summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/Sema/SemaExpr.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/Sema/SemaExpr.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaExpr.cpp7754
1 files changed, 7754 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaExpr.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaExpr.cpp
new file mode 100644
index 0000000..f745352
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaExpr.cpp
@@ -0,0 +1,7754 @@
+//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements semantic analysis for expressions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Sema.h"
+#include "SemaInit.h"
+#include "Lookup.h"
+#include "AnalysisBasedWarnings.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/AST/RecursiveASTVisitor.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/Basic/PartialDiagnostic.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Lex/LiteralSupport.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Parse/DeclSpec.h"
+#include "clang/Parse/Designator.h"
+#include "clang/Parse/Scope.h"
+#include "clang/Parse/Template.h"
+using namespace clang;
+
+
+/// \brief Determine whether the use of this declaration is valid, and
+/// emit any corresponding diagnostics.
+///
+/// This routine diagnoses various problems with referencing
+/// declarations that can occur when using a declaration. For example,
+/// it might warn if a deprecated or unavailable declaration is being
+/// used, or produce an error (and return true) if a C++0x deleted
+/// function is being used.
+///
+/// If IgnoreDeprecated is set to true, this should not want about deprecated
+/// decls.
+///
+/// \returns true if there was an error (this declaration cannot be
+/// referenced), false otherwise.
+///
+bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
+ // See if the decl is deprecated.
+ if (D->getAttr<DeprecatedAttr>()) {
+ EmitDeprecationWarning(D, Loc);
+ }
+
+ // See if the decl is unavailable
+ if (D->getAttr<UnavailableAttr>()) {
+ Diag(Loc, diag::warn_unavailable) << D->getDeclName();
+ Diag(D->getLocation(), diag::note_unavailable_here) << 0;
+ }
+
+ // See if this is a deleted function.
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ if (FD->isDeleted()) {
+ Diag(Loc, diag::err_deleted_function_use);
+ Diag(D->getLocation(), diag::note_unavailable_here) << true;
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
+/// (and other functions in future), which have been declared with sentinel
+/// attribute. It warns if call does not have the sentinel argument.
+///
+void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
+ Expr **Args, unsigned NumArgs) {
+ const SentinelAttr *attr = D->getAttr<SentinelAttr>();
+ if (!attr)
+ return;
+
+ // FIXME: In C++0x, if any of the arguments are parameter pack
+ // expansions, we can't check for the sentinel now.
+ int sentinelPos = attr->getSentinel();
+ int nullPos = attr->getNullPos();
+
+ // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
+ // base class. Then we won't be needing two versions of the same code.
+ unsigned int i = 0;
+ bool warnNotEnoughArgs = false;
+ int isMethod = 0;
+ if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
+ // skip over named parameters.
+ ObjCMethodDecl::param_iterator P, E = MD->param_end();
+ for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
+ if (nullPos)
+ --nullPos;
+ else
+ ++i;
+ }
+ warnNotEnoughArgs = (P != E || i >= NumArgs);
+ isMethod = 1;
+ } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ // skip over named parameters.
+ ObjCMethodDecl::param_iterator P, E = FD->param_end();
+ for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
+ if (nullPos)
+ --nullPos;
+ else
+ ++i;
+ }
+ warnNotEnoughArgs = (P != E || i >= NumArgs);
+ } else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
+ // block or function pointer call.
+ QualType Ty = V->getType();
+ if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
+ const FunctionType *FT = Ty->isFunctionPointerType()
+ ? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>()
+ : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
+ if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
+ unsigned NumArgsInProto = Proto->getNumArgs();
+ unsigned k;
+ for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
+ if (nullPos)
+ --nullPos;
+ else
+ ++i;
+ }
+ warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
+ }
+ if (Ty->isBlockPointerType())
+ isMethod = 2;
+ } else
+ return;
+ } else
+ return;
+
+ if (warnNotEnoughArgs) {
+ Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
+ Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
+ return;
+ }
+ int sentinel = i;
+ while (sentinelPos > 0 && i < NumArgs-1) {
+ --sentinelPos;
+ ++i;
+ }
+ if (sentinelPos > 0) {
+ Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
+ Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
+ return;
+ }
+ while (i < NumArgs-1) {
+ ++i;
+ ++sentinel;
+ }
+ Expr *sentinelExpr = Args[sentinel];
+ if (!sentinelExpr) return;
+ if (sentinelExpr->isTypeDependent()) return;
+ if (sentinelExpr->isValueDependent()) return;
+ if (sentinelExpr->getType()->isPointerType() &&
+ sentinelExpr->IgnoreParenCasts()->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNull))
+ return;
+
+ // Unfortunately, __null has type 'int'.
+ if (isa<GNUNullExpr>(sentinelExpr)) return;
+
+ Diag(Loc, diag::warn_missing_sentinel) << isMethod;
+ Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
+}
+
+SourceRange Sema::getExprRange(ExprTy *E) const {
+ Expr *Ex = (Expr *)E;
+ return Ex? Ex->getSourceRange() : SourceRange();
+}
+
+//===----------------------------------------------------------------------===//
+// Standard Promotions and Conversions
+//===----------------------------------------------------------------------===//
+
+/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
+void Sema::DefaultFunctionArrayConversion(Expr *&E) {
+ QualType Ty = E->getType();
+ assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
+
+ if (Ty->isFunctionType())
+ ImpCastExprToType(E, Context.getPointerType(Ty),
+ CastExpr::CK_FunctionToPointerDecay);
+ else if (Ty->isArrayType()) {
+ // In C90 mode, arrays only promote to pointers if the array expression is
+ // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
+ // type 'array of type' is converted to an expression that has type 'pointer
+ // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
+ // that has type 'array of type' ...". The relevant change is "an lvalue"
+ // (C90) to "an expression" (C99).
+ //
+ // C++ 4.2p1:
+ // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
+ // T" can be converted to an rvalue of type "pointer to T".
+ //
+ if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
+ E->isLvalue(Context) == Expr::LV_Valid)
+ ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
+ CastExpr::CK_ArrayToPointerDecay);
+ }
+}
+
+void Sema::DefaultFunctionArrayLvalueConversion(Expr *&E) {
+ DefaultFunctionArrayConversion(E);
+
+ QualType Ty = E->getType();
+ assert(!Ty.isNull() && "DefaultFunctionArrayLvalueConversion - missing type");
+ if (!Ty->isDependentType() && Ty.hasQualifiers() &&
+ (!getLangOptions().CPlusPlus || !Ty->isRecordType()) &&
+ E->isLvalue(Context) == Expr::LV_Valid) {
+ // C++ [conv.lval]p1:
+ // [...] If T is a non-class type, the type of the rvalue is the
+ // cv-unqualified version of T. Otherwise, the type of the
+ // rvalue is T
+ //
+ // C99 6.3.2.1p2:
+ // If the lvalue has qualified type, the value has the unqualified
+ // version of the type of the lvalue; otherwise, the value has the
+ // type of the lvalue.
+ ImpCastExprToType(E, Ty.getUnqualifiedType(), CastExpr::CK_NoOp);
+ }
+}
+
+
+/// UsualUnaryConversions - Performs various conversions that are common to most
+/// operators (C99 6.3). The conversions of array and function types are
+/// sometimes surpressed. For example, the array->pointer conversion doesn't
+/// apply if the array is an argument to the sizeof or address (&) operators.
+/// In these instances, this routine should *not* be called.
+Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
+ QualType Ty = Expr->getType();
+ assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
+
+ // C99 6.3.1.1p2:
+ //
+ // The following may be used in an expression wherever an int or
+ // unsigned int may be used:
+ // - an object or expression with an integer type whose integer
+ // conversion rank is less than or equal to the rank of int
+ // and unsigned int.
+ // - A bit-field of type _Bool, int, signed int, or unsigned int.
+ //
+ // If an int can represent all values of the original type, the
+ // value is converted to an int; otherwise, it is converted to an
+ // unsigned int. These are called the integer promotions. All
+ // other types are unchanged by the integer promotions.
+ QualType PTy = Context.isPromotableBitField(Expr);
+ if (!PTy.isNull()) {
+ ImpCastExprToType(Expr, PTy, CastExpr::CK_IntegralCast);
+ return Expr;
+ }
+ if (Ty->isPromotableIntegerType()) {
+ QualType PT = Context.getPromotedIntegerType(Ty);
+ ImpCastExprToType(Expr, PT, CastExpr::CK_IntegralCast);
+ return Expr;
+ }
+
+ DefaultFunctionArrayLvalueConversion(Expr);
+ return Expr;
+}
+
+/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
+/// do not have a prototype. Arguments that have type float are promoted to
+/// double. All other argument types are converted by UsualUnaryConversions().
+void Sema::DefaultArgumentPromotion(Expr *&Expr) {
+ QualType Ty = Expr->getType();
+ assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
+
+ // If this is a 'float' (CVR qualified or typedef) promote to double.
+ if (Ty->isSpecificBuiltinType(BuiltinType::Float))
+ return ImpCastExprToType(Expr, Context.DoubleTy,
+ CastExpr::CK_FloatingCast);
+
+ UsualUnaryConversions(Expr);
+}
+
+/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
+/// will warn if the resulting type is not a POD type, and rejects ObjC
+/// interfaces passed by value. This returns true if the argument type is
+/// completely illegal.
+bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT,
+ FunctionDecl *FDecl) {
+ DefaultArgumentPromotion(Expr);
+
+ // __builtin_va_start takes the second argument as a "varargs" argument, but
+ // it doesn't actually do anything with it. It doesn't need to be non-pod
+ // etc.
+ if (FDecl && FDecl->getBuiltinID() == Builtin::BI__builtin_va_start)
+ return false;
+
+ if (Expr->getType()->isObjCObjectType() &&
+ DiagRuntimeBehavior(Expr->getLocStart(),
+ PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
+ << Expr->getType() << CT))
+ return true;
+
+ if (!Expr->getType()->isPODType() &&
+ DiagRuntimeBehavior(Expr->getLocStart(),
+ PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
+ << Expr->getType() << CT))
+ return true;
+
+ return false;
+}
+
+
+/// UsualArithmeticConversions - Performs various conversions that are common to
+/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
+/// routine returns the first non-arithmetic type found. The client is
+/// responsible for emitting appropriate error diagnostics.
+/// FIXME: verify the conversion rules for "complex int" are consistent with
+/// GCC.
+QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
+ bool isCompAssign) {
+ if (!isCompAssign)
+ UsualUnaryConversions(lhsExpr);
+
+ UsualUnaryConversions(rhsExpr);
+
+ // For conversion purposes, we ignore any qualifiers.
+ // For example, "const float" and "float" are equivalent.
+ QualType lhs =
+ Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
+ QualType rhs =
+ Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
+
+ // If both types are identical, no conversion is needed.
+ if (lhs == rhs)
+ return lhs;
+
+ // If either side is a non-arithmetic type (e.g. a pointer), we are done.
+ // The caller can deal with this (e.g. pointer + int).
+ if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
+ return lhs;
+
+ // Perform bitfield promotions.
+ QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr);
+ if (!LHSBitfieldPromoteTy.isNull())
+ lhs = LHSBitfieldPromoteTy;
+ QualType RHSBitfieldPromoteTy = Context.isPromotableBitField(rhsExpr);
+ if (!RHSBitfieldPromoteTy.isNull())
+ rhs = RHSBitfieldPromoteTy;
+
+ QualType destType = Context.UsualArithmeticConversionsType(lhs, rhs);
+ if (!isCompAssign)
+ ImpCastExprToType(lhsExpr, destType, CastExpr::CK_Unknown);
+ ImpCastExprToType(rhsExpr, destType, CastExpr::CK_Unknown);
+ return destType;
+}
+
+//===----------------------------------------------------------------------===//
+// Semantic Analysis for various Expression Types
+//===----------------------------------------------------------------------===//
+
+
+/// ActOnStringLiteral - The specified tokens were lexed as pasted string
+/// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
+/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
+/// multiple tokens. However, the common case is that StringToks points to one
+/// string.
+///
+Action::OwningExprResult
+Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
+ assert(NumStringToks && "Must have at least one string!");
+
+ StringLiteralParser Literal(StringToks, NumStringToks, PP);
+ if (Literal.hadError)
+ return ExprError();
+
+ llvm::SmallVector<SourceLocation, 4> StringTokLocs;
+ for (unsigned i = 0; i != NumStringToks; ++i)
+ StringTokLocs.push_back(StringToks[i].getLocation());
+
+ QualType StrTy = Context.CharTy;
+ if (Literal.AnyWide) StrTy = Context.getWCharType();
+ if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
+
+ // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
+ if (getLangOptions().CPlusPlus || getLangOptions().ConstStrings )
+ StrTy.addConst();
+
+ // Get an array type for the string, according to C99 6.4.5. This includes
+ // the nul terminator character as well as the string length for pascal
+ // strings.
+ StrTy = Context.getConstantArrayType(StrTy,
+ llvm::APInt(32, Literal.GetNumStringChars()+1),
+ ArrayType::Normal, 0);
+
+ // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
+ return Owned(StringLiteral::Create(Context, Literal.GetString(),
+ Literal.GetStringLength(),
+ Literal.AnyWide, StrTy,
+ &StringTokLocs[0],
+ StringTokLocs.size()));
+}
+
+/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
+/// CurBlock to VD should cause it to be snapshotted (as we do for auto
+/// variables defined outside the block) or false if this is not needed (e.g.
+/// for values inside the block or for globals).
+///
+/// This also keeps the 'hasBlockDeclRefExprs' in the BlockScopeInfo records
+/// up-to-date.
+///
+static bool ShouldSnapshotBlockValueReference(Sema &S, BlockScopeInfo *CurBlock,
+ ValueDecl *VD) {
+ // If the value is defined inside the block, we couldn't snapshot it even if
+ // we wanted to.
+ if (CurBlock->TheDecl == VD->getDeclContext())
+ return false;
+
+ // If this is an enum constant or function, it is constant, don't snapshot.
+ if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
+ return false;
+
+ // If this is a reference to an extern, static, or global variable, no need to
+ // snapshot it.
+ // FIXME: What about 'const' variables in C++?
+ if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
+ if (!Var->hasLocalStorage())
+ return false;
+
+ // Blocks that have these can't be constant.
+ CurBlock->hasBlockDeclRefExprs = true;
+
+ // If we have nested blocks, the decl may be declared in an outer block (in
+ // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
+ // be defined outside all of the current blocks (in which case the blocks do
+ // all get the bit). Walk the nesting chain.
+ for (unsigned I = S.FunctionScopes.size() - 1; I; --I) {
+ BlockScopeInfo *NextBlock = dyn_cast<BlockScopeInfo>(S.FunctionScopes[I]);
+
+ if (!NextBlock)
+ continue;
+
+ // If we found the defining block for the variable, don't mark the block as
+ // having a reference outside it.
+ if (NextBlock->TheDecl == VD->getDeclContext())
+ break;
+
+ // Otherwise, the DeclRef from the inner block causes the outer one to need
+ // a snapshot as well.
+ NextBlock->hasBlockDeclRefExprs = true;
+ }
+
+ return true;
+}
+
+
+
+/// BuildDeclRefExpr - Build a DeclRefExpr.
+Sema::OwningExprResult
+Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, SourceLocation Loc,
+ const CXXScopeSpec *SS) {
+ if (Context.getCanonicalType(Ty) == Context.UndeducedAutoTy) {
+ Diag(Loc,
+ diag::err_auto_variable_cannot_appear_in_own_initializer)
+ << D->getDeclName();
+ return ExprError();
+ }
+
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
+ if (isa<NonTypeTemplateParmDecl>(VD)) {
+ // Non-type template parameters can be referenced anywhere they are
+ // visible.
+ } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
+ if (const FunctionDecl *FD = MD->getParent()->isLocalClass()) {
+ if (VD->hasLocalStorage() && VD->getDeclContext() != CurContext) {
+ Diag(Loc, diag::err_reference_to_local_var_in_enclosing_function)
+ << D->getIdentifier() << FD->getDeclName();
+ Diag(D->getLocation(), diag::note_local_variable_declared_here)
+ << D->getIdentifier();
+ return ExprError();
+ }
+ }
+ }
+ }
+
+ MarkDeclarationReferenced(Loc, D);
+
+ return Owned(DeclRefExpr::Create(Context,
+ SS? (NestedNameSpecifier *)SS->getScopeRep() : 0,
+ SS? SS->getRange() : SourceRange(),
+ D, Loc, Ty));
+}
+
+/// \brief Given a field that represents a member of an anonymous
+/// struct/union, build the path from that field's context to the
+/// actual member.
+///
+/// Construct the sequence of field member references we'll have to
+/// perform to get to the field in the anonymous union/struct. The
+/// list of members is built from the field outward, so traverse it
+/// backwards to go from an object in the current context to the field
+/// we found.
+///
+/// \returns The variable from which the field access should begin,
+/// for an anonymous struct/union that is not a member of another
+/// class. Otherwise, returns NULL.
+VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
+ llvm::SmallVectorImpl<FieldDecl *> &Path) {
+ assert(Field->getDeclContext()->isRecord() &&
+ cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
+ && "Field must be stored inside an anonymous struct or union");
+
+ Path.push_back(Field);
+ VarDecl *BaseObject = 0;
+ DeclContext *Ctx = Field->getDeclContext();
+ do {
+ RecordDecl *Record = cast<RecordDecl>(Ctx);
+ ValueDecl *AnonObject = Record->getAnonymousStructOrUnionObject();
+ if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
+ Path.push_back(AnonField);
+ else {
+ BaseObject = cast<VarDecl>(AnonObject);
+ break;
+ }
+ Ctx = Ctx->getParent();
+ } while (Ctx->isRecord() &&
+ cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
+
+ return BaseObject;
+}
+
+Sema::OwningExprResult
+Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
+ FieldDecl *Field,
+ Expr *BaseObjectExpr,
+ SourceLocation OpLoc) {
+ llvm::SmallVector<FieldDecl *, 4> AnonFields;
+ VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
+ AnonFields);
+
+ // Build the expression that refers to the base object, from
+ // which we will build a sequence of member references to each
+ // of the anonymous union objects and, eventually, the field we
+ // found via name lookup.
+ bool BaseObjectIsPointer = false;
+ Qualifiers BaseQuals;
+ if (BaseObject) {
+ // BaseObject is an anonymous struct/union variable (and is,
+ // therefore, not part of another non-anonymous record).
+ if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
+ MarkDeclarationReferenced(Loc, BaseObject);
+ BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
+ SourceLocation());
+ BaseQuals
+ = Context.getCanonicalType(BaseObject->getType()).getQualifiers();
+ } else if (BaseObjectExpr) {
+ // The caller provided the base object expression. Determine
+ // whether its a pointer and whether it adds any qualifiers to the
+ // anonymous struct/union fields we're looking into.
+ QualType ObjectType = BaseObjectExpr->getType();
+ if (const PointerType *ObjectPtr = ObjectType->getAs<PointerType>()) {
+ BaseObjectIsPointer = true;
+ ObjectType = ObjectPtr->getPointeeType();
+ }
+ BaseQuals
+ = Context.getCanonicalType(ObjectType).getQualifiers();
+ } else {
+ // We've found a member of an anonymous struct/union that is
+ // inside a non-anonymous struct/union, so in a well-formed
+ // program our base object expression is "this".
+ DeclContext *DC = getFunctionLevelDeclContext();
+ if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
+ if (!MD->isStatic()) {
+ QualType AnonFieldType
+ = Context.getTagDeclType(
+ cast<RecordDecl>(AnonFields.back()->getDeclContext()));
+ QualType ThisType = Context.getTagDeclType(MD->getParent());
+ if ((Context.getCanonicalType(AnonFieldType)
+ == Context.getCanonicalType(ThisType)) ||
+ IsDerivedFrom(ThisType, AnonFieldType)) {
+ // Our base object expression is "this".
+ BaseObjectExpr = new (Context) CXXThisExpr(Loc,
+ MD->getThisType(Context),
+ /*isImplicit=*/true);
+ BaseObjectIsPointer = true;
+ }
+ } else {
+ return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
+ << Field->getDeclName());
+ }
+ BaseQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
+ }
+
+ if (!BaseObjectExpr)
+ return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
+ << Field->getDeclName());
+ }
+
+ // Build the implicit member references to the field of the
+ // anonymous struct/union.
+ Expr *Result = BaseObjectExpr;
+ Qualifiers ResultQuals = BaseQuals;
+ for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
+ FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
+ FI != FIEnd; ++FI) {
+ QualType MemberType = (*FI)->getType();
+ Qualifiers MemberTypeQuals =
+ Context.getCanonicalType(MemberType).getQualifiers();
+
+ // CVR attributes from the base are picked up by members,
+ // except that 'mutable' members don't pick up 'const'.
+ if ((*FI)->isMutable())
+ ResultQuals.removeConst();
+
+ // GC attributes are never picked up by members.
+ ResultQuals.removeObjCGCAttr();
+
+ // TR 18037 does not allow fields to be declared with address spaces.
+ assert(!MemberTypeQuals.hasAddressSpace());
+
+ Qualifiers NewQuals = ResultQuals + MemberTypeQuals;
+ if (NewQuals != MemberTypeQuals)
+ MemberType = Context.getQualifiedType(MemberType, NewQuals);
+
+ MarkDeclarationReferenced(Loc, *FI);
+ PerformObjectMemberConversion(Result, /*FIXME:Qualifier=*/0, *FI, *FI);
+ // FIXME: Might this end up being a qualified name?
+ Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
+ OpLoc, MemberType);
+ BaseObjectIsPointer = false;
+ ResultQuals = NewQuals;
+ }
+
+ return Owned(Result);
+}
+
+/// Decomposes the given name into a DeclarationName, its location, and
+/// possibly a list of template arguments.
+///
+/// If this produces template arguments, it is permitted to call
+/// DecomposeTemplateName.
+///
+/// This actually loses a lot of source location information for
+/// non-standard name kinds; we should consider preserving that in
+/// some way.
+static void DecomposeUnqualifiedId(Sema &SemaRef,
+ const UnqualifiedId &Id,
+ TemplateArgumentListInfo &Buffer,
+ DeclarationName &Name,
+ SourceLocation &NameLoc,
+ const TemplateArgumentListInfo *&TemplateArgs) {
+ if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
+ Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
+ Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
+
+ ASTTemplateArgsPtr TemplateArgsPtr(SemaRef,
+ Id.TemplateId->getTemplateArgs(),
+ Id.TemplateId->NumArgs);
+ SemaRef.translateTemplateArguments(TemplateArgsPtr, Buffer);
+ TemplateArgsPtr.release();
+
+ TemplateName TName =
+ Sema::TemplateTy::make(Id.TemplateId->Template).getAsVal<TemplateName>();
+
+ Name = SemaRef.Context.getNameForTemplate(TName);
+ NameLoc = Id.TemplateId->TemplateNameLoc;
+ TemplateArgs = &Buffer;
+ } else {
+ Name = SemaRef.GetNameFromUnqualifiedId(Id);
+ NameLoc = Id.StartLocation;
+ TemplateArgs = 0;
+ }
+}
+
+/// Decompose the given template name into a list of lookup results.
+///
+/// The unqualified ID must name a non-dependent template, which can
+/// be more easily tested by checking whether DecomposeUnqualifiedId
+/// found template arguments.
+static void DecomposeTemplateName(LookupResult &R, const UnqualifiedId &Id) {
+ assert(Id.getKind() == UnqualifiedId::IK_TemplateId);
+ TemplateName TName =
+ Sema::TemplateTy::make(Id.TemplateId->Template).getAsVal<TemplateName>();
+
+ if (TemplateDecl *TD = TName.getAsTemplateDecl())
+ R.addDecl(TD);
+ else if (OverloadedTemplateStorage *OT = TName.getAsOverloadedTemplate())
+ for (OverloadedTemplateStorage::iterator I = OT->begin(), E = OT->end();
+ I != E; ++I)
+ R.addDecl(*I);
+
+ R.resolveKind();
+}
+
+/// Determines whether the given record is "fully-formed" at the given
+/// location, i.e. whether a qualified lookup into it is assured of
+/// getting consistent results already.
+static bool IsFullyFormedScope(Sema &SemaRef, CXXRecordDecl *Record) {
+ if (!Record->hasDefinition())
+ return false;
+
+ for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
+ E = Record->bases_end(); I != E; ++I) {
+ CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
+ CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
+ if (!BaseRT) return false;
+
+ CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
+ if (!BaseRecord->hasDefinition() ||
+ !IsFullyFormedScope(SemaRef, BaseRecord))
+ return false;
+ }
+
+ return true;
+}
+
+/// Determines whether we can lookup this id-expression now or whether
+/// we have to wait until template instantiation is complete.
+static bool IsDependentIdExpression(Sema &SemaRef, const CXXScopeSpec &SS) {
+ DeclContext *DC = SemaRef.computeDeclContext(SS, false);
+
+ // If the qualifier scope isn't computable, it's definitely dependent.
+ if (!DC) return true;
+
+ // If the qualifier scope doesn't name a record, we can always look into it.
+ if (!isa<CXXRecordDecl>(DC)) return false;
+
+ // We can't look into record types unless they're fully-formed.
+ if (!IsFullyFormedScope(SemaRef, cast<CXXRecordDecl>(DC))) return true;
+
+ return false;
+}
+
+/// Determines if the given class is provably not derived from all of
+/// the prospective base classes.
+static bool IsProvablyNotDerivedFrom(Sema &SemaRef,
+ CXXRecordDecl *Record,
+ const llvm::SmallPtrSet<CXXRecordDecl*, 4> &Bases) {
+ if (Bases.count(Record->getCanonicalDecl()))
+ return false;
+
+ RecordDecl *RD = Record->getDefinition();
+ if (!RD) return false;
+ Record = cast<CXXRecordDecl>(RD);
+
+ for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
+ E = Record->bases_end(); I != E; ++I) {
+ CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
+ CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
+ if (!BaseRT) return false;
+
+ CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
+ if (!IsProvablyNotDerivedFrom(SemaRef, BaseRecord, Bases))
+ return false;
+ }
+
+ return true;
+}
+
+enum IMAKind {
+ /// The reference is definitely not an instance member access.
+ IMA_Static,
+
+ /// The reference may be an implicit instance member access.
+ IMA_Mixed,
+
+ /// The reference may be to an instance member, but it is invalid if
+ /// so, because the context is not an instance method.
+ IMA_Mixed_StaticContext,
+
+ /// The reference may be to an instance member, but it is invalid if
+ /// so, because the context is from an unrelated class.
+ IMA_Mixed_Unrelated,
+
+ /// The reference is definitely an implicit instance member access.
+ IMA_Instance,
+
+ /// The reference may be to an unresolved using declaration.
+ IMA_Unresolved,
+
+ /// The reference may be to an unresolved using declaration and the
+ /// context is not an instance method.
+ IMA_Unresolved_StaticContext,
+
+ /// The reference is to a member of an anonymous structure in a
+ /// non-class context.
+ IMA_AnonymousMember,
+
+ /// All possible referrents are instance members and the current
+ /// context is not an instance method.
+ IMA_Error_StaticContext,
+
+ /// All possible referrents are instance members of an unrelated
+ /// class.
+ IMA_Error_Unrelated
+};
+
+/// The given lookup names class member(s) and is not being used for
+/// an address-of-member expression. Classify the type of access
+/// according to whether it's possible that this reference names an
+/// instance member. This is best-effort; it is okay to
+/// conservatively answer "yes", in which case some errors will simply
+/// not be caught until template-instantiation.
+static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
+ const LookupResult &R) {
+ assert(!R.empty() && (*R.begin())->isCXXClassMember());
+
+ DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
+ bool isStaticContext =
+ (!isa<CXXMethodDecl>(DC) ||
+ cast<CXXMethodDecl>(DC)->isStatic());
+
+ if (R.isUnresolvableResult())
+ return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
+
+ // Collect all the declaring classes of instance members we find.
+ bool hasNonInstance = false;
+ llvm::SmallPtrSet<CXXRecordDecl*, 4> Classes;
+ for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
+ NamedDecl *D = *I;
+ if (D->isCXXInstanceMember()) {
+ CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
+
+ // If this is a member of an anonymous record, move out to the
+ // innermost non-anonymous struct or union. If there isn't one,
+ // that's a special case.
+ while (R->isAnonymousStructOrUnion()) {
+ R = dyn_cast<CXXRecordDecl>(R->getParent());
+ if (!R) return IMA_AnonymousMember;
+ }
+ Classes.insert(R->getCanonicalDecl());
+ }
+ else
+ hasNonInstance = true;
+ }
+
+ // If we didn't find any instance members, it can't be an implicit
+ // member reference.
+ if (Classes.empty())
+ return IMA_Static;
+
+ // If the current context is not an instance method, it can't be
+ // an implicit member reference.
+ if (isStaticContext)
+ return (hasNonInstance ? IMA_Mixed_StaticContext : IMA_Error_StaticContext);
+
+ // If we can prove that the current context is unrelated to all the
+ // declaring classes, it can't be an implicit member reference (in
+ // which case it's an error if any of those members are selected).
+ if (IsProvablyNotDerivedFrom(SemaRef,
+ cast<CXXMethodDecl>(DC)->getParent(),
+ Classes))
+ return (hasNonInstance ? IMA_Mixed_Unrelated : IMA_Error_Unrelated);
+
+ return (hasNonInstance ? IMA_Mixed : IMA_Instance);
+}
+
+/// Diagnose a reference to a field with no object available.
+static void DiagnoseInstanceReference(Sema &SemaRef,
+ const CXXScopeSpec &SS,
+ const LookupResult &R) {
+ SourceLocation Loc = R.getNameLoc();
+ SourceRange Range(Loc);
+ if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
+
+ if (R.getAsSingle<FieldDecl>()) {
+ if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(SemaRef.CurContext)) {
+ if (MD->isStatic()) {
+ // "invalid use of member 'x' in static member function"
+ SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
+ << Range << R.getLookupName();
+ return;
+ }
+ }
+
+ SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
+ << R.getLookupName() << Range;
+ return;
+ }
+
+ SemaRef.Diag(Loc, diag::err_member_call_without_object) << Range;
+}
+
+/// Diagnose an empty lookup.
+///
+/// \return false if new lookup candidates were found
+bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS,
+ LookupResult &R, CorrectTypoContext CTC) {
+ DeclarationName Name = R.getLookupName();
+
+ unsigned diagnostic = diag::err_undeclared_var_use;
+ unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
+ if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
+ Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
+ Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
+ diagnostic = diag::err_undeclared_use;
+ diagnostic_suggest = diag::err_undeclared_use_suggest;
+ }
+
+ // If the original lookup was an unqualified lookup, fake an
+ // unqualified lookup. This is useful when (for example) the
+ // original lookup would not have found something because it was a
+ // dependent name.
+ for (DeclContext *DC = SS.isEmpty()? CurContext : 0;
+ DC; DC = DC->getParent()) {
+ if (isa<CXXRecordDecl>(DC)) {
+ LookupQualifiedName(R, DC);
+
+ if (!R.empty()) {
+ // Don't give errors about ambiguities in this lookup.
+ R.suppressDiagnostics();
+
+ CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
+ bool isInstance = CurMethod &&
+ CurMethod->isInstance() &&
+ DC == CurMethod->getParent();
+
+ // Give a code modification hint to insert 'this->'.
+ // TODO: fixit for inserting 'Base<T>::' in the other cases.
+ // Actually quite difficult!
+ if (isInstance)
+ Diag(R.getNameLoc(), diagnostic) << Name
+ << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
+ else
+ Diag(R.getNameLoc(), diagnostic) << Name;
+
+ // Do we really want to note all of these?
+ for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
+ Diag((*I)->getLocation(), diag::note_dependent_var_use);
+
+ // Tell the callee to try to recover.
+ return false;
+ }
+ }
+ }
+
+ // We didn't find anything, so try to correct for a typo.
+ DeclarationName Corrected;
+ if (S && (Corrected = CorrectTypo(R, S, &SS, false, CTC))) {
+ if (!R.empty()) {
+ if (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin())) {
+ if (SS.isEmpty())
+ Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName()
+ << FixItHint::CreateReplacement(R.getNameLoc(),
+ R.getLookupName().getAsString());
+ else
+ Diag(R.getNameLoc(), diag::err_no_member_suggest)
+ << Name << computeDeclContext(SS, false) << R.getLookupName()
+ << SS.getRange()
+ << FixItHint::CreateReplacement(R.getNameLoc(),
+ R.getLookupName().getAsString());
+ if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
+ Diag(ND->getLocation(), diag::note_previous_decl)
+ << ND->getDeclName();
+
+ // Tell the callee to try to recover.
+ return false;
+ }
+
+ if (isa<TypeDecl>(*R.begin()) || isa<ObjCInterfaceDecl>(*R.begin())) {
+ // FIXME: If we ended up with a typo for a type name or
+ // Objective-C class name, we're in trouble because the parser
+ // is in the wrong place to recover. Suggest the typo
+ // correction, but don't make it a fix-it since we're not going
+ // to recover well anyway.
+ if (SS.isEmpty())
+ Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName();
+ else
+ Diag(R.getNameLoc(), diag::err_no_member_suggest)
+ << Name << computeDeclContext(SS, false) << R.getLookupName()
+ << SS.getRange();
+
+ // Don't try to recover; it won't work.
+ return true;
+ }
+ } else {
+ // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
+ // because we aren't able to recover.
