();
+
+ if (Result.isInvalid()) {
+ Owned(Base);
+ return ExprError();
+ }
+
+ if (Result.get())
+ return move(Result);
+
+ // LookupMemberExpr can modify Base, and thus change BaseType
+ BaseType = Base->getType();
+ }
+
+ return BuildMemberReferenceExpr(Base, BaseType,
+ OpLoc, IsArrow, SS, FirstQualifierInScope,
+ R, TemplateArgs);
+}
+
+ExprResult
+Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
+ SourceLocation OpLoc, bool IsArrow,
+ const CXXScopeSpec &SS,
+ NamedDecl *FirstQualifierInScope,
+ LookupResult &R,
+ const TemplateArgumentListInfo *TemplateArgs,
+ bool SuppressQualifierCheck) {
+ QualType BaseType = BaseExprType;
+ if (IsArrow) {
+ assert(BaseType->isPointerType());
+ BaseType = BaseType->getAs<PointerType>()->getPointeeType();
+ }
+ R.setBaseObjectType(BaseType);
+
+ const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
+ DeclarationName MemberName = MemberNameInfo.getName();
+ SourceLocation MemberLoc = MemberNameInfo.getLoc();
+
+ if (R.isAmbiguous())
+ return ExprError();
+
+ if (R.empty()) {
+ // Rederive where we looked up.
+ DeclContext *DC = (SS.isSet()
+ ? computeDeclContext(SS, false)
+ : BaseType->getAs<RecordType>()->getDecl());
+
+ Diag(R.getNameLoc(), diag::err_no_member)
+ << MemberName << DC
+ << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
+ return ExprError();
+ }
+
+ // Diagnose lookups that find only declarations from a non-base
+ // type. This is possible for either qualified lookups (which may
+ // have been qualified with an unrelated type) or implicit member
+ // expressions (which were found with unqualified lookup and thus
+ // may have come from an enclosing scope). Note that it's okay for
+ // lookup to find declarations from a non-base type as long as those
+ // aren't the ones picked by overload resolution.
+ if ((SS.isSet() || !BaseExpr ||
+ (isa<CXXThisExpr>(BaseExpr) &&
+ cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
+ !SuppressQualifierCheck &&
+ CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
+ return ExprError();
+
+ // Construct an unresolved result if we in fact got an unresolved
+ // result.
+ if (R.isOverloadedResult() || R.isUnresolvableResult()) {
+ // Suppress any lookup-related diagnostics; we'll do these when we
+ // pick a member.
+ R.suppressDiagnostics();
+
+ UnresolvedMemberExpr *MemExpr
+ = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
+ BaseExpr, BaseExprType,
+ IsArrow, OpLoc,
+ SS.getWithLocInContext(Context),
+ MemberNameInfo,
+ TemplateArgs, R.begin(), R.end());
+
+ return Owned(MemExpr);
+ }
+
+ assert(R.isSingleResult());
+ DeclAccessPair FoundDecl = R.begin().getPair();
+ NamedDecl *MemberDecl = R.getFoundDecl();
+
+ // FIXME: diagnose the presence of template arguments now.
+
+ // If the decl being referenced had an error, return an error for this
+ // sub-expr without emitting another error, in order to avoid cascading
+ // error cases.
+ if (MemberDecl->isInvalidDecl())
+ return ExprError();
+
+ // Handle the implicit-member-access case.
+ if (!BaseExpr) {
+ // If this is not an instance member, convert to a non-member access.
+ if (!MemberDecl->isCXXInstanceMember())
+ return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl);
+
+ SourceLocation Loc = R.getNameLoc();
+ if (SS.getRange().isValid())
+ Loc = SS.getRange().getBegin();
+ BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
+ }
+
+ bool ShouldCheckUse = true;
+ if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
+ // Don't diagnose the use of a virtual member function unless it's
+ // explicitly qualified.
+ if (MD->isVirtual() && !SS.isSet())
+ ShouldCheckUse = false;
+ }
+
+ // Check the use of this member.
+ if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) {
+ Owned(BaseExpr);
+ return ExprError();
+ }
+
+ // Perform a property load on the base regardless of whether we
+ // actually need it for the declaration.
+ if (BaseExpr->getObjectKind() == OK_ObjCProperty) {
+ ExprResult Result = ConvertPropertyForRValue(BaseExpr);
+ if (Result.isInvalid())
+ return ExprError();
+ BaseExpr = Result.take();
+ }
+
+ if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
+ return BuildFieldReferenceExpr(*this, BaseExpr, IsArrow,
+ SS, FD, FoundDecl, MemberNameInfo);
+
+ if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
+ // We may have found a field within an anonymous union or struct
+ // (C++ [class.union]).
+ return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
+ BaseExpr, OpLoc);
+
+ if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
+ MarkDeclarationReferenced(MemberLoc, Var);
+ return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
+ Var, FoundDecl, MemberNameInfo,
+ Var->getType().getNonReferenceType(),
+ VK_LValue, OK_Ordinary));
+ }
+
+ if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
+ ExprValueKind valueKind;
+ QualType type;
+ if (MemberFn->isInstance()) {
+ valueKind = VK_RValue;
+ type = Context.BoundMemberTy;
+ } else {
+ valueKind = VK_LValue;
+ type = MemberFn->getType();
+ }
+
+ MarkDeclarationReferenced(MemberLoc, MemberDecl);
+ return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
+ MemberFn, FoundDecl, MemberNameInfo,
+ type, valueKind, OK_Ordinary));
+ }
+ assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
+
+ if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
+ MarkDeclarationReferenced(MemberLoc, MemberDecl);
+ return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
+ Enum, FoundDecl, MemberNameInfo,
+ Enum->getType(), VK_RValue, OK_Ordinary));
+ }
+
+ Owned(BaseExpr);
+
+ // We found something that we didn't expect. Complain.
+ if (isa<TypeDecl>(MemberDecl))
+ Diag(MemberLoc, diag::err_typecheck_member_reference_type)
+ << MemberName << BaseType << int(IsArrow);
+ else
+ Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
+ << MemberName << BaseType << int(IsArrow);
+
+ Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
+ << MemberName;
+ R.suppressDiagnostics();
+ return ExprError();
+}
+
+/// Given that normal member access failed on the given expression,
+/// and given that the expression's type involves builtin-id or
+/// builtin-Class, decide whether substituting in the redefinition
+/// types would be profitable. The redefinition type is whatever
+/// this translation unit tried to typedef to id/Class; we store
+/// it to the side and then re-use it in places like this.
+static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) {
+ const ObjCObjectPointerType *opty
+ = base.get()->getType()->getAs<ObjCObjectPointerType>();
+ if (!opty) return false;
+
+ const ObjCObjectType *ty = opty->getObjectType();
+
+ QualType redef;
+ if (ty->isObjCId()) {
+ redef = S.Context.ObjCIdRedefinitionType;
+ } else if (ty->isObjCClass()) {
+ redef = S.Context.ObjCClassRedefinitionType;
+ } else {
+ return false;
+ }
+
+ // Do the substitution as long as the redefinition type isn't just a
+ // possibly-qualified pointer to builtin-id or builtin-Class again.
+ opty = redef->getAs<ObjCObjectPointerType>();
+ if (opty && !opty->getObjectType()->getInterface() != 0)
+ return false;
+
+ base = S.ImpCastExprToType(base.take(), redef, CK_BitCast);
+ return true;
+}
+
+/// Look up the given member of the given non-type-dependent
+/// expression. This can return in one of two ways:
+/// * If it returns a sentinel null-but-valid result, the caller will
+/// assume that lookup was performed and the results written into
+/// the provided structure. It will take over from there.
+/// * Otherwise, the returned expression will be produced in place of
+/// an ordinary member expression.
+///
+/// The ObjCImpDecl bit is a gross hack that will need to be properly
+/// fixed for ObjC++.
+ExprResult
+Sema::LookupMemberExpr(LookupResult &R, ExprResult &BaseExpr,
+ bool &IsArrow, SourceLocation OpLoc,
+ CXXScopeSpec &SS,
+ Decl *ObjCImpDecl, bool HasTemplateArgs) {
+ assert(BaseExpr.get() && "no base expression");
+
+ // Perform default conversions.
+ BaseExpr = DefaultFunctionArrayConversion(BaseExpr.take());
+
+ if (IsArrow) {
+ BaseExpr = DefaultLvalueConversion(BaseExpr.take());
+ if (BaseExpr.isInvalid())
+ return ExprError();
+ }
+
+ QualType BaseType = BaseExpr.get()->getType();
+ assert(!BaseType->isDependentType());
+
+ DeclarationName MemberName = R.getLookupName();
+ SourceLocation MemberLoc = R.getNameLoc();
+
+ // For later type-checking purposes, turn arrow accesses into dot
+ // accesses. The only access type we support that doesn't follow
+ // the C equivalence "a->b === (*a).b" is ObjC property accesses,
+ // and those never use arrows, so this is unaffected.
+ if (IsArrow) {
+ if (const PointerType *Ptr = BaseType->getAs<PointerType>())
+ BaseType = Ptr->getPointeeType();
+ else if (const ObjCObjectPointerType *Ptr
+ = BaseType->getAs<ObjCObjectPointerType>())
+ BaseType = Ptr->getPointeeType();
+ else if (BaseType->isRecordType()) {
+ // Recover from arrow accesses to records, e.g.:
+ // struct MyRecord foo;
+ // foo->bar
+ // This is actually well-formed in C++ if MyRecord has an
+ // overloaded operator->, but that should have been dealt with
+ // by now.
+ Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
+ << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
+ << FixItHint::CreateReplacement(OpLoc, ".");
+ IsArrow = false;
+ } else if (BaseType == Context.BoundMemberTy) {
+ goto fail;
+ } else {
+ Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
+ << BaseType << BaseExpr.get()->getSourceRange();
+ return ExprError();
+ }
+ }
+
+ // Handle field access to simple records.
+ if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
+ if (LookupMemberExprInRecord(*this, R, BaseExpr.get()->getSourceRange(),
+ RTy, OpLoc, SS, HasTemplateArgs))
+ return ExprError();
+
+ // Returning valid-but-null is how we indicate to the caller that
+ // the lookup result was filled in.
+ return Owned((Expr*) 0);
+ }
+
+ // Handle ivar access to Objective-C objects.
+ if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
+ IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
+
+ // There are three cases for the base type:
+ // - builtin id (qualified or unqualified)
+ // - builtin Class (qualified or unqualified)
+ // - an interface
+ ObjCInterfaceDecl *IDecl = OTy->getInterface();
+ if (!IDecl) {
+ // There's an implicit 'isa' ivar on all objects.
+ // But we only actually find it this way on objects of type 'id',
+ // apparently.
+ if (OTy->isObjCId() && Member->isStr("isa"))
+ return Owned(new (Context) ObjCIsaExpr(BaseExpr.take(), IsArrow, MemberLoc,
+ Context.getObjCClassType()));
+
+ if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
+ return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
+ ObjCImpDecl, HasTemplateArgs);
+ goto fail;
+ }
+
+ ObjCInterfaceDecl *ClassDeclared;
+ ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
+
+ if (!IV) {
+ // Attempt to correct for typos in ivar names.
+ LookupResult Res(*this, R.getLookupName(), R.getNameLoc(),
+ LookupMemberName);
+ if (CorrectTypo(Res, 0, 0, IDecl, false,
+ IsArrow ? CTC_ObjCIvarLookup
+ : CTC_ObjCPropertyLookup) &&
+ (IV = Res.getAsSingle<ObjCIvarDecl>())) {
+ Diag(R.getNameLoc(),
+ diag::err_typecheck_member_reference_ivar_suggest)
+ << IDecl->getDeclName() << MemberName << IV->getDeclName()
+ << FixItHint::CreateReplacement(R.getNameLoc(),
+ IV->getNameAsString());
+ Diag(IV->getLocation(), diag::note_previous_decl)
+ << IV->getDeclName();
+ } else {
+ Res.clear();
+ Res.setLookupName(Member);
+
+ Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
+ << IDecl->getDeclName() << MemberName
+ << BaseExpr.get()->getSourceRange();
+ return ExprError();
+ }
+ }
+
+ // If the decl being referenced had an error, return an error for this
+ // sub-expr without emitting another error, in order to avoid cascading
+ // error cases.
+ if (IV->isInvalidDecl())
+ return ExprError();
+
+ // Check whether we can reference this field.
+ if (DiagnoseUseOfDecl(IV, MemberLoc))
+ return ExprError();
+ if (IV->getAccessControl() != ObjCIvarDecl::Public &&
+ IV->getAccessControl() != ObjCIvarDecl::Package) {
+ ObjCInterfaceDecl *ClassOfMethodDecl = 0;
+ if (ObjCMethodDecl *MD = getCurMethodDecl())
+ ClassOfMethodDecl = MD->getClassInterface();
+ else if (ObjCImpDecl && getCurFunctionDecl()) {
+ // Case of a c-function declared inside an objc implementation.
+ // FIXME: For a c-style function nested inside an objc implementation
+ // class, there is no implementation context available, so we pass
+ // down the context as argument to this routine. Ideally, this context
+ // need be passed down in the AST node and somehow calculated from the
+ // AST for a function decl.
+ if (ObjCImplementationDecl *IMPD =
+ dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
+ ClassOfMethodDecl = IMPD->getClassInterface();
+ else if (ObjCCategoryImplDecl* CatImplClass =
+ dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
+ ClassOfMethodDecl = CatImplClass->getClassInterface();
+ }
+
+ if (IV->getAccessControl() == ObjCIvarDecl::Private) {
+ if (ClassDeclared != IDecl ||
+ ClassOfMethodDecl != ClassDeclared)
+ Diag(MemberLoc, diag::error_private_ivar_access)
+ << IV->getDeclName();
+ } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
+ // @protected
+ Diag(MemberLoc, diag::error_protected_ivar_access)
+ << IV->getDeclName();
+ }
+
+ return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
+ MemberLoc, BaseExpr.take(),
+ IsArrow));
+ }
+
+ // Objective-C property access.
+ const ObjCObjectPointerType *OPT;
+ if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
+ // This actually uses the base as an r-value.
+ BaseExpr = DefaultLvalueConversion(BaseExpr.take());
+ if (BaseExpr.isInvalid())
+ return ExprError();
+
+ assert(Context.hasSameUnqualifiedType(BaseType, BaseExpr.get()->getType()));
+
+ IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
+
+ const ObjCObjectType *OT = OPT->getObjectType();
+
+ // id, with and without qualifiers.
+ if (OT->isObjCId()) {
+ // Check protocols on qualified interfaces.
+ Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
+ if (Decl *PMDecl = FindGetterSetterNameDecl(OPT, Member, Sel, Context)) {
+ if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
+ // Check the use of this declaration
+ if (DiagnoseUseOfDecl(PD, MemberLoc))
+ return ExprError();
+
+ return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
+ VK_LValue,
+ OK_ObjCProperty,
+ MemberLoc,
+ BaseExpr.take()));
+ }
+
+ if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
+ // Check the use of this method.
+ if (DiagnoseUseOfDecl(OMD, MemberLoc))
+ return ExprError();
+ Selector SetterSel =
+ SelectorTable::constructSetterName(PP.getIdentifierTable(),
+ PP.getSelectorTable(), Member);
+ ObjCMethodDecl *SMD = 0;
+ if (Decl *SDecl = FindGetterSetterNameDecl(OPT, /*Property id*/0,
+ SetterSel, Context))
+ SMD = dyn_cast<ObjCMethodDecl>(SDecl);
+ QualType PType = OMD->getSendResultType();
+
+ ExprValueKind VK = VK_LValue;
+ if (!getLangOptions().CPlusPlus &&
+ IsCForbiddenLValueType(Context, PType))
+ VK = VK_RValue;
+ ExprObjectKind OK = (VK == VK_RValue ? OK_Ordinary : OK_ObjCProperty);
+
+ return Owned(new (Context) ObjCPropertyRefExpr(OMD, SMD, PType,
+ VK, OK,
+ MemberLoc, BaseExpr.take()));
+ }
+ }
+ // Use of id.member can only be for a property reference. Do not
+ // use the 'id' redefinition in this case.
+ if (IsArrow && ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
+ return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
+ ObjCImpDecl, HasTemplateArgs);
+
+ return ExprError(Diag(MemberLoc, diag::err_property_not_found)
+ << MemberName << BaseType);
+ }
+
+ // 'Class', unqualified only.
+ if (OT->isObjCClass()) {
+ // Only works in a method declaration (??!).
+ ObjCMethodDecl *MD = getCurMethodDecl();
+ if (!MD) {
+ if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
+ return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
+ ObjCImpDecl, HasTemplateArgs);
+
+ goto fail;
+ }
+
+ // Also must look for a getter name which uses property syntax.
+ Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
+ ObjCInterfaceDecl *IFace = MD->getClassInterface();
+ ObjCMethodDecl *Getter;
+ if ((Getter = IFace->lookupClassMethod(Sel))) {
+ // Check the use of this method.
+ if (DiagnoseUseOfDecl(Getter, MemberLoc))
+ return ExprError();
+ } else
+ Getter = IFace->lookupPrivateMethod(Sel, false);
+ // If we found a getter then this may be a valid dot-reference, we
+ // will look for the matching setter, in case it is needed.
+ Selector SetterSel =
+ SelectorTable::constructSetterName(PP.getIdentifierTable(),
+ PP.getSelectorTable(), Member);
+ ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
+ if (!Setter) {
+ // If this reference is in an @implementation, also check for 'private'
+ // methods.
+ Setter = IFace->lookupPrivateMethod(SetterSel, false);
+ }
+ // Look through local category implementations associated with the class.
+ if (!Setter)
+ Setter = IFace->getCategoryClassMethod(SetterSel);
+
+ if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
+ return ExprError();
+
+ if (Getter || Setter) {
+ QualType PType;
+
+ ExprValueKind VK = VK_LValue;
+ if (Getter) {
+ PType = Getter->getSendResultType();
+ if (!getLangOptions().CPlusPlus &&
+ IsCForbiddenLValueType(Context, PType))
+ VK = VK_RValue;
+ } else {
+ // Get the expression type from Setter's incoming parameter.
+ PType = (*(Setter->param_end() -1))->getType();
+ }
+ ExprObjectKind OK = (VK == VK_RValue ? OK_Ordinary : OK_ObjCProperty);
+
+ // FIXME: we must check that the setter has property type.
+ return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter,
+ PType, VK, OK,
+ MemberLoc, BaseExpr.take()));
+ }
+
+ if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
+ return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
+ ObjCImpDecl, HasTemplateArgs);
+
+ return ExprError(Diag(MemberLoc, diag::err_property_not_found)
+ << MemberName << BaseType);
+ }
+
+ // Normal property access.
+ return HandleExprPropertyRefExpr(OPT, BaseExpr.get(), MemberName, MemberLoc,
+ SourceLocation(), QualType(), false);
+ }
+
+ // Handle 'field access' to vectors, such as 'V.xx'.
+ if (BaseType->isExtVectorType()) {
+ // FIXME: this expr should store IsArrow.
+ IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
+ ExprValueKind VK = (IsArrow ? VK_LValue : BaseExpr.get()->getValueKind());
+ QualType ret = CheckExtVectorComponent(*this, BaseType, VK, OpLoc,
+ Member, MemberLoc);
+ if (ret.isNull())
+ return ExprError();
+
+ return Owned(new (Context) ExtVectorElementExpr(ret, VK, BaseExpr.take(),
+ *Member, MemberLoc));
+ }
+
+ // Adjust builtin-sel to the appropriate redefinition type if that's
+ // not just a pointer to builtin-sel again.
+ if (IsArrow &&
+ BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
+ !Context.ObjCSelRedefinitionType->isObjCSelType()) {
+ BaseExpr = ImpCastExprToType(BaseExpr.take(), Context.ObjCSelRedefinitionType,
+ CK_BitCast);
+ return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
+ ObjCImpDecl, HasTemplateArgs);
+ }
+
+ // Failure cases.
+ fail:
+
+ // Recover from dot accesses to pointers, e.g.:
+ // type *foo;
+ // foo.bar
+ // This is actually well-formed in two cases:
+ // - 'type' is an Objective C type
+ // - 'bar' is a pseudo-destructor name which happens to refer to
+ // the appropriate pointer type
+ if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
+ if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
+ MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
+ Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
+ << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
+ << FixItHint::CreateReplacement(OpLoc, "->");
+
+ // Recurse as an -> access.
+ IsArrow = true;
+ return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
+ ObjCImpDecl, HasTemplateArgs);
+ }
+ }
+
+ // If the user is trying to apply -> or . to a function name, it's probably
+ // because they forgot parentheses to call that function.
+ bool TryCall = false;
+ bool Overloaded = false;
+ UnresolvedSet<8> AllOverloads;
+ if (const OverloadExpr *Overloads = dyn_cast<OverloadExpr>(BaseExpr.get())) {
+ AllOverloads.append(Overloads->decls_begin(), Overloads->decls_end());
+ TryCall = true;
+ Overloaded = true;
+ } else if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(BaseExpr.get())) {
+ if (FunctionDecl* Fun = dyn_cast<FunctionDecl>(DeclRef->getDecl())) {
+ AllOverloads.addDecl(Fun);
+ TryCall = true;
+ }
+ }
+
+ if (TryCall) {
+ // Plunder the overload set for something that would make the member
+ // expression valid.
+ UnresolvedSet<4> ViableOverloads;
+ bool HasViableZeroArgOverload = false;
+ for (OverloadExpr::decls_iterator it = AllOverloads.begin(),
+ DeclsEnd = AllOverloads.end(); it != DeclsEnd; ++it) {
+ // Our overload set may include TemplateDecls, which we'll ignore for the
+ // purposes of determining whether we can issue a '()' fixit.
+ if (const FunctionDecl *OverloadDecl = dyn_cast<FunctionDecl>(*it)) {
+ QualType ResultTy = OverloadDecl->getResultType();
+ if ((!IsArrow && ResultTy->isRecordType()) ||
+ (IsArrow && ResultTy->isPointerType() &&
+ ResultTy->getPointeeType()->isRecordType())) {
+ ViableOverloads.addDecl(*it);
+ if (OverloadDecl->getMinRequiredArguments() == 0) {
+ HasViableZeroArgOverload = true;
+ }
+ }
+ }
+ }
+
+ if (!HasViableZeroArgOverload || ViableOverloads.size() != 1) {
+ Diag(BaseExpr.get()->getExprLoc(), diag::err_member_reference_needs_call)
+ << (AllOverloads.size() > 1) << 0
+ << BaseExpr.get()->getSourceRange();
+ int ViableOverloadCount = ViableOverloads.size();
+ int I;
+ for (I = 0; I < ViableOverloadCount; ++I) {
+ // FIXME: Magic number for max shown overloads stolen from
+ // OverloadCandidateSet::NoteCandidates.
+ if (I >= 4 && Diags.getShowOverloads() == Diagnostic::Ovl_Best) {
+ break;
+ }
+ Diag(ViableOverloads[I].getDecl()->getSourceRange().getBegin(),
+ diag::note_member_ref_possible_intended_overload);
+ }
+ if (I != ViableOverloadCount) {
+ Diag(BaseExpr.get()->getExprLoc(), diag::note_ovl_too_many_candidates)
+ << int(ViableOverloadCount - I);
+ }
+ return ExprError();
+ }
+ } else {
+ // We don't have an expression that's convenient to get a Decl from, but we
+ // can at least check if the type is "function of 0 arguments which returns
+ // an acceptable type".
+ const FunctionType *Fun = NULL;
+ if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
+ if ((Fun = Ptr->getPointeeType()->getAs<FunctionType>())) {
+ TryCall = true;
+ }
+ } else if ((Fun = BaseType->getAs<FunctionType>())) {
+ TryCall = true;
+ } else if (BaseType == Context.BoundMemberTy) {
+ // Look for the bound-member type. If it's still overloaded,
+ // give up, although we probably should have fallen into the
+ // OverloadExpr case above if we actually have an overloaded
+ // bound member.
+ QualType fnType = Expr::findBoundMemberType(BaseExpr.get());
+ if (!fnType.isNull()) {
+ TryCall = true;
+ Fun = fnType->castAs<FunctionType>();
+ }
+ }
+
+ if (TryCall) {
+ if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(Fun)) {
+ if (FPT->getNumArgs() == 0) {
+ QualType ResultTy = Fun->getResultType();
+ TryCall = (!IsArrow && ResultTy->isRecordType()) ||
+ (IsArrow && ResultTy->isPointerType() &&
+ ResultTy->getPointeeType()->isRecordType());
+ }
+ }
+ }
+ }
+
+ if (TryCall) {
+ // At this point, we know BaseExpr looks like it's potentially callable with
+ // 0 arguments, and that it returns something of a reasonable type, so we
+ // can emit a fixit and carry on pretending that BaseExpr was actually a
+ // CallExpr.
+ SourceLocation ParenInsertionLoc =
+ PP.getLocForEndOfToken(BaseExpr.get()->getLocEnd());
+ Diag(BaseExpr.get()->getExprLoc(), diag::err_member_reference_needs_call)
+ << int(Overloaded) << 1
+ << BaseExpr.get()->getSourceRange()
+ << FixItHint::CreateInsertion(ParenInsertionLoc, "()");
+ ExprResult NewBase = ActOnCallExpr(0, BaseExpr.take(), ParenInsertionLoc,
+ MultiExprArg(*this, 0, 0),
+ ParenInsertionLoc);
+ if (NewBase.isInvalid())
+ return ExprError();
+ BaseExpr = NewBase;
+ BaseExpr = DefaultFunctionArrayConversion(BaseExpr.take());
+ return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
+ ObjCImpDecl, HasTemplateArgs);
+ }
+
+ Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
+ << BaseType << BaseExpr.get()->getSourceRange();
+
+ return ExprError();
+}
+
+/// The main callback when the parser finds something like
+/// expression . [nested-name-specifier] identifier
+/// expression -> [nested-name-specifier] identifier
+/// where 'identifier' encompasses a fairly broad spectrum of
+/// possibilities, including destructor and operator references.
+///
+/// \param OpKind either tok::arrow or tok::period
+/// \param HasTrailingLParen whether the next token is '(', which
+/// is used to diagnose mis-uses of special members that can
+/// only be called
+/// \param ObjCImpDecl the current ObjC @implementation decl;
+/// this is an ugly hack around the fact that ObjC @implementations
+/// aren't properly put in the context chain
+ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
+ SourceLocation OpLoc,
+ tok::TokenKind OpKind,
+ CXXScopeSpec &SS,
+ UnqualifiedId &Id,
+ Decl *ObjCImpDecl,
+ bool HasTrailingLParen) {
+ if (SS.isSet() && SS.isInvalid())
+ return ExprError();
+
+ // Warn about the explicit constructor calls Microsoft extension.
+ if (getLangOptions().Microsoft &&
+ Id.getKind() == UnqualifiedId::IK_ConstructorName)
+ Diag(Id.getSourceRange().getBegin(),
+ diag::ext_ms_explicit_constructor_call);
+
+ TemplateArgumentListInfo TemplateArgsBuffer;
+
+ // Decompose the name into its component parts.
+ DeclarationNameInfo NameInfo;
+ const TemplateArgumentListInfo *TemplateArgs;
+ DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer,
+ NameInfo, TemplateArgs);
+
+ DeclarationName Name = NameInfo.getName();
+ bool IsArrow = (OpKind == tok::arrow);
+
+ NamedDecl *FirstQualifierInScope
+ = (!SS.isSet() ? 0 : FindFirstQualifierInScope(S,
+ static_cast<NestedNameSpecifier*>(SS.getScopeRep())));
+
+ // This is a postfix expression, so get rid of ParenListExprs.
+ ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
+ if (Result.isInvalid()) return ExprError();
+ Base = Result.take();
+
+ if (Base->getType()->isDependentType() || Name.isDependentName() ||
+ isDependentScopeSpecifier(SS)) {
+ Result = ActOnDependentMemberExpr(Base, Base->getType(),
+ IsArrow, OpLoc,
+ SS, FirstQualifierInScope,
+ NameInfo, TemplateArgs);
+ } else {
+ LookupResult R(*this, NameInfo, LookupMemberName);
+ ExprResult BaseResult = Owned(Base);
+ Result = LookupMemberExpr(R, BaseResult, IsArrow, OpLoc,
+ SS, ObjCImpDecl, TemplateArgs != 0);
+ if (BaseResult.isInvalid())
+ return ExprError();
+ Base = BaseResult.take();
+
+ if (Result.isInvalid()) {
+ Owned(Base);
+ return ExprError();
+ }
+
+ if (Result.get()) {
+ // The only way a reference to a destructor can be used is to
+ // immediately call it, which falls into this case. If the
+ // next token is not a '(', produce a diagnostic and build the
+ // call now.
+ if (!HasTrailingLParen &&
+ Id.getKind() == UnqualifiedId::IK_DestructorName)
+ return DiagnoseDtorReference(NameInfo.getLoc(), Result.get());
+
+ return move(Result);
+ }
+
+ Result = BuildMemberReferenceExpr(Base, Base->getType(),
+ OpLoc, IsArrow, SS, FirstQualifierInScope,
+ R, TemplateArgs);
+ }
+
+ return move(Result);
+}
+
+ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
+ FunctionDecl *FD,
+ ParmVarDecl *Param) {
+ if (Param->hasUnparsedDefaultArg()) {
+ Diag(CallLoc,
+ diag::err_use_of_default_argument_to_function_declared_later) <<
+ FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
+ Diag(UnparsedDefaultArgLocs[Param],
+ diag::note_default_argument_declared_here);
+ return ExprError();
+ }
+
+ if (Param->hasUninstantiatedDefaultArg()) {
+ Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
+
+ // Instantiate the expression.
+ MultiLevelTemplateArgumentList ArgList
+ = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
+
+ std::pair<const TemplateArgument *, unsigned> Innermost
+ = ArgList.getInnermost();
+ InstantiatingTemplate Inst(*this, CallLoc, Param, Innermost.first,
+ Innermost.second);
+
+ ExprResult Result;
+ {
+ // C++ [dcl.fct.default]p5:
+ // The names in the [default argument] expression are bound, and
+ // the semantic constraints are checked, at the point where the
+ // default argument expression appears.
+ ContextRAII SavedContext(*this, FD);
+ Result = SubstExpr(UninstExpr, ArgList);
+ }
+ if (Result.isInvalid())
+ return ExprError();
+
+ // Check the expression as an initializer for the parameter.
+ InitializedEntity Entity
+ = InitializedEntity::InitializeParameter(Context, Param);
+ InitializationKind Kind
+ = InitializationKind::CreateCopy(Param->getLocation(),
+ /*FIXME:EqualLoc*/UninstExpr->getSourceRange().getBegin());
+ Expr *ResultE = Result.takeAs<Expr>();
+
+ InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
+ Result = InitSeq.Perform(*this, Entity, Kind,
+ MultiExprArg(*this, &ResultE, 1));
+ if (Result.isInvalid())
+ return ExprError();
+
+ // Build the default argument expression.
