summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/Sema/SemaExpr.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/Sema/SemaExpr.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaExpr.cpp11289
1 files changed, 11289 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaExpr.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaExpr.cpp
new file mode 100644
index 0000000..0d0f2f5
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaExpr.cpp
@@ -0,0 +1,11289 @@
+//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements semantic analysis for expressions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Sema/SemaInternal.h"
+#include "clang/Sema/DelayedDiagnostic.h"
+#include "clang/Sema/Initialization.h"
+#include "clang/Sema/Lookup.h"
+#include "clang/Sema/ScopeInfo.h"
+#include "clang/Sema/AnalysisBasedWarnings.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/AST/ASTMutationListener.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/EvaluatedExprVisitor.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/AST/RecursiveASTVisitor.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/Basic/PartialDiagnostic.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Lex/LiteralSupport.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Sema/DeclSpec.h"
+#include "clang/Sema/Designator.h"
+#include "clang/Sema/Scope.h"
+#include "clang/Sema/ScopeInfo.h"
+#include "clang/Sema/ParsedTemplate.h"
+#include "clang/Sema/SemaFixItUtils.h"
+#include "clang/Sema/Template.h"
+#include "TreeTransform.h"
+using namespace clang;
+using namespace sema;
+
+/// \brief Determine whether the use of this declaration is valid, without
+/// emitting diagnostics.
+bool Sema::CanUseDecl(NamedDecl *D) {
+ // See if this is an auto-typed variable whose initializer we are parsing.
+ if (ParsingInitForAutoVars.count(D))
+ return false;
+
+ // See if this is a deleted function.
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ if (FD->isDeleted())
+ return false;
+ }
+
+ // See if this function is unavailable.
+ if (D->getAvailability() == AR_Unavailable &&
+ cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
+ return false;
+
+ return true;
+}
+
+static AvailabilityResult DiagnoseAvailabilityOfDecl(Sema &S,
+ NamedDecl *D, SourceLocation Loc,
+ const ObjCInterfaceDecl *UnknownObjCClass) {
+ // See if this declaration is unavailable or deprecated.
+ std::string Message;
+ AvailabilityResult Result = D->getAvailability(&Message);
+ if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D))
+ if (Result == AR_Available) {
+ const DeclContext *DC = ECD->getDeclContext();
+ if (const EnumDecl *TheEnumDecl = dyn_cast<EnumDecl>(DC))
+ Result = TheEnumDecl->getAvailability(&Message);
+ }
+
+ switch (Result) {
+ case AR_Available:
+ case AR_NotYetIntroduced:
+ break;
+
+ case AR_Deprecated:
+ S.EmitDeprecationWarning(D, Message, Loc, UnknownObjCClass);
+ break;
+
+ case AR_Unavailable:
+ if (S.getCurContextAvailability() != AR_Unavailable) {
+ if (Message.empty()) {
+ if (!UnknownObjCClass)
+ S.Diag(Loc, diag::err_unavailable) << D->getDeclName();
+ else
+ S.Diag(Loc, diag::warn_unavailable_fwdclass_message)
+ << D->getDeclName();
+ }
+ else
+ S.Diag(Loc, diag::err_unavailable_message)
+ << D->getDeclName() << Message;
+ S.Diag(D->getLocation(), diag::note_unavailable_here)
+ << isa<FunctionDecl>(D) << false;
+ }
+ break;
+ }
+ return Result;
+}
+
+/// \brief Emit a note explaining that this function is deleted or unavailable.
+void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
+ CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Decl);
+
+ if (Method && Method->isDeleted() && !Method->isDeletedAsWritten()) {
+ // If the method was explicitly defaulted, point at that declaration.
+ if (!Method->isImplicit())
+ Diag(Decl->getLocation(), diag::note_implicitly_deleted);
+
+ // Try to diagnose why this special member function was implicitly
+ // deleted. This might fail, if that reason no longer applies.
+ CXXSpecialMember CSM = getSpecialMember(Method);
+ if (CSM != CXXInvalid)
+ ShouldDeleteSpecialMember(Method, CSM, /*Diagnose=*/true);
+
+ return;
+ }
+
+ Diag(Decl->getLocation(), diag::note_unavailable_here)
+ << 1 << Decl->isDeleted();
+}
+
+/// \brief Determine whether the use of this declaration is valid, and
+/// emit any corresponding diagnostics.
+///
+/// This routine diagnoses various problems with referencing
+/// declarations that can occur when using a declaration. For example,
+/// it might warn if a deprecated or unavailable declaration is being
+/// used, or produce an error (and return true) if a C++0x deleted
+/// function is being used.
+///
+/// \returns true if there was an error (this declaration cannot be
+/// referenced), false otherwise.
+///
+bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
+ const ObjCInterfaceDecl *UnknownObjCClass) {
+ if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
+ // If there were any diagnostics suppressed by template argument deduction,
+ // emit them now.
+ llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >::iterator
+ Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
+ if (Pos != SuppressedDiagnostics.end()) {
+ SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
+ for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
+ Diag(Suppressed[I].first, Suppressed[I].second);
+
+ // Clear out the list of suppressed diagnostics, so that we don't emit
+ // them again for this specialization. However, we don't obsolete this
+ // entry from the table, because we want to avoid ever emitting these
+ // diagnostics again.
+ Suppressed.clear();
+ }
+ }
+
+ // See if this is an auto-typed variable whose initializer we are parsing.
+ if (ParsingInitForAutoVars.count(D)) {
+ Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
+ << D->getDeclName();
+ return true;
+ }
+
+ // See if this is a deleted function.
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ if (FD->isDeleted()) {
+ Diag(Loc, diag::err_deleted_function_use);
+ NoteDeletedFunction(FD);
+ return true;
+ }
+ }
+ DiagnoseAvailabilityOfDecl(*this, D, Loc, UnknownObjCClass);
+
+ // Warn if this is used but marked unused.
+ if (D->hasAttr<UnusedAttr>())
+ Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
+ return false;
+}
+
+/// \brief Retrieve the message suffix that should be added to a
+/// diagnostic complaining about the given function being deleted or
+/// unavailable.
+std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
+ // FIXME: C++0x implicitly-deleted special member functions could be
+ // detected here so that we could improve diagnostics to say, e.g.,
+ // "base class 'A' had a deleted copy constructor".
+ if (FD->isDeleted())
+ return std::string();
+
+ std::string Message;
+ if (FD->getAvailability(&Message))
+ return ": " + Message;
+
+ return std::string();
+}
+
+/// DiagnoseSentinelCalls - This routine checks whether a call or
+/// message-send is to a declaration with the sentinel attribute, and
+/// if so, it checks that the requirements of the sentinel are
+/// satisfied.
+void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
+ Expr **args, unsigned numArgs) {
+ const SentinelAttr *attr = D->getAttr<SentinelAttr>();
+ if (!attr)
+ return;
+
+ // The number of formal parameters of the declaration.
+ unsigned numFormalParams;
+
+ // The kind of declaration. This is also an index into a %select in
+ // the diagnostic.
+ enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
+
+ if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
+ numFormalParams = MD->param_size();
+ calleeType = CT_Method;
+ } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ numFormalParams = FD->param_size();
+ calleeType = CT_Function;
+ } else if (isa<VarDecl>(D)) {
+ QualType type = cast<ValueDecl>(D)->getType();
+ const FunctionType *fn = 0;
+ if (const PointerType *ptr = type->getAs<PointerType>()) {
+ fn = ptr->getPointeeType()->getAs<FunctionType>();
+ if (!fn) return;
+ calleeType = CT_Function;
+ } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
+ fn = ptr->getPointeeType()->castAs<FunctionType>();
+ calleeType = CT_Block;
+ } else {
+ return;
+ }
+
+ if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
+ numFormalParams = proto->getNumArgs();
+ } else {
+ numFormalParams = 0;
+ }
+ } else {
+ return;
+ }
+
+ // "nullPos" is the number of formal parameters at the end which
+ // effectively count as part of the variadic arguments. This is
+ // useful if you would prefer to not have *any* formal parameters,
+ // but the language forces you to have at least one.
+ unsigned nullPos = attr->getNullPos();
+ assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
+ numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
+
+ // The number of arguments which should follow the sentinel.
+ unsigned numArgsAfterSentinel = attr->getSentinel();
+
+ // If there aren't enough arguments for all the formal parameters,
+ // the sentinel, and the args after the sentinel, complain.
+ if (numArgs < numFormalParams + numArgsAfterSentinel + 1) {
+ Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
+ Diag(D->getLocation(), diag::note_sentinel_here) << calleeType;
+ return;
+ }
+
+ // Otherwise, find the sentinel expression.
+ Expr *sentinelExpr = args[numArgs - numArgsAfterSentinel - 1];
+ if (!sentinelExpr) return;
+ if (sentinelExpr->isValueDependent()) return;
+ if (Context.isSentinelNullExpr(sentinelExpr)) return;
+
+ // Pick a reasonable string to insert. Optimistically use 'nil' or
+ // 'NULL' if those are actually defined in the context. Only use
+ // 'nil' for ObjC methods, where it's much more likely that the
+ // variadic arguments form a list of object pointers.
+ SourceLocation MissingNilLoc
+ = PP.getLocForEndOfToken(sentinelExpr->getLocEnd());
+ std::string NullValue;
+ if (calleeType == CT_Method &&
+ PP.getIdentifierInfo("nil")->hasMacroDefinition())
+ NullValue = "nil";
+ else if (PP.getIdentifierInfo("NULL")->hasMacroDefinition())
+ NullValue = "NULL";
+ else
+ NullValue = "(void*) 0";
+
+ if (MissingNilLoc.isInvalid())
+ Diag(Loc, diag::warn_missing_sentinel) << calleeType;
+ else
+ Diag(MissingNilLoc, diag::warn_missing_sentinel)
+ << calleeType
+ << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
+ Diag(D->getLocation(), diag::note_sentinel_here) << calleeType;
+}
+
+SourceRange Sema::getExprRange(Expr *E) const {
+ return E ? E->getSourceRange() : SourceRange();
+}
+
+//===----------------------------------------------------------------------===//
+// Standard Promotions and Conversions
+//===----------------------------------------------------------------------===//
+
+/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
+ExprResult Sema::DefaultFunctionArrayConversion(Expr *E) {
+ // Handle any placeholder expressions which made it here.
+ if (E->getType()->isPlaceholderType()) {
+ ExprResult result = CheckPlaceholderExpr(E);
+ if (result.isInvalid()) return ExprError();
+ E = result.take();
+ }
+
+ QualType Ty = E->getType();
+ assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
+
+ if (Ty->isFunctionType())
+ E = ImpCastExprToType(E, Context.getPointerType(Ty),
+ CK_FunctionToPointerDecay).take();
+ else if (Ty->isArrayType()) {
+ // In C90 mode, arrays only promote to pointers if the array expression is
+ // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
+ // type 'array of type' is converted to an expression that has type 'pointer
+ // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
+ // that has type 'array of type' ...". The relevant change is "an lvalue"
+ // (C90) to "an expression" (C99).
+ //
+ // C++ 4.2p1:
+ // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
+ // T" can be converted to an rvalue of type "pointer to T".
+ //
+ if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
+ E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
+ CK_ArrayToPointerDecay).take();
+ }
+ return Owned(E);
+}
+
+static void CheckForNullPointerDereference(Sema &S, Expr *E) {
+ // Check to see if we are dereferencing a null pointer. If so,
+ // and if not volatile-qualified, this is undefined behavior that the
+ // optimizer will delete, so warn about it. People sometimes try to use this
+ // to get a deterministic trap and are surprised by clang's behavior. This
+ // only handles the pattern "*null", which is a very syntactic check.
+ if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
+ if (UO->getOpcode() == UO_Deref &&
+ UO->getSubExpr()->IgnoreParenCasts()->
+ isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
+ !UO->getType().isVolatileQualified()) {
+ S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
+ S.PDiag(diag::warn_indirection_through_null)
+ << UO->getSubExpr()->getSourceRange());
+ S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
+ S.PDiag(diag::note_indirection_through_null));
+ }
+}
+
+ExprResult Sema::DefaultLvalueConversion(Expr *E) {
+ // Handle any placeholder expressions which made it here.
+ if (E->getType()->isPlaceholderType()) {
+ ExprResult result = CheckPlaceholderExpr(E);
+ if (result.isInvalid()) return ExprError();
+ E = result.take();
+ }
+
+ // C++ [conv.lval]p1:
+ // A glvalue of a non-function, non-array type T can be
+ // converted to a prvalue.
+ if (!E->isGLValue()) return Owned(E);
+
+ QualType T = E->getType();
+ assert(!T.isNull() && "r-value conversion on typeless expression?");
+
+ // We don't want to throw lvalue-to-rvalue casts on top of
+ // expressions of certain types in C++.
+ if (getLangOpts().CPlusPlus &&
+ (E->getType() == Context.OverloadTy ||
+ T->isDependentType() ||
+ T->isRecordType()))
+ return Owned(E);
+
+ // The C standard is actually really unclear on this point, and
+ // DR106 tells us what the result should be but not why. It's
+ // generally best to say that void types just doesn't undergo
+ // lvalue-to-rvalue at all. Note that expressions of unqualified
+ // 'void' type are never l-values, but qualified void can be.
+ if (T->isVoidType())
+ return Owned(E);
+
+ CheckForNullPointerDereference(*this, E);
+
+ // C++ [conv.lval]p1:
+ // [...] If T is a non-class type, the type of the prvalue is the
+ // cv-unqualified version of T. Otherwise, the type of the
+ // rvalue is T.
+ //
+ // C99 6.3.2.1p2:
+ // If the lvalue has qualified type, the value has the unqualified
+ // version of the type of the lvalue; otherwise, the value has the
+ // type of the lvalue.
+ if (T.hasQualifiers())
+ T = T.getUnqualifiedType();
+
+ UpdateMarkingForLValueToRValue(E);
+
+ ExprResult Res = Owned(ImplicitCastExpr::Create(Context, T, CK_LValueToRValue,
+ E, 0, VK_RValue));
+
+ // C11 6.3.2.1p2:
+ // ... if the lvalue has atomic type, the value has the non-atomic version
+ // of the type of the lvalue ...
+ if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
+ T = Atomic->getValueType().getUnqualifiedType();
+ Res = Owned(ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic,
+ Res.get(), 0, VK_RValue));
+ }
+
+ return Res;
+}
+
+ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E) {
+ ExprResult Res = DefaultFunctionArrayConversion(E);
+ if (Res.isInvalid())
+ return ExprError();
+ Res = DefaultLvalueConversion(Res.take());
+ if (Res.isInvalid())
+ return ExprError();
+ return move(Res);
+}
+
+
+/// UsualUnaryConversions - Performs various conversions that are common to most
+/// operators (C99 6.3). The conversions of array and function types are
+/// sometimes suppressed. For example, the array->pointer conversion doesn't
+/// apply if the array is an argument to the sizeof or address (&) operators.
+/// In these instances, this routine should *not* be called.
+ExprResult Sema::UsualUnaryConversions(Expr *E) {
+ // First, convert to an r-value.
+ ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
+ if (Res.isInvalid())
+ return Owned(E);
+ E = Res.take();
+
+ QualType Ty = E->getType();
+ assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
+
+ // Half FP is a bit different: it's a storage-only type, meaning that any
+ // "use" of it should be promoted to float.
+ if (Ty->isHalfType())
+ return ImpCastExprToType(Res.take(), Context.FloatTy, CK_FloatingCast);
+
+ // Try to perform integral promotions if the object has a theoretically
+ // promotable type.
+ if (Ty->isIntegralOrUnscopedEnumerationType()) {
+ // C99 6.3.1.1p2:
+ //
+ // The following may be used in an expression wherever an int or
+ // unsigned int may be used:
+ // - an object or expression with an integer type whose integer
+ // conversion rank is less than or equal to the rank of int
+ // and unsigned int.
+ // - A bit-field of type _Bool, int, signed int, or unsigned int.
+ //
+ // If an int can represent all values of the original type, the
+ // value is converted to an int; otherwise, it is converted to an
+ // unsigned int. These are called the integer promotions. All
+ // other types are unchanged by the integer promotions.
+
+ QualType PTy = Context.isPromotableBitField(E);
+ if (!PTy.isNull()) {
+ E = ImpCastExprToType(E, PTy, CK_IntegralCast).take();
+ return Owned(E);
+ }
+ if (Ty->isPromotableIntegerType()) {
+ QualType PT = Context.getPromotedIntegerType(Ty);
+ E = ImpCastExprToType(E, PT, CK_IntegralCast).take();
+ return Owned(E);
+ }
+ }
+ return Owned(E);
+}
+
+/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
+/// do not have a prototype. Arguments that have type float are promoted to
+/// double. All other argument types are converted by UsualUnaryConversions().
+ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
+ QualType Ty = E->getType();
+ assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
+
+ ExprResult Res = UsualUnaryConversions(E);
+ if (Res.isInvalid())
+ return Owned(E);
+ E = Res.take();
+
+ // If this is a 'float' (CVR qualified or typedef) promote to double.
+ if (Ty->isSpecificBuiltinType(BuiltinType::Float))
+ E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).take();
+
+ // C++ performs lvalue-to-rvalue conversion as a default argument
+ // promotion, even on class types, but note:
+ // C++11 [conv.lval]p2:
+ // When an lvalue-to-rvalue conversion occurs in an unevaluated
+ // operand or a subexpression thereof the value contained in the
+ // referenced object is not accessed. Otherwise, if the glvalue
+ // has a class type, the conversion copy-initializes a temporary
+ // of type T from the glvalue and the result of the conversion
+ // is a prvalue for the temporary.
+ // FIXME: add some way to gate this entire thing for correctness in
+ // potentially potentially evaluated contexts.
+ if (getLangOpts().CPlusPlus && E->isGLValue() &&
+ ExprEvalContexts.back().Context != Unevaluated) {
+ ExprResult Temp = PerformCopyInitialization(
+ InitializedEntity::InitializeTemporary(E->getType()),
+ E->getExprLoc(),
+ Owned(E));
+ if (Temp.isInvalid())
+ return ExprError();
+ E = Temp.get();
+ }
+
+ return Owned(E);
+}
+
+/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
+/// will warn if the resulting type is not a POD type, and rejects ObjC
+/// interfaces passed by value.
+ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
+ FunctionDecl *FDecl) {
+ if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
+ // Strip the unbridged-cast placeholder expression off, if applicable.
+ if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
+ (CT == VariadicMethod ||
+ (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
+ E = stripARCUnbridgedCast(E);
+
+ // Otherwise, do normal placeholder checking.
+ } else {
+ ExprResult ExprRes = CheckPlaceholderExpr(E);
+ if (ExprRes.isInvalid())
+ return ExprError();
+ E = ExprRes.take();
+ }
+ }
+
+ ExprResult ExprRes = DefaultArgumentPromotion(E);
+ if (ExprRes.isInvalid())
+ return ExprError();
+ E = ExprRes.take();
+
+ // Don't allow one to pass an Objective-C interface to a vararg.
+ if (E->getType()->isObjCObjectType() &&
+ DiagRuntimeBehavior(E->getLocStart(), 0,
+ PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
+ << E->getType() << CT))
+ return ExprError();
+
+ // Complain about passing non-POD types through varargs. However, don't
+ // perform this check for incomplete types, which we can get here when we're
+ // in an unevaluated context.
+ if (!E->getType()->isIncompleteType() && !E->getType().isPODType(Context)) {
+ // C++0x [expr.call]p7:
+ // Passing a potentially-evaluated argument of class type (Clause 9)
+ // having a non-trivial copy constructor, a non-trivial move constructor,
+ // or a non-trivial destructor, with no corresponding parameter,
+ // is conditionally-supported with implementation-defined semantics.
+ bool TrivialEnough = false;
+ if (getLangOpts().CPlusPlus0x && !E->getType()->isDependentType()) {
+ if (CXXRecordDecl *Record = E->getType()->getAsCXXRecordDecl()) {
+ if (Record->hasTrivialCopyConstructor() &&
+ Record->hasTrivialMoveConstructor() &&
+ Record->hasTrivialDestructor()) {
+ DiagRuntimeBehavior(E->getLocStart(), 0,
+ PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg)
+ << E->getType() << CT);
+ TrivialEnough = true;
+ }
+ }
+ }
+
+ if (!TrivialEnough &&
+ getLangOpts().ObjCAutoRefCount &&
+ E->getType()->isObjCLifetimeType())
+ TrivialEnough = true;
+
+ if (TrivialEnough) {
+ // Nothing to diagnose. This is okay.
+ } else if (DiagRuntimeBehavior(E->getLocStart(), 0,
+ PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
+ << getLangOpts().CPlusPlus0x << E->getType()
+ << CT)) {
+ // Turn this into a trap.
+ CXXScopeSpec SS;
+ SourceLocation TemplateKWLoc;
+ UnqualifiedId Name;
+ Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
+ E->getLocStart());
+ ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name,
+ true, false);
+ if (TrapFn.isInvalid())
+ return ExprError();
+
+ ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(), E->getLocStart(),
+ MultiExprArg(), E->getLocEnd());
+ if (Call.isInvalid())
+ return ExprError();
+
+ ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
+ Call.get(), E);
+ if (Comma.isInvalid())
+ return ExprError();
+ E = Comma.get();
+ }
+ }
+ // c++ rules are enforced elsewhere.
+ if (!getLangOpts().CPlusPlus &&
+ RequireCompleteType(E->getExprLoc(), E->getType(),
+ diag::err_call_incomplete_argument))
+ return ExprError();
+
+ return Owned(E);
+}
+
+/// \brief Converts an integer to complex float type. Helper function of
+/// UsualArithmeticConversions()
+///
+/// \return false if the integer expression is an integer type and is
+/// successfully converted to the complex type.
+static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
+ ExprResult &ComplexExpr,
+ QualType IntTy,
+ QualType ComplexTy,
+ bool SkipCast) {
+ if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
+ if (SkipCast) return false;
+ if (IntTy->isIntegerType()) {
+ QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
+ IntExpr = S.ImpCastExprToType(IntExpr.take(), fpTy, CK_IntegralToFloating);
+ IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
+ CK_FloatingRealToComplex);
+ } else {
+ assert(IntTy->isComplexIntegerType());
+ IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
+ CK_IntegralComplexToFloatingComplex);
+ }
+ return false;
+}
+
+/// \brief Takes two complex float types and converts them to the same type.
+/// Helper function of UsualArithmeticConversions()
+static QualType
+handleComplexFloatToComplexFloatConverstion(Sema &S, ExprResult &LHS,
+ ExprResult &RHS, QualType LHSType,
+ QualType RHSType,
+ bool IsCompAssign) {
+ int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
+
+ if (order < 0) {
+ // _Complex float -> _Complex double
+ if (!IsCompAssign)
+ LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingComplexCast);
+ return RHSType;
+ }
+ if (order > 0)
+ // _Complex float -> _Complex double
+ RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingComplexCast);
+ return LHSType;
+}
+
+/// \brief Converts otherExpr to complex float and promotes complexExpr if
+/// necessary. Helper function of UsualArithmeticConversions()
+static QualType handleOtherComplexFloatConversion(Sema &S,
+ ExprResult &ComplexExpr,
+ ExprResult &OtherExpr,
+ QualType ComplexTy,
+ QualType OtherTy,
+ bool ConvertComplexExpr,
+ bool ConvertOtherExpr) {
+ int order = S.Context.getFloatingTypeOrder(ComplexTy, OtherTy);
+
+ // If just the complexExpr is complex, the otherExpr needs to be converted,
+ // and the complexExpr might need to be promoted.
+ if (order > 0) { // complexExpr is wider
+ // float -> _Complex double
+ if (ConvertOtherExpr) {
+ QualType fp = cast<ComplexType>(ComplexTy)->getElementType();
+ OtherExpr = S.ImpCastExprToType(OtherExpr.take(), fp, CK_FloatingCast);
+ OtherExpr = S.ImpCastExprToType(OtherExpr.take(), ComplexTy,
+ CK_FloatingRealToComplex);
+ }
+ return ComplexTy;
+ }
+
+ // otherTy is at least as wide. Find its corresponding complex type.
+ QualType result = (order == 0 ? ComplexTy :
+ S.Context.getComplexType(OtherTy));
+
+ // double -> _Complex double
+ if (ConvertOtherExpr)
+ OtherExpr = S.ImpCastExprToType(OtherExpr.take(), result,
+ CK_FloatingRealToComplex);
+
+ // _Complex float -> _Complex double
+ if (ConvertComplexExpr && order < 0)
+ ComplexExpr = S.ImpCastExprToType(ComplexExpr.take(), result,
+ CK_FloatingComplexCast);
+
+ return result;
+}
+
+/// \brief Handle arithmetic conversion with complex types. Helper function of
+/// UsualArithmeticConversions()
+static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
+ ExprResult &RHS, QualType LHSType,
+ QualType RHSType,
+ bool IsCompAssign) {
+ // if we have an integer operand, the result is the complex type.
+ if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
+ /*skipCast*/false))
+ return LHSType;
+ if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
+ /*skipCast*/IsCompAssign))
+ return RHSType;
+
+ // This handles complex/complex, complex/float, or float/complex.
+ // When both operands are complex, the shorter operand is converted to the
+ // type of the longer, and that is the type of the result. This corresponds
+ // to what is done when combining two real floating-point operands.
+ // The fun begins when size promotion occur across type domains.
+ // From H&S 6.3.4: When one operand is complex and the other is a real
+ // floating-point type, the less precise type is converted, within it's
+ // real or complex domain, to the precision of the other type. For example,
+ // when combining a "long double" with a "double _Complex", the
+ // "double _Complex" is promoted to "long double _Complex".
+
+ bool LHSComplexFloat = LHSType->isComplexType();
+ bool RHSComplexFloat = RHSType->isComplexType();
+
+ // If both are complex, just cast to the more precise type.
+ if (LHSComplexFloat && RHSComplexFloat)
+ return handleComplexFloatToComplexFloatConverstion(S, LHS, RHS,
+ LHSType, RHSType,
+ IsCompAssign);
+
+ // If only one operand is complex, promote it if necessary and convert the
+ // other operand to complex.
+ if (LHSComplexFloat)
+ return handleOtherComplexFloatConversion(
+ S, LHS, RHS, LHSType, RHSType, /*convertComplexExpr*/!IsCompAssign,
+ /*convertOtherExpr*/ true);
+
+ assert(RHSComplexFloat);
+ return handleOtherComplexFloatConversion(
+ S, RHS, LHS, RHSType, LHSType, /*convertComplexExpr*/true,
+ /*convertOtherExpr*/ !IsCompAssign);
+}
+
+/// \brief Hande arithmetic conversion from integer to float. Helper function
+/// of UsualArithmeticConversions()
+static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
+ ExprResult &IntExpr,
+ QualType FloatTy, QualType IntTy,
+ bool ConvertFloat, bool ConvertInt) {
+ if (IntTy->isIntegerType()) {
+ if (ConvertInt)
+ // Convert intExpr to the lhs floating point type.
+ IntExpr = S.ImpCastExprToType(IntExpr.take(), FloatTy,
+ CK_IntegralToFloating);
+ return FloatTy;
+ }
+
+ // Convert both sides to the appropriate complex float.
+ assert(IntTy->isComplexIntegerType());
+ QualType result = S.Context.getComplexType(FloatTy);
+
+ // _Complex int -> _Complex float
+ if (ConvertInt)
+ IntExpr = S.ImpCastExprToType(IntExpr.take(), result,
+ CK_IntegralComplexToFloatingComplex);
+
+ // float -> _Complex float
+ if (ConvertFloat)
+ FloatExpr = S.ImpCastExprToType(FloatExpr.take(), result,
+ CK_FloatingRealToComplex);
+
+ return result;
+}
+
+/// \brief Handle arithmethic conversion with floating point types. Helper
+/// function of UsualArithmeticConversions()
+static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
+ ExprResult &RHS, QualType LHSType,
+ QualType RHSType, bool IsCompAssign) {
+ bool LHSFloat = LHSType->isRealFloatingType();
+ bool RHSFloat = RHSType->isRealFloatingType();
+
+ // If we have two real floating types, convert the smaller operand
+ // to the bigger result.
+ if (LHSFloat && RHSFloat) {
+ int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
+ if (order > 0) {
+ RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingCast);
+ return LHSType;
+ }
+
+ assert(order < 0 && "illegal float comparison");
+ if (!IsCompAssign)
+ LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingCast);
+ return RHSType;
+ }
+
+ if (LHSFloat)
+ return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
+ /*convertFloat=*/!IsCompAssign,
+ /*convertInt=*/ true);
+ assert(RHSFloat);
+ return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
+ /*convertInt=*/ true,
+ /*convertFloat=*/!IsCompAssign);
+}
+
+/// \brief Handle conversions with GCC complex int extension. Helper function
+/// of UsualArithmeticConversions()
+// FIXME: if the operands are (int, _Complex long), we currently
+// don't promote the complex. Also, signedness?
+static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
+ ExprResult &RHS, QualType LHSType,
+ QualType RHSType,
+ bool IsCompAssign) {
+ const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
+ const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
+
+ if (LHSComplexInt && RHSComplexInt) {
+ int order = S.Context.getIntegerTypeOrder(LHSComplexInt->getElementType(),
+ RHSComplexInt->getElementType());
+ assert(order && "inequal types with equal element ordering");
+ if (order > 0) {
+ // _Complex int -> _Complex long
+ RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralComplexCast);
+ return LHSType;
+ }
+
+ if (!IsCompAssign)
+ LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralComplexCast);
+ return RHSType;
+ }
+
+ if (LHSComplexInt) {
+ // int -> _Complex int
+ // FIXME: This needs to take integer ranks into account
+ RHS = S.ImpCastExprToType(RHS.take(), LHSComplexInt->getElementType(),
+ CK_IntegralCast);
+ RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralRealToComplex);
+ return LHSType;
+ }
+
+ assert(RHSComplexInt);
+ // int -> _Complex int
+ // FIXME: This needs to take integer ranks into account
+ if (!IsCompAssign) {
+ LHS = S.ImpCastExprToType(LHS.take(), RHSComplexInt->getElementType(),
+ CK_IntegralCast);
+ LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralRealToComplex);
+ }
+ return RHSType;
+}
+
+/// \brief Handle integer arithmetic conversions. Helper function of
+/// UsualArithmeticConversions()
+static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
+ ExprResult &RHS, QualType LHSType,
+ QualType RHSType, bool IsCompAssign) {
+ // The rules for this case are in C99 6.3.1.8
+ int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
+ bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
+ bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
+ if (LHSSigned == RHSSigned) {
+ // Same signedness; use the higher-ranked type
+ if (order >= 0) {
+ RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
+ return LHSType;
+ } else if (!IsCompAssign)
+ LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
+ return RHSType;
+ } else if (order != (LHSSigned ? 1 : -1)) {
+ // The unsigned type has greater than or equal rank to the
+ // signed type, so use the unsigned type
+ if (RHSSigned) {
+ RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
+ return LHSType;
+ } else if (!IsCompAssign)
+ LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
+ return RHSType;
+ } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
+ // The two types are different widths; if we are here, that
+ // means the signed type is larger than the unsigned type, so
+ // use the signed type.
+ if (LHSSigned) {
+ RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
+ return LHSType;
+ } else if (!IsCompAssign)
+ LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
+ return RHSType;
+ } else {
+ // The signed type is higher-ranked than the unsigned type,
+ // but isn't actually any bigger (like unsigned int and long
+ // on most 32-bit systems). Use the unsigned type corresponding
+ // to the signed type.
+ QualType result =
+ S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
+ RHS = S.ImpCastExprToType(RHS.take(), result, CK_IntegralCast);
+ if (!IsCompAssign)
+ LHS = S.ImpCastExprToType(LHS.take(), result, CK_IntegralCast);
+ return result;
+ }
+}
+
+/// UsualArithmeticConversions - Performs various conversions that are common to
+/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
+/// routine returns the first non-arithmetic type found. The client is
+/// responsible for emitting appropriate error diagnostics.
+/// FIXME: verify the conversion rules for "complex int" are consistent with
+/// GCC.
+QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
+ bool IsCompAssign) {
+ if (!IsCompAssign) {
+ LHS = UsualUnaryConversions(LHS.take());
+ if (LHS.isInvalid())
+ return QualType();
+ }
+
+ RHS = UsualUnaryConversions(RHS.take());
+ if (RHS.isInvalid())
+ return QualType();
+
+ // For conversion purposes, we ignore any qualifiers.
+ // For example, "const float" and "float" are equivalent.
+ QualType LHSType =
+ Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
+ QualType RHSType =
+ Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
+
+ // If both types are identical, no conversion is needed.
+ if (LHSType == RHSType)
+ return LHSType;
+
+ // If either side is a non-arithmetic type (e.g. a pointer), we are done.
+ // The caller can deal with this (e.g. pointer + int).
+ if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
+ return LHSType;
+
+ // Apply unary and bitfield promotions to the LHS's type.
+ QualType LHSUnpromotedType = LHSType;
+ if (LHSType->isPromotableIntegerType())
+ LHSType = Context.getPromotedIntegerType(LHSType);
+ QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
+ if (!LHSBitfieldPromoteTy.isNull())
+ LHSType = LHSBitfieldPromoteTy;
+ if (LHSType != LHSUnpromotedType && !IsCompAssign)
+ LHS = ImpCastExprToType(LHS.take(), LHSType, CK_IntegralCast);
+
+ // If both types are identical, no conversion is needed.