+ if (SS.isEmpty())
+ Diag(R.getNameLoc(), diagnostic_suggest) << Name << Corrected;
+ else
+ Diag(R.getNameLoc(), diag::err_no_member_suggest)
+ << Name << computeDeclContext(SS, false) << Corrected
+ << SS.getRange();
+ return true;
+ }
+ R.clear();
+ }
+
+ // Emit a special diagnostic for failed member lookups.
+ // FIXME: computing the declaration context might fail here (?)
+ if (!SS.isEmpty()) {
+ Diag(R.getNameLoc(), diag::err_no_member)
+ << Name << computeDeclContext(SS, false)
+ << SS.getRange();
+ return true;
+ }
+
+ // Give up, we can't recover.
+ Diag(R.getNameLoc(), diagnostic) << Name;
+ return true;
+}
+
+Sema::OwningExprResult Sema::ActOnIdExpression(Scope *S,
+ CXXScopeSpec &SS,
+ UnqualifiedId &Id,
+ bool HasTrailingLParen,
+ bool isAddressOfOperand) {
+ assert(!(isAddressOfOperand && HasTrailingLParen) &&
+ "cannot be direct & operand and have a trailing lparen");
+
+ if (SS.isInvalid())
+ return ExprError();
+
+ TemplateArgumentListInfo TemplateArgsBuffer;
+
+ // Decompose the UnqualifiedId into the following data.
+ DeclarationName Name;
+ SourceLocation NameLoc;
+ const TemplateArgumentListInfo *TemplateArgs;
+ DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer,
+ Name, NameLoc, TemplateArgs);
+
+ IdentifierInfo *II = Name.getAsIdentifierInfo();
+
+ // C++ [temp.dep.expr]p3:
+ // An id-expression is type-dependent if it contains:
+ // -- an identifier that was declared with a dependent type,
+ // (note: handled after lookup)
+ // -- a template-id that is dependent,
+ // (note: handled in BuildTemplateIdExpr)
+ // -- a conversion-function-id that specifies a dependent type,
+ // -- a nested-name-specifier that contains a class-name that
+ // names a dependent type.
+ // Determine whether this is a member of an unknown specialization;
+ // we need to handle these differently.
+ if ((Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
+ Name.getCXXNameType()->isDependentType()) ||
+ (SS.isSet() && IsDependentIdExpression(*this, SS))) {
+ return ActOnDependentIdExpression(SS, Name, NameLoc,
+ isAddressOfOperand,
+ TemplateArgs);
+ }
+
+ // Perform the required lookup.
+ LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
+ if (TemplateArgs) {
+ // Lookup the template name again to correctly establish the context in
+ // which it was found. This is really unfortunate as we already did the
+ // lookup to determine that it was a template name in the first place. If
+ // this becomes a performance hit, we can work harder to preserve those
+ // results until we get here but it's likely not worth it.
+ bool MemberOfUnknownSpecialization;
+ LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
+ MemberOfUnknownSpecialization);
+ } else {
+ bool IvarLookupFollowUp = (!SS.isSet() && II && getCurMethodDecl());
+ LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
+
+ // If this reference is in an Objective-C method, then we need to do
+ // some special Objective-C lookup, too.
+ if (IvarLookupFollowUp) {
+ OwningExprResult E(LookupInObjCMethod(R, S, II, true));
+ if (E.isInvalid())
+ return ExprError();
+
+ Expr *Ex = E.takeAs<Expr>();
+ if (Ex) return Owned(Ex);
+ }
+ }
+
+ if (R.isAmbiguous())
+ return ExprError();
+
+ // Determine whether this name might be a candidate for
+ // argument-dependent lookup.
+ bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
+
+ if (R.empty() && !ADL) {
+ // Otherwise, this could be an implicitly declared function reference (legal
+ // in C90, extension in C99, forbidden in C++).
+ if (HasTrailingLParen && II && !getLangOptions().CPlusPlus) {
+ NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
+ if (D) R.addDecl(D);
+ }
+
+ // If this name wasn't predeclared and if this is not a function
+ // call, diagnose the problem.
+ if (R.empty()) {
+ if (DiagnoseEmptyLookup(S, SS, R, CTC_Unknown))
+ return ExprError();
+
+ assert(!R.empty() &&
+ "DiagnoseEmptyLookup returned false but added no results");
+
+ // If we found an Objective-C instance variable, let
+ // LookupInObjCMethod build the appropriate expression to
+ // reference the ivar.
+ if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
+ R.clear();
+ OwningExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
+ assert(E.isInvalid() || E.get());
+ return move(E);
+ }
+ }
+ }
+
+ // This is guaranteed from this point on.
+ assert(!R.empty() || ADL);
+
+ if (VarDecl *Var = R.getAsSingle<VarDecl>()) {
+ // Warn about constructs like:
+ // if (void *X = foo()) { ... } else { X }.
+ // In the else block, the pointer is always false.
+ if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
+ Scope *CheckS = S;
+ while (CheckS && CheckS->getControlParent()) {
+ if ((CheckS->getFlags() & Scope::ElseScope) &&
+ CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) {
+ ExprError(Diag(NameLoc, diag::warn_value_always_zero)
+ << Var->getDeclName()
+ << (Var->getType()->isPointerType() ? 2 :
+ Var->getType()->isBooleanType() ? 1 : 0));
+ break;
+ }
+
+ // Move to the parent of this scope.
+ CheckS = CheckS->getParent();
+ }
+ }
+ } else if (FunctionDecl *Func = R.getAsSingle<FunctionDecl>()) {
+ if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
+ // C99 DR 316 says that, if a function type comes from a
+ // function definition (without a prototype), that type is only
+ // used for checking compatibility. Therefore, when referencing
+ // the function, we pretend that we don't have the full function
+ // type.
+ if (DiagnoseUseOfDecl(Func, NameLoc))
+ return ExprError();
+
+ QualType T = Func->getType();
+ QualType NoProtoType = T;
+ if (const FunctionProtoType *Proto = T->getAs<FunctionProtoType>())
+ NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType(),
+ Proto->getExtInfo());
+ return BuildDeclRefExpr(Func, NoProtoType, NameLoc, &SS);
+ }
+ }
+
+ // Check whether this might be a C++ implicit instance member access.
+ // C++ [expr.prim.general]p6:
+ // Within the definition of a non-static member function, an
+ // identifier that names a non-static member is transformed to a
+ // class member access expression.
+ // But note that &SomeClass::foo is grammatically distinct, even
+ // though we don't parse it that way.
+ if (!R.empty() && (*R.begin())->isCXXClassMember()) {
+ bool isAbstractMemberPointer = (isAddressOfOperand && !SS.isEmpty());
+ if (!isAbstractMemberPointer)
+ return BuildPossibleImplicitMemberExpr(SS, R, TemplateArgs);
+ }
+
+ if (TemplateArgs)
+ return BuildTemplateIdExpr(SS, R, ADL, *TemplateArgs);
+
+ return BuildDeclarationNameExpr(SS, R, ADL);
+}
+
+/// Builds an expression which might be an implicit member expression.
+Sema::OwningExprResult
+Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
+ LookupResult &R,
+ const TemplateArgumentListInfo *TemplateArgs) {
+ switch (ClassifyImplicitMemberAccess(*this, R)) {
+ case IMA_Instance:
+ return BuildImplicitMemberExpr(SS, R, TemplateArgs, true);
+
+ case IMA_AnonymousMember:
+ assert(R.isSingleResult());
+ return BuildAnonymousStructUnionMemberReference(R.getNameLoc(),
+ R.getAsSingle<FieldDecl>());
+
+ case IMA_Mixed:
+ case IMA_Mixed_Unrelated:
+ case IMA_Unresolved:
+ return BuildImplicitMemberExpr(SS, R, TemplateArgs, false);
+
+ case IMA_Static:
+ case IMA_Mixed_StaticContext:
+ case IMA_Unresolved_StaticContext:
+ if (TemplateArgs)
+ return BuildTemplateIdExpr(SS, R, false, *TemplateArgs);
+ return BuildDeclarationNameExpr(SS, R, false);
+
+ case IMA_Error_StaticContext:
+ case IMA_Error_Unrelated:
+ DiagnoseInstanceReference(*this, SS, R);
+ return ExprError();
+ }
+
+ llvm_unreachable("unexpected instance member access kind");
+ return ExprError();
+}
+
+/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
+/// declaration name, generally during template instantiation.
+/// There's a large number of things which don't need to be done along
+/// this path.
+Sema::OwningExprResult
+Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
+ DeclarationName Name,
+ SourceLocation NameLoc) {
+ DeclContext *DC;
+ if (!(DC = computeDeclContext(SS, false)) || DC->isDependentContext())
+ return BuildDependentDeclRefExpr(SS, Name, NameLoc, 0);
+
+ if (RequireCompleteDeclContext(SS, DC))
+ return ExprError();
+
+ LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
+ LookupQualifiedName(R, DC);
+
+ if (R.isAmbiguous())
+ return ExprError();
+
+ if (R.empty()) {
+ Diag(NameLoc, diag::err_no_member) << Name << DC << SS.getRange();
+ return ExprError();
+ }
+
+ return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
+}
+
+/// LookupInObjCMethod - The parser has read a name in, and Sema has
+/// detected that we're currently inside an ObjC method. Perform some
+/// additional lookup.
+///
+/// Ideally, most of this would be done by lookup, but there's
+/// actually quite a lot of extra work involved.
+///
+/// Returns a null sentinel to indicate trivial success.
+Sema::OwningExprResult
+Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
+ IdentifierInfo *II, bool AllowBuiltinCreation) {
+ SourceLocation Loc = Lookup.getNameLoc();
+ ObjCMethodDecl *CurMethod = getCurMethodDecl();
+
+ // There are two cases to handle here. 1) scoped lookup could have failed,
+ // in which case we should look for an ivar. 2) scoped lookup could have
+ // found a decl, but that decl is outside the current instance method (i.e.
+ // a global variable). In these two cases, we do a lookup for an ivar with
+ // this name, if the lookup sucedes, we replace it our current decl.
+
+ // If we're in a class method, we don't normally want to look for
+ // ivars. But if we don't find anything else, and there's an
+ // ivar, that's an error.
+ bool IsClassMethod = CurMethod->isClassMethod();
+
+ bool LookForIvars;
+ if (Lookup.empty())
+ LookForIvars = true;
+ else if (IsClassMethod)
+ LookForIvars = false;
+ else
+ LookForIvars = (Lookup.isSingleResult() &&
+ Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
+ ObjCInterfaceDecl *IFace = 0;
+ if (LookForIvars) {
+ IFace = CurMethod->getClassInterface();
+ ObjCInterfaceDecl *ClassDeclared;
+ if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
+ // Diagnose using an ivar in a class method.
+ if (IsClassMethod)
+ return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
+ << IV->getDeclName());
+
+ // If we're referencing an invalid decl, just return this as a silent
+ // error node. The error diagnostic was already emitted on the decl.
+ if (IV->isInvalidDecl())
+ return ExprError();
+
+ // Check if referencing a field with __attribute__((deprecated)).
+ if (DiagnoseUseOfDecl(IV, Loc))
+ return ExprError();
+
+ // Diagnose the use of an ivar outside of the declaring class.
+ if (IV->getAccessControl() == ObjCIvarDecl::Private &&
+ ClassDeclared != IFace)
+ Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
+
+ // FIXME: This should use a new expr for a direct reference, don't
+ // turn this into Self->ivar, just return a BareIVarExpr or something.
+ IdentifierInfo &II = Context.Idents.get("self");
+ UnqualifiedId SelfName;
+ SelfName.setIdentifier(&II, SourceLocation());
+ CXXScopeSpec SelfScopeSpec;
+ OwningExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec,
+ SelfName, false, false);
+ MarkDeclarationReferenced(Loc, IV);
+ return Owned(new (Context)
+ ObjCIvarRefExpr(IV, IV->getType(), Loc,
+ SelfExpr.takeAs<Expr>(), true, true));
+ }
+ } else if (CurMethod->isInstanceMethod()) {
+ // We should warn if a local variable hides an ivar.
+ ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
+ ObjCInterfaceDecl *ClassDeclared;
+ if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
+ if (IV->getAccessControl() != ObjCIvarDecl::Private ||
+ IFace == ClassDeclared)
+ Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
+ }
+ }
+
+ if (Lookup.empty() && II && AllowBuiltinCreation) {
+ // FIXME. Consolidate this with similar code in LookupName.
+ if (unsigned BuiltinID = II->getBuiltinID()) {
+ if (!(getLangOptions().CPlusPlus &&
+ Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
+ NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
+ S, Lookup.isForRedeclaration(),
+ Lookup.getNameLoc());
+ if (D) Lookup.addDecl(D);
+ }
+ }
+ }
+ // Sentinel value saying that we didn't do anything special.
+ return Owned((Expr*) 0);
+}
+
+/// \brief Cast a base object to a member's actual type.
+///
+/// Logically this happens in three phases:
+///
+/// * First we cast from the base type to the naming class.
+/// The naming class is the class into which we were looking
+/// when we found the member; it's the qualifier type if a
+/// qualifier was provided, and otherwise it's the base type.
+///
+/// * Next we cast from the naming class to the declaring class.
+/// If the member we found was brought into a class's scope by
+/// a using declaration, this is that class; otherwise it's
+/// the class declaring the member.
+///
+/// * Finally we cast from the declaring class to the "true"
+/// declaring class of the member. This conversion does not
+/// obey access control.
+bool
+Sema::PerformObjectMemberConversion(Expr *&From,
+ NestedNameSpecifier *Qualifier,
+ NamedDecl *FoundDecl,
+ NamedDecl *Member) {
+ CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
+ if (!RD)
+ return false;
+
+ QualType DestRecordType;
+ QualType DestType;
+ QualType FromRecordType;
+ QualType FromType = From->getType();
+ bool PointerConversions = false;
+ if (isa<FieldDecl>(Member)) {
+ DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
+
+ if (FromType->getAs<PointerType>()) {
+ DestType = Context.getPointerType(DestRecordType);
+ FromRecordType = FromType->getPointeeType();
+ PointerConversions = true;
+ } else {
+ DestType = DestRecordType;
+ FromRecordType = FromType;
+ }
+ } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
+ if (Method->isStatic())
+ return false;
+
+ DestType = Method->getThisType(Context);
+ DestRecordType = DestType->getPointeeType();
+
+ if (FromType->getAs<PointerType>()) {
+ FromRecordType = FromType->getPointeeType();
+ PointerConversions = true;
+ } else {
+ FromRecordType = FromType;
+ DestType = DestRecordType;
+ }
+ } else {
+ // No conversion necessary.
+ return false;
+ }
+
+ if (DestType->isDependentType() || FromType->isDependentType())
+ return false;
+
+ // If the unqualified types are the same, no conversion is necessary.
+ if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
+ return false;
+
+ SourceRange FromRange = From->getSourceRange();
+ SourceLocation FromLoc = FromRange.getBegin();
+
+ bool isLvalue
+ = (From->isLvalue(Context) == Expr::LV_Valid) && !PointerConversions;
+
+ // C++ [class.member.lookup]p8:
+ // [...] Ambiguities can often be resolved by qualifying a name with its
+ // class name.
+ //
+ // If the member was a qualified name and the qualified referred to a
+ // specific base subobject type, we'll cast to that intermediate type
+ // first and then to the object in which the member is declared. That allows
+ // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
+ //
+ // class Base { public: int x; };
+ // class Derived1 : public Base { };
+ // class Derived2 : public Base { };
+ // class VeryDerived : public Derived1, public Derived2 { void f(); };
+ //
+ // void VeryDerived::f() {
+ // x = 17; // error: ambiguous base subobjects
+ // Derived1::x = 17; // okay, pick the Base subobject of Derived1
+ // }
+ if (Qualifier) {
+ QualType QType = QualType(Qualifier->getAsType(), 0);
+ assert(!QType.isNull() && "lookup done with dependent qualifier?");
+ assert(QType->isRecordType() && "lookup done with non-record type");
+
+ QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
+
+ // In C++98, the qualifier type doesn't actually have to be a base
+ // type of the object type, in which case we just ignore it.
+ // Otherwise build the appropriate casts.
+ if (IsDerivedFrom(FromRecordType, QRecordType)) {
+ CXXBaseSpecifierArray BasePath;
+ if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
+ FromLoc, FromRange, &BasePath))
+ return true;
+
+ if (PointerConversions)
+ QType = Context.getPointerType(QType);
+ ImpCastExprToType(From, QType, CastExpr::CK_UncheckedDerivedToBase,
+ isLvalue, BasePath);
+
+ FromType = QType;
+ FromRecordType = QRecordType;
+
+ // If the qualifier type was the same as the destination type,
+ // we're done.
+ if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
+ return false;
+ }
+ }
+
+ bool IgnoreAccess = false;
+
+ // If we actually found the member through a using declaration, cast
+ // down to the using declaration's type.
+ //
+ // Pointer equality is fine here because only one declaration of a
+ // class ever has member declarations.
+ if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
+ assert(isa<UsingShadowDecl>(FoundDecl));
+ QualType URecordType = Context.getTypeDeclType(
+ cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
+
+ // We only need to do this if the naming-class to declaring-class
+ // conversion is non-trivial.
+ if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
+ assert(IsDerivedFrom(FromRecordType, URecordType));
+ CXXBaseSpecifierArray BasePath;
+ if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
+ FromLoc, FromRange, &BasePath))
+ return true;
+
+ QualType UType = URecordType;
+ if (PointerConversions)
+ UType = Context.getPointerType(UType);
+ ImpCastExprToType(From, UType, CastExpr::CK_UncheckedDerivedToBase,
+ isLvalue, BasePath);
+ FromType = UType;
+ FromRecordType = URecordType;
+ }
+
+ // We don't do access control for the conversion from the
+ // declaring class to the true declaring class.
+ IgnoreAccess = true;
+ }
+
+ CXXBaseSpecifierArray BasePath;
+ if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
+ FromLoc, FromRange, &BasePath,
+ IgnoreAccess))
+ return true;
+
+ ImpCastExprToType(From, DestType, CastExpr::CK_UncheckedDerivedToBase,
+ isLvalue, BasePath);
+ return false;
+}
+
+/// \brief Build a MemberExpr AST node.
+static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow,
+ const CXXScopeSpec &SS, ValueDecl *Member,
+ DeclAccessPair FoundDecl,
+ SourceLocation Loc, QualType Ty,
+ const TemplateArgumentListInfo *TemplateArgs = 0) {
+ NestedNameSpecifier *Qualifier = 0;
+ SourceRange QualifierRange;
+ if (SS.isSet()) {
+ Qualifier = (NestedNameSpecifier *) SS.getScopeRep();
+ QualifierRange = SS.getRange();
+ }
+
+ return MemberExpr::Create(C, Base, isArrow, Qualifier, QualifierRange,
+ Member, FoundDecl, Loc, TemplateArgs, Ty);
+}
+
+/// Builds an implicit member access expression. The current context
+/// is known to be an instance method, and the given unqualified lookup
+/// set is known to contain only instance members, at least one of which
+/// is from an appropriate type.
+Sema::OwningExprResult
+Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
+ LookupResult &R,
+ const TemplateArgumentListInfo *TemplateArgs,
+ bool IsKnownInstance) {
+ assert(!R.empty() && !R.isAmbiguous());
+
+ SourceLocation Loc = R.getNameLoc();
+
+ // We may have found a field within an anonymous union or struct
+ // (C++ [class.union]).
+ // FIXME: This needs to happen post-isImplicitMemberReference?
+ // FIXME: template-ids inside anonymous structs?
+ if (FieldDecl *FD = R.getAsSingle<FieldDecl>())
+ if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
+ return BuildAnonymousStructUnionMemberReference(Loc, FD);
+
+ // If this is known to be an instance access, go ahead and build a
+ // 'this' expression now.
+ DeclContext *DC = getFunctionLevelDeclContext();
+ QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
+ Expr *This = 0; // null signifies implicit access
+ if (IsKnownInstance) {
+ SourceLocation Loc = R.getNameLoc();
+ if (SS.getRange().isValid())
+ Loc = SS.getRange().getBegin();
+ This = new (Context) CXXThisExpr(Loc, ThisType, /*isImplicit=*/true);
+ }
+
+ return BuildMemberReferenceExpr(ExprArg(*this, This), ThisType,
+ /*OpLoc*/ SourceLocation(),
+ /*IsArrow*/ true,
+ SS,
+ /*FirstQualifierInScope*/ 0,
+ R, TemplateArgs);
+}
+
+bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
+ const LookupResult &R,
+ bool HasTrailingLParen) {
+ // Only when used directly as the postfix-expression of a call.
+ if (!HasTrailingLParen)
+ return false;
+
+ // Never if a scope specifier was provided.
+ if (SS.isSet())
+ return false;
+
+ // Only in C++ or ObjC++.
+ if (!getLangOptions().CPlusPlus)
+ return false;
+
+ // Turn off ADL when we find certain kinds of declarations during
+ // normal lookup:
+ for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
+ NamedDecl *D = *I;
+
+ // C++0x [basic.lookup.argdep]p3:
+ // -- a declaration of a class member
+ // Since using decls preserve this property, we check this on the
+ // original decl.
+ if (D->isCXXClassMember())
+ return false;
+
+ // C++0x [basic.lookup.argdep]p3:
+ // -- a block-scope function declaration that is not a
+ // using-declaration
+ // NOTE: we also trigger this for function templates (in fact, we
+ // don't check the decl type at all, since all other decl types
+ // turn off ADL anyway).
+ if (isa<UsingShadowDecl>(D))
+ D = cast<UsingShadowDecl>(D)->getTargetDecl();
+ else if (D->getDeclContext()->isFunctionOrMethod())
+ return false;
+
+ // C++0x [basic.lookup.argdep]p3:
+ // -- a declaration that is neither a function or a function
+ // template
+ // And also for builtin functions.
+ if (isa<FunctionDecl>(D)) {
+ FunctionDecl *FDecl = cast<FunctionDecl>(D);
+
+ // But also builtin functions.
+ if (FDecl->getBuiltinID() && FDecl->isImplicit())
+ return false;
+ } else if (!isa<FunctionTemplateDecl>(D))
+ return false;
+ }
+
+ return true;
+}
+
+
+/// Diagnoses obvious problems with the use of the given declaration
+/// as an expression. This is only actually called for lookups that
+/// were not overloaded, and it doesn't promise that the declaration
+/// will in fact be used.
+static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
+ if (isa<TypedefDecl>(D)) {
+ S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
+ return true;
+ }
+
+ if (isa<ObjCInterfaceDecl>(D)) {
+ S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
+ return true;
+ }
+
+ if (isa<NamespaceDecl>(D)) {
+ S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
+ return true;
+ }
+
+ return false;
+}
+
+Sema::OwningExprResult
+Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
+ LookupResult &R,
+ bool NeedsADL) {
+ // If this is a single, fully-resolved result and we don't need ADL,
+ // just build an ordinary singleton decl ref.
+ if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
+ return BuildDeclarationNameExpr(SS, R.getNameLoc(), R.getFoundDecl());
+
+ // We only need to check the declaration if there's exactly one
+ // result, because in the overloaded case the results can only be
+ // functions and function templates.
+ if (R.isSingleResult() &&
+ CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
+ return ExprError();
+
+ // Otherwise, just build an unresolved lookup expression. Suppress
+ // any lookup-related diagnostics; we'll hash these out later, when
+ // we've picked a target.
+ R.suppressDiagnostics();
+
+ bool Dependent
+ = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), 0);
+ UnresolvedLookupExpr *ULE
+ = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
+ (NestedNameSpecifier*) SS.getScopeRep(),
+ SS.getRange(),
+ R.getLookupName(), R.getNameLoc(),
+ NeedsADL, R.isOverloadedResult(),
+ R.begin(), R.end());
+
+ return Owned(ULE);
+}
+
+
+/// \brief Complete semantic analysis for a reference to the given declaration.
+Sema::OwningExprResult
+Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
+ SourceLocation Loc, NamedDecl *D) {
+ assert(D && "Cannot refer to a NULL declaration");
+ assert(!isa<FunctionTemplateDecl>(D) &&
+ "Cannot refer unambiguously to a function template");
+
+ if (CheckDeclInExpr(*this, Loc, D))
+ return ExprError();
+
+ if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
+ // Specifically diagnose references to class templates that are missing
+ // a template argument list.
+ Diag(Loc, diag::err_template_decl_ref)
+ << Template << SS.getRange();
+ Diag(Template->getLocation(), diag::note_template_decl_here);
+ return ExprError();
+ }
+
+ // Make sure that we're referring to a value.
+ ValueDecl *VD = dyn_cast<ValueDecl>(D);
+ if (!VD) {
+ Diag(Loc, diag::err_ref_non_value)
+ << D << SS.getRange();
+ Diag(D->getLocation(), diag::note_declared_at);
+ return ExprError();
+ }
+
+ // Check whether this declaration can be used. Note that we suppress
+ // this check when we're going to perform argument-dependent lookup
+ // on this function name, because this might not be the function
+ // that overload resolution actually selects.
+ if (DiagnoseUseOfDecl(VD, Loc))
+ return ExprError();
+
+ // Only create DeclRefExpr's for valid Decl's.
+ if (VD->isInvalidDecl())
+ return ExprError();
+
+ // If the identifier reference is inside a block, and it refers to a value
+ // that is outside the block, create a BlockDeclRefExpr instead of a
+ // DeclRefExpr. This ensures the value is treated as a copy-in snapshot when
+ // the block is formed.
+ //
+ // We do not do this for things like enum constants, global variables, etc,
+ // as they do not get snapshotted.
+ //
+ if (getCurBlock() &&
+ ShouldSnapshotBlockValueReference(*this, getCurBlock(), VD)) {
+ if (VD->getType().getTypePtr()->isVariablyModifiedType()) {
+ Diag(Loc, diag::err_ref_vm_type);
+ Diag(D->getLocation(), diag::note_declared_at);
+ return ExprError();
+ }
+
+ if (VD->getType()->isArrayType()) {
+ Diag(Loc, diag::err_ref_array_type);
+ Diag(D->getLocation(), diag::note_declared_at);
+ return ExprError();
+ }
+
+ MarkDeclarationReferenced(Loc, VD);
+ QualType ExprTy = VD->getType().getNonReferenceType();
+ // The BlocksAttr indicates the variable is bound by-reference.
+ if (VD->getAttr<BlocksAttr>())
+ return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
+ // This is to record that a 'const' was actually synthesize and added.
+ bool constAdded = !ExprTy.isConstQualified();
+ // Variable will be bound by-copy, make it const within the closure.
+
+ ExprTy.addConst();
+ return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, false,
+ constAdded));
+ }
+ // If this reference is not in a block or if the referenced variable is
+ // within the block, create a normal DeclRefExpr.
+
+ return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc, &SS);
+}
+
+Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
+ tok::TokenKind Kind) {
+ PredefinedExpr::IdentType IT;
+
+ switch (Kind) {
+ default: assert(0 && "Unknown simple primary expr!");
+ case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
+ case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
+ case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
+ }
+
+ // Pre-defined identifiers are of type char[x], where x is the length of the
+ // string.
+
+ Decl *currentDecl = getCurFunctionOrMethodDecl();
+ if (!currentDecl) {
+ Diag(Loc, diag::ext_predef_outside_function);
+ currentDecl = Context.getTranslationUnitDecl();
+ }
+
+ QualType ResTy;
+ if (cast<DeclContext>(currentDecl)->isDependentContext()) {
+ ResTy = Context.DependentTy;
+ } else {
+ unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
+
+ llvm::APInt LengthI(32, Length + 1);
+ ResTy = Context.CharTy.withConst();
+ ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
+ }
+ return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
+}
+
+Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
+ llvm::SmallString<16> CharBuffer;
+ bool Invalid = false;
+ llvm::StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
+ if (Invalid)
+ return ExprError();
+
+ CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
+ PP);
+ if (Literal.hadError())
+ return ExprError();
+
+ QualType Ty;
+ if (!getLangOptions().CPlusPlus)
+ Ty = Context.IntTy; // 'x' and L'x' -> int in C.
+ else if (Literal.isWide())
+ Ty = Context.WCharTy; // L'x' -> wchar_t in C++.
+ else if (Literal.isMultiChar())
+ Ty = Context.IntTy; // 'wxyz' -> int in C++.
+ else
+ Ty = Context.CharTy; // 'x' -> char in C++
+
+ return Owned(new (Context) CharacterLiteral(Literal.getValue(),
+ Literal.isWide(),
+ Ty, Tok.getLocation()));
+}
+
+Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
+ // Fast path for a single digit (which is quite common). A single digit
+ // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
+ if (Tok.getLength() == 1) {
+ const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
+ unsigned IntSize = Context.Target.getIntWidth();
+ return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
+ Context.IntTy, Tok.getLocation()));
+ }
+
+ llvm::SmallString<512> IntegerBuffer;
+ // Add padding so that NumericLiteralParser can overread by one character.
+ IntegerBuffer.resize(Tok.getLength()+1);
+ const char *ThisTokBegin = &IntegerBuffer[0];
+
+ // Get the spelling of the token, which eliminates trigraphs, etc.
+ bool Invalid = false;
+ unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
+ if (Invalid)
+ return ExprError();
+
+ NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
+ Tok.getLocation(), PP);
+ if (Literal.hadError)
+ return ExprError();
+
+ Expr *Res;
+
+ if (Literal.isFloatingLiteral()) {
+ QualType Ty;
+ if (Literal.isFloat)
+ Ty = Context.FloatTy;
+ else if (!Literal.isLong)
+ Ty = Context.DoubleTy;
+ else
+ Ty = Context.LongDoubleTy;
+
+ const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
+
+ using llvm::APFloat;
+ APFloat Val(Format);
+
+ APFloat::opStatus result = Literal.GetFloatValue(Val);
+
+ // Overflow is always an error, but underflow is only an error if
+ // we underflowed to zero (APFloat reports denormals as underflow).
+ if ((result & APFloat::opOverflow) ||
+ ((result & APFloat::opUnderflow) && Val.isZero())) {
+ unsigned diagnostic;
+ llvm::SmallString<20> buffer;
+ if (result & APFloat::opOverflow) {
+ diagnostic = diag::warn_float_overflow;
+ APFloat::getLargest(Format).toString(buffer);
+ } else {
+ diagnostic = diag::warn_float_underflow;
+ APFloat::getSmallest(Format).toString(buffer);
+ }
+
+ Diag(Tok.getLocation(), diagnostic)
+ << Ty
+ << llvm::StringRef(buffer.data(), buffer.size());
+ }
+
+ bool isExact = (result == APFloat::opOK);
+ Res = new (Context) FloatingLiteral(Val, isExact, Ty, Tok.getLocation());
+
+ } else if (!Literal.isIntegerLiteral()) {
+ return ExprError();
+ } else {
+ QualType Ty;
+
+ // long long is a C99 feature.
+ if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
+ Literal.isLongLong)
+ Diag(Tok.getLocation(), diag::ext_longlong);
+
+ // Get the value in the widest-possible width.
+ llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
+
+ if (Literal.GetIntegerValue(ResultVal)) {
+ // If this value didn't fit into uintmax_t, warn and force to ull.
+ Diag(Tok.getLocation(), diag::warn_integer_too_large);
+ Ty = Context.UnsignedLongLongTy;
+ assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
+ "long long is not intmax_t?");
+ } else {
+ // If this value fits into a ULL, try to figure out what else it fits into
+ // according to the rules of C99 6.4.4.1p5.
+
+ // Octal, Hexadecimal, and integers with a U suffix are allowed to
+ // be an unsigned int.
+ bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
+
+ // Check from smallest to largest, picking the smallest type we can.
+ unsigned Width = 0;
+ if (!Literal.isLong && !Literal.isLongLong) {
+ // Are int/unsigned possibilities?
+ unsigned IntSize = Context.Target.getIntWidth();
+
+ // Does it fit in a unsigned int?
+ if (ResultVal.isIntN(IntSize)) {
+ // Does it fit in a signed int?
+ if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
+ Ty = Context.IntTy;
+ else if (AllowUnsigned)
+ Ty = Context.UnsignedIntTy;
+ Width = IntSize;
+ }
+ }
+
+ // Are long/unsigned long possibilities?
+ if (Ty.isNull() && !Literal.isLongLong) {
+ unsigned LongSize = Context.Target.getLongWidth();
+
+ // Does it fit in a unsigned long?
+ if (ResultVal.isIntN(LongSize)) {
+ // Does it fit in a signed long?
+ if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
+ Ty = Context.LongTy;
+ else if (AllowUnsigned)
+ Ty = Context.UnsignedLongTy;
+ Width = LongSize;
+ }
+ }
+
+ // Finally, check long long if needed.
+ if (Ty.isNull()) {
+ unsigned LongLongSize = Context.Target.getLongLongWidth();
+
+ // Does it fit in a unsigned long long?
+ if (ResultVal.isIntN(LongLongSize)) {
+ // Does it fit in a signed long long?
+ if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
+ Ty = Context.LongLongTy;
+ else if (AllowUnsigned)
+ Ty = Context.UnsignedLongLongTy;
+ Width = LongLongSize;
+ }
+ }
+
+ // If we still couldn't decide a type, we probably have something that
+ // does not fit in a signed long long, but has no U suffix.