+ return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param,
+ Result.takeAs<Expr>()));
+ }
+
+ // If the default expression creates temporaries, we need to
+ // push them to the current stack of expression temporaries so they'll
+ // be properly destroyed.
+ // FIXME: We should really be rebuilding the default argument with new
+ // bound temporaries; see the comment in PR5810.
+ for (unsigned i = 0, e = Param->getNumDefaultArgTemporaries(); i != e; ++i) {
+ CXXTemporary *Temporary = Param->getDefaultArgTemporary(i);
+ MarkDeclarationReferenced(Param->getDefaultArg()->getLocStart(),
+ const_cast<CXXDestructorDecl*>(Temporary->getDestructor()));
+ ExprTemporaries.push_back(Temporary);
+ }
+
+ // We already type-checked the argument, so we know it works.
+ // Just mark all of the declarations in this potentially-evaluated expression
+ // as being "referenced".
+ MarkDeclarationsReferencedInExpr(Param->getDefaultArg());
+ return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
+}
+
+/// ConvertArgumentsForCall - Converts the arguments specified in
+/// Args/NumArgs to the parameter types of the function FDecl with
+/// function prototype Proto. Call is the call expression itself, and
+/// Fn is the function expression. For a C++ member function, this
+/// routine does not attempt to convert the object argument. Returns
+/// true if the call is ill-formed.
+bool
+Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
+ FunctionDecl *FDecl,
+ const FunctionProtoType *Proto,
+ Expr **Args, unsigned NumArgs,
+ SourceLocation RParenLoc) {
+ // Bail out early if calling a builtin with custom typechecking.
+ // We don't need to do this in the
+ if (FDecl)
+ if (unsigned ID = FDecl->getBuiltinID())
+ if (Context.BuiltinInfo.hasCustomTypechecking(ID))
+ return false;
+
+ // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
+ // assignment, to the types of the corresponding parameter, ...
+ unsigned NumArgsInProto = Proto->getNumArgs();
+ bool Invalid = false;
+
+ // If too few arguments are available (and we don't have default
+ // arguments for the remaining parameters), don't make the call.
+ if (NumArgs < NumArgsInProto) {
+ if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
+ return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
+ << Fn->getType()->isBlockPointerType()
+ << NumArgsInProto << NumArgs << Fn->getSourceRange();
+ Call->setNumArgs(Context, NumArgsInProto);
+ }
+
+ // If too many are passed and not variadic, error on the extras and drop
+ // them.
+ if (NumArgs > NumArgsInProto) {
+ if (!Proto->isVariadic()) {
+ Diag(Args[NumArgsInProto]->getLocStart(),
+ diag::err_typecheck_call_too_many_args)
+ << Fn->getType()->isBlockPointerType()
+ << NumArgsInProto << NumArgs << Fn->getSourceRange()
+ << SourceRange(Args[NumArgsInProto]->getLocStart(),
+ Args[NumArgs-1]->getLocEnd());
+
+ // Emit the location of the prototype.
+ if (FDecl && !FDecl->getBuiltinID())
+ Diag(FDecl->getLocStart(),
+ diag::note_typecheck_call_too_many_args)
+ << FDecl;
+
+ // This deletes the extra arguments.
+ Call->setNumArgs(Context, NumArgsInProto);
+ return true;
+ }
+ }
+ llvm::SmallVector<Expr *, 8> AllArgs;
+ VariadicCallType CallType =
+ Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
+ if (Fn->getType()->isBlockPointerType())
+ CallType = VariadicBlock; // Block
+ else if (isa<MemberExpr>(Fn))
+ CallType = VariadicMethod;
+ Invalid = GatherArgumentsForCall(Call->getSourceRange().getBegin(), FDecl,
+ Proto, 0, Args, NumArgs, AllArgs, CallType);
+ if (Invalid)
+ return true;
+ unsigned TotalNumArgs = AllArgs.size();
+ for (unsigned i = 0; i < TotalNumArgs; ++i)
+ Call->setArg(i, AllArgs[i]);
+
+ return false;
+}
+
+bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
+ FunctionDecl *FDecl,
+ const FunctionProtoType *Proto,
+ unsigned FirstProtoArg,
+ Expr **Args, unsigned NumArgs,
+ llvm::SmallVector<Expr *, 8> &AllArgs,
+ VariadicCallType CallType) {
+ unsigned NumArgsInProto = Proto->getNumArgs();
+ unsigned NumArgsToCheck = NumArgs;
+ bool Invalid = false;
+ if (NumArgs != NumArgsInProto)
+ // Use default arguments for missing arguments
+ NumArgsToCheck = NumArgsInProto;
+ unsigned ArgIx = 0;
+ // Continue to check argument types (even if we have too few/many args).
+ for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
+ QualType ProtoArgType = Proto->getArgType(i);
+
+ Expr *Arg;
+ if (ArgIx < NumArgs) {
+ Arg = Args[ArgIx++];
+
+ if (RequireCompleteType(Arg->getSourceRange().getBegin(),
+ ProtoArgType,
+ PDiag(diag::err_call_incomplete_argument)
+ << Arg->getSourceRange()))
+ return true;
+
+ // Pass the argument
+ ParmVarDecl *Param = 0;
+ if (FDecl && i < FDecl->getNumParams())
+ Param = FDecl->getParamDecl(i);
+
+ InitializedEntity Entity =
+ Param? InitializedEntity::InitializeParameter(Context, Param)
+ : InitializedEntity::InitializeParameter(Context, ProtoArgType);
+ ExprResult ArgE = PerformCopyInitialization(Entity,
+ SourceLocation(),
+ Owned(Arg));
+ if (ArgE.isInvalid())
+ return true;
+
+ Arg = ArgE.takeAs<Expr>();
+ } else {
+ ParmVarDecl *Param = FDecl->getParamDecl(i);
+
+ ExprResult ArgExpr =
+ BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
+ if (ArgExpr.isInvalid())
+ return true;
+
+ Arg = ArgExpr.takeAs<Expr>();
+ }
+ AllArgs.push_back(Arg);
+ }
+
+ // If this is a variadic call, handle args passed through "...".
+ if (CallType != VariadicDoesNotApply) {
+
+ // Assume that extern "C" functions with variadic arguments that
+ // return __unknown_anytype aren't *really* variadic.
+ if (Proto->getResultType() == Context.UnknownAnyTy &&
+ FDecl && FDecl->isExternC()) {
+ for (unsigned i = ArgIx; i != NumArgs; ++i) {
+ ExprResult arg;
+ if (isa<ExplicitCastExpr>(Args[i]->IgnoreParens()))
+ arg = DefaultFunctionArrayLvalueConversion(Args[i]);
+ else
+ arg = DefaultVariadicArgumentPromotion(Args[i], CallType, FDecl);
+ Invalid |= arg.isInvalid();
+ AllArgs.push_back(arg.take());
+ }
+
+ // Otherwise do argument promotion, (C99 6.5.2.2p7).
+ } else {
+ for (unsigned i = ArgIx; i != NumArgs; ++i) {
+ ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], CallType, FDecl);
+ Invalid |= Arg.isInvalid();
+ AllArgs.push_back(Arg.take());
+ }
+ }
+ }
+ return Invalid;
+}
+
+/// Given a function expression of unknown-any type, try to rebuild it
+/// to have a function type.
+static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
+
+/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
+/// This provides the location of the left/right parens and a list of comma
+/// locations.
+ExprResult
+Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
+ MultiExprArg args, SourceLocation RParenLoc,
+ Expr *ExecConfig) {
+ unsigned NumArgs = args.size();
+
+ // Since this might be a postfix expression, get rid of ParenListExprs.
+ ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
+ if (Result.isInvalid()) return ExprError();
+ Fn = Result.take();
+
+ Expr **Args = args.release();
+
+ if (getLangOptions().CPlusPlus) {
+ // If this is a pseudo-destructor expression, build the call immediately.
+ if (isa<CXXPseudoDestructorExpr>(Fn)) {
+ if (NumArgs > 0) {
+ // Pseudo-destructor calls should not have any arguments.
+ Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
+ << FixItHint::CreateRemoval(
+ SourceRange(Args[0]->getLocStart(),
+ Args[NumArgs-1]->getLocEnd()));
+
+ NumArgs = 0;
+ }
+
+ return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
+ VK_RValue, RParenLoc));
+ }
+
+ // Determine whether this is a dependent call inside a C++ template,
+ // in which case we won't do any semantic analysis now.
+ // FIXME: Will need to cache the results of name lookup (including ADL) in
+ // Fn.
+ bool Dependent = false;
+ if (Fn->isTypeDependent())
+ Dependent = true;
+ else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
+ Dependent = true;
+
+ if (Dependent) {
+ if (ExecConfig) {
+ return Owned(new (Context) CUDAKernelCallExpr(
+ Context, Fn, cast<CallExpr>(ExecConfig), Args, NumArgs,
+ Context.DependentTy, VK_RValue, RParenLoc));
+ } else {
+ return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
+ Context.DependentTy, VK_RValue,
+ RParenLoc));
+ }
+ }
+
+ // Determine whether this is a call to an object (C++ [over.call.object]).
+ if (Fn->getType()->isRecordType())
+ return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
+ RParenLoc));
+
+ if (Fn->getType() == Context.UnknownAnyTy) {
+ ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
+ if (result.isInvalid()) return ExprError();
+ Fn = result.take();
+ }
+
+ if (Fn->getType() == Context.BoundMemberTy) {
+ return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
+ RParenLoc);
+ }
+ }
+
+ // Check for overloaded calls. This can happen even in C due to extensions.
+ if (Fn->getType() == Context.OverloadTy) {
+ OverloadExpr::FindResult find = OverloadExpr::find(Fn);
+
+ // We aren't supposed to apply this logic if there's an '&' involved.
+ if (!find.IsAddressOfOperand) {
+ OverloadExpr *ovl = find.Expression;
+ if (isa<UnresolvedLookupExpr>(ovl)) {
+ UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(ovl);
+ return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, Args, NumArgs,
+ RParenLoc, ExecConfig);
+ } else {
+ return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
+ RParenLoc);
+ }
+ }
+ }
+
+ // If we're directly calling a function, get the appropriate declaration.
+
+ Expr *NakedFn = Fn->IgnoreParens();
+
+ NamedDecl *NDecl = 0;
+ if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
+ if (UnOp->getOpcode() == UO_AddrOf)
+ NakedFn = UnOp->getSubExpr()->IgnoreParens();
+
+ if (isa<DeclRefExpr>(NakedFn))
+ NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
+ else if (isa<MemberExpr>(NakedFn))
+ NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
+
+ return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc,
+ ExecConfig);
+}
+
+ExprResult
+Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
+ MultiExprArg execConfig, SourceLocation GGGLoc) {
+ FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
+ if (!ConfigDecl)
+ return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
+ << "cudaConfigureCall");
+ QualType ConfigQTy = ConfigDecl->getType();
+
+ DeclRefExpr *ConfigDR = new (Context) DeclRefExpr(
+ ConfigDecl, ConfigQTy, VK_LValue, LLLLoc);
+
+ return ActOnCallExpr(S, ConfigDR, LLLLoc, execConfig, GGGLoc, 0);
+}
+
+/// BuildResolvedCallExpr - Build a call to a resolved expression,
+/// i.e. an expression not of \p OverloadTy. The expression should
+/// unary-convert to an expression of function-pointer or
+/// block-pointer type.
+///
+/// \param NDecl the declaration being called, if available
+ExprResult
+Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
+ SourceLocation LParenLoc,
+ Expr **Args, unsigned NumArgs,
+ SourceLocation RParenLoc,
+ Expr *Config) {
+ FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
+
+ // Promote the function operand.
+ ExprResult Result = UsualUnaryConversions(Fn);
+ if (Result.isInvalid())
+ return ExprError();
+ Fn = Result.take();
+
+ // Make the call expr early, before semantic checks. This guarantees cleanup
+ // of arguments and function on error.
+ CallExpr *TheCall;
+ if (Config) {
+ TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
+ cast<CallExpr>(Config),
+ Args, NumArgs,
+ Context.BoolTy,
+ VK_RValue,
+ RParenLoc);
+ } else {
+ TheCall = new (Context) CallExpr(Context, Fn,
+ Args, NumArgs,
+ Context.BoolTy,
+ VK_RValue,
+ RParenLoc);
+ }
+
+ unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
+
+ // Bail out early if calling a builtin with custom typechecking.
+ if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
+ return CheckBuiltinFunctionCall(BuiltinID, TheCall);
+
+ retry:
+ const FunctionType *FuncT;
+ if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
+ // C99 6.5.2.2p1 - "The expression that denotes the called function shall
+ // have type pointer to function".
+ FuncT = PT->getPointeeType()->getAs<FunctionType>();
+ if (FuncT == 0)
+ return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
+ << Fn->getType() << Fn->getSourceRange());
+ } else if (const BlockPointerType *BPT =
+ Fn->getType()->getAs<BlockPointerType>()) {
+ FuncT = BPT->getPointeeType()->castAs<FunctionType>();
+ } else {
+ // Handle calls to expressions of unknown-any type.
+ if (Fn->getType() == Context.UnknownAnyTy) {
+ ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
+ if (rewrite.isInvalid()) return ExprError();
+ Fn = rewrite.take();
+ TheCall->setCallee(Fn);
+ goto retry;
+ }
+
+ return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
+ << Fn->getType() << Fn->getSourceRange());
+ }
+
+ if (getLangOptions().CUDA) {
+ if (Config) {
+ // CUDA: Kernel calls must be to global functions
+ if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
+ return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
+ << FDecl->getName() << Fn->getSourceRange());
+
+ // CUDA: Kernel function must have 'void' return type
+ if (!FuncT->getResultType()->isVoidType())
+ return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
+ << Fn->getType() << Fn->getSourceRange());
+ }
+ }
+
+ // Check for a valid return type
+ if (CheckCallReturnType(FuncT->getResultType(),
+ Fn->getSourceRange().getBegin(), TheCall,
+ FDecl))
+ return ExprError();
+
+ // We know the result type of the call, set it.
+ TheCall->setType(FuncT->getCallResultType(Context));
+ TheCall->setValueKind(Expr::getValueKindForType(FuncT->getResultType()));
+
+ if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
+ if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, NumArgs,
+ RParenLoc))
+ return ExprError();
+ } else {
+ assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
+
+ if (FDecl) {
+ // Check if we have too few/too many template arguments, based
+ // on our knowledge of the function definition.
+ const FunctionDecl *Def = 0;
+ if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) {
+ const FunctionProtoType *Proto
+ = Def->getType()->getAs<FunctionProtoType>();
+ if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size()))
+ Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
+ << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
+ }
+
+ // If the function we're calling isn't a function prototype, but we have
+ // a function prototype from a prior declaratiom, use that prototype.
+ if (!FDecl->hasPrototype())
+ Proto = FDecl->getType()->getAs<FunctionProtoType>();
+ }
+
+ // Promote the arguments (C99 6.5.2.2p6).
+ for (unsigned i = 0; i != NumArgs; i++) {
+ Expr *Arg = Args[i];
+
+ if (Proto && i < Proto->getNumArgs()) {
+ InitializedEntity Entity
+ = InitializedEntity::InitializeParameter(Context,
+ Proto->getArgType(i));
+ ExprResult ArgE = PerformCopyInitialization(Entity,
+ SourceLocation(),
+ Owned(Arg));
+ if (ArgE.isInvalid())
+ return true;
+
+ Arg = ArgE.takeAs<Expr>();
+
+ } else {
+ ExprResult ArgE = DefaultArgumentPromotion(Arg);
+
+ if (ArgE.isInvalid())
+ return true;
+
+ Arg = ArgE.takeAs<Expr>();
+ }
+
+ if (RequireCompleteType(Arg->getSourceRange().getBegin(),
+ Arg->getType(),
+ PDiag(diag::err_call_incomplete_argument)
+ << Arg->getSourceRange()))
+ return ExprError();
+
+ TheCall->setArg(i, Arg);
+ }
+ }
+
+ if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
+ if (!Method->isStatic())
+ return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
+ << Fn->getSourceRange());
+
+ // Check for sentinels
+ if (NDecl)
+ DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
+
+ // Do special checking on direct calls to functions.
+ if (FDecl) {
+ if (CheckFunctionCall(FDecl, TheCall))
+ return ExprError();
+
+ if (BuiltinID)
+ return CheckBuiltinFunctionCall(BuiltinID, TheCall);
+ } else if (NDecl) {
+ if (CheckBlockCall(NDecl, TheCall))
+ return ExprError();
+ }
+
+ return MaybeBindToTemporary(TheCall);
+}
+
+ExprResult
+Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
+ SourceLocation RParenLoc, Expr *InitExpr) {
+ assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
+ // FIXME: put back this assert when initializers are worked out.
+ //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
+
+ TypeSourceInfo *TInfo;
+ QualType literalType = GetTypeFromParser(Ty, &TInfo);
+ if (!TInfo)
+ TInfo = Context.getTrivialTypeSourceInfo(literalType);
+
+ return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
+}
+
+ExprResult
+Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
+ SourceLocation RParenLoc, Expr *literalExpr) {
+ QualType literalType = TInfo->getType();
+
+ if (literalType->isArrayType()) {
+ if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
+ PDiag(diag::err_illegal_decl_array_incomplete_type)
+ << SourceRange(LParenLoc,
+ literalExpr->getSourceRange().getEnd())))
+ return ExprError();
+ if (literalType->isVariableArrayType())
+ return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
+ << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
+ } else if (!literalType->isDependentType() &&
+ RequireCompleteType(LParenLoc, literalType,
+ PDiag(diag::err_typecheck_decl_incomplete_type)
+ << SourceRange(LParenLoc,
+ literalExpr->getSourceRange().getEnd())))
+ return ExprError();
+
+ InitializedEntity Entity
+ = InitializedEntity::InitializeTemporary(literalType);
+ InitializationKind Kind
+ = InitializationKind::CreateCast(SourceRange(LParenLoc, RParenLoc),
+ /*IsCStyleCast=*/true);
+ InitializationSequence InitSeq(*this, Entity, Kind, &literalExpr, 1);
+ ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
+ MultiExprArg(*this, &literalExpr, 1),
+ &literalType);
+ if (Result.isInvalid())
+ return ExprError();
+ literalExpr = Result.get();
+
+ bool isFileScope = getCurFunctionOrMethodDecl() == 0;
+ if (isFileScope) { // 6.5.2.5p3
+ if (CheckForConstantInitializer(literalExpr, literalType))
+ return ExprError();
+ }
+
+ // In C, compound literals are l-values for some reason.
+ ExprValueKind VK = getLangOptions().CPlusPlus ? VK_RValue : VK_LValue;
+
+ return Owned(new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
+ VK, literalExpr, isFileScope));
+}
+
+ExprResult
+Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
+ SourceLocation RBraceLoc) {
+ unsigned NumInit = initlist.size();
+ Expr **InitList = initlist.release();
+
+ // Semantic analysis for initializers is done by ActOnDeclarator() and
+ // CheckInitializer() - it requires knowledge of the object being intialized.
+
+ InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitList,
+ NumInit, RBraceLoc);
+ E->setType(Context.VoidTy); // FIXME: just a place holder for now.
+ return Owned(E);
+}
+
+/// Prepares for a scalar cast, performing all the necessary stages
+/// except the final cast and returning the kind required.
+static CastKind PrepareScalarCast(Sema &S, ExprResult &Src, QualType DestTy) {
+ // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
+ // Also, callers should have filtered out the invalid cases with
+ // pointers. Everything else should be possible.
+
+ QualType SrcTy = Src.get()->getType();
+ if (S.Context.hasSameUnqualifiedType(SrcTy, DestTy))
+ return CK_NoOp;
+
+ switch (SrcTy->getScalarTypeKind()) {
+ case Type::STK_MemberPointer:
+ llvm_unreachable("member pointer type in C");
+
+ case Type::STK_Pointer:
+ switch (DestTy->getScalarTypeKind()) {
+ case Type::STK_Pointer:
+ return DestTy->isObjCObjectPointerType() ?
+ CK_AnyPointerToObjCPointerCast :
+ CK_BitCast;
+ case Type::STK_Bool:
+ return CK_PointerToBoolean;
+ case Type::STK_Integral:
+ return CK_PointerToIntegral;
+ case Type::STK_Floating:
+ case Type::STK_FloatingComplex:
+ case Type::STK_IntegralComplex:
+ case Type::STK_MemberPointer:
+ llvm_unreachable("illegal cast from pointer");
+ }
+ break;
+
+ case Type::STK_Bool: // casting from bool is like casting from an integer
+ case Type::STK_Integral:
+ switch (DestTy->getScalarTypeKind()) {
+ case Type::STK_Pointer:
+ if (Src.get()->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNull))
+ return CK_NullToPointer;
+ return CK_IntegralToPointer;
+ case Type::STK_Bool:
+ return CK_IntegralToBoolean;
+ case Type::STK_Integral:
+ return CK_IntegralCast;
+ case Type::STK_Floating:
+ return CK_IntegralToFloating;
+ case Type::STK_IntegralComplex:
+ Src = S.ImpCastExprToType(Src.take(), DestTy->getAs<ComplexType>()->getElementType(),
+ CK_IntegralCast);
+ return CK_IntegralRealToComplex;
+ case Type::STK_FloatingComplex:
+ Src = S.ImpCastExprToType(Src.take(), DestTy->getAs<ComplexType>()->getElementType(),
+ CK_IntegralToFloating);
+ return CK_FloatingRealToComplex;
+ case Type::STK_MemberPointer:
+ llvm_unreachable("member pointer type in C");
+ }
+ break;
+
+ case Type::STK_Floating:
+ switch (DestTy->getScalarTypeKind()) {
+ case Type::STK_Floating:
+ return CK_FloatingCast;
+ case Type::STK_Bool:
+ return CK_FloatingToBoolean;
+ case Type::STK_Integral:
+ return CK_FloatingToIntegral;
+ case Type::STK_FloatingComplex:
+ Src = S.ImpCastExprToType(Src.take(), DestTy->getAs<ComplexType>()->getElementType(),
+ CK_FloatingCast);
+ return CK_FloatingRealToComplex;
+ case Type::STK_IntegralComplex:
+ Src = S.ImpCastExprToType(Src.take(), DestTy->getAs<ComplexType>()->getElementType(),
+ CK_FloatingToIntegral);
+ return CK_IntegralRealToComplex;
+ case Type::STK_Pointer:
+ llvm_unreachable("valid float->pointer cast?");
+ case Type::STK_MemberPointer:
+ llvm_unreachable("member pointer type in C");
+ }
+ break;
+
+ case Type::STK_FloatingComplex:
+ switch (DestTy->getScalarTypeKind()) {
+ case Type::STK_FloatingComplex:
+ return CK_FloatingComplexCast;
+ case Type::STK_IntegralComplex:
+ return CK_FloatingComplexToIntegralComplex;
+ case Type::STK_Floating: {
+ QualType ET = SrcTy->getAs<ComplexType>()->getElementType();
+ if (S.Context.hasSameType(ET, DestTy))
+ return CK_FloatingComplexToReal;
+ Src = S.ImpCastExprToType(Src.take(), ET, CK_FloatingComplexToReal);
+ return CK_FloatingCast;
+ }
+ case Type::STK_Bool:
+ return CK_FloatingComplexToBoolean;
+ case Type::STK_Integral:
+ Src = S.ImpCastExprToType(Src.take(), SrcTy->getAs<ComplexType>()->getElementType(),
+ CK_FloatingComplexToReal);
+ return CK_FloatingToIntegral;
+ case Type::STK_Pointer:
+ llvm_unreachable("valid complex float->pointer cast?");
+ case Type::STK_MemberPointer:
+ llvm_unreachable("member pointer type in C");
+ }
+ break;
+
+ case Type::STK_IntegralComplex:
+ switch (DestTy->getScalarTypeKind()) {
+ case Type::STK_FloatingComplex:
+ return CK_IntegralComplexToFloatingComplex;
+ case Type::STK_IntegralComplex:
+ return CK_IntegralComplexCast;
+ case Type::STK_Integral: {
+ QualType ET = SrcTy->getAs<ComplexType>()->getElementType();
+ if (S.Context.hasSameType(ET, DestTy))
+ return CK_IntegralComplexToReal;
+ Src = S.ImpCastExprToType(Src.take(), ET, CK_IntegralComplexToReal);
+ return CK_IntegralCast;
+ }
+ case Type::STK_Bool:
+ return CK_IntegralComplexToBoolean;
+ case Type::STK_Floating:
+ Src = S.ImpCastExprToType(Src.take(), SrcTy->getAs<ComplexType>()->getElementType(),
+ CK_IntegralComplexToReal);
+ return CK_IntegralToFloating;
+ case Type::STK_Pointer:
+ llvm_unreachable("valid complex int->pointer cast?");
+ case Type::STK_MemberPointer:
+ llvm_unreachable("member pointer type in C");
+ }
+ break;
+ }
+
+ llvm_unreachable("Unhandled scalar cast");
+ return CK_BitCast;
+}
+
+/// CheckCastTypes - Check type constraints for casting between types.
+ExprResult Sema::CheckCastTypes(SourceRange TyR, QualType castType,
+ Expr *castExpr, CastKind& Kind, ExprValueKind &VK,
+ CXXCastPath &BasePath, bool FunctionalStyle) {
+ if (castExpr->getType() == Context.UnknownAnyTy)
+ return checkUnknownAnyCast(TyR, castType, castExpr, Kind, VK, BasePath);
+
+ if (getLangOptions().CPlusPlus)
+ return CXXCheckCStyleCast(SourceRange(TyR.getBegin(),
+ castExpr->getLocEnd()),
+ castType, VK, castExpr, Kind, BasePath,
+ FunctionalStyle);
+
+ assert(!castExpr->getType()->isPlaceholderType());
+
+ // We only support r-value casts in C.
+ VK = VK_RValue;
+
+ // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
+ // type needs to be scalar.
+ if (castType->isVoidType()) {
+ // We don't necessarily do lvalue-to-rvalue conversions on this.
+ ExprResult castExprRes = IgnoredValueConversions(castExpr);
+ if (castExprRes.isInvalid())
+ return ExprError();
+ castExpr = castExprRes.take();
+
+ // Cast to void allows any expr type.
+ Kind = CK_ToVoid;
+ return Owned(castExpr);
+ }
+
+ ExprResult castExprRes = DefaultFunctionArrayLvalueConversion(castExpr);
+ if (castExprRes.isInvalid())
+ return ExprError();
+ castExpr = castExprRes.take();
+
+ if (RequireCompleteType(TyR.getBegin(), castType,
+ diag::err_typecheck_cast_to_incomplete))
+ return ExprError();
+
+ if (!castType->isScalarType() && !castType->isVectorType()) {
+ if (Context.hasSameUnqualifiedType(castType, castExpr->getType()) &&
+ (castType->isStructureType() || castType->isUnionType())) {
+ // GCC struct/union extension: allow cast to self.
+ // FIXME: Check that the cast destination type is complete.
+ Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
+ << castType << castExpr->getSourceRange();
+ Kind = CK_NoOp;
+ return Owned(castExpr);
+ }
+
+ if (castType->isUnionType()) {
+ // GCC cast to union extension
+ RecordDecl *RD = castType->getAs<RecordType>()->getDecl();
+ RecordDecl::field_iterator Field, FieldEnd;
+ for (Field = RD->field_begin(), FieldEnd = RD->field_end();
+ Field != FieldEnd; ++Field) {
+ if (Context.hasSameUnqualifiedType(Field->getType(),
+ castExpr->getType()) &&
+ !Field->isUnnamedBitfield()) {
+ Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
+ << castExpr->getSourceRange();
+ break;
+ }
+ }
+ if (Field == FieldEnd) {
+ Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
+ << castExpr->getType() << castExpr->getSourceRange();
+ return ExprError();
+ }
+ Kind = CK_ToUnion;
+ return Owned(castExpr);
+ }
+
+ // Reject any other conversions to non-scalar types.
+ Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
+ << castType << castExpr->getSourceRange();
+ return ExprError();
+ }
+
+ // The type we're casting to is known to be a scalar or vector.
+
+ // Require the operand to be a scalar or vector.
+ if (!castExpr->getType()->isScalarType() &&
+ !castExpr->getType()->isVectorType()) {
+ Diag(castExpr->getLocStart(),
+ diag::err_typecheck_expect_scalar_operand)
+ << castExpr->getType() << castExpr->getSourceRange();
+ return ExprError();
+ }
+
+ if (castType->isExtVectorType())
+ return CheckExtVectorCast(TyR, castType, castExpr, Kind);
+
+ if (castType->isVectorType()) {
+ if (castType->getAs<VectorType>()->getVectorKind() ==
+ VectorType::AltiVecVector &&
+ (castExpr->getType()->isIntegerType() ||
+ castExpr->getType()->isFloatingType())) {
+ Kind = CK_VectorSplat;
+ return Owned(castExpr);
+ } else if (CheckVectorCast(TyR, castType, castExpr->getType(), Kind)) {
+ return ExprError();
+ } else
+ return Owned(castExpr);
+ }
+ if (castExpr->getType()->isVectorType()) {
+ if (CheckVectorCast(TyR, castExpr->getType(), castType, Kind))
+ return ExprError();
+ else
+ return Owned(castExpr);
+ }
+
+ // The source and target types are both scalars, i.e.
+ // - arithmetic types (fundamental, enum, and complex)
+ // - all kinds of pointers
+ // Note that member pointers were filtered out with C++, above.
+
+ if (isa<ObjCSelectorExpr>(castExpr)) {
+ Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
+ return ExprError();
+ }
+
+ // If either type is a pointer, the other type has to be either an
+ // integer or a pointer.
+ if (!castType->isArithmeticType()) {
+ QualType castExprType = castExpr->getType();
+ if (!castExprType->isIntegralType(Context) &&
+ castExprType->isArithmeticType()) {
+ Diag(castExpr->getLocStart(),
+ diag::err_cast_pointer_from_non_pointer_int)
+ << castExprType << castExpr->getSourceRange();
+ return ExprError();
+ }
+ } else if (!castExpr->getType()->isArithmeticType()) {
+ if (!castType->isIntegralType(Context) && castType->isArithmeticType()) {
+ Diag(castExpr->getLocStart(), diag::err_cast_pointer_to_non_pointer_int)
+ << castType << castExpr->getSourceRange();
+ return ExprError();
+ }
+ }
+
+ castExprRes = Owned(castExpr);
+ Kind = PrepareScalarCast(*this, castExprRes, castType);
+ if (castExprRes.isInvalid())
+ return ExprError();
+ castExpr = castExprRes.take();
+
+ if (Kind == CK_BitCast)
+ CheckCastAlign(castExpr, castType, TyR);
+
+ return Owned(castExpr);
+}
+
+bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
+ CastKind &Kind) {
+ assert(VectorTy->isVectorType() && "Not a vector type!");
+
+ if (Ty->isVectorType() || Ty->isIntegerType()) {
+ if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
+ return Diag(R.getBegin(),
+ Ty->isVectorType() ?