+ if (LHSType == RHSType)
+ return LHSType;
+
+ // At this point, we have two different arithmetic types.
+
+ // Handle complex types first (C99 6.3.1.8p1).
+ if (LHSType->isComplexType() || RHSType->isComplexType())
+ return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
+ IsCompAssign);
+
+ // Now handle "real" floating types (i.e. float, double, long double).
+ if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
+ return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
+ IsCompAssign);
+
+ // Handle GCC complex int extension.
+ if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
+ return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
+ IsCompAssign);
+
+ // Finally, we have two differing integer types.
+ return handleIntegerConversion(*this, LHS, RHS, LHSType, RHSType,
+ IsCompAssign);
+}
+
+//===----------------------------------------------------------------------===//
+// Semantic Analysis for various Expression Types
+//===----------------------------------------------------------------------===//
+
+
+ExprResult
+Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
+ SourceLocation DefaultLoc,
+ SourceLocation RParenLoc,
+ Expr *ControllingExpr,
+ MultiTypeArg ArgTypes,
+ MultiExprArg ArgExprs) {
+ unsigned NumAssocs = ArgTypes.size();
+ assert(NumAssocs == ArgExprs.size());
+
+ ParsedType *ParsedTypes = ArgTypes.release();
+ Expr **Exprs = ArgExprs.release();
+
+ TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
+ for (unsigned i = 0; i < NumAssocs; ++i) {
+ if (ParsedTypes[i])
+ (void) GetTypeFromParser(ParsedTypes[i], &Types[i]);
+ else
+ Types[i] = 0;
+ }
+
+ ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
+ ControllingExpr, Types, Exprs,
+ NumAssocs);
+ delete [] Types;
+ return ER;
+}
+
+ExprResult
+Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
+ SourceLocation DefaultLoc,
+ SourceLocation RParenLoc,
+ Expr *ControllingExpr,
+ TypeSourceInfo **Types,
+ Expr **Exprs,
+ unsigned NumAssocs) {
+ bool TypeErrorFound = false,
+ IsResultDependent = ControllingExpr->isTypeDependent(),
+ ContainsUnexpandedParameterPack
+ = ControllingExpr->containsUnexpandedParameterPack();
+
+ for (unsigned i = 0; i < NumAssocs; ++i) {
+ if (Exprs[i]->containsUnexpandedParameterPack())
+ ContainsUnexpandedParameterPack = true;
+
+ if (Types[i]) {
+ if (Types[i]->getType()->containsUnexpandedParameterPack())
+ ContainsUnexpandedParameterPack = true;
+
+ if (Types[i]->getType()->isDependentType()) {
+ IsResultDependent = true;
+ } else {
+ // C11 6.5.1.1p2 "The type name in a generic association shall specify a
+ // complete object type other than a variably modified type."
+ unsigned D = 0;
+ if (Types[i]->getType()->isIncompleteType())
+ D = diag::err_assoc_type_incomplete;
+ else if (!Types[i]->getType()->isObjectType())
+ D = diag::err_assoc_type_nonobject;
+ else if (Types[i]->getType()->isVariablyModifiedType())
+ D = diag::err_assoc_type_variably_modified;
+
+ if (D != 0) {
+ Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
+ << Types[i]->getTypeLoc().getSourceRange()
+ << Types[i]->getType();
+ TypeErrorFound = true;
+ }
+
+ // C11 6.5.1.1p2 "No two generic associations in the same generic
+ // selection shall specify compatible types."
+ for (unsigned j = i+1; j < NumAssocs; ++j)
+ if (Types[j] && !Types[j]->getType()->isDependentType() &&
+ Context.typesAreCompatible(Types[i]->getType(),
+ Types[j]->getType())) {
+ Diag(Types[j]->getTypeLoc().getBeginLoc(),
+ diag::err_assoc_compatible_types)
+ << Types[j]->getTypeLoc().getSourceRange()
+ << Types[j]->getType()
+ << Types[i]->getType();
+ Diag(Types[i]->getTypeLoc().getBeginLoc(),
+ diag::note_compat_assoc)
+ << Types[i]->getTypeLoc().getSourceRange()
+ << Types[i]->getType();
+ TypeErrorFound = true;
+ }
+ }
+ }
+ }
+ if (TypeErrorFound)
+ return ExprError();
+
+ // If we determined that the generic selection is result-dependent, don't
+ // try to compute the result expression.
+ if (IsResultDependent)
+ return Owned(new (Context) GenericSelectionExpr(
+ Context, KeyLoc, ControllingExpr,
+ Types, Exprs, NumAssocs, DefaultLoc,
+ RParenLoc, ContainsUnexpandedParameterPack));
+
+ SmallVector<unsigned, 1> CompatIndices;
+ unsigned DefaultIndex = -1U;
+ for (unsigned i = 0; i < NumAssocs; ++i) {
+ if (!Types[i])
+ DefaultIndex = i;
+ else if (Context.typesAreCompatible(ControllingExpr->getType(),
+ Types[i]->getType()))
+ CompatIndices.push_back(i);
+ }
+
+ // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
+ // type compatible with at most one of the types named in its generic
+ // association list."
+ if (CompatIndices.size() > 1) {
+ // We strip parens here because the controlling expression is typically
+ // parenthesized in macro definitions.
+ ControllingExpr = ControllingExpr->IgnoreParens();
+ Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
+ << ControllingExpr->getSourceRange() << ControllingExpr->getType()
+ << (unsigned) CompatIndices.size();
+ for (SmallVector<unsigned, 1>::iterator I = CompatIndices.begin(),
+ E = CompatIndices.end(); I != E; ++I) {
+ Diag(Types[*I]->getTypeLoc().getBeginLoc(),
+ diag::note_compat_assoc)
+ << Types[*I]->getTypeLoc().getSourceRange()
+ << Types[*I]->getType();
+ }
+ return ExprError();
+ }
+
+ // C11 6.5.1.1p2 "If a generic selection has no default generic association,
+ // its controlling expression shall have type compatible with exactly one of
+ // the types named in its generic association list."
+ if (DefaultIndex == -1U && CompatIndices.size() == 0) {
+ // We strip parens here because the controlling expression is typically
+ // parenthesized in macro definitions.
+ ControllingExpr = ControllingExpr->IgnoreParens();
+ Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
+ << ControllingExpr->getSourceRange() << ControllingExpr->getType();
+ return ExprError();
+ }
+
+ // C11 6.5.1.1p3 "If a generic selection has a generic association with a
+ // type name that is compatible with the type of the controlling expression,
+ // then the result expression of the generic selection is the expression
+ // in that generic association. Otherwise, the result expression of the
+ // generic selection is the expression in the default generic association."
+ unsigned ResultIndex =
+ CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
+
+ return Owned(new (Context) GenericSelectionExpr(
+ Context, KeyLoc, ControllingExpr,
+ Types, Exprs, NumAssocs, DefaultLoc,
+ RParenLoc, ContainsUnexpandedParameterPack,
+ ResultIndex));
+}
+
+/// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
+/// location of the token and the offset of the ud-suffix within it.
+static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
+ unsigned Offset) {
+ return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
+ S.getLangOpts());
+}
+
+/// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
+/// the corresponding cooked (non-raw) literal operator, and build a call to it.
+static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
+ IdentifierInfo *UDSuffix,
+ SourceLocation UDSuffixLoc,
+ ArrayRef<Expr*> Args,
+ SourceLocation LitEndLoc) {
+ assert(Args.size() <= 2 && "too many arguments for literal operator");
+
+ QualType ArgTy[2];
+ for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
+ ArgTy[ArgIdx] = Args[ArgIdx]->getType();
+ if (ArgTy[ArgIdx]->isArrayType())
+ ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
+ }
+
+ DeclarationName OpName =
+ S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
+ DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
+ OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
+
+ LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
+ if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
+ /*AllowRawAndTemplate*/false) == Sema::LOLR_Error)
+ return ExprError();
+
+ return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
+}
+
+/// ActOnStringLiteral - The specified tokens were lexed as pasted string
+/// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
+/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
+/// multiple tokens. However, the common case is that StringToks points to one
+/// string.
+///
+ExprResult
+Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks,
+ Scope *UDLScope) {
+ assert(NumStringToks && "Must have at least one string!");
+
+ StringLiteralParser Literal(StringToks, NumStringToks, PP);
+ if (Literal.hadError)
+ return ExprError();
+
+ SmallVector<SourceLocation, 4> StringTokLocs;
+ for (unsigned i = 0; i != NumStringToks; ++i)
+ StringTokLocs.push_back(StringToks[i].getLocation());
+
+ QualType StrTy = Context.CharTy;
+ if (Literal.isWide())
+ StrTy = Context.getWCharType();
+ else if (Literal.isUTF16())
+ StrTy = Context.Char16Ty;
+ else if (Literal.isUTF32())
+ StrTy = Context.Char32Ty;
+ else if (Literal.isPascal())
+ StrTy = Context.UnsignedCharTy;
+
+ StringLiteral::StringKind Kind = StringLiteral::Ascii;
+ if (Literal.isWide())
+ Kind = StringLiteral::Wide;
+ else if (Literal.isUTF8())
+ Kind = StringLiteral::UTF8;
+ else if (Literal.isUTF16())
+ Kind = StringLiteral::UTF16;
+ else if (Literal.isUTF32())
+ Kind = StringLiteral::UTF32;
+
+ // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
+ if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
+ StrTy.addConst();
+
+ // Get an array type for the string, according to C99 6.4.5. This includes
+ // the nul terminator character as well as the string length for pascal
+ // strings.
+ StrTy = Context.getConstantArrayType(StrTy,
+ llvm::APInt(32, Literal.GetNumStringChars()+1),
+ ArrayType::Normal, 0);
+
+ // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
+ StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
+ Kind, Literal.Pascal, StrTy,
+ &StringTokLocs[0],
+ StringTokLocs.size());
+ if (Literal.getUDSuffix().empty())
+ return Owned(Lit);
+
+ // We're building a user-defined literal.
+ IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
+ SourceLocation UDSuffixLoc =
+ getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
+ Literal.getUDSuffixOffset());
+
+ // Make sure we're allowed user-defined literals here.
+ if (!UDLScope)
+ return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
+
+ // C++11 [lex.ext]p5: The literal L is treated as a call of the form
+ // operator "" X (str, len)
+ QualType SizeType = Context.getSizeType();
+ llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
+ IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
+ StringTokLocs[0]);
+ Expr *Args[] = { Lit, LenArg };
+ return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
+ Args, StringTokLocs.back());
+}
+
+ExprResult
+Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
+ SourceLocation Loc,
+ const CXXScopeSpec *SS) {
+ DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
+ return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
+}
+
+/// BuildDeclRefExpr - Build an expression that references a
+/// declaration that does not require a closure capture.
+ExprResult
+Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
+ const DeclarationNameInfo &NameInfo,
+ const CXXScopeSpec *SS) {
+ if (getLangOpts().CUDA)
+ if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
+ if (const FunctionDecl *Callee = dyn_cast<FunctionDecl>(D)) {
+ CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller),
+ CalleeTarget = IdentifyCUDATarget(Callee);
+ if (CheckCUDATarget(CallerTarget, CalleeTarget)) {
+ Diag(NameInfo.getLoc(), diag::err_ref_bad_target)
+ << CalleeTarget << D->getIdentifier() << CallerTarget;
+ Diag(D->getLocation(), diag::note_previous_decl)
+ << D->getIdentifier();
+ return ExprError();
+ }
+ }
+
+ bool refersToEnclosingScope =
+ (CurContext != D->getDeclContext() &&
+ D->getDeclContext()->isFunctionOrMethod());
+
+ DeclRefExpr *E = DeclRefExpr::Create(Context,
+ SS ? SS->getWithLocInContext(Context)
+ : NestedNameSpecifierLoc(),
+ SourceLocation(),
+ D, refersToEnclosingScope,
+ NameInfo, Ty, VK);
+
+ MarkDeclRefReferenced(E);
+
+ // Just in case we're building an illegal pointer-to-member.
+ FieldDecl *FD = dyn_cast<FieldDecl>(D);
+ if (FD && FD->isBitField())
+ E->setObjectKind(OK_BitField);
+
+ return Owned(E);
+}
+
+/// Decomposes the given name into a DeclarationNameInfo, its location, and
+/// possibly a list of template arguments.
+///
+/// If this produces template arguments, it is permitted to call
+/// DecomposeTemplateName.
+///
+/// This actually loses a lot of source location information for
+/// non-standard name kinds; we should consider preserving that in
+/// some way.
+void
+Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
+ TemplateArgumentListInfo &Buffer,
+ DeclarationNameInfo &NameInfo,
+ const TemplateArgumentListInfo *&TemplateArgs) {
+ if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
+ Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
+ Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
+
+ ASTTemplateArgsPtr TemplateArgsPtr(*this,
+ Id.TemplateId->getTemplateArgs(),
+ Id.TemplateId->NumArgs);
+ translateTemplateArguments(TemplateArgsPtr, Buffer);
+ TemplateArgsPtr.release();
+
+ TemplateName TName = Id.TemplateId->Template.get();
+ SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
+ NameInfo = Context.getNameForTemplate(TName, TNameLoc);
+ TemplateArgs = &Buffer;
+ } else {
+ NameInfo = GetNameFromUnqualifiedId(Id);
+ TemplateArgs = 0;
+ }
+}
+
+/// Diagnose an empty lookup.
+///
+/// \return false if new lookup candidates were found
+bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
+ CorrectionCandidateCallback &CCC,
+ TemplateArgumentListInfo *ExplicitTemplateArgs,
+ llvm::ArrayRef<Expr *> Args) {
+ DeclarationName Name = R.getLookupName();
+
+ unsigned diagnostic = diag::err_undeclared_var_use;
+ unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
+ if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
+ Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
+ Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
+ diagnostic = diag::err_undeclared_use;
+ diagnostic_suggest = diag::err_undeclared_use_suggest;
+ }
+
+ // If the original lookup was an unqualified lookup, fake an
+ // unqualified lookup. This is useful when (for example) the
+ // original lookup would not have found something because it was a
+ // dependent name.
+ DeclContext *DC = SS.isEmpty() ? CurContext : 0;
+ while (DC) {
+ if (isa<CXXRecordDecl>(DC)) {
+ LookupQualifiedName(R, DC);
+
+ if (!R.empty()) {
+ // Don't give errors about ambiguities in this lookup.
+ R.suppressDiagnostics();
+
+ // During a default argument instantiation the CurContext points
+ // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
+ // function parameter list, hence add an explicit check.
+ bool isDefaultArgument = !ActiveTemplateInstantiations.empty() &&
+ ActiveTemplateInstantiations.back().Kind ==
+ ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation;
+ CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
+ bool isInstance = CurMethod &&
+ CurMethod->isInstance() &&
+ DC == CurMethod->getParent() && !isDefaultArgument;
+
+
+ // Give a code modification hint to insert 'this->'.
+ // TODO: fixit for inserting 'Base<T>::' in the other cases.
+ // Actually quite difficult!
+ if (isInstance) {
+ UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
+ CallsUndergoingInstantiation.back()->getCallee());
+ CXXMethodDecl *DepMethod = cast_or_null<CXXMethodDecl>(
+ CurMethod->getInstantiatedFromMemberFunction());
+ if (DepMethod) {
+ if (getLangOpts().MicrosoftMode)
+ diagnostic = diag::warn_found_via_dependent_bases_lookup;
+ Diag(R.getNameLoc(), diagnostic) << Name
+ << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
+ QualType DepThisType = DepMethod->getThisType(Context);
+ CheckCXXThisCapture(R.getNameLoc());
+ CXXThisExpr *DepThis = new (Context) CXXThisExpr(
+ R.getNameLoc(), DepThisType, false);
+ TemplateArgumentListInfo TList;
+ if (ULE->hasExplicitTemplateArgs())
+ ULE->copyTemplateArgumentsInto(TList);
+
+ CXXScopeSpec SS;
+ SS.Adopt(ULE->getQualifierLoc());
+ CXXDependentScopeMemberExpr *DepExpr =
+ CXXDependentScopeMemberExpr::Create(
+ Context, DepThis, DepThisType, true, SourceLocation(),
+ SS.getWithLocInContext(Context),
+ ULE->getTemplateKeywordLoc(), 0,
+ R.getLookupNameInfo(),
+ ULE->hasExplicitTemplateArgs() ? &TList : 0);
+ CallsUndergoingInstantiation.back()->setCallee(DepExpr);
+ } else {
+ // FIXME: we should be able to handle this case too. It is correct
+ // to add this-> here. This is a workaround for PR7947.
+ Diag(R.getNameLoc(), diagnostic) << Name;
+ }
+ } else {
+ if (getLangOpts().MicrosoftMode)
+ diagnostic = diag::warn_found_via_dependent_bases_lookup;
+ Diag(R.getNameLoc(), diagnostic) << Name;
+ }
+
+ // Do we really want to note all of these?
+ for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
+ Diag((*I)->getLocation(), diag::note_dependent_var_use);
+
+ // Return true if we are inside a default argument instantiation
+ // and the found name refers to an instance member function, otherwise
+ // the function calling DiagnoseEmptyLookup will try to create an
+ // implicit member call and this is wrong for default argument.
+ if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
+ Diag(R.getNameLoc(), diag::err_member_call_without_object);
+ return true;
+ }
+
+ // Tell the callee to try to recover.
+ return false;
+ }
+
+ R.clear();
+ }
+
+ // In Microsoft mode, if we are performing lookup from within a friend
+ // function definition declared at class scope then we must set
+ // DC to the lexical parent to be able to search into the parent
+ // class.
+ if (getLangOpts().MicrosoftMode && isa<FunctionDecl>(DC) &&
+ cast<FunctionDecl>(DC)->getFriendObjectKind() &&
+ DC->getLexicalParent()->isRecord())
+ DC = DC->getLexicalParent();
+ else
+ DC = DC->getParent();
+ }
+
+ // We didn't find anything, so try to correct for a typo.
+ TypoCorrection Corrected;
+ if (S && (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
+ S, &SS, CCC))) {
+ std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
+ std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
+ R.setLookupName(Corrected.getCorrection());
+
+ if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
+ if (Corrected.isOverloaded()) {
+ OverloadCandidateSet OCS(R.getNameLoc());
+ OverloadCandidateSet::iterator Best;
+ for (TypoCorrection::decl_iterator CD = Corrected.begin(),
+ CDEnd = Corrected.end();
+ CD != CDEnd; ++CD) {
+ if (FunctionTemplateDecl *FTD =
+ dyn_cast<FunctionTemplateDecl>(*CD))
+ AddTemplateOverloadCandidate(
+ FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
+ Args, OCS);
+ else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
+ if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
+ AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
+ Args, OCS);
+ }
+ switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
+ case OR_Success:
+ ND = Best->Function;
+ break;
+ default:
+ break;
+ }
+ }
+ R.addDecl(ND);
+ if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
+ if (SS.isEmpty())
+ Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr
+ << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
+ else
+ Diag(R.getNameLoc(), diag::err_no_member_suggest)
+ << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
+ << SS.getRange()
+ << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
+ if (ND)
+ Diag(ND->getLocation(), diag::note_previous_decl)
+ << CorrectedQuotedStr;
+
+ // Tell the callee to try to recover.
+ return false;
+ }
+
+ if (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) {
+ // FIXME: If we ended up with a typo for a type name or
+ // Objective-C class name, we're in trouble because the parser
+ // is in the wrong place to recover. Suggest the typo
+ // correction, but don't make it a fix-it since we're not going
+ // to recover well anyway.
+ if (SS.isEmpty())
+ Diag(R.getNameLoc(), diagnostic_suggest)
+ << Name << CorrectedQuotedStr;
+ else
+ Diag(R.getNameLoc(), diag::err_no_member_suggest)
+ << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
+ << SS.getRange();
+
+ // Don't try to recover; it won't work.
+ return true;
+ }
+ } else {
+ // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
+ // because we aren't able to recover.
+ if (SS.isEmpty())
+ Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr;
+ else
+ Diag(R.getNameLoc(), diag::err_no_member_suggest)
+ << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
+ << SS.getRange();
+ return true;
+ }
+ }
+ R.clear();
+
+ // Emit a special diagnostic for failed member lookups.
+ // FIXME: computing the declaration context might fail here (?)
+ if (!SS.isEmpty()) {
+ Diag(R.getNameLoc(), diag::err_no_member)
+ << Name << computeDeclContext(SS, false)
+ << SS.getRange();
+ return true;
+ }
+
+ // Give up, we can't recover.
+ Diag(R.getNameLoc(), diagnostic) << Name;
+ return true;
+}
+
+ExprResult Sema::ActOnIdExpression(Scope *S,
+ CXXScopeSpec &SS,
+ SourceLocation TemplateKWLoc,
+ UnqualifiedId &Id,
+ bool HasTrailingLParen,
+ bool IsAddressOfOperand,
+ CorrectionCandidateCallback *CCC) {
+ assert(!(IsAddressOfOperand && HasTrailingLParen) &&
+ "cannot be direct & operand and have a trailing lparen");
+
+ if (SS.isInvalid())
+ return ExprError();
+
+ TemplateArgumentListInfo TemplateArgsBuffer;
+
+ // Decompose the UnqualifiedId into the following data.
+ DeclarationNameInfo NameInfo;
+ const TemplateArgumentListInfo *TemplateArgs;
+ DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
+
+ DeclarationName Name = NameInfo.getName();
+ IdentifierInfo *II = Name.getAsIdentifierInfo();
+ SourceLocation NameLoc = NameInfo.getLoc();
+
+ // C++ [temp.dep.expr]p3:
+ // An id-expression is type-dependent if it contains:
+ // -- an identifier that was declared with a dependent type,
+ // (note: handled after lookup)
+ // -- a template-id that is dependent,
+ // (note: handled in BuildTemplateIdExpr)
+ // -- a conversion-function-id that specifies a dependent type,
+ // -- a nested-name-specifier that contains a class-name that
+ // names a dependent type.
+ // Determine whether this is a member of an unknown specialization;
+ // we need to handle these differently.
+ bool DependentID = false;
+ if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
+ Name.getCXXNameType()->isDependentType()) {
+ DependentID = true;
+ } else if (SS.isSet()) {
+ if (DeclContext *DC = computeDeclContext(SS, false)) {
+ if (RequireCompleteDeclContext(SS, DC))
+ return ExprError();
+ } else {
+ DependentID = true;
+ }
+ }
+
+ if (DependentID)
+ return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
+ IsAddressOfOperand, TemplateArgs);
+
+ // Perform the required lookup.
+ LookupResult R(*this, NameInfo,
+ (Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam)
+ ? LookupObjCImplicitSelfParam : LookupOrdinaryName);
+ if (TemplateArgs) {
+ // Lookup the template name again to correctly establish the context in
+ // which it was found. This is really unfortunate as we already did the
+ // lookup to determine that it was a template name in the first place. If
+ // this becomes a performance hit, we can work harder to preserve those
+ // results until we get here but it's likely not worth it.
+ bool MemberOfUnknownSpecialization;
+ LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
+ MemberOfUnknownSpecialization);
+
+ if (MemberOfUnknownSpecialization ||
+ (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
+ return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
+ IsAddressOfOperand, TemplateArgs);
+ } else {
+ bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
+ LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
+
+ // If the result might be in a dependent base class, this is a dependent
+ // id-expression.
+ if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
+ return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
+ IsAddressOfOperand, TemplateArgs);
+
+ // If this reference is in an Objective-C method, then we need to do
+ // some special Objective-C lookup, too.
+ if (IvarLookupFollowUp) {
+ ExprResult E(LookupInObjCMethod(R, S, II, true));
+ if (E.isInvalid())
+ return ExprError();
+
+ if (Expr *Ex = E.takeAs<Expr>())
+ return Owned(Ex);
+ }
+ }
+
+ if (R.isAmbiguous())
+ return ExprError();
+
+ // Determine whether this name might be a candidate for
+ // argument-dependent lookup.
+ bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
+
+ if (R.empty() && !ADL) {
+ // Otherwise, this could be an implicitly declared function reference (legal
+ // in C90, extension in C99, forbidden in C++).
+ if (HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
+ NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
+ if (D) R.addDecl(D);
+ }
+
+ // If this name wasn't predeclared and if this is not a function
+ // call, diagnose the problem.
+ if (R.empty()) {
+
+ // In Microsoft mode, if we are inside a template class member function
+ // and we can't resolve an identifier then assume the identifier is type
+ // dependent. The goal is to postpone name lookup to instantiation time
+ // to be able to search into type dependent base classes.
+ if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() &&
+ isa<CXXMethodDecl>(CurContext))
+ return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
+ IsAddressOfOperand, TemplateArgs);
+
+ CorrectionCandidateCallback DefaultValidator;
+ if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator))
+ return ExprError();
+
+ assert(!R.empty() &&
+ "DiagnoseEmptyLookup returned false but added no results");
+
+ // If we found an Objective-C instance variable, let
+ // LookupInObjCMethod build the appropriate expression to
+ // reference the ivar.
+ if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
+ R.clear();
+ ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
+ // In a hopelessly buggy code, Objective-C instance variable
+ // lookup fails and no expression will be built to reference it.
+ if (!E.isInvalid() && !E.get())
+ return ExprError();
+ return move(E);
+ }
+ }
+ }
+
+ // This is guaranteed from this point on.
+ assert(!R.empty() || ADL);
+
+ // Check whether this might be a C++ implicit instance member access.
+ // C++ [class.mfct.non-static]p3:
+ // When an id-expression that is not part of a class member access
+ // syntax and not used to form a pointer to member is used in the
+ // body of a non-static member function of class X, if name lookup
+ // resolves the name in the id-expression to a non-static non-type
+ // member of some class C, the id-expression is transformed into a
+ // class member access expression using (*this) as the
+ // postfix-expression to the left of the . operator.
+ //
+ // But we don't actually need to do this for '&' operands if R
+ // resolved to a function or overloaded function set, because the
+ // expression is ill-formed if it actually works out to be a
+ // non-static member function:
+ //
+ // C++ [expr.ref]p4:
+ // Otherwise, if E1.E2 refers to a non-static member function. . .
+ // [t]he expression can be used only as the left-hand operand of a
+ // member function call.
+ //
+ // There are other safeguards against such uses, but it's important
+ // to get this right here so that we don't end up making a
+ // spuriously dependent expression if we're inside a dependent
+ // instance method.
+ if (!R.empty() && (*R.begin())->isCXXClassMember()) {
+ bool MightBeImplicitMember;
+ if (!IsAddressOfOperand)
+ MightBeImplicitMember = true;
+ else if (!SS.isEmpty())
+ MightBeImplicitMember = false;
+ else if (R.isOverloadedResult())
+ MightBeImplicitMember = false;
+ else if (R.isUnresolvableResult())
+ MightBeImplicitMember = true;
+ else
+ MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
+ isa<IndirectFieldDecl>(R.getFoundDecl());
+
+ if (MightBeImplicitMember)
+ return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
+ R, TemplateArgs);
+ }
+
+ if (TemplateArgs || TemplateKWLoc.isValid())
+ return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
+
+ return BuildDeclarationNameExpr(SS, R, ADL);
+}
+
+/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
+/// declaration name, generally during template instantiation.
+/// There's a large number of things which don't need to be done along
+/// this path.
+ExprResult
+Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
+ const DeclarationNameInfo &NameInfo) {
+ DeclContext *DC;
+ if (!(DC = computeDeclContext(SS, false)) || DC->isDependentContext())
+ return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
+ NameInfo, /*TemplateArgs=*/0);
+
+ if (RequireCompleteDeclContext(SS, DC))
+ return ExprError();
+
+ LookupResult R(*this, NameInfo, LookupOrdinaryName);
+ LookupQualifiedName(R, DC);
+
+ if (R.isAmbiguous())
+ return ExprError();
+
+ if (R.empty()) {
+ Diag(NameInfo.getLoc(), diag::err_no_member)
+ << NameInfo.getName() << DC << SS.getRange();
+ return ExprError();
+ }
+
+ return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
+}
+
+/// LookupInObjCMethod - The parser has read a name in, and Sema has
+/// detected that we're currently inside an ObjC method. Perform some
+/// additional lookup.
+///
+/// Ideally, most of this would be done by lookup, but there's
+/// actually quite a lot of extra work involved.
+///
+/// Returns a null sentinel to indicate trivial success.
+ExprResult
+Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
+ IdentifierInfo *II, bool AllowBuiltinCreation) {
+ SourceLocation Loc = Lookup.getNameLoc();
+ ObjCMethodDecl *CurMethod = getCurMethodDecl();
+
+ // There are two cases to handle here. 1) scoped lookup could have failed,
+ // in which case we should look for an ivar. 2) scoped lookup could have
+ // found a decl, but that decl is outside the current instance method (i.e.
+ // a global variable). In these two cases, we do a lookup for an ivar with
+ // this name, if the lookup sucedes, we replace it our current decl.
+
+ // If we're in a class method, we don't normally want to look for
+ // ivars. But if we don't find anything else, and there's an
+ // ivar, that's an error.
+ bool IsClassMethod = CurMethod->isClassMethod();
+
+ bool LookForIvars;
+ if (Lookup.empty())
+ LookForIvars = true;
+ else if (IsClassMethod)
+ LookForIvars = false;
+ else
+ LookForIvars = (Lookup.isSingleResult() &&
+ Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
+ ObjCInterfaceDecl *IFace = 0;
+ if (LookForIvars) {
+ IFace = CurMethod->getClassInterface();
+ ObjCInterfaceDecl *ClassDeclared;
+ ObjCIvarDecl *IV = 0;
+ if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
+ // Diagnose using an ivar in a class method.
+ if (IsClassMethod)
+ return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
+ << IV->getDeclName());
+
+ // If we're referencing an invalid decl, just return this as a silent
+ // error node. The error diagnostic was already emitted on the decl.
+ if (IV->isInvalidDecl())
+ return ExprError();
+
+ // Check if referencing a field with __attribute__((deprecated)).
+ if (DiagnoseUseOfDecl(IV, Loc))
+ return ExprError();
+
+ // Diagnose the use of an ivar outside of the declaring class.
+ if (IV->getAccessControl() == ObjCIvarDecl::Private &&
+ !declaresSameEntity(ClassDeclared, IFace) &&
+ !getLangOpts().DebuggerSupport)
+ Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
+
+ // FIXME: This should use a new expr for a direct reference, don't
+ // turn this into Self->ivar, just return a BareIVarExpr or something.
+ IdentifierInfo &II = Context.Idents.get("self");
+ UnqualifiedId SelfName;
+ SelfName.setIdentifier(&II, SourceLocation());
+ SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam);
+ CXXScopeSpec SelfScopeSpec;
+ SourceLocation TemplateKWLoc;
+ ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc,
+ SelfName, false, false);
+ if (SelfExpr.isInvalid())
+ return ExprError();
+
+ SelfExpr = DefaultLvalueConversion(SelfExpr.take());
+ if (SelfExpr.isInvalid())
+ return ExprError();
+
+ MarkAnyDeclReferenced(Loc, IV);
+ return Owned(new (Context)
+ ObjCIvarRefExpr(IV, IV->getType(), Loc,
+ SelfExpr.take(), true, true));
+ }
+ } else if (CurMethod->isInstanceMethod()) {
+ // We should warn if a local variable hides an ivar.
+ if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
+ ObjCInterfaceDecl *ClassDeclared;
+ if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
+ if (IV->getAccessControl() != ObjCIvarDecl::Private ||
+ declaresSameEntity(IFace, ClassDeclared))
+ Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
+ }
+ }
+ } else if (Lookup.isSingleResult() &&
+ Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
+ // If accessing a stand-alone ivar in a class method, this is an error.
+ if (const ObjCIvarDecl *IV = dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl()))
+ return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
+ << IV->getDeclName());
+ }
+
+ if (Lookup.empty() && II && AllowBuiltinCreation) {
+ // FIXME. Consolidate this with similar code in LookupName.
+ if (unsigned BuiltinID = II->getBuiltinID()) {
+ if (!(getLangOpts().CPlusPlus &&
+ Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
+ NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
+ S, Lookup.isForRedeclaration(),
+ Lookup.getNameLoc());
+ if (D) Lookup.addDecl(D);
+ }
+ }
+ }
+ // Sentinel value saying that we didn't do anything special.
+ return Owned((Expr*) 0);
+}
+
+/// \brief Cast a base object to a member's actual type.
+///
+/// Logically this happens in three phases:
+///
+/// * First we cast from the base type to the naming class.
+/// The naming class is the class into which we were looking
+/// when we found the member; it's the qualifier type if a
+/// qualifier was provided, and otherwise it's the base type.
+///
+/// * Next we cast from the naming class to the declaring class.
+/// If the member we found was brought into a class's scope by
+/// a using declaration, this is that class; otherwise it's
+/// the class declaring the member.
+///
+/// * Finally we cast from the declaring class to the "true"
+/// declaring class of the member. This conversion does not
+/// obey access control.
