summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/Sema/SemaExpr.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/Sema/SemaExpr.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaExpr.cpp4525
1 files changed, 3131 insertions, 1394 deletions
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaExpr.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaExpr.cpp
index 80b4652..65b57c3 100644
--- a/contrib/llvm/tools/clang/lib/Sema/SemaExpr.cpp
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaExpr.cpp
@@ -19,6 +19,7 @@
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/EvaluatedExprVisitor.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
@@ -48,21 +49,57 @@ using namespace sema;
/// used, or produce an error (and return true) if a C++0x deleted
/// function is being used.
///
-/// If IgnoreDeprecated is set to true, this should not want about deprecated
+/// If IgnoreDeprecated is set to true, this should not warn about deprecated
/// decls.
///
/// \returns true if there was an error (this declaration cannot be
/// referenced), false otherwise.
///
-bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
- // See if the decl is deprecated.
- if (D->getAttr<DeprecatedAttr>()) {
- EmitDeprecationWarning(D, Loc);
+bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
+ bool UnknownObjCClass) {
+ if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
+ // If there were any diagnostics suppressed by template argument deduction,
+ // emit them now.
+ llvm::DenseMap<Decl *, llvm::SmallVector<PartialDiagnosticAt, 1> >::iterator
+ Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
+ if (Pos != SuppressedDiagnostics.end()) {
+ llvm::SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
+ for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
+ Diag(Suppressed[I].first, Suppressed[I].second);
+
+ // Clear out the list of suppressed diagnostics, so that we don't emit
+ // them again for this specialization. However, we don't remove this
+ // entry from the table, because we want to avoid ever emitting these
+ // diagnostics again.
+ Suppressed.clear();
+ }
+ }
+
+ // See if this is an auto-typed variable whose initializer we are parsing.
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
+ if (VD->isParsingAutoInit()) {
+ Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
+ << D->getDeclName();
+ return true;
+ }
}
+ // See if the decl is deprecated.
+ if (const DeprecatedAttr *DA = D->getAttr<DeprecatedAttr>())
+ EmitDeprecationWarning(D, DA->getMessage(), Loc, UnknownObjCClass);
+
// See if the decl is unavailable
- if (D->getAttr<UnavailableAttr>()) {
- Diag(Loc, diag::err_unavailable) << D->getDeclName();
+ if (const UnavailableAttr *UA = D->getAttr<UnavailableAttr>()) {
+ if (UA->getMessage().empty()) {
+ if (!UnknownObjCClass)
+ Diag(Loc, diag::err_unavailable) << D->getDeclName();
+ else
+ Diag(Loc, diag::warn_unavailable_fwdclass_message)
+ << D->getDeclName();
+ }
+ else
+ Diag(Loc, diag::err_unavailable_message)
+ << D->getDeclName() << UA->getMessage();
Diag(D->getLocation(), diag::note_unavailable_here) << 0;
}
@@ -75,6 +112,10 @@ bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
}
}
+ // Warn if this is used but marked unused.
+ if (D->hasAttr<UnusedAttr>())
+ Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
+
return false;
}
@@ -167,6 +208,10 @@ void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
if (!sentinelExpr) return;
if (sentinelExpr->isTypeDependent()) return;
if (sentinelExpr->isValueDependent()) return;
+
+ // nullptr_t is always treated as null.
+ if (sentinelExpr->getType()->isNullPtrType()) return;
+
if (sentinelExpr->getType()->isAnyPointerType() &&
sentinelExpr->IgnoreParenCasts()->isNullPointerConstant(Context,
Expr::NPC_ValueDependentIsNull))
@@ -208,32 +253,66 @@ void Sema::DefaultFunctionArrayConversion(Expr *&E) {
// An lvalue or rvalue of type "array of N T" or "array of unknown bound of
// T" can be converted to an rvalue of type "pointer to T".
//
- if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
- E->isLvalue(Context) == Expr::LV_Valid)
+ if (getLangOptions().C99 || getLangOptions().CPlusPlus || E->isLValue())
ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
CK_ArrayToPointerDecay);
}
}
-void Sema::DefaultFunctionArrayLvalueConversion(Expr *&E) {
- DefaultFunctionArrayConversion(E);
+void Sema::DefaultLvalueConversion(Expr *&E) {
+ // C++ [conv.lval]p1:
+ // A glvalue of a non-function, non-array type T can be
+ // converted to a prvalue.
+ if (!E->isGLValue()) return;
- QualType Ty = E->getType();
- assert(!Ty.isNull() && "DefaultFunctionArrayLvalueConversion - missing type");
- if (!Ty->isDependentType() && Ty.hasQualifiers() &&
- (!getLangOptions().CPlusPlus || !Ty->isRecordType()) &&
- E->isLvalue(Context) == Expr::LV_Valid) {
- // C++ [conv.lval]p1:
- // [...] If T is a non-class type, the type of the rvalue is the
- // cv-unqualified version of T. Otherwise, the type of the
- // rvalue is T
- //
- // C99 6.3.2.1p2:
- // If the lvalue has qualified type, the value has the unqualified
- // version of the type of the lvalue; otherwise, the value has the
- // type of the lvalue.
- ImpCastExprToType(E, Ty.getUnqualifiedType(), CK_NoOp);
+ QualType T = E->getType();
+ assert(!T.isNull() && "r-value conversion on typeless expression?");
+
+ // Create a load out of an ObjCProperty l-value, if necessary.
+ if (E->getObjectKind() == OK_ObjCProperty) {
+ ConvertPropertyForRValue(E);
+ if (!E->isGLValue())
+ return;
}
+
+ // We don't want to throw lvalue-to-rvalue casts on top of
+ // expressions of certain types in C++.
+ if (getLangOptions().CPlusPlus &&
+ (E->getType() == Context.OverloadTy ||
+ T->isDependentType() ||
+ T->isRecordType()))
+ return;
+
+ // The C standard is actually really unclear on this point, and
+ // DR106 tells us what the result should be but not why. It's
+ // generally best to say that void types just doesn't undergo
+ // lvalue-to-rvalue at all. Note that expressions of unqualified
+ // 'void' type are never l-values, but qualified void can be.
+ if (T->isVoidType())
+ return;
+
+ // C++ [conv.lval]p1:
+ // [...] If T is a non-class type, the type of the prvalue is the
+ // cv-unqualified version of T. Otherwise, the type of the
+ // rvalue is T.
+ //
+ // C99 6.3.2.1p2:
+ // If the lvalue has qualified type, the value has the unqualified
+ // version of the type of the lvalue; otherwise, the value has the
+ // type of the lvalue.
+ if (T.hasQualifiers())
+ T = T.getUnqualifiedType();
+
+ if (const ArraySubscriptExpr *ae = dyn_cast<ArraySubscriptExpr>(E))
+ CheckArrayAccess(ae);
+
+ E = ImplicitCastExpr::Create(Context, T, CK_LValueToRValue,
+ E, 0, VK_RValue);
+}
+
+void Sema::DefaultFunctionArrayLvalueConversion(Expr *&E) {
+ DefaultFunctionArrayConversion(E);
+ DefaultLvalueConversion(E);
}
@@ -242,36 +321,43 @@ void Sema::DefaultFunctionArrayLvalueConversion(Expr *&E) {
/// sometimes surpressed. For example, the array->pointer conversion doesn't
/// apply if the array is an argument to the sizeof or address (&) operators.
/// In these instances, this routine should *not* be called.
-Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
- QualType Ty = Expr->getType();
+Expr *Sema::UsualUnaryConversions(Expr *&E) {
+ // First, convert to an r-value.
+ DefaultFunctionArrayLvalueConversion(E);
+
+ QualType Ty = E->getType();
assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
-
- // C99 6.3.1.1p2:
- //
- // The following may be used in an expression wherever an int or
- // unsigned int may be used:
- // - an object or expression with an integer type whose integer
- // conversion rank is less than or equal to the rank of int
- // and unsigned int.
- // - A bit-field of type _Bool, int, signed int, or unsigned int.
- //
- // If an int can represent all values of the original type, the
- // value is converted to an int; otherwise, it is converted to an
- // unsigned int. These are called the integer promotions. All
- // other types are unchanged by the integer promotions.
- QualType PTy = Context.isPromotableBitField(Expr);
- if (!PTy.isNull()) {
- ImpCastExprToType(Expr, PTy, CK_IntegralCast);
- return Expr;
- }
- if (Ty->isPromotableIntegerType()) {
- QualType PT = Context.getPromotedIntegerType(Ty);
- ImpCastExprToType(Expr, PT, CK_IntegralCast);
- return Expr;
+
+ // Try to perform integral promotions if the object has a theoretically
+ // promotable type.
+ if (Ty->isIntegralOrUnscopedEnumerationType()) {
+ // C99 6.3.1.1p2:
+ //
+ // The following may be used in an expression wherever an int or
+ // unsigned int may be used:
+ // - an object or expression with an integer type whose integer
+ // conversion rank is less than or equal to the rank of int
+ // and unsigned int.
+ // - A bit-field of type _Bool, int, signed int, or unsigned int.
+ //
+ // If an int can represent all values of the original type, the
+ // value is converted to an int; otherwise, it is converted to an
+ // unsigned int. These are called the integer promotions. All
+ // other types are unchanged by the integer promotions.
+
+ QualType PTy = Context.isPromotableBitField(E);
+ if (!PTy.isNull()) {
+ ImpCastExprToType(E, PTy, CK_IntegralCast);
+ return E;
+ }
+ if (Ty->isPromotableIntegerType()) {
+ QualType PT = Context.getPromotedIntegerType(Ty);
+ ImpCastExprToType(E, PT, CK_IntegralCast);
+ return E;
+ }
}
- DefaultFunctionArrayLvalueConversion(Expr);
- return Expr;
+ return E;
}
/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
@@ -281,12 +367,11 @@ void Sema::DefaultArgumentPromotion(Expr *&Expr) {
QualType Ty = Expr->getType();
assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
+ UsualUnaryConversions(Expr);
+
// If this is a 'float' (CVR qualified or typedef) promote to double.
if (Ty->isSpecificBuiltinType(BuiltinType::Float))
- return ImpCastExprToType(Expr, Context.DoubleTy,
- CK_FloatingCast);
-
- UsualUnaryConversions(Expr);
+ return ImpCastExprToType(Expr, Context.DoubleTy, CK_FloatingCast);
}
/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
@@ -318,7 +403,6 @@ bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT,
return false;
}
-
/// UsualArithmeticConversions - Performs various conversions that are common to
/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
/// routine returns the first non-arithmetic type found. The client is
@@ -348,19 +432,271 @@ QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
return lhs;
- // Perform bitfield promotions.
+ // Apply unary and bitfield promotions to the LHS's type.
+ QualType lhs_unpromoted = lhs;
+ if (lhs->isPromotableIntegerType())
+ lhs = Context.getPromotedIntegerType(lhs);
QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr);
if (!LHSBitfieldPromoteTy.isNull())
lhs = LHSBitfieldPromoteTy;
- QualType RHSBitfieldPromoteTy = Context.isPromotableBitField(rhsExpr);
- if (!RHSBitfieldPromoteTy.isNull())
- rhs = RHSBitfieldPromoteTy;
+ if (lhs != lhs_unpromoted && !isCompAssign)
+ ImpCastExprToType(lhsExpr, lhs, CK_IntegralCast);
- QualType destType = Context.UsualArithmeticConversionsType(lhs, rhs);
- if (!isCompAssign)
- ImpCastExprToType(lhsExpr, destType, CK_Unknown);
- ImpCastExprToType(rhsExpr, destType, CK_Unknown);
- return destType;
+ // If both types are identical, no conversion is needed.
+ if (lhs == rhs)
+ return lhs;
+
+ // At this point, we have two different arithmetic types.
+
+ // Handle complex types first (C99 6.3.1.8p1).
+ bool LHSComplexFloat = lhs->isComplexType();
+ bool RHSComplexFloat = rhs->isComplexType();
+ if (LHSComplexFloat || RHSComplexFloat) {
+ // if we have an integer operand, the result is the complex type.
+
+ if (!RHSComplexFloat && !rhs->isRealFloatingType()) {
+ if (rhs->isIntegerType()) {
+ QualType fp = cast<ComplexType>(lhs)->getElementType();
+ ImpCastExprToType(rhsExpr, fp, CK_IntegralToFloating);
+ ImpCastExprToType(rhsExpr, lhs, CK_FloatingRealToComplex);
+ } else {
+ assert(rhs->isComplexIntegerType());
+ ImpCastExprToType(rhsExpr, lhs, CK_IntegralComplexToFloatingComplex);
+ }
+ return lhs;
+ }
+
+ if (!LHSComplexFloat && !lhs->isRealFloatingType()) {
+ if (!isCompAssign) {
+ // int -> float -> _Complex float
+ if (lhs->isIntegerType()) {
+ QualType fp = cast<ComplexType>(rhs)->getElementType();
+ ImpCastExprToType(lhsExpr, fp, CK_IntegralToFloating);
+ ImpCastExprToType(lhsExpr, rhs, CK_FloatingRealToComplex);
+ } else {
+ assert(lhs->isComplexIntegerType());
+ ImpCastExprToType(lhsExpr, rhs, CK_IntegralComplexToFloatingComplex);
+ }
+ }
+ return rhs;
+ }
+
+ // This handles complex/complex, complex/float, or float/complex.
+ // When both operands are complex, the shorter operand is converted to the
+ // type of the longer, and that is the type of the result. This corresponds
+ // to what is done when combining two real floating-point operands.
+ // The fun begins when size promotion occur across type domains.
+ // From H&S 6.3.4: When one operand is complex and the other is a real
+ // floating-point type, the less precise type is converted, within it's
+ // real or complex domain, to the precision of the other type. For example,
+ // when combining a "long double" with a "double _Complex", the
+ // "double _Complex" is promoted to "long double _Complex".
+ int order = Context.getFloatingTypeOrder(lhs, rhs);
+
+ // If both are complex, just cast to the more precise type.
+ if (LHSComplexFloat && RHSComplexFloat) {
+ if (order > 0) {
+ // _Complex float -> _Complex double
+ ImpCastExprToType(rhsExpr, lhs, CK_FloatingComplexCast);
+ return lhs;
+
+ } else if (order < 0) {
+ // _Complex float -> _Complex double
+ if (!isCompAssign)
+ ImpCastExprToType(lhsExpr, rhs, CK_FloatingComplexCast);
+ return rhs;
+ }
+ return lhs;
+ }
+
+ // If just the LHS is complex, the RHS needs to be converted,
+ // and the LHS might need to be promoted.
+ if (LHSComplexFloat) {
+ if (order > 0) { // LHS is wider
+ // float -> _Complex double
+ QualType fp = cast<ComplexType>(lhs)->getElementType();
+ ImpCastExprToType(rhsExpr, fp, CK_FloatingCast);
+ ImpCastExprToType(rhsExpr, lhs, CK_FloatingRealToComplex);
+ return lhs;
+ }
+
+ // RHS is at least as wide. Find its corresponding complex type.
+ QualType result = (order == 0 ? lhs : Context.getComplexType(rhs));
+
+ // double -> _Complex double
+ ImpCastExprToType(rhsExpr, result, CK_FloatingRealToComplex);
+
+ // _Complex float -> _Complex double
+ if (!isCompAssign && order < 0)
+ ImpCastExprToType(lhsExpr, result, CK_FloatingComplexCast);
+
+ return result;
+ }
+
+ // Just the RHS is complex, so the LHS needs to be converted
+ // and the RHS might need to be promoted.
+ assert(RHSComplexFloat);
+
+ if (order < 0) { // RHS is wider
+ // float -> _Complex double
+ if (!isCompAssign) {
+ QualType fp = cast<ComplexType>(rhs)->getElementType();
+ ImpCastExprToType(lhsExpr, fp, CK_FloatingCast);
+ ImpCastExprToType(lhsExpr, rhs, CK_FloatingRealToComplex);
+ }
+ return rhs;
+ }
+
+ // LHS is at least as wide. Find its corresponding complex type.
+ QualType result = (order == 0 ? rhs : Context.getComplexType(lhs));
+
+ // double -> _Complex double
+ if (!isCompAssign)
+ ImpCastExprToType(lhsExpr, result, CK_FloatingRealToComplex);
+
+ // _Complex float -> _Complex double
+ if (order > 0)
+ ImpCastExprToType(rhsExpr, result, CK_FloatingComplexCast);
+
+ return result;
+ }
+
+ // Now handle "real" floating types (i.e. float, double, long double).
+ bool LHSFloat = lhs->isRealFloatingType();
+ bool RHSFloat = rhs->isRealFloatingType();
+ if (LHSFloat || RHSFloat) {
+ // If we have two real floating types, convert the smaller operand
+ // to the bigger result.
+ if (LHSFloat && RHSFloat) {
+ int order = Context.getFloatingTypeOrder(lhs, rhs);
+ if (order > 0) {
+ ImpCastExprToType(rhsExpr, lhs, CK_FloatingCast);
+ return lhs;
+ }
+
+ assert(order < 0 && "illegal float comparison");
+ if (!isCompAssign)
+ ImpCastExprToType(lhsExpr, rhs, CK_FloatingCast);
+ return rhs;
+ }
+
+ // If we have an integer operand, the result is the real floating type.
+ if (LHSFloat) {
+ if (rhs->isIntegerType()) {
+ // Convert rhs to the lhs floating point type.
+ ImpCastExprToType(rhsExpr, lhs, CK_IntegralToFloating);
+ return lhs;
+ }
+
+ // Convert both sides to the appropriate complex float.
+ assert(rhs->isComplexIntegerType());
+ QualType result = Context.getComplexType(lhs);
+
+ // _Complex int -> _Complex float
+ ImpCastExprToType(rhsExpr, result, CK_IntegralComplexToFloatingComplex);
+
+ // float -> _Complex float
+ if (!isCompAssign)
+ ImpCastExprToType(lhsExpr, result, CK_FloatingRealToComplex);
+
+ return result;
+ }
+
+ assert(RHSFloat);
+ if (lhs->isIntegerType()) {
+ // Convert lhs to the rhs floating point type.
+ if (!isCompAssign)
+ ImpCastExprToType(lhsExpr, rhs, CK_IntegralToFloating);
+ return rhs;
+ }
+
+ // Convert both sides to the appropriate complex float.
+ assert(lhs->isComplexIntegerType());
+ QualType result = Context.getComplexType(rhs);
+
+ // _Complex int -> _Complex float
+ if (!isCompAssign)
+ ImpCastExprToType(lhsExpr, result, CK_IntegralComplexToFloatingComplex);
+
+ // float -> _Complex float
+ ImpCastExprToType(rhsExpr, result, CK_FloatingRealToComplex);
+
+ return result;
+ }
+
+ // Handle GCC complex int extension.
+ // FIXME: if the operands are (int, _Complex long), we currently
+ // don't promote the complex. Also, signedness?
+ const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
+ const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
+ if (lhsComplexInt && rhsComplexInt) {
+ int order = Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
+ rhsComplexInt->getElementType());
+ assert(order && "inequal types with equal element ordering");
+ if (order > 0) {
+ // _Complex int -> _Complex long
+ ImpCastExprToType(rhsExpr, lhs, CK_IntegralComplexCast);
+ return lhs;
+ }
+
+ if (!isCompAssign)
+ ImpCastExprToType(lhsExpr, rhs, CK_IntegralComplexCast);
+ return rhs;
+ } else if (lhsComplexInt) {
+ // int -> _Complex int
+ ImpCastExprToType(rhsExpr, lhs, CK_IntegralRealToComplex);
+ return lhs;
+ } else if (rhsComplexInt) {
+ // int -> _Complex int
+ if (!isCompAssign)
+ ImpCastExprToType(lhsExpr, rhs, CK_IntegralRealToComplex);
+ return rhs;
+ }
+
+ // Finally, we have two differing integer types.
+ // The rules for this case are in C99 6.3.1.8
+ int compare = Context.getIntegerTypeOrder(lhs, rhs);
+ bool lhsSigned = lhs->hasSignedIntegerRepresentation(),
+ rhsSigned = rhs->hasSignedIntegerRepresentation();
+ if (lhsSigned == rhsSigned) {
+ // Same signedness; use the higher-ranked type
+ if (compare >= 0) {
+ ImpCastExprToType(rhsExpr, lhs, CK_IntegralCast);
+ return lhs;
+ } else if (!isCompAssign)
+ ImpCastExprToType(lhsExpr, rhs, CK_IntegralCast);
+ return rhs;
+ } else if (compare != (lhsSigned ? 1 : -1)) {
+ // The unsigned type has greater than or equal rank to the
+ // signed type, so use the unsigned type
+ if (rhsSigned) {
+ ImpCastExprToType(rhsExpr, lhs, CK_IntegralCast);
+ return lhs;
+ } else if (!isCompAssign)
+ ImpCastExprToType(lhsExpr, rhs, CK_IntegralCast);
+ return rhs;
+ } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
+ // The two types are different widths; if we are here, that
+ // means the signed type is larger than the unsigned type, so
+ // use the signed type.
+ if (lhsSigned) {
+ ImpCastExprToType(rhsExpr, lhs, CK_IntegralCast);
+ return lhs;
+ } else if (!isCompAssign)
+ ImpCastExprToType(lhsExpr, rhs, CK_IntegralCast);
+ return rhs;
+ } else {
+ // The signed type is higher-ranked than the unsigned type,
+ // but isn't actually any bigger (like unsigned int and long
+ // on most 32-bit systems). Use the unsigned type corresponding
+ // to the signed type.
+ QualType result =
+ Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
+ ImpCastExprToType(rhsExpr, result, CK_IntegralCast);
+ if (!isCompAssign)
+ ImpCastExprToType(lhsExpr, result, CK_IntegralCast);
+ return result;
+ }
}
//===----------------------------------------------------------------------===//
@@ -409,245 +745,366 @@ Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
StringTokLocs.size()));
}
-/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
-/// CurBlock to VD should cause it to be snapshotted (as we do for auto
-/// variables defined outside the block) or false if this is not needed (e.g.
-/// for values inside the block or for globals).
+enum CaptureResult {
+ /// No capture is required.
+ CR_NoCapture,
+
+ /// A capture is required.
+ CR_Capture,
+
+ /// A by-ref capture is required.
+ CR_CaptureByRef,
+
+ /// An error occurred when trying to capture the given variable.
+ CR_Error
+};
+
+/// Diagnose an uncapturable value reference.
///
-/// This also keeps the 'hasBlockDeclRefExprs' in the BlockScopeInfo records
-/// up-to-date.
+/// \param var - the variable referenced
+/// \param DC - the context which we couldn't capture through
+static CaptureResult
+diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
+ VarDecl *var, DeclContext *DC) {
+ switch (S.ExprEvalContexts.back().Context) {
+ case Sema::Unevaluated:
+ // The argument will never be evaluated, so don't complain.
+ return CR_NoCapture;
+
+ case Sema::PotentiallyEvaluated:
+ case Sema::PotentiallyEvaluatedIfUsed:
+ break;
+
+ case Sema::PotentiallyPotentiallyEvaluated:
+ // FIXME: delay these!
+ break;
+ }
+
+ // Don't diagnose about capture if we're not actually in code right
+ // now; in general, there are more appropriate places that will
+ // diagnose this.
+ if (!S.CurContext->isFunctionOrMethod()) return CR_NoCapture;
+
+ // This particular madness can happen in ill-formed default
+ // arguments; claim it's okay and let downstream code handle it.
+ if (isa<ParmVarDecl>(var) &&
+ S.CurContext == var->getDeclContext()->getParent())
+ return CR_NoCapture;
+
+ DeclarationName functionName;
+ if (FunctionDecl *fn = dyn_cast<FunctionDecl>(var->getDeclContext()))
+ functionName = fn->getDeclName();
+ // FIXME: variable from enclosing block that we couldn't capture from!
+
+ S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function)
+ << var->getIdentifier() << functionName;
+ S.Diag(var->getLocation(), diag::note_local_variable_declared_here)
+ << var->getIdentifier();
+
+ return CR_Error;
+}
+
+/// There is a well-formed capture at a particular scope level;
+/// propagate it through all the nested blocks.
+static CaptureResult propagateCapture(Sema &S, unsigned validScopeIndex,
+ const BlockDecl::Capture &capture) {
+ VarDecl *var = capture.getVariable();
+
+ // Update all the inner blocks with the capture information.
+ for (unsigned i = validScopeIndex + 1, e = S.FunctionScopes.size();
+ i != e; ++i) {
+ BlockScopeInfo *innerBlock = cast<BlockScopeInfo>(S.FunctionScopes[i]);
+ innerBlock->Captures.push_back(
+ BlockDecl::Capture(capture.getVariable(), capture.isByRef(),
+ /*nested*/ true, capture.getCopyExpr()));
+ innerBlock->CaptureMap[var] = innerBlock->Captures.size(); // +1
+ }
+
+ return capture.isByRef() ? CR_CaptureByRef : CR_Capture;
+}
+
+/// shouldCaptureValueReference - Determine if a reference to the
+/// given value in the current context requires a variable capture.
///
-static bool ShouldSnapshotBlockValueReference(Sema &S, BlockScopeInfo *CurBlock,
- ValueDecl *VD) {
- // If the value is defined inside the block, we couldn't snapshot it even if
- // we wanted to.
- if (CurBlock->TheDecl == VD->getDeclContext())
- return false;
+/// This also keeps the captures set in the BlockScopeInfo records
+/// up-to-date.
+static CaptureResult shouldCaptureValueReference(Sema &S, SourceLocation loc,
+ ValueDecl *value) {
+ // Only variables ever require capture.
+ VarDecl *var = dyn_cast<VarDecl>(value);
+ if (!var) return CR_NoCapture;
- // If this is an enum constant or function, it is constant, don't snapshot.
- if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
- return false;
+ // Fast path: variables from the current context never require capture.
+ DeclContext *DC = S.CurContext;
+ if (var->getDeclContext() == DC) return CR_NoCapture;
- // If this is a reference to an extern, static, or global variable, no need to
- // snapshot it.
+ // Only variables with local storage require capture.
// FIXME: What about 'const' variables in C++?
- if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
- if (!Var->hasLocalStorage())
- return false;
+ if (!var->hasLocalStorage()) return CR_NoCapture;
- // Blocks that have these can't be constant.
- CurBlock->hasBlockDeclRefExprs = true;
+ // Otherwise, we need to capture.
- // If we have nested blocks, the decl may be declared in an outer block (in
- // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
- // be defined outside all of the current blocks (in which case the blocks do
- // all get the bit). Walk the nesting chain.
- for (unsigned I = S.FunctionScopes.size() - 1; I; --I) {
- BlockScopeInfo *NextBlock = dyn_cast<BlockScopeInfo>(S.FunctionScopes[I]);
+ unsigned functionScopesIndex = S.FunctionScopes.size() - 1;
+ do {
+ // Only blocks (and eventually C++0x closures) can capture; other
+ // scopes don't work.
+ if (!isa<BlockDecl>(DC))
+ return diagnoseUncapturableValueReference(S, loc, var, DC);
- if (!NextBlock)
- continue;
+ BlockScopeInfo *blockScope =
+ cast<BlockScopeInfo>(S.FunctionScopes[functionScopesIndex]);
+ assert(blockScope->TheDecl == static_cast<BlockDecl*>(DC));
- // If we found the defining block for the variable, don't mark the block as
- // having a reference outside it.
- if (NextBlock->TheDecl == VD->getDeclContext())
- break;
+ // Check whether we've already captured it in this block. If so,
+ // we're done.
+ if (unsigned indexPlus1 = blockScope->CaptureMap[var])
+ return propagateCapture(S, functionScopesIndex,
+ blockScope->Captures[indexPlus1 - 1]);
+
+ functionScopesIndex--;
+ DC = cast<BlockDecl>(DC)->getDeclContext();
+ } while (var->getDeclContext() != DC);
- // Otherwise, the DeclRef from the inner block causes the outer one to need
- // a snapshot as well.
- NextBlock->hasBlockDeclRefExprs = true;
+ // Okay, we descended all the way to the block that defines the variable.
+ // Actually try to capture it.
+ QualType type = var->getType();
+
+ // Prohibit variably-modified types.
+ if (type->isVariablyModifiedType()) {
+ S.Diag(loc, diag::err_ref_vm_type);
+ S.Diag(var->getLocation(), diag::note_declared_at);
+ return CR_Error;
}
- return true;
-}
+ // Prohibit arrays, even in __block variables, but not references to
+ // them.
+ if (type->isArrayType()) {
+ S.Diag(loc, diag::err_ref_array_type);
+ S.Diag(var->getLocation(), diag::note_declared_at);
+ return CR_Error;
+ }
+
+ S.MarkDeclarationReferenced(loc, var);
+
+ // The BlocksAttr indicates the variable is bound by-reference.
+ bool byRef = var->hasAttr<BlocksAttr>();
+
+ // Build a copy expression.
+ Expr *copyExpr = 0;
+ if (!byRef && S.getLangOptions().CPlusPlus &&
+ !type->isDependentType() && type->isStructureOrClassType()) {
+ // According to the blocks spec, the capture of a variable from
+ // the stack requires a const copy constructor. This is not true
+ // of the copy/move done to move a __block variable to the heap.
+ type.addConst();
+
+ Expr *declRef = new (S.Context) DeclRefExpr(var, type, VK_LValue, loc);
+ ExprResult result =
+ S.PerformCopyInitialization(
+ InitializedEntity::InitializeBlock(var->getLocation(),
+ type, false),
+ loc, S.Owned(declRef));
+
+ // Build a full-expression copy expression if initialization
+ // succeeded and used a non-trivial constructor. Recover from
+ // errors by pretending that the copy isn't necessary.
+ if (!result.isInvalid() &&
+ !cast<CXXConstructExpr>(result.get())->getConstructor()->isTrivial()) {
+ result = S.MaybeCreateExprWithCleanups(result);
+ copyExpr = result.take();
+ }
+ }
+
+ // We're currently at the declarer; go back to the closure.