+ diag::err_invalid_conversion_between_vectors :
+ diag::err_invalid_conversion_between_vector_and_integer)
+ << VectorTy << Ty << R;
+ } else
+ return Diag(R.getBegin(),
+ diag::err_invalid_conversion_between_vector_and_scalar)
+ << VectorTy << Ty << R;
+
+ Kind = CK_BitCast;
+ return false;
+}
+
+ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
+ Expr *CastExpr, CastKind &Kind) {
+ assert(DestTy->isExtVectorType() && "Not an extended vector type!");
+
+ QualType SrcTy = CastExpr->getType();
+
+ // If SrcTy is a VectorType, the total size must match to explicitly cast to
+ // an ExtVectorType.
+ if (SrcTy->isVectorType()) {
+ if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy)) {
+ Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
+ << DestTy << SrcTy << R;
+ return ExprError();
+ }
+ Kind = CK_BitCast;
+ return Owned(CastExpr);
+ }
+
+ // All non-pointer scalars can be cast to ExtVector type. The appropriate
+ // conversion will take place first from scalar to elt type, and then
+ // splat from elt type to vector.
+ if (SrcTy->isPointerType())
+ return Diag(R.getBegin(),
+ diag::err_invalid_conversion_between_vector_and_scalar)
+ << DestTy << SrcTy << R;
+
+ QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
+ ExprResult CastExprRes = Owned(CastExpr);
+ CastKind CK = PrepareScalarCast(*this, CastExprRes, DestElemTy);
+ if (CastExprRes.isInvalid())
+ return ExprError();
+ CastExpr = ImpCastExprToType(CastExprRes.take(), DestElemTy, CK).take();
+
+ Kind = CK_VectorSplat;
+ return Owned(CastExpr);
+}
+
+ExprResult
+Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, ParsedType Ty,
+ SourceLocation RParenLoc, Expr *castExpr) {
+ assert((Ty != 0) && (castExpr != 0) &&
+ "ActOnCastExpr(): missing type or expr");
+
+ TypeSourceInfo *castTInfo;
+ QualType castType = GetTypeFromParser(Ty, &castTInfo);
+ if (!castTInfo)
+ castTInfo = Context.getTrivialTypeSourceInfo(castType);
+
+ // If the Expr being casted is a ParenListExpr, handle it specially.
+ if (isa<ParenListExpr>(castExpr))
+ return ActOnCastOfParenListExpr(S, LParenLoc, RParenLoc, castExpr,
+ castTInfo);
+
+ return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, castExpr);
+}
+
+ExprResult
+Sema::BuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *Ty,
+ SourceLocation RParenLoc, Expr *castExpr) {
+ CastKind Kind = CK_Invalid;
+ ExprValueKind VK = VK_RValue;
+ CXXCastPath BasePath;
+ ExprResult CastResult =
+ CheckCastTypes(SourceRange(LParenLoc, RParenLoc), Ty->getType(), castExpr,
+ Kind, VK, BasePath);
+ if (CastResult.isInvalid())
+ return ExprError();
+ castExpr = CastResult.take();
+
+ return Owned(CStyleCastExpr::Create(Context,
+ Ty->getType().getNonLValueExprType(Context),
+ VK, Kind, castExpr, &BasePath, Ty,
+ LParenLoc, RParenLoc));
+}
+
+/// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence
+/// of comma binary operators.
+ExprResult
+Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *expr) {
+ ParenListExpr *E = dyn_cast<ParenListExpr>(expr);
+ if (!E)
+ return Owned(expr);
+
+ ExprResult Result(E->getExpr(0));
+
+ for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
+ Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
+ E->getExpr(i));
+
+ if (Result.isInvalid()) return ExprError();
+
+ return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
+}
+
+ExprResult
+Sema::ActOnCastOfParenListExpr(Scope *S, SourceLocation LParenLoc,
+ SourceLocation RParenLoc, Expr *Op,
+ TypeSourceInfo *TInfo) {
+ ParenListExpr *PE = cast<ParenListExpr>(Op);
+ QualType Ty = TInfo->getType();
+ bool isVectorLiteral = false;
+
+ // Check for an altivec or OpenCL literal,
+ // i.e. all the elements are integer constants.
+ if (getLangOptions().AltiVec && Ty->isVectorType()) {
+ if (PE->getNumExprs() == 0) {
+ Diag(PE->getExprLoc(), diag::err_altivec_empty_initializer);
+ return ExprError();
+ }
+ if (PE->getNumExprs() == 1) {
+ if (!PE->getExpr(0)->getType()->isVectorType())
+ isVectorLiteral = true;
+ }
+ else
+ isVectorLiteral = true;
+ }
+
+ // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
+ // then handle it as such.
+ if (isVectorLiteral) {
+ llvm::SmallVector<Expr *, 8> initExprs;
+ // '(...)' form of vector initialization in AltiVec: the number of
+ // initializers must be one or must match the size of the vector.
+ // If a single value is specified in the initializer then it will be
+ // replicated to all the components of the vector
+ if (Ty->getAs<VectorType>()->getVectorKind() ==
+ VectorType::AltiVecVector) {
+ unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
+ // The number of initializers must be one or must match the size of the
+ // vector. If a single value is specified in the initializer then it will
+ // be replicated to all the components of the vector
+ if (PE->getNumExprs() == 1) {
+ QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
+ ExprResult Literal = Owned(PE->getExpr(0));
+ Literal = ImpCastExprToType(Literal.take(), ElemTy,
+ PrepareScalarCast(*this, Literal, ElemTy));
+ return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
+ }
+ else if (PE->getNumExprs() < numElems) {
+ Diag(PE->getExprLoc(),
+ diag::err_incorrect_number_of_vector_initializers);
+ return ExprError();
+ }
+ else
+ for (unsigned i = 0, e = PE->getNumExprs(); i != e; ++i)
+ initExprs.push_back(PE->getExpr(i));
+ }
+ else
+ for (unsigned i = 0, e = PE->getNumExprs(); i != e; ++i)
+ initExprs.push_back(PE->getExpr(i));
+
+ // FIXME: This means that pretty-printing the final AST will produce curly
+ // braces instead of the original commas.
+ InitListExpr *E = new (Context) InitListExpr(Context, LParenLoc,
+ &initExprs[0],
+ initExprs.size(), RParenLoc);
+ E->setType(Ty);
+ return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, E);
+ } else {
+ // This is not an AltiVec-style cast, so turn the ParenListExpr into a
+ // sequence of BinOp comma operators.
+ ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Op);
+ if (Result.isInvalid()) return ExprError();
+ return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Result.take());
+ }
+}
+
+ExprResult Sema::ActOnParenOrParenListExpr(SourceLocation L,
+ SourceLocation R,
+ MultiExprArg Val,
+ ParsedType TypeOfCast) {
+ unsigned nexprs = Val.size();
+ Expr **exprs = reinterpret_cast<Expr**>(Val.release());
+ assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list");
+ Expr *expr;
+ if (nexprs == 1 && TypeOfCast && !TypeIsVectorType(TypeOfCast))
+ expr = new (Context) ParenExpr(L, R, exprs[0]);
+ else
+ expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R);
+ return Owned(expr);
+}
+
+/// \brief Emit a specialized diagnostic when one expression is a null pointer
+/// constant and the other is not a pointer.
+bool Sema::DiagnoseConditionalForNull(Expr *LHS, Expr *RHS,
+ SourceLocation QuestionLoc) {
+ Expr *NullExpr = LHS;
+ Expr *NonPointerExpr = RHS;
+ Expr::NullPointerConstantKind NullKind =
+ NullExpr->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNotNull);
+
+ if (NullKind == Expr::NPCK_NotNull) {
+ NullExpr = RHS;
+ NonPointerExpr = LHS;
+ NullKind =
+ NullExpr->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNotNull);
+ }
+
+ if (NullKind == Expr::NPCK_NotNull)
+ return false;
+
+ if (NullKind == Expr::NPCK_ZeroInteger) {
+ // In this case, check to make sure that we got here from a "NULL"
+ // string in the source code.
+ NullExpr = NullExpr->IgnoreParenImpCasts();
+ SourceLocation loc = NullExpr->getExprLoc();
+ if (!findMacroSpelling(loc, "NULL"))
+ return false;
+ }
+
+ int DiagType = (NullKind == Expr::NPCK_CXX0X_nullptr);
+ Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
+ << NonPointerExpr->getType() << DiagType
+ << NonPointerExpr->getSourceRange();
+ return true;
+}
+
+/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
+/// In that case, lhs = cond.
+/// C99 6.5.15
+QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, ExprResult &RHS,
+ ExprValueKind &VK, ExprObjectKind &OK,
+ SourceLocation QuestionLoc) {
+
+ ExprResult lhsResult = CheckPlaceholderExpr(LHS.get());
+ if (!lhsResult.isUsable()) return QualType();
+ LHS = move(lhsResult);
+
+ ExprResult rhsResult = CheckPlaceholderExpr(RHS.get());
+ if (!rhsResult.isUsable()) return QualType();
+ RHS = move(rhsResult);
+
+ // C++ is sufficiently different to merit its own checker.
+ if (getLangOptions().CPlusPlus)
+ return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
+
+ VK = VK_RValue;
+ OK = OK_Ordinary;
+
+ Cond = UsualUnaryConversions(Cond.take());
+ if (Cond.isInvalid())
+ return QualType();
+ LHS = UsualUnaryConversions(LHS.take());
+ if (LHS.isInvalid())
+ return QualType();
+ RHS = UsualUnaryConversions(RHS.take());
+ if (RHS.isInvalid())
+ return QualType();
+
+ QualType CondTy = Cond.get()->getType();
+ QualType LHSTy = LHS.get()->getType();
+ QualType RHSTy = RHS.get()->getType();
+
+ // first, check the condition.
+ if (!CondTy->isScalarType()) { // C99 6.5.15p2
+ // OpenCL: Sec 6.3.i says the condition is allowed to be a vector or scalar.
+ // Throw an error if its not either.
+ if (getLangOptions().OpenCL) {
+ if (!CondTy->isVectorType()) {
+ Diag(Cond.get()->getLocStart(),
+ diag::err_typecheck_cond_expect_scalar_or_vector)
+ << CondTy;
+ return QualType();
+ }
+ }
+ else {
+ Diag(Cond.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
+ << CondTy;
+ return QualType();
+ }
+ }
+
+ // Now check the two expressions.
+ if (LHSTy->isVectorType() || RHSTy->isVectorType())
+ return CheckVectorOperands(QuestionLoc, LHS, RHS);
+
+ // OpenCL: If the condition is a vector, and both operands are scalar,
+ // attempt to implicity convert them to the vector type to act like the
+ // built in select.
+ if (getLangOptions().OpenCL && CondTy->isVectorType()) {
+ // Both operands should be of scalar type.
+ if (!LHSTy->isScalarType()) {
+ Diag(LHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
+ << CondTy;
+ return QualType();
+ }
+ if (!RHSTy->isScalarType()) {
+ Diag(RHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
+ << CondTy;
+ return QualType();
+ }
+ // Implicity convert these scalars to the type of the condition.
+ LHS = ImpCastExprToType(LHS.take(), CondTy, CK_IntegralCast);
+ RHS = ImpCastExprToType(RHS.take(), CondTy, CK_IntegralCast);
+ }
+
+ // If both operands have arithmetic type, do the usual arithmetic conversions
+ // to find a common type: C99 6.5.15p3,5.
+ if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
+ UsualArithmeticConversions(LHS, RHS);
+ if (LHS.isInvalid() || RHS.isInvalid())
+ return QualType();
+ return LHS.get()->getType();
+ }
+
+ // If both operands are the same structure or union type, the result is that
+ // type.
+ if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3
+ if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
+ if (LHSRT->getDecl() == RHSRT->getDecl())
+ // "If both the operands have structure or union type, the result has
+ // that type." This implies that CV qualifiers are dropped.
+ return LHSTy.getUnqualifiedType();
+ // FIXME: Type of conditional expression must be complete in C mode.
+ }
+
+ // C99 6.5.15p5: "If both operands have void type, the result has void type."
+ // The following || allows only one side to be void (a GCC-ism).
+ if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
+ if (!LHSTy->isVoidType())
+ Diag(RHS.get()->getLocStart(), diag::ext_typecheck_cond_one_void)
+ << RHS.get()->getSourceRange();
+ if (!RHSTy->isVoidType())
+ Diag(LHS.get()->getLocStart(), diag::ext_typecheck_cond_one_void)
+ << LHS.get()->getSourceRange();
+ LHS = ImpCastExprToType(LHS.take(), Context.VoidTy, CK_ToVoid);
+ RHS = ImpCastExprToType(RHS.take(), Context.VoidTy, CK_ToVoid);
+ return Context.VoidTy;
+ }
+ // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
+ // the type of the other operand."
+ if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) &&
+ RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
+ // promote the null to a pointer.
+ RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_NullToPointer);
+ return LHSTy;
+ }
+ if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) &&
+ LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
+ LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_NullToPointer);
+ return RHSTy;
+ }
+
+ // All objective-c pointer type analysis is done here.
+ QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
+ QuestionLoc);
+ if (LHS.isInvalid() || RHS.isInvalid())
+ return QualType();
+ if (!compositeType.isNull())
+ return compositeType;
+
+
+ // Handle block pointer types.
+ if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
+ if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
+ if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
+ QualType destType = Context.getPointerType(Context.VoidTy);
+ LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
+ RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
+ return destType;
+ }
+ Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
+ << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ return QualType();
+ }
+ // We have 2 block pointer types.
+ if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
+ // Two identical block pointer types are always compatible.
+ return LHSTy;
+ }
+ // The block pointer types aren't identical, continue checking.
+ QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType();
+ QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType();
+
+ if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
+ rhptee.getUnqualifiedType())) {
+ Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
+ << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ // In this situation, we assume void* type. No especially good
+ // reason, but this is what gcc does, and we do have to pick
+ // to get a consistent AST.
+ QualType incompatTy = Context.getPointerType(Context.VoidTy);
+ LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
+ RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
+ return incompatTy;
+ }
+ // The block pointer types are compatible.
+ LHS = ImpCastExprToType(LHS.take(), LHSTy, CK_BitCast);
+ RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
+ return LHSTy;
+ }
+
+ // Check constraints for C object pointers types (C99 6.5.15p3,6).
+ if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
+ // get the "pointed to" types
+ QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
+ QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
+
+ // ignore qualifiers on void (C99 6.5.15p3, clause 6)
+ if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
+ // Figure out necessary qualifiers (C99 6.5.15p6)
+ QualType destPointee
+ = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
+ QualType destType = Context.getPointerType(destPointee);
+ // Add qualifiers if necessary.
+ LHS = ImpCastExprToType(LHS.take(), destType, CK_NoOp);
+ // Promote to void*.
+ RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
+ return destType;
+ }
+ if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
+ QualType destPointee
+ = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
+ QualType destType = Context.getPointerType(destPointee);
+ // Add qualifiers if necessary.
+ RHS = ImpCastExprToType(RHS.take(), destType, CK_NoOp);
+ // Promote to void*.
+ LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
+ return destType;
+ }
+
+ if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
+ // Two identical pointer types are always compatible.
+ return LHSTy;
+ }
+ if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
+ rhptee.getUnqualifiedType())) {
+ Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
+ << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ // In this situation, we assume void* type. No especially good
+ // reason, but this is what gcc does, and we do have to pick
+ // to get a consistent AST.
+ QualType incompatTy = Context.getPointerType(Context.VoidTy);
+ LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
+ RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
+ return incompatTy;
+ }
+ // The pointer types are compatible.
+ // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
+ // differently qualified versions of compatible types, the result type is
+ // a pointer to an appropriately qualified version of the *composite*
+ // type.
+ // FIXME: Need to calculate the composite type.
+ // FIXME: Need to add qualifiers
+ LHS = ImpCastExprToType(LHS.take(), LHSTy, CK_BitCast);
+ RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
+ return LHSTy;
+ }
+
+ // GCC compatibility: soften pointer/integer mismatch. Note that
+ // null pointers have been filtered out by this point.
+ if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
+ Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
+ << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_IntegralToPointer);
+ return RHSTy;
+ }
+ if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
+ Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
+ << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_IntegralToPointer);
+ return LHSTy;
+ }
+
+ // Emit a better diagnostic if one of the expressions is a null pointer
+ // constant and the other is not a pointer type. In this case, the user most
+ // likely forgot to take the address of the other expression.
+ if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
+ return QualType();
+
+ // Otherwise, the operands are not compatible.
+ Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
+ << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ return QualType();
+}
+
+/// FindCompositeObjCPointerType - Helper method to find composite type of
+/// two objective-c pointer types of the two input expressions.
+QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
+ SourceLocation QuestionLoc) {
+ QualType LHSTy = LHS.get()->getType();
+ QualType RHSTy = RHS.get()->getType();
+
+ // Handle things like Class and struct objc_class*. Here we case the result
+ // to the pseudo-builtin, because that will be implicitly cast back to the
+ // redefinition type if an attempt is made to access its fields.
+ if (LHSTy->isObjCClassType() &&
+ (Context.hasSameType(RHSTy, Context.ObjCClassRedefinitionType))) {
+ RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
+ return LHSTy;
+ }
+ if (RHSTy->isObjCClassType() &&
+ (Context.hasSameType(LHSTy, Context.ObjCClassRedefinitionType))) {
+ LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
+ return RHSTy;
+ }
+ // And the same for struct objc_object* / id
+ if (LHSTy->isObjCIdType() &&
+ (Context.hasSameType(RHSTy, Context.ObjCIdRedefinitionType))) {
+ RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
+ return LHSTy;
+ }
+ if (RHSTy->isObjCIdType() &&
+ (Context.hasSameType(LHSTy, Context.ObjCIdRedefinitionType))) {
+ LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
+ return RHSTy;
+ }
+ // And the same for struct objc_selector* / SEL
+ if (Context.isObjCSelType(LHSTy) &&
+ (Context.hasSameType(RHSTy, Context.ObjCSelRedefinitionType))) {
+ RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
+ return LHSTy;
+ }
+ if (Context.isObjCSelType(RHSTy) &&
+ (Context.hasSameType(LHSTy, Context.ObjCSelRedefinitionType))) {
+ LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
+ return RHSTy;
+ }
+ // Check constraints for Objective-C object pointers types.
+ if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
+
+ if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
+ // Two identical object pointer types are always compatible.
+ return LHSTy;
+ }
+ const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>();
+ const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>();
+ QualType compositeType = LHSTy;
+
+ // If both operands are interfaces and either operand can be
+ // assigned to the other, use that type as the composite
+ // type. This allows
+ // xxx ? (A*) a : (B*) b
+ // where B is a subclass of A.
+ //
+ // Additionally, as for assignment, if either type is 'id'
+ // allow silent coercion. Finally, if the types are
+ // incompatible then make sure to use 'id' as the composite
+ // type so the result is acceptable for sending messages to.
+
+ // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
+ // It could return the composite type.
+ if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
+ compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
+ } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
+ compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
+ } else if ((LHSTy->isObjCQualifiedIdType() ||
+ RHSTy->isObjCQualifiedIdType()) &&
+ Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
+ // Need to handle "id<xx>" explicitly.
+ // GCC allows qualified id and any Objective-C type to devolve to
+ // id. Currently localizing to here until clear this should be
+ // part of ObjCQualifiedIdTypesAreCompatible.
+ compositeType = Context.getObjCIdType();
+ } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
+ compositeType = Context.getObjCIdType();
+ } else if (!(compositeType =
+ Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
+ ;
+ else {
+ Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
+ << LHSTy << RHSTy
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ QualType incompatTy = Context.getObjCIdType();
+ LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
+ RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
+ return incompatTy;
+ }
+ // The object pointer types are compatible.
+ LHS = ImpCastExprToType(LHS.take(), compositeType, CK_BitCast);
+ RHS = ImpCastExprToType(RHS.take(), compositeType, CK_BitCast);
+ return compositeType;
+ }
+ // Check Objective-C object pointer types and 'void *'
+ if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
+ QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
+ QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
+ QualType destPointee
+ = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
+ QualType destType = Context.getPointerType(destPointee);
+ // Add qualifiers if necessary.
+ LHS = ImpCastExprToType(LHS.take(), destType, CK_NoOp);
+ // Promote to void*.
+ RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
+ return destType;
+ }
+ if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
+ QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
+ QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
+ QualType destPointee
+ = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
+ QualType destType = Context.getPointerType(destPointee);
+ // Add qualifiers if necessary.
+ RHS = ImpCastExprToType(RHS.take(), destType, CK_NoOp);
+ // Promote to void*.
+ LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
+ return destType;
+ }
+ return QualType();
+}
+
+/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
+/// in the case of a the GNU conditional expr extension.
+ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
+ SourceLocation ColonLoc,
+ Expr *CondExpr, Expr *LHSExpr,
+ Expr *RHSExpr) {
+ // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
+ // was the condition.
+ OpaqueValueExpr *opaqueValue = 0;
+ Expr *commonExpr = 0;
+ if (LHSExpr == 0) {
+ commonExpr = CondExpr;
+
+ // We usually want to apply unary conversions *before* saving, except
+ // in the special case of a C++ l-value conditional.
+ if (!(getLangOptions().CPlusPlus
+ && !commonExpr->isTypeDependent()
+ && commonExpr->getValueKind() == RHSExpr->getValueKind()
+ && commonExpr->isGLValue()
+ && commonExpr->isOrdinaryOrBitFieldObject()
+ && RHSExpr->isOrdinaryOrBitFieldObject()
+ && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
+ ExprResult commonRes = UsualUnaryConversions(commonExpr);
+ if (commonRes.isInvalid())
+ return ExprError();
+ commonExpr = commonRes.take();
+ }
+
+ opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
+ commonExpr->getType(),
+ commonExpr->getValueKind(),
+ commonExpr->getObjectKind());
+ LHSExpr = CondExpr = opaqueValue;
+ }
+
+ ExprValueKind VK = VK_RValue;
+ ExprObjectKind OK = OK_Ordinary;
+ ExprResult Cond = Owned(CondExpr), LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
+ QualType result = CheckConditionalOperands(Cond, LHS, RHS,
+ VK, OK, QuestionLoc);
+ if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
+ RHS.isInvalid())
+ return ExprError();
+
+ if (!commonExpr)
+ return Owned(new (Context) ConditionalOperator(Cond.take(), QuestionLoc,
+ LHS.take(), ColonLoc,
+ RHS.take(), result, VK, OK));
+
+ return Owned(new (Context)
+ BinaryConditionalOperator(commonExpr, opaqueValue, Cond.take(), LHS.take(),
+ RHS.take(), QuestionLoc, ColonLoc, result, VK, OK));
+}
+
+// checkPointerTypesForAssignment - This is a very tricky routine (despite
+// being closely modeled after the C99 spec:-). The odd characteristic of this
+// routine is it effectively iqnores the qualifiers on the top level pointee.
+// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
+// FIXME: add a couple examples in this comment.
+static Sema::AssignConvertType
+checkPointerTypesForAssignment(Sema &S, QualType lhsType, QualType rhsType) {
+ assert(lhsType.isCanonical() && "LHS not canonicalized!");
+ assert(rhsType.isCanonical() && "RHS not canonicalized!");
+
+ // get the "pointed to" type (ignoring qualifiers at the top level)
+ const Type *lhptee, *rhptee;
+ Qualifiers lhq, rhq;
+ llvm::tie(lhptee, lhq) = cast<PointerType>(lhsType)->getPointeeType().split();
+ llvm::tie(rhptee, rhq) = cast<PointerType>(rhsType)->getPointeeType().split();
+
+ Sema::AssignConvertType ConvTy = Sema::Compatible;
+
+ // C99 6.5.16.1p1: This following citation is common to constraints
+ // 3 & 4 (below). ...and the type *pointed to* by the left has all the
+ // qualifiers of the type *pointed to* by the right;
+ Qualifiers lq;
+
+ if (!lhq.compatiblyIncludes(rhq)) {
+ // Treat address-space mismatches as fatal. TODO: address subspaces
+ if (lhq.getAddressSpace() != rhq.getAddressSpace())
+ ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
+
+ // It's okay to add or remove GC qualifiers when converting to
+ // and from void*.
+ else if (lhq.withoutObjCGCAttr().compatiblyIncludes(rhq.withoutObjCGCAttr())
+ && (lhptee->isVoidType() || rhptee->isVoidType()))
+ ; // keep old
+
+ // For GCC compatibility, other qualifier mismatches are treated
+ // as still compatible in C.
+ else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
+ }
+
+ // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
+ // incomplete type and the other is a pointer to a qualified or unqualified
+ // version of void...
+ if (lhptee->isVoidType()) {
+ if (rhptee->isIncompleteOrObjectType())
+ return ConvTy;
+
+ // As an extension, we allow cast to/from void* to function pointer.
+ assert(rhptee->isFunctionType());
+ return Sema::FunctionVoidPointer;
+ }
+
+ if (rhptee->isVoidType()) {
+ if (lhptee->isIncompleteOrObjectType())
+ return ConvTy;
+
+ // As an extension, we allow cast to/from void* to function pointer.
+ assert(lhptee->isFunctionType());
+ return Sema::FunctionVoidPointer;
+ }
+
+ // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
+ // unqualified versions of compatible types, ...
+ QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
+ if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
+ // Check if the pointee types are compatible ignoring the sign.
+ // We explicitly check for char so that we catch "char" vs
+ // "unsigned char" on systems where "char" is unsigned.
+ if (lhptee->isCharType())
+ ltrans = S.Context.UnsignedCharTy;
+ else if (lhptee->hasSignedIntegerRepresentation())
+ ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
+
+ if (rhptee->isCharType())
+ rtrans = S.Context.UnsignedCharTy;
+ else if (rhptee->hasSignedIntegerRepresentation())
+ rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
+
+ if (ltrans == rtrans) {
+ // Types are compatible ignoring the sign. Qualifier incompatibility
+ // takes priority over sign incompatibility because the sign
+ // warning can be disabled.
+ if (ConvTy != Sema::Compatible)
+ return ConvTy;
+
+ return Sema::IncompatiblePointerSign;
+ }
+
+ // If we are a multi-level pointer, it's possible that our issue is simply
+ // one of qualification - e.g. char ** -> const char ** is not allowed. If
+ // the eventual target type is the same and the pointers have the same
+ // level of indirection, this must be the issue.
+ if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
+ do {
+ lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
+ rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
+ } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
+
+ if (lhptee == rhptee)
+ return Sema::IncompatibleNestedPointerQualifiers;
+ }
+
+ // General pointer incompatibility takes priority over qualifiers.
+ return Sema::IncompatiblePointer;
+ }
+ return ConvTy;
+}
+
+/// checkBlockPointerTypesForAssignment - This routine determines whether two
+/// block pointer types are compatible or whether a block and normal pointer
+/// are compatible. It is more restrict than comparing two function pointer
+// types.
+static Sema::AssignConvertType
+checkBlockPointerTypesForAssignment(Sema &S, QualType lhsType,
+ QualType rhsType) {
+ assert(lhsType.isCanonical() && "LHS not canonicalized!");
+ assert(rhsType.isCanonical() && "RHS not canonicalized!");
+
+ QualType lhptee, rhptee;
+
+ // get the "pointed to" type (ignoring qualifiers at the top level)
+ lhptee = cast<BlockPointerType>(lhsType)->getPointeeType();
+ rhptee = cast<BlockPointerType>(rhsType)->getPointeeType();
+
+ // In C++, the types have to match exactly.
+ if (S.getLangOptions().CPlusPlus)
+ return Sema::IncompatibleBlockPointer;
+
+ Sema::AssignConvertType ConvTy = Sema::Compatible;
+
+ // For blocks we enforce that qualifiers are identical.
+ if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
+ ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
+
+ if (!S.Context.typesAreBlockPointerCompatible(lhsType, rhsType))
+ return Sema::IncompatibleBlockPointer;
+
+ return ConvTy;
+}
+
+/// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
+/// for assignment compatibility.
+static Sema::AssignConvertType
+checkObjCPointerTypesForAssignment(Sema &S, QualType lhsType, QualType rhsType) {
+ assert(lhsType.isCanonical() && "LHS was not canonicalized!");
+ assert(rhsType.isCanonical() && "RHS was not canonicalized!");
+
+ if (lhsType->isObjCBuiltinType()) {
+ // Class is not compatible with ObjC object pointers.
+ if (lhsType->isObjCClassType() && !rhsType->isObjCBuiltinType() &&
+ !rhsType->isObjCQualifiedClassType())
+ return Sema::IncompatiblePointer;
+ return Sema::Compatible;
+ }
+ if (rhsType->isObjCBuiltinType()) {
+ // Class is not compatible with ObjC object pointers.
+ if (rhsType->isObjCClassType() && !lhsType->isObjCBuiltinType() &&
+ !lhsType->isObjCQualifiedClassType())
+ return Sema::IncompatiblePointer;
+ return Sema::Compatible;
+ }
+ QualType lhptee =
+ lhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
+ QualType rhptee =
+ rhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
+
+ if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
+ return Sema::CompatiblePointerDiscardsQualifiers;
+
+ if (S.Context.typesAreCompatible(lhsType, rhsType))
+ return Sema::Compatible;
+ if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
+ return Sema::IncompatibleObjCQualifiedId;
+ return Sema::IncompatiblePointer;
+}
+
+Sema::AssignConvertType
+Sema::CheckAssignmentConstraints(SourceLocation Loc,
+ QualType lhsType, QualType rhsType) {
+ // Fake up an opaque expression. We don't actually care about what
+ // cast operations are required, so if CheckAssignmentConstraints
+ // adds casts to this they'll be wasted, but fortunately that doesn't
+ // usually happen on valid code.
+ OpaqueValueExpr rhs(Loc, rhsType, VK_RValue);
+ ExprResult rhsPtr = &rhs;
+ CastKind K = CK_Invalid;
+
+ return CheckAssignmentConstraints(lhsType, rhsPtr, K);
+}
+
+/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
+/// has code to accommodate several GCC extensions when type checking
+/// pointers. Here are some objectionable examples that GCC considers warnings:
+///
+/// int a, *pint;
+/// short *pshort;
+/// struct foo *pfoo;
+///
+/// pint = pshort; // warning: assignment from incompatible pointer type
+/// a = pint; // warning: assignment makes integer from pointer without a cast
+/// pint = a; // warning: assignment makes pointer from integer without a cast
+/// pint = pfoo; // warning: assignment from incompatible pointer type
+///
+/// As a result, the code for dealing with pointers is more complex than the
+/// C99 spec dictates.
+///
+/// Sets 'Kind' for any result kind except Incompatible.
+Sema::AssignConvertType
+Sema::CheckAssignmentConstraints(QualType lhsType, ExprResult &rhs,
+ CastKind &Kind) {
+ QualType rhsType = rhs.get()->getType();
+
+ // Get canonical types. We're not formatting these types, just comparing
+ // them.
+ lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
+ rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
+
+ // Common case: no conversion required.