+ if (Ty.isNull()) {
+ Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
+ Ty = Context.UnsignedLongLongTy;
+ Width = Context.Target.getLongLongWidth();
+ }
+
+ if (ResultVal.getBitWidth() != Width)
+ ResultVal.trunc(Width);
+ }
+ Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
+ }
+
+ // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
+ if (Literal.isImaginary)
+ Res = new (Context) ImaginaryLiteral(Res,
+ Context.getComplexType(Res->getType()));
+
+ return Owned(Res);
+}
+
+Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
+ SourceLocation R, ExprArg Val) {
+ Expr *E = Val.takeAs<Expr>();
+ assert((E != 0) && "ActOnParenExpr() missing expr");
+ return Owned(new (Context) ParenExpr(L, R, E));
+}
+
+/// The UsualUnaryConversions() function is *not* called by this routine.
+/// See C99 6.3.2.1p[2-4] for more details.
+bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
+ SourceLocation OpLoc,
+ const SourceRange &ExprRange,
+ bool isSizeof) {
+ if (exprType->isDependentType())
+ return false;
+
+ // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
+ // the result is the size of the referenced type."
+ // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
+ // result shall be the alignment of the referenced type."
+ if (const ReferenceType *Ref = exprType->getAs<ReferenceType>())
+ exprType = Ref->getPointeeType();
+
+ // C99 6.5.3.4p1:
+ if (exprType->isFunctionType()) {
+ // alignof(function) is allowed as an extension.
+ if (isSizeof)
+ Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
+ return false;
+ }
+
+ // Allow sizeof(void)/alignof(void) as an extension.
+ if (exprType->isVoidType()) {
+ Diag(OpLoc, diag::ext_sizeof_void_type)
+ << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
+ return false;
+ }
+
+ if (RequireCompleteType(OpLoc, exprType,
+ PDiag(diag::err_sizeof_alignof_incomplete_type)
+ << int(!isSizeof) << ExprRange))
+ return true;
+
+ // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
+ if (LangOpts.ObjCNonFragileABI && exprType->isObjCObjectType()) {
+ Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
+ << exprType << isSizeof << ExprRange;
+ return true;
+ }
+
+ if (Context.hasSameUnqualifiedType(exprType, Context.OverloadTy)) {
+ Diag(OpLoc, diag::err_sizeof_alignof_overloaded_function_type)
+ << !isSizeof << ExprRange;
+ return true;
+ }
+
+ return false;
+}
+
+bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
+ const SourceRange &ExprRange) {
+ E = E->IgnoreParens();
+
+ // alignof decl is always ok.
+ if (isa<DeclRefExpr>(E))
+ return false;
+
+ // Cannot know anything else if the expression is dependent.
+ if (E->isTypeDependent())
+ return false;
+
+ if (E->getBitField()) {
+ Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
+ return true;
+ }
+
+ // Alignment of a field access is always okay, so long as it isn't a
+ // bit-field.
+ if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
+ if (isa<FieldDecl>(ME->getMemberDecl()))
+ return false;
+
+ return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
+}
+
+/// \brief Build a sizeof or alignof expression given a type operand.
+Action::OwningExprResult
+Sema::CreateSizeOfAlignOfExpr(TypeSourceInfo *TInfo,
+ SourceLocation OpLoc,
+ bool isSizeOf, SourceRange R) {
+ if (!TInfo)
+ return ExprError();
+
+ QualType T = TInfo->getType();
+
+ if (!T->isDependentType() &&
+ CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
+ return ExprError();
+
+ // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
+ return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, TInfo,
+ Context.getSizeType(), OpLoc,
+ R.getEnd()));
+}
+
+/// \brief Build a sizeof or alignof expression given an expression
+/// operand.
+Action::OwningExprResult
+Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
+ bool isSizeOf, SourceRange R) {
+ // Verify that the operand is valid.
+ bool isInvalid = false;
+ if (E->isTypeDependent()) {
+ // Delay type-checking for type-dependent expressions.
+ } else if (!isSizeOf) {
+ isInvalid = CheckAlignOfExpr(E, OpLoc, R);
+ } else if (E->getBitField()) { // C99 6.5.3.4p1.
+ Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
+ isInvalid = true;
+ } else {
+ isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
+ }
+
+ if (isInvalid)
+ return ExprError();
+
+ // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
+ return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
+ Context.getSizeType(), OpLoc,
+ R.getEnd()));
+}
+
+/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
+/// the same for @c alignof and @c __alignof
+/// Note that the ArgRange is invalid if isType is false.
+Action::OwningExprResult
+Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
+ void *TyOrEx, const SourceRange &ArgRange) {
+ // If error parsing type, ignore.
+ if (TyOrEx == 0) return ExprError();
+
+ if (isType) {
+ TypeSourceInfo *TInfo;
+ (void) GetTypeFromParser(TyOrEx, &TInfo);
+ return CreateSizeOfAlignOfExpr(TInfo, OpLoc, isSizeof, ArgRange);
+ }
+
+ Expr *ArgEx = (Expr *)TyOrEx;
+ Action::OwningExprResult Result
+ = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
+
+ if (Result.isInvalid())
+ DeleteExpr(ArgEx);
+
+ return move(Result);
+}
+
+QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
+ if (V->isTypeDependent())
+ return Context.DependentTy;
+
+ // These operators return the element type of a complex type.
+ if (const ComplexType *CT = V->getType()->getAs<ComplexType>())
+ return CT->getElementType();
+
+ // Otherwise they pass through real integer and floating point types here.
+ if (V->getType()->isArithmeticType())
+ return V->getType();
+
+ // Reject anything else.
+ Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
+ << (isReal ? "__real" : "__imag");
+ return QualType();
+}
+
+
+
+Action::OwningExprResult
+Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
+ tok::TokenKind Kind, ExprArg Input) {
+ UnaryOperator::Opcode Opc;
+ switch (Kind) {
+ default: assert(0 && "Unknown unary op!");
+ case tok::plusplus: Opc = UnaryOperator::PostInc; break;
+ case tok::minusminus: Opc = UnaryOperator::PostDec; break;
+ }
+
+ return BuildUnaryOp(S, OpLoc, Opc, move(Input));
+}
+
+Action::OwningExprResult
+Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
+ ExprArg Idx, SourceLocation RLoc) {
+ // Since this might be a postfix expression, get rid of ParenListExprs.
+ Base = MaybeConvertParenListExprToParenExpr(S, move(Base));
+
+ Expr *LHSExp = static_cast<Expr*>(Base.get()),
+ *RHSExp = static_cast<Expr*>(Idx.get());
+
+ if (getLangOptions().CPlusPlus &&
+ (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
+ Base.release();
+ Idx.release();
+ return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
+ Context.DependentTy, RLoc));
+ }
+
+ if (getLangOptions().CPlusPlus &&
+ (LHSExp->getType()->isRecordType() ||
+ LHSExp->getType()->isEnumeralType() ||
+ RHSExp->getType()->isRecordType() ||
+ RHSExp->getType()->isEnumeralType())) {
+ return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, move(Base),move(Idx));
+ }
+
+ return CreateBuiltinArraySubscriptExpr(move(Base), LLoc, move(Idx), RLoc);
+}
+
+
+Action::OwningExprResult
+Sema::CreateBuiltinArraySubscriptExpr(ExprArg Base, SourceLocation LLoc,
+ ExprArg Idx, SourceLocation RLoc) {
+ Expr *LHSExp = static_cast<Expr*>(Base.get());
+ Expr *RHSExp = static_cast<Expr*>(Idx.get());
+
+ // Perform default conversions.
+ if (!LHSExp->getType()->getAs<VectorType>())
+ DefaultFunctionArrayLvalueConversion(LHSExp);
+ DefaultFunctionArrayLvalueConversion(RHSExp);
+
+ QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
+
+ // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
+ // to the expression *((e1)+(e2)). This means the array "Base" may actually be
+ // in the subscript position. As a result, we need to derive the array base
+ // and index from the expression types.
+ Expr *BaseExpr, *IndexExpr;
+ QualType ResultType;
+ if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
+ BaseExpr = LHSExp;
+ IndexExpr = RHSExp;
+ ResultType = Context.DependentTy;
+ } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
+ BaseExpr = LHSExp;
+ IndexExpr = RHSExp;
+ ResultType = PTy->getPointeeType();
+ } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
+ // Handle the uncommon case of "123[Ptr]".
+ BaseExpr = RHSExp;
+ IndexExpr = LHSExp;
+ ResultType = PTy->getPointeeType();
+ } else if (const ObjCObjectPointerType *PTy =
+ LHSTy->getAs<ObjCObjectPointerType>()) {
+ BaseExpr = LHSExp;
+ IndexExpr = RHSExp;
+ ResultType = PTy->getPointeeType();
+ } else if (const ObjCObjectPointerType *PTy =
+ RHSTy->getAs<ObjCObjectPointerType>()) {
+ // Handle the uncommon case of "123[Ptr]".
+ BaseExpr = RHSExp;
+ IndexExpr = LHSExp;
+ ResultType = PTy->getPointeeType();
+ } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
+ BaseExpr = LHSExp; // vectors: V[123]
+ IndexExpr = RHSExp;
+
+ // FIXME: need to deal with const...
+ ResultType = VTy->getElementType();
+ } else if (LHSTy->isArrayType()) {
+ // If we see an array that wasn't promoted by
+ // DefaultFunctionArrayLvalueConversion, it must be an array that
+ // wasn't promoted because of the C90 rule that doesn't
+ // allow promoting non-lvalue arrays. Warn, then
+ // force the promotion here.
+ Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
+ LHSExp->getSourceRange();
+ ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
+ CastExpr::CK_ArrayToPointerDecay);
+ LHSTy = LHSExp->getType();
+
+ BaseExpr = LHSExp;
+ IndexExpr = RHSExp;
+ ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
+ } else if (RHSTy->isArrayType()) {
+ // Same as previous, except for 123[f().a] case
+ Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
+ RHSExp->getSourceRange();
+ ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
+ CastExpr::CK_ArrayToPointerDecay);
+ RHSTy = RHSExp->getType();
+
+ BaseExpr = RHSExp;
+ IndexExpr = LHSExp;
+ ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
+ } else {
+ return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
+ << LHSExp->getSourceRange() << RHSExp->getSourceRange());
+ }
+ // C99 6.5.2.1p1
+ if (!(IndexExpr->getType()->isIntegerType() &&
+ IndexExpr->getType()->isScalarType()) && !IndexExpr->isTypeDependent())
+ return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
+ << IndexExpr->getSourceRange());
+
+ if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
+ IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
+ && !IndexExpr->isTypeDependent())
+ Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
+
+ // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
+ // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
+ // type. Note that Functions are not objects, and that (in C99 parlance)
+ // incomplete types are not object types.
+ if (ResultType->isFunctionType()) {
+ Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
+ << ResultType << BaseExpr->getSourceRange();
+ return ExprError();
+ }
+
+ if (!ResultType->isDependentType() &&
+ RequireCompleteType(LLoc, ResultType,
+ PDiag(diag::err_subscript_incomplete_type)
+ << BaseExpr->getSourceRange()))
+ return ExprError();
+
+ // Diagnose bad cases where we step over interface counts.
+ if (ResultType->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
+ Diag(LLoc, diag::err_subscript_nonfragile_interface)
+ << ResultType << BaseExpr->getSourceRange();
+ return ExprError();
+ }
+
+ Base.release();
+ Idx.release();
+ return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
+ ResultType, RLoc));
+}
+
+QualType Sema::
+CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
+ const IdentifierInfo *CompName,
+ SourceLocation CompLoc) {
+ // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
+ // see FIXME there.
+ //
+ // FIXME: This logic can be greatly simplified by splitting it along
+ // halving/not halving and reworking the component checking.
+ const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
+
+ // The vector accessor can't exceed the number of elements.
+ const char *compStr = CompName->getNameStart();
+
+ // This flag determines whether or not the component is one of the four
+ // special names that indicate a subset of exactly half the elements are
+ // to be selected.
+ bool HalvingSwizzle = false;
+
+ // This flag determines whether or not CompName has an 's' char prefix,
+ // indicating that it is a string of hex values to be used as vector indices.
+ bool HexSwizzle = *compStr == 's' || *compStr == 'S';
+
+ // Check that we've found one of the special components, or that the component
+ // names must come from the same set.
+ if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
+ !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
+ HalvingSwizzle = true;
+ } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
+ do
+ compStr++;
+ while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
+ } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
+ do
+ compStr++;
+ while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
+ }
+
+ if (!HalvingSwizzle && *compStr) {
+ // We didn't get to the end of the string. This means the component names
+ // didn't come from the same set *or* we encountered an illegal name.
+ Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
+ << std::string(compStr,compStr+1) << SourceRange(CompLoc);
+ return QualType();
+ }
+
+ // Ensure no component accessor exceeds the width of the vector type it
+ // operates on.
+ if (!HalvingSwizzle) {
+ compStr = CompName->getNameStart();
+
+ if (HexSwizzle)
+ compStr++;
+
+ while (*compStr) {
+ if (!vecType->isAccessorWithinNumElements(*compStr++)) {
+ Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
+ << baseType << SourceRange(CompLoc);
+ return QualType();
+ }
+ }
+ }
+
+ // The component accessor looks fine - now we need to compute the actual type.
+ // The vector type is implied by the component accessor. For example,
+ // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
+ // vec4.s0 is a float, vec4.s23 is a vec3, etc.
+ // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
+ unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
+ : CompName->getLength();
+ if (HexSwizzle)
+ CompSize--;
+
+ if (CompSize == 1)
+ return vecType->getElementType();
+
+ QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
+ // Now look up the TypeDefDecl from the vector type. Without this,
+ // diagostics look bad. We want extended vector types to appear built-in.
+ for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
+ if (ExtVectorDecls[i]->getUnderlyingType() == VT)
+ return Context.getTypedefType(ExtVectorDecls[i]);
+ }
+ return VT; // should never get here (a typedef type should always be found).
+}
+
+static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
+ IdentifierInfo *Member,
+ const Selector &Sel,
+ ASTContext &Context) {
+
+ if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
+ return PD;
+ if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
+ return OMD;
+
+ for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
+ E = PDecl->protocol_end(); I != E; ++I) {
+ if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel,
+ Context))
+ return D;
+ }
+ return 0;
+}
+
+static Decl *FindGetterNameDecl(const ObjCObjectPointerType *QIdTy,
+ IdentifierInfo *Member,
+ const Selector &Sel,
+ ASTContext &Context) {
+ // Check protocols on qualified interfaces.
+ Decl *GDecl = 0;
+ for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
+ E = QIdTy->qual_end(); I != E; ++I) {
+ if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
+ GDecl = PD;
+ break;
+ }
+ // Also must look for a getter name which uses property syntax.
+ if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
+ GDecl = OMD;
+ break;
+ }
+ }
+ if (!GDecl) {
+ for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
+ E = QIdTy->qual_end(); I != E; ++I) {
+ // Search in the protocol-qualifier list of current protocol.
+ GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context);
+ if (GDecl)
+ return GDecl;
+ }
+ }
+ return GDecl;
+}
+
+Sema::OwningExprResult
+Sema::ActOnDependentMemberExpr(ExprArg Base, QualType BaseType,
+ bool IsArrow, SourceLocation OpLoc,
+ const CXXScopeSpec &SS,
+ NamedDecl *FirstQualifierInScope,
+ DeclarationName Name, SourceLocation NameLoc,
+ const TemplateArgumentListInfo *TemplateArgs) {
+ Expr *BaseExpr = Base.takeAs<Expr>();
+
+ // Even in dependent contexts, try to diagnose base expressions with
+ // obviously wrong types, e.g.:
+ //
+ // T* t;
+ // t.f;
+ //
+ // In Obj-C++, however, the above expression is valid, since it could be
+ // accessing the 'f' property if T is an Obj-C interface. The extra check
+ // allows this, while still reporting an error if T is a struct pointer.
+ if (!IsArrow) {
+ const PointerType *PT = BaseType->getAs<PointerType>();
+ if (PT && (!getLangOptions().ObjC1 ||
+ PT->getPointeeType()->isRecordType())) {
+ assert(BaseExpr && "cannot happen with implicit member accesses");
+ Diag(NameLoc, diag::err_typecheck_member_reference_struct_union)
+ << BaseType << BaseExpr->getSourceRange();
+ return ExprError();
+ }
+ }
+
+ assert(BaseType->isDependentType() || Name.isDependentName() ||
+ isDependentScopeSpecifier(SS));
+
+ // Get the type being accessed in BaseType. If this is an arrow, the BaseExpr
+ // must have pointer type, and the accessed type is the pointee.
+ return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType,
+ IsArrow, OpLoc,
+ static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
+ SS.getRange(),
+ FirstQualifierInScope,
+ Name, NameLoc,
+ TemplateArgs));
+}
+
+/// We know that the given qualified member reference points only to
+/// declarations which do not belong to the static type of the base
+/// expression. Diagnose the problem.
+static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
+ Expr *BaseExpr,
+ QualType BaseType,
+ const CXXScopeSpec &SS,
+ const LookupResult &R) {
+ // If this is an implicit member access, use a different set of
+ // diagnostics.
+ if (!BaseExpr)
+ return DiagnoseInstanceReference(SemaRef, SS, R);
+
+ SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_of_unrelated)
+ << SS.getRange() << R.getRepresentativeDecl() << BaseType;
+}
+
+// Check whether the declarations we found through a nested-name
+// specifier in a member expression are actually members of the base
+// type. The restriction here is:
+//
+// C++ [expr.ref]p2:
+// ... In these cases, the id-expression shall name a
+// member of the class or of one of its base classes.
+//
+// So it's perfectly legitimate for the nested-name specifier to name
+// an unrelated class, and for us to find an overload set including
+// decls from classes which are not superclasses, as long as the decl
+// we actually pick through overload resolution is from a superclass.
+bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
+ QualType BaseType,
+ const CXXScopeSpec &SS,
+ const LookupResult &R) {
+ const RecordType *BaseRT = BaseType->getAs<RecordType>();
+ if (!BaseRT) {
+ // We can't check this yet because the base type is still
+ // dependent.
+ assert(BaseType->isDependentType());
+ return false;
+ }
+ CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
+
+ for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
+ // If this is an implicit member reference and we find a
+ // non-instance member, it's not an error.
+ if (!BaseExpr && !(*I)->isCXXInstanceMember())
+ return false;
+
+ // Note that we use the DC of the decl, not the underlying decl.
+ CXXRecordDecl *RecordD = cast<CXXRecordDecl>((*I)->getDeclContext());
+ while (RecordD->isAnonymousStructOrUnion())
+ RecordD = cast<CXXRecordDecl>(RecordD->getParent());
+
+ llvm::SmallPtrSet<CXXRecordDecl*,4> MemberRecord;
+ MemberRecord.insert(RecordD->getCanonicalDecl());
+
+ if (!IsProvablyNotDerivedFrom(*this, BaseRecord, MemberRecord))
+ return false;
+ }
+
+ DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS, R);
+ return true;
+}
+
+static bool
+LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
+ SourceRange BaseRange, const RecordType *RTy,
+ SourceLocation OpLoc, CXXScopeSpec &SS) {
+ RecordDecl *RDecl = RTy->getDecl();
+ if (SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
+ SemaRef.PDiag(diag::err_typecheck_incomplete_tag)
+ << BaseRange))
+ return true;
+
+ DeclContext *DC = RDecl;
+ if (SS.isSet()) {
+ // If the member name was a qualified-id, look into the
+ // nested-name-specifier.
+ DC = SemaRef.computeDeclContext(SS, false);
+
+ if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
+ SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
+ << SS.getRange() << DC;
+ return true;
+ }
+
+ assert(DC && "Cannot handle non-computable dependent contexts in lookup");
+
+ if (!isa<TypeDecl>(DC)) {
+ SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
+ << DC << SS.getRange();
+ return true;
+ }
+ }
+
+ // The record definition is complete, now look up the member.
+ SemaRef.LookupQualifiedName(R, DC);
+
+ if (!R.empty())
+ return false;
+
+ // We didn't find anything with the given name, so try to correct
+ // for typos.
+ DeclarationName Name = R.getLookupName();
+ if (SemaRef.CorrectTypo(R, 0, &SS, DC, false, Sema::CTC_MemberLookup) &&
+ !R.empty() &&
+ (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin()))) {
+ SemaRef.Diag(R.getNameLoc(), diag::err_no_member_suggest)
+ << Name << DC << R.getLookupName() << SS.getRange()
+ << FixItHint::CreateReplacement(R.getNameLoc(),
+ R.getLookupName().getAsString());
+ if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
+ SemaRef.Diag(ND->getLocation(), diag::note_previous_decl)
+ << ND->getDeclName();
+ return false;
+ } else {
+ R.clear();
+ }
+
+ return false;
+}
+
+Sema::OwningExprResult
+Sema::BuildMemberReferenceExpr(ExprArg BaseArg, QualType BaseType,
+ SourceLocation OpLoc, bool IsArrow,
+ CXXScopeSpec &SS,
+ NamedDecl *FirstQualifierInScope,
+ DeclarationName Name, SourceLocation NameLoc,
+ const TemplateArgumentListInfo *TemplateArgs) {
+ Expr *Base = BaseArg.takeAs<Expr>();
+
+ if (BaseType->isDependentType() ||
+ (SS.isSet() && isDependentScopeSpecifier(SS)))
+ return ActOnDependentMemberExpr(ExprArg(*this, Base), BaseType,
+ IsArrow, OpLoc,
+ SS, FirstQualifierInScope,
+ Name, NameLoc,
+ TemplateArgs);
+
+ LookupResult R(*this, Name, NameLoc, LookupMemberName);
+
+ // Implicit member accesses.
+ if (!Base) {
+ QualType RecordTy = BaseType;
+ if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
+ if (LookupMemberExprInRecord(*this, R, SourceRange(),
+ RecordTy->getAs<RecordType>(),
+ OpLoc, SS))
+ return ExprError();
+
+ // Explicit member accesses.
+ } else {
+ OwningExprResult Result =
+ LookupMemberExpr(R, Base, IsArrow, OpLoc,
+ SS, /*ObjCImpDecl*/ DeclPtrTy());
+
+ if (Result.isInvalid()) {
+ Owned(Base);
+ return ExprError();
+ }
+
+ if (Result.get())
+ return move(Result);
+
+ // LookupMemberExpr can modify Base, and thus change BaseType
+ BaseType = Base->getType();
+ }
+
+ return BuildMemberReferenceExpr(ExprArg(*this, Base), BaseType,
+ OpLoc, IsArrow, SS, FirstQualifierInScope,
+ R, TemplateArgs);
+}
+
+Sema::OwningExprResult
+Sema::BuildMemberReferenceExpr(ExprArg Base, QualType BaseExprType,
+ SourceLocation OpLoc, bool IsArrow,
+ const CXXScopeSpec &SS,
+ NamedDecl *FirstQualifierInScope,
+ LookupResult &R,
+ const TemplateArgumentListInfo *TemplateArgs,
+ bool SuppressQualifierCheck) {
+ Expr *BaseExpr = Base.takeAs<Expr>();
+ QualType BaseType = BaseExprType;
+ if (IsArrow) {
+ assert(BaseType->isPointerType());
+ BaseType = BaseType->getAs<PointerType>()->getPointeeType();
+ }
+ R.setBaseObjectType(BaseType);
+
+ NestedNameSpecifier *Qualifier =
+ static_cast<NestedNameSpecifier*>(SS.getScopeRep());
+ DeclarationName MemberName = R.getLookupName();
+ SourceLocation MemberLoc = R.getNameLoc();
+
+ if (R.isAmbiguous())
+ return ExprError();
+
+ if (R.empty()) {
+ // Rederive where we looked up.
+ DeclContext *DC = (SS.isSet()
+ ? computeDeclContext(SS, false)
+ : BaseType->getAs<RecordType>()->getDecl());
+
+ Diag(R.getNameLoc(), diag::err_no_member)
+ << MemberName << DC
+ << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
+ return ExprError();
+ }
+
+ // Diagnose lookups that find only declarations from a non-base
+ // type. This is possible for either qualified lookups (which may
+ // have been qualified with an unrelated type) or implicit member
+ // expressions (which were found with unqualified lookup and thus
+ // may have come from an enclosing scope). Note that it's okay for
+ // lookup to find declarations from a non-base type as long as those
+ // aren't the ones picked by overload resolution.
+ if ((SS.isSet() || !BaseExpr ||
+ (isa<CXXThisExpr>(BaseExpr) &&
+ cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
+ !SuppressQualifierCheck &&
+ CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
+ return ExprError();
+
+ // Construct an unresolved result if we in fact got an unresolved
+ // result.
+ if (R.isOverloadedResult() || R.isUnresolvableResult()) {
+ bool Dependent =
+ BaseExprType->isDependentType() ||
+ R.isUnresolvableResult() ||
+ OverloadExpr::ComputeDependence(R.begin(), R.end(), TemplateArgs);
+
+ // Suppress any lookup-related diagnostics; we'll do these when we
+ // pick a member.
+ R.suppressDiagnostics();
+
+ UnresolvedMemberExpr *MemExpr
+ = UnresolvedMemberExpr::Create(Context, Dependent,
+ R.isUnresolvableResult(),
+ BaseExpr, BaseExprType,
+ IsArrow, OpLoc,
+ Qualifier, SS.getRange(),
+ MemberName, MemberLoc,
+ TemplateArgs, R.begin(), R.end());
+
+ return Owned(MemExpr);
+ }
+
+ assert(R.isSingleResult());
+ DeclAccessPair FoundDecl = R.begin().getPair();
+ NamedDecl *MemberDecl = R.getFoundDecl();
+
+ // FIXME: diagnose the presence of template arguments now.
+
+ // If the decl being referenced had an error, return an error for this
+ // sub-expr without emitting another error, in order to avoid cascading
+ // error cases.
+ if (MemberDecl->isInvalidDecl())
+ return ExprError();
+
+ // Handle the implicit-member-access case.
+ if (!BaseExpr) {
+ // If this is not an instance member, convert to a non-member access.
+ if (!MemberDecl->isCXXInstanceMember())
+ return BuildDeclarationNameExpr(SS, R.getNameLoc(), MemberDecl);
+
+ SourceLocation Loc = R.getNameLoc();
+ if (SS.getRange().isValid())
+ Loc = SS.getRange().getBegin();
+ BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
+ }
+
+ bool ShouldCheckUse = true;
+ if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
+ // Don't diagnose the use of a virtual member function unless it's
+ // explicitly qualified.
+ if (MD->isVirtual() && !SS.isSet())
+ ShouldCheckUse = false;
+ }
+
+ // Check the use of this member.
+ if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) {
+ Owned(BaseExpr);
+ return ExprError();
+ }
+
+ if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
+ // We may have found a field within an anonymous union or struct
+ // (C++ [class.union]).
+ if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion() &&
+ !BaseType->getAs<RecordType>()->getDecl()->isAnonymousStructOrUnion())
+ return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
+ BaseExpr, OpLoc);
+
+ // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
+ QualType MemberType = FD->getType();
+ if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>())
+ MemberType = Ref->getPointeeType();
+ else {
+ Qualifiers BaseQuals = BaseType.getQualifiers();
+ BaseQuals.removeObjCGCAttr();
+ if (FD->isMutable()) BaseQuals.removeConst();
+
+ Qualifiers MemberQuals
+ = Context.getCanonicalType(MemberType).getQualifiers();
+
+ Qualifiers Combined = BaseQuals + MemberQuals;
+ if (Combined != MemberQuals)
+ MemberType = Context.getQualifiedType(MemberType, Combined);
+ }
+
+ MarkDeclarationReferenced(MemberLoc, FD);
+ if (PerformObjectMemberConversion(BaseExpr, Qualifier, FoundDecl, FD))
+ return ExprError();
+ return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
+ FD, FoundDecl, MemberLoc, MemberType));
+ }
+
+ if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
+ MarkDeclarationReferenced(MemberLoc, Var);
+ return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
+ Var, FoundDecl, MemberLoc,
+ Var->getType().getNonReferenceType()));
+ }
+
+ if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl)) {
+ MarkDeclarationReferenced(MemberLoc, MemberDecl);
+ return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
+ MemberFn, FoundDecl, MemberLoc,
+ MemberFn->getType()));
+ }
+
+ if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
+ MarkDeclarationReferenced(MemberLoc, MemberDecl);
+ return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
+ Enum, FoundDecl, MemberLoc, Enum->getType()));
+ }
+
+ Owned(BaseExpr);
+
+ // We found something that we didn't expect. Complain.
+ if (isa<TypeDecl>(MemberDecl))
+ Diag(MemberLoc,diag::err_typecheck_member_reference_type)
+ << MemberName << BaseType << int(IsArrow);
+ else
+ Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
+ << MemberName << BaseType << int(IsArrow);
+
+ Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
+ << MemberName;
+ R.suppressDiagnostics();
+ return ExprError();
+}
+
+/// Look up the given member of the given non-type-dependent
+/// expression. This can return in one of two ways:
+/// * If it returns a sentinel null-but-valid result, the caller will
+/// assume that lookup was performed and the results written into
+/// the provided structure. It will take over from there.
+/// * Otherwise, the returned expression will be produced in place of
+/// an ordinary member expression.
+///
+/// The ObjCImpDecl bit is a gross hack that will need to be properly
+/// fixed for ObjC++.
+Sema::OwningExprResult
+Sema::LookupMemberExpr(LookupResult &R, Expr *&BaseExpr,
+ bool &IsArrow, SourceLocation OpLoc,
+ CXXScopeSpec &SS,
+ DeclPtrTy ObjCImpDecl) {
+ assert(BaseExpr && "no base expression");
+
+ // Perform default conversions.
+ DefaultFunctionArrayConversion(BaseExpr);
+
+ QualType BaseType = BaseExpr->getType();
+ assert(!BaseType->isDependentType());
+
+ DeclarationName MemberName = R.getLookupName();
+ SourceLocation MemberLoc = R.getNameLoc();
+
+ // If the user is trying to apply -> or . to a function pointer
+ // type, it's probably because they forgot parentheses to call that
+ // function. Suggest the addition of those parentheses, build the
+ // call, and continue on.
+ if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
+ if (const FunctionProtoType *Fun
+ = Ptr->getPointeeType()->getAs<FunctionProtoType>()) {
+ QualType ResultTy = Fun->getResultType();
+ if (Fun->getNumArgs() == 0 &&
+ ((!IsArrow && ResultTy->isRecordType()) ||
+ (IsArrow && ResultTy->isPointerType() &&
+ ResultTy->getAs<PointerType>()->getPointeeType()
+ ->isRecordType()))) {
+ SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
+ Diag(Loc, diag::err_member_reference_needs_call)
+ << QualType(Fun, 0)
+ << FixItHint::CreateInsertion(Loc, "()");
+
+ OwningExprResult NewBase
+ = ActOnCallExpr(0, ExprArg(*this, BaseExpr), Loc,
+ MultiExprArg(*this, 0, 0), 0, Loc);
+ if (NewBase.isInvalid())
+ return ExprError();
+
+ BaseExpr = NewBase.takeAs<Expr>();
+ DefaultFunctionArrayConversion(BaseExpr);
+ BaseType = BaseExpr->getType();
+ }
+ }
+ }
+
+ // If this is an Objective-C pseudo-builtin and a definition is provided then
+ // use that.
+ if (BaseType->isObjCIdType()) {
+ if (IsArrow) {
+ // Handle the following exceptional case PObj->isa.
+ if (const ObjCObjectPointerType *OPT =
+ BaseType->getAs<ObjCObjectPointerType>()) {
+ if (OPT->getObjectType()->isObjCId() &&
+ MemberName.getAsIdentifierInfo()->isStr("isa"))
+ return Owned(new (Context) ObjCIsaExpr(BaseExpr, true, MemberLoc,
+ Context.getObjCClassType()));
+ }
+ }
+ // We have an 'id' type. Rather than fall through, we check if this
+ // is a reference to 'isa'.
+ if (BaseType != Context.ObjCIdRedefinitionType) {
+ BaseType = Context.ObjCIdRedefinitionType;
+ ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
+ }
+ }
+
+ // If this is an Objective-C pseudo-builtin and a definition is provided then
+ // use that.
+ if (Context.isObjCSelType(BaseType)) {
+ // We have an 'SEL' type. Rather than fall through, we check if this
+ // is a reference to 'sel_id'.
+ if (BaseType != Context.ObjCSelRedefinitionType) {
+ BaseType = Context.ObjCSelRedefinitionType;
+ ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
+ }
+ }
+
+ assert(!BaseType.isNull() && "no type for member expression");
+
+ // Handle properties on ObjC 'Class' types.
+ if (!IsArrow && BaseType->isObjCClassType()) {
+ // Also must look for a getter name which uses property syntax.
+ IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
+ Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
+ if (ObjCMethodDecl *MD = getCurMethodDecl()) {
+ ObjCInterfaceDecl *IFace = MD->getClassInterface();
+ ObjCMethodDecl *Getter;
+ // FIXME: need to also look locally in the implementation.
+ if ((Getter = IFace->lookupClassMethod(Sel))) {
+ // Check the use of this method.
+ if (DiagnoseUseOfDecl(Getter, MemberLoc))
+ return ExprError();
+ }
+ // If we found a getter then this may be a valid dot-reference, we
+ // will look for the matching setter, in case it is needed.
