diff options
Diffstat (limited to 'contrib/llvm/tools/clang/lib/Sema/SemaExpr.cpp')
-rw-r--r-- | contrib/llvm/tools/clang/lib/Sema/SemaExpr.cpp | 7754 |
1 files changed, 7754 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaExpr.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaExpr.cpp new file mode 100644 index 0000000..f745352 --- /dev/null +++ b/contrib/llvm/tools/clang/lib/Sema/SemaExpr.cpp @@ -0,0 +1,7754 @@ +//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements semantic analysis for expressions. +// +//===----------------------------------------------------------------------===// + +#include "Sema.h" +#include "SemaInit.h" +#include "Lookup.h" +#include "AnalysisBasedWarnings.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/CXXInheritance.h" +#include "clang/AST/DeclObjC.h" +#include "clang/AST/DeclTemplate.h" +#include "clang/AST/Expr.h" +#include "clang/AST/ExprCXX.h" +#include "clang/AST/ExprObjC.h" +#include "clang/AST/RecursiveASTVisitor.h" +#include "clang/AST/TypeLoc.h" +#include "clang/Basic/PartialDiagnostic.h" +#include "clang/Basic/SourceManager.h" +#include "clang/Basic/TargetInfo.h" +#include "clang/Lex/LiteralSupport.h" +#include "clang/Lex/Preprocessor.h" +#include "clang/Parse/DeclSpec.h" +#include "clang/Parse/Designator.h" +#include "clang/Parse/Scope.h" +#include "clang/Parse/Template.h" +using namespace clang; + + +/// \brief Determine whether the use of this declaration is valid, and +/// emit any corresponding diagnostics. +/// +/// This routine diagnoses various problems with referencing +/// declarations that can occur when using a declaration. For example, +/// it might warn if a deprecated or unavailable declaration is being +/// used, or produce an error (and return true) if a C++0x deleted +/// function is being used. +/// +/// If IgnoreDeprecated is set to true, this should not want about deprecated +/// decls. +/// +/// \returns true if there was an error (this declaration cannot be +/// referenced), false otherwise. +/// +bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) { + // See if the decl is deprecated. + if (D->getAttr<DeprecatedAttr>()) { + EmitDeprecationWarning(D, Loc); + } + + // See if the decl is unavailable + if (D->getAttr<UnavailableAttr>()) { + Diag(Loc, diag::warn_unavailable) << D->getDeclName(); + Diag(D->getLocation(), diag::note_unavailable_here) << 0; + } + + // See if this is a deleted function. + if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { + if (FD->isDeleted()) { + Diag(Loc, diag::err_deleted_function_use); + Diag(D->getLocation(), diag::note_unavailable_here) << true; + return true; + } + } + + return false; +} + +/// DiagnoseSentinelCalls - This routine checks on method dispatch calls +/// (and other functions in future), which have been declared with sentinel +/// attribute. It warns if call does not have the sentinel argument. +/// +void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc, + Expr **Args, unsigned NumArgs) { + const SentinelAttr *attr = D->getAttr<SentinelAttr>(); + if (!attr) + return; + + // FIXME: In C++0x, if any of the arguments are parameter pack + // expansions, we can't check for the sentinel now. + int sentinelPos = attr->getSentinel(); + int nullPos = attr->getNullPos(); + + // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common + // base class. Then we won't be needing two versions of the same code. + unsigned int i = 0; + bool warnNotEnoughArgs = false; + int isMethod = 0; + if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) { + // skip over named parameters. + ObjCMethodDecl::param_iterator P, E = MD->param_end(); + for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) { + if (nullPos) + --nullPos; + else + ++i; + } + warnNotEnoughArgs = (P != E || i >= NumArgs); + isMethod = 1; + } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { + // skip over named parameters. + ObjCMethodDecl::param_iterator P, E = FD->param_end(); + for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) { + if (nullPos) + --nullPos; + else + ++i; + } + warnNotEnoughArgs = (P != E || i >= NumArgs); + } else if (VarDecl *V = dyn_cast<VarDecl>(D)) { + // block or function pointer call. + QualType Ty = V->getType(); + if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) { + const FunctionType *FT = Ty->isFunctionPointerType() + ? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>() + : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>(); + if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) { + unsigned NumArgsInProto = Proto->getNumArgs(); + unsigned k; + for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) { + if (nullPos) + --nullPos; + else + ++i; + } + warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs); + } + if (Ty->isBlockPointerType()) + isMethod = 2; + } else + return; + } else + return; + + if (warnNotEnoughArgs) { + Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName(); + Diag(D->getLocation(), diag::note_sentinel_here) << isMethod; + return; + } + int sentinel = i; + while (sentinelPos > 0 && i < NumArgs-1) { + --sentinelPos; + ++i; + } + if (sentinelPos > 0) { + Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName(); + Diag(D->getLocation(), diag::note_sentinel_here) << isMethod; + return; + } + while (i < NumArgs-1) { + ++i; + ++sentinel; + } + Expr *sentinelExpr = Args[sentinel]; + if (!sentinelExpr) return; + if (sentinelExpr->isTypeDependent()) return; + if (sentinelExpr->isValueDependent()) return; + if (sentinelExpr->getType()->isPointerType() && + sentinelExpr->IgnoreParenCasts()->isNullPointerConstant(Context, + Expr::NPC_ValueDependentIsNull)) + return; + + // Unfortunately, __null has type 'int'. + if (isa<GNUNullExpr>(sentinelExpr)) return; + + Diag(Loc, diag::warn_missing_sentinel) << isMethod; + Diag(D->getLocation(), diag::note_sentinel_here) << isMethod; +} + +SourceRange Sema::getExprRange(ExprTy *E) const { + Expr *Ex = (Expr *)E; + return Ex? Ex->getSourceRange() : SourceRange(); +} + +//===----------------------------------------------------------------------===// +// Standard Promotions and Conversions +//===----------------------------------------------------------------------===// + +/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4). +void Sema::DefaultFunctionArrayConversion(Expr *&E) { + QualType Ty = E->getType(); + assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type"); + + if (Ty->isFunctionType()) + ImpCastExprToType(E, Context.getPointerType(Ty), + CastExpr::CK_FunctionToPointerDecay); + else if (Ty->isArrayType()) { + // In C90 mode, arrays only promote to pointers if the array expression is + // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has + // type 'array of type' is converted to an expression that has type 'pointer + // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression + // that has type 'array of type' ...". The relevant change is "an lvalue" + // (C90) to "an expression" (C99). + // + // C++ 4.2p1: + // An lvalue or rvalue of type "array of N T" or "array of unknown bound of + // T" can be converted to an rvalue of type "pointer to T". + // + if (getLangOptions().C99 || getLangOptions().CPlusPlus || + E->isLvalue(Context) == Expr::LV_Valid) + ImpCastExprToType(E, Context.getArrayDecayedType(Ty), + CastExpr::CK_ArrayToPointerDecay); + } +} + +void Sema::DefaultFunctionArrayLvalueConversion(Expr *&E) { + DefaultFunctionArrayConversion(E); + + QualType Ty = E->getType(); + assert(!Ty.isNull() && "DefaultFunctionArrayLvalueConversion - missing type"); + if (!Ty->isDependentType() && Ty.hasQualifiers() && + (!getLangOptions().CPlusPlus || !Ty->isRecordType()) && + E->isLvalue(Context) == Expr::LV_Valid) { + // C++ [conv.lval]p1: + // [...] If T is a non-class type, the type of the rvalue is the + // cv-unqualified version of T. Otherwise, the type of the + // rvalue is T + // + // C99 6.3.2.1p2: + // If the lvalue has qualified type, the value has the unqualified + // version of the type of the lvalue; otherwise, the value has the + // type of the lvalue. + ImpCastExprToType(E, Ty.getUnqualifiedType(), CastExpr::CK_NoOp); + } +} + + +/// UsualUnaryConversions - Performs various conversions that are common to most +/// operators (C99 6.3). The conversions of array and function types are +/// sometimes surpressed. For example, the array->pointer conversion doesn't +/// apply if the array is an argument to the sizeof or address (&) operators. +/// In these instances, this routine should *not* be called. +Expr *Sema::UsualUnaryConversions(Expr *&Expr) { + QualType Ty = Expr->getType(); + assert(!Ty.isNull() && "UsualUnaryConversions - missing type"); + + // C99 6.3.1.1p2: + // + // The following may be used in an expression wherever an int or + // unsigned int may be used: + // - an object or expression with an integer type whose integer + // conversion rank is less than or equal to the rank of int + // and unsigned int. + // - A bit-field of type _Bool, int, signed int, or unsigned int. + // + // If an int can represent all values of the original type, the + // value is converted to an int; otherwise, it is converted to an + // unsigned int. These are called the integer promotions. All + // other types are unchanged by the integer promotions. + QualType PTy = Context.isPromotableBitField(Expr); + if (!PTy.isNull()) { + ImpCastExprToType(Expr, PTy, CastExpr::CK_IntegralCast); + return Expr; + } + if (Ty->isPromotableIntegerType()) { + QualType PT = Context.getPromotedIntegerType(Ty); + ImpCastExprToType(Expr, PT, CastExpr::CK_IntegralCast); + return Expr; + } + + DefaultFunctionArrayLvalueConversion(Expr); + return Expr; +} + +/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that +/// do not have a prototype. Arguments that have type float are promoted to +/// double. All other argument types are converted by UsualUnaryConversions(). +void Sema::DefaultArgumentPromotion(Expr *&Expr) { + QualType Ty = Expr->getType(); + assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type"); + + // If this is a 'float' (CVR qualified or typedef) promote to double. + if (Ty->isSpecificBuiltinType(BuiltinType::Float)) + return ImpCastExprToType(Expr, Context.DoubleTy, + CastExpr::CK_FloatingCast); + + UsualUnaryConversions(Expr); +} + +/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but +/// will warn if the resulting type is not a POD type, and rejects ObjC +/// interfaces passed by value. This returns true if the argument type is +/// completely illegal. +bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT, + FunctionDecl *FDecl) { + DefaultArgumentPromotion(Expr); + + // __builtin_va_start takes the second argument as a "varargs" argument, but + // it doesn't actually do anything with it. It doesn't need to be non-pod + // etc. + if (FDecl && FDecl->getBuiltinID() == Builtin::BI__builtin_va_start) + return false; + + if (Expr->getType()->isObjCObjectType() && + DiagRuntimeBehavior(Expr->getLocStart(), + PDiag(diag::err_cannot_pass_objc_interface_to_vararg) + << Expr->getType() << CT)) + return true; + + if (!Expr->getType()->isPODType() && + DiagRuntimeBehavior(Expr->getLocStart(), + PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg) + << Expr->getType() << CT)) + return true; + + return false; +} + + +/// UsualArithmeticConversions - Performs various conversions that are common to +/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this +/// routine returns the first non-arithmetic type found. The client is +/// responsible for emitting appropriate error diagnostics. +/// FIXME: verify the conversion rules for "complex int" are consistent with +/// GCC. +QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr, + bool isCompAssign) { + if (!isCompAssign) + UsualUnaryConversions(lhsExpr); + + UsualUnaryConversions(rhsExpr); + + // For conversion purposes, we ignore any qualifiers. + // For example, "const float" and "float" are equivalent. + QualType lhs = + Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType(); + QualType rhs = + Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType(); + + // If both types are identical, no conversion is needed. + if (lhs == rhs) + return lhs; + + // If either side is a non-arithmetic type (e.g. a pointer), we are done. + // The caller can deal with this (e.g. pointer + int). + if (!lhs->isArithmeticType() || !rhs->isArithmeticType()) + return lhs; + + // Perform bitfield promotions. + QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr); + if (!LHSBitfieldPromoteTy.isNull()) + lhs = LHSBitfieldPromoteTy; + QualType RHSBitfieldPromoteTy = Context.isPromotableBitField(rhsExpr); + if (!RHSBitfieldPromoteTy.isNull()) + rhs = RHSBitfieldPromoteTy; + + QualType destType = Context.UsualArithmeticConversionsType(lhs, rhs); + if (!isCompAssign) + ImpCastExprToType(lhsExpr, destType, CastExpr::CK_Unknown); + ImpCastExprToType(rhsExpr, destType, CastExpr::CK_Unknown); + return destType; +} + +//===----------------------------------------------------------------------===// +// Semantic Analysis for various Expression Types +//===----------------------------------------------------------------------===// + + +/// ActOnStringLiteral - The specified tokens were lexed as pasted string +/// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string +/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from +/// multiple tokens. However, the common case is that StringToks points to one +/// string. +/// +Action::OwningExprResult +Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) { + assert(NumStringToks && "Must have at least one string!"); + + StringLiteralParser Literal(StringToks, NumStringToks, PP); + if (Literal.hadError) + return ExprError(); + + llvm::SmallVector<SourceLocation, 4> StringTokLocs; + for (unsigned i = 0; i != NumStringToks; ++i) + StringTokLocs.push_back(StringToks[i].getLocation()); + + QualType StrTy = Context.CharTy; + if (Literal.AnyWide) StrTy = Context.getWCharType(); + if (Literal.Pascal) StrTy = Context.UnsignedCharTy; + + // A C++ string literal has a const-qualified element type (C++ 2.13.4p1). + if (getLangOptions().CPlusPlus || getLangOptions().ConstStrings ) + StrTy.addConst(); + + // Get an array type for the string, according to C99 6.4.5. This includes + // the nul terminator character as well as the string length for pascal + // strings. + StrTy = Context.getConstantArrayType(StrTy, + llvm::APInt(32, Literal.GetNumStringChars()+1), + ArrayType::Normal, 0); + + // Pass &StringTokLocs[0], StringTokLocs.size() to factory! + return Owned(StringLiteral::Create(Context, Literal.GetString(), + Literal.GetStringLength(), + Literal.AnyWide, StrTy, + &StringTokLocs[0], + StringTokLocs.size())); +} + +/// ShouldSnapshotBlockValueReference - Return true if a reference inside of +/// CurBlock to VD should cause it to be snapshotted (as we do for auto +/// variables defined outside the block) or false if this is not needed (e.g. +/// for values inside the block or for globals). +/// +/// This also keeps the 'hasBlockDeclRefExprs' in the BlockScopeInfo records +/// up-to-date. +/// +static bool ShouldSnapshotBlockValueReference(Sema &S, BlockScopeInfo *CurBlock, + ValueDecl *VD) { + // If the value is defined inside the block, we couldn't snapshot it even if + // we wanted to. + if (CurBlock->TheDecl == VD->getDeclContext()) + return false; + + // If this is an enum constant or function, it is constant, don't snapshot. + if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD)) + return false; + + // If this is a reference to an extern, static, or global variable, no need to + // snapshot it. + // FIXME: What about 'const' variables in C++? + if (const VarDecl *Var = dyn_cast<VarDecl>(VD)) + if (!Var->hasLocalStorage()) + return false; + + // Blocks that have these can't be constant. + CurBlock->hasBlockDeclRefExprs = true; + + // If we have nested blocks, the decl may be declared in an outer block (in + // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may + // be defined outside all of the current blocks (in which case the blocks do + // all get the bit). Walk the nesting chain. + for (unsigned I = S.FunctionScopes.size() - 1; I; --I) { + BlockScopeInfo *NextBlock = dyn_cast<BlockScopeInfo>(S.FunctionScopes[I]); + + if (!NextBlock) + continue; + + // If we found the defining block for the variable, don't mark the block as + // having a reference outside it. + if (NextBlock->TheDecl == VD->getDeclContext()) + break; + + // Otherwise, the DeclRef from the inner block causes the outer one to need + // a snapshot as well. + NextBlock->hasBlockDeclRefExprs = true; + } + + return true; +} + + + +/// BuildDeclRefExpr - Build a DeclRefExpr. +Sema::OwningExprResult +Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, SourceLocation Loc, + const CXXScopeSpec *SS) { + if (Context.getCanonicalType(Ty) == Context.UndeducedAutoTy) { + Diag(Loc, + diag::err_auto_variable_cannot_appear_in_own_initializer) + << D->getDeclName(); + return ExprError(); + } + + if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { + if (isa<NonTypeTemplateParmDecl>(VD)) { + // Non-type template parameters can be referenced anywhere they are + // visible. + } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) { + if (const FunctionDecl *FD = MD->getParent()->isLocalClass()) { + if (VD->hasLocalStorage() && VD->getDeclContext() != CurContext) { + Diag(Loc, diag::err_reference_to_local_var_in_enclosing_function) + << D->getIdentifier() << FD->getDeclName(); + Diag(D->getLocation(), diag::note_local_variable_declared_here) + << D->getIdentifier(); + return ExprError(); + } + } + } + } + + MarkDeclarationReferenced(Loc, D); + + return Owned(DeclRefExpr::Create(Context, + SS? (NestedNameSpecifier *)SS->getScopeRep() : 0, + SS? SS->getRange() : SourceRange(), + D, Loc, Ty)); +} + +/// \brief Given a field that represents a member of an anonymous +/// struct/union, build the path from that field's context to the +/// actual member. +/// +/// Construct the sequence of field member references we'll have to +/// perform to get to the field in the anonymous union/struct. The +/// list of members is built from the field outward, so traverse it +/// backwards to go from an object in the current context to the field +/// we found. +/// +/// \returns The variable from which the field access should begin, +/// for an anonymous struct/union that is not a member of another +/// class. Otherwise, returns NULL. +VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field, + llvm::SmallVectorImpl<FieldDecl *> &Path) { + assert(Field->getDeclContext()->isRecord() && + cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion() + && "Field must be stored inside an anonymous struct or union"); + + Path.push_back(Field); + VarDecl *BaseObject = 0; + DeclContext *Ctx = Field->getDeclContext(); + do { + RecordDecl *Record = cast<RecordDecl>(Ctx); + ValueDecl *AnonObject = Record->getAnonymousStructOrUnionObject(); + if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject)) + Path.push_back(AnonField); + else { + BaseObject = cast<VarDecl>(AnonObject); + break; + } + Ctx = Ctx->getParent(); + } while (Ctx->isRecord() && + cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion()); + + return BaseObject; +} + +Sema::OwningExprResult +Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc, + FieldDecl *Field, + Expr *BaseObjectExpr, + SourceLocation OpLoc) { + llvm::SmallVector<FieldDecl *, 4> AnonFields; + VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field, + AnonFields); + + // Build the expression that refers to the base object, from + // which we will build a sequence of member references to each + // of the anonymous union objects and, eventually, the field we + // found via name lookup. + bool BaseObjectIsPointer = false; + Qualifiers BaseQuals; + if (BaseObject) { + // BaseObject is an anonymous struct/union variable (and is, + // therefore, not part of another non-anonymous record). + if (BaseObjectExpr) BaseObjectExpr->Destroy(Context); + MarkDeclarationReferenced(Loc, BaseObject); + BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(), + SourceLocation()); + BaseQuals + = Context.getCanonicalType(BaseObject->getType()).getQualifiers(); + } else if (BaseObjectExpr) { + // The caller provided the base object expression. Determine + // whether its a pointer and whether it adds any qualifiers to the + // anonymous struct/union fields we're looking into. + QualType ObjectType = BaseObjectExpr->getType(); + if (const PointerType *ObjectPtr = ObjectType->getAs<PointerType>()) { + BaseObjectIsPointer = true; + ObjectType = ObjectPtr->getPointeeType(); + } + BaseQuals + = Context.getCanonicalType(ObjectType).getQualifiers(); + } else { + // We've found a member of an anonymous struct/union that is + // inside a non-anonymous struct/union, so in a well-formed + // program our base object expression is "this". + DeclContext *DC = getFunctionLevelDeclContext(); + if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) { + if (!MD->isStatic()) { + QualType AnonFieldType + = Context.getTagDeclType( + cast<RecordDecl>(AnonFields.back()->getDeclContext())); + QualType ThisType = Context.getTagDeclType(MD->getParent()); + if ((Context.getCanonicalType(AnonFieldType) + == Context.getCanonicalType(ThisType)) || + IsDerivedFrom(ThisType, AnonFieldType)) { + // Our base object expression is "this". + BaseObjectExpr = new (Context) CXXThisExpr(Loc, + MD->getThisType(Context), + /*isImplicit=*/true); + BaseObjectIsPointer = true; + } + } else { + return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method) + << Field->getDeclName()); + } + BaseQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers()); + } + + if (!BaseObjectExpr) + return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use) + << Field->getDeclName()); + } + + // Build the implicit member references to the field of the + // anonymous struct/union. + Expr *Result = BaseObjectExpr; + Qualifiers ResultQuals = BaseQuals; + for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator + FI = AnonFields.rbegin(), FIEnd = AnonFields.rend(); + FI != FIEnd; ++FI) { + QualType MemberType = (*FI)->getType(); + Qualifiers MemberTypeQuals = + Context.getCanonicalType(MemberType).getQualifiers(); + + // CVR attributes from the base are picked up by members, + // except that 'mutable' members don't pick up 'const'. + if ((*FI)->isMutable()) + ResultQuals.removeConst(); + + // GC attributes are never picked up by members. + ResultQuals.removeObjCGCAttr(); + + // TR 18037 does not allow fields to be declared with address spaces. + assert(!MemberTypeQuals.hasAddressSpace()); + + Qualifiers NewQuals = ResultQuals + MemberTypeQuals; + if (NewQuals != MemberTypeQuals) + MemberType = Context.getQualifiedType(MemberType, NewQuals); + + MarkDeclarationReferenced(Loc, *FI); + PerformObjectMemberConversion(Result, /*FIXME:Qualifier=*/0, *FI, *FI); + // FIXME: Might this end up being a qualified name? + Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI, + OpLoc, MemberType); + BaseObjectIsPointer = false; + ResultQuals = NewQuals; + } + + return Owned(Result); +} + +/// Decomposes the given name into a DeclarationName, its location, and +/// possibly a list of template arguments. +/// +/// If this produces template arguments, it is permitted to call +/// DecomposeTemplateName. +/// +/// This actually loses a lot of source location information for +/// non-standard name kinds; we should consider preserving that in +/// some way. +static void DecomposeUnqualifiedId(Sema &SemaRef, + const UnqualifiedId &Id, + TemplateArgumentListInfo &Buffer, + DeclarationName &Name, + SourceLocation &NameLoc, + const TemplateArgumentListInfo *&TemplateArgs) { + if (Id.getKind() == UnqualifiedId::IK_TemplateId) { + Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc); + Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc); + + ASTTemplateArgsPtr TemplateArgsPtr(SemaRef, + Id.TemplateId->getTemplateArgs(), + Id.TemplateId->NumArgs); + SemaRef.translateTemplateArguments(TemplateArgsPtr, Buffer); + TemplateArgsPtr.release(); + + TemplateName TName = + Sema::TemplateTy::make(Id.TemplateId->Template).getAsVal<TemplateName>(); + + Name = SemaRef.Context.getNameForTemplate(TName); + NameLoc = Id.TemplateId->TemplateNameLoc; + TemplateArgs = &Buffer; + } else { + Name = SemaRef.GetNameFromUnqualifiedId(Id); + NameLoc = Id.StartLocation; + TemplateArgs = 0; + } +} + +/// Decompose the given template name into a list of lookup results. +/// +/// The unqualified ID must name a non-dependent template, which can +/// be more easily tested by checking whether DecomposeUnqualifiedId +/// found template arguments. +static void DecomposeTemplateName(LookupResult &R, const UnqualifiedId &Id) { + assert(Id.getKind() == UnqualifiedId::IK_TemplateId); + TemplateName TName = + Sema::TemplateTy::make(Id.TemplateId->Template).getAsVal<TemplateName>(); + + if (TemplateDecl *TD = TName.getAsTemplateDecl()) + R.addDecl(TD); + else if (OverloadedTemplateStorage *OT = TName.getAsOverloadedTemplate()) + for (OverloadedTemplateStorage::iterator I = OT->begin(), E = OT->end(); + I != E; ++I) + R.addDecl(*I); + + R.resolveKind(); +} + +/// Determines whether the given record is "fully-formed" at the given +/// location, i.e. whether a qualified lookup into it is assured of +/// getting consistent results already. +static bool IsFullyFormedScope(Sema &SemaRef, CXXRecordDecl *Record) { + if (!Record->hasDefinition()) + return false; + + for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(), + E = Record->bases_end(); I != E; ++I) { + CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType()); + CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>(); + if (!BaseRT) return false; + + CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl()); + if (!BaseRecord->hasDefinition() || + !IsFullyFormedScope(SemaRef, BaseRecord)) + return false; + } + + return true; +} + +/// Determines whether we can lookup this id-expression now or whether +/// we have to wait until template instantiation is complete. +static bool IsDependentIdExpression(Sema &SemaRef, const CXXScopeSpec &SS) { + DeclContext *DC = SemaRef.computeDeclContext(SS, false); + + // If the qualifier scope isn't computable, it's definitely dependent. + if (!DC) return true; + + // If the qualifier scope doesn't name a record, we can always look into it. + if (!isa<CXXRecordDecl>(DC)) return false; + + // We can't look into record types unless they're fully-formed. + if (!IsFullyFormedScope(SemaRef, cast<CXXRecordDecl>(DC))) return true; + + return false; +} + +/// Determines if the given class is provably not derived from all of +/// the prospective base classes. +static bool IsProvablyNotDerivedFrom(Sema &SemaRef, + CXXRecordDecl *Record, + const llvm::SmallPtrSet<CXXRecordDecl*, 4> &Bases) { + if (Bases.count(Record->getCanonicalDecl())) + return false; + + RecordDecl *RD = Record->getDefinition(); + if (!RD) return false; + Record = cast<CXXRecordDecl>(RD); + + for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(), + E = Record->bases_end(); I != E; ++I) { + CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType()); + CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>(); + if (!BaseRT) return false; + + CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl()); + if (!IsProvablyNotDerivedFrom(SemaRef, BaseRecord, Bases)) + return false; + } + + return true; +} + +enum IMAKind { + /// The reference is definitely not an instance member access. + IMA_Static, + + /// The reference may be an implicit instance member access. + IMA_Mixed, + + /// The reference may be to an instance member, but it is invalid if + /// so, because the context is not an instance method. + IMA_Mixed_StaticContext, + + /// The reference may be to an instance member, but it is invalid if + /// so, because the context is from an unrelated class. + IMA_Mixed_Unrelated, + + /// The reference is definitely an implicit instance member access. + IMA_Instance, + + /// The reference may be to an unresolved using declaration. + IMA_Unresolved, + + /// The reference may be to an unresolved using declaration and the + /// context is not an instance method. + IMA_Unresolved_StaticContext, + + /// The reference is to a member of an anonymous structure in a + /// non-class context. + IMA_AnonymousMember, + + /// All possible referrents are instance members and the current + /// context is not an instance method. + IMA_Error_StaticContext, + + /// All possible referrents are instance members of an unrelated + /// class. + IMA_Error_Unrelated +}; + +/// The given lookup names class member(s) and is not being used for +/// an address-of-member expression. Classify the type of access +/// according to whether it's possible that this reference names an +/// instance member. This is best-effort; it is okay to +/// conservatively answer "yes", in which case some errors will simply +/// not be caught until template-instantiation. +static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef, + const LookupResult &R) { + assert(!R.empty() && (*R.begin())->isCXXClassMember()); + + DeclContext *DC = SemaRef.getFunctionLevelDeclContext(); + bool isStaticContext = + (!isa<CXXMethodDecl>(DC) || + cast<CXXMethodDecl>(DC)->isStatic()); + + if (R.isUnresolvableResult()) + return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved; + + // Collect all the declaring classes of instance members we find. + bool hasNonInstance = false; + llvm::SmallPtrSet<CXXRecordDecl*, 4> Classes; + for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { + NamedDecl *D = *I; + if (D->isCXXInstanceMember()) { + CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext()); + + // If this is a member of an anonymous record, move out to the + // innermost non-anonymous struct or union. If there isn't one, + // that's a special case. + while (R->isAnonymousStructOrUnion()) { + R = dyn_cast<CXXRecordDecl>(R->getParent()); + if (!R) return IMA_AnonymousMember; + } + Classes.insert(R->getCanonicalDecl()); + } + else + hasNonInstance = true; + } + + // If we didn't find any instance members, it can't be an implicit + // member reference. + if (Classes.empty()) + return IMA_Static; + + // If the current context is not an instance method, it can't be + // an implicit member reference. + if (isStaticContext) + return (hasNonInstance ? IMA_Mixed_StaticContext : IMA_Error_StaticContext); + + // If we can prove that the current context is unrelated to all the + // declaring classes, it can't be an implicit member reference (in + // which case it's an error if any of those members are selected). + if (IsProvablyNotDerivedFrom(SemaRef, + cast<CXXMethodDecl>(DC)->getParent(), + Classes)) + return (hasNonInstance ? IMA_Mixed_Unrelated : IMA_Error_Unrelated); + + return (hasNonInstance ? IMA_Mixed : IMA_Instance); +} + +/// Diagnose a reference to a field with no object available. +static void DiagnoseInstanceReference(Sema &SemaRef, + const CXXScopeSpec &SS, + const LookupResult &R) { + SourceLocation Loc = R.getNameLoc(); + SourceRange Range(Loc); + if (SS.isSet()) Range.setBegin(SS.getRange().getBegin()); + + if (R.getAsSingle<FieldDecl>()) { + if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(SemaRef.CurContext)) { + if (MD->isStatic()) { + // "invalid use of member 'x' in static member function" + SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method) + << Range << R.getLookupName(); + return; + } + } + + SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use) + << R.getLookupName() << Range; + return; + } + + SemaRef.Diag(Loc, diag::err_member_call_without_object) << Range; +} + +/// Diagnose an empty lookup. +/// +/// \return false if new lookup candidates were found +bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, + LookupResult &R, CorrectTypoContext CTC) { + DeclarationName Name = R.getLookupName(); + + unsigned diagnostic = diag::err_undeclared_var_use; + unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest; + if (Name.getNameKind() == DeclarationName::CXXOperatorName || + Name.getNameKind() == DeclarationName::CXXLiteralOperatorName || + Name.getNameKind() == DeclarationName::CXXConversionFunctionName) { + diagnostic = diag::err_undeclared_use; + diagnostic_suggest = diag::err_undeclared_use_suggest; + } + + // If the original lookup was an unqualified lookup, fake an + // unqualified lookup. This is useful when (for example) the + // original lookup would not have found something because it was a + // dependent name. + for (DeclContext *DC = SS.isEmpty()? CurContext : 0; + DC; DC = DC->getParent()) { + if (isa<CXXRecordDecl>(DC)) { + LookupQualifiedName(R, DC); + + if (!R.empty()) { + // Don't give errors about ambiguities in this lookup. + R.suppressDiagnostics(); + + CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext); + bool isInstance = CurMethod && + CurMethod->isInstance() && + DC == CurMethod->getParent(); + + // Give a code modification hint to insert 'this->'. + // TODO: fixit for inserting 'Base<T>::' in the other cases. + // Actually quite difficult! + if (isInstance) + Diag(R.getNameLoc(), diagnostic) << Name + << FixItHint::CreateInsertion(R.getNameLoc(), "this->"); + else + Diag(R.getNameLoc(), diagnostic) << Name; + + // Do we really want to note all of these? + for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) + Diag((*I)->getLocation(), diag::note_dependent_var_use); + + // Tell the callee to try to recover. + return false; + } + } + } + + // We didn't find anything, so try to correct for a typo. + DeclarationName Corrected; + if (S && (Corrected = CorrectTypo(R, S, &SS, false, CTC))) { + if (!R.empty()) { + if (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin())) { + if (SS.isEmpty()) + Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName() + << FixItHint::CreateReplacement(R.getNameLoc(), + R.getLookupName().getAsString()); + else + Diag(R.getNameLoc(), diag::err_no_member_suggest) + << Name << computeDeclContext(SS, false) << R.getLookupName() + << SS.getRange() + << FixItHint::CreateReplacement(R.getNameLoc(), + R.getLookupName().getAsString()); + if (NamedDecl *ND = R.getAsSingle<NamedDecl>()) + Diag(ND->getLocation(), diag::note_previous_decl) + << ND->getDeclName(); + + // Tell the callee to try to recover. + return false; + } + + if (isa<TypeDecl>(*R.begin()) || isa<ObjCInterfaceDecl>(*R.begin())) { + // FIXME: If we ended up with a typo for a type name or + // Objective-C class name, we're in trouble because the parser + // is in the wrong place to recover. Suggest the typo + // correction, but don't make it a fix-it since we're not going + // to recover well anyway. + if (SS.isEmpty()) + Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName(); + else + Diag(R.getNameLoc(), diag::err_no_member_suggest) + << Name << computeDeclContext(SS, false) << R.getLookupName() + << SS.getRange(); + + // Don't try to recover; it won't work. + return true; + } + } else { + // FIXME: We found a keyword. Suggest it, but don't provide a fix-it + // because we aren't able to recover. + if (SS.isEmpty()) + Diag(R.getNameLoc(), diagnostic_suggest) << Name << Corrected; + else + Diag(R.getNameLoc(), diag::err_no_member_suggest) + << Name << computeDeclContext(SS, false) << Corrected + << SS.getRange(); + return true; + } + R.clear(); + } + + // Emit a special diagnostic for failed member lookups. + // FIXME: computing the declaration context might fail here (?) + if (!SS.isEmpty()) { + Diag(R.getNameLoc(), diag::err_no_member) + << Name << computeDeclContext(SS, false) + << SS.getRange(); + return true; + } + + // Give up, we can't recover. + Diag(R.getNameLoc(), diagnostic) << Name; + return true; +} + +Sema::OwningExprResult Sema::ActOnIdExpression(Scope *S, + CXXScopeSpec &SS, + UnqualifiedId &Id, + bool HasTrailingLParen, + bool isAddressOfOperand) { + assert(!