+ if (lhsType == rhsType) {
+ Kind = CK_NoOp;
+ return Compatible;
+ }
+
+ // If the left-hand side is a reference type, then we are in a
+ // (rare!) case where we've allowed the use of references in C,
+ // e.g., as a parameter type in a built-in function. In this case,
+ // just make sure that the type referenced is compatible with the
+ // right-hand side type. The caller is responsible for adjusting
+ // lhsType so that the resulting expression does not have reference
+ // type.
+ if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) {
+ if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType)) {
+ Kind = CK_LValueBitCast;
+ return Compatible;
+ }
+ return Incompatible;
+ }
+
+ // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
+ // to the same ExtVector type.
+ if (lhsType->isExtVectorType()) {
+ if (rhsType->isExtVectorType())
+ return Incompatible;
+ if (rhsType->isArithmeticType()) {
+ // CK_VectorSplat does T -> vector T, so first cast to the
+ // element type.
+ QualType elType = cast<ExtVectorType>(lhsType)->getElementType();
+ if (elType != rhsType) {
+ Kind = PrepareScalarCast(*this, rhs, elType);
+ rhs = ImpCastExprToType(rhs.take(), elType, Kind);
+ }
+ Kind = CK_VectorSplat;
+ return Compatible;
+ }
+ }
+
+ // Conversions to or from vector type.
+ if (lhsType->isVectorType() || rhsType->isVectorType()) {
+ if (lhsType->isVectorType() && rhsType->isVectorType()) {
+ // Allow assignments of an AltiVec vector type to an equivalent GCC
+ // vector type and vice versa
+ if (Context.areCompatibleVectorTypes(lhsType, rhsType)) {
+ Kind = CK_BitCast;
+ return Compatible;
+ }
+
+ // If we are allowing lax vector conversions, and LHS and RHS are both
+ // vectors, the total size only needs to be the same. This is a bitcast;
+ // no bits are changed but the result type is different.
+ if (getLangOptions().LaxVectorConversions &&
+ (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))) {
+ Kind = CK_BitCast;
+ return IncompatibleVectors;
+ }
+ }
+ return Incompatible;
+ }
+
+ // Arithmetic conversions.
+ if (lhsType->isArithmeticType() && rhsType->isArithmeticType() &&
+ !(getLangOptions().CPlusPlus && lhsType->isEnumeralType())) {
+ Kind = PrepareScalarCast(*this, rhs, lhsType);
+ return Compatible;
+ }
+
+ // Conversions to normal pointers.
+ if (const PointerType *lhsPointer = dyn_cast<PointerType>(lhsType)) {
+ // U* -> T*
+ if (isa<PointerType>(rhsType)) {
+ Kind = CK_BitCast;
+ return checkPointerTypesForAssignment(*this, lhsType, rhsType);
+ }
+
+ // int -> T*
+ if (rhsType->isIntegerType()) {
+ Kind = CK_IntegralToPointer; // FIXME: null?
+ return IntToPointer;
+ }
+
+ // C pointers are not compatible with ObjC object pointers,
+ // with two exceptions:
+ if (isa<ObjCObjectPointerType>(rhsType)) {
+ // - conversions to void*
+ if (lhsPointer->getPointeeType()->isVoidType()) {
+ Kind = CK_AnyPointerToObjCPointerCast;
+ return Compatible;
+ }
+
+ // - conversions from 'Class' to the redefinition type
+ if (rhsType->isObjCClassType() &&
+ Context.hasSameType(lhsType, Context.ObjCClassRedefinitionType)) {
+ Kind = CK_BitCast;
+ return Compatible;
+ }
+
+ Kind = CK_BitCast;
+ return IncompatiblePointer;
+ }
+
+ // U^ -> void*
+ if (rhsType->getAs<BlockPointerType>()) {
+ if (lhsPointer->getPointeeType()->isVoidType()) {
+ Kind = CK_BitCast;
+ return Compatible;
+ }
+ }
+
+ return Incompatible;
+ }
+
+ // Conversions to block pointers.
+ if (isa<BlockPointerType>(lhsType)) {
+ // U^ -> T^
+ if (rhsType->isBlockPointerType()) {
+ Kind = CK_AnyPointerToBlockPointerCast;
+ return checkBlockPointerTypesForAssignment(*this, lhsType, rhsType);
+ }
+
+ // int or null -> T^
+ if (rhsType->isIntegerType()) {
+ Kind = CK_IntegralToPointer; // FIXME: null
+ return IntToBlockPointer;
+ }
+
+ // id -> T^
+ if (getLangOptions().ObjC1 && rhsType->isObjCIdType()) {
+ Kind = CK_AnyPointerToBlockPointerCast;
+ return Compatible;
+ }
+
+ // void* -> T^
+ if (const PointerType *RHSPT = rhsType->getAs<PointerType>())
+ if (RHSPT->getPointeeType()->isVoidType()) {
+ Kind = CK_AnyPointerToBlockPointerCast;
+ return Compatible;
+ }
+
+ return Incompatible;
+ }
+
+ // Conversions to Objective-C pointers.
+ if (isa<ObjCObjectPointerType>(lhsType)) {
+ // A* -> B*
+ if (rhsType->isObjCObjectPointerType()) {
+ Kind = CK_BitCast;
+ return checkObjCPointerTypesForAssignment(*this, lhsType, rhsType);
+ }
+
+ // int or null -> A*
+ if (rhsType->isIntegerType()) {
+ Kind = CK_IntegralToPointer; // FIXME: null
+ return IntToPointer;
+ }
+
+ // In general, C pointers are not compatible with ObjC object pointers,
+ // with two exceptions:
+ if (isa<PointerType>(rhsType)) {
+ // - conversions from 'void*'
+ if (rhsType->isVoidPointerType()) {
+ Kind = CK_AnyPointerToObjCPointerCast;
+ return Compatible;
+ }
+
+ // - conversions to 'Class' from its redefinition type
+ if (lhsType->isObjCClassType() &&
+ Context.hasSameType(rhsType, Context.ObjCClassRedefinitionType)) {
+ Kind = CK_BitCast;
+ return Compatible;
+ }
+
+ Kind = CK_AnyPointerToObjCPointerCast;
+ return IncompatiblePointer;
+ }
+
+ // T^ -> A*
+ if (rhsType->isBlockPointerType()) {
+ Kind = CK_AnyPointerToObjCPointerCast;
+ return Compatible;
+ }
+
+ return Incompatible;
+ }
+
+ // Conversions from pointers that are not covered by the above.
+ if (isa<PointerType>(rhsType)) {
+ // T* -> _Bool
+ if (lhsType == Context.BoolTy) {
+ Kind = CK_PointerToBoolean;
+ return Compatible;
+ }
+
+ // T* -> int
+ if (lhsType->isIntegerType()) {
+ Kind = CK_PointerToIntegral;
+ return PointerToInt;
+ }
+
+ return Incompatible;
+ }
+
+ // Conversions from Objective-C pointers that are not covered by the above.
+ if (isa<ObjCObjectPointerType>(rhsType)) {
+ // T* -> _Bool
+ if (lhsType == Context.BoolTy) {
+ Kind = CK_PointerToBoolean;
+ return Compatible;
+ }
+
+ // T* -> int
+ if (lhsType->isIntegerType()) {
+ Kind = CK_PointerToIntegral;
+ return PointerToInt;
+ }
+
+ return Incompatible;
+ }
+
+ // struct A -> struct B
+ if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
+ if (Context.typesAreCompatible(lhsType, rhsType)) {
+ Kind = CK_NoOp;
+ return Compatible;
+ }
+ }
+
+ return Incompatible;
+}
+
+/// \brief Constructs a transparent union from an expression that is
+/// used to initialize the transparent union.
+static void ConstructTransparentUnion(Sema &S, ASTContext &C, ExprResult &EResult,
+ QualType UnionType, FieldDecl *Field) {
+ // Build an initializer list that designates the appropriate member
+ // of the transparent union.
+ Expr *E = EResult.take();
+ InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
+ &E, 1,
+ SourceLocation());
+ Initializer->setType(UnionType);
+ Initializer->setInitializedFieldInUnion(Field);
+
+ // Build a compound literal constructing a value of the transparent
+ // union type from this initializer list.
+ TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
+ EResult = S.Owned(
+ new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
+ VK_RValue, Initializer, false));
+}
+
+Sema::AssignConvertType
+Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, ExprResult &rExpr) {
+ QualType FromType = rExpr.get()->getType();
+
+ // If the ArgType is a Union type, we want to handle a potential
+ // transparent_union GCC extension.
+ const RecordType *UT = ArgType->getAsUnionType();
+ if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
+ return Incompatible;
+
+ // The field to initialize within the transparent union.
+ RecordDecl *UD = UT->getDecl();
+ FieldDecl *InitField = 0;
+ // It's compatible if the expression matches any of the fields.
+ for (RecordDecl::field_iterator it = UD->field_begin(),
+ itend = UD->field_end();
+ it != itend; ++it) {
+ if (it->getType()->isPointerType()) {
+ // If the transparent union contains a pointer type, we allow:
+ // 1) void pointer
+ // 2) null pointer constant
+ if (FromType->isPointerType())
+ if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
+ rExpr = ImpCastExprToType(rExpr.take(), it->getType(), CK_BitCast);
+ InitField = *it;
+ break;
+ }
+
+ if (rExpr.get()->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNull)) {
+ rExpr = ImpCastExprToType(rExpr.take(), it->getType(), CK_NullToPointer);
+ InitField = *it;
+ break;
+ }
+ }
+
+ CastKind Kind = CK_Invalid;
+ if (CheckAssignmentConstraints(it->getType(), rExpr, Kind)
+ == Compatible) {
+ rExpr = ImpCastExprToType(rExpr.take(), it->getType(), Kind);
+ InitField = *it;
+ break;
+ }
+ }
+
+ if (!InitField)
+ return Incompatible;
+
+ ConstructTransparentUnion(*this, Context, rExpr, ArgType, InitField);
+ return Compatible;
+}
+
+Sema::AssignConvertType
+Sema::CheckSingleAssignmentConstraints(QualType lhsType, ExprResult &rExpr) {
+ if (getLangOptions().CPlusPlus) {
+ if (!lhsType->isRecordType()) {
+ // C++ 5.17p3: If the left operand is not of class type, the
+ // expression is implicitly converted (C++ 4) to the
+ // cv-unqualified type of the left operand.
+ ExprResult Res = PerformImplicitConversion(rExpr.get(),
+ lhsType.getUnqualifiedType(),
+ AA_Assigning);
+ if (Res.isInvalid())
+ return Incompatible;
+ rExpr = move(Res);
+ return Compatible;
+ }
+
+ // FIXME: Currently, we fall through and treat C++ classes like C
+ // structures.
+ }
+
+ // C99 6.5.16.1p1: the left operand is a pointer and the right is
+ // a null pointer constant.
+ if ((lhsType->isPointerType() ||
+ lhsType->isObjCObjectPointerType() ||
+ lhsType->isBlockPointerType())
+ && rExpr.get()->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNull)) {
+ rExpr = ImpCastExprToType(rExpr.take(), lhsType, CK_NullToPointer);
+ return Compatible;
+ }
+
+ // This check seems unnatural, however it is necessary to ensure the proper
+ // conversion of functions/arrays. If the conversion were done for all
+ // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
+ // expressions that suppress this implicit conversion (&, sizeof).
+ //
+ // Suppress this for references: C++ 8.5.3p5.
+ if (!lhsType->isReferenceType()) {
+ rExpr = DefaultFunctionArrayLvalueConversion(rExpr.take());
+ if (rExpr.isInvalid())
+ return Incompatible;
+ }
+
+ CastKind Kind = CK_Invalid;
+ Sema::AssignConvertType result =
+ CheckAssignmentConstraints(lhsType, rExpr, Kind);
+
+ // C99 6.5.16.1p2: The value of the right operand is converted to the
+ // type of the assignment expression.
+ // CheckAssignmentConstraints allows the left-hand side to be a reference,
+ // so that we can use references in built-in functions even in C.
+ // The getNonReferenceType() call makes sure that the resulting expression
+ // does not have reference type.
+ if (result != Incompatible && rExpr.get()->getType() != lhsType)
+ rExpr = ImpCastExprToType(rExpr.take(), lhsType.getNonLValueExprType(Context), Kind);
+ return result;
+}
+
+QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &lex, ExprResult &rex) {
+ Diag(Loc, diag::err_typecheck_invalid_operands)
+ << lex.get()->getType() << rex.get()->getType()
+ << lex.get()->getSourceRange() << rex.get()->getSourceRange();
+ return QualType();
+}
+
+QualType Sema::CheckVectorOperands(SourceLocation Loc, ExprResult &lex, ExprResult &rex) {
+ // For conversion purposes, we ignore any qualifiers.
+ // For example, "const float" and "float" are equivalent.
+ QualType lhsType =
+ Context.getCanonicalType(lex.get()->getType()).getUnqualifiedType();
+ QualType rhsType =
+ Context.getCanonicalType(rex.get()->getType()).getUnqualifiedType();
+
+ // If the vector types are identical, return.
+ if (lhsType == rhsType)
+ return lhsType;
+
+ // Handle the case of a vector & extvector type of the same size and element
+ // type. It would be nice if we only had one vector type someday.
+ if (getLangOptions().LaxVectorConversions) {
+ if (const VectorType *LV = lhsType->getAs<VectorType>()) {
+ if (const VectorType *RV = rhsType->getAs<VectorType>()) {
+ if (LV->getElementType() == RV->getElementType() &&
+ LV->getNumElements() == RV->getNumElements()) {
+ if (lhsType->isExtVectorType()) {
+ rex = ImpCastExprToType(rex.take(), lhsType, CK_BitCast);
+ return lhsType;
+ }
+
+ lex = ImpCastExprToType(lex.take(), rhsType, CK_BitCast);
+ return rhsType;
+ } else if (Context.getTypeSize(lhsType) ==Context.getTypeSize(rhsType)){
+ // If we are allowing lax vector conversions, and LHS and RHS are both
+ // vectors, the total size only needs to be the same. This is a
+ // bitcast; no bits are changed but the result type is different.
+ rex = ImpCastExprToType(rex.take(), lhsType, CK_BitCast);
+ return lhsType;
+ }
+ }
+ }
+ }
+
+ // Handle the case of equivalent AltiVec and GCC vector types
+ if (lhsType->isVectorType() && rhsType->isVectorType() &&
+ Context.areCompatibleVectorTypes(lhsType, rhsType)) {
+ lex = ImpCastExprToType(lex.take(), rhsType, CK_BitCast);
+ return rhsType;
+ }
+
+ // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
+ // swap back (so that we don't reverse the inputs to a subtract, for instance.
+ bool swapped = false;
+ if (rhsType->isExtVectorType()) {
+ swapped = true;
+ std::swap(rex, lex);
+ std::swap(rhsType, lhsType);
+ }
+
+ // Handle the case of an ext vector and scalar.
+ if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) {
+ QualType EltTy = LV->getElementType();
+ if (EltTy->isIntegralType(Context) && rhsType->isIntegralType(Context)) {
+ int order = Context.getIntegerTypeOrder(EltTy, rhsType);
+ if (order > 0)
+ rex = ImpCastExprToType(rex.take(), EltTy, CK_IntegralCast);
+ if (order >= 0) {
+ rex = ImpCastExprToType(rex.take(), lhsType, CK_VectorSplat);
+ if (swapped) std::swap(rex, lex);
+ return lhsType;
+ }
+ }
+ if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
+ rhsType->isRealFloatingType()) {
+ int order = Context.getFloatingTypeOrder(EltTy, rhsType);
+ if (order > 0)
+ rex = ImpCastExprToType(rex.take(), EltTy, CK_FloatingCast);
+ if (order >= 0) {
+ rex = ImpCastExprToType(rex.take(), lhsType, CK_VectorSplat);
+ if (swapped) std::swap(rex, lex);
+ return lhsType;
+ }
+ }
+ }
+
+ // Vectors of different size or scalar and non-ext-vector are errors.
+ Diag(Loc, diag::err_typecheck_vector_not_convertable)
+ << lex.get()->getType() << rex.get()->getType()
+ << lex.get()->getSourceRange() << rex.get()->getSourceRange();
+ return QualType();
+}
+
+QualType Sema::CheckMultiplyDivideOperands(
+ ExprResult &lex, ExprResult &rex, SourceLocation Loc, bool isCompAssign, bool isDiv) {
+ if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType())
+ return CheckVectorOperands(Loc, lex, rex);
+
+ QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
+ if (lex.isInvalid() || rex.isInvalid())
+ return QualType();
+
+ if (!lex.get()->getType()->isArithmeticType() ||
+ !rex.get()->getType()->isArithmeticType())
+ return InvalidOperands(Loc, lex, rex);
+
+ // Check for division by zero.
+ if (isDiv &&
+ rex.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
+ DiagRuntimeBehavior(Loc, rex.get(), PDiag(diag::warn_division_by_zero)
+ << rex.get()->getSourceRange());
+
+ return compType;
+}
+
+QualType Sema::CheckRemainderOperands(
+ ExprResult &lex, ExprResult &rex, SourceLocation Loc, bool isCompAssign) {
+ if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType()) {
+ if (lex.get()->getType()->hasIntegerRepresentation() &&
+ rex.get()->getType()->hasIntegerRepresentation())
+ return CheckVectorOperands(Loc, lex, rex);
+ return InvalidOperands(Loc, lex, rex);
+ }
+
+ QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
+ if (lex.isInvalid() || rex.isInvalid())
+ return QualType();
+
+ if (!lex.get()->getType()->isIntegerType() || !rex.get()->getType()->isIntegerType())
+ return InvalidOperands(Loc, lex, rex);
+
+ // Check for remainder by zero.
+ if (rex.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
+ DiagRuntimeBehavior(Loc, rex.get(), PDiag(diag::warn_remainder_by_zero)
+ << rex.get()->getSourceRange());
+
+ return compType;
+}
+
+QualType Sema::CheckAdditionOperands( // C99 6.5.6
+ ExprResult &lex, ExprResult &rex, SourceLocation Loc, QualType* CompLHSTy) {
+ if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType()) {
+ QualType compType = CheckVectorOperands(Loc, lex, rex);
+ if (CompLHSTy) *CompLHSTy = compType;
+ return compType;
+ }
+
+ QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
+ if (lex.isInvalid() || rex.isInvalid())
+ return QualType();
+
+ // handle the common case first (both operands are arithmetic).
+ if (lex.get()->getType()->isArithmeticType() &&
+ rex.get()->getType()->isArithmeticType()) {
+ if (CompLHSTy) *CompLHSTy = compType;
+ return compType;
+ }
+
+ // Put any potential pointer into PExp
+ Expr* PExp = lex.get(), *IExp = rex.get();
+ if (IExp->getType()->isAnyPointerType())
+ std::swap(PExp, IExp);
+
+ if (PExp->getType()->isAnyPointerType()) {
+
+ if (IExp->getType()->isIntegerType()) {
+ QualType PointeeTy = PExp->getType()->getPointeeType();
+
+ // Check for arithmetic on pointers to incomplete types.
+ if (PointeeTy->isVoidType()) {
+ if (getLangOptions().CPlusPlus) {
+ Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
+ << lex.get()->getSourceRange() << rex.get()->getSourceRange();
+ return QualType();
+ }
+
+ // GNU extension: arithmetic on pointer to void
+ Diag(Loc, diag::ext_gnu_void_ptr)
+ << lex.get()->getSourceRange() << rex.get()->getSourceRange();
+ } else if (PointeeTy->isFunctionType()) {
+ if (getLangOptions().CPlusPlus) {
+ Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
+ << lex.get()->getType() << lex.get()->getSourceRange();
+ return QualType();
+ }
+
+ // GNU extension: arithmetic on pointer to function
+ Diag(Loc, diag::ext_gnu_ptr_func_arith)
+ << lex.get()->getType() << lex.get()->getSourceRange();
+ } else {
+ // Check if we require a complete type.
+ if (((PExp->getType()->isPointerType() &&
+ !PExp->getType()->isDependentType()) ||
+ PExp->getType()->isObjCObjectPointerType()) &&
+ RequireCompleteType(Loc, PointeeTy,
+ PDiag(diag::err_typecheck_arithmetic_incomplete_type)
+ << PExp->getSourceRange()
+ << PExp->getType()))
+ return QualType();
+ }
+ // Diagnose bad cases where we step over interface counts.
+ if (PointeeTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
+ Diag(Loc, diag::err_arithmetic_nonfragile_interface)
+ << PointeeTy << PExp->getSourceRange();
+ return QualType();
+ }
+
+ if (CompLHSTy) {
+ QualType LHSTy = Context.isPromotableBitField(lex.get());
+ if (LHSTy.isNull()) {
+ LHSTy = lex.get()->getType();
+ if (LHSTy->isPromotableIntegerType())
+ LHSTy = Context.getPromotedIntegerType(LHSTy);
+ }
+ *CompLHSTy = LHSTy;
+ }
+ return PExp->getType();
+ }
+ }
+
+ return InvalidOperands(Loc, lex, rex);
+}
+
+// C99 6.5.6
+QualType Sema::CheckSubtractionOperands(ExprResult &lex, ExprResult &rex,
+ SourceLocation Loc, QualType* CompLHSTy) {
+ if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType()) {
+ QualType compType = CheckVectorOperands(Loc, lex, rex);
+ if (CompLHSTy) *CompLHSTy = compType;
+ return compType;
+ }
+
+ QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
+ if (lex.isInvalid() || rex.isInvalid())
+ return QualType();
+
+ // Enforce type constraints: C99 6.5.6p3.
+
+ // Handle the common case first (both operands are arithmetic).
+ if (lex.get()->getType()->isArithmeticType() &&
+ rex.get()->getType()->isArithmeticType()) {
+ if (CompLHSTy) *CompLHSTy = compType;
+ return compType;
+ }
+
+ // Either ptr - int or ptr - ptr.
+ if (lex.get()->getType()->isAnyPointerType()) {
+ QualType lpointee = lex.get()->getType()->getPointeeType();
+
+ // The LHS must be an completely-defined object type.
+
+ bool ComplainAboutVoid = false;
+ Expr *ComplainAboutFunc = 0;
+ if (lpointee->isVoidType()) {
+ if (getLangOptions().CPlusPlus) {
+ Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
+ << lex.get()->getSourceRange() << rex.get()->getSourceRange();
+ return QualType();
+ }
+
+ // GNU C extension: arithmetic on pointer to void
+ ComplainAboutVoid = true;
+ } else if (lpointee->isFunctionType()) {
+ if (getLangOptions().CPlusPlus) {
+ Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
+ << lex.get()->getType() << lex.get()->getSourceRange();
+ return QualType();
+ }
+
+ // GNU C extension: arithmetic on pointer to function
+ ComplainAboutFunc = lex.get();
+ } else if (!lpointee->isDependentType() &&
+ RequireCompleteType(Loc, lpointee,
+ PDiag(diag::err_typecheck_sub_ptr_object)
+ << lex.get()->getSourceRange()
+ << lex.get()->getType()))
+ return QualType();
+
+ // Diagnose bad cases where we step over interface counts.
+ if (lpointee->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
+ Diag(Loc, diag::err_arithmetic_nonfragile_interface)
+ << lpointee << lex.get()->getSourceRange();
+ return QualType();
+ }
+
+ // The result type of a pointer-int computation is the pointer type.
+ if (rex.get()->getType()->isIntegerType()) {
+ if (ComplainAboutVoid)
+ Diag(Loc, diag::ext_gnu_void_ptr)
+ << lex.get()->getSourceRange() << rex.get()->getSourceRange();
+ if (ComplainAboutFunc)
+ Diag(Loc, diag::ext_gnu_ptr_func_arith)
+ << ComplainAboutFunc->getType()
+ << ComplainAboutFunc->getSourceRange();
+
+ if (CompLHSTy) *CompLHSTy = lex.get()->getType();
+ return lex.get()->getType();
+ }
+
+ // Handle pointer-pointer subtractions.
+ if (const PointerType *RHSPTy = rex.get()->getType()->getAs<PointerType>()) {
+ QualType rpointee = RHSPTy->getPointeeType();
+
+ // RHS must be a completely-type object type.
+ // Handle the GNU void* extension.
+ if (rpointee->isVoidType()) {
+ if (getLangOptions().CPlusPlus) {
+ Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
+ << lex.get()->getSourceRange() << rex.get()->getSourceRange();
+ return QualType();
+ }
+
+ ComplainAboutVoid = true;
+ } else if (rpointee->isFunctionType()) {
+ if (getLangOptions().CPlusPlus) {
+ Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
+ << rex.get()->getType() << rex.get()->getSourceRange();
+ return QualType();
+ }
+
+ // GNU extension: arithmetic on pointer to function
+ if (!ComplainAboutFunc)
+ ComplainAboutFunc = rex.get();
+ } else if (!rpointee->isDependentType() &&
+ RequireCompleteType(Loc, rpointee,
+ PDiag(diag::err_typecheck_sub_ptr_object)
+ << rex.get()->getSourceRange()
+ << rex.get()->getType()))
+ return QualType();
+
+ if (getLangOptions().CPlusPlus) {
+ // Pointee types must be the same: C++ [expr.add]
+ if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
+ Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
+ << lex.get()->getType() << rex.get()->getType()
+ << lex.get()->getSourceRange() << rex.get()->getSourceRange();
+ return QualType();
+ }
+ } else {
+ // Pointee types must be compatible C99 6.5.6p3
+ if (!Context.typesAreCompatible(
+ Context.getCanonicalType(lpointee).getUnqualifiedType(),
+ Context.getCanonicalType(rpointee).getUnqualifiedType())) {
+ Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
+ << lex.get()->getType() << rex.get()->getType()
+ << lex.get()->getSourceRange() << rex.get()->getSourceRange();
+ return QualType();
+ }
+ }
+
+ if (ComplainAboutVoid)
+ Diag(Loc, diag::ext_gnu_void_ptr)
+ << lex.get()->getSourceRange() << rex.get()->getSourceRange();
+ if (ComplainAboutFunc)
+ Diag(Loc, diag::ext_gnu_ptr_func_arith)
+ << ComplainAboutFunc->getType()
+ << ComplainAboutFunc->getSourceRange();
+
+ if (CompLHSTy) *CompLHSTy = lex.get()->getType();
+ return Context.getPointerDiffType();
+ }
+ }
+
+ return InvalidOperands(Loc, lex, rex);
+}
+
+static bool isScopedEnumerationType(QualType T) {
+ if (const EnumType *ET = dyn_cast<EnumType>(T))
+ return ET->getDecl()->isScoped();
+ return false;
+}
+
+static void DiagnoseBadShiftValues(Sema& S, ExprResult &lex, ExprResult &rex,
+ SourceLocation Loc, unsigned Opc,
+ QualType LHSTy) {
+ llvm::APSInt Right;
+ // Check right/shifter operand
+ if (rex.get()->isValueDependent() || !rex.get()->isIntegerConstantExpr(Right, S.Context))
+ return;
+
+ if (Right.isNegative()) {
+ S.DiagRuntimeBehavior(Loc, rex.get(),
+ S.PDiag(diag::warn_shift_negative)
+ << rex.get()->getSourceRange());
+ return;
+ }
+ llvm::APInt LeftBits(Right.getBitWidth(),
+ S.Context.getTypeSize(lex.get()->getType()));
+ if (Right.uge(LeftBits)) {
+ S.DiagRuntimeBehavior(Loc, rex.get(),
+ S.PDiag(diag::warn_shift_gt_typewidth)
+ << rex.get()->getSourceRange());
+ return;
+ }
+ if (Opc != BO_Shl)
+ return;
+
+ // When left shifting an ICE which is signed, we can check for overflow which
+ // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
+ // integers have defined behavior modulo one more than the maximum value
+ // representable in the result type, so never warn for those.
+ llvm::APSInt Left;
+ if (lex.get()->isValueDependent() || !lex.get()->isIntegerConstantExpr(Left, S.Context) ||
+ LHSTy->hasUnsignedIntegerRepresentation())
+ return;
+ llvm::APInt ResultBits =
+ static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
+ if (LeftBits.uge(ResultBits))
+ return;
+ llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
+ Result = Result.shl(Right);
+
+ // If we are only missing a sign bit, this is less likely to result in actual
+ // bugs -- if the result is cast back to an unsigned type, it will have the
+ // expected value. Thus we place this behind a different warning that can be
+ // turned off separately if needed.
+ if (LeftBits == ResultBits - 1) {
+ S.Diag(Loc, diag::warn_shift_result_overrides_sign_bit)
+ << Result.toString(10) << LHSTy
+ << lex.get()->getSourceRange() << rex.get()->getSourceRange();
+ return;
+ }
+
+ S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
+ << Result.toString(10) << Result.getMinSignedBits() << LHSTy
+ << Left.getBitWidth() << lex.get()->getSourceRange() << rex.get()->getSourceRange();
+}
+
+// C99 6.5.7
+QualType Sema::CheckShiftOperands(ExprResult &lex, ExprResult &rex, SourceLocation Loc,
+ unsigned Opc, bool isCompAssign) {
+ // C99 6.5.7p2: Each of the operands shall have integer type.
+ if (!lex.get()->getType()->hasIntegerRepresentation() ||
+ !rex.get()->getType()->hasIntegerRepresentation())
+ return InvalidOperands(Loc, lex, rex);
+
+ // C++0x: Don't allow scoped enums. FIXME: Use something better than
+ // hasIntegerRepresentation() above instead of this.
+ if (isScopedEnumerationType(lex.get()->getType()) ||
+ isScopedEnumerationType(rex.get()->getType())) {
+ return InvalidOperands(Loc, lex, rex);
+ }
+
+ // Vector shifts promote their scalar inputs to vector type.
+ if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType())
+ return CheckVectorOperands(Loc, lex, rex);
+
+ // Shifts don't perform usual arithmetic conversions, they just do integer
+ // promotions on each operand. C99 6.5.7p3
+
+ // For the LHS, do usual unary conversions, but then reset them away
+ // if this is a compound assignment.
+ ExprResult old_lex = lex;
+ lex = UsualUnaryConversions(lex.take());
+ if (lex.isInvalid())
+ return QualType();
+ QualType LHSTy = lex.get()->getType();
+ if (isCompAssign) lex = old_lex;
+
+ // The RHS is simpler.
+ rex = UsualUnaryConversions(rex.take());
+ if (rex.isInvalid())
+ return QualType();
+
+ // Sanity-check shift operands
+ DiagnoseBadShiftValues(*this, lex, rex, Loc, Opc, LHSTy);
+
+ // "The type of the result is that of the promoted left operand."
+ return LHSTy;
+}
+
+static bool IsWithinTemplateSpecialization(Decl *D) {
+ if (DeclContext *DC = D->getDeclContext()) {
+ if (isa<ClassTemplateSpecializationDecl>(DC))
+ return true;
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
+ return FD->isFunctionTemplateSpecialization();
+ }
+ return false;
+}
+
+// C99 6.5.8, C++ [expr.rel]
+QualType Sema::CheckCompareOperands(ExprResult &lex, ExprResult &rex, SourceLocation Loc,
+ unsigned OpaqueOpc, bool isRelational) {
+ BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
+
+ // Handle vector comparisons separately.