+ functionScopesIndex++;
+ BlockScopeInfo *blockScope =
+ cast<BlockScopeInfo>(S.FunctionScopes[functionScopesIndex]);
+
+ // Build a valid capture in this scope.
+ blockScope->Captures.push_back(
+ BlockDecl::Capture(var, byRef, /*nested*/ false, copyExpr));
+ blockScope->CaptureMap[var] = blockScope->Captures.size(); // +1
+
+ // Propagate that to inner captures if necessary.
+ return propagateCapture(S, functionScopesIndex,
+ blockScope->Captures.back());
+}
+
+static ExprResult BuildBlockDeclRefExpr(Sema &S, ValueDecl *vd,
+ const DeclarationNameInfo &NameInfo,
+ bool byRef) {
+ assert(isa<VarDecl>(vd) && "capturing non-variable");
+
+ VarDecl *var = cast<VarDecl>(vd);
+ assert(var->hasLocalStorage() && "capturing non-local");
+ assert(byRef == var->hasAttr<BlocksAttr>() && "byref set wrong");
+
+ QualType exprType = var->getType().getNonReferenceType();
+
+ BlockDeclRefExpr *BDRE;
+ if (!byRef) {
+ // The variable will be bound by copy; make it const within the
+ // closure, but record that this was done in the expression.
+ bool constAdded = !exprType.isConstQualified();
+ exprType.addConst();
+
+ BDRE = new (S.Context) BlockDeclRefExpr(var, exprType, VK_LValue,
+ NameInfo.getLoc(), false,
+ constAdded);
+ } else {
+ BDRE = new (S.Context) BlockDeclRefExpr(var, exprType, VK_LValue,
+ NameInfo.getLoc(), true);
+ }
+ return S.Owned(BDRE);
+}
ExprResult
-Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, SourceLocation Loc,
+Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
+ SourceLocation Loc,
const CXXScopeSpec *SS) {
DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
- return BuildDeclRefExpr(D, Ty, NameInfo, SS);
+ return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
}
-/// BuildDeclRefExpr - Build a DeclRefExpr.
+/// BuildDeclRefExpr - Build an expression that references a
+/// declaration that does not require a closure capture.
ExprResult
-Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty,
+Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
const DeclarationNameInfo &NameInfo,
const CXXScopeSpec *SS) {
- if (Context.getCanonicalType(Ty) == Context.UndeducedAutoTy) {
- Diag(NameInfo.getLoc(),
- diag::err_auto_variable_cannot_appear_in_own_initializer)
- << D->getDeclName();
- return ExprError();
- }
-
- if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
- if (isa<NonTypeTemplateParmDecl>(VD)) {
- // Non-type template parameters can be referenced anywhere they are
- // visible.
- Ty = Ty.getNonLValueExprType(Context);
- } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
- if (const FunctionDecl *FD = MD->getParent()->isLocalClass()) {
- if (VD->hasLocalStorage() && VD->getDeclContext() != CurContext) {
- Diag(NameInfo.getLoc(),
- diag::err_reference_to_local_var_in_enclosing_function)
- << D->getIdentifier() << FD->getDeclName();
- Diag(D->getLocation(), diag::note_local_variable_declared_here)
- << D->getIdentifier();
- return ExprError();
- }
- }
- }
- }
-
MarkDeclarationReferenced(NameInfo.getLoc(), D);
- return Owned(DeclRefExpr::Create(Context,
+ Expr *E = DeclRefExpr::Create(Context,
SS? (NestedNameSpecifier *)SS->getScopeRep() : 0,
- SS? SS->getRange() : SourceRange(),
- D, NameInfo, Ty));
-}
+ SS? SS->getRange() : SourceRange(),
+ D, NameInfo, Ty, VK);
-/// \brief Given a field that represents a member of an anonymous
-/// struct/union, build the path from that field's context to the
-/// actual member.
-///
-/// Construct the sequence of field member references we'll have to
-/// perform to get to the field in the anonymous union/struct. The
-/// list of members is built from the field outward, so traverse it
-/// backwards to go from an object in the current context to the field
-/// we found.
-///
-/// \returns The variable from which the field access should begin,
-/// for an anonymous struct/union that is not a member of another
-/// class. Otherwise, returns NULL.
-VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
- llvm::SmallVectorImpl<FieldDecl *> &Path) {
- assert(Field->getDeclContext()->isRecord() &&
- cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
- && "Field must be stored inside an anonymous struct or union");
-
- Path.push_back(Field);
- VarDecl *BaseObject = 0;
- DeclContext *Ctx = Field->getDeclContext();
- do {
- RecordDecl *Record = cast<RecordDecl>(Ctx);
- ValueDecl *AnonObject = Record->getAnonymousStructOrUnionObject();
- if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
- Path.push_back(AnonField);
- else {
- BaseObject = cast<VarDecl>(AnonObject);
- break;
- }
- Ctx = Ctx->getParent();
- } while (Ctx->isRecord() &&
- cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
+ // Just in case we're building an illegal pointer-to-member.
+ if (isa<FieldDecl>(D) && cast<FieldDecl>(D)->getBitWidth())
+ E->setObjectKind(OK_BitField);
- return BaseObject;
+ return Owned(E);
}
+static ExprResult
+BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
+ const CXXScopeSpec &SS, FieldDecl *Field,
+ DeclAccessPair FoundDecl,
+ const DeclarationNameInfo &MemberNameInfo);
+
ExprResult
-Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
- FieldDecl *Field,
- Expr *BaseObjectExpr,
- SourceLocation OpLoc) {
- llvm::SmallVector<FieldDecl *, 4> AnonFields;
- VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
- AnonFields);
-
- // Build the expression that refers to the base object, from
- // which we will build a sequence of member references to each
- // of the anonymous union objects and, eventually, the field we
- // found via name lookup.
- bool BaseObjectIsPointer = false;
- Qualifiers BaseQuals;
- if (BaseObject) {
- // BaseObject is an anonymous struct/union variable (and is,
- // therefore, not part of another non-anonymous record).
- MarkDeclarationReferenced(Loc, BaseObject);
- BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
- SourceLocation());
- BaseQuals
- = Context.getCanonicalType(BaseObject->getType()).getQualifiers();
- } else if (BaseObjectExpr) {
+Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
+ SourceLocation loc,
+ IndirectFieldDecl *indirectField,
+ Expr *baseObjectExpr,
+ SourceLocation opLoc) {
+ // First, build the expression that refers to the base object.
+
+ bool baseObjectIsPointer = false;
+ Qualifiers baseQuals;
+
+ // Case 1: the base of the indirect field is not a field.
+ VarDecl *baseVariable = indirectField->getVarDecl();
+ CXXScopeSpec EmptySS;
+ if (baseVariable) {
+ assert(baseVariable->getType()->isRecordType());
+
+ // In principle we could have a member access expression that
+ // accesses an anonymous struct/union that's a static member of
+ // the base object's class. However, under the current standard,
+ // static data members cannot be anonymous structs or unions.
+ // Supporting this is as easy as building a MemberExpr here.
+ assert(!baseObjectExpr && "anonymous struct/union is static data member?");
+
+ DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
+
+ ExprResult result =
+ BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
+ if (result.isInvalid()) return ExprError();
+
+ baseObjectExpr = result.take();
+ baseObjectIsPointer = false;
+ baseQuals = baseObjectExpr->getType().getQualifiers();
+
+ // Case 2: the base of the indirect field is a field and the user
+ // wrote a member expression.
+ } else if (baseObjectExpr) {
// The caller provided the base object expression. Determine
// whether its a pointer and whether it adds any qualifiers to the
// anonymous struct/union fields we're looking into.
- QualType ObjectType = BaseObjectExpr->getType();
- if (const PointerType *ObjectPtr = ObjectType->getAs<PointerType>()) {
- BaseObjectIsPointer = true;
- ObjectType = ObjectPtr->getPointeeType();
+ QualType objectType = baseObjectExpr->getType();
+
+ if (const PointerType *ptr = objectType->getAs<PointerType>()) {
+ baseObjectIsPointer = true;
+ objectType = ptr->getPointeeType();
+ } else {
+ baseObjectIsPointer = false;
}
- BaseQuals
- = Context.getCanonicalType(ObjectType).getQualifiers();
+ baseQuals = objectType.getQualifiers();
+
+ // Case 3: the base of the indirect field is a field and we should
+ // build an implicit member access.
} else {
// We've found a member of an anonymous struct/union that is
// inside a non-anonymous struct/union, so in a well-formed
// program our base object expression is "this".
- DeclContext *DC = getFunctionLevelDeclContext();
- if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
- if (!MD->isStatic()) {
- QualType AnonFieldType
- = Context.getTagDeclType(
- cast<RecordDecl>(AnonFields.back()->getDeclContext()));
- QualType ThisType = Context.getTagDeclType(MD->getParent());
- if ((Context.getCanonicalType(AnonFieldType)
- == Context.getCanonicalType(ThisType)) ||
- IsDerivedFrom(ThisType, AnonFieldType)) {
- // Our base object expression is "this".
- BaseObjectExpr = new (Context) CXXThisExpr(Loc,
- MD->getThisType(Context),
- /*isImplicit=*/true);
- BaseObjectIsPointer = true;
- }
- } else {
- return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
- << Field->getDeclName());
- }
- BaseQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
+ CXXMethodDecl *method = tryCaptureCXXThis();
+ if (!method) {
+ Diag(loc, diag::err_invalid_member_use_in_static_method)
+ << indirectField->getDeclName();
+ return ExprError();
}
- if (!BaseObjectExpr)
- return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
- << Field->getDeclName());
+ // Our base object expression is "this".
+ baseObjectExpr =
+ new (Context) CXXThisExpr(loc, method->getThisType(Context),
+ /*isImplicit=*/ true);
+ baseObjectIsPointer = true;
+ baseQuals = Qualifiers::fromCVRMask(method->getTypeQualifiers());
}
// Build the implicit member references to the field of the
// anonymous struct/union.
- Expr *Result = BaseObjectExpr;
- Qualifiers ResultQuals = BaseQuals;
- for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
- FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
- FI != FIEnd; ++FI) {
- QualType MemberType = (*FI)->getType();
- Qualifiers MemberTypeQuals =
- Context.getCanonicalType(MemberType).getQualifiers();
+ Expr *result = baseObjectExpr;
+ IndirectFieldDecl::chain_iterator
+ FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
- // CVR attributes from the base are picked up by members,
- // except that 'mutable' members don't pick up 'const'.
- if ((*FI)->isMutable())
- ResultQuals.removeConst();
+ // Build the first member access in the chain with full information.
+ if (!baseVariable) {
+ FieldDecl *field = cast<FieldDecl>(*FI);
- // GC attributes are never picked up by members.
- ResultQuals.removeObjCGCAttr();
+ // FIXME: use the real found-decl info!
+ DeclAccessPair foundDecl = DeclAccessPair::make(field, field->getAccess());
- // TR 18037 does not allow fields to be declared with address spaces.
- assert(!MemberTypeQuals.hasAddressSpace());
+ // Make a nameInfo that properly uses the anonymous name.
+ DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
- Qualifiers NewQuals = ResultQuals + MemberTypeQuals;
- if (NewQuals != MemberTypeQuals)
- MemberType = Context.getQualifiedType(MemberType, NewQuals);
+ result = BuildFieldReferenceExpr(*this, result, baseObjectIsPointer,
+ EmptySS, field, foundDecl,
+ memberNameInfo).take();
+ baseObjectIsPointer = false;
- MarkDeclarationReferenced(Loc, *FI);
- PerformObjectMemberConversion(Result, /*FIXME:Qualifier=*/0, *FI, *FI);
- // FIXME: Might this end up being a qualified name?
- Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
- OpLoc, MemberType);
- BaseObjectIsPointer = false;
- ResultQuals = NewQuals;
+ // FIXME: check qualified member access
}
- return Owned(Result);
+ // In all cases, we should now skip the first declaration in the chain.
+ ++FI;
+
+ while (FI != FEnd) {
+ FieldDecl *field = cast<FieldDecl>(*FI++);
+
+ // FIXME: these are somewhat meaningless
+ DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
+ DeclAccessPair foundDecl = DeclAccessPair::make(field, field->getAccess());
+
+ result = BuildFieldReferenceExpr(*this, result, /*isarrow*/ false,
+ (FI == FEnd? SS : EmptySS), field,
+ foundDecl, memberNameInfo)
+ .take();
+ }
+
+ return Owned(result);
}
/// Decomposes the given name into a DeclarationNameInfo, its location, and
@@ -684,28 +1141,6 @@ static void DecomposeUnqualifiedId(Sema &SemaRef,
}
}
-/// Determines whether the given record is "fully-formed" at the given
-/// location, i.e. whether a qualified lookup into it is assured of
-/// getting consistent results already.
-static bool IsFullyFormedScope(Sema &SemaRef, CXXRecordDecl *Record) {
- if (!Record->hasDefinition())
- return false;
-
- for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
- E = Record->bases_end(); I != E; ++I) {
- CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
- CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
- if (!BaseRT) return false;
-
- CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
- if (!BaseRecord->hasDefinition() ||
- !IsFullyFormedScope(SemaRef, BaseRecord))
- return false;
- }
-
- return true;
-}
-
/// Determines if the given class is provably not derived from all of
/// the prospective base classes.
static bool IsProvablyNotDerivedFrom(Sema &SemaRef,
@@ -757,10 +1192,6 @@ enum IMAKind {
/// context is not an instance method.
IMA_Unresolved_StaticContext,
- /// The reference is to a member of an anonymous structure in a
- /// non-class context.
- IMA_AnonymousMember,
-
/// All possible referrents are instance members and the current
/// context is not an instance method.
IMA_Error_StaticContext,
@@ -790,19 +1221,16 @@ static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
// Collect all the declaring classes of instance members we find.
bool hasNonInstance = false;
+ bool hasField = false;
llvm::SmallPtrSet<CXXRecordDecl*, 4> Classes;
for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
NamedDecl *D = *I;
+
if (D->isCXXInstanceMember()) {
- CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
+ if (dyn_cast<FieldDecl>(D))
+ hasField = true;
- // If this is a member of an anonymous record, move out to the
- // innermost non-anonymous struct or union. If there isn't one,
- // that's a special case.
- while (R->isAnonymousStructOrUnion()) {
- R = dyn_cast<CXXRecordDecl>(R->getParent());
- if (!R) return IMA_AnonymousMember;
- }
+ CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
Classes.insert(R->getCanonicalDecl());
}
else
@@ -816,8 +1244,24 @@ static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
// If the current context is not an instance method, it can't be
// an implicit member reference.
- if (isStaticContext)
- return (hasNonInstance ? IMA_Mixed_StaticContext : IMA_Error_StaticContext);
+ if (isStaticContext) {
+ if (hasNonInstance)
+ return IMA_Mixed_StaticContext;
+
+ if (SemaRef.getLangOptions().CPlusPlus0x && hasField) {
+ // C++0x [expr.prim.general]p10:
+ // An id-expression that denotes a non-static data member or non-static
+ // member function of a class can only be used:
+ // (...)
+ // - if that id-expression denotes a non-static data member and it appears in an unevaluated operand.
+ const Sema::ExpressionEvaluationContextRecord& record = SemaRef.ExprEvalContexts.back();
+ bool isUnevaluatedExpression = record.Context == Sema::Unevaluated;
+ if (isUnevaluatedExpression)
+ return IMA_Mixed_StaticContext;
+ }
+
+ return IMA_Error_StaticContext;
+ }
// If we can prove that the current context is unrelated to all the
// declaring classes, it can't be an implicit member reference (in
@@ -833,23 +1277,24 @@ static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
/// Diagnose a reference to a field with no object available.
static void DiagnoseInstanceReference(Sema &SemaRef,
const CXXScopeSpec &SS,
- const LookupResult &R) {
- SourceLocation Loc = R.getNameLoc();
+ NamedDecl *rep,
+ const DeclarationNameInfo &nameInfo) {
+ SourceLocation Loc = nameInfo.getLoc();
SourceRange Range(Loc);
if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
- if (R.getAsSingle<FieldDecl>()) {
+ if (isa<FieldDecl>(rep) || isa<IndirectFieldDecl>(rep)) {
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(SemaRef.CurContext)) {
if (MD->isStatic()) {
// "invalid use of member 'x' in static member function"
SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
- << Range << R.getLookupName();
+ << Range << nameInfo.getName();
return;
}
}
SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
- << R.getLookupName() << Range;
+ << nameInfo.getName() << Range;
return;
}
@@ -1001,25 +1446,41 @@ bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
return true;
}
-static ObjCPropertyDecl *OkToSynthesizeProvisionalIvar(Sema &SemaRef,
- IdentifierInfo *II,
- SourceLocation NameLoc) {
- ObjCMethodDecl *CurMeth = SemaRef.getCurMethodDecl();
+ObjCPropertyDecl *Sema::canSynthesizeProvisionalIvar(IdentifierInfo *II) {
+ ObjCMethodDecl *CurMeth = getCurMethodDecl();
ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
if (!IDecl)
return 0;
ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
if (!ClassImpDecl)
return 0;
- ObjCPropertyDecl *property = SemaRef.LookupPropertyDecl(IDecl, II);
+ ObjCPropertyDecl *property = LookupPropertyDecl(IDecl, II);
if (!property)
return 0;
if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II))
- if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
+ if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic ||
+ PIDecl->getPropertyIvarDecl())
return 0;
return property;
}
+bool Sema::canSynthesizeProvisionalIvar(ObjCPropertyDecl *Property) {
+ ObjCMethodDecl *CurMeth = getCurMethodDecl();
+ ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
+ if (!IDecl)
+ return false;
+ ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
+ if (!ClassImpDecl)
+ return false;
+ if (ObjCPropertyImplDecl *PIDecl
+ = ClassImpDecl->FindPropertyImplDecl(Property->getIdentifier()))
+ if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic ||
+ PIDecl->getPropertyIvarDecl())
+ return false;
+
+ return true;
+}
+
static ObjCIvarDecl *SynthesizeProvisionalIvar(Sema &SemaRef,
LookupResult &Lookup,
IdentifierInfo *II,
@@ -1032,7 +1493,8 @@ static ObjCIvarDecl *SynthesizeProvisionalIvar(Sema &SemaRef,
LookForIvars = false;
else
LookForIvars = (Lookup.isSingleResult() &&
- Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
+ Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod() &&
+ (Lookup.getAsSingle<VarDecl>() != 0));
if (!LookForIvars)
return 0;
@@ -1046,15 +1508,20 @@ static ObjCIvarDecl *SynthesizeProvisionalIvar(Sema &SemaRef,
ObjCPropertyDecl *property = SemaRef.LookupPropertyDecl(IDecl, II);
if (!property)
return 0;
- if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II))
+ if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II)) {
DynamicImplSeen =
(PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic);
+ // property implementation has a designated ivar. No need to assume a new
+ // one.
+ if (!DynamicImplSeen && PIDecl->getPropertyIvarDecl())
+ return 0;
+ }
if (!DynamicImplSeen) {
QualType PropType = SemaRef.Context.getCanonicalType(property->getType());
ObjCIvarDecl *Ivar = ObjCIvarDecl::Create(SemaRef.Context, ClassImpDecl,
NameLoc,
II, PropType, /*Dinfo=*/0,
- ObjCIvarDecl::Protected,
+ ObjCIvarDecl::Private,
(Expr *)0, true);
ClassImpDecl->addDecl(Ivar);
IDecl->makeDeclVisibleInContext(Ivar, false);
@@ -1102,22 +1569,18 @@ ExprResult Sema::ActOnIdExpression(Scope *S,
Name.getCXXNameType()->isDependentType()) {
DependentID = true;
} else if (SS.isSet()) {
- DeclContext *DC = computeDeclContext(SS, false);
- if (DC) {
+ if (DeclContext *DC = computeDeclContext(SS, false)) {
if (RequireCompleteDeclContext(SS, DC))
return ExprError();
- // FIXME: We should be checking whether DC is the current instantiation.
- if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC))
- DependentID = !IsFullyFormedScope(*this, RD);
} else {
DependentID = true;
}
}
- if (DependentID) {
+ if (DependentID)
return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand,
TemplateArgs);
- }
+
bool IvarLookupFollowUp = false;
// Perform the required lookup.
LookupResult R(*this, NameInfo, LookupOrdinaryName);
@@ -1130,10 +1593,21 @@ ExprResult Sema::ActOnIdExpression(Scope *S,
bool MemberOfUnknownSpecialization;
LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
MemberOfUnknownSpecialization);
+
+ if (MemberOfUnknownSpecialization ||
+ (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
+ return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand,
+ TemplateArgs);
} else {
IvarLookupFollowUp = (!SS.isSet() && II && getCurMethodDecl());
LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
+ // If the result might be in a dependent base class, this is a dependent
+ // id-expression.
+ if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
+ return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand,
+ TemplateArgs);
+
// If this reference is in an Objective-C method, then we need to do
// some special Objective-C lookup, too.
if (IvarLookupFollowUp) {
@@ -1141,13 +1615,21 @@ ExprResult Sema::ActOnIdExpression(Scope *S,
if (E.isInvalid())
return ExprError();
- Expr *Ex = E.takeAs<Expr>();
- if (Ex) return Owned(Ex);
- // Synthesize ivars lazily
- if (getLangOptions().ObjCNonFragileABI2) {
- if (SynthesizeProvisionalIvar(*this, R, II, NameLoc))
+ if (Expr *Ex = E.takeAs<Expr>())
+ return Owned(Ex);
+
+ // Synthesize ivars lazily.
+ if (getLangOptions().ObjCDefaultSynthProperties &&
+ getLangOptions().ObjCNonFragileABI2) {
+ if (SynthesizeProvisionalIvar(*this, R, II, NameLoc)) {
+ if (const ObjCPropertyDecl *Property =
+ canSynthesizeProvisionalIvar(II)) {
+ Diag(NameLoc, diag::warn_synthesized_ivar_access) << II;
+ Diag(Property->getLocation(), diag::note_property_declare);
+ }
return ActOnIdExpression(S, SS, Id, HasTrailingLParen,
isAddressOfOperand);
+ }
}
// for further use, this must be set to false if in class method.
IvarLookupFollowUp = getCurMethodDecl()->isInstanceMethod();
@@ -1195,33 +1677,16 @@ ExprResult Sema::ActOnIdExpression(Scope *S,
if (VarDecl *Var = R.getAsSingle<VarDecl>()) {
if (getLangOptions().ObjCNonFragileABI && IvarLookupFollowUp &&
- !getLangOptions().ObjCNonFragileABI2 &&
+ !(getLangOptions().ObjCDefaultSynthProperties &&
+ getLangOptions().ObjCNonFragileABI2) &&
Var->isFileVarDecl()) {
- ObjCPropertyDecl *Property =
- OkToSynthesizeProvisionalIvar(*this, II, NameLoc);
+ ObjCPropertyDecl *Property = canSynthesizeProvisionalIvar(II);
if (Property) {
Diag(NameLoc, diag::warn_ivar_variable_conflict) << Var->getDeclName();
Diag(Property->getLocation(), diag::note_property_declare);
Diag(Var->getLocation(), diag::note_global_declared_at);
}
}
- } else if (FunctionDecl *Func = R.getAsSingle<FunctionDecl>()) {
- if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
- // C99 DR 316 says that, if a function type comes from a
- // function definition (without a prototype), that type is only
- // used for checking compatibility. Therefore, when referencing
- // the function, we pretend that we don't have the full function
- // type.
- if (DiagnoseUseOfDecl(Func, NameLoc))
- return ExprError();
-
- QualType T = Func->getType();
- QualType NoProtoType = T;
- if (const FunctionProtoType *Proto = T->getAs<FunctionProtoType>())
- NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType(),
- Proto->getExtInfo());
- return BuildDeclRefExpr(Func, NoProtoType, NameLoc, &SS);
- }
}
// Check whether this might be a C++ implicit instance member access.
@@ -1259,7 +1724,8 @@ ExprResult Sema::ActOnIdExpression(Scope *S,
else if (R.isUnresolvableResult())
MightBeImplicitMember = true;
else
- MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl());
+ MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
+ isa<IndirectFieldDecl>(R.getFoundDecl());
if (MightBeImplicitMember)
return BuildPossibleImplicitMemberExpr(SS, R, TemplateArgs);
@@ -1280,11 +1746,6 @@ Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
case IMA_Instance:
return BuildImplicitMemberExpr(SS, R, TemplateArgs, true);
- case IMA_AnonymousMember:
- assert(R.isSingleResult());
- return BuildAnonymousStructUnionMemberReference(R.getNameLoc(),
- R.getAsSingle<FieldDecl>());
-
case IMA_Mixed:
case IMA_Mixed_Unrelated:
case IMA_Unresolved:
@@ -1299,7 +1760,8 @@ Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
case IMA_Error_StaticContext:
case IMA_Error_Unrelated:
- DiagnoseInstanceReference(*this, SS, R);
+ DiagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
+ R.getLookupNameInfo());
return ExprError();
}
@@ -1400,11 +1862,17 @@ Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
SelfName.setIdentifier(&II, SourceLocation());
CXXScopeSpec SelfScopeSpec;
ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec,
- SelfName, false, false);
+ SelfName, false, false);
+ if (SelfExpr.isInvalid())
+ return ExprError();
+
+ Expr *SelfE = SelfExpr.take();
+ DefaultLvalueConversion(SelfE);
+
MarkDeclarationReferenced(Loc, IV);
return Owned(new (Context)
ObjCIvarRefExpr(IV, IV->getType(), Loc,
- SelfExpr.takeAs<Expr>(), true, true));
+ SelfE, true, true));
}
} else if (CurMethod->isInstanceMethod()) {
// We should warn if a local variable hides an ivar.
@@ -1607,6 +2075,7 @@ static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow,
DeclAccessPair FoundDecl,
const DeclarationNameInfo &MemberNameInfo,
QualType Ty,
+ ExprValueKind VK, ExprObjectKind OK,
const TemplateArgumentListInfo *TemplateArgs = 0) {
NestedNameSpecifier *Qualifier = 0;
SourceRange QualifierRange;
@@ -1617,7 +2086,65 @@ static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow,
return MemberExpr::Create(C, Base, isArrow, Qualifier, QualifierRange,
Member, FoundDecl, MemberNameInfo,
- TemplateArgs, Ty);
+ TemplateArgs, Ty, VK, OK);
+}
+
+static ExprResult
+BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
+ const CXXScopeSpec &SS, FieldDecl *Field,
+ DeclAccessPair FoundDecl,
+ const DeclarationNameInfo &MemberNameInfo) {
+ // x.a is an l-value if 'a' has a reference type. Otherwise:
+ // x.a is an l-value/x-value/pr-value if the base is (and note
+ // that *x is always an l-value), except that if the base isn't
+ // an ordinary object then we must have an rvalue.
+ ExprValueKind VK = VK_LValue;
+ ExprObjectKind OK = OK_Ordinary;
+ if (!IsArrow) {
+ if (BaseExpr->getObjectKind() == OK_Ordinary)
+ VK = BaseExpr->getValueKind();
+ else
+ VK = VK_RValue;
+ }
+ if (VK != VK_RValue && Field->isBitField())
+ OK = OK_BitField;
+
+ // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
+ QualType MemberType = Field->getType();
+ if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
+ MemberType = Ref->getPointeeType();
+ VK = VK_LValue;
+ } else {
+ QualType BaseType = BaseExpr->getType();
+ if (IsArrow) BaseType = BaseType->getAs<PointerType>()->getPointeeType();
+
+ Qualifiers BaseQuals = BaseType.getQualifiers();
+
+ // GC attributes are never picked up by members.
+ BaseQuals.removeObjCGCAttr();
+
+ // CVR attributes from the base are picked up by members,
+ // except that 'mutable' members don't pick up 'const'.
+ if (Field->isMutable()) BaseQuals.removeConst();
+
+ Qualifiers MemberQuals
+ = S.Context.getCanonicalType(MemberType).getQualifiers();
+
+ // TR 18037 does not allow fields to be declared with address spaces.
+ assert(!MemberQuals.hasAddressSpace());
+
+ Qualifiers Combined = BaseQuals + MemberQuals;
+ if (Combined != MemberQuals)
+ MemberType = S.Context.getQualifiedType(MemberType, Combined);
+ }
+
+ S.MarkDeclarationReferenced(MemberNameInfo.getLoc(), Field);
+ if (S.PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
+ FoundDecl, Field))
+ return ExprError();
+ return S.Owned(BuildMemberExpr(S.Context, BaseExpr, IsArrow, SS,
+ Field, FoundDecl, MemberNameInfo,
+ MemberType, VK, OK));
}
/// Builds an implicit member access expression. The current context
@@ -1631,29 +2158,30 @@ Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
bool IsKnownInstance) {
assert(!R.empty() && !R.isAmbiguous());
- SourceLocation Loc = R.getNameLoc();
+ SourceLocation loc = R.getNameLoc();
// We may have found a field within an anonymous union or struct
// (C++ [class.union]).
- // FIXME: This needs to happen post-isImplicitMemberReference?
// FIXME: template-ids inside anonymous structs?
- if (FieldDecl *FD = R.getAsSingle<FieldDecl>())
- if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
- return BuildAnonymousStructUnionMemberReference(Loc, FD);
+ if (IndirectFieldDecl *FD = R.getAsSingle<IndirectFieldDecl>())
+ return BuildAnonymousStructUnionMemberReference(SS, R.getNameLoc(), FD);
- // If this is known to be an instance access, go ahead and build a
+ // If this is known to be an instance access, go ahead and build an
+ // implicit 'this' expression now.
// 'this' expression now.