+ExprResult
+Sema::PerformObjectMemberConversion(Expr *From,
+ NestedNameSpecifier *Qualifier,
+ NamedDecl *FoundDecl,
+ NamedDecl *Member) {
+ CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
+ if (!RD)
+ return Owned(From);
+
+ QualType DestRecordType;
+ QualType DestType;
+ QualType FromRecordType;
+ QualType FromType = From->getType();
+ bool PointerConversions = false;
+ if (isa<FieldDecl>(Member)) {
+ DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
+
+ if (FromType->getAs<PointerType>()) {
+ DestType = Context.getPointerType(DestRecordType);
+ FromRecordType = FromType->getPointeeType();
+ PointerConversions = true;
+ } else {
+ DestType = DestRecordType;
+ FromRecordType = FromType;
+ }
+ } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
+ if (Method->isStatic())
+ return Owned(From);
+
+ DestType = Method->getThisType(Context);
+ DestRecordType = DestType->getPointeeType();
+
+ if (FromType->getAs<PointerType>()) {
+ FromRecordType = FromType->getPointeeType();
+ PointerConversions = true;
+ } else {
+ FromRecordType = FromType;
+ DestType = DestRecordType;
+ }
+ } else {
+ // No conversion necessary.
+ return Owned(From);
+ }
+
+ if (DestType->isDependentType() || FromType->isDependentType())
+ return Owned(From);
+
+ // If the unqualified types are the same, no conversion is necessary.
+ if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
+ return Owned(From);
+
+ SourceRange FromRange = From->getSourceRange();
+ SourceLocation FromLoc = FromRange.getBegin();
+
+ ExprValueKind VK = From->getValueKind();
+
+ // C++ [class.member.lookup]p8:
+ // [...] Ambiguities can often be resolved by qualifying a name with its
+ // class name.
+ //
+ // If the member was a qualified name and the qualified referred to a
+ // specific base subobject type, we'll cast to that intermediate type
+ // first and then to the object in which the member is declared. That allows
+ // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
+ //
+ // class Base { public: int x; };
+ // class Derived1 : public Base { };
+ // class Derived2 : public Base { };
+ // class VeryDerived : public Derived1, public Derived2 { void f(); };
+ //
+ // void VeryDerived::f() {
+ // x = 17; // error: ambiguous base subobjects
+ // Derived1::x = 17; // okay, pick the Base subobject of Derived1
+ // }
+ if (Qualifier) {
+ QualType QType = QualType(Qualifier->getAsType(), 0);
+ assert(!QType.isNull() && "lookup done with dependent qualifier?");
+ assert(QType->isRecordType() && "lookup done with non-record type");
+
+ QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
+
+ // In C++98, the qualifier type doesn't actually have to be a base
+ // type of the object type, in which case we just ignore it.
+ // Otherwise build the appropriate casts.
+ if (IsDerivedFrom(FromRecordType, QRecordType)) {
+ CXXCastPath BasePath;
+ if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
+ FromLoc, FromRange, &BasePath))
+ return ExprError();
+
+ if (PointerConversions)
+ QType = Context.getPointerType(QType);
+ From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
+ VK, &BasePath).take();
+
+ FromType = QType;
+ FromRecordType = QRecordType;
+
+ // If the qualifier type was the same as the destination type,
+ // we're done.
+ if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
+ return Owned(From);
+ }
+ }
+
+ bool IgnoreAccess = false;
+
+ // If we actually found the member through a using declaration, cast
+ // down to the using declaration's type.
+ //
+ // Pointer equality is fine here because only one declaration of a
+ // class ever has member declarations.
+ if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
+ assert(isa<UsingShadowDecl>(FoundDecl));
+ QualType URecordType = Context.getTypeDeclType(
+ cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
+
+ // We only need to do this if the naming-class to declaring-class
+ // conversion is non-trivial.
+ if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
+ assert(IsDerivedFrom(FromRecordType, URecordType));
+ CXXCastPath BasePath;
+ if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
+ FromLoc, FromRange, &BasePath))
+ return ExprError();
+
+ QualType UType = URecordType;
+ if (PointerConversions)
+ UType = Context.getPointerType(UType);
+ From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
+ VK, &BasePath).take();
+ FromType = UType;
+ FromRecordType = URecordType;
+ }
+
+ // We don't do access control for the conversion from the
+ // declaring class to the true declaring class.
+ IgnoreAccess = true;
+ }
+
+ CXXCastPath BasePath;
+ if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
+ FromLoc, FromRange, &BasePath,
+ IgnoreAccess))
+ return ExprError();
+
+ return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
+ VK, &BasePath);
+}
+
+bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
+ const LookupResult &R,
+ bool HasTrailingLParen) {
+ // Only when used directly as the postfix-expression of a call.
+ if (!HasTrailingLParen)
+ return false;
+
+ // Never if a scope specifier was provided.
+ if (SS.isSet())
+ return false;
+
+ // Only in C++ or ObjC++.
+ if (!getLangOpts().CPlusPlus)
+ return false;
+
+ // Turn off ADL when we find certain kinds of declarations during
+ // normal lookup:
+ for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
+ NamedDecl *D = *I;
+
+ // C++0x [basic.lookup.argdep]p3:
+ // -- a declaration of a class member
+ // Since using decls preserve this property, we check this on the
+ // original decl.
+ if (D->isCXXClassMember())
+ return false;
+
+ // C++0x [basic.lookup.argdep]p3:
+ // -- a block-scope function declaration that is not a
+ // using-declaration
+ // NOTE: we also trigger this for function templates (in fact, we
+ // don't check the decl type at all, since all other decl types
+ // turn off ADL anyway).
+ if (isa<UsingShadowDecl>(D))
+ D = cast<UsingShadowDecl>(D)->getTargetDecl();
+ else if (D->getDeclContext()->isFunctionOrMethod())
+ return false;
+
+ // C++0x [basic.lookup.argdep]p3:
+ // -- a declaration that is neither a function or a function
+ // template
+ // And also for builtin functions.
+ if (isa<FunctionDecl>(D)) {
+ FunctionDecl *FDecl = cast<FunctionDecl>(D);
+
+ // But also builtin functions.
+ if (FDecl->getBuiltinID() && FDecl->isImplicit())
+ return false;
+ } else if (!isa<FunctionTemplateDecl>(D))
+ return false;
+ }
+
+ return true;
+}
+
+
+/// Diagnoses obvious problems with the use of the given declaration
+/// as an expression. This is only actually called for lookups that
+/// were not overloaded, and it doesn't promise that the declaration
+/// will in fact be used.
+static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
+ if (isa<TypedefNameDecl>(D)) {
+ S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
+ return true;
+ }
+
+ if (isa<ObjCInterfaceDecl>(D)) {
+ S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
+ return true;
+ }
+
+ if (isa<NamespaceDecl>(D)) {
+ S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
+ return true;
+ }
+
+ return false;
+}
+
+ExprResult
+Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
+ LookupResult &R,
+ bool NeedsADL) {
+ // If this is a single, fully-resolved result and we don't need ADL,
+ // just build an ordinary singleton decl ref.
+ if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
+ return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(),
+ R.getFoundDecl());
+
+ // We only need to check the declaration if there's exactly one
+ // result, because in the overloaded case the results can only be
+ // functions and function templates.
+ if (R.isSingleResult() &&
+ CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
+ return ExprError();
+
+ // Otherwise, just build an unresolved lookup expression. Suppress
+ // any lookup-related diagnostics; we'll hash these out later, when
+ // we've picked a target.
+ R.suppressDiagnostics();
+
+ UnresolvedLookupExpr *ULE
+ = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
+ SS.getWithLocInContext(Context),
+ R.getLookupNameInfo(),
+ NeedsADL, R.isOverloadedResult(),
+ R.begin(), R.end());
+
+ return Owned(ULE);
+}
+
+/// \brief Complete semantic analysis for a reference to the given declaration.
+ExprResult
+Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
+ const DeclarationNameInfo &NameInfo,
+ NamedDecl *D) {
+ assert(D && "Cannot refer to a NULL declaration");
+ assert(!isa<FunctionTemplateDecl>(D) &&
+ "Cannot refer unambiguously to a function template");
+
+ SourceLocation Loc = NameInfo.getLoc();
+ if (CheckDeclInExpr(*this, Loc, D))
+ return ExprError();
+
+ if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
+ // Specifically diagnose references to class templates that are missing
+ // a template argument list.
+ Diag(Loc, diag::err_template_decl_ref)
+ << Template << SS.getRange();
+ Diag(Template->getLocation(), diag::note_template_decl_here);
+ return ExprError();
+ }
+
+ // Make sure that we're referring to a value.
+ ValueDecl *VD = dyn_cast<ValueDecl>(D);
+ if (!VD) {
+ Diag(Loc, diag::err_ref_non_value)
+ << D << SS.getRange();
+ Diag(D->getLocation(), diag::note_declared_at);
+ return ExprError();
+ }
+
+ // Check whether this declaration can be used. Note that we suppress
+ // this check when we're going to perform argument-dependent lookup
+ // on this function name, because this might not be the function
+ // that overload resolution actually selects.
+ if (DiagnoseUseOfDecl(VD, Loc))
+ return ExprError();
+
+ // Only create DeclRefExpr's for valid Decl's.
+ if (VD->isInvalidDecl())
+ return ExprError();
+
+ // Handle members of anonymous structs and unions. If we got here,
+ // and the reference is to a class member indirect field, then this
+ // must be the subject of a pointer-to-member expression.
+ if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
+ if (!indirectField->isCXXClassMember())
+ return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
+ indirectField);
+
+ {
+ QualType type = VD->getType();
+ ExprValueKind valueKind = VK_RValue;
+
+ switch (D->getKind()) {
+ // Ignore all the non-ValueDecl kinds.
+#define ABSTRACT_DECL(kind)
+#define VALUE(type, base)
+#define DECL(type, base) \
+ case Decl::type:
+#include "clang/AST/DeclNodes.inc"
+ llvm_unreachable("invalid value decl kind");
+
+ // These shouldn't make it here.
+ case Decl::ObjCAtDefsField:
+ case Decl::ObjCIvar:
+ llvm_unreachable("forming non-member reference to ivar?");
+
+ // Enum constants are always r-values and never references.
+ // Unresolved using declarations are dependent.
+ case Decl::EnumConstant:
+ case Decl::UnresolvedUsingValue:
+ valueKind = VK_RValue;
+ break;
+
+ // Fields and indirect fields that got here must be for
+ // pointer-to-member expressions; we just call them l-values for
+ // internal consistency, because this subexpression doesn't really
+ // exist in the high-level semantics.
+ case Decl::Field:
+ case Decl::IndirectField:
+ assert(getLangOpts().CPlusPlus &&
+ "building reference to field in C?");
+
+ // These can't have reference type in well-formed programs, but
+ // for internal consistency we do this anyway.
+ type = type.getNonReferenceType();
+ valueKind = VK_LValue;
+ break;
+
+ // Non-type template parameters are either l-values or r-values
+ // depending on the type.
+ case Decl::NonTypeTemplateParm: {
+ if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
+ type = reftype->getPointeeType();
+ valueKind = VK_LValue; // even if the parameter is an r-value reference
+ break;
+ }
+
+ // For non-references, we need to strip qualifiers just in case
+ // the template parameter was declared as 'const int' or whatever.
+ valueKind = VK_RValue;
+ type = type.getUnqualifiedType();
+ break;
+ }
+
+ case Decl::Var:
+ // In C, "extern void blah;" is valid and is an r-value.
+ if (!getLangOpts().CPlusPlus &&
+ !type.hasQualifiers() &&
+ type->isVoidType()) {
+ valueKind = VK_RValue;
+ break;
+ }
+ // fallthrough
+
+ case Decl::ImplicitParam:
+ case Decl::ParmVar: {
+ // These are always l-values.
+ valueKind = VK_LValue;
+ type = type.getNonReferenceType();
+
+ // FIXME: Does the addition of const really only apply in
+ // potentially-evaluated contexts? Since the variable isn't actually
+ // captured in an unevaluated context, it seems that the answer is no.
+ if (ExprEvalContexts.back().Context != Sema::Unevaluated) {
+ QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
+ if (!CapturedType.isNull())
+ type = CapturedType;
+ }
+
+ break;
+ }
+
+ case Decl::Function: {
+ const FunctionType *fty = type->castAs<FunctionType>();
+
+ // If we're referring to a function with an __unknown_anytype
+ // result type, make the entire expression __unknown_anytype.
+ if (fty->getResultType() == Context.UnknownAnyTy) {
+ type = Context.UnknownAnyTy;
+ valueKind = VK_RValue;
+ break;
+ }
+
+ // Functions are l-values in C++.
+ if (getLangOpts().CPlusPlus) {
+ valueKind = VK_LValue;
+ break;
+ }
+
+ // C99 DR 316 says that, if a function type comes from a
+ // function definition (without a prototype), that type is only
+ // used for checking compatibility. Therefore, when referencing
+ // the function, we pretend that we don't have the full function
+ // type.
+ if (!cast<FunctionDecl>(VD)->hasPrototype() &&
+ isa<FunctionProtoType>(fty))
+ type = Context.getFunctionNoProtoType(fty->getResultType(),
+ fty->getExtInfo());
+
+ // Functions are r-values in C.
+ valueKind = VK_RValue;
+ break;
+ }
+
+ case Decl::CXXMethod:
+ // If we're referring to a method with an __unknown_anytype
+ // result type, make the entire expression __unknown_anytype.
+ // This should only be possible with a type written directly.
+ if (const FunctionProtoType *proto
+ = dyn_cast<FunctionProtoType>(VD->getType()))
+ if (proto->getResultType() == Context.UnknownAnyTy) {
+ type = Context.UnknownAnyTy;
+ valueKind = VK_RValue;
+ break;
+ }
+
+ // C++ methods are l-values if static, r-values if non-static.
+ if (cast<CXXMethodDecl>(VD)->isStatic()) {
+ valueKind = VK_LValue;
+ break;
+ }
+ // fallthrough
+
+ case Decl::CXXConversion:
+ case Decl::CXXDestructor:
+ case Decl::CXXConstructor:
+ valueKind = VK_RValue;
+ break;
+ }
+
+ return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS);
+ }
+}
+
+ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
+ PredefinedExpr::IdentType IT;
+
+ switch (Kind) {
+ default: llvm_unreachable("Unknown simple primary expr!");
+ case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
+ case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
+ case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
+ }
+
+ // Pre-defined identifiers are of type char[x], where x is the length of the
+ // string.
+
+ Decl *currentDecl = getCurFunctionOrMethodDecl();
+ if (!currentDecl && getCurBlock())
+ currentDecl = getCurBlock()->TheDecl;
+ if (!currentDecl) {
+ Diag(Loc, diag::ext_predef_outside_function);
+ currentDecl = Context.getTranslationUnitDecl();
+ }
+
+ QualType ResTy;
+ if (cast<DeclContext>(currentDecl)->isDependentContext()) {
+ ResTy = Context.DependentTy;
+ } else {
+ unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
+
+ llvm::APInt LengthI(32, Length + 1);
+ ResTy = Context.CharTy.withConst();
+ ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
+ }
+ return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
+}
+
+ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
+ SmallString<16> CharBuffer;
+ bool Invalid = false;
+ StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
+ if (Invalid)
+ return ExprError();
+
+ CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
+ PP, Tok.getKind());
+ if (Literal.hadError())
+ return ExprError();
+
+ QualType Ty;
+ if (Literal.isWide())
+ Ty = Context.WCharTy; // L'x' -> wchar_t in C and C++.
+ else if (Literal.isUTF16())
+ Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
+ else if (Literal.isUTF32())
+ Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
+ else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
+ Ty = Context.IntTy; // 'x' -> int in C, 'wxyz' -> int in C++.
+ else
+ Ty = Context.CharTy; // 'x' -> char in C++
+
+ CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
+ if (Literal.isWide())
+ Kind = CharacterLiteral::Wide;
+ else if (Literal.isUTF16())
+ Kind = CharacterLiteral::UTF16;
+ else if (Literal.isUTF32())
+ Kind = CharacterLiteral::UTF32;
+
+ Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
+ Tok.getLocation());
+
+ if (Literal.getUDSuffix().empty())
+ return Owned(Lit);
+
+ // We're building a user-defined literal.
+ IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
+ SourceLocation UDSuffixLoc =
+ getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
+
+ // Make sure we're allowed user-defined literals here.
+ if (!UDLScope)
+ return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
+
+ // C++11 [lex.ext]p6: The literal L is treated as a call of the form
+ // operator "" X (ch)
+ return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
+ llvm::makeArrayRef(&Lit, 1),
+ Tok.getLocation());
+}
+
+ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
+ unsigned IntSize = Context.getTargetInfo().getIntWidth();
+ return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
+ Context.IntTy, Loc));
+}
+
+static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
+ QualType Ty, SourceLocation Loc) {
+ const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
+
+ using llvm::APFloat;
+ APFloat Val(Format);
+
+ APFloat::opStatus result = Literal.GetFloatValue(Val);
+
+ // Overflow is always an error, but underflow is only an error if
+ // we underflowed to zero (APFloat reports denormals as underflow).
+ if ((result & APFloat::opOverflow) ||
+ ((result & APFloat::opUnderflow) && Val.isZero())) {
+ unsigned diagnostic;
+ SmallString<20> buffer;
+ if (result & APFloat::opOverflow) {
+ diagnostic = diag::warn_float_overflow;
+ APFloat::getLargest(Format).toString(buffer);
+ } else {
+ diagnostic = diag::warn_float_underflow;
+ APFloat::getSmallest(Format).toString(buffer);
+ }
+
+ S.Diag(Loc, diagnostic)
+ << Ty
+ << StringRef(buffer.data(), buffer.size());
+ }
+
+ bool isExact = (result == APFloat::opOK);
+ return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
+}
+
+ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
+ // Fast path for a single digit (which is quite common). A single digit
+ // cannot have a trigraph, escaped newline, radix prefix, or suffix.
+ if (Tok.getLength() == 1) {
+ const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
+ return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
+ }
+
+ SmallString<512> IntegerBuffer;
+ // Add padding so that NumericLiteralParser can overread by one character.
+ IntegerBuffer.resize(Tok.getLength()+1);
+ const char *ThisTokBegin = &IntegerBuffer[0];
+
+ // Get the spelling of the token, which eliminates trigraphs, etc.
+ bool Invalid = false;
+ unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
+ if (Invalid)
+ return ExprError();
+
+ NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
+ Tok.getLocation(), PP);
+ if (Literal.hadError)
+ return ExprError();
+
+ if (Literal.hasUDSuffix()) {
+ // We're building a user-defined literal.
+ IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
+ SourceLocation UDSuffixLoc =
+ getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
+
+ // Make sure we're allowed user-defined literals here.
+ if (!UDLScope)
+ return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
+
+ QualType CookedTy;
+ if (Literal.isFloatingLiteral()) {
+ // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
+ // long double, the literal is treated as a call of the form
+ // operator "" X (f L)
+ CookedTy = Context.LongDoubleTy;
+ } else {
+ // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
+ // unsigned long long, the literal is treated as a call of the form
+ // operator "" X (n ULL)
+ CookedTy = Context.UnsignedLongLongTy;
+ }
+
+ DeclarationName OpName =
+ Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
+ DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
+ OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
+
+ // Perform literal operator lookup to determine if we're building a raw
+ // literal or a cooked one.
+ LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
+ switch (LookupLiteralOperator(UDLScope, R, llvm::makeArrayRef(&CookedTy, 1),
+ /*AllowRawAndTemplate*/true)) {
+ case LOLR_Error:
+ return ExprError();
+
+ case LOLR_Cooked: {
+ Expr *Lit;
+ if (Literal.isFloatingLiteral()) {
+ Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
+ } else {
+ llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
+ if (Literal.GetIntegerValue(ResultVal))
+ Diag(Tok.getLocation(), diag::warn_integer_too_large);
+ Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
+ Tok.getLocation());
+ }
+ return BuildLiteralOperatorCall(R, OpNameInfo,
+ llvm::makeArrayRef(&Lit, 1),
+ Tok.getLocation());
+ }
+
+ case LOLR_Raw: {
+ // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
+ // literal is treated as a call of the form
+ // operator "" X ("n")
+ SourceLocation TokLoc = Tok.getLocation();
+ unsigned Length = Literal.getUDSuffixOffset();
+ QualType StrTy = Context.getConstantArrayType(
+ Context.CharTy, llvm::APInt(32, Length + 1),
+ ArrayType::Normal, 0);
+ Expr *Lit = StringLiteral::Create(
+ Context, StringRef(ThisTokBegin, Length), StringLiteral::Ascii,
+ /*Pascal*/false, StrTy, &TokLoc, 1);
+ return BuildLiteralOperatorCall(R, OpNameInfo,
+ llvm::makeArrayRef(&Lit, 1), TokLoc);
+ }
+
+ case LOLR_Template:
+ // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
+ // template), L is treated as a call fo the form
+ // operator "" X <'c1', 'c2', ... 'ck'>()
+ // where n is the source character sequence c1 c2 ... ck.
+ TemplateArgumentListInfo ExplicitArgs;
+ unsigned CharBits = Context.getIntWidth(Context.CharTy);
+ bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
+ llvm::APSInt Value(CharBits, CharIsUnsigned);
+ for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
+ Value = ThisTokBegin[I];
+ TemplateArgument Arg(Value, Context.CharTy);
+ TemplateArgumentLocInfo ArgInfo;
+ ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
+ }
+ return BuildLiteralOperatorCall(R, OpNameInfo, ArrayRef<Expr*>(),
+ Tok.getLocation(), &ExplicitArgs);
+ }
+
+ llvm_unreachable("unexpected literal operator lookup result");
+ }
+
+ Expr *Res;
+
+ if (Literal.isFloatingLiteral()) {
+ QualType Ty;
+ if (Literal.isFloat)
+ Ty = Context.FloatTy;
+ else if (!Literal.isLong)
+ Ty = Context.DoubleTy;
+ else
+ Ty = Context.LongDoubleTy;
+
+ Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
+
+ if (Ty == Context.DoubleTy) {
+ if (getLangOpts().SinglePrecisionConstants) {
+ Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
+ } else if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp64) {
+ Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
+ Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
+ }
+ }
+ } else if (!Literal.isIntegerLiteral()) {
+ return ExprError();
+ } else {
+ QualType Ty;
+
+ // long long is a C99 feature.
+ if (!getLangOpts().C99 && Literal.isLongLong)
+ Diag(Tok.getLocation(),
+ getLangOpts().CPlusPlus0x ?
+ diag::warn_cxx98_compat_longlong : diag::ext_longlong);
+
+ // Get the value in the widest-possible width.
+ llvm::APInt ResultVal(Context.getTargetInfo().getIntMaxTWidth(), 0);
+
+ if (Literal.GetIntegerValue(ResultVal)) {
+ // If this value didn't fit into uintmax_t, warn and force to ull.
+ Diag(Tok.getLocation(), diag::warn_integer_too_large);
+ Ty = Context.UnsignedLongLongTy;
+ assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
+ "long long is not intmax_t?");
+ } else {
+ // If this value fits into a ULL, try to figure out what else it fits into
+ // according to the rules of C99 6.4.4.1p5.
+
+ // Octal, Hexadecimal, and integers with a U suffix are allowed to
+ // be an unsigned int.
+ bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
+
+ // Check from smallest to largest, picking the smallest type we can.
+ unsigned Width = 0;
+ if (!Literal.isLong && !Literal.isLongLong) {
+ // Are int/unsigned possibilities?
+ unsigned IntSize = Context.getTargetInfo().getIntWidth();
+
+ // Does it fit in a unsigned int?
+ if (ResultVal.isIntN(IntSize)) {
+ // Does it fit in a signed int?
+ if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
+ Ty = Context.IntTy;
+ else if (AllowUnsigned)
+ Ty = Context.UnsignedIntTy;
+ Width = IntSize;
+ }
+ }
+
+ // Are long/unsigned long possibilities?
+ if (Ty.isNull() && !Literal.isLongLong) {
+ unsigned LongSize = Context.getTargetInfo().getLongWidth();
+
+ // Does it fit in a unsigned long?
+ if (ResultVal.isIntN(LongSize)) {
+ // Does it fit in a signed long?
+ if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
+ Ty = Context.LongTy;
+ else if (AllowUnsigned)
+ Ty = Context.UnsignedLongTy;
+ Width = LongSize;
+ }
+ }
+
+ // Finally, check long long if needed.
+ if (Ty.isNull()) {
+ unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
+
+ // Does it fit in a unsigned long long?
+ if (ResultVal.isIntN(LongLongSize)) {
+ // Does it fit in a signed long long?
+ // To be compatible with MSVC, hex integer literals ending with the
+ // LL or i64 suffix are always signed in Microsoft mode.
+ if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
+ (getLangOpts().MicrosoftExt && Literal.isLongLong)))
+ Ty = Context.LongLongTy;
+ else if (AllowUnsigned)
+ Ty = Context.UnsignedLongLongTy;
+ Width = LongLongSize;
+ }
+ }
+
+ // If we still couldn't decide a type, we probably have something that
+ // does not fit in a signed long long, but has no U suffix.
+ if (Ty.isNull()) {
+ Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
+ Ty = Context.UnsignedLongLongTy;
+ Width = Context.getTargetInfo().getLongLongWidth();
+ }
+
+ if (ResultVal.getBitWidth() != Width)
+ ResultVal = ResultVal.trunc(Width);
+ }
+ Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
+ }
+
+ // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
+ if (Literal.isImaginary)
+ Res = new (Context) ImaginaryLiteral(Res,
+ Context.getComplexType(Res->getType()));
+
+ return Owned(Res);
+}
+
+ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
+ assert((E != 0) && "ActOnParenExpr() missing expr");
+ return Owned(new (Context) ParenExpr(L, R, E));
+}
+
+static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
+ SourceLocation Loc,
+ SourceRange ArgRange) {
+ // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
+ // scalar or vector data type argument..."
+ // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
+ // type (C99 6.2.5p18) or void.
+ if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
+ S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
+ << T << ArgRange;
+ return true;
+ }
+
+ assert((T->isVoidType() || !T->isIncompleteType()) &&
+ "Scalar types should always be complete");
+ return false;
+}
+
+static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
+ SourceLocation Loc,
+ SourceRange ArgRange,
+ UnaryExprOrTypeTrait TraitKind) {
+ // C99 6.5.3.4p1:
+ if (T->isFunctionType()) {
+ // alignof(function) is allowed as an extension.
+ if (TraitKind == UETT_SizeOf)
+ S.Diag(Loc, diag::ext_sizeof_function_type) << ArgRange;
+ return false;
+ }
+
+ // Allow sizeof(void)/alignof(void) as an extension.
+ if (T->isVoidType()) {
+ S.Diag(Loc, diag::ext_sizeof_void_type) << TraitKind << ArgRange;
+ return false;
+ }
+
+ return true;
+}
+
+static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
+ SourceLocation Loc,
+ SourceRange ArgRange,
+ UnaryExprOrTypeTrait TraitKind) {
+ // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
+ if (S.LangOpts.ObjCNonFragileABI && T->isObjCObjectType()) {
+ S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
+ << T << (TraitKind == UETT_SizeOf)
+ << ArgRange;
+ return true;
+ }
+
+ return false;
+}
+
+/// \brief Check the constrains on expression operands to unary type expression
+/// and type traits.
+///
+/// Completes any types necessary and validates the constraints on the operand
+/// expression. The logic mostly mirrors the type-based overload, but may modify
+/// the expression as it completes the type for that expression through template
+/// instantiation, etc.
+bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
+ UnaryExprOrTypeTrait ExprKind) {
+ QualType ExprTy = E->getType();
+
+ // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
+ // the result is the size of the referenced type."
+ // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
+ // result shall be the alignment of the referenced type."
+ if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
+ ExprTy = Ref->getPointeeType();
+
+ if (ExprKind == UETT_VecStep)
+ return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
+ E->getSourceRange());
+
+ // Whitelist some types as extensions
+ if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
+ E->getSourceRange(), ExprKind))
+ return false;
+
+ if (RequireCompleteExprType(E,
+ PDiag(diag::err_sizeof_alignof_incomplete_type)
+ << ExprKind << E->getSourceRange(),
+ std::make_pair(SourceLocation(), PDiag(0))))
+ return true;
+
+ // Completeing the expression's type may have changed it.
+ ExprTy = E->getType();
+ if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
+ ExprTy = Ref->getPointeeType();
+
+ if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
+ E->getSourceRange(), ExprKind))
+ return true;
+
+ if (ExprKind == UETT_SizeOf) {
+ if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
+ if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
+ QualType OType = PVD->getOriginalType();
+ QualType Type = PVD->getType();
+ if (Type->isPointerType() && OType->isArrayType()) {
+ Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
+ << Type << OType;
+ Diag(PVD->getLocation(), diag::note_declared_at);
+ }
+ }
+ }
+ }
+
+ return false;
+}
+
+/// \brief Check the constraints on operands to unary expression and type
+/// traits.
+///
+/// This will complete any types necessary, and validate the various constraints
+/// on those operands.
+///
+/// The UsualUnaryConversions() function is *not* called by this routine.
+/// C99 6.3.2.1p[2-4] all state:
+/// Except when it is the operand of the sizeof operator ...
+///
+/// C++ [expr.sizeof]p4
+/// The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
+/// standard conversions are not applied to the operand of sizeof.
+///
+/// This policy is followed for all of the unary trait expressions.
+bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
+ SourceLocation OpLoc,
+ SourceRange ExprRange,
+ UnaryExprOrTypeTrait ExprKind) {
+ if (ExprType->isDependentType())
+ return false;
+
+ // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
+ // the result is the size of the referenced type."
+ // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
+ // result shall be the alignment of the referenced type."
+ if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
+ ExprType = Ref->getPointeeType();
+
+ if (ExprKind == UETT_VecStep)
+ return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
+
+ // Whitelist some types as extensions
+ if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
+ ExprKind))
+ return false;
+
+ if (RequireCompleteType(OpLoc, ExprType,
+ PDiag(diag::err_sizeof_alignof_incomplete_type)
+ << ExprKind << ExprRange))
+ return true;
+
+ if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
+ ExprKind))
+ return true;
+
+ return false;
+}
+
+static bool CheckAlignOfExpr(Sema &S, Expr *E) {
+ E = E->IgnoreParens();
+
+ // alignof decl is always ok.
+ if (isa<DeclRefExpr>(E))
+ return false;
+
+ // Cannot know anything else if the expression is dependent.
+ if (E->isTypeDependent())
+ return false;
+
+ if (E->getBitField()) {
+ S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield)
+ << 1 << E->getSourceRange();
+ return true;
+ }
+
+ // Alignment of a field access is always okay, so long as it isn't a
+ // bit-field.
+ if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
+ if (isa<FieldDecl>(ME->getMemberDecl()))
+ return false;
+
+ return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
+}
+
+bool Sema::CheckVecStepExpr(Expr *E) {
+ E = E->IgnoreParens();
+
+ // Cannot know anything else if the expression is dependent.
+ if (E->isTypeDependent())
+ return false;
+
+ return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
+}
+
+/// \brief Build a sizeof or alignof expression given a type operand.
+ExprResult
+Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
+ SourceLocation OpLoc,
+ UnaryExprOrTypeTrait ExprKind,
+ SourceRange R) {
+ if (!TInfo)
+ return ExprError();
+
+ QualType T = TInfo->getType();
+
+ if (!T->isDependentType() &&
+ CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
+ return ExprError();
+
+ // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
+ return Owned(new (Context) UnaryExprOrTypeTraitExpr(ExprKind, TInfo,
+ Context.getSizeType(),
+ OpLoc, R.getEnd()));
+}
+
+/// \brief Build a sizeof or alignof expression given an expression
+/// operand.
+ExprResult
+Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
+ UnaryExprOrTypeTrait ExprKind) {
+ ExprResult PE = CheckPlaceholderExpr(E);
+ if (PE.isInvalid())
+ return ExprError();
+
+ E = PE.get();
+
+ // Verify that the operand is valid.
+ bool isInvalid = false;
+ if (E->isTypeDependent()) {
+ // Delay type-checking for type-dependent expressions.
+ } else if (ExprKind == UETT_AlignOf) {
+ isInvalid = CheckAlignOfExpr(*this, E);
+ } else if (ExprKind == UETT_VecStep) {
+ isInvalid = CheckVecStepExpr(E);
+ } else if (E->getBitField()) { // C99 6.5.3.4p1.
+ Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield) << 0;
+ isInvalid = true;
+ } else {
+ isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
+ }
+
+ if (isInvalid)
+ return ExprError();
+
+ if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
+ PE = TranformToPotentiallyEvaluated(E);
+ if (PE.isInvalid()) return ExprError();
+ E = PE.take();
+ }
+
+ // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
+ return Owned(new (Context) UnaryExprOrTypeTraitExpr(
+ ExprKind, E, Context.getSizeType(), OpLoc,
+ E->getSourceRange().getEnd()));
+}
+
+/// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
+/// expr and the same for @c alignof and @c __alignof
+/// Note that the ArgRange is invalid if isType is false.
+ExprResult
+Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
+ UnaryExprOrTypeTrait ExprKind, bool IsType,
+ void *TyOrEx, const SourceRange &ArgRange) {
+ // If error parsing type, ignore.
+ if (TyOrEx == 0) return ExprError();
+
+ if (IsType) {
+ TypeSourceInfo *TInfo;
+ (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
+ return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
+ }
+
+ Expr *ArgEx = (Expr *)TyOrEx;
+ ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
+ return move(Result);
+}
+
+static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
+ bool IsReal) {
+ if (V.get()->isTypeDependent())
+ return S.Context.DependentTy;
+
+ // _Real and _Imag are only l-values for normal l-values.