+ if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType())
+ return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
+
+ QualType lType = lex.get()->getType();
+ QualType rType = rex.get()->getType();
+
+ Expr *LHSStripped = lex.get()->IgnoreParenImpCasts();
+ Expr *RHSStripped = rex.get()->IgnoreParenImpCasts();
+ QualType LHSStrippedType = LHSStripped->getType();
+ QualType RHSStrippedType = RHSStripped->getType();
+
+
+
+ // Two different enums will raise a warning when compared.
+ if (const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>()) {
+ if (const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>()) {
+ if (LHSEnumType->getDecl()->getIdentifier() &&
+ RHSEnumType->getDecl()->getIdentifier() &&
+ !Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) {
+ Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
+ << LHSStrippedType << RHSStrippedType
+ << lex.get()->getSourceRange() << rex.get()->getSourceRange();
+ }
+ }
+ }
+
+ if (!lType->hasFloatingRepresentation() &&
+ !(lType->isBlockPointerType() && isRelational) &&
+ !lex.get()->getLocStart().isMacroID() &&
+ !rex.get()->getLocStart().isMacroID()) {
+ // For non-floating point types, check for self-comparisons of the form
+ // x == x, x != x, x < x, etc. These always evaluate to a constant, and
+ // often indicate logic errors in the program.
+ //
+ // NOTE: Don't warn about comparison expressions resulting from macro
+ // expansion. Also don't warn about comparisons which are only self
+ // comparisons within a template specialization. The warnings should catch
+ // obvious cases in the definition of the template anyways. The idea is to
+ // warn when the typed comparison operator will always evaluate to the same
+ // result.
+ if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) {
+ if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) {
+ if (DRL->getDecl() == DRR->getDecl() &&
+ !IsWithinTemplateSpecialization(DRL->getDecl())) {
+ DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
+ << 0 // self-
+ << (Opc == BO_EQ
+ || Opc == BO_LE
+ || Opc == BO_GE));
+ } else if (lType->isArrayType() && rType->isArrayType() &&
+ !DRL->getDecl()->getType()->isReferenceType() &&
+ !DRR->getDecl()->getType()->isReferenceType()) {
+ // what is it always going to eval to?
+ char always_evals_to;
+ switch(Opc) {
+ case BO_EQ: // e.g. array1 == array2
+ always_evals_to = 0; // false
+ break;
+ case BO_NE: // e.g. array1 != array2
+ always_evals_to = 1; // true
+ break;
+ default:
+ // best we can say is 'a constant'
+ always_evals_to = 2; // e.g. array1 <= array2
+ break;
+ }
+ DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
+ << 1 // array
+ << always_evals_to);
+ }
+ }
+ }
+
+ if (isa<CastExpr>(LHSStripped))
+ LHSStripped = LHSStripped->IgnoreParenCasts();
+ if (isa<CastExpr>(RHSStripped))
+ RHSStripped = RHSStripped->IgnoreParenCasts();
+
+ // Warn about comparisons against a string constant (unless the other
+ // operand is null), the user probably wants strcmp.
+ Expr *literalString = 0;
+ Expr *literalStringStripped = 0;
+ if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
+ !RHSStripped->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNull)) {
+ literalString = lex.get();
+ literalStringStripped = LHSStripped;
+ } else if ((isa<StringLiteral>(RHSStripped) ||
+ isa<ObjCEncodeExpr>(RHSStripped)) &&
+ !LHSStripped->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNull)) {
+ literalString = rex.get();
+ literalStringStripped = RHSStripped;
+ }
+
+ if (literalString) {
+ std::string resultComparison;
+ switch (Opc) {
+ case BO_LT: resultComparison = ") < 0"; break;
+ case BO_GT: resultComparison = ") > 0"; break;
+ case BO_LE: resultComparison = ") <= 0"; break;
+ case BO_GE: resultComparison = ") >= 0"; break;
+ case BO_EQ: resultComparison = ") == 0"; break;
+ case BO_NE: resultComparison = ") != 0"; break;
+ default: assert(false && "Invalid comparison operator");
+ }
+
+ DiagRuntimeBehavior(Loc, 0,
+ PDiag(diag::warn_stringcompare)
+ << isa<ObjCEncodeExpr>(literalStringStripped)
+ << literalString->getSourceRange());
+ }
+ }
+
+ // C99 6.5.8p3 / C99 6.5.9p4
+ if (lex.get()->getType()->isArithmeticType() && rex.get()->getType()->isArithmeticType()) {
+ UsualArithmeticConversions(lex, rex);
+ if (lex.isInvalid() || rex.isInvalid())
+ return QualType();
+ }
+ else {
+ lex = UsualUnaryConversions(lex.take());
+ if (lex.isInvalid())
+ return QualType();
+
+ rex = UsualUnaryConversions(rex.take());
+ if (rex.isInvalid())
+ return QualType();
+ }
+
+ lType = lex.get()->getType();
+ rType = rex.get()->getType();
+
+ // The result of comparisons is 'bool' in C++, 'int' in C.
+ QualType ResultTy = Context.getLogicalOperationType();
+
+ if (isRelational) {
+ if (lType->isRealType() && rType->isRealType())
+ return ResultTy;
+ } else {
+ // Check for comparisons of floating point operands using != and ==.
+ if (lType->hasFloatingRepresentation())
+ CheckFloatComparison(Loc, lex.get(), rex.get());
+
+ if (lType->isArithmeticType() && rType->isArithmeticType())
+ return ResultTy;
+ }
+
+ bool LHSIsNull = lex.get()->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNull);
+ bool RHSIsNull = rex.get()->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNull);
+
+ // All of the following pointer-related warnings are GCC extensions, except
+ // when handling null pointer constants.
+ if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
+ QualType LCanPointeeTy =
+ Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType());
+ QualType RCanPointeeTy =
+ Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType());
+
+ if (getLangOptions().CPlusPlus) {
+ if (LCanPointeeTy == RCanPointeeTy)
+ return ResultTy;
+ if (!isRelational &&
+ (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
+ // Valid unless comparison between non-null pointer and function pointer
+ // This is a gcc extension compatibility comparison.
+ // In a SFINAE context, we treat this as a hard error to maintain
+ // conformance with the C++ standard.
+ if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
+ && !LHSIsNull && !RHSIsNull) {
+ Diag(Loc,
+ isSFINAEContext()?
+ diag::err_typecheck_comparison_of_fptr_to_void
+ : diag::ext_typecheck_comparison_of_fptr_to_void)
+ << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
+
+ if (isSFINAEContext())
+ return QualType();
+
+ rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
+ return ResultTy;
+ }
+ }
+
+ // C++ [expr.rel]p2:
+ // [...] Pointer conversions (4.10) and qualification
+ // conversions (4.4) are performed on pointer operands (or on
+ // a pointer operand and a null pointer constant) to bring
+ // them to their composite pointer type. [...]
+ //
+ // C++ [expr.eq]p1 uses the same notion for (in)equality
+ // comparisons of pointers.
+ bool NonStandardCompositeType = false;
+ QualType T = FindCompositePointerType(Loc, lex, rex,
+ isSFINAEContext()? 0 : &NonStandardCompositeType);
+ if (T.isNull()) {
+ Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
+ << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
+ return QualType();
+ } else if (NonStandardCompositeType) {
+ Diag(Loc,
+ diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
+ << lType << rType << T
+ << lex.get()->getSourceRange() << rex.get()->getSourceRange();
+ }
+
+ lex = ImpCastExprToType(lex.take(), T, CK_BitCast);
+ rex = ImpCastExprToType(rex.take(), T, CK_BitCast);
+ return ResultTy;
+ }
+ // C99 6.5.9p2 and C99 6.5.8p2
+ if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
+ RCanPointeeTy.getUnqualifiedType())) {
+ // Valid unless a relational comparison of function pointers
+ if (isRelational && LCanPointeeTy->isFunctionType()) {
+ Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
+ << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
+ }
+ } else if (!isRelational &&
+ (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
+ // Valid unless comparison between non-null pointer and function pointer
+ if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
+ && !LHSIsNull && !RHSIsNull) {
+ Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
+ << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
+ }
+ } else {
+ // Invalid
+ Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
+ << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
+ }
+ if (LCanPointeeTy != RCanPointeeTy) {
+ if (LHSIsNull && !RHSIsNull)
+ lex = ImpCastExprToType(lex.take(), rType, CK_BitCast);
+ else
+ rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
+ }
+ return ResultTy;
+ }
+
+ if (getLangOptions().CPlusPlus) {
+ // Comparison of nullptr_t with itself.
+ if (lType->isNullPtrType() && rType->isNullPtrType())
+ return ResultTy;
+
+ // Comparison of pointers with null pointer constants and equality
+ // comparisons of member pointers to null pointer constants.
+ if (RHSIsNull &&
+ ((lType->isPointerType() || lType->isNullPtrType()) ||
+ (!isRelational && lType->isMemberPointerType()))) {
+ rex = ImpCastExprToType(rex.take(), lType,
+ lType->isMemberPointerType()
+ ? CK_NullToMemberPointer
+ : CK_NullToPointer);
+ return ResultTy;
+ }
+ if (LHSIsNull &&
+ ((rType->isPointerType() || rType->isNullPtrType()) ||
+ (!isRelational && rType->isMemberPointerType()))) {
+ lex = ImpCastExprToType(lex.take(), rType,
+ rType->isMemberPointerType()
+ ? CK_NullToMemberPointer
+ : CK_NullToPointer);
+ return ResultTy;
+ }
+
+ // Comparison of member pointers.
+ if (!isRelational &&
+ lType->isMemberPointerType() && rType->isMemberPointerType()) {
+ // C++ [expr.eq]p2:
+ // In addition, pointers to members can be compared, or a pointer to
+ // member and a null pointer constant. Pointer to member conversions
+ // (4.11) and qualification conversions (4.4) are performed to bring
+ // them to a common type. If one operand is a null pointer constant,
+ // the common type is the type of the other operand. Otherwise, the
+ // common type is a pointer to member type similar (4.4) to the type
+ // of one of the operands, with a cv-qualification signature (4.4)
+ // that is the union of the cv-qualification signatures of the operand
+ // types.
+ bool NonStandardCompositeType = false;
+ QualType T = FindCompositePointerType(Loc, lex, rex,
+ isSFINAEContext()? 0 : &NonStandardCompositeType);
+ if (T.isNull()) {
+ Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
+ << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
+ return QualType();
+ } else if (NonStandardCompositeType) {
+ Diag(Loc,
+ diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
+ << lType << rType << T
+ << lex.get()->getSourceRange() << rex.get()->getSourceRange();
+ }
+
+ lex = ImpCastExprToType(lex.take(), T, CK_BitCast);
+ rex = ImpCastExprToType(rex.take(), T, CK_BitCast);
+ return ResultTy;
+ }
+
+ // Handle scoped enumeration types specifically, since they don't promote
+ // to integers.
+ if (lex.get()->getType()->isEnumeralType() &&
+ Context.hasSameUnqualifiedType(lex.get()->getType(), rex.get()->getType()))
+ return ResultTy;
+ }
+
+ // Handle block pointer types.
+ if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
+ QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType();
+ QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType();
+
+ if (!LHSIsNull && !RHSIsNull &&
+ !Context.typesAreCompatible(lpointee, rpointee)) {
+ Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
+ << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
+ }
+ rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
+ return ResultTy;
+ }
+
+ // Allow block pointers to be compared with null pointer constants.
+ if (!isRelational
+ && ((lType->isBlockPointerType() && rType->isPointerType())
+ || (lType->isPointerType() && rType->isBlockPointerType()))) {
+ if (!LHSIsNull && !RHSIsNull) {
+ if (!((rType->isPointerType() && rType->castAs<PointerType>()
+ ->getPointeeType()->isVoidType())
+ || (lType->isPointerType() && lType->castAs<PointerType>()
+ ->getPointeeType()->isVoidType())))
+ Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
+ << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
+ }
+ if (LHSIsNull && !RHSIsNull)
+ lex = ImpCastExprToType(lex.take(), rType, CK_BitCast);
+ else
+ rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
+ return ResultTy;
+ }
+
+ if (lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType()) {
+ const PointerType *LPT = lType->getAs<PointerType>();
+ const PointerType *RPT = rType->getAs<PointerType>();
+ if (LPT || RPT) {
+ bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
+ bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
+
+ if (!LPtrToVoid && !RPtrToVoid &&
+ !Context.typesAreCompatible(lType, rType)) {
+ Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
+ << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
+ }
+ if (LHSIsNull && !RHSIsNull)
+ lex = ImpCastExprToType(lex.take(), rType, CK_BitCast);
+ else
+ rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
+ return ResultTy;
+ }
+ if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
+ if (!Context.areComparableObjCPointerTypes(lType, rType))
+ Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
+ << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
+ if (LHSIsNull && !RHSIsNull)
+ lex = ImpCastExprToType(lex.take(), rType, CK_BitCast);
+ else
+ rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
+ return ResultTy;
+ }
+ }
+ if ((lType->isAnyPointerType() && rType->isIntegerType()) ||
+ (lType->isIntegerType() && rType->isAnyPointerType())) {
+ unsigned DiagID = 0;
+ bool isError = false;
+ if ((LHSIsNull && lType->isIntegerType()) ||
+ (RHSIsNull && rType->isIntegerType())) {
+ if (isRelational && !getLangOptions().CPlusPlus)
+ DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
+ } else if (isRelational && !getLangOptions().CPlusPlus)
+ DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
+ else if (getLangOptions().CPlusPlus) {
+ DiagID = diag::err_typecheck_comparison_of_pointer_integer;
+ isError = true;
+ } else
+ DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
+
+ if (DiagID) {
+ Diag(Loc, DiagID)
+ << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
+ if (isError)
+ return QualType();
+ }
+
+ if (lType->isIntegerType())
+ lex = ImpCastExprToType(lex.take(), rType,
+ LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
+ else
+ rex = ImpCastExprToType(rex.take(), lType,
+ RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
+ return ResultTy;
+ }
+
+ // Handle block pointers.
+ if (!isRelational && RHSIsNull
+ && lType->isBlockPointerType() && rType->isIntegerType()) {
+ rex = ImpCastExprToType(rex.take(), lType, CK_NullToPointer);
+ return ResultTy;
+ }
+ if (!isRelational && LHSIsNull
+ && lType->isIntegerType() && rType->isBlockPointerType()) {
+ lex = ImpCastExprToType(lex.take(), rType, CK_NullToPointer);
+ return ResultTy;
+ }
+
+ return InvalidOperands(Loc, lex, rex);
+}
+
+/// CheckVectorCompareOperands - vector comparisons are a clang extension that
+/// operates on extended vector types. Instead of producing an IntTy result,
+/// like a scalar comparison, a vector comparison produces a vector of integer
+/// types.
+QualType Sema::CheckVectorCompareOperands(ExprResult &lex, ExprResult &rex,
+ SourceLocation Loc,
+ bool isRelational) {
+ // Check to make sure we're operating on vectors of the same type and width,
+ // Allowing one side to be a scalar of element type.
+ QualType vType = CheckVectorOperands(Loc, lex, rex);
+ if (vType.isNull())
+ return vType;
+
+ QualType lType = lex.get()->getType();
+ QualType rType = rex.get()->getType();
+
+ // If AltiVec, the comparison results in a numeric type, i.e.
+ // bool for C++, int for C
+ if (vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
+ return Context.getLogicalOperationType();
+
+ // For non-floating point types, check for self-comparisons of the form
+ // x == x, x != x, x < x, etc. These always evaluate to a constant, and
+ // often indicate logic errors in the program.
+ if (!lType->hasFloatingRepresentation()) {
+ if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex.get()->IgnoreParens()))
+ if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex.get()->IgnoreParens()))
+ if (DRL->getDecl() == DRR->getDecl())
+ DiagRuntimeBehavior(Loc, 0,
+ PDiag(diag::warn_comparison_always)
+ << 0 // self-
+ << 2 // "a constant"
+ );
+ }
+
+ // Check for comparisons of floating point operands using != and ==.
+ if (!isRelational && lType->hasFloatingRepresentation()) {
+ assert (rType->hasFloatingRepresentation());
+ CheckFloatComparison(Loc, lex.get(), rex.get());
+ }
+
+ // Return the type for the comparison, which is the same as vector type for
+ // integer vectors, or an integer type of identical size and number of
+ // elements for floating point vectors.
+ if (lType->hasIntegerRepresentation())
+ return lType;
+
+ const VectorType *VTy = lType->getAs<VectorType>();
+ unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
+ if (TypeSize == Context.getTypeSize(Context.IntTy))
+ return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
+ if (TypeSize == Context.getTypeSize(Context.LongTy))
+ return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
+
+ assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
+ "Unhandled vector element size in vector compare");
+ return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
+}
+
+inline QualType Sema::CheckBitwiseOperands(
+ ExprResult &lex, ExprResult &rex, SourceLocation Loc, bool isCompAssign) {
+ if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType()) {
+ if (lex.get()->getType()->hasIntegerRepresentation() &&
+ rex.get()->getType()->hasIntegerRepresentation())
+ return CheckVectorOperands(Loc, lex, rex);
+
+ return InvalidOperands(Loc, lex, rex);
+ }
+
+ ExprResult lexResult = Owned(lex), rexResult = Owned(rex);
+ QualType compType = UsualArithmeticConversions(lexResult, rexResult, isCompAssign);
+ if (lexResult.isInvalid() || rexResult.isInvalid())
+ return QualType();
+ lex = lexResult.take();
+ rex = rexResult.take();
+
+ if (lex.get()->getType()->isIntegralOrUnscopedEnumerationType() &&
+ rex.get()->getType()->isIntegralOrUnscopedEnumerationType())
+ return compType;
+ return InvalidOperands(Loc, lex, rex);
+}
+
+inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
+ ExprResult &lex, ExprResult &rex, SourceLocation Loc, unsigned Opc) {
+
+ // Diagnose cases where the user write a logical and/or but probably meant a
+ // bitwise one. We do this when the LHS is a non-bool integer and the RHS
+ // is a constant.
+ if (lex.get()->getType()->isIntegerType() && !lex.get()->getType()->isBooleanType() &&
+ rex.get()->getType()->isIntegerType() && !rex.get()->isValueDependent() &&
+ // Don't warn in macros.
+ !Loc.isMacroID()) {
+ // If the RHS can be constant folded, and if it constant folds to something
+ // that isn't 0 or 1 (which indicate a potential logical operation that
+ // happened to fold to true/false) then warn.
+ Expr::EvalResult Result;
+ if (rex.get()->Evaluate(Result, Context) && !Result.HasSideEffects &&
+ Result.Val.getInt() != 0 && Result.Val.getInt() != 1) {
+ Diag(Loc, diag::warn_logical_instead_of_bitwise)
+ << rex.get()->getSourceRange()
+ << (Opc == BO_LAnd ? "&&" : "||")
+ << (Opc == BO_LAnd ? "&" : "|");
+ }
+ }
+
+ if (!Context.getLangOptions().CPlusPlus) {
+ lex = UsualUnaryConversions(lex.take());
+ if (lex.isInvalid())
+ return QualType();
+
+ rex = UsualUnaryConversions(rex.take());
+ if (rex.isInvalid())
+ return QualType();
+
+ if (!lex.get()->getType()->isScalarType() || !rex.get()->getType()->isScalarType())
+ return InvalidOperands(Loc, lex, rex);
+
+ return Context.IntTy;
+ }
+
+ // The following is safe because we only use this method for
+ // non-overloadable operands.
+
+ // C++ [expr.log.and]p1
+ // C++ [expr.log.or]p1
+ // The operands are both contextually converted to type bool.
+ ExprResult lexRes = PerformContextuallyConvertToBool(lex.get());
+ if (lexRes.isInvalid())
+ return InvalidOperands(Loc, lex, rex);
+ lex = move(lexRes);
+
+ ExprResult rexRes = PerformContextuallyConvertToBool(rex.get());
+ if (rexRes.isInvalid())
+ return InvalidOperands(Loc, lex, rex);
+ rex = move(rexRes);
+
+ // C++ [expr.log.and]p2
+ // C++ [expr.log.or]p2
+ // The result is a bool.
+ return Context.BoolTy;
+}
+
+/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
+/// is a read-only property; return true if so. A readonly property expression
+/// depends on various declarations and thus must be treated specially.
+///
+static bool IsReadonlyProperty(Expr *E, Sema &S) {
+ if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
+ const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
+ if (PropExpr->isImplicitProperty()) return false;
+
+ ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
+ QualType BaseType = PropExpr->isSuperReceiver() ?
+ PropExpr->getSuperReceiverType() :
+ PropExpr->getBase()->getType();
+
+ if (const ObjCObjectPointerType *OPT =
+ BaseType->getAsObjCInterfacePointerType())
+ if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
+ if (S.isPropertyReadonly(PDecl, IFace))
+ return true;
+ }
+ return false;
+}
+
+static bool IsConstProperty(Expr *E, Sema &S) {
+ if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
+ const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
+ if (PropExpr->isImplicitProperty()) return false;
+
+ ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
+ QualType T = PDecl->getType();
+ if (T->isReferenceType())
+ T = T->getAs<ReferenceType>()->getPointeeType();
+ CanQualType CT = S.Context.getCanonicalType(T);
+ return CT.isConstQualified();
+ }
+ return false;
+}
+
+static bool IsReadonlyMessage(Expr *E, Sema &S) {
+ if (E->getStmtClass() != Expr::MemberExprClass)
+ return false;
+ const MemberExpr *ME = cast<MemberExpr>(E);
+ NamedDecl *Member = ME->getMemberDecl();
+ if (isa<FieldDecl>(Member)) {
+ Expr *Base = ME->getBase()->IgnoreParenImpCasts();
+ if (Base->getStmtClass() != Expr::ObjCMessageExprClass)
+ return false;
+ return cast<ObjCMessageExpr>(Base)->getMethodDecl() != 0;
+ }
+ return false;
+}
+
+/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
+/// emit an error and return true. If so, return false.
+static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
+ SourceLocation OrigLoc = Loc;
+ Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
+ &Loc);
+ if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
+ IsLV = Expr::MLV_ReadonlyProperty;
+ else if (Expr::MLV_ConstQualified && IsConstProperty(E, S))
+ IsLV = Expr::MLV_Valid;
+ else if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
+ IsLV = Expr::MLV_InvalidMessageExpression;
+ if (IsLV == Expr::MLV_Valid)
+ return false;
+
+ unsigned Diag = 0;
+ bool NeedType = false;
+ switch (IsLV) { // C99 6.5.16p2
+ case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
+ case Expr::MLV_ArrayType:
+ Diag = diag::err_typecheck_array_not_modifiable_lvalue;
+ NeedType = true;
+ break;
+ case Expr::MLV_NotObjectType:
+ Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
+ NeedType = true;
+ break;
+ case Expr::MLV_LValueCast:
+ Diag = diag::err_typecheck_lvalue_casts_not_supported;
+ break;
+ case Expr::MLV_Valid:
+ llvm_unreachable("did not take early return for MLV_Valid");
+ case Expr::MLV_InvalidExpression:
+ case Expr::MLV_MemberFunction:
+ case Expr::MLV_ClassTemporary:
+ Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
+ break;
+ case Expr::MLV_IncompleteType:
+ case Expr::MLV_IncompleteVoidType:
+ return S.RequireCompleteType(Loc, E->getType(),
+ S.PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
+ << E->getSourceRange());
+ case Expr::MLV_DuplicateVectorComponents:
+ Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
+ break;
+ case Expr::MLV_NotBlockQualified:
+ Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
+ break;
+ case Expr::MLV_ReadonlyProperty:
+ Diag = diag::error_readonly_property_assignment;
+ break;
+ case Expr::MLV_NoSetterProperty:
+ Diag = diag::error_nosetter_property_assignment;
+ break;
+ case Expr::MLV_InvalidMessageExpression:
+ Diag = diag::error_readonly_message_assignment;
+ break;
+ case Expr::MLV_SubObjCPropertySetting:
+ Diag = diag::error_no_subobject_property_setting;
+ break;
+ }
+
+ SourceRange Assign;
+ if (Loc != OrigLoc)
+ Assign = SourceRange(OrigLoc, OrigLoc);
+ if (NeedType)
+ S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
+ else
+ S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
+ return true;
+}
+
+
+
+// C99 6.5.16.1
+QualType Sema::CheckAssignmentOperands(Expr *LHS, ExprResult &RHS,
+ SourceLocation Loc,
+ QualType CompoundType) {
+ // Verify that LHS is a modifiable lvalue, and emit error if not.
+ if (CheckForModifiableLvalue(LHS, Loc, *this))
+ return QualType();
+
+ QualType LHSType = LHS->getType();
+ QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() : CompoundType;
+ AssignConvertType ConvTy;
+ if (CompoundType.isNull()) {
+ QualType LHSTy(LHSType);
+ // Simple assignment "x = y".
+ if (LHS->getObjectKind() == OK_ObjCProperty) {
+ ExprResult LHSResult = Owned(LHS);
+ ConvertPropertyForLValue(LHSResult, RHS, LHSTy);
+ if (LHSResult.isInvalid())
+ return QualType();
+ LHS = LHSResult.take();
+ }
+ ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
+ if (RHS.isInvalid())
+ return QualType();
+ // Special case of NSObject attributes on c-style pointer types.
+ if (ConvTy == IncompatiblePointer &&
+ ((Context.isObjCNSObjectType(LHSType) &&
+ RHSType->isObjCObjectPointerType()) ||
+ (Context.isObjCNSObjectType(RHSType) &&
+ LHSType->isObjCObjectPointerType())))
+ ConvTy = Compatible;
+
+ if (ConvTy == Compatible &&
+ getLangOptions().ObjCNonFragileABI &&
+ LHSType->isObjCObjectType())
+ Diag(Loc, diag::err_assignment_requires_nonfragile_object)
+ << LHSType;
+
+ // If the RHS is a unary plus or minus, check to see if they = and + are
+ // right next to each other. If so, the user may have typo'd "x =+ 4"
+ // instead of "x += 4".
+ Expr *RHSCheck = RHS.get();
+ if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
+ RHSCheck = ICE->getSubExpr();
+ if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
+ if ((UO->getOpcode() == UO_Plus ||
+ UO->getOpcode() == UO_Minus) &&
+ Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
+ // Only if the two operators are exactly adjacent.
+ Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
+ // And there is a space or other character before the subexpr of the
+ // unary +/-. We don't want to warn on "x=-1".
+ Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
+ UO->getSubExpr()->getLocStart().isFileID()) {
+ Diag(Loc, diag::warn_not_compound_assign)
+ << (UO->getOpcode() == UO_Plus ? "+" : "-")
+ << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
+ }
+ }
+ } else {
+ // Compound assignment "x += y"
+ ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
+ }
+
+ if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
+ RHS.get(), AA_Assigning))
+ return QualType();
+
+ CheckForNullPointerDereference(*this, LHS);
+ // Check for trivial buffer overflows.
+ CheckArrayAccess(LHS->IgnoreParenCasts());
+
+ // C99 6.5.16p3: The type of an assignment expression is the type of the
+ // left operand unless the left operand has qualified type, in which case
+ // it is the unqualified version of the type of the left operand.
+ // C99 6.5.16.1p2: In simple assignment, the value of the right operand
+ // is converted to the type of the assignment expression (above).
+ // C++ 5.17p1: the type of the assignment expression is that of its left
+ // operand.
+ return (getLangOptions().CPlusPlus
+ ? LHSType : LHSType.getUnqualifiedType());
+}
+
+// C99 6.5.17
+static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc) {
+ S.DiagnoseUnusedExprResult(LHS.get());
+
+ LHS = S.CheckPlaceholderExpr(LHS.take());
+ RHS = S.CheckPlaceholderExpr(RHS.take());
+ if (LHS.isInvalid() || RHS.isInvalid())
+ return QualType();
+
+ // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
+ // operands, but not unary promotions.
+ // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
+
+ // So we treat the LHS as a ignored value, and in C++ we allow the
+ // containing site to determine what should be done with the RHS.
+ LHS = S.IgnoredValueConversions(LHS.take());
+ if (LHS.isInvalid())
+ return QualType();
+
+ if (!S.getLangOptions().CPlusPlus) {
+ RHS = S.DefaultFunctionArrayLvalueConversion(RHS.take());
+ if (RHS.isInvalid())
+ return QualType();
+ if (!RHS.get()->getType()->isVoidType())
+ S.RequireCompleteType(Loc, RHS.get()->getType(), diag::err_incomplete_type);
+ }
+
+ return RHS.get()->getType();
+}
+
+/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
+/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
+static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
+ ExprValueKind &VK,
+ SourceLocation OpLoc,
+ bool isInc, bool isPrefix) {
+ if (Op->isTypeDependent())
+ return S.Context.DependentTy;
+
+ QualType ResType = Op->getType();
+ assert(!ResType.isNull() && "no type for increment/decrement expression");
+
+ if (S.getLangOptions().CPlusPlus && ResType->isBooleanType()) {
+ // Decrement of bool is not allowed.
+ if (!isInc) {
+ S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
+ return QualType();
+ }
+ // Increment of bool sets it to true, but is deprecated.
+ S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
+ } else if (ResType->isRealType()) {
+ // OK!
+ } else if (ResType->isAnyPointerType()) {
+ QualType PointeeTy = ResType->getPointeeType();
+
+ // C99 6.5.2.4p2, 6.5.6p2
+ if (PointeeTy->isVoidType()) {
+ if (S.getLangOptions().CPlusPlus) {
+ S.Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
+ << Op->getSourceRange();
+ return QualType();
+ }
+
+ // Pointer to void is a GNU extension in C.
+ S.Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
+ } else if (PointeeTy->isFunctionType()) {
+ if (S.getLangOptions().CPlusPlus) {
+ S.Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
+ << Op->getType() << Op->getSourceRange();
+ return QualType();
+ }
+
+ S.Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
+ << ResType << Op->getSourceRange();
+ } else if (S.RequireCompleteType(OpLoc, PointeeTy,
+ S.PDiag(diag::err_typecheck_arithmetic_incomplete_type)
+ << Op->getSourceRange()
+ << ResType))
+ return QualType();
+ // Diagnose bad cases where we step over interface counts.
+ else if (PointeeTy->isObjCObjectType() && S.LangOpts.ObjCNonFragileABI) {
+ S.Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
+ << PointeeTy << Op->getSourceRange();
+ return QualType();
+ }
+ } else if (ResType->isAnyComplexType()) {
+ // C99 does not support ++/-- on complex types, we allow as an extension.
+ S.Diag(OpLoc, diag::ext_integer_increment_complex)
+ << ResType << Op->getSourceRange();
+ } else if (ResType->isPlaceholderType()) {
+ ExprResult PR = S.CheckPlaceholderExpr(Op);
+ if (PR.isInvalid()) return QualType();
+ return CheckIncrementDecrementOperand(S, PR.take(), VK, OpLoc,
+ isInc, isPrefix);
+ } else if (S.getLangOptions().AltiVec && ResType->isVectorType()) {
+ // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
+ } else {
+ S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
+ << ResType << int(isInc) << Op->getSourceRange();
+ return QualType();
+ }
+ // At this point, we know we have a real, complex or pointer type.