+ Selector SetterSel =
+ SelectorTable::constructSetterName(PP.getIdentifierTable(),
+ PP.getSelectorTable(), Member);
+ ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
+ if (!Setter) {
+ // If this reference is in an @implementation, also check for 'private'
+ // methods.
+ Setter = IFace->lookupPrivateInstanceMethod(SetterSel);
+ }
+ // Look through local category implementations associated with the class.
+ if (!Setter)
+ Setter = IFace->getCategoryClassMethod(SetterSel);
+
+ if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
+ return ExprError();
+
+ if (Getter || Setter) {
+ QualType PType;
+
+ if (Getter)
+ PType = Getter->getResultType();
+ else
+ // Get the expression type from Setter's incoming parameter.
+ PType = (*(Setter->param_end() -1))->getType();
+ // FIXME: we must check that the setter has property type.
+ return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter,
+ PType,
+ Setter, MemberLoc, BaseExpr));
+ }
+ return ExprError(Diag(MemberLoc, diag::err_property_not_found)
+ << MemberName << BaseType);
+ }
+ }
+
+ if (BaseType->isObjCClassType() &&
+ BaseType != Context.ObjCClassRedefinitionType) {
+ BaseType = Context.ObjCClassRedefinitionType;
+ ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
+ }
+
+ if (IsArrow) {
+ if (const PointerType *PT = BaseType->getAs<PointerType>())
+ BaseType = PT->getPointeeType();
+ else if (BaseType->isObjCObjectPointerType())
+ ;
+ else if (BaseType->isRecordType()) {
+ // Recover from arrow accesses to records, e.g.:
+ // struct MyRecord foo;
+ // foo->bar
+ // This is actually well-formed in C++ if MyRecord has an
+ // overloaded operator->, but that should have been dealt with
+ // by now.
+ Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
+ << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
+ << FixItHint::CreateReplacement(OpLoc, ".");
+ IsArrow = false;
+ } else {
+ Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
+ << BaseType << BaseExpr->getSourceRange();
+ return ExprError();
+ }
+ } else {
+ // Recover from dot accesses to pointers, e.g.:
+ // type *foo;
+ // foo.bar
+ // This is actually well-formed in two cases:
+ // - 'type' is an Objective C type
+ // - 'bar' is a pseudo-destructor name which happens to refer to
+ // the appropriate pointer type
+ if (MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
+ const PointerType *PT = BaseType->getAs<PointerType>();
+ if (PT && PT->getPointeeType()->isRecordType()) {
+ Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
+ << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
+ << FixItHint::CreateReplacement(OpLoc, "->");
+ BaseType = PT->getPointeeType();
+ IsArrow = true;
+ }
+ }
+ }
+
+ // Handle field access to simple records.
+ if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
+ if (LookupMemberExprInRecord(*this, R, BaseExpr->getSourceRange(),
+ RTy, OpLoc, SS))
+ return ExprError();
+ return Owned((Expr*) 0);
+ }
+
+ // Handle access to Objective-C instance variables, such as "Obj->ivar" and
+ // (*Obj).ivar.
+ if ((IsArrow && BaseType->isObjCObjectPointerType()) ||
+ (!IsArrow && BaseType->isObjCObjectType())) {
+ const ObjCObjectPointerType *OPT = BaseType->getAs<ObjCObjectPointerType>();
+ ObjCInterfaceDecl *IDecl =
+ OPT ? OPT->getInterfaceDecl()
+ : BaseType->getAs<ObjCObjectType>()->getInterface();
+ if (IDecl) {
+ IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
+
+ ObjCInterfaceDecl *ClassDeclared;
+ ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
+
+ if (!IV) {
+ // Attempt to correct for typos in ivar names.
+ LookupResult Res(*this, R.getLookupName(), R.getNameLoc(),
+ LookupMemberName);
+ if (CorrectTypo(Res, 0, 0, IDecl, false, CTC_MemberLookup) &&
+ (IV = Res.getAsSingle<ObjCIvarDecl>())) {
+ Diag(R.getNameLoc(),
+ diag::err_typecheck_member_reference_ivar_suggest)
+ << IDecl->getDeclName() << MemberName << IV->getDeclName()
+ << FixItHint::CreateReplacement(R.getNameLoc(),
+ IV->getNameAsString());
+ Diag(IV->getLocation(), diag::note_previous_decl)
+ << IV->getDeclName();
+ }
+ }
+
+ if (IV) {
+ // If the decl being referenced had an error, return an error for this
+ // sub-expr without emitting another error, in order to avoid cascading
+ // error cases.
+ if (IV->isInvalidDecl())
+ return ExprError();
+
+ // Check whether we can reference this field.
+ if (DiagnoseUseOfDecl(IV, MemberLoc))
+ return ExprError();
+ if (IV->getAccessControl() != ObjCIvarDecl::Public &&
+ IV->getAccessControl() != ObjCIvarDecl::Package) {
+ ObjCInterfaceDecl *ClassOfMethodDecl = 0;
+ if (ObjCMethodDecl *MD = getCurMethodDecl())
+ ClassOfMethodDecl = MD->getClassInterface();
+ else if (ObjCImpDecl && getCurFunctionDecl()) {
+ // Case of a c-function declared inside an objc implementation.
+ // FIXME: For a c-style function nested inside an objc implementation
+ // class, there is no implementation context available, so we pass
+ // down the context as argument to this routine. Ideally, this context
+ // need be passed down in the AST node and somehow calculated from the
+ // AST for a function decl.
+ Decl *ImplDecl = ObjCImpDecl.getAs<Decl>();
+ if (ObjCImplementationDecl *IMPD =
+ dyn_cast<ObjCImplementationDecl>(ImplDecl))
+ ClassOfMethodDecl = IMPD->getClassInterface();
+ else if (ObjCCategoryImplDecl* CatImplClass =
+ dyn_cast<ObjCCategoryImplDecl>(ImplDecl))
+ ClassOfMethodDecl = CatImplClass->getClassInterface();
+ }
+
+ if (IV->getAccessControl() == ObjCIvarDecl::Private) {
+ if (ClassDeclared != IDecl ||
+ ClassOfMethodDecl != ClassDeclared)
+ Diag(MemberLoc, diag::error_private_ivar_access)
+ << IV->getDeclName();
+ } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
+ // @protected
+ Diag(MemberLoc, diag::error_protected_ivar_access)
+ << IV->getDeclName();
+ }
+
+ return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
+ MemberLoc, BaseExpr,
+ IsArrow));
+ }
+ return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
+ << IDecl->getDeclName() << MemberName
+ << BaseExpr->getSourceRange());
+ }
+ }
+ // Handle properties on 'id' and qualified "id".
+ if (!IsArrow && (BaseType->isObjCIdType() ||
+ BaseType->isObjCQualifiedIdType())) {
+ const ObjCObjectPointerType *QIdTy = BaseType->getAs<ObjCObjectPointerType>();
+ IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
+
+ // Check protocols on qualified interfaces.
+ Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
+ if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) {
+ if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
+ // Check the use of this declaration
+ if (DiagnoseUseOfDecl(PD, MemberLoc))
+ return ExprError();
+
+ return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
+ MemberLoc, BaseExpr));
+ }
+ if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
+ // Check the use of this method.
+ if (DiagnoseUseOfDecl(OMD, MemberLoc))
+ return ExprError();
+
+ return Owned(ObjCMessageExpr::Create(Context,
+ OMD->getResultType().getNonReferenceType(),
+ OpLoc, BaseExpr, Sel,
+ OMD, NULL, 0, MemberLoc));
+ }
+ }
+
+ return ExprError(Diag(MemberLoc, diag::err_property_not_found)
+ << MemberName << BaseType);
+ }
+
+ // Handle Objective-C property access, which is "Obj.property" where Obj is a
+ // pointer to a (potentially qualified) interface type.
+ if (!IsArrow)
+ if (const ObjCObjectPointerType *OPT =
+ BaseType->getAsObjCInterfacePointerType())
+ return HandleExprPropertyRefExpr(OPT, BaseExpr, MemberName, MemberLoc);
+
+ // Handle the following exceptional case (*Obj).isa.
+ if (!IsArrow &&
+ BaseType->isObjCObjectType() &&
+ BaseType->getAs<ObjCObjectType>()->isObjCId() &&
+ MemberName.getAsIdentifierInfo()->isStr("isa"))
+ return Owned(new (Context) ObjCIsaExpr(BaseExpr, false, MemberLoc,
+ Context.getObjCClassType()));
+
+ // Handle 'field access' to vectors, such as 'V.xx'.
+ if (BaseType->isExtVectorType()) {
+ IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
+ QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
+ if (ret.isNull())
+ return ExprError();
+ return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, *Member,
+ MemberLoc));
+ }
+
+ Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
+ << BaseType << BaseExpr->getSourceRange();
+
+ return ExprError();
+}
+
+/// The main callback when the parser finds something like
+/// expression . [nested-name-specifier] identifier
+/// expression -> [nested-name-specifier] identifier
+/// where 'identifier' encompasses a fairly broad spectrum of
+/// possibilities, including destructor and operator references.
+///
+/// \param OpKind either tok::arrow or tok::period
+/// \param HasTrailingLParen whether the next token is '(', which
+/// is used to diagnose mis-uses of special members that can
+/// only be called
+/// \param ObjCImpDecl the current ObjC @implementation decl;
+/// this is an ugly hack around the fact that ObjC @implementations
+/// aren't properly put in the context chain
+Sema::OwningExprResult Sema::ActOnMemberAccessExpr(Scope *S, ExprArg BaseArg,
+ SourceLocation OpLoc,
+ tok::TokenKind OpKind,
+ CXXScopeSpec &SS,
+ UnqualifiedId &Id,
+ DeclPtrTy ObjCImpDecl,
+ bool HasTrailingLParen) {
+ if (SS.isSet() && SS.isInvalid())
+ return ExprError();
+
+ TemplateArgumentListInfo TemplateArgsBuffer;
+
+ // Decompose the name into its component parts.
+ DeclarationName Name;
+ SourceLocation NameLoc;
+ const TemplateArgumentListInfo *TemplateArgs;
+ DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer,
+ Name, NameLoc, TemplateArgs);
+
+ bool IsArrow = (OpKind == tok::arrow);
+
+ NamedDecl *FirstQualifierInScope
+ = (!SS.isSet() ? 0 : FindFirstQualifierInScope(S,
+ static_cast<NestedNameSpecifier*>(SS.getScopeRep())));
+
+ // This is a postfix expression, so get rid of ParenListExprs.
+ BaseArg = MaybeConvertParenListExprToParenExpr(S, move(BaseArg));
+
+ Expr *Base = BaseArg.takeAs<Expr>();
+ OwningExprResult Result(*this);
+ if (Base->getType()->isDependentType() || Name.isDependentName() ||
+ isDependentScopeSpecifier(SS)) {
+ Result = ActOnDependentMemberExpr(ExprArg(*this, Base), Base->getType(),
+ IsArrow, OpLoc,
+ SS, FirstQualifierInScope,
+ Name, NameLoc,
+ TemplateArgs);
+ } else {
+ LookupResult R(*this, Name, NameLoc, LookupMemberName);
+ if (TemplateArgs) {
+ // Re-use the lookup done for the template name.
+ DecomposeTemplateName(R, Id);
+
+ // Re-derive the naming class.
+ if (SS.isSet()) {
+ NestedNameSpecifier *Qualifier
+ = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
+ if (const Type *Ty = Qualifier->getAsType())
+ if (CXXRecordDecl *NamingClass = Ty->getAsCXXRecordDecl())
+ R.setNamingClass(NamingClass);
+ } else {
+ QualType BaseType = Base->getType();
+ if (const PointerType *Ptr = BaseType->getAs<PointerType>())
+ BaseType = Ptr->getPointeeType();
+ if (CXXRecordDecl *NamingClass = BaseType->getAsCXXRecordDecl())
+ R.setNamingClass(NamingClass);
+ }
+ } else {
+ Result = LookupMemberExpr(R, Base, IsArrow, OpLoc,
+ SS, ObjCImpDecl);
+
+ if (Result.isInvalid()) {
+ Owned(Base);
+ return ExprError();
+ }
+
+ if (Result.get()) {
+ // The only way a reference to a destructor can be used is to
+ // immediately call it, which falls into this case. If the
+ // next token is not a '(', produce a diagnostic and build the
+ // call now.
+ if (!HasTrailingLParen &&
+ Id.getKind() == UnqualifiedId::IK_DestructorName)
+ return DiagnoseDtorReference(NameLoc, move(Result));
+
+ return move(Result);
+ }
+ }
+
+ Result = BuildMemberReferenceExpr(ExprArg(*this, Base), Base->getType(),
+ OpLoc, IsArrow, SS, FirstQualifierInScope,
+ R, TemplateArgs);
+ }
+
+ return move(Result);
+}
+
+Sema::OwningExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
+ FunctionDecl *FD,
+ ParmVarDecl *Param) {
+ if (Param->hasUnparsedDefaultArg()) {
+ Diag (CallLoc,
+ diag::err_use_of_default_argument_to_function_declared_later) <<
+ FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
+ Diag(UnparsedDefaultArgLocs[Param],
+ diag::note_default_argument_declared_here);
+ } else {
+ if (Param->hasUninstantiatedDefaultArg()) {
+ Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
+
+ // Instantiate the expression.
+ MultiLevelTemplateArgumentList ArgList
+ = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
+
+ InstantiatingTemplate Inst(*this, CallLoc, Param,
+ ArgList.getInnermost().getFlatArgumentList(),
+ ArgList.getInnermost().flat_size());
+
+ OwningExprResult Result = SubstExpr(UninstExpr, ArgList);
+ if (Result.isInvalid())
+ return ExprError();
+
+ // Check the expression as an initializer for the parameter.
+ InitializedEntity Entity
+ = InitializedEntity::InitializeParameter(Param);
+ InitializationKind Kind
+ = InitializationKind::CreateCopy(Param->getLocation(),
+ /*FIXME:EqualLoc*/UninstExpr->getSourceRange().getBegin());
+ Expr *ResultE = Result.takeAs<Expr>();
+
+ InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
+ Result = InitSeq.Perform(*this, Entity, Kind,
+ MultiExprArg(*this, (void**)&ResultE, 1));
+ if (Result.isInvalid())
+ return ExprError();
+
+ // Build the default argument expression.
+ return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param,
+ Result.takeAs<Expr>()));
+ }
+
+ // If the default expression creates temporaries, we need to
+ // push them to the current stack of expression temporaries so they'll
+ // be properly destroyed.
+ // FIXME: We should really be rebuilding the default argument with new
+ // bound temporaries; see the comment in PR5810.
+ for (unsigned i = 0, e = Param->getNumDefaultArgTemporaries(); i != e; ++i)
+ ExprTemporaries.push_back(Param->getDefaultArgTemporary(i));
+ }
+
+ // We already type-checked the argument, so we know it works.
+ return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
+}
+
+/// ConvertArgumentsForCall - Converts the arguments specified in
+/// Args/NumArgs to the parameter types of the function FDecl with
+/// function prototype Proto. Call is the call expression itself, and
+/// Fn is the function expression. For a C++ member function, this
+/// routine does not attempt to convert the object argument. Returns
+/// true if the call is ill-formed.
+bool
+Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
+ FunctionDecl *FDecl,
+ const FunctionProtoType *Proto,
+ Expr **Args, unsigned NumArgs,
+ SourceLocation RParenLoc) {
+ // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
+ // assignment, to the types of the corresponding parameter, ...
+ unsigned NumArgsInProto = Proto->getNumArgs();
+ bool Invalid = false;
+
+ // If too few arguments are available (and we don't have default
+ // arguments for the remaining parameters), don't make the call.
+ if (NumArgs < NumArgsInProto) {
+ if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
+ return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
+ << Fn->getType()->isBlockPointerType()
+ << NumArgsInProto << NumArgs << Fn->getSourceRange();
+ Call->setNumArgs(Context, NumArgsInProto);
+ }
+
+ // If too many are passed and not variadic, error on the extras and drop
+ // them.
+ if (NumArgs > NumArgsInProto) {
+ if (!Proto->isVariadic()) {
+ Diag(Args[NumArgsInProto]->getLocStart(),
+ diag::err_typecheck_call_too_many_args)
+ << Fn->getType()->isBlockPointerType()
+ << NumArgsInProto << NumArgs << Fn->getSourceRange()
+ << SourceRange(Args[NumArgsInProto]->getLocStart(),
+ Args[NumArgs-1]->getLocEnd());
+ // This deletes the extra arguments.
+ Call->setNumArgs(Context, NumArgsInProto);
+ return true;
+ }
+ }
+ llvm::SmallVector<Expr *, 8> AllArgs;
+ VariadicCallType CallType =
+ Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
+ if (Fn->getType()->isBlockPointerType())
+ CallType = VariadicBlock; // Block
+ else if (isa<MemberExpr>(Fn))
+ CallType = VariadicMethod;
+ Invalid = GatherArgumentsForCall(Call->getSourceRange().getBegin(), FDecl,
+ Proto, 0, Args, NumArgs, AllArgs, CallType);
+ if (Invalid)
+ return true;
+ unsigned TotalNumArgs = AllArgs.size();
+ for (unsigned i = 0; i < TotalNumArgs; ++i)
+ Call->setArg(i, AllArgs[i]);
+
+ return false;
+}
+
+bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
+ FunctionDecl *FDecl,
+ const FunctionProtoType *Proto,
+ unsigned FirstProtoArg,
+ Expr **Args, unsigned NumArgs,
+ llvm::SmallVector<Expr *, 8> &AllArgs,
+ VariadicCallType CallType) {
+ unsigned NumArgsInProto = Proto->getNumArgs();
+ unsigned NumArgsToCheck = NumArgs;
+ bool Invalid = false;
+ if (NumArgs != NumArgsInProto)
+ // Use default arguments for missing arguments
+ NumArgsToCheck = NumArgsInProto;
+ unsigned ArgIx = 0;
+ // Continue to check argument types (even if we have too few/many args).
+ for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
+ QualType ProtoArgType = Proto->getArgType(i);
+
+ Expr *Arg;
+ if (ArgIx < NumArgs) {
+ Arg = Args[ArgIx++];
+
+ if (RequireCompleteType(Arg->getSourceRange().getBegin(),
+ ProtoArgType,
+ PDiag(diag::err_call_incomplete_argument)
+ << Arg->getSourceRange()))
+ return true;
+
+ // Pass the argument
+ ParmVarDecl *Param = 0;
+ if (FDecl && i < FDecl->getNumParams())
+ Param = FDecl->getParamDecl(i);
+
+
+ InitializedEntity Entity =
+ Param? InitializedEntity::InitializeParameter(Param)
+ : InitializedEntity::InitializeParameter(ProtoArgType);
+ OwningExprResult ArgE = PerformCopyInitialization(Entity,
+ SourceLocation(),
+ Owned(Arg));
+ if (ArgE.isInvalid())
+ return true;
+
+ Arg = ArgE.takeAs<Expr>();
+ } else {
+ ParmVarDecl *Param = FDecl->getParamDecl(i);
+
+ OwningExprResult ArgExpr =
+ BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
+ if (ArgExpr.isInvalid())
+ return true;
+
+ Arg = ArgExpr.takeAs<Expr>();
+ }
+ AllArgs.push_back(Arg);
+ }
+
+ // If this is a variadic call, handle args passed through "...".
+ if (CallType != VariadicDoesNotApply) {
+ // Promote the arguments (C99 6.5.2.2p7).
+ for (unsigned i = ArgIx; i != NumArgs; ++i) {
+ Expr *Arg = Args[i];
+ Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType, FDecl);
+ AllArgs.push_back(Arg);
+ }
+ }
+ return Invalid;
+}
+
+/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
+/// This provides the location of the left/right parens and a list of comma
+/// locations.
+Action::OwningExprResult
+Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
+ MultiExprArg args,
+ SourceLocation *CommaLocs, SourceLocation RParenLoc) {
+ unsigned NumArgs = args.size();
+
+ // Since this might be a postfix expression, get rid of ParenListExprs.
+ fn = MaybeConvertParenListExprToParenExpr(S, move(fn));
+
+ Expr *Fn = fn.takeAs<Expr>();
+ Expr **Args = reinterpret_cast<Expr**>(args.release());
+ assert(Fn && "no function call expression");
+
+ if (getLangOptions().CPlusPlus) {
+ // If this is a pseudo-destructor expression, build the call immediately.
+ if (isa<CXXPseudoDestructorExpr>(Fn)) {
+ if (NumArgs > 0) {
+ // Pseudo-destructor calls should not have any arguments.
+ Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
+ << FixItHint::CreateRemoval(
+ SourceRange(Args[0]->getLocStart(),
+ Args[NumArgs-1]->getLocEnd()));
+
+ for (unsigned I = 0; I != NumArgs; ++I)
+ Args[I]->Destroy(Context);
+
+ NumArgs = 0;
+ }
+
+ return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
+ RParenLoc));
+ }
+
+ // Determine whether this is a dependent call inside a C++ template,
+ // in which case we won't do any semantic analysis now.
+ // FIXME: Will need to cache the results of name lookup (including ADL) in
+ // Fn.
+ bool Dependent = false;
+ if (Fn->isTypeDependent())
+ Dependent = true;
+ else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
+ Dependent = true;
+
+ if (Dependent)
+ return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
+ Context.DependentTy, RParenLoc));
+
+ // Determine whether this is a call to an object (C++ [over.call.object]).
+ if (Fn->getType()->isRecordType())
+ return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
+ CommaLocs, RParenLoc));
+
+ Expr *NakedFn = Fn->IgnoreParens();
+
+ // Determine whether this is a call to an unresolved member function.
+ if (UnresolvedMemberExpr *MemE = dyn_cast<UnresolvedMemberExpr>(NakedFn)) {
+ // If lookup was unresolved but not dependent (i.e. didn't find
+ // an unresolved using declaration), it has to be an overloaded
+ // function set, which means it must contain either multiple
+ // declarations (all methods or method templates) or a single
+ // method template.
+ assert((MemE->getNumDecls() > 1) ||
+ isa<FunctionTemplateDecl>(
+ (*MemE->decls_begin())->getUnderlyingDecl()));
+ (void)MemE;
+
+ return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
+ CommaLocs, RParenLoc);
+ }
+
+ // Determine whether this is a call to a member function.
+ if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(NakedFn)) {
+ NamedDecl *MemDecl = MemExpr->getMemberDecl();
+ if (isa<CXXMethodDecl>(MemDecl))
+ return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
+ CommaLocs, RParenLoc);
+ }
+
+ // Determine whether this is a call to a pointer-to-member function.
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(NakedFn)) {
+ if (BO->getOpcode() == BinaryOperator::PtrMemD ||
+ BO->getOpcode() == BinaryOperator::PtrMemI) {
+ if (const FunctionProtoType *FPT
+ = BO->getType()->getAs<FunctionProtoType>()) {
+ QualType ResultTy = FPT->getResultType().getNonReferenceType();
+
+ ExprOwningPtr<CXXMemberCallExpr>
+ TheCall(this, new (Context) CXXMemberCallExpr(Context, BO, Args,
+ NumArgs, ResultTy,
+ RParenLoc));
+
+ if (CheckCallReturnType(FPT->getResultType(),
+ BO->getRHS()->getSourceRange().getBegin(),
+ TheCall.get(), 0))
+ return ExprError();
+
+ if (ConvertArgumentsForCall(&*TheCall, BO, 0, FPT, Args, NumArgs,
+ RParenLoc))
+ return ExprError();
+
+ return Owned(MaybeBindToTemporary(TheCall.release()).release());
+ }
+ return ExprError(Diag(Fn->getLocStart(),
+ diag::err_typecheck_call_not_function)
+ << Fn->getType() << Fn->getSourceRange());
+ }
+ }
+ }
+
+ // If we're directly calling a function, get the appropriate declaration.
+ // Also, in C++, keep track of whether we should perform argument-dependent
+ // lookup and whether there were any explicitly-specified template arguments.
+
+ Expr *NakedFn = Fn->IgnoreParens();
+ if (isa<UnresolvedLookupExpr>(NakedFn)) {
+ UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(NakedFn);
+ return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, Args, NumArgs,
+ CommaLocs, RParenLoc);
+ }
+
+ NamedDecl *NDecl = 0;
+ if (isa<DeclRefExpr>(NakedFn))
+ NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
+
+ return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc);
+}
+
+/// BuildResolvedCallExpr - Build a call to a resolved expression,
+/// i.e. an expression not of \p OverloadTy. The expression should
+/// unary-convert to an expression of function-pointer or
+/// block-pointer type.
+///
+/// \param NDecl the declaration being called, if available
+Sema::OwningExprResult
+Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
+ SourceLocation LParenLoc,
+ Expr **Args, unsigned NumArgs,
+ SourceLocation RParenLoc) {
+ FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
+
+ // Promote the function operand.
+ UsualUnaryConversions(Fn);
+
+ // Make the call expr early, before semantic checks. This guarantees cleanup
+ // of arguments and function on error.
+ ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
+ Args, NumArgs,
+ Context.BoolTy,
+ RParenLoc));
+
+ const FunctionType *FuncT;
+ if (!Fn->getType()->isBlockPointerType()) {
+ // C99 6.5.2.2p1 - "The expression that denotes the called function shall
+ // have type pointer to function".
+ const PointerType *PT = Fn->getType()->getAs<PointerType>();
+ if (PT == 0)
+ return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
+ << Fn->getType() << Fn->getSourceRange());
+ FuncT = PT->getPointeeType()->getAs<FunctionType>();
+ } else { // This is a block call.
+ FuncT = Fn->getType()->getAs<BlockPointerType>()->getPointeeType()->
+ getAs<FunctionType>();
+ }
+ if (FuncT == 0)
+ return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
+ << Fn->getType() << Fn->getSourceRange());
+
+ // Check for a valid return type
+ if (CheckCallReturnType(FuncT->getResultType(),
+ Fn->getSourceRange().getBegin(), TheCall.get(),
+ FDecl))
+ return ExprError();
+
+ // We know the result type of the call, set it.
+ TheCall->setType(FuncT->getResultType().getNonReferenceType());
+
+ if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
+ if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
+ RParenLoc))
+ return ExprError();
+ } else {
+ assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
+
+ if (FDecl) {
+ // Check if we have too few/too many template arguments, based
+ // on our knowledge of the function definition.
+ const FunctionDecl *Def = 0;
+ if (FDecl->getBody(Def) && NumArgs != Def->param_size()) {
+ const FunctionProtoType *Proto =
+ Def->getType()->getAs<FunctionProtoType>();
+ if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) {
+ Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
+ << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
+ }
+ }
+ }
+
+ // Promote the arguments (C99 6.5.2.2p6).
+ for (unsigned i = 0; i != NumArgs; i++) {
+ Expr *Arg = Args[i];
+ DefaultArgumentPromotion(Arg);
+ if (RequireCompleteType(Arg->getSourceRange().getBegin(),
+ Arg->getType(),
+ PDiag(diag::err_call_incomplete_argument)
+ << Arg->getSourceRange()))
+ return ExprError();
+ TheCall->setArg(i, Arg);
+ }
+ }
+
+ if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
+ if (!Method->isStatic())
+ return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
+ << Fn->getSourceRange());
+
+ // Check for sentinels
+ if (NDecl)
+ DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
+
+ // Do special checking on direct calls to functions.
+ if (FDecl) {
+ if (CheckFunctionCall(FDecl, TheCall.get()))
+ return ExprError();
+
+ if (unsigned BuiltinID = FDecl->getBuiltinID())
+ return CheckBuiltinFunctionCall(BuiltinID, TheCall.take());
+ } else if (NDecl) {
+ if (CheckBlockCall(NDecl, TheCall.get()))
+ return ExprError();
+ }
+
+ return MaybeBindToTemporary(TheCall.take());
+}
+
+Action::OwningExprResult
+Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
+ SourceLocation RParenLoc, ExprArg InitExpr) {
+ assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
+ // FIXME: put back this assert when initializers are worked out.
+ //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
+
+ TypeSourceInfo *TInfo;
+ QualType literalType = GetTypeFromParser(Ty, &TInfo);
+ if (!TInfo)
+ TInfo = Context.getTrivialTypeSourceInfo(literalType);
+
+ return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, move(InitExpr));
+}
+
+Action::OwningExprResult
+Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
+ SourceLocation RParenLoc, ExprArg InitExpr) {
+ QualType literalType = TInfo->getType();
+ Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
+
+ if (literalType->isArrayType()) {
+ if (literalType->isVariableArrayType())
+ return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
+ << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
+ } else if (!literalType->isDependentType() &&
+ RequireCompleteType(LParenLoc, literalType,
+ PDiag(diag::err_typecheck_decl_incomplete_type)
+ << SourceRange(LParenLoc,
+ literalExpr->getSourceRange().getEnd())))
+ return ExprError();
+
+ InitializedEntity Entity
+ = InitializedEntity::InitializeTemporary(literalType);
+ InitializationKind Kind
+ = InitializationKind::CreateCast(SourceRange(LParenLoc, RParenLoc),
+ /*IsCStyleCast=*/true);
+ InitializationSequence InitSeq(*this, Entity, Kind, &literalExpr, 1);
+ OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
+ MultiExprArg(*this, (void**)&literalExpr, 1),
+ &literalType);
+ if (Result.isInvalid())
+ return ExprError();
+ InitExpr.release();
+ literalExpr = static_cast<Expr*>(Result.get());
+
+ bool isFileScope = getCurFunctionOrMethodDecl() == 0;
+ if (isFileScope) { // 6.5.2.5p3
+ if (CheckForConstantInitializer(literalExpr, literalType))
+ return ExprError();
+ }
+
+ Result.release();
+
+ return Owned(new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
+ literalExpr, isFileScope));
+}
+
+Action::OwningExprResult
+Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
+ SourceLocation RBraceLoc) {
+ unsigned NumInit = initlist.size();
+ Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
+
+ // Semantic analysis for initializers is done by ActOnDeclarator() and
+ // CheckInitializer() - it requires knowledge of the object being intialized.
+
+ InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitList,
+ NumInit, RBraceLoc);
+ E->setType(Context.VoidTy); // FIXME: just a place holder for now.
+ return Owned(E);
+}
+
+static CastExpr::CastKind getScalarCastKind(ASTContext &Context,
+ QualType SrcTy, QualType DestTy) {
+ if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
+ return CastExpr::CK_NoOp;
+
+ if (SrcTy->hasPointerRepresentation()) {
+ if (DestTy->hasPointerRepresentation())
+ return DestTy->isObjCObjectPointerType() ?
+ CastExpr::CK_AnyPointerToObjCPointerCast :
+ CastExpr::CK_BitCast;
+ if (DestTy->isIntegerType())
+ return CastExpr::CK_PointerToIntegral;
+ }
+
+ if (SrcTy->isIntegerType()) {
+ if (DestTy->isIntegerType())
+ return CastExpr::CK_IntegralCast;
+ if (DestTy->hasPointerRepresentation())
+ return CastExpr::CK_IntegralToPointer;
+ if (DestTy->isRealFloatingType())
+ return CastExpr::CK_IntegralToFloating;
+ }
+
+ if (SrcTy->isRealFloatingType()) {
+ if (DestTy->isRealFloatingType())
+ return CastExpr::CK_FloatingCast;
+ if (DestTy->isIntegerType())
+ return CastExpr::CK_FloatingToIntegral;
+ }
+
+ // FIXME: Assert here.
+ // assert(false && "Unhandled cast combination!");
+ return CastExpr::CK_Unknown;
+}
+
+/// CheckCastTypes - Check type constraints for casting between types.
+bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr,
+ CastExpr::CastKind& Kind,
+ CXXBaseSpecifierArray &BasePath,
+ bool FunctionalStyle) {
+ if (getLangOptions().CPlusPlus)
+ return CXXCheckCStyleCast(TyR, castType, castExpr, Kind, BasePath,
+ FunctionalStyle);
+
+ DefaultFunctionArrayLvalueConversion(castExpr);
+
+ // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
+ // type needs to be scalar.
+ if (castType->isVoidType()) {
+ // Cast to void allows any expr type.
+ Kind = CastExpr::CK_ToVoid;
+ return false;
+ }
+
+ if (!castType->isScalarType() && !castType->isVectorType()) {
+ if (Context.hasSameUnqualifiedType(castType, castExpr->getType()) &&
+ (castType->isStructureType() || castType->isUnionType())) {
+ // GCC struct/union extension: allow cast to self.
+ // FIXME: Check that the cast destination type is complete.
+ Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
+ << castType << castExpr->getSourceRange();
+ Kind = CastExpr::CK_NoOp;
+ return false;
+ }
+
+ if (castType->isUnionType()) {
+ // GCC cast to union extension
+ RecordDecl *RD = castType->getAs<RecordType>()->getDecl();
+ RecordDecl::field_iterator Field, FieldEnd;
+ for (Field = RD->field_begin(), FieldEnd = RD->field_end();
+ Field != FieldEnd; ++Field) {
+ if (Context.hasSameUnqualifiedType(Field->getType(),
+ castExpr->getType())) {
+ Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
+ << castExpr->getSourceRange();
+ break;
+ }
+ }
+ if (Field == FieldEnd)
+ return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
+ << castExpr->getType() << castExpr->getSourceRange();
+ Kind = CastExpr::CK_ToUnion;
+ return false;
+ }
+
+ // Reject any other conversions to non-scalar types.