(isAddressOfOperand && HasTrailingLParen) && + "cannot be direct & operand and have a trailing lparen"); + + if (SS.isInvalid()) + return ExprError(); + + TemplateArgumentListInfo TemplateArgsBuffer; + + // Decompose the UnqualifiedId into the following data. + DeclarationName Name; + SourceLocation NameLoc; + const TemplateArgumentListInfo *TemplateArgs; + DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer, + Name, NameLoc, TemplateArgs); + + IdentifierInfo *II = Name.getAsIdentifierInfo(); + + // C++ [temp.dep.expr]p3: + // An id-expression is type-dependent if it contains: + // -- an identifier that was declared with a dependent type, + // (note: handled after lookup) + // -- a template-id that is dependent, + // (note: handled in BuildTemplateIdExpr) + // -- a conversion-function-id that specifies a dependent type, + // -- a nested-name-specifier that contains a class-name that + // names a dependent type. + // Determine whether this is a member of an unknown specialization; + // we need to handle these differently. + if ((Name.getNameKind() == DeclarationName::CXXConversionFunctionName && + Name.getCXXNameType()->isDependentType()) || + (SS.isSet() && IsDependentIdExpression(*this, SS))) { + return ActOnDependentIdExpression(SS, Name, NameLoc, + isAddressOfOperand, + TemplateArgs); + } + + // Perform the required lookup. + LookupResult R(*this, Name, NameLoc, LookupOrdinaryName); + if (TemplateArgs) { + // Lookup the template name again to correctly establish the context in + // which it was found. This is really unfortunate as we already did the + // lookup to determine that it was a template name in the first place. If + // this becomes a performance hit, we can work harder to preserve those + // results until we get here but it's likely not worth it. + bool MemberOfUnknownSpecialization; + LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false, + MemberOfUnknownSpecialization); + } else { + bool IvarLookupFollowUp = (!SS.isSet() && II && getCurMethodDecl()); + LookupParsedName(R, S, &SS, !IvarLookupFollowUp); + + // If this reference is in an Objective-C method, then we need to do + // some special Objective-C lookup, too. + if (IvarLookupFollowUp) { + OwningExprResult E(LookupInObjCMethod(R, S, II, true)); + if (E.isInvalid()) + return ExprError(); + + Expr *Ex = E.takeAs<Expr>(); + if (Ex) return Owned(Ex); + } + } + + if (R.isAmbiguous()) + return ExprError(); + + // Determine whether this name might be a candidate for + // argument-dependent lookup. + bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen); + + if (R.empty() && !ADL) { + // Otherwise, this could be an implicitly declared function reference (legal + // in C90, extension in C99, forbidden in C++). + if (HasTrailingLParen && II && !getLangOptions().CPlusPlus) { + NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S); + if (D) R.addDecl(D); + } + + // If this name wasn't predeclared and if this is not a function + // call, diagnose the problem. + if (R.empty()) { + if (DiagnoseEmptyLookup(S, SS, R, CTC_Unknown)) + return ExprError(); + + assert(!R.empty() && + "DiagnoseEmptyLookup returned false but added no results"); + + // If we found an Objective-C instance variable, let + // LookupInObjCMethod build the appropriate expression to + // reference the ivar. + if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) { + R.clear(); + OwningExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier())); + assert(E.isInvalid() || E.get()); + return move(E); + } + } + } + + // This is guaranteed from this point on. + assert(!R.empty() || ADL); + + if (VarDecl *Var = R.getAsSingle<VarDecl>()) { + // Warn about constructs like: + // if (void *X = foo()) { ... } else { X }. + // In the else block, the pointer is always false. + if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) { + Scope *CheckS = S; + while (CheckS && CheckS->getControlParent()) { + if ((CheckS->getFlags() & Scope::ElseScope) && + CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) { + ExprError(Diag(NameLoc, diag::warn_value_always_zero) + << Var->getDeclName() + << (Var->getType()->isPointerType() ? 2 : + Var->getType()->isBooleanType() ? 1 : 0)); + break; + } + + // Move to the parent of this scope. + CheckS = CheckS->getParent(); + } + } + } else if (FunctionDecl *Func = R.getAsSingle<FunctionDecl>()) { + if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) { + // C99 DR 316 says that, if a function type comes from a + // function definition (without a prototype), that type is only + // used for checking compatibility. Therefore, when referencing + // the function, we pretend that we don't have the full function + // type. + if (DiagnoseUseOfDecl(Func, NameLoc)) + return ExprError(); + + QualType T = Func->getType(); + QualType NoProtoType = T; + if (const FunctionProtoType *Proto = T->getAs<FunctionProtoType>()) + NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType(), + Proto->getExtInfo()); + return BuildDeclRefExpr(Func, NoProtoType, NameLoc, &SS); + } + } + + // Check whether this might be a C++ implicit instance member access. + // C++ [expr.prim.general]p6: + // Within the definition of a non-static member function, an + // identifier that names a non-static member is transformed to a + // class member access expression. + // But note that &SomeClass::foo is grammatically distinct, even + // though we don't parse it that way. + if (!R.empty() && (*R.begin())->isCXXClassMember()) { + bool isAbstractMemberPointer = (isAddressOfOperand && !SS.isEmpty()); + if (!isAbstractMemberPointer) + return BuildPossibleImplicitMemberExpr(SS, R, TemplateArgs); + } + + if (TemplateArgs) + return BuildTemplateIdExpr(SS, R, ADL, *TemplateArgs); + + return BuildDeclarationNameExpr(SS, R, ADL); +} + +/// Builds an expression which might be an implicit member expression. +Sema::OwningExprResult +Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS, + LookupResult &R, + const TemplateArgumentListInfo *TemplateArgs) { + switch (ClassifyImplicitMemberAccess(*this, R)) { + case IMA_Instance: + return BuildImplicitMemberExpr(SS, R, TemplateArgs, true); + + case IMA_AnonymousMember: + assert(R.isSingleResult()); + return BuildAnonymousStructUnionMemberReference(R.getNameLoc(), + R.getAsSingle<FieldDecl>()); + + case IMA_Mixed: + case IMA_Mixed_Unrelated: + case IMA_Unresolved: + return BuildImplicitMemberExpr(SS, R, TemplateArgs, false); + + case IMA_Static: + case IMA_Mixed_StaticContext: + case IMA_Unresolved_StaticContext: + if (TemplateArgs) + return BuildTemplateIdExpr(SS, R, false, *TemplateArgs); + return BuildDeclarationNameExpr(SS, R, false); + + case IMA_Error_StaticContext: + case IMA_Error_Unrelated: + DiagnoseInstanceReference(*this, SS, R); + return ExprError(); + } + + llvm_unreachable("unexpected instance member access kind"); + return ExprError(); +} + +/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified +/// declaration name, generally during template instantiation. +/// There's a large number of things which don't need to be done along +/// this path. +Sema::OwningExprResult +Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS, + DeclarationName Name, + SourceLocation NameLoc) { + DeclContext *DC; + if (!(DC = computeDeclContext(SS, false)) || DC->isDependentContext()) + return BuildDependentDeclRefExpr(SS, Name, NameLoc, 0); + + if (RequireCompleteDeclContext(SS, DC)) + return ExprError(); + + LookupResult R(*this, Name, NameLoc, LookupOrdinaryName); + LookupQualifiedName(R, DC); + + if (R.isAmbiguous()) + return ExprError(); + + if (R.empty()) { + Diag(NameLoc, diag::err_no_member) << Name << DC << SS.getRange(); + return ExprError(); + } + + return BuildDeclarationNameExpr(SS, R, /*ADL*/ false); +} + +/// LookupInObjCMethod - The parser has read a name in, and Sema has +/// detected that we're currently inside an ObjC method. Perform some +/// additional lookup. +/// +/// Ideally, most of this would be done by lookup, but there's +/// actually quite a lot of extra work involved. +/// +/// Returns a null sentinel to indicate trivial success. +Sema::OwningExprResult +Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S, + IdentifierInfo *II, bool AllowBuiltinCreation) { + SourceLocation Loc = Lookup.getNameLoc(); + ObjCMethodDecl *CurMethod = getCurMethodDecl(); + + // There are two cases to handle here. 1) scoped lookup could have failed, + // in which case we should look for an ivar. 2) scoped lookup could have + // found a decl, but that decl is outside the current instance method (i.e. + // a global variable). In these two cases, we do a lookup for an ivar with + // this name, if the lookup sucedes, we replace it our current decl. + + // If we're in a class method, we don't normally want to look for + // ivars. But if we don't find anything else, and there's an + // ivar, that's an error. + bool IsClassMethod = CurMethod->isClassMethod(); + + bool LookForIvars; + if (Lookup.empty()) + LookForIvars = true; + else if (IsClassMethod) + LookForIvars = false; + else + LookForIvars = (Lookup.isSingleResult() && + Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()); + ObjCInterfaceDecl *IFace = 0; + if (LookForIvars) { + IFace = CurMethod->getClassInterface(); + ObjCInterfaceDecl *ClassDeclared; + if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) { + // Diagnose using an ivar in a class method. + if (IsClassMethod) + return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method) + << IV->getDeclName()); + + // If we're referencing an invalid decl, just return this as a silent + // error node. The error diagnostic was already emitted on the decl. + if (IV->isInvalidDecl()) + return ExprError(); + + // Check if referencing a field with __attribute__((deprecated)). + if (DiagnoseUseOfDecl(IV, Loc)) + return ExprError(); + + // Diagnose the use of an ivar outside of the declaring class. + if (IV->getAccessControl() == ObjCIvarDecl::Private && + ClassDeclared != IFace) + Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName(); + + // FIXME: This should use a new expr for a direct reference, don't + // turn this into Self->ivar, just return a BareIVarExpr or something. + IdentifierInfo &II = Context.Idents.get("self"); + UnqualifiedId SelfName; + SelfName.setIdentifier(&II, SourceLocation()); + CXXScopeSpec SelfScopeSpec; + OwningExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, + SelfName, false, false); + MarkDeclarationReferenced(Loc, IV); + return Owned(new (Context) + ObjCIvarRefExpr(IV, IV->getType(), Loc, + SelfExpr.takeAs<Expr>(), true, true)); + } + } else if (CurMethod->isInstanceMethod()) { + // We should warn if a local variable hides an ivar. + ObjCInterfaceDecl *IFace = CurMethod->getClassInterface(); + ObjCInterfaceDecl *ClassDeclared; + if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) { + if (IV->getAccessControl() != ObjCIvarDecl::Private || + IFace == ClassDeclared) + Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName(); + } + } + + if (Lookup.empty() && II && AllowBuiltinCreation) { + // FIXME. Consolidate this with similar code in LookupName. + if (unsigned BuiltinID = II->getBuiltinID()) { + if (!(getLangOptions().CPlusPlus && + Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) { + NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, + S, Lookup.isForRedeclaration(), + Lookup.getNameLoc()); + if (D) Lookup.addDecl(D); + } + } + } + // Sentinel value saying that we didn't do anything special. + return Owned((Expr*) 0); +} + +/// \brief Cast a base object to a member's actual type. +/// +/// Logically this happens in three phases: +/// +/// * First we cast from the base type to the naming class. +/// The naming class is the class into which we were looking +/// when we found the member; it's the qualifier type if a +/// qualifier was provided, and otherwise it's the base type. +/// +/// * Next we cast from the naming class to the declaring class. +/// If the member we found was brought into a class's scope by +/// a using declaration, this is that class; otherwise it's +/// the class declaring the member. +/// +/// * Finally we cast from the declaring class to the "true" +/// declaring class of the member. This conversion does not +/// obey access control. +bool +Sema::PerformObjectMemberConversion(Expr *&From, + NestedNameSpecifier *Qualifier, + NamedDecl *FoundDecl, + NamedDecl *Member) { + CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext()); + if (!RD) + return false; + + QualType DestRecordType; + QualType DestType; + QualType FromRecordType; + QualType FromType = From->getType(); + bool PointerConversions = false; + if (isa<FieldDecl>(Member)) { + DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD)); + + if (FromType->getAs<PointerType>()) { + DestType = Context.getPointerType(DestRecordType); + FromRecordType = FromType->getPointeeType(); + PointerConversions = true; + } else { + DestType = DestRecordType; + FromRecordType = FromType; + } + } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) { + if (Method->isStatic()) + return false; + + DestType = Method->getThisType(Context); + DestRecordType = DestType->getPointeeType(); + + if (FromType->getAs<PointerType>()) { + FromRecordType = FromType->getPointeeType(); + PointerConversions = true; + } else { + FromRecordType = FromType; + DestType = DestRecordType; + } + } else { + // No conversion necessary. + return false; + } + + if (DestType->isDependentType() || FromType->isDependentType()) + return false; + + // If the unqualified types are the same, no conversion is necessary. + if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType)) + return false; + + SourceRange FromRange = From->getSourceRange(); + SourceLocation FromLoc = FromRange.getBegin(); + + bool isLvalue + = (From->isLvalue(Context) == Expr::LV_Valid) && !PointerConversions; + + // C++ [class.member.lookup]p8: + // [...] Ambiguities can often be resolved by qualifying a name with its + // class name. + // + // If the member was a qualified name and the qualified referred to a + // specific base subobject type, we'll cast to that intermediate type + // first and then to the object in which the member is declared. That allows + // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as: + // + // class Base { public: int x; }; + // class Derived1 : public Base { }; + // class Derived2 : public Base { }; + // class VeryDerived : public Derived1, public Derived2 { void f(); }; + // + // void VeryDerived::f() { + // x = 17; // error: ambiguous base subobjects + // Derived1::x = 17; // okay, pick the Base subobject of Derived1 + // } + if (Qualifier) { + QualType QType = QualType(Qualifier->getAsType(), 0); + assert(!QType.isNull() && "lookup done with dependent qualifier?"); + assert(QType->isRecordType() && "lookup done with non-record type"); + + QualType QRecordType = QualType(QType->getAs<RecordType>(), 0); + + // In C++98, the qualifier type doesn't actually have to be a base + // type of the object type, in which case we just ignore it. + // Otherwise build the appropriate casts. + if (IsDerivedFrom(FromRecordType, QRecordType)) { + CXXBaseSpecifierArray BasePath; + if (CheckDerivedToBaseConversion(FromRecordType, QRecordType, + FromLoc, FromRange, &BasePath)) + return true; + + if (PointerConversions) + QType = Context.getPointerType(QType); + ImpCastExprToType(From, QType, CastExpr::CK_UncheckedDerivedToBase, + isLvalue, BasePath); + + FromType = QType; + FromRecordType = QRecordType; + + // If the qualifier type was the same as the destination type, + // we're done. + if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType)) + return false; + } + } + + bool IgnoreAccess = false; + + // If we actually found the member through a using declaration, cast + // down to the using declaration's type. + // + // Pointer equality is fine here because only one declaration of a + // class ever has member declarations. + if (FoundDecl->getDeclContext() != Member->getDeclContext()) { + assert(isa<UsingShadowDecl>(FoundDecl)); + QualType URecordType = Context.getTypeDeclType( + cast<CXXRecordDecl>(FoundDecl->getDeclContext())); + + // We only need to do this if the naming-class to declaring-class + // conversion is non-trivial. + if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) { + assert(IsDerivedFrom(FromRecordType, URecordType)); + CXXBaseSpecifierArray BasePath; + if (CheckDerivedToBaseConversion(FromRecordType, URecordType, + FromLoc, FromRange, &BasePath)) + return true; + + QualType UType = URecordType; + if (PointerConversions) + UType = Context.getPointerType(UType); + ImpCastExprToType(From, UType, CastExpr::CK_UncheckedDerivedToBase, + isLvalue, BasePath); + FromType = UType; + FromRecordType = URecordType; + } + + // We don't do access control for the conversion from the + // declaring class to the true declaring class. + IgnoreAccess = true; + } + + CXXBaseSpecifierArray BasePath; + if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType, + FromLoc, FromRange, &BasePath, + IgnoreAccess)) + return true; + + ImpCastExprToType(From, DestType, CastExpr::CK_UncheckedDerivedToBase, + isLvalue, BasePath); + return false; +} + +/// \brief Build a MemberExpr AST node. +static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow, + const CXXScopeSpec &SS, ValueDecl *Member, + DeclAccessPair FoundDecl, + SourceLocation Loc, QualType Ty, + const TemplateArgumentListInfo *TemplateArgs = 0) { + NestedNameSpecifier *Qualifier = 0; + SourceRange QualifierRange; + if (SS.isSet()) { + Qualifier = (NestedNameSpecifier *) SS.getScopeRep(); + QualifierRange = SS.getRange(); + } + + return MemberExpr::Create(C, Base, isArrow, Qualifier, QualifierRange, + Member, FoundDecl, Loc, TemplateArgs, Ty); +} + +/// Builds an implicit member access expression. The current context +/// is known to be an instance method, and the given unqualified lookup +/// set is known to contain only instance members, at least one of which +/// is from an appropriate type. +Sema::OwningExprResult +Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS, + LookupResult &R, + const TemplateArgumentListInfo *TemplateArgs, + bool IsKnownInstance) { + assert(!R.empty() && !R.isAmbiguous()); + + SourceLocation Loc = R.getNameLoc(); + + // We may have found a field within an anonymous union or struct + // (C++ [class.union]). + // FIXME: This needs to happen post-isImplicitMemberReference? + // FIXME: template-ids inside anonymous structs? + if (FieldDecl *FD = R.getAsSingle<FieldDecl>()) + if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion()) + return BuildAnonymousStructUnionMemberReference(Loc, FD); + + // If this is known to be an instance access, go ahead and build a + // 'this' expression now. + DeclContext *DC = getFunctionLevelDeclContext(); + QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context); + Expr *This = 0; // null signifies implicit access + if (IsKnownInstance) { + SourceLocation Loc = R.getNameLoc(); + if (SS.getRange().isValid()) + Loc = SS.getRange().getBegin(); + This = new (Context) CXXThisExpr(Loc, ThisType, /*isImplicit=*/true); + } + + return BuildMemberReferenceExpr(ExprArg(*this, This), ThisType, + /*OpLoc*/ SourceLocation(), + /*IsArrow*/ true, + SS, + /*FirstQualifierInScope*/ 0, + R, TemplateArgs); +} + +bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS, + const LookupResult &R, + bool HasTrailingLParen) { + // Only when used directly as the postfix-expression of a call. + if (!HasTrailingLParen) + return false; + + // Never if a scope specifier was provided. + if (SS.isSet()) + return false; + + // Only in C++ or ObjC++. + if (!getLangOptions().CPlusPlus) + return false; + + // Turn off ADL when we find certain kinds of declarations during + // normal lookup: + for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { + NamedDecl *D = *I; + + // C++0x [basic.lookup.argdep]p3: + // -- a declaration of a class member + // Since using decls preserve this property, we check this on the + // original decl. + if (D->isCXXClassMember()) + return false; + + // C++0x [basic.lookup.argdep]p3: + // -- a block-scope function declaration that is not a + // using-declaration + // NOTE: we also trigger this for function templates (in fact, we + // don't check the decl type at all, since all other decl types + // turn off ADL anyway). + if (isa<UsingShadowDecl>(D)) + D = cast<UsingShadowDecl>(D)->getTargetDecl(); + else if (D->getDeclContext()->isFunctionOrMethod()) + return false; + + // C++0x [basic.lookup.argdep]p3: + // -- a declaration that is neither a function or a function + // template + // And also for builtin functions. + if (isa<FunctionDecl>(D)) { + FunctionDecl *FDecl = cast<FunctionDecl>(D); + + // But also builtin functions. + if (FDecl->getBuiltinID() && FDecl->isImplicit()) + return false; + } else if (!isa<FunctionTemplateDecl>(D)) + return false; + } + + return true; +} + + +/// Diagnoses obvious problems with the use of the given declaration +/// as an expression. This is only actually called for lookups that +/// were not overloaded, and it doesn't promise that the declaration +/// will in fact be used. +static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) { + if (isa<TypedefDecl>(D)) { + S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName(); + return true; + } + + if (isa<ObjCInterfaceDecl>(D)) { + S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName(); + return true; + } + + if (isa<NamespaceDecl>(D)) { + S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName(); + return true; + } + + return false; +} + +Sema::OwningExprResult +Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS, + LookupResult &R, + bool NeedsADL) { + // If this is a single, fully-resolved result and we don't need ADL, + // just build an ordinary singleton decl ref. + if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>()) + return BuildDeclarationNameExpr(SS, R.getNameLoc(), R.getFoundDecl()); + + // We only need to check the declaration if there's exactly one + // result, because in the overloaded case the results can only be + // functions and function templates. + if (R.isSingleResult() && + CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl())) + return ExprError(); + + // Otherwise, just build an unresolved lookup expression. Suppress + // any lookup-related diagnostics; we'll hash these out later, when + // we've picked a target. + R.suppressDiagnostics(); + + bool Dependent + = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), 0); + UnresolvedLookupExpr *ULE + = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(), + (NestedNameSpecifier*) SS.getScopeRep(), + SS.getRange(), + R.getLookupName(), R.getNameLoc(), + NeedsADL, R.isOverloadedResult(), + R.begin(), R.end()); + + return Owned(ULE); +} + + +/// \brief Complete semantic analysis for a reference to the given declaration. +Sema::OwningExprResult +Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS, + SourceLocation Loc, NamedDecl *D) { + assert(D && "Cannot refer to a NULL declaration"); + assert(!isa<FunctionTemplateDecl>(D) && + "Cannot refer unambiguously to a function template"); + + if (CheckDeclInExpr(*this, Loc, D)) + return ExprError(); + + if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) { + // Specifically diagnose references to class templates that are missing + // a template argument list. + Diag(Loc, diag::err_template_decl_ref) + << Template << SS.getRange(); + Diag(Template->getLocation(), diag::note_template_decl_here); + return ExprError(); + } + + // Make sure that we're referring to a value. + ValueDecl *VD = dyn_cast<ValueDecl>(D); + if (!VD) { + Diag(Loc, diag::err_ref_non_value) + << D << SS.getRange(); + Diag(D->getLocation(), diag::note_declared_at); + return ExprError(); + } + + // Check whether this declaration can be used. Note that we suppress + // this check when we're going to perform argument-dependent lookup + // on this function name, because this might not be the function + // that overload resolution actually selects. + if (DiagnoseUseOfDecl(VD, Loc)) + return ExprError(); + + // Only create DeclRefExpr's for valid Decl's. + if (VD->isInvalidDecl()) + return ExprError(); + + // If the identifier reference is inside a block, and it refers to a value + // that is outside the block, create a BlockDeclRefExpr instead of a + // DeclRefExpr. This ensures the value is treated as a copy-in snapshot when + // the block is formed. + // + // We do not do this for things like enum constants, global variables, etc, + // as they do not get snapshotted. + // + if (getCurBlock() && + ShouldSnapshotBlockValueReference(*this, getCurBlock(), VD)) { + if (VD->getType().getTypePtr()->isVariablyModifiedType()) { + Diag(Loc, diag::err_ref_vm_type); + Diag(D->getLocation(), diag::note_declared_at); + return ExprError(); + } + + if (VD->getType()->isArrayType()) { + Diag(Loc, diag::err_ref_array_type); + Diag(D->getLocation(), diag::note_declared_at); + return ExprError(); + } + + MarkDeclarationReferenced(Loc, VD); + QualType ExprTy = VD->getType().getNonReferenceType(); + // The BlocksAttr indicates the variable is bound by-reference. + if (VD->getAttr<BlocksAttr>()) + return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true)); + // This is to record that a 'const' was actually synthesize and added. + bool constAdded = !ExprTy.isConstQualified(); + // Variable will be bound by-copy, make it const within the closure. + + ExprTy.addConst(); + return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, false, + constAdded)); + } + // If this reference is not in a block or if the referenced variable is + // within the block, create a normal DeclRefExpr. + + return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc, &SS); +} + +Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, + tok::TokenKind Kind) { + PredefinedExpr::IdentType IT; + + switch (Kind) { + default: assert(0 && "Unknown simple primary expr!"); + case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2] + case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break; + case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break; + } + + // Pre-defined identifiers are of type char[x], where x is the length of the + // string. + + Decl *currentDecl = getCurFunctionOrMethodDecl(); + if (!currentDecl) { + Diag(Loc, diag::ext_predef_outside_function); + currentDecl = Context.getTranslationUnitDecl(); + } + + QualType ResTy; + if (cast<DeclContext>(currentDecl)->isDependentContext()) { + ResTy = Context.DependentTy; + } else { + unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length(); + + llvm::APInt LengthI(32, Length + 1); + ResTy = Context.CharTy.withConst(); + ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0); + } + return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT)); +} + +Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) { + llvm::SmallString<16> CharBuffer; + bool Invalid = false; + llvm::StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid); + if (Invalid) + return ExprError(); + + CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(), + PP); + if (Literal.hadError()) + return ExprError(); + + QualType Ty; + if (!getLangOptions().CPlusPlus) + Ty = Context.IntTy; // 'x' and L'x' -> int in C. + else if (Literal.isWide()) + Ty = Context.WCharTy; // L'x' -> wchar_t in C++. + else if (Literal.isMultiChar()) + Ty = Context.IntTy; // 'wxyz' -> int in C++. + else + Ty = Context.CharTy; // 'x' -> char in C++ + + return Owned(new (Context) CharacterLiteral(Literal.getValue(), + Literal.isWide(), + Ty, Tok.getLocation())); +} + +Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) { + // Fast path for a single digit (which is quite common). A single digit + // cannot have a trigraph, escaped newline, radix prefix, or type suffix. + if (Tok.getLength() == 1) { + const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok); + unsigned IntSize = Context.Target.getIntWidth(); + return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'), + Context.IntTy, Tok.getLocation())); + } + + llvm::SmallString<512> IntegerBuffer; + // Add padding so that NumericLiteralParser can overread by one character. + IntegerBuffer.resize(Tok.getLength()+1); + const char *ThisTokBegin = &IntegerBuffer[0]; + + // Get the spelling of the token, which eliminates trigraphs, etc. + bool Invalid = false; + unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid); + if (Invalid) + return ExprError(); + + NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength, + Tok.getLocation(), PP); + if (Literal.hadError) + return ExprError(); + + Expr *Res; + + if (Literal.isFloatingLiteral()) { + QualType Ty; + if (Literal.isFloat) + Ty = Context.FloatTy; + else if (!Literal.isLong) + Ty = Context.DoubleTy; + else + Ty = Context.LongDoubleTy; + + const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty); + + using llvm::APFloat; + APFloat Val(Format); + + APFloat::opStatus result = Literal.GetFloatValue(Val); + + // Overflow is always an error, but underflow is only an error if + // we underflowed to zero (APFloat reports denormals as underflow). + if ((result & APFloat::opOverflow) || + ((result & APFloat::opUnderflow) && Val.isZero())) { + unsigned diagnostic; + llvm::SmallString<20> buffer; + if (result & APFloat::opOverflow) { + diagnostic = diag::warn_float_overflow; + APFloat::getLargest(Format).toString(buffer); + } else { + diagnostic = diag::warn_float_underflow; + APFloat::getSmallest(Format).toString(buffer); + } + + Diag(Tok.getLocation(), diagnostic) + << Ty + << llvm::StringRef(buffer.data(), buffer.size()); + } + + bool isExact = (result == APFloat::opOK); + Res = new (Context) FloatingLiteral(Val, isExact, Ty, Tok.getLocation()); + + } else if (!Literal.isIntegerLiteral()) { + return ExprError(); + } else { + QualType Ty; + + // long long is a C99 feature. + if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x && + Literal.isLongLong) + Diag(Tok.getLocation(), diag::ext_longlong); + + // Get the value in the widest-possible width. + llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0); + + if (Literal.GetIntegerValue(ResultVal)) { + // If this value didn't fit into uintmax_t, warn and force to ull. + Diag(Tok.getLocation(), diag::warn_integer_too_large); + Ty = Context.UnsignedLongLongTy; + assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() && + "long long is not intmax_t?"); + } else { + // If this value fits into a ULL, try to figure out what else it fits into + // according to the rules of C99 6.4.4.1p5. + + // Octal, Hexadecimal, and integers with a U suffix are allowed to + // be an unsigned int. + bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10; + + // Check from smallest to largest, picking the smallest type we can. + unsigned Width = 0; + if (!Literal.isLong && !Literal.isLongLong) { + // Are int/unsigned possibilities? + unsigned IntSize = Context.Target.getIntWidth(); + + // Does it fit in a unsigned int? + if (ResultVal.isIntN(IntSize)) { + // Does it fit in a signed int? + if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0) + Ty = Context.IntTy; + else if (AllowUnsigned) + Ty = Context.UnsignedIntTy; + Width = IntSize; + } + } + + // Are long/unsigned long possibilities? + if (Ty.isNull() && !Literal.isLongLong) { + unsigned LongSize = Context.Target.getLongWidth(); + + // Does it fit in a unsigned long? + if (ResultVal.isIntN(LongSize)) { + // Does it fit in a signed long? + if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0) + Ty = Context.LongTy; + else if (AllowUnsigned) + Ty = Context.UnsignedLongTy; + Width = LongSize; + } + } + + // Finally, check long long if needed. + if (Ty.isNull()) { + unsigned LongLongSize = Context.Target.getLongLongWidth(); + + // Does it fit in a unsigned long long? + if (ResultVal.isIntN(LongLongSize)) { + // Does it fit in a signed long long? + if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0) + Ty = Context.LongLongTy; + else if (AllowUnsigned) + Ty = Context.UnsignedLongLongTy; + Width = LongLongSize; + } + } + + // If we still couldn't decide a type, we probably have something that + // does not fit in a signed long long, but has no U suffix. + if (Ty.isNull()) { + Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed); + Ty = Context.UnsignedLongLongTy; + Width = Context.Target.getLongLongWidth(); + } + + if (ResultVal.getBitWidth() != Width) + ResultVal.trunc(Width); + } + Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation()); + } + + // If this is an imaginary literal, create the ImaginaryLiteral wrapper. + if (Literal.isImaginary) + Res = new (Context) ImaginaryLiteral(Res, + Context.getComplexType(Res->getType())); + + return Owned(Res); +} + +Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L, + SourceLocation R, ExprArg Val) { + Expr *E = Val.takeAs<Expr>(); + assert((E != 0) && "ActOnParenExpr() missing expr"); + return Owned(new (Context) ParenExpr(L, R, E)); +} + +/// The UsualUnaryConversions() function is *not* called by this routine. +/// See C99 6.3.2.1p[2-4] for more details. +bool Sema::CheckSizeOfAlignOfOperand(QualType exprType, + SourceLocation OpLoc, + const SourceRange &ExprRange, + bool isSizeof) { + if (exprType->isDependentType()) + return false; + + // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, + // the result is the size of the referenced type." + // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the + // result shall be the alignment of the referenced type." + if (const ReferenceType *Ref = exprType->getAs<ReferenceType>()) + exprType = Ref->getPointeeType(); + + // C99 6.5.3.4p1: + if (exprType->isFunctionType()) { + // alignof(function) is allowed as an extension. + if (isSizeof) + Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange; + return false; + } + + // Allow sizeof(void)/alignof(void) as an extension. + if (exprType->isVoidType()) { + Diag(OpLoc, diag::ext_sizeof_void_type) + << (isSizeof ? "sizeof" : "__alignof") << ExprRange; + return false; + } + + if (RequireCompleteType(OpLoc, exprType, + PDiag(diag::err_sizeof_alignof_incomplete_type) + << int(!isSizeof) << ExprRange)) + return true; + + // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode. + if (LangOpts.ObjCNonFragileABI && exprType->isObjCObjectType()) { + Diag(OpLoc, diag::err_sizeof_nonfragile_interface) + << exprType << isSizeof << ExprRange; + return true; + } + + if (Context.hasSameUnqualifiedType(exprType, Context.OverloadTy)) { + Diag(OpLoc, diag::err_sizeof_alignof_overloaded_function_type) + << !isSizeof << ExprRange; + return true; + } + + return false; +} + +bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc, + const SourceRange &ExprRange) { + E = E->IgnoreParens(); + + // alignof decl is always ok. + if (isa<DeclRefExpr>(E)) + return false; + + // Cannot know anything else if the expression is dependent. + if (E->isTypeDependent()) + return false; + + if (E->getBitField()) { + Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange; + return true; + } + + // Alignment of a field access is always okay, so long as it isn't a + // bit-field. + if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) + if (isa<FieldDecl>(ME->getMemberDecl())) + return false; + + return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false); +} + +/// \brief Build a sizeof or alignof expression given a type operand. +Action::OwningExprResult +Sema::CreateSizeOfAlignOfExpr(TypeSourceInfo *TInfo, + SourceLocation OpLoc, + bool isSizeOf, SourceRange R) { + if (!TInfo) + return ExprError(); + + QualType T = TInfo->getType(); + + if (!T->isDependentType() && + CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf)) + return ExprError(); + + // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t. + return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, TInfo, + Context.getSizeType(), OpLoc, + R.getEnd())); +} + +/// \brief Build a sizeof or alignof expression given an expression +/// operand. +Action::OwningExprResult +Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc, + bool isSizeOf, SourceRange R) { + // Verify that the operand is valid. + bool isInvalid = false; + if (E->isTypeDependent()) { + // Delay type-checking for type-dependent expressions. + } else if (!isSizeOf) { + isInvalid = CheckAlignOfExpr(E, OpLoc, R); + } else if (E->getBitField()) { // C99 6.5.3.4p1. + Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0; + isInvalid = true; + } else { + isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true); + } + + if (isInvalid) + return ExprError(); + + // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t. + return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E, + Context.getSizeType(), OpLoc, + R.getEnd())); +} + +/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and +/// the same for @c alignof and @c __alignof +/// Note that the ArgRange is invalid if isType is false. +Action::OwningExprResult +Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType, + void *TyOrEx, const SourceRange &ArgRange) { + // If error parsing type, ignore. + if (TyOrEx == 0) return ExprError(); + + if (isType) { + TypeSourceInfo *TInfo; + (void) GetTypeFromParser(TyOrEx, &TInfo); + return CreateSizeOfAlignOfExpr(TInfo, OpLoc, isSizeof, ArgRange); + } + + Expr *ArgEx = (Expr *)TyOrEx; + Action::OwningExprResult Result + = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange()); + + if (Result.isInvalid()) + DeleteExpr(ArgEx); + + return move(Result); +} + +QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) { + if (V->isTypeDependent()) + return Context.DependentTy; + + // These operators return the element type of a complex type. + if (const ComplexType *CT = V->getType()->getAs<ComplexType>()) + return CT->getElementType(); + + // Otherwise they pass through real integer and floating point types here. + if (V->getType()->isArithmeticType()) + return V->getType(); + + // Reject anything else. + Diag(Loc, diag::err_realimag_invalid_type) << V->getType() + << (isReal ? "__real" : "__imag"); + return QualType(); +} + + + +Action::OwningExprResult +Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc, + tok::TokenKind Kind, ExprArg Input) { + UnaryOperator::Opcode Opc; + switch (Kind) { + default: assert(0 && "Unknown unary op!"); + case tok::plusplus: Opc = UnaryOperator::PostInc; break; + case tok::minusminus: Opc = UnaryOperator::PostDec; break; + } + + return BuildUnaryOp(S, OpLoc, Opc, move(Input)); +} + +Action::OwningExprResult +Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc, + ExprArg Idx, SourceLocation RLoc) { + // Since this might be a postfix expression, get rid of ParenListExprs. + Base = MaybeConvertParenListExprToParenExpr(S, move(Base)); + + Expr *LHSExp = static_cast<Expr*>(Base.get()), + *RHSExp = static_cast<Expr*>(Idx.get()); + + if (getLangOptions().CPlusPlus && + (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) { + Base.release(); + Idx.release(); + return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp, + Context.DependentTy, RLoc)); + } + + if (getLangOptions().CPlusPlus && + (LHSExp->getType()->isRecordType() || + LHSExp->getType()->isEnumeralType() || + RHSExp->getType()->isRecordType() || + RHSExp->getType()->isEnumeralType())) { + return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, move(Base),move(Idx)); + } + + return CreateBuiltinArraySubscriptExpr(move(Base), LLoc, move(Idx), RLoc); +} + + +Action::OwningExprResult +Sema::CreateBuiltinArraySubscriptExpr(ExprArg Base, SourceLocation LLoc, + ExprArg Idx, SourceLocation RLoc) { + Expr *LHSExp = static_cast<Expr*>(Base.get()); + Expr *RHSExp = static_cast<Expr*>(Idx.get()); + + // Perform default conversions. + if (!LHSExp->getType()->getAs<VectorType>()) + DefaultFunctionArrayLvalueConversion(LHSExp); + DefaultFunctionArrayLvalueConversion(RHSExp); + + QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType(); + + // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent + // to the expression *((e1)+(e2)). This means the array "Base" may actually be + // in the subscript position. As a result, we need to derive the array base + // and index from the expression types. + Expr *BaseExpr, *IndexExpr; + QualType ResultType; + if (LHSTy->isDependentType() || RHSTy->isDependentType()) { + BaseExpr = LHSExp; + IndexExpr = RHSExp; + ResultType = Context.DependentTy; + } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) { + BaseExpr = LHSExp; + IndexExpr = RHSExp; + ResultType = PTy->getPointeeType(); + } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) { + // Handle the uncommon case of "123[Ptr]". + BaseExpr = RHSExp; + IndexExpr = LHSExp; + ResultType = PTy->getPointeeType(); + } else if (const ObjCObjectPointerType *PTy = + LHSTy->getAs<ObjCObjectPointerType>()) { + BaseExpr = LHSExp; + IndexExpr = RHSExp; + ResultType = PTy->getPointeeType(); + } else if (const ObjCObjectPointerType *PTy = + RHSTy->getAs<ObjCObjectPointerType>()) { + // Handle the uncommon case of "123[Ptr]". + BaseExpr = RHSExp; + IndexExpr = LHSExp; + ResultType = PTy->getPointeeType(); + } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) { + BaseExpr = LHSExp; // vectors: V[123] + IndexExpr = RHSExp; + + // FIXME: need to deal with const... + ResultType = VTy->getElementType(); + } else if (LHSTy->isArrayType()) { + // If we see an array that wasn't promoted by + // DefaultFunctionArrayLvalueConversion, it must be an array that + // wasn't promoted because of the C90 rule that doesn't + // allow promoting non-lvalue arrays. Warn, then + // force the promotion here. + Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) << + LHSExp->getSourceRange(); + ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy), + CastExpr::CK_ArrayToPointerDecay); + LHSTy = LHSExp->getType(); + + BaseExpr = LHSExp; + IndexExpr = RHSExp; + ResultType = LHSTy->getAs<PointerType>()->getPointeeType(); + } else if (RHSTy->isArrayType()) { + // Same as previous, except for 123[f().a] case + Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) << + RHSExp->getSourceRange(); + ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy), + CastExpr::CK_ArrayToPointerDecay); + RHSTy = RHSExp->getType(); + + BaseExpr = RHSExp; + IndexExpr = LHSExp; + ResultType = RHSTy->getAs<PointerType>()->getPointeeType(); + } else { + return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value) + << LHSExp->getSourceRange() << RHSExp->getSourceRange()); + } + // C99 6.5.2.1p1 + if (!(IndexExpr->getType()->isIntegerType() && + IndexExpr->getType()->isScalarType()) && !IndexExpr->isTypeDependent()) + return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer) + << IndexExpr->getSourceRange()); + + if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) || + IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) + && !IndexExpr->isTypeDependent()) + Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange(); + + // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly, + // C++ [expr.sub]p1: The type "T" shall be a completely-defined object + // type. Note that Functions are not objects, and that (in C99 parlance) + // incomplete types are not object types. + if (ResultType->isFunctionType()) { + Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type) + << ResultType << BaseExpr->getSourceRange(); + return ExprError(); + } + + if (!ResultType->isDependentType() && + RequireCompleteType(LLoc, ResultType, + PDiag(diag::err_subscript_incomplete_type) + << BaseExpr->getSourceRange())) + return ExprError(); + + // Diagnose bad cases where we step over interface counts. + if (ResultType->isObjCObjectType() && LangOpts.ObjCNonFragileABI) { + Diag(LLoc, diag::err_subscript_nonfragile_interface) + << ResultType << BaseExpr->getSourceRange(); + return ExprError(); + } + + Base.release(); + Idx.release(); + return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp, + ResultType, RLoc)); +} + +QualType Sema:: +CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc, + const IdentifierInfo *CompName, + SourceLocation CompLoc) { + // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements, + // see FIXME there. + // + // FIXME: This logic can be greatly simplified by splitting it along + // halving/not halving and reworking the component checking. + const ExtVectorType *vecType = baseType->getAs<ExtVectorType>(); + + // The vector accessor can't exceed the number of elements. + const char *compStr = CompName->getNameStart(); + + // This flag determines whether or not the component is one of the four + // special names that indicate a subset of exactly half the elements are + // to be selected. + bool HalvingSwizzle = false; + + // This flag determines whether or not CompName has an 's' char prefix, + // indicating that it is a string of hex values to be used as vector indices. + bool HexSwizzle = *compStr == 's' || *compStr == 'S'; + + // Check that we've found one of the special components, or that the component + // names must come from the same set. + if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") || + !strcmp(compStr, "even") || !strcmp(compStr, "odd")) { + HalvingSwizzle = true; + } else if (vecType->getPointAccessorIdx(*compStr) != -1) { + do + compStr++; + while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1); + } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) { + do + compStr++; + while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1); + } + + if (!HalvingSwizzle && *compStr) { + // We didn't get to the end of the string. This means the component names + // didn't come from the same set *or* we encountered an illegal name. + Diag(OpLoc, diag::err_ext_vector_component_name_illegal) + << std::string(compStr,compStr+1) << SourceRange(CompLoc); + return QualType(); + } + + // Ensure no component accessor exceeds the width of the vector type it + // operates on. + if (!HalvingSwizzle) { + compStr = CompName->getNameStart(); + + if (HexSwizzle) + compStr++; + + while (*compStr) { + if (!vecType->isAccessorWithinNumElements(*compStr++)) { + Diag(OpLoc, diag::err_ext_vector_component_exceeds_length) + << baseType << SourceRange(CompLoc); + return QualType(); + } + } + } + + // The component accessor looks fine - now we need to compute the actual type. + // The vector type is implied by the component accessor. For example, + // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc. + // vec4.s0 is a float, vec4.s23 is a vec3, etc. + // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2. + unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2 + : CompName->getLength(); + if (HexSwizzle) + CompSize--; + + if (CompSize == 1) + return vecType->getElementType(); + + QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize); + // Now look up the TypeDefDecl from the vector type. Without this, + // diagostics look bad. We want extended vector types to appear built-in. + for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) { + if (ExtVectorDecls[i]->getUnderlyingType() == VT) + return Context.getTypedefType(ExtVectorDecls[i]); + } + return VT; // should never get here (a typedef type should always be found). +} + +static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl, + IdentifierInfo *Member, + const Selector &Sel, + ASTContext &Context) { + + if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member)) + return PD; + if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel)) + return OMD; + + for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(), + E = PDecl->protocol_end(); I != E; ++I) { + if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel, + Context)) + return D; + } + return 0; +} + +static Decl *FindGetterNameDecl(const ObjCObjectPointerType *QIdTy, + IdentifierInfo *Member, + const Selector &Sel, + ASTContext &Context) { + // Check protocols on qualified interfaces. + Decl *GDecl = 0; + for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(), + E = QIdTy->qual_end(); I != E; ++I) { + if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) { + GDecl = PD; + break; + } + // Also must look for a getter name which uses property syntax. + if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) { + GDecl = OMD; + break; + } + } + if (!GDecl) { + for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(), + E = QIdTy->qual_end(); I != E; ++I) { + // Search in the protocol-qualifier list of current protocol. + GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context); + if (GDecl) + return GDecl; + } + } + return GDecl; +} + +Sema::OwningExprResult +Sema::ActOnDependentMemberExpr(ExprArg Base, QualType BaseType, + bool IsArrow, SourceLocation OpLoc, + const CXXScopeSpec &SS, + NamedDecl *FirstQualifierInScope, + DeclarationName Name, SourceLocation NameLoc, + const TemplateArgumentListInfo *TemplateArgs) { + Expr *BaseExpr = Base.takeAs<Expr>(); + + // Even in dependent contexts, try to diagnose base expressions with + // obviously wrong types, e.g.: + // + // T* t; + // t.f; + // + // In Obj-C++, however, the above expression is valid, since it could be + // accessing the 'f' property if T is an Obj-C interface. The extra check + // allows this, while still reporting an error if T is a struct pointer. + if (!IsArrow) { + const PointerType *PT = BaseType->getAs<PointerType>(); + if (PT && (!getLangOptions().ObjC1 || + PT->getPointeeType()->isRecordType())) { + assert(BaseExpr && "cannot happen with implicit member accesses"); + Diag(NameLoc, diag::err_typecheck_member_reference_struct_union) + << BaseType << BaseExpr->getSourceRange(); + return ExprError(); + } + } + + assert(BaseType->isDependentType() || Name.isDependentName() || + isDependentScopeSpecifier(SS)); + + // Get the type being accessed in BaseType. If this is an arrow, the BaseExpr + // must have pointer type, and the accessed type is the pointee. + return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType, + IsArrow, OpLoc, + static_cast<NestedNameSpecifier*>(SS.getScopeRep()), + SS.getRange(), + FirstQualifierInScope, + Name, NameLoc, + TemplateArgs)); +} + +/// We know that the given qualified member reference points only to +/// declarations which do not belong to the static type of the base +/// expression. Diagnose the problem. +static void DiagnoseQualifiedMemberReference(Sema &SemaRef, + Expr *BaseExpr, + QualType BaseType, + const CXXScopeSpec &SS, + const LookupResult &R) { + // If this is an implicit member access, use a different set of + // diagnostics. + if (!BaseExpr) + return DiagnoseInstanceReference(SemaRef, SS, R); + + SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_of_unrelated) + << SS.getRange() << R.getRepresentativeDecl() << BaseType; +} + +// Check whether the declarations we found through a nested-name +// specifier in a member expression are actually members of the base +// type. The restriction here is: +// +// C++ [expr.ref]p2: +// ... In these cases, the id-expression shall name a +// member of the class or of one of its base classes. +// +// So it's perfectly legitimate for the nested-name specifier to name +// an unrelated class, and for us to find an overload set including +// decls from classes which are not superclasses, as long as the decl +// we actually pick through overload resolution is from a superclass. +bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr, + QualType BaseType, + const CXXScopeSpec &SS, + const LookupResult &R) { + const RecordType *BaseRT = BaseType->getAs<RecordType>(); + if (!BaseRT) { + // We can't check this yet because the base type is still + // dependent. + assert(BaseType->isDependentType()); + return false; + } + CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl()); + + for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { + // If this is an implicit member reference and we find a + // non-instance member, it's not an error. + if (!BaseExpr && !(*I)->isCXXInstanceMember()) + return false; + + // Note that we use the DC of the decl, not the underlying decl. + CXXRecordDecl *RecordD = cast<CXXRecordDecl>((*I)->getDeclContext()); + while (RecordD->isAnonymousStructOrUnion()) + RecordD = cast<CXXRecordDecl>(RecordD->getParent()); + + llvm::SmallPtrSet<CXXRecordDecl*,4> MemberRecord; + MemberRecord.insert(RecordD->getCanonicalDecl()); + + if (!IsProvablyNotDerivedFrom(*this, BaseRecord, MemberRecord)) + return false; + } + + DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS, R); + return true; +} + +static bool +LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R, + SourceRange BaseRange, const RecordType *RTy, + SourceLocation OpLoc, CXXScopeSpec &SS) { + RecordDecl *RDecl = RTy->getDecl(); + if (SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0), + SemaRef.PDiag(diag::err_typecheck_incomplete_tag) + << BaseRange)) + return true; + + DeclContext *DC = RDecl; + if (SS.isSet()) { + // If the member name was a qualified-id, look into the + // nested-name-specifier. + DC = SemaRef.computeDeclContext(SS, false); + + if (SemaRef.RequireCompleteDeclContext(SS, DC)) { + SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag) + << SS.getRange() << DC; + return true; + } + + assert(DC && "Cannot handle non-computable dependent contexts in lookup"); + + if (!isa<TypeDecl>(DC)) { + SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass) + << DC << SS.getRange(); + return true; + } + } + + // The record definition is complete, now look up the member. + SemaRef.LookupQualifiedName(R, DC); + + if (!R.empty()) + return false; + + // We didn't find anything with the given name, so try to correct + // for typos. + DeclarationName Name = R.getLookupName(); + if (SemaRef.CorrectTypo(R, 0, &SS, DC, false, Sema::CTC_MemberLookup) && + !R.empty() && + (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin()))) { + SemaRef.Diag(R.getNameLoc(), diag::err_no_member_suggest) + << Name << DC << R.getLookupName() << SS.getRange() + << FixItHint::CreateReplacement(R.getNameLoc(), + R.getLookupName().getAsString()); + if (NamedDecl *ND = R.getAsSingle<NamedDecl>()) + SemaRef.Diag(ND->getLocation(), diag::note_previous_decl) + << ND->getDeclName(); + return false; + } else { + R.clear(); + } + + return false; +} + +Sema::OwningExprResult +Sema::BuildMemberReferenceExpr(ExprArg BaseArg, QualType BaseType, + SourceLocation OpLoc, bool IsArrow, + CXXScopeSpec &SS, + NamedDecl *FirstQualifierInScope, + DeclarationName Name, SourceLocation NameLoc, + const TemplateArgumentListInfo *TemplateArgs) { + Expr *Base = BaseArg.takeAs<Expr>(); + + if (BaseType->isDependentType() || + (SS.isSet() && isDependentScopeSpecifier(SS))) + return ActOnDependentMemberExpr(ExprArg(*this, Base), BaseType, + IsArrow, OpLoc, + SS, FirstQualifierInScope, + Name, NameLoc, + TemplateArgs); + + LookupResult R(*this, Name, NameLoc, LookupMemberName); + + // Implicit member accesses. + if (!Base) { + QualType RecordTy = BaseType; + if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType(); + if (LookupMemberExprInRecord(*this, R, SourceRange(), + RecordTy->getAs<RecordType>(), + OpLoc, SS)) + return ExprError(); + + // Explicit member accesses. + } else { + OwningExprResult Result = + LookupMemberExpr(R, Base, IsArrow, OpLoc, + SS, /*ObjCImpDecl*/ DeclPtrTy()); + + if (Result.isInvalid()) { + Owned(Base); + return ExprError(); + } + + if (Result.get()) + return move(Result); + + // LookupMemberExpr can modify Base, and thus change BaseType + BaseType = Base->getType(); + } + + return BuildMemberReferenceExpr(ExprArg(*this, Base), BaseType, + OpLoc, IsArrow, SS, FirstQualifierInScope, + R, TemplateArgs); +} + +Sema::OwningExprResult +Sema::BuildMemberReferenceExpr(ExprArg Base, QualType BaseExprType, + SourceLocation OpLoc, bool IsArrow, + const CXXScopeSpec &SS, + NamedDecl *FirstQualifierInScope, + LookupResult &R, + const TemplateArgumentListInfo *TemplateArgs, + bool SuppressQualifierCheck) { + Expr *BaseExpr = Base.takeAs<Expr>(); + QualType BaseType = BaseExprType; + if (IsArrow) { + assert(BaseType->isPointerType()); + BaseType = BaseType->getAs<PointerType>()->getPointeeType(); + } + R.setBaseObjectType(BaseType); + + NestedNameSpecifier *Qualifier = + static_cast<NestedNameSpecifier*>(SS.getScopeRep()); + DeclarationName MemberName = R.getLookupName(); + SourceLocation MemberLoc = R.getNameLoc(); + + if (R.isAmbiguous()) + return ExprError(); + + if (R.empty()) { + // Rederive where we looked up. + DeclContext *DC = (SS.isSet() + ? computeDeclContext(SS, false) + : BaseType->getAs<RecordType>()->getDecl()); + + Diag(R.getNameLoc(), diag::err_no_member) + << MemberName << DC + << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange()); + return ExprError(); + } + + // Diagnose lookups that find only declarations from a non-base + // type. This is possible for either qualified lookups (which may + // have been qualified with an unrelated type) or implicit member + // expressions (which were found with unqualified lookup and thus + // may have come from an enclosing scope). Note that it's okay for + // lookup to find declarations from a non-base type as long as those + // aren't the ones picked by overload resolution. + if ((SS.isSet() || !BaseExpr || + (isa<CXXThisExpr>(BaseExpr) && + cast<CXXThisExpr>(BaseExpr)->isImplicit())) && + !SuppressQualifierCheck && + CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R)) + return ExprError(); + + // Construct an unresolved result if we in fact got an unresolved + // result. + if (R.isOverloadedResult() || R.isUnresolvableResult()) { + bool Dependent = + BaseExprType->isDependentType() || + R.isUnresolvableResult() || + OverloadExpr::ComputeDependence(R.begin(), R.end(), TemplateArgs); + + // Suppress any lookup-related diagnostics; we'll do these when we + // pick a member. + R.suppressDiagnostics(); + + UnresolvedMemberExpr *MemExpr + = UnresolvedMemberExpr::Create(Context, Dependent, + R.isUnresolvableResult(), + BaseExpr, BaseExprType, + IsArrow, OpLoc, + Qualifier, SS.getRange(), + MemberName, MemberLoc, + TemplateArgs, R.begin(), R.end()); + + return Owned(MemExpr); + } + + assert(R.isSingleResult()); + DeclAccessPair FoundDecl = R.begin().getPair(); + NamedDecl *MemberDecl = R.getFoundDecl(); + + // FIXME: diagnose the presence of template arguments now. + + // If the decl being referenced had an error, return an error for this + // sub-expr without emitting another error, in order to avoid cascading + // error cases. + if (MemberDecl->isInvalidDecl()) + return ExprError(); + + // Handle the implicit-member-access case. + if (!BaseExpr) { + // If this is not an instance member, convert to a non-member access. + if (!MemberDecl->isCXXInstanceMember()) + return BuildDeclarationNameExpr(SS, R.getNameLoc(), MemberDecl); + + SourceLocation Loc = R.getNameLoc(); + if (SS.getRange().isValid()) + Loc = SS.getRange().getBegin(); + BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true); + } + + bool ShouldCheckUse = true; + if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) { + // Don't diagnose the use of a virtual member function unless it's + // explicitly qualified. + if (MD->isVirtual() && !SS.isSet()) + ShouldCheckUse = false; + } + + // Check the use of this member. + if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) { + Owned(BaseExpr); + return ExprError(); + } + + if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) { + // We may have found a field within an anonymous union or struct + // (C++ [class.union]). + if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion() && + !BaseType->getAs<RecordType>()->getDecl()->isAnonymousStructOrUnion()) + return BuildAnonymousStructUnionMemberReference(MemberLoc, FD, + BaseExpr, OpLoc); + + // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref] + QualType MemberType = FD->getType(); + if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) + MemberType = Ref->getPointeeType(); + else { + Qualifiers BaseQuals = BaseType.getQualifiers(); + BaseQuals.removeObjCGCAttr(); + if (FD->isMutable()) BaseQuals.removeConst(); + + Qualifiers MemberQuals + = Context.getCanonicalType(MemberType).getQualifiers(); + + Qualifiers Combined = BaseQuals + MemberQuals; + if (Combined != MemberQuals) + MemberType = Context.getQualifiedType(MemberType, Combined); + } + + MarkDeclarationReferenced(MemberLoc, FD); + if (PerformObjectMemberConversion(BaseExpr, Qualifier, FoundDecl, FD)) + return ExprError(); + return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS, + FD, FoundDecl, MemberLoc, MemberType)); + } + + if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) { + MarkDeclarationReferenced(MemberLoc, Var); + return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS, + Var, FoundDecl, MemberLoc, + Var->getType().getNonReferenceType())); + } + + if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl)) { + MarkDeclarationReferenced(MemberLoc, MemberDecl); + return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS, + MemberFn, FoundDecl, MemberLoc, + MemberFn->getType())); + } + + if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) { + MarkDeclarationReferenced(MemberLoc, MemberDecl); + return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS, + Enum, FoundDecl, MemberLoc, Enum->getType())); + } + + Owned(BaseExpr); + + // We found something that we didn't expect. Complain. + if (isa<TypeDecl>(MemberDecl)) + Diag(MemberLoc,diag::err_typecheck_member_reference_type) + << MemberName << BaseType << int(IsArrow); + else + Diag(MemberLoc, diag::err_typecheck_member_reference_unknown) + << MemberName << BaseType << int(IsArrow); + + Diag(MemberDecl->getLocation(), diag::note_member_declared_here) + << MemberName; + R.suppressDiagnostics(); + return ExprError(); +} + +/// Look up the given member of the given non-type-dependent +/// expression. This can return in one of two ways: +/// * If it returns a sentinel null-but-valid result, the caller will +/// assume that lookup was performed and the results written into +/// the provided structure. It will take over from there. +/// * Otherwise, the returned expression will be produced in place of +/// an ordinary member expression. +/// +/// The ObjCImpDecl bit is a gross hack that will need to be properly +/// fixed for ObjC++. +Sema::OwningExprResult +Sema::LookupMemberExpr(LookupResult &R, Expr *&BaseExpr, + bool &IsArrow, SourceLocation OpLoc, + CXXScopeSpec &SS, + DeclPtrTy ObjCImpDecl) { + assert(BaseExpr && "no base expression"); + + // Perform default conversions. + DefaultFunctionArrayConversion(BaseExpr); + + QualType BaseType = BaseExpr->getType(); + assert(!BaseType->isDependentType()); + + DeclarationName MemberName = R.getLookupName(); + SourceLocation MemberLoc = R.getNameLoc(); + + // If the user is trying to apply -> or . to a function pointer + // type, it's probably because they forgot parentheses to call that + // function. Suggest the addition of those parentheses, build the + // call, and continue on. + if (const PointerType *Ptr = BaseType->getAs<PointerType>()) { + if (const FunctionProtoType *Fun + = Ptr->getPointeeType()->getAs<FunctionProtoType>()) { + QualType ResultTy = Fun->getResultType(); + if (Fun->getNumArgs() == 0 && + ((!IsArrow && ResultTy->isRecordType()) || + (IsArrow && ResultTy->isPointerType() && + ResultTy->getAs<PointerType>()->getPointeeType() + ->isRecordType()))) { + SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd()); + Diag(Loc, diag::err_member_reference_needs_call) + << QualType(Fun, 0) + << FixItHint::CreateInsertion(Loc, "()"); + + OwningExprResult NewBase + = ActOnCallExpr(0, ExprArg(*this, BaseExpr), Loc, + MultiExprArg(*this, 0, 0), 0, Loc); + if (NewBase.isInvalid()) + return ExprError(); + + BaseExpr = NewBase.takeAs<Expr>(); + DefaultFunctionArrayConversion(BaseExpr); + BaseType = BaseExpr->getType(); + } + } + } + + // If this is an Objective-C pseudo-builtin and a definition is provided then + // use that. + if (BaseType->isObjCIdType()) { + if (IsArrow) { + // Handle the following exceptional case PObj->isa. + if (const ObjCObjectPointerType *OPT = + BaseType->getAs<ObjCObjectPointerType>()) { + if (OPT->getObjectType()->isObjCId() && + MemberName.getAsIdentifierInfo()->isStr("isa")) + return Owned(new (Context) ObjCIsaExpr(BaseExpr, true, MemberLoc, + Context.getObjCClassType())); + } + } + // We have an 'id' type. Rather than fall through, we check if this + // is a reference to 'isa'. + if (BaseType != Context.ObjCIdRedefinitionType) { + BaseType = Context.ObjCIdRedefinitionType; + ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast); + } + } + + // If this is an Objective-C pseudo-builtin and a definition is provided then + // use that. + if (Context.isObjCSelType(BaseType)) { + // We have an 'SEL' type. Rather than fall through, we check if this + // is a reference to 'sel_id'. + if (BaseType != Context.ObjCSelRedefinitionType) { + BaseType = Context.ObjCSelRedefinitionType; + ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast); + } + } + + assert(!BaseType.isNull() && "no type for member expression"); + + // Handle properties on ObjC 'Class' types. + if (!IsArrow && BaseType->isObjCClassType()) { + // Also must look for a getter name which uses property syntax. + IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); + Selector Sel = PP.getSelectorTable().getNullarySelector(Member); + if (ObjCMethodDecl *MD = getCurMethodDecl()) { + ObjCInterfaceDecl *IFace = MD->getClassInterface(); + ObjCMethodDecl *Getter; + // FIXME: need to also look locally in the implementation. + if ((Getter = IFace->lookupClassMethod(Sel))) { + // Check the use of this method. + if (DiagnoseUseOfDecl(Getter, MemberLoc)) + return ExprError(); + } + // If we found a getter then this may be a valid dot-reference, we + // will look for the matching setter, in case it is needed. + Selector SetterSel = + SelectorTable::constructSetterName(PP.getIdentifierTable(), + PP.getSelectorTable(), Member); + ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel); + if (!Setter) { + // If this reference is in an @implementation, also check for 'private' + // methods. + Setter = IFace->lookupPrivateInstanceMethod(SetterSel); + } + // Look through local category implementations associated with the class. + if (!Setter) + Setter = IFace->getCategoryClassMethod(SetterSel); + + if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc)) + return