- DeclContext *DC = getFunctionLevelDeclContext();
- QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
- Expr *This = 0; // null signifies implicit access
+ CXXMethodDecl *method = tryCaptureCXXThis();
+ assert(method && "didn't correctly pre-flight capture of 'this'");
+
+ QualType thisType = method->getThisType(Context);
+ Expr *baseExpr = 0; // null signifies implicit access
if (IsKnownInstance) {
SourceLocation Loc = R.getNameLoc();
if (SS.getRange().isValid())
Loc = SS.getRange().getBegin();
- This = new (Context) CXXThisExpr(Loc, ThisType, /*isImplicit=*/true);
+ baseExpr = new (Context) CXXThisExpr(loc, thisType, /*isImplicit=*/true);
}
- return BuildMemberReferenceExpr(This, ThisType,
+ return BuildMemberReferenceExpr(baseExpr, thisType,
/*OpLoc*/ SourceLocation(),
/*IsArrow*/ true,
SS,
@@ -1762,10 +2290,8 @@ Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
// we've picked a target.
R.suppressDiagnostics();
- bool Dependent
- = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), 0);
UnresolvedLookupExpr *ULE
- = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
+ = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
(NestedNameSpecifier*) SS.getScopeRep(),
SS.getRange(), R.getLookupNameInfo(),
NeedsADL, R.isOverloadedResult(),
@@ -1774,7 +2300,6 @@ Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
return Owned(ULE);
}
-
/// \brief Complete semantic analysis for a reference to the given declaration.
ExprResult
Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
@@ -1817,6 +2342,14 @@ Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
if (VD->isInvalidDecl())
return ExprError();
+ // Handle members of anonymous structs and unions. If we got here,
+ // and the reference is to a class member indirect field, then this
+ // must be the subject of a pointer-to-member expression.
+ if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
+ if (!indirectField->isCXXClassMember())
+ return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
+ indirectField);
+
// If the identifier reference is inside a block, and it refers to a value
// that is outside the block, create a BlockDeclRefExpr instead of a
// DeclRefExpr. This ensures the value is treated as a copy-in snapshot when
@@ -1825,59 +2358,140 @@ Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
// We do not do this for things like enum constants, global variables, etc,
// as they do not get snapshotted.
//
- if (getCurBlock() &&
- ShouldSnapshotBlockValueReference(*this, getCurBlock(), VD)) {
- if (VD->getType().getTypePtr()->isVariablyModifiedType()) {
- Diag(Loc, diag::err_ref_vm_type);
- Diag(D->getLocation(), diag::note_declared_at);
+ switch (shouldCaptureValueReference(*this, NameInfo.getLoc(), VD)) {
+ case CR_Error:
+ return ExprError();
+
+ case CR_Capture:
+ assert(!SS.isSet() && "referenced local variable with scope specifier?");
+ return BuildBlockDeclRefExpr(*this, VD, NameInfo, /*byref*/ false);
+
+ case CR_CaptureByRef:
+ assert(!SS.isSet() && "referenced local variable with scope specifier?");
+ return BuildBlockDeclRefExpr(*this, VD, NameInfo, /*byref*/ true);
+
+ case CR_NoCapture: {
+ // If this reference is not in a block or if the referenced
+ // variable is within the block, create a normal DeclRefExpr.
+
+ QualType type = VD->getType();
+ ExprValueKind valueKind = VK_RValue;
+
+ switch (D->getKind()) {
+ // Ignore all the non-ValueDecl kinds.
+#define ABSTRACT_DECL(kind)
+#define VALUE(type, base)
+#define DECL(type, base) \
+ case Decl::type:
+#include "clang/AST/DeclNodes.inc"
+ llvm_unreachable("invalid value decl kind");
return ExprError();
- }
- if (VD->getType()->isArrayType()) {
- Diag(Loc, diag::err_ref_array_type);
- Diag(D->getLocation(), diag::note_declared_at);
+ // These shouldn't make it here.
+ case Decl::ObjCAtDefsField:
+ case Decl::ObjCIvar:
+ llvm_unreachable("forming non-member reference to ivar?");
return ExprError();
+
+ // Enum constants are always r-values and never references.
+ // Unresolved using declarations are dependent.
+ case Decl::EnumConstant:
+ case Decl::UnresolvedUsingValue:
+ valueKind = VK_RValue;
+ break;
+
+ // Fields and indirect fields that got here must be for
+ // pointer-to-member expressions; we just call them l-values for
+ // internal consistency, because this subexpression doesn't really
+ // exist in the high-level semantics.
+ case Decl::Field:
+ case Decl::IndirectField:
+ assert(getLangOptions().CPlusPlus &&
+ "building reference to field in C?");
+
+ // These can't have reference type in well-formed programs, but
+ // for internal consistency we do this anyway.
+ type = type.getNonReferenceType();
+ valueKind = VK_LValue;
+ break;
+
+ // Non-type template parameters are either l-values or r-values
+ // depending on the type.
+ case Decl::NonTypeTemplateParm: {
+ if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
+ type = reftype->getPointeeType();
+ valueKind = VK_LValue; // even if the parameter is an r-value reference
+ break;
+ }
+
+ // For non-references, we need to strip qualifiers just in case
+ // the template parameter was declared as 'const int' or whatever.
+ valueKind = VK_RValue;
+ type = type.getUnqualifiedType();
+ break;
}
- MarkDeclarationReferenced(Loc, VD);
- QualType ExprTy = VD->getType().getNonReferenceType();
- // The BlocksAttr indicates the variable is bound by-reference.
- if (VD->getAttr<BlocksAttr>())
- return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
- // This is to record that a 'const' was actually synthesize and added.
- bool constAdded = !ExprTy.isConstQualified();
- // Variable will be bound by-copy, make it const within the closure.
-
- ExprTy.addConst();
- QualType T = VD->getType();
- BlockDeclRefExpr *BDRE = new (Context) BlockDeclRefExpr(VD,
- ExprTy, Loc, false,
- constAdded);
- if (getLangOptions().CPlusPlus) {
- if (!T->isDependentType() && !T->isReferenceType()) {
- Expr *E = new (Context)
- DeclRefExpr(const_cast<ValueDecl*>(BDRE->getDecl()), T,
- SourceLocation());
+ case Decl::Var:
+ // In C, "extern void blah;" is valid and is an r-value.
+ if (!getLangOptions().CPlusPlus &&
+ !type.hasQualifiers() &&
+ type->isVoidType()) {
+ valueKind = VK_RValue;
+ break;
+ }
+ // fallthrough
+
+ case Decl::ImplicitParam:
+ case Decl::ParmVar:
+ // These are always l-values.
+ valueKind = VK_LValue;
+ type = type.getNonReferenceType();
+ break;
+
+ case Decl::Function: {
+ // Functions are l-values in C++.
+ if (getLangOptions().CPlusPlus) {
+ valueKind = VK_LValue;
+ break;
+ }
- ExprResult Res = PerformCopyInitialization(
- InitializedEntity::InitializeBlock(VD->getLocation(),
- T, false),
- SourceLocation(),
- Owned(E));
- if (!Res.isInvalid()) {
- Res = MaybeCreateCXXExprWithTemporaries(Res.get());
- Expr *Init = Res.takeAs<Expr>();
- BDRE->setCopyConstructorExpr(Init);
- }
+ // C99 DR 316 says that, if a function type comes from a
+ // function definition (without a prototype), that type is only
+ // used for checking compatibility. Therefore, when referencing
+ // the function, we pretend that we don't have the full function
+ // type.
+ if (!cast<FunctionDecl>(VD)->hasPrototype())
+ if (const FunctionProtoType *proto = type->getAs<FunctionProtoType>())
+ type = Context.getFunctionNoProtoType(proto->getResultType(),
+ proto->getExtInfo());
+
+ // Functions are r-values in C.
+ valueKind = VK_RValue;
+ break;
+ }
+
+ case Decl::CXXMethod:
+ // C++ methods are l-values if static, r-values if non-static.
+ if (cast<CXXMethodDecl>(VD)->isStatic()) {
+ valueKind = VK_LValue;
+ break;
}
+ // fallthrough
+
+ case Decl::CXXConversion:
+ case Decl::CXXDestructor:
+ case Decl::CXXConstructor:
+ valueKind = VK_RValue;
+ break;
}
- return Owned(BDRE);
+
+ return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS);
}
- // If this reference is not in a block or if the referenced variable is
- // within the block, create a normal DeclRefExpr.
- return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(),
- NameInfo, &SS);
+ }
+
+ llvm_unreachable("unknown capture result");
+ return ExprError();
}
ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
@@ -2008,6 +2622,9 @@ ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
bool isExact = (result == APFloat::opOK);
Res = FloatingLiteral::Create(Context, Val, isExact, Ty, Tok.getLocation());
+ if (getLangOptions().SinglePrecisionConstants && Ty == Context.DoubleTy)
+ ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast);
+
} else if (!Literal.isIntegerLiteral()) {
return ExprError();
} else {
@@ -2074,7 +2691,10 @@ ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
// Does it fit in a unsigned long long?
if (ResultVal.isIntN(LongLongSize)) {
// Does it fit in a signed long long?
- if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
+ // To be compatible with MSVC, hex integer literals ending with the
+ // LL or i64 suffix are always signed in Microsoft mode.
+ if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
+ (getLangOptions().Microsoft && Literal.isLongLong)))
Ty = Context.LongLongTy;
else if (AllowUnsigned)
Ty = Context.UnsignedLongLongTy;
@@ -2091,7 +2711,7 @@ ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
}
if (ResultVal.getBitWidth() != Width)
- ResultVal.trunc(Width);
+ ResultVal = ResultVal.trunc(Width);
}
Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
}
@@ -2114,7 +2734,7 @@ ExprResult Sema::ActOnParenExpr(SourceLocation L,
/// See C99 6.3.2.1p[2-4] for more details.
bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
SourceLocation OpLoc,
- const SourceRange &ExprRange,
+ SourceRange ExprRange,
bool isSizeof) {
if (exprType->isDependentType())
return false;
@@ -2153,17 +2773,11 @@ bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
return true;
}
- if (Context.hasSameUnqualifiedType(exprType, Context.OverloadTy)) {
- Diag(OpLoc, diag::err_sizeof_alignof_overloaded_function_type)
- << !isSizeof << ExprRange;
- return true;
- }
-
return false;
}
-bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
- const SourceRange &ExprRange) {
+static bool CheckAlignOfExpr(Sema &S, Expr *E, SourceLocation OpLoc,
+ SourceRange ExprRange) {
E = E->IgnoreParens();
// alignof decl is always ok.
@@ -2175,7 +2789,7 @@ bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
return false;
if (E->getBitField()) {
- Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
+ S. Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
return true;
}
@@ -2185,7 +2799,7 @@ bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
if (isa<FieldDecl>(ME->getMemberDecl()))
return false;
- return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
+ return S.CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
}
/// \brief Build a sizeof or alignof expression given a type operand.
@@ -2218,10 +2832,14 @@ Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
if (E->isTypeDependent()) {
// Delay type-checking for type-dependent expressions.
} else if (!isSizeOf) {
- isInvalid = CheckAlignOfExpr(E, OpLoc, R);
+ isInvalid = CheckAlignOfExpr(*this, E, OpLoc, R);
} else if (E->getBitField()) { // C99 6.5.3.4p1.
Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
isInvalid = true;
+ } else if (E->getType()->isPlaceholderType()) {
+ ExprResult PE = CheckPlaceholderExpr(E, OpLoc);
+ if (PE.isInvalid()) return ExprError();
+ return CreateSizeOfAlignOfExpr(PE.take(), OpLoc, isSizeOf, R);
} else {
isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
}
@@ -2257,9 +2875,14 @@ Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
return move(Result);
}
-QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
+static QualType CheckRealImagOperand(Sema &S, Expr *&V, SourceLocation Loc,
+ bool isReal) {
if (V->isTypeDependent())
- return Context.DependentTy;
+ return S.Context.DependentTy;
+
+ // _Real and _Imag are only l-values for normal l-values.
+ if (V->getObjectKind() != OK_Ordinary)
+ S.DefaultLvalueConversion(V);
// These operators return the element type of a complex type.
if (const ComplexType *CT = V->getType()->getAs<ComplexType>())
@@ -2269,8 +2892,16 @@ QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
if (V->getType()->isArithmeticType())
return V->getType();
+ // Test for placeholders.
+ ExprResult PR = S.CheckPlaceholderExpr(V, Loc);
+ if (PR.isInvalid()) return QualType();
+ if (PR.take() != V) {
+ V = PR.take();
+ return CheckRealImagOperand(S, V, Loc, isReal);
+ }
+
// Reject anything else.
- Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
+ S.Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
<< (isReal ? "__real" : "__imag");
return QualType();
}
@@ -2290,6 +2921,19 @@ Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
return BuildUnaryOp(S, OpLoc, Opc, Input);
}
+/// Expressions of certain arbitrary types are forbidden by C from
+/// having l-value type. These are:
+/// - 'void', but not qualified void
+/// - function types
+///
+/// The exact rule here is C99 6.3.2.1:
+/// An lvalue is an expression with an object type or an incomplete
+/// type other than void.
+static bool IsCForbiddenLValueType(ASTContext &C, QualType T) {
+ return ((T->isVoidType() && !T.hasQualifiers()) ||
+ T->isFunctionType());
+}
+
ExprResult
Sema::ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
Expr *Idx, SourceLocation RLoc) {
@@ -2303,7 +2947,9 @@ Sema::ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
if (getLangOptions().CPlusPlus &&
(LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
- Context.DependentTy, RLoc));
+ Context.DependentTy,
+ VK_LValue, OK_Ordinary,
+ RLoc));
}
if (getLangOptions().CPlusPlus &&
@@ -2330,6 +2976,8 @@ Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
DefaultFunctionArrayLvalueConversion(RHSExp);
QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
+ ExprValueKind VK = VK_LValue;
+ ExprObjectKind OK = OK_Ordinary;
// C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
// to the expression *((e1)+(e2)). This means the array "Base" may actually be
@@ -2364,6 +3012,9 @@ Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
} else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
BaseExpr = LHSExp; // vectors: V[123]
IndexExpr = RHSExp;
+ VK = LHSExp->getValueKind();
+ if (VK != VK_RValue)
+ OK = OK_VectorComponent;
// FIXME: need to deal with const...
ResultType = VTy->getElementType();
@@ -2417,7 +3068,15 @@ Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
return ExprError();
}
- if (!ResultType->isDependentType() &&
+ if (ResultType->isVoidType() && !getLangOptions().CPlusPlus) {
+ // GNU extension: subscripting on pointer to void
+ Diag(LLoc, diag::ext_gnu_void_ptr)
+ << BaseExpr->getSourceRange();
+
+ // C forbids expressions of unqualified void type from being l-values.
+ // See IsCForbiddenLValueType.
+ if (!ResultType.hasQualifiers()) VK = VK_RValue;
+ } else if (!ResultType->isDependentType() &&
RequireCompleteType(LLoc, ResultType,
PDiag(diag::err_subscript_incomplete_type)
<< BaseExpr->getSourceRange()))
@@ -2430,13 +3089,20 @@ Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
return ExprError();
}
+ assert(VK == VK_RValue || LangOpts.CPlusPlus ||
+ !IsCForbiddenLValueType(Context, ResultType));
+
return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
- ResultType, RLoc));
+ ResultType, VK, OK, RLoc));
}
-QualType Sema::
-CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
- const IdentifierInfo *CompName,
+/// Check an ext-vector component access expression.
+///
+/// VK should be set in advance to the value kind of the base
+/// expression.
+static QualType
+CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
+ SourceLocation OpLoc, const IdentifierInfo *CompName,
SourceLocation CompLoc) {
// FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
// see FIXME there.
@@ -2457,25 +3123,36 @@ CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
// indicating that it is a string of hex values to be used as vector indices.
bool HexSwizzle = *compStr == 's' || *compStr == 'S';
+ bool HasRepeated = false;
+ bool HasIndex[16] = {};
+
+ int Idx;
+
// Check that we've found one of the special components, or that the component
// names must come from the same set.
if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
!strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
HalvingSwizzle = true;
- } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
- do
+ } else if (!HexSwizzle &&
+ (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
+ do {
+ if (HasIndex[Idx]) HasRepeated = true;
+ HasIndex[Idx] = true;
compStr++;
- while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
- } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
- do
+ } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
+ } else {
+ if (HexSwizzle) compStr++;
+ while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
+ if (HasIndex[Idx]) HasRepeated = true;
+ HasIndex[Idx] = true;
compStr++;
- while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
+ }
}
if (!HalvingSwizzle && *compStr) {
// We didn't get to the end of the string. This means the component names
// didn't come from the same set *or* we encountered an illegal name.
- Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
+ S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
<< llvm::StringRef(compStr, 1) << SourceRange(CompLoc);
return QualType();
}
@@ -2490,7 +3167,7 @@ CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
while (*compStr) {
if (!vecType->isAccessorWithinNumElements(*compStr++)) {
- Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
+ S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
<< baseType << SourceRange(CompLoc);
return QualType();
}
@@ -2510,48 +3187,51 @@ CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
if (CompSize == 1)
return vecType->getElementType();
- QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
+ if (HasRepeated) VK = VK_RValue;
+
+ QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
// Now look up the TypeDefDecl from the vector type. Without this,
// diagostics look bad. We want extended vector types to appear built-in.
- for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
- if (ExtVectorDecls[i]->getUnderlyingType() == VT)
- return Context.getTypedefType(ExtVectorDecls[i]);
+ for (unsigned i = 0, E = S.ExtVectorDecls.size(); i != E; ++i) {
+ if (S.ExtVectorDecls[i]->getUnderlyingType() == VT)
+ return S.Context.getTypedefType(S.ExtVectorDecls[i]);
}
return VT; // should never get here (a typedef type should always be found).
}
-static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
+static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
IdentifierInfo *Member,
const Selector &Sel,
ASTContext &Context) {
-
- if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
- return PD;
+ if (Member)
+ if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
+ return PD;
if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
return OMD;
for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
E = PDecl->protocol_end(); I != E; ++I) {
- if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel,
- Context))
+ if (Decl *D = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
+ Context))
return D;
}
return 0;
}
-static Decl *FindGetterNameDecl(const ObjCObjectPointerType *QIdTy,
- IdentifierInfo *Member,
- const Selector &Sel,
- ASTContext &Context) {
+static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
+ IdentifierInfo *Member,
+ const Selector &Sel,
+ ASTContext &Context) {
// Check protocols on qualified interfaces.
Decl *GDecl = 0;
for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
E = QIdTy->qual_end(); I != E; ++I) {
- if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
- GDecl = PD;
- break;
- }
- // Also must look for a getter name which uses property syntax.
+ if (Member)
+ if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
+ GDecl = PD;
+ break;
+ }
+ // Also must look for a getter or setter name which uses property syntax.
if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
GDecl = OMD;
break;
@@ -2561,7 +3241,8 @@ static Decl *FindGetterNameDecl(const ObjCObjectPointerType *QIdTy,
for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
E = QIdTy->qual_end(); I != E; ++I) {
// Search in the protocol-qualifier list of current protocol.
- GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context);
+ GDecl = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
+ Context);
if (GDecl)
return GDecl;
}
@@ -2617,14 +3298,15 @@ static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
Expr *BaseExpr,
QualType BaseType,
const CXXScopeSpec &SS,
- const LookupResult &R) {
+ NamedDecl *rep,
+ const DeclarationNameInfo &nameInfo) {
// If this is an implicit member access, use a different set of
// diagnostics.
if (!BaseExpr)
- return DiagnoseInstanceReference(SemaRef, SS, R);
+ return DiagnoseInstanceReference(SemaRef, SS, rep, nameInfo);
- SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_of_unrelated)
- << SS.getRange() << R.getRepresentativeDecl() << BaseType;
+ SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
+ << SS.getRange() << rep << BaseType;
}
// Check whether the declarations we found through a nested-name
@@ -2673,7 +3355,9 @@ bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
return false;
}
- DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS, R);
+ DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
+ R.getRepresentativeDecl(),
+ R.getLookupNameInfo());
return true;
}
@@ -2846,18 +3530,12 @@ Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
// Construct an unresolved result if we in fact got an unresolved
// result.
if (R.isOverloadedResult() || R.isUnresolvableResult()) {
- bool Dependent =
- BaseExprType->isDependentType() ||
- R.isUnresolvableResult() ||
- OverloadExpr::ComputeDependence(R.begin(), R.end(), TemplateArgs);
-
// Suppress any lookup-related diagnostics; we'll do these when we
// pick a member.
R.suppressDiagnostics();
UnresolvedMemberExpr *MemExpr
- = UnresolvedMemberExpr::Create(Context, Dependent,
- R.isUnresolvableResult(),
+ = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
BaseExpr, BaseExprType,
IsArrow, OpLoc,
Qualifier, SS.getRange(),
@@ -2905,58 +3583,44 @@ Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
return ExprError();
}
- if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
- // We may have found a field within an anonymous union or struct
- // (C++ [class.union]).
- if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion() &&
- !BaseType->getAs<RecordType>()->getDecl()->isAnonymousStructOrUnion())
- return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
- BaseExpr, OpLoc);
-
- // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
- QualType MemberType = FD->getType();
- if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>())
- MemberType = Ref->getPointeeType();
- else {
- Qualifiers BaseQuals = BaseType.getQualifiers();
- BaseQuals.removeObjCGCAttr();
- if (FD->isMutable()) BaseQuals.removeConst();
+ // Perform a property load on the base regardless of whether we
+ // actually need it for the declaration.
+ if (BaseExpr->getObjectKind() == OK_ObjCProperty)
+ ConvertPropertyForRValue(BaseExpr);
- Qualifiers MemberQuals
- = Context.getCanonicalType(MemberType).getQualifiers();
+ if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
+ return BuildFieldReferenceExpr(*this, BaseExpr, IsArrow,
+ SS, FD, FoundDecl, MemberNameInfo);
- Qualifiers Combined = BaseQuals + MemberQuals;
- if (Combined != MemberQuals)
- MemberType = Context.getQualifiedType(MemberType, Combined);
- }
-
- MarkDeclarationReferenced(MemberLoc, FD);
- if (PerformObjectMemberConversion(BaseExpr, Qualifier, FoundDecl, FD))
- return ExprError();
- return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
- FD, FoundDecl, MemberNameInfo,
- MemberType));
- }
+ if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
+ // We may have found a field within an anonymous union or struct
+ // (C++ [class.union]).
+ return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
+ BaseExpr, OpLoc);
if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
MarkDeclarationReferenced(MemberLoc, Var);
return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
Var, FoundDecl, MemberNameInfo,
- Var->getType().getNonReferenceType()));
+ Var->getType().getNonReferenceType(),
+ VK_LValue, OK_Ordinary));
}
- if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl)) {
+ if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
MarkDeclarationReferenced(MemberLoc, MemberDecl);
return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
MemberFn, FoundDecl, MemberNameInfo,
- MemberFn->getType()));
+ MemberFn->getType(),
+ MemberFn->isInstance() ? VK_RValue : VK_LValue,
+ OK_Ordinary));
}
+ assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
MarkDeclarationReferenced(MemberLoc, MemberDecl);
return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
Enum, FoundDecl, MemberNameInfo,
- Enum->getType()));
+ Enum->getType(), VK_RValue, OK_Ordinary));
}
Owned(BaseExpr);
@@ -2975,6 +3639,38 @@ Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
return ExprError();
}
+/// Given that normal member access failed on the given expression,
+/// and given that the expression's type involves builtin-id or
+/// builtin-Class, decide whether substituting in the redefinition
+/// types would be profitable. The redefinition type is whatever
+/// this translation unit tried to typedef to id/Class; we store
+/// it to the side and then re-use it in places like this.
+static bool ShouldTryAgainWithRedefinitionType(Sema &S, Expr *&base) {
+ const ObjCObjectPointerType *opty
+ = base->getType()->getAs<ObjCObjectPointerType>();
+ if (!opty) return false;
+
+ const ObjCObjectType *ty = opty->getObjectType();
+
+ QualType redef;
+ if (ty->isObjCId()) {
+ redef = S.Context.ObjCIdRedefinitionType;
+ } else if (ty->isObjCClass()) {
+ redef = S.Context.ObjCClassRedefinitionType;
+ } else {
+ return false;
+ }
+
+ // Do the substitution as long as the redefinition type isn't just a
+ // possibly-qualified pointer to builtin-id or builtin-Class again.
+ opty = redef->getAs<ObjCObjectPointerType>();
+ if (opty && !opty->getObjectType()->getInterface() != 0)
+ return false;
+
+ S.ImpCastExprToType(base, redef, CK_BitCast);
+ return true;
+}
+
/// Look up the given member of the given non-type-dependent
/// expression. This can return in one of two ways:
/// * If it returns a sentinel null-but-valid result, the caller will
@@ -2994,6 +3690,7 @@ Sema::LookupMemberExpr(LookupResult &R, Expr *&BaseExpr,
// Perform default conversions.
DefaultFunctionArrayConversion(BaseExpr);
+ if (IsArrow) DefaultLvalueConversion(BaseExpr);
QualType BaseType = BaseExpr->getType();
assert(!BaseType->isDependentType());
@@ -3001,96 +3698,235 @@ Sema::LookupMemberExpr(LookupResult &R, Expr *&BaseExpr,
DeclarationName MemberName = R.getLookupName();
SourceLocation MemberLoc = R.getNameLoc();
- // If the user is trying to apply -> or . to a function pointer
- // type, it's probably because they forgot parentheses to call that
- // function. Suggest the addition of those parentheses, build the
- // call, and continue on.
- if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
- if (const FunctionProtoType *Fun
- = Ptr->getPointeeType()->getAs<FunctionProtoType>()) {
- QualType ResultTy = Fun->getResultType();
- if (Fun->getNumArgs() == 0 &&
- ((!IsArrow && ResultTy->isRecordType()) ||
- (IsArrow && ResultTy->isPointerType() &&
- ResultTy->getAs<PointerType>()->getPointeeType()
- ->isRecordType()))) {
- SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
- Diag(Loc, diag::err_member_reference_needs_call)
- << QualType(Fun, 0)
- << FixItHint::CreateInsertion(Loc, "()");
+ // For later type-checking purposes, turn arrow accesses into dot
+ // accesses. The only access type we support that doesn't follow
+ // the C equivalence "a->b === (*a).b" is ObjC property accesses,
+ // and those never use arrows, so this is unaffected.
+ if (IsArrow) {
+ if (const PointerType *Ptr = BaseType->getAs<PointerType>())
+ BaseType = Ptr->getPointeeType();
+ else if (const ObjCObjectPointerType *Ptr
+ = BaseType->getAs<ObjCObjectPointerType>())
+ BaseType = Ptr->getPointeeType();
+ else if (BaseType->isRecordType()) {
+ // Recover from arrow accesses to records, e.g.:
+ // struct MyRecord foo;
+ // foo->bar
+ // This is actually well-formed in C++ if MyRecord has an
+ // overloaded operator->, but that should have been dealt with
+ // by now.
+ Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
+ << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
+ << FixItHint::CreateReplacement(OpLoc, ".");
+ IsArrow = false;
+ } else {
+ Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
+ << BaseType << BaseExpr->getSourceRange();
+ return ExprError();
+ }
+ }
- ExprResult NewBase
- = ActOnCallExpr(0, BaseExpr, Loc,
- MultiExprArg(*this, 0, 0), 0, Loc);
- BaseExpr = 0;
- if (NewBase.isInvalid())
- return ExprError();
+ // Handle field access to simple records.
+ if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
+ if (LookupMemberExprInRecord(*this, R, BaseExpr->getSourceRange(),
+ RTy, OpLoc, SS, HasTemplateArgs))
+ return ExprError();
- BaseExpr = NewBase.takeAs<Expr>();
- DefaultFunctionArrayConversion(BaseExpr);
- BaseType = BaseExpr->getType();
- }
- }
+ // Returning valid-but-null is how we indicate to the caller that
+ // the lookup result was filled in.
+ return Owned((Expr*) 0);
}
- // If this is an Objective-C pseudo-builtin and a definition is provided then
- // use that.
- if (BaseType->isObjCIdType()) {
- if (IsArrow) {
- // Handle the following exceptional case PObj->isa.
- if (const ObjCObjectPointerType *OPT =
- BaseType->getAs<ObjCObjectPointerType>()) {
- if (OPT->getObjectType()->isObjCId() &&
- MemberName.getAsIdentifierInfo()->isStr("isa"))
- return Owned(new (Context) ObjCIsaExpr(BaseExpr, true, MemberLoc,
- Context.getObjCClassType()));
- }
+ // Handle ivar access to Objective-C objects.
+ if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
+ IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
+
+ // There are three cases for the base type:
+ // - builtin id (qualified or unqualified)
+ // - builtin Class (qualified or unqualified)
+ // - an interface
+ ObjCInterfaceDecl *IDecl = OTy->getInterface();
+ if (!IDecl) {
+ // There's an implicit 'isa' ivar on all objects.
+ // But we only actually find it this way on objects of type 'id',
+ // apparently.
+ if (OTy->isObjCId() && Member->isStr("isa"))
+ return Owned(new (Context) ObjCIsaExpr(BaseExpr, IsArrow, MemberLoc,
+ Context.getObjCClassType()));
+
+ if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
+ return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
+ ObjCImpDecl, HasTemplateArgs);
+ goto fail;
}
- // We have an 'id' type. Rather than fall through, we check if this
- // is a reference to 'isa'.
- if (BaseType != Context.ObjCIdRedefinitionType) {
- BaseType = Context.ObjCIdRedefinitionType;
- ImpCastExprToType(BaseExpr, BaseType, CK_BitCast);
+
+ ObjCInterfaceDecl *ClassDeclared;
+ ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
+
+ if (!IV) {
+ // Attempt to correct for typos in ivar names.