+ return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
+ << castType << castExpr->getSourceRange();
+ }
+
+ if (!castExpr->getType()->isScalarType() &&
+ !castExpr->getType()->isVectorType()) {
+ return Diag(castExpr->getLocStart(),
+ diag::err_typecheck_expect_scalar_operand)
+ << castExpr->getType() << castExpr->getSourceRange();
+ }
+
+ if (castType->isExtVectorType())
+ return CheckExtVectorCast(TyR, castType, castExpr, Kind);
+
+ if (castType->isVectorType())
+ return CheckVectorCast(TyR, castType, castExpr->getType(), Kind);
+ if (castExpr->getType()->isVectorType())
+ return CheckVectorCast(TyR, castExpr->getType(), castType, Kind);
+
+ if (isa<ObjCSelectorExpr>(castExpr))
+ return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
+
+ if (!castType->isArithmeticType()) {
+ QualType castExprType = castExpr->getType();
+ if (!castExprType->isIntegralType() && castExprType->isArithmeticType())
+ return Diag(castExpr->getLocStart(),
+ diag::err_cast_pointer_from_non_pointer_int)
+ << castExprType << castExpr->getSourceRange();
+ } else if (!castExpr->getType()->isArithmeticType()) {
+ if (!castType->isIntegralType() && castType->isArithmeticType())
+ return Diag(castExpr->getLocStart(),
+ diag::err_cast_pointer_to_non_pointer_int)
+ << castType << castExpr->getSourceRange();
+ }
+
+ Kind = getScalarCastKind(Context, castExpr->getType(), castType);
+ return false;
+}
+
+bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
+ CastExpr::CastKind &Kind) {
+ assert(VectorTy->isVectorType() && "Not a vector type!");
+
+ if (Ty->isVectorType() || Ty->isIntegerType()) {
+ if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
+ return Diag(R.getBegin(),
+ Ty->isVectorType() ?
+ diag::err_invalid_conversion_between_vectors :
+ diag::err_invalid_conversion_between_vector_and_integer)
+ << VectorTy << Ty << R;
+ } else
+ return Diag(R.getBegin(),
+ diag::err_invalid_conversion_between_vector_and_scalar)
+ << VectorTy << Ty << R;
+
+ Kind = CastExpr::CK_BitCast;
+ return false;
+}
+
+bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *&CastExpr,
+ CastExpr::CastKind &Kind) {
+ assert(DestTy->isExtVectorType() && "Not an extended vector type!");
+
+ QualType SrcTy = CastExpr->getType();
+
+ // If SrcTy is a VectorType, the total size must match to explicitly cast to
+ // an ExtVectorType.
+ if (SrcTy->isVectorType()) {
+ if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
+ return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
+ << DestTy << SrcTy << R;
+ Kind = CastExpr::CK_BitCast;
+ return false;
+ }
+
+ // All non-pointer scalars can be cast to ExtVector type. The appropriate
+ // conversion will take place first from scalar to elt type, and then
+ // splat from elt type to vector.
+ if (SrcTy->isPointerType())
+ return Diag(R.getBegin(),
+ diag::err_invalid_conversion_between_vector_and_scalar)
+ << DestTy << SrcTy << R;
+
+ QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
+ ImpCastExprToType(CastExpr, DestElemTy,
+ getScalarCastKind(Context, SrcTy, DestElemTy));
+
+ Kind = CastExpr::CK_VectorSplat;
+ return false;
+}
+
+Action::OwningExprResult
+Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, TypeTy *Ty,
+ SourceLocation RParenLoc, ExprArg Op) {
+ assert((Ty != 0) && (Op.get() != 0) &&
+ "ActOnCastExpr(): missing type or expr");
+
+ TypeSourceInfo *castTInfo;
+ QualType castType = GetTypeFromParser(Ty, &castTInfo);
+ if (!castTInfo)
+ castTInfo = Context.getTrivialTypeSourceInfo(castType);
+
+ // If the Expr being casted is a ParenListExpr, handle it specially.
+ Expr *castExpr = (Expr *)Op.get();
+ if (isa<ParenListExpr>(castExpr))
+ return ActOnCastOfParenListExpr(S, LParenLoc, RParenLoc, move(Op),
+ castTInfo);
+
+ return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, move(Op));
+}
+
+Action::OwningExprResult
+Sema::BuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *Ty,
+ SourceLocation RParenLoc, ExprArg Op) {
+ Expr *castExpr = static_cast<Expr*>(Op.get());
+
+ CastExpr::CastKind Kind = CastExpr::CK_Unknown;
+ CXXBaseSpecifierArray BasePath;
+ if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), Ty->getType(), castExpr,
+ Kind, BasePath))
+ return ExprError();
+
+ Op.release();
+ return Owned(new (Context) CStyleCastExpr(Ty->getType().getNonReferenceType(),
+ Kind, castExpr, BasePath, Ty,
+ LParenLoc, RParenLoc));
+}
+
+/// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence
+/// of comma binary operators.
+Action::OwningExprResult
+Sema::MaybeConvertParenListExprToParenExpr(Scope *S, ExprArg EA) {
+ Expr *expr = EA.takeAs<Expr>();
+ ParenListExpr *E = dyn_cast<ParenListExpr>(expr);
+ if (!E)
+ return Owned(expr);
+
+ OwningExprResult Result(*this, E->getExpr(0));
+
+ for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
+ Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, move(Result),
+ Owned(E->getExpr(i)));
+
+ return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), move(Result));
+}
+
+Action::OwningExprResult
+Sema::ActOnCastOfParenListExpr(Scope *S, SourceLocation LParenLoc,
+ SourceLocation RParenLoc, ExprArg Op,
+ TypeSourceInfo *TInfo) {
+ ParenListExpr *PE = (ParenListExpr *)Op.get();
+ QualType Ty = TInfo->getType();
+
+ // If this is an altivec initializer, '(' type ')' '(' init, ..., init ')'
+ // then handle it as such.
+ if (getLangOptions().AltiVec && Ty->isVectorType()) {
+ if (PE->getNumExprs() == 0) {
+ Diag(PE->getExprLoc(), diag::err_altivec_empty_initializer);
+ return ExprError();
+ }
+
+ llvm::SmallVector<Expr *, 8> initExprs;
+ for (unsigned i = 0, e = PE->getNumExprs(); i != e; ++i)
+ initExprs.push_back(PE->getExpr(i));
+
+ // FIXME: This means that pretty-printing the final AST will produce curly
+ // braces instead of the original commas.
+ Op.release();
+ InitListExpr *E = new (Context) InitListExpr(Context, LParenLoc,
+ &initExprs[0],
+ initExprs.size(), RParenLoc);
+ E->setType(Ty);
+ return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, Owned(E));
+ } else {
+ // This is not an AltiVec-style cast, so turn the ParenListExpr into a
+ // sequence of BinOp comma operators.
+ Op = MaybeConvertParenListExprToParenExpr(S, move(Op));
+ return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, move(Op));
+ }
+}
+
+Action::OwningExprResult Sema::ActOnParenOrParenListExpr(SourceLocation L,
+ SourceLocation R,
+ MultiExprArg Val,
+ TypeTy *TypeOfCast) {
+ unsigned nexprs = Val.size();
+ Expr **exprs = reinterpret_cast<Expr**>(Val.release());
+ assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list");
+ Expr *expr;
+ if (nexprs == 1 && TypeOfCast && !TypeIsVectorType(TypeOfCast))
+ expr = new (Context) ParenExpr(L, R, exprs[0]);
+ else
+ expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R);
+ return Owned(expr);
+}
+
+/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
+/// In that case, lhs = cond.
+/// C99 6.5.15
+QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
+ SourceLocation QuestionLoc) {
+ // C++ is sufficiently different to merit its own checker.
+ if (getLangOptions().CPlusPlus)
+ return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc);
+
+ UsualUnaryConversions(Cond);
+ UsualUnaryConversions(LHS);
+ UsualUnaryConversions(RHS);
+ QualType CondTy = Cond->getType();
+ QualType LHSTy = LHS->getType();
+ QualType RHSTy = RHS->getType();
+
+ // first, check the condition.
+ if (!CondTy->isScalarType()) { // C99 6.5.15p2
+ Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
+ << CondTy;
+ return QualType();
+ }
+
+ // Now check the two expressions.
+ if (LHSTy->isVectorType() || RHSTy->isVectorType())
+ return CheckVectorOperands(QuestionLoc, LHS, RHS);
+
+ // If both operands have arithmetic type, do the usual arithmetic conversions
+ // to find a common type: C99 6.5.15p3,5.
+ if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
+ UsualArithmeticConversions(LHS, RHS);
+ return LHS->getType();
+ }
+
+ // If both operands are the same structure or union type, the result is that
+ // type.
+ if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3
+ if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
+ if (LHSRT->getDecl() == RHSRT->getDecl())
+ // "If both the operands have structure or union type, the result has
+ // that type." This implies that CV qualifiers are dropped.
+ return LHSTy.getUnqualifiedType();
+ // FIXME: Type of conditional expression must be complete in C mode.
+ }
+
+ // C99 6.5.15p5: "If both operands have void type, the result has void type."
+ // The following || allows only one side to be void (a GCC-ism).
+ if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
+ if (!LHSTy->isVoidType())
+ Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
+ << RHS->getSourceRange();
+ if (!RHSTy->isVoidType())
+ Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
+ << LHS->getSourceRange();
+ ImpCastExprToType(LHS, Context.VoidTy, CastExpr::CK_ToVoid);
+ ImpCastExprToType(RHS, Context.VoidTy, CastExpr::CK_ToVoid);
+ return Context.VoidTy;
+ }
+ // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
+ // the type of the other operand."
+ if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) &&
+ RHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
+ // promote the null to a pointer.
+ ImpCastExprToType(RHS, LHSTy, CastExpr::CK_Unknown);
+ return LHSTy;
+ }
+ if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) &&
+ LHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
+ ImpCastExprToType(LHS, RHSTy, CastExpr::CK_Unknown);
+ return RHSTy;
+ }
+
+ // All objective-c pointer type analysis is done here.
+ QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
+ QuestionLoc);
+ if (!compositeType.isNull())
+ return compositeType;
+
+
+ // Handle block pointer types.
+ if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
+ if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
+ if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
+ QualType destType = Context.getPointerType(Context.VoidTy);
+ ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
+ ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
+ return destType;
+ }
+ Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
+ << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
+ return QualType();
+ }
+ // We have 2 block pointer types.
+ if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
+ // Two identical block pointer types are always compatible.
+ return LHSTy;
+ }
+ // The block pointer types aren't identical, continue checking.
+ QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType();
+ QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType();
+
+ if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
+ rhptee.getUnqualifiedType())) {
+ Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
+ << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
+ // In this situation, we assume void* type. No especially good
+ // reason, but this is what gcc does, and we do have to pick
+ // to get a consistent AST.
+ QualType incompatTy = Context.getPointerType(Context.VoidTy);
+ ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
+ ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
+ return incompatTy;
+ }
+ // The block pointer types are compatible.
+ ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
+ ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
+ return LHSTy;
+ }
+
+ // Check constraints for C object pointers types (C99 6.5.15p3,6).
+ if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
+ // get the "pointed to" types
+ QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
+ QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
+
+ // ignore qualifiers on void (C99 6.5.15p3, clause 6)
+ if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
+ // Figure out necessary qualifiers (C99 6.5.15p6)
+ QualType destPointee
+ = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
+ QualType destType = Context.getPointerType(destPointee);
+ // Add qualifiers if necessary.
+ ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
+ // Promote to void*.
+ ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
+ return destType;
+ }
+ if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
+ QualType destPointee
+ = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
+ QualType destType = Context.getPointerType(destPointee);
+ // Add qualifiers if necessary.
+ ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp);
+ // Promote to void*.
+ ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
+ return destType;
+ }
+
+ if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
+ // Two identical pointer types are always compatible.
+ return LHSTy;
+ }
+ if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
+ rhptee.getUnqualifiedType())) {
+ Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
+ << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
+ // In this situation, we assume void* type. No especially good
+ // reason, but this is what gcc does, and we do have to pick
+ // to get a consistent AST.
+ QualType incompatTy = Context.getPointerType(Context.VoidTy);
+ ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
+ ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
+ return incompatTy;
+ }
+ // The pointer types are compatible.
+ // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
+ // differently qualified versions of compatible types, the result type is
+ // a pointer to an appropriately qualified version of the *composite*
+ // type.
+ // FIXME: Need to calculate the composite type.
+ // FIXME: Need to add qualifiers
+ ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
+ ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
+ return LHSTy;
+ }
+
+ // GCC compatibility: soften pointer/integer mismatch.
+ if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
+ Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
+ << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
+ ImpCastExprToType(LHS, RHSTy, CastExpr::CK_IntegralToPointer);
+ return RHSTy;
+ }
+ if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
+ Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
+ << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
+ ImpCastExprToType(RHS, LHSTy, CastExpr::CK_IntegralToPointer);
+ return LHSTy;
+ }
+
+ // Otherwise, the operands are not compatible.
+ Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
+ << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
+ return QualType();
+}
+
+/// FindCompositeObjCPointerType - Helper method to find composite type of
+/// two objective-c pointer types of the two input expressions.
+QualType Sema::FindCompositeObjCPointerType(Expr *&LHS, Expr *&RHS,
+ SourceLocation QuestionLoc) {
+ QualType LHSTy = LHS->getType();
+ QualType RHSTy = RHS->getType();
+
+ // Handle things like Class and struct objc_class*. Here we case the result
+ // to the pseudo-builtin, because that will be implicitly cast back to the
+ // redefinition type if an attempt is made to access its fields.
+ if (LHSTy->isObjCClassType() &&
+ (RHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
+ ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
+ return LHSTy;
+ }
+ if (RHSTy->isObjCClassType() &&
+ (LHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
+ ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
+ return RHSTy;
+ }
+ // And the same for struct objc_object* / id
+ if (LHSTy->isObjCIdType() &&
+ (RHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
+ ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
+ return LHSTy;
+ }
+ if (RHSTy->isObjCIdType() &&
+ (LHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
+ ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
+ return RHSTy;
+ }
+ // And the same for struct objc_selector* / SEL
+ if (Context.isObjCSelType(LHSTy) &&
+ (RHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) {
+ ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
+ return LHSTy;
+ }
+ if (Context.isObjCSelType(RHSTy) &&
+ (LHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) {
+ ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
+ return RHSTy;
+ }
+ // Check constraints for Objective-C object pointers types.
+ if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
+
+ if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
+ // Two identical object pointer types are always compatible.
+ return LHSTy;
+ }
+ const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>();
+ const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>();
+ QualType compositeType = LHSTy;
+
+ // If both operands are interfaces and either operand can be
+ // assigned to the other, use that type as the composite
+ // type. This allows
+ // xxx ? (A*) a : (B*) b
+ // where B is a subclass of A.
+ //
+ // Additionally, as for assignment, if either type is 'id'
+ // allow silent coercion. Finally, if the types are
+ // incompatible then make sure to use 'id' as the composite
+ // type so the result is acceptable for sending messages to.
+
+ // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
+ // It could return the composite type.
+ if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
+ compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
+ } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
+ compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
+ } else if ((LHSTy->isObjCQualifiedIdType() ||
+ RHSTy->isObjCQualifiedIdType()) &&
+ Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
+ // Need to handle "id<xx>" explicitly.
+ // GCC allows qualified id and any Objective-C type to devolve to
+ // id. Currently localizing to here until clear this should be
+ // part of ObjCQualifiedIdTypesAreCompatible.
+ compositeType = Context.getObjCIdType();
+ } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
+ compositeType = Context.getObjCIdType();
+ } else if (!(compositeType =
+ Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
+ ;
+ else {
+ Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
+ << LHSTy << RHSTy
+ << LHS->getSourceRange() << RHS->getSourceRange();
+ QualType incompatTy = Context.getObjCIdType();
+ ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
+ ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
+ return incompatTy;
+ }
+ // The object pointer types are compatible.
+ ImpCastExprToType(LHS, compositeType, CastExpr::CK_BitCast);
+ ImpCastExprToType(RHS, compositeType, CastExpr::CK_BitCast);
+ return compositeType;
+ }
+ // Check Objective-C object pointer types and 'void *'
+ if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
+ QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
+ QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
+ QualType destPointee
+ = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
+ QualType destType = Context.getPointerType(destPointee);
+ // Add qualifiers if necessary.
+ ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
+ // Promote to void*.
+ ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
+ return destType;
+ }
+ if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
+ QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
+ QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
+ QualType destPointee
+ = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
+ QualType destType = Context.getPointerType(destPointee);
+ // Add qualifiers if necessary.
+ ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp);
+ // Promote to void*.
+ ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
+ return destType;
+ }
+ return QualType();
+}
+
+/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
+/// in the case of a the GNU conditional expr extension.
+Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
+ SourceLocation ColonLoc,
+ ExprArg Cond, ExprArg LHS,
+ ExprArg RHS) {
+ Expr *CondExpr = (Expr *) Cond.get();
+ Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
+
+ // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
+ // was the condition.
+ bool isLHSNull = LHSExpr == 0;
+ if (isLHSNull)
+ LHSExpr = CondExpr;
+
+ QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
+ RHSExpr, QuestionLoc);
+ if (result.isNull())
+ return ExprError();
+
+ Cond.release();
+ LHS.release();
+ RHS.release();
+ return Owned(new (Context) ConditionalOperator(CondExpr, QuestionLoc,
+ isLHSNull ? 0 : LHSExpr,
+ ColonLoc, RHSExpr, result));
+}
+
+// CheckPointerTypesForAssignment - This is a very tricky routine (despite
+// being closely modeled after the C99 spec:-). The odd characteristic of this
+// routine is it effectively iqnores the qualifiers on the top level pointee.
+// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
+// FIXME: add a couple examples in this comment.
+Sema::AssignConvertType
+Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
+ QualType lhptee, rhptee;
+
+ if ((lhsType->isObjCClassType() &&
+ (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
+ (rhsType->isObjCClassType() &&
+ (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
+ return Compatible;
+ }
+
+ // get the "pointed to" type (ignoring qualifiers at the top level)
+ lhptee = lhsType->getAs<PointerType>()->getPointeeType();
+ rhptee = rhsType->getAs<PointerType>()->getPointeeType();
+
+ // make sure we operate on the canonical type
+ lhptee = Context.getCanonicalType(lhptee);
+ rhptee = Context.getCanonicalType(rhptee);
+
+ AssignConvertType ConvTy = Compatible;
+
+ // C99 6.5.16.1p1: This following citation is common to constraints
+ // 3 & 4 (below). ...and the type *pointed to* by the left has all the
+ // qualifiers of the type *pointed to* by the right;
+ // FIXME: Handle ExtQualType
+ if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
+ ConvTy = CompatiblePointerDiscardsQualifiers;
+
+ // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
+ // incomplete type and the other is a pointer to a qualified or unqualified
+ // version of void...
+ if (lhptee->isVoidType()) {
+ if (rhptee->isIncompleteOrObjectType())
+ return ConvTy;
+
+ // As an extension, we allow cast to/from void* to function pointer.
+ assert(rhptee->isFunctionType());
+ return FunctionVoidPointer;
+ }
+
+ if (rhptee->isVoidType()) {
+ if (lhptee->isIncompleteOrObjectType())
+ return ConvTy;
+
+ // As an extension, we allow cast to/from void* to function pointer.
+ assert(lhptee->isFunctionType());
+ return FunctionVoidPointer;
+ }
+ // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
+ // unqualified versions of compatible types, ...
+ lhptee = lhptee.getUnqualifiedType();
+ rhptee = rhptee.getUnqualifiedType();
+ if (!Context.typesAreCompatible(lhptee, rhptee)) {
+ // Check if the pointee types are compatible ignoring the sign.
+ // We explicitly check for char so that we catch "char" vs
+ // "unsigned char" on systems where "char" is unsigned.
+ if (lhptee->isCharType())
+ lhptee = Context.UnsignedCharTy;
+ else if (lhptee->isSignedIntegerType())
+ lhptee = Context.getCorrespondingUnsignedType(lhptee);
+
+ if (rhptee->isCharType())
+ rhptee = Context.UnsignedCharTy;
+ else if (rhptee->isSignedIntegerType())
+ rhptee = Context.getCorrespondingUnsignedType(rhptee);
+
+ if (lhptee == rhptee) {
+ // Types are compatible ignoring the sign. Qualifier incompatibility
+ // takes priority over sign incompatibility because the sign
+ // warning can be disabled.
+ if (ConvTy != Compatible)
+ return ConvTy;
+ return IncompatiblePointerSign;
+ }
+
+ // If we are a multi-level pointer, it's possible that our issue is simply
+ // one of qualification - e.g. char ** -> const char ** is not allowed. If
+ // the eventual target type is the same and the pointers have the same
+ // level of indirection, this must be the issue.
+ if (lhptee->isPointerType() && rhptee->isPointerType()) {
+ do {
+ lhptee = lhptee->getAs<PointerType>()->getPointeeType();
+ rhptee = rhptee->getAs<PointerType>()->getPointeeType();
+
+ lhptee = Context.getCanonicalType(lhptee);
+ rhptee = Context.getCanonicalType(rhptee);
+ } while (lhptee->isPointerType() && rhptee->isPointerType());
+
+ if (Context.hasSameUnqualifiedType(lhptee, rhptee))
+ return IncompatibleNestedPointerQualifiers;
+ }
+
+ // General pointer incompatibility takes priority over qualifiers.
+ return IncompatiblePointer;
+ }
+ return ConvTy;
+}
+
+/// CheckBlockPointerTypesForAssignment - This routine determines whether two
+/// block pointer types are compatible or whether a block and normal pointer
+/// are compatible. It is more restrict than comparing two function pointer
+// types.
+Sema::AssignConvertType
+Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
+ QualType rhsType) {
+ QualType lhptee, rhptee;
+
+ // get the "pointed to" type (ignoring qualifiers at the top level)
+ lhptee = lhsType->getAs<BlockPointerType>()->getPointeeType();
+ rhptee = rhsType->getAs<BlockPointerType>()->getPointeeType();
+
+ // make sure we operate on the canonical type
+ lhptee = Context.getCanonicalType(lhptee);
+ rhptee = Context.getCanonicalType(rhptee);
+
+ AssignConvertType ConvTy = Compatible;
+
+ // For blocks we enforce that qualifiers are identical.
+ if (lhptee.getLocalCVRQualifiers() != rhptee.getLocalCVRQualifiers())
+ ConvTy = CompatiblePointerDiscardsQualifiers;
+
+ if (!getLangOptions().CPlusPlus) {
+ if (!Context.typesAreBlockPointerCompatible(lhsType, rhsType))
+ return IncompatibleBlockPointer;
+ }
+ else if (!Context.typesAreCompatible(lhptee, rhptee))
+ return IncompatibleBlockPointer;
+ return ConvTy;
+}
+
+/// CheckObjCPointerTypesForAssignment - Compares two objective-c pointer types
+/// for assignment compatibility.
+Sema::AssignConvertType
+Sema::CheckObjCPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
+ if (lhsType->isObjCBuiltinType()) {
+ // Class is not compatible with ObjC object pointers.
+ if (lhsType->isObjCClassType() && !rhsType->isObjCBuiltinType() &&
+ !rhsType->isObjCQualifiedClassType())
+ return IncompatiblePointer;
+ return Compatible;
+ }
+ if (rhsType->isObjCBuiltinType()) {
+ // Class is not compatible with ObjC object pointers.
+ if (rhsType->isObjCClassType() && !lhsType->isObjCBuiltinType() &&
+ !lhsType->isObjCQualifiedClassType())
+ return IncompatiblePointer;
+ return Compatible;
+ }
+ QualType lhptee =
+ lhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
+ QualType rhptee =
+ rhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
+ // make sure we operate on the canonical type
+ lhptee = Context.getCanonicalType(lhptee);
+ rhptee = Context.getCanonicalType(rhptee);
+ if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
+ return CompatiblePointerDiscardsQualifiers;
+
+ if (Context.typesAreCompatible(lhsType, rhsType))
+ return Compatible;
+ if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
+ return IncompatibleObjCQualifiedId;
+ return IncompatiblePointer;
+}
+
+/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
+/// has code to accommodate several GCC extensions when type checking
+/// pointers. Here are some objectionable examples that GCC considers warnings:
+///
+/// int a, *pint;
+/// short *pshort;
+/// struct foo *pfoo;
+///
+/// pint = pshort; // warning: assignment from incompatible pointer type
+/// a = pint; // warning: assignment makes integer from pointer without a cast
+/// pint = a; // warning: assignment makes pointer from integer without a cast
+/// pint = pfoo; // warning: assignment from incompatible pointer type
+///
+/// As a result, the code for dealing with pointers is more complex than the
+/// C99 spec dictates.
+///
+Sema::AssignConvertType
+Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
+ // Get canonical types. We're not formatting these types, just comparing
+ // them.
+ lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
+ rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
+
+ if (lhsType == rhsType)
+ return Compatible; // Common case: fast path an exact match.
+
+ if ((lhsType->isObjCClassType() &&
+ (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
+ (rhsType->isObjCClassType() &&
+ (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
+ return Compatible;
+ }
+
+ // If the left-hand side is a reference type, then we are in a
+ // (rare!) case where we've allowed the use of references in C,
+ // e.g., as a parameter type in a built-in function. In this case,
+ // just make sure that the type referenced is compatible with the
+ // right-hand side type. The caller is responsible for adjusting
+ // lhsType so that the resulting expression does not have reference
+ // type.
+ if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) {
+ if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
+ return Compatible;
+ return Incompatible;
+ }
+ // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
+ // to the same ExtVector type.
+ if (lhsType->isExtVectorType()) {
+ if (rhsType->isExtVectorType())
+ return lhsType == rhsType ? Compatible : Incompatible;
+ if (!rhsType->isVectorType() && rhsType->isArithmeticType())
+ return Compatible;
+ }
+
+ if (lhsType->isVectorType() || rhsType->isVectorType()) {
+ // If we are allowing lax vector conversions, and LHS and RHS are both
+ // vectors, the total size only needs to be the same. This is a bitcast;
+ // no bits are changed but the result type is different.
+ if (getLangOptions().LaxVectorConversions &&
+ lhsType->isVectorType() && rhsType->isVectorType()) {
+ if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
+ return IncompatibleVectors;
+ }
+ return Incompatible;
+ }
+
+ if (lhsType->isArithmeticType() && rhsType->isArithmeticType() &&
+ !(getLangOptions().CPlusPlus && lhsType->isEnumeralType()))
+ return Compatible;
+
+ if (isa<PointerType>(lhsType)) {
+ if (rhsType->isIntegerType())
+ return IntToPointer;
+
+ if (isa<PointerType>(rhsType))
+ return CheckPointerTypesForAssignment(lhsType, rhsType);
+
+ // In general, C pointers are not compatible with ObjC object pointers.
+ if (isa<ObjCObjectPointerType>(rhsType)) {
+ if (lhsType->isVoidPointerType()) // an exception to the rule.
+ return Compatible;
+ return IncompatiblePointer;
+ }
+ if (rhsType->getAs<BlockPointerType>()) {
+ if (lhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
+ return Compatible;
+
+ // Treat block pointers as objects.
+ if (getLangOptions().ObjC1 && lhsType->isObjCIdType())
+ return Compatible;
+ }
+ return Incompatible;
+ }
+
+ if (isa<BlockPointerType>(lhsType)) {
+ if (rhsType->isIntegerType())
+ return IntToBlockPointer;
+
+ // Treat block pointers as objects.
+ if (getLangOptions().ObjC1 && rhsType->isObjCIdType())
+ return Compatible;
+
+ if (rhsType->isBlockPointerType())
+ return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
+
+ if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
+ if (RHSPT->getPointeeType()->isVoidType())
+ return Compatible;
+ }
+ return Incompatible;
+ }
+
+ if (isa<ObjCObjectPointerType>(lhsType)) {
+ if (rhsType->isIntegerType())
+ return IntToPointer;
+
+ // In general, C pointers are not compatible with ObjC object pointers.
+ if (isa<PointerType>(rhsType)) {
+ if (rhsType->isVoidPointerType()) // an exception to the rule.
+ return Compatible;
+ return IncompatiblePointer;
+ }
+ if (rhsType->isObjCObjectPointerType()) {
+ return CheckObjCPointerTypesForAssignment(lhsType, rhsType);
+ }
+ if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
+ if (RHSPT->getPointeeType()->isVoidType())
+ return Compatible;
+ }
+ // Treat block pointers as objects.
+ if (rhsType->isBlockPointerType())
+ return Compatible;
+ return Incompatible;
+ }
+ if (isa<PointerType>(rhsType)) {
+ // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
+ if (lhsType == Context.BoolTy)
+ return Compatible;
+
+ if (lhsType->isIntegerType())
+ return PointerToInt;
+
+ if (isa<PointerType>(lhsType))
+ return CheckPointerTypesForAssignment(lhsType, rhsType);
+
+ if (isa<BlockPointerType>(lhsType) &&
+ rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
+ return Compatible;
+ return Incompatible;
+ }
+ if (isa<ObjCObjectPointerType>(rhsType)) {
+ // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
+ if (lhsType == Context.BoolTy)
+ return Compatible;
+
+ if (lhsType->isIntegerType())
+ return PointerToInt;
+
+ // In general, C pointers are not compatible with ObjC object pointers.
+ if (isa<PointerType>(lhsType)) {
+ if (lhsType->isVoidPointerType()) // an exception to the rule.
+ return Compatible;
+ return IncompatiblePointer;
+ }
+ if (isa<BlockPointerType>(lhsType) &&
+ rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
+ return Compatible;
+ return Incompatible;
+ }
+
+ if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
+ if (Context.typesAreCompatible(lhsType, rhsType))
+ return Compatible;
+ }
+ return Incompatible;
+}
+
+/// \brief Constructs a transparent union from an expression that is
+/// used to initialize the transparent union.
+static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
+ QualType UnionType, FieldDecl *Field) {
+ // Build an initializer list that designates the appropriate member
+ // of the transparent union.
+ InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
+ &E, 1,
+ SourceLocation());
+ Initializer->setType(UnionType);
+ Initializer->setInitializedFieldInUnion(Field);
+
+ // Build a compound literal constructing a value of the transparent
+ // union type from this initializer list.
+ TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
+ E = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
+ Initializer, false);
+}
+
+Sema::AssignConvertType
+Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
+ QualType FromType = rExpr->getType();
+
+ // If the ArgType is a Union type, we want to handle a potential
+ // transparent_union GCC extension.
+ const RecordType *UT = ArgType->getAsUnionType();
+ if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
+ return Incompatible;
+
+ // The field to initialize within the transparent union.
+ RecordDecl *UD = UT->getDecl();
+ FieldDecl *InitField = 0;
+ // It's compatible if the expression matches any of the fields.
+ for (RecordDecl::field_iterator it = UD->field_begin(),
+ itend = UD->field_end();
+ it != itend; ++it) {
+ if (it->getType()->isPointerType()) {
+ // If the transparent union contains a pointer type, we allow:
+ // 1) void pointer
+ // 2) null pointer constant
+ if (FromType->isPointerType())
+ if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
+ ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_BitCast);
+ InitField = *it;
+ break;
+ }
+
+ if (rExpr->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNull)) {
+ ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_IntegralToPointer);
+ InitField = *it;
+ break;
+ }
+ }
+
+ if (CheckAssignmentConstraints(it->getType(), rExpr->getType())
+ == Compatible) {
+ InitField = *it;
+ break;
+ }
+ }
+
+ if (!InitField)
+ return Incompatible;
+
+ ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
+ return Compatible;
+}
+
+Sema::AssignConvertType
+Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
+ if (getLangOptions().CPlusPlus) {
+ if (!lhsType->isRecordType()) {
+ // C++ 5.17p3: If the left operand is not of class type, the
+ // expression is implicitly converted (C++ 4) to the
+ // cv-unqualified type of the left operand.
+ if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
+ AA_Assigning))
+ return Incompatible;
+ return Compatible;
+ }
+
+ // FIXME: Currently, we fall through and treat C++ classes like C
+ // structures.
+ }
+
+ // C99 6.5.16.1p1: the left operand is a pointer and the right is
+ // a null pointer constant.
+ if ((lhsType->isPointerType() ||
+ lhsType->isObjCObjectPointerType() ||
+ lhsType->isBlockPointerType())
+ && rExpr->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNull)) {
+ ImpCastExprToType(rExpr, lhsType, CastExpr::CK_Unknown);
+ return Compatible;
+ }
+
+ // This check seems unnatural, however it is necessary to ensure the proper
+ // conversion of functions/arrays. If the conversion were done for all
+ // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
+ // expressions that surpress this implicit conversion (&, sizeof).
+ //
+ // Suppress this for references: C++ 8.5.3p5.
+ if (!lhsType->isReferenceType())
+ DefaultFunctionArrayLvalueConversion(rExpr);
+
+ Sema::AssignConvertType result =
+ CheckAssignmentConstraints(lhsType, rExpr->getType());
+
+ // C99 6.5.16.1p2: The value of the right operand is converted to the
+ // type of the assignment expression.
+ // CheckAssignmentConstraints allows the left-hand side to be a reference,
+ // so that we can use references in built-in functions even in C.
+ // The getNonReferenceType() call makes sure that the resulting expression
+ // does not have reference type.