ExprError(); + + if (Getter || Setter) { + QualType PType; + + if (Getter) + PType = Getter->getResultType(); + else + // Get the expression type from Setter's incoming parameter. + PType = (*(Setter->param_end() -1))->getType(); + // FIXME: we must check that the setter has property type. + return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter, + PType, + Setter, MemberLoc, BaseExpr)); + } + return ExprError(Diag(MemberLoc, diag::err_property_not_found) + << MemberName << BaseType); + } + } + + if (BaseType->isObjCClassType() && + BaseType != Context.ObjCClassRedefinitionType) { + BaseType = Context.ObjCClassRedefinitionType; + ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast); + } + + if (IsArrow) { + if (const PointerType *PT = BaseType->getAs<PointerType>()) + BaseType = PT->getPointeeType(); + else if (BaseType->isObjCObjectPointerType()) + ; + else if (BaseType->isRecordType()) { + // Recover from arrow accesses to records, e.g.: + // struct MyRecord foo; + // foo->bar + // This is actually well-formed in C++ if MyRecord has an + // overloaded operator->, but that should have been dealt with + // by now. + Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) + << BaseType << int(IsArrow) << BaseExpr->getSourceRange() + << FixItHint::CreateReplacement(OpLoc, "."); + IsArrow = false; + } else { + Diag(MemberLoc, diag::err_typecheck_member_reference_arrow) + << BaseType << BaseExpr->getSourceRange(); + return ExprError(); + } + } else { + // Recover from dot accesses to pointers, e.g.: + // type *foo; + // foo.bar + // This is actually well-formed in two cases: + // - 'type' is an Objective C type + // - 'bar' is a pseudo-destructor name which happens to refer to + // the appropriate pointer type + if (MemberName.getNameKind() != DeclarationName::CXXDestructorName) { + const PointerType *PT = BaseType->getAs<PointerType>(); + if (PT && PT->getPointeeType()->isRecordType()) { + Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) + << BaseType << int(IsArrow) << BaseExpr->getSourceRange() + << FixItHint::CreateReplacement(OpLoc, "->"); + BaseType = PT->getPointeeType(); + IsArrow = true; + } + } + } + + // Handle field access to simple records. + if (const RecordType *RTy = BaseType->getAs<RecordType>()) { + if (LookupMemberExprInRecord(*this, R, BaseExpr->getSourceRange(), + RTy, OpLoc, SS)) + return ExprError(); + return Owned((Expr*) 0); + } + + // Handle access to Objective-C instance variables, such as "Obj->ivar" and + // (*Obj).ivar. + if ((IsArrow && BaseType->isObjCObjectPointerType()) || + (!IsArrow && BaseType->isObjCObjectType())) { + const ObjCObjectPointerType *OPT = BaseType->getAs<ObjCObjectPointerType>(); + ObjCInterfaceDecl *IDecl = + OPT ? OPT->getInterfaceDecl() + : BaseType->getAs<ObjCObjectType>()->getInterface(); + if (IDecl) { + IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); + + ObjCInterfaceDecl *ClassDeclared; + ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared); + + if (!IV) { + // Attempt to correct for typos in ivar names. + LookupResult Res(*this, R.getLookupName(), R.getNameLoc(), + LookupMemberName); + if (CorrectTypo(Res, 0, 0, IDecl, false, CTC_MemberLookup) && + (IV = Res.getAsSingle<ObjCIvarDecl>())) { + Diag(R.getNameLoc(), + diag::err_typecheck_member_reference_ivar_suggest) + << IDecl->getDeclName() << MemberName << IV->getDeclName() + << FixItHint::CreateReplacement(R.getNameLoc(), + IV->getNameAsString()); + Diag(IV->getLocation(), diag::note_previous_decl) + << IV->getDeclName(); + } + } + + if (IV) { + // If the decl being referenced had an error, return an error for this + // sub-expr without emitting another error, in order to avoid cascading + // error cases. + if (IV->isInvalidDecl()) + return ExprError(); + + // Check whether we can reference this field. + if (DiagnoseUseOfDecl(IV, MemberLoc)) + return ExprError(); + if (IV->getAccessControl() != ObjCIvarDecl::Public && + IV->getAccessControl() != ObjCIvarDecl::Package) { + ObjCInterfaceDecl *ClassOfMethodDecl = 0; + if (ObjCMethodDecl *MD = getCurMethodDecl()) + ClassOfMethodDecl = MD->getClassInterface(); + else if (ObjCImpDecl && getCurFunctionDecl()) { + // Case of a c-function declared inside an objc implementation. + // FIXME: For a c-style function nested inside an objc implementation + // class, there is no implementation context available, so we pass + // down the context as argument to this routine. Ideally, this context + // need be passed down in the AST node and somehow calculated from the + // AST for a function decl. + Decl *ImplDecl = ObjCImpDecl.getAs<Decl>(); + if (ObjCImplementationDecl *IMPD = + dyn_cast<ObjCImplementationDecl>(ImplDecl)) + ClassOfMethodDecl = IMPD->getClassInterface(); + else if (ObjCCategoryImplDecl* CatImplClass = + dyn_cast<ObjCCategoryImplDecl>(ImplDecl)) + ClassOfMethodDecl = CatImplClass->getClassInterface(); + } + + if (IV->getAccessControl() == ObjCIvarDecl::Private) { + if (ClassDeclared != IDecl || + ClassOfMethodDecl != ClassDeclared) + Diag(MemberLoc, diag::error_private_ivar_access) + << IV->getDeclName(); + } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl)) + // @protected + Diag(MemberLoc, diag::error_protected_ivar_access) + << IV->getDeclName(); + } + + return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(), + MemberLoc, BaseExpr, + IsArrow)); + } + return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar) + << IDecl->getDeclName() << MemberName + << BaseExpr->getSourceRange()); + } + } + // Handle properties on 'id' and qualified "id". + if (!IsArrow && (BaseType->isObjCIdType() || + BaseType->isObjCQualifiedIdType())) { + const ObjCObjectPointerType *QIdTy = BaseType->getAs<ObjCObjectPointerType>(); + IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); + + // Check protocols on qualified interfaces. + Selector Sel = PP.getSelectorTable().getNullarySelector(Member); + if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) { + if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) { + // Check the use of this declaration + if (DiagnoseUseOfDecl(PD, MemberLoc)) + return ExprError(); + + return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(), + MemberLoc, BaseExpr)); + } + if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) { + // Check the use of this method. + if (DiagnoseUseOfDecl(OMD, MemberLoc)) + return ExprError(); + + return Owned(ObjCMessageExpr::Create(Context, + OMD->getResultType().getNonReferenceType(), + OpLoc, BaseExpr, Sel, + OMD, NULL, 0, MemberLoc)); + } + } + + return ExprError(Diag(MemberLoc, diag::err_property_not_found) + << MemberName << BaseType); + } + + // Handle Objective-C property access, which is "Obj.property" where Obj is a + // pointer to a (potentially qualified) interface type. + if (!IsArrow) + if (const ObjCObjectPointerType *OPT = + BaseType->getAsObjCInterfacePointerType()) + return HandleExprPropertyRefExpr(OPT, BaseExpr, MemberName, MemberLoc); + + // Handle the following exceptional case (*Obj).isa. + if (!IsArrow && + BaseType->isObjCObjectType() && + BaseType->getAs<ObjCObjectType>()->isObjCId() && + MemberName.getAsIdentifierInfo()->isStr("isa")) + return Owned(new (Context) ObjCIsaExpr(BaseExpr, false, MemberLoc, + Context.getObjCClassType())); + + // Handle 'field access' to vectors, such as 'V.xx'. + if (BaseType->isExtVectorType()) { + IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); + QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc); + if (ret.isNull()) + return ExprError(); + return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, *Member, + MemberLoc)); + } + + Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union) + << BaseType << BaseExpr->getSourceRange(); + + return ExprError(); +} + +/// The main callback when the parser finds something like +/// expression . [nested-name-specifier] identifier +/// expression -> [nested-name-specifier] identifier +/// where 'identifier' encompasses a fairly broad spectrum of +/// possibilities, including destructor and operator references. +/// +/// \param OpKind either tok::arrow or tok::period +/// \param HasTrailingLParen whether the next token is '(', which +/// is used to diagnose mis-uses of special members that can +/// only be called +/// \param ObjCImpDecl the current ObjC @implementation decl; +/// this is an ugly hack around the fact that ObjC @implementations +/// aren't properly put in the context chain +Sema::OwningExprResult Sema::ActOnMemberAccessExpr(Scope *S, ExprArg BaseArg, + SourceLocation OpLoc, + tok::TokenKind OpKind, + CXXScopeSpec &SS, + UnqualifiedId &Id, + DeclPtrTy ObjCImpDecl, + bool HasTrailingLParen) { + if (SS.isSet() && SS.isInvalid()) + return ExprError(); + + TemplateArgumentListInfo TemplateArgsBuffer; + + // Decompose the name into its component parts. + DeclarationName Name; + SourceLocation NameLoc; + const TemplateArgumentListInfo *TemplateArgs; + DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer, + Name, NameLoc, TemplateArgs); + + bool IsArrow = (OpKind == tok::arrow); + + NamedDecl *FirstQualifierInScope + = (!SS.isSet() ? 0 : FindFirstQualifierInScope(S, + static_cast<NestedNameSpecifier*>(SS.getScopeRep()))); + + // This is a postfix expression, so get rid of ParenListExprs. + BaseArg = MaybeConvertParenListExprToParenExpr(S, move(BaseArg)); + + Expr *Base = BaseArg.takeAs<Expr>(); + OwningExprResult Result(*this); + if (Base->getType()->isDependentType() || Name.isDependentName() || + isDependentScopeSpecifier(SS)) { + Result = ActOnDependentMemberExpr(ExprArg(*this, Base), Base->getType(), + IsArrow, OpLoc, + SS, FirstQualifierInScope, + Name, NameLoc, + TemplateArgs); + } else { + LookupResult R(*this, Name, NameLoc, LookupMemberName); + if (TemplateArgs) { + // Re-use the lookup done for the template name. + DecomposeTemplateName(R, Id); + + // Re-derive the naming class. + if (SS.isSet()) { + NestedNameSpecifier *Qualifier + = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); + if (const Type *Ty = Qualifier->getAsType()) + if (CXXRecordDecl *NamingClass = Ty->getAsCXXRecordDecl()) + R.setNamingClass(NamingClass); + } else { + QualType BaseType = Base->getType(); + if (const PointerType *Ptr = BaseType->getAs<PointerType>()) + BaseType = Ptr->getPointeeType(); + if (CXXRecordDecl *NamingClass = BaseType->getAsCXXRecordDecl()) + R.setNamingClass(NamingClass); + } + } else { + Result = LookupMemberExpr(R, Base, IsArrow, OpLoc, + SS, ObjCImpDecl); + + if (Result.isInvalid()) { + Owned(Base); + return ExprError(); + } + + if (Result.get()) { + // The only way a reference to a destructor can be used is to + // immediately call it, which falls into this case. If the + // next token is not a '(', produce a diagnostic and build the + // call now. + if (!HasTrailingLParen && + Id.getKind() == UnqualifiedId::IK_DestructorName) + return DiagnoseDtorReference(NameLoc, move(Result)); + + return move(Result); + } + } + + Result = BuildMemberReferenceExpr(ExprArg(*this, Base), Base->getType(), + OpLoc, IsArrow, SS, FirstQualifierInScope, + R, TemplateArgs); + } + + return move(Result); +} + +Sema::OwningExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc, + FunctionDecl *FD, + ParmVarDecl *Param) { + if (Param->hasUnparsedDefaultArg()) { + Diag (CallLoc, + diag::err_use_of_default_argument_to_function_declared_later) << + FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName(); + Diag(UnparsedDefaultArgLocs[Param], + diag::note_default_argument_declared_here); + } else { + if (Param->hasUninstantiatedDefaultArg()) { + Expr *UninstExpr = Param->getUninstantiatedDefaultArg(); + + // Instantiate the expression. + MultiLevelTemplateArgumentList ArgList + = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true); + + InstantiatingTemplate Inst(*this, CallLoc, Param, + ArgList.getInnermost().getFlatArgumentList(), + ArgList.getInnermost().flat_size()); + + OwningExprResult Result = SubstExpr(UninstExpr, ArgList); + if (Result.isInvalid()) + return ExprError(); + + // Check the expression as an initializer for the parameter. + InitializedEntity Entity + = InitializedEntity::InitializeParameter(Param); + InitializationKind Kind + = InitializationKind::CreateCopy(Param->getLocation(), + /*FIXME:EqualLoc*/UninstExpr->getSourceRange().getBegin()); + Expr *ResultE = Result.takeAs<Expr>(); + + InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1); + Result = InitSeq.Perform(*this, Entity, Kind, + MultiExprArg(*this, (void**)&ResultE, 1)); + if (Result.isInvalid()) + return ExprError(); + + // Build the default argument expression. + return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param, + Result.takeAs<Expr>())); + } + + // If the default expression creates temporaries, we need to + // push them to the current stack of expression temporaries so they'll + // be properly destroyed. + // FIXME: We should really be rebuilding the default argument with new + // bound temporaries; see the comment in PR5810. + for (unsigned i = 0, e = Param->getNumDefaultArgTemporaries(); i != e; ++i) + ExprTemporaries.push_back(Param->getDefaultArgTemporary(i)); + } + + // We already type-checked the argument, so we know it works. + return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param)); +} + +/// ConvertArgumentsForCall - Converts the arguments specified in +/// Args/NumArgs to the parameter types of the function FDecl with +/// function prototype Proto. Call is the call expression itself, and +/// Fn is the function expression. For a C++ member function, this +/// routine does not attempt to convert the object argument. Returns +/// true if the call is ill-formed. +bool +Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn, + FunctionDecl *FDecl, + const FunctionProtoType *Proto, + Expr **Args, unsigned NumArgs, + SourceLocation RParenLoc) { + // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by + // assignment, to the types of the corresponding parameter, ... + unsigned NumArgsInProto = Proto->getNumArgs(); + bool Invalid = false; + + // If too few arguments are available (and we don't have default + // arguments for the remaining parameters), don't make the call. + if (NumArgs < NumArgsInProto) { + if (!FDecl || NumArgs < FDecl->getMinRequiredArguments()) + return Diag(RParenLoc, diag::err_typecheck_call_too_few_args) + << Fn->getType()->isBlockPointerType() + << NumArgsInProto << NumArgs << Fn->getSourceRange(); + Call->setNumArgs(Context, NumArgsInProto); + } + + // If too many are passed and not variadic, error on the extras and drop + // them. + if (NumArgs > NumArgsInProto) { + if (!Proto->isVariadic()) { + Diag(Args[NumArgsInProto]->getLocStart(), + diag::err_typecheck_call_too_many_args) + << Fn->getType()->isBlockPointerType() + << NumArgsInProto << NumArgs << Fn->getSourceRange() + << SourceRange(Args[NumArgsInProto]->getLocStart(), + Args[NumArgs-1]->getLocEnd()); + // This deletes the extra arguments. + Call->setNumArgs(Context, NumArgsInProto); + return true; + } + } + llvm::SmallVector<Expr *, 8> AllArgs; + VariadicCallType CallType = + Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply; + if (Fn->getType()->isBlockPointerType()) + CallType = VariadicBlock; // Block + else if (isa<MemberExpr>(Fn)) + CallType = VariadicMethod; + Invalid = GatherArgumentsForCall(Call->getSourceRange().getBegin(), FDecl, + Proto, 0, Args, NumArgs, AllArgs, CallType); + if (Invalid) + return true; + unsigned TotalNumArgs = AllArgs.size(); + for (unsigned i = 0; i < TotalNumArgs; ++i) + Call->setArg(i, AllArgs[i]); + + return false; +} + +bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, + FunctionDecl *FDecl, + const FunctionProtoType *Proto, + unsigned FirstProtoArg, + Expr **Args, unsigned NumArgs, + llvm::SmallVector<Expr *, 8> &AllArgs, + VariadicCallType CallType) { + unsigned NumArgsInProto = Proto->getNumArgs(); + unsigned NumArgsToCheck = NumArgs; + bool Invalid = false; + if (NumArgs != NumArgsInProto) + // Use default arguments for missing arguments + NumArgsToCheck = NumArgsInProto; + unsigned ArgIx = 0; + // Continue to check argument types (even if we have too few/many args). + for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) { + QualType ProtoArgType = Proto->getArgType(i); + + Expr *Arg; + if (ArgIx < NumArgs) { + Arg = Args[ArgIx++]; + + if (RequireCompleteType(Arg->getSourceRange().getBegin(), + ProtoArgType, + PDiag(diag::err_call_incomplete_argument) + << Arg->getSourceRange())) + return true; + + // Pass the argument + ParmVarDecl *Param = 0; + if (FDecl && i < FDecl->getNumParams()) + Param = FDecl->getParamDecl(i); + + + InitializedEntity Entity = + Param? InitializedEntity::InitializeParameter(Param) + : InitializedEntity::InitializeParameter(ProtoArgType); + OwningExprResult ArgE = PerformCopyInitialization(Entity, + SourceLocation(), + Owned(Arg)); + if (ArgE.isInvalid()) + return true; + + Arg = ArgE.takeAs<Expr>(); + } else { + ParmVarDecl *Param = FDecl->getParamDecl(i); + + OwningExprResult ArgExpr = + BuildCXXDefaultArgExpr(CallLoc, FDecl, Param); + if (ArgExpr.isInvalid()) + return true; + + Arg = ArgExpr.takeAs<Expr>(); + } + AllArgs.push_back(Arg); + } + + // If this is a variadic call, handle args passed through "...". + if (CallType != VariadicDoesNotApply) { + // Promote the arguments (C99 6.5.2.2p7). + for (unsigned i = ArgIx; i != NumArgs; ++i) { + Expr *Arg = Args[i]; + Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType, FDecl); + AllArgs.push_back(Arg); + } + } + return Invalid; +} + +/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments. +/// This provides the location of the left/right parens and a list of comma +/// locations. +Action::OwningExprResult +Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc, + MultiExprArg args, + SourceLocation *CommaLocs, SourceLocation RParenLoc) { + unsigned NumArgs = args.size(); + + // Since this might be a postfix expression, get rid of ParenListExprs. + fn = MaybeConvertParenListExprToParenExpr(S, move(fn)); + + Expr *Fn = fn.takeAs<Expr>(); + Expr **Args = reinterpret_cast<Expr**>(args.release()); + assert(Fn && "no function call expression"); + + if (getLangOptions().CPlusPlus) { + // If this is a pseudo-destructor expression, build the call immediately. + if (isa<CXXPseudoDestructorExpr>(Fn)) { + if (NumArgs > 0) { + // Pseudo-destructor calls should not have any arguments. + Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args) + << FixItHint::CreateRemoval( + SourceRange(Args[0]->getLocStart(), + Args[NumArgs-1]->getLocEnd())); + + for (unsigned I = 0; I != NumArgs; ++I) + Args[I]->Destroy(Context); + + NumArgs = 0; + } + + return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy, + RParenLoc)); + } + + // Determine whether this is a dependent call inside a C++ template, + // in which case we won't do any semantic analysis now. + // FIXME: Will need to cache the results of name lookup (including ADL) in + // Fn. + bool Dependent = false; + if (Fn->isTypeDependent()) + Dependent = true; + else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs)) + Dependent = true; + + if (Dependent) + return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs, + Context.DependentTy, RParenLoc)); + + // Determine whether this is a call to an object (C++ [over.call.object]). + if (Fn->getType()->isRecordType()) + return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs, + CommaLocs, RParenLoc)); + + Expr *NakedFn = Fn->IgnoreParens(); + + // Determine whether this is a call to an unresolved member function. + if (UnresolvedMemberExpr *MemE = dyn_cast<UnresolvedMemberExpr>(NakedFn)) { + // If lookup was unresolved but not dependent (i.e. didn't find + // an unresolved using declaration), it has to be an overloaded + // function set, which means it must contain either multiple + // declarations (all methods or method templates) or a single + // method template. + assert((MemE->getNumDecls() > 1) || + isa<FunctionTemplateDecl>( + (*MemE->decls_begin())->getUnderlyingDecl())); + (void)MemE; + + return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs, + CommaLocs, RParenLoc); + } + + // Determine whether this is a call to a member function. + if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(NakedFn)) { + NamedDecl *MemDecl = MemExpr->getMemberDecl(); + if (isa<CXXMethodDecl>(MemDecl)) + return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs, + CommaLocs, RParenLoc); + } + + // Determine whether this is a call to a pointer-to-member function. + if (BinaryOperator *BO = dyn_cast<BinaryOperator>(NakedFn)) { + if (BO->getOpcode() == BinaryOperator::PtrMemD || + BO->getOpcode() == BinaryOperator::PtrMemI) { + if (const FunctionProtoType *FPT + = BO->getType()->getAs<FunctionProtoType>()) { + QualType ResultTy = FPT->getResultType().getNonReferenceType(); + + ExprOwningPtr<CXXMemberCallExpr> + TheCall(this, new (Context) CXXMemberCallExpr(Context, BO, Args, + NumArgs, ResultTy, + RParenLoc)); + + if (CheckCallReturnType(FPT->getResultType(), + BO->getRHS()->getSourceRange().getBegin(), + TheCall.get(), 0)) + return ExprError(); + + if (ConvertArgumentsForCall(&*TheCall, BO, 0, FPT, Args, NumArgs, + RParenLoc)) + return ExprError(); + + return Owned(MaybeBindToTemporary(TheCall.release()).release()); + } + return ExprError(Diag(Fn->getLocStart(), + diag::err_typecheck_call_not_function) + << Fn->getType() << Fn->getSourceRange()); + } + } + } + + // If we're directly calling a function, get the appropriate declaration. + // Also, in C++, keep track of whether we should perform argument-dependent + // lookup and whether there were any explicitly-specified template arguments. + + Expr *NakedFn = Fn->IgnoreParens(); + if (isa<UnresolvedLookupExpr>(NakedFn)) { + UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(NakedFn); + return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, Args, NumArgs, + CommaLocs, RParenLoc); + } + + NamedDecl *NDecl = 0; + if (isa<DeclRefExpr>(NakedFn)) + NDecl = cast<DeclRefExpr>(NakedFn)->getDecl(); + + return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc); +} + +/// BuildResolvedCallExpr - Build a call to a resolved expression, +/// i.e. an expression not of \p OverloadTy. The expression should +/// unary-convert to an expression of function-pointer or +/// block-pointer type. +/// +/// \param NDecl the declaration being called, if available +Sema::OwningExprResult +Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl, + SourceLocation LParenLoc, + Expr **Args, unsigned NumArgs, + SourceLocation RParenLoc) { + FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl); + + // Promote the function operand. + UsualUnaryConversions(Fn); + + // Make the call expr early, before semantic checks. This guarantees cleanup + // of arguments and function on error. + ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn, + Args, NumArgs, + Context.BoolTy, + RParenLoc)); + + const FunctionType *FuncT; + if (!Fn->getType()->isBlockPointerType()) { + // C99 6.5.2.2p1 - "The expression that denotes the called function shall + // have type pointer to function". + const PointerType *PT = Fn->getType()->getAs<PointerType>(); + if (PT == 0) + return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function) + << Fn->getType() << Fn->getSourceRange()); + FuncT = PT->getPointeeType()->getAs<FunctionType>(); + } else { // This is a block call. + FuncT = Fn->getType()->getAs<BlockPointerType>()->getPointeeType()-> + getAs<FunctionType>(); + } + if (FuncT == 0) + return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function) + << Fn->getType() << Fn->getSourceRange()); + + // Check for a valid return type + if (CheckCallReturnType(FuncT->getResultType(), + Fn->getSourceRange().getBegin(), TheCall.get(), + FDecl)) + return ExprError(); + + // We know the result type of the call, set it. + TheCall->setType(FuncT->getResultType().getNonReferenceType()); + + if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) { + if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs, + RParenLoc)) + return ExprError(); + } else { + assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!"); + + if (FDecl) { + // Check if we have too few/too many template arguments, based + // on our knowledge of the function definition. + const FunctionDecl *Def = 0; + if (FDecl->getBody(Def) && NumArgs != Def->param_size()) { + const FunctionProtoType *Proto = + Def->getType()->getAs<FunctionProtoType>(); + if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) { + Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments) + << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange(); + } + } + } + + // Promote the arguments (C99 6.5.2.2p6). + for (unsigned i = 0; i != NumArgs; i++) { + Expr *Arg = Args[i]; + DefaultArgumentPromotion(Arg); + if (RequireCompleteType(Arg->getSourceRange().getBegin(), + Arg->getType(), + PDiag(diag::err_call_incomplete_argument) + << Arg->getSourceRange())) + return ExprError(); + TheCall->setArg(i, Arg); + } + } + + if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl)) + if (!Method->isStatic()) + return ExprError(Diag(LParenLoc, diag::err_member_call_without_object) + << Fn->getSourceRange()); + + // Check for sentinels + if (NDecl) + DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs); + + // Do special checking on direct calls to functions. + if (FDecl) { + if (CheckFunctionCall(FDecl, TheCall.get())) + return ExprError(); + + if (unsigned BuiltinID = FDecl->getBuiltinID()) + return CheckBuiltinFunctionCall(BuiltinID, TheCall.take()); + } else if (NDecl) { + if (CheckBlockCall(NDecl, TheCall.get())) + return ExprError(); + } + + return MaybeBindToTemporary(TheCall.take()); +} + +Action::OwningExprResult +Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty, + SourceLocation RParenLoc, ExprArg InitExpr) { + assert((Ty != 0) && "ActOnCompoundLiteral(): missing type"); + // FIXME: put back this assert when initializers are worked out. + //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression"); + + TypeSourceInfo *TInfo; + QualType literalType = GetTypeFromParser(Ty, &TInfo); + if (!TInfo) + TInfo = Context.getTrivialTypeSourceInfo(literalType); + + return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, move(InitExpr)); +} + +Action::OwningExprResult +Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo, + SourceLocation RParenLoc, ExprArg InitExpr) { + QualType literalType = TInfo->getType(); + Expr *literalExpr = static_cast<Expr*>(InitExpr.get()); + + if (literalType->isArrayType()) { + if (literalType->isVariableArrayType()) + return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init) + << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd())); + } else if (!literalType->isDependentType() && + RequireCompleteType(LParenLoc, literalType, + PDiag(diag::err_typecheck_decl_incomplete_type) + << SourceRange(LParenLoc, + literalExpr->getSourceRange().getEnd()))) + return ExprError(); + + InitializedEntity Entity + = InitializedEntity::InitializeTemporary(literalType); + InitializationKind Kind + = InitializationKind::CreateCast(SourceRange(LParenLoc, RParenLoc), + /*IsCStyleCast=*/true); + InitializationSequence InitSeq(*this, Entity, Kind, &literalExpr, 1); + OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, + MultiExprArg(*this, (void**)&literalExpr, 1), + &literalType); + if (Result.isInvalid()) + return ExprError(); + InitExpr.release(); + literalExpr = static_cast<Expr*>(Result.get()); + + bool isFileScope = getCurFunctionOrMethodDecl() == 0; + if (isFileScope) { // 6.5.2.5p3 + if (CheckForConstantInitializer(literalExpr, literalType)) + return ExprError(); + } + + Result.release(); + + return Owned(new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType, + literalExpr, isFileScope)); +} + +Action::OwningExprResult +Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist, + SourceLocation RBraceLoc) { + unsigned NumInit = initlist.size(); + Expr **InitList = reinterpret_cast<Expr**>(initlist.release()); + + // Semantic analysis for initializers is done by ActOnDeclarator() and + // CheckInitializer() - it requires knowledge of the object being intialized. + + InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitList, + NumInit, RBraceLoc); + E->setType(Context.VoidTy); // FIXME: just a place holder for now. + return Owned(E); +} + +static CastExpr::CastKind getScalarCastKind(ASTContext &Context, + QualType SrcTy, QualType DestTy) { + if (Context.hasSameUnqualifiedType(SrcTy, DestTy)) + return CastExpr::CK_NoOp; + + if (SrcTy->hasPointerRepresentation()) { + if (DestTy->hasPointerRepresentation()) + return DestTy->isObjCObjectPointerType() ? + CastExpr::CK_AnyPointerToObjCPointerCast : + CastExpr::CK_BitCast; + if (DestTy->isIntegerType()) + return CastExpr::CK_PointerToIntegral; + } + + if (SrcTy->isIntegerType()) { + if (DestTy->isIntegerType()) + return CastExpr::CK_IntegralCast; + if (DestTy->hasPointerRepresentation()) + return CastExpr::CK_IntegralToPointer; + if (DestTy->isRealFloatingType()) + return CastExpr::CK_IntegralToFloating; + } + + if (SrcTy->isRealFloatingType()) { + if (DestTy->isRealFloatingType()) + return CastExpr::CK_FloatingCast; + if (DestTy->isIntegerType()) + return CastExpr::CK_FloatingToIntegral; + } + + // FIXME: Assert here. + // assert(false && "Unhandled cast combination!"); + return CastExpr::CK_Unknown; +} + +/// CheckCastTypes - Check type constraints for casting between types. +bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr, + CastExpr::CastKind& Kind, + CXXBaseSpecifierArray &BasePath, + bool FunctionalStyle) { + if (getLangOptions().CPlusPlus) + return CXXCheckCStyleCast(TyR, castType, castExpr, Kind, BasePath, + FunctionalStyle); + + DefaultFunctionArrayLvalueConversion(castExpr); + + // C99 6.5.4p2: the cast type needs to be void or scalar and the expression + // type needs to be scalar. + if (castType->isVoidType()) { + // Cast to void allows any expr type. + Kind = CastExpr::CK_ToVoid; + return false; + } + + if (!castType->isScalarType() && !castType->isVectorType()) { + if (Context.hasSameUnqualifiedType(castType, castExpr->getType()) && + (castType->isStructureType() || castType->isUnionType())) { + // GCC struct/union extension: allow cast to self. + // FIXME: Check that the cast destination type is complete. + Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar) + << castType << castExpr->getSourceRange(); + Kind = CastExpr::CK_NoOp; + return false; + } + + if (castType->isUnionType()) { + // GCC cast to union extension + RecordDecl *RD = castType->getAs<RecordType>()->getDecl(); + RecordDecl::field_iterator Field, FieldEnd; + for (Field = RD->field_begin(), FieldEnd = RD->field_end(); + Field != FieldEnd; ++Field) { + if (Context.hasSameUnqualifiedType(Field->getType(), + castExpr->getType())) { + Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union) + << castExpr->getSourceRange(); + break; + } + } + if (Field == FieldEnd) + return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type) + << castExpr->getType() << castExpr->getSourceRange(); + Kind = CastExpr::CK_ToUnion; + return false; + } + + // Reject any other conversions to non-scalar types. + return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar) + << castType << castExpr->getSourceRange(); + } + + if (!castExpr->getType()->isScalarType() && + !castExpr->getType()->isVectorType()) { + return Diag(castExpr->getLocStart(), + diag::err_typecheck_expect_scalar_operand) + << castExpr->getType() << castExpr->getSourceRange(); + } + + if (castType->isExtVectorType()) + return CheckExtVectorCast(TyR, castType, castExpr, Kind); + + if (castType->isVectorType()) + return CheckVectorCast(TyR, castType, castExpr->getType(), Kind); + if (castExpr->getType()->isVectorType()) + return CheckVectorCast(TyR, castExpr->getType(), castType, Kind); + + if (isa<ObjCSelectorExpr>(castExpr)) + return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr); + + if (!castType->isArithmeticType()) { + QualType castExprType = castExpr->getType(); + if (!castExprType->isIntegralType() && castExprType->isArithmeticType()) + return Diag(castExpr->getLocStart(), + diag::err_cast_pointer_from_non_pointer_int) + << castExprType << castExpr->getSourceRange(); + } else if (!castExpr->getType()->isArithmeticType()) { + if (!castType->isIntegralType() && castType->isArithmeticType()) + return Diag(castExpr->getLocStart(), + diag::err_cast_pointer_to_non_pointer_int) + << castType << castExpr->getSourceRange(); + } + + Kind = getScalarCastKind(Context, castExpr->getType(), castType); + return false; +} + +bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty, + CastExpr::CastKind &Kind) { + assert(VectorTy->isVectorType() && "Not a vector type!"); + + if (Ty->isVectorType() || Ty->isIntegerType()) { + if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty)) + return Diag(R.getBegin(), + Ty->isVectorType() ? + diag::err_invalid_conversion_between_vectors : + diag::err_invalid_conversion_between_vector_and_integer) + << VectorTy << Ty << R; + } else + return Diag(R.getBegin(), + diag::err_invalid_conversion_between_vector_and_scalar) + << VectorTy << Ty << R; + + Kind = CastExpr::CK_BitCast; + return false; +} + +bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *&CastExpr, + CastExpr::CastKind &Kind) { + assert(DestTy->isExtVectorType() && "Not an extended vector type!"); + + QualType SrcTy = CastExpr->getType(); + + // If SrcTy is a VectorType, the total size must match to explicitly cast to + // an ExtVectorType. + if (SrcTy->isVectorType()) { + if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy)) + return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors) + << DestTy << SrcTy << R; + Kind = CastExpr::CK_BitCast; + return false; + } + + // All non-pointer scalars can be cast to ExtVector type. The appropriate + // conversion will take place first from scalar to elt type, and then + // splat from elt type to vector. + if (SrcTy->isPointerType()) + return Diag(R.getBegin(), + diag::err_invalid_conversion_between_vector_and_scalar) + << DestTy << SrcTy << R; + + QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType(); + ImpCastExprToType(CastExpr, DestElemTy, + getScalarCastKind(Context, SrcTy, DestElemTy)); + + Kind = CastExpr::CK_VectorSplat; + return false; +} + +Action::OwningExprResult +Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, TypeTy *Ty, + SourceLocation RParenLoc, ExprArg Op) { + assert((Ty != 0) && (Op.get() != 0) && + "ActOnCastExpr(): missing type or expr"); + + TypeSourceInfo *castTInfo; + QualType castType = GetTypeFromParser(Ty, &castTInfo); + if (!castTInfo) + castTInfo = Context.getTrivialTypeSourceInfo(castType); + + // If the Expr being casted is a ParenListExpr, handle it specially. + Expr *castExpr = (Expr *)Op.get(); + if (isa<ParenListExpr>(castExpr)) + return ActOnCastOfParenListExpr(S, LParenLoc, RParenLoc, move(Op), + castTInfo); + + return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, move(Op)); +} + +Action::OwningExprResult +Sema::BuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *Ty, + SourceLocation RParenLoc, ExprArg Op) { + Expr *castExpr = static_cast<Expr*>(Op.get()); + + CastExpr::CastKind Kind = CastExpr::CK_Unknown; + CXXBaseSpecifierArray BasePath; + if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), Ty->getType(), castExpr, + Kind, BasePath)) + return ExprError(); + + Op.release(); + return Owned(new (Context) CStyleCastExpr(Ty->getType().getNonReferenceType(), + Kind, castExpr, BasePath, Ty, + LParenLoc, RParenLoc)); +} + +/// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence +/// of comma binary operators. +Action::OwningExprResult +Sema::MaybeConvertParenListExprToParenExpr(Scope *S, ExprArg EA) { + Expr *expr = EA.takeAs<Expr>(); + ParenListExpr *E = dyn_cast<ParenListExpr>(expr); + if (!E) + return Owned(expr); + + OwningExprResult Result(*this, E->getExpr(0)); + + for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i) + Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, move(Result), + Owned(E->getExpr(i))); + + return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), move(Result)); +} + +Action::OwningExprResult +Sema::ActOnCastOfParenListExpr(Scope *S, SourceLocation LParenLoc, + SourceLocation RParenLoc, ExprArg Op, + TypeSourceInfo *TInfo) { + ParenListExpr *PE = (ParenListExpr *)Op.get(); + QualType Ty = TInfo->getType(); + + // If this is an altivec initializer, '(' type ')' '(' init, ..., init ')' + // then handle it as such. + if (getLangOptions().AltiVec && Ty->isVectorType()) { + if (PE->getNumExprs() == 0) { + Diag(PE->getExprLoc(), diag::err_altivec_empty_initializer); + return ExprError(); + } + + llvm::SmallVector<Expr *, 8> initExprs; + for (unsigned i = 0, e = PE->getNumExprs(); i != e; ++i) + initExprs.push_back(PE->getExpr(i)); + + // FIXME: This means that pretty-printing the final AST will produce curly + // braces instead of the original commas. + Op.release(); + InitListExpr *E = new (Context) InitListExpr(Context, LParenLoc, + &initExprs[0], + initExprs.size(), RParenLoc); + E->setType(Ty); + return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, Owned(E)); + } else { + // This is not an AltiVec-style cast, so turn the ParenListExpr into a + // sequence of BinOp comma operators. + Op = MaybeConvertParenListExprToParenExpr(S, move(Op)); + return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, move(Op)); + } +} + +Action::OwningExprResult Sema::ActOnParenOrParenListExpr(SourceLocation L, + SourceLocation R, + MultiExprArg Val, + TypeTy *TypeOfCast) { + unsigned nexprs = Val.size(); + Expr **exprs = reinterpret_cast<Expr**>(Val.release()); + assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list"); + Expr *expr; + if (nexprs == 1 && TypeOfCast && !TypeIsVectorType(TypeOfCast)) + expr = new (Context) ParenExpr(L, R, exprs[0]); + else + expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R); + return Owned(expr); +} + +/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension. +/// In that case, lhs = cond. +/// C99 6.5.15 +QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS, + SourceLocation QuestionLoc) { + // C++ is sufficiently different to merit its own checker. + if (getLangOptions().CPlusPlus) + return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc); + + UsualUnaryConversions(Cond); + UsualUnaryConversions(LHS); + UsualUnaryConversions(RHS); + QualType CondTy = Cond->getType(); + QualType LHSTy = LHS->getType(); + QualType RHSTy = RHS->getType(); + + // first, check the condition. + if (!CondTy->isScalarType()) { // C99 6.5.15p2 + Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar) + << CondTy; + return QualType(); + } + + // Now check the two expressions. + if (LHSTy->isVectorType() || RHSTy->isVectorType()) + return CheckVectorOperands(QuestionLoc, LHS, RHS); + + // If both operands have arithmetic type, do the usual arithmetic conversions + // to find a common type: C99 6.5.15p3,5. + if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) { + UsualArithmeticConversions(LHS, RHS); + return LHS->getType(); + } + + // If both operands are the same structure or union type, the result is that + // type. + if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3 + if (const RecordType *RHSRT = RHSTy->getAs<RecordType>()) + if (LHSRT->getDecl() == RHSRT->getDecl()) + // "If both the operands have structure or union type, the result has + // that type." This implies that CV qualifiers are dropped. + return LHSTy.getUnqualifiedType(); + // FIXME: Type of conditional expression must be complete in C mode. + } + + // C99 6.5.15p5: "If both operands have void type, the result has void type." + // The following || allows only one side to be void (a GCC-ism). + if (LHSTy->isVoidType() || RHSTy->isVoidType()) { + if (!LHSTy->isVoidType()) + Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void) + << RHS->getSourceRange(); + if (!RHSTy->isVoidType()) + Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void) + << LHS->getSourceRange(); + ImpCastExprToType(LHS, Context.VoidTy, CastExpr::CK_ToVoid); + ImpCastExprToType(RHS, Context.VoidTy, CastExpr::CK_ToVoid); + return Context.VoidTy; + } + // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has + // the type of the other operand." + if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) && + RHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { + // promote the null to a pointer. + ImpCastExprToType(RHS, LHSTy, CastExpr::CK_Unknown); + return LHSTy; + } + if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) && + LHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { + ImpCastExprToType(LHS, RHSTy, CastExpr::CK_Unknown); + return RHSTy; + } + + // All objective-c pointer type analysis is done here. + QualType compositeType = FindCompositeObjCPointerType(LHS, RHS, + QuestionLoc); + if (!compositeType.isNull()) + return compositeType; + + + // Handle block pointer types. + if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) { + if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) { + if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) { + QualType destType = Context.getPointerType(Context.VoidTy); + ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast); + ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast); + return destType; + } + Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) + << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange(); + return QualType(); + } + // We have 2 block pointer types. + if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) { + // Two identical block pointer types are always compatible. + return LHSTy; + } + // The block pointer types aren't identical, continue checking. + QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType(); + QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType(); + + if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(), + rhptee.getUnqualifiedType())) { + Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers) + << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange(); + // In this situation, we assume void* type. No especially good + // reason, but this is what gcc does, and we do have to pick + // to get a consistent AST. + QualType incompatTy = Context.getPointerType(Context.VoidTy); + ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast); + ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast); + return incompatTy; + } + // The block pointer types are compatible. + ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast); + ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast); + return LHSTy; + } + + // Check constraints for C object pointers types (C99 6.5.15p3,6). + if (LHSTy->isPointerType() && RHSTy->isPointerType()) { + // get the "pointed to" types + QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType(); + QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType(); + + // ignore qualifiers on void (C99 6.5.15p3, clause 6) + if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) { + // Figure out necessary qualifiers (C99 6.5.15p6) + QualType destPointee + = Context.getQualifiedType(lhptee, rhptee.getQualifiers()); + QualType destType = Context.getPointerType(destPointee); + // Add qualifiers if necessary. + ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp); + // Promote to void*. + ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast); + return destType; + } + if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) { + QualType destPointee + = Context.getQualifiedType(rhptee, lhptee.getQualifiers()); + QualType destType = Context.getPointerType(destPointee); + // Add qualifiers if necessary. + ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp); + // Promote to void*. + ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast); + return destType; + } + + if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) { + // Two identical pointer types are always compatible. + return LHSTy; + } + if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(), + rhptee.getUnqualifiedType())) { + Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers) + << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange(); + // In this situation, we assume void* type. No especially good + // reason, but this is what gcc does, and we do have to pick + // to get a consistent AST. + QualType incompatTy = Context.getPointerType(Context.VoidTy); + ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast); + ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast); + return incompatTy; + } + // The pointer types are compatible. + // C99 6.5.15p6: If both operands are pointers to compatible types *or* to + // differently qualified versions of compatible types, the result type is + // a pointer to an appropriately qualified version of the *composite* + // type. + // FIXME: Need to calculate the composite type. + // FIXME: Need to add qualifiers + ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast); + ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast); + return LHSTy; + } + + // GCC compatibility: soften pointer/integer mismatch. + if (RHSTy->isPointerType() && LHSTy->isIntegerType()) { + Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch) + << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange(); + ImpCastExprToType(LHS, RHSTy, CastExpr::CK_IntegralToPointer); + return RHSTy; + } + if (LHSTy->isPointerType() && RHSTy->isIntegerType()) { + Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch) + << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange(); + ImpCastExprToType(RHS, LHSTy, CastExpr::CK_IntegralToPointer); + return LHSTy; + } + + // Otherwise, the operands are not compatible. + Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) + << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange(); + return QualType(); +} + +/// FindCompositeObjCPointerType - Helper method to find composite type of +/// two objective-c pointer types of the two input expressions. +QualType Sema::FindCompositeObjCPointerType(Expr *&LHS, Expr *&RHS, + SourceLocation QuestionLoc) { + QualType LHSTy = LHS->getType(); + QualType RHSTy = RHS->getType(); + + // Handle things like Class and struct objc_class*. Here we case the result + // to the pseudo-builtin, because that will be implicitly cast back to the + // redefinition type if an attempt is made to access its fields. + if (LHSTy->isObjCClassType() && + (RHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) { + ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast); + return LHSTy; + } + if (RHSTy->isObjCClassType() && + (LHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) { + ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast); + return RHSTy; + } + // And the same for struct objc_object* / id + if (LHSTy->isObjCIdType() && + (RHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) { + ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast); + return LHSTy; + } + if (RHSTy->isObjCIdType() && + (LHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) { + ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast); + return RHSTy; + } + // And the same for struct objc_selector* / SEL + if (Context.isObjCSelType(LHSTy) && + (RHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) { + ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast); + return LHSTy; + } + if (Context.isObjCSelType(RHSTy) && + (LHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) { + ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast); + return RHSTy; + } + // Check constraints for Objective-C object pointers types. + if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) { + + if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) { + // Two identical object pointer types are always compatible. + return LHSTy; + } + const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>(); + const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>(); + QualType compositeType = LHSTy; + + // If both operands are interfaces and either operand can be + // assigned to the other, use that type as the composite + // type. This allows + // xxx ? (A*) a : (B*) b + // where B is a subclass of A. + // + // Additionally, as for assignment, if either type is 'id' + // allow silent coercion. Finally, if the types are + // incompatible then make sure to use 'id' as the composite + // type so the result is acceptable for sending messages to. + + // FIXME: Consider unifying with 'areComparableObjCPointerTypes'. + // It could return the composite type. + if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) { + compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy; + } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) { + compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy; + } else if ((LHSTy->isObjCQualifiedIdType() || + RHSTy->isObjCQualifiedIdType()) && + Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) { + // Need to handle "id<xx>" explicitly. + // GCC allows qualified id and any Objective-C type to devolve to + // id. Currently localizing to here until clear this should be + // part of ObjCQualifiedIdTypesAreCompatible. + compositeType = Context.getObjCIdType(); + } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) { + compositeType = Context.getObjCIdType(); + } else if (!(compositeType = + Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) + ; + else { + Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands) + << LHSTy << RHSTy + << LHS->getSourceRange() << RHS->getSourceRange(); + QualType incompatTy = Context.getObjCIdType(); + ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast); + ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast); + return incompatTy; + } + // The object pointer types are compatible. + ImpCastExprToType(LHS, compositeType, CastExpr::CK_BitCast); + ImpCastExprToType(RHS, compositeType, CastExpr::CK_BitCast); + return compositeType; + } + // Check Objective-C object pointer types and 'void *' + if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) { + QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType(); + QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType(); + QualType destPointee + = Context.getQualifiedType(lhptee, rhptee.getQualifiers()); + QualType destType = Context.getPointerType(destPointee); + // Add qualifiers if necessary. + ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp); + // Promote to void*. + ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast); + return destType; + } + if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) { + QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType(); + QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType(); + QualType destPointee + = Context.getQualifiedType(rhptee, lhptee.getQualifiers()); + QualType destType = Context.getPointerType(destPointee); + // Add qualifiers if necessary. + ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp); + // Promote to void*. + ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast); + return destType; + } + return QualType(); +} + +/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null +/// in the case of a the GNU conditional expr extension. +Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc, + SourceLocation ColonLoc, + ExprArg Cond, ExprArg LHS, + ExprArg RHS) { + Expr *CondExpr = (Expr *) Cond.get(); + Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get(); + + // If this is the gnu "x ?: y" extension, analyze the types as though the LHS + // was the condition. + bool isLHSNull = LHSExpr == 0; + if (isLHSNull) + LHSExpr = CondExpr; + + QualType result = CheckConditionalOperands(CondExpr, LHSExpr, + RHSExpr, QuestionLoc); + if (result.isNull()) + return ExprError(); + + Cond.release(); + LHS.release(); + RHS.release(); + return Owned(new (Context) ConditionalOperator(CondExpr, QuestionLoc, + isLHSNull ? 0 : LHSExpr, + ColonLoc, RHSExpr, result)); +} + +// CheckPointerTypesForAssignment - This is a very tricky routine (despite +// being closely modeled after the C99 spec:-). The odd characteristic of this +// routine is it effectively iqnores the qualifiers on the top level pointee. +// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3]. +// FIXME: add a couple examples in this comment. +Sema::AssignConvertType +Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) { + QualType lhptee, rhptee; + + if ((lhsType->isObjCClassType() && + (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) || + (rhsType->isObjCClassType() && + (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) { + return Compatible; + } + + // get the "pointed to" type (ignoring qualifiers at the top level) + lhptee = lhsType->getAs<PointerType>()->getPointeeType(); + rhptee = rhsType->getAs<PointerType>()->getPointeeType(); + + // make sure we operate on the canonical type + lhptee = Context.getCanonicalType(lhptee); + rhptee = Context.getCanonicalType(rhptee); + + AssignConvertType ConvTy = Compatible; + + // C99 6.5.16.1p1: This following citation is common to constraints + // 3 & 4 (below). ...and the type *pointed to* by the left has all the + // qualifiers of the type *pointed to* by the right; + // FIXME: Handle ExtQualType + if (!lhptee.isAtLeastAsQualifiedAs(rhptee)) + ConvTy = CompatiblePointerDiscardsQualifiers; + + // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or + // incomplete type and the other is a pointer to a qualified or unqualified + // version of void... + if (lhptee->isVoidType()) { + if (rhptee->isIncompleteOrObjectType()) + return ConvTy; + + // As an extension, we allow cast to/from void* to function pointer. + assert(rhptee->isFunctionType()); + return FunctionVoidPointer; + } + + if (rhptee->isVoidType()) { + if (lhptee->isIncompleteOrObjectType()) + return ConvTy; + + // As an extension, we allow cast to/from void* to function pointer. + assert(lhptee->isFunctionType()); + return FunctionVoidPointer; + } + // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or + // unqualified versions of compatible types, ... + lhptee = lhptee.getUnqualifiedType(); + rhptee = rhptee.getUnqualifiedType(); + if (!Context.typesAreCompatible(lhptee, rhptee)) { + // Check if the pointee types are compatible ignoring the sign. + // We explicitly check for char so that we catch "char" vs + // "unsigned char" on systems where "char" is unsigned. + if (lhptee->isCharType()) + lhptee = Context.UnsignedCharTy; + else if (lhptee->isSignedIntegerType()) + lhptee = Context.getCorrespondingUnsignedType(lhptee); + + if (rhptee->isCharType()) + rhptee = Context.UnsignedCharTy; + else if (rhptee->isSignedIntegerType()) + rhptee = Context.getCorrespondingUnsignedType(rhptee); + + if (lhptee == rhptee) { + // Types are compatible ignoring the sign. Qualifier incompatibility + // takes priority over sign incompatibility because the sign + // warning can be disabled. + if (ConvTy != Compatible) + return ConvTy; + return IncompatiblePointerSign; + } + + // If we are a multi-level pointer, it's possible that our issue is simply + // one of qualification - e.g. char ** -> const char ** is not allowed. If + // the eventual target type is the same and the pointers have the same + // level of indirection, this must be the issue. + if (lhptee->isPointerType() && rhptee->isPointerType()) { + do { + lhptee = lhptee->getAs<PointerType>()->getPointeeType(); + rhptee = rhptee->getAs<PointerType>()->getPointeeType(); + + lhptee = Context.getCanonicalType(lhptee); + rhptee = Context.getCanonicalType(rhptee); + } while (lhptee->isPointerType() && rhptee->isPointerType()); + + if (Context.hasSameUnqualifiedType(lhptee, rhptee)) + return IncompatibleNestedPointerQualifiers; + } + + // General pointer incompatibility takes priority over qualifiers. + return IncompatiblePointer; + } + return ConvTy; +} + +/// CheckBlockPointerTypesForAssignment - This routine determines whether two +/// block pointer types are compatible or whether a block and normal pointer +/// are compatible. It is more restrict than comparing two function pointer +// types. +Sema::AssignConvertType +Sema::CheckBlockPointerTypesForAssignment(QualType lhsType, + QualType rhsType) { + QualType lhptee, rhptee; + + // get the "pointed to" type (ignoring qualifiers at the top level) + lhptee = lhsType->getAs<BlockPointerType>()->getPointeeType(); + rhptee = rhsType->getAs<BlockPointerType>()->getPointeeType(); + + // make sure we operate on the canonical type + lhptee = Context.getCanonicalType(lhptee); + rhptee = Context.getCanonicalType(rhptee); + + AssignConvertType ConvTy = Compatible; + + // For blocks we enforce that qualifiers are identical. + if (lhptee.getLocalCVRQualifiers() != rhptee.getLocalCVRQualifiers()) + ConvTy = CompatiblePointerDiscardsQualifiers; + + if (!getLangOptions().CPlusPlus) { + if (!Context.typesAreBlockPointerCompatible(lhsType, rhsType)) + return IncompatibleBlockPointer; + } + else if (!Context.typesAreCompatible(lhptee, rhptee)) + return IncompatibleBlockPointer; + return ConvTy; +} + +/// CheckObjCPointerTypesForAssignment - Compares two objective-c pointer types +/// for assignment compatibility. +Sema::AssignConvertType +Sema::CheckObjCPointerTypesForAssignment(QualType lhsType, QualType rhsType) { + if (lhsType->isObjCBuiltinType()) { + // Class is not compatible with ObjC object pointers. + if (lhsType->isObjCClassType() && !rhsType->isObjCBuiltinType() && + !rhsType->isObjCQualifiedClassType()) + return IncompatiblePointer; + return Compatible; + } + if (rhsType->isObjCBuiltinType()) { + // Class is not compatible with ObjC object pointers. + if (rhsType->isObjCClassType() && !lhsType->isObjCBuiltinType() && + !lhsType->isObjCQualifiedClassType()) + return IncompatiblePointer; + return Compatible; + } + QualType lhptee = + lhsType->getAs<ObjCObjectPointerType>()->getPointeeType(); + QualType rhptee = + rhsType->getAs<ObjCObjectPointerType>()->getPointeeType(); + // make sure we operate on the canonical type + lhptee = Context.getCanonicalType(lhptee); + rhptee = Context.getCanonicalType(rhptee); + if (!lhptee.isAtLeastAsQualifiedAs(rhptee)) + return CompatiblePointerDiscardsQualifiers; + + if (Context.typesAreCompatible(lhsType, rhsType)) + return Compatible; + if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) + return IncompatibleObjCQualifiedId; + return IncompatiblePointer; +} + +/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently +/// has code to accommodate several GCC extensions when type checking +/// pointers. Here are some objectionable examples that GCC considers warnings: +/// +/// int a, *pint; +/// short *pshort; +/// struct foo *pfoo; +/// +/// pint = pshort; // warning: assignment from incompatible pointer type +/// a = pint; // warning: assignment makes integer from pointer without a cast +/// pint = a; // warning: assignment makes pointer from integer without a cast +/// pint = pfoo; // warning: assignment from incompatible pointer type +/// +/// As a result, the code for dealing with pointers is more complex than the +/// C99 spec dictates. +/// +Sema::AssignConvertType +Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) { + // Get canonical types. We're not formatting these types, just comparing + // them. + lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType(); + rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType(); + + if (lhsType == rhsType) + return Compatible; // Common case: fast path an exact match. + + if ((lhsType->isObjCClassType() && + (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) || + (rhsType->isObjCClassType() && + (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) { + return Compatible; + } + + // If the left-hand side is a reference type, then we are in a + // (rare!) case where we've allowed the use of references in C, + // e.g., as a parameter type in a built-in function. In this case, + // just make sure that the type referenced is compatible with the + // right-hand side type. The caller is responsible for adjusting + // lhsType so that the resulting expression does not have reference + // type. + if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) { + if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType)) + return Compatible; + return Incompatible; + } + // Allow scalar to ExtVector assignments, and assignments of an ExtVector type + // to the same ExtVector type. + if (lhsType->isExtVectorType()) { + if (rhsType->isExtVectorType()) + return lhsType == rhsType ? Compatible : Incompatible; + if (!rhsType->isVectorType() && rhsType->isArithmeticType()) + return Compatible; + } + + if (lhsType->isVectorType() || rhsType->isVectorType()) { + // If we are allowing lax vector conversions, and LHS and RHS are both + // vectors, the total size only needs to be the same. This is a bitcast; + // no bits are changed but the result type is different. + if (getLangOptions().LaxVectorConversions && + lhsType->isVectorType() && rhsType->isVectorType()) { + if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType)) + return IncompatibleVectors; + } + return Incompatible; + } + + if (lhsType->isArithmeticType() && rhsType->isArithmeticType() && + !(getLangOptions().CPlusPlus && lhsType->isEnumeralType())) + return Compatible; + + if (isa<PointerType>(lhsType)) { + if (rhsType->isIntegerType()) + return IntToPointer; + + if (isa<PointerType>(rhsType)) + return CheckPointerTypesForAssignment(lhsType, rhsType); + + // In general, C pointers are not compatible with ObjC object pointers. + if (isa<ObjCObjectPointerType>(rhsType)) { + if (lhsType->isVoidPointerType()) // an exception to the rule. + return Compatible; + return IncompatiblePointer; + } + if (rhsType->getAs<BlockPointerType>()) { + if (lhsType->getAs<PointerType>()->getPointeeType()->isVoidType()) + return Compatible; + + // Treat block pointers as objects. + if (getLangOptions().ObjC1 && lhsType->isObjCIdType()) + return Compatible; + } + return Incompatible; + } + + if (isa<BlockPointerType>(lhsType)) { + if (rhsType->isIntegerType()) + return IntToBlockPointer; + + // Treat block pointers as objects. + if (getLangOptions().ObjC1 && rhsType->isObjCIdType()) + return Compatible; + + if (rhsType->isBlockPointerType()) + return CheckBlockPointerTypesForAssignment(lhsType, rhsType); + + if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) { + if (RHSPT->getPointeeType()->isVoidType()) + return Compatible; + } + return Incompatible; + } + + if (isa<ObjCObjectPointerType>(lhsType)) { + if (rhsType->isIntegerType()) + return IntToPointer; + + // In general, C pointers are not compatible with ObjC object pointers. + if (isa<PointerType>(rhsType)) { + if (rhsType->isVoidPointerType()) // an exception to the rule. + return Compatible; + return IncompatiblePointer; + } + if (rhsType->isObjCObjectPointerType()) { + return CheckObjCPointerTypesForAssignment(lhsType, rhsType); + } + if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) { + if (RHSPT->getPointeeType()->isVoidType()) + return Compatible; + } + // Treat block pointers as objects. + if (rhsType->isBlockPointerType()) + return Compatible; + return Incompatible; + } + if (isa<PointerType>(rhsType)) { + // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer. + if (lhsType == Context.BoolTy) + return Compatible; + + if (lhsType->isIntegerType()) + return PointerToInt; + + if (isa<PointerType>(lhsType)) + return CheckPointerTypesForAssignment(lhsType, rhsType); + + if (isa<BlockPointerType>(lhsType) && + rhsType->getAs<PointerType>()->getPointeeType()->isVoidType()) + return Compatible; + return Incompatible; + } + if (isa<ObjCObjectPointerType>(rhsType)) { + // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer. + if (lhsType == Context.BoolTy) + return Compatible; + + if (lhsType->isIntegerType()) + return PointerToInt; + + // In general, C pointers are not compatible with ObjC object pointers. + if (isa<PointerType>(lhsType)) { + if (lhsType->isVoidPointerType()) // an exception to the rule. + return Compatible; + return IncompatiblePointer; + } + if (isa<BlockPointerType>(lhsType) && + rhsType->getAs<PointerType>()->getPointeeType()->isVoidType()) + return Compatible; + return Incompatible; + } + + if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) { + if (Context.typesAreCompatible(lhsType, rhsType)) + return Compatible; + } + return Incompatible; +} + +/// \brief Constructs a transparent union from an expression that is +/// used to initialize the transparent union. +static void ConstructTransparentUnion(ASTContext &C, Expr *&E, + QualType UnionType, FieldDecl *Field) { + // Build an initializer list that designates the appropriate member + // of the transparent union. + InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(), + &E, 1, + SourceLocation()); + Initializer->setType(UnionType); + Initializer->setInitializedFieldInUnion(Field); + + // Build a compound literal constructing a value of the transparent + // union type from this initializer list. + TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType); + E = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType, + Initializer, false); +} + +Sema::AssignConvertType +Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) { + QualType FromType = rExpr->getType(); + + // If the ArgType is a Union type, we want to handle a potential + // transparent_union GCC extension. + const RecordType *UT = ArgType->getAsUnionType(); + if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>()) + return Incompatible; + + // The field to initialize within the transparent union. + RecordDecl *UD = UT->getDecl(); + FieldDecl *InitField = 0; + // It's compatible if the expression matches any of the fields. + for (RecordDecl::field_iterator it = UD->field_begin(), + itend = UD->field_end(); + it != itend; ++it) { + if (it->getType()->isPointerType()) { + // If the transparent union contains a pointer type, we allow: + // 1) void pointer + // 2) null pointer constant + if (FromType->isPointerType()) + if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) { + ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_BitCast); + InitField = *it; + break; + } + + if (rExpr->isNullPointerConstant(Context, + Expr::NPC_ValueDependentIsNull)) { + ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_IntegralToPointer); + InitField = *it; + break; + } + } + + if (CheckAssignmentConstraints(it->getType(), rExpr->getType()) + == Compatible) { + InitField = *it; + break; + } + } + + if (!InitField) + return Incompatible; + + ConstructTransparentUnion(Context, rExpr, ArgType, InitField); + return Compatible; +} + +Sema::AssignConvertType +Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) { + if (getLangOptions().CPlusPlus) { + if (!lhsType->isRecordType()) { + // C++ 5.17p3: If the left operand is not of class type, the + // expression is implicitly converted (C++ 4) to the + // cv-unqualified type of the left operand. + if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(), + AA_Assigning)) + return Incompatible; + return Compatible; + } + + // FIXME: Currently, we fall through and treat C++ classes like C + // structures. + } + + // C99 6.5.16.1p1: the left operand is a pointer and the right is + // a null pointer constant. + if ((lhsType->isPointerType() || + lhsType->isObjCObjectPointerType() || + lhsType->isBlockPointerType()) + && rExpr->isNullPointerConstant(Context, + Expr::NPC_ValueDependentIsNull)) { + ImpCastExprToType(rExpr, lhsType, CastExpr::CK_Unknown); + return Compatible; + } + + // This check seems unnatural, however it is necessary to ensure the proper + // conversion of functions/arrays. If the conversion were done for all + // DeclExpr's (created by ActOnIdExpression), it would mess up the unary + // expressions that surpress this implicit conversion (&, sizeof). + // + // Suppress this for references: C++ 8.5.3p5. + if (!lhsType->isReferenceType()) + DefaultFunctionArrayLvalueConversion(rExpr); + + Sema::AssignConvertType result = + CheckAssignmentConstraints(lhsType, rExpr->getType()); + + // C99 6.5.16.1p2: The value of the right operand is converted to the + // type of the assignment