+ if (V.get()->getObjectKind() != OK_Ordinary) {
+ V = S.DefaultLvalueConversion(V.take());
+ if (V.isInvalid())
+ return QualType();
+ }
+
+ // These operators return the element type of a complex type.
+ if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
+ return CT->getElementType();
+
+ // Otherwise they pass through real integer and floating point types here.
+ if (V.get()->getType()->isArithmeticType())
+ return V.get()->getType();
+
+ // Test for placeholders.
+ ExprResult PR = S.CheckPlaceholderExpr(V.get());
+ if (PR.isInvalid()) return QualType();
+ if (PR.get() != V.get()) {
+ V = move(PR);
+ return CheckRealImagOperand(S, V, Loc, IsReal);
+ }
+
+ // Reject anything else.
+ S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
+ << (IsReal ? "__real" : "__imag");
+ return QualType();
+}
+
+
+
+ExprResult
+Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
+ tok::TokenKind Kind, Expr *Input) {
+ UnaryOperatorKind Opc;
+ switch (Kind) {
+ default: llvm_unreachable("Unknown unary op!");
+ case tok::plusplus: Opc = UO_PostInc; break;
+ case tok::minusminus: Opc = UO_PostDec; break;
+ }
+
+ // Since this might is a postfix expression, get rid of ParenListExprs.
+ ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
+ if (Result.isInvalid()) return ExprError();
+ Input = Result.take();
+
+ return BuildUnaryOp(S, OpLoc, Opc, Input);
+}
+
+ExprResult
+Sema::ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
+ Expr *Idx, SourceLocation RLoc) {
+ // Since this might be a postfix expression, get rid of ParenListExprs.
+ ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
+ if (Result.isInvalid()) return ExprError();
+ Base = Result.take();
+
+ Expr *LHSExp = Base, *RHSExp = Idx;
+
+ if (getLangOpts().CPlusPlus &&
+ (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
+ return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
+ Context.DependentTy,
+ VK_LValue, OK_Ordinary,
+ RLoc));
+ }
+
+ if (getLangOpts().CPlusPlus &&
+ (LHSExp->getType()->isRecordType() ||
+ LHSExp->getType()->isEnumeralType() ||
+ RHSExp->getType()->isRecordType() ||
+ RHSExp->getType()->isEnumeralType()) &&
+ !LHSExp->getType()->isObjCObjectPointerType()) {
+ return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, Base, Idx);
+ }
+
+ return CreateBuiltinArraySubscriptExpr(Base, LLoc, Idx, RLoc);
+}
+
+
+ExprResult
+Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
+ Expr *Idx, SourceLocation RLoc) {
+ Expr *LHSExp = Base;
+ Expr *RHSExp = Idx;
+
+ // Perform default conversions.
+ if (!LHSExp->getType()->getAs<VectorType>()) {
+ ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
+ if (Result.isInvalid())
+ return ExprError();
+ LHSExp = Result.take();
+ }
+ ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
+ if (Result.isInvalid())
+ return ExprError();
+ RHSExp = Result.take();
+
+ QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
+ ExprValueKind VK = VK_LValue;
+ ExprObjectKind OK = OK_Ordinary;
+
+ // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
+ // to the expression *((e1)+(e2)). This means the array "Base" may actually be
+ // in the subscript position. As a result, we need to derive the array base
+ // and index from the expression types.
+ Expr *BaseExpr, *IndexExpr;
+ QualType ResultType;
+ if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
+ BaseExpr = LHSExp;
+ IndexExpr = RHSExp;
+ ResultType = Context.DependentTy;
+ } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
+ BaseExpr = LHSExp;
+ IndexExpr = RHSExp;
+ ResultType = PTy->getPointeeType();
+ } else if (const ObjCObjectPointerType *PTy =
+ LHSTy->getAs<ObjCObjectPointerType>()) {
+ BaseExpr = LHSExp;
+ IndexExpr = RHSExp;
+ Result = BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, 0, 0);
+ if (!Result.isInvalid())
+ return Owned(Result.take());
+ ResultType = PTy->getPointeeType();
+ } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
+ // Handle the uncommon case of "123[Ptr]".
+ BaseExpr = RHSExp;
+ IndexExpr = LHSExp;
+ ResultType = PTy->getPointeeType();
+ } else if (const ObjCObjectPointerType *PTy =
+ RHSTy->getAs<ObjCObjectPointerType>()) {
+ // Handle the uncommon case of "123[Ptr]".
+ BaseExpr = RHSExp;
+ IndexExpr = LHSExp;
+ ResultType = PTy->getPointeeType();
+ } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
+ BaseExpr = LHSExp; // vectors: V[123]
+ IndexExpr = RHSExp;
+ VK = LHSExp->getValueKind();
+ if (VK != VK_RValue)
+ OK = OK_VectorComponent;
+
+ // FIXME: need to deal with const...
+ ResultType = VTy->getElementType();
+ } else if (LHSTy->isArrayType()) {
+ // If we see an array that wasn't promoted by
+ // DefaultFunctionArrayLvalueConversion, it must be an array that
+ // wasn't promoted because of the C90 rule that doesn't
+ // allow promoting non-lvalue arrays. Warn, then
+ // force the promotion here.
+ Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
+ LHSExp->getSourceRange();
+ LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
+ CK_ArrayToPointerDecay).take();
+ LHSTy = LHSExp->getType();
+
+ BaseExpr = LHSExp;
+ IndexExpr = RHSExp;
+ ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
+ } else if (RHSTy->isArrayType()) {
+ // Same as previous, except for 123[f().a] case
+ Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
+ RHSExp->getSourceRange();
+ RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
+ CK_ArrayToPointerDecay).take();
+ RHSTy = RHSExp->getType();
+
+ BaseExpr = RHSExp;
+ IndexExpr = LHSExp;
+ ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
+ } else {
+ return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
+ << LHSExp->getSourceRange() << RHSExp->getSourceRange());
+ }
+ // C99 6.5.2.1p1
+ if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
+ return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
+ << IndexExpr->getSourceRange());
+
+ if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
+ IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
+ && !IndexExpr->isTypeDependent())
+ Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
+
+ // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
+ // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
+ // type. Note that Functions are not objects, and that (in C99 parlance)
+ // incomplete types are not object types.
+ if (ResultType->isFunctionType()) {
+ Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
+ << ResultType << BaseExpr->getSourceRange();
+ return ExprError();
+ }
+
+ if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
+ // GNU extension: subscripting on pointer to void
+ Diag(LLoc, diag::ext_gnu_subscript_void_type)
+ << BaseExpr->getSourceRange();
+
+ // C forbids expressions of unqualified void type from being l-values.
+ // See IsCForbiddenLValueType.
+ if (!ResultType.hasQualifiers()) VK = VK_RValue;
+ } else if (!ResultType->isDependentType() &&
+ RequireCompleteType(LLoc, ResultType,
+ PDiag(diag::err_subscript_incomplete_type)
+ << BaseExpr->getSourceRange()))
+ return ExprError();
+
+ // Diagnose bad cases where we step over interface counts.
+ if (ResultType->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
+ Diag(LLoc, diag::err_subscript_nonfragile_interface)
+ << ResultType << BaseExpr->getSourceRange();
+ return ExprError();
+ }
+
+ assert(VK == VK_RValue || LangOpts.CPlusPlus ||
+ !ResultType.isCForbiddenLValueType());
+
+ return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
+ ResultType, VK, OK, RLoc));
+}
+
+ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
+ FunctionDecl *FD,
+ ParmVarDecl *Param) {
+ if (Param->hasUnparsedDefaultArg()) {
+ Diag(CallLoc,
+ diag::err_use_of_default_argument_to_function_declared_later) <<
+ FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
+ Diag(UnparsedDefaultArgLocs[Param],
+ diag::note_default_argument_declared_here);
+ return ExprError();
+ }
+
+ if (Param->hasUninstantiatedDefaultArg()) {
+ Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
+
+ // Instantiate the expression.
+ MultiLevelTemplateArgumentList ArgList
+ = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
+
+ std::pair<const TemplateArgument *, unsigned> Innermost
+ = ArgList.getInnermost();
+ InstantiatingTemplate Inst(*this, CallLoc, Param, Innermost.first,
+ Innermost.second);
+
+ ExprResult Result;
+ {
+ // C++ [dcl.fct.default]p5:
+ // The names in the [default argument] expression are bound, and
+ // the semantic constraints are checked, at the point where the
+ // default argument expression appears.
+ ContextRAII SavedContext(*this, FD);
+ LocalInstantiationScope Local(*this);
+ Result = SubstExpr(UninstExpr, ArgList);
+ }
+ if (Result.isInvalid())
+ return ExprError();
+
+ // Check the expression as an initializer for the parameter.
+ InitializedEntity Entity
+ = InitializedEntity::InitializeParameter(Context, Param);
+ InitializationKind Kind
+ = InitializationKind::CreateCopy(Param->getLocation(),
+ /*FIXME:EqualLoc*/UninstExpr->getLocStart());
+ Expr *ResultE = Result.takeAs<Expr>();
+
+ InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
+ Result = InitSeq.Perform(*this, Entity, Kind,
+ MultiExprArg(*this, &ResultE, 1));
+ if (Result.isInvalid())
+ return ExprError();
+
+ // Build the default argument expression.
+ return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param,
+ Result.takeAs<Expr>()));
+ }
+
+ // If the default expression creates temporaries, we need to
+ // push them to the current stack of expression temporaries so they'll
+ // be properly destroyed.
+ // FIXME: We should really be rebuilding the default argument with new
+ // bound temporaries; see the comment in PR5810.
+ // We don't need to do that with block decls, though, because
+ // blocks in default argument expression can never capture anything.
+ if (isa<ExprWithCleanups>(Param->getInit())) {
+ // Set the "needs cleanups" bit regardless of whether there are
+ // any explicit objects.
+ ExprNeedsCleanups = true;
+
+ // Append all the objects to the cleanup list. Right now, this
+ // should always be a no-op, because blocks in default argument
+ // expressions should never be able to capture anything.
+ assert(!cast<ExprWithCleanups>(Param->getInit())->getNumObjects() &&
+ "default argument expression has capturing blocks?");
+ }
+
+ // We already type-checked the argument, so we know it works.
+ // Just mark all of the declarations in this potentially-evaluated expression
+ // as being "referenced".
+ MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
+ /*SkipLocalVariables=*/true);
+ return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
+}
+
+/// ConvertArgumentsForCall - Converts the arguments specified in
+/// Args/NumArgs to the parameter types of the function FDecl with
+/// function prototype Proto. Call is the call expression itself, and
+/// Fn is the function expression. For a C++ member function, this
+/// routine does not attempt to convert the object argument. Returns
+/// true if the call is ill-formed.
+bool
+Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
+ FunctionDecl *FDecl,
+ const FunctionProtoType *Proto,
+ Expr **Args, unsigned NumArgs,
+ SourceLocation RParenLoc,
+ bool IsExecConfig) {
+ // Bail out early if calling a builtin with custom typechecking.
+ // We don't need to do this in the
+ if (FDecl)
+ if (unsigned ID = FDecl->getBuiltinID())
+ if (Context.BuiltinInfo.hasCustomTypechecking(ID))
+ return false;
+
+ // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
+ // assignment, to the types of the corresponding parameter, ...
+ unsigned NumArgsInProto = Proto->getNumArgs();
+ bool Invalid = false;
+ unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumArgsInProto;
+ unsigned FnKind = Fn->getType()->isBlockPointerType()
+ ? 1 /* block */
+ : (IsExecConfig ? 3 /* kernel function (exec config) */
+ : 0 /* function */);
+
+ // If too few arguments are available (and we don't have default
+ // arguments for the remaining parameters), don't make the call.
+ if (NumArgs < NumArgsInProto) {
+ if (NumArgs < MinArgs) {
+ Diag(RParenLoc, MinArgs == NumArgsInProto
+ ? diag::err_typecheck_call_too_few_args
+ : diag::err_typecheck_call_too_few_args_at_least)
+ << FnKind
+ << MinArgs << NumArgs << Fn->getSourceRange();
+
+ // Emit the location of the prototype.
+ if (FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
+ Diag(FDecl->getLocStart(), diag::note_callee_decl)
+ << FDecl;
+
+ return true;
+ }
+ Call->setNumArgs(Context, NumArgsInProto);
+ }
+
+ // If too many are passed and not variadic, error on the extras and drop
+ // them.
+ if (NumArgs > NumArgsInProto) {
+ if (!Proto->isVariadic()) {
+ Diag(Args[NumArgsInProto]->getLocStart(),
+ MinArgs == NumArgsInProto
+ ? diag::err_typecheck_call_too_many_args
+ : diag::err_typecheck_call_too_many_args_at_most)
+ << FnKind
+ << NumArgsInProto << NumArgs << Fn->getSourceRange()
+ << SourceRange(Args[NumArgsInProto]->getLocStart(),
+ Args[NumArgs-1]->getLocEnd());
+
+ // Emit the location of the prototype.
+ if (FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
+ Diag(FDecl->getLocStart(), diag::note_callee_decl)
+ << FDecl;
+
+ // This deletes the extra arguments.
+ Call->setNumArgs(Context, NumArgsInProto);
+ return true;
+ }
+ }
+ SmallVector<Expr *, 8> AllArgs;
+ VariadicCallType CallType =
+ Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
+ if (Fn->getType()->isBlockPointerType())
+ CallType = VariadicBlock; // Block
+ else if (isa<MemberExpr>(Fn))
+ CallType = VariadicMethod;
+ Invalid = GatherArgumentsForCall(Call->getLocStart(), FDecl,
+ Proto, 0, Args, NumArgs, AllArgs, CallType);
+ if (Invalid)
+ return true;
+ unsigned TotalNumArgs = AllArgs.size();
+ for (unsigned i = 0; i < TotalNumArgs; ++i)
+ Call->setArg(i, AllArgs[i]);
+
+ return false;
+}
+
+bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
+ FunctionDecl *FDecl,
+ const FunctionProtoType *Proto,
+ unsigned FirstProtoArg,
+ Expr **Args, unsigned NumArgs,
+ SmallVector<Expr *, 8> &AllArgs,
+ VariadicCallType CallType,
+ bool AllowExplicit) {
+ unsigned NumArgsInProto = Proto->getNumArgs();
+ unsigned NumArgsToCheck = NumArgs;
+ bool Invalid = false;
+ if (NumArgs != NumArgsInProto)
+ // Use default arguments for missing arguments
+ NumArgsToCheck = NumArgsInProto;
+ unsigned ArgIx = 0;
+ // Continue to check argument types (even if we have too few/many args).
+ for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
+ QualType ProtoArgType = Proto->getArgType(i);
+
+ Expr *Arg;
+ ParmVarDecl *Param;
+ if (ArgIx < NumArgs) {
+ Arg = Args[ArgIx++];
+
+ if (RequireCompleteType(Arg->getLocStart(),
+ ProtoArgType,
+ PDiag(diag::err_call_incomplete_argument)
+ << Arg->getSourceRange()))
+ return true;
+
+ // Pass the argument
+ Param = 0;
+ if (FDecl && i < FDecl->getNumParams())
+ Param = FDecl->getParamDecl(i);
+
+ // Strip the unbridged-cast placeholder expression off, if applicable.
+ if (Arg->getType() == Context.ARCUnbridgedCastTy &&
+ FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
+ (!Param || !Param->hasAttr<CFConsumedAttr>()))
+ Arg = stripARCUnbridgedCast(Arg);
+
+ InitializedEntity Entity =
+ Param? InitializedEntity::InitializeParameter(Context, Param)
+ : InitializedEntity::InitializeParameter(Context, ProtoArgType,
+ Proto->isArgConsumed(i));
+ ExprResult ArgE = PerformCopyInitialization(Entity,
+ SourceLocation(),
+ Owned(Arg),
+ /*TopLevelOfInitList=*/false,
+ AllowExplicit);
+ if (ArgE.isInvalid())
+ return true;
+
+ Arg = ArgE.takeAs<Expr>();
+ } else {
+ Param = FDecl->getParamDecl(i);
+
+ ExprResult ArgExpr =
+ BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
+ if (ArgExpr.isInvalid())
+ return true;
+
+ Arg = ArgExpr.takeAs<Expr>();
+ }
+
+ // Check for array bounds violations for each argument to the call. This
+ // check only triggers warnings when the argument isn't a more complex Expr
+ // with its own checking, such as a BinaryOperator.
+ CheckArrayAccess(Arg);
+
+ // Check for violations of C99 static array rules (C99 6.7.5.3p7).
+ CheckStaticArrayArgument(CallLoc, Param, Arg);
+
+ AllArgs.push_back(Arg);
+ }
+
+ // If this is a variadic call, handle args passed through "...".
+ if (CallType != VariadicDoesNotApply) {
+
+ // Assume that extern "C" functions with variadic arguments that
+ // return __unknown_anytype aren't *really* variadic.
+ if (Proto->getResultType() == Context.UnknownAnyTy &&
+ FDecl && FDecl->isExternC()) {
+ for (unsigned i = ArgIx; i != NumArgs; ++i) {
+ ExprResult arg;
+ if (isa<ExplicitCastExpr>(Args[i]->IgnoreParens()))
+ arg = DefaultFunctionArrayLvalueConversion(Args[i]);
+ else
+ arg = DefaultVariadicArgumentPromotion(Args[i], CallType, FDecl);
+ Invalid |= arg.isInvalid();
+ AllArgs.push_back(arg.take());
+ }
+
+ // Otherwise do argument promotion, (C99 6.5.2.2p7).
+ } else {
+ for (unsigned i = ArgIx; i != NumArgs; ++i) {
+ ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], CallType,
+ FDecl);
+ Invalid |= Arg.isInvalid();
+ AllArgs.push_back(Arg.take());
+ }
+ }
+
+ // Check for array bounds violations.
+ for (unsigned i = ArgIx; i != NumArgs; ++i)
+ CheckArrayAccess(Args[i]);
+ }
+ return Invalid;
+}
+
+static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
+ TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
+ if (ArrayTypeLoc *ATL = dyn_cast<ArrayTypeLoc>(&TL))
+ S.Diag(PVD->getLocation(), diag::note_callee_static_array)
+ << ATL->getLocalSourceRange();
+}
+
+/// CheckStaticArrayArgument - If the given argument corresponds to a static
+/// array parameter, check that it is non-null, and that if it is formed by
+/// array-to-pointer decay, the underlying array is sufficiently large.
+///
+/// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
+/// array type derivation, then for each call to the function, the value of the
+/// corresponding actual argument shall provide access to the first element of
+/// an array with at least as many elements as specified by the size expression.
+void
+Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
+ ParmVarDecl *Param,
+ const Expr *ArgExpr) {
+ // Static array parameters are not supported in C++.
+ if (!Param || getLangOpts().CPlusPlus)
+ return;
+
+ QualType OrigTy = Param->getOriginalType();
+
+ const ArrayType *AT = Context.getAsArrayType(OrigTy);
+ if (!AT || AT->getSizeModifier() != ArrayType::Static)
+ return;
+
+ if (ArgExpr->isNullPointerConstant(Context,
+ Expr::NPC_NeverValueDependent)) {
+ Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
+ DiagnoseCalleeStaticArrayParam(*this, Param);
+ return;
+ }
+
+ const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
+ if (!CAT)
+ return;
+
+ const ConstantArrayType *ArgCAT =
+ Context.getAsConstantArrayType(ArgExpr->IgnoreParenImpCasts()->getType());
+ if (!ArgCAT)
+ return;
+
+ if (ArgCAT->getSize().ult(CAT->getSize())) {
+ Diag(CallLoc, diag::warn_static_array_too_small)
+ << ArgExpr->getSourceRange()
+ << (unsigned) ArgCAT->getSize().getZExtValue()
+ << (unsigned) CAT->getSize().getZExtValue();
+ DiagnoseCalleeStaticArrayParam(*this, Param);
+ }
+}
+
+/// Given a function expression of unknown-any type, try to rebuild it
+/// to have a function type.
+static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
+
+/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
+/// This provides the location of the left/right parens and a list of comma
+/// locations.
+ExprResult
+Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
+ MultiExprArg ArgExprs, SourceLocation RParenLoc,
+ Expr *ExecConfig, bool IsExecConfig) {
+ unsigned NumArgs = ArgExprs.size();
+
+ // Since this might be a postfix expression, get rid of ParenListExprs.
+ ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
+ if (Result.isInvalid()) return ExprError();
+ Fn = Result.take();
+
+ Expr **Args = ArgExprs.release();
+
+ if (getLangOpts().CPlusPlus) {
+ // If this is a pseudo-destructor expression, build the call immediately.
+ if (isa<CXXPseudoDestructorExpr>(Fn)) {
+ if (NumArgs > 0) {
+ // Pseudo-destructor calls should not have any arguments.
+ Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
+ << FixItHint::CreateRemoval(
+ SourceRange(Args[0]->getLocStart(),
+ Args[NumArgs-1]->getLocEnd()));
+ }
+
+ return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
+ VK_RValue, RParenLoc));
+ }
+
+ // Determine whether this is a dependent call inside a C++ template,
+ // in which case we won't do any semantic analysis now.
+ // FIXME: Will need to cache the results of name lookup (including ADL) in
+ // Fn.
+ bool Dependent = false;
+ if (Fn->isTypeDependent())
+ Dependent = true;
+ else if (Expr::hasAnyTypeDependentArguments(
+ llvm::makeArrayRef(Args, NumArgs)))
+ Dependent = true;
+
+ if (Dependent) {
+ if (ExecConfig) {
+ return Owned(new (Context) CUDAKernelCallExpr(
+ Context, Fn, cast<CallExpr>(ExecConfig), Args, NumArgs,
+ Context.DependentTy, VK_RValue, RParenLoc));
+ } else {
+ return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
+ Context.DependentTy, VK_RValue,
+ RParenLoc));
+ }
+ }
+
+ // Determine whether this is a call to an object (C++ [over.call.object]).
+ if (Fn->getType()->isRecordType())
+ return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
+ RParenLoc));
+
+ if (Fn->getType() == Context.UnknownAnyTy) {
+ ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
+ if (result.isInvalid()) return ExprError();
+ Fn = result.take();
+ }
+
+ if (Fn->getType() == Context.BoundMemberTy) {
+ return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
+ RParenLoc);
+ }
+ }
+
+ // Check for overloaded calls. This can happen even in C due to extensions.
+ if (Fn->getType() == Context.OverloadTy) {
+ OverloadExpr::FindResult find = OverloadExpr::find(Fn);
+
+ // We aren't supposed to apply this logic for if there's an '&' involved.
+ if (!find.HasFormOfMemberPointer) {
+ OverloadExpr *ovl = find.Expression;
+ if (isa<UnresolvedLookupExpr>(ovl)) {
+ UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(ovl);
+ return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, Args, NumArgs,
+ RParenLoc, ExecConfig);
+ } else {
+ return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
+ RParenLoc);
+ }
+ }
+ }
+
+ // If we're directly calling a function, get the appropriate declaration.
+ if (Fn->getType() == Context.UnknownAnyTy) {
+ ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
+ if (result.isInvalid()) return ExprError();
+ Fn = result.take();
+ }
+
+ Expr *NakedFn = Fn->IgnoreParens();
+
+ NamedDecl *NDecl = 0;
+ if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
+ if (UnOp->getOpcode() == UO_AddrOf)
+ NakedFn = UnOp->getSubExpr()->IgnoreParens();
+
+ if (isa<DeclRefExpr>(NakedFn))
+ NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
+ else if (isa<MemberExpr>(NakedFn))
+ NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
+
+ return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc,
+ ExecConfig, IsExecConfig);
+}
+
+ExprResult
+Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
+ MultiExprArg ExecConfig, SourceLocation GGGLoc) {
+ FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
+ if (!ConfigDecl)
+ return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
+ << "cudaConfigureCall");
+ QualType ConfigQTy = ConfigDecl->getType();
+
+ DeclRefExpr *ConfigDR = new (Context) DeclRefExpr(
+ ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc);
+ MarkFunctionReferenced(LLLLoc, ConfigDecl);
+
+ return ActOnCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, 0,
+ /*IsExecConfig=*/true);
+}
+
+/// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
+///
+/// __builtin_astype( value, dst type )
+///
+ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
+ SourceLocation BuiltinLoc,
+ SourceLocation RParenLoc) {
+ ExprValueKind VK = VK_RValue;
+ ExprObjectKind OK = OK_Ordinary;
+ QualType DstTy = GetTypeFromParser(ParsedDestTy);
+ QualType SrcTy = E->getType();
+ if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
+ return ExprError(Diag(BuiltinLoc,
+ diag::err_invalid_astype_of_different_size)
+ << DstTy
+ << SrcTy
+ << E->getSourceRange());
+ return Owned(new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc,
+ RParenLoc));
+}
+
+/// BuildResolvedCallExpr - Build a call to a resolved expression,
+/// i.e. an expression not of \p OverloadTy. The expression should
+/// unary-convert to an expression of function-pointer or
+/// block-pointer type.
+///
+/// \param NDecl the declaration being called, if available
+ExprResult
+Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
+ SourceLocation LParenLoc,
+ Expr **Args, unsigned NumArgs,
+ SourceLocation RParenLoc,
+ Expr *Config, bool IsExecConfig) {
+ FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
+
+ // Promote the function operand.
+ ExprResult Result = UsualUnaryConversions(Fn);
+ if (Result.isInvalid())
+ return ExprError();
+ Fn = Result.take();
+
+ // Make the call expr early, before semantic checks. This guarantees cleanup
+ // of arguments and function on error.
+ CallExpr *TheCall;
+ if (Config) {
+ TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
+ cast<CallExpr>(Config),
+ Args, NumArgs,
+ Context.BoolTy,
+ VK_RValue,
+ RParenLoc);
+ } else {
+ TheCall = new (Context) CallExpr(Context, Fn,
+ Args, NumArgs,
+ Context.BoolTy,
+ VK_RValue,
+ RParenLoc);
+ }
+
+ unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
+
+ // Bail out early if calling a builtin with custom typechecking.
+ if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
+ return CheckBuiltinFunctionCall(BuiltinID, TheCall);
+
+ retry:
+ const FunctionType *FuncT;
+ if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
+ // C99 6.5.2.2p1 - "The expression that denotes the called function shall
+ // have type pointer to function".
+ FuncT = PT->getPointeeType()->getAs<FunctionType>();
+ if (FuncT == 0)
+ return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
+ << Fn->getType() << Fn->getSourceRange());
+ } else if (const BlockPointerType *BPT =
+ Fn->getType()->getAs<BlockPointerType>()) {
+ FuncT = BPT->getPointeeType()->castAs<FunctionType>();
+ } else {
+ // Handle calls to expressions of unknown-any type.
+ if (Fn->getType() == Context.UnknownAnyTy) {
+ ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
+ if (rewrite.isInvalid()) return ExprError();
+ Fn = rewrite.take();
+ TheCall->setCallee(Fn);
+ goto retry;
+ }
+
+ return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
+ << Fn->getType() << Fn->getSourceRange());
+ }
+
+ if (getLangOpts().CUDA) {
+ if (Config) {
+ // CUDA: Kernel calls must be to global functions
+ if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
+ return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
+ << FDecl->getName() << Fn->getSourceRange());
+
+ // CUDA: Kernel function must have 'void' return type
+ if (!FuncT->getResultType()->isVoidType())
+ return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
+ << Fn->getType() << Fn->getSourceRange());
+ } else {
+ // CUDA: Calls to global functions must be configured
+ if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
+ return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
+ << FDecl->getName() << Fn->getSourceRange());
+ }
+ }
+
+ // Check for a valid return type
+ if (CheckCallReturnType(FuncT->getResultType(),
+ Fn->getLocStart(), TheCall,
+ FDecl))
+ return ExprError();
+
+ // We know the result type of the call, set it.
+ TheCall->setType(FuncT->getCallResultType(Context));
+ TheCall->setValueKind(Expr::getValueKindForType(FuncT->getResultType()));
+
+ if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
+ if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, NumArgs,
+ RParenLoc, IsExecConfig))
+ return ExprError();
+ } else {
+ assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
+
+ if (FDecl) {
+ // Check if we have too few/too many template arguments, based
+ // on our knowledge of the function definition.
+ const FunctionDecl *Def = 0;
+ if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) {
+ const FunctionProtoType *Proto
+ = Def->getType()->getAs<FunctionProtoType>();
+ if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size()))
+ Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
+ << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
+ }
+
+ // If the function we're calling isn't a function prototype, but we have
+ // a function prototype from a prior declaratiom, use that prototype.
+ if (!FDecl->hasPrototype())
+ Proto = FDecl->getType()->getAs<FunctionProtoType>();
+ }
+
+ // Promote the arguments (C99 6.5.2.2p6).
+ for (unsigned i = 0; i != NumArgs; i++) {
+ Expr *Arg = Args[i];
+
+ if (Proto && i < Proto->getNumArgs()) {
+ InitializedEntity Entity
+ = InitializedEntity::InitializeParameter(Context,
+ Proto->getArgType(i),
+ Proto->isArgConsumed(i));
+ ExprResult ArgE = PerformCopyInitialization(Entity,
+ SourceLocation(),
+ Owned(Arg));
+ if (ArgE.isInvalid())
+ return true;
+
+ Arg = ArgE.takeAs<Expr>();
+
+ } else {
+ ExprResult ArgE = DefaultArgumentPromotion(Arg);
+
+ if (ArgE.isInvalid())
+ return true;
+
+ Arg = ArgE.takeAs<Expr>();
+ }
+
+ if (RequireCompleteType(Arg->getLocStart(),
+ Arg->getType(),
+ PDiag(diag::err_call_incomplete_argument)
+ << Arg->getSourceRange()))
+ return ExprError();
+
+ TheCall->setArg(i, Arg);
+ }
+ }
+
+ if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
+ if (!Method->isStatic())
+ return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
+ << Fn->getSourceRange());
+
+ // Check for sentinels
+ if (NDecl)
+ DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
+
+ // Do special checking on direct calls to functions.
+ if (FDecl) {
+ if (CheckFunctionCall(FDecl, TheCall))
+ return ExprError();
+
+ if (BuiltinID)
+ return CheckBuiltinFunctionCall(BuiltinID, TheCall);
+ } else if (NDecl) {
+ if (CheckBlockCall(NDecl, TheCall))
+ return ExprError();
+ }
+
+ return MaybeBindToTemporary(TheCall);
+}
+
+ExprResult
+Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
+ SourceLocation RParenLoc, Expr *InitExpr) {
+ assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
+ // FIXME: put back this assert when initializers are worked out.
+ //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
+
+ TypeSourceInfo *TInfo;
+ QualType literalType = GetTypeFromParser(Ty, &TInfo);
+ if (!TInfo)
+ TInfo = Context.getTrivialTypeSourceInfo(literalType);
+
+ return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
+}
+
+ExprResult
+Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
+ SourceLocation RParenLoc, Expr *LiteralExpr) {
+ QualType literalType = TInfo->getType();
+
+ if (literalType->isArrayType()) {
+ if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
+ PDiag(diag::err_illegal_decl_array_incomplete_type)
+ << SourceRange(LParenLoc,
+ LiteralExpr->getSourceRange().getEnd())))
+ return ExprError();
+ if (literalType->isVariableArrayType())
+ return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
+ << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
+ } else if (!literalType->isDependentType() &&
+ RequireCompleteType(LParenLoc, literalType,
+ PDiag(diag::err_typecheck_decl_incomplete_type)
+ << SourceRange(LParenLoc,
+ LiteralExpr->getSourceRange().getEnd())))
+ return ExprError();
+
+ InitializedEntity Entity
+ = InitializedEntity::InitializeTemporary(literalType);
+ InitializationKind Kind
+ = InitializationKind::CreateCStyleCast(LParenLoc,
+ SourceRange(LParenLoc, RParenLoc),
+ /*InitList=*/true);
+ InitializationSequence InitSeq(*this, Entity, Kind, &LiteralExpr, 1);
+ ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
+ MultiExprArg(*this, &LiteralExpr, 1),
+ &literalType);
+ if (Result.isInvalid())
+ return ExprError();
+ LiteralExpr = Result.get();
+
+ bool isFileScope = getCurFunctionOrMethodDecl() == 0;
+ if (isFileScope) { // 6.5.2.5p3
+ if (CheckForConstantInitializer(LiteralExpr, literalType))
+ return ExprError();
+ }
+
+ // In C, compound literals are l-values for some reason.
+ ExprValueKind VK = getLangOpts().CPlusPlus ? VK_RValue : VK_LValue;
+
+ return MaybeBindToTemporary(
+ new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
+ VK, LiteralExpr, isFileScope));
+}
+
+ExprResult
+Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
+ SourceLocation RBraceLoc) {
+ unsigned NumInit = InitArgList.size();
+ Expr **InitList = InitArgList.release();
+
+ // Immediately handle non-overload placeholders. Overloads can be
+ // resolved contextually, but everything else here can't.
+ for (unsigned I = 0; I != NumInit; ++I) {
+ if (InitList[I]->getType()->isNonOverloadPlaceholderType()) {
+ ExprResult result = CheckPlaceholderExpr(InitList[I]);
+
+ // Ignore failures; dropping the entire initializer list because
+ // of one failure would be terrible for indexing/etc.