+ if (result != Incompatible && rExpr->getType() != lhsType)
+ ImpCastExprToType(rExpr, lhsType.getNonReferenceType(),
+ CastExpr::CK_Unknown);
+ return result;
+}
+
+QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
+ Diag(Loc, diag::err_typecheck_invalid_operands)
+ << lex->getType() << rex->getType()
+ << lex->getSourceRange() << rex->getSourceRange();
+ return QualType();
+}
+
+QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
+ // For conversion purposes, we ignore any qualifiers.
+ // For example, "const float" and "float" are equivalent.
+ QualType lhsType =
+ Context.getCanonicalType(lex->getType()).getUnqualifiedType();
+ QualType rhsType =
+ Context.getCanonicalType(rex->getType()).getUnqualifiedType();
+
+ // If the vector types are identical, return.
+ if (lhsType == rhsType)
+ return lhsType;
+
+ // Handle the case of a vector & extvector type of the same size and element
+ // type. It would be nice if we only had one vector type someday.
+ if (getLangOptions().LaxVectorConversions) {
+ // FIXME: Should we warn here?
+ if (const VectorType *LV = lhsType->getAs<VectorType>()) {
+ if (const VectorType *RV = rhsType->getAs<VectorType>())
+ if (LV->getElementType() == RV->getElementType() &&
+ LV->getNumElements() == RV->getNumElements()) {
+ if (lhsType->isExtVectorType()) {
+ ImpCastExprToType(rex, lhsType, CastExpr::CK_BitCast);
+ return lhsType;
+ }
+
+ ImpCastExprToType(lex, rhsType, CastExpr::CK_BitCast);
+ return rhsType;
+ }
+ }
+ }
+
+ // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
+ // swap back (so that we don't reverse the inputs to a subtract, for instance.
+ bool swapped = false;
+ if (rhsType->isExtVectorType()) {
+ swapped = true;
+ std::swap(rex, lex);
+ std::swap(rhsType, lhsType);
+ }
+
+ // Handle the case of an ext vector and scalar.
+ if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) {
+ QualType EltTy = LV->getElementType();
+ if (EltTy->isIntegralType() && rhsType->isIntegralType()) {
+ if (Context.getIntegerTypeOrder(EltTy, rhsType) >= 0) {
+ ImpCastExprToType(rex, lhsType, CastExpr::CK_IntegralCast);
+ if (swapped) std::swap(rex, lex);
+ return lhsType;
+ }
+ }
+ if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
+ rhsType->isRealFloatingType()) {
+ if (Context.getFloatingTypeOrder(EltTy, rhsType) >= 0) {
+ ImpCastExprToType(rex, lhsType, CastExpr::CK_FloatingCast);
+ if (swapped) std::swap(rex, lex);
+ return lhsType;
+ }
+ }
+ }
+
+ // Vectors of different size or scalar and non-ext-vector are errors.
+ Diag(Loc, diag::err_typecheck_vector_not_convertable)
+ << lex->getType() << rex->getType()
+ << lex->getSourceRange() << rex->getSourceRange();
+ return QualType();
+}
+
+QualType Sema::CheckMultiplyDivideOperands(
+ Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign, bool isDiv) {
+ if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
+ return CheckVectorOperands(Loc, lex, rex);
+
+ QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
+
+ if (!lex->getType()->isArithmeticType() ||
+ !rex->getType()->isArithmeticType())
+ return InvalidOperands(Loc, lex, rex);
+
+ // Check for division by zero.
+ if (isDiv &&
+ rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
+ DiagRuntimeBehavior(Loc, PDiag(diag::warn_division_by_zero)
+ << rex->getSourceRange());
+
+ return compType;
+}
+
+QualType Sema::CheckRemainderOperands(
+ Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
+ if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
+ if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
+ return CheckVectorOperands(Loc, lex, rex);
+ return InvalidOperands(Loc, lex, rex);
+ }
+
+ QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
+
+ if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
+ return InvalidOperands(Loc, lex, rex);
+
+ // Check for remainder by zero.
+ if (rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
+ DiagRuntimeBehavior(Loc, PDiag(diag::warn_remainder_by_zero)
+ << rex->getSourceRange());
+
+ return compType;
+}
+
+QualType Sema::CheckAdditionOperands( // C99 6.5.6
+ Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy) {
+ if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
+ QualType compType = CheckVectorOperands(Loc, lex, rex);
+ if (CompLHSTy) *CompLHSTy = compType;
+ return compType;
+ }
+
+ QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
+
+ // handle the common case first (both operands are arithmetic).
+ if (lex->getType()->isArithmeticType() &&
+ rex->getType()->isArithmeticType()) {
+ if (CompLHSTy) *CompLHSTy = compType;
+ return compType;
+ }
+
+ // Put any potential pointer into PExp
+ Expr* PExp = lex, *IExp = rex;
+ if (IExp->getType()->isAnyPointerType())
+ std::swap(PExp, IExp);
+
+ if (PExp->getType()->isAnyPointerType()) {
+
+ if (IExp->getType()->isIntegerType()) {
+ QualType PointeeTy = PExp->getType()->getPointeeType();
+
+ // Check for arithmetic on pointers to incomplete types.
+ if (PointeeTy->isVoidType()) {
+ if (getLangOptions().CPlusPlus) {
+ Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
+ << lex->getSourceRange() << rex->getSourceRange();
+ return QualType();
+ }
+
+ // GNU extension: arithmetic on pointer to void
+ Diag(Loc, diag::ext_gnu_void_ptr)
+ << lex->getSourceRange() << rex->getSourceRange();
+ } else if (PointeeTy->isFunctionType()) {
+ if (getLangOptions().CPlusPlus) {
+ Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
+ << lex->getType() << lex->getSourceRange();
+ return QualType();
+ }
+
+ // GNU extension: arithmetic on pointer to function
+ Diag(Loc, diag::ext_gnu_ptr_func_arith)
+ << lex->getType() << lex->getSourceRange();
+ } else {
+ // Check if we require a complete type.
+ if (((PExp->getType()->isPointerType() &&
+ !PExp->getType()->isDependentType()) ||
+ PExp->getType()->isObjCObjectPointerType()) &&
+ RequireCompleteType(Loc, PointeeTy,
+ PDiag(diag::err_typecheck_arithmetic_incomplete_type)
+ << PExp->getSourceRange()
+ << PExp->getType()))
+ return QualType();
+ }
+ // Diagnose bad cases where we step over interface counts.
+ if (PointeeTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
+ Diag(Loc, diag::err_arithmetic_nonfragile_interface)
+ << PointeeTy << PExp->getSourceRange();
+ return QualType();
+ }
+
+ if (CompLHSTy) {
+ QualType LHSTy = Context.isPromotableBitField(lex);
+ if (LHSTy.isNull()) {
+ LHSTy = lex->getType();
+ if (LHSTy->isPromotableIntegerType())
+ LHSTy = Context.getPromotedIntegerType(LHSTy);
+ }
+ *CompLHSTy = LHSTy;
+ }
+ return PExp->getType();
+ }
+ }
+
+ return InvalidOperands(Loc, lex, rex);
+}
+
+// C99 6.5.6
+QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
+ SourceLocation Loc, QualType* CompLHSTy) {
+ if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
+ QualType compType = CheckVectorOperands(Loc, lex, rex);
+ if (CompLHSTy) *CompLHSTy = compType;
+ return compType;
+ }
+
+ QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
+
+ // Enforce type constraints: C99 6.5.6p3.
+
+ // Handle the common case first (both operands are arithmetic).
+ if (lex->getType()->isArithmeticType()
+ && rex->getType()->isArithmeticType()) {
+ if (CompLHSTy) *CompLHSTy = compType;
+ return compType;
+ }
+
+ // Either ptr - int or ptr - ptr.
+ if (lex->getType()->isAnyPointerType()) {
+ QualType lpointee = lex->getType()->getPointeeType();
+
+ // The LHS must be an completely-defined object type.
+
+ bool ComplainAboutVoid = false;
+ Expr *ComplainAboutFunc = 0;
+ if (lpointee->isVoidType()) {
+ if (getLangOptions().CPlusPlus) {
+ Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
+ << lex->getSourceRange() << rex->getSourceRange();
+ return QualType();
+ }
+
+ // GNU C extension: arithmetic on pointer to void
+ ComplainAboutVoid = true;
+ } else if (lpointee->isFunctionType()) {
+ if (getLangOptions().CPlusPlus) {
+ Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
+ << lex->getType() << lex->getSourceRange();
+ return QualType();
+ }
+
+ // GNU C extension: arithmetic on pointer to function
+ ComplainAboutFunc = lex;
+ } else if (!lpointee->isDependentType() &&
+ RequireCompleteType(Loc, lpointee,
+ PDiag(diag::err_typecheck_sub_ptr_object)
+ << lex->getSourceRange()
+ << lex->getType()))
+ return QualType();
+
+ // Diagnose bad cases where we step over interface counts.
+ if (lpointee->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
+ Diag(Loc, diag::err_arithmetic_nonfragile_interface)
+ << lpointee << lex->getSourceRange();
+ return QualType();
+ }
+
+ // The result type of a pointer-int computation is the pointer type.
+ if (rex->getType()->isIntegerType()) {
+ if (ComplainAboutVoid)
+ Diag(Loc, diag::ext_gnu_void_ptr)
+ << lex->getSourceRange() << rex->getSourceRange();
+ if (ComplainAboutFunc)
+ Diag(Loc, diag::ext_gnu_ptr_func_arith)
+ << ComplainAboutFunc->getType()
+ << ComplainAboutFunc->getSourceRange();
+
+ if (CompLHSTy) *CompLHSTy = lex->getType();
+ return lex->getType();
+ }
+
+ // Handle pointer-pointer subtractions.
+ if (const PointerType *RHSPTy = rex->getType()->getAs<PointerType>()) {
+ QualType rpointee = RHSPTy->getPointeeType();
+
+ // RHS must be a completely-type object type.
+ // Handle the GNU void* extension.
+ if (rpointee->isVoidType()) {
+ if (getLangOptions().CPlusPlus) {
+ Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
+ << lex->getSourceRange() << rex->getSourceRange();
+ return QualType();
+ }
+
+ ComplainAboutVoid = true;
+ } else if (rpointee->isFunctionType()) {
+ if (getLangOptions().CPlusPlus) {
+ Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
+ << rex->getType() << rex->getSourceRange();
+ return QualType();
+ }
+
+ // GNU extension: arithmetic on pointer to function
+ if (!ComplainAboutFunc)
+ ComplainAboutFunc = rex;
+ } else if (!rpointee->isDependentType() &&
+ RequireCompleteType(Loc, rpointee,
+ PDiag(diag::err_typecheck_sub_ptr_object)
+ << rex->getSourceRange()
+ << rex->getType()))
+ return QualType();
+
+ if (getLangOptions().CPlusPlus) {
+ // Pointee types must be the same: C++ [expr.add]
+ if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
+ Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
+ << lex->getType() << rex->getType()
+ << lex->getSourceRange() << rex->getSourceRange();
+ return QualType();
+ }
+ } else {
+ // Pointee types must be compatible C99 6.5.6p3
+ if (!Context.typesAreCompatible(
+ Context.getCanonicalType(lpointee).getUnqualifiedType(),
+ Context.getCanonicalType(rpointee).getUnqualifiedType())) {
+ Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
+ << lex->getType() << rex->getType()
+ << lex->getSourceRange() << rex->getSourceRange();
+ return QualType();
+ }
+ }
+
+ if (ComplainAboutVoid)
+ Diag(Loc, diag::ext_gnu_void_ptr)
+ << lex->getSourceRange() << rex->getSourceRange();
+ if (ComplainAboutFunc)
+ Diag(Loc, diag::ext_gnu_ptr_func_arith)
+ << ComplainAboutFunc->getType()
+ << ComplainAboutFunc->getSourceRange();
+
+ if (CompLHSTy) *CompLHSTy = lex->getType();
+ return Context.getPointerDiffType();
+ }
+ }
+
+ return InvalidOperands(Loc, lex, rex);
+}
+
+// C99 6.5.7
+QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
+ bool isCompAssign) {
+ // C99 6.5.7p2: Each of the operands shall have integer type.
+ if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
+ return InvalidOperands(Loc, lex, rex);
+
+ // Vector shifts promote their scalar inputs to vector type.
+ if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
+ return CheckVectorOperands(Loc, lex, rex);
+
+ // Shifts don't perform usual arithmetic conversions, they just do integer
+ // promotions on each operand. C99 6.5.7p3
+ QualType LHSTy = Context.isPromotableBitField(lex);
+ if (LHSTy.isNull()) {
+ LHSTy = lex->getType();
+ if (LHSTy->isPromotableIntegerType())
+ LHSTy = Context.getPromotedIntegerType(LHSTy);
+ }
+ if (!isCompAssign)
+ ImpCastExprToType(lex, LHSTy, CastExpr::CK_IntegralCast);
+
+ UsualUnaryConversions(rex);
+
+ // Sanity-check shift operands
+ llvm::APSInt Right;
+ // Check right/shifter operand
+ if (!rex->isValueDependent() &&
+ rex->isIntegerConstantExpr(Right, Context)) {
+ if (Right.isNegative())
+ Diag(Loc, diag::warn_shift_negative) << rex->getSourceRange();
+ else {
+ llvm::APInt LeftBits(Right.getBitWidth(),
+ Context.getTypeSize(lex->getType()));
+ if (Right.uge(LeftBits))
+ Diag(Loc, diag::warn_shift_gt_typewidth) << rex->getSourceRange();
+ }
+ }
+
+ // "The type of the result is that of the promoted left operand."
+ return LHSTy;
+}
+
+// C99 6.5.8, C++ [expr.rel]
+QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
+ unsigned OpaqueOpc, bool isRelational) {
+ BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc;
+
+ // Handle vector comparisons separately.
+ if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
+ return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
+
+ // C99 6.5.8p3 / C99 6.5.9p4
+ if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
+ UsualArithmeticConversions(lex, rex);
+ else {
+ UsualUnaryConversions(lex);
+ UsualUnaryConversions(rex);
+ }
+ QualType lType = lex->getType();
+ QualType rType = rex->getType();
+
+ if (!lType->isFloatingType()
+ && !(lType->isBlockPointerType() && isRelational)) {
+ // For non-floating point types, check for self-comparisons of the form
+ // x == x, x != x, x < x, etc. These always evaluate to a constant, and
+ // often indicate logic errors in the program.
+ // NOTE: Don't warn about comparisons of enum constants. These can arise
+ // from macro expansions, and are usually quite deliberate.
+ Expr *LHSStripped = lex->IgnoreParens();
+ Expr *RHSStripped = rex->IgnoreParens();
+ if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped))
+ if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped))
+ if (DRL->getDecl() == DRR->getDecl() &&
+ !isa<EnumConstantDecl>(DRL->getDecl()))
+ DiagRuntimeBehavior(Loc, PDiag(diag::warn_selfcomparison));
+
+ if (isa<CastExpr>(LHSStripped))
+ LHSStripped = LHSStripped->IgnoreParenCasts();
+ if (isa<CastExpr>(RHSStripped))
+ RHSStripped = RHSStripped->IgnoreParenCasts();
+
+ // Warn about comparisons against a string constant (unless the other
+ // operand is null), the user probably wants strcmp.
+ Expr *literalString = 0;
+ Expr *literalStringStripped = 0;
+ if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
+ !RHSStripped->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNull)) {
+ literalString = lex;
+ literalStringStripped = LHSStripped;
+ } else if ((isa<StringLiteral>(RHSStripped) ||
+ isa<ObjCEncodeExpr>(RHSStripped)) &&
+ !LHSStripped->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNull)) {
+ literalString = rex;
+ literalStringStripped = RHSStripped;
+ }
+
+ if (literalString) {
+ std::string resultComparison;
+ switch (Opc) {
+ case BinaryOperator::LT: resultComparison = ") < 0"; break;
+ case BinaryOperator::GT: resultComparison = ") > 0"; break;
+ case BinaryOperator::LE: resultComparison = ") <= 0"; break;
+ case BinaryOperator::GE: resultComparison = ") >= 0"; break;
+ case BinaryOperator::EQ: resultComparison = ") == 0"; break;
+ case BinaryOperator::NE: resultComparison = ") != 0"; break;
+ default: assert(false && "Invalid comparison operator");
+ }
+
+ DiagRuntimeBehavior(Loc,
+ PDiag(diag::warn_stringcompare)
+ << isa<ObjCEncodeExpr>(literalStringStripped)
+ << literalString->getSourceRange());
+ }
+ }
+
+ // The result of comparisons is 'bool' in C++, 'int' in C.
+ QualType ResultTy = getLangOptions().CPlusPlus ? Context.BoolTy:Context.IntTy;
+
+ if (isRelational) {
+ if (lType->isRealType() && rType->isRealType())
+ return ResultTy;
+ } else {
+ // Check for comparisons of floating point operands using != and ==.
+ if (lType->isFloatingType() && rType->isFloatingType())
+ CheckFloatComparison(Loc,lex,rex);
+
+ if (lType->isArithmeticType() && rType->isArithmeticType())
+ return ResultTy;
+ }
+
+ bool LHSIsNull = lex->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNull);
+ bool RHSIsNull = rex->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNull);
+
+ // All of the following pointer related warnings are GCC extensions, except
+ // when handling null pointer constants. One day, we can consider making them
+ // errors (when -pedantic-errors is enabled).
+ if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
+ QualType LCanPointeeTy =
+ Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType());
+ QualType RCanPointeeTy =
+ Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType());
+
+ if (getLangOptions().CPlusPlus) {
+ if (LCanPointeeTy == RCanPointeeTy)
+ return ResultTy;
+ if (!isRelational &&
+ (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
+ // Valid unless comparison between non-null pointer and function pointer
+ // This is a gcc extension compatibility comparison.
+ if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
+ && !LHSIsNull && !RHSIsNull) {
+ Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
+ << lType << rType << lex->getSourceRange() << rex->getSourceRange();
+ ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
+ return ResultTy;
+ }
+ }
+ // C++ [expr.rel]p2:
+ // [...] Pointer conversions (4.10) and qualification
+ // conversions (4.4) are performed on pointer operands (or on
+ // a pointer operand and a null pointer constant) to bring
+ // them to their composite pointer type. [...]
+ //
+ // C++ [expr.eq]p1 uses the same notion for (in)equality
+ // comparisons of pointers.
+ bool NonStandardCompositeType = false;
+ QualType T = FindCompositePointerType(Loc, lex, rex,
+ isSFINAEContext()? 0 : &NonStandardCompositeType);
+ if (T.isNull()) {
+ Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
+ << lType << rType << lex->getSourceRange() << rex->getSourceRange();
+ return QualType();
+ } else if (NonStandardCompositeType) {
+ Diag(Loc,
+ diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
+ << lType << rType << T
+ << lex->getSourceRange() << rex->getSourceRange();
+ }
+
+ ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
+ ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
+ return ResultTy;
+ }
+ // C99 6.5.9p2 and C99 6.5.8p2
+ if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
+ RCanPointeeTy.getUnqualifiedType())) {
+ // Valid unless a relational comparison of function pointers
+ if (isRelational && LCanPointeeTy->isFunctionType()) {
+ Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
+ << lType << rType << lex->getSourceRange() << rex->getSourceRange();
+ }
+ } else if (!isRelational &&
+ (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
+ // Valid unless comparison between non-null pointer and function pointer
+ if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
+ && !LHSIsNull && !RHSIsNull) {
+ Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
+ << lType << rType << lex->getSourceRange() << rex->getSourceRange();
+ }
+ } else {
+ // Invalid
+ Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
+ << lType << rType << lex->getSourceRange() << rex->getSourceRange();
+ }
+ if (LCanPointeeTy != RCanPointeeTy)
+ ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
+ return ResultTy;
+ }
+
+ if (getLangOptions().CPlusPlus) {
+ // Comparison of pointers with null pointer constants and equality
+ // comparisons of member pointers to null pointer constants.
+ if (RHSIsNull &&
+ (lType->isPointerType() ||
+ (!isRelational && lType->isMemberPointerType()))) {
+ ImpCastExprToType(rex, lType, CastExpr::CK_NullToMemberPointer);
+ return ResultTy;
+ }
+ if (LHSIsNull &&
+ (rType->isPointerType() ||
+ (!isRelational && rType->isMemberPointerType()))) {
+ ImpCastExprToType(lex, rType, CastExpr::CK_NullToMemberPointer);
+ return ResultTy;
+ }
+
+ // Comparison of member pointers.
+ if (!isRelational &&
+ lType->isMemberPointerType() && rType->isMemberPointerType()) {
+ // C++ [expr.eq]p2:
+ // In addition, pointers to members can be compared, or a pointer to
+ // member and a null pointer constant. Pointer to member conversions
+ // (4.11) and qualification conversions (4.4) are performed to bring
+ // them to a common type. If one operand is a null pointer constant,
+ // the common type is the type of the other operand. Otherwise, the
+ // common type is a pointer to member type similar (4.4) to the type
+ // of one of the operands, with a cv-qualification signature (4.4)
+ // that is the union of the cv-qualification signatures of the operand
+ // types.
+ bool NonStandardCompositeType = false;
+ QualType T = FindCompositePointerType(Loc, lex, rex,
+ isSFINAEContext()? 0 : &NonStandardCompositeType);
+ if (T.isNull()) {
+ Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
+ << lType << rType << lex->getSourceRange() << rex->getSourceRange();
+ return QualType();
+ } else if (NonStandardCompositeType) {
+ Diag(Loc,
+ diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
+ << lType << rType << T
+ << lex->getSourceRange() << rex->getSourceRange();
+ }
+
+ ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
+ ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
+ return ResultTy;
+ }
+
+ // Comparison of nullptr_t with itself.
+ if (lType->isNullPtrType() && rType->isNullPtrType())
+ return ResultTy;
+ }
+
+ // Handle block pointer types.
+ if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
+ QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType();
+ QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType();
+
+ if (!LHSIsNull && !RHSIsNull &&
+ !Context.typesAreCompatible(lpointee, rpointee)) {
+ Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
+ << lType << rType << lex->getSourceRange() << rex->getSourceRange();
+ }
+ ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
+ return ResultTy;
+ }
+ // Allow block pointers to be compared with null pointer constants.
+ if (!isRelational
+ && ((lType->isBlockPointerType() && rType->isPointerType())
+ || (lType->isPointerType() && rType->isBlockPointerType()))) {
+ if (!LHSIsNull && !RHSIsNull) {
+ if (!((rType->isPointerType() && rType->getAs<PointerType>()
+ ->getPointeeType()->isVoidType())
+ || (lType->isPointerType() && lType->getAs<PointerType>()
+ ->getPointeeType()->isVoidType())))
+ Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
+ << lType << rType << lex->getSourceRange() << rex->getSourceRange();
+ }
+ ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
+ return ResultTy;
+ }
+
+ if ((lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType())) {
+ if (lType->isPointerType() || rType->isPointerType()) {
+ const PointerType *LPT = lType->getAs<PointerType>();
+ const PointerType *RPT = rType->getAs<PointerType>();
+ bool LPtrToVoid = LPT ?
+ Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
+ bool RPtrToVoid = RPT ?
+ Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
+
+ if (!LPtrToVoid && !RPtrToVoid &&
+ !Context.typesAreCompatible(lType, rType)) {
+ Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
+ << lType << rType << lex->getSourceRange() << rex->getSourceRange();
+ }
+ ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
+ return ResultTy;
+ }
+ if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
+ if (!Context.areComparableObjCPointerTypes(lType, rType))
+ Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
+ << lType << rType << lex->getSourceRange() << rex->getSourceRange();
+ ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
+ return ResultTy;
+ }
+ }
+ if (lType->isAnyPointerType() && rType->isIntegerType()) {
+ unsigned DiagID = 0;
+ if (RHSIsNull) {
+ if (isRelational)
+ DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
+ } else if (isRelational)
+ DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
+ else
+ DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
+
+ if (DiagID) {
+ Diag(Loc, DiagID)
+ << lType << rType << lex->getSourceRange() << rex->getSourceRange();
+ }
+ ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
+ return ResultTy;
+ }
+ if (lType->isIntegerType() && rType->isAnyPointerType()) {
+ unsigned DiagID = 0;
+ if (LHSIsNull) {
+ if (isRelational)
+ DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
+ } else if (isRelational)
+ DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
+ else
+ DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
+
+ if (DiagID) {
+ Diag(Loc, DiagID)
+ << lType << rType << lex->getSourceRange() << rex->getSourceRange();
+ }
+ ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
+ return ResultTy;
+ }
+ // Handle block pointers.
+ if (!isRelational && RHSIsNull
+ && lType->isBlockPointerType() && rType->isIntegerType()) {
+ ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
+ return ResultTy;
+ }
+ if (!isRelational && LHSIsNull
+ && lType->isIntegerType() && rType->isBlockPointerType()) {
+ ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
+ return ResultTy;
+ }
+ return InvalidOperands(Loc, lex, rex);
+}
+
+/// CheckVectorCompareOperands - vector comparisons are a clang extension that
+/// operates on extended vector types. Instead of producing an IntTy result,
+/// like a scalar comparison, a vector comparison produces a vector of integer
+/// types.
+QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
+ SourceLocation Loc,
+ bool isRelational) {
+ // Check to make sure we're operating on vectors of the same type and width,
+ // Allowing one side to be a scalar of element type.
+ QualType vType = CheckVectorOperands(Loc, lex, rex);
+ if (vType.isNull())
+ return vType;
+
+ QualType lType = lex->getType();
+ QualType rType = rex->getType();
+
+ // For non-floating point types, check for self-comparisons of the form
+ // x == x, x != x, x < x, etc. These always evaluate to a constant, and
+ // often indicate logic errors in the program.
+ if (!lType->isFloatingType()) {
+ if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
+ if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
+ if (DRL->getDecl() == DRR->getDecl())
+ DiagRuntimeBehavior(Loc, PDiag(diag::warn_selfcomparison));
+ }
+
+ // Check for comparisons of floating point operands using != and ==.
+ if (!isRelational && lType->isFloatingType()) {
+ assert (rType->isFloatingType());
+ CheckFloatComparison(Loc,lex,rex);
+ }
+
+ // Return the type for the comparison, which is the same as vector type for
+ // integer vectors, or an integer type of identical size and number of
+ // elements for floating point vectors.
+ if (lType->isIntegerType())
+ return lType;
+
+ const VectorType *VTy = lType->getAs<VectorType>();
+ unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
+ if (TypeSize == Context.getTypeSize(Context.IntTy))
+ return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
+ if (TypeSize == Context.getTypeSize(Context.LongTy))
+ return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
+
+ assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
+ "Unhandled vector element size in vector compare");
+ return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
+}
+
+inline QualType Sema::CheckBitwiseOperands(
+ Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
+ if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
+ return CheckVectorOperands(Loc, lex, rex);
+
+ QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
+
+ if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
+ return compType;
+ return InvalidOperands(Loc, lex, rex);
+}
+
+inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
+ Expr *&lex, Expr *&rex, SourceLocation Loc) {
+ if (!Context.getLangOptions().CPlusPlus) {
+ UsualUnaryConversions(lex);
+ UsualUnaryConversions(rex);
+
+ if (!lex->getType()->isScalarType() || !rex->getType()->isScalarType())
+ return InvalidOperands(Loc, lex, rex);
+
+ return Context.IntTy;
+ }
+
+ // C++ [expr.log.and]p1
+ // C++ [expr.log.or]p1
+ // The operands are both implicitly converted to type bool (clause 4).
+ StandardConversionSequence LHS;
+ if (!IsStandardConversion(lex, Context.BoolTy,
+ /*InOverloadResolution=*/false, LHS))
+ return InvalidOperands(Loc, lex, rex);
+
+ if (PerformImplicitConversion(lex, Context.BoolTy, LHS,
+ AA_Passing, /*IgnoreBaseAccess=*/false))
+ return InvalidOperands(Loc, lex, rex);
+
+ StandardConversionSequence RHS;
+ if (!IsStandardConversion(rex, Context.BoolTy,
+ /*InOverloadResolution=*/false, RHS))
+ return InvalidOperands(Loc, lex, rex);
+
+ if (PerformImplicitConversion(rex, Context.BoolTy, RHS,
+ AA_Passing, /*IgnoreBaseAccess=*/false))
+ return InvalidOperands(Loc, lex, rex);
+
+ // C++ [expr.log.and]p2
+ // C++ [expr.log.or]p2
+ // The result is a bool.
+ return Context.BoolTy;
+}
+
+/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
+/// is a read-only property; return true if so. A readonly property expression
+/// depends on various declarations and thus must be treated specially.
+///
+static bool IsReadonlyProperty(Expr *E, Sema &S) {
+ if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
+ const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
+ if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
+ QualType BaseType = PropExpr->getBase()->getType();
+ if (const ObjCObjectPointerType *OPT =
+ BaseType->getAsObjCInterfacePointerType())
+ if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
+ if (S.isPropertyReadonly(PDecl, IFace))
+ return true;
+ }
+ }
+ return false;
+}
+
+/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
+/// emit an error and return true. If so, return false.
+static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
+ SourceLocation OrigLoc = Loc;
+ Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
+ &Loc);
+ if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
+ IsLV = Expr::MLV_ReadonlyProperty;
+ if (IsLV == Expr::MLV_Valid)
+ return false;
+
+ unsigned Diag = 0;
+ bool NeedType = false;
+ switch (IsLV) { // C99 6.5.16p2
+ case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
+ case Expr::MLV_ArrayType:
+ Diag = diag::err_typecheck_array_not_modifiable_lvalue;
+ NeedType = true;
+ break;
+ case Expr::MLV_NotObjectType:
+ Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
+ NeedType = true;
+ break;
+ case Expr::MLV_LValueCast:
+ Diag = diag::err_typecheck_lvalue_casts_not_supported;
+ break;
+ case Expr::MLV_Valid:
+ llvm_unreachable("did not take early return for MLV_Valid");
+ case Expr::MLV_InvalidExpression:
+ case Expr::MLV_MemberFunction:
+ case Expr::MLV_ClassTemporary:
+ Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
+ break;
+ case Expr::MLV_IncompleteType:
+ case Expr::MLV_IncompleteVoidType:
+ return S.RequireCompleteType(Loc, E->getType(),
+ S.PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
+ << E->getSourceRange());
+ case Expr::MLV_DuplicateVectorComponents:
+ Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
+ break;
+ case Expr::MLV_NotBlockQualified:
+ Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
+ break;
+ case Expr::MLV_ReadonlyProperty:
+ Diag = diag::error_readonly_property_assignment;
+ break;
+ case Expr::MLV_NoSetterProperty:
+ Diag = diag::error_nosetter_property_assignment;
+ break;
+ case Expr::MLV_SubObjCPropertySetting:
+ Diag = diag::error_no_subobject_property_setting;
+ break;
+ }
+
+ SourceRange Assign;
+ if (Loc != OrigLoc)
+ Assign = SourceRange(OrigLoc, OrigLoc);
+ if (NeedType)
+ S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
+ else
+ S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
+ return true;
+}
+
+
+
+// C99 6.5.16.1
+QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
+ SourceLocation Loc,
+ QualType CompoundType) {
+ // Verify that LHS is a modifiable lvalue, and emit error if not.
+ if (CheckForModifiableLvalue(LHS, Loc, *this))
+ return QualType();
+
+ QualType LHSType = LHS->getType();
+ QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
+
+ AssignConvertType ConvTy;
+ if (CompoundType.isNull()) {
+ // Simple assignment "x = y".
+ ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
+ // Special case of NSObject attributes on c-style pointer types.
+ if (ConvTy == IncompatiblePointer &&
+ ((Context.isObjCNSObjectType(LHSType) &&
+ RHSType->isObjCObjectPointerType()) ||
+ (Context.isObjCNSObjectType(RHSType) &&
+ LHSType->isObjCObjectPointerType())))
+ ConvTy = Compatible;
+
+ // If the RHS is a unary plus or minus, check to see if they = and + are
+ // right next to each other. If so, the user may have typo'd "x =+ 4"
+ // instead of "x += 4".
+ Expr *RHSCheck = RHS;
+ if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
+ RHSCheck = ICE->getSubExpr();
+ if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
+ if ((UO->getOpcode() == UnaryOperator::Plus ||
+ UO->getOpcode() == UnaryOperator::Minus) &&
+ Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
+ // Only if the two operators are exactly adjacent.
+ Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
+ // And there is a space or other character before the subexpr of the
+ // unary +/-. We don't want to warn on "x=-1".
+ Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
+ UO->getSubExpr()->getLocStart().isFileID()) {
+ Diag(Loc, diag::warn_not_compound_assign)
+ << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
+ << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
+ }
+ }
+ } else {
+ // Compound assignment "x += y"
+ ConvTy = CheckAssignmentConstraints(LHSType, RHSType);
+ }
+
+ if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
+ RHS, AA_Assigning))
+ return QualType();
+
+ // C99 6.5.16p3: The type of an assignment expression is the type of the
+ // left operand unless the left operand has qualified type, in which case
+ // it is the unqualified version of the type of the left operand.
+ // C99 6.5.16.1p2: In simple assignment, the value of the right operand
+ // is converted to the type of the assignment expression (above).
+ // C++ 5.17p1: the type of the assignment expression is that of its left
+ // operand.
+ return LHSType.getUnqualifiedType();
+}
+
+// C99 6.5.17
+QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
+ // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
+ // C++ does not perform this conversion (C++ [expr.comma]p1).