expression. + // CheckAssignmentConstraints allows the left-hand side to be a reference, + // so that we can use references in built-in functions even in C. + // The getNonReferenceType() call makes sure that the resulting expression + // does not have reference type. + if (result != Incompatible && rExpr->getType() != lhsType) + ImpCastExprToType(rExpr, lhsType.getNonReferenceType(), + CastExpr::CK_Unknown); + return result; +} + +QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) { + Diag(Loc, diag::err_typecheck_invalid_operands) + << lex->getType() << rex->getType() + << lex->getSourceRange() << rex->getSourceRange(); + return QualType(); +} + +QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) { + // For conversion purposes, we ignore any qualifiers. + // For example, "const float" and "float" are equivalent. + QualType lhsType = + Context.getCanonicalType(lex->getType()).getUnqualifiedType(); + QualType rhsType = + Context.getCanonicalType(rex->getType()).getUnqualifiedType(); + + // If the vector types are identical, return. + if (lhsType == rhsType) + return lhsType; + + // Handle the case of a vector & extvector type of the same size and element + // type. It would be nice if we only had one vector type someday. + if (getLangOptions().LaxVectorConversions) { + // FIXME: Should we warn here? + if (const VectorType *LV = lhsType->getAs<VectorType>()) { + if (const VectorType *RV = rhsType->getAs<VectorType>()) + if (LV->getElementType() == RV->getElementType() && + LV->getNumElements() == RV->getNumElements()) { + if (lhsType->isExtVectorType()) { + ImpCastExprToType(rex, lhsType, CastExpr::CK_BitCast); + return lhsType; + } + + ImpCastExprToType(lex, rhsType, CastExpr::CK_BitCast); + return rhsType; + } + } + } + + // Canonicalize the ExtVector to the LHS, remember if we swapped so we can + // swap back (so that we don't reverse the inputs to a subtract, for instance. + bool swapped = false; + if (rhsType->isExtVectorType()) { + swapped = true; + std::swap(rex, lex); + std::swap(rhsType, lhsType); + } + + // Handle the case of an ext vector and scalar. + if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) { + QualType EltTy = LV->getElementType(); + if (EltTy->isIntegralType() && rhsType->isIntegralType()) { + if (Context.getIntegerTypeOrder(EltTy, rhsType) >= 0) { + ImpCastExprToType(rex, lhsType, CastExpr::CK_IntegralCast); + if (swapped) std::swap(rex, lex); + return lhsType; + } + } + if (EltTy->isRealFloatingType() && rhsType->isScalarType() && + rhsType->isRealFloatingType()) { + if (Context.getFloatingTypeOrder(EltTy, rhsType) >= 0) { + ImpCastExprToType(rex, lhsType, CastExpr::CK_FloatingCast); + if (swapped) std::swap(rex, lex); + return lhsType; + } + } + } + + // Vectors of different size or scalar and non-ext-vector are errors. + Diag(Loc, diag::err_typecheck_vector_not_convertable) + << lex->getType() << rex->getType() + << lex->getSourceRange() << rex->getSourceRange(); + return QualType(); +} + +QualType Sema::CheckMultiplyDivideOperands( + Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign, bool isDiv) { + if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) + return CheckVectorOperands(Loc, lex, rex); + + QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); + + if (!lex->getType()->isArithmeticType() || + !rex->getType()->isArithmeticType()) + return InvalidOperands(Loc, lex, rex); + + // Check for division by zero. + if (isDiv && + rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull)) + DiagRuntimeBehavior(Loc, PDiag(diag::warn_division_by_zero) + << rex->getSourceRange()); + + return compType; +} + +QualType Sema::CheckRemainderOperands( + Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) { + if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) { + if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType()) + return CheckVectorOperands(Loc, lex, rex); + return InvalidOperands(Loc, lex, rex); + } + + QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); + + if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType()) + return InvalidOperands(Loc, lex, rex); + + // Check for remainder by zero. + if (rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull)) + DiagRuntimeBehavior(Loc, PDiag(diag::warn_remainder_by_zero) + << rex->getSourceRange()); + + return compType; +} + +QualType Sema::CheckAdditionOperands( // C99 6.5.6 + Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy) { + if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) { + QualType compType = CheckVectorOperands(Loc, lex, rex); + if (CompLHSTy) *CompLHSTy = compType; + return compType; + } + + QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy); + + // handle the common case first (both operands are arithmetic). + if (lex->getType()->isArithmeticType() && + rex->getType()->isArithmeticType()) { + if (CompLHSTy) *CompLHSTy = compType; + return compType; + } + + // Put any potential pointer into PExp + Expr* PExp = lex, *IExp = rex; + if (IExp->getType()->isAnyPointerType()) + std::swap(PExp, IExp); + + if (PExp->getType()->isAnyPointerType()) { + + if (IExp->getType()->isIntegerType()) { + QualType PointeeTy = PExp->getType()->getPointeeType(); + + // Check for arithmetic on pointers to incomplete types. + if (PointeeTy->isVoidType()) { + if (getLangOptions().CPlusPlus) { + Diag(Loc, diag::err_typecheck_pointer_arith_void_type) + << lex->getSourceRange() << rex->getSourceRange(); + return QualType(); + } + + // GNU extension: arithmetic on pointer to void + Diag(Loc, diag::ext_gnu_void_ptr) + << lex->getSourceRange() << rex->getSourceRange(); + } else if (PointeeTy->isFunctionType()) { + if (getLangOptions().CPlusPlus) { + Diag(Loc, diag::err_typecheck_pointer_arith_function_type) + << lex->getType() << lex->getSourceRange(); + return QualType(); + } + + // GNU extension: arithmetic on pointer to function + Diag(Loc, diag::ext_gnu_ptr_func_arith) + << lex->getType() << lex->getSourceRange(); + } else { + // Check if we require a complete type. + if (((PExp->getType()->isPointerType() && + !PExp->getType()->isDependentType()) || + PExp->getType()->isObjCObjectPointerType()) && + RequireCompleteType(Loc, PointeeTy, + PDiag(diag::err_typecheck_arithmetic_incomplete_type) + << PExp->getSourceRange() + << PExp->getType())) + return QualType(); + } + // Diagnose bad cases where we step over interface counts. + if (PointeeTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) { + Diag(Loc, diag::err_arithmetic_nonfragile_interface) + << PointeeTy << PExp->getSourceRange(); + return QualType(); + } + + if (CompLHSTy) { + QualType LHSTy = Context.isPromotableBitField(lex); + if (LHSTy.isNull()) { + LHSTy = lex->getType(); + if (LHSTy->isPromotableIntegerType()) + LHSTy = Context.getPromotedIntegerType(LHSTy); + } + *CompLHSTy = LHSTy; + } + return PExp->getType(); + } + } + + return InvalidOperands(Loc, lex, rex); +} + +// C99 6.5.6 +QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex, + SourceLocation Loc, QualType* CompLHSTy) { + if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) { + QualType compType = CheckVectorOperands(Loc, lex, rex); + if (CompLHSTy) *CompLHSTy = compType; + return compType; + } + + QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy); + + // Enforce type constraints: C99 6.5.6p3. + + // Handle the common case first (both operands are arithmetic). + if (lex->getType()->isArithmeticType() + && rex->getType()->isArithmeticType()) { + if (CompLHSTy) *CompLHSTy = compType; + return compType; + } + + // Either ptr - int or ptr - ptr. + if (lex->getType()->isAnyPointerType()) { + QualType lpointee = lex->getType()->getPointeeType(); + + // The LHS must be an completely-defined object type. + + bool ComplainAboutVoid = false; + Expr *ComplainAboutFunc = 0; + if (lpointee->isVoidType()) { + if (getLangOptions().CPlusPlus) { + Diag(Loc, diag::err_typecheck_pointer_arith_void_type) + << lex->getSourceRange() << rex->getSourceRange(); + return QualType(); + } + + // GNU C extension: arithmetic on pointer to void + ComplainAboutVoid = true; + } else if (lpointee->isFunctionType()) { + if (getLangOptions().CPlusPlus) { + Diag(Loc, diag::err_typecheck_pointer_arith_function_type) + << lex->getType() << lex->getSourceRange(); + return QualType(); + } + + // GNU C extension: arithmetic on pointer to function + ComplainAboutFunc = lex; + } else if (!lpointee->isDependentType() && + RequireCompleteType(Loc, lpointee, + PDiag(diag::err_typecheck_sub_ptr_object) + << lex->getSourceRange() + << lex->getType())) + return QualType(); + + // Diagnose bad cases where we step over interface counts. + if (lpointee->isObjCObjectType() && LangOpts.ObjCNonFragileABI) { + Diag(Loc, diag::err_arithmetic_nonfragile_interface) + << lpointee << lex->getSourceRange(); + return QualType(); + } + + // The result type of a pointer-int computation is the pointer type. + if (rex->getType()->isIntegerType()) { + if (ComplainAboutVoid) + Diag(Loc, diag::ext_gnu_void_ptr) + << lex->getSourceRange() << rex->getSourceRange(); + if (ComplainAboutFunc) + Diag(Loc, diag::ext_gnu_ptr_func_arith) + << ComplainAboutFunc->getType() + << ComplainAboutFunc->getSourceRange(); + + if (CompLHSTy) *CompLHSTy = lex->getType(); + return lex->getType(); + } + + // Handle pointer-pointer subtractions. + if (const PointerType *RHSPTy = rex->getType()->getAs<PointerType>()) { + QualType rpointee = RHSPTy->getPointeeType(); + + // RHS must be a completely-type object type. + // Handle the GNU void* extension. + if (rpointee->isVoidType()) { + if (getLangOptions().CPlusPlus) { + Diag(Loc, diag::err_typecheck_pointer_arith_void_type) + << lex->getSourceRange() << rex->getSourceRange(); + return QualType(); + } + + ComplainAboutVoid = true; + } else if (rpointee->isFunctionType()) { + if (getLangOptions().CPlusPlus) { + Diag(Loc, diag::err_typecheck_pointer_arith_function_type) + << rex->getType() << rex->getSourceRange(); + return QualType(); + } + + // GNU extension: arithmetic on pointer to function + if (!ComplainAboutFunc) + ComplainAboutFunc = rex; + } else if (!rpointee->isDependentType() && + RequireCompleteType(Loc, rpointee, + PDiag(diag::err_typecheck_sub_ptr_object) + << rex->getSourceRange() + << rex->getType())) + return QualType(); + + if (getLangOptions().CPlusPlus) { + // Pointee types must be the same: C++ [expr.add] + if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) { + Diag(Loc, diag::err_typecheck_sub_ptr_compatible) + << lex->getType() << rex->getType() + << lex->getSourceRange() << rex->getSourceRange(); + return QualType(); + } + } else { + // Pointee types must be compatible C99 6.5.6p3 + if (!Context.typesAreCompatible( + Context.getCanonicalType(lpointee).getUnqualifiedType(), + Context.getCanonicalType(rpointee).getUnqualifiedType())) { + Diag(Loc, diag::err_typecheck_sub_ptr_compatible) + << lex->getType() << rex->getType() + << lex->getSourceRange() << rex->getSourceRange(); + return QualType(); + } + } + + if (ComplainAboutVoid) + Diag(Loc, diag::ext_gnu_void_ptr) + << lex->getSourceRange() << rex->getSourceRange(); + if (ComplainAboutFunc) + Diag(Loc, diag::ext_gnu_ptr_func_arith) + << ComplainAboutFunc->getType() + << ComplainAboutFunc->getSourceRange(); + + if (CompLHSTy) *CompLHSTy = lex->getType(); + return Context.getPointerDiffType(); + } + } + + return InvalidOperands(Loc, lex, rex); +} + +// C99 6.5.7 +QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc, + bool isCompAssign) { + // C99 6.5.7p2: Each of the operands shall have integer type. + if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType()) + return InvalidOperands(Loc, lex, rex); + + // Vector shifts promote their scalar inputs to vector type. + if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) + return CheckVectorOperands(Loc, lex, rex); + + // Shifts don't perform usual arithmetic conversions, they just do integer + // promotions on each operand. C99 6.5.7p3 + QualType LHSTy = Context.isPromotableBitField(lex); + if (LHSTy.isNull()) { + LHSTy = lex->getType(); + if (LHSTy->isPromotableIntegerType()) + LHSTy = Context.getPromotedIntegerType(LHSTy); + } + if (!isCompAssign) + ImpCastExprToType(lex, LHSTy, CastExpr::CK_IntegralCast); + + UsualUnaryConversions(rex); + + // Sanity-check shift operands + llvm::APSInt Right; + // Check right/shifter operand + if (!rex->isValueDependent() && + rex->isIntegerConstantExpr(Right, Context)) { + if (Right.isNegative()) + Diag(Loc, diag::warn_shift_negative) << rex->getSourceRange(); + else { + llvm::APInt LeftBits(Right.getBitWidth(), + Context.getTypeSize(lex->getType())); + if (Right.uge(LeftBits)) + Diag(Loc, diag::warn_shift_gt_typewidth) << rex->getSourceRange(); + } + } + + // "The type of the result is that of the promoted left operand." + return LHSTy; +} + +// C99 6.5.8, C++ [expr.rel] +QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc, + unsigned OpaqueOpc, bool isRelational) { + BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc; + + // Handle vector comparisons separately. + if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) + return CheckVectorCompareOperands(lex, rex, Loc, isRelational); + + // C99 6.5.8p3 / C99 6.5.9p4 + if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType()) + UsualArithmeticConversions(lex, rex); + else { + UsualUnaryConversions(lex); + UsualUnaryConversions(rex); + } + QualType lType = lex->getType(); + QualType rType = rex->getType(); + + if (!lType->isFloatingType() + && !(lType->isBlockPointerType() && isRelational)) { + // For non-floating point types, check for self-comparisons of the form + // x == x, x != x, x < x, etc. These always evaluate to a constant, and + // often indicate logic errors in the program. + // NOTE: Don't warn about comparisons of enum constants. These can arise + // from macro expansions, and are usually quite deliberate. + Expr *LHSStripped = lex->IgnoreParens(); + Expr *RHSStripped = rex->IgnoreParens(); + if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) + if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) + if (DRL->getDecl() == DRR->getDecl() && + !isa<EnumConstantDecl>(DRL->getDecl())) + DiagRuntimeBehavior(Loc, PDiag(diag::warn_selfcomparison)); + + if (isa<CastExpr>(LHSStripped)) + LHSStripped = LHSStripped->IgnoreParenCasts(); + if (isa<CastExpr>(RHSStripped)) + RHSStripped = RHSStripped->IgnoreParenCasts(); + + // Warn about comparisons against a string constant (unless the other + // operand is null), the user probably wants strcmp. + Expr *literalString = 0; + Expr *literalStringStripped = 0; + if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) && + !RHSStripped->isNullPointerConstant(Context, + Expr::NPC_ValueDependentIsNull)) { + literalString = lex; + literalStringStripped = LHSStripped; + } else if ((isa<StringLiteral>(RHSStripped) || + isa<ObjCEncodeExpr>(RHSStripped)) && + !LHSStripped->isNullPointerConstant(Context, + Expr::NPC_ValueDependentIsNull)) { + literalString = rex; + literalStringStripped = RHSStripped; + } + + if (literalString) { + std::string resultComparison; + switch (Opc) { + case BinaryOperator::LT: resultComparison = ") < 0"; break; + case BinaryOperator::GT: resultComparison = ") > 0"; break; + case BinaryOperator::LE: resultComparison = ") <= 0"; break; + case BinaryOperator::GE: resultComparison = ") >= 0"; break; + case BinaryOperator::EQ: resultComparison = ") == 0"; break; + case BinaryOperator::NE: resultComparison = ") != 0"; break; + default: assert(false && "Invalid comparison operator"); + } + + DiagRuntimeBehavior(Loc, + PDiag(diag::warn_stringcompare) + << isa<ObjCEncodeExpr>(literalStringStripped) + << literalString->getSourceRange()); + } + } + + // The result of comparisons is 'bool' in C++, 'int' in C. + QualType ResultTy = getLangOptions().CPlusPlus ? Context.BoolTy:Context.IntTy; + + if (isRelational) { + if (lType->isRealType() && rType->isRealType()) + return ResultTy; + } else { + // Check for comparisons of floating point operands using != and ==. + if (lType->isFloatingType() && rType->isFloatingType()) + CheckFloatComparison(Loc,lex,rex); + + if (lType->isArithmeticType() && rType->isArithmeticType()) + return ResultTy; + } + + bool LHSIsNull = lex->isNullPointerConstant(Context, + Expr::NPC_ValueDependentIsNull); + bool RHSIsNull = rex->isNullPointerConstant(Context, + Expr::NPC_ValueDependentIsNull); + + // All of the following pointer related warnings are GCC extensions, except + // when handling null pointer constants. One day, we can consider making them + // errors (when -pedantic-errors is enabled). + if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2 + QualType LCanPointeeTy = + Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType()); + QualType RCanPointeeTy = + Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType()); + + if (getLangOptions().CPlusPlus) { + if (LCanPointeeTy == RCanPointeeTy) + return ResultTy; + if (!isRelational && + (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) { + // Valid unless comparison between non-null pointer and function pointer + // This is a gcc extension compatibility comparison. + if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType()) + && !LHSIsNull && !RHSIsNull) { + Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void) + << lType << rType << lex->getSourceRange() << rex->getSourceRange(); + ImpCastExprToType(rex, lType, CastExpr::CK_BitCast); + return ResultTy; + } + } + // C++ [expr.rel]p2: + // [...] Pointer conversions (4.10) and qualification + // conversions (4.4) are performed on pointer operands (or on + // a pointer operand and a null pointer constant) to bring + // them to their composite pointer type. [...] + // + // C++ [expr.eq]p1 uses the same notion for (in)equality + // comparisons of pointers. + bool NonStandardCompositeType = false; + QualType T = FindCompositePointerType(Loc, lex, rex, + isSFINAEContext()? 0 : &NonStandardCompositeType); + if (T.isNull()) { + Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers) + << lType << rType << lex->getSourceRange() << rex->getSourceRange(); + return QualType(); + } else if (NonStandardCompositeType) { + Diag(Loc, + diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard) + << lType << rType << T + << lex->getSourceRange() << rex->getSourceRange(); + } + + ImpCastExprToType(lex, T, CastExpr::CK_BitCast); + ImpCastExprToType(rex, T, CastExpr::CK_BitCast); + return ResultTy; + } + // C99 6.5.9p2 and C99 6.5.8p2 + if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(), + RCanPointeeTy.getUnqualifiedType())) { + // Valid unless a relational comparison of function pointers + if (isRelational && LCanPointeeTy->isFunctionType()) { + Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers) + << lType << rType << lex->getSourceRange() << rex->getSourceRange(); + } + } else if (!isRelational && + (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) { + // Valid unless comparison between non-null pointer and function pointer + if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType()) + && !LHSIsNull && !RHSIsNull) { + Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void) + << lType << rType << lex->getSourceRange() << rex->getSourceRange(); + } + } else { + // Invalid + Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers) + << lType << rType << lex->getSourceRange() << rex->getSourceRange(); + } + if (LCanPointeeTy != RCanPointeeTy) + ImpCastExprToType(rex, lType, CastExpr::CK_BitCast); + return ResultTy; + } + + if (getLangOptions().CPlusPlus) { + // Comparison of pointers with null pointer constants and equality + // comparisons of member pointers to null pointer constants. + if (RHSIsNull && + (lType->isPointerType() || + (!isRelational && lType->isMemberPointerType()))) { + ImpCastExprToType(rex, lType, CastExpr::CK_NullToMemberPointer); + return ResultTy; + } + if (LHSIsNull && + (rType->isPointerType() || + (!isRelational && rType->isMemberPointerType()))) { + ImpCastExprToType(lex, rType, CastExpr::CK_NullToMemberPointer); + return ResultTy; + } + + // Comparison of member pointers. + if (!isRelational && + lType->isMemberPointerType() && rType->isMemberPointerType()) { + // C++ [expr.eq]p2: + // In addition, pointers to members can be compared, or a pointer to + // member and a null pointer constant. Pointer to member conversions + // (4.11) and qualification conversions (4.4) are performed to bring + // them to a common type. If one operand is a null pointer constant, + // the common type is the type of the other operand. Otherwise, the + // common type is a pointer to member type similar (4.4) to the type + // of one of the operands, with a cv-qualification signature (4.4) + // that is the union of the cv-qualification signatures of the operand + // types. + bool NonStandardCompositeType = false; + QualType T = FindCompositePointerType(Loc, lex, rex, + isSFINAEContext()? 0 : &NonStandardCompositeType); + if (T.isNull()) { + Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers) + << lType << rType << lex->getSourceRange() << rex->getSourceRange(); + return QualType(); + } else if (NonStandardCompositeType) { + Diag(Loc, + diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard) + << lType << rType << T + << lex->getSourceRange() << rex->getSourceRange(); + } + + ImpCastExprToType(lex, T, CastExpr::CK_BitCast); + ImpCastExprToType(rex, T, CastExpr::CK_BitCast); + return ResultTy; + } + + // Comparison of nullptr_t with itself. + if (lType->isNullPtrType() && rType->isNullPtrType()) + return ResultTy; + } + + // Handle block pointer types. + if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) { + QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType(); + QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType(); + + if (!LHSIsNull && !RHSIsNull && + !Context.typesAreCompatible(lpointee, rpointee)) { + Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks) + << lType << rType << lex->getSourceRange() << rex->getSourceRange(); + } + ImpCastExprToType(rex, lType, CastExpr::CK_BitCast); + return ResultTy; + } + // Allow block pointers to be compared with null pointer constants. + if (!isRelational + && ((lType->isBlockPointerType() && rType->isPointerType()) + || (lType->isPointerType() && rType->isBlockPointerType()))) { + if (!LHSIsNull && !RHSIsNull) { + if (!((rType->isPointerType() && rType->getAs<PointerType>() + ->getPointeeType()->isVoidType()) + || (lType->isPointerType() && lType->getAs<PointerType>() + ->getPointeeType()->isVoidType()))) + Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks) + << lType << rType << lex->getSourceRange() << rex->getSourceRange(); + } + ImpCastExprToType(rex, lType, CastExpr::CK_BitCast); + return ResultTy; + } + + if ((lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType())) { + if (lType->isPointerType() || rType->isPointerType()) { + const PointerType *LPT = lType->getAs<PointerType>(); + const PointerType *RPT = rType->getAs<PointerType>(); + bool LPtrToVoid = LPT ? + Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false; + bool RPtrToVoid = RPT ? + Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false; + + if (!LPtrToVoid && !RPtrToVoid && + !Context.typesAreCompatible(lType, rType)) { + Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers) + << lType << rType << lex->getSourceRange() << rex->getSourceRange(); + } + ImpCastExprToType(rex, lType, CastExpr::CK_BitCast); + return ResultTy; + } + if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) { + if (!Context.areComparableObjCPointerTypes(lType, rType)) + Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers) + << lType << rType << lex->getSourceRange() << rex->getSourceRange(); + ImpCastExprToType(rex, lType, CastExpr::CK_BitCast); + return ResultTy; + } + } + if (lType->isAnyPointerType() && rType->isIntegerType()) { + unsigned DiagID = 0; + if (RHSIsNull) { + if (isRelational) + DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero; + } else if (isRelational) + DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer; + else + DiagID = diag::ext_typecheck_comparison_of_pointer_integer; + + if (DiagID) { + Diag(Loc, DiagID) + << lType << rType << lex->getSourceRange() << rex->getSourceRange(); + } + ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer); + return ResultTy; + } + if (lType->isIntegerType() && rType->isAnyPointerType()) { + unsigned DiagID = 0; + if (LHSIsNull) { + if (isRelational) + DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero; + } else if (isRelational) + DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer; + else + DiagID = diag::ext_typecheck_comparison_of_pointer_integer; + + if (DiagID) { + Diag(Loc, DiagID) + << lType << rType << lex->getSourceRange() << rex->getSourceRange(); + } + ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer); + return ResultTy; + } + // Handle block pointers. + if (!isRelational && RHSIsNull + && lType->isBlockPointerType() && rType->isIntegerType()) { + ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer); + return ResultTy; + } + if (!isRelational && LHSIsNull + && lType->isIntegerType() && rType->isBlockPointerType()) { + ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer); + return ResultTy; + } + return InvalidOperands(Loc, lex, rex); +} + +/// CheckVectorCompareOperands - vector comparisons are a clang extension that +/// operates on extended vector types. Instead of producing an IntTy result, +/// like a scalar comparison, a vector comparison produces a vector of integer +/// types. +QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex, + SourceLocation Loc, + bool isRelational) { + // Check to make sure we're operating on vectors of the same type and width, + // Allowing one side to be a scalar of element type. + QualType vType = CheckVectorOperands(Loc, lex, rex); + if (vType.isNull()) + return vType; + + QualType lType = lex->getType(); + QualType rType = rex->getType(); + + // For non-floating point types, check for self-comparisons of the form + // x == x, x != x, x < x, etc. These always evaluate to a constant, and + // often indicate logic errors in the program. + if (!lType->isFloatingType()) { + if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens())) + if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens())) + if (DRL->getDecl() == DRR->getDecl()) + DiagRuntimeBehavior(Loc, PDiag(diag::warn_selfcomparison)); + } + + // Check for comparisons of floating point operands using != and ==. + if (!isRelational && lType->isFloatingType()) { + assert (rType->isFloatingType()); + CheckFloatComparison(Loc,lex,rex); + } + + // Return the type for the comparison, which is the same as vector type for + // integer vectors, or an integer type of identical size and number of + // elements for floating point vectors. + if (lType->isIntegerType()) + return lType; + + const VectorType *VTy = lType->getAs<VectorType>(); + unsigned TypeSize = Context.getTypeSize(VTy->getElementType()); + if (TypeSize == Context.getTypeSize(Context.IntTy)) + return Context.getExtVectorType(Context.IntTy, VTy->getNumElements()); + if (TypeSize == Context.getTypeSize(Context.LongTy)) + return Context.getExtVectorType(Context.LongTy, VTy->getNumElements()); + + assert(TypeSize == Context.getTypeSize(Context.LongLongTy) && + "Unhandled vector element size in vector compare"); + return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements()); +} + +inline QualType Sema::CheckBitwiseOperands( + Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) { + if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) + return CheckVectorOperands(Loc, lex, rex); + + QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); + + if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType()) + return compType; + return InvalidOperands(Loc, lex, rex); +} + +inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14] + Expr *&lex, Expr *&rex, SourceLocation Loc) { + if (!Context.getLangOptions().CPlusPlus) { + UsualUnaryConversions(lex); + UsualUnaryConversions(rex); + + if (!lex->getType()->isScalarType() || !rex->getType()->isScalarType()) + return InvalidOperands(Loc, lex, rex); + + return Context.IntTy; + } + + // C++ [expr.log.and]p1 + // C++ [expr.log.or]p1 + // The operands are both implicitly converted to type bool (clause 4). + StandardConversionSequence LHS; + if (!IsStandardConversion(lex, Context.BoolTy, + /*InOverloadResolution=*/false, LHS)) + return InvalidOperands(Loc, lex, rex); + + if (PerformImplicitConversion(lex, Context.BoolTy, LHS, + AA_Passing, /*IgnoreBaseAccess=*/false)) + return InvalidOperands(Loc, lex, rex); + + StandardConversionSequence RHS; + if (!IsStandardConversion(rex, Context.BoolTy, + /*InOverloadResolution=*/false, RHS)) + return InvalidOperands(Loc, lex, rex); + + if (PerformImplicitConversion(rex, Context.BoolTy, RHS, + AA_Passing, /*IgnoreBaseAccess=*/false)) + return InvalidOperands(Loc, lex, rex); + + // C++ [expr.log.and]p2 + // C++ [expr.log.or]p2 + // The result is a bool. + return Context.BoolTy; +} + +/// IsReadonlyProperty - Verify that otherwise a valid l-value expression +/// is a read-only property; return true if so. A readonly property expression +/// depends on various declarations and thus must be treated specially. +/// +static bool IsReadonlyProperty(Expr *E, Sema &S) { + if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) { + const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E); + if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) { + QualType BaseType = PropExpr->getBase()->getType(); + if (const ObjCObjectPointerType *OPT = + BaseType->getAsObjCInterfacePointerType()) + if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl()) + if (S.isPropertyReadonly(PDecl, IFace)) + return true; + } + } + return false; +} + +/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not, +/// emit an error and return true. If so, return false. +static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) { + SourceLocation OrigLoc = Loc; + Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context, + &Loc); + if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S)) + IsLV = Expr::MLV_ReadonlyProperty; + if (IsLV == Expr::MLV_Valid) + return false; + + unsigned Diag = 0; + bool NeedType = false; + switch (IsLV) { // C99 6.5.16p2 + case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break; + case Expr::MLV_ArrayType: + Diag = diag::err_typecheck_array_not_modifiable_lvalue; + NeedType = true; + break; + case Expr::MLV_NotObjectType: + Diag = diag::err_typecheck_non_object_not_modifiable_lvalue; + NeedType = true; + break; + case Expr::MLV_LValueCast: + Diag = diag::err_typecheck_lvalue_casts_not_supported; + break; + case Expr::MLV_Valid: + llvm_unreachable("did not take early return for MLV_Valid"); + case Expr::MLV_InvalidExpression: + case Expr::MLV_MemberFunction: + case Expr::MLV_ClassTemporary: + Diag = diag::err_typecheck_expression_not_modifiable_lvalue; + break; + case Expr::MLV_IncompleteType: + case Expr::MLV_IncompleteVoidType: + return S.RequireCompleteType(Loc, E->getType(), + S.PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue) + << E->getSourceRange()); + case Expr::MLV_DuplicateVectorComponents: + Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue; + break; + case Expr::MLV_NotBlockQualified: + Diag = diag::err_block_decl_ref_not_modifiable_lvalue; + break; + case Expr::MLV_ReadonlyProperty: + Diag = diag::error_readonly_property_assignment; + break; + case Expr::MLV_NoSetterProperty: + Diag = diag::error_nosetter_property_assignment; + break; + case Expr::MLV_SubObjCPropertySetting: + Diag = diag::error_no_subobject_property_setting; + break; + } + + SourceRange Assign; + if (Loc != OrigLoc) + Assign = SourceRange(OrigLoc, OrigLoc); + if (NeedType) + S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign; + else + S.Diag(Loc, Diag) << E->getSourceRange() << Assign; + return true; +} + + + +// C99 6.5.16.1 +QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS, + SourceLocation Loc, + QualType CompoundType) { + // Verify that LHS is a modifiable lvalue, and emit error if not. + if (CheckForModifiableLvalue(LHS, Loc, *this)) + return QualType(); + + QualType LHSType = LHS->getType(); + QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType; + + AssignConvertType ConvTy; + if (CompoundType.isNull()) { + // Simple assignment "x = y". + ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS); + // Special case of NSObject attributes on c-style pointer types. + if (ConvTy == IncompatiblePointer && + ((Context.isObjCNSObjectType(LHSType) && + RHSType->isObjCObjectPointerType()) || + (Context.isObjCNSObjectType(RHSType) && + LHSType->isObjCObjectPointerType()))) + ConvTy = Compatible; + + // If the RHS is a unary plus or minus, check to see if they = and + are + // right next to each other. If so, the user may have typo'd "x =+ 4" + // instead of "x += 4". + Expr *RHSCheck = RHS; + if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck)) + RHSCheck = ICE->getSubExpr(); + if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) { + if ((UO->getOpcode() == UnaryOperator::Plus || + UO->getOpcode() == UnaryOperator::Minus) && + Loc.isFileID() && UO->getOperatorLoc().isFileID() && + // Only if the two operators are exactly adjacent. + Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() && + // And there is a space or other character before the subexpr of the + // unary +/-. We don't want to warn on "x=-1". + Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() && + UO->getSubExpr()->getLocStart().isFileID()) { + Diag(Loc, diag::warn_not_compound_assign) + << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-") + << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc()); + } + } + } else { + // Compound assignment "x += y" + ConvTy = CheckAssignmentConstraints(LHSType, RHSType); + } + + if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType, + RHS, AA_Assigning)) + return QualType(); + + // C99 6.5.16p3: The type of an assignment expression is the type of the + // left operand