+ LookupResult Res(*this, R.getLookupName(), R.getNameLoc(),
+ LookupMemberName);
+ if (CorrectTypo(Res, 0, 0, IDecl, false,
+ IsArrow ? CTC_ObjCIvarLookup
+ : CTC_ObjCPropertyLookup) &&
+ (IV = Res.getAsSingle<ObjCIvarDecl>())) {
+ Diag(R.getNameLoc(),
+ diag::err_typecheck_member_reference_ivar_suggest)
+ << IDecl->getDeclName() << MemberName << IV->getDeclName()
+ << FixItHint::CreateReplacement(R.getNameLoc(),
+ IV->getNameAsString());
+ Diag(IV->getLocation(), diag::note_previous_decl)
+ << IV->getDeclName();
+ } else {
+ Res.clear();
+ Res.setLookupName(Member);
+
+ Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
+ << IDecl->getDeclName() << MemberName
+ << BaseExpr->getSourceRange();
+ return ExprError();
+ }
}
- }
- // If this is an Objective-C pseudo-builtin and a definition is provided then
- // use that.
- if (Context.isObjCSelType(BaseType)) {
- // We have an 'SEL' type. Rather than fall through, we check if this
- // is a reference to 'sel_id'.
- if (BaseType != Context.ObjCSelRedefinitionType) {
- BaseType = Context.ObjCSelRedefinitionType;
- ImpCastExprToType(BaseExpr, BaseType, CK_BitCast);
+ // If the decl being referenced had an error, return an error for this
+ // sub-expr without emitting another error, in order to avoid cascading
+ // error cases.
+ if (IV->isInvalidDecl())
+ return ExprError();
+
+ // Check whether we can reference this field.
+ if (DiagnoseUseOfDecl(IV, MemberLoc))
+ return ExprError();
+ if (IV->getAccessControl() != ObjCIvarDecl::Public &&
+ IV->getAccessControl() != ObjCIvarDecl::Package) {
+ ObjCInterfaceDecl *ClassOfMethodDecl = 0;
+ if (ObjCMethodDecl *MD = getCurMethodDecl())
+ ClassOfMethodDecl = MD->getClassInterface();
+ else if (ObjCImpDecl && getCurFunctionDecl()) {
+ // Case of a c-function declared inside an objc implementation.
+ // FIXME: For a c-style function nested inside an objc implementation
+ // class, there is no implementation context available, so we pass
+ // down the context as argument to this routine. Ideally, this context
+ // need be passed down in the AST node and somehow calculated from the
+ // AST for a function decl.
+ if (ObjCImplementationDecl *IMPD =
+ dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
+ ClassOfMethodDecl = IMPD->getClassInterface();
+ else if (ObjCCategoryImplDecl* CatImplClass =
+ dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
+ ClassOfMethodDecl = CatImplClass->getClassInterface();
+ }
+
+ if (IV->getAccessControl() == ObjCIvarDecl::Private) {
+ if (ClassDeclared != IDecl ||
+ ClassOfMethodDecl != ClassDeclared)
+ Diag(MemberLoc, diag::error_private_ivar_access)
+ << IV->getDeclName();
+ } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
+ // @protected
+ Diag(MemberLoc, diag::error_protected_ivar_access)
+ << IV->getDeclName();
}
+
+ return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
+ MemberLoc, BaseExpr,
+ IsArrow));
}
- assert(!BaseType.isNull() && "no type for member expression");
+ // Objective-C property access.
+ const ObjCObjectPointerType *OPT;
+ if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
+ // This actually uses the base as an r-value.
+ DefaultLvalueConversion(BaseExpr);
+ assert(Context.hasSameUnqualifiedType(BaseType, BaseExpr->getType()));
- // Handle properties on ObjC 'Class' types.
- if (!IsArrow && BaseType->isObjCClassType()) {
- // Also must look for a getter name which uses property syntax.
IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
- Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
- if (ObjCMethodDecl *MD = getCurMethodDecl()) {
+
+ const ObjCObjectType *OT = OPT->getObjectType();
+
+ // id, with and without qualifiers.
+ if (OT->isObjCId()) {
+ // Check protocols on qualified interfaces.
+ Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
+ if (Decl *PMDecl = FindGetterSetterNameDecl(OPT, Member, Sel, Context)) {
+ if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
+ // Check the use of this declaration
+ if (DiagnoseUseOfDecl(PD, MemberLoc))
+ return ExprError();
+
+ return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
+ VK_LValue,
+ OK_ObjCProperty,
+ MemberLoc,
+ BaseExpr));
+ }
+
+ if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
+ // Check the use of this method.
+ if (DiagnoseUseOfDecl(OMD, MemberLoc))
+ return ExprError();
+ Selector SetterSel =
+ SelectorTable::constructSetterName(PP.getIdentifierTable(),
+ PP.getSelectorTable(), Member);
+ ObjCMethodDecl *SMD = 0;
+ if (Decl *SDecl = FindGetterSetterNameDecl(OPT, /*Property id*/0,
+ SetterSel, Context))
+ SMD = dyn_cast<ObjCMethodDecl>(SDecl);
+ QualType PType = OMD->getSendResultType();
+
+ ExprValueKind VK = VK_LValue;
+ if (!getLangOptions().CPlusPlus &&
+ IsCForbiddenLValueType(Context, PType))
+ VK = VK_RValue;
+ ExprObjectKind OK = (VK == VK_RValue ? OK_Ordinary : OK_ObjCProperty);
+
+ return Owned(new (Context) ObjCPropertyRefExpr(OMD, SMD, PType,
+ VK, OK,
+ MemberLoc, BaseExpr));
+ }
+ }
+
+ if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
+ return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
+ ObjCImpDecl, HasTemplateArgs);
+
+ return ExprError(Diag(MemberLoc, diag::err_property_not_found)
+ << MemberName << BaseType);
+ }
+
+ // 'Class', unqualified only.
+ if (OT->isObjCClass()) {
+ // Only works in a method declaration (??!).
+ ObjCMethodDecl *MD = getCurMethodDecl();
+ if (!MD) {
+ if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
+ return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
+ ObjCImpDecl, HasTemplateArgs);
+
+ goto fail;
+ }
+
+ // Also must look for a getter name which uses property syntax.
+ Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
ObjCInterfaceDecl *IFace = MD->getClassInterface();
ObjCMethodDecl *Getter;
- // FIXME: need to also look locally in the implementation.
if ((Getter = IFace->lookupClassMethod(Sel))) {
// Check the use of this method.
if (DiagnoseUseOfDecl(Getter, MemberLoc))
return ExprError();
- }
+ } else
+ Getter = IFace->lookupPrivateMethod(Sel, false);
// If we found a getter then this may be a valid dot-reference, we
// will look for the matching setter, in case it is needed.
Selector SetterSel =
- SelectorTable::constructSetterName(PP.getIdentifierTable(),
- PP.getSelectorTable(), Member);
+ SelectorTable::constructSetterName(PP.getIdentifierTable(),
+ PP.getSelectorTable(), Member);
ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
if (!Setter) {
// If this reference is in an @implementation, also check for 'private'
// methods.
- Setter = IFace->lookupPrivateInstanceMethod(SetterSel);
+ Setter = IFace->lookupPrivateMethod(SetterSel, false);
}
// Look through local category implementations associated with the class.
if (!Setter)
@@ -3102,49 +3938,73 @@ Sema::LookupMemberExpr(LookupResult &R, Expr *&BaseExpr,
if (Getter || Setter) {
QualType PType;
- if (Getter)
+ ExprValueKind VK = VK_LValue;
+ if (Getter) {
PType = Getter->getSendResultType();
- else
+ if (!getLangOptions().CPlusPlus &&
+ IsCForbiddenLValueType(Context, PType))
+ VK = VK_RValue;
+ } else {
// Get the expression type from Setter's incoming parameter.
PType = (*(Setter->param_end() -1))->getType();
+ }
+ ExprObjectKind OK = (VK == VK_RValue ? OK_Ordinary : OK_ObjCProperty);
+
// FIXME: we must check that the setter has property type.
- return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter,
- PType,
- Setter, MemberLoc, BaseExpr));
+ return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter,
+ PType, VK, OK,
+ MemberLoc, BaseExpr));
}
+
+ if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
+ return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
+ ObjCImpDecl, HasTemplateArgs);
+
return ExprError(Diag(MemberLoc, diag::err_property_not_found)
- << MemberName << BaseType);
+ << MemberName << BaseType);
}
- }
- if (BaseType->isObjCClassType() &&
- BaseType != Context.ObjCClassRedefinitionType) {
- BaseType = Context.ObjCClassRedefinitionType;
- ImpCastExprToType(BaseExpr, BaseType, CK_BitCast);
+ // Normal property access.
+ return HandleExprPropertyRefExpr(OPT, BaseExpr, MemberName, MemberLoc,
+ SourceLocation(), QualType(), false);
}
- if (IsArrow) {
- if (const PointerType *PT = BaseType->getAs<PointerType>())
- BaseType = PT->getPointeeType();
- else if (BaseType->isObjCObjectPointerType())
- ;
- else if (BaseType->isRecordType()) {
- // Recover from arrow accesses to records, e.g.:
- // struct MyRecord foo;
- // foo->bar
- // This is actually well-formed in C++ if MyRecord has an
- // overloaded operator->, but that should have been dealt with
- // by now.
- Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
- << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
- << FixItHint::CreateReplacement(OpLoc, ".");
- IsArrow = false;
- } else {
- Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
- << BaseType << BaseExpr->getSourceRange();
+ // Handle 'field access' to vectors, such as 'V.xx'.
+ if (BaseType->isExtVectorType()) {
+ // FIXME: this expr should store IsArrow.
+ IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
+ ExprValueKind VK = (IsArrow ? VK_LValue : BaseExpr->getValueKind());
+ QualType ret = CheckExtVectorComponent(*this, BaseType, VK, OpLoc,
+ Member, MemberLoc);
+ if (ret.isNull())
return ExprError();
- }
- } else {
+
+ return Owned(new (Context) ExtVectorElementExpr(ret, VK, BaseExpr,
+ *Member, MemberLoc));
+ }
+
+ // Adjust builtin-sel to the appropriate redefinition type if that's
+ // not just a pointer to builtin-sel again.
+ if (IsArrow &&
+ BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
+ !Context.ObjCSelRedefinitionType->isObjCSelType()) {
+ ImpCastExprToType(BaseExpr, Context.ObjCSelRedefinitionType, CK_BitCast);
+ return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
+ ObjCImpDecl, HasTemplateArgs);
+ }
+
+ // Failure cases.
+ fail:
+
+ // There's a possible road to recovery for function types.
+ const FunctionType *Fun = 0;
+ SourceLocation ParenInsertionLoc =
+ PP.getLocForEndOfToken(BaseExpr->getLocEnd());
+
+ if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
+ if ((Fun = Ptr->getPointeeType()->getAs<FunctionType>())) {
+ // fall out, handled below.
+
// Recover from dot accesses to pointers, e.g.:
// type *foo;
// foo.bar
@@ -3152,165 +4012,113 @@ Sema::LookupMemberExpr(LookupResult &R, Expr *&BaseExpr,
// - 'type' is an Objective C type
// - 'bar' is a pseudo-destructor name which happens to refer to
// the appropriate pointer type
- if (MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
- const PointerType *PT = BaseType->getAs<PointerType>();
- if (PT && PT->getPointeeType()->isRecordType()) {
- Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
- << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
- << FixItHint::CreateReplacement(OpLoc, "->");
- BaseType = PT->getPointeeType();
- IsArrow = true;
- }
- }
- }
+ } else if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
+ MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
+ Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
+ << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
+ << FixItHint::CreateReplacement(OpLoc, "->");
- // Handle field access to simple records.
- if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
- if (LookupMemberExprInRecord(*this, R, BaseExpr->getSourceRange(),
- RTy, OpLoc, SS, HasTemplateArgs))
- return ExprError();
- return Owned((Expr*) 0);
+ // Recurse as an -> access.
+ IsArrow = true;
+ return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
+ ObjCImpDecl, HasTemplateArgs);
+ }
+ } else {
+ Fun = BaseType->getAs<FunctionType>();
}
- // Handle access to Objective-C instance variables, such as "Obj->ivar" and
- // (*Obj).ivar.
- if ((IsArrow && BaseType->isObjCObjectPointerType()) ||
- (!IsArrow && BaseType->isObjCObjectType())) {
- const ObjCObjectPointerType *OPT = BaseType->getAs<ObjCObjectPointerType>();
- ObjCInterfaceDecl *IDecl =
- OPT ? OPT->getInterfaceDecl()
- : BaseType->getAs<ObjCObjectType>()->getInterface();
- if (IDecl) {
- IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
-
- ObjCInterfaceDecl *ClassDeclared;
- ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
-
- if (!IV) {
- // Attempt to correct for typos in ivar names.
- LookupResult Res(*this, R.getLookupName(), R.getNameLoc(),
- LookupMemberName);
- if (CorrectTypo(Res, 0, 0, IDecl, false, CTC_MemberLookup) &&
- (IV = Res.getAsSingle<ObjCIvarDecl>())) {
- Diag(R.getNameLoc(),
- diag::err_typecheck_member_reference_ivar_suggest)
- << IDecl->getDeclName() << MemberName << IV->getDeclName()
- << FixItHint::CreateReplacement(R.getNameLoc(),
- IV->getNameAsString());
- Diag(IV->getLocation(), diag::note_previous_decl)
- << IV->getDeclName();
- } else {
- Res.clear();
- Res.setLookupName(Member);
+ // If the user is trying to apply -> or . to a function pointer
+ // type, it's probably because they forgot parentheses to call that
+ // function. Suggest the addition of those parentheses, build the
+ // call, and continue on.
+ if (Fun || BaseType == Context.OverloadTy) {
+ bool TryCall;
+ if (BaseType == Context.OverloadTy) {
+ // Plunder the overload set for something that would make the member
+ // expression valid.
+ const OverloadExpr *Overloads = cast<OverloadExpr>(BaseExpr);
+ UnresolvedSet<4> CandidateOverloads;
+ bool HasZeroArgCandidateOverload = false;
+ for (OverloadExpr::decls_iterator it = Overloads->decls_begin(),
+ DeclsEnd = Overloads->decls_end(); it != DeclsEnd; ++it) {
+ const FunctionDecl *OverloadDecl = cast<FunctionDecl>(*it);
+ QualType ResultTy = OverloadDecl->getResultType();
+ if ((!IsArrow && ResultTy->isRecordType()) ||
+ (IsArrow && ResultTy->isPointerType() &&
+ ResultTy->getPointeeType()->isRecordType())) {
+ CandidateOverloads.addDecl(*it);
+ if (OverloadDecl->getNumParams() == 0) {
+ HasZeroArgCandidateOverload = true;
+ }
}
}
-
- if (IV) {
- // If the decl being referenced had an error, return an error for this
- // sub-expr without emitting another error, in order to avoid cascading
- // error cases.
- if (IV->isInvalidDecl())
- return ExprError();
-
- // Check whether we can reference this field.
- if (DiagnoseUseOfDecl(IV, MemberLoc))
- return ExprError();
- if (IV->getAccessControl() != ObjCIvarDecl::Public &&
- IV->getAccessControl() != ObjCIvarDecl::Package) {
- ObjCInterfaceDecl *ClassOfMethodDecl = 0;
- if (ObjCMethodDecl *MD = getCurMethodDecl())
- ClassOfMethodDecl = MD->getClassInterface();
- else if (ObjCImpDecl && getCurFunctionDecl()) {
- // Case of a c-function declared inside an objc implementation.
- // FIXME: For a c-style function nested inside an objc implementation
- // class, there is no implementation context available, so we pass
- // down the context as argument to this routine. Ideally, this context
- // need be passed down in the AST node and somehow calculated from the
- // AST for a function decl.
- if (ObjCImplementationDecl *IMPD =
- dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
- ClassOfMethodDecl = IMPD->getClassInterface();
- else if (ObjCCategoryImplDecl* CatImplClass =
- dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
- ClassOfMethodDecl = CatImplClass->getClassInterface();
+ if (HasZeroArgCandidateOverload && CandidateOverloads.size() == 1) {
+ // We have one reasonable overload, and there's only one way to call it,
+ // so emit a fixit and try to recover
+ Diag(ParenInsertionLoc, diag::err_member_reference_needs_call)
+ << 1
+ << BaseExpr->getSourceRange()
+ << FixItHint::CreateInsertion(ParenInsertionLoc, "()");
+ TryCall = true;
+ } else {
+ Diag(BaseExpr->getExprLoc(), diag::err_member_reference_needs_call)
+ << 0
+ << BaseExpr->getSourceRange();
+ int CandidateOverloadCount = CandidateOverloads.size();
+ int I;
+ for (I = 0; I < CandidateOverloadCount; ++I) {
+ // FIXME: Magic number for max shown overloads stolen from
+ // OverloadCandidateSet::NoteCandidates.
+ if (I >= 4 && Diags.getShowOverloads() == Diagnostic::Ovl_Best) {
+ break;
}
-
- if (IV->getAccessControl() == ObjCIvarDecl::Private) {
- if (ClassDeclared != IDecl ||
- ClassOfMethodDecl != ClassDeclared)
- Diag(MemberLoc, diag::error_private_ivar_access)
- << IV->getDeclName();
- } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
- // @protected
- Diag(MemberLoc, diag::error_protected_ivar_access)
- << IV->getDeclName();
+ Diag(CandidateOverloads[I].getDecl()->getSourceRange().getBegin(),
+ diag::note_member_ref_possible_intended_overload);
+ }
+ if (I != CandidateOverloadCount) {
+ Diag(BaseExpr->getExprLoc(), diag::note_ovl_too_many_candidates)
+ << int(CandidateOverloadCount - I);
}
+ return ExprError();
+ }
+ } else {
+ if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(Fun)) {
+ TryCall = (FPT->getNumArgs() == 0);
+ } else {
+ TryCall = true;
+ }
- return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
- MemberLoc, BaseExpr,
- IsArrow));
+ if (TryCall) {
+ QualType ResultTy = Fun->getResultType();
+ TryCall = (!IsArrow && ResultTy->isRecordType()) ||
+ (IsArrow && ResultTy->isPointerType() &&
+ ResultTy->getAs<PointerType>()->getPointeeType()->isRecordType());
}
- return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
- << IDecl->getDeclName() << MemberName
- << BaseExpr->getSourceRange());
}
- }
- // Handle properties on 'id' and qualified "id".
- if (!IsArrow && (BaseType->isObjCIdType() ||
- BaseType->isObjCQualifiedIdType())) {
- const ObjCObjectPointerType *QIdTy = BaseType->getAs<ObjCObjectPointerType>();
- IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
-
- // Check protocols on qualified interfaces.
- Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
- if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) {
- if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
- // Check the use of this declaration
- if (DiagnoseUseOfDecl(PD, MemberLoc))
- return ExprError();
- return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
- MemberLoc, BaseExpr));
- }
- if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
- // Check the use of this method.
- if (DiagnoseUseOfDecl(OMD, MemberLoc))
- return ExprError();
- return Owned(ObjCMessageExpr::Create(Context,
- OMD->getSendResultType(),
- OpLoc, BaseExpr, Sel,
- OMD, NULL, 0, MemberLoc));
+ if (TryCall) {
+ if (Fun) {
+ Diag(BaseExpr->getExprLoc(),
+ diag::err_member_reference_needs_call_zero_arg)
+ << QualType(Fun, 0)
+ << FixItHint::CreateInsertion(ParenInsertionLoc, "()");
}
- }
- return ExprError(Diag(MemberLoc, diag::err_property_not_found)
- << MemberName << BaseType);
- }
+ ExprResult NewBase
+ = ActOnCallExpr(0, BaseExpr, ParenInsertionLoc,
+ MultiExprArg(*this, 0, 0), ParenInsertionLoc);
+ if (NewBase.isInvalid())
+ return ExprError();
+ BaseExpr = NewBase.takeAs<Expr>();
- // Handle Objective-C property access, which is "Obj.property" where Obj is a
- // pointer to a (potentially qualified) interface type.
- if (!IsArrow)
- if (const ObjCObjectPointerType *OPT =
- BaseType->getAsObjCInterfacePointerType())
- return HandleExprPropertyRefExpr(OPT, BaseExpr, MemberName, MemberLoc);
- // Handle the following exceptional case (*Obj).isa.
- if (!IsArrow &&
- BaseType->isObjCObjectType() &&
- BaseType->getAs<ObjCObjectType>()->isObjCId() &&
- MemberName.getAsIdentifierInfo()->isStr("isa"))
- return Owned(new (Context) ObjCIsaExpr(BaseExpr, false, MemberLoc,
- Context.getObjCClassType()));
+ DefaultFunctionArrayConversion(BaseExpr);
+ BaseType = BaseExpr->getType();
- // Handle 'field access' to vectors, such as 'V.xx'.
- if (BaseType->isExtVectorType()) {
- IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
- QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
- if (ret.isNull())
- return ExprError();
- return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, *Member,
- MemberLoc));
+ return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
+ ObjCImpDecl, HasTemplateArgs);
+ }
}
Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
@@ -3333,15 +4141,21 @@ Sema::LookupMemberExpr(LookupResult &R, Expr *&BaseExpr,
/// this is an ugly hack around the fact that ObjC @implementations
/// aren't properly put in the context chain
ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
- SourceLocation OpLoc,
- tok::TokenKind OpKind,
- CXXScopeSpec &SS,
- UnqualifiedId &Id,
- Decl *ObjCImpDecl,
- bool HasTrailingLParen) {
+ SourceLocation OpLoc,
+ tok::TokenKind OpKind,
+ CXXScopeSpec &SS,
+ UnqualifiedId &Id,
+ Decl *ObjCImpDecl,
+ bool HasTrailingLParen) {
if (SS.isSet() && SS.isInvalid())
return ExprError();
+ // Warn about the explicit constructor calls Microsoft extension.
+ if (getLangOptions().Microsoft &&
+ Id.getKind() == UnqualifiedId::IK_ConstructorName)
+ Diag(Id.getSourceRange().getBegin(),
+ diag::ext_ms_explicit_constructor_call);
+
TemplateArgumentListInfo TemplateArgsBuffer;
// Decompose the name into its component parts.
@@ -3399,60 +4213,76 @@ ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
}
ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
- FunctionDecl *FD,
- ParmVarDecl *Param) {
+ FunctionDecl *FD,
+ ParmVarDecl *Param) {
if (Param->hasUnparsedDefaultArg()) {
- Diag (CallLoc,
- diag::err_use_of_default_argument_to_function_declared_later) <<
+ Diag(CallLoc,
+ diag::err_use_of_default_argument_to_function_declared_later) <<
FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
Diag(UnparsedDefaultArgLocs[Param],
- diag::note_default_argument_declared_here);
- } else {
- if (Param->hasUninstantiatedDefaultArg()) {
- Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
-
- // Instantiate the expression.
- MultiLevelTemplateArgumentList ArgList
- = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
-
- std::pair<const TemplateArgument *, unsigned> Innermost
- = ArgList.getInnermost();
- InstantiatingTemplate Inst(*this, CallLoc, Param, Innermost.first,
- Innermost.second);
-
- ExprResult Result = SubstExpr(UninstExpr, ArgList);
- if (Result.isInvalid())
- return ExprError();
+ diag::note_default_argument_declared_here);
+ return ExprError();
+ }
+
+ if (Param->hasUninstantiatedDefaultArg()) {
+ Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
+
+ // Instantiate the expression.
+ MultiLevelTemplateArgumentList ArgList
+ = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
+
+ std::pair<const TemplateArgument *, unsigned> Innermost
+ = ArgList.getInnermost();
+ InstantiatingTemplate Inst(*this, CallLoc, Param, Innermost.first,
+ Innermost.second);
+
+ ExprResult Result;
+ {
+ // C++ [dcl.fct.default]p5:
+ // The names in the [default argument] expression are bound, and
+ // the semantic constraints are checked, at the point where the
+ // default argument expression appears.
+ ContextRAII SavedContext(*this, FD);
+ Result = SubstExpr(UninstExpr, ArgList);
+ }
+ if (Result.isInvalid())
+ return ExprError();
- // Check the expression as an initializer for the parameter.
- InitializedEntity Entity
- = InitializedEntity::InitializeParameter(Param);
- InitializationKind Kind
- = InitializationKind::CreateCopy(Param->getLocation(),
- /*FIXME:EqualLoc*/UninstExpr->getSourceRange().getBegin());
- Expr *ResultE = Result.takeAs<Expr>();
-
- InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
- Result = InitSeq.Perform(*this, Entity, Kind,
- MultiExprArg(*this, &ResultE, 1));
- if (Result.isInvalid())
- return ExprError();
+ // Check the expression as an initializer for the parameter.
+ InitializedEntity Entity
+ = InitializedEntity::InitializeParameter(Context, Param);
+ InitializationKind Kind
+ = InitializationKind::CreateCopy(Param->getLocation(),
+ /*FIXME:EqualLoc*/UninstExpr->getSourceRange().getBegin());
+ Expr *ResultE = Result.takeAs<Expr>();
+
+ InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
+ Result = InitSeq.Perform(*this, Entity, Kind,
+ MultiExprArg(*this, &ResultE, 1));
+ if (Result.isInvalid())
+ return ExprError();
- // Build the default argument expression.
- return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param,
- Result.takeAs<Expr>()));
- }
+ // Build the default argument expression.
+ return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param,
+ Result.takeAs<Expr>()));
+ }
- // If the default expression creates temporaries, we need to
- // push them to the current stack of expression temporaries so they'll
- // be properly destroyed.
- // FIXME: We should really be rebuilding the default argument with new
- // bound temporaries; see the comment in PR5810.
- for (unsigned i = 0, e = Param->getNumDefaultArgTemporaries(); i != e; ++i)
- ExprTemporaries.push_back(Param->getDefaultArgTemporary(i));
+ // If the default expression creates temporaries, we need to
+ // push them to the current stack of expression temporaries so they'll
+ // be properly destroyed.
+ // FIXME: We should really be rebuilding the default argument with new
+ // bound temporaries; see the comment in PR5810.
+ for (unsigned i = 0, e = Param->getNumDefaultArgTemporaries(); i != e; ++i) {
+ CXXTemporary *Temporary = Param->getDefaultArgTemporary(i);
+ MarkDeclarationReferenced(Param->getDefaultArg()->getLocStart(),
+ const_cast<CXXDestructorDecl*>(Temporary->getDestructor()));
+ ExprTemporaries.push_back(Temporary);
}
- // We already type-checked the argument, so we know it works.
+ // We already type-checked the argument, so we know it works.
+ // Just mark all of the declarations in this potentially-evaluated expression
+ // as being "referenced".
+ MarkDeclarationsReferencedInExpr(Param->getDefaultArg());
return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
}
@@ -3549,13 +4379,12 @@ bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
if (FDecl && i < FDecl->getNumParams())
Param = FDecl->getParamDecl(i);
-
InitializedEntity Entity =
- Param? InitializedEntity::InitializeParameter(Param)
- : InitializedEntity::InitializeParameter(ProtoArgType);
+ Param? InitializedEntity::InitializeParameter(Context, Param)
+ : InitializedEntity::InitializeParameter(Context, ProtoArgType);
ExprResult ArgE = PerformCopyInitialization(Entity,
- SourceLocation(),
- Owned(Arg));
+ SourceLocation(),
+ Owned(Arg));
if (ArgE.isInvalid())
return true;
@@ -3590,8 +4419,8 @@ bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
/// locations.
ExprResult
Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
- MultiExprArg args,
- SourceLocation *CommaLocs, SourceLocation RParenLoc) {
+ MultiExprArg args, SourceLocation RParenLoc,
+ Expr *ExecConfig) {
unsigned NumArgs = args.size();
// Since this might be a postfix expression, get rid of ParenListExprs.
@@ -3615,7 +4444,7 @@ Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
}
return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
- RParenLoc));
+ VK_RValue, RParenLoc));
}
// Determine whether this is a dependent call inside a C++ template,
@@ -3628,14 +4457,22 @@ Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
Dependent = true;
- if (Dependent)
- return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
- Context.DependentTy, RParenLoc));
+ if (Dependent) {
+ if (ExecConfig) {
+ return Owned(new (Context) CUDAKernelCallExpr(
+ Context, Fn, cast<CallExpr>(ExecConfig), Args, NumArgs,
+ Context.DependentTy, VK_RValue, RParenLoc));
+ } else {
+ return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
+ Context.DependentTy, VK_RValue,
+ RParenLoc));
+ }
+ }
// Determine whether this is a call to an object (C++ [over.call.object]).
if (Fn->getType()->isRecordType())
return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
- CommaLocs, RParenLoc));
+ RParenLoc));
Expr *NakedFn = Fn->IgnoreParens();
@@ -3652,7 +4489,7 @@ Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
(void)MemE;
return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
- CommaLocs, RParenLoc);
+ RParenLoc);
}
// Determine whether this is a call to a member function.
@@ -3660,7 +4497,7 @@ Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
NamedDecl *MemDecl = MemExpr->getMemberDecl();
if (isa<CXXMethodDecl>(MemDecl))
return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
- CommaLocs, RParenLoc);
+ RParenLoc);
}
// Determine whether this is a call to a pointer-to-member function.
@@ -3670,10 +4507,31 @@ Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
if (const FunctionProtoType *FPT
= BO->getType()->getAs<FunctionProtoType>()) {
QualType ResultTy = FPT->getCallResultType(Context);
-
+ ExprValueKind VK = Expr::getValueKindForType(FPT->getResultType());
+
+ // Check that the object type isn't more qualified than the
+ // member function we're calling.