+ if (!getLangOptions().CPlusPlus)
+ DefaultFunctionArrayLvalueConversion(RHS);
+
+ // FIXME: Check that RHS type is complete in C mode (it's legal for it to be
+ // incomplete in C++).
+
+ return RHS->getType();
+}
+
+/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
+/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
+QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
+ bool isInc, bool isPrefix) {
+ if (Op->isTypeDependent())
+ return Context.DependentTy;
+
+ QualType ResType = Op->getType();
+ assert(!ResType.isNull() && "no type for increment/decrement expression");
+
+ if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
+ // Decrement of bool is not allowed.
+ if (!isInc) {
+ Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
+ return QualType();
+ }
+ // Increment of bool sets it to true, but is deprecated.
+ Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
+ } else if (ResType->isRealType()) {
+ // OK!
+ } else if (ResType->isAnyPointerType()) {
+ QualType PointeeTy = ResType->getPointeeType();
+
+ // C99 6.5.2.4p2, 6.5.6p2
+ if (PointeeTy->isVoidType()) {
+ if (getLangOptions().CPlusPlus) {
+ Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
+ << Op->getSourceRange();
+ return QualType();
+ }
+
+ // Pointer to void is a GNU extension in C.
+ Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
+ } else if (PointeeTy->isFunctionType()) {
+ if (getLangOptions().CPlusPlus) {
+ Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
+ << Op->getType() << Op->getSourceRange();
+ return QualType();
+ }
+
+ Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
+ << ResType << Op->getSourceRange();
+ } else if (RequireCompleteType(OpLoc, PointeeTy,
+ PDiag(diag::err_typecheck_arithmetic_incomplete_type)
+ << Op->getSourceRange()
+ << ResType))
+ return QualType();
+ // Diagnose bad cases where we step over interface counts.
+ else if (PointeeTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
+ Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
+ << PointeeTy << Op->getSourceRange();
+ return QualType();
+ }
+ } else if (ResType->isAnyComplexType()) {
+ // C99 does not support ++/-- on complex types, we allow as an extension.
+ Diag(OpLoc, diag::ext_integer_increment_complex)
+ << ResType << Op->getSourceRange();
+ } else {
+ Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
+ << ResType << int(isInc) << Op->getSourceRange();
+ return QualType();
+ }
+ // At this point, we know we have a real, complex or pointer type.
+ // Now make sure the operand is a modifiable lvalue.
+ if (CheckForModifiableLvalue(Op, OpLoc, *this))
+ return QualType();
+ // In C++, a prefix increment is the same type as the operand. Otherwise
+ // (in C or with postfix), the increment is the unqualified type of the
+ // operand.
+ return isPrefix && getLangOptions().CPlusPlus
+ ? ResType : ResType.getUnqualifiedType();
+}
+
+/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
+/// This routine allows us to typecheck complex/recursive expressions
+/// where the declaration is needed for type checking. We only need to
+/// handle cases when the expression references a function designator
+/// or is an lvalue. Here are some examples:
+/// - &(x) => x
+/// - &*****f => f for f a function designator.
+/// - &s.xx => s
+/// - &s.zz[1].yy -> s, if zz is an array
+/// - *(x + 1) -> x, if x is an array
+/// - &"123"[2] -> 0
+/// - & __real__ x -> x
+static NamedDecl *getPrimaryDecl(Expr *E) {
+ switch (E->getStmtClass()) {
+ case Stmt::DeclRefExprClass:
+ return cast<DeclRefExpr>(E)->getDecl();
+ case Stmt::MemberExprClass:
+ // If this is an arrow operator, the address is an offset from
+ // the base's value, so the object the base refers to is
+ // irrelevant.
+ if (cast<MemberExpr>(E)->isArrow())
+ return 0;
+ // Otherwise, the expression refers to a part of the base
+ return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
+ case Stmt::ArraySubscriptExprClass: {
+ // FIXME: This code shouldn't be necessary! We should catch the implicit
+ // promotion of register arrays earlier.
+ Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
+ if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
+ if (ICE->getSubExpr()->getType()->isArrayType())
+ return getPrimaryDecl(ICE->getSubExpr());
+ }
+ return 0;
+ }
+ case Stmt::UnaryOperatorClass: {
+ UnaryOperator *UO = cast<UnaryOperator>(E);
+
+ switch(UO->getOpcode()) {
+ case UnaryOperator::Real:
+ case UnaryOperator::Imag:
+ case UnaryOperator::Extension:
+ return getPrimaryDecl(UO->getSubExpr());
+ default:
+ return 0;
+ }
+ }
+ case Stmt::ParenExprClass:
+ return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
+ case Stmt::ImplicitCastExprClass:
+ // If the result of an implicit cast is an l-value, we care about
+ // the sub-expression; otherwise, the result here doesn't matter.
+ return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
+ default:
+ return 0;
+ }
+}
+
+/// CheckAddressOfOperand - The operand of & must be either a function
+/// designator or an lvalue designating an object. If it is an lvalue, the
+/// object cannot be declared with storage class register or be a bit field.
+/// Note: The usual conversions are *not* applied to the operand of the &
+/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
+/// In C++, the operand might be an overloaded function name, in which case
+/// we allow the '&' but retain the overloaded-function type.
+QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
+ // Make sure to ignore parentheses in subsequent checks
+ op = op->IgnoreParens();
+
+ if (op->isTypeDependent())
+ return Context.DependentTy;
+
+ if (getLangOptions().C99) {
+ // Implement C99-only parts of addressof rules.
+ if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
+ if (uOp->getOpcode() == UnaryOperator::Deref)
+ // Per C99 6.5.3.2, the address of a deref always returns a valid result
+ // (assuming the deref expression is valid).
+ return uOp->getSubExpr()->getType();
+ }
+ // Technically, there should be a check for array subscript
+ // expressions here, but the result of one is always an lvalue anyway.
+ }
+ NamedDecl *dcl = getPrimaryDecl(op);
+ Expr::isLvalueResult lval = op->isLvalue(Context);
+
+ MemberExpr *ME = dyn_cast<MemberExpr>(op);
+ if (lval == Expr::LV_MemberFunction && ME &&
+ isa<CXXMethodDecl>(ME->getMemberDecl())) {
+ ValueDecl *dcl = cast<MemberExpr>(op)->getMemberDecl();
+ // &f where f is a member of the current object, or &o.f, or &p->f
+ // All these are not allowed, and we need to catch them before the dcl
+ // branch of the if, below.
+ Diag(OpLoc, diag::err_unqualified_pointer_member_function)
+ << dcl;
+ // FIXME: Improve this diagnostic and provide a fixit.
+
+ // Now recover by acting as if the function had been accessed qualified.
+ return Context.getMemberPointerType(op->getType(),
+ Context.getTypeDeclType(cast<RecordDecl>(dcl->getDeclContext()))
+ .getTypePtr());
+ } else if (lval == Expr::LV_ClassTemporary) {
+ Diag(OpLoc, isSFINAEContext()? diag::err_typecheck_addrof_class_temporary
+ : diag::ext_typecheck_addrof_class_temporary)
+ << op->getType() << op->getSourceRange();
+ if (isSFINAEContext())
+ return QualType();
+ } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
+ // C99 6.5.3.2p1
+ // The operand must be either an l-value or a function designator
+ if (!op->getType()->isFunctionType()) {
+ // FIXME: emit more specific diag...
+ Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
+ << op->getSourceRange();
+ return QualType();
+ }
+ } else if (op->getBitField()) { // C99 6.5.3.2p1
+ // The operand cannot be a bit-field
+ Diag(OpLoc, diag::err_typecheck_address_of)
+ << "bit-field" << op->getSourceRange();
+ return QualType();
+ } else if (op->refersToVectorElement()) {
+ // The operand cannot be an element of a vector
+ Diag(OpLoc, diag::err_typecheck_address_of)
+ << "vector element" << op->getSourceRange();
+ return QualType();
+ } else if (isa<ObjCPropertyRefExpr>(op)) {
+ // cannot take address of a property expression.
+ Diag(OpLoc, diag::err_typecheck_address_of)
+ << "property expression" << op->getSourceRange();
+ return QualType();
+ } else if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(op)) {
+ // FIXME: Can LHS ever be null here?
+ if (!CheckAddressOfOperand(CO->getTrueExpr(), OpLoc).isNull())
+ return CheckAddressOfOperand(CO->getFalseExpr(), OpLoc);
+ } else if (isa<UnresolvedLookupExpr>(op)) {
+ return Context.OverloadTy;
+ } else if (dcl) { // C99 6.5.3.2p1
+ // We have an lvalue with a decl. Make sure the decl is not declared
+ // with the register storage-class specifier.
+ if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
+ if (vd->getStorageClass() == VarDecl::Register) {
+ Diag(OpLoc, diag::err_typecheck_address_of)
+ << "register variable" << op->getSourceRange();
+ return QualType();
+ }
+ } else if (isa<FunctionTemplateDecl>(dcl)) {
+ return Context.OverloadTy;
+ } else if (FieldDecl *FD = dyn_cast<FieldDecl>(dcl)) {
+ // Okay: we can take the address of a field.
+ // Could be a pointer to member, though, if there is an explicit
+ // scope qualifier for the class.
+ if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
+ DeclContext *Ctx = dcl->getDeclContext();
+ if (Ctx && Ctx->isRecord()) {
+ if (FD->getType()->isReferenceType()) {
+ Diag(OpLoc,
+ diag::err_cannot_form_pointer_to_member_of_reference_type)
+ << FD->getDeclName() << FD->getType();
+ return QualType();
+ }
+
+ return Context.getMemberPointerType(op->getType(),
+ Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
+ }
+ }
+ } else if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(dcl)) {
+ // Okay: we can take the address of a function.
+ // As above.
+ if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier() &&
+ MD->isInstance())
+ return Context.getMemberPointerType(op->getType(),
+ Context.getTypeDeclType(MD->getParent()).getTypePtr());
+ } else if (!isa<FunctionDecl>(dcl))
+ assert(0 && "Unknown/unexpected decl type");
+ }
+
+ if (lval == Expr::LV_IncompleteVoidType) {
+ // Taking the address of a void variable is technically illegal, but we
+ // allow it in cases which are otherwise valid.
+ // Example: "extern void x; void* y = &x;".
+ Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
+ }
+
+ // If the operand has type "type", the result has type "pointer to type".
+ return Context.getPointerType(op->getType());
+}
+
+QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
+ if (Op->isTypeDependent())
+ return Context.DependentTy;
+
+ UsualUnaryConversions(Op);
+ QualType Ty = Op->getType();
+
+ // Note that per both C89 and C99, this is always legal, even if ptype is an
+ // incomplete type or void. It would be possible to warn about dereferencing
+ // a void pointer, but it's completely well-defined, and such a warning is
+ // unlikely to catch any mistakes.
+ if (const PointerType *PT = Ty->getAs<PointerType>())
+ return PT->getPointeeType();
+
+ if (const ObjCObjectPointerType *OPT = Ty->getAs<ObjCObjectPointerType>())
+ return OPT->getPointeeType();
+
+ Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
+ << Ty << Op->getSourceRange();
+ return QualType();
+}
+
+static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
+ tok::TokenKind Kind) {
+ BinaryOperator::Opcode Opc;
+ switch (Kind) {
+ default: assert(0 && "Unknown binop!");
+ case tok::periodstar: Opc = BinaryOperator::PtrMemD; break;
+ case tok::arrowstar: Opc = BinaryOperator::PtrMemI; break;
+ case tok::star: Opc = BinaryOperator::Mul; break;
+ case tok::slash: Opc = BinaryOperator::Div; break;
+ case tok::percent: Opc = BinaryOperator::Rem; break;
+ case tok::plus: Opc = BinaryOperator::Add; break;
+ case tok::minus: Opc = BinaryOperator::Sub; break;
+ case tok::lessless: Opc = BinaryOperator::Shl; break;
+ case tok::greatergreater: Opc = BinaryOperator::Shr; break;
+ case tok::lessequal: Opc = BinaryOperator::LE; break;
+ case tok::less: Opc = BinaryOperator::LT; break;
+ case tok::greaterequal: Opc = BinaryOperator::GE; break;
+ case tok::greater: Opc = BinaryOperator::GT; break;
+ case tok::exclaimequal: Opc = BinaryOperator::NE; break;
+ case tok::equalequal: Opc = BinaryOperator::EQ; break;
+ case tok::amp: Opc = BinaryOperator::And; break;
+ case tok::caret: Opc = BinaryOperator::Xor; break;
+ case tok::pipe: Opc = BinaryOperator::Or; break;
+ case tok::ampamp: Opc = BinaryOperator::LAnd; break;
+ case tok::pipepipe: Opc = BinaryOperator::LOr; break;
+ case tok::equal: Opc = BinaryOperator::Assign; break;
+ case tok::starequal: Opc = BinaryOperator::MulAssign; break;
+ case tok::slashequal: Opc = BinaryOperator::DivAssign; break;
+ case tok::percentequal: Opc = BinaryOperator::RemAssign; break;
+ case tok::plusequal: Opc = BinaryOperator::AddAssign; break;
+ case tok::minusequal: Opc = BinaryOperator::SubAssign; break;
+ case tok::lesslessequal: Opc = BinaryOperator::ShlAssign; break;
+ case tok::greatergreaterequal: Opc = BinaryOperator::ShrAssign; break;
+ case tok::ampequal: Opc = BinaryOperator::AndAssign; break;
+ case tok::caretequal: Opc = BinaryOperator::XorAssign; break;
+ case tok::pipeequal: Opc = BinaryOperator::OrAssign; break;
+ case tok::comma: Opc = BinaryOperator::Comma; break;
+ }
+ return Opc;
+}
+
+static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
+ tok::TokenKind Kind) {
+ UnaryOperator::Opcode Opc;
+ switch (Kind) {
+ default: assert(0 && "Unknown unary op!");
+ case tok::plusplus: Opc = UnaryOperator::PreInc; break;
+ case tok::minusminus: Opc = UnaryOperator::PreDec; break;
+ case tok::amp: Opc = UnaryOperator::AddrOf; break;
+ case tok::star: Opc = UnaryOperator::Deref; break;
+ case tok::plus: Opc = UnaryOperator::Plus; break;
+ case tok::minus: Opc = UnaryOperator::Minus; break;
+ case tok::tilde: Opc = UnaryOperator::Not; break;
+ case tok::exclaim: Opc = UnaryOperator::LNot; break;
+ case tok::kw___real: Opc = UnaryOperator::Real; break;
+ case tok::kw___imag: Opc = UnaryOperator::Imag; break;
+ case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
+ }
+ return Opc;
+}
+
+/// CreateBuiltinBinOp - Creates a new built-in binary operation with
+/// operator @p Opc at location @c TokLoc. This routine only supports
+/// built-in operations; ActOnBinOp handles overloaded operators.
+Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
+ unsigned Op,
+ Expr *lhs, Expr *rhs) {
+ QualType ResultTy; // Result type of the binary operator.
+ BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
+ // The following two variables are used for compound assignment operators
+ QualType CompLHSTy; // Type of LHS after promotions for computation
+ QualType CompResultTy; // Type of computation result
+
+ switch (Opc) {
+ case BinaryOperator::Assign:
+ ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
+ break;
+ case BinaryOperator::PtrMemD:
+ case BinaryOperator::PtrMemI:
+ ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
+ Opc == BinaryOperator::PtrMemI);
+ break;
+ case BinaryOperator::Mul:
+ case BinaryOperator::Div:
+ ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, false,
+ Opc == BinaryOperator::Div);
+ break;
+ case BinaryOperator::Rem:
+ ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
+ break;
+ case BinaryOperator::Add:
+ ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
+ break;
+ case BinaryOperator::Sub:
+ ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
+ break;
+ case BinaryOperator::Shl:
+ case BinaryOperator::Shr:
+ ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
+ break;
+ case BinaryOperator::LE:
+ case BinaryOperator::LT:
+ case BinaryOperator::GE:
+ case BinaryOperator::GT:
+ ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
+ break;
+ case BinaryOperator::EQ:
+ case BinaryOperator::NE:
+ ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
+ break;
+ case BinaryOperator::And:
+ case BinaryOperator::Xor:
+ case BinaryOperator::Or:
+ ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
+ break;
+ case BinaryOperator::LAnd:
+ case BinaryOperator::LOr:
+ ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
+ break;
+ case BinaryOperator::MulAssign:
+ case BinaryOperator::DivAssign:
+ CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true,
+ Opc == BinaryOperator::DivAssign);
+ CompLHSTy = CompResultTy;
+ if (!CompResultTy.isNull())
+ ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
+ break;
+ case BinaryOperator::RemAssign:
+ CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
+ CompLHSTy = CompResultTy;
+ if (!CompResultTy.isNull())
+ ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
+ break;
+ case BinaryOperator::AddAssign:
+ CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
+ if (!CompResultTy.isNull())
+ ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
+ break;
+ case BinaryOperator::SubAssign:
+ CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
+ if (!CompResultTy.isNull())
+ ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
+ break;
+ case BinaryOperator::ShlAssign:
+ case BinaryOperator::ShrAssign:
+ CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
+ CompLHSTy = CompResultTy;
+ if (!CompResultTy.isNull())
+ ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
+ break;
+ case BinaryOperator::AndAssign:
+ case BinaryOperator::XorAssign:
+ case BinaryOperator::OrAssign:
+ CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
+ CompLHSTy = CompResultTy;
+ if (!CompResultTy.isNull())
+ ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
+ break;
+ case BinaryOperator::Comma:
+ ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
+ break;
+ }
+ if (ResultTy.isNull())
+ return ExprError();
+ if (CompResultTy.isNull())
+ return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
+ else
+ return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
+ CompLHSTy, CompResultTy,
+ OpLoc));
+}
+
+/// SuggestParentheses - Emit a diagnostic together with a fixit hint that wraps
+/// ParenRange in parentheses.
+static void SuggestParentheses(Sema &Self, SourceLocation Loc,
+ const PartialDiagnostic &PD,
+ const PartialDiagnostic &FirstNote,
+ SourceRange FirstParenRange,
+ const PartialDiagnostic &SecondNote,
+ SourceRange SecondParenRange) {
+ Self.Diag(Loc, PD);
+
+ if (!FirstNote.getDiagID())
+ return;
+
+ SourceLocation EndLoc = Self.PP.getLocForEndOfToken(FirstParenRange.getEnd());
+ if (!FirstParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
+ // We can't display the parentheses, so just return.
+ return;
+ }
+
+ Self.Diag(Loc, FirstNote)
+ << FixItHint::CreateInsertion(FirstParenRange.getBegin(), "(")
+ << FixItHint::CreateInsertion(EndLoc, ")");
+
+ if (!SecondNote.getDiagID())
+ return;
+
+ EndLoc = Self.PP.getLocForEndOfToken(SecondParenRange.getEnd());
+ if (!SecondParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
+ // We can't display the parentheses, so just dig the
+ // warning/error and return.
+ Self.Diag(Loc, SecondNote);
+ return;
+ }
+
+ Self.Diag(Loc, SecondNote)
+ << FixItHint::CreateInsertion(SecondParenRange.getBegin(), "(")
+ << FixItHint::CreateInsertion(EndLoc, ")");
+}
+
+/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
+/// operators are mixed in a way that suggests that the programmer forgot that
+/// comparison operators have higher precedence. The most typical example of
+/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
+static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperator::Opcode Opc,
+ SourceLocation OpLoc,Expr *lhs,Expr *rhs){
+ typedef BinaryOperator BinOp;
+ BinOp::Opcode lhsopc = static_cast<BinOp::Opcode>(-1),
+ rhsopc = static_cast<BinOp::Opcode>(-1);
+ if (BinOp *BO = dyn_cast<BinOp>(lhs))
+ lhsopc = BO->getOpcode();
+ if (BinOp *BO = dyn_cast<BinOp>(rhs))
+ rhsopc = BO->getOpcode();
+
+ // Subs are not binary operators.
+ if (lhsopc == -1 && rhsopc == -1)
+ return;
+
+ // Bitwise operations are sometimes used as eager logical ops.
+ // Don't diagnose this.
+ if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) &&
+ (BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc)))
+ return;
+
+ if (BinOp::isComparisonOp(lhsopc))
+ SuggestParentheses(Self, OpLoc,
+ Self.PDiag(diag::warn_precedence_bitwise_rel)
+ << SourceRange(lhs->getLocStart(), OpLoc)
+ << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(lhsopc),
+ Self.PDiag(diag::note_precedence_bitwise_first)
+ << BinOp::getOpcodeStr(Opc),
+ SourceRange(cast<BinOp>(lhs)->getRHS()->getLocStart(), rhs->getLocEnd()),
+ Self.PDiag(diag::note_precedence_bitwise_silence)
+ << BinOp::getOpcodeStr(lhsopc),
+ lhs->getSourceRange());
+ else if (BinOp::isComparisonOp(rhsopc))
+ SuggestParentheses(Self, OpLoc,
+ Self.PDiag(diag::warn_precedence_bitwise_rel)
+ << SourceRange(OpLoc, rhs->getLocEnd())
+ << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(rhsopc),
+ Self.PDiag(diag::note_precedence_bitwise_first)
+ << BinOp::getOpcodeStr(Opc),
+ SourceRange(lhs->getLocEnd(), cast<BinOp>(rhs)->getLHS()->getLocStart()),
+ Self.PDiag(diag::note_precedence_bitwise_silence)
+ << BinOp::getOpcodeStr(rhsopc),
+ rhs->getSourceRange());
+}
+
+/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
+/// precedence. This currently diagnoses only "arg1 'bitwise' arg2 'eq' arg3".
+/// But it could also warn about arg1 && arg2 || arg3, as GCC 4.3+ does.
+static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperator::Opcode Opc,
+ SourceLocation OpLoc, Expr *lhs, Expr *rhs){
+ if (BinaryOperator::isBitwiseOp(Opc))
+ DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs);
+}
+
+// Binary Operators. 'Tok' is the token for the operator.
+Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
+ tok::TokenKind Kind,
+ ExprArg LHS, ExprArg RHS) {
+ BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
+ Expr *lhs = LHS.takeAs<Expr>(), *rhs = RHS.takeAs<Expr>();
+
+ assert((lhs != 0) && "ActOnBinOp(): missing left expression");
+ assert((rhs != 0) && "ActOnBinOp(): missing right expression");
+
+ // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
+ DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs);
+
+ return BuildBinOp(S, TokLoc, Opc, lhs, rhs);
+}
+
+Action::OwningExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
+ BinaryOperator::Opcode Opc,
+ Expr *lhs, Expr *rhs) {
+ if (getLangOptions().CPlusPlus &&
+ (lhs->getType()->isOverloadableType() ||
+ rhs->getType()->isOverloadableType())) {
+ // Find all of the overloaded operators visible from this
+ // point. We perform both an operator-name lookup from the local
+ // scope and an argument-dependent lookup based on the types of
+ // the arguments.
+ UnresolvedSet<16> Functions;
+ OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
+ if (S && OverOp != OO_None)
+ LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
+ Functions);
+
+ // Build the (potentially-overloaded, potentially-dependent)
+ // binary operation.
+ return CreateOverloadedBinOp(OpLoc, Opc, Functions, lhs, rhs);
+ }
+
+ // Build a built-in binary operation.
+ return CreateBuiltinBinOp(OpLoc, Opc, lhs, rhs);
+}
+
+Action::OwningExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
+ unsigned OpcIn,
+ ExprArg InputArg) {
+ UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
+
+ // FIXME: Input is modified below, but InputArg is not updated appropriately.
+ Expr *Input = (Expr *)InputArg.get();
+ QualType resultType;
+ switch (Opc) {
+ case UnaryOperator::OffsetOf:
+ assert(false && "Invalid unary operator");
+ break;
+
+ case UnaryOperator::PreInc:
+ case UnaryOperator::PreDec:
+ case UnaryOperator::PostInc:
+ case UnaryOperator::PostDec:
+ resultType = CheckIncrementDecrementOperand(Input, OpLoc,
+ Opc == UnaryOperator::PreInc ||
+ Opc == UnaryOperator::PostInc,
+ Opc == UnaryOperator::PreInc ||
+ Opc == UnaryOperator::PreDec);
+ break;
+ case UnaryOperator::AddrOf:
+ resultType = CheckAddressOfOperand(Input, OpLoc);
+ break;
+ case UnaryOperator::Deref:
+ DefaultFunctionArrayLvalueConversion(Input);
+ resultType = CheckIndirectionOperand(Input, OpLoc);
+ break;
+ case UnaryOperator::Plus:
+ case UnaryOperator::Minus:
+ UsualUnaryConversions(Input);
+ resultType = Input->getType();
+ if (resultType->isDependentType())
+ break;
+ if (resultType->isArithmeticType()) // C99 6.5.3.3p1
+ break;
+ else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
+ resultType->isEnumeralType())
+ break;
+ else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
+ Opc == UnaryOperator::Plus &&
+ resultType->isPointerType())
+ break;
+
+ return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
+ << resultType << Input->getSourceRange());
+ case UnaryOperator::Not: // bitwise complement
+ UsualUnaryConversions(Input);
+ resultType = Input->getType();
+ if (resultType->isDependentType())
+ break;
+ // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
+ if (resultType->isComplexType() || resultType->isComplexIntegerType())
+ // C99 does not support '~' for complex conjugation.
+ Diag(OpLoc, diag::ext_integer_complement_complex)
+ << resultType << Input->getSourceRange();
+ else if (!resultType->isIntegerType())
+ return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
+ << resultType << Input->getSourceRange());
+ break;
+ case UnaryOperator::LNot: // logical negation
+ // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
+ DefaultFunctionArrayLvalueConversion(Input);
+ resultType = Input->getType();
+ if (resultType->isDependentType())
+ break;
+ if (!resultType->isScalarType()) // C99 6.5.3.3p1
+ return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
+ << resultType << Input->getSourceRange());
+ // LNot always has type int. C99 6.5.3.3p5.
+ // In C++, it's bool. C++ 5.3.1p8
+ resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
+ break;
+ case UnaryOperator::Real:
+ case UnaryOperator::Imag:
+ resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
+ break;
+ case UnaryOperator::Extension:
+ resultType = Input->getType();
+ break;
+ }
+ if (resultType.isNull())
+ return ExprError();
+
+ InputArg.release();
+ return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
+}
+
+Action::OwningExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
+ UnaryOperator::Opcode Opc,
+ ExprArg input) {
+ Expr *Input = (Expr*)input.get();
+ if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() &&
+ Opc != UnaryOperator::Extension) {
+ // Find all of the overloaded operators visible from this
+ // point. We perform both an operator-name lookup from the local
+ // scope and an argument-dependent lookup based on the types of
+ // the arguments.
+ UnresolvedSet<16> Functions;
+ OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
+ if (S && OverOp != OO_None)
+ LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
+ Functions);
+
+ return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(input));
+ }
+
+ return CreateBuiltinUnaryOp(OpLoc, Opc, move(input));
+}
+
+// Unary Operators. 'Tok' is the token for the operator.
+Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
+ tok::TokenKind Op, ExprArg input) {
+ return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), move(input));
+}
+
+/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
+Sema::OwningExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
+ SourceLocation LabLoc,
+ IdentifierInfo *LabelII) {
+ // Look up the record for this label identifier.
+ LabelStmt *&LabelDecl = getLabelMap()[LabelII];
+
+ // If we haven't seen this label yet, create a forward reference. It
+ // will be validated and/or cleaned up in ActOnFinishFunctionBody.
+ if (LabelDecl == 0)
+ LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
+
+ // Create the AST node. The address of a label always has type 'void*'.
+ return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
+ Context.getPointerType(Context.VoidTy)));
+}
+
+Sema::OwningExprResult
+Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtArg substmt,
+ SourceLocation RPLoc) { // "({..})"
+ Stmt *SubStmt = static_cast<Stmt*>(substmt.get());
+ assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
+ CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
+
+ bool isFileScope
+ = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
+ if (isFileScope)
+ return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
+
+ // FIXME: there are a variety of strange constraints to enforce here, for
+ // example, it is not possible to goto into a stmt expression apparently.
+ // More semantic analysis is needed.
+
+ // If there are sub stmts in the compound stmt, take the type of the last one
+ // as the type of the stmtexpr.
+ QualType Ty = Context.VoidTy;
+
+ if (!Compound->body_empty()) {
+ Stmt *LastStmt = Compound->body_back();
+ // If LastStmt is a label, skip down through into the body.
+ while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
+ LastStmt = Label->getSubStmt();
+
+ if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
+ Ty = LastExpr->getType();
+ }
+
+ // FIXME: Check that expression type is complete/non-abstract; statement
+ // expressions are not lvalues.
+
+ substmt.release();
+ return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
+}
+
+Sema::OwningExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
+ TypeSourceInfo *TInfo,
+ OffsetOfComponent *CompPtr,
+ unsigned NumComponents,
+ SourceLocation RParenLoc) {
+ QualType ArgTy = TInfo->getType();
+ bool Dependent = ArgTy->isDependentType();
+ SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
+
+ // We must have at least one component that refers to the type, and the first
+ // one is known to be a field designator. Verify that the ArgTy represents
+ // a struct/union/class.
+ if (!Dependent && !ArgTy->isRecordType())
+ return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
+ << ArgTy << TypeRange);
+
+ // Type must be complete per C99 7.17p3 because a declaring a variable
+ // with an incomplete type would be ill-formed.
+ if (!Dependent
+ && RequireCompleteType(BuiltinLoc, ArgTy,
+ PDiag(diag::err_offsetof_incomplete_type)
+ << TypeRange))
+ return ExprError();
+
+ // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
+ // GCC extension, diagnose them.
+ // FIXME: This diagnostic isn't actually visible because the location is in
+ // a system header!
+ if (NumComponents != 1)
+ Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
+ << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
+
+ bool DidWarnAboutNonPOD = false;
+ QualType CurrentType = ArgTy;
+ typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
+ llvm::SmallVector<OffsetOfNode, 4> Comps;
+ llvm::SmallVector<Expr*, 4> Exprs;
+ for (unsigned i = 0; i != NumComponents; ++i) {
+ const OffsetOfComponent &OC = CompPtr[i];
+ if (OC.isBrackets) {
+ // Offset of an array sub-field. TODO: Should we allow vector elements?
+ if (!CurrentType->isDependentType()) {
+ const ArrayType *AT = Context.getAsArrayType(CurrentType);
+ if(!AT)
+ return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
+ << CurrentType);
+ CurrentType = AT->getElementType();
+ } else
+ CurrentType = Context.DependentTy;
+
+ // The expression must be an integral expression.
+ // FIXME: An integral constant expression?
+ Expr *Idx = static_cast<Expr*>(OC.U.E);
+ if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
+ !Idx->getType()->isIntegerType())
+ return ExprError(Diag(Idx->getLocStart(),
+ diag::err_typecheck_subscript_not_integer)
+ << Idx->getSourceRange());
+
+ // Record this array index.
+ Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
+ Exprs.push_back(Idx);
+ continue;
+ }
+
+ // Offset of a field.
+ if (CurrentType->isDependentType()) {
+ // We have the offset of a field, but we can't look into the dependent
+ // type. Just record the identifier of the field.
+ Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
+ CurrentType = Context.DependentTy;
+ continue;
+ }
+
+ // We need to have a complete type to look into.
+ if (RequireCompleteType(OC.LocStart, CurrentType,
+ diag::err_offsetof_incomplete_type))
+ return ExprError();
+
+ // Look for the designated field.
+ const RecordType *RC = CurrentType->getAs<RecordType>();
+ if (!RC)
+ return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
+ << CurrentType);
+ RecordDecl *RD = RC->getDecl();
+
+ // C++ [lib.support.types]p5:
+ // The macro offsetof accepts a restricted set of type arguments in this
+ // International Standard. type shall be a POD structure or a POD union
+ // (clause 9).
+ if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
+ if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
+ DiagRuntimeBehavior(BuiltinLoc,
+ PDiag(diag::warn_offsetof_non_pod_type)
+ << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
+ << CurrentType))
+ DidWarnAboutNonPOD = true;
+ }
+
+ // Look for the field.
+ LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
+ LookupQualifiedName(R, RD);
+ FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
+ if (!MemberDecl)
+ return ExprError(Diag(BuiltinLoc, diag::err_no_member)
+ << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
+ OC.LocEnd));
+
+ // C99 7.17p3:
+ // (If the specified member is a bit-field, the behavior is undefined.)
+ //
+ // We diagnose this as an error.
+ if (MemberDecl->getBitWidth()) {
+ Diag(OC.LocEnd, diag::err_offsetof_bitfield)
+ << MemberDecl->getDeclName()
+ << SourceRange(BuiltinLoc, RParenLoc);
+ Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
+ return ExprError();
+ }
+
+ // If the member was found in a base class, introduce OffsetOfNodes for
+ // the base class indirections.
+ CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
+ /*DetectVirtual=*/false);
+ if (IsDerivedFrom(CurrentType,
+ Context.getTypeDeclType(MemberDecl->getParent()),
+ Paths)) {
+ CXXBasePath &Path = Paths.front();
+ for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
+ B != BEnd; ++B)
+ Comps.push_back(OffsetOfNode(B->Base));
+ }
+
+ if (cast<RecordDecl>(MemberDecl->getDeclContext())->
+ isAnonymousStructOrUnion()) {
+ llvm::SmallVector<FieldDecl*, 4> Path;
+ BuildAnonymousStructUnionMemberPath(MemberDecl, Path);
+ unsigned n = Path.size();
+ for (int j = n - 1; j > -1; --j)
+ Comps.push_back(OffsetOfNode(OC.LocStart, Path[j], OC.LocEnd));
+ } else {
+ Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
+ }
+ CurrentType = MemberDecl->getType().getNonReferenceType();
+ }
+
+ return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc,
+ TInfo, Comps.data(), Comps.size(),
+ Exprs.data(), Exprs.size(), RParenLoc));
+}
+
+Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
+ SourceLocation BuiltinLoc,
+ SourceLocation TypeLoc,
+ TypeTy *argty,
+ OffsetOfComponent *CompPtr,
+ unsigned NumComponents,
+ SourceLocation RPLoc) {
+
+ TypeSourceInfo *ArgTInfo;
+ QualType ArgTy = GetTypeFromParser(argty, &ArgTInfo);
+ if (ArgTy.isNull())
+ return ExprError();
+
+ if (getLangOptions().CPlusPlus) {
+ if (!ArgTInfo)
+ ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
+
+ return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
+ RPLoc);
+ }
+
+ // FIXME: The code below is marked for death, once we have proper CodeGen
+ // support for non-constant OffsetOf expressions.
+
+ bool Dependent = ArgTy->isDependentType();
+
+ // We must have at least one component that refers to the type, and the first
+ // one is known to be a field designator. Verify that the ArgTy represents
+ // a struct/union/class.
+ if (!Dependent && !ArgTy->isRecordType())
+ return ExprError(Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy);
+
+ // FIXME: Type must be complete per C99 7.17p3 because a declaring a variable
+ // with an incomplete type would be illegal.
+
+ // Otherwise, create a null pointer as the base, and iteratively process
+ // the offsetof designators.
+ QualType ArgTyPtr = Context.getPointerType(ArgTy);
+ Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr);
+ Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref,
+ ArgTy, SourceLocation());
+
+ // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
+ // GCC extension, diagnose them.
+ // FIXME: This diagnostic isn't actually visible because the location is in
+ // a system header!
+ if (NumComponents != 1)
+ Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
+ << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
+
+ if (!Dependent) {
+ bool DidWarnAboutNonPOD = false;
+
+ if (RequireCompleteType(TypeLoc, Res->getType(),
+ diag::err_offsetof_incomplete_type))
+ return ExprError();
+
+ // FIXME: Dependent case loses a lot of information here. And probably
+ // leaks like a sieve.
+ for (unsigned i = 0; i != NumComponents; ++i) {
+ const OffsetOfComponent &OC = CompPtr[i];
+ if (OC.isBrackets) {
+ // Offset of an array sub-field. TODO: Should we allow vector elements?
+ const ArrayType *AT = Context.getAsArrayType(Res->getType());
+ if (!AT) {
+ Res->Destroy(Context);
+ return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
+ << Res->getType());
+ }
+
+ // FIXME: C++: Verify that operator[] isn't overloaded.
+
+ // Promote the array so it looks more like a normal array subscript
+ // expression.
+ DefaultFunctionArrayLvalueConversion(Res);
+
+ // C99 6.5.2.1p1
+ Expr *Idx = static_cast<Expr*>(OC.U.E);
+ // FIXME: Leaks Res
+ if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
+ return ExprError(Diag(Idx->getLocStart(),
+ diag::err_typecheck_subscript_not_integer)
+ << Idx->getSourceRange());
+
+ Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
+ OC.LocEnd);
+ continue;
+ }
+
+ const RecordType *RC = Res->getType()->getAs<RecordType>();
+ if (!RC) {
+ Res->Destroy(Context);
+ return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
+ << Res->getType());
+ }
+
+ // Get the decl corresponding to this.
+ RecordDecl *RD = RC->getDecl();
+ if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
+ if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
+ DiagRuntimeBehavior(BuiltinLoc,
+ PDiag(diag::warn_offsetof_non_pod_type)
+ << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
+ << Res->getType()))
+ DidWarnAboutNonPOD = true;
+ }
+
+ LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
+ LookupQualifiedName(R, RD);
+
+ FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
+ // FIXME: Leaks Res
+ if (!MemberDecl)
+ return ExprError(Diag(BuiltinLoc, diag::err_no_member)
+ << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, OC.LocEnd));
+
+ // C99 7.17p3:
+ // (If the specified member is a bit-field, the behavior is undefined.)
+ //
+ // We diagnose this as an error.
+ if (MemberDecl->getBitWidth()) {
+ Diag(OC.LocEnd, diag::err_offsetof_bitfield)
+ << MemberDecl->getDeclName()
+ << SourceRange(BuiltinLoc, RPLoc);
+ Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
+ return ExprError();
+ }
+
+ // FIXME: C++: Verify that MemberDecl isn't a static field.
+ // FIXME: Verify that MemberDecl isn't a bitfield.
+ if (cast<RecordDecl>(MemberDecl->getDeclContext())->isAnonymousStructOrUnion()) {
+ Res = BuildAnonymousStructUnionMemberReference(
+ OC.LocEnd, MemberDecl, Res, OC.LocEnd).takeAs<Expr>();
+ } else {
+ PerformObjectMemberConversion(Res, /*Qualifier=*/0,
+ *R.begin(), MemberDecl);
+ // MemberDecl->getType() doesn't get the right qualifiers, but it
+ // doesn't matter here.
+ Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
+ MemberDecl->getType().getNonReferenceType());
+ }
+ }
+ }
+
+ return Owned(new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
+ Context.getSizeType(), BuiltinLoc));
+}
+
+
+Sema::OwningExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
+ TypeTy *arg1,TypeTy *arg2,
+ SourceLocation RPLoc) {
+ // FIXME: Preserve type source info.
+ QualType argT1 = GetTypeFromParser(arg1);
+ QualType argT2 = GetTypeFromParser(arg2);
+
+ assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
+
+ if (getLangOptions().CPlusPlus) {
+ Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus)
+ << SourceRange(BuiltinLoc, RPLoc);
+ return ExprError();
+ }
+
+ return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
+ argT1, argT2, RPLoc));
+}
+
+Sema::OwningExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
+ ExprArg cond,
+ ExprArg expr1, ExprArg expr2,
+ SourceLocation RPLoc) {
+ Expr *CondExpr = static_cast<Expr*>(cond.get());
+ Expr *LHSExpr = static_cast<Expr*>(expr1.get());
+ Expr *RHSExpr = static_cast<Expr*>(expr2.get());
+
+ assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
+
+ QualType resType;
+ bool ValueDependent = false;
+ if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
+ resType = Context.DependentTy;
+ ValueDependent = true;
+ } else {
+ // The conditional expression is required to be a constant expression.
+ llvm::APSInt condEval(32);
+ SourceLocation ExpLoc;
+ if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
+ return ExprError(Diag(ExpLoc,
+ diag::err_typecheck_choose_expr_requires_constant)
+ << CondExpr->getSourceRange());
+
+ // If the condition is > zero, then the AST type is the same as the LSHExpr.
+ resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
+ ValueDependent = condEval.getZExtValue() ? LHSExpr->isValueDependent()
+ : RHSExpr->isValueDependent();
+ }
+
+ cond.release(); expr1.release(); expr2.release();
+ return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
+ resType, RPLoc,
+ resType->isDependentType(),
+ ValueDependent));
+}
+
+//===----------------------------------------------------------------------===//
+// Clang Extensions.
+//===----------------------------------------------------------------------===//
+
+/// ActOnBlockStart - This callback is invoked when a block literal is started.
+void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
+ BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
+ PushBlockScope(BlockScope, Block);
+ CurContext->addDecl(Block);
+ PushDeclContext(BlockScope, Block);
+}
+
+void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
+ assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
+ BlockScopeInfo *CurBlock = getCurBlock();
+
+ if (ParamInfo.getNumTypeObjects() == 0
+ || ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) {
+ ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
+ QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
+
+ if (T->isArrayType()) {
+ Diag(ParamInfo.getSourceRange().getBegin(),
+ diag::err_block_returns_array);
+ return;
+ }
+
+ // The parameter list is optional, if there was none, assume ().
+ if (!T->isFunctionType())
+ T = Context.getFunctionType(T, 0, 0, false, 0, false, false, 0, 0,
+ FunctionType::ExtInfo());
+
+ CurBlock->hasPrototype = true;
+ CurBlock->isVariadic = false;
+ // Check for a valid sentinel attribute on this block.
+ if (CurBlock->TheDecl->getAttr<SentinelAttr>()) {
+ Diag(ParamInfo.getAttributes()->getLoc(),
+ diag::warn_attribute_sentinel_not_variadic) << 1;
+ // FIXME: remove the attribute.
+ }
+ QualType RetTy = T.getTypePtr()->getAs<FunctionType>()->getResultType();
+
+ // Do not allow returning a objc interface by-value.
+ if (RetTy->isObjCObjectType()) {
+ Diag(ParamInfo.getSourceRange().getBegin(),
+ diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
+ return;
+ }
+
+ CurBlock->ReturnType = RetTy;
+ return;
+ }
+
+ // Analyze arguments to block.
+ assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
+ "Not a function declarator!");
+ DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
+
+ CurBlock->hasPrototype = FTI.hasPrototype;
+ CurBlock->isVariadic = true;
+
+ // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
+ // no arguments, not a function that takes a single void argument.
+ if (FTI.hasPrototype &&
+ FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
+ (!FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType().getCVRQualifiers()&&
+ FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType())) {
+ // empty arg list, don't push any params.
+ CurBlock->isVariadic = false;
+ } else if (FTI.hasPrototype) {
+ for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
+ ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
+ if (Param->getIdentifier() == 0 &&
+ !Param->isImplicit() &&
+ !Param->isInvalidDecl() &&
+ !getLangOptions().CPlusPlus)
+ Diag(Param->getLocation(), diag::err_parameter_name_omitted);
+ CurBlock->Params.push_back(Param);
+ }
+ CurBlock->isVariadic = FTI.isVariadic;
+ }
+ CurBlock->TheDecl->setParams(CurBlock->Params.data(),
+ CurBlock->Params.size());
+ CurBlock->TheDecl->setIsVariadic(CurBlock->isVariadic);
+ ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
+
+ bool ShouldCheckShadow =
+ Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
+
+ for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
+ E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
+ (*AI)->setOwningFunction(CurBlock->TheDecl);
+
+ // If this has an identifier, add it to the scope stack.
+ if ((*AI)->getIdentifier()) {
+ if (ShouldCheckShadow)
+ CheckShadow(CurBlock->TheScope, *AI);
+
+ PushOnScopeChains(*AI, CurBlock->TheScope);
+ }
+ }
+
+ // Check for a valid sentinel attribute on this block.
+ if (!CurBlock->isVariadic &&
+ CurBlock->TheDecl->getAttr<SentinelAttr>()) {
+ Diag(ParamInfo.getAttributes()->getLoc(),
+ diag::warn_attribute_sentinel_not_variadic) << 1;
+ // FIXME: remove the attribute.
+ }
+
+ // Analyze the return type.
+ QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
+ QualType RetTy = T->getAs<FunctionType>()->getResultType();
+
+ // Do not allow returning a objc interface by-value.
+ if (RetTy->isObjCObjectType()) {
+ Diag(ParamInfo.getSourceRange().getBegin(),
+ diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
+ } else if (!RetTy->isDependentType())
+ CurBlock->ReturnType = RetTy;
+}
+
+/// ActOnBlockError - If there is an error parsing a block, this callback
+/// is invoked to pop the information about the block from the action impl.
+void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
+ // Pop off CurBlock, handle nested blocks.
+ PopDeclContext();
+ PopFunctionOrBlockScope();
+ // FIXME: Delete the ParmVarDecl objects as well???
+}
+
+/// ActOnBlockStmtExpr - This is called when the body of a block statement
+/// literal was successfully completed. ^(int x){...}
+Sema::OwningExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
+ StmtArg body, Scope *CurScope) {
+ // If blocks are disabled, emit an error.
+ if (!LangOpts.Blocks)
+ Diag(CaretLoc, diag::err_blocks_disable);
+
+ BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
+
+ PopDeclContext();
+
+ QualType RetTy = Context.VoidTy;
+ if (!BSI->ReturnType.isNull())
+ RetTy = BSI->ReturnType;
+
+ llvm::SmallVector<QualType, 8> ArgTypes;
+ for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
+ ArgTypes.push_back(BSI->Params[i]->getType());
+
+ bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
+ QualType BlockTy;
+ if (!BSI->hasPrototype)
+ BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0, false, false, 0, 0,
+ FunctionType::ExtInfo(NoReturn, 0, CC_Default));
+ else
+ BlockTy = Context.getFunctionType(RetTy, ArgTypes.data(), ArgTypes.size(),
+ BSI->isVariadic, 0, false, false, 0, 0,
+ FunctionType::ExtInfo(NoReturn, 0, CC_Default));
+
+ // FIXME: Check that return/parameter types are complete/non-abstract
+ DiagnoseUnusedParameters(BSI->Params.begin(), BSI->Params.end());
+ BlockTy = Context.getBlockPointerType(BlockTy);
+
+ // If needed, diagnose invalid gotos and switches in the block.
+ if (FunctionNeedsScopeChecking() && !hasAnyErrorsInThisFunction())
+ DiagnoseInvalidJumps(static_cast<CompoundStmt*>(body.get()));
+
+ BSI->TheDecl->setBody(body.takeAs<CompoundStmt>());
+
+ bool Good = true;
+ // Check goto/label use.
+ for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
+ I = BSI->LabelMap.begin(), E = BSI->LabelMap.end(); I != E; ++I) {
+ LabelStmt *L = I->second;
+
+ // Verify that we have no forward references left. If so, there was a goto
+ // or address of a label taken, but no definition of it.
+ if (L->getSubStmt() != 0)
+ continue;
+
+ // Emit error.
+ Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
+ Good = false;
+ }
+ if (!Good) {
+ PopFunctionOrBlockScope();
+ return ExprError();
+ }
+
+ // Issue any analysis-based warnings.
+ const sema::AnalysisBasedWarnings::Policy &WP =
+ AnalysisWarnings.getDefaultPolicy();
+ AnalysisWarnings.IssueWarnings(WP, BSI->TheDecl, BlockTy);
+
+ Expr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy,
+ BSI->hasBlockDeclRefExprs);
+ PopFunctionOrBlockScope();
+ return Owned(Result);
+}
+
+Sema::OwningExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
+ ExprArg expr, TypeTy *type,
+ SourceLocation RPLoc) {
+ QualType T = GetTypeFromParser(type);
+ Expr *E = static_cast<Expr*>(expr.get());
+ Expr *OrigExpr = E;
+
+ InitBuiltinVaListType();
+
+ // Get the va_list type
+ QualType VaListType = Context.getBuiltinVaListType();
+ if (VaListType->isArrayType()) {
+ // Deal with implicit array decay; for example, on x86-64,
+ // va_list is an array, but it's supposed to decay to
+ // a pointer for va_arg.
+ VaListType = Context.getArrayDecayedType(VaListType);
+ // Make sure the input expression also decays appropriately.
+ UsualUnaryConversions(E);
+ } else {
+ // Otherwise, the va_list argument must be an l-value because
+ // it is modified by va_arg.
+ if (!E->isTypeDependent() &&
+ CheckForModifiableLvalue(E, BuiltinLoc, *this))
+ return ExprError();
+ }
+
+ if (!E->isTypeDependent() &&
+ !Context.hasSameType(VaListType, E->getType())) {
+ return ExprError(Diag(E->getLocStart(),
+ diag::err_first_argument_to_va_arg_not_of_type_va_list)
+ << OrigExpr->getType() << E->getSourceRange());
+ }
+
+ // FIXME: Check that type is complete/non-abstract
+ // FIXME: Warn if a non-POD type is passed in.
+
+ expr.release();
+ return Owned(new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(),
+ RPLoc));
+}
+
+Sema::OwningExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
+ // The type of __null will be int or long, depending on the size of
+ // pointers on the target.
+ QualType Ty;
+ if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
+ Ty = Context.IntTy;
+ else
+ Ty = Context.LongTy;
+
+ return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
+}
+
+static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
+ Expr *SrcExpr, FixItHint &Hint) {
+ if (!SemaRef.getLangOptions().ObjC1)
+ return;
+
+ const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
+ if (!PT)
+ return;
+
+ // Check if the destination is of type 'id'.
+ if (!PT->isObjCIdType()) {
+ // Check if the destination is the 'NSString' interface.
+ const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
+ if (!ID || !ID->getIdentifier()->isStr("NSString"))
+ return;
+ }
+
+ // Strip off any parens and casts.
+ StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr->IgnoreParenCasts());
+ if (!SL || SL->isWide())
+ return;
+
+ Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
+}
+
+bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
+ SourceLocation Loc,
+ QualType DstType, QualType SrcType,
+ Expr *SrcExpr, AssignmentAction Action,
+ bool *Complained) {
+ if (Complained)
+ *Complained = false;
+
+ // Decode the result (notice that AST's are still created for extensions).
+ bool isInvalid = false;
+ unsigned DiagKind;
+ FixItHint Hint;
+
+ switch (ConvTy) {
+ default: assert(0 && "Unknown conversion type");
+ case Compatible: return false;
+ case PointerToInt:
+ DiagKind = diag::ext_typecheck_convert_pointer_int;
+ break;
+ case IntToPointer:
+ DiagKind = diag::ext_typecheck_convert_int_pointer;
+ break;
+ case IncompatiblePointer:
+ MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
+ DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
+ break;
+ case IncompatiblePointerSign:
+ DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
+ break;
+ case FunctionVoidPointer:
+ DiagKind = diag::ext_typecheck_convert_pointer_void_func;
+ break;
+ case CompatiblePointerDiscardsQualifiers:
+ // If the qualifiers lost were because we were applying the
+ // (deprecated) C++ conversion from a string literal to a char*
+ // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
+ // Ideally, this check would be performed in
+ // CheckPointerTypesForAssignment. However, that would require a
+ // bit of refactoring (so that the second argument is an
+ // expression, rather than a type), which should be done as part
+ // of a larger effort to fix CheckPointerTypesForAssignment for
+ // C++ semantics.
+ if (getLangOptions().CPlusPlus &&
+ IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
+ return false;
+ DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
+ break;
+ case IncompatibleNestedPointerQualifiers:
+ DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
+ break;
+ case IntToBlockPointer:
+ DiagKind = diag::err_int_to_block_pointer;
+ break;
+ case IncompatibleBlockPointer:
+ DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
+ break;
+ case IncompatibleObjCQualifiedId:
+ // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
+ // it can give a more specific diagnostic.
+ DiagKind = diag::warn_incompatible_qualified_id;
+ break;
+ case IncompatibleVectors:
+ DiagKind = diag::warn_incompatible_vectors;
+ break;
+ case Incompatible:
+ DiagKind = diag::err_typecheck_convert_incompatible;
+ isInvalid = true;
+ break;
+ }
+
+ QualType FirstType, SecondType;
+ switch (Action) {
+ case AA_Assigning:
+ case AA_Initializing:
+ // The destination type comes first.
+ FirstType = DstType;
+ SecondType = SrcType;
+ break;
+
+ case AA_Returning:
+ case AA_Passing:
+ case AA_Converting:
+ case AA_Sending:
+ case AA_Casting:
+ // The source type comes first.
+ FirstType = SrcType;
+ SecondType = DstType;
+ break;
+ }
+
+ Diag(Loc, DiagKind) << FirstType << SecondType << Action
+ << SrcExpr->getSourceRange() << Hint;
+ if (Complained)
+ *Complained = true;
+ return isInvalid;
+}
+
+bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
+ llvm::APSInt ICEResult;
+ if (E->isIntegerConstantExpr(ICEResult, Context)) {
+ if (Result)
+ *Result = ICEResult;
+ return false;
+ }
+
+ Expr::EvalResult EvalResult;
+
+ if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
+ EvalResult.HasSideEffects) {
+ Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
+
+ if (EvalResult.Diag) {
+ // We only show the note if it's not the usual "invalid subexpression"
+ // or if it's actually in a subexpression.
+ if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
+ E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
+ Diag(EvalResult.DiagLoc, EvalResult.Diag);
+ }
+
+ return true;
+ }
+
+ Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
+ E->getSourceRange();
+
+ if (EvalResult.Diag &&
+ Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
+ Diag(EvalResult.DiagLoc, EvalResult.Diag);
+
+ if (Result)
+ *Result = EvalResult.Val.getInt();
+ return false;
+}
+
+void
+Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
+ ExprEvalContexts.push_back(
+ ExpressionEvaluationContextRecord(NewContext, ExprTemporaries.size()));
+}
+
+void
+Sema::PopExpressionEvaluationContext() {
+ // Pop the current expression evaluation context off the stack.
+ ExpressionEvaluationContextRecord Rec = ExprEvalContexts.back();
+ ExprEvalContexts.pop_back();
+
+ if (Rec.Context == PotentiallyPotentiallyEvaluated) {
+ if (Rec.PotentiallyReferenced) {
+ // Mark any remaining declarations in the current position of the stack
+ // as "referenced". If they were not meant to be referenced, semantic
+ // analysis would have eliminated them (e.g., in ActOnCXXTypeId).
+ for (PotentiallyReferencedDecls::iterator
+ I = Rec.PotentiallyReferenced->begin(),
+ IEnd = Rec.PotentiallyReferenced->end();
+ I != IEnd; ++I)
+ MarkDeclarationReferenced(I->first, I->second);
+ }
+
+ if (Rec.PotentiallyDiagnosed) {
+ // Emit any pending diagnostics.
+ for (PotentiallyEmittedDiagnostics::iterator
+ I = Rec.PotentiallyDiagnosed->begin(),
+ IEnd = Rec.PotentiallyDiagnosed->end();
+ I != IEnd; ++I)
+ Diag(I->first, I->second);
+ }
+ }
+
+ // When are coming out of an unevaluated context, clear out any
+ // temporaries that we may have created as part of the evaluation of
+ // the expression in that context: they aren't relevant because they
+ // will never be constructed.
+ if (Rec.Context == Unevaluated &&
+ ExprTemporaries.size() > Rec.NumTemporaries)
+ ExprTemporaries.erase(ExprTemporaries.begin() + Rec.NumTemporaries,
+ ExprTemporaries.end());
+
+ // Destroy the popped expression evaluation record.
+ Rec.Destroy();
+}
+
+/// \brief Note that the given declaration was referenced in the source code.
+///
+/// This routine should be invoke whenever a given declaration is referenced
+/// in the source code, and where that reference occurred. If this declaration
+/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
+/// C99 6.9p3), then the declaration will be marked as used.
+///
+/// \param Loc the location where the declaration was referenced.
+///
+/// \param D the declaration that has been referenced by the source code.
+void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
+ assert(D && "No declaration?");
+
+ if (D->isUsed())
+ return;
+
+ // Mark a parameter or variable declaration "used", regardless of whether we're in a
+ // template or not. The reason for this is that unevaluated expressions
+ // (e.g. (void)sizeof()) constitute a use for warning purposes (-Wunused-variables and
+ // -Wunused-parameters)
+ if (isa<ParmVarDecl>(D) ||
+ (isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod())) {
+ D->setUsed(true);
+ return;
+ }
+
+ if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D))
+ return;
+
+ // Do not mark anything as "used" within a dependent context; wait for
+ // an instantiation.
+ if (CurContext->isDependentContext())
+ return;
+
+ switch (ExprEvalContexts.back().Context) {
+ case Unevaluated:
+ // We are in an expression that is not potentially evaluated; do nothing.
+ return;
+
+ case PotentiallyEvaluated:
+ // We are in a potentially-evaluated expression, so this declaration is
+ // "used"; handle this below.
+ break;
+
+ case PotentiallyPotentiallyEvaluated:
+ // We are in an expression that may be potentially evaluated; queue this
+ // declaration reference until we know whether the expression is
+ // potentially evaluated.
+ ExprEvalContexts.back().addReferencedDecl(Loc, D);
+ return;
+ }
+
+ // Note that this declaration has been used.
+ if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
+ unsigned TypeQuals;
+ if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) {
+ if (!Constructor->isUsed())
+ DefineImplicitDefaultConstructor(Loc, Constructor);
+ } else if (Constructor->isImplicit() &&
+ Constructor->isCopyConstructor(TypeQuals)) {
+ if (!Constructor->isUsed())
+ DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals);
+ }
+
+ MarkVTableUsed(Loc, Constructor->getParent());
+ } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
+ if (Destructor->isImplicit() && !Destructor->isUsed())
+ DefineImplicitDestructor(Loc, Destructor);
+ if (Destructor->isVirtual())
+ MarkVTableUsed(Loc, Destructor->getParent());
+ } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
+ if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
+ MethodDecl->getOverloadedOperator() == OO_Equal) {
+ if (!MethodDecl->isUsed())
+ DefineImplicitCopyAssignment(Loc, MethodDecl);
+ } else if (MethodDecl->isVirtual())
+ MarkVTableUsed(Loc, MethodDecl->getParent());
+ }
+ if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
+ // Implicit instantiation of function templates and member functions of
+ // class templates.
+ if (Function->isImplicitlyInstantiable()) {
+ bool AlreadyInstantiated = false;
+ if (FunctionTemplateSpecializationInfo *SpecInfo
+ = Function->getTemplateSpecializationInfo()) {
+ if (SpecInfo->getPointOfInstantiation().isInvalid())
+ SpecInfo->setPointOfInstantiation(Loc);
+ else if (SpecInfo->getTemplateSpecializationKind()
+ == TSK_ImplicitInstantiation)
+ AlreadyInstantiated = true;
+ } else if (MemberSpecializationInfo *MSInfo
+ = Function->getMemberSpecializationInfo()) {
+ if (MSInfo->getPointOfInstantiation().isInvalid())
+ MSInfo->setPointOfInstantiation(Loc);
+ else if (MSInfo->getTemplateSpecializationKind()
+ == TSK_ImplicitInstantiation)
+ AlreadyInstantiated = true;
+ }
+
+ if (!AlreadyInstantiated) {
+ if (isa<CXXRecordDecl>(Function->getDeclContext()) &&
+ cast<CXXRecordDecl>(Function->getDeclContext())->isLocalClass())
+ PendingLocalImplicitInstantiations.push_back(std::make_pair(Function,
+ Loc));
+ else
+ PendingImplicitInstantiations.push_back(std::make_pair(Function,
+ Loc));
+ }
+ }
+
+ // FIXME: keep track of references to static functions
+ Function->setUsed(true);
+
+ return;
+ }
+
+ if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
+ // Implicit instantiation of static data members of class templates.
+ if (Var->isStaticDataMember() &&
+ Var->getInstantiatedFromStaticDataMember()) {
+ MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
+ assert(MSInfo && "Missing member specialization information?");
+ if (MSInfo->getPointOfInstantiation().isInvalid() &&
+ MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) {
+ MSInfo->setPointOfInstantiation(Loc);
+ PendingImplicitInstantiations.push_back(std::make_pair(Var, Loc));
+ }
+ }
+
+ // FIXME: keep track of references to static data?
+
+ D->setUsed(true);
+ return;
+ }
+}
+
+namespace {
+ // Mark all of the declarations referenced
+ // FIXME: Not fully implemented yet! We need to have a better understanding
+ // of when we're entering
+ class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
+ Sema &S;
+ SourceLocation Loc;
+
+ public:
+ typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
+
+ MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
+
+ bool VisitTemplateArgument(const TemplateArgument &Arg);
+ bool VisitRecordType(RecordType *T);
+ };
+}
+
+bool MarkReferencedDecls::VisitTemplateArgument(const TemplateArgument &Arg) {
+ if (Arg.getKind() == TemplateArgument::Declaration) {
+ S.MarkDeclarationReferenced(Loc, Arg.getAsDecl());
+ }
+
+ return Inherited::VisitTemplateArgument(Arg);
+}
+
+bool MarkReferencedDecls::VisitRecordType(RecordType *T) {
+ if (ClassTemplateSpecializationDecl *Spec
+ = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
+ const TemplateArgumentList &Args = Spec->getTemplateArgs();
+ return VisitTemplateArguments(Args.getFlatArgumentList(),
+ Args.flat_size());
+ }
+
+ return false;
+}
+
+void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
+ MarkReferencedDecls Marker(*this, Loc);
+ Marker.Visit(Context.getCanonicalType(T));
+}
+
+/// \brief Emit a diagnostic that describes an effect on the run-time behavior
+/// of the program being compiled.
+///
+/// This routine emits the given diagnostic when the code currently being
+/// type-checked is "potentially evaluated", meaning that there is a
+/// possibility that the code will actually be executable. Code in sizeof()
+/// expressions, code used only during overload resolution, etc., are not
+/// potentially evaluated. This routine will suppress such diagnostics or,
+/// in the absolutely nutty case of potentially potentially evaluated
+/// expressions (C++ typeid), queue the diagnostic to potentially emit it
+/// later.
+///
+/// This routine should be used for all diagnostics that describe the run-time
+/// behavior of a program, such as passing a non-POD value through an ellipsis.
+/// Failure to do so will likely result in spurious diagnostics or failures
+/// during overload resolution or within sizeof/alignof/typeof/typeid.
+bool Sema::DiagRuntimeBehavior(SourceLocation Loc,
+ const PartialDiagnostic &PD) {
+ switch (ExprEvalContexts.back().Context ) {
+ case Unevaluated:
+ // The argument will never be evaluated, so don't complain.
+ break;
+
+ case PotentiallyEvaluated:
+ Diag(Loc, PD);
+ return true;
+
+ case PotentiallyPotentiallyEvaluated:
+ ExprEvalContexts.back().addDiagnostic(Loc, PD);
+ break;
+ }
+
+ return false;
+}
+
+bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
+ CallExpr *CE, FunctionDecl *FD) {
+ if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
+ return false;
+
+ PartialDiagnostic Note =
+ FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
+ << FD->getDeclName() : PDiag();
+ SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
+
+ if (RequireCompleteType(Loc, ReturnType,
+ FD ?
+ PDiag(diag::err_call_function_incomplete_return)
+ << CE->getSourceRange() << FD->getDeclName() :
+ PDiag(diag::err_call_incomplete_return)
+ << CE->getSourceRange(),
+ std::make_pair(NoteLoc, Note)))
+ return true;
+
+ return false;
+}
+
+// Diagnose the common s/=/==/ typo. Note that adding parentheses
+// will prevent this condition from triggering, which is what we want.
+void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
+ SourceLocation Loc;
+
+ unsigned diagnostic = diag::warn_condition_is_assignment;
+
+ if (isa<BinaryOperator>(E)) {
+ BinaryOperator *Op = cast<BinaryOperator>(E);
+ if (Op->getOpcode() != BinaryOperator::Assign)
+ return;
+
+ // Greylist some idioms by putting them into a warning subcategory.
+ if (ObjCMessageExpr *ME
+ = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
+ Selector Sel = ME->getSelector();
+
+ // self = [<foo> init...]
+ if (isSelfExpr(Op->getLHS())
+ && Sel.getIdentifierInfoForSlot(0)->getName().startswith("init"))
+ diagnostic = diag::warn_condition_is_idiomatic_assignment;
+
+ // <foo> = [<bar> nextObject]
+ else if (Sel.isUnarySelector() &&
+ Sel.getIdentifierInfoForSlot(0)->getName() == "nextObject")
+ diagnostic = diag::warn_condition_is_idiomatic_assignment;
+ }
+
+ Loc = Op->getOperatorLoc();
+ } else if (isa<CXXOperatorCallExpr>(E)) {
+ CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(E);
+ if (Op->getOperator() != OO_Equal)
+ return;
+
+ Loc = Op->getOperatorLoc();
+ } else {
+ // Not an assignment.
+ return;
+ }
+
+ SourceLocation Open = E->getSourceRange().getBegin();
+ SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
+
+ Diag(Loc, diagnostic) << E->getSourceRange();
+ Diag(Loc, diag::note_condition_assign_to_comparison)
+ << FixItHint::CreateReplacement(Loc, "==");
+ Diag(Loc, diag::note_condition_assign_silence)
+ << FixItHint::CreateInsertion(Open, "(")
+ << FixItHint::CreateInsertion(Close, ")");
+}
+
+bool Sema::CheckBooleanCondition(Expr *&E, SourceLocation Loc) {
+ DiagnoseAssignmentAsCondition(E);
+
+ if (!E->isTypeDependent()) {
+ DefaultFunctionArrayLvalueConversion(E);
+
+ QualType T = E->getType();
+
+ if (getLangOptions().CPlusPlus) {
+ if (CheckCXXBooleanCondition(E)) // C++ 6.4p4
+ return true;
+ } else if (!T->isScalarType()) { // C99 6.8.4.1p1
+ Diag(Loc, diag::err_typecheck_statement_requires_scalar)
+ << T << E->getSourceRange();
+ return true;
+ }
+ }
+
+ return false;
+}
+
+Sema::OwningExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
+ ExprArg SubExpr) {
+ Expr *Sub = SubExpr.takeAs<Expr>();
+ if (!Sub)
+ return ExprError();
+
+ if (CheckBooleanCondition(Sub, Loc)) {
+ Sub->Destroy(Context);
+ return ExprError();
+ }
+
+ return Owned(Sub);
+}
OpenPOWER on IntegriCloud