+ if (result.isInvalid()) continue;
+
+ InitList[I] = result.take();
+ }
+ }
+
+ // Semantic analysis for initializers is done by ActOnDeclarator() and
+ // CheckInitializer() - it requires knowledge of the object being intialized.
+
+ InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitList,
+ NumInit, RBraceLoc);
+ E->setType(Context.VoidTy); // FIXME: just a place holder for now.
+ return Owned(E);
+}
+
+/// Do an explicit extend of the given block pointer if we're in ARC.
+static void maybeExtendBlockObject(Sema &S, ExprResult &E) {
+ assert(E.get()->getType()->isBlockPointerType());
+ assert(E.get()->isRValue());
+
+ // Only do this in an r-value context.
+ if (!S.getLangOpts().ObjCAutoRefCount) return;
+
+ E = ImplicitCastExpr::Create(S.Context, E.get()->getType(),
+ CK_ARCExtendBlockObject, E.get(),
+ /*base path*/ 0, VK_RValue);
+ S.ExprNeedsCleanups = true;
+}
+
+/// Prepare a conversion of the given expression to an ObjC object
+/// pointer type.
+CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
+ QualType type = E.get()->getType();
+ if (type->isObjCObjectPointerType()) {
+ return CK_BitCast;
+ } else if (type->isBlockPointerType()) {
+ maybeExtendBlockObject(*this, E);
+ return CK_BlockPointerToObjCPointerCast;
+ } else {
+ assert(type->isPointerType());
+ return CK_CPointerToObjCPointerCast;
+ }
+}
+
+/// Prepares for a scalar cast, performing all the necessary stages
+/// except the final cast and returning the kind required.
+CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
+ // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
+ // Also, callers should have filtered out the invalid cases with
+ // pointers. Everything else should be possible.
+
+ QualType SrcTy = Src.get()->getType();
+ if (const AtomicType *SrcAtomicTy = SrcTy->getAs<AtomicType>())
+ SrcTy = SrcAtomicTy->getValueType();
+ if (const AtomicType *DestAtomicTy = DestTy->getAs<AtomicType>())
+ DestTy = DestAtomicTy->getValueType();
+
+ if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
+ return CK_NoOp;
+
+ switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
+ case Type::STK_MemberPointer:
+ llvm_unreachable("member pointer type in C");
+
+ case Type::STK_CPointer:
+ case Type::STK_BlockPointer:
+ case Type::STK_ObjCObjectPointer:
+ switch (DestTy->getScalarTypeKind()) {
+ case Type::STK_CPointer:
+ return CK_BitCast;
+ case Type::STK_BlockPointer:
+ return (SrcKind == Type::STK_BlockPointer
+ ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
+ case Type::STK_ObjCObjectPointer:
+ if (SrcKind == Type::STK_ObjCObjectPointer)
+ return CK_BitCast;
+ if (SrcKind == Type::STK_CPointer)
+ return CK_CPointerToObjCPointerCast;
+ maybeExtendBlockObject(*this, Src);
+ return CK_BlockPointerToObjCPointerCast;
+ case Type::STK_Bool:
+ return CK_PointerToBoolean;
+ case Type::STK_Integral:
+ return CK_PointerToIntegral;
+ case Type::STK_Floating:
+ case Type::STK_FloatingComplex:
+ case Type::STK_IntegralComplex:
+ case Type::STK_MemberPointer:
+ llvm_unreachable("illegal cast from pointer");
+ }
+ llvm_unreachable("Should have returned before this");
+
+ case Type::STK_Bool: // casting from bool is like casting from an integer
+ case Type::STK_Integral:
+ switch (DestTy->getScalarTypeKind()) {
+ case Type::STK_CPointer:
+ case Type::STK_ObjCObjectPointer:
+ case Type::STK_BlockPointer:
+ if (Src.get()->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNull))
+ return CK_NullToPointer;
+ return CK_IntegralToPointer;
+ case Type::STK_Bool:
+ return CK_IntegralToBoolean;
+ case Type::STK_Integral:
+ return CK_IntegralCast;
+ case Type::STK_Floating:
+ return CK_IntegralToFloating;
+ case Type::STK_IntegralComplex:
+ Src = ImpCastExprToType(Src.take(),
+ DestTy->castAs<ComplexType>()->getElementType(),
+ CK_IntegralCast);
+ return CK_IntegralRealToComplex;
+ case Type::STK_FloatingComplex:
+ Src = ImpCastExprToType(Src.take(),
+ DestTy->castAs<ComplexType>()->getElementType(),
+ CK_IntegralToFloating);
+ return CK_FloatingRealToComplex;
+ case Type::STK_MemberPointer:
+ llvm_unreachable("member pointer type in C");
+ }
+ llvm_unreachable("Should have returned before this");
+
+ case Type::STK_Floating:
+ switch (DestTy->getScalarTypeKind()) {
+ case Type::STK_Floating:
+ return CK_FloatingCast;
+ case Type::STK_Bool:
+ return CK_FloatingToBoolean;
+ case Type::STK_Integral:
+ return CK_FloatingToIntegral;
+ case Type::STK_FloatingComplex:
+ Src = ImpCastExprToType(Src.take(),
+ DestTy->castAs<ComplexType>()->getElementType(),
+ CK_FloatingCast);
+ return CK_FloatingRealToComplex;
+ case Type::STK_IntegralComplex:
+ Src = ImpCastExprToType(Src.take(),
+ DestTy->castAs<ComplexType>()->getElementType(),
+ CK_FloatingToIntegral);
+ return CK_IntegralRealToComplex;
+ case Type::STK_CPointer:
+ case Type::STK_ObjCObjectPointer:
+ case Type::STK_BlockPointer:
+ llvm_unreachable("valid float->pointer cast?");
+ case Type::STK_MemberPointer:
+ llvm_unreachable("member pointer type in C");
+ }
+ llvm_unreachable("Should have returned before this");
+
+ case Type::STK_FloatingComplex:
+ switch (DestTy->getScalarTypeKind()) {
+ case Type::STK_FloatingComplex:
+ return CK_FloatingComplexCast;
+ case Type::STK_IntegralComplex:
+ return CK_FloatingComplexToIntegralComplex;
+ case Type::STK_Floating: {
+ QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
+ if (Context.hasSameType(ET, DestTy))
+ return CK_FloatingComplexToReal;
+ Src = ImpCastExprToType(Src.take(), ET, CK_FloatingComplexToReal);
+ return CK_FloatingCast;
+ }
+ case Type::STK_Bool:
+ return CK_FloatingComplexToBoolean;
+ case Type::STK_Integral:
+ Src = ImpCastExprToType(Src.take(),
+ SrcTy->castAs<ComplexType>()->getElementType(),
+ CK_FloatingComplexToReal);
+ return CK_FloatingToIntegral;
+ case Type::STK_CPointer:
+ case Type::STK_ObjCObjectPointer:
+ case Type::STK_BlockPointer:
+ llvm_unreachable("valid complex float->pointer cast?");
+ case Type::STK_MemberPointer:
+ llvm_unreachable("member pointer type in C");
+ }
+ llvm_unreachable("Should have returned before this");
+
+ case Type::STK_IntegralComplex:
+ switch (DestTy->getScalarTypeKind()) {
+ case Type::STK_FloatingComplex:
+ return CK_IntegralComplexToFloatingComplex;
+ case Type::STK_IntegralComplex:
+ return CK_IntegralComplexCast;
+ case Type::STK_Integral: {
+ QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
+ if (Context.hasSameType(ET, DestTy))
+ return CK_IntegralComplexToReal;
+ Src = ImpCastExprToType(Src.take(), ET, CK_IntegralComplexToReal);
+ return CK_IntegralCast;
+ }
+ case Type::STK_Bool:
+ return CK_IntegralComplexToBoolean;
+ case Type::STK_Floating:
+ Src = ImpCastExprToType(Src.take(),
+ SrcTy->castAs<ComplexType>()->getElementType(),
+ CK_IntegralComplexToReal);
+ return CK_IntegralToFloating;
+ case Type::STK_CPointer:
+ case Type::STK_ObjCObjectPointer:
+ case Type::STK_BlockPointer:
+ llvm_unreachable("valid complex int->pointer cast?");
+ case Type::STK_MemberPointer:
+ llvm_unreachable("member pointer type in C");
+ }
+ llvm_unreachable("Should have returned before this");
+ }
+
+ llvm_unreachable("Unhandled scalar cast");
+}
+
+bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
+ CastKind &Kind) {
+ assert(VectorTy->isVectorType() && "Not a vector type!");
+
+ if (Ty->isVectorType() || Ty->isIntegerType()) {
+ if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
+ return Diag(R.getBegin(),
+ Ty->isVectorType() ?
+ diag::err_invalid_conversion_between_vectors :
+ diag::err_invalid_conversion_between_vector_and_integer)
+ << VectorTy << Ty << R;
+ } else
+ return Diag(R.getBegin(),
+ diag::err_invalid_conversion_between_vector_and_scalar)
+ << VectorTy << Ty << R;
+
+ Kind = CK_BitCast;
+ return false;
+}
+
+ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
+ Expr *CastExpr, CastKind &Kind) {
+ assert(DestTy->isExtVectorType() && "Not an extended vector type!");
+
+ QualType SrcTy = CastExpr->getType();
+
+ // If SrcTy is a VectorType, the total size must match to explicitly cast to
+ // an ExtVectorType.
+ // In OpenCL, casts between vectors of different types are not allowed.
+ // (See OpenCL 6.2).
+ if (SrcTy->isVectorType()) {
+ if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy)
+ || (getLangOpts().OpenCL &&
+ (DestTy.getCanonicalType() != SrcTy.getCanonicalType()))) {
+ Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
+ << DestTy << SrcTy << R;
+ return ExprError();
+ }
+ Kind = CK_BitCast;
+ return Owned(CastExpr);
+ }
+
+ // All non-pointer scalars can be cast to ExtVector type. The appropriate
+ // conversion will take place first from scalar to elt type, and then
+ // splat from elt type to vector.
+ if (SrcTy->isPointerType())
+ return Diag(R.getBegin(),
+ diag::err_invalid_conversion_between_vector_and_scalar)
+ << DestTy << SrcTy << R;
+
+ QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
+ ExprResult CastExprRes = Owned(CastExpr);
+ CastKind CK = PrepareScalarCast(CastExprRes, DestElemTy);
+ if (CastExprRes.isInvalid())
+ return ExprError();
+ CastExpr = ImpCastExprToType(CastExprRes.take(), DestElemTy, CK).take();
+
+ Kind = CK_VectorSplat;
+ return Owned(CastExpr);
+}
+
+ExprResult
+Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
+ Declarator &D, ParsedType &Ty,
+ SourceLocation RParenLoc, Expr *CastExpr) {
+ assert(!D.isInvalidType() && (CastExpr != 0) &&
+ "ActOnCastExpr(): missing type or expr");
+
+ TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
+ if (D.isInvalidType())
+ return ExprError();
+
+ if (getLangOpts().CPlusPlus) {
+ // Check that there are no default arguments (C++ only).
+ CheckExtraCXXDefaultArguments(D);
+ }
+
+ checkUnusedDeclAttributes(D);
+
+ QualType castType = castTInfo->getType();
+ Ty = CreateParsedType(castType, castTInfo);
+
+ bool isVectorLiteral = false;
+
+ // Check for an altivec or OpenCL literal,
+ // i.e. all the elements are integer constants.
+ ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
+ ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
+ if ((getLangOpts().AltiVec || getLangOpts().OpenCL)
+ && castType->isVectorType() && (PE || PLE)) {
+ if (PLE && PLE->getNumExprs() == 0) {
+ Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
+ return ExprError();
+ }
+ if (PE || PLE->getNumExprs() == 1) {
+ Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
+ if (!E->getType()->isVectorType())
+ isVectorLiteral = true;
+ }
+ else
+ isVectorLiteral = true;
+ }
+
+ // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
+ // then handle it as such.
+ if (isVectorLiteral)
+ return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
+
+ // If the Expr being casted is a ParenListExpr, handle it specially.
+ // This is not an AltiVec-style cast, so turn the ParenListExpr into a
+ // sequence of BinOp comma operators.
+ if (isa<ParenListExpr>(CastExpr)) {
+ ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
+ if (Result.isInvalid()) return ExprError();
+ CastExpr = Result.take();
+ }
+
+ return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
+}
+
+ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
+ SourceLocation RParenLoc, Expr *E,
+ TypeSourceInfo *TInfo) {
+ assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
+ "Expected paren or paren list expression");
+
+ Expr **exprs;
+ unsigned numExprs;
+ Expr *subExpr;
+ if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
+ exprs = PE->getExprs();
+ numExprs = PE->getNumExprs();
+ } else {
+ subExpr = cast<ParenExpr>(E)->getSubExpr();
+ exprs = &subExpr;
+ numExprs = 1;
+ }
+
+ QualType Ty = TInfo->getType();
+ assert(Ty->isVectorType() && "Expected vector type");
+
+ SmallVector<Expr *, 8> initExprs;
+ const VectorType *VTy = Ty->getAs<VectorType>();
+ unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
+
+ // '(...)' form of vector initialization in AltiVec: the number of
+ // initializers must be one or must match the size of the vector.
+ // If a single value is specified in the initializer then it will be
+ // replicated to all the components of the vector
+ if (VTy->getVectorKind() == VectorType::AltiVecVector) {
+ // The number of initializers must be one or must match the size of the
+ // vector. If a single value is specified in the initializer then it will
+ // be replicated to all the components of the vector
+ if (numExprs == 1) {
+ QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
+ ExprResult Literal = DefaultLvalueConversion(exprs[0]);
+ if (Literal.isInvalid())
+ return ExprError();
+ Literal = ImpCastExprToType(Literal.take(), ElemTy,
+ PrepareScalarCast(Literal, ElemTy));
+ return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
+ }
+ else if (numExprs < numElems) {
+ Diag(E->getExprLoc(),
+ diag::err_incorrect_number_of_vector_initializers);
+ return ExprError();
+ }
+ else
+ initExprs.append(exprs, exprs + numExprs);
+ }
+ else {
+ // For OpenCL, when the number of initializers is a single value,
+ // it will be replicated to all components of the vector.
+ if (getLangOpts().OpenCL &&
+ VTy->getVectorKind() == VectorType::GenericVector &&
+ numExprs == 1) {
+ QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
+ ExprResult Literal = DefaultLvalueConversion(exprs[0]);
+ if (Literal.isInvalid())
+ return ExprError();
+ Literal = ImpCastExprToType(Literal.take(), ElemTy,
+ PrepareScalarCast(Literal, ElemTy));
+ return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
+ }
+
+ initExprs.append(exprs, exprs + numExprs);
+ }
+ // FIXME: This means that pretty-printing the final AST will produce curly
+ // braces instead of the original commas.
+ InitListExpr *initE = new (Context) InitListExpr(Context, LParenLoc,
+ &initExprs[0],
+ initExprs.size(), RParenLoc);
+ initE->setType(Ty);
+ return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
+}
+
+/// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
+/// the ParenListExpr into a sequence of comma binary operators.
+ExprResult
+Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
+ ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
+ if (!E)
+ return Owned(OrigExpr);
+
+ ExprResult Result(E->getExpr(0));
+
+ for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
+ Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
+ E->getExpr(i));
+
+ if (Result.isInvalid()) return ExprError();
+
+ return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
+}
+
+ExprResult Sema::ActOnParenListExpr(SourceLocation L,
+ SourceLocation R,
+ MultiExprArg Val) {
+ unsigned nexprs = Val.size();
+ Expr **exprs = reinterpret_cast<Expr**>(Val.release());
+ assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list");
+ Expr *expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R);
+ return Owned(expr);
+}
+
+/// \brief Emit a specialized diagnostic when one expression is a null pointer
+/// constant and the other is not a pointer. Returns true if a diagnostic is
+/// emitted.
+bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
+ SourceLocation QuestionLoc) {
+ Expr *NullExpr = LHSExpr;
+ Expr *NonPointerExpr = RHSExpr;
+ Expr::NullPointerConstantKind NullKind =
+ NullExpr->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNotNull);
+
+ if (NullKind == Expr::NPCK_NotNull) {
+ NullExpr = RHSExpr;
+ NonPointerExpr = LHSExpr;
+ NullKind =
+ NullExpr->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNotNull);
+ }
+
+ if (NullKind == Expr::NPCK_NotNull)
+ return false;
+
+ if (NullKind == Expr::NPCK_ZeroInteger) {
+ // In this case, check to make sure that we got here from a "NULL"
+ // string in the source code.
+ NullExpr = NullExpr->IgnoreParenImpCasts();
+ SourceLocation loc = NullExpr->getExprLoc();
+ if (!findMacroSpelling(loc, "NULL"))
+ return false;
+ }
+
+ int DiagType = (NullKind == Expr::NPCK_CXX0X_nullptr);
+ Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
+ << NonPointerExpr->getType() << DiagType
+ << NonPointerExpr->getSourceRange();
+ return true;
+}
+
+/// \brief Return false if the condition expression is valid, true otherwise.
+static bool checkCondition(Sema &S, Expr *Cond) {
+ QualType CondTy = Cond->getType();
+
+ // C99 6.5.15p2
+ if (CondTy->isScalarType()) return false;
+
+ // OpenCL: Sec 6.3.i says the condition is allowed to be a vector or scalar.
+ if (S.getLangOpts().OpenCL && CondTy->isVectorType())
+ return false;
+
+ // Emit the proper error message.
+ S.Diag(Cond->getLocStart(), S.getLangOpts().OpenCL ?
+ diag::err_typecheck_cond_expect_scalar :
+ diag::err_typecheck_cond_expect_scalar_or_vector)
+ << CondTy;
+ return true;
+}
+
+/// \brief Return false if the two expressions can be converted to a vector,
+/// true otherwise
+static bool checkConditionalConvertScalarsToVectors(Sema &S, ExprResult &LHS,
+ ExprResult &RHS,
+ QualType CondTy) {
+ // Both operands should be of scalar type.
+ if (!LHS.get()->getType()->isScalarType()) {
+ S.Diag(LHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
+ << CondTy;
+ return true;
+ }
+ if (!RHS.get()->getType()->isScalarType()) {
+ S.Diag(RHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
+ << CondTy;
+ return true;
+ }
+
+ // Implicity convert these scalars to the type of the condition.
+ LHS = S.ImpCastExprToType(LHS.take(), CondTy, CK_IntegralCast);
+ RHS = S.ImpCastExprToType(RHS.take(), CondTy, CK_IntegralCast);
+ return false;
+}
+
+/// \brief Handle when one or both operands are void type.
+static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
+ ExprResult &RHS) {
+ Expr *LHSExpr = LHS.get();
+ Expr *RHSExpr = RHS.get();
+
+ if (!LHSExpr->getType()->isVoidType())
+ S.Diag(RHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
+ << RHSExpr->getSourceRange();
+ if (!RHSExpr->getType()->isVoidType())
+ S.Diag(LHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
+ << LHSExpr->getSourceRange();
+ LHS = S.ImpCastExprToType(LHS.take(), S.Context.VoidTy, CK_ToVoid);
+ RHS = S.ImpCastExprToType(RHS.take(), S.Context.VoidTy, CK_ToVoid);
+ return S.Context.VoidTy;
+}
+
+/// \brief Return false if the NullExpr can be promoted to PointerTy,
+/// true otherwise.
+static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
+ QualType PointerTy) {
+ if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
+ !NullExpr.get()->isNullPointerConstant(S.Context,
+ Expr::NPC_ValueDependentIsNull))
+ return true;
+
+ NullExpr = S.ImpCastExprToType(NullExpr.take(), PointerTy, CK_NullToPointer);
+ return false;
+}
+
+/// \brief Checks compatibility between two pointers and return the resulting
+/// type.
+static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
+ ExprResult &RHS,
+ SourceLocation Loc) {
+ QualType LHSTy = LHS.get()->getType();
+ QualType RHSTy = RHS.get()->getType();
+
+ if (S.Context.hasSameType(LHSTy, RHSTy)) {
+ // Two identical pointers types are always compatible.
+ return LHSTy;
+ }
+
+ QualType lhptee, rhptee;
+
+ // Get the pointee types.
+ if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
+ lhptee = LHSBTy->getPointeeType();
+ rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
+ } else {
+ lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
+ rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
+ }
+
+ // C99 6.5.15p6: If both operands are pointers to compatible types or to
+ // differently qualified versions of compatible types, the result type is
+ // a pointer to an appropriately qualified version of the composite
+ // type.
+
+ // Only CVR-qualifiers exist in the standard, and the differently-qualified
+ // clause doesn't make sense for our extensions. E.g. address space 2 should
+ // be incompatible with address space 3: they may live on different devices or
+ // anything.
+ Qualifiers lhQual = lhptee.getQualifiers();
+ Qualifiers rhQual = rhptee.getQualifiers();
+
+ unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
+ lhQual.removeCVRQualifiers();
+ rhQual.removeCVRQualifiers();
+
+ lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
+ rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
+
+ QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
+
+ if (CompositeTy.isNull()) {
+ S.Diag(Loc, diag::warn_typecheck_cond_incompatible_pointers)
+ << LHSTy << RHSTy << LHS.get()->getSourceRange()
+ << RHS.get()->getSourceRange();
+ // In this situation, we assume void* type. No especially good
+ // reason, but this is what gcc does, and we do have to pick
+ // to get a consistent AST.
+ QualType incompatTy = S.Context.getPointerType(S.Context.VoidTy);
+ LHS = S.ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
+ RHS = S.ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
+ return incompatTy;
+ }
+
+ // The pointer types are compatible.
+ QualType ResultTy = CompositeTy.withCVRQualifiers(MergedCVRQual);
+ ResultTy = S.Context.getPointerType(ResultTy);
+
+ LHS = S.ImpCastExprToType(LHS.take(), ResultTy, CK_BitCast);
+ RHS = S.ImpCastExprToType(RHS.take(), ResultTy, CK_BitCast);
+ return ResultTy;
+}
+
+/// \brief Return the resulting type when the operands are both block pointers.
+static QualType checkConditionalBlockPointerCompatibility(Sema &S,
+ ExprResult &LHS,
+ ExprResult &RHS,
+ SourceLocation Loc) {
+ QualType LHSTy = LHS.get()->getType();
+ QualType RHSTy = RHS.get()->getType();
+
+ if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
+ if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
+ QualType destType = S.Context.getPointerType(S.Context.VoidTy);
+ LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
+ RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
+ return destType;
+ }
+ S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
+ << LHSTy << RHSTy << LHS.get()->getSourceRange()
+ << RHS.get()->getSourceRange();
+ return QualType();
+ }
+
+ // We have 2 block pointer types.
+ return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
+}
+
+/// \brief Return the resulting type when the operands are both pointers.
+static QualType
+checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
+ ExprResult &RHS,
+ SourceLocation Loc) {
+ // get the pointer types
+ QualType LHSTy = LHS.get()->getType();
+ QualType RHSTy = RHS.get()->getType();
+
+ // get the "pointed to" types
+ QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
+ QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
+
+ // ignore qualifiers on void (C99 6.5.15p3, clause 6)
+ if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
+ // Figure out necessary qualifiers (C99 6.5.15p6)
+ QualType destPointee
+ = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
+ QualType destType = S.Context.getPointerType(destPointee);
+ // Add qualifiers if necessary.
+ LHS = S.ImpCastExprToType(LHS.take(), destType, CK_NoOp);
+ // Promote to void*.
+ RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
+ return destType;
+ }
+ if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
+ QualType destPointee
+ = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
+ QualType destType = S.Context.getPointerType(destPointee);
+ // Add qualifiers if necessary.
+ RHS = S.ImpCastExprToType(RHS.take(), destType, CK_NoOp);
+ // Promote to void*.
+ LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
+ return destType;
+ }
+
+ return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
+}
+
+/// \brief Return false if the first expression is not an integer and the second
+/// expression is not a pointer, true otherwise.
+static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
+ Expr* PointerExpr, SourceLocation Loc,
+ bool IsIntFirstExpr) {
+ if (!PointerExpr->getType()->isPointerType() ||
+ !Int.get()->getType()->isIntegerType())
+ return false;
+
+ Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
+ Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
+
+ S.Diag(Loc, diag::warn_typecheck_cond_pointer_integer_mismatch)
+ << Expr1->getType() << Expr2->getType()
+ << Expr1->getSourceRange() << Expr2->getSourceRange();
+ Int = S.ImpCastExprToType(Int.take(), PointerExpr->getType(),
+ CK_IntegralToPointer);
+ return true;
+}
+
+/// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
+/// In that case, LHS = cond.
+/// C99 6.5.15
+QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
+ ExprResult &RHS, ExprValueKind &VK,
+ ExprObjectKind &OK,
+ SourceLocation QuestionLoc) {
+
+ ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
+ if (!LHSResult.isUsable()) return QualType();
+ LHS = move(LHSResult);
+
+ ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
+ if (!RHSResult.isUsable()) return QualType();
+ RHS = move(RHSResult);
+
+ // C++ is sufficiently different to merit its own checker.
+ if (getLangOpts().CPlusPlus)
+ return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
+
+ VK = VK_RValue;
+ OK = OK_Ordinary;
+
+ Cond = UsualUnaryConversions(Cond.take());
+ if (Cond.isInvalid())
+ return QualType();
+ LHS = UsualUnaryConversions(LHS.take());
+ if (LHS.isInvalid())
+ return QualType();
+ RHS = UsualUnaryConversions(RHS.take());
+ if (RHS.isInvalid())
+ return QualType();
+
+ QualType CondTy = Cond.get()->getType();
+ QualType LHSTy = LHS.get()->getType();
+ QualType RHSTy = RHS.get()->getType();
+
+ // first, check the condition.
+ if (checkCondition(*this, Cond.get()))
+ return QualType();
+
+ // Now check the two expressions.
+ if (LHSTy->isVectorType() || RHSTy->isVectorType())
+ return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
+
+ // OpenCL: If the condition is a vector, and both operands are scalar,
+ // attempt to implicity convert them to the vector type to act like the
+ // built in select.
+ if (getLangOpts().OpenCL && CondTy->isVectorType())
+ if (checkConditionalConvertScalarsToVectors(*this, LHS, RHS, CondTy))
+ return QualType();
+
+ // If both operands have arithmetic type, do the usual arithmetic conversions
+ // to find a common type: C99 6.5.15p3,5.
+ if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
+ UsualArithmeticConversions(LHS, RHS);
+ if (LHS.isInvalid() || RHS.isInvalid())
+ return QualType();
+ return LHS.get()->getType();
+ }
+
+ // If both operands are the same structure or union type, the result is that
+ // type.
+ if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3
+ if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
+ if (LHSRT->getDecl() == RHSRT->getDecl())
+ // "If both the operands have structure or union type, the result has
+ // that type." This implies that CV qualifiers are dropped.
+ return LHSTy.getUnqualifiedType();
+ // FIXME: Type of conditional expression must be complete in C mode.
+ }
+
+ // C99 6.5.15p5: "If both operands have void type, the result has void type."
+ // The following || allows only one side to be void (a GCC-ism).
+ if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
+ return checkConditionalVoidType(*this, LHS, RHS);
+ }
+
+ // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
+ // the type of the other operand."
+ if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
+ if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
+
+ // All objective-c pointer type analysis is done here.
+ QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
+ QuestionLoc);
+ if (LHS.isInvalid() || RHS.isInvalid())
+ return QualType();
+ if (!compositeType.isNull())
+ return compositeType;
+
+
+ // Handle block pointer types.
+ if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
+ return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
+ QuestionLoc);
+
+ // Check constraints for C object pointers types (C99 6.5.15p3,6).
+ if (LHSTy->isPointerType() && RHSTy->isPointerType())
+ return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
+ QuestionLoc);
+
+ // GCC compatibility: soften pointer/integer mismatch. Note that
+ // null pointers have been filtered out by this point.
+ if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
+ /*isIntFirstExpr=*/true))
+ return RHSTy;
+ if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
+ /*isIntFirstExpr=*/false))
+ return LHSTy;
+
+ // Emit a better diagnostic if one of the expressions is a null pointer
+ // constant and the other is not a pointer type. In this case, the user most
+ // likely forgot to take the address of the other expression.
+ if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
+ return QualType();
+
+ // Otherwise, the operands are not compatible.
+ Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
+ << LHSTy << RHSTy << LHS.get()->getSourceRange()
+ << RHS.get()->getSourceRange();
+ return QualType();
+}
+
+/// FindCompositeObjCPointerType - Helper method to find composite type of
+/// two objective-c pointer types of the two input expressions.
+QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
+ SourceLocation QuestionLoc) {
+ QualType LHSTy = LHS.get()->getType();
+ QualType RHSTy = RHS.get()->getType();
+
+ // Handle things like Class and struct objc_class*. Here we case the result
+ // to the pseudo-builtin, because that will be implicitly cast back to the
+ // redefinition type if an attempt is made to access its fields.
+ if (LHSTy->isObjCClassType() &&
+ (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
+ RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
+ return LHSTy;
+ }
+ if (RHSTy->isObjCClassType() &&
+ (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
+ LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
+ return RHSTy;
+ }
+ // And the same for struct objc_object* / id
+ if (LHSTy->isObjCIdType() &&
+ (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
+ RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
+ return LHSTy;
+ }
+ if (RHSTy->isObjCIdType() &&
+ (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
+ LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
+ return RHSTy;
+ }
+ // And the same for struct objc_selector* / SEL
+ if (Context.isObjCSelType(LHSTy) &&
+ (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
+ RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
+ return LHSTy;
+ }
+ if (Context.isObjCSelType(RHSTy) &&
+ (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
+ LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
+ return RHSTy;
+ }
+ // Check constraints for Objective-C object pointers types.
+ if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
+
+ if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
+ // Two identical object pointer types are always compatible.
+ return LHSTy;
+ }
+ const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
+ const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
+ QualType compositeType = LHSTy;
+
+ // If both operands are interfaces and either operand can be
+ // assigned to the other, use that type as the composite
+ // type. This allows
+ // xxx ? (A*) a : (B*) b
+ // where B is a subclass of A.
+ //
+ // Additionally, as for assignment, if either type is 'id'
+ // allow silent coercion. Finally, if the types are
+ // incompatible then make sure to use 'id' as the composite
+ // type so the result is acceptable for sending messages to.
+
+ // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
+ // It could return the composite type.
+ if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
+ compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
+ } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
+ compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
+ } else if ((LHSTy->isObjCQualifiedIdType() ||
+ RHSTy->isObjCQualifiedIdType()) &&
+ Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
+ // Need to handle "id<xx>" explicitly.
+ // GCC allows qualified id and any Objective-C type to devolve to
+ // id. Currently localizing to here until clear this should be
+ // part of ObjCQualifiedIdTypesAreCompatible.
+ compositeType = Context.getObjCIdType();
+ } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
+ compositeType = Context.getObjCIdType();
+ } else if (!(compositeType =
+ Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
+ ;
+ else {
+ Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
+ << LHSTy << RHSTy
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ QualType incompatTy = Context.getObjCIdType();
+ LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
+ RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
+ return incompatTy;
+ }
+ // The object pointer types are compatible.
+ LHS = ImpCastExprToType(LHS.take(), compositeType, CK_BitCast);
+ RHS = ImpCastExprToType(RHS.take(), compositeType, CK_BitCast);
+ return compositeType;
+ }
+ // Check Objective-C object pointer types and 'void *'
+ if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
+ if (getLangOpts().ObjCAutoRefCount) {
+ // ARC forbids the implicit conversion of object pointers to 'void *',
+ // so these types are not compatible.
+ Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ LHS = RHS = true;
+ return QualType();
+ }
+ QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
+ QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
+ QualType destPointee
+ = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
+ QualType destType = Context.getPointerType(destPointee);
+ // Add qualifiers if necessary.
+ LHS = ImpCastExprToType(LHS.take(), destType, CK_NoOp);
+ // Promote to void*.
+ RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
+ return destType;
+ }
+ if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
+ if (getLangOpts().ObjCAutoRefCount) {
+ // ARC forbids the implicit conversion of object pointers to 'void *',
+ // so these types are not compatible.
+ Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ LHS = RHS = true;
+ return QualType();
+ }
+ QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
+ QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
+ QualType destPointee
+ = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
+ QualType destType = Context.getPointerType(destPointee);
+ // Add qualifiers if necessary.
+ RHS = ImpCastExprToType(RHS.take(), destType, CK_NoOp);
+ // Promote to void*.
+ LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
+ return destType;
+ }
+ return QualType();
+}
+
+/// SuggestParentheses - Emit a note with a fixit hint that wraps
+/// ParenRange in parentheses.
+static void SuggestParentheses(Sema &Self, SourceLocation Loc,
+ const PartialDiagnostic &Note,
+ SourceRange ParenRange) {
+ SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
+ if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
+ EndLoc.isValid()) {
+ Self.Diag(Loc, Note)
+ << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
+ << FixItHint::CreateInsertion(EndLoc, ")");
+ } else {
+ // We can't display the parentheses, so just show the bare note.
+ Self.Diag(Loc, Note) << ParenRange;
+ }
+}
+
+static bool IsArithmeticOp(BinaryOperatorKind Opc) {
+ return Opc >= BO_Mul && Opc <= BO_Shr;
+}
+
+/// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
+/// expression, either using a built-in or overloaded operator,
+/// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
+/// expression.