+ Qualifiers FuncQuals = Qualifiers::fromCVRMask(FPT->getTypeQuals());
+ Qualifiers ObjectQuals
+ = BO->getOpcode() == BO_PtrMemD
+ ? BO->getLHS()->getType().getQualifiers()
+ : BO->getLHS()->getType()->getAs<PointerType>()
+ ->getPointeeType().getQualifiers();
+
+ Qualifiers Difference = ObjectQuals - FuncQuals;
+ Difference.removeObjCGCAttr();
+ Difference.removeAddressSpace();
+ if (Difference) {
+ std::string QualsString = Difference.getAsString();
+ Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
+ << BO->getType().getUnqualifiedType()
+ << QualsString
+ << (QualsString.find(' ') == std::string::npos? 1 : 2);
+ }
+
CXXMemberCallExpr *TheCall
- = new (Context) CXXMemberCallExpr(Context, BO, Args,
- NumArgs, ResultTy,
+ = new (Context) CXXMemberCallExpr(Context, Fn, Args,
+ NumArgs, ResultTy, VK,
RParenLoc);
if (CheckCallReturnType(FPT->getResultType(),
@@ -3702,14 +4560,34 @@ Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
if (isa<UnresolvedLookupExpr>(NakedFn)) {
UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(NakedFn);
return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, Args, NumArgs,
- CommaLocs, RParenLoc);
+ RParenLoc, ExecConfig);
}
NamedDecl *NDecl = 0;
+ if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
+ if (UnOp->getOpcode() == UO_AddrOf)
+ NakedFn = UnOp->getSubExpr()->IgnoreParens();
+
if (isa<DeclRefExpr>(NakedFn))
NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
- return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc);
+ return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc,
+ ExecConfig);
+}
+
+ExprResult
+Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
+ MultiExprArg execConfig, SourceLocation GGGLoc) {
+ FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
+ if (!ConfigDecl)
+ return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
+ << "cudaConfigureCall");
+ QualType ConfigQTy = ConfigDecl->getType();
+
+ DeclRefExpr *ConfigDR = new (Context) DeclRefExpr(
+ ConfigDecl, ConfigQTy, VK_LValue, LLLLoc);
+
+ return ActOnCallExpr(S, ConfigDR, LLLLoc, execConfig, GGGLoc, 0);
}
/// BuildResolvedCallExpr - Build a call to a resolved expression,
@@ -3722,7 +4600,8 @@ ExprResult
Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
SourceLocation LParenLoc,
Expr **Args, unsigned NumArgs,
- SourceLocation RParenLoc) {
+ SourceLocation RParenLoc,
+ Expr *Config) {
FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
// Promote the function operand.
@@ -3730,10 +4609,21 @@ Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
// Make the call expr early, before semantic checks. This guarantees cleanup
// of arguments and function on error.
- CallExpr *TheCall = new (Context) CallExpr(Context, Fn,
- Args, NumArgs,
- Context.BoolTy,
- RParenLoc);
+ CallExpr *TheCall;
+ if (Config) {
+ TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
+ cast<CallExpr>(Config),
+ Args, NumArgs,
+ Context.BoolTy,
+ VK_RValue,
+ RParenLoc);
+ } else {
+ TheCall = new (Context) CallExpr(Context, Fn,
+ Args, NumArgs,
+ Context.BoolTy,
+ VK_RValue,
+ RParenLoc);
+ }
const FunctionType *FuncT;
if (!Fn->getType()->isBlockPointerType()) {
@@ -3760,6 +4650,7 @@ Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
// We know the result type of the call, set it.
TheCall->setType(FuncT->getCallResultType(Context));
+ TheCall->setValueKind(Expr::getValueKindForType(FuncT->getResultType()));
if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, NumArgs,
@@ -3773,24 +4664,45 @@ Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
// on our knowledge of the function definition.
const FunctionDecl *Def = 0;
if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) {
- const FunctionProtoType *Proto =
- Def->getType()->getAs<FunctionProtoType>();
- if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) {
+ const FunctionProtoType *Proto
+ = Def->getType()->getAs<FunctionProtoType>();
+ if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size()))
Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
<< (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
- }
}
+
+ // If the function we're calling isn't a function prototype, but we have
+ // a function prototype from a prior declaratiom, use that prototype.
+ if (!FDecl->hasPrototype())
+ Proto = FDecl->getType()->getAs<FunctionProtoType>();
}
// Promote the arguments (C99 6.5.2.2p6).
for (unsigned i = 0; i != NumArgs; i++) {
Expr *Arg = Args[i];
- DefaultArgumentPromotion(Arg);
+
+ if (Proto && i < Proto->getNumArgs()) {
+ InitializedEntity Entity
+ = InitializedEntity::InitializeParameter(Context,
+ Proto->getArgType(i));
+ ExprResult ArgE = PerformCopyInitialization(Entity,
+ SourceLocation(),
+ Owned(Arg));
+ if (ArgE.isInvalid())
+ return true;
+
+ Arg = ArgE.takeAs<Expr>();
+
+ } else {
+ DefaultArgumentPromotion(Arg);
+ }
+
if (RequireCompleteType(Arg->getSourceRange().getBegin(),
Arg->getType(),
PDiag(diag::err_call_incomplete_argument)
<< Arg->getSourceRange()))
return ExprError();
+
TheCall->setArg(i, Arg);
}
}
@@ -3840,6 +4752,11 @@ Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
QualType literalType = TInfo->getType();
if (literalType->isArrayType()) {
+ if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
+ PDiag(diag::err_illegal_decl_array_incomplete_type)
+ << SourceRange(LParenLoc,
+ literalExpr->getSourceRange().getEnd())))
+ return ExprError();
if (literalType->isVariableArrayType())
return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
<< SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
@@ -3869,8 +4786,11 @@ Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
return ExprError();
}
+ // In C, compound literals are l-values for some reason.
+ ExprValueKind VK = getLangOptions().CPlusPlus ? VK_RValue : VK_LValue;
+
return Owned(new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
- literalExpr, isFileScope));
+ VK, literalExpr, isFileScope));
}
ExprResult
@@ -3888,60 +4808,171 @@ Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
return Owned(E);
}
-static CastKind getScalarCastKind(ASTContext &Context,
- QualType SrcTy, QualType DestTy) {
- if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
+/// Prepares for a scalar cast, performing all the necessary stages
+/// except the final cast and returning the kind required.
+static CastKind PrepareScalarCast(Sema &S, Expr *&Src, QualType DestTy) {
+ // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
+ // Also, callers should have filtered out the invalid cases with
+ // pointers. Everything else should be possible.
+
+ QualType SrcTy = Src->getType();
+ if (S.Context.hasSameUnqualifiedType(SrcTy, DestTy))
return CK_NoOp;
- if (SrcTy->hasPointerRepresentation()) {
- if (DestTy->hasPointerRepresentation())
+ switch (SrcTy->getScalarTypeKind()) {
+ case Type::STK_MemberPointer:
+ llvm_unreachable("member pointer type in C");
+
+ case Type::STK_Pointer:
+ switch (DestTy->getScalarTypeKind()) {
+ case Type::STK_Pointer:
return DestTy->isObjCObjectPointerType() ?
CK_AnyPointerToObjCPointerCast :
CK_BitCast;
- if (DestTy->isIntegerType())
+ case Type::STK_Bool:
+ return CK_PointerToBoolean;
+ case Type::STK_Integral:
return CK_PointerToIntegral;
- }
+ case Type::STK_Floating:
+ case Type::STK_FloatingComplex:
+ case Type::STK_IntegralComplex:
+ case Type::STK_MemberPointer:
+ llvm_unreachable("illegal cast from pointer");
+ }
+ break;
- if (SrcTy->isIntegerType()) {
- if (DestTy->isIntegerType())
- return CK_IntegralCast;
- if (DestTy->hasPointerRepresentation())
+ case Type::STK_Bool: // casting from bool is like casting from an integer
+ case Type::STK_Integral:
+ switch (DestTy->getScalarTypeKind()) {
+ case Type::STK_Pointer:
+ if (Src->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNull))
+ return CK_NullToPointer;
return CK_IntegralToPointer;
- if (DestTy->isRealFloatingType())
+ case Type::STK_Bool:
+ return CK_IntegralToBoolean;
+ case Type::STK_Integral:
+ return CK_IntegralCast;
+ case Type::STK_Floating:
return CK_IntegralToFloating;
- }
+ case Type::STK_IntegralComplex:
+ S.ImpCastExprToType(Src, DestTy->getAs<ComplexType>()->getElementType(),
+ CK_IntegralCast);
+ return CK_IntegralRealToComplex;
+ case Type::STK_FloatingComplex:
+ S.ImpCastExprToType(Src, DestTy->getAs<ComplexType>()->getElementType(),
+ CK_IntegralToFloating);
+ return CK_FloatingRealToComplex;
+ case Type::STK_MemberPointer:
+ llvm_unreachable("member pointer type in C");
+ }
+ break;
- if (SrcTy->isRealFloatingType()) {
- if (DestTy->isRealFloatingType())
+ case Type::STK_Floating:
+ switch (DestTy->getScalarTypeKind()) {
+ case Type::STK_Floating:
return CK_FloatingCast;
- if (DestTy->isIntegerType())
+ case Type::STK_Bool:
+ return CK_FloatingToBoolean;
+ case Type::STK_Integral:
return CK_FloatingToIntegral;
+ case Type::STK_FloatingComplex:
+ S.ImpCastExprToType(Src, DestTy->getAs<ComplexType>()->getElementType(),
+ CK_FloatingCast);
+ return CK_FloatingRealToComplex;
+ case Type::STK_IntegralComplex:
+ S.ImpCastExprToType(Src, DestTy->getAs<ComplexType>()->getElementType(),
+ CK_FloatingToIntegral);
+ return CK_IntegralRealToComplex;
+ case Type::STK_Pointer:
+ llvm_unreachable("valid float->pointer cast?");
+ case Type::STK_MemberPointer:
+ llvm_unreachable("member pointer type in C");
+ }
+ break;
+
+ case Type::STK_FloatingComplex:
+ switch (DestTy->getScalarTypeKind()) {
+ case Type::STK_FloatingComplex:
+ return CK_FloatingComplexCast;
+ case Type::STK_IntegralComplex:
+ return CK_FloatingComplexToIntegralComplex;
+ case Type::STK_Floating: {
+ QualType ET = SrcTy->getAs<ComplexType>()->getElementType();
+ if (S.Context.hasSameType(ET, DestTy))
+ return CK_FloatingComplexToReal;
+ S.ImpCastExprToType(Src, ET, CK_FloatingComplexToReal);
+ return CK_FloatingCast;
+ }
+ case Type::STK_Bool:
+ return CK_FloatingComplexToBoolean;
+ case Type::STK_Integral:
+ S.ImpCastExprToType(Src, SrcTy->getAs<ComplexType>()->getElementType(),
+ CK_FloatingComplexToReal);
+ return CK_FloatingToIntegral;
+ case Type::STK_Pointer:
+ llvm_unreachable("valid complex float->pointer cast?");
+ case Type::STK_MemberPointer:
+ llvm_unreachable("member pointer type in C");
+ }
+ break;
+
+ case Type::STK_IntegralComplex:
+ switch (DestTy->getScalarTypeKind()) {
+ case Type::STK_FloatingComplex:
+ return CK_IntegralComplexToFloatingComplex;
+ case Type::STK_IntegralComplex:
+ return CK_IntegralComplexCast;
+ case Type::STK_Integral: {
+ QualType ET = SrcTy->getAs<ComplexType>()->getElementType();
+ if (S.Context.hasSameType(ET, DestTy))
+ return CK_IntegralComplexToReal;
+ S.ImpCastExprToType(Src, ET, CK_IntegralComplexToReal);
+ return CK_IntegralCast;
+ }
+ case Type::STK_Bool:
+ return CK_IntegralComplexToBoolean;
+ case Type::STK_Floating:
+ S.ImpCastExprToType(Src, SrcTy->getAs<ComplexType>()->getElementType(),
+ CK_IntegralComplexToReal);
+ return CK_IntegralToFloating;
+ case Type::STK_Pointer:
+ llvm_unreachable("valid complex int->pointer cast?");
+ case Type::STK_MemberPointer:
+ llvm_unreachable("member pointer type in C");
+ }
+ break;
}
- // FIXME: Assert here.
- // assert(false && "Unhandled cast combination!");
- return CK_Unknown;
+ llvm_unreachable("Unhandled scalar cast");
+ return CK_BitCast;
}
/// CheckCastTypes - Check type constraints for casting between types.
-bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr,
- CastKind& Kind,
- CXXCastPath &BasePath,
- bool FunctionalStyle) {
+bool Sema::CheckCastTypes(SourceRange TyR, QualType castType,
+ Expr *&castExpr, CastKind& Kind, ExprValueKind &VK,
+ CXXCastPath &BasePath, bool FunctionalStyle) {
if (getLangOptions().CPlusPlus)
- return CXXCheckCStyleCast(TyR, castType, castExpr, Kind, BasePath,
+ return CXXCheckCStyleCast(SourceRange(TyR.getBegin(),
+ castExpr->getLocEnd()),
+ castType, VK, castExpr, Kind, BasePath,
FunctionalStyle);
- DefaultFunctionArrayLvalueConversion(castExpr);
+ // We only support r-value casts in C.
+ VK = VK_RValue;
// C99 6.5.4p2: the cast type needs to be void or scalar and the expression
// type needs to be scalar.
if (castType->isVoidType()) {
+ // We don't necessarily do lvalue-to-rvalue conversions on this.
+ IgnoredValueConversions(castExpr);
+
// Cast to void allows any expr type.
Kind = CK_ToVoid;
return false;
}
+ DefaultFunctionArrayLvalueConversion(castExpr);
+
if (RequireCompleteType(TyR.getBegin(), castType,
diag::err_typecheck_cast_to_incomplete))
return true;
@@ -3964,7 +4995,8 @@ bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr,
for (Field = RD->field_begin(), FieldEnd = RD->field_end();
Field != FieldEnd; ++Field) {
if (Context.hasSameUnqualifiedType(Field->getType(),
- castExpr->getType())) {
+ castExpr->getType()) &&
+ !Field->isUnnamedBitfield()) {
Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
<< castExpr->getSourceRange();
break;
@@ -3982,6 +5014,9 @@ bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr,
<< castType << castExpr->getSourceRange();
}
+ // The type we're casting to is known to be a scalar or vector.
+
+ // Require the operand to be a scalar or vector.
if (!castExpr->getType()->isScalarType() &&
!castExpr->getType()->isVectorType()) {
return Diag(castExpr->getLocStart(),
@@ -3997,9 +5032,16 @@ bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr,
if (castExpr->getType()->isVectorType())
return CheckVectorCast(TyR, castExpr->getType(), castType, Kind);
+ // The source and target types are both scalars, i.e.
+ // - arithmetic types (fundamental, enum, and complex)
+ // - all kinds of pointers
+ // Note that member pointers were filtered out with C++, above.
+
if (isa<ObjCSelectorExpr>(castExpr))
return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
+ // If either type is a pointer, the other type has to be either an
+ // integer or a pointer.
if (!castType->isArithmeticType()) {
QualType castExprType = castExpr->getType();
if (!castExprType->isIntegralType(Context) &&
@@ -4014,9 +5056,9 @@ bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr,
<< castType << castExpr->getSourceRange();
}
- Kind = getScalarCastKind(Context, castExpr->getType(), castType);
+ Kind = PrepareScalarCast(*this, castExpr, castType);
- if (Kind == CK_Unknown || Kind == CK_BitCast)
+ if (Kind == CK_BitCast)
CheckCastAlign(castExpr, castType, TyR);
return false;
@@ -4068,7 +5110,7 @@ bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *&CastExpr,
QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
ImpCastExprToType(CastExpr, DestElemTy,
- getScalarCastKind(Context, SrcTy, DestElemTy));
+ PrepareScalarCast(*this, CastExpr, DestElemTy));
Kind = CK_VectorSplat;
return false;
@@ -4096,15 +5138,16 @@ Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, ParsedType Ty,
ExprResult
Sema::BuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *Ty,
SourceLocation RParenLoc, Expr *castExpr) {
- CastKind Kind = CK_Unknown;
+ CastKind Kind = CK_Invalid;
+ ExprValueKind VK = VK_RValue;
CXXCastPath BasePath;
if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), Ty->getType(), castExpr,
- Kind, BasePath))
+ Kind, VK, BasePath))
return ExprError();
return Owned(CStyleCastExpr::Create(Context,
Ty->getType().getNonLValueExprType(Context),
- Kind, castExpr, &BasePath, Ty,
+ VK, Kind, castExpr, &BasePath, Ty,
LParenLoc, RParenLoc));
}
@@ -4188,14 +5231,73 @@ ExprResult Sema::ActOnParenOrParenListExpr(SourceLocation L,
return Owned(expr);
}
+/// \brief Emit a specialized diagnostic when one expression is a null pointer
+/// constant and the other is not a pointer.
+bool Sema::DiagnoseConditionalForNull(Expr *LHS, Expr *RHS,
+ SourceLocation QuestionLoc) {
+ Expr *NullExpr = LHS;
+ Expr *NonPointerExpr = RHS;
+ Expr::NullPointerConstantKind NullKind =
+ NullExpr->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNotNull);
+
+ if (NullKind == Expr::NPCK_NotNull) {
+ NullExpr = RHS;
+ NonPointerExpr = LHS;
+ NullKind =
+ NullExpr->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNotNull);
+ }
+
+ if (NullKind == Expr::NPCK_NotNull)
+ return false;
+
+ if (NullKind == Expr::NPCK_ZeroInteger) {
+ // In this case, check to make sure that we got here from a "NULL"
+ // string in the source code.
+ NullExpr = NullExpr->IgnoreParenImpCasts();
+ SourceManager& SM = Context.getSourceManager();
+ SourceLocation Loc = SM.getInstantiationLoc(NullExpr->getExprLoc());
+ unsigned Len =
+ Lexer::MeasureTokenLength(Loc, SM, Context.getLangOptions());
+ if (Len != 4 || memcmp(SM.getCharacterData(Loc), "NULL", 4))
+ return false;
+ }
+
+ int DiagType = (NullKind == Expr::NPCK_CXX0X_nullptr);
+ Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
+ << NonPointerExpr->getType() << DiagType
+ << NonPointerExpr->getSourceRange();
+ return true;
+}
+
/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
/// In that case, lhs = cond.
/// C99 6.5.15
QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
+ ExprValueKind &VK, ExprObjectKind &OK,
SourceLocation QuestionLoc) {
+ // If both LHS and RHS are overloaded functions, try to resolve them.
+ if (Context.hasSameType(LHS->getType(), RHS->getType()) &&
+ LHS->getType()->isSpecificBuiltinType(BuiltinType::Overload)) {
+ ExprResult LHSResult = CheckPlaceholderExpr(LHS, QuestionLoc);
+ if (LHSResult.isInvalid())
+ return QualType();
+
+ ExprResult RHSResult = CheckPlaceholderExpr(RHS, QuestionLoc);
+ if (RHSResult.isInvalid())
+ return QualType();
+
+ LHS = LHSResult.take();
+ RHS = RHSResult.take();
+ }
+
// C++ is sufficiently different to merit its own checker.
if (getLangOptions().CPlusPlus)
- return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc);
+ return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
+
+ VK = VK_RValue;
+ OK = OK_Ordinary;
UsualUnaryConversions(Cond);
UsualUnaryConversions(LHS);
@@ -4206,15 +5308,47 @@ QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
// first, check the condition.
if (!CondTy->isScalarType()) { // C99 6.5.15p2
- Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
- << CondTy;
- return QualType();
+ // OpenCL: Sec 6.3.i says the condition is allowed to be a vector or scalar.
+ // Throw an error if its not either.
+ if (getLangOptions().OpenCL) {
+ if (!CondTy->isVectorType()) {
+ Diag(Cond->getLocStart(),
+ diag::err_typecheck_cond_expect_scalar_or_vector)
+ << CondTy;
+ return QualType();
+ }
+ }
+ else {
+ Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
+ << CondTy;
+ return QualType();
+ }
}
// Now check the two expressions.
if (LHSTy->isVectorType() || RHSTy->isVectorType())
return CheckVectorOperands(QuestionLoc, LHS, RHS);
+ // OpenCL: If the condition is a vector, and both operands are scalar,
+ // attempt to implicity convert them to the vector type to act like the
+ // built in select.
+ if (getLangOptions().OpenCL && CondTy->isVectorType()) {
+ // Both operands should be of scalar type.
+ if (!LHSTy->isScalarType()) {
+ Diag(LHS->getLocStart(), diag::err_typecheck_cond_expect_scalar)
+ << CondTy;
+ return QualType();
+ }
+ if (!RHSTy->isScalarType()) {
+ Diag(RHS->getLocStart(), diag::err_typecheck_cond_expect_scalar)
+ << CondTy;
+ return QualType();
+ }
+ // Implicity convert these scalars to the type of the condition.
+ ImpCastExprToType(LHS, CondTy, CK_IntegralCast);
+ ImpCastExprToType(RHS, CondTy, CK_IntegralCast);
+ }
+
// If both operands have arithmetic type, do the usual arithmetic conversions
// to find a common type: C99 6.5.15p3,5.
if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
@@ -4251,12 +5385,12 @@ QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) &&
RHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
// promote the null to a pointer.
- ImpCastExprToType(RHS, LHSTy, CK_Unknown);
+ ImpCastExprToType(RHS, LHSTy, CK_NullToPointer);
return LHSTy;
}
if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) &&
LHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
- ImpCastExprToType(LHS, RHSTy, CK_Unknown);
+ ImpCastExprToType(LHS, RHSTy, CK_NullToPointer);
return RHSTy;
}
@@ -4364,7 +5498,8 @@ QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
return LHSTy;
}
- // GCC compatibility: soften pointer/integer mismatch.
+ // GCC compatibility: soften pointer/integer mismatch. Note that
+ // null pointers have been filtered out by this point.
if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
<< LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
@@ -4378,6 +5513,12 @@ QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
return LHSTy;
}
+ // Emit a better diagnostic if one of the expressions is a null pointer
+ // constant and the other is not a pointer type. In this case, the user most
+ // likely forgot to take the address of the other expression.
+ if (DiagnoseConditionalForNull(LHS, RHS, QuestionLoc))
+ return QualType();
+
// Otherwise, the operands are not compatible.
Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
<< LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
@@ -4395,34 +5536,34 @@ QualType Sema::FindCompositeObjCPointerType(Expr *&LHS, Expr *&RHS,
// to the pseudo-builtin, because that will be implicitly cast back to the
// redefinition type if an attempt is made to access its fields.
if (LHSTy->isObjCClassType() &&
- (RHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
+ (Context.hasSameType(RHSTy, Context.ObjCClassRedefinitionType))) {
ImpCastExprToType(RHS, LHSTy, CK_BitCast);
return LHSTy;
}
if (RHSTy->isObjCClassType() &&
- (LHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
+ (Context.hasSameType(LHSTy, Context.ObjCClassRedefinitionType))) {
ImpCastExprToType(LHS, RHSTy, CK_BitCast);
return RHSTy;
}
// And the same for struct objc_object* / id
if (LHSTy->isObjCIdType() &&
- (RHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
+ (Context.hasSameType(RHSTy, Context.ObjCIdRedefinitionType))) {
ImpCastExprToType(RHS, LHSTy, CK_BitCast);
return LHSTy;
}
if (RHSTy->isObjCIdType() &&
- (LHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
+ (Context.hasSameType(LHSTy, Context.ObjCIdRedefinitionType))) {
ImpCastExprToType(LHS, RHSTy, CK_BitCast);
return RHSTy;
}
// And the same for struct objc_selector* / SEL
if (Context.isObjCSelType(LHSTy) &&
- (RHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) {
+ (Context.hasSameType(RHSTy, Context.ObjCSelRedefinitionType))) {
ImpCastExprToType(RHS, LHSTy, CK_BitCast);
return LHSTy;
}
if (Context.isObjCSelType(RHSTy) &&
- (LHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) {
+ (Context.hasSameType(LHSTy, Context.ObjCSelRedefinitionType))) {
ImpCastExprToType(LHS, RHSTy, CK_BitCast);
return RHSTy;
}
@@ -4512,60 +5653,84 @@ QualType Sema::FindCompositeObjCPointerType(Expr *&LHS, Expr *&RHS,
/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
/// in the case of a the GNU conditional expr extension.
ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
- SourceLocation ColonLoc,
- Expr *CondExpr, Expr *LHSExpr,
- Expr *RHSExpr) {
+ SourceLocation ColonLoc,
+ Expr *CondExpr, Expr *LHSExpr,
+ Expr *RHSExpr) {
// If this is the gnu "x ?: y" extension, analyze the types as though the LHS
// was the condition.
- bool isLHSNull = LHSExpr == 0;
- Expr *SAVEExpr = 0;
- if (isLHSNull) {
- LHSExpr = SAVEExpr = CondExpr;
- }
-
- QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
- RHSExpr, QuestionLoc);
+ OpaqueValueExpr *opaqueValue = 0;
+ Expr *commonExpr = 0;
+ if (LHSExpr == 0) {
+ commonExpr = CondExpr;
+
+ // We usually want to apply unary conversions *before* saving, except
+ // in the special case of a C++ l-value conditional.
+ if (!(getLangOptions().CPlusPlus
+ && !commonExpr->isTypeDependent()
+ && commonExpr->getValueKind() == RHSExpr->getValueKind()
+ && commonExpr->isGLValue()
+ && commonExpr->isOrdinaryOrBitFieldObject()
+ && RHSExpr->isOrdinaryOrBitFieldObject()
+ && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
+ UsualUnaryConversions(commonExpr);
+ }
+
+ opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
+ commonExpr->getType(),
+ commonExpr->getValueKind(),
+ commonExpr->getObjectKind());
+ LHSExpr = CondExpr = opaqueValue;
+ }
+
+ ExprValueKind VK = VK_RValue;
+ ExprObjectKind OK = OK_Ordinary;
+ QualType result = CheckConditionalOperands(CondExpr, LHSExpr, RHSExpr,
+ VK, OK, QuestionLoc);
if (result.isNull())
return ExprError();
- return Owned(new (Context) ConditionalOperator(CondExpr, QuestionLoc,
- LHSExpr, ColonLoc,
- RHSExpr, SAVEExpr,
- result));
+ if (!commonExpr)
+ return Owned(new (Context) ConditionalOperator(CondExpr, QuestionLoc,
+ LHSExpr, ColonLoc,
+ RHSExpr, result, VK, OK));
+
+ return Owned(new (Context)
+ BinaryConditionalOperator(commonExpr, opaqueValue, CondExpr, LHSExpr,
+ RHSExpr, QuestionLoc, ColonLoc, result, VK, OK));
}
-// CheckPointerTypesForAssignment - This is a very tricky routine (despite
+// checkPointerTypesForAssignment - This is a very tricky routine (despite
// being closely modeled after the C99 spec:-). The odd characteristic of this
// routine is it effectively iqnores the qualifiers on the top level pointee.
// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
// FIXME: add a couple examples in this comment.
-Sema::AssignConvertType
-Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
- QualType lhptee, rhptee;
-
- if ((lhsType->isObjCClassType() &&
- (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
- (rhsType->isObjCClassType() &&
- (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
- return Compatible;
- }
+static Sema::AssignConvertType
+checkPointerTypesForAssignment(Sema &S, QualType lhsType, QualType rhsType) {
+ assert(lhsType.isCanonical() && "LHS not canonicalized!");
+ assert(rhsType.isCanonical() && "RHS not canonicalized!");
// get the "pointed to" type (ignoring qualifiers at the top level)
- lhptee = lhsType->getAs<PointerType>()->getPointeeType();
- rhptee = rhsType->getAs<PointerType>()->getPointeeType();
+ const Type *lhptee, *rhptee;
+ Qualifiers lhq, rhq;
+ llvm::tie(lhptee, lhq) = cast<PointerType>(lhsType)->getPointeeType().split();
+ llvm::tie(rhptee, rhq) = cast<PointerType>(rhsType)->getPointeeType().split();
- // make sure we operate on the canonical type
- lhptee = Context.getCanonicalType(lhptee);
- rhptee = Context.getCanonicalType(rhptee);
-
- AssignConvertType ConvTy = Compatible;
+ Sema::AssignConvertType ConvTy = Sema::Compatible;
// C99 6.5.16.1p1: This following citation is common to constraints
// 3 & 4 (below). ...and the type *pointed to* by the left has all the
// qualifiers of the type *pointed to* by the right;
- // FIXME: Handle ExtQualType
- if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
- ConvTy = CompatiblePointerDiscardsQualifiers;
+ Qualifiers lq;
+
+ if (!lhq.compatiblyIncludes(rhq)) {
+ // Treat address-space mismatches as fatal. TODO: address subspaces
+ if (lhq.getAddressSpace() != rhq.getAddressSpace())
+ ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
+
+ // For GCC compatibility, other qualifier mismatches are treated
+ // as still compatible in C.
+ else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
+ }
// C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
// incomplete type and the other is a pointer to a qualified or unqualified
@@ -4576,7 +5741,7 @@ Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
// As an extension, we allow cast to/from void* to function pointer.
assert(rhptee->isFunctionType());
- return FunctionVoidPointer;
+ return Sema::FunctionVoidPointer;
}
if (rhptee->isVoidType()) {
@@ -4585,123 +5750,136 @@ Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
// As an extension, we allow cast to/from void* to function pointer.
assert(lhptee->isFunctionType());
- return FunctionVoidPointer;
+ return Sema::FunctionVoidPointer;
}
+
// C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
// unqualified versions of compatible types, ...
- lhptee = lhptee.getUnqualifiedType();
- rhptee = rhptee.getUnqualifiedType();
- if (!Context.typesAreCompatible(lhptee, rhptee)) {
+ QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
+ if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
// Check if the pointee types are compatible ignoring the sign.
// We explicitly check for char so that we catch "char" vs
// "unsigned char" on systems where "char" is unsigned.
if (lhptee->isCharType())
- lhptee = Context.UnsignedCharTy;
+ ltrans = S.Context.UnsignedCharTy;
else if (lhptee->hasSignedIntegerRepresentation())
- lhptee = Context.getCorrespondingUnsignedType(lhptee);
+ ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
if (rhptee->isCharType())
- rhptee = Context.UnsignedCharTy;
+ rtrans = S.Context.UnsignedCharTy;
else if (rhptee->hasSignedIntegerRepresentation())
- rhptee = Context.getCorrespondingUnsignedType(rhptee);
+ rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
- if (lhptee == rhptee) {
+ if (ltrans == rtrans) {
// Types are compatible ignoring the sign. Qualifier incompatibility
// takes priority over sign incompatibility because the sign
// warning can be disabled.