+ // Now make sure the operand is a modifiable lvalue.
+ if (CheckForModifiableLvalue(Op, OpLoc, S))
+ return QualType();
+ // In C++, a prefix increment is the same type as the operand. Otherwise
+ // (in C or with postfix), the increment is the unqualified type of the
+ // operand.
+ if (isPrefix && S.getLangOptions().CPlusPlus) {
+ VK = VK_LValue;
+ return ResType;
+ } else {
+ VK = VK_RValue;
+ return ResType.getUnqualifiedType();
+ }
+}
+
+ExprResult Sema::ConvertPropertyForRValue(Expr *E) {
+ assert(E->getValueKind() == VK_LValue &&
+ E->getObjectKind() == OK_ObjCProperty);
+ const ObjCPropertyRefExpr *PRE = E->getObjCProperty();
+
+ ExprValueKind VK = VK_RValue;
+ if (PRE->isImplicitProperty()) {
+ if (const ObjCMethodDecl *GetterMethod =
+ PRE->getImplicitPropertyGetter()) {
+ QualType Result = GetterMethod->getResultType();
+ VK = Expr::getValueKindForType(Result);
+ }
+ else {
+ Diag(PRE->getLocation(), diag::err_getter_not_found)
+ << PRE->getBase()->getType();
+ }
+ }
+
+ E = ImplicitCastExpr::Create(Context, E->getType(), CK_GetObjCProperty,
+ E, 0, VK);
+
+ ExprResult Result = MaybeBindToTemporary(E);
+ if (!Result.isInvalid())
+ E = Result.take();
+
+ return Owned(E);
+}
+
+void Sema::ConvertPropertyForLValue(ExprResult &LHS, ExprResult &RHS, QualType &LHSTy) {
+ assert(LHS.get()->getValueKind() == VK_LValue &&
+ LHS.get()->getObjectKind() == OK_ObjCProperty);
+ const ObjCPropertyRefExpr *PropRef = LHS.get()->getObjCProperty();
+
+ if (PropRef->isImplicitProperty()) {
+ // If using property-dot syntax notation for assignment, and there is a
+ // setter, RHS expression is being passed to the setter argument. So,
+ // type conversion (and comparison) is RHS to setter's argument type.
+ if (const ObjCMethodDecl *SetterMD = PropRef->getImplicitPropertySetter()) {
+ ObjCMethodDecl::param_iterator P = SetterMD->param_begin();
+ LHSTy = (*P)->getType();
+
+ // Otherwise, if the getter returns an l-value, just call that.
+ } else {
+ QualType Result = PropRef->getImplicitPropertyGetter()->getResultType();
+ ExprValueKind VK = Expr::getValueKindForType(Result);
+ if (VK == VK_LValue) {
+ LHS = ImplicitCastExpr::Create(Context, LHS.get()->getType(),
+ CK_GetObjCProperty, LHS.take(), 0, VK);
+ return;
+ }
+ }
+ }
+
+ if (getLangOptions().CPlusPlus && LHSTy->isRecordType()) {
+ InitializedEntity Entity =
+ InitializedEntity::InitializeParameter(Context, LHSTy);
+ ExprResult ArgE = PerformCopyInitialization(Entity, SourceLocation(), RHS);
+ if (!ArgE.isInvalid())
+ RHS = ArgE;
+ }
+}
+
+
+/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
+/// This routine allows us to typecheck complex/recursive expressions
+/// where the declaration is needed for type checking. We only need to
+/// handle cases when the expression references a function designator
+/// or is an lvalue. Here are some examples:
+/// - &(x) => x
+/// - &*****f => f for f a function designator.
+/// - &s.xx => s
+/// - &s.zz[1].yy -> s, if zz is an array
+/// - *(x + 1) -> x, if x is an array
+/// - &"123"[2] -> 0
+/// - & __real__ x -> x
+static ValueDecl *getPrimaryDecl(Expr *E) {
+ switch (E->getStmtClass()) {
+ case Stmt::DeclRefExprClass:
+ return cast<DeclRefExpr>(E)->getDecl();
+ case Stmt::MemberExprClass:
+ // If this is an arrow operator, the address is an offset from
+ // the base's value, so the object the base refers to is
+ // irrelevant.
+ if (cast<MemberExpr>(E)->isArrow())
+ return 0;
+ // Otherwise, the expression refers to a part of the base
+ return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
+ case Stmt::ArraySubscriptExprClass: {
+ // FIXME: This code shouldn't be necessary! We should catch the implicit
+ // promotion of register arrays earlier.
+ Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
+ if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
+ if (ICE->getSubExpr()->getType()->isArrayType())
+ return getPrimaryDecl(ICE->getSubExpr());
+ }
+ return 0;
+ }
+ case Stmt::UnaryOperatorClass: {
+ UnaryOperator *UO = cast<UnaryOperator>(E);
+
+ switch(UO->getOpcode()) {
+ case UO_Real:
+ case UO_Imag:
+ case UO_Extension:
+ return getPrimaryDecl(UO->getSubExpr());
+ default:
+ return 0;
+ }
+ }
+ case Stmt::ParenExprClass:
+ return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
+ case Stmt::ImplicitCastExprClass:
+ // If the result of an implicit cast is an l-value, we care about
+ // the sub-expression; otherwise, the result here doesn't matter.
+ return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
+ default:
+ return 0;
+ }
+}
+
+/// CheckAddressOfOperand - The operand of & must be either a function
+/// designator or an lvalue designating an object. If it is an lvalue, the
+/// object cannot be declared with storage class register or be a bit field.
+/// Note: The usual conversions are *not* applied to the operand of the &
+/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
+/// In C++, the operand might be an overloaded function name, in which case
+/// we allow the '&' but retain the overloaded-function type.
+static QualType CheckAddressOfOperand(Sema &S, Expr *OrigOp,
+ SourceLocation OpLoc) {
+ if (OrigOp->isTypeDependent())
+ return S.Context.DependentTy;
+ if (OrigOp->getType() == S.Context.OverloadTy)
+ return S.Context.OverloadTy;
+ if (OrigOp->getType() == S.Context.UnknownAnyTy)
+ return S.Context.UnknownAnyTy;
+ if (OrigOp->getType() == S.Context.BoundMemberTy) {
+ S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
+ << OrigOp->getSourceRange();
+ return QualType();
+ }
+
+ assert(!OrigOp->getType()->isPlaceholderType());
+
+ // Make sure to ignore parentheses in subsequent checks
+ Expr *op = OrigOp->IgnoreParens();
+
+ if (S.getLangOptions().C99) {
+ // Implement C99-only parts of addressof rules.
+ if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
+ if (uOp->getOpcode() == UO_Deref)
+ // Per C99 6.5.3.2, the address of a deref always returns a valid result
+ // (assuming the deref expression is valid).
+ return uOp->getSubExpr()->getType();
+ }
+ // Technically, there should be a check for array subscript
+ // expressions here, but the result of one is always an lvalue anyway.
+ }
+ ValueDecl *dcl = getPrimaryDecl(op);
+ Expr::LValueClassification lval = op->ClassifyLValue(S.Context);
+
+ if (lval == Expr::LV_ClassTemporary) {
+ bool sfinae = S.isSFINAEContext();
+ S.Diag(OpLoc, sfinae ? diag::err_typecheck_addrof_class_temporary
+ : diag::ext_typecheck_addrof_class_temporary)
+ << op->getType() << op->getSourceRange();
+ if (sfinae)
+ return QualType();
+ } else if (isa<ObjCSelectorExpr>(op)) {
+ return S.Context.getPointerType(op->getType());
+ } else if (lval == Expr::LV_MemberFunction) {
+ // If it's an instance method, make a member pointer.
+ // The expression must have exactly the form &A::foo.
+
+ // If the underlying expression isn't a decl ref, give up.
+ if (!isa<DeclRefExpr>(op)) {
+ S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
+ << OrigOp->getSourceRange();
+ return QualType();
+ }
+ DeclRefExpr *DRE = cast<DeclRefExpr>(op);
+ CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
+
+ // The id-expression was parenthesized.
+ if (OrigOp != DRE) {
+ S.Diag(OpLoc, diag::err_parens_pointer_member_function)
+ << OrigOp->getSourceRange();
+
+ // The method was named without a qualifier.
+ } else if (!DRE->getQualifier()) {
+ S.Diag(OpLoc, diag::err_unqualified_pointer_member_function)
+ << op->getSourceRange();
+ }
+
+ return S.Context.getMemberPointerType(op->getType(),
+ S.Context.getTypeDeclType(MD->getParent()).getTypePtr());
+ } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
+ // C99 6.5.3.2p1
+ // The operand must be either an l-value or a function designator
+ if (!op->getType()->isFunctionType()) {
+ // FIXME: emit more specific diag...
+ S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
+ << op->getSourceRange();
+ return QualType();
+ }
+ } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
+ // The operand cannot be a bit-field
+ S.Diag(OpLoc, diag::err_typecheck_address_of)
+ << "bit-field" << op->getSourceRange();
+ return QualType();
+ } else if (op->getObjectKind() == OK_VectorComponent) {
+ // The operand cannot be an element of a vector
+ S.Diag(OpLoc, diag::err_typecheck_address_of)
+ << "vector element" << op->getSourceRange();
+ return QualType();
+ } else if (op->getObjectKind() == OK_ObjCProperty) {
+ // cannot take address of a property expression.
+ S.Diag(OpLoc, diag::err_typecheck_address_of)
+ << "property expression" << op->getSourceRange();
+ return QualType();
+ } else if (dcl) { // C99 6.5.3.2p1
+ // We have an lvalue with a decl. Make sure the decl is not declared
+ // with the register storage-class specifier.
+ if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
+ // in C++ it is not error to take address of a register
+ // variable (c++03 7.1.1P3)
+ if (vd->getStorageClass() == SC_Register &&
+ !S.getLangOptions().CPlusPlus) {
+ S.Diag(OpLoc, diag::err_typecheck_address_of)
+ << "register variable" << op->getSourceRange();
+ return QualType();
+ }
+ } else if (isa<FunctionTemplateDecl>(dcl)) {
+ return S.Context.OverloadTy;
+ } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
+ // Okay: we can take the address of a field.
+ // Could be a pointer to member, though, if there is an explicit
+ // scope qualifier for the class.
+ if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
+ DeclContext *Ctx = dcl->getDeclContext();
+ if (Ctx && Ctx->isRecord()) {
+ if (dcl->getType()->isReferenceType()) {
+ S.Diag(OpLoc,
+ diag::err_cannot_form_pointer_to_member_of_reference_type)
+ << dcl->getDeclName() << dcl->getType();
+ return QualType();
+ }
+
+ while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
+ Ctx = Ctx->getParent();
+ return S.Context.getMemberPointerType(op->getType(),
+ S.Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
+ }
+ }
+ } else if (!isa<FunctionDecl>(dcl))
+ assert(0 && "Unknown/unexpected decl type");
+ }
+
+ if (lval == Expr::LV_IncompleteVoidType) {
+ // Taking the address of a void variable is technically illegal, but we
+ // allow it in cases which are otherwise valid.
+ // Example: "extern void x; void* y = &x;".
+ S.Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
+ }
+
+ // If the operand has type "type", the result has type "pointer to type".
+ if (op->getType()->isObjCObjectType())
+ return S.Context.getObjCObjectPointerType(op->getType());
+ return S.Context.getPointerType(op->getType());
+}
+
+/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
+static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
+ SourceLocation OpLoc) {
+ if (Op->isTypeDependent())
+ return S.Context.DependentTy;
+
+ ExprResult ConvResult = S.UsualUnaryConversions(Op);
+ if (ConvResult.isInvalid())
+ return QualType();
+ Op = ConvResult.take();
+ QualType OpTy = Op->getType();
+ QualType Result;
+
+ // Note that per both C89 and C99, indirection is always legal, even if OpTy
+ // is an incomplete type or void. It would be possible to warn about
+ // dereferencing a void pointer, but it's completely well-defined, and such a
+ // warning is unlikely to catch any mistakes.
+ if (const PointerType *PT = OpTy->getAs<PointerType>())
+ Result = PT->getPointeeType();
+ else if (const ObjCObjectPointerType *OPT =
+ OpTy->getAs<ObjCObjectPointerType>())
+ Result = OPT->getPointeeType();
+ else {
+ ExprResult PR = S.CheckPlaceholderExpr(Op);
+ if (PR.isInvalid()) return QualType();
+ if (PR.take() != Op)
+ return CheckIndirectionOperand(S, PR.take(), VK, OpLoc);
+ }
+
+ if (Result.isNull()) {
+ S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
+ << OpTy << Op->getSourceRange();
+ return QualType();
+ }
+
+ // Dereferences are usually l-values...
+ VK = VK_LValue;
+
+ // ...except that certain expressions are never l-values in C.
+ if (!S.getLangOptions().CPlusPlus &&
+ IsCForbiddenLValueType(S.Context, Result))
+ VK = VK_RValue;
+
+ return Result;
+}
+
+static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode(
+ tok::TokenKind Kind) {
+ BinaryOperatorKind Opc;
+ switch (Kind) {
+ default: assert(0 && "Unknown binop!");
+ case tok::periodstar: Opc = BO_PtrMemD; break;
+ case tok::arrowstar: Opc = BO_PtrMemI; break;
+ case tok::star: Opc = BO_Mul; break;
+ case tok::slash: Opc = BO_Div; break;
+ case tok::percent: Opc = BO_Rem; break;
+ case tok::plus: Opc = BO_Add; break;
+ case tok::minus: Opc = BO_Sub; break;
+ case tok::lessless: Opc = BO_Shl; break;
+ case tok::greatergreater: Opc = BO_Shr; break;
+ case tok::lessequal: Opc = BO_LE; break;
+ case tok::less: Opc = BO_LT; break;
+ case tok::greaterequal: Opc = BO_GE; break;
+ case tok::greater: Opc = BO_GT; break;
+ case tok::exclaimequal: Opc = BO_NE; break;
+ case tok::equalequal: Opc = BO_EQ; break;
+ case tok::amp: Opc = BO_And; break;
+ case tok::caret: Opc = BO_Xor; break;
+ case tok::pipe: Opc = BO_Or; break;
+ case tok::ampamp: Opc = BO_LAnd; break;
+ case tok::pipepipe: Opc = BO_LOr; break;
+ case tok::equal: Opc = BO_Assign; break;
+ case tok::starequal: Opc = BO_MulAssign; break;
+ case tok::slashequal: Opc = BO_DivAssign; break;
+ case tok::percentequal: Opc = BO_RemAssign; break;
+ case tok::plusequal: Opc = BO_AddAssign; break;
+ case tok::minusequal: Opc = BO_SubAssign; break;
+ case tok::lesslessequal: Opc = BO_ShlAssign; break;
+ case tok::greatergreaterequal: Opc = BO_ShrAssign; break;
+ case tok::ampequal: Opc = BO_AndAssign; break;
+ case tok::caretequal: Opc = BO_XorAssign; break;
+ case tok::pipeequal: Opc = BO_OrAssign; break;
+ case tok::comma: Opc = BO_Comma; break;
+ }
+ return Opc;
+}
+
+static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
+ tok::TokenKind Kind) {
+ UnaryOperatorKind Opc;
+ switch (Kind) {
+ default: assert(0 && "Unknown unary op!");
+ case tok::plusplus: Opc = UO_PreInc; break;
+ case tok::minusminus: Opc = UO_PreDec; break;
+ case tok::amp: Opc = UO_AddrOf; break;
+ case tok::star: Opc = UO_Deref; break;
+ case tok::plus: Opc = UO_Plus; break;
+ case tok::minus: Opc = UO_Minus; break;
+ case tok::tilde: Opc = UO_Not; break;
+ case tok::exclaim: Opc = UO_LNot; break;
+ case tok::kw___real: Opc = UO_Real; break;
+ case tok::kw___imag: Opc = UO_Imag; break;
+ case tok::kw___extension__: Opc = UO_Extension; break;
+ }
+ return Opc;
+}
+
+/// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
+/// This warning is only emitted for builtin assignment operations. It is also
+/// suppressed in the event of macro expansions.
+static void DiagnoseSelfAssignment(Sema &S, Expr *lhs, Expr *rhs,
+ SourceLocation OpLoc) {
+ if (!S.ActiveTemplateInstantiations.empty())
+ return;
+ if (OpLoc.isInvalid() || OpLoc.isMacroID())
+ return;
+ lhs = lhs->IgnoreParenImpCasts();
+ rhs = rhs->IgnoreParenImpCasts();
+ const DeclRefExpr *LeftDeclRef = dyn_cast<DeclRefExpr>(lhs);
+ const DeclRefExpr *RightDeclRef = dyn_cast<DeclRefExpr>(rhs);
+ if (!LeftDeclRef || !RightDeclRef ||
+ LeftDeclRef->getLocation().isMacroID() ||
+ RightDeclRef->getLocation().isMacroID())
+ return;
+ const ValueDecl *LeftDecl =
+ cast<ValueDecl>(LeftDeclRef->getDecl()->getCanonicalDecl());
+ const ValueDecl *RightDecl =
+ cast<ValueDecl>(RightDeclRef->getDecl()->getCanonicalDecl());
+ if (LeftDecl != RightDecl)
+ return;
+ if (LeftDecl->getType().isVolatileQualified())
+ return;
+ if (const ReferenceType *RefTy = LeftDecl->getType()->getAs<ReferenceType>())
+ if (RefTy->getPointeeType().isVolatileQualified())
+ return;
+
+ S.Diag(OpLoc, diag::warn_self_assignment)
+ << LeftDeclRef->getType()
+ << lhs->getSourceRange() << rhs->getSourceRange();
+}
+
+/// CreateBuiltinBinOp - Creates a new built-in binary operation with
+/// operator @p Opc at location @c TokLoc. This routine only supports
+/// built-in operations; ActOnBinOp handles overloaded operators.
+ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
+ BinaryOperatorKind Opc,
+ Expr *lhsExpr, Expr *rhsExpr) {
+ ExprResult lhs = Owned(lhsExpr), rhs = Owned(rhsExpr);
+ QualType ResultTy; // Result type of the binary operator.
+ // The following two variables are used for compound assignment operators
+ QualType CompLHSTy; // Type of LHS after promotions for computation
+ QualType CompResultTy; // Type of computation result
+ ExprValueKind VK = VK_RValue;
+ ExprObjectKind OK = OK_Ordinary;
+
+ // Check if a 'foo<int>' involved in a binary op, identifies a single
+ // function unambiguously (i.e. an lvalue ala 13.4)
+ // But since an assignment can trigger target based overload, exclude it in
+ // our blind search. i.e:
+ // template<class T> void f(); template<class T, class U> void f(U);
+ // f<int> == 0; // resolve f<int> blindly
+ // void (*p)(int); p = f<int>; // resolve f<int> using target
+ if (Opc != BO_Assign) {
+ ExprResult resolvedLHS = CheckPlaceholderExpr(lhs.get());
+ if (!resolvedLHS.isUsable()) return ExprError();
+ lhs = move(resolvedLHS);
+
+ ExprResult resolvedRHS = CheckPlaceholderExpr(rhs.get());
+ if (!resolvedRHS.isUsable()) return ExprError();
+ rhs = move(resolvedRHS);
+ }
+
+ switch (Opc) {
+ case BO_Assign:
+ ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, QualType());
+ if (getLangOptions().CPlusPlus &&
+ lhs.get()->getObjectKind() != OK_ObjCProperty) {
+ VK = lhs.get()->getValueKind();
+ OK = lhs.get()->getObjectKind();
+ }
+ if (!ResultTy.isNull())
+ DiagnoseSelfAssignment(*this, lhs.get(), rhs.get(), OpLoc);
+ break;
+ case BO_PtrMemD:
+ case BO_PtrMemI:
+ ResultTy = CheckPointerToMemberOperands(lhs, rhs, VK, OpLoc,
+ Opc == BO_PtrMemI);
+ break;
+ case BO_Mul:
+ case BO_Div:
+ ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, false,
+ Opc == BO_Div);
+ break;
+ case BO_Rem:
+ ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
+ break;
+ case BO_Add:
+ ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
+ break;
+ case BO_Sub:
+ ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
+ break;
+ case BO_Shl:
+ case BO_Shr:
+ ResultTy = CheckShiftOperands(lhs, rhs, OpLoc, Opc);
+ break;
+ case BO_LE:
+ case BO_LT:
+ case BO_GE:
+ case BO_GT:
+ ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
+ break;
+ case BO_EQ:
+ case BO_NE:
+ ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
+ break;
+ case BO_And:
+ case BO_Xor:
+ case BO_Or:
+ ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
+ break;
+ case BO_LAnd:
+ case BO_LOr:
+ ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc, Opc);
+ break;
+ case BO_MulAssign:
+ case BO_DivAssign:
+ CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true,
+ Opc == BO_DivAssign);
+ CompLHSTy = CompResultTy;
+ if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
+ ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
+ break;
+ case BO_RemAssign:
+ CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
+ CompLHSTy = CompResultTy;
+ if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
+ ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
+ break;
+ case BO_AddAssign:
+ CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
+ if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
+ ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
+ break;
+ case BO_SubAssign:
+ CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
+ if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
+ ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
+ break;
+ case BO_ShlAssign:
+ case BO_ShrAssign:
+ CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, Opc, true);
+ CompLHSTy = CompResultTy;
+ if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
+ ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
+ break;
+ case BO_AndAssign:
+ case BO_XorAssign:
+ case BO_OrAssign:
+ CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
+ CompLHSTy = CompResultTy;
+ if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
+ ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
+ break;
+ case BO_Comma:
+ ResultTy = CheckCommaOperands(*this, lhs, rhs, OpLoc);
+ if (getLangOptions().CPlusPlus && !rhs.isInvalid()) {
+ VK = rhs.get()->getValueKind();
+ OK = rhs.get()->getObjectKind();
+ }
+ break;
+ }
+ if (ResultTy.isNull() || lhs.isInvalid() || rhs.isInvalid())
+ return ExprError();
+ if (CompResultTy.isNull())
+ return Owned(new (Context) BinaryOperator(lhs.take(), rhs.take(), Opc,
+ ResultTy, VK, OK, OpLoc));
+ if (getLangOptions().CPlusPlus && lhs.get()->getObjectKind() != OK_ObjCProperty) {
+ VK = VK_LValue;
+ OK = lhs.get()->getObjectKind();
+ }
+ return Owned(new (Context) CompoundAssignOperator(lhs.take(), rhs.take(), Opc,
+ ResultTy, VK, OK, CompLHSTy,
+ CompResultTy, OpLoc));
+}
+
+/// SuggestParentheses - Emit a diagnostic together with a fixit hint that wraps
+/// ParenRange in parentheses.
+static void SuggestParentheses(Sema &Self, SourceLocation Loc,
+ const PartialDiagnostic &PD,
+ const PartialDiagnostic &FirstNote,
+ SourceRange FirstParenRange,
+ const PartialDiagnostic &SecondNote,
+ SourceRange SecondParenRange) {
+ Self.Diag(Loc, PD);
+
+ if (!FirstNote.getDiagID())
+ return;
+
+ SourceLocation EndLoc = Self.PP.getLocForEndOfToken(FirstParenRange.getEnd());
+ if (!FirstParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
+ // We can't display the parentheses, so just return.
+ return;
+ }
+
+ Self.Diag(Loc, FirstNote)
+ << FixItHint::CreateInsertion(FirstParenRange.getBegin(), "(")
+ << FixItHint::CreateInsertion(EndLoc, ")");
+
+ if (!SecondNote.getDiagID())
+ return;
+
+ EndLoc = Self.PP.getLocForEndOfToken(SecondParenRange.getEnd());
+ if (!SecondParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
+ // We can't display the parentheses, so just dig the
+ // warning/error and return.
+ Self.Diag(Loc, SecondNote);
+ return;
+ }
+
+ Self.Diag(Loc, SecondNote)
+ << FixItHint::CreateInsertion(SecondParenRange.getBegin(), "(")
+ << FixItHint::CreateInsertion(EndLoc, ")");
+}
+
+/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
+/// operators are mixed in a way that suggests that the programmer forgot that
+/// comparison operators have higher precedence. The most typical example of
+/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
+static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
+ SourceLocation OpLoc,Expr *lhs,Expr *rhs){
+ typedef BinaryOperator BinOp;
+ BinOp::Opcode lhsopc = static_cast<BinOp::Opcode>(-1),
+ rhsopc = static_cast<BinOp::Opcode>(-1);
+ if (BinOp *BO = dyn_cast<BinOp>(lhs))
+ lhsopc = BO->getOpcode();
+ if (BinOp *BO = dyn_cast<BinOp>(rhs))
+ rhsopc = BO->getOpcode();
+
+ // Subs are not binary operators.
+ if (lhsopc == -1 && rhsopc == -1)
+ return;
+
+ // Bitwise operations are sometimes used as eager logical ops.
+ // Don't diagnose this.
+ if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) &&
+ (BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc)))
+ return;
+
+ if (BinOp::isComparisonOp(lhsopc))
+ SuggestParentheses(Self, OpLoc,
+ Self.PDiag(diag::warn_precedence_bitwise_rel)
+ << SourceRange(lhs->getLocStart(), OpLoc)
+ << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(lhsopc),
+ Self.PDiag(diag::note_precedence_bitwise_silence)
+ << BinOp::getOpcodeStr(lhsopc),
+ lhs->getSourceRange(),
+ Self.PDiag(diag::note_precedence_bitwise_first)
+ << BinOp::getOpcodeStr(Opc),
+ SourceRange(cast<BinOp>(lhs)->getRHS()->getLocStart(), rhs->getLocEnd()));
+ else if (BinOp::isComparisonOp(rhsopc))
+ SuggestParentheses(Self, OpLoc,
+ Self.PDiag(diag::warn_precedence_bitwise_rel)
+ << SourceRange(OpLoc, rhs->getLocEnd())
+ << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(rhsopc),
+ Self.PDiag(diag::note_precedence_bitwise_silence)
+ << BinOp::getOpcodeStr(rhsopc),
+ rhs->getSourceRange(),
+ Self.PDiag(diag::note_precedence_bitwise_first)
+ << BinOp::getOpcodeStr(Opc),
+ SourceRange(lhs->getLocEnd(), cast<BinOp>(rhs)->getLHS()->getLocStart()));
+}
+
+/// \brief It accepts a '&&' expr that is inside a '||' one.
+/// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
+/// in parentheses.
+static void
+EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
+ BinaryOperator *Bop) {
+ assert(Bop->getOpcode() == BO_LAnd);
+ SuggestParentheses(Self, Bop->getOperatorLoc(),
+ Self.PDiag(diag::warn_logical_and_in_logical_or)
+ << Bop->getSourceRange() << OpLoc,
+ Self.PDiag(diag::note_logical_and_in_logical_or_silence),
+ Bop->getSourceRange(),
+ Self.PDiag(0), SourceRange());
+}
+
+/// \brief Returns true if the given expression can be evaluated as a constant
+/// 'true'.
+static bool EvaluatesAsTrue(Sema &S, Expr *E) {
+ bool Res;
+ return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
+}
+
+/// \brief Returns true if the given expression can be evaluated as a constant
+/// 'false'.
+static bool EvaluatesAsFalse(Sema &S, Expr *E) {
+ bool Res;
+ return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
+}
+
+/// \brief Look for '&&' in the left hand of a '||' expr.
+static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
+ Expr *OrLHS, Expr *OrRHS) {
+ if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrLHS)) {
+ if (Bop->getOpcode() == BO_LAnd) {
+ // If it's "a && b || 0" don't warn since the precedence doesn't matter.
+ if (EvaluatesAsFalse(S, OrRHS))
+ return;
+ // If it's "1 && a || b" don't warn since the precedence doesn't matter.
+ if (!EvaluatesAsTrue(S, Bop->getLHS()))
+ return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
+ } else if (Bop->getOpcode() == BO_LOr) {
+ if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
+ // If it's "a || b && 1 || c" we didn't warn earlier for
+ // "a || b && 1", but warn now.
+ if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
+ return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
+ }
+ }
+ }
+}
+
+/// \brief Look for '&&' in the right hand of a '||' expr.
+static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
+ Expr *OrLHS, Expr *OrRHS) {
+ if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrRHS)) {
+ if (Bop->getOpcode() == BO_LAnd) {
+ // If it's "0 || a && b" don't warn since the precedence doesn't matter.
+ if (EvaluatesAsFalse(S, OrLHS))
+ return;
+ // If it's "a || b && 1" don't warn since the precedence doesn't matter.
+ if (!EvaluatesAsTrue(S, Bop->getRHS()))
+ return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
+ }
+ }
+}
+
+/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
+/// precedence.
+static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
+ SourceLocation OpLoc, Expr *lhs, Expr *rhs){
+ // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
+ if (BinaryOperator::isBitwiseOp(Opc))
+ return DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs);
+
+ // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
+ // We don't warn for 'assert(a || b && "bad")' since this is safe.
+ if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
+ DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, lhs, rhs);
+ DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, lhs, rhs);
+ }
+}
+
+// Binary Operators. 'Tok' is the token for the operator.
+ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
+ tok::TokenKind Kind,
+ Expr *lhs, Expr *rhs) {
+ BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
+ assert((lhs != 0) && "ActOnBinOp(): missing left expression");
+ assert((rhs != 0) && "ActOnBinOp(): missing right expression");
+
+ // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
+ DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs);
+
+ return BuildBinOp(S, TokLoc, Opc, lhs, rhs);
+}
+
+ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
+ BinaryOperatorKind Opc,
+ Expr *lhs, Expr *rhs) {
+ if (getLangOptions().CPlusPlus) {
+ bool UseBuiltinOperator;
+
+ if (lhs->isTypeDependent() || rhs->isTypeDependent()) {
+ UseBuiltinOperator = false;
+ } else if (Opc == BO_Assign && lhs->getObjectKind() == OK_ObjCProperty) {
+ UseBuiltinOperator = true;
+ } else {
+ UseBuiltinOperator = !lhs->getType()->isOverloadableType() &&
+ !rhs->getType()->isOverloadableType();
+ }
+
+ if (!UseBuiltinOperator) {
+ // Find all of the overloaded operators visible from this
+ // point. We perform both an operator-name lookup from the local
+ // scope and an argument-dependent lookup based on the types of
+ // the arguments.
+ UnresolvedSet<16> Functions;
+ OverloadedOperatorKind OverOp
+ = BinaryOperator::getOverloadedOperator(Opc);
+ if (S && OverOp != OO_None)
+ LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
+ Functions);
+
+ // Build the (potentially-overloaded, potentially-dependent)
+ // binary operation.
+ return CreateOverloadedBinOp(OpLoc, Opc, Functions, lhs, rhs);
+ }
+ }
+
+ // Build a built-in binary operation.