+static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
+ Expr **RHSExprs) {
+ // Don't strip parenthesis: we should not warn if E is in parenthesis.
+ E = E->IgnoreImpCasts();
+ E = E->IgnoreConversionOperator();
+ E = E->IgnoreImpCasts();
+
+ // Built-in binary operator.
+ if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
+ if (IsArithmeticOp(OP->getOpcode())) {
+ *Opcode = OP->getOpcode();
+ *RHSExprs = OP->getRHS();
+ return true;
+ }
+ }
+
+ // Overloaded operator.
+ if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
+ if (Call->getNumArgs() != 2)
+ return false;
+
+ // Make sure this is really a binary operator that is safe to pass into
+ // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
+ OverloadedOperatorKind OO = Call->getOperator();
+ if (OO < OO_Plus || OO > OO_Arrow)
+ return false;
+
+ BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
+ if (IsArithmeticOp(OpKind)) {
+ *Opcode = OpKind;
+ *RHSExprs = Call->getArg(1);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+static bool IsLogicOp(BinaryOperatorKind Opc) {
+ return (Opc >= BO_LT && Opc <= BO_NE) || (Opc >= BO_LAnd && Opc <= BO_LOr);
+}
+
+/// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
+/// or is a logical expression such as (x==y) which has int type, but is
+/// commonly interpreted as boolean.
+static bool ExprLooksBoolean(Expr *E) {
+ E = E->IgnoreParenImpCasts();
+
+ if (E->getType()->isBooleanType())
+ return true;
+ if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
+ return IsLogicOp(OP->getOpcode());
+ if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
+ return OP->getOpcode() == UO_LNot;
+
+ return false;
+}
+
+/// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
+/// and binary operator are mixed in a way that suggests the programmer assumed
+/// the conditional operator has higher precedence, for example:
+/// "int x = a + someBinaryCondition ? 1 : 2".
+static void DiagnoseConditionalPrecedence(Sema &Self,
+ SourceLocation OpLoc,
+ Expr *Condition,
+ Expr *LHSExpr,
+ Expr *RHSExpr) {
+ BinaryOperatorKind CondOpcode;
+ Expr *CondRHS;
+
+ if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
+ return;
+ if (!ExprLooksBoolean(CondRHS))
+ return;
+
+ // The condition is an arithmetic binary expression, with a right-
+ // hand side that looks boolean, so warn.
+
+ Self.Diag(OpLoc, diag::warn_precedence_conditional)
+ << Condition->getSourceRange()
+ << BinaryOperator::getOpcodeStr(CondOpcode);
+
+ SuggestParentheses(Self, OpLoc,
+ Self.PDiag(diag::note_precedence_conditional_silence)
+ << BinaryOperator::getOpcodeStr(CondOpcode),
+ SourceRange(Condition->getLocStart(), Condition->getLocEnd()));
+
+ SuggestParentheses(Self, OpLoc,
+ Self.PDiag(diag::note_precedence_conditional_first),
+ SourceRange(CondRHS->getLocStart(), RHSExpr->getLocEnd()));
+}
+
+/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
+/// in the case of a the GNU conditional expr extension.
+ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
+ SourceLocation ColonLoc,
+ Expr *CondExpr, Expr *LHSExpr,
+ Expr *RHSExpr) {
+ // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
+ // was the condition.
+ OpaqueValueExpr *opaqueValue = 0;
+ Expr *commonExpr = 0;
+ if (LHSExpr == 0) {
+ commonExpr = CondExpr;
+
+ // We usually want to apply unary conversions *before* saving, except
+ // in the special case of a C++ l-value conditional.
+ if (!(getLangOpts().CPlusPlus
+ && !commonExpr->isTypeDependent()
+ && commonExpr->getValueKind() == RHSExpr->getValueKind()
+ && commonExpr->isGLValue()
+ && commonExpr->isOrdinaryOrBitFieldObject()
+ && RHSExpr->isOrdinaryOrBitFieldObject()
+ && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
+ ExprResult commonRes = UsualUnaryConversions(commonExpr);
+ if (commonRes.isInvalid())
+ return ExprError();
+ commonExpr = commonRes.take();
+ }
+
+ opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
+ commonExpr->getType(),
+ commonExpr->getValueKind(),
+ commonExpr->getObjectKind(),
+ commonExpr);
+ LHSExpr = CondExpr = opaqueValue;
+ }
+
+ ExprValueKind VK = VK_RValue;
+ ExprObjectKind OK = OK_Ordinary;
+ ExprResult Cond = Owned(CondExpr), LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
+ QualType result = CheckConditionalOperands(Cond, LHS, RHS,
+ VK, OK, QuestionLoc);
+ if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
+ RHS.isInvalid())
+ return ExprError();
+
+ DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
+ RHS.get());
+
+ if (!commonExpr)
+ return Owned(new (Context) ConditionalOperator(Cond.take(), QuestionLoc,
+ LHS.take(), ColonLoc,
+ RHS.take(), result, VK, OK));
+
+ return Owned(new (Context)
+ BinaryConditionalOperator(commonExpr, opaqueValue, Cond.take(), LHS.take(),
+ RHS.take(), QuestionLoc, ColonLoc, result, VK,
+ OK));
+}
+
+// checkPointerTypesForAssignment - This is a very tricky routine (despite
+// being closely modeled after the C99 spec:-). The odd characteristic of this
+// routine is it effectively iqnores the qualifiers on the top level pointee.
+// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
+// FIXME: add a couple examples in this comment.
+static Sema::AssignConvertType
+checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
+ assert(LHSType.isCanonical() && "LHS not canonicalized!");
+ assert(RHSType.isCanonical() && "RHS not canonicalized!");
+
+ // get the "pointed to" type (ignoring qualifiers at the top level)
+ const Type *lhptee, *rhptee;
+ Qualifiers lhq, rhq;
+ llvm::tie(lhptee, lhq) = cast<PointerType>(LHSType)->getPointeeType().split();
+ llvm::tie(rhptee, rhq) = cast<PointerType>(RHSType)->getPointeeType().split();
+
+ Sema::AssignConvertType ConvTy = Sema::Compatible;
+
+ // C99 6.5.16.1p1: This following citation is common to constraints
+ // 3 & 4 (below). ...and the type *pointed to* by the left has all the
+ // qualifiers of the type *pointed to* by the right;
+ Qualifiers lq;
+
+ // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
+ if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
+ lhq.compatiblyIncludesObjCLifetime(rhq)) {
+ // Ignore lifetime for further calculation.
+ lhq.removeObjCLifetime();
+ rhq.removeObjCLifetime();
+ }
+
+ if (!lhq.compatiblyIncludes(rhq)) {
+ // Treat address-space mismatches as fatal. TODO: address subspaces
+ if (lhq.getAddressSpace() != rhq.getAddressSpace())
+ ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
+
+ // It's okay to add or remove GC or lifetime qualifiers when converting to
+ // and from void*.
+ else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
+ .compatiblyIncludes(
+ rhq.withoutObjCGCAttr().withoutObjCLifetime())
+ && (lhptee->isVoidType() || rhptee->isVoidType()))
+ ; // keep old
+
+ // Treat lifetime mismatches as fatal.
+ else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
+ ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
+
+ // For GCC compatibility, other qualifier mismatches are treated
+ // as still compatible in C.
+ else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
+ }
+
+ // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
+ // incomplete type and the other is a pointer to a qualified or unqualified
+ // version of void...
+ if (lhptee->isVoidType()) {
+ if (rhptee->isIncompleteOrObjectType())
+ return ConvTy;
+
+ // As an extension, we allow cast to/from void* to function pointer.
+ assert(rhptee->isFunctionType());
+ return Sema::FunctionVoidPointer;
+ }
+
+ if (rhptee->isVoidType()) {
+ if (lhptee->isIncompleteOrObjectType())
+ return ConvTy;
+
+ // As an extension, we allow cast to/from void* to function pointer.
+ assert(lhptee->isFunctionType());
+ return Sema::FunctionVoidPointer;
+ }
+
+ // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
+ // unqualified versions of compatible types, ...
+ QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
+ if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
+ // Check if the pointee types are compatible ignoring the sign.
+ // We explicitly check for char so that we catch "char" vs
+ // "unsigned char" on systems where "char" is unsigned.
+ if (lhptee->isCharType())
+ ltrans = S.Context.UnsignedCharTy;
+ else if (lhptee->hasSignedIntegerRepresentation())
+ ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
+
+ if (rhptee->isCharType())
+ rtrans = S.Context.UnsignedCharTy;
+ else if (rhptee->hasSignedIntegerRepresentation())
+ rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
+
+ if (ltrans == rtrans) {
+ // Types are compatible ignoring the sign. Qualifier incompatibility
+ // takes priority over sign incompatibility because the sign
+ // warning can be disabled.
+ if (ConvTy != Sema::Compatible)
+ return ConvTy;
+
+ return Sema::IncompatiblePointerSign;
+ }
+
+ // If we are a multi-level pointer, it's possible that our issue is simply
+ // one of qualification - e.g. char ** -> const char ** is not allowed. If
+ // the eventual target type is the same and the pointers have the same
+ // level of indirection, this must be the issue.
+ if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
+ do {
+ lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
+ rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
+ } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
+
+ if (lhptee == rhptee)
+ return Sema::IncompatibleNestedPointerQualifiers;
+ }
+
+ // General pointer incompatibility takes priority over qualifiers.
+ return Sema::IncompatiblePointer;
+ }
+ if (!S.getLangOpts().CPlusPlus &&
+ S.IsNoReturnConversion(ltrans, rtrans, ltrans))
+ return Sema::IncompatiblePointer;
+ return ConvTy;
+}
+
+/// checkBlockPointerTypesForAssignment - This routine determines whether two
+/// block pointer types are compatible or whether a block and normal pointer
+/// are compatible. It is more restrict than comparing two function pointer
+// types.
+static Sema::AssignConvertType
+checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
+ QualType RHSType) {
+ assert(LHSType.isCanonical() && "LHS not canonicalized!");
+ assert(RHSType.isCanonical() && "RHS not canonicalized!");
+
+ QualType lhptee, rhptee;
+
+ // get the "pointed to" type (ignoring qualifiers at the top level)
+ lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
+ rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
+
+ // In C++, the types have to match exactly.
+ if (S.getLangOpts().CPlusPlus)
+ return Sema::IncompatibleBlockPointer;
+
+ Sema::AssignConvertType ConvTy = Sema::Compatible;
+
+ // For blocks we enforce that qualifiers are identical.
+ if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
+ ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
+
+ if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
+ return Sema::IncompatibleBlockPointer;
+
+ return ConvTy;
+}
+
+/// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
+/// for assignment compatibility.
+static Sema::AssignConvertType
+checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
+ QualType RHSType) {
+ assert(LHSType.isCanonical() && "LHS was not canonicalized!");
+ assert(RHSType.isCanonical() && "RHS was not canonicalized!");
+
+ if (LHSType->isObjCBuiltinType()) {
+ // Class is not compatible with ObjC object pointers.
+ if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
+ !RHSType->isObjCQualifiedClassType())
+ return Sema::IncompatiblePointer;
+ return Sema::Compatible;
+ }
+ if (RHSType->isObjCBuiltinType()) {
+ if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
+ !LHSType->isObjCQualifiedClassType())
+ return Sema::IncompatiblePointer;
+ return Sema::Compatible;
+ }
+ QualType lhptee = LHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
+ QualType rhptee = RHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
+
+ if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
+ // make an exception for id<P>
+ !LHSType->isObjCQualifiedIdType())
+ return Sema::CompatiblePointerDiscardsQualifiers;
+
+ if (S.Context.typesAreCompatible(LHSType, RHSType))
+ return Sema::Compatible;
+ if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
+ return Sema::IncompatibleObjCQualifiedId;
+ return Sema::IncompatiblePointer;
+}
+
+Sema::AssignConvertType
+Sema::CheckAssignmentConstraints(SourceLocation Loc,
+ QualType LHSType, QualType RHSType) {
+ // Fake up an opaque expression. We don't actually care about what
+ // cast operations are required, so if CheckAssignmentConstraints
+ // adds casts to this they'll be wasted, but fortunately that doesn't
+ // usually happen on valid code.
+ OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
+ ExprResult RHSPtr = &RHSExpr;
+ CastKind K = CK_Invalid;
+
+ return CheckAssignmentConstraints(LHSType, RHSPtr, K);
+}
+
+/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
+/// has code to accommodate several GCC extensions when type checking
+/// pointers. Here are some objectionable examples that GCC considers warnings:
+///
+/// int a, *pint;
+/// short *pshort;
+/// struct foo *pfoo;
+///
+/// pint = pshort; // warning: assignment from incompatible pointer type
+/// a = pint; // warning: assignment makes integer from pointer without a cast
+/// pint = a; // warning: assignment makes pointer from integer without a cast
+/// pint = pfoo; // warning: assignment from incompatible pointer type
+///
+/// As a result, the code for dealing with pointers is more complex than the
+/// C99 spec dictates.
+///
+/// Sets 'Kind' for any result kind except Incompatible.
+Sema::AssignConvertType
+Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
+ CastKind &Kind) {
+ QualType RHSType = RHS.get()->getType();
+ QualType OrigLHSType = LHSType;
+
+ // Get canonical types. We're not formatting these types, just comparing
+ // them.
+ LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
+ RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
+
+
+ // Common case: no conversion required.
+ if (LHSType == RHSType) {
+ Kind = CK_NoOp;
+ return Compatible;
+ }
+
+ if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
+ if (AtomicTy->getValueType() == RHSType) {
+ Kind = CK_NonAtomicToAtomic;
+ return Compatible;
+ }
+ }
+
+ if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(RHSType)) {
+ if (AtomicTy->getValueType() == LHSType) {
+ Kind = CK_AtomicToNonAtomic;
+ return Compatible;
+ }
+ }
+
+
+ // If the left-hand side is a reference type, then we are in a
+ // (rare!) case where we've allowed the use of references in C,
+ // e.g., as a parameter type in a built-in function. In this case,
+ // just make sure that the type referenced is compatible with the
+ // right-hand side type. The caller is responsible for adjusting
+ // LHSType so that the resulting expression does not have reference
+ // type.
+ if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
+ if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
+ Kind = CK_LValueBitCast;
+ return Compatible;
+ }
+ return Incompatible;
+ }
+
+ // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
+ // to the same ExtVector type.
+ if (LHSType->isExtVectorType()) {
+ if (RHSType->isExtVectorType())
+ return Incompatible;
+ if (RHSType->isArithmeticType()) {
+ // CK_VectorSplat does T -> vector T, so first cast to the
+ // element type.
+ QualType elType = cast<ExtVectorType>(LHSType)->getElementType();
+ if (elType != RHSType) {
+ Kind = PrepareScalarCast(RHS, elType);
+ RHS = ImpCastExprToType(RHS.take(), elType, Kind);
+ }
+ Kind = CK_VectorSplat;
+ return Compatible;
+ }
+ }
+
+ // Conversions to or from vector type.
+ if (LHSType->isVectorType() || RHSType->isVectorType()) {
+ if (LHSType->isVectorType() && RHSType->isVectorType()) {
+ // Allow assignments of an AltiVec vector type to an equivalent GCC
+ // vector type and vice versa
+ if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
+ Kind = CK_BitCast;
+ return Compatible;
+ }
+
+ // If we are allowing lax vector conversions, and LHS and RHS are both
+ // vectors, the total size only needs to be the same. This is a bitcast;
+ // no bits are changed but the result type is different.
+ if (getLangOpts().LaxVectorConversions &&
+ (Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType))) {
+ Kind = CK_BitCast;
+ return IncompatibleVectors;
+ }
+ }
+ return Incompatible;
+ }
+
+ // Arithmetic conversions.
+ if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
+ !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
+ Kind = PrepareScalarCast(RHS, LHSType);
+ return Compatible;
+ }
+
+ // Conversions to normal pointers.
+ if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
+ // U* -> T*
+ if (isa<PointerType>(RHSType)) {
+ Kind = CK_BitCast;
+ return checkPointerTypesForAssignment(*this, LHSType, RHSType);
+ }
+
+ // int -> T*
+ if (RHSType->isIntegerType()) {
+ Kind = CK_IntegralToPointer; // FIXME: null?
+ return IntToPointer;
+ }
+
+ // C pointers are not compatible with ObjC object pointers,
+ // with two exceptions:
+ if (isa<ObjCObjectPointerType>(RHSType)) {
+ // - conversions to void*
+ if (LHSPointer->getPointeeType()->isVoidType()) {
+ Kind = CK_BitCast;
+ return Compatible;
+ }
+
+ // - conversions from 'Class' to the redefinition type
+ if (RHSType->isObjCClassType() &&
+ Context.hasSameType(LHSType,
+ Context.getObjCClassRedefinitionType())) {
+ Kind = CK_BitCast;
+ return Compatible;
+ }
+
+ Kind = CK_BitCast;
+ return IncompatiblePointer;
+ }
+
+ // U^ -> void*
+ if (RHSType->getAs<BlockPointerType>()) {
+ if (LHSPointer->getPointeeType()->isVoidType()) {
+ Kind = CK_BitCast;
+ return Compatible;
+ }
+ }
+
+ return Incompatible;
+ }
+
+ // Conversions to block pointers.
+ if (isa<BlockPointerType>(LHSType)) {
+ // U^ -> T^
+ if (RHSType->isBlockPointerType()) {
+ Kind = CK_BitCast;
+ return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
+ }
+
+ // int or null -> T^
+ if (RHSType->isIntegerType()) {
+ Kind = CK_IntegralToPointer; // FIXME: null
+ return IntToBlockPointer;
+ }
+
+ // id -> T^
+ if (getLangOpts().ObjC1 && RHSType->isObjCIdType()) {
+ Kind = CK_AnyPointerToBlockPointerCast;
+ return Compatible;
+ }
+
+ // void* -> T^
+ if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
+ if (RHSPT->getPointeeType()->isVoidType()) {
+ Kind = CK_AnyPointerToBlockPointerCast;
+ return Compatible;
+ }
+
+ return Incompatible;
+ }
+
+ // Conversions to Objective-C pointers.
+ if (isa<ObjCObjectPointerType>(LHSType)) {
+ // A* -> B*
+ if (RHSType->isObjCObjectPointerType()) {
+ Kind = CK_BitCast;
+ Sema::AssignConvertType result =
+ checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
+ if (getLangOpts().ObjCAutoRefCount &&
+ result == Compatible &&
+ !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
+ result = IncompatibleObjCWeakRef;
+ return result;
+ }
+
+ // int or null -> A*
+ if (RHSType->isIntegerType()) {
+ Kind = CK_IntegralToPointer; // FIXME: null
+ return IntToPointer;
+ }
+
+ // In general, C pointers are not compatible with ObjC object pointers,
+ // with two exceptions:
+ if (isa<PointerType>(RHSType)) {
+ Kind = CK_CPointerToObjCPointerCast;
+
+ // - conversions from 'void*'
+ if (RHSType->isVoidPointerType()) {
+ return Compatible;
+ }
+
+ // - conversions to 'Class' from its redefinition type
+ if (LHSType->isObjCClassType() &&
+ Context.hasSameType(RHSType,
+ Context.getObjCClassRedefinitionType())) {
+ return Compatible;
+ }
+
+ return IncompatiblePointer;
+ }
+
+ // T^ -> A*
+ if (RHSType->isBlockPointerType()) {
+ maybeExtendBlockObject(*this, RHS);
+ Kind = CK_BlockPointerToObjCPointerCast;
+ return Compatible;
+ }
+
+ return Incompatible;
+ }
+
+ // Conversions from pointers that are not covered by the above.
+ if (isa<PointerType>(RHSType)) {
+ // T* -> _Bool
+ if (LHSType == Context.BoolTy) {
+ Kind = CK_PointerToBoolean;
+ return Compatible;
+ }
+
+ // T* -> int
+ if (LHSType->isIntegerType()) {
+ Kind = CK_PointerToIntegral;
+ return PointerToInt;
+ }
+
+ return Incompatible;
+ }
+
+ // Conversions from Objective-C pointers that are not covered by the above.
+ if (isa<ObjCObjectPointerType>(RHSType)) {
+ // T* -> _Bool
+ if (LHSType == Context.BoolTy) {
+ Kind = CK_PointerToBoolean;
+ return Compatible;
+ }
+
+ // T* -> int
+ if (LHSType->isIntegerType()) {
+ Kind = CK_PointerToIntegral;
+ return PointerToInt;
+ }
+
+ return Incompatible;
+ }
+
+ // struct A -> struct B
+ if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
+ if (Context.typesAreCompatible(LHSType, RHSType)) {
+ Kind = CK_NoOp;
+ return Compatible;
+ }
+ }
+
+ return Incompatible;
+}
+
+/// \brief Constructs a transparent union from an expression that is
+/// used to initialize the transparent union.
+static void ConstructTransparentUnion(Sema &S, ASTContext &C,
+ ExprResult &EResult, QualType UnionType,
+ FieldDecl *Field) {
+ // Build an initializer list that designates the appropriate member
+ // of the transparent union.
+ Expr *E = EResult.take();
+ InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
+ &E, 1,
+ SourceLocation());
+ Initializer->setType(UnionType);
+ Initializer->setInitializedFieldInUnion(Field);
+
+ // Build a compound literal constructing a value of the transparent
+ // union type from this initializer list.
+ TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
+ EResult = S.Owned(
+ new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
+ VK_RValue, Initializer, false));
+}
+
+Sema::AssignConvertType
+Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
+ ExprResult &RHS) {
+ QualType RHSType = RHS.get()->getType();
+
+ // If the ArgType is a Union type, we want to handle a potential
+ // transparent_union GCC extension.
+ const RecordType *UT = ArgType->getAsUnionType();
+ if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
+ return Incompatible;
+
+ // The field to initialize within the transparent union.
+ RecordDecl *UD = UT->getDecl();
+ FieldDecl *InitField = 0;
+ // It's compatible if the expression matches any of the fields.
+ for (RecordDecl::field_iterator it = UD->field_begin(),
+ itend = UD->field_end();
+ it != itend; ++it) {
+ if (it->getType()->isPointerType()) {
+ // If the transparent union contains a pointer type, we allow:
+ // 1) void pointer
+ // 2) null pointer constant
+ if (RHSType->isPointerType())
+ if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
+ RHS = ImpCastExprToType(RHS.take(), it->getType(), CK_BitCast);
+ InitField = *it;
+ break;
+ }
+
+ if (RHS.get()->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNull)) {
+ RHS = ImpCastExprToType(RHS.take(), it->getType(),
+ CK_NullToPointer);
+ InitField = *it;
+ break;
+ }
+ }
+
+ CastKind Kind = CK_Invalid;
+ if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
+ == Compatible) {
+ RHS = ImpCastExprToType(RHS.take(), it->getType(), Kind);
+ InitField = *it;
+ break;
+ }
+ }
+
+ if (!InitField)
+ return Incompatible;
+
+ ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
+ return Compatible;
+}
+
+Sema::AssignConvertType
+Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &RHS,
+ bool Diagnose) {
+ if (getLangOpts().CPlusPlus) {
+ if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
+ // C++ 5.17p3: If the left operand is not of class type, the
+ // expression is implicitly converted (C++ 4) to the
+ // cv-unqualified type of the left operand.
+ ExprResult Res;
+ if (Diagnose) {
+ Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
+ AA_Assigning);
+ } else {
+ ImplicitConversionSequence ICS =
+ TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
+ /*SuppressUserConversions=*/false,
+ /*AllowExplicit=*/false,
+ /*InOverloadResolution=*/false,
+ /*CStyle=*/false,
+ /*AllowObjCWritebackConversion=*/false);
+ if (ICS.isFailure())
+ return Incompatible;
+ Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
+ ICS, AA_Assigning);
+ }
+ if (Res.isInvalid())
+ return Incompatible;
+ Sema::AssignConvertType result = Compatible;
+ if (getLangOpts().ObjCAutoRefCount &&
+ !CheckObjCARCUnavailableWeakConversion(LHSType,
+ RHS.get()->getType()))
+ result = IncompatibleObjCWeakRef;
+ RHS = move(Res);
+ return result;
+ }
+
+ // FIXME: Currently, we fall through and treat C++ classes like C
+ // structures.
+ // FIXME: We also fall through for atomics; not sure what should
+ // happen there, though.
+ }
+
+ // C99 6.5.16.1p1: the left operand is a pointer and the right is
+ // a null pointer constant.
+ if ((LHSType->isPointerType() ||
+ LHSType->isObjCObjectPointerType() ||
+ LHSType->isBlockPointerType())
+ && RHS.get()->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNull)) {
+ RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
+ return Compatible;
+ }
+
+ // This check seems unnatural, however it is necessary to ensure the proper
+ // conversion of functions/arrays. If the conversion were done for all
+ // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
+ // expressions that suppress this implicit conversion (&, sizeof).
+ //
+ // Suppress this for references: C++ 8.5.3p5.
+ if (!LHSType->isReferenceType()) {
+ RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
+ if (RHS.isInvalid())
+ return Incompatible;
+ }
+
+ CastKind Kind = CK_Invalid;
+ Sema::AssignConvertType result =
+ CheckAssignmentConstraints(LHSType, RHS, Kind);
+
+ // C99 6.5.16.1p2: The value of the right operand is converted to the
+ // type of the assignment expression.
+ // CheckAssignmentConstraints allows the left-hand side to be a reference,
+ // so that we can use references in built-in functions even in C.
+ // The getNonReferenceType() call makes sure that the resulting expression
+ // does not have reference type.
+ if (result != Incompatible && RHS.get()->getType() != LHSType)
+ RHS = ImpCastExprToType(RHS.take(),
+ LHSType.getNonLValueExprType(Context), Kind);
+ return result;
+}
+
+QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
+ ExprResult &RHS) {
+ Diag(Loc, diag::err_typecheck_invalid_operands)
+ << LHS.get()->getType() << RHS.get()->getType()
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ return QualType();
+}
+
+QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc, bool IsCompAssign) {
+ if (!IsCompAssign) {
+ LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
+ if (LHS.isInvalid())
+ return QualType();
+ }
+ RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
+ if (RHS.isInvalid())
+ return QualType();
+
+ // For conversion purposes, we ignore any qualifiers.
+ // For example, "const float" and "float" are equivalent.
+ QualType LHSType =
+ Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
+ QualType RHSType =
+ Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
+
+ // If the vector types are identical, return.
+ if (LHSType == RHSType)
+ return LHSType;
+
+ // Handle the case of equivalent AltiVec and GCC vector types
+ if (LHSType->isVectorType() && RHSType->isVectorType() &&
+ Context.areCompatibleVectorTypes(LHSType, RHSType)) {
+ if (LHSType->isExtVectorType()) {
+ RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
+ return LHSType;
+ }
+
+ if (!IsCompAssign)
+ LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
+ return RHSType;
+ }
+
+ if (getLangOpts().LaxVectorConversions &&
+ Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType)) {
+ // If we are allowing lax vector conversions, and LHS and RHS are both
+ // vectors, the total size only needs to be the same. This is a
+ // bitcast; no bits are changed but the result type is different.
+ // FIXME: Should we really be allowing this?
+ RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
+ return LHSType;
+ }
+
+ // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
+ // swap back (so that we don't reverse the inputs to a subtract, for instance.
+ bool swapped = false;
+ if (RHSType->isExtVectorType() && !IsCompAssign) {
+ swapped = true;
+ std::swap(RHS, LHS);
+ std::swap(RHSType, LHSType);
+ }
+
+ // Handle the case of an ext vector and scalar.
+ if (const ExtVectorType *LV = LHSType->getAs<ExtVectorType>()) {
+ QualType EltTy = LV->getElementType();
+ if (EltTy->isIntegralType(Context) && RHSType->isIntegralType(Context)) {
+ int order = Context.getIntegerTypeOrder(EltTy, RHSType);
+ if (order > 0)
+ RHS = ImpCastExprToType(RHS.take(), EltTy, CK_IntegralCast);
+ if (order >= 0) {
+ RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
+ if (swapped) std::swap(RHS, LHS);
+ return LHSType;
+ }
+ }
+ if (EltTy->isRealFloatingType() && RHSType->isScalarType() &&
+ RHSType->isRealFloatingType()) {
+ int order = Context.getFloatingTypeOrder(EltTy, RHSType);
+ if (order > 0)
+ RHS = ImpCastExprToType(RHS.take(), EltTy, CK_FloatingCast);
+ if (order >= 0) {
+ RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
+ if (swapped) std::swap(RHS, LHS);
+ return LHSType;
+ }
+ }
+ }
+
+ // Vectors of different size or scalar and non-ext-vector are errors.
+ if (swapped) std::swap(RHS, LHS);
+ Diag(Loc, diag::err_typecheck_vector_not_convertable)
+ << LHS.get()->getType() << RHS.get()->getType()
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ return QualType();
+}
+
+// checkArithmeticNull - Detect when a NULL constant is used improperly in an
+// expression. These are mainly cases where the null pointer is used as an
+// integer instead of a pointer.
+static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc, bool IsCompare) {
+ // The canonical way to check for a GNU null is with isNullPointerConstant,
+ // but we use a bit of a hack here for speed; this is a relatively
+ // hot path, and isNullPointerConstant is slow.
+ bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
+ bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
+
+ QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
+
+ // Avoid analyzing cases where the result will either be invalid (and
+ // diagnosed as such) or entirely valid and not something to warn about.
+ if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
+ NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
+ return;
+
+ // Comparison operations would not make sense with a null pointer no matter
+ // what the other expression is.
+ if (!IsCompare) {
+ S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
+ << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
+ << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
+ return;
+ }
+
+ // The rest of the operations only make sense with a null pointer
+ // if the other expression is a pointer.
+ if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
+ NonNullType->canDecayToPointerType())
+ return;
+
+ S.Diag(Loc, diag::warn_null_in_comparison_operation)
+ << LHSNull /* LHS is NULL */ << NonNullType
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+}
+
+QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc,
+ bool IsCompAssign, bool IsDiv) {
+ checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
+
+ if (LHS.get()->getType()->isVectorType() ||
+ RHS.get()->getType()->isVectorType())
+ return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
+
+ QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
+ if (LHS.isInvalid() || RHS.isInvalid())
+ return QualType();
+
+
+ if (!LHS.get()->getType()->isArithmeticType() ||
+ !RHS.get()->getType()->isArithmeticType()) {
+ if (IsCompAssign &&
+ LHS.get()->getType()->isAtomicType() &&
+ RHS.get()->getType()->isArithmeticType())
+ return compType;
+ return InvalidOperands(Loc, LHS, RHS);
+ }
+
+ // Check for division by zero.
+ if (IsDiv &&
+ RHS.get()->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNotNull))
+ DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_division_by_zero)
+ << RHS.get()->getSourceRange());
+
+ return compType;
+}
+
+QualType Sema::CheckRemainderOperands(
+ ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
+ checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
+
+ if (LHS.get()->getType()->isVectorType() ||
+ RHS.get()->getType()->isVectorType()) {
+ if (LHS.get()->getType()->hasIntegerRepresentation() &&
+ RHS.get()->getType()->hasIntegerRepresentation())
+ return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
+ return InvalidOperands(Loc, LHS, RHS);
+ }
+
+ QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
+ if (LHS.isInvalid() || RHS.isInvalid())
+ return QualType();
+
+ if (!LHS.get()->getType()->isIntegerType() ||
+ !RHS.get()->getType()->isIntegerType())
+ return InvalidOperands(Loc, LHS, RHS);
+
+ // Check for remainder by zero.
+ if (RHS.get()->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNotNull))
+ DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_remainder_by_zero)
+ << RHS.get()->getSourceRange());
+
+ return compType;
+}
+
+/// \brief Diagnose invalid arithmetic on two void pointers.
+static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
+ Expr *LHSExpr, Expr *RHSExpr) {
+ S.Diag(Loc, S.getLangOpts().CPlusPlus
+ ? diag::err_typecheck_pointer_arith_void_type
+ : diag::ext_gnu_void_ptr)
+ << 1 /* two pointers */ << LHSExpr->getSourceRange()
+ << RHSExpr->getSourceRange();
+}
+
+/// \brief Diagnose invalid arithmetic on a void pointer.
+static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
+ Expr *Pointer) {
+ S.Diag(Loc, S.getLangOpts().CPlusPlus
+ ? diag::err_typecheck_pointer_arith_void_type
+ : diag::ext_gnu_void_ptr)
+ << 0 /* one pointer */ << Pointer->getSourceRange();
+}
+
+/// \brief Diagnose invalid arithmetic on two function pointers.
+static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
+ Expr *LHS, Expr *RHS) {
+ assert(LHS->getType()->isAnyPointerType());
+ assert(RHS->getType()->isAnyPointerType());
+ S.Diag(Loc, S.getLangOpts().CPlusPlus
+ ? diag::err_typecheck_pointer_arith_function_type
+ : diag::ext_gnu_ptr_func_arith)
+ << 1 /* two pointers */ << LHS->getType()->getPointeeType()
+ // We only show the second type if it differs from the first.
+ << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
+ RHS->getType())
+ << RHS->getType()->getPointeeType()
+ << LHS->getSourceRange() << RHS->getSourceRange();
+}
+
+/// \brief Diagnose invalid arithmetic on a function pointer.