- if (ConvTy != Compatible)
+ if (ConvTy != Sema::Compatible)
return ConvTy;
- return IncompatiblePointerSign;
+
+ return Sema::IncompatiblePointerSign;
}
// If we are a multi-level pointer, it's possible that our issue is simply
// one of qualification - e.g. char ** -> const char ** is not allowed. If
// the eventual target type is the same and the pointers have the same
// level of indirection, this must be the issue.
- if (lhptee->isPointerType() && rhptee->isPointerType()) {
+ if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
do {
- lhptee = lhptee->getAs<PointerType>()->getPointeeType();
- rhptee = rhptee->getAs<PointerType>()->getPointeeType();
-
- lhptee = Context.getCanonicalType(lhptee);
- rhptee = Context.getCanonicalType(rhptee);
- } while (lhptee->isPointerType() && rhptee->isPointerType());
+ lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
+ rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
+ } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
- if (Context.hasSameUnqualifiedType(lhptee, rhptee))
- return IncompatibleNestedPointerQualifiers;
+ if (lhptee == rhptee)
+ return Sema::IncompatibleNestedPointerQualifiers;
}
// General pointer incompatibility takes priority over qualifiers.
- return IncompatiblePointer;
+ return Sema::IncompatiblePointer;
}
return ConvTy;
}
-/// CheckBlockPointerTypesForAssignment - This routine determines whether two
+/// checkBlockPointerTypesForAssignment - This routine determines whether two
/// block pointer types are compatible or whether a block and normal pointer
/// are compatible. It is more restrict than comparing two function pointer
// types.
-Sema::AssignConvertType
-Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
- QualType rhsType) {
+static Sema::AssignConvertType
+checkBlockPointerTypesForAssignment(Sema &S, QualType lhsType,
+ QualType rhsType) {
+ assert(lhsType.isCanonical() && "LHS not canonicalized!");
+ assert(rhsType.isCanonical() && "RHS not canonicalized!");
+
QualType lhptee, rhptee;
// get the "pointed to" type (ignoring qualifiers at the top level)
- lhptee = lhsType->getAs<BlockPointerType>()->getPointeeType();
- rhptee = rhsType->getAs<BlockPointerType>()->getPointeeType();
+ lhptee = cast<BlockPointerType>(lhsType)->getPointeeType();
+ rhptee = cast<BlockPointerType>(rhsType)->getPointeeType();
- // make sure we operate on the canonical type
- lhptee = Context.getCanonicalType(lhptee);
- rhptee = Context.getCanonicalType(rhptee);
+ // In C++, the types have to match exactly.
+ if (S.getLangOptions().CPlusPlus)
+ return Sema::IncompatibleBlockPointer;
- AssignConvertType ConvTy = Compatible;
+ Sema::AssignConvertType ConvTy = Sema::Compatible;
// For blocks we enforce that qualifiers are identical.
- if (lhptee.getLocalCVRQualifiers() != rhptee.getLocalCVRQualifiers())
- ConvTy = CompatiblePointerDiscardsQualifiers;
+ if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
+ ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
+
+ if (!S.Context.typesAreBlockPointerCompatible(lhsType, rhsType))
+ return Sema::IncompatibleBlockPointer;
- if (!getLangOptions().CPlusPlus) {
- if (!Context.typesAreBlockPointerCompatible(lhsType, rhsType))
- return IncompatibleBlockPointer;
- }
- else if (!Context.typesAreCompatible(lhptee, rhptee))
- return IncompatibleBlockPointer;
return ConvTy;
}
-/// CheckObjCPointerTypesForAssignment - Compares two objective-c pointer types
+/// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
/// for assignment compatibility.
-Sema::AssignConvertType
-Sema::CheckObjCPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
+static Sema::AssignConvertType
+checkObjCPointerTypesForAssignment(Sema &S, QualType lhsType, QualType rhsType) {
+ assert(lhsType.isCanonical() && "LHS was not canonicalized!");
+ assert(rhsType.isCanonical() && "RHS was not canonicalized!");
+
if (lhsType->isObjCBuiltinType()) {
// Class is not compatible with ObjC object pointers.
if (lhsType->isObjCClassType() && !rhsType->isObjCBuiltinType() &&
!rhsType->isObjCQualifiedClassType())
- return IncompatiblePointer;
- return Compatible;
+ return Sema::IncompatiblePointer;
+ return Sema::Compatible;
}
if (rhsType->isObjCBuiltinType()) {
// Class is not compatible with ObjC object pointers.
if (rhsType->isObjCClassType() && !lhsType->isObjCBuiltinType() &&
!lhsType->isObjCQualifiedClassType())
- return IncompatiblePointer;
- return Compatible;
+ return Sema::IncompatiblePointer;
+ return Sema::Compatible;
}
QualType lhptee =
lhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
QualType rhptee =
rhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
- // make sure we operate on the canonical type
- lhptee = Context.getCanonicalType(lhptee);
- rhptee = Context.getCanonicalType(rhptee);
+
if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
- return CompatiblePointerDiscardsQualifiers;
+ return Sema::CompatiblePointerDiscardsQualifiers;
- if (Context.typesAreCompatible(lhsType, rhsType))
- return Compatible;
+ if (S.Context.typesAreCompatible(lhsType, rhsType))
+ return Sema::Compatible;
if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
- return IncompatibleObjCQualifiedId;
- return IncompatiblePointer;
+ return Sema::IncompatibleObjCQualifiedId;
+ return Sema::IncompatiblePointer;
+}
+
+Sema::AssignConvertType
+Sema::CheckAssignmentConstraints(SourceLocation Loc,
+ QualType lhsType, QualType rhsType) {
+ // Fake up an opaque expression. We don't actually care about what
+ // cast operations are required, so if CheckAssignmentConstraints
+ // adds casts to this they'll be wasted, but fortunately that doesn't
+ // usually happen on valid code.
+ OpaqueValueExpr rhs(Loc, rhsType, VK_RValue);
+ Expr *rhsPtr = &rhs;
+ CastKind K = CK_Invalid;
+
+ return CheckAssignmentConstraints(lhsType, rhsPtr, K);
}
/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
@@ -4720,21 +5898,21 @@ Sema::CheckObjCPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
/// As a result, the code for dealing with pointers is more complex than the
/// C99 spec dictates.
///
+/// Sets 'Kind' for any result kind except Incompatible.
Sema::AssignConvertType
-Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
+Sema::CheckAssignmentConstraints(QualType lhsType, Expr *&rhs,
+ CastKind &Kind) {
+ QualType rhsType = rhs->getType();
+
// Get canonical types. We're not formatting these types, just comparing
// them.
lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
- if (lhsType == rhsType)
- return Compatible; // Common case: fast path an exact match.
-
- if ((lhsType->isObjCClassType() &&
- (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
- (rhsType->isObjCClassType() &&
- (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
- return Compatible;
+ // Common case: no conversion required.
+ if (lhsType == rhsType) {
+ Kind = CK_NoOp;
+ return Compatible;
}
// If the left-hand side is a reference type, then we are in a
@@ -4745,144 +5923,220 @@ Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
// lhsType so that the resulting expression does not have reference
// type.
if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) {
- if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
+ if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType)) {
+ Kind = CK_LValueBitCast;
return Compatible;
+ }
return Incompatible;
}
+
// Allow scalar to ExtVector assignments, and assignments of an ExtVector type
// to the same ExtVector type.
if (lhsType->isExtVectorType()) {
if (rhsType->isExtVectorType())
- return lhsType == rhsType ? Compatible : Incompatible;
- if (rhsType->isArithmeticType())
+ return Incompatible;
+ if (rhsType->isArithmeticType()) {
+ // CK_VectorSplat does T -> vector T, so first cast to the
+ // element type.
+ QualType elType = cast<ExtVectorType>(lhsType)->getElementType();
+ if (elType != rhsType) {
+ Kind = PrepareScalarCast(*this, rhs, elType);
+ ImpCastExprToType(rhs, elType, Kind);
+ }
+ Kind = CK_VectorSplat;
return Compatible;
+ }
}
+ // Conversions to or from vector type.
if (lhsType->isVectorType() || rhsType->isVectorType()) {
if (lhsType->isVectorType() && rhsType->isVectorType()) {
+ // Allow assignments of an AltiVec vector type to an equivalent GCC
+ // vector type and vice versa
+ if (Context.areCompatibleVectorTypes(lhsType, rhsType)) {
+ Kind = CK_BitCast;
+ return Compatible;
+ }
+
// If we are allowing lax vector conversions, and LHS and RHS are both
// vectors, the total size only needs to be the same. This is a bitcast;
// no bits are changed but the result type is different.
if (getLangOptions().LaxVectorConversions &&
- (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType)))
+ (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))) {
+ Kind = CK_BitCast;
return IncompatibleVectors;
-
- // Allow assignments of an AltiVec vector type to an equivalent GCC
- // vector type and vice versa
- if (Context.areCompatibleVectorTypes(lhsType, rhsType))
- return Compatible;
+ }
}
return Incompatible;
}
+ // Arithmetic conversions.
if (lhsType->isArithmeticType() && rhsType->isArithmeticType() &&
- !(getLangOptions().CPlusPlus && lhsType->isEnumeralType()))
+ !(getLangOptions().CPlusPlus && lhsType->isEnumeralType())) {
+ Kind = PrepareScalarCast(*this, rhs, lhsType);
return Compatible;
+ }
- if (isa<PointerType>(lhsType)) {
- if (rhsType->isIntegerType())
- return IntToPointer;
+ // Conversions to normal pointers.
+ if (const PointerType *lhsPointer = dyn_cast<PointerType>(lhsType)) {
+ // U* -> T*
+ if (isa<PointerType>(rhsType)) {
+ Kind = CK_BitCast;
+ return checkPointerTypesForAssignment(*this, lhsType, rhsType);
+ }
- if (isa<PointerType>(rhsType))
- return CheckPointerTypesForAssignment(lhsType, rhsType);
+ // int -> T*
+ if (rhsType->isIntegerType()) {
+ Kind = CK_IntegralToPointer; // FIXME: null?
+ return IntToPointer;
+ }
- // In general, C pointers are not compatible with ObjC object pointers.
+ // C pointers are not compatible with ObjC object pointers,
+ // with two exceptions:
if (isa<ObjCObjectPointerType>(rhsType)) {
- if (lhsType->isVoidPointerType()) // an exception to the rule.
+ // - conversions to void*
+ if (lhsPointer->getPointeeType()->isVoidType()) {
+ Kind = CK_AnyPointerToObjCPointerCast;
return Compatible;
+ }
+
+ // - conversions from 'Class' to the redefinition type
+ if (rhsType->isObjCClassType() &&
+ Context.hasSameType(lhsType, Context.ObjCClassRedefinitionType)) {
+ Kind = CK_BitCast;
+ return Compatible;
+ }
+
+ Kind = CK_BitCast;
return IncompatiblePointer;
}
- if (rhsType->getAs<BlockPointerType>()) {
- if (lhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
- return Compatible;
- // Treat block pointers as objects.
- if (getLangOptions().ObjC1 && lhsType->isObjCIdType())
+ // U^ -> void*
+ if (rhsType->getAs<BlockPointerType>()) {
+ if (lhsPointer->getPointeeType()->isVoidType()) {
+ Kind = CK_BitCast;
return Compatible;
+ }
}
+
return Incompatible;
}
+ // Conversions to block pointers.
if (isa<BlockPointerType>(lhsType)) {
- if (rhsType->isIntegerType())
+ // U^ -> T^
+ if (rhsType->isBlockPointerType()) {
+ Kind = CK_AnyPointerToBlockPointerCast;
+ return checkBlockPointerTypesForAssignment(*this, lhsType, rhsType);
+ }
+
+ // int or null -> T^
+ if (rhsType->isIntegerType()) {
+ Kind = CK_IntegralToPointer; // FIXME: null
return IntToBlockPointer;
+ }
- // Treat block pointers as objects.
- if (getLangOptions().ObjC1 && rhsType->isObjCIdType())
+ // id -> T^
+ if (getLangOptions().ObjC1 && rhsType->isObjCIdType()) {
+ Kind = CK_AnyPointerToBlockPointerCast;
return Compatible;
+ }
- if (rhsType->isBlockPointerType())
- return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
-
- if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
- if (RHSPT->getPointeeType()->isVoidType())
+ // void* -> T^
+ if (const PointerType *RHSPT = rhsType->getAs<PointerType>())
+ if (RHSPT->getPointeeType()->isVoidType()) {
+ Kind = CK_AnyPointerToBlockPointerCast;
return Compatible;
- }
+ }
+
return Incompatible;
}
+ // Conversions to Objective-C pointers.
if (isa<ObjCObjectPointerType>(lhsType)) {
- if (rhsType->isIntegerType())
+ // A* -> B*
+ if (rhsType->isObjCObjectPointerType()) {
+ Kind = CK_BitCast;
+ return checkObjCPointerTypesForAssignment(*this, lhsType, rhsType);
+ }
+
+ // int or null -> A*
+ if (rhsType->isIntegerType()) {
+ Kind = CK_IntegralToPointer; // FIXME: null
return IntToPointer;
+ }
- // In general, C pointers are not compatible with ObjC object pointers.
+ // In general, C pointers are not compatible with ObjC object pointers,
+ // with two exceptions:
if (isa<PointerType>(rhsType)) {
- if (rhsType->isVoidPointerType()) // an exception to the rule.
+ // - conversions from 'void*'
+ if (rhsType->isVoidPointerType()) {
+ Kind = CK_AnyPointerToObjCPointerCast;
return Compatible;
- return IncompatiblePointer;
- }
- if (rhsType->isObjCObjectPointerType()) {
- return CheckObjCPointerTypesForAssignment(lhsType, rhsType);
- }
- if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
- if (RHSPT->getPointeeType()->isVoidType())
+ }
+
+ // - conversions to 'Class' from its redefinition type
+ if (lhsType->isObjCClassType() &&
+ Context.hasSameType(rhsType, Context.ObjCClassRedefinitionType)) {
+ Kind = CK_BitCast;
return Compatible;
+ }
+
+ Kind = CK_AnyPointerToObjCPointerCast;
+ return IncompatiblePointer;
}
- // Treat block pointers as objects.
- if (rhsType->isBlockPointerType())
+
+ // T^ -> A*
+ if (rhsType->isBlockPointerType()) {
+ Kind = CK_AnyPointerToObjCPointerCast;
return Compatible;
+ }
+
return Incompatible;
}
+
+ // Conversions from pointers that are not covered by the above.
if (isa<PointerType>(rhsType)) {
- // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
- if (lhsType == Context.BoolTy)
+ // T* -> _Bool
+ if (lhsType == Context.BoolTy) {
+ Kind = CK_PointerToBoolean;
return Compatible;
+ }
- if (lhsType->isIntegerType())
+ // T* -> int
+ if (lhsType->isIntegerType()) {
+ Kind = CK_PointerToIntegral;
return PointerToInt;
+ }
- if (isa<PointerType>(lhsType))
- return CheckPointerTypesForAssignment(lhsType, rhsType);
-
- if (isa<BlockPointerType>(lhsType) &&
- rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
- return Compatible;
return Incompatible;
}
+
+ // Conversions from Objective-C pointers that are not covered by the above.
if (isa<ObjCObjectPointerType>(rhsType)) {
- // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
- if (lhsType == Context.BoolTy)
+ // T* -> _Bool
+ if (lhsType == Context.BoolTy) {
+ Kind = CK_PointerToBoolean;
return Compatible;
+ }
- if (lhsType->isIntegerType())
+ // T* -> int
+ if (lhsType->isIntegerType()) {
+ Kind = CK_PointerToIntegral;
return PointerToInt;
-
- // In general, C pointers are not compatible with ObjC object pointers.
- if (isa<PointerType>(lhsType)) {
- if (lhsType->isVoidPointerType()) // an exception to the rule.
- return Compatible;
- return IncompatiblePointer;
}
- if (isa<BlockPointerType>(lhsType) &&
- rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
- return Compatible;
+
return Incompatible;
}
+ // struct A -> struct B
if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
- if (Context.typesAreCompatible(lhsType, rhsType))
+ if (Context.typesAreCompatible(lhsType, rhsType)) {
+ Kind = CK_NoOp;
return Compatible;
+ }
}
+
return Incompatible;
}
@@ -4902,7 +6156,7 @@ static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
// union type from this initializer list.
TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
E = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
- Initializer, false);
+ VK_RValue, Initializer, false);
}
Sema::AssignConvertType
@@ -4935,14 +6189,18 @@ Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
if (rExpr->isNullPointerConstant(Context,
Expr::NPC_ValueDependentIsNull)) {
- ImpCastExprToType(rExpr, it->getType(), CK_IntegralToPointer);
+ ImpCastExprToType(rExpr, it->getType(), CK_NullToPointer);
InitField = *it;
break;
}
}
- if (CheckAssignmentConstraints(it->getType(), rExpr->getType())
+ Expr *rhs = rExpr;
+ CastKind Kind = CK_Invalid;
+ if (CheckAssignmentConstraints(it->getType(), rhs, Kind)
== Compatible) {
+ ImpCastExprToType(rhs, it->getType(), Kind);
+ rExpr = rhs;
InitField = *it;
break;
}
@@ -4970,7 +6228,7 @@ Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
// FIXME: Currently, we fall through and treat C++ classes like C
// structures.
- }
+ }
// C99 6.5.16.1p1: the left operand is a pointer and the right is
// a null pointer constant.
@@ -4979,7 +6237,7 @@ Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
lhsType->isBlockPointerType())
&& rExpr->isNullPointerConstant(Context,
Expr::NPC_ValueDependentIsNull)) {
- ImpCastExprToType(rExpr, lhsType, CK_Unknown);
+ ImpCastExprToType(rExpr, lhsType, CK_NullToPointer);
return Compatible;
}
@@ -4992,8 +6250,9 @@ Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
if (!lhsType->isReferenceType())
DefaultFunctionArrayLvalueConversion(rExpr);
+ CastKind Kind = CK_Invalid;
Sema::AssignConvertType result =
- CheckAssignmentConstraints(lhsType, rExpr->getType());
+ CheckAssignmentConstraints(lhsType, rExpr, Kind);
// C99 6.5.16.1p2: The value of the right operand is converted to the
// type of the assignment expression.
@@ -5002,8 +6261,7 @@ Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
// The getNonReferenceType() call makes sure that the resulting expression
// does not have reference type.
if (result != Incompatible && rExpr->getType() != lhsType)
- ImpCastExprToType(rExpr, lhsType.getNonLValueExprType(Context),
- CK_Unknown);
+ ImpCastExprToType(rExpr, lhsType.getNonLValueExprType(Context), Kind);
return result;
}
@@ -5071,16 +6329,22 @@ QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) {
QualType EltTy = LV->getElementType();
if (EltTy->isIntegralType(Context) && rhsType->isIntegralType(Context)) {
- if (Context.getIntegerTypeOrder(EltTy, rhsType) >= 0) {
- ImpCastExprToType(rex, lhsType, CK_IntegralCast);
+ int order = Context.getIntegerTypeOrder(EltTy, rhsType);
+ if (order > 0)
+ ImpCastExprToType(rex, EltTy, CK_IntegralCast);
+ if (order >= 0) {
+ ImpCastExprToType(rex, lhsType, CK_VectorSplat);
if (swapped) std::swap(rex, lex);
return lhsType;
}
}
if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
rhsType->isRealFloatingType()) {
- if (Context.getFloatingTypeOrder(EltTy, rhsType) >= 0) {
- ImpCastExprToType(rex, lhsType, CK_FloatingCast);
+ int order = Context.getFloatingTypeOrder(EltTy, rhsType);
+ if (order > 0)
+ ImpCastExprToType(rex, EltTy, CK_FloatingCast);
+ if (order >= 0) {
+ ImpCastExprToType(rex, lhsType, CK_VectorSplat);
if (swapped) std::swap(rex, lex);
return lhsType;
}
@@ -5359,6 +6623,12 @@ QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
return InvalidOperands(Loc, lex, rex);
}
+static bool isScopedEnumerationType(QualType T) {
+ if (const EnumType *ET = dyn_cast<EnumType>(T))
+ return ET->getDecl()->isScoped();
+ return false;
+}
+
// C99 6.5.7
QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
bool isCompAssign) {
@@ -5367,21 +6637,28 @@ QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
!rex->getType()->hasIntegerRepresentation())
return InvalidOperands(Loc, lex, rex);
+ // C++0x: Don't allow scoped enums. FIXME: Use something better than
+ // hasIntegerRepresentation() above instead of this.
+ if (isScopedEnumerationType(lex->getType()) ||
+ isScopedEnumerationType(rex->getType())) {
+ return InvalidOperands(Loc, lex, rex);
+ }
+
// Vector shifts promote their scalar inputs to vector type.
if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
return CheckVectorOperands(Loc, lex, rex);
// Shifts don't perform usual arithmetic conversions, they just do integer
// promotions on each operand. C99 6.5.7p3
- QualType LHSTy = Context.isPromotableBitField(lex);
- if (LHSTy.isNull()) {
- LHSTy = lex->getType();
- if (LHSTy->isPromotableIntegerType())
- LHSTy = Context.getPromotedIntegerType(LHSTy);
- }
- if (!isCompAssign)
- ImpCastExprToType(lex, LHSTy, CK_IntegralCast);
+ // For the LHS, do usual unary conversions, but then reset them away
+ // if this is a compound assignment.
+ Expr *old_lex = lex;
+ UsualUnaryConversions(lex);
+ QualType LHSTy = lex->getType();
+ if (isCompAssign) lex = old_lex;
+
+ // The RHS is simpler.
UsualUnaryConversions(rex);
// Sanity-check shift operands
@@ -5425,8 +6702,28 @@ QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
QualType lType = lex->getType();
QualType rType = rex->getType();
+ Expr *LHSStripped = lex->IgnoreParenImpCasts();
+ Expr *RHSStripped = rex->IgnoreParenImpCasts();
+ QualType LHSStrippedType = LHSStripped->getType();
+ QualType RHSStrippedType = RHSStripped->getType();
+
+ // Two different enums will raise a warning when compared.
+ if (const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>()) {
+ if (const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>()) {
+ if (LHSEnumType->getDecl()->getIdentifier() &&
+ RHSEnumType->getDecl()->getIdentifier() &&
+ !Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) {
+ Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
+ << LHSStrippedType << RHSStrippedType
+ << lex->getSourceRange() << rex->getSourceRange();
+ }
+ }
+ }
+
if (!lType->hasFloatingRepresentation() &&
- !(lType->isBlockPointerType() && isRelational)) {
+ !(lType->isBlockPointerType() && isRelational) &&
+ !lex->getLocStart().isMacroID() &&
+ !rex->getLocStart().isMacroID()) {
// For non-floating point types, check for self-comparisons of the form
// x == x, x != x, x < x, etc. These always evaluate to a constant, and
// often indicate logic errors in the program.
@@ -5437,11 +6734,9 @@ QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
// obvious cases in the definition of the template anyways. The idea is to
// warn when the typed comparison operator will always evaluate to the same
// result.
- Expr *LHSStripped = lex->IgnoreParens();
- Expr *RHSStripped = rex->IgnoreParens();
if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) {
if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) {
- if (DRL->getDecl() == DRR->getDecl() && !Loc.isMacroID() &&
+ if (DRL->getDecl() == DRR->getDecl() &&
!IsWithinTemplateSpecialization(DRL->getDecl())) {
DiagRuntimeBehavior(Loc, PDiag(diag::warn_comparison_always)
<< 0 // self-
@@ -5525,7 +6820,7 @@ QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
rType = rex->getType();
// The result of comparisons is 'bool' in C++, 'int' in C.
- QualType ResultTy = getLangOptions().CPlusPlus ? Context.BoolTy:Context.IntTy;
+ QualType ResultTy = Context.getLogicalOperationType();
if (isRelational) {
if (lType->isRealType() && rType->isRealType())
@@ -5576,6 +6871,7 @@ QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
return ResultTy;
}
}
+
// C++ [expr.rel]p2:
// [...] Pointer conversions (4.10) and qualification
// conversions (4.4) are performed on pointer operands (or on
@@ -5629,24 +6925,28 @@ QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
}
if (getLangOptions().CPlusPlus) {
+ // Comparison of nullptr_t with itself.
+ if (lType->isNullPtrType() && rType->isNullPtrType())
+ return ResultTy;
+
// Comparison of pointers with null pointer constants and equality
// comparisons of member pointers to null pointer constants.
if (RHSIsNull &&
- (lType->isPointerType() ||
+ ((lType->isPointerType() || lType->isNullPtrType()) ||
(!isRelational && lType->isMemberPointerType()))) {
ImpCastExprToType(rex, lType,
lType->isMemberPointerType()
? CK_NullToMemberPointer
- : CK_IntegralToPointer);
+ : CK_NullToPointer);
return ResultTy;
}
if (LHSIsNull &&
- (rType->isPointerType() ||
+ ((rType->isPointerType() || rType->isNullPtrType()) ||
(!isRelational && rType->isMemberPointerType()))) {
ImpCastExprToType(lex, rType,
rType->isMemberPointerType()
? CK_NullToMemberPointer
- : CK_IntegralToPointer);
+ : CK_NullToPointer);
return ResultTy;
}
@@ -5681,10 +6981,6 @@ QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
ImpCastExprToType(rex, T, CK_BitCast);
return ResultTy;
}
-
- // Comparison of nullptr_t with itself.
- if (lType->isNullPtrType() && rType->isNullPtrType())
- return ResultTy;
}
// Handle block pointer types.
@@ -5765,21 +7061,23 @@ QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
}
if (lType->isIntegerType())
- ImpCastExprToType(lex, rType, CK_IntegralToPointer);
+ ImpCastExprToType(lex, rType,
+ LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
else
- ImpCastExprToType(rex, lType, CK_IntegralToPointer);
+ ImpCastExprToType(rex, lType,
+ RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
return ResultTy;
}
// Handle block pointers.
if (!isRelational && RHSIsNull
&& lType->isBlockPointerType() && rType->isIntegerType()) {
- ImpCastExprToType(rex, lType, CK_IntegralToPointer);
+ ImpCastExprToType(rex, lType, CK_NullToPointer);
return ResultTy;
}
if (!isRelational && LHSIsNull
&& lType->isIntegerType() && rType->isBlockPointerType()) {
- ImpCastExprToType(lex, rType, CK_IntegralToPointer);
+ ImpCastExprToType(lex, rType, CK_NullToPointer);
return ResultTy;
}
return InvalidOperands(Loc, lex, rex);
@@ -5798,6 +7096,11 @@ QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
if (vType.isNull())
return vType;
+ // If AltiVec, the comparison results in a numeric type, i.e.
+ // bool for C++, int for C
+ if (getLangOptions().AltiVec)
+ return Context.getLogicalOperationType();
+
QualType lType = lex->getType();
QualType rType = rex->getType();
@@ -5851,7 +7154,8 @@ inline QualType Sema::CheckBitwiseOperands(
QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
- if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
+ if (lex->getType()->isIntegralOrUnscopedEnumerationType() &&
+ rex->getType()->isIntegralOrUnscopedEnumerationType())
return compType;
return InvalidOperands(Loc, lex, rex);
}
@@ -5912,14 +7216,18 @@ inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
static bool IsReadonlyProperty(Expr *E, Sema &S) {
if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
- if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
- QualType BaseType = PropExpr->getBase()->getType();
- if (const ObjCObjectPointerType *OPT =
- BaseType->getAsObjCInterfacePointerType())
- if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
- if (S.isPropertyReadonly(PDecl, IFace))
- return true;
- }
+ if (PropExpr->isImplicitProperty()) return false;
+
+ ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
+ QualType BaseType = PropExpr->isSuperReceiver() ?
+ PropExpr->getSuperReceiverType() :
+ PropExpr->getBase()->getType();
+
+ if (const ObjCObjectPointerType *OPT =
+ BaseType->getAsObjCInterfacePointerType())
+ if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
+ if (S.isPropertyReadonly(PDecl, IFace))
+ return true;
}
return false;
}
@@ -6005,17 +7313,8 @@ QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
if (CompoundType.isNull()) {
QualType LHSTy(LHSType);
// Simple assignment "x = y".
- if (const ObjCImplicitSetterGetterRefExpr *OISGE =
- dyn_cast<ObjCImplicitSetterGetterRefExpr>(LHS)) {
- // If using property-dot syntax notation for assignment, and there is a
- // setter, RHS expression is being passed to the setter argument. So,
- // type conversion (and comparison) is RHS to setter's argument type.
- if (const ObjCMethodDecl *SetterMD = OISGE->getSetterMethod()) {
- ObjCMethodDecl::param_iterator P = SetterMD->param_begin();
- LHSTy = (*P)->getType();
- }
- }
-
+ if (LHS->getObjectKind() == OK_ObjCProperty)
+ ConvertPropertyForLValue(LHS, RHS, LHSTy);
ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
// Special case of NSObject attributes on c-style pointer types.
if (ConvTy == IncompatiblePointer &&
@@ -6025,6 +7324,12 @@ QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
LHSType->isObjCObjectPointerType())))
ConvTy = Compatible;
+ if (ConvTy == Compatible &&
+ getLangOptions().ObjCNonFragileABI &&
+ LHSType->isObjCObjectType())
+ Diag(Loc, diag::err_assignment_requires_nonfragile_object)
+ << LHSType;
+
// If the RHS is a unary plus or minus, check to see if they = and + are
// right next to each other. If so, the user may have typo'd "x =+ 4"
// instead of "x += 4".
@@ -6048,7 +7353,7 @@ QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
}
} else {
// Compound assignment "x += y"
- ConvTy = CheckAssignmentConstraints(LHSType, RHSType);
+ ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
}
if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
@@ -6072,6 +7377,11 @@ QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
Diag(UO->getOperatorLoc(), diag::note_indirection_through_null);
}
+ // Check for trivial buffer overflows.