unless the left operand has qualified type, in which case + // it is the unqualified version of the type of the left operand. + // C99 6.5.16.1p2: In simple assignment, the value of the right operand + // is converted to the type of the assignment expression (above). + // C++ 5.17p1: the type of the assignment expression is that of its left + // operand. + return LHSType.getUnqualifiedType(); +} + +// C99 6.5.17 +QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) { + // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions. + // C++ does not perform this conversion (C++ [expr.comma]p1). + if (!getLangOptions().CPlusPlus) + DefaultFunctionArrayLvalueConversion(RHS); + + // FIXME: Check that RHS type is complete in C mode (it's legal for it to be + // incomplete in C++). + + return RHS->getType(); +} + +/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine +/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions. +QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc, + bool isInc, bool isPrefix) { + if (Op->isTypeDependent()) + return Context.DependentTy; + + QualType ResType = Op->getType(); + assert(!ResType.isNull() && "no type for increment/decrement expression"); + + if (getLangOptions().CPlusPlus && ResType->isBooleanType()) { + // Decrement of bool is not allowed. + if (!isInc) { + Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange(); + return QualType(); + } + // Increment of bool sets it to true, but is deprecated. + Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange(); + } else if (ResType->isRealType()) { + // OK! + } else if (ResType->isAnyPointerType()) { + QualType PointeeTy = ResType->getPointeeType(); + + // C99 6.5.2.4p2, 6.5.6p2 + if (PointeeTy->isVoidType()) { + if (getLangOptions().CPlusPlus) { + Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type) + << Op->getSourceRange(); + return QualType(); + } + + // Pointer to void is a GNU extension in C. + Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange(); + } else if (PointeeTy->isFunctionType()) { + if (getLangOptions().CPlusPlus) { + Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type) + << Op->getType() << Op->getSourceRange(); + return QualType(); + } + + Diag(OpLoc, diag::ext_gnu_ptr_func_arith) + << ResType << Op->getSourceRange(); + } else if (RequireCompleteType(OpLoc, PointeeTy, + PDiag(diag::err_typecheck_arithmetic_incomplete_type) + << Op->getSourceRange() + << ResType)) + return QualType(); + // Diagnose bad cases where we step over interface counts. + else if (PointeeTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) { + Diag(OpLoc, diag::err_arithmetic_nonfragile_interface) + << PointeeTy << Op->getSourceRange(); + return QualType(); + } + } else if (ResType->isAnyComplexType()) { + // C99 does not support ++/-- on complex types, we allow as an extension. + Diag(OpLoc, diag::ext_integer_increment_complex) + << ResType << Op->getSourceRange(); + } else { + Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement) + << ResType << int(isInc) << Op->getSourceRange(); + return QualType(); + } + // At this point, we know we have a real, complex or pointer type. + // Now make sure the operand is a modifiable lvalue. + if (CheckForModifiableLvalue(Op, OpLoc, *this)) + return QualType(); + // In C++, a prefix increment is the same type as the operand. Otherwise + // (in C or with postfix), the increment is the unqualified type of the + // operand. + return isPrefix && getLangOptions().CPlusPlus + ? ResType : ResType.getUnqualifiedType(); +} + +/// getPrimaryDecl - Helper function for CheckAddressOfOperand(). +/// This routine allows us to typecheck complex/recursive expressions +/// where the declaration is needed for type checking. We only need to +/// handle cases when the expression references a function designator +/// or is an lvalue. Here are some examples: +/// - &(x) => x +/// - &*****f => f for f a function designator. +/// - &s.xx => s +/// - &s.zz[1].yy -> s, if zz is an array +/// - *(x + 1) -> x, if x is an array +/// - &"123"[2] -> 0 +/// - & __real__ x -> x +static NamedDecl *getPrimaryDecl(Expr *E) { + switch (E->getStmtClass()) { + case Stmt::DeclRefExprClass: + return cast<DeclRefExpr>(E)->getDecl(); + case Stmt::MemberExprClass: + // If this is an arrow operator, the address is an offset from + // the base's value, so the object the base refers to is + // irrelevant. + if (cast<MemberExpr>(E)->isArrow()) + return 0; + // Otherwise, the expression refers to a part of the base + return getPrimaryDecl(cast<MemberExpr>(E)->getBase()); + case Stmt::ArraySubscriptExprClass: { + // FIXME: This code shouldn't be necessary! We should catch the implicit + // promotion of register arrays earlier. + Expr* Base = cast<ArraySubscriptExpr>(E)->getBase(); + if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) { + if (ICE->getSubExpr()->getType()->isArrayType()) + return getPrimaryDecl(ICE->getSubExpr()); + } + return 0; + } + case Stmt::UnaryOperatorClass: { + UnaryOperator *UO = cast<UnaryOperator>(E); + + switch(UO->getOpcode()) { + case UnaryOperator::Real: + case UnaryOperator::Imag: + case UnaryOperator::Extension: + return getPrimaryDecl(UO->getSubExpr()); + default: + return 0; + } + } + case Stmt::ParenExprClass: + return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr()); + case Stmt::ImplicitCastExprClass: + // If the result of an implicit cast is an l-value, we care about + // the sub-expression; otherwise, the result here doesn't matter. + return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr()); + default: + return 0; + } +} + +/// CheckAddressOfOperand - The operand of & must be either a function +/// designator or an lvalue designating an object. If it is an lvalue, the +/// object cannot be declared with storage class register or be a bit field. +/// Note: The usual conversions are *not* applied to the operand of the & +/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue. +/// In C++, the operand might be an overloaded function name, in which case +/// we allow the '&' but retain the overloaded-function type. +QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) { + // Make sure to ignore parentheses in subsequent checks + op = op->IgnoreParens(); + + if (op->isTypeDependent()) + return Context.DependentTy; + + if (getLangOptions().C99) { + // Implement C99-only parts of addressof rules. + if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) { + if (uOp->getOpcode() == UnaryOperator::Deref) + // Per C99 6.5.3.2, the address of a deref always returns a valid result + // (assuming the deref expression is valid). + return uOp->getSubExpr()->getType(); + } + // Technically, there should be a check for array subscript + // expressions here, but the result of one is always an lvalue anyway. + } + NamedDecl *dcl = getPrimaryDecl(op); + Expr::isLvalueResult lval = op->isLvalue(Context); + + MemberExpr *ME = dyn_cast<MemberExpr>(op); + if (lval == Expr::LV_MemberFunction && ME && + isa<CXXMethodDecl>(ME->getMemberDecl())) { + ValueDecl *dcl = cast<MemberExpr>(op)->getMemberDecl(); + // &f where f is a member of the current object, or &o.f, or &p->f + // All these are not allowed, and we need to catch them before the dcl + // branch of the if, below. + Diag(OpLoc, diag::err_unqualified_pointer_member_function) + << dcl; + // FIXME: Improve this diagnostic and provide a fixit. + + // Now recover by acting as if the function had been accessed qualified. + return Context.getMemberPointerType(op->getType(), + Context.getTypeDeclType(cast<RecordDecl>(dcl->getDeclContext())) + .getTypePtr()); + } else if (lval == Expr::LV_ClassTemporary) { + Diag(OpLoc, isSFINAEContext()? diag::err_typecheck_addrof_class_temporary + : diag::ext_typecheck_addrof_class_temporary) + << op->getType() << op->getSourceRange(); + if (isSFINAEContext()) + return QualType(); + } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) { + // C99 6.5.3.2p1 + // The operand must be either an l-value or a function designator + if (!op->getType()->isFunctionType()) { + // FIXME: emit more specific diag... + Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof) + << op->getSourceRange(); + return QualType(); + } + } else if (op->getBitField()) { // C99 6.5.3.2p1 + // The operand cannot be a bit-field + Diag(OpLoc, diag::err_typecheck_address_of) + << "bit-field" << op->getSourceRange(); + return QualType(); + } else if (op->refersToVectorElement()) { + // The operand cannot be an element of a vector + Diag(OpLoc, diag::err_typecheck_address_of) + << "vector element" << op->getSourceRange(); + return QualType(); + } else if (isa<ObjCPropertyRefExpr>(op)) { + // cannot take address of a property expression. + Diag(OpLoc, diag::err_typecheck_address_of) + << "property expression" << op->getSourceRange(); + return QualType(); + } else if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(op)) { + // FIXME: Can LHS ever be null here? + if (!CheckAddressOfOperand(CO->getTrueExpr(), OpLoc).isNull()) + return CheckAddressOfOperand(CO->getFalseExpr(), OpLoc); + } else if (isa<UnresolvedLookupExpr>(op)) { + return Context.OverloadTy; + } else if (dcl) { // C99 6.5.3.2p1 + // We have an lvalue with a decl. Make sure the decl is not declared + // with the register storage-class specifier. + if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) { + if (vd->getStorageClass() == VarDecl::Register) { + Diag(OpLoc, diag::err_typecheck_address_of) + << "register variable" << op->getSourceRange(); + return QualType(); + } + } else if (isa<FunctionTemplateDecl>(dcl)) { + return Context.OverloadTy; + } else if (FieldDecl *FD = dyn_cast<FieldDecl>(dcl)) { + // Okay: we can take the address of a field. + // Could be a pointer to member, though, if there is an explicit + // scope qualifier for the class. + if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) { + DeclContext *Ctx = dcl->getDeclContext(); + if (Ctx && Ctx->isRecord()) { + if (FD->getType()->isReferenceType()) { + Diag(OpLoc, + diag::err_cannot_form_pointer_to_member_of_reference_type) + << FD->getDeclName() << FD->getType(); + return QualType(); + } + + return Context.getMemberPointerType(op->getType(), + Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr()); + } + } + } else if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(dcl)) { + // Okay: we can take the address of a function. + // As above. + if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier() && + MD->isInstance()) + return Context.getMemberPointerType(op->getType(), + Context.getTypeDeclType(MD->getParent()).getTypePtr()); + } else if (!isa<FunctionDecl>(dcl)) + assert(0 && "Unknown/unexpected decl type"); + } + + if (lval == Expr::LV_IncompleteVoidType) { + // Taking the address of a void variable is technically illegal, but we + // allow it in cases which are otherwise valid. + // Example: "extern void x; void* y = &x;". + Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange(); + } + + // If the operand has type "type", the result has type "pointer to type". + return Context.getPointerType(op->getType()); +} + +QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) { + if (Op->isTypeDependent()) + return Context.DependentTy; + + UsualUnaryConversions(Op); + QualType Ty = Op->getType(); + + // Note that per both C89 and C99, this is always legal, even if ptype is an + // incomplete type or void. It would be possible to warn about dereferencing + // a void pointer, but it's completely well-defined, and such a warning is + // unlikely to catch any mistakes. + if (const PointerType *PT = Ty->getAs<PointerType>()) + return PT->getPointeeType(); + + if (const ObjCObjectPointerType *OPT = Ty->getAs<ObjCObjectPointerType>()) + return OPT->getPointeeType(); + + Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer) + << Ty << Op->getSourceRange(); + return QualType(); +} + +static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode( + tok::TokenKind Kind) { + BinaryOperator::Opcode Opc; + switch (Kind) { + default: assert(0 && "Unknown binop!"); + case tok::periodstar: Opc = BinaryOperator::PtrMemD; break; + case tok::arrowstar: Opc = BinaryOperator::PtrMemI; break; + case tok::star: Opc = BinaryOperator::Mul; break; + case tok::slash: Opc = BinaryOperator::Div; break; + case tok::percent: Opc = BinaryOperator::Rem; break; + case tok::plus: Opc = BinaryOperator::Add; break; + case tok::minus: Opc = BinaryOperator::Sub; break; + case tok::lessless: Opc = BinaryOperator::Shl; break; + case tok::greatergreater: Opc = BinaryOperator::Shr; break; + case tok::lessequal: Opc = BinaryOperator::LE; break; + case tok::less: Opc = BinaryOperator::LT; break; + case tok::greaterequal: Opc = BinaryOperator::GE; break; + case tok::greater: Opc = BinaryOperator::GT; break; + case tok::exclaimequal: Opc = BinaryOperator::NE; break; + case tok::equalequal: Opc = BinaryOperator::EQ; break; + case tok::amp: Opc = BinaryOperator::And; break; + case tok::caret: Opc = BinaryOperator::Xor; break; + case tok::pipe: Opc = BinaryOperator::Or; break; + case tok::ampamp: Opc = BinaryOperator::LAnd; break; + case tok::pipepipe: Opc = BinaryOperator::LOr; break; + case tok::equal: Opc = BinaryOperator::Assign; break; + case tok::starequal: Opc = BinaryOperator::MulAssign; break; + case tok::slashequal: Opc = BinaryOperator::DivAssign; break; + case tok::percentequal: Opc = BinaryOperator::RemAssign; break; + case tok::plusequal: Opc = BinaryOperator::AddAssign; break; + case tok::minusequal: Opc = BinaryOperator::SubAssign; break; + case tok::lesslessequal: Opc = BinaryOperator::ShlAssign; break; + case tok::greatergreaterequal: Opc = BinaryOperator::ShrAssign; break; + case tok::ampequal: Opc = BinaryOperator::AndAssign; break; + case tok::caretequal: Opc = BinaryOperator::XorAssign; break; + case tok::pipeequal: Opc = BinaryOperator::OrAssign; break; + case tok::comma: Opc = BinaryOperator::Comma; break; + } + return Opc; +} + +static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode( + tok::TokenKind Kind) { + UnaryOperator::Opcode Opc; + switch (Kind) { + default: assert(0 && "Unknown unary op!"); + case tok::plusplus: Opc = UnaryOperator::PreInc; break; + case tok::minusminus: Opc = UnaryOperator::PreDec; break; + case tok::amp: Opc = UnaryOperator::AddrOf; break; + case tok::star: Opc = UnaryOperator::Deref; break; + case tok::plus: Opc = UnaryOperator::Plus; break; + case tok::minus: Opc = UnaryOperator::Minus; break; + case tok::tilde: Opc = UnaryOperator::Not; break; + case tok::exclaim: Opc = UnaryOperator::LNot; break; + case tok::kw___real: Opc = UnaryOperator::Real; break; + case tok::kw___imag: Opc = UnaryOperator::Imag; break; + case tok::kw___extension__: Opc = UnaryOperator::Extension; break; + } + return Opc; +} + +/// CreateBuiltinBinOp - Creates a new built-in binary operation with +/// operator @p Opc at location @c TokLoc. This routine only supports +/// built-in operations; ActOnBinOp handles overloaded operators. +Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc, + unsigned Op, + Expr *lhs, Expr *rhs) { + QualType ResultTy; // Result type of the binary operator. + BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op; + // The following two variables are used for compound assignment operators + QualType CompLHSTy; // Type of LHS after promotions for computation + QualType CompResultTy; // Type of computation result + + switch (Opc) { + case BinaryOperator::Assign: + ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType()); + break; + case BinaryOperator::PtrMemD: + case BinaryOperator::PtrMemI: + ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc, + Opc == BinaryOperator::PtrMemI); + break; + case BinaryOperator::Mul: + case BinaryOperator::Div: + ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, false, + Opc == BinaryOperator::Div); + break; + case BinaryOperator::Rem: + ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc); + break; + case BinaryOperator::Add: + ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc); + break; + case BinaryOperator::Sub: + ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc); + break; + case BinaryOperator::Shl: + case BinaryOperator::Shr: + ResultTy = CheckShiftOperands(lhs, rhs, OpLoc); + break; + case BinaryOperator::LE: + case BinaryOperator::LT: + case BinaryOperator::GE: + case BinaryOperator::GT: + ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true); + break; + case BinaryOperator::EQ: + case BinaryOperator::NE: + ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false); + break; + case BinaryOperator::And: + case BinaryOperator::Xor: + case BinaryOperator::Or: + ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc); + break; + case BinaryOperator::LAnd: + case BinaryOperator::LOr: + ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc); + break; + case BinaryOperator::MulAssign: + case BinaryOperator::DivAssign: + CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true, + Opc == BinaryOperator::DivAssign); + CompLHSTy = CompResultTy; + if (!CompResultTy.isNull()) + ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy); + break; + case BinaryOperator::RemAssign: + CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true); + CompLHSTy = CompResultTy; + if (!CompResultTy.isNull()) + ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy); + break; + case BinaryOperator::AddAssign: + CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy); + if (!CompResultTy.isNull()) + ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy); + break; + case BinaryOperator::SubAssign: + CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy); + if (!CompResultTy.isNull()) + ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy); + break; + case BinaryOperator::ShlAssign: + case BinaryOperator::ShrAssign: + CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true); + CompLHSTy = CompResultTy; + if (!CompResultTy.isNull()) + ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy); + break; + case BinaryOperator::AndAssign: + case BinaryOperator::XorAssign: + case BinaryOperator::OrAssign: + CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true); + CompLHSTy = CompResultTy; + if (!CompResultTy.isNull()) + ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy); + break; + case BinaryOperator::Comma: + ResultTy = CheckCommaOperands(lhs, rhs, OpLoc); + break; + } + if (ResultTy.isNull()) + return ExprError(); + if (CompResultTy.isNull()) + return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc)); + else + return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy, + CompLHSTy, CompResultTy, + OpLoc)); +} + +/// SuggestParentheses - Emit a diagnostic together with a fixit hint that wraps +/// ParenRange in parentheses. +static void SuggestParentheses(Sema &Self, SourceLocation Loc, + const PartialDiagnostic &PD, + const PartialDiagnostic &FirstNote, + SourceRange FirstParenRange, + const PartialDiagnostic &SecondNote, + SourceRange SecondParenRange) { + Self.Diag(Loc, PD); + + if (!FirstNote.getDiagID()) + return; + + SourceLocation EndLoc = Self.PP.getLocForEndOfToken(FirstParenRange.getEnd()); + if (!FirstParenRange.getEnd().isFileID() || EndLoc.isInvalid()) { + // We can't display the parentheses, so just return. + return; + } + + Self.Diag(Loc, FirstNote) + << FixItHint::CreateInsertion(FirstParenRange.getBegin(), "(") + << FixItHint::CreateInsertion(EndLoc, ")"); + + if (!SecondNote.getDiagID()) + return; + + EndLoc = Self.PP.getLocForEndOfToken(SecondParenRange.getEnd()); + if (!SecondParenRange.getEnd().isFileID() || EndLoc.isInvalid()) { + // We can't display the parentheses, so just dig the + // warning/error and return. + Self.Diag(Loc, SecondNote); + return; + } + + Self.Diag(Loc, SecondNote) + << FixItHint::CreateInsertion(SecondParenRange.getBegin(), "(") + << FixItHint::CreateInsertion(EndLoc, ")"); +} + +/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison +/// operators are mixed in a way that suggests that the programmer forgot that +/// comparison operators have higher precedence. The most typical example of +/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1". +static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperator::Opcode Opc, + SourceLocation OpLoc,Expr *lhs,Expr *rhs){ + typedef BinaryOperator BinOp; + BinOp::Opcode lhsopc = static_cast<BinOp::Opcode>(-1), + rhsopc = static_cast<BinOp::Opcode>(-1); + if (BinOp *BO = dyn_cast<BinOp>(lhs)) + lhsopc = BO->getOpcode(); + if (BinOp *BO = dyn_cast<BinOp>(rhs)) + rhsopc = BO->getOpcode(); + + // Subs are not binary operators. + if (lhsopc == -1 && rhsopc == -1) + return; + + // Bitwise operations are sometimes used as eager logical ops. + // Don't diagnose this. + if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) && + (BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc))) + return; + + if (BinOp::isComparisonOp(lhsopc)) + SuggestParentheses(Self, OpLoc, + Self.PDiag(diag::warn_precedence_bitwise_rel) + << SourceRange(lhs->getLocStart(), OpLoc) + << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(lhsopc), + Self.PDiag(diag::note_precedence_bitwise_first) + << BinOp::getOpcodeStr(Opc), + SourceRange(cast<BinOp>(lhs)->getRHS()->getLocStart(), rhs->getLocEnd()), + Self.PDiag(diag::note_precedence_bitwise_silence) + << BinOp::getOpcodeStr(lhsopc), + lhs->getSourceRange()); + else if (BinOp::isComparisonOp(rhsopc)) + SuggestParentheses(Self, OpLoc, + Self.PDiag(diag::warn_precedence_bitwise_rel) + << SourceRange(OpLoc, rhs->getLocEnd()) + << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(rhsopc), + Self.PDiag(diag::note_precedence_bitwise_first) + << BinOp::getOpcodeStr(Opc), + SourceRange(lhs->getLocEnd(), cast<BinOp>(rhs)->getLHS()->getLocStart()), + Self.PDiag(diag::note_precedence_bitwise_silence) + << BinOp::getOpcodeStr(rhsopc), + rhs->getSourceRange()); +} + +/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky +/// precedence. This currently diagnoses only "arg1 'bitwise' arg2 'eq' arg3". +/// But it could also warn about arg1 && arg2 || arg3, as GCC 4.3+ does. +static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperator::Opcode Opc, + SourceLocation OpLoc, Expr *lhs, Expr *rhs){ + if (BinaryOperator::isBitwiseOp(Opc)) + DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs); +} + +// Binary Operators. 'Tok' is the token for the operator. +Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc, + tok::TokenKind Kind, + ExprArg LHS, ExprArg RHS) { + BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind); + Expr *lhs = LHS.takeAs<Expr>(), *rhs = RHS.takeAs<Expr>(); + + assert((lhs != 0) && "ActOnBinOp(): missing left expression"); + assert((rhs != 0) && "ActOnBinOp(): missing right expression"); + + // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0" + DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs); + + return BuildBinOp(S, TokLoc, Opc, lhs, rhs); +} + +Action::OwningExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc, + BinaryOperator::Opcode Opc, + Expr *lhs, Expr *rhs) { + if (getLangOptions().CPlusPlus && + (lhs->getType()->isOverloadableType() || + rhs->getType()->isOverloadableType())) { + // Find all of the overloaded operators visible from this + // point. We perform both an operator-name lookup from the local + // scope and an argument-dependent lookup based on the types of + // the arguments. + UnresolvedSet<16> Functions; + OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc); + if (S && OverOp != OO_None) + LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(), + Functions); + + // Build the (potentially-overloaded, potentially-dependent) + // binary operation. + return CreateOverloadedBinOp(OpLoc, Opc, Functions, lhs, rhs); + } + + // Build a built-in binary operation. + return CreateBuiltinBinOp(OpLoc, Opc, lhs, rhs); +} + +Action::OwningExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc, + unsigned OpcIn, + ExprArg InputArg) { + UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn); + + // FIXME: Input is modified below, but InputArg is not updated appropriately. + Expr *Input = (Expr *)InputArg.get(); + QualType resultType; + switch (Opc) { + case UnaryOperator::OffsetOf: + assert(false && "Invalid unary operator"); + break; + + case UnaryOperator::PreInc: + case UnaryOperator::PreDec: + case UnaryOperator::PostInc: + case UnaryOperator::PostDec: + resultType = CheckIncrementDecrementOperand(Input, OpLoc, + Opc == UnaryOperator::PreInc || + Opc == UnaryOperator::PostInc, + Opc == UnaryOperator::PreInc || + Opc == UnaryOperator::PreDec); + break; + case UnaryOperator::AddrOf: + resultType = CheckAddressOfOperand(Input, OpLoc); + break; + case UnaryOperator::Deref: + DefaultFunctionArrayLvalueConversion(Input); + resultType = CheckIndirectionOperand(Input, OpLoc); + break; + case UnaryOperator::Plus: + case UnaryOperator::Minus: + UsualUnaryConversions(Input); + resultType = Input->getType(); + if (resultType->isDependentType()) + break; + if (resultType->isArithmeticType()) // C99 6.5.3.3p1 + break; + else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7 + resultType->isEnumeralType()) + break; + else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6 + Opc == UnaryOperator::Plus && + resultType->isPointerType()) + break; + + return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) + << resultType << Input->getSourceRange()); + case UnaryOperator::Not: // bitwise complement + UsualUnaryConversions(Input); + resultType = Input->getType(); + if (resultType->isDependentType()) + break; + // C99 6.5.3.3p1. We allow complex int and float as a GCC extension. + if (resultType->isComplexType() || resultType->isComplexIntegerType()) + // C99 does not support '~' for complex conjugation. + Diag(OpLoc, diag::ext_integer_complement_complex) + << resultType << Input->getSourceRange(); + else if (!resultType->isIntegerType()) + return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) + << resultType << Input->getSourceRange()); + break; + case UnaryOperator::LNot: // logical negation + // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5). + DefaultFunctionArrayLvalueConversion(Input); + resultType = Input->getType(); + if (resultType->isDependentType()) + break; + if (!resultType->isScalarType()) // C99 6.5.3.3p1 + return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) + << resultType << Input->getSourceRange()); + // LNot always has type int. C99 6.5.3.3p5. + // In C++, it's bool. C++ 5.3.1p8 + resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy; + break; + case UnaryOperator::Real: + case UnaryOperator::Imag: + resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real); + break; + case UnaryOperator::Extension: + resultType = Input->getType(); + break; + } + if (resultType.isNull()) + return ExprError(); + + InputArg.release(); + return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc)); +} + +Action::OwningExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc, + UnaryOperator::Opcode Opc, + ExprArg input) { + Expr *Input = (Expr*)input.get(); + if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() && + Opc != UnaryOperator::Extension) { + // Find all of the overloaded operators visible from this + // point. We perform both an operator-name lookup from the local + // scope and an argument-dependent lookup based on the types of + // the arguments. + UnresolvedSet<16> Functions; + OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc); + if (S && OverOp != OO_None) + LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(), + Functions); + + return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(input)); + } + + return CreateBuiltinUnaryOp(OpLoc, Opc, move(input)); +} + +// Unary Operators. 'Tok' is the token for the operator. +Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc, + tok::TokenKind Op, ExprArg input) { + return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), move(input)); +} + +/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo". +Sema::OwningExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, + SourceLocation LabLoc, + IdentifierInfo *LabelII) { + // Look up the record for this label identifier. + LabelStmt *&LabelDecl = getLabelMap()[LabelII]; + + // If we haven't seen this label yet, create a forward reference. It + // will be validated and/or cleaned up in ActOnFinishFunctionBody. + if (LabelDecl == 0) + LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0); + + // Create the AST node. The address of a label always has type 'void*'. + return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl, + Context.getPointerType(Context.VoidTy))); +} + +Sema::OwningExprResult +Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtArg substmt, + SourceLocation RPLoc) { // "({..})" + Stmt *SubStmt = static_cast<Stmt*>(substmt.get()); + assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!"); + CompoundStmt *Compound = cast<CompoundStmt>(SubStmt); + + bool isFileScope + = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0); + if (isFileScope) + return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope)); + + // FIXME: there are a variety of strange constraints to enforce here, for + // example, it is not possible to goto into a stmt expression apparently. + // More semantic analysis is needed. + + // If there are sub stmts in the compound stmt, take the type of the last one + // as the type of the stmtexpr. + QualType Ty = Context.VoidTy; + + if (!Compound->body_empty()) { + Stmt *LastStmt = Compound->body_back(); + // If LastStmt is a label, skip down through into the body. + while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) + LastStmt = Label->getSubStmt(); + + if (Expr *LastExpr = dyn_cast<Expr>(LastStmt)) + Ty = LastExpr->getType(); + } + + // FIXME: Check that expression type is complete/non-abstract; statement + // expressions are not lvalues. + + substmt.release(); + return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc)); +} + +Sema::OwningExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc, + TypeSourceInfo *TInfo, + OffsetOfComponent *CompPtr, + unsigned NumComponents, + SourceLocation RParenLoc) { + QualType ArgTy = TInfo->getType(); + bool Dependent = ArgTy->isDependentType(); + SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange(); + + // We must have at least one component that refers to the type, and the first + // one is known to be a field designator. Verify that the ArgTy represents + // a struct/union/class. + if (!Dependent && !ArgTy->isRecordType()) + return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type) + << ArgTy << TypeRange); + + // Type must be complete per C99 7.17p3 because a declaring a variable + // with an incomplete type would be ill-formed. + if (!Dependent + && RequireCompleteType(BuiltinLoc, ArgTy, + PDiag(diag::err_offsetof_incomplete_type) + << TypeRange)) + return ExprError(); + + // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a + // GCC extension, diagnose them. + // FIXME: This diagnostic isn't actually visible because the location is in + // a system header! + if (NumComponents != 1) + Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator) + << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd); + + bool DidWarnAboutNonPOD = false; + QualType CurrentType = ArgTy; + typedef OffsetOfExpr::OffsetOfNode OffsetOfNode; + llvm::SmallVector<OffsetOfNode, 4> Comps; + llvm::SmallVector<Expr*, 4> Exprs; + for (unsigned i = 0; i != NumComponents; ++i) { + const OffsetOfComponent &OC = CompPtr[i]; + if (OC.isBrackets) { + // Offset of an array sub-field. TODO: Should we allow vector elements? + if (!CurrentType->isDependentType()) { + const ArrayType *AT = Context.getAsArrayType(CurrentType); + if(!AT) + return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type) + << CurrentType); + CurrentType = AT->getElementType(); + } else + CurrentType = Context.DependentTy; + + // The expression must be an integral expression. + // FIXME: An integral constant expression? + Expr *Idx = static_cast<Expr*>(OC.U.E); + if (!Idx->isTypeDependent() && !Idx->isValueDependent() && + !Idx->getType()->isIntegerType()) + return ExprError(Diag(Idx->getLocStart(), + diag::err_typecheck_subscript_not_integer) + << Idx->getSourceRange()); + + // Record this array index. + Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd)); + Exprs.push_back(Idx); + continue; + } + + // Offset of a field. + if (CurrentType->isDependentType()) { + // We have the offset of a field, but we can't look into the dependent + // type. Just record the identifier of the field. + Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd)); + CurrentType = Context.DependentTy; + continue; + } + + // We need to have a complete type to look into. + if (RequireCompleteType(OC.LocStart, CurrentType, + diag::err_offsetof_incomplete_type)) + return ExprError(); + + // Look for the designated field. + const RecordType *RC = CurrentType->getAs<RecordType>(); + if (!RC) + return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type) + << CurrentType); + RecordDecl *RD = RC->getDecl(); + + // C++ [lib.support.types]p5: + // The macro offsetof accepts a restricted set of type arguments in this + // International Standard. type shall be a POD structure or a POD union + // (clause 9). + if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { + if (!CRD->isPOD() && !DidWarnAboutNonPOD && + DiagRuntimeBehavior(BuiltinLoc, + PDiag(diag::warn_offsetof_non_pod_type) + << SourceRange(CompPtr[0].LocStart, OC.LocEnd) + << CurrentType)) + DidWarnAboutNonPOD = true; + } + + // Look for the field. + LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName); + LookupQualifiedName(R, RD); + FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>(); + if (!MemberDecl) + return ExprError(Diag(BuiltinLoc, diag::err_no_member) + << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, + OC.LocEnd)); + + // C99 7.17p3: + // (If the specified member is a bit-field, the behavior is undefined.) + // + // We diagnose this as an error. + if (MemberDecl->getBitWidth()) { + Diag(OC.LocEnd, diag::err_offsetof_bitfield) + << MemberDecl->getDeclName() + << SourceRange(BuiltinLoc, RParenLoc); + Diag(MemberDecl->getLocation(), diag::note_bitfield_decl); + return ExprError(); + } + + // If the member was found in a base class, introduce OffsetOfNodes for + // the base class indirections. + CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, + /*DetectVirtual=*/false); + if (IsDerivedFrom(CurrentType, + Context.getTypeDeclType(MemberDecl->getParent()), + Paths)) { + CXXBasePath &Path = Paths.front(); + for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end(); + B != BEnd; ++B) + Comps.push_back(OffsetOfNode(B->Base)); + } + + if (cast<RecordDecl>(MemberDecl->getDeclContext())-> + isAnonymousStructOrUnion()) { + llvm::SmallVector<FieldDecl*, 4> Path; + BuildAnonymousStructUnionMemberPath(MemberDecl, Path); + unsigned n = Path.size(); + for (int j = n - 1; j > -1; --j) + Comps.push_back(OffsetOfNode(OC.LocStart, Path[j], OC.LocEnd)); + } else { + Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd)); + } + CurrentType = MemberDecl->getType().getNonReferenceType(); + } + + return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, + TInfo, Comps.data(), Comps.size(), + Exprs.data(), Exprs.size(), RParenLoc)); +} + +Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S, + SourceLocation BuiltinLoc, + SourceLocation TypeLoc, + TypeTy *argty, + OffsetOfComponent *CompPtr, + unsigned NumComponents, + SourceLocation RPLoc) { + + TypeSourceInfo *ArgTInfo; + QualType ArgTy = GetTypeFromParser(argty, &ArgTInfo); + if (ArgTy.isNull()) + return ExprError(); + + if (getLangOptions().CPlusPlus) { + if (!ArgTInfo) + ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc); + + return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents, + RPLoc); + } + + // FIXME: The code below is marked for death, once we have proper CodeGen + // support for non-constant OffsetOf expressions. + + bool Dependent = ArgTy->isDependentType(); + + // We must have at least one component that refers to the type, and the first + // one is known to be a field designator. Verify that the ArgTy represents + // a struct/union/class. + if (!Dependent && !ArgTy->isRecordType()) + return ExprError(Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy); + + // FIXME: Type must be complete per C99 7.17p3 because a declaring a variable + // with an incomplete type would be illegal. + + // Otherwise, create a null pointer as the base, and iteratively process + // the offsetof designators. + QualType ArgTyPtr = Context.getPointerType(ArgTy); + Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr); + Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref, + ArgTy, SourceLocation()); + + // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a + // GCC extension, diagnose them. + // FIXME: This diagnostic isn't actually visible because the location is in + // a system header! + if (NumComponents != 1) + Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator) + << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd); + + if (!Dependent) { + bool DidWarnAboutNonPOD = false; + + if (RequireCompleteType(TypeLoc, Res->getType(), + diag::err_offsetof_incomplete_type)) + return ExprError(); + + // FIXME: Dependent case loses a lot of information here. And probably + // leaks like a sieve. + for (unsigned i = 0; i != NumComponents; ++i) { + const OffsetOfComponent &OC = CompPtr[i]; + if (OC.isBrackets) { + // Offset of an array sub-field. TODO: Should we allow vector elements? + const ArrayType *AT = Context.getAsArrayType(Res->getType()); + if (!AT) { + Res->Destroy(Context); + return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type) + << Res->getType()); + } + + // FIXME: C++: Verify that operator[] isn't overloaded. + + // Promote the array so it looks more like a normal array subscript + // expression. + DefaultFunctionArrayLvalueConversion(Res); + + // C99 6.5.2.1p1 + Expr *Idx = static_cast<Expr*>(OC.U.E); + // FIXME: Leaks Res + if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType()) + return ExprError(Diag(Idx->getLocStart(), + diag::err_typecheck_subscript_not_integer) + << Idx->getSourceRange()); + + Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(), + OC.LocEnd); + continue; + } + + const RecordType *RC = Res->getType()->getAs<RecordType>(); + if (!RC) { + Res->Destroy(Context); + return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type) + << Res->getType()); + } + + // Get the decl corresponding to this. + RecordDecl *RD = RC->getDecl(); + if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { + if (!CRD->isPOD() && !DidWarnAboutNonPOD && + DiagRuntimeBehavior(BuiltinLoc, + PDiag(diag::warn_offsetof_non_pod_type) + << SourceRange(CompPtr[0].LocStart, OC.LocEnd) + << Res->getType())) + DidWarnAboutNonPOD = true; + } + + LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName); + LookupQualifiedName(R, RD); + + FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>(); + // FIXME: Leaks Res + if (!MemberDecl) + return ExprError(Diag(BuiltinLoc, diag::err_no_member) + << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, OC.LocEnd)); + + // C99 7.17p3: + // (If the specified member is a bit-field, the behavior is undefined.) + // + // We diagnose this as an error. + if (MemberDecl->getBitWidth()) { + Diag(OC.LocEnd, diag::err_offsetof_bitfield) + << MemberDecl->getDeclName() + << SourceRange(BuiltinLoc, RPLoc); + Diag(MemberDecl->getLocation(), diag::note_bitfield_decl); + return ExprError(); + } + + // FIXME: C++: Verify that MemberDecl isn't a static field. + // FIXME: Verify that MemberDecl isn't a bitfield. + if (cast<RecordDecl>(MemberDecl->getDeclContext())->isAnonymousStructOrUnion()) { + Res = BuildAnonymousStructUnionMemberReference( + OC.LocEnd, MemberDecl, Res, OC.LocEnd).takeAs<Expr>(); + } else { + PerformObjectMemberConversion(Res, /*Qualifier=*/0, + *R.begin(), MemberDecl); + // MemberDecl->getType() doesn't get the right qualifiers, but it + // doesn't matter here. + Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd, + MemberDecl->getType().getNonReferenceType()); + } + } + } + + return Owned(new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf, + Context.getSizeType(), BuiltinLoc)); +} + + +Sema::OwningExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc, + TypeTy *arg1,TypeTy *arg2, + SourceLocation RPLoc) { + // FIXME: Preserve type source info. + QualType argT1 = GetTypeFromParser(arg1); + QualType argT2 = GetTypeFromParser(arg2); + + assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)"); + + if (getLangOptions().CPlusPlus) { + Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus) + << SourceRange(BuiltinLoc, RPLoc); + return ExprError(); + } + + return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc, + argT1, argT2, RPLoc)); +} + +Sema::OwningExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, + ExprArg cond, + ExprArg expr1, ExprArg expr2, + SourceLocation RPLoc) { + Expr *CondExpr = static_cast<Expr*>(cond.get()); + Expr *LHSExpr = static_cast<Expr*>(expr1.get()); + Expr *RHSExpr = static_cast<Expr*>(expr2.get()); + + assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)"); + + QualType resType; + bool ValueDependent = false; + if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) { + resType = Context.DependentTy; + ValueDependent = true; + } else { + // The conditional expression is required to be a constant expression. + llvm::APSInt condEval(32); + SourceLocation ExpLoc; + if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc)) + return ExprError(Diag(ExpLoc, + diag::err_typecheck_choose_expr_requires_constant) + << CondExpr->getSourceRange()); + + // If the condition is > zero, then the AST type is the same as the LSHExpr. + resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType(); + ValueDependent = condEval.getZExtValue() ? LHSExpr->isValueDependent() + : RHSExpr->isValueDependent(); + } + + cond.release(); expr1.release(); expr2.release(); + return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, + resType, RPLoc, + resType->isDependentType(), + ValueDependent)); +} + +//===----------------------------------------------------------------------===// +// Clang Extensions. +//===----------------------------------------------------------------------===// + +/// ActOnBlockStart - This callback is invoked when a block literal is started. +void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) { + BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc); + PushBlockScope(BlockScope, Block); + CurContext->addDecl(Block); + PushDeclContext(BlockScope, Block); +} + +void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) { + assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!"); + BlockScopeInfo *CurBlock = getCurBlock(); + + if (ParamInfo.getNumTypeObjects() == 0 + || ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) { + ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo); + QualType T = GetTypeForDeclarator(ParamInfo, CurScope); + + if (T->isArrayType()) { + Diag(ParamInfo.getSourceRange().getBegin(), + diag::err_block_returns_array); + return; + } + + // The parameter list is optional, if there was none, assume (). + if (!T->isFunctionType()) + T = Context.getFunctionType(T, 0, 0, false, 0, false, false, 0, 0, + FunctionType::ExtInfo()); + + CurBlock->hasPrototype = true; + CurBlock->isVariadic = false; + // Check for a valid sentinel attribute on this block. + if (CurBlock->TheDecl->getAttr<SentinelAttr>()) { + Diag(ParamInfo.getAttributes()->getLoc(), + diag::warn_attribute_sentinel_not_variadic) << 1; + // FIXME: remove the attribute. + } + QualType RetTy = T.getTypePtr()->getAs<FunctionType>()->getResultType(); + + // Do not allow returning a objc interface by-value. + if (RetTy->isObjCObjectType()) { + Diag(ParamInfo.getSourceRange().getBegin(), + diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy; + return; + } + + CurBlock->ReturnType = RetTy; + return; + } + + // Analyze arguments to block. + assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function && + "Not a function declarator!"); + DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun; + + CurBlock->hasPrototype = FTI.hasPrototype; + CurBlock->isVariadic = true; + + // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes + // no arguments, not a function that takes a single void argument. + if (FTI.hasPrototype && + FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 && + (!FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType().getCVRQualifiers()&& + FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType())) { + // empty arg list, don't push any params. + CurBlock->isVariadic = false; + } else if (FTI.hasPrototype) { + for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) { + ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>(); + if (Param->getIdentifier() == 0 && + !Param->isImplicit() && + !Param->isInvalidDecl() && + !getLangOptions().CPlusPlus) + Diag(Param->getLocation(), diag::err_parameter_name_omitted); + CurBlock->Params.push_back(Param); + } + CurBlock->isVariadic = FTI.isVariadic; + } + CurBlock->TheDecl->setParams(CurBlock->Params.data(), + CurBlock->Params.size()); + CurBlock->TheDecl->setIsVariadic(CurBlock->isVariadic); + ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo); + + bool ShouldCheckShadow = + Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored; + + for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(), + E = CurBlock->TheDecl->param_end(); AI != E; ++AI) { + (*AI)->setOwningFunction(CurBlock->TheDecl); + + // If this has an identifier, add it to the scope stack. + if ((*AI)->getIdentifier()) { + if (ShouldCheckShadow) + CheckShadow(CurBlock->TheScope, *AI); + + PushOnScopeChains(*AI, CurBlock->TheScope); + } + } + + // Check for a valid sentinel attribute on this block. + if (!CurBlock->isVariadic && + CurBlock->TheDecl->getAttr<SentinelAttr>()) { + Diag(ParamInfo.getAttributes()->getLoc(), + diag::warn_attribute_sentinel_not_variadic) << 1; + // FIXME: remove the attribute. + } + + // Analyze the return type. + QualType T = GetTypeForDeclarator(ParamInfo, CurScope); + QualType RetTy = T->getAs<FunctionType>()->getResultType(); + + // Do not allow returning a objc interface by-value. + if (RetTy->isObjCObjectType()) { + Diag(ParamInfo.getSourceRange().getBegin(), + diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy; + } else if (!RetTy->isDependentType()) + CurBlock->ReturnType = RetTy; +} + +/// ActOnBlockError - If there is an error parsing a block, this callback +/// is invoked to pop the information about the block from the action impl. +void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) { + // Pop off CurBlock, handle nested blocks. + PopDeclContext(); + PopFunctionOrBlockScope(); + // FIXME: Delete the ParmVarDecl objects as well??? +} + +/// ActOnBlockStmtExpr - This is called when the body of a block statement +/// literal was successfully completed. ^(int x){...} +Sema::OwningExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc, + StmtArg body, Scope *CurScope) { + // If blocks are disabled, emit an error. + if (!LangOpts.Blocks) + Diag(CaretLoc, diag::err_blocks_disable); + + BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back()); + + PopDeclContext(); + + QualType RetTy = Context.VoidTy; + if (!BSI->ReturnType.isNull()) + RetTy = BSI->ReturnType; + + llvm::SmallVector<QualType, 8> ArgTypes; + for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i) + ArgTypes.push_back(BSI->Params[i]->getType()); + + bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>(); + QualType BlockTy; + if (!BSI->hasPrototype) + BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0, false, false, 0, 0, + FunctionType::ExtInfo(NoReturn, 0, CC_Default)); + else + BlockTy = Context.getFunctionType(RetTy, ArgTypes.data(), ArgTypes.size(), + BSI->isVariadic, 0, false, false, 0, 0, + FunctionType::ExtInfo(NoReturn, 0, CC_Default)); + + // FIXME: Check that return/parameter types are complete/non-abstract + DiagnoseUnusedParameters(BSI->Params.begin(), BSI->Params.end()); + BlockTy = Context.getBlockPointerType(BlockTy); + + // If needed, diagnose invalid gotos and switches in the block. + if (FunctionNeedsScopeChecking() && !hasAnyErrorsInThisFunction()) + DiagnoseInvalidJumps(static_cast<CompoundStmt*>(body.get())); + + BSI->TheDecl->setBody(body.takeAs<CompoundStmt>()); + + bool Good = true; + // Check goto/label use. + for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator + I = BSI->LabelMap.begin(), E = BSI->LabelMap.end(); I != E; ++I) { + LabelStmt *L = I->second; + + // Verify that we have no forward references left. If so, there was a goto + // or address of a label taken, but no definition of it. + if (L->getSubStmt() != 0) + continue; + + // Emit error. + Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName(); + Good = false; + } + if (!Good) { + PopFunctionOrBlockScope(); + return ExprError(); + } + + // Issue any analysis-based warnings. + const sema::AnalysisBasedWarnings::Policy &WP = + AnalysisWarnings.getDefaultPolicy(); + AnalysisWarnings.IssueWarnings(WP, BSI->TheDecl, BlockTy); + + Expr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy, + BSI->hasBlockDeclRefExprs); + PopFunctionOrBlockScope(); + return Owned(Result); +} + +Sema::OwningExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, + ExprArg expr, TypeTy *type, + SourceLocation RPLoc) { + QualType T = GetTypeFromParser(type); + Expr *E = static_cast<Expr*>(expr.get()); + Expr *OrigExpr = E; + + InitBuiltinVaListType(); + + // Get the va_list type + QualType VaListType = Context.getBuiltinVaListType(); + if (VaListType->isArrayType()) { + // Deal with implicit array decay; for example, on x86-64, + // va_list is an array, but it's supposed to decay to + // a pointer for va_arg. + VaListType = Context.getArrayDecayedType(VaListType); + // Make sure the input expression also decays appropriately. + UsualUnaryConversions(E); + } else { + // Otherwise, the va_list argument must be an l-value because + // it is modified by va_arg. + if (!E->isTypeDependent() && + CheckForModifiableLvalue(E, BuiltinLoc, *this)) + return ExprError(); + } + + if (!E->isTypeDependent() && + !Context.hasSameType(VaListType, E->getType())) { + return ExprError(Diag(E->getLocStart(), + diag::err_first_argument_to_va_arg_not_of_type_va_list) + << OrigExpr->getType() << E->getSourceRange()); + } + + // FIXME: Check that type is complete/non-abstract + // FIXME: Warn if a non-POD type is passed in. + + expr.release(); + return Owned(new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(), + RPLoc)); +} + +Sema::OwningExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) { + // The type of __null will be int or long, depending on the size of + // pointers on the target. + QualType Ty; + if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth()) + Ty = Context.IntTy; + else + Ty = Context.LongTy; + + return Owned(new (Context) GNUNullExpr(Ty, TokenLoc)); +} + +static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType, + Expr *SrcExpr, FixItHint &Hint) { + if (!SemaRef.getLangOptions().ObjC1) + return; + + const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>(); + if (!PT) + return; + + // Check if the destination is of type 'id'. + if (!PT->isObjCIdType()) { + // Check if the destination is the 'NSString' interface. + const ObjCInterfaceDecl *ID = PT->getInterfaceDecl(); + if (!ID || !ID->getIdentifier()->isStr("NSString")) + return; + } + + // Strip off any parens and casts. + StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr->IgnoreParenCasts()); + if (!SL || SL->isWide()) + return; + + Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@"); +} + +bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy, + SourceLocation Loc, + QualType DstType, QualType SrcType, + Expr *SrcExpr, AssignmentAction Action, + bool *Complained) { + if (Complained) + *Complained = false; + + // Decode the result (notice that AST's are still created for extensions). + bool isInvalid = false; + unsigned DiagKind; + FixItHint Hint; + + switch (ConvTy) { + default: assert(0 && "Unknown conversion type"); + case Compatible: return false; + case PointerToInt: + DiagKind = diag::ext_typecheck_convert_pointer_int; + break; + case IntToPointer: + DiagKind = diag::ext_typecheck_convert_int_pointer; + break; + case IncompatiblePointer: + MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint); + DiagKind = diag::ext_typecheck_convert_incompatible_pointer; + break; + case IncompatiblePointerSign: + DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign; + break; + case FunctionVoidPointer: + DiagKind = diag::ext_typecheck_convert_pointer_void_func; + break; + case CompatiblePointerDiscardsQualifiers: + // If the qualifiers lost were because we were applying the + // (deprecated) C++ conversion from a string literal to a char* + // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME: + // Ideally, this check would be performed in + // CheckPointerTypesForAssignment. However, that would require a + // bit of refactoring (so that the second argument is an + // expression, rather than a type), which should be done as part + // of a larger effort to fix CheckPointerTypesForAssignment for + // C++ semantics. + if (getLangOptions().CPlusPlus && + IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType)) + return false; + DiagKind = diag::ext_typecheck_convert_discards_qualifiers; + break; + case IncompatibleNestedPointerQualifiers: + DiagKind = diag::ext_nested_pointer_qualifier_mismatch; + break; + case IntToBlockPointer: + DiagKind = diag::err_int_to_block_pointer; + break; + case IncompatibleBlockPointer: + DiagKind = diag::err_typecheck_convert_incompatible_block_pointer; + break; + case IncompatibleObjCQualifiedId: + // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since + // it can give a more specific diagnostic. + DiagKind = diag::warn_incompatible_qualified_id; + break; + case IncompatibleVectors: + DiagKind = diag::warn_incompatible_vectors; + break; + case Incompatible: + DiagKind = diag::err_typecheck_convert_incompatible; + isInvalid = true; + break; + } + + QualType FirstType, SecondType; + switch (Action) { + case AA_Assigning: + case AA_Initializing: + // The destination type comes first. + FirstType = DstType; + SecondType = SrcType; + break; + + case AA_Returning: + case AA_Passing: + case AA_Converting: + case AA_Sending: + case AA_Casting: + // The source type comes first. + FirstType = SrcType; + SecondType = DstType; + break; + } + + Diag(Loc, DiagKind) << FirstType << SecondType << Action + << SrcExpr->getSourceRange() << Hint; + if (Complained) + *Complained = true; + return isInvalid; +} + +bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){ + llvm::APSInt ICEResult; + if (E->isIntegerConstantExpr(ICEResult, Context)) { + if (Result) + *Result = ICEResult; + return false; + } + + Expr::EvalResult EvalResult; + + if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() || + EvalResult.HasSideEffects) { + Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange(); + + if (EvalResult.Diag) { + // We only show the note if it's not the usual "invalid subexpression" + // or if it's actually in a subexpression. + if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice || + E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens()) + Diag(EvalResult.DiagLoc, EvalResult.Diag); + } + + return true; + } + + Diag(E->getExprLoc(), diag::ext_expr_not_ice) << + E->getSourceRange(); + + if (EvalResult.Diag && + Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored) + Diag(EvalResult.DiagLoc, EvalResult.Diag); + + if (Result) + *Result = EvalResult.Val.getInt(); + return false; +} + +void +Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) { + ExprEvalContexts.push_back( + ExpressionEvaluationContextRecord(NewContext, ExprTemporaries.size())); +} + +void +Sema::PopExpressionEvaluationContext() { + // Pop the current expression evaluation context off the stack. + ExpressionEvaluationContextRecord Rec = ExprEvalContexts.back(); + ExprEvalContexts.pop_back(); + + if (Rec.Context == PotentiallyPotentiallyEvaluated) { + if (Rec.PotentiallyReferenced) { + // Mark any remaining declarations in the current position of the stack + // as "referenced". If they were not meant to be referenced, semantic + // analysis would have eliminated them (e.g., in ActOnCXXTypeId). + for (PotentiallyReferencedDecls::iterator + I = Rec.PotentiallyReferenced->begin(), + IEnd = Rec.PotentiallyReferenced->end(); + I != IEnd; ++I) + MarkDeclarationReferenced(I->first, I->second); + } + + if (Rec.PotentiallyDiagnosed) { + // Emit any pending diagnostics. + for (PotentiallyEmittedDiagnostics::iterator + I = Rec.PotentiallyDiagnosed->begin(), + IEnd = Rec.PotentiallyDiagnosed->end(); + I != IEnd; ++I) + Diag(I->first, I->second); + } + } + + // When are coming out of an unevaluated context, clear out any + // temporaries that we may have created as part of the evaluation of + // the expression in that context: they aren't relevant because they + // will never be constructed. + if (Rec.Context == Unevaluated && + ExprTemporaries.size() > Rec.NumTemporaries) + ExprTemporaries.erase(ExprTemporaries.begin() + Rec.NumTemporaries, + ExprTemporaries.end()); + + // Destroy the popped expression evaluation record. + Rec.Destroy(); +} + +/// \brief Note that the given declaration was referenced in the source code. +/// +/// This routine should be invoke whenever a given declaration is referenced +/// in the source code, and where that reference occurred. If this declaration +/// reference means that the the declaration is used (C++ [basic.def.odr]p2, +/// C99 6.9p3), then the declaration will be marked as used. +/// +/// \param Loc the location where the declaration was referenced. +/// +/// \param D the declaration that has been referenced by the source code. +void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) { + assert(D && "No declaration?"); + + if (D->isUsed()) + return; + + // Mark a parameter or variable declaration "used", regardless of whether we're in a + // template or not. The reason for this is that unevaluated expressions + // (e.g. (void)sizeof()) constitute a use for warning purposes (-Wunused-variables and + // -Wunused-parameters) + if (isa<ParmVarDecl>(D) || + (isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod())) { + D->setUsed(true); + return; + } + + if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D)) + return; + + // Do not mark anything as "used" within a dependent context; wait for + // an instantiation. + if (CurContext->isDependentContext()) + return; + + switch (ExprEvalContexts.back().Context) { + case Unevaluated: + // We are in an expression that is not potentially evaluated; do nothing. + return; + + case PotentiallyEvaluated: + // We are in a potentially-evaluated expression, so this declaration is + // "used"; handle this below. + break; + + case PotentiallyPotentiallyEvaluated: + // We are in an expression that may be potentially evaluated; queue this + // declaration reference until we know whether the expression is + // potentially evaluated. + ExprEvalContexts.back().addReferencedDecl(Loc, D); + return; + } + + // Note that this declaration has been used. + if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) { + unsigned TypeQuals; + if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) { + if (!Constructor->isUsed()) + DefineImplicitDefaultConstructor(Loc, Constructor); + } else if (Constructor->isImplicit() && + Constructor->isCopyConstructor(TypeQuals)) { + if (!Constructor->isUsed()) + DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals); + } + + MarkVTableUsed(Loc, Constructor->getParent()); + } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) { + if (Destructor->isImplicit() && !Destructor->isUsed()) + DefineImplicitDestructor(Loc, Destructor); + if (Destructor->isVirtual()) + MarkVTableUsed(Loc, Destructor->getParent()); + } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) { + if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() && + MethodDecl->getOverloadedOperator() == OO_Equal) { + if (!MethodDecl->isUsed()) + DefineImplicitCopyAssignment(Loc, MethodDecl); + } else if (MethodDecl->isVirtual()) + MarkVTableUsed(Loc, MethodDecl->getParent()); + } + if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { + // Implicit instantiation of function templates and member functions of + // class templates. + if (Function->isImplicitlyInstantiable()) { + bool AlreadyInstantiated = false; + if (FunctionTemplateSpecializationInfo *SpecInfo + = Function->getTemplateSpecializationInfo()) { + if (SpecInfo->getPointOfInstantiation().isInvalid()) + SpecInfo->setPointOfInstantiation(Loc); + else if (SpecInfo->getTemplateSpecializationKind() + == TSK_ImplicitInstantiation) + AlreadyInstantiated = true; + } else if (MemberSpecializationInfo *MSInfo + = Function->getMemberSpecializationInfo()) { + if (MSInfo->getPointOfInstantiation().isInvalid()) + MSInfo->setPointOfInstantiation(Loc); + else if (MSInfo->getTemplateSpecializationKind() + == TSK_ImplicitInstantiation) + AlreadyInstantiated = true; + } + + if (!AlreadyInstantiated) { + if (isa<CXXRecordDecl>(Function->getDeclContext()) && + cast<CXXRecordDecl>(Function->getDeclContext())->isLocalClass()) + PendingLocalImplicitInstantiations.push_back(std::make_pair(Function, + Loc)); + else + PendingImplicitInstantiations.push_back(std::make_pair(Function, + Loc)); + } + } + + // FIXME: keep track of references to static functions + Function->setUsed(true); + + return; + } + + if (VarDecl *Var = dyn_cast<VarDecl>(D)) { + // Implicit instantiation of static data members of class templates. + if (Var->isStaticDataMember() && + Var->getInstantiatedFromStaticDataMember()) { + MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo(); + assert(MSInfo && "Missing member specialization information?"); + if (MSInfo->getPointOfInstantiation().isInvalid() && + MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) { + MSInfo->setPointOfInstantiation(Loc); + PendingImplicitInstantiations.push_back(std::make_pair(Var, Loc)); + } + } + + // FIXME: keep track of references to static data? + + D->setUsed(true); + return; + } +} + +namespace { + // Mark all of the declarations referenced + // FIXME: Not fully implemented yet! We need to have a better understanding + // of when we're entering + class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> { + Sema &S; + SourceLocation Loc; + + public: + typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited; + + MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { } + + bool VisitTemplateArgument(const TemplateArgument &Arg); + bool VisitRecordType(RecordType *T); + }; +} + +bool MarkReferencedDecls::VisitTemplateArgument(const TemplateArgument &Arg) { + if (Arg.getKind() == TemplateArgument::Declaration) { + S.MarkDeclarationReferenced(Loc, Arg.getAsDecl()); + } + + return Inherited::VisitTemplateArgument(Arg); +} + +bool MarkReferencedDecls::VisitRecordType(RecordType *T) { + if (ClassTemplateSpecializationDecl *Spec + = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) { + const TemplateArgumentList &Args = Spec->getTemplateArgs(); + return VisitTemplateArguments(Args.getFlatArgumentList(), + Args.flat_size()); + } + + return false; +} + +void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) { + MarkReferencedDecls Marker(*this, Loc); + Marker.Visit(Context.getCanonicalType(T)); +} + +/// \brief Emit a diagnostic that describes an effect on the run-time behavior +/// of the program being compiled. +/// +/// This routine emits the given diagnostic when the code currently being +/// type-checked is "potentially evaluated", meaning that there is a +/// possibility that the code will actually be executable. Code in sizeof() +/// expressions, code used only during overload resolution, etc., are not +/// potentially evaluated. This routine will suppress such diagnostics or, +/// in the absolutely nutty case of potentially potentially evaluated +/// expressions (C++ typeid), queue the diagnostic to potentially emit it +/// later. +/// +/// This routine should be used for all diagnostics that describe the run-time +/// behavior of a program, such as passing a non-POD value through an ellipsis. +/// Failure to do so will likely result in spurious diagnostics or failures +/// during overload resolution or within sizeof/alignof/typeof/typeid. +bool Sema::DiagRuntimeBehavior(SourceLocation Loc, + const PartialDiagnostic &PD) { + switch (ExprEvalContexts.back().Context ) { + case Unevaluated: + // The argument will never be evaluated, so don't complain. + break; + + case PotentiallyEvaluated: + Diag(Loc, PD); + return true; + + case PotentiallyPotentiallyEvaluated: + ExprEvalContexts.back().addDiagnostic(Loc, PD); + break; + } + + return false; +} + +bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc, + CallExpr *CE, FunctionDecl *FD) { + if (ReturnType->isVoidType() || !ReturnType->isIncompleteType()) + return false; + + PartialDiagnostic Note = + FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here) + << FD->getDeclName() : PDiag(); + SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation(); + + if (RequireCompleteType(Loc, ReturnType, + FD ? + PDiag(diag::err_call_function_incomplete_return) + << CE->getSourceRange() << FD->getDeclName() : + PDiag(diag::err_call_incomplete_return) + << CE->getSourceRange(), + std::make_pair(NoteLoc, Note))) + return true; + + return false; +} + +// Diagnose the common s/=/==/ typo. Note that adding parentheses +// will prevent this condition from triggering, which is what we want. +void Sema::DiagnoseAssignmentAsCondition(Expr *E) { + SourceLocation Loc; + + unsigned diagnostic = diag::warn_condition_is_assignment; + + if (isa<BinaryOperator>(E)) { + BinaryOperator *Op = cast<BinaryOperator>(E); + if (Op->getOpcode() != BinaryOperator::Assign) + return; + + // Greylist some idioms by putting them into a warning subcategory. + if (ObjCMessageExpr *ME + = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) { + Selector Sel = ME->getSelector(); + + // self = [<foo> init...] + if (isSelfExpr(Op->getLHS()) + && Sel.getIdentifierInfoForSlot(0)->getName().startswith("init")) + diagnostic = diag::warn_condition_is_idiomatic_assignment; + + // <foo> = [<bar> nextObject] + else if (Sel.isUnarySelector() && + Sel.getIdentifierInfoForSlot(0)->getName() == "nextObject") + diagnostic = diag::warn_condition_is_idiomatic_assignment; + } + + Loc = Op->getOperatorLoc(); + } else if (isa<CXXOperatorCallExpr>(E)) { + CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(E); + if (Op->getOperator() != OO_Equal) + return; + + Loc = Op->getOperatorLoc(); + } else { + // Not an assignment. + return; + } + + SourceLocation Open = E->getSourceRange().getBegin(); + SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd()); + + Diag(Loc, diagnostic) << E->getSourceRange(); + Diag(Loc, diag::note_condition_assign_to_comparison) + << FixItHint::CreateReplacement(Loc, "=="); + Diag(Loc, diag::note_condition_assign_silence) + << FixItHint::CreateInsertion(Open, "(") + << FixItHint::CreateInsertion(Close, ")"); +} + +bool Sema::CheckBooleanCondition(Expr *&E, SourceLocation Loc) { + DiagnoseAssignmentAsCondition(E); + + if (!E->isTypeDependent()) { + DefaultFunctionArrayLvalueConversion(E); + + QualType T = E->getType(); + + if (getLangOptions().CPlusPlus) { + if (CheckCXXBooleanCondition(E)) // C++ 6.4p4 + return true; + } else if (!T->isScalarType()) { // C99 6.8.4.1p1 + Diag(Loc, diag::err_typecheck_statement_requires_scalar) + << T << E->getSourceRange(); + return true; + } + } + + return false; +} + +Sema::OwningExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc, + ExprArg SubExpr) { + Expr *Sub = SubExpr.takeAs<Expr>(); + if (!Sub) + return ExprError(); + + if (CheckBooleanCondition(Sub, Loc)) { + Sub->Destroy(Context); + return ExprError(); + } + + return Owned(Sub); +} |