+static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
+ Expr *Pointer) {
+ assert(Pointer->getType()->isAnyPointerType());
+ S.Diag(Loc, S.getLangOpts().CPlusPlus
+ ? diag::err_typecheck_pointer_arith_function_type
+ : diag::ext_gnu_ptr_func_arith)
+ << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
+ << 0 /* one pointer, so only one type */
+ << Pointer->getSourceRange();
+}
+
+/// \brief Emit error if Operand is incomplete pointer type
+///
+/// \returns True if pointer has incomplete type
+static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
+ Expr *Operand) {
+ if ((Operand->getType()->isPointerType() &&
+ !Operand->getType()->isDependentType()) ||
+ Operand->getType()->isObjCObjectPointerType()) {
+ QualType PointeeTy = Operand->getType()->getPointeeType();
+ if (S.RequireCompleteType(
+ Loc, PointeeTy,
+ S.PDiag(diag::err_typecheck_arithmetic_incomplete_type)
+ << PointeeTy << Operand->getSourceRange()))
+ return true;
+ }
+ return false;
+}
+
+/// \brief Check the validity of an arithmetic pointer operand.
+///
+/// If the operand has pointer type, this code will check for pointer types
+/// which are invalid in arithmetic operations. These will be diagnosed
+/// appropriately, including whether or not the use is supported as an
+/// extension.
+///
+/// \returns True when the operand is valid to use (even if as an extension).
+static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
+ Expr *Operand) {
+ if (!Operand->getType()->isAnyPointerType()) return true;
+
+ QualType PointeeTy = Operand->getType()->getPointeeType();
+ if (PointeeTy->isVoidType()) {
+ diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
+ return !S.getLangOpts().CPlusPlus;
+ }
+ if (PointeeTy->isFunctionType()) {
+ diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
+ return !S.getLangOpts().CPlusPlus;
+ }
+
+ if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
+
+ return true;
+}
+
+/// \brief Check the validity of a binary arithmetic operation w.r.t. pointer
+/// operands.
+///
+/// This routine will diagnose any invalid arithmetic on pointer operands much
+/// like \see checkArithmeticOpPointerOperand. However, it has special logic
+/// for emitting a single diagnostic even for operations where both LHS and RHS
+/// are (potentially problematic) pointers.
+///
+/// \returns True when the operand is valid to use (even if as an extension).
+static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
+ Expr *LHSExpr, Expr *RHSExpr) {
+ bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
+ bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
+ if (!isLHSPointer && !isRHSPointer) return true;
+
+ QualType LHSPointeeTy, RHSPointeeTy;
+ if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
+ if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
+
+ // Check for arithmetic on pointers to incomplete types.
+ bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
+ bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
+ if (isLHSVoidPtr || isRHSVoidPtr) {
+ if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
+ else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
+ else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
+
+ return !S.getLangOpts().CPlusPlus;
+ }
+
+ bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
+ bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
+ if (isLHSFuncPtr || isRHSFuncPtr) {
+ if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
+ else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
+ RHSExpr);
+ else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
+
+ return !S.getLangOpts().CPlusPlus;
+ }
+
+ if (checkArithmeticIncompletePointerType(S, Loc, LHSExpr)) return false;
+ if (checkArithmeticIncompletePointerType(S, Loc, RHSExpr)) return false;
+
+ return true;
+}
+
+/// \brief Check bad cases where we step over interface counts.
+static bool checkArithmethicPointerOnNonFragileABI(Sema &S,
+ SourceLocation OpLoc,
+ Expr *Op) {
+ assert(Op->getType()->isAnyPointerType());
+ QualType PointeeTy = Op->getType()->getPointeeType();
+ if (!PointeeTy->isObjCObjectType() || !S.LangOpts.ObjCNonFragileABI)
+ return true;
+
+ S.Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
+ << PointeeTy << Op->getSourceRange();
+ return false;
+}
+
+/// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
+/// literal.
+static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
+ Expr *LHSExpr, Expr *RHSExpr) {
+ StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
+ Expr* IndexExpr = RHSExpr;
+ if (!StrExpr) {
+ StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
+ IndexExpr = LHSExpr;
+ }
+
+ bool IsStringPlusInt = StrExpr &&
+ IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
+ if (!IsStringPlusInt)
+ return;
+
+ llvm::APSInt index;
+ if (IndexExpr->EvaluateAsInt(index, Self.getASTContext())) {
+ unsigned StrLenWithNull = StrExpr->getLength() + 1;
+ if (index.isNonNegative() &&
+ index <= llvm::APSInt(llvm::APInt(index.getBitWidth(), StrLenWithNull),
+ index.isUnsigned()))
+ return;
+ }
+
+ SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
+ Self.Diag(OpLoc, diag::warn_string_plus_int)
+ << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
+
+ // Only print a fixit for "str" + int, not for int + "str".
+ if (IndexExpr == RHSExpr) {
+ SourceLocation EndLoc = Self.PP.getLocForEndOfToken(RHSExpr->getLocEnd());
+ Self.Diag(OpLoc, diag::note_string_plus_int_silence)
+ << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
+ << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
+ << FixItHint::CreateInsertion(EndLoc, "]");
+ } else
+ Self.Diag(OpLoc, diag::note_string_plus_int_silence);
+}
+
+/// \brief Emit error when two pointers are incompatible.
+static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
+ Expr *LHSExpr, Expr *RHSExpr) {
+ assert(LHSExpr->getType()->isAnyPointerType());
+ assert(RHSExpr->getType()->isAnyPointerType());
+ S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
+ << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
+ << RHSExpr->getSourceRange();
+}
+
+QualType Sema::CheckAdditionOperands( // C99 6.5.6
+ ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc,
+ QualType* CompLHSTy) {
+ checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
+
+ if (LHS.get()->getType()->isVectorType() ||
+ RHS.get()->getType()->isVectorType()) {
+ QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
+ if (CompLHSTy) *CompLHSTy = compType;
+ return compType;
+ }
+
+ QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
+ if (LHS.isInvalid() || RHS.isInvalid())
+ return QualType();
+
+ // Diagnose "string literal" '+' int.
+ if (Opc == BO_Add)
+ diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
+
+ // handle the common case first (both operands are arithmetic).
+ if (LHS.get()->getType()->isArithmeticType() &&
+ RHS.get()->getType()->isArithmeticType()) {
+ if (CompLHSTy) *CompLHSTy = compType;
+ return compType;
+ }
+
+ if (LHS.get()->getType()->isAtomicType() &&
+ RHS.get()->getType()->isArithmeticType()) {
+ *CompLHSTy = LHS.get()->getType();
+ return compType;
+ }
+
+ // Put any potential pointer into PExp
+ Expr* PExp = LHS.get(), *IExp = RHS.get();
+ if (IExp->getType()->isAnyPointerType())
+ std::swap(PExp, IExp);
+
+ if (!PExp->getType()->isAnyPointerType())
+ return InvalidOperands(Loc, LHS, RHS);
+
+ if (!IExp->getType()->isIntegerType())
+ return InvalidOperands(Loc, LHS, RHS);
+
+ if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
+ return QualType();
+
+ // Diagnose bad cases where we step over interface counts.
+ if (!checkArithmethicPointerOnNonFragileABI(*this, Loc, PExp))
+ return QualType();
+
+ // Check array bounds for pointer arithemtic
+ CheckArrayAccess(PExp, IExp);
+
+ if (CompLHSTy) {
+ QualType LHSTy = Context.isPromotableBitField(LHS.get());
+ if (LHSTy.isNull()) {
+ LHSTy = LHS.get()->getType();
+ if (LHSTy->isPromotableIntegerType())
+ LHSTy = Context.getPromotedIntegerType(LHSTy);
+ }
+ *CompLHSTy = LHSTy;
+ }
+
+ return PExp->getType();
+}
+
+// C99 6.5.6
+QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc,
+ QualType* CompLHSTy) {
+ checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
+
+ if (LHS.get()->getType()->isVectorType() ||
+ RHS.get()->getType()->isVectorType()) {
+ QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
+ if (CompLHSTy) *CompLHSTy = compType;
+ return compType;
+ }
+
+ QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
+ if (LHS.isInvalid() || RHS.isInvalid())
+ return QualType();
+
+ // Enforce type constraints: C99 6.5.6p3.
+
+ // Handle the common case first (both operands are arithmetic).
+ if (LHS.get()->getType()->isArithmeticType() &&
+ RHS.get()->getType()->isArithmeticType()) {
+ if (CompLHSTy) *CompLHSTy = compType;
+ return compType;
+ }
+
+ if (LHS.get()->getType()->isAtomicType() &&
+ RHS.get()->getType()->isArithmeticType()) {
+ *CompLHSTy = LHS.get()->getType();
+ return compType;
+ }
+
+ // Either ptr - int or ptr - ptr.
+ if (LHS.get()->getType()->isAnyPointerType()) {
+ QualType lpointee = LHS.get()->getType()->getPointeeType();
+
+ // Diagnose bad cases where we step over interface counts.
+ if (!checkArithmethicPointerOnNonFragileABI(*this, Loc, LHS.get()))
+ return QualType();
+
+ // The result type of a pointer-int computation is the pointer type.
+ if (RHS.get()->getType()->isIntegerType()) {
+ if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
+ return QualType();
+
+ // Check array bounds for pointer arithemtic
+ CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/0,
+ /*AllowOnePastEnd*/true, /*IndexNegated*/true);
+
+ if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
+ return LHS.get()->getType();
+ }
+
+ // Handle pointer-pointer subtractions.
+ if (const PointerType *RHSPTy
+ = RHS.get()->getType()->getAs<PointerType>()) {
+ QualType rpointee = RHSPTy->getPointeeType();
+
+ if (getLangOpts().CPlusPlus) {
+ // Pointee types must be the same: C++ [expr.add]
+ if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
+ diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
+ }
+ } else {
+ // Pointee types must be compatible C99 6.5.6p3
+ if (!Context.typesAreCompatible(
+ Context.getCanonicalType(lpointee).getUnqualifiedType(),
+ Context.getCanonicalType(rpointee).getUnqualifiedType())) {
+ diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
+ return QualType();
+ }
+ }
+
+ if (!checkArithmeticBinOpPointerOperands(*this, Loc,
+ LHS.get(), RHS.get()))
+ return QualType();
+
+ if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
+ return Context.getPointerDiffType();
+ }
+ }
+
+ return InvalidOperands(Loc, LHS, RHS);
+}
+
+static bool isScopedEnumerationType(QualType T) {
+ if (const EnumType *ET = dyn_cast<EnumType>(T))
+ return ET->getDecl()->isScoped();
+ return false;
+}
+
+static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc, unsigned Opc,
+ QualType LHSType) {
+ llvm::APSInt Right;
+ // Check right/shifter operand
+ if (RHS.get()->isValueDependent() ||
+ !RHS.get()->isIntegerConstantExpr(Right, S.Context))
+ return;
+
+ if (Right.isNegative()) {
+ S.DiagRuntimeBehavior(Loc, RHS.get(),
+ S.PDiag(diag::warn_shift_negative)
+ << RHS.get()->getSourceRange());
+ return;
+ }
+ llvm::APInt LeftBits(Right.getBitWidth(),
+ S.Context.getTypeSize(LHS.get()->getType()));
+ if (Right.uge(LeftBits)) {
+ S.DiagRuntimeBehavior(Loc, RHS.get(),
+ S.PDiag(diag::warn_shift_gt_typewidth)
+ << RHS.get()->getSourceRange());
+ return;
+ }
+ if (Opc != BO_Shl)
+ return;
+
+ // When left shifting an ICE which is signed, we can check for overflow which
+ // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
+ // integers have defined behavior modulo one more than the maximum value
+ // representable in the result type, so never warn for those.
+ llvm::APSInt Left;
+ if (LHS.get()->isValueDependent() ||
+ !LHS.get()->isIntegerConstantExpr(Left, S.Context) ||
+ LHSType->hasUnsignedIntegerRepresentation())
+ return;
+ llvm::APInt ResultBits =
+ static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
+ if (LeftBits.uge(ResultBits))
+ return;
+ llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
+ Result = Result.shl(Right);
+
+ // Print the bit representation of the signed integer as an unsigned
+ // hexadecimal number.
+ SmallString<40> HexResult;
+ Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
+
+ // If we are only missing a sign bit, this is less likely to result in actual
+ // bugs -- if the result is cast back to an unsigned type, it will have the
+ // expected value. Thus we place this behind a different warning that can be
+ // turned off separately if needed.
+ if (LeftBits == ResultBits - 1) {
+ S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
+ << HexResult.str() << LHSType
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ return;
+ }
+
+ S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
+ << HexResult.str() << Result.getMinSignedBits() << LHSType
+ << Left.getBitWidth() << LHS.get()->getSourceRange()
+ << RHS.get()->getSourceRange();
+}
+
+// C99 6.5.7
+QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc, unsigned Opc,
+ bool IsCompAssign) {
+ checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
+
+ // C99 6.5.7p2: Each of the operands shall have integer type.
+ if (!LHS.get()->getType()->hasIntegerRepresentation() ||
+ !RHS.get()->getType()->hasIntegerRepresentation())
+ return InvalidOperands(Loc, LHS, RHS);
+
+ // C++0x: Don't allow scoped enums. FIXME: Use something better than
+ // hasIntegerRepresentation() above instead of this.
+ if (isScopedEnumerationType(LHS.get()->getType()) ||
+ isScopedEnumerationType(RHS.get()->getType())) {
+ return InvalidOperands(Loc, LHS, RHS);
+ }
+
+ // Vector shifts promote their scalar inputs to vector type.
+ if (LHS.get()->getType()->isVectorType() ||
+ RHS.get()->getType()->isVectorType())
+ return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
+
+ // Shifts don't perform usual arithmetic conversions, they just do integer
+ // promotions on each operand. C99 6.5.7p3
+
+ // For the LHS, do usual unary conversions, but then reset them away
+ // if this is a compound assignment.
+ ExprResult OldLHS = LHS;
+ LHS = UsualUnaryConversions(LHS.take());
+ if (LHS.isInvalid())
+ return QualType();
+ QualType LHSType = LHS.get()->getType();
+ if (IsCompAssign) LHS = OldLHS;
+
+ // The RHS is simpler.
+ RHS = UsualUnaryConversions(RHS.take());
+ if (RHS.isInvalid())
+ return QualType();
+
+ // Sanity-check shift operands
+ DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
+
+ // "The type of the result is that of the promoted left operand."
+ return LHSType;
+}
+
+static bool IsWithinTemplateSpecialization(Decl *D) {
+ if (DeclContext *DC = D->getDeclContext()) {
+ if (isa<ClassTemplateSpecializationDecl>(DC))
+ return true;
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
+ return FD->isFunctionTemplateSpecialization();
+ }
+ return false;
+}
+
+/// If two different enums are compared, raise a warning.
+static void checkEnumComparison(Sema &S, SourceLocation Loc, ExprResult &LHS,
+ ExprResult &RHS) {
+ QualType LHSStrippedType = LHS.get()->IgnoreParenImpCasts()->getType();
+ QualType RHSStrippedType = RHS.get()->IgnoreParenImpCasts()->getType();
+
+ const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>();
+ if (!LHSEnumType)
+ return;
+ const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>();
+ if (!RHSEnumType)
+ return;
+
+ // Ignore anonymous enums.
+ if (!LHSEnumType->getDecl()->getIdentifier())
+ return;
+ if (!RHSEnumType->getDecl()->getIdentifier())
+ return;
+
+ if (S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType))
+ return;
+
+ S.Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
+ << LHSStrippedType << RHSStrippedType
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+}
+
+/// \brief Diagnose bad pointer comparisons.
+static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
+ ExprResult &LHS, ExprResult &RHS,
+ bool IsError) {
+ S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
+ : diag::ext_typecheck_comparison_of_distinct_pointers)
+ << LHS.get()->getType() << RHS.get()->getType()
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+}
+
+/// \brief Returns false if the pointers are converted to a composite type,
+/// true otherwise.
+static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
+ ExprResult &LHS, ExprResult &RHS) {
+ // C++ [expr.rel]p2:
+ // [...] Pointer conversions (4.10) and qualification
+ // conversions (4.4) are performed on pointer operands (or on
+ // a pointer operand and a null pointer constant) to bring
+ // them to their composite pointer type. [...]
+ //
+ // C++ [expr.eq]p1 uses the same notion for (in)equality
+ // comparisons of pointers.
+
+ // C++ [expr.eq]p2:
+ // In addition, pointers to members can be compared, or a pointer to
+ // member and a null pointer constant. Pointer to member conversions
+ // (4.11) and qualification conversions (4.4) are performed to bring
+ // them to a common type. If one operand is a null pointer constant,
+ // the common type is the type of the other operand. Otherwise, the
+ // common type is a pointer to member type similar (4.4) to the type
+ // of one of the operands, with a cv-qualification signature (4.4)
+ // that is the union of the cv-qualification signatures of the operand
+ // types.
+
+ QualType LHSType = LHS.get()->getType();
+ QualType RHSType = RHS.get()->getType();
+ assert((LHSType->isPointerType() && RHSType->isPointerType()) ||
+ (LHSType->isMemberPointerType() && RHSType->isMemberPointerType()));
+
+ bool NonStandardCompositeType = false;
+ bool *BoolPtr = S.isSFINAEContext() ? 0 : &NonStandardCompositeType;
+ QualType T = S.FindCompositePointerType(Loc, LHS, RHS, BoolPtr);
+ if (T.isNull()) {
+ diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
+ return true;
+ }
+
+ if (NonStandardCompositeType)
+ S.Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
+ << LHSType << RHSType << T << LHS.get()->getSourceRange()
+ << RHS.get()->getSourceRange();
+
+ LHS = S.ImpCastExprToType(LHS.take(), T, CK_BitCast);
+ RHS = S.ImpCastExprToType(RHS.take(), T, CK_BitCast);
+ return false;
+}
+
+static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
+ ExprResult &LHS,
+ ExprResult &RHS,
+ bool IsError) {
+ S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
+ : diag::ext_typecheck_comparison_of_fptr_to_void)
+ << LHS.get()->getType() << RHS.get()->getType()
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+}
+
+// C99 6.5.8, C++ [expr.rel]
+QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc, unsigned OpaqueOpc,
+ bool IsRelational) {
+ checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/true);
+
+ BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
+
+ // Handle vector comparisons separately.
+ if (LHS.get()->getType()->isVectorType() ||
+ RHS.get()->getType()->isVectorType())
+ return CheckVectorCompareOperands(LHS, RHS, Loc, IsRelational);
+
+ QualType LHSType = LHS.get()->getType();
+ QualType RHSType = RHS.get()->getType();
+
+ Expr *LHSStripped = LHS.get()->IgnoreParenImpCasts();
+ Expr *RHSStripped = RHS.get()->IgnoreParenImpCasts();
+
+ checkEnumComparison(*this, Loc, LHS, RHS);
+
+ if (!LHSType->hasFloatingRepresentation() &&
+ !(LHSType->isBlockPointerType() && IsRelational) &&
+ !LHS.get()->getLocStart().isMacroID() &&
+ !RHS.get()->getLocStart().isMacroID()) {
+ // For non-floating point types, check for self-comparisons of the form
+ // x == x, x != x, x < x, etc. These always evaluate to a constant, and
+ // often indicate logic errors in the program.
+ //
+ // NOTE: Don't warn about comparison expressions resulting from macro
+ // expansion. Also don't warn about comparisons which are only self
+ // comparisons within a template specialization. The warnings should catch
+ // obvious cases in the definition of the template anyways. The idea is to
+ // warn when the typed comparison operator will always evaluate to the same
+ // result.
+ if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) {
+ if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) {
+ if (DRL->getDecl() == DRR->getDecl() &&
+ !IsWithinTemplateSpecialization(DRL->getDecl())) {
+ DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
+ << 0 // self-
+ << (Opc == BO_EQ
+ || Opc == BO_LE
+ || Opc == BO_GE));
+ } else if (LHSType->isArrayType() && RHSType->isArrayType() &&
+ !DRL->getDecl()->getType()->isReferenceType() &&
+ !DRR->getDecl()->getType()->isReferenceType()) {
+ // what is it always going to eval to?
+ char always_evals_to;
+ switch(Opc) {
+ case BO_EQ: // e.g. array1 == array2
+ always_evals_to = 0; // false
+ break;
+ case BO_NE: // e.g. array1 != array2
+ always_evals_to = 1; // true
+ break;
+ default:
+ // best we can say is 'a constant'
+ always_evals_to = 2; // e.g. array1 <= array2
+ break;
+ }
+ DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
+ << 1 // array
+ << always_evals_to);
+ }
+ }
+ }
+
+ if (isa<CastExpr>(LHSStripped))
+ LHSStripped = LHSStripped->IgnoreParenCasts();
+ if (isa<CastExpr>(RHSStripped))
+ RHSStripped = RHSStripped->IgnoreParenCasts();
+
+ // Warn about comparisons against a string constant (unless the other
+ // operand is null), the user probably wants strcmp.
+ Expr *literalString = 0;
+ Expr *literalStringStripped = 0;
+ if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
+ !RHSStripped->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNull)) {
+ literalString = LHS.get();
+ literalStringStripped = LHSStripped;
+ } else if ((isa<StringLiteral>(RHSStripped) ||
+ isa<ObjCEncodeExpr>(RHSStripped)) &&
+ !LHSStripped->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNull)) {
+ literalString = RHS.get();
+ literalStringStripped = RHSStripped;
+ }
+
+ if (literalString) {
+ std::string resultComparison;
+ switch (Opc) {
+ case BO_LT: resultComparison = ") < 0"; break;
+ case BO_GT: resultComparison = ") > 0"; break;
+ case BO_LE: resultComparison = ") <= 0"; break;
+ case BO_GE: resultComparison = ") >= 0"; break;
+ case BO_EQ: resultComparison = ") == 0"; break;
+ case BO_NE: resultComparison = ") != 0"; break;
+ default: llvm_unreachable("Invalid comparison operator");
+ }
+
+ DiagRuntimeBehavior(Loc, 0,
+ PDiag(diag::warn_stringcompare)
+ << isa<ObjCEncodeExpr>(literalStringStripped)
+ << literalString->getSourceRange());
+ }
+ }
+
+ // C99 6.5.8p3 / C99 6.5.9p4
+ if (LHS.get()->getType()->isArithmeticType() &&
+ RHS.get()->getType()->isArithmeticType()) {
+ UsualArithmeticConversions(LHS, RHS);
+ if (LHS.isInvalid() || RHS.isInvalid())
+ return QualType();
+ }
+ else {
+ LHS = UsualUnaryConversions(LHS.take());
+ if (LHS.isInvalid())
+ return QualType();
+
+ RHS = UsualUnaryConversions(RHS.take());
+ if (RHS.isInvalid())
+ return QualType();
+ }
+
+ LHSType = LHS.get()->getType();
+ RHSType = RHS.get()->getType();
+
+ // The result of comparisons is 'bool' in C++, 'int' in C.
+ QualType ResultTy = Context.getLogicalOperationType();
+
+ if (IsRelational) {
+ if (LHSType->isRealType() && RHSType->isRealType())
+ return ResultTy;
+ } else {
+ // Check for comparisons of floating point operands using != and ==.
+ if (LHSType->hasFloatingRepresentation())
+ CheckFloatComparison(Loc, LHS.get(), RHS.get());
+
+ if (LHSType->isArithmeticType() && RHSType->isArithmeticType())
+ return ResultTy;
+ }
+
+ bool LHSIsNull = LHS.get()->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNull);
+ bool RHSIsNull = RHS.get()->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNull);
+
+ // All of the following pointer-related warnings are GCC extensions, except
+ // when handling null pointer constants.
+ if (LHSType->isPointerType() && RHSType->isPointerType()) { // C99 6.5.8p2
+ QualType LCanPointeeTy =
+ LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
+ QualType RCanPointeeTy =
+ RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
+
+ if (getLangOpts().CPlusPlus) {
+ if (LCanPointeeTy == RCanPointeeTy)
+ return ResultTy;
+ if (!IsRelational &&
+ (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
+ // Valid unless comparison between non-null pointer and function pointer
+ // This is a gcc extension compatibility comparison.
+ // In a SFINAE context, we treat this as a hard error to maintain
+ // conformance with the C++ standard.
+ if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
+ && !LHSIsNull && !RHSIsNull) {
+ diagnoseFunctionPointerToVoidComparison(
+ *this, Loc, LHS, RHS, /*isError*/ isSFINAEContext());
+
+ if (isSFINAEContext())
+ return QualType();
+
+ RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
+ return ResultTy;
+ }
+ }
+
+ if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
+ return QualType();
+ else
+ return ResultTy;
+ }
+ // C99 6.5.9p2 and C99 6.5.8p2
+ if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
+ RCanPointeeTy.getUnqualifiedType())) {
+ // Valid unless a relational comparison of function pointers
+ if (IsRelational && LCanPointeeTy->isFunctionType()) {
+ Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
+ << LHSType << RHSType << LHS.get()->getSourceRange()
+ << RHS.get()->getSourceRange();
+ }
+ } else if (!IsRelational &&
+ (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
+ // Valid unless comparison between non-null pointer and function pointer
+ if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
+ && !LHSIsNull && !RHSIsNull)
+ diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
+ /*isError*/false);
+ } else {
+ // Invalid
+ diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
+ }
+ if (LCanPointeeTy != RCanPointeeTy) {
+ if (LHSIsNull && !RHSIsNull)
+ LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
+ else
+ RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
+ }
+ return ResultTy;
+ }
+
+ if (getLangOpts().CPlusPlus) {
+ // Comparison of nullptr_t with itself.
+ if (LHSType->isNullPtrType() && RHSType->isNullPtrType())
+ return ResultTy;
+
+ // Comparison of pointers with null pointer constants and equality
+ // comparisons of member pointers to null pointer constants.
+ if (RHSIsNull &&
+ ((LHSType->isAnyPointerType() || LHSType->isNullPtrType()) ||
+ (!IsRelational &&
+ (LHSType->isMemberPointerType() || LHSType->isBlockPointerType())))) {
+ RHS = ImpCastExprToType(RHS.take(), LHSType,
+ LHSType->isMemberPointerType()
+ ? CK_NullToMemberPointer
+ : CK_NullToPointer);
+ return ResultTy;
+ }
+ if (LHSIsNull &&
+ ((RHSType->isAnyPointerType() || RHSType->isNullPtrType()) ||
+ (!IsRelational &&
+ (RHSType->isMemberPointerType() || RHSType->isBlockPointerType())))) {
+ LHS = ImpCastExprToType(LHS.take(), RHSType,
+ RHSType->isMemberPointerType()
+ ? CK_NullToMemberPointer
+ : CK_NullToPointer);
+ return ResultTy;
+ }
+
+ // Comparison of member pointers.
+ if (!IsRelational &&
+ LHSType->isMemberPointerType() && RHSType->isMemberPointerType()) {
+ if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
+ return QualType();
+ else
+ return ResultTy;
+ }
+
+ // Handle scoped enumeration types specifically, since they don't promote
+ // to integers.
+ if (LHS.get()->getType()->isEnumeralType() &&
+ Context.hasSameUnqualifiedType(LHS.get()->getType(),
+ RHS.get()->getType()))
+ return ResultTy;
+ }
+
+ // Handle block pointer types.
+ if (!IsRelational && LHSType->isBlockPointerType() &&
+ RHSType->isBlockPointerType()) {
+ QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
+ QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
+
+ if (!LHSIsNull && !RHSIsNull &&
+ !Context.typesAreCompatible(lpointee, rpointee)) {
+ Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
+ << LHSType << RHSType << LHS.get()->getSourceRange()
+ << RHS.get()->getSourceRange();
+ }
+ RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
+ return ResultTy;
+ }
+
+ // Allow block pointers to be compared with null pointer constants.
+ if (!IsRelational
+ && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
+ || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
+ if (!LHSIsNull && !RHSIsNull) {
+ if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
+ ->getPointeeType()->isVoidType())
+ || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
+ ->getPointeeType()->isVoidType())))
+ Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
+ << LHSType << RHSType << LHS.get()->getSourceRange()
+ << RHS.get()->getSourceRange();
+ }
+ if (LHSIsNull && !RHSIsNull)
+ LHS = ImpCastExprToType(LHS.take(), RHSType,
+ RHSType->isPointerType() ? CK_BitCast
+ : CK_AnyPointerToBlockPointerCast);
+ else
+ RHS = ImpCastExprToType(RHS.take(), LHSType,
+ LHSType->isPointerType() ? CK_BitCast
+ : CK_AnyPointerToBlockPointerCast);
+ return ResultTy;
+ }
+
+ if (LHSType->isObjCObjectPointerType() ||
+ RHSType->isObjCObjectPointerType()) {
+ const PointerType *LPT = LHSType->getAs<PointerType>();
+ const PointerType *RPT = RHSType->getAs<PointerType>();
+ if (LPT || RPT) {
+ bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
+ bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
+
+ if (!LPtrToVoid && !RPtrToVoid &&
+ !Context.typesAreCompatible(LHSType, RHSType)) {
+ diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
+ /*isError*/false);
+ }
+ if (LHSIsNull && !RHSIsNull)
+ LHS = ImpCastExprToType(LHS.take(), RHSType,
+ RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
+ else
+ RHS = ImpCastExprToType(RHS.take(), LHSType,
+ LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
+ return ResultTy;
+ }
+ if (LHSType->isObjCObjectPointerType() &&
+ RHSType->isObjCObjectPointerType()) {
+ if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
+ diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
+ /*isError*/false);
+ if (LHSIsNull && !RHSIsNull)
+ LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
+ else
+ RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
+ return ResultTy;
+ }
+ }
+ if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
+ (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
+ unsigned DiagID = 0;
+ bool isError = false;
+ if ((LHSIsNull && LHSType->isIntegerType()) ||
+ (RHSIsNull && RHSType->isIntegerType())) {
+ if (IsRelational && !getLangOpts().CPlusPlus)
+ DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
+ } else if (IsRelational && !getLangOpts().CPlusPlus)
+ DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
+ else if (getLangOpts().CPlusPlus) {
+ DiagID = diag::err_typecheck_comparison_of_pointer_integer;
+ isError = true;
+ } else
+ DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
+
+ if (DiagID) {
+ Diag(Loc, DiagID)
+ << LHSType << RHSType << LHS.get()->getSourceRange()
+ << RHS.get()->getSourceRange();
+ if (isError)
+ return QualType();
+ }
+
+ if (LHSType->isIntegerType())
+ LHS = ImpCastExprToType(LHS.take(), RHSType,
+ LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
+ else
+ RHS = ImpCastExprToType(RHS.take(), LHSType,
+ RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
+ return ResultTy;
+ }
+
+ // Handle block pointers.
+ if (!IsRelational && RHSIsNull
+ && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
+ RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
+ return ResultTy;
+ }
+ if (!IsRelational && LHSIsNull
+ && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
+ LHS = ImpCastExprToType(LHS.take(), RHSType, CK_NullToPointer);
+ return ResultTy;
+ }
+
+ return InvalidOperands(Loc, LHS, RHS);
+}
+
+
+// Return a signed type that is of identical size and number of elements.
+// For floating point vectors, return an integer type of identical size
+// and number of elements.
+QualType Sema::GetSignedVectorType(QualType V) {
+ const VectorType *VTy = V->getAs<VectorType>();
+ unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
+ if (TypeSize == Context.getTypeSize(Context.CharTy))
+ return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
+ else if (TypeSize == Context.getTypeSize(Context.ShortTy))
+ return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
+ else if (TypeSize == Context.getTypeSize(Context.IntTy))
+ return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
+ else if (TypeSize == Context.getTypeSize(Context.LongTy))
+ return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
+ assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
+ "Unhandled vector element size in vector compare");
+ return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
+}
+
+/// CheckVectorCompareOperands - vector comparisons are a clang extension that
+/// operates on extended vector types. Instead of producing an IntTy result,
+/// like a scalar comparison, a vector comparison produces a vector of integer
+/// types.
+QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc,
+ bool IsRelational) {
+ // Check to make sure we're operating on vectors of the same type and width,
+ // Allowing one side to be a scalar of element type.
+ QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false);
+ if (vType.isNull())
+ return vType;
+
+ QualType LHSType = LHS.get()->getType();
+
+ // If AltiVec, the comparison results in a numeric type, i.e.
+ // bool for C++, int for C
+ if (vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
+ return Context.getLogicalOperationType();
+
+ // For non-floating point types, check for self-comparisons of the form
+ // x == x, x != x, x < x, etc. These always evaluate to a constant, and
+ // often indicate logic errors in the program.
+ if (!LHSType->hasFloatingRepresentation()) {
+ if (DeclRefExpr* DRL
+ = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParenImpCasts()))
+ if (DeclRefExpr* DRR
+ = dyn_cast<DeclRefExpr>(RHS.get()->IgnoreParenImpCasts()))
+ if (DRL->getDecl() == DRR->getDecl())
+ DiagRuntimeBehavior(Loc, 0,
+ PDiag(diag::warn_comparison_always)
+ << 0 // self-
+ << 2 // "a constant"
+ );
+ }
+
+ // Check for comparisons of floating point operands using != and ==.