+ if (const ArraySubscriptExpr *ae
+ = dyn_cast<ArraySubscriptExpr>(LHS->IgnoreParenCasts()))
+ CheckArrayAccess(ae);
+
// C99 6.5.16p3: The type of an assignment expression is the type of the
// left operand unless the left operand has qualified type, in which case
// it is the unqualified version of the type of the left operand.
@@ -6079,42 +7389,61 @@ QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
// is converted to the type of the assignment expression (above).
// C++ 5.17p1: the type of the assignment expression is that of its left
// operand.
- return LHSType.getUnqualifiedType();
+ return (getLangOptions().CPlusPlus
+ ? LHSType : LHSType.getUnqualifiedType());
}
// C99 6.5.17
-QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
- DiagnoseUnusedExprResult(LHS);
+static QualType CheckCommaOperands(Sema &S, Expr *&LHS, Expr *&RHS,
+ SourceLocation Loc) {
+ S.DiagnoseUnusedExprResult(LHS);
- // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
- // C++ does not perform this conversion (C++ [expr.comma]p1).
- if (!getLangOptions().CPlusPlus)
- DefaultFunctionArrayLvalueConversion(RHS);
+ ExprResult LHSResult = S.CheckPlaceholderExpr(LHS, Loc);
+ if (LHSResult.isInvalid())
+ return QualType();
+
+ ExprResult RHSResult = S.CheckPlaceholderExpr(RHS, Loc);
+ if (RHSResult.isInvalid())
+ return QualType();
+ RHS = RHSResult.take();
- // FIXME: Check that RHS type is complete in C mode (it's legal for it to be
- // incomplete in C++).
+ // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
+ // operands, but not unary promotions.
+ // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
+
+ // So we treat the LHS as a ignored value, and in C++ we allow the
+ // containing site to determine what should be done with the RHS.
+ S.IgnoredValueConversions(LHS);
+
+ if (!S.getLangOptions().CPlusPlus) {
+ S.DefaultFunctionArrayLvalueConversion(RHS);
+ if (!RHS->getType()->isVoidType())
+ S.RequireCompleteType(Loc, RHS->getType(), diag::err_incomplete_type);
+ }
return RHS->getType();
}
/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
-QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
- bool isInc, bool isPrefix) {
+static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
+ ExprValueKind &VK,
+ SourceLocation OpLoc,
+ bool isInc, bool isPrefix) {
if (Op->isTypeDependent())
- return Context.DependentTy;
+ return S.Context.DependentTy;
QualType ResType = Op->getType();
assert(!ResType.isNull() && "no type for increment/decrement expression");
- if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
+ if (S.getLangOptions().CPlusPlus && ResType->isBooleanType()) {
// Decrement of bool is not allowed.
if (!isInc) {
- Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
+ S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
return QualType();
}
// Increment of bool sets it to true, but is deprecated.
- Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
+ S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
} else if (ResType->isRealType()) {
// OK!
} else if (ResType->isAnyPointerType()) {
@@ -6122,53 +7451,128 @@ QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
// C99 6.5.2.4p2, 6.5.6p2
if (PointeeTy->isVoidType()) {
- if (getLangOptions().CPlusPlus) {
- Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
+ if (S.getLangOptions().CPlusPlus) {
+ S.Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
<< Op->getSourceRange();
return QualType();
}
// Pointer to void is a GNU extension in C.
- Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
+ S.Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
} else if (PointeeTy->isFunctionType()) {
- if (getLangOptions().CPlusPlus) {
- Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
+ if (S.getLangOptions().CPlusPlus) {
+ S.Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
<< Op->getType() << Op->getSourceRange();
return QualType();
}
- Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
+ S.Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
<< ResType << Op->getSourceRange();
- } else if (RequireCompleteType(OpLoc, PointeeTy,
- PDiag(diag::err_typecheck_arithmetic_incomplete_type)
+ } else if (S.RequireCompleteType(OpLoc, PointeeTy,
+ S.PDiag(diag::err_typecheck_arithmetic_incomplete_type)
<< Op->getSourceRange()
<< ResType))
return QualType();
// Diagnose bad cases where we step over interface counts.
- else if (PointeeTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
- Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
+ else if (PointeeTy->isObjCObjectType() && S.LangOpts.ObjCNonFragileABI) {
+ S.Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
<< PointeeTy << Op->getSourceRange();
return QualType();
}
} else if (ResType->isAnyComplexType()) {
// C99 does not support ++/-- on complex types, we allow as an extension.
- Diag(OpLoc, diag::ext_integer_increment_complex)
+ S.Diag(OpLoc, diag::ext_integer_increment_complex)
<< ResType << Op->getSourceRange();
+ } else if (ResType->isPlaceholderType()) {
+ ExprResult PR = S.CheckPlaceholderExpr(Op, OpLoc);
+ if (PR.isInvalid()) return QualType();
+ return CheckIncrementDecrementOperand(S, PR.take(), VK, OpLoc,
+ isInc, isPrefix);
+ } else if (S.getLangOptions().AltiVec && ResType->isVectorType()) {
+ // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
} else {
- Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
+ S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
<< ResType << int(isInc) << Op->getSourceRange();
return QualType();
}
// At this point, we know we have a real, complex or pointer type.
// Now make sure the operand is a modifiable lvalue.
- if (CheckForModifiableLvalue(Op, OpLoc, *this))
+ if (CheckForModifiableLvalue(Op, OpLoc, S))
return QualType();
// In C++, a prefix increment is the same type as the operand. Otherwise
// (in C or with postfix), the increment is the unqualified type of the
// operand.
- return isPrefix && getLangOptions().CPlusPlus
- ? ResType : ResType.getUnqualifiedType();
+ if (isPrefix && S.getLangOptions().CPlusPlus) {
+ VK = VK_LValue;
+ return ResType;
+ } else {
+ VK = VK_RValue;
+ return ResType.getUnqualifiedType();
+ }
+}
+
+void Sema::ConvertPropertyForRValue(Expr *&E) {
+ assert(E->getValueKind() == VK_LValue &&
+ E->getObjectKind() == OK_ObjCProperty);
+ const ObjCPropertyRefExpr *PRE = E->getObjCProperty();
+
+ ExprValueKind VK = VK_RValue;
+ if (PRE->isImplicitProperty()) {
+ if (const ObjCMethodDecl *GetterMethod =
+ PRE->getImplicitPropertyGetter()) {
+ QualType Result = GetterMethod->getResultType();
+ VK = Expr::getValueKindForType(Result);
+ }
+ else {
+ Diag(PRE->getLocation(), diag::err_getter_not_found)
+ << PRE->getBase()->getType();
+ }
+ }
+
+ E = ImplicitCastExpr::Create(Context, E->getType(), CK_GetObjCProperty,
+ E, 0, VK);
+
+ ExprResult Result = MaybeBindToTemporary(E);
+ if (!Result.isInvalid())
+ E = Result.take();
+}
+
+void Sema::ConvertPropertyForLValue(Expr *&LHS, Expr *&RHS, QualType &LHSTy) {
+ assert(LHS->getValueKind() == VK_LValue &&
+ LHS->getObjectKind() == OK_ObjCProperty);
+ const ObjCPropertyRefExpr *PRE = LHS->getObjCProperty();
+
+ if (PRE->isImplicitProperty()) {
+ // If using property-dot syntax notation for assignment, and there is a
+ // setter, RHS expression is being passed to the setter argument. So,
+ // type conversion (and comparison) is RHS to setter's argument type.
+ if (const ObjCMethodDecl *SetterMD = PRE->getImplicitPropertySetter()) {
+ ObjCMethodDecl::param_iterator P = SetterMD->param_begin();
+ LHSTy = (*P)->getType();
+
+ // Otherwise, if the getter returns an l-value, just call that.
+ } else {
+ QualType Result = PRE->getImplicitPropertyGetter()->getResultType();
+ ExprValueKind VK = Expr::getValueKindForType(Result);
+ if (VK == VK_LValue) {
+ LHS = ImplicitCastExpr::Create(Context, LHS->getType(),
+ CK_GetObjCProperty, LHS, 0, VK);
+ return;
+ }
+ }
+ }
+
+ if (getLangOptions().CPlusPlus && LHSTy->isRecordType()) {
+ InitializedEntity Entity =
+ InitializedEntity::InitializeParameter(Context, LHSTy);
+ Expr *Arg = RHS;
+ ExprResult ArgE = PerformCopyInitialization(Entity, SourceLocation(),
+ Owned(Arg));
+ if (!ArgE.isInvalid())
+ RHS = ArgE.takeAs<Expr>();
+ }
}
+
/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
/// This routine allows us to typecheck complex/recursive expressions
@@ -6182,7 +7586,7 @@ QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
/// - *(x + 1) -> x, if x is an array
/// - &"123"[2] -> 0
/// - & __real__ x -> x
-static NamedDecl *getPrimaryDecl(Expr *E) {
+static ValueDecl *getPrimaryDecl(Expr *E) {
switch (E->getStmtClass()) {
case Stmt::DeclRefExprClass:
return cast<DeclRefExpr>(E)->getDecl();
@@ -6234,16 +7638,21 @@ static NamedDecl *getPrimaryDecl(Expr *E) {
/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
/// In C++, the operand might be an overloaded function name, in which case
/// we allow the '&' but retain the overloaded-function type.
-QualType Sema::CheckAddressOfOperand(Expr *OrigOp, SourceLocation OpLoc) {
+static QualType CheckAddressOfOperand(Sema &S, Expr *OrigOp,
+ SourceLocation OpLoc) {
if (OrigOp->isTypeDependent())
- return Context.DependentTy;
- if (OrigOp->getType() == Context.OverloadTy)
- return Context.OverloadTy;
+ return S.Context.DependentTy;
+ if (OrigOp->getType() == S.Context.OverloadTy)
+ return S.Context.OverloadTy;
+
+ ExprResult PR = S.CheckPlaceholderExpr(OrigOp, OpLoc);
+ if (PR.isInvalid()) return QualType();
+ OrigOp = PR.take();
// Make sure to ignore parentheses in subsequent checks
Expr *op = OrigOp->IgnoreParens();
- if (getLangOptions().C99) {
+ if (S.getLangOptions().C99) {
// Implement C99-only parts of addressof rules.
if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
if (uOp->getOpcode() == UO_Deref)
@@ -6254,24 +7663,25 @@ QualType Sema::CheckAddressOfOperand(Expr *OrigOp, SourceLocation OpLoc) {
// Technically, there should be a check for array subscript
// expressions here, but the result of one is always an lvalue anyway.
}
- NamedDecl *dcl = getPrimaryDecl(op);
- Expr::isLvalueResult lval = op->isLvalue(Context);
+ ValueDecl *dcl = getPrimaryDecl(op);
+ Expr::LValueClassification lval = op->ClassifyLValue(S.Context);
if (lval == Expr::LV_ClassTemporary) {
- Diag(OpLoc, isSFINAEContext()? diag::err_typecheck_addrof_class_temporary
- : diag::ext_typecheck_addrof_class_temporary)
+ bool sfinae = S.isSFINAEContext();
+ S.Diag(OpLoc, sfinae ? diag::err_typecheck_addrof_class_temporary
+ : diag::ext_typecheck_addrof_class_temporary)
<< op->getType() << op->getSourceRange();
- if (isSFINAEContext())
+ if (sfinae)
return QualType();
} else if (isa<ObjCSelectorExpr>(op)) {
- return Context.getPointerType(op->getType());
+ return S.Context.getPointerType(op->getType());
} else if (lval == Expr::LV_MemberFunction) {
// If it's an instance method, make a member pointer.
// The expression must have exactly the form &A::foo.
// If the underlying expression isn't a decl ref, give up.
if (!isa<DeclRefExpr>(op)) {
- Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
+ S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
<< OrigOp->getSourceRange();
return QualType();
}
@@ -6280,45 +7690,41 @@ QualType Sema::CheckAddressOfOperand(Expr *OrigOp, SourceLocation OpLoc) {
// The id-expression was parenthesized.
if (OrigOp != DRE) {
- Diag(OpLoc, diag::err_parens_pointer_member_function)
+ S.Diag(OpLoc, diag::err_parens_pointer_member_function)
<< OrigOp->getSourceRange();
// The method was named without a qualifier.
} else if (!DRE->getQualifier()) {
- Diag(OpLoc, diag::err_unqualified_pointer_member_function)
+ S.Diag(OpLoc, diag::err_unqualified_pointer_member_function)
<< op->getSourceRange();
}
- return Context.getMemberPointerType(op->getType(),
- Context.getTypeDeclType(MD->getParent()).getTypePtr());
+ return S.Context.getMemberPointerType(op->getType(),
+ S.Context.getTypeDeclType(MD->getParent()).getTypePtr());
} else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
// C99 6.5.3.2p1
// The operand must be either an l-value or a function designator
if (!op->getType()->isFunctionType()) {
// FIXME: emit more specific diag...
- Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
+ S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
<< op->getSourceRange();
return QualType();
}
- } else if (op->getBitField()) { // C99 6.5.3.2p1
+ } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
// The operand cannot be a bit-field
- Diag(OpLoc, diag::err_typecheck_address_of)
+ S.Diag(OpLoc, diag::err_typecheck_address_of)
<< "bit-field" << op->getSourceRange();
return QualType();
- } else if (op->refersToVectorElement()) {
+ } else if (op->getObjectKind() == OK_VectorComponent) {
// The operand cannot be an element of a vector
- Diag(OpLoc, diag::err_typecheck_address_of)
+ S.Diag(OpLoc, diag::err_typecheck_address_of)
<< "vector element" << op->getSourceRange();
return QualType();
- } else if (isa<ObjCPropertyRefExpr>(op)) {
+ } else if (op->getObjectKind() == OK_ObjCProperty) {
// cannot take address of a property expression.
- Diag(OpLoc, diag::err_typecheck_address_of)
+ S.Diag(OpLoc, diag::err_typecheck_address_of)
<< "property expression" << op->getSourceRange();
return QualType();
- } else if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(op)) {
- // FIXME: Can LHS ever be null here?
- if (!CheckAddressOfOperand(CO->getTrueExpr(), OpLoc).isNull())
- return CheckAddressOfOperand(CO->getFalseExpr(), OpLoc);
} else if (dcl) { // C99 6.5.3.2p1
// We have an lvalue with a decl. Make sure the decl is not declared
// with the register storage-class specifier.
@@ -6326,29 +7732,31 @@ QualType Sema::CheckAddressOfOperand(Expr *OrigOp, SourceLocation OpLoc) {
// in C++ it is not error to take address of a register
// variable (c++03 7.1.1P3)
if (vd->getStorageClass() == SC_Register &&
- !getLangOptions().CPlusPlus) {
- Diag(OpLoc, diag::err_typecheck_address_of)
+ !S.getLangOptions().CPlusPlus) {
+ S.Diag(OpLoc, diag::err_typecheck_address_of)
<< "register variable" << op->getSourceRange();
return QualType();
}
} else if (isa<FunctionTemplateDecl>(dcl)) {
- return Context.OverloadTy;
- } else if (FieldDecl *FD = dyn_cast<FieldDecl>(dcl)) {
+ return S.Context.OverloadTy;
+ } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
// Okay: we can take the address of a field.
// Could be a pointer to member, though, if there is an explicit
// scope qualifier for the class.
if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
DeclContext *Ctx = dcl->getDeclContext();
if (Ctx && Ctx->isRecord()) {
- if (FD->getType()->isReferenceType()) {
- Diag(OpLoc,
- diag::err_cannot_form_pointer_to_member_of_reference_type)
- << FD->getDeclName() << FD->getType();
+ if (dcl->getType()->isReferenceType()) {
+ S.Diag(OpLoc,
+ diag::err_cannot_form_pointer_to_member_of_reference_type)
+ << dcl->getDeclName() << dcl->getType();
return QualType();
}
- return Context.getMemberPointerType(op->getType(),
- Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
+ while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
+ Ctx = Ctx->getParent();
+ return S.Context.getMemberPointerType(op->getType(),
+ S.Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
}
}
} else if (!isa<FunctionDecl>(dcl))
@@ -6359,21 +7767,22 @@ QualType Sema::CheckAddressOfOperand(Expr *OrigOp, SourceLocation OpLoc) {
// Taking the address of a void variable is technically illegal, but we
// allow it in cases which are otherwise valid.
// Example: "extern void x; void* y = &x;".
- Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
+ S.Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
}
// If the operand has type "type", the result has type "pointer to type".
if (op->getType()->isObjCObjectType())
- return Context.getObjCObjectPointerType(op->getType());
- return Context.getPointerType(op->getType());
+ return S.Context.getObjCObjectPointerType(op->getType());
+ return S.Context.getPointerType(op->getType());
}
/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
-QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
+static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
+ SourceLocation OpLoc) {
if (Op->isTypeDependent())
- return Context.DependentTy;
+ return S.Context.DependentTy;
- UsualUnaryConversions(Op);
+ S.UsualUnaryConversions(Op);
QualType OpTy = Op->getType();
QualType Result;
@@ -6386,12 +7795,26 @@ QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
else if (const ObjCObjectPointerType *OPT =
OpTy->getAs<ObjCObjectPointerType>())
Result = OPT->getPointeeType();
+ else {
+ ExprResult PR = S.CheckPlaceholderExpr(Op, OpLoc);
+ if (PR.isInvalid()) return QualType();
+ if (PR.take() != Op)
+ return CheckIndirectionOperand(S, PR.take(), VK, OpLoc);
+ }
if (Result.isNull()) {
- Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
+ S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
<< OpTy << Op->getSourceRange();
return QualType();
}
+
+ // Dereferences are usually l-values...
+ VK = VK_LValue;
+
+ // ...except that certain expressions are never l-values in C.
+ if (!S.getLangOptions().CPlusPlus &&
+ IsCForbiddenLValueType(S.Context, Result))
+ VK = VK_RValue;
return Result;
}
@@ -6457,25 +7880,67 @@ static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
return Opc;
}
+/// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
+/// This warning is only emitted for builtin assignment operations. It is also
+/// suppressed in the event of macro expansions.
+static void DiagnoseSelfAssignment(Sema &S, Expr *lhs, Expr *rhs,
+ SourceLocation OpLoc) {
+ if (!S.ActiveTemplateInstantiations.empty())
+ return;
+ if (OpLoc.isInvalid() || OpLoc.isMacroID())
+ return;
+ lhs = lhs->IgnoreParenImpCasts();
+ rhs = rhs->IgnoreParenImpCasts();
+ const DeclRefExpr *LeftDeclRef = dyn_cast<DeclRefExpr>(lhs);
+ const DeclRefExpr *RightDeclRef = dyn_cast<DeclRefExpr>(rhs);
+ if (!LeftDeclRef || !RightDeclRef ||
+ LeftDeclRef->getLocation().isMacroID() ||
+ RightDeclRef->getLocation().isMacroID())
+ return;
+ const ValueDecl *LeftDecl =
+ cast<ValueDecl>(LeftDeclRef->getDecl()->getCanonicalDecl());
+ const ValueDecl *RightDecl =
+ cast<ValueDecl>(RightDeclRef->getDecl()->getCanonicalDecl());
+ if (LeftDecl != RightDecl)
+ return;
+ if (LeftDecl->getType().isVolatileQualified())
+ return;
+ if (const ReferenceType *RefTy = LeftDecl->getType()->getAs<ReferenceType>())
+ if (RefTy->getPointeeType().isVolatileQualified())
+ return;
+
+ S.Diag(OpLoc, diag::warn_self_assignment)
+ << LeftDeclRef->getType()
+ << lhs->getSourceRange() << rhs->getSourceRange();
+}
+
/// CreateBuiltinBinOp - Creates a new built-in binary operation with
/// operator @p Opc at location @c TokLoc. This routine only supports
/// built-in operations; ActOnBinOp handles overloaded operators.
ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
- unsigned Op,
+ BinaryOperatorKind Opc,
Expr *lhs, Expr *rhs) {
QualType ResultTy; // Result type of the binary operator.
- BinaryOperatorKind Opc = (BinaryOperatorKind) Op;
// The following two variables are used for compound assignment operators
QualType CompLHSTy; // Type of LHS after promotions for computation
QualType CompResultTy; // Type of computation result
+ ExprValueKind VK = VK_RValue;
+ ExprObjectKind OK = OK_Ordinary;
switch (Opc) {
case BO_Assign:
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
+ if (getLangOptions().CPlusPlus &&
+ lhs->getObjectKind() != OK_ObjCProperty) {
+ VK = lhs->getValueKind();
+ OK = lhs->getObjectKind();
+ }
+ if (!ResultTy.isNull())
+ DiagnoseSelfAssignment(*this, lhs, rhs, OpLoc);
break;
case BO_PtrMemD:
case BO_PtrMemI:
- ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
+ ResultTy = CheckPointerToMemberOperands(lhs, rhs, VK, OpLoc,
Opc == BO_PtrMemI);
break;
case BO_Mul:
@@ -6518,7 +7983,7 @@ ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
case BO_MulAssign:
case BO_DivAssign:
CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true,
- Opc == BO_DivAssign);
+ Opc == BO_DivAssign);
CompLHSTy = CompResultTy;
if (!CompResultTy.isNull())
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
@@ -6555,22 +8020,26 @@ ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
break;
case BO_Comma:
- ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
+ ResultTy = CheckCommaOperands(*this, lhs, rhs, OpLoc);
+ if (getLangOptions().CPlusPlus) {
+ VK = rhs->getValueKind();
+ OK = rhs->getObjectKind();
+ }
break;
}
if (ResultTy.isNull())
return ExprError();
- if (ResultTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
- if (Opc >= BO_Assign && Opc <= BO_OrAssign)
- Diag(OpLoc, diag::err_assignment_requires_nonfragile_object)
- << ResultTy;
- }
if (CompResultTy.isNull())
- return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
- else
- return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
- CompLHSTy, CompResultTy,
- OpLoc));
+ return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy,
+ VK, OK, OpLoc));
+
+ if (getLangOptions().CPlusPlus && lhs->getObjectKind() != OK_ObjCProperty) {
+ VK = VK_LValue;
+ OK = lhs->getObjectKind();
+ }
+ return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
+ VK, OK, CompLHSTy,
+ CompResultTy, OpLoc));
}
/// SuggestParentheses - Emit a diagnostic together with a fixit hint that wraps
@@ -6660,13 +8129,87 @@ static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
rhs->getSourceRange());
}
+/// \brief It accepts a '&&' expr that is inside a '||' one.
+/// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
+/// in parentheses.
+static void
+EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
+ Expr *E) {
+ assert(isa<BinaryOperator>(E) &&
+ cast<BinaryOperator>(E)->getOpcode() == BO_LAnd);
+ SuggestParentheses(Self, OpLoc,
+ Self.PDiag(diag::warn_logical_and_in_logical_or)
+ << E->getSourceRange(),
+ Self.PDiag(diag::note_logical_and_in_logical_or_silence),
+ E->getSourceRange(),
+ Self.PDiag(0), SourceRange());
+}
+
+/// \brief Returns true if the given expression can be evaluated as a constant
+/// 'true'.
+static bool EvaluatesAsTrue(Sema &S, Expr *E) {
+ bool Res;
+ return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
+}
+
+/// \brief Returns true if the given expression can be evaluated as a constant
+/// 'false'.
+static bool EvaluatesAsFalse(Sema &S, Expr *E) {
+ bool Res;
+ return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
+}
+
+/// \brief Look for '&&' in the left hand of a '||' expr.
+static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
+ Expr *OrLHS, Expr *OrRHS) {
+ if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrLHS)) {
+ if (Bop->getOpcode() == BO_LAnd) {
+ // If it's "a && b || 0" don't warn since the precedence doesn't matter.
+ if (EvaluatesAsFalse(S, OrRHS))
+ return;
+ // If it's "1 && a || b" don't warn since the precedence doesn't matter.
+ if (!EvaluatesAsTrue(S, Bop->getLHS()))
+ return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
+ } else if (Bop->getOpcode() == BO_LOr) {
+ if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
+ // If it's "a || b && 1 || c" we didn't warn earlier for
+ // "a || b && 1", but warn now.
+ if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
+ return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
+ }
+ }
+ }
+}
+
+/// \brief Look for '&&' in the right hand of a '||' expr.
+static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
+ Expr *OrLHS, Expr *OrRHS) {
+ if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrRHS)) {
+ if (Bop->getOpcode() == BO_LAnd) {
+ // If it's "0 || a && b" don't warn since the precedence doesn't matter.
+ if (EvaluatesAsFalse(S, OrLHS))
+ return;
+ // If it's "a || b && 1" don't warn since the precedence doesn't matter.
+ if (!EvaluatesAsTrue(S, Bop->getRHS()))
+ return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
+ }
+ }
+}
+
/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
-/// precedence. This currently diagnoses only "arg1 'bitwise' arg2 'eq' arg3".
-/// But it could also warn about arg1 && arg2 || arg3, as GCC 4.3+ does.
+/// precedence.
static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
SourceLocation OpLoc, Expr *lhs, Expr *rhs){
+ // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
if (BinaryOperator::isBitwiseOp(Opc))
- DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs);
+ return DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs);
+
+ // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
+ // We don't warn for 'assert(a || b && "bad")' since this is safe.
+ if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
+ DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, lhs, rhs);
+ DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, lhs, rhs);
+ }
}
// Binary Operators. 'Tok' is the token for the operator.
@@ -6686,22 +8229,34 @@ ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
BinaryOperatorKind Opc,
Expr *lhs, Expr *rhs) {
- if (getLangOptions().CPlusPlus &&
- (lhs->getType()->isOverloadableType() ||
- rhs->getType()->isOverloadableType())) {
- // Find all of the overloaded operators visible from this
- // point. We perform both an operator-name lookup from the local
- // scope and an argument-dependent lookup based on the types of
- // the arguments.
- UnresolvedSet<16> Functions;
- OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
- if (S && OverOp != OO_None)
- LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
- Functions);
+ if (getLangOptions().CPlusPlus) {
+ bool UseBuiltinOperator;
- // Build the (potentially-overloaded, potentially-dependent)
- // binary operation.
- return CreateOverloadedBinOp(OpLoc, Opc, Functions, lhs, rhs);
+ if (lhs->isTypeDependent() || rhs->isTypeDependent()) {
+ UseBuiltinOperator = false;
+ } else if (Opc == BO_Assign && lhs->getObjectKind() == OK_ObjCProperty) {
+ UseBuiltinOperator = true;
+ } else {
+ UseBuiltinOperator = !lhs->getType()->isOverloadableType() &&
+ !rhs->getType()->isOverloadableType();
+ }
+
+ if (!UseBuiltinOperator) {
+ // Find all of the overloaded operators visible from this
+ // point. We perform both an operator-name lookup from the local
+ // scope and an argument-dependent lookup based on the types of
+ // the arguments.
+ UnresolvedSet<16> Functions;
+ OverloadedOperatorKind OverOp
+ = BinaryOperator::getOverloadedOperator(Opc);
+ if (S && OverOp != OO_None)
+ LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
+ Functions);
+
+ // Build the (potentially-overloaded, potentially-dependent)
+ // binary operation.
+ return CreateOverloadedBinOp(OpLoc, Opc, Functions, lhs, rhs);
+ }
}
// Build a built-in binary operation.
@@ -6709,28 +8264,28 @@ ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
}
ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
- unsigned OpcIn,
- Expr *Input) {
- UnaryOperatorKind Opc = static_cast<UnaryOperatorKind>(OpcIn);
-
+ UnaryOperatorKind Opc,
+ Expr *Input) {
+ ExprValueKind VK = VK_RValue;
+ ExprObjectKind OK = OK_Ordinary;
QualType resultType;
switch (Opc) {
case UO_PreInc:
case UO_PreDec:
case UO_PostInc:
case UO_PostDec:
- resultType = CheckIncrementDecrementOperand(Input, OpLoc,
+ resultType = CheckIncrementDecrementOperand(*this, Input, VK, OpLoc,
Opc == UO_PreInc ||
Opc == UO_PostInc,
Opc == UO_PreInc ||
Opc == UO_PreDec);
break;
case UO_AddrOf:
- resultType = CheckAddressOfOperand(Input, OpLoc);
+ resultType = CheckAddressOfOperand(*this, Input, OpLoc);
break;
case UO_Deref:
DefaultFunctionArrayLvalueConversion(Input);
- resultType = CheckIndirectionOperand(Input, OpLoc);
+ resultType = CheckIndirectionOperand(*this, Input, VK, OpLoc);
break;
case UO_Plus:
case UO_Minus:
@@ -6748,6 +8303,11 @@ ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
Opc == UO_Plus &&
resultType->isPointerType())
break;
+ else if (resultType->isPlaceholderType()) {
+ ExprResult PR = CheckPlaceholderExpr(Input, OpLoc);
+ if (PR.isInvalid()) return ExprError();
+ return CreateBuiltinUnaryOp(OpLoc, Opc, PR.take());
+ }
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
<< resultType << Input->getSourceRange());
@@ -6761,9 +8321,16 @@ ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
// C99 does not support '~' for complex conjugation.
Diag(OpLoc, diag::ext_integer_complement_complex)
<< resultType << Input->getSourceRange();
- else if (!resultType->hasIntegerRepresentation())
+ else if (resultType->hasIntegerRepresentation())
+ break;
+ else if (resultType->isPlaceholderType()) {
+ ExprResult PR = CheckPlaceholderExpr(Input, OpLoc);
+ if (PR.isInvalid()) return ExprError();
+ return CreateBuiltinUnaryOp(OpLoc, Opc, PR.take());
+ } else {
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
<< resultType << Input->getSourceRange());
+ }
break;
case UO_LNot: // logical negation
// Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
@@ -6771,25 +8338,40 @@ ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
resultType = Input->getType();
if (resultType->isDependentType())
break;
- if (!resultType->isScalarType()) // C99 6.5.3.3p1
+ if (resultType->isScalarType()) { // C99 6.5.3.3p1
+ // ok, fallthrough
+ } else if (resultType->isPlaceholderType()) {
+ ExprResult PR = CheckPlaceholderExpr(Input, OpLoc);
+ if (PR.isInvalid()) return ExprError();
+ return CreateBuiltinUnaryOp(OpLoc, Opc, PR.take());
+ } else {
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
<< resultType << Input->getSourceRange());
+ }
+
// LNot always has type int. C99 6.5.3.3p5.