+ return CreateBuiltinBinOp(OpLoc, Opc, lhs, rhs);
+}
+
+ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
+ UnaryOperatorKind Opc,
+ Expr *InputExpr) {
+ ExprResult Input = Owned(InputExpr);
+ ExprValueKind VK = VK_RValue;
+ ExprObjectKind OK = OK_Ordinary;
+ QualType resultType;
+ switch (Opc) {
+ case UO_PreInc:
+ case UO_PreDec:
+ case UO_PostInc:
+ case UO_PostDec:
+ resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OpLoc,
+ Opc == UO_PreInc ||
+ Opc == UO_PostInc,
+ Opc == UO_PreInc ||
+ Opc == UO_PreDec);
+ break;
+ case UO_AddrOf:
+ resultType = CheckAddressOfOperand(*this, Input.get(), OpLoc);
+ break;
+ case UO_Deref: {
+ ExprResult resolved = CheckPlaceholderExpr(Input.get());
+ if (!resolved.isUsable()) return ExprError();
+ Input = move(resolved);
+ Input = DefaultFunctionArrayLvalueConversion(Input.take());
+ resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
+ break;
+ }
+ case UO_Plus:
+ case UO_Minus:
+ Input = UsualUnaryConversions(Input.take());
+ if (Input.isInvalid()) return ExprError();
+ resultType = Input.get()->getType();
+ if (resultType->isDependentType())
+ break;
+ if (resultType->isArithmeticType() || // C99 6.5.3.3p1
+ resultType->isVectorType())
+ break;
+ else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
+ resultType->isEnumeralType())
+ break;
+ else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
+ Opc == UO_Plus &&
+ resultType->isPointerType())
+ break;
+ else if (resultType->isPlaceholderType()) {
+ Input = CheckPlaceholderExpr(Input.take());
+ if (Input.isInvalid()) return ExprError();
+ return CreateBuiltinUnaryOp(OpLoc, Opc, Input.take());
+ }
+
+ return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
+ << resultType << Input.get()->getSourceRange());
+
+ case UO_Not: // bitwise complement
+ Input = UsualUnaryConversions(Input.take());
+ if (Input.isInvalid()) return ExprError();
+ resultType = Input.get()->getType();
+ if (resultType->isDependentType())
+ break;
+ // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
+ if (resultType->isComplexType() || resultType->isComplexIntegerType())
+ // C99 does not support '~' for complex conjugation.
+ Diag(OpLoc, diag::ext_integer_complement_complex)
+ << resultType << Input.get()->getSourceRange();
+ else if (resultType->hasIntegerRepresentation())
+ break;
+ else if (resultType->isPlaceholderType()) {
+ Input = CheckPlaceholderExpr(Input.take());
+ if (Input.isInvalid()) return ExprError();
+ return CreateBuiltinUnaryOp(OpLoc, Opc, Input.take());
+ } else {
+ return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
+ << resultType << Input.get()->getSourceRange());
+ }
+ break;
+
+ case UO_LNot: // logical negation
+ // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
+ Input = DefaultFunctionArrayLvalueConversion(Input.take());
+ if (Input.isInvalid()) return ExprError();
+ resultType = Input.get()->getType();
+ if (resultType->isDependentType())
+ break;
+ if (resultType->isScalarType()) {
+ // C99 6.5.3.3p1: ok, fallthrough;
+ if (Context.getLangOptions().CPlusPlus) {
+ // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
+ // operand contextually converted to bool.
+ Input = ImpCastExprToType(Input.take(), Context.BoolTy,
+ ScalarTypeToBooleanCastKind(resultType));
+ }
+ } else if (resultType->isPlaceholderType()) {
+ Input = CheckPlaceholderExpr(Input.take());
+ if (Input.isInvalid()) return ExprError();
+ return CreateBuiltinUnaryOp(OpLoc, Opc, Input.take());
+ } else {
+ return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
+ << resultType << Input.get()->getSourceRange());
+ }
+
+ // LNot always has type int. C99 6.5.3.3p5.
+ // In C++, it's bool. C++ 5.3.1p8
+ resultType = Context.getLogicalOperationType();
+ break;
+ case UO_Real:
+ case UO_Imag:
+ resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
+ // _Real and _Imag map ordinary l-values into ordinary l-values.
+ if (Input.isInvalid()) return ExprError();
+ if (Input.get()->getValueKind() != VK_RValue &&
+ Input.get()->getObjectKind() == OK_Ordinary)
+ VK = Input.get()->getValueKind();
+ break;
+ case UO_Extension:
+ resultType = Input.get()->getType();
+ VK = Input.get()->getValueKind();
+ OK = Input.get()->getObjectKind();
+ break;
+ }
+ if (resultType.isNull() || Input.isInvalid())
+ return ExprError();
+
+ return Owned(new (Context) UnaryOperator(Input.take(), Opc, resultType,
+ VK, OK, OpLoc));
+}
+
+ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
+ UnaryOperatorKind Opc,
+ Expr *Input) {
+ if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() &&
+ UnaryOperator::getOverloadedOperator(Opc) != OO_None) {
+ // Find all of the overloaded operators visible from this
+ // point. We perform both an operator-name lookup from the local
+ // scope and an argument-dependent lookup based on the types of
+ // the arguments.
+ UnresolvedSet<16> Functions;
+ OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
+ if (S && OverOp != OO_None)
+ LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
+ Functions);
+
+ return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
+ }
+
+ return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
+}
+
+// Unary Operators. 'Tok' is the token for the operator.
+ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
+ tok::TokenKind Op, Expr *Input) {
+ return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
+}
+
+/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
+ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
+ LabelDecl *TheDecl) {
+ TheDecl->setUsed();
+ // Create the AST node. The address of a label always has type 'void*'.
+ return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
+ Context.getPointerType(Context.VoidTy)));
+}
+
+ExprResult
+Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
+ SourceLocation RPLoc) { // "({..})"
+ assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
+ CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
+
+ bool isFileScope
+ = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
+ if (isFileScope)
+ return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
+
+ // FIXME: there are a variety of strange constraints to enforce here, for
+ // example, it is not possible to goto into a stmt expression apparently.
+ // More semantic analysis is needed.
+
+ // If there are sub stmts in the compound stmt, take the type of the last one
+ // as the type of the stmtexpr.
+ QualType Ty = Context.VoidTy;
+ bool StmtExprMayBindToTemp = false;
+ if (!Compound->body_empty()) {
+ Stmt *LastStmt = Compound->body_back();
+ LabelStmt *LastLabelStmt = 0;
+ // If LastStmt is a label, skip down through into the body.
+ while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
+ LastLabelStmt = Label;
+ LastStmt = Label->getSubStmt();
+ }
+ if (Expr *LastE = dyn_cast<Expr>(LastStmt)) {
+ // Do function/array conversion on the last expression, but not
+ // lvalue-to-rvalue. However, initialize an unqualified type.
+ ExprResult LastExpr = DefaultFunctionArrayConversion(LastE);
+ if (LastExpr.isInvalid())
+ return ExprError();
+ Ty = LastExpr.get()->getType().getUnqualifiedType();
+
+ if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) {
+ LastExpr = PerformCopyInitialization(
+ InitializedEntity::InitializeResult(LPLoc,
+ Ty,
+ false),
+ SourceLocation(),
+ LastExpr);
+ if (LastExpr.isInvalid())
+ return ExprError();
+ if (LastExpr.get() != 0) {
+ if (!LastLabelStmt)
+ Compound->setLastStmt(LastExpr.take());
+ else
+ LastLabelStmt->setSubStmt(LastExpr.take());
+ StmtExprMayBindToTemp = true;
+ }
+ }
+ }
+ }
+
+ // FIXME: Check that expression type is complete/non-abstract; statement
+ // expressions are not lvalues.
+ Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
+ if (StmtExprMayBindToTemp)
+ return MaybeBindToTemporary(ResStmtExpr);
+ return Owned(ResStmtExpr);
+}
+
+ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
+ TypeSourceInfo *TInfo,
+ OffsetOfComponent *CompPtr,
+ unsigned NumComponents,
+ SourceLocation RParenLoc) {
+ QualType ArgTy = TInfo->getType();
+ bool Dependent = ArgTy->isDependentType();
+ SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
+
+ // We must have at least one component that refers to the type, and the first
+ // one is known to be a field designator. Verify that the ArgTy represents
+ // a struct/union/class.
+ if (!Dependent && !ArgTy->isRecordType())
+ return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
+ << ArgTy << TypeRange);
+
+ // Type must be complete per C99 7.17p3 because a declaring a variable
+ // with an incomplete type would be ill-formed.
+ if (!Dependent
+ && RequireCompleteType(BuiltinLoc, ArgTy,
+ PDiag(diag::err_offsetof_incomplete_type)
+ << TypeRange))
+ return ExprError();
+
+ // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
+ // GCC extension, diagnose them.
+ // FIXME: This diagnostic isn't actually visible because the location is in
+ // a system header!
+ if (NumComponents != 1)
+ Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
+ << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
+
+ bool DidWarnAboutNonPOD = false;
+ QualType CurrentType = ArgTy;
+ typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
+ llvm::SmallVector<OffsetOfNode, 4> Comps;
+ llvm::SmallVector<Expr*, 4> Exprs;
+ for (unsigned i = 0; i != NumComponents; ++i) {
+ const OffsetOfComponent &OC = CompPtr[i];
+ if (OC.isBrackets) {
+ // Offset of an array sub-field. TODO: Should we allow vector elements?
+ if (!CurrentType->isDependentType()) {
+ const ArrayType *AT = Context.getAsArrayType(CurrentType);
+ if(!AT)
+ return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
+ << CurrentType);
+ CurrentType = AT->getElementType();
+ } else
+ CurrentType = Context.DependentTy;
+
+ // The expression must be an integral expression.
+ // FIXME: An integral constant expression?
+ Expr *Idx = static_cast<Expr*>(OC.U.E);
+ if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
+ !Idx->getType()->isIntegerType())
+ return ExprError(Diag(Idx->getLocStart(),
+ diag::err_typecheck_subscript_not_integer)
+ << Idx->getSourceRange());
+
+ // Record this array index.
+ Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
+ Exprs.push_back(Idx);
+ continue;
+ }
+
+ // Offset of a field.
+ if (CurrentType->isDependentType()) {
+ // We have the offset of a field, but we can't look into the dependent
+ // type. Just record the identifier of the field.
+ Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
+ CurrentType = Context.DependentTy;
+ continue;
+ }
+
+ // We need to have a complete type to look into.
+ if (RequireCompleteType(OC.LocStart, CurrentType,
+ diag::err_offsetof_incomplete_type))
+ return ExprError();
+
+ // Look for the designated field.
+ const RecordType *RC = CurrentType->getAs<RecordType>();
+ if (!RC)
+ return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
+ << CurrentType);
+ RecordDecl *RD = RC->getDecl();
+
+ // C++ [lib.support.types]p5:
+ // The macro offsetof accepts a restricted set of type arguments in this
+ // International Standard. type shall be a POD structure or a POD union
+ // (clause 9).
+ if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
+ if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
+ DiagRuntimeBehavior(BuiltinLoc, 0,
+ PDiag(diag::warn_offsetof_non_pod_type)
+ << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
+ << CurrentType))
+ DidWarnAboutNonPOD = true;
+ }
+
+ // Look for the field.
+ LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
+ LookupQualifiedName(R, RD);
+ FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
+ IndirectFieldDecl *IndirectMemberDecl = 0;
+ if (!MemberDecl) {
+ if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
+ MemberDecl = IndirectMemberDecl->getAnonField();
+ }
+
+ if (!MemberDecl)
+ return ExprError(Diag(BuiltinLoc, diag::err_no_member)
+ << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
+ OC.LocEnd));
+
+ // C99 7.17p3:
+ // (If the specified member is a bit-field, the behavior is undefined.)
+ //
+ // We diagnose this as an error.
+ if (MemberDecl->getBitWidth()) {
+ Diag(OC.LocEnd, diag::err_offsetof_bitfield)
+ << MemberDecl->getDeclName()
+ << SourceRange(BuiltinLoc, RParenLoc);
+ Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
+ return ExprError();
+ }
+
+ RecordDecl *Parent = MemberDecl->getParent();
+ if (IndirectMemberDecl)
+ Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
+
+ // If the member was found in a base class, introduce OffsetOfNodes for
+ // the base class indirections.
+ CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
+ /*DetectVirtual=*/false);
+ if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
+ CXXBasePath &Path = Paths.front();
+ for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
+ B != BEnd; ++B)
+ Comps.push_back(OffsetOfNode(B->Base));
+ }
+
+ if (IndirectMemberDecl) {
+ for (IndirectFieldDecl::chain_iterator FI =
+ IndirectMemberDecl->chain_begin(),
+ FEnd = IndirectMemberDecl->chain_end(); FI != FEnd; FI++) {
+ assert(isa<FieldDecl>(*FI));
+ Comps.push_back(OffsetOfNode(OC.LocStart,
+ cast<FieldDecl>(*FI), OC.LocEnd));
+ }
+ } else
+ Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
+
+ CurrentType = MemberDecl->getType().getNonReferenceType();
+ }
+
+ return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc,
+ TInfo, Comps.data(), Comps.size(),
+ Exprs.data(), Exprs.size(), RParenLoc));
+}
+
+ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
+ SourceLocation BuiltinLoc,
+ SourceLocation TypeLoc,
+ ParsedType argty,
+ OffsetOfComponent *CompPtr,
+ unsigned NumComponents,
+ SourceLocation RPLoc) {
+
+ TypeSourceInfo *ArgTInfo;
+ QualType ArgTy = GetTypeFromParser(argty, &ArgTInfo);
+ if (ArgTy.isNull())
+ return ExprError();
+
+ if (!ArgTInfo)
+ ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
+
+ return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
+ RPLoc);
+}
+
+
+ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
+ Expr *CondExpr,
+ Expr *LHSExpr, Expr *RHSExpr,
+ SourceLocation RPLoc) {
+ assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
+
+ ExprValueKind VK = VK_RValue;
+ ExprObjectKind OK = OK_Ordinary;
+ QualType resType;
+ bool ValueDependent = false;
+ if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
+ resType = Context.DependentTy;
+ ValueDependent = true;
+ } else {
+ // The conditional expression is required to be a constant expression.
+ llvm::APSInt condEval(32);
+ SourceLocation ExpLoc;
+ if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
+ return ExprError(Diag(ExpLoc,
+ diag::err_typecheck_choose_expr_requires_constant)
+ << CondExpr->getSourceRange());
+
+ // If the condition is > zero, then the AST type is the same as the LSHExpr.
+ Expr *ActiveExpr = condEval.getZExtValue() ? LHSExpr : RHSExpr;
+
+ resType = ActiveExpr->getType();
+ ValueDependent = ActiveExpr->isValueDependent();
+ VK = ActiveExpr->getValueKind();
+ OK = ActiveExpr->getObjectKind();
+ }
+
+ return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
+ resType, VK, OK, RPLoc,
+ resType->isDependentType(),
+ ValueDependent));
+}
+
+//===----------------------------------------------------------------------===//
+// Clang Extensions.
+//===----------------------------------------------------------------------===//
+
+/// ActOnBlockStart - This callback is invoked when a block literal is started.
+void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
+ BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
+ PushBlockScope(BlockScope, Block);
+ CurContext->addDecl(Block);
+ if (BlockScope)
+ PushDeclContext(BlockScope, Block);
+ else
+ CurContext = Block;
+}
+
+void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
+ assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
+ assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
+ BlockScopeInfo *CurBlock = getCurBlock();
+
+ TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
+ QualType T = Sig->getType();
+
+ // GetTypeForDeclarator always produces a function type for a block
+ // literal signature. Furthermore, it is always a FunctionProtoType
+ // unless the function was written with a typedef.
+ assert(T->isFunctionType() &&
+ "GetTypeForDeclarator made a non-function block signature");
+
+ // Look for an explicit signature in that function type.
+ FunctionProtoTypeLoc ExplicitSignature;
+
+ TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
+ if (isa<FunctionProtoTypeLoc>(tmp)) {
+ ExplicitSignature = cast<FunctionProtoTypeLoc>(tmp);
+
+ // Check whether that explicit signature was synthesized by
+ // GetTypeForDeclarator. If so, don't save that as part of the
+ // written signature.
+ if (ExplicitSignature.getLocalRangeBegin() ==
+ ExplicitSignature.getLocalRangeEnd()) {
+ // This would be much cheaper if we stored TypeLocs instead of
+ // TypeSourceInfos.
+ TypeLoc Result = ExplicitSignature.getResultLoc();
+ unsigned Size = Result.getFullDataSize();
+ Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
+ Sig->getTypeLoc().initializeFullCopy(Result, Size);
+
+ ExplicitSignature = FunctionProtoTypeLoc();
+ }
+ }
+
+ CurBlock->TheDecl->setSignatureAsWritten(Sig);
+ CurBlock->FunctionType = T;
+
+ const FunctionType *Fn = T->getAs<FunctionType>();
+ QualType RetTy = Fn->getResultType();
+ bool isVariadic =
+ (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
+
+ CurBlock->TheDecl->setIsVariadic(isVariadic);
+
+ // Don't allow returning a objc interface by value.
+ if (RetTy->isObjCObjectType()) {
+ Diag(ParamInfo.getSourceRange().getBegin(),
+ diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
+ return;
+ }
+
+ // Context.DependentTy is used as a placeholder for a missing block
+ // return type. TODO: what should we do with declarators like:
+ // ^ * { ... }
+ // If the answer is "apply template argument deduction"....
+ if (RetTy != Context.DependentTy)
+ CurBlock->ReturnType = RetTy;
+
+ // Push block parameters from the declarator if we had them.
+ llvm::SmallVector<ParmVarDecl*, 8> Params;
+ if (ExplicitSignature) {
+ for (unsigned I = 0, E = ExplicitSignature.getNumArgs(); I != E; ++I) {
+ ParmVarDecl *Param = ExplicitSignature.getArg(I);
+ if (Param->getIdentifier() == 0 &&
+ !Param->isImplicit() &&
+ !Param->isInvalidDecl() &&
+ !getLangOptions().CPlusPlus)
+ Diag(Param->getLocation(), diag::err_parameter_name_omitted);
+ Params.push_back(Param);
+ }
+
+ // Fake up parameter variables if we have a typedef, like
+ // ^ fntype { ... }
+ } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
+ for (FunctionProtoType::arg_type_iterator
+ I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
+ ParmVarDecl *Param =
+ BuildParmVarDeclForTypedef(CurBlock->TheDecl,
+ ParamInfo.getSourceRange().getBegin(),
+ *I);
+ Params.push_back(Param);
+ }
+ }
+
+ // Set the parameters on the block decl.
+ if (!Params.empty()) {
+ CurBlock->TheDecl->setParams(Params.data(), Params.size());
+ CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
+ CurBlock->TheDecl->param_end(),
+ /*CheckParameterNames=*/false);
+ }
+
+ // Finally we can process decl attributes.
+ ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
+
+ if (!isVariadic && CurBlock->TheDecl->getAttr<SentinelAttr>()) {
+ Diag(ParamInfo.getAttributes()->getLoc(),
+ diag::warn_attribute_sentinel_not_variadic) << 1;
+ // FIXME: remove the attribute.
+ }
+
+ // Put the parameter variables in scope. We can bail out immediately
+ // if we don't have any.
+ if (Params.empty())
+ return;
+
+ for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
+ E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
+ (*AI)->setOwningFunction(CurBlock->TheDecl);
+
+ // If this has an identifier, add it to the scope stack.
+ if ((*AI)->getIdentifier()) {
+ CheckShadow(CurBlock->TheScope, *AI);
+
+ PushOnScopeChains(*AI, CurBlock->TheScope);
+ }
+ }
+}
+
+/// ActOnBlockError - If there is an error parsing a block, this callback
+/// is invoked to pop the information about the block from the action impl.
+void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
+ // Pop off CurBlock, handle nested blocks.
+ PopDeclContext();
+ PopFunctionOrBlockScope();
+}
+
+/// ActOnBlockStmtExpr - This is called when the body of a block statement
+/// literal was successfully completed. ^(int x){...}
+ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
+ Stmt *Body, Scope *CurScope) {
+ // If blocks are disabled, emit an error.
+ if (!LangOpts.Blocks)
+ Diag(CaretLoc, diag::err_blocks_disable);
+
+ BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
+
+ PopDeclContext();
+
+ QualType RetTy = Context.VoidTy;
+ if (!BSI->ReturnType.isNull())
+ RetTy = BSI->ReturnType;
+
+ bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
+ QualType BlockTy;
+
+ // Set the captured variables on the block.
+ BSI->TheDecl->setCaptures(Context, BSI->Captures.begin(), BSI->Captures.end(),
+ BSI->CapturesCXXThis);
+
+ // If the user wrote a function type in some form, try to use that.
+ if (!BSI->FunctionType.isNull()) {
+ const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
+
+ FunctionType::ExtInfo Ext = FTy->getExtInfo();
+ if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
+
+ // Turn protoless block types into nullary block types.
+ if (isa<FunctionNoProtoType>(FTy)) {
+ FunctionProtoType::ExtProtoInfo EPI;
+ EPI.ExtInfo = Ext;
+ BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
+
+ // Otherwise, if we don't need to change anything about the function type,
+ // preserve its sugar structure.
+ } else if (FTy->getResultType() == RetTy &&
+ (!NoReturn || FTy->getNoReturnAttr())) {
+ BlockTy = BSI->FunctionType;
+
+ // Otherwise, make the minimal modifications to the function type.
+ } else {
+ const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
+ FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
+ EPI.TypeQuals = 0; // FIXME: silently?
+ EPI.ExtInfo = Ext;
+ BlockTy = Context.getFunctionType(RetTy,
+ FPT->arg_type_begin(),
+ FPT->getNumArgs(),
+ EPI);
+ }
+
+ // If we don't have a function type, just build one from nothing.
+ } else {
+ FunctionProtoType::ExtProtoInfo EPI;
+ EPI.ExtInfo = FunctionType::ExtInfo(NoReturn, false, 0, CC_Default);
+ BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
+ }
+
+ DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
+ BSI->TheDecl->param_end());
+ BlockTy = Context.getBlockPointerType(BlockTy);
+
+ // If needed, diagnose invalid gotos and switches in the block.
+ if (getCurFunction()->NeedsScopeChecking() && !hasAnyErrorsInThisFunction())
+ DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
+
+ BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
+
+ BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
+
+ const AnalysisBasedWarnings::Policy &WP = AnalysisWarnings.getDefaultPolicy();
+ PopFunctionOrBlockScope(&WP, Result->getBlockDecl(), Result);
+ return Owned(Result);
+}
+
+ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
+ Expr *expr, ParsedType type,
+ SourceLocation RPLoc) {
+ TypeSourceInfo *TInfo;
+ GetTypeFromParser(type, &TInfo);
+ return BuildVAArgExpr(BuiltinLoc, expr, TInfo, RPLoc);
+}
+
+ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
+ Expr *E, TypeSourceInfo *TInfo,
+ SourceLocation RPLoc) {
+ Expr *OrigExpr = E;
+
+ // Get the va_list type
+ QualType VaListType = Context.getBuiltinVaListType();
+ if (VaListType->isArrayType()) {
+ // Deal with implicit array decay; for example, on x86-64,
+ // va_list is an array, but it's supposed to decay to
+ // a pointer for va_arg.
+ VaListType = Context.getArrayDecayedType(VaListType);
+ // Make sure the input expression also decays appropriately.
+ ExprResult Result = UsualUnaryConversions(E);
+ if (Result.isInvalid())
+ return ExprError();
+ E = Result.take();
+ } else {
+ // Otherwise, the va_list argument must be an l-value because
+ // it is modified by va_arg.
+ if (!E->isTypeDependent() &&
+ CheckForModifiableLvalue(E, BuiltinLoc, *this))
+ return ExprError();
+ }
+
+ if (!E->isTypeDependent() &&
+ !Context.hasSameType(VaListType, E->getType())) {
+ return ExprError(Diag(E->getLocStart(),
+ diag::err_first_argument_to_va_arg_not_of_type_va_list)
+ << OrigExpr->getType() << E->getSourceRange());
+ }
+
+ // FIXME: Check that type is complete/non-abstract
+ // FIXME: Warn if a non-POD type is passed in.
+
+ QualType T = TInfo->getType().getNonLValueExprType(Context);
+ return Owned(new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T));
+}
+
+ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
+ // The type of __null will be int or long, depending on the size of
+ // pointers on the target.
+ QualType Ty;
+ unsigned pw = Context.Target.getPointerWidth(0);
+ if (pw == Context.Target.getIntWidth())
+ Ty = Context.IntTy;
+ else if (pw == Context.Target.getLongWidth())
+ Ty = Context.LongTy;
+ else if (pw == Context.Target.getLongLongWidth())
+ Ty = Context.LongLongTy;
+ else {
+ assert(!"I don't know size of pointer!");
+ Ty = Context.IntTy;
+ }
+
+ return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
+}
+
+static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
+ Expr *SrcExpr, FixItHint &Hint) {
+ if (!SemaRef.getLangOptions().ObjC1)
+ return;
+
+ const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
+ if (!PT)
+ return;
+
+ // Check if the destination is of type 'id'.
+ if (!PT->isObjCIdType()) {
+ // Check if the destination is the 'NSString' interface.
+ const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
+ if (!ID || !ID->getIdentifier()->isStr("NSString"))
+ return;
+ }
+
+ // Strip off any parens and casts.
+ StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr->IgnoreParenCasts());
+ if (!SL || SL->isWide())
+ return;
+
+ Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
+}
+
+bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
+ SourceLocation Loc,
+ QualType DstType, QualType SrcType,
+ Expr *SrcExpr, AssignmentAction Action,
+ bool *Complained) {
+ if (Complained)
+ *Complained = false;
+
+ // Decode the result (notice that AST's are still created for extensions).
+ bool isInvalid = false;
+ unsigned DiagKind;
+ FixItHint Hint;
+
+ switch (ConvTy) {
+ default: assert(0 && "Unknown conversion type");
+ case Compatible: return false;
+ case PointerToInt:
+ DiagKind = diag::ext_typecheck_convert_pointer_int;
+ break;
+ case IntToPointer:
+ DiagKind = diag::ext_typecheck_convert_int_pointer;
+ break;
+ case IncompatiblePointer:
+ MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
+ DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
+ break;
+ case IncompatiblePointerSign:
+ DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
+ break;
+ case FunctionVoidPointer:
+ DiagKind = diag::ext_typecheck_convert_pointer_void_func;
+ break;
+ case IncompatiblePointerDiscardsQualifiers: {
+ // Perform array-to-pointer decay if necessary.
+ if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
+
+ Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
+ Qualifiers rhq = DstType->getPointeeType().getQualifiers();
+ if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
+ DiagKind = diag::err_typecheck_incompatible_address_space;
+ break;
+ }
+
+ llvm_unreachable("unknown error case for discarding qualifiers!");
+ // fallthrough
+ }
+ case CompatiblePointerDiscardsQualifiers:
+ // If the qualifiers lost were because we were applying the
+ // (deprecated) C++ conversion from a string literal to a char*
+ // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
+ // Ideally, this check would be performed in
+ // checkPointerTypesForAssignment. However, that would require a
+ // bit of refactoring (so that the second argument is an
+ // expression, rather than a type), which should be done as part
+ // of a larger effort to fix checkPointerTypesForAssignment for
+ // C++ semantics.
+ if (getLangOptions().CPlusPlus &&
+ IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
+ return false;
+ DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
+ break;
+ case IncompatibleNestedPointerQualifiers:
+ DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
+ break;
+ case IntToBlockPointer:
+ DiagKind = diag::err_int_to_block_pointer;
+ break;
+ case IncompatibleBlockPointer:
+ DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
+ break;
+ case IncompatibleObjCQualifiedId:
+ // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
+ // it can give a more specific diagnostic.
+ DiagKind = diag::warn_incompatible_qualified_id;
+ break;
+ case IncompatibleVectors:
+ DiagKind = diag::warn_incompatible_vectors;
+ break;
+ case Incompatible:
+ DiagKind = diag::err_typecheck_convert_incompatible;
+ isInvalid = true;
+ break;
+ }
+
+ QualType FirstType, SecondType;
+ switch (Action) {
+ case AA_Assigning:
+ case AA_Initializing:
+ // The destination type comes first.
+ FirstType = DstType;
+ SecondType = SrcType;
+ break;
+
+ case AA_Returning:
+ case AA_Passing:
+ case AA_Converting:
+ case AA_Sending:
+ case AA_Casting:
+ // The source type comes first.
+ FirstType = SrcType;
+ SecondType = DstType;
+ break;
+ }
+
+ Diag(Loc, DiagKind) << FirstType << SecondType << Action
+ << SrcExpr->getSourceRange() << Hint;
+ if (Complained)
+ *Complained = true;
+ return isInvalid;
+}
+
+bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
+ llvm::APSInt ICEResult;
+ if (E->isIntegerConstantExpr(ICEResult, Context)) {
+ if (Result)
+ *Result = ICEResult;
+ return false;
+ }
+
+ Expr::EvalResult EvalResult;
+
+ if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
+ EvalResult.HasSideEffects) {
+ Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
+
+ if (EvalResult.Diag) {
+ // We only show the note if it's not the usual "invalid subexpression"
+ // or if it's actually in a subexpression.
+ if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
+ E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
+ Diag(EvalResult.DiagLoc, EvalResult.Diag);
+ }
+
+ return true;
+ }
+
+ Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
+ E->getSourceRange();
+
+ if (EvalResult.Diag &&
+ Diags.getDiagnosticLevel(diag::ext_expr_not_ice, EvalResult.DiagLoc)
+ != Diagnostic::Ignored)
+ Diag(EvalResult.DiagLoc, EvalResult.Diag);
+
+ if (Result)
+ *Result = EvalResult.Val.getInt();
+ return false;
+}
+
+void
+Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
+ ExprEvalContexts.push_back(
+ ExpressionEvaluationContextRecord(NewContext, ExprTemporaries.size()));
+}
+
+void
+Sema::PopExpressionEvaluationContext() {
+ // Pop the current expression evaluation context off the stack.
+ ExpressionEvaluationContextRecord Rec = ExprEvalContexts.back();
+ ExprEvalContexts.pop_back();
+
+ if (Rec.Context == PotentiallyPotentiallyEvaluated) {
+ if (Rec.PotentiallyReferenced) {
+ // Mark any remaining declarations in the current position of the stack
+ // as "referenced". If they were not meant to be referenced, semantic
+ // analysis would have eliminated them (e.g., in ActOnCXXTypeId).
+ for (PotentiallyReferencedDecls::iterator
+ I = Rec.PotentiallyReferenced->begin(),
+ IEnd = Rec.PotentiallyReferenced->end();
+ I != IEnd; ++I)
+ MarkDeclarationReferenced(I->first, I->second);
+ }
+
+ if (Rec.PotentiallyDiagnosed) {
+ // Emit any pending diagnostics.
+ for (PotentiallyEmittedDiagnostics::iterator
+ I = Rec.PotentiallyDiagnosed->begin(),
+ IEnd = Rec.PotentiallyDiagnosed->end();
+ I != IEnd; ++I)
+ Diag(I->first, I->second);
+ }
+ }
+
+ // When are coming out of an unevaluated context, clear out any
+ // temporaries that we may have created as part of the evaluation of
+ // the expression in that context: they aren't relevant because they
+ // will never be constructed.