// In C++, it's bool. C++ 5.3.1p8
- resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
+ resultType = Context.getLogicalOperationType();
break;
case UO_Real:
case UO_Imag:
- resultType = CheckRealImagOperand(Input, OpLoc, Opc == UO_Real);
+ resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
+ // _Real and _Imag map ordinary l-values into ordinary l-values.
+ if (Input->getValueKind() != VK_RValue &&
+ Input->getObjectKind() == OK_Ordinary)
+ VK = Input->getValueKind();
break;
case UO_Extension:
resultType = Input->getType();
+ VK = Input->getValueKind();
+ OK = Input->getObjectKind();
break;
}
if (resultType.isNull())
return ExprError();
- return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
+ return Owned(new (Context) UnaryOperator(Input, Opc, resultType,
+ VK, OK, OpLoc));
}
ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
@@ -6815,24 +8397,16 @@ ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
// Unary Operators. 'Tok' is the token for the operator.
ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
- tok::TokenKind Op, Expr *Input) {
+ tok::TokenKind Op, Expr *Input) {
return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
}
/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
-ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
- SourceLocation LabLoc,
- IdentifierInfo *LabelII) {
- // Look up the record for this label identifier.
- LabelStmt *&LabelDecl = getCurFunction()->LabelMap[LabelII];
-
- // If we haven't seen this label yet, create a forward reference. It
- // will be validated and/or cleaned up in ActOnFinishFunctionBody.
- if (LabelDecl == 0)
- LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
-
+ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
+ LabelDecl *TheDecl) {
+ TheDecl->setUsed();
// Create the AST node. The address of a label always has type 'void*'.
- return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
+ return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
Context.getPointerType(Context.VoidTy)));
}
@@ -6854,28 +8428,54 @@ Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
// If there are sub stmts in the compound stmt, take the type of the last one
// as the type of the stmtexpr.
QualType Ty = Context.VoidTy;
-
+ bool StmtExprMayBindToTemp = false;
if (!Compound->body_empty()) {
Stmt *LastStmt = Compound->body_back();
+ LabelStmt *LastLabelStmt = 0;
// If LastStmt is a label, skip down through into the body.
- while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
+ while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
+ LastLabelStmt = Label;
LastStmt = Label->getSubStmt();
+ }
+ if (Expr *LastExpr = dyn_cast<Expr>(LastStmt)) {
+ // Do function/array conversion on the last expression, but not
+ // lvalue-to-rvalue. However, initialize an unqualified type.
+ DefaultFunctionArrayConversion(LastExpr);
+ Ty = LastExpr->getType().getUnqualifiedType();
- if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
- Ty = LastExpr->getType();
+ if (!Ty->isDependentType() && !LastExpr->isTypeDependent()) {
+ ExprResult Res = PerformCopyInitialization(
+ InitializedEntity::InitializeResult(LPLoc,
+ Ty,
+ false),
+ SourceLocation(),
+ Owned(LastExpr));
+ if (Res.isInvalid())
+ return ExprError();
+ if ((LastExpr = Res.takeAs<Expr>())) {
+ if (!LastLabelStmt)
+ Compound->setLastStmt(LastExpr);
+ else
+ LastLabelStmt->setSubStmt(LastExpr);
+ StmtExprMayBindToTemp = true;
+ }
+ }
+ }
}
// FIXME: Check that expression type is complete/non-abstract; statement
// expressions are not lvalues.
-
- return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
+ Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
+ if (StmtExprMayBindToTemp)
+ return MaybeBindToTemporary(ResStmtExpr);
+ return Owned(ResStmtExpr);
}
ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
- TypeSourceInfo *TInfo,
- OffsetOfComponent *CompPtr,
- unsigned NumComponents,
- SourceLocation RParenLoc) {
+ TypeSourceInfo *TInfo,
+ OffsetOfComponent *CompPtr,
+ unsigned NumComponents,
+ SourceLocation RParenLoc) {
QualType ArgTy = TInfo->getType();
bool Dependent = ArgTy->isDependentType();
SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
@@ -6974,6 +8574,12 @@ ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
LookupQualifiedName(R, RD);
FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
+ IndirectFieldDecl *IndirectMemberDecl = 0;
+ if (!MemberDecl) {
+ if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
+ MemberDecl = IndirectMemberDecl->getAnonField();
+ }
+
if (!MemberDecl)
return ExprError(Diag(BuiltinLoc, diag::err_no_member)
<< OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
@@ -6992,12 +8598,8 @@ ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
}
RecordDecl *Parent = MemberDecl->getParent();
- bool AnonStructUnion = Parent->isAnonymousStructOrUnion();
- if (AnonStructUnion) {
- do {
- Parent = cast<RecordDecl>(Parent->getParent());
- } while (Parent->isAnonymousStructOrUnion());
- }
+ if (IndirectMemberDecl)
+ Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
// If the member was found in a base class, introduce OffsetOfNodes for
// the base class indirections.
@@ -7010,15 +8612,17 @@ ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
Comps.push_back(OffsetOfNode(B->Base));
}
- if (AnonStructUnion) {
- llvm::SmallVector<FieldDecl*, 4> Path;
- BuildAnonymousStructUnionMemberPath(MemberDecl, Path);
- unsigned n = Path.size();
- for (int j = n - 1; j > -1; --j)
- Comps.push_back(OffsetOfNode(OC.LocStart, Path[j], OC.LocEnd));
- } else {
+ if (IndirectMemberDecl) {
+ for (IndirectFieldDecl::chain_iterator FI =
+ IndirectMemberDecl->chain_begin(),
+ FEnd = IndirectMemberDecl->chain_end(); FI != FEnd; FI++) {
+ assert(isa<FieldDecl>(*FI));
+ Comps.push_back(OffsetOfNode(OC.LocStart,
+ cast<FieldDecl>(*FI), OC.LocEnd));
+ }
+ } else
Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
- }
+
CurrentType = MemberDecl->getType().getNonReferenceType();
}
@@ -7028,13 +8632,13 @@ ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
}
ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
- SourceLocation BuiltinLoc,
- SourceLocation TypeLoc,
- ParsedType argty,
- OffsetOfComponent *CompPtr,
- unsigned NumComponents,
- SourceLocation RPLoc) {
-
+ SourceLocation BuiltinLoc,
+ SourceLocation TypeLoc,
+ ParsedType argty,
+ OffsetOfComponent *CompPtr,
+ unsigned NumComponents,
+ SourceLocation RPLoc) {
+
TypeSourceInfo *ArgTInfo;
QualType ArgTy = GetTypeFromParser(argty, &ArgTInfo);
if (ArgTy.isNull())
@@ -7048,41 +8652,14 @@ ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
}
-ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
- ParsedType arg1,ParsedType arg2,
- SourceLocation RPLoc) {
- TypeSourceInfo *argTInfo1;
- QualType argT1 = GetTypeFromParser(arg1, &argTInfo1);
- TypeSourceInfo *argTInfo2;
- QualType argT2 = GetTypeFromParser(arg2, &argTInfo2);
-
- assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
-
- return BuildTypesCompatibleExpr(BuiltinLoc, argTInfo1, argTInfo2, RPLoc);
-}
-
-ExprResult
-Sema::BuildTypesCompatibleExpr(SourceLocation BuiltinLoc,
- TypeSourceInfo *argTInfo1,
- TypeSourceInfo *argTInfo2,
- SourceLocation RPLoc) {
- if (getLangOptions().CPlusPlus) {
- Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus)
- << SourceRange(BuiltinLoc, RPLoc);
- return ExprError();
- }
-
- return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
- argTInfo1, argTInfo2, RPLoc));
-}
-
-
ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
- Expr *CondExpr,
- Expr *LHSExpr, Expr *RHSExpr,
- SourceLocation RPLoc) {
+ Expr *CondExpr,
+ Expr *LHSExpr, Expr *RHSExpr,
+ SourceLocation RPLoc) {
assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
+ ExprValueKind VK = VK_RValue;
+ ExprObjectKind OK = OK_Ordinary;
QualType resType;
bool ValueDependent = false;
if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
@@ -7098,13 +8675,16 @@ ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
<< CondExpr->getSourceRange());
// If the condition is > zero, then the AST type is the same as the LSHExpr.
- resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
- ValueDependent = condEval.getZExtValue() ? LHSExpr->isValueDependent()
- : RHSExpr->isValueDependent();
+ Expr *ActiveExpr = condEval.getZExtValue() ? LHSExpr : RHSExpr;
+
+ resType = ActiveExpr->getType();
+ ValueDependent = ActiveExpr->isValueDependent();
+ VK = ActiveExpr->getValueKind();
+ OK = ActiveExpr->getObjectKind();
}
return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
- resType, RPLoc,
+ resType, VK, OK, RPLoc,
resType->isDependentType(),
ValueDependent));
}
@@ -7126,32 +8706,51 @@ void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
+ assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
BlockScopeInfo *CurBlock = getCurBlock();
TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
- CurBlock->TheDecl->setSignatureAsWritten(Sig);
QualType T = Sig->getType();
- bool isVariadic;
- QualType RetTy;
- if (const FunctionType *Fn = T->getAs<FunctionType>()) {
- CurBlock->FunctionType = T;
- RetTy = Fn->getResultType();
- isVariadic =
- !isa<FunctionProtoType>(Fn) || cast<FunctionProtoType>(Fn)->isVariadic();
- } else {
- RetTy = T;
- isVariadic = false;
- }
+ // GetTypeForDeclarator always produces a function type for a block
+ // literal signature. Furthermore, it is always a FunctionProtoType
+ // unless the function was written with a typedef.
+ assert(T->isFunctionType() &&
+ "GetTypeForDeclarator made a non-function block signature");
- CurBlock->TheDecl->setIsVariadic(isVariadic);
+ // Look for an explicit signature in that function type.
+ FunctionProtoTypeLoc ExplicitSignature;
- // Don't allow returning an array by value.
- if (RetTy->isArrayType()) {
- Diag(ParamInfo.getSourceRange().getBegin(), diag::err_block_returns_array);
- return;
+ TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
+ if (isa<FunctionProtoTypeLoc>(tmp)) {
+ ExplicitSignature = cast<FunctionProtoTypeLoc>(tmp);
+
+ // Check whether that explicit signature was synthesized by
+ // GetTypeForDeclarator. If so, don't save that as part of the
+ // written signature.
+ if (ExplicitSignature.getLParenLoc() ==
+ ExplicitSignature.getRParenLoc()) {
+ // This would be much cheaper if we stored TypeLocs instead of
+ // TypeSourceInfos.
+ TypeLoc Result = ExplicitSignature.getResultLoc();
+ unsigned Size = Result.getFullDataSize();
+ Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
+ Sig->getTypeLoc().initializeFullCopy(Result, Size);
+
+ ExplicitSignature = FunctionProtoTypeLoc();
+ }
}
+ CurBlock->TheDecl->setSignatureAsWritten(Sig);
+ CurBlock->FunctionType = T;
+
+ const FunctionType *Fn = T->getAs<FunctionType>();
+ QualType RetTy = Fn->getResultType();
+ bool isVariadic =
+ (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
+
+ CurBlock->TheDecl->setIsVariadic(isVariadic);
+
// Don't allow returning a objc interface by value.
if (RetTy->isObjCObjectType()) {
Diag(ParamInfo.getSourceRange().getBegin(),
@@ -7168,10 +8767,9 @@ void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
// Push block parameters from the declarator if we had them.
llvm::SmallVector<ParmVarDecl*, 8> Params;
- if (isa<FunctionProtoType>(T)) {
- FunctionProtoTypeLoc TL = cast<FunctionProtoTypeLoc>(Sig->getTypeLoc());
- for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
- ParmVarDecl *Param = TL.getArg(I);
+ if (ExplicitSignature) {
+ for (unsigned I = 0, E = ExplicitSignature.getNumArgs(); I != E; ++I) {
+ ParmVarDecl *Param = ExplicitSignature.getArg(I);
if (Param->getIdentifier() == 0 &&
!Param->isImplicit() &&
!Param->isInvalidDecl() &&
@@ -7194,9 +8792,13 @@ void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
}
// Set the parameters on the block decl.
- if (!Params.empty())
+ if (!Params.empty()) {
CurBlock->TheDecl->setParams(Params.data(), Params.size());
-
+ CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
+ CurBlock->TheDecl->param_end(),
+ /*CheckParameterNames=*/false);
+ }
+
// Finally we can process decl attributes.
ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
@@ -7211,17 +8813,13 @@ void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
if (Params.empty())
return;
- bool ShouldCheckShadow =
- Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
-
for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
(*AI)->setOwningFunction(CurBlock->TheDecl);
// If this has an identifier, add it to the scope stack.
if ((*AI)->getIdentifier()) {
- if (ShouldCheckShadow)
- CheckShadow(CurBlock->TheScope, *AI);
+ CheckShadow(CurBlock->TheScope, *AI);
PushOnScopeChains(*AI, CurBlock->TheScope);
}
@@ -7234,13 +8832,12 @@ void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
// Pop off CurBlock, handle nested blocks.
PopDeclContext();
PopFunctionOrBlockScope();
- // FIXME: Delete the ParmVarDecl objects as well???
}
/// ActOnBlockStmtExpr - This is called when the body of a block statement
/// literal was successfully completed. ^(int x){...}
ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
- Stmt *Body, Scope *CurScope) {
+ Stmt *Body, Scope *CurScope) {
// If blocks are disabled, emit an error.
if (!LangOpts.Blocks)
Diag(CaretLoc, diag::err_blocks_disable);
@@ -7256,6 +8853,10 @@ ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
QualType BlockTy;
+ // Set the captured variables on the block.
+ BSI->TheDecl->setCaptures(Context, BSI->Captures.begin(), BSI->Captures.end(),
+ BSI->CapturesCXXThis);
+
// If the user wrote a function type in some form, try to use that.
if (!BSI->FunctionType.isNull()) {
const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
@@ -7265,8 +8866,9 @@ ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
// Turn protoless block types into nullary block types.
if (isa<FunctionNoProtoType>(FTy)) {
- BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0,
- false, false, 0, 0, Ext);
+ FunctionProtoType::ExtProtoInfo EPI;
+ EPI.ExtInfo = Ext;
+ BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
// Otherwise, if we don't need to change anything about the function type,
// preserve its sugar structure.
@@ -7277,26 +8879,22 @@ ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
// Otherwise, make the minimal modifications to the function type.
} else {
const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
+ FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
+ EPI.TypeQuals = 0; // FIXME: silently?
+ EPI.ExtInfo = Ext;
BlockTy = Context.getFunctionType(RetTy,
FPT->arg_type_begin(),
FPT->getNumArgs(),
- FPT->isVariadic(),
- /*quals*/ 0,
- FPT->hasExceptionSpec(),
- FPT->hasAnyExceptionSpec(),
- FPT->getNumExceptions(),
- FPT->exception_begin(),
- Ext);
+ EPI);
}
// If we don't have a function type, just build one from nothing.
} else {
- BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0,
- false, false, 0, 0,
- FunctionType::ExtInfo(NoReturn, 0, CC_Default));
+ FunctionProtoType::ExtProtoInfo EPI;
+ EPI.ExtInfo = FunctionType::ExtInfo(NoReturn, 0, CC_Default);
+ BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
}
- // FIXME: Check that return/parameter types are complete/non-abstract
DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
BSI->TheDecl->param_end());
BlockTy = Context.getBlockPointerType(BlockTy);
@@ -7307,28 +8905,7 @@ ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
- bool Good = true;
- // Check goto/label use.
- for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
- I = BSI->LabelMap.begin(), E = BSI->LabelMap.end(); I != E; ++I) {
- LabelStmt *L = I->second;
-
- // Verify that we have no forward references left. If so, there was a goto
- // or address of a label taken, but no definition of it.
- if (L->getSubStmt() != 0)
- continue;
-
- // Emit error.
- Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
- Good = false;
- }
- if (!Good) {
- PopFunctionOrBlockScope();
- return ExprError();
- }
-
- BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy,
- BSI->hasBlockDeclRefExprs);
+ BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
// Issue any analysis-based warnings.
const sema::AnalysisBasedWarnings::Policy &WP =
@@ -7343,17 +8920,15 @@ ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
Expr *expr, ParsedType type,
SourceLocation RPLoc) {
TypeSourceInfo *TInfo;
- QualType T = GetTypeFromParser(type, &TInfo);
+ GetTypeFromParser(type, &TInfo);
return BuildVAArgExpr(BuiltinLoc, expr, TInfo, RPLoc);
}
ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
- Expr *E, TypeSourceInfo *TInfo,
- SourceLocation RPLoc) {
+ Expr *E, TypeSourceInfo *TInfo,
+ SourceLocation RPLoc) {
Expr *OrigExpr = E;
- InitBuiltinVaListType();
-
// Get the va_list type
QualType VaListType = Context.getBuiltinVaListType();
if (VaListType->isArrayType()) {
@@ -7389,10 +8964,17 @@ ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
// The type of __null will be int or long, depending on the size of
// pointers on the target.
QualType Ty;
- if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
+ unsigned pw = Context.Target.getPointerWidth(0);
+ if (pw == Context.Target.getIntWidth())
Ty = Context.IntTy;
- else
+ else if (pw == Context.Target.getLongWidth())
Ty = Context.LongTy;
+ else if (pw == Context.Target.getLongLongWidth())
+ Ty = Context.LongLongTy;
+ else {
+ assert(!"I don't know size of pointer!");
+ Ty = Context.IntTy;
+ }
return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
}
@@ -7454,15 +9036,29 @@ bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
case FunctionVoidPointer:
DiagKind = diag::ext_typecheck_convert_pointer_void_func;
break;
+ case IncompatiblePointerDiscardsQualifiers: {
+ // Perform array-to-pointer decay if necessary.
+ if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
+
+ Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
+ Qualifiers rhq = DstType->getPointeeType().getQualifiers();
+ if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
+ DiagKind = diag::err_typecheck_incompatible_address_space;
+ break;
+ }
+
+ llvm_unreachable("unknown error case for discarding qualifiers!");
+ // fallthrough
+ }
case CompatiblePointerDiscardsQualifiers:
// If the qualifiers lost were because we were applying the
// (deprecated) C++ conversion from a string literal to a char*
// (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
// Ideally, this check would be performed in
- // CheckPointerTypesForAssignment. However, that would require a
+ // checkPointerTypesForAssignment. However, that would require a
// bit of refactoring (so that the second argument is an
// expression, rather than a type), which should be done as part
- // of a larger effort to fix CheckPointerTypesForAssignment for
+ // of a larger effort to fix checkPointerTypesForAssignment for
// C++ semantics.
if (getLangOptions().CPlusPlus &&
IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
@@ -7548,7 +9144,8 @@ bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
E->getSourceRange();
if (EvalResult.Diag &&
- Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
+ Diags.getDiagnosticLevel(diag::ext_expr_not_ice, EvalResult.DiagLoc)
+ != Diagnostic::Ignored)
Diag(EvalResult.DiagLoc, EvalResult.Diag);
if (Result)
@@ -7625,7 +9222,7 @@ void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
// -Wunused-parameters)
if (isa<ParmVarDecl>(D) ||
(isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod())) {
- D->setUsed(true);
+ D->setUsed();
return;
}
@@ -7653,6 +9250,11 @@ void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
// potentially evaluated.
ExprEvalContexts.back().addReferencedDecl(Loc, D);
return;
+
+ case PotentiallyEvaluatedIfUsed:
+ // Referenced declarations will only be used if the construct in the
+ // containing expression is used.
+ return;
}
// Note that this declaration has been used.
@@ -7684,6 +9286,9 @@ void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
MarkVTableUsed(Loc, MethodDecl->getParent());
}
if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
+ // Recursive functions should be marked when used from another function.
+ if (CurContext == Function) return;
+
// Implicit instantiation of function templates and member functions of
// class templates.
if (Function->isImplicitlyInstantiable()) {
@@ -7712,19 +9317,23 @@ void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
else
PendingInstantiations.push_back(std::make_pair(Function, Loc));
}
- } else // Walk redefinitions, as some of them may be instantiable.
+ } else {
+ // Walk redefinitions, as some of them may be instantiable.
for (FunctionDecl::redecl_iterator i(Function->redecls_begin()),
e(Function->redecls_end()); i != e; ++i) {
if (!i->isUsed(false) && i->isImplicitlyInstantiable())
MarkDeclarationReferenced(Loc, *i);
}
+ }
- // FIXME: keep track of references to static functions
-
- // Recursive functions should be marked when used from another function.
- if (CurContext != Function)
- Function->setUsed(true);
+ // Keep track of used but undefined functions.
+ if (!Function->isPure() && !Function->hasBody() &&
+ Function->getLinkage() != ExternalLinkage) {
+ SourceLocation &old = UndefinedInternals[Function->getCanonicalDecl()];
+ if (old.isInvalid()) old = Loc;
+ }
+ Function->setUsed(true);
return;
}
@@ -7741,7 +9350,12 @@ void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
}
}
- // FIXME: keep track of references to static data?
+ // Keep track of used but undefined variables.
+ if (Var->hasDefinition() == VarDecl::DeclarationOnly
+ && Var->getLinkage() != ExternalLinkage) {
+ SourceLocation &old = UndefinedInternals[Var->getCanonicalDecl()];
+ if (old.isInvalid()) old = Loc;
+ }
D->setUsed(true);
return;
@@ -7779,8 +9393,7 @@ bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
if (ClassTemplateSpecializationDecl *Spec
= dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
const TemplateArgumentList &Args = Spec->getTemplateArgs();
- return TraverseTemplateArguments(Args.getFlatArgumentList(),
- Args.flat_size());
+ return TraverseTemplateArguments(Args.data(), Args.size());
}
return true;
@@ -7791,6 +9404,70 @@ void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
Marker.TraverseType(Context.getCanonicalType(T));
}
+namespace {
+ /// \brief Helper class that marks all of the declarations referenced by
+ /// potentially-evaluated subexpressions as "referenced".
+ class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
+ Sema &S;
+
+ public:
+ typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
+
+ explicit EvaluatedExprMarker(Sema &S) : Inherited(S.Context), S(S) { }
+
+ void VisitDeclRefExpr(DeclRefExpr *E) {
+ S.MarkDeclarationReferenced(E->getLocation(), E->getDecl());
+ }
+
+ void VisitMemberExpr(MemberExpr *E) {
+ S.MarkDeclarationReferenced(E->getMemberLoc(), E->getMemberDecl());
+ Inherited::VisitMemberExpr(E);
+ }
+
+ void VisitCXXNewExpr(CXXNewExpr *E) {
+ if (E->getConstructor())
+ S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor());
+ if (E->getOperatorNew())
+ S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorNew());
+ if (E->getOperatorDelete())
+ S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete());
+ Inherited::VisitCXXNewExpr(E);
+ }
+
+ void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
+ if (E->getOperatorDelete())
+ S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete());
+ QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
+ if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
+ CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
+ S.MarkDeclarationReferenced(E->getLocStart(),
+ S.LookupDestructor(Record));
+ }
+
+ Inherited::VisitCXXDeleteExpr(E);
+ }
+
+ void VisitCXXConstructExpr(CXXConstructExpr *E) {
+ S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor());
+ Inherited::VisitCXXConstructExpr(E);
+ }
+
+ void VisitBlockDeclRefExpr(BlockDeclRefExpr *E) {
+ S.MarkDeclarationReferenced(E->getLocation(), E->getDecl());
+ }
+
+ void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
+ Visit(E->getExpr());
+ }
+ };
+}
+
+/// \brief Mark any declarations that appear within this expression or any
+/// potentially-evaluated subexpressions as "referenced".
+void Sema::MarkDeclarationsReferencedInExpr(Expr *E) {
+ EvaluatedExprMarker(*this).Visit(E);
+}
+
/// \brief Emit a diagnostic that describes an effect on the run-time behavior
/// of the program being compiled.
///
@@ -7815,6 +9492,7 @@ bool Sema::DiagRuntimeBehavior(SourceLocation Loc,
break;
case PotentiallyEvaluated:
+ case PotentiallyEvaluatedIfUsed:
Diag(Loc, PD);
return true;
@@ -7848,40 +9526,42 @@ bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
return false;
}
-// Diagnose the common s/=/==/ typo. Note that adding parentheses
+// Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
// will prevent this condition from triggering, which is what we want.
void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
SourceLocation Loc;
unsigned diagnostic = diag::warn_condition_is_assignment;
+ bool IsOrAssign = false;
if (isa<BinaryOperator>(E)) {
BinaryOperator *Op = cast<BinaryOperator>(E);
- if (Op->getOpcode() != BO_Assign)
+ if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
return;
+ IsOrAssign = Op->getOpcode() == BO_OrAssign;
+
// Greylist some idioms by putting them into a warning subcategory.
if (ObjCMessageExpr *ME
= dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
Selector Sel = ME->getSelector();
// self = [<foo> init...]
- if (isSelfExpr(Op->getLHS())
- && Sel.getIdentifierInfoForSlot(0)->getName().startswith("init"))
+ if (isSelfExpr(Op->getLHS()) && Sel.getNameForSlot(0).startswith("init"))
diagnostic = diag::warn_condition_is_idiomatic_assignment;
// <foo> = [<bar> nextObject]
- else if (Sel.isUnarySelector() &&
- Sel.getIdentifierInfoForSlot(0)->getName() == "nextObject")
+ else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
diagnostic = diag::warn_condition_is_idiomatic_assignment;
}
Loc = Op->getOperatorLoc();
} else if (isa<CXXOperatorCallExpr>(E)) {
CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(E);
- if (Op->getOperator() != OO_Equal)
+ if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
return;
+ IsOrAssign = Op->getOperator() == OO_PipeEqual;
Loc = Op->getOperatorLoc();
} else {
// Not an assignment.
@@ -7892,29 +9572,63 @@ void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
Diag(Loc, diagnostic) << E->getSourceRange();
- Diag(Loc, diag::note_condition_assign_to_comparison)
- << FixItHint::CreateReplacement(Loc, "==");
+
+ if (IsOrAssign)
+ Diag(Loc, diag::note_condition_or_assign_to_comparison)
+ << FixItHint::CreateReplacement(Loc, "!=");
+ else
+ Diag(Loc, diag::note_condition_assign_to_comparison)
+ << FixItHint::CreateReplacement(Loc, "==");
+
Diag(Loc, diag::note_condition_assign_silence)
<< FixItHint::CreateInsertion(Open, "(")
<< FixItHint::CreateInsertion(Close, ")");
}
+/// \brief Redundant parentheses over an equality comparison can indicate
+/// that the user intended an assignment used as condition.
+void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *parenE) {
+ // Don't warn if the parens came from a macro.
+ SourceLocation parenLoc = parenE->getLocStart();
+ if (parenLoc.isInvalid() || parenLoc.isMacroID())
+ return;
+
+ Expr *E = parenE->IgnoreParens();
+
+ if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
+ if (opE->getOpcode() == BO_EQ &&
+ opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
+ == Expr::MLV_Valid) {
+ SourceLocation Loc = opE->getOperatorLoc();
+
+ Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
+ Diag(Loc, diag::note_equality_comparison_to_assign)
+ << FixItHint::CreateReplacement(Loc, "=");
+ Diag(Loc, diag::note_equality_comparison_silence)
+ << FixItHint::CreateRemoval(parenE->getSourceRange().getBegin())
+ << FixItHint::CreateRemoval(parenE->getSourceRange().getEnd());
+ }
+}
+
bool Sema::CheckBooleanCondition(Expr *&E, SourceLocation Loc) {
DiagnoseAssignmentAsCondition(E);
+ if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
+ DiagnoseEqualityWithExtraParens(parenE);
if (!E->isTypeDependent()) {
+ if (E->isBoundMemberFunction(Context))
+ return Diag(E->getLocStart(), diag::err_invalid_use_of_bound_member_func)
+ << E->getSourceRange();
+
+ if (getLangOptions().CPlusPlus)
+ return CheckCXXBooleanCondition(E); // C++ 6.4p4
+
DefaultFunctionArrayLvalueConversion(E);
QualType T = E->getType();
-
- if (getLangOptions().CPlusPlus) {
- if (CheckCXXBooleanCondition(E)) // C++ 6.4p4
- return true;
- } else if (!T->isScalarType()) { // C99 6.8.4.1p1
- Diag(Loc, diag::err_typecheck_statement_requires_scalar)
- << T << E->getSourceRange();
- return true;
- }
+ if (!T->isScalarType()) // C99 6.8.4.1p1
+ return Diag(Loc, diag::err_typecheck_statement_requires_scalar)
+ << T << E->getSourceRange();
}
return false;
@@ -7930,3 +9644,26 @@ ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
return Owned(Sub);
}
+
+/// Check for operands with placeholder types and complain if found.
+/// Returns true if there was an error and no recovery was possible.
+ExprResult Sema::CheckPlaceholderExpr(Expr *E, SourceLocation Loc) {
+ const BuiltinType *BT = E->getType()->getAs<BuiltinType>();
+ if (!BT || !BT->isPlaceholderType()) return Owned(E);
+
+ // If this is overload, check for a single overload.
+ assert(BT->getKind() == BuiltinType::Overload);
+
+ if (FunctionDecl *Specialization
+ = ResolveSingleFunctionTemplateSpecialization(E)) {
+ // The access doesn't really matter in this case.
+ DeclAccessPair Found = DeclAccessPair::make(Specialization,
+ Specialization->getAccess());
+ E = FixOverloadedFunctionReference(E, Found, Specialization);
+ if (!E) return ExprError();
+ return Owned(E);
+ }
+
+ Diag(Loc, diag::err_ovl_unresolvable) << E->getSourceRange();
+ return ExprError();
+}
OpenPOWER on IntegriCloud