+ if (Rec.Context == Unevaluated &&
+ ExprTemporaries.size() > Rec.NumTemporaries)
+ ExprTemporaries.erase(ExprTemporaries.begin() + Rec.NumTemporaries,
+ ExprTemporaries.end());
+
+ // Destroy the popped expression evaluation record.
+ Rec.Destroy();
+}
+
+/// \brief Note that the given declaration was referenced in the source code.
+///
+/// This routine should be invoke whenever a given declaration is referenced
+/// in the source code, and where that reference occurred. If this declaration
+/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
+/// C99 6.9p3), then the declaration will be marked as used.
+///
+/// \param Loc the location where the declaration was referenced.
+///
+/// \param D the declaration that has been referenced by the source code.
+void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
+ assert(D && "No declaration?");
+
+ D->setReferenced();
+
+ if (D->isUsed(false))
+ return;
+
+ // Mark a parameter or variable declaration "used", regardless of whether we're in a
+ // template or not. The reason for this is that unevaluated expressions
+ // (e.g. (void)sizeof()) constitute a use for warning purposes (-Wunused-variables and
+ // -Wunused-parameters)
+ if (isa<ParmVarDecl>(D) ||
+ (isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod())) {
+ D->setUsed();
+ return;
+ }
+
+ if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D))
+ return;
+
+ // Do not mark anything as "used" within a dependent context; wait for
+ // an instantiation.
+ if (CurContext->isDependentContext())
+ return;
+
+ switch (ExprEvalContexts.back().Context) {
+ case Unevaluated:
+ // We are in an expression that is not potentially evaluated; do nothing.
+ return;
+
+ case PotentiallyEvaluated:
+ // We are in a potentially-evaluated expression, so this declaration is
+ // "used"; handle this below.
+ break;
+
+ case PotentiallyPotentiallyEvaluated:
+ // We are in an expression that may be potentially evaluated; queue this
+ // declaration reference until we know whether the expression is
+ // potentially evaluated.
+ ExprEvalContexts.back().addReferencedDecl(Loc, D);
+ return;
+
+ case PotentiallyEvaluatedIfUsed:
+ // Referenced declarations will only be used if the construct in the
+ // containing expression is used.
+ return;
+ }
+
+ // Note that this declaration has been used.
+ if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
+ unsigned TypeQuals;
+ if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) {
+ if (Constructor->getParent()->hasTrivialConstructor())
+ return;
+ if (!Constructor->isUsed(false))
+ DefineImplicitDefaultConstructor(Loc, Constructor);
+ } else if (Constructor->isImplicit() &&
+ Constructor->isCopyConstructor(TypeQuals)) {
+ if (!Constructor->isUsed(false))
+ DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals);
+ }
+
+ MarkVTableUsed(Loc, Constructor->getParent());
+ } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
+ if (Destructor->isImplicit() && !Destructor->isUsed(false))
+ DefineImplicitDestructor(Loc, Destructor);
+ if (Destructor->isVirtual())
+ MarkVTableUsed(Loc, Destructor->getParent());
+ } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
+ if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
+ MethodDecl->getOverloadedOperator() == OO_Equal) {
+ if (!MethodDecl->isUsed(false))
+ DefineImplicitCopyAssignment(Loc, MethodDecl);
+ } else if (MethodDecl->isVirtual())
+ MarkVTableUsed(Loc, MethodDecl->getParent());
+ }
+ if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
+ // Recursive functions should be marked when used from another function.
+ if (CurContext == Function) return;
+
+ // Implicit instantiation of function templates and member functions of
+ // class templates.
+ if (Function->isImplicitlyInstantiable()) {
+ bool AlreadyInstantiated = false;
+ if (FunctionTemplateSpecializationInfo *SpecInfo
+ = Function->getTemplateSpecializationInfo()) {
+ if (SpecInfo->getPointOfInstantiation().isInvalid())
+ SpecInfo->setPointOfInstantiation(Loc);
+ else if (SpecInfo->getTemplateSpecializationKind()
+ == TSK_ImplicitInstantiation)
+ AlreadyInstantiated = true;
+ } else if (MemberSpecializationInfo *MSInfo
+ = Function->getMemberSpecializationInfo()) {
+ if (MSInfo->getPointOfInstantiation().isInvalid())
+ MSInfo->setPointOfInstantiation(Loc);
+ else if (MSInfo->getTemplateSpecializationKind()
+ == TSK_ImplicitInstantiation)
+ AlreadyInstantiated = true;
+ }
+
+ if (!AlreadyInstantiated) {
+ if (isa<CXXRecordDecl>(Function->getDeclContext()) &&
+ cast<CXXRecordDecl>(Function->getDeclContext())->isLocalClass())
+ PendingLocalImplicitInstantiations.push_back(std::make_pair(Function,
+ Loc));
+ else
+ PendingInstantiations.push_back(std::make_pair(Function, Loc));
+ }
+ } else {
+ // Walk redefinitions, as some of them may be instantiable.
+ for (FunctionDecl::redecl_iterator i(Function->redecls_begin()),
+ e(Function->redecls_end()); i != e; ++i) {
+ if (!i->isUsed(false) && i->isImplicitlyInstantiable())
+ MarkDeclarationReferenced(Loc, *i);
+ }
+ }
+
+ // Keep track of used but undefined functions.
+ if (!Function->isPure() && !Function->hasBody() &&
+ Function->getLinkage() != ExternalLinkage) {
+ SourceLocation &old = UndefinedInternals[Function->getCanonicalDecl()];
+ if (old.isInvalid()) old = Loc;
+ }
+
+ Function->setUsed(true);
+ return;
+ }
+
+ if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
+ // Implicit instantiation of static data members of class templates.
+ if (Var->isStaticDataMember() &&
+ Var->getInstantiatedFromStaticDataMember()) {
+ MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
+ assert(MSInfo && "Missing member specialization information?");
+ if (MSInfo->getPointOfInstantiation().isInvalid() &&
+ MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) {
+ MSInfo->setPointOfInstantiation(Loc);
+ // This is a modification of an existing AST node. Notify listeners.
+ if (ASTMutationListener *L = getASTMutationListener())
+ L->StaticDataMemberInstantiated(Var);
+ PendingInstantiations.push_back(std::make_pair(Var, Loc));
+ }
+ }
+
+ // Keep track of used but undefined variables. We make a hole in
+ // the warning for static const data members with in-line
+ // initializers.
+ if (Var->hasDefinition() == VarDecl::DeclarationOnly
+ && Var->getLinkage() != ExternalLinkage
+ && !(Var->isStaticDataMember() && Var->hasInit())) {
+ SourceLocation &old = UndefinedInternals[Var->getCanonicalDecl()];
+ if (old.isInvalid()) old = Loc;
+ }
+
+ D->setUsed(true);
+ return;
+ }
+}
+
+namespace {
+ // Mark all of the declarations referenced
+ // FIXME: Not fully implemented yet! We need to have a better understanding
+ // of when we're entering
+ class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
+ Sema &S;
+ SourceLocation Loc;
+
+ public:
+ typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
+
+ MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
+
+ bool TraverseTemplateArgument(const TemplateArgument &Arg);
+ bool TraverseRecordType(RecordType *T);
+ };
+}
+
+bool MarkReferencedDecls::TraverseTemplateArgument(
+ const TemplateArgument &Arg) {
+ if (Arg.getKind() == TemplateArgument::Declaration) {
+ S.MarkDeclarationReferenced(Loc, Arg.getAsDecl());
+ }
+
+ return Inherited::TraverseTemplateArgument(Arg);
+}
+
+bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
+ if (ClassTemplateSpecializationDecl *Spec
+ = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
+ const TemplateArgumentList &Args = Spec->getTemplateArgs();
+ return TraverseTemplateArguments(Args.data(), Args.size());
+ }
+
+ return true;
+}
+
+void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
+ MarkReferencedDecls Marker(*this, Loc);
+ Marker.TraverseType(Context.getCanonicalType(T));
+}
+
+namespace {
+ /// \brief Helper class that marks all of the declarations referenced by
+ /// potentially-evaluated subexpressions as "referenced".
+ class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
+ Sema &S;
+
+ public:
+ typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
+
+ explicit EvaluatedExprMarker(Sema &S) : Inherited(S.Context), S(S) { }
+
+ void VisitDeclRefExpr(DeclRefExpr *E) {
+ S.MarkDeclarationReferenced(E->getLocation(), E->getDecl());
+ }
+
+ void VisitMemberExpr(MemberExpr *E) {
+ S.MarkDeclarationReferenced(E->getMemberLoc(), E->getMemberDecl());
+ Inherited::VisitMemberExpr(E);
+ }
+
+ void VisitCXXNewExpr(CXXNewExpr *E) {
+ if (E->getConstructor())
+ S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor());
+ if (E->getOperatorNew())
+ S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorNew());
+ if (E->getOperatorDelete())
+ S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete());
+ Inherited::VisitCXXNewExpr(E);
+ }
+
+ void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
+ if (E->getOperatorDelete())
+ S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete());
+ QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
+ if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
+ CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
+ S.MarkDeclarationReferenced(E->getLocStart(),
+ S.LookupDestructor(Record));
+ }
+
+ Inherited::VisitCXXDeleteExpr(E);
+ }
+
+ void VisitCXXConstructExpr(CXXConstructExpr *E) {
+ S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor());
+ Inherited::VisitCXXConstructExpr(E);
+ }
+
+ void VisitBlockDeclRefExpr(BlockDeclRefExpr *E) {
+ S.MarkDeclarationReferenced(E->getLocation(), E->getDecl());
+ }
+
+ void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
+ Visit(E->getExpr());
+ }
+ };
+}
+
+/// \brief Mark any declarations that appear within this expression or any
+/// potentially-evaluated subexpressions as "referenced".
+void Sema::MarkDeclarationsReferencedInExpr(Expr *E) {
+ EvaluatedExprMarker(*this).Visit(E);
+}
+
+/// \brief Emit a diagnostic that describes an effect on the run-time behavior
+/// of the program being compiled.
+///
+/// This routine emits the given diagnostic when the code currently being
+/// type-checked is "potentially evaluated", meaning that there is a
+/// possibility that the code will actually be executable. Code in sizeof()
+/// expressions, code used only during overload resolution, etc., are not
+/// potentially evaluated. This routine will suppress such diagnostics or,
+/// in the absolutely nutty case of potentially potentially evaluated
+/// expressions (C++ typeid), queue the diagnostic to potentially emit it
+/// later.
+///
+/// This routine should be used for all diagnostics that describe the run-time
+/// behavior of a program, such as passing a non-POD value through an ellipsis.
+/// Failure to do so will likely result in spurious diagnostics or failures
+/// during overload resolution or within sizeof/alignof/typeof/typeid.
+bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *stmt,
+ const PartialDiagnostic &PD) {
+ switch (ExprEvalContexts.back().Context ) {
+ case Unevaluated:
+ // The argument will never be evaluated, so don't complain.
+ break;
+
+ case PotentiallyEvaluated:
+ case PotentiallyEvaluatedIfUsed:
+ if (stmt && getCurFunctionOrMethodDecl()) {
+ FunctionScopes.back()->PossiblyUnreachableDiags.
+ push_back(sema::PossiblyUnreachableDiag(PD, Loc, stmt));
+ }
+ else
+ Diag(Loc, PD);
+
+ return true;
+
+ case PotentiallyPotentiallyEvaluated:
+ ExprEvalContexts.back().addDiagnostic(Loc, PD);
+ break;
+ }
+
+ return false;
+}
+
+bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
+ CallExpr *CE, FunctionDecl *FD) {
+ if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
+ return false;
+
+ PartialDiagnostic Note =
+ FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
+ << FD->getDeclName() : PDiag();
+ SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
+
+ if (RequireCompleteType(Loc, ReturnType,
+ FD ?
+ PDiag(diag::err_call_function_incomplete_return)
+ << CE->getSourceRange() << FD->getDeclName() :
+ PDiag(diag::err_call_incomplete_return)
+ << CE->getSourceRange(),
+ std::make_pair(NoteLoc, Note)))
+ return true;
+
+ return false;
+}
+
+// Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
+// will prevent this condition from triggering, which is what we want.
+void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
+ SourceLocation Loc;
+
+ unsigned diagnostic = diag::warn_condition_is_assignment;
+ bool IsOrAssign = false;
+
+ if (isa<BinaryOperator>(E)) {
+ BinaryOperator *Op = cast<BinaryOperator>(E);
+ if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
+ return;
+
+ IsOrAssign = Op->getOpcode() == BO_OrAssign;
+
+ // Greylist some idioms by putting them into a warning subcategory.
+ if (ObjCMessageExpr *ME
+ = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
+ Selector Sel = ME->getSelector();
+
+ // self = [<foo> init...]
+ if (isSelfExpr(Op->getLHS()) && Sel.getNameForSlot(0).startswith("init"))
+ diagnostic = diag::warn_condition_is_idiomatic_assignment;
+
+ // <foo> = [<bar> nextObject]
+ else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
+ diagnostic = diag::warn_condition_is_idiomatic_assignment;
+ }
+
+ Loc = Op->getOperatorLoc();
+ } else if (isa<CXXOperatorCallExpr>(E)) {
+ CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(E);
+ if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
+ return;
+
+ IsOrAssign = Op->getOperator() == OO_PipeEqual;
+ Loc = Op->getOperatorLoc();
+ } else {
+ // Not an assignment.
+ return;
+ }
+
+ Diag(Loc, diagnostic) << E->getSourceRange();
+
+ SourceLocation Open = E->getSourceRange().getBegin();
+ SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
+ Diag(Loc, diag::note_condition_assign_silence)
+ << FixItHint::CreateInsertion(Open, "(")
+ << FixItHint::CreateInsertion(Close, ")");
+
+ if (IsOrAssign)
+ Diag(Loc, diag::note_condition_or_assign_to_comparison)
+ << FixItHint::CreateReplacement(Loc, "!=");
+ else
+ Diag(Loc, diag::note_condition_assign_to_comparison)
+ << FixItHint::CreateReplacement(Loc, "==");
+}
+
+/// \brief Redundant parentheses over an equality comparison can indicate
+/// that the user intended an assignment used as condition.
+void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *parenE) {
+ // Don't warn if the parens came from a macro.
+ SourceLocation parenLoc = parenE->getLocStart();
+ if (parenLoc.isInvalid() || parenLoc.isMacroID())
+ return;
+ // Don't warn for dependent expressions.
+ if (parenE->isTypeDependent())
+ return;
+
+ Expr *E = parenE->IgnoreParens();
+
+ if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
+ if (opE->getOpcode() == BO_EQ &&
+ opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
+ == Expr::MLV_Valid) {
+ SourceLocation Loc = opE->getOperatorLoc();
+
+ Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
+ Diag(Loc, diag::note_equality_comparison_silence)
+ << FixItHint::CreateRemoval(parenE->getSourceRange().getBegin())
+ << FixItHint::CreateRemoval(parenE->getSourceRange().getEnd());
+ Diag(Loc, diag::note_equality_comparison_to_assign)
+ << FixItHint::CreateReplacement(Loc, "=");
+ }
+}
+
+ExprResult Sema::CheckBooleanCondition(Expr *E, SourceLocation Loc) {
+ DiagnoseAssignmentAsCondition(E);
+ if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
+ DiagnoseEqualityWithExtraParens(parenE);
+
+ ExprResult result = CheckPlaceholderExpr(E);
+ if (result.isInvalid()) return ExprError();
+ E = result.take();
+
+ if (!E->isTypeDependent()) {
+ if (getLangOptions().CPlusPlus)
+ return CheckCXXBooleanCondition(E); // C++ 6.4p4
+
+ ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
+ if (ERes.isInvalid())
+ return ExprError();
+ E = ERes.take();
+
+ QualType T = E->getType();
+ if (!T->isScalarType()) { // C99 6.8.4.1p1
+ Diag(Loc, diag::err_typecheck_statement_requires_scalar)
+ << T << E->getSourceRange();
+ return ExprError();
+ }
+ }
+
+ return Owned(E);
+}
+
+ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
+ Expr *Sub) {
+ if (!Sub)
+ return ExprError();
+
+ return CheckBooleanCondition(Sub, Loc);
+}
+
+namespace {
+ /// A visitor for rebuilding a call to an __unknown_any expression
+ /// to have an appropriate type.
+ struct RebuildUnknownAnyFunction
+ : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
+
+ Sema &S;
+
+ RebuildUnknownAnyFunction(Sema &S) : S(S) {}
+
+ ExprResult VisitStmt(Stmt *S) {
+ llvm_unreachable("unexpected statement!");
+ return ExprError();
+ }
+
+ ExprResult VisitExpr(Expr *expr) {
+ S.Diag(expr->getExprLoc(), diag::err_unsupported_unknown_any_call)
+ << expr->getSourceRange();
+ return ExprError();
+ }
+
+ /// Rebuild an expression which simply semantically wraps another
+ /// expression which it shares the type and value kind of.
+ template <class T> ExprResult rebuildSugarExpr(T *expr) {
+ ExprResult subResult = Visit(expr->getSubExpr());
+ if (subResult.isInvalid()) return ExprError();
+
+ Expr *subExpr = subResult.take();
+ expr->setSubExpr(subExpr);
+ expr->setType(subExpr->getType());
+ expr->setValueKind(subExpr->getValueKind());
+ assert(expr->getObjectKind() == OK_Ordinary);
+ return expr;
+ }
+
+ ExprResult VisitParenExpr(ParenExpr *paren) {
+ return rebuildSugarExpr(paren);
+ }
+
+ ExprResult VisitUnaryExtension(UnaryOperator *op) {
+ return rebuildSugarExpr(op);
+ }
+
+ ExprResult VisitUnaryAddrOf(UnaryOperator *op) {
+ ExprResult subResult = Visit(op->getSubExpr());
+ if (subResult.isInvalid()) return ExprError();
+
+ Expr *subExpr = subResult.take();
+ op->setSubExpr(subExpr);
+ op->setType(S.Context.getPointerType(subExpr->getType()));
+ assert(op->getValueKind() == VK_RValue);
+ assert(op->getObjectKind() == OK_Ordinary);
+ return op;
+ }
+
+ ExprResult resolveDecl(Expr *expr, ValueDecl *decl) {
+ if (!isa<FunctionDecl>(decl)) return VisitExpr(expr);
+
+ expr->setType(decl->getType());
+
+ assert(expr->getValueKind() == VK_RValue);
+ if (S.getLangOptions().CPlusPlus &&
+ !(isa<CXXMethodDecl>(decl) &&
+ cast<CXXMethodDecl>(decl)->isInstance()))
+ expr->setValueKind(VK_LValue);
+
+ return expr;
+ }
+
+ ExprResult VisitMemberExpr(MemberExpr *mem) {
+ return resolveDecl(mem, mem->getMemberDecl());
+ }
+
+ ExprResult VisitDeclRefExpr(DeclRefExpr *ref) {
+ return resolveDecl(ref, ref->getDecl());
+ }
+ };
+}
+
+/// Given a function expression of unknown-any type, try to rebuild it
+/// to have a function type.
+static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn) {
+ ExprResult result = RebuildUnknownAnyFunction(S).Visit(fn);
+ if (result.isInvalid()) return ExprError();
+ return S.DefaultFunctionArrayConversion(result.take());
+}
+
+namespace {
+ /// A visitor for rebuilding an expression of type __unknown_anytype
+ /// into one which resolves the type directly on the referring
+ /// expression. Strict preservation of the original source
+ /// structure is not a goal.
+ struct RebuildUnknownAnyExpr
+ : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
+
+ Sema &S;
+
+ /// The current destination type.
+ QualType DestType;
+
+ RebuildUnknownAnyExpr(Sema &S, QualType castType)
+ : S(S), DestType(castType) {}
+
+ ExprResult VisitStmt(Stmt *S) {
+ llvm_unreachable("unexpected statement!");
+ return ExprError();
+ }
+
+ ExprResult VisitExpr(Expr *expr) {
+ S.Diag(expr->getExprLoc(), diag::err_unsupported_unknown_any_expr)
+ << expr->getSourceRange();
+ return ExprError();
+ }
+
+ ExprResult VisitCallExpr(CallExpr *call);
+ ExprResult VisitObjCMessageExpr(ObjCMessageExpr *message);
+
+ /// Rebuild an expression which simply semantically wraps another
+ /// expression which it shares the type and value kind of.
+ template <class T> ExprResult rebuildSugarExpr(T *expr) {
+ ExprResult subResult = Visit(expr->getSubExpr());
+ if (subResult.isInvalid()) return ExprError();
+ Expr *subExpr = subResult.take();
+ expr->setSubExpr(subExpr);
+ expr->setType(subExpr->getType());
+ expr->setValueKind(subExpr->getValueKind());
+ assert(expr->getObjectKind() == OK_Ordinary);
+ return expr;
+ }
+
+ ExprResult VisitParenExpr(ParenExpr *paren) {
+ return rebuildSugarExpr(paren);
+ }
+
+ ExprResult VisitUnaryExtension(UnaryOperator *op) {
+ return rebuildSugarExpr(op);
+ }
+
+ ExprResult VisitUnaryAddrOf(UnaryOperator *op) {
+ const PointerType *ptr = DestType->getAs<PointerType>();
+ if (!ptr) {
+ S.Diag(op->getOperatorLoc(), diag::err_unknown_any_addrof)
+ << op->getSourceRange();
+ return ExprError();
+ }
+ assert(op->getValueKind() == VK_RValue);
+ assert(op->getObjectKind() == OK_Ordinary);
+ op->setType(DestType);
+
+ // Build the sub-expression as if it were an object of the pointee type.
+ DestType = ptr->getPointeeType();
+ ExprResult subResult = Visit(op->getSubExpr());
+ if (subResult.isInvalid()) return ExprError();
+ op->setSubExpr(subResult.take());
+ return op;
+ }
+
+ ExprResult VisitImplicitCastExpr(ImplicitCastExpr *ice);
+
+ ExprResult resolveDecl(Expr *expr, ValueDecl *decl);
+
+ ExprResult VisitMemberExpr(MemberExpr *mem) {
+ return resolveDecl(mem, mem->getMemberDecl());
+ }
+
+ ExprResult VisitDeclRefExpr(DeclRefExpr *ref) {
+ return resolveDecl(ref, ref->getDecl());
+ }
+ };
+}
+
+/// Rebuilds a call expression which yielded __unknown_anytype.
+ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *call) {
+ Expr *callee = call->getCallee();
+
+ enum FnKind {
+ FK_MemberFunction,
+ FK_FunctionPointer,
+ FK_BlockPointer
+ };
+
+ FnKind kind;
+ QualType type = callee->getType();
+ if (type == S.Context.BoundMemberTy) {
+ assert(isa<CXXMemberCallExpr>(call) || isa<CXXOperatorCallExpr>(call));
+ kind = FK_MemberFunction;
+ type = Expr::findBoundMemberType(callee);
+ } else if (const PointerType *ptr = type->getAs<PointerType>()) {
+ type = ptr->getPointeeType();
+ kind = FK_FunctionPointer;
+ } else {
+ type = type->castAs<BlockPointerType>()->getPointeeType();
+ kind = FK_BlockPointer;
+ }
+ const FunctionType *fnType = type->castAs<FunctionType>();
+
+ // Verify that this is a legal result type of a function.
+ if (DestType->isArrayType() || DestType->isFunctionType()) {
+ unsigned diagID = diag::err_func_returning_array_function;
+ if (kind == FK_BlockPointer)
+ diagID = diag::err_block_returning_array_function;
+
+ S.Diag(call->getExprLoc(), diagID)
+ << DestType->isFunctionType() << DestType;
+ return ExprError();
+ }
+
+ // Otherwise, go ahead and set DestType as the call's result.
+ call->setType(DestType.getNonLValueExprType(S.Context));
+ call->setValueKind(Expr::getValueKindForType(DestType));
+ assert(call->getObjectKind() == OK_Ordinary);
+
+ // Rebuild the function type, replacing the result type with DestType.
+ if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType))
+ DestType = S.Context.getFunctionType(DestType,
+ proto->arg_type_begin(),
+ proto->getNumArgs(),
+ proto->getExtProtoInfo());
+ else
+ DestType = S.Context.getFunctionNoProtoType(DestType,
+ fnType->getExtInfo());
+
+ // Rebuild the appropriate pointer-to-function type.
+ switch (kind) {
+ case FK_MemberFunction:
+ // Nothing to do.
+ break;
+
+ case FK_FunctionPointer:
+ DestType = S.Context.getPointerType(DestType);
+ break;
+
+ case FK_BlockPointer:
+ DestType = S.Context.getBlockPointerType(DestType);
+ break;
+ }
+
+ // Finally, we can recurse.
+ ExprResult calleeResult = Visit(callee);
+ if (!calleeResult.isUsable()) return ExprError();
+ call->setCallee(calleeResult.take());
+
+ // Bind a temporary if necessary.
+ return S.MaybeBindToTemporary(call);
+}
+
+ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *msg) {
+ ObjCMethodDecl *method = msg->getMethodDecl();
+ assert(method && "__unknown_anytype message without result type?");
+
+ // Verify that this is a legal result type of a call.
+ if (DestType->isArrayType() || DestType->isFunctionType()) {
+ S.Diag(msg->getExprLoc(), diag::err_func_returning_array_function)
+ << DestType->isFunctionType() << DestType;
+ return ExprError();
+ }
+
+ assert(method->getResultType() == S.Context.UnknownAnyTy);
+ method->setResultType(DestType);
+
+ // Change the type of the message.
+ msg->setType(DestType.getNonReferenceType());
+ msg->setValueKind(Expr::getValueKindForType(DestType));
+
+ return S.MaybeBindToTemporary(msg);
+}
+
+ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *ice) {
+ // The only case we should ever see here is a function-to-pointer decay.
+ assert(ice->getCastKind() == CK_FunctionToPointerDecay);
+ assert(ice->getValueKind() == VK_RValue);
+ assert(ice->getObjectKind() == OK_Ordinary);
+
+ ice->setType(DestType);
+
+ // Rebuild the sub-expression as the pointee (function) type.
+ DestType = DestType->castAs<PointerType>()->getPointeeType();
+
+ ExprResult result = Visit(ice->getSubExpr());
+ if (!result.isUsable()) return ExprError();
+
+ ice->setSubExpr(result.take());
+ return S.Owned(ice);
+}
+
+ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *expr, ValueDecl *decl) {
+ ExprValueKind valueKind = VK_LValue;
+ QualType type = DestType;
+
+ // We know how to make this work for certain kinds of decls:
+
+ // - functions
+ if (FunctionDecl *fn = dyn_cast<FunctionDecl>(decl)) {
+ // This is true because FunctionDecls must always have function
+ // type, so we can't be resolving the entire thing at once.
+ assert(type->isFunctionType());
+
+ if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(fn))
+ if (method->isInstance()) {
+ valueKind = VK_RValue;
+ type = S.Context.BoundMemberTy;
+ }
+
+ // Function references aren't l-values in C.
+ if (!S.getLangOptions().CPlusPlus)
+ valueKind = VK_RValue;
+
+ // - variables
+ } else if (isa<VarDecl>(decl)) {
+ if (const ReferenceType *refTy = type->getAs<ReferenceType>()) {
+ type = refTy->getPointeeType();
+ } else if (type->isFunctionType()) {
+ S.Diag(expr->getExprLoc(), diag::err_unknown_any_var_function_type)
+ << decl << expr->getSourceRange();
+ return ExprError();
+ }
+
+ // - nothing else
+ } else {
+ S.Diag(expr->getExprLoc(), diag::err_unsupported_unknown_any_decl)
+ << decl << expr->getSourceRange();
+ return ExprError();
+ }
+
+ decl->setType(DestType);
+ expr->setType(type);
+ expr->setValueKind(valueKind);
+ return S.Owned(expr);
+}
+
+/// Check a cast of an unknown-any type. We intentionally only
+/// trigger this for C-style casts.
+ExprResult Sema::checkUnknownAnyCast(SourceRange typeRange, QualType castType,
+ Expr *castExpr, CastKind &castKind,
+ ExprValueKind &VK, CXXCastPath &path) {
+ // Rewrite the casted expression from scratch.
+ ExprResult result = RebuildUnknownAnyExpr(*this, castType).Visit(castExpr);
+ if (!result.isUsable()) return ExprError();
+
+ castExpr = result.take();
+ VK = castExpr->getValueKind();
+ castKind = CK_NoOp;
+
+ return castExpr;
+}
+
+static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *e) {
+ Expr *orig = e;
+ unsigned diagID = diag::err_uncasted_use_of_unknown_any;
+ while (true) {
+ e = e->IgnoreParenImpCasts();
+ if (CallExpr *call = dyn_cast<CallExpr>(e)) {
+ e = call->getCallee();
+ diagID = diag::err_uncasted_call_of_unknown_any;
+ } else {
+ break;
+ }
+ }
+
+ SourceLocation loc;
+ NamedDecl *d;
+ if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
+ loc = ref->getLocation();
+ d = ref->getDecl();
+ } else if (MemberExpr *mem = dyn_cast<MemberExpr>(e)) {
+ loc = mem->getMemberLoc();
+ d = mem->getMemberDecl();
+ } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(e)) {
+ diagID = diag::err_uncasted_call_of_unknown_any;
+ loc = msg->getSelectorLoc();
+ d = msg->getMethodDecl();
+ assert(d && "unknown method returning __unknown_any?");
+ } else {
+ S.Diag(e->getExprLoc(), diag::err_unsupported_unknown_any_expr)
+ << e->getSourceRange();
+ return ExprError();
+ }
+
+ S.Diag(loc, diagID) << d << orig->getSourceRange();
+
+ // Never recoverable.
+ return ExprError();
+}
+
+/// Check for operands with placeholder types and complain if found.
+/// Returns true if there was an error and no recovery was possible.
+ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
+ // Placeholder types are always *exactly* the appropriate builtin type.
+ QualType type = E->getType();
+
+ // Overloaded expressions.
+ if (type == Context.OverloadTy)
+ return ResolveAndFixSingleFunctionTemplateSpecialization(E, false, true,
+ E->getSourceRange(),
+ QualType(),
+ diag::err_ovl_unresolvable);
+
+ // Bound member functions.
+ if (type == Context.BoundMemberTy) {
+ Diag(E->getLocStart(), diag::err_invalid_use_of_bound_member_func)
+ << E->getSourceRange();
+ return ExprError();
+ }
+
+ // Expressions of unknown type.
+ if (type == Context.UnknownAnyTy)
+ return diagnoseUnknownAnyExpr(*this, E);
+
+ assert(!type->isPlaceholderType());
+ return Owned(E);
+}
+
+bool Sema::CheckCaseExpression(Expr *expr) {
+ if (expr->isTypeDependent())
+ return true;
+ if (expr->isValueDependent() || expr->isIntegerConstantExpr(Context))
+ return expr->getType()->isIntegralOrEnumerationType();
+ return false;
+}
OpenPOWER on IntegriCloud