+ if (!IsRelational && LHSType->hasFloatingRepresentation()) {
+ assert (RHS.get()->getType()->hasFloatingRepresentation());
+ CheckFloatComparison(Loc, LHS.get(), RHS.get());
+ }
+
+ // Return a signed type for the vector.
+ return GetSignedVectorType(LHSType);
+}
+
+QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc) {
+ // Ensure that either both operands are of the same vector type, or
+ // one operand is of a vector type and the other is of its element type.
+ QualType vType = CheckVectorOperands(LHS, RHS, Loc, false);
+ if (vType.isNull() || vType->isFloatingType())
+ return InvalidOperands(Loc, LHS, RHS);
+
+ return GetSignedVectorType(LHS.get()->getType());
+}
+
+inline QualType Sema::CheckBitwiseOperands(
+ ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
+ checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
+
+ if (LHS.get()->getType()->isVectorType() ||
+ RHS.get()->getType()->isVectorType()) {
+ if (LHS.get()->getType()->hasIntegerRepresentation() &&
+ RHS.get()->getType()->hasIntegerRepresentation())
+ return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
+
+ return InvalidOperands(Loc, LHS, RHS);
+ }
+
+ ExprResult LHSResult = Owned(LHS), RHSResult = Owned(RHS);
+ QualType compType = UsualArithmeticConversions(LHSResult, RHSResult,
+ IsCompAssign);
+ if (LHSResult.isInvalid() || RHSResult.isInvalid())
+ return QualType();
+ LHS = LHSResult.take();
+ RHS = RHSResult.take();
+
+ if (LHS.get()->getType()->isIntegralOrUnscopedEnumerationType() &&
+ RHS.get()->getType()->isIntegralOrUnscopedEnumerationType())
+ return compType;
+ return InvalidOperands(Loc, LHS, RHS);
+}
+
+inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
+ ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc) {
+
+ // Check vector operands differently.
+ if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
+ return CheckVectorLogicalOperands(LHS, RHS, Loc);
+
+ // Diagnose cases where the user write a logical and/or but probably meant a
+ // bitwise one. We do this when the LHS is a non-bool integer and the RHS
+ // is a constant.
+ if (LHS.get()->getType()->isIntegerType() &&
+ !LHS.get()->getType()->isBooleanType() &&
+ RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
+ // Don't warn in macros or template instantiations.
+ !Loc.isMacroID() && ActiveTemplateInstantiations.empty()) {
+ // If the RHS can be constant folded, and if it constant folds to something
+ // that isn't 0 or 1 (which indicate a potential logical operation that
+ // happened to fold to true/false) then warn.
+ // Parens on the RHS are ignored.
+ llvm::APSInt Result;
+ if (RHS.get()->EvaluateAsInt(Result, Context))
+ if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType()) ||
+ (Result != 0 && Result != 1)) {
+ Diag(Loc, diag::warn_logical_instead_of_bitwise)
+ << RHS.get()->getSourceRange()
+ << (Opc == BO_LAnd ? "&&" : "||");
+ // Suggest replacing the logical operator with the bitwise version
+ Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
+ << (Opc == BO_LAnd ? "&" : "|")
+ << FixItHint::CreateReplacement(SourceRange(
+ Loc, Lexer::getLocForEndOfToken(Loc, 0, getSourceManager(),
+ getLangOpts())),
+ Opc == BO_LAnd ? "&" : "|");
+ if (Opc == BO_LAnd)
+ // Suggest replacing "Foo() && kNonZero" with "Foo()"
+ Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
+ << FixItHint::CreateRemoval(
+ SourceRange(
+ Lexer::getLocForEndOfToken(LHS.get()->getLocEnd(),
+ 0, getSourceManager(),
+ getLangOpts()),
+ RHS.get()->getLocEnd()));
+ }
+ }
+
+ if (!Context.getLangOpts().CPlusPlus) {
+ LHS = UsualUnaryConversions(LHS.take());
+ if (LHS.isInvalid())
+ return QualType();
+
+ RHS = UsualUnaryConversions(RHS.take());
+ if (RHS.isInvalid())
+ return QualType();
+
+ if (!LHS.get()->getType()->isScalarType() ||
+ !RHS.get()->getType()->isScalarType())
+ return InvalidOperands(Loc, LHS, RHS);
+
+ return Context.IntTy;
+ }
+
+ // The following is safe because we only use this method for
+ // non-overloadable operands.
+
+ // C++ [expr.log.and]p1
+ // C++ [expr.log.or]p1
+ // The operands are both contextually converted to type bool.
+ ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
+ if (LHSRes.isInvalid())
+ return InvalidOperands(Loc, LHS, RHS);
+ LHS = move(LHSRes);
+
+ ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
+ if (RHSRes.isInvalid())
+ return InvalidOperands(Loc, LHS, RHS);
+ RHS = move(RHSRes);
+
+ // C++ [expr.log.and]p2
+ // C++ [expr.log.or]p2
+ // The result is a bool.
+ return Context.BoolTy;
+}
+
+/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
+/// is a read-only property; return true if so. A readonly property expression
+/// depends on various declarations and thus must be treated specially.
+///
+static bool IsReadonlyProperty(Expr *E, Sema &S) {
+ const ObjCPropertyRefExpr *PropExpr = dyn_cast<ObjCPropertyRefExpr>(E);
+ if (!PropExpr) return false;
+ if (PropExpr->isImplicitProperty()) return false;
+
+ ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
+ QualType BaseType = PropExpr->isSuperReceiver() ?
+ PropExpr->getSuperReceiverType() :
+ PropExpr->getBase()->getType();
+
+ if (const ObjCObjectPointerType *OPT =
+ BaseType->getAsObjCInterfacePointerType())
+ if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
+ if (S.isPropertyReadonly(PDecl, IFace))
+ return true;
+ return false;
+}
+
+static bool IsReadonlyMessage(Expr *E, Sema &S) {
+ const MemberExpr *ME = dyn_cast<MemberExpr>(E);
+ if (!ME) return false;
+ if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
+ ObjCMessageExpr *Base =
+ dyn_cast<ObjCMessageExpr>(ME->getBase()->IgnoreParenImpCasts());
+ if (!Base) return false;
+ return Base->getMethodDecl() != 0;
+}
+
+/// Is the given expression (which must be 'const') a reference to a
+/// variable which was originally non-const, but which has become
+/// 'const' due to being captured within a block?
+enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
+static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
+ assert(E->isLValue() && E->getType().isConstQualified());
+ E = E->IgnoreParens();
+
+ // Must be a reference to a declaration from an enclosing scope.
+ DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
+ if (!DRE) return NCCK_None;
+ if (!DRE->refersToEnclosingLocal()) return NCCK_None;
+
+ // The declaration must be a variable which is not declared 'const'.
+ VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
+ if (!var) return NCCK_None;
+ if (var->getType().isConstQualified()) return NCCK_None;
+ assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
+
+ // Decide whether the first capture was for a block or a lambda.
+ DeclContext *DC = S.CurContext;
+ while (DC->getParent() != var->getDeclContext())
+ DC = DC->getParent();
+ return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
+}
+
+/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
+/// emit an error and return true. If so, return false.
+static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
+ assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
+ SourceLocation OrigLoc = Loc;
+ Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
+ &Loc);
+ if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
+ IsLV = Expr::MLV_ReadonlyProperty;
+ else if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
+ IsLV = Expr::MLV_InvalidMessageExpression;
+ if (IsLV == Expr::MLV_Valid)
+ return false;
+
+ unsigned Diag = 0;
+ bool NeedType = false;
+ switch (IsLV) { // C99 6.5.16p2
+ case Expr::MLV_ConstQualified:
+ Diag = diag::err_typecheck_assign_const;
+
+ // Use a specialized diagnostic when we're assigning to an object
+ // from an enclosing function or block.
+ if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
+ if (NCCK == NCCK_Block)
+ Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
+ else
+ Diag = diag::err_lambda_decl_ref_not_modifiable_lvalue;
+ break;
+ }
+
+ // In ARC, use some specialized diagnostics for occasions where we
+ // infer 'const'. These are always pseudo-strong variables.
+ if (S.getLangOpts().ObjCAutoRefCount) {
+ DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
+ if (declRef && isa<VarDecl>(declRef->getDecl())) {
+ VarDecl *var = cast<VarDecl>(declRef->getDecl());
+
+ // Use the normal diagnostic if it's pseudo-__strong but the
+ // user actually wrote 'const'.
+ if (var->isARCPseudoStrong() &&
+ (!var->getTypeSourceInfo() ||
+ !var->getTypeSourceInfo()->getType().isConstQualified())) {
+ // There are two pseudo-strong cases:
+ // - self
+ ObjCMethodDecl *method = S.getCurMethodDecl();
+ if (method && var == method->getSelfDecl())
+ Diag = method->isClassMethod()
+ ? diag::err_typecheck_arc_assign_self_class_method
+ : diag::err_typecheck_arc_assign_self;
+
+ // - fast enumeration variables
+ else
+ Diag = diag::err_typecheck_arr_assign_enumeration;
+
+ SourceRange Assign;
+ if (Loc != OrigLoc)
+ Assign = SourceRange(OrigLoc, OrigLoc);
+ S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
+ // We need to preserve the AST regardless, so migration tool
+ // can do its job.
+ return false;
+ }
+ }
+ }
+
+ break;
+ case Expr::MLV_ArrayType:
+ Diag = diag::err_typecheck_array_not_modifiable_lvalue;
+ NeedType = true;
+ break;
+ case Expr::MLV_NotObjectType:
+ Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
+ NeedType = true;
+ break;
+ case Expr::MLV_LValueCast:
+ Diag = diag::err_typecheck_lvalue_casts_not_supported;
+ break;
+ case Expr::MLV_Valid:
+ llvm_unreachable("did not take early return for MLV_Valid");
+ case Expr::MLV_InvalidExpression:
+ case Expr::MLV_MemberFunction:
+ case Expr::MLV_ClassTemporary:
+ Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
+ break;
+ case Expr::MLV_IncompleteType:
+ case Expr::MLV_IncompleteVoidType:
+ return S.RequireCompleteType(Loc, E->getType(),
+ S.PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
+ << E->getSourceRange());
+ case Expr::MLV_DuplicateVectorComponents:
+ Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
+ break;
+ case Expr::MLV_ReadonlyProperty:
+ case Expr::MLV_NoSetterProperty:
+ llvm_unreachable("readonly properties should be processed differently");
+ case Expr::MLV_InvalidMessageExpression:
+ Diag = diag::error_readonly_message_assignment;
+ break;
+ case Expr::MLV_SubObjCPropertySetting:
+ Diag = diag::error_no_subobject_property_setting;
+ break;
+ }
+
+ SourceRange Assign;
+ if (Loc != OrigLoc)
+ Assign = SourceRange(OrigLoc, OrigLoc);
+ if (NeedType)
+ S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
+ else
+ S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
+ return true;
+}
+
+
+
+// C99 6.5.16.1
+QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
+ SourceLocation Loc,
+ QualType CompoundType) {
+ assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
+
+ // Verify that LHS is a modifiable lvalue, and emit error if not.
+ if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
+ return QualType();
+
+ QualType LHSType = LHSExpr->getType();
+ QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
+ CompoundType;
+ AssignConvertType ConvTy;
+ if (CompoundType.isNull()) {
+ QualType LHSTy(LHSType);
+ ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
+ if (RHS.isInvalid())
+ return QualType();
+ // Special case of NSObject attributes on c-style pointer types.
+ if (ConvTy == IncompatiblePointer &&
+ ((Context.isObjCNSObjectType(LHSType) &&
+ RHSType->isObjCObjectPointerType()) ||
+ (Context.isObjCNSObjectType(RHSType) &&
+ LHSType->isObjCObjectPointerType())))
+ ConvTy = Compatible;
+
+ if (ConvTy == Compatible &&
+ LHSType->isObjCObjectType())
+ Diag(Loc, diag::err_objc_object_assignment)
+ << LHSType;
+
+ // If the RHS is a unary plus or minus, check to see if they = and + are
+ // right next to each other. If so, the user may have typo'd "x =+ 4"
+ // instead of "x += 4".
+ Expr *RHSCheck = RHS.get();
+ if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
+ RHSCheck = ICE->getSubExpr();
+ if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
+ if ((UO->getOpcode() == UO_Plus ||
+ UO->getOpcode() == UO_Minus) &&
+ Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
+ // Only if the two operators are exactly adjacent.
+ Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
+ // And there is a space or other character before the subexpr of the
+ // unary +/-. We don't want to warn on "x=-1".
+ Loc.getLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
+ UO->getSubExpr()->getLocStart().isFileID()) {
+ Diag(Loc, diag::warn_not_compound_assign)
+ << (UO->getOpcode() == UO_Plus ? "+" : "-")
+ << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
+ }
+ }
+
+ if (ConvTy == Compatible) {
+ if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong)
+ checkRetainCycles(LHSExpr, RHS.get());
+ else if (getLangOpts().ObjCAutoRefCount)
+ checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
+ }
+ } else {
+ // Compound assignment "x += y"
+ ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
+ }
+
+ if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
+ RHS.get(), AA_Assigning))
+ return QualType();
+
+ CheckForNullPointerDereference(*this, LHSExpr);
+
+ // C99 6.5.16p3: The type of an assignment expression is the type of the
+ // left operand unless the left operand has qualified type, in which case
+ // it is the unqualified version of the type of the left operand.
+ // C99 6.5.16.1p2: In simple assignment, the value of the right operand
+ // is converted to the type of the assignment expression (above).
+ // C++ 5.17p1: the type of the assignment expression is that of its left
+ // operand.
+ return (getLangOpts().CPlusPlus
+ ? LHSType : LHSType.getUnqualifiedType());
+}
+
+// C99 6.5.17
+static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc) {
+ S.DiagnoseUnusedExprResult(LHS.get());
+
+ LHS = S.CheckPlaceholderExpr(LHS.take());
+ RHS = S.CheckPlaceholderExpr(RHS.take());
+ if (LHS.isInvalid() || RHS.isInvalid())
+ return QualType();
+
+ // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
+ // operands, but not unary promotions.
+ // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
+
+ // So we treat the LHS as a ignored value, and in C++ we allow the
+ // containing site to determine what should be done with the RHS.
+ LHS = S.IgnoredValueConversions(LHS.take());
+ if (LHS.isInvalid())
+ return QualType();
+
+ if (!S.getLangOpts().CPlusPlus) {
+ RHS = S.DefaultFunctionArrayLvalueConversion(RHS.take());
+ if (RHS.isInvalid())
+ return QualType();
+ if (!RHS.get()->getType()->isVoidType())
+ S.RequireCompleteType(Loc, RHS.get()->getType(),
+ diag::err_incomplete_type);
+ }
+
+ return RHS.get()->getType();
+}
+
+/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
+/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
+static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
+ ExprValueKind &VK,
+ SourceLocation OpLoc,
+ bool IsInc, bool IsPrefix) {
+ if (Op->isTypeDependent())
+ return S.Context.DependentTy;
+
+ QualType ResType = Op->getType();
+ // Atomic types can be used for increment / decrement where the non-atomic
+ // versions can, so ignore the _Atomic() specifier for the purpose of
+ // checking.
+ if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
+ ResType = ResAtomicType->getValueType();
+
+ assert(!ResType.isNull() && "no type for increment/decrement expression");
+
+ if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
+ // Decrement of bool is not allowed.
+ if (!IsInc) {
+ S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
+ return QualType();
+ }
+ // Increment of bool sets it to true, but is deprecated.
+ S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
+ } else if (ResType->isRealType()) {
+ // OK!
+ } else if (ResType->isAnyPointerType()) {
+ // C99 6.5.2.4p2, 6.5.6p2
+ if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
+ return QualType();
+
+ // Diagnose bad cases where we step over interface counts.
+ else if (!checkArithmethicPointerOnNonFragileABI(S, OpLoc, Op))
+ return QualType();
+ } else if (ResType->isAnyComplexType()) {
+ // C99 does not support ++/-- on complex types, we allow as an extension.
+ S.Diag(OpLoc, diag::ext_integer_increment_complex)
+ << ResType << Op->getSourceRange();
+ } else if (ResType->isPlaceholderType()) {
+ ExprResult PR = S.CheckPlaceholderExpr(Op);
+ if (PR.isInvalid()) return QualType();
+ return CheckIncrementDecrementOperand(S, PR.take(), VK, OpLoc,
+ IsInc, IsPrefix);
+ } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
+ // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
+ } else {
+ S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
+ << ResType << int(IsInc) << Op->getSourceRange();
+ return QualType();
+ }
+ // At this point, we know we have a real, complex or pointer type.
+ // Now make sure the operand is a modifiable lvalue.
+ if (CheckForModifiableLvalue(Op, OpLoc, S))
+ return QualType();
+ // In C++, a prefix increment is the same type as the operand. Otherwise
+ // (in C or with postfix), the increment is the unqualified type of the
+ // operand.
+ if (IsPrefix && S.getLangOpts().CPlusPlus) {
+ VK = VK_LValue;
+ return ResType;
+ } else {
+ VK = VK_RValue;
+ return ResType.getUnqualifiedType();
+ }
+}
+
+
+/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
+/// This routine allows us to typecheck complex/recursive expressions
+/// where the declaration is needed for type checking. We only need to
+/// handle cases when the expression references a function designator
+/// or is an lvalue. Here are some examples:
+/// - &(x) => x
+/// - &*****f => f for f a function designator.
+/// - &s.xx => s
+/// - &s.zz[1].yy -> s, if zz is an array
+/// - *(x + 1) -> x, if x is an array
+/// - &"123"[2] -> 0
+/// - & __real__ x -> x
+static ValueDecl *getPrimaryDecl(Expr *E) {
+ switch (E->getStmtClass()) {
+ case Stmt::DeclRefExprClass:
+ return cast<DeclRefExpr>(E)->getDecl();
+ case Stmt::MemberExprClass:
+ // If this is an arrow operator, the address is an offset from
+ // the base's value, so the object the base refers to is
+ // irrelevant.
+ if (cast<MemberExpr>(E)->isArrow())
+ return 0;
+ // Otherwise, the expression refers to a part of the base
+ return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
+ case Stmt::ArraySubscriptExprClass: {
+ // FIXME: This code shouldn't be necessary! We should catch the implicit
+ // promotion of register arrays earlier.
+ Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
+ if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
+ if (ICE->getSubExpr()->getType()->isArrayType())
+ return getPrimaryDecl(ICE->getSubExpr());
+ }
+ return 0;
+ }
+ case Stmt::UnaryOperatorClass: {
+ UnaryOperator *UO = cast<UnaryOperator>(E);
+
+ switch(UO->getOpcode()) {
+ case UO_Real:
+ case UO_Imag:
+ case UO_Extension:
+ return getPrimaryDecl(UO->getSubExpr());
+ default:
+ return 0;
+ }
+ }
+ case Stmt::ParenExprClass:
+ return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
+ case Stmt::ImplicitCastExprClass:
+ // If the result of an implicit cast is an l-value, we care about
+ // the sub-expression; otherwise, the result here doesn't matter.
+ return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
+ default:
+ return 0;
+ }
+}
+
+namespace {
+ enum {
+ AO_Bit_Field = 0,
+ AO_Vector_Element = 1,
+ AO_Property_Expansion = 2,
+ AO_Register_Variable = 3,
+ AO_No_Error = 4
+ };
+}
+/// \brief Diagnose invalid operand for address of operations.
+///
+/// \param Type The type of operand which cannot have its address taken.
+static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
+ Expr *E, unsigned Type) {
+ S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
+}
+
+/// CheckAddressOfOperand - The operand of & must be either a function
+/// designator or an lvalue designating an object. If it is an lvalue, the
+/// object cannot be declared with storage class register or be a bit field.
+/// Note: The usual conversions are *not* applied to the operand of the &
+/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
+/// In C++, the operand might be an overloaded function name, in which case
+/// we allow the '&' but retain the overloaded-function type.
+static QualType CheckAddressOfOperand(Sema &S, ExprResult &OrigOp,
+ SourceLocation OpLoc) {
+ if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
+ if (PTy->getKind() == BuiltinType::Overload) {
+ if (!isa<OverloadExpr>(OrigOp.get()->IgnoreParens())) {
+ S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
+ << OrigOp.get()->getSourceRange();
+ return QualType();
+ }
+
+ return S.Context.OverloadTy;
+ }
+
+ if (PTy->getKind() == BuiltinType::UnknownAny)
+ return S.Context.UnknownAnyTy;
+
+ if (PTy->getKind() == BuiltinType::BoundMember) {
+ S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
+ << OrigOp.get()->getSourceRange();
+ return QualType();
+ }
+
+ OrigOp = S.CheckPlaceholderExpr(OrigOp.take());
+ if (OrigOp.isInvalid()) return QualType();
+ }
+
+ if (OrigOp.get()->isTypeDependent())
+ return S.Context.DependentTy;
+
+ assert(!OrigOp.get()->getType()->isPlaceholderType());
+
+ // Make sure to ignore parentheses in subsequent checks
+ Expr *op = OrigOp.get()->IgnoreParens();
+
+ if (S.getLangOpts().C99) {
+ // Implement C99-only parts of addressof rules.
+ if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
+ if (uOp->getOpcode() == UO_Deref)
+ // Per C99 6.5.3.2, the address of a deref always returns a valid result
+ // (assuming the deref expression is valid).
+ return uOp->getSubExpr()->getType();
+ }
+ // Technically, there should be a check for array subscript
+ // expressions here, but the result of one is always an lvalue anyway.
+ }
+ ValueDecl *dcl = getPrimaryDecl(op);
+ Expr::LValueClassification lval = op->ClassifyLValue(S.Context);
+ unsigned AddressOfError = AO_No_Error;
+
+ if (lval == Expr::LV_ClassTemporary) {
+ bool sfinae = S.isSFINAEContext();
+ S.Diag(OpLoc, sfinae ? diag::err_typecheck_addrof_class_temporary
+ : diag::ext_typecheck_addrof_class_temporary)
+ << op->getType() << op->getSourceRange();
+ if (sfinae)
+ return QualType();
+ } else if (isa<ObjCSelectorExpr>(op)) {
+ return S.Context.getPointerType(op->getType());
+ } else if (lval == Expr::LV_MemberFunction) {
+ // If it's an instance method, make a member pointer.
+ // The expression must have exactly the form &A::foo.
+
+ // If the underlying expression isn't a decl ref, give up.
+ if (!isa<DeclRefExpr>(op)) {
+ S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
+ << OrigOp.get()->getSourceRange();
+ return QualType();
+ }
+ DeclRefExpr *DRE = cast<DeclRefExpr>(op);
+ CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
+
+ // The id-expression was parenthesized.
+ if (OrigOp.get() != DRE) {
+ S.Diag(OpLoc, diag::err_parens_pointer_member_function)
+ << OrigOp.get()->getSourceRange();
+
+ // The method was named without a qualifier.
+ } else if (!DRE->getQualifier()) {
+ S.Diag(OpLoc, diag::err_unqualified_pointer_member_function)
+ << op->getSourceRange();
+ }
+
+ return S.Context.getMemberPointerType(op->getType(),
+ S.Context.getTypeDeclType(MD->getParent()).getTypePtr());
+ } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
+ // C99 6.5.3.2p1
+ // The operand must be either an l-value or a function designator
+ if (!op->getType()->isFunctionType()) {
+ // Use a special diagnostic for loads from property references.
+ if (isa<PseudoObjectExpr>(op)) {
+ AddressOfError = AO_Property_Expansion;
+ } else {
+ // FIXME: emit more specific diag...
+ S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
+ << op->getSourceRange();
+ return QualType();
+ }
+ }
+ } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
+ // The operand cannot be a bit-field
+ AddressOfError = AO_Bit_Field;
+ } else if (op->getObjectKind() == OK_VectorComponent) {
+ // The operand cannot be an element of a vector
+ AddressOfError = AO_Vector_Element;
+ } else if (dcl) { // C99 6.5.3.2p1
+ // We have an lvalue with a decl. Make sure the decl is not declared
+ // with the register storage-class specifier.
+ if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
+ // in C++ it is not error to take address of a register
+ // variable (c++03 7.1.1P3)
+ if (vd->getStorageClass() == SC_Register &&
+ !S.getLangOpts().CPlusPlus) {
+ AddressOfError = AO_Register_Variable;
+ }
+ } else if (isa<FunctionTemplateDecl>(dcl)) {
+ return S.Context.OverloadTy;
+ } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
+ // Okay: we can take the address of a field.
+ // Could be a pointer to member, though, if there is an explicit
+ // scope qualifier for the class.
+ if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
+ DeclContext *Ctx = dcl->getDeclContext();
+ if (Ctx && Ctx->isRecord()) {
+ if (dcl->getType()->isReferenceType()) {
+ S.Diag(OpLoc,
+ diag::err_cannot_form_pointer_to_member_of_reference_type)
+ << dcl->getDeclName() << dcl->getType();
+ return QualType();
+ }
+
+ while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
+ Ctx = Ctx->getParent();
+ return S.Context.getMemberPointerType(op->getType(),
+ S.Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
+ }
+ }
+ } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl))
+ llvm_unreachable("Unknown/unexpected decl type");
+ }
+
+ if (AddressOfError != AO_No_Error) {
+ diagnoseAddressOfInvalidType(S, OpLoc, op, AddressOfError);
+ return QualType();
+ }
+
+ if (lval == Expr::LV_IncompleteVoidType) {
+ // Taking the address of a void variable is technically illegal, but we
+ // allow it in cases which are otherwise valid.
+ // Example: "extern void x; void* y = &x;".
+ S.Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
+ }
+
+ // If the operand has type "type", the result has type "pointer to type".
+ if (op->getType()->isObjCObjectType())
+ return S.Context.getObjCObjectPointerType(op->getType());
+ return S.Context.getPointerType(op->getType());
+}
+
+/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
+static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
+ SourceLocation OpLoc) {
+ if (Op->isTypeDependent())
+ return S.Context.DependentTy;
+
+ ExprResult ConvResult = S.UsualUnaryConversions(Op);
+ if (ConvResult.isInvalid())
+ return QualType();
+ Op = ConvResult.take();
+ QualType OpTy = Op->getType();
+ QualType Result;
+
+ if (isa<CXXReinterpretCastExpr>(Op)) {
+ QualType OpOrigType = Op->IgnoreParenCasts()->getType();
+ S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
+ Op->getSourceRange());
+ }
+
+ // Note that per both C89 and C99, indirection is always legal, even if OpTy
+ // is an incomplete type or void. It would be possible to warn about
+ // dereferencing a void pointer, but it's completely well-defined, and such a
+ // warning is unlikely to catch any mistakes.
+ if (const PointerType *PT = OpTy->getAs<PointerType>())
+ Result = PT->getPointeeType();
+ else if (const ObjCObjectPointerType *OPT =
+ OpTy->getAs<ObjCObjectPointerType>())
+ Result = OPT->getPointeeType();
+ else {
+ ExprResult PR = S.CheckPlaceholderExpr(Op);
+ if (PR.isInvalid()) return QualType();
+ if (PR.take() != Op)
+ return CheckIndirectionOperand(S, PR.take(), VK, OpLoc);
+ }
+
+ if (Result.isNull()) {
+ S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
+ << OpTy << Op->getSourceRange();
+ return QualType();
+ }
+
+ // Dereferences are usually l-values...
+ VK = VK_LValue;
+
+ // ...except that certain expressions are never l-values in C.
+ if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
+ VK = VK_RValue;
+
+ return Result;
+}
+
+static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode(
+ tok::TokenKind Kind) {
+ BinaryOperatorKind Opc;
+ switch (Kind) {
+ default: llvm_unreachable("Unknown binop!");
+ case tok::periodstar: Opc = BO_PtrMemD; break;
+ case tok::arrowstar: Opc = BO_PtrMemI; break;
+ case tok::star: Opc = BO_Mul; break;
+ case tok::slash: Opc = BO_Div; break;
+ case tok::percent: Opc = BO_Rem; break;
+ case tok::plus: Opc = BO_Add; break;
+ case tok::minus: Opc = BO_Sub; break;
+ case tok::lessless: Opc = BO_Shl; break;
+ case tok::greatergreater: Opc = BO_Shr; break;
+ case tok::lessequal: Opc = BO_LE; break;
+ case tok::less: Opc = BO_LT; break;
+ case tok::greaterequal: Opc = BO_GE; break;
+ case tok::greater: Opc = BO_GT; break;
+ case tok::exclaimequal: Opc = BO_NE; break;
+ case tok::equalequal: Opc = BO_EQ; break;
+ case tok::amp: Opc = BO_And; break;
+ case tok::caret: Opc = BO_Xor; break;
+ case tok::pipe: Opc = BO_Or; break;
+ case tok::ampamp: Opc = BO_LAnd; break;
+ case tok::pipepipe: Opc = BO_LOr; break;
+ case tok::equal: Opc = BO_Assign; break;
+ case tok::starequal: Opc = BO_MulAssign; break;
+ case tok::slashequal: Opc = BO_DivAssign; break;
+ case tok::percentequal: Opc = BO_RemAssign; break;
+ case tok::plusequal: Opc = BO_AddAssign; break;
+ case tok::minusequal: Opc = BO_SubAssign; break;
+ case tok::lesslessequal: Opc = BO_ShlAssign; break;
+ case tok::greatergreaterequal: Opc = BO_ShrAssign; break;
+ case tok::ampequal: Opc = BO_AndAssign; break;
+ case tok::caretequal: Opc = BO_XorAssign; break;
+ case tok::pipeequal: Opc = BO_OrAssign; break;
+ case tok::comma: Opc = BO_Comma; break;
+ }
+ return Opc;
+}
+
+static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
+ tok::TokenKind Kind) {
+ UnaryOperatorKind Opc;
+ switch (Kind) {
+ default: llvm_unreachable("Unknown unary op!");
+ case tok::plusplus: Opc = UO_PreInc; break;
+ case tok::minusminus: Opc = UO_PreDec; break;
+ case tok::amp: Opc = UO_AddrOf; break;
+ case tok::star: Opc = UO_Deref; break;
+ case tok::plus: Opc = UO_Plus; break;
+ case tok::minus: Opc = UO_Minus; break;
+ case tok::tilde: Opc = UO_Not; break;
+ case tok::exclaim: Opc = UO_LNot; break;
+ case tok::kw___real: Opc = UO_Real; break;
+ case tok::kw___imag: Opc = UO_Imag; break;
+ case tok::kw___extension__: Opc = UO_Extension; break;
+ }
+ return Opc;
+}
+
+/// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
+/// This warning is only emitted for builtin assignment operations. It is also
+/// suppressed in the event of macro expansions.
+static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
+ SourceLocation OpLoc) {
+ if (!S.ActiveTemplateInstantiations.empty())
+ return;
+ if (OpLoc.isInvalid() || OpLoc.isMacroID())
+ return;
+ LHSExpr = LHSExpr->IgnoreParenImpCasts();
+ RHSExpr = RHSExpr->IgnoreParenImpCasts();
+ const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
+ const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
+ if (!LHSDeclRef || !RHSDeclRef ||
+ LHSDeclRef->getLocation().isMacroID() ||
+ RHSDeclRef->getLocation().isMacroID())
+ return;
+ const ValueDecl *LHSDecl =
+ cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
+ const ValueDecl *RHSDecl =
+ cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
+ if (LHSDecl != RHSDecl)
+ return;
+ if (LHSDecl->getType().isVolatileQualified())
+ return;
+ if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
+ if (RefTy->getPointeeType().isVolatileQualified())
+ return;
+
+ S.Diag(OpLoc, diag::warn_self_assignment)
+ << LHSDeclRef->getType()
+ << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
+}
+
+/// CreateBuiltinBinOp - Creates a new built-in binary operation with
+/// operator @p Opc at location @c TokLoc. This routine only supports
+/// built-in operations; ActOnBinOp handles overloaded operators.
+ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
+ BinaryOperatorKind Opc,
+ Expr *LHSExpr, Expr *RHSExpr) {
+ if (getLangOpts().CPlusPlus0x && isa<InitListExpr>(RHSExpr)) {
+ // The syntax only allows initializer lists on the RHS of assignment,
+ // so we don't need to worry about accepting invalid code for
+ // non-assignment operators.
+ // C++11 5.17p9:
+ // The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
+ // of x = {} is x = T().
+ InitializationKind Kind =
+ InitializationKind::CreateDirectList(RHSExpr->getLocStart());
+ InitializedEntity Entity =
+ InitializedEntity::InitializeTemporary(LHSExpr->getType());
+ InitializationSequence InitSeq(*this, Entity, Kind, &RHSExpr, 1);
+ ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
+ MultiExprArg(&RHSExpr, 1));
+ if (Init.isInvalid())
+ return Init;
+ RHSExpr = Init.take();
+ }
+
+ ExprResult LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
+ QualType ResultTy; // Result type of the binary operator.
+ // The following two variables are used for compound assignment operators
+ QualType CompLHSTy; // Type of LHS after promotions for computation
+ QualType CompResultTy; // Type of computation result
+ ExprValueKind VK = VK_RValue;
+ ExprObjectKind OK = OK_Ordinary;
+
+ switch (Opc) {
+ case BO_Assign:
+ ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
+ if (getLangOpts().CPlusPlus &&
+ LHS.get()->getObjectKind() != OK_ObjCProperty) {
+ VK = LHS.get()->getValueKind();
+ OK = LHS.get()->getObjectKind();
+ }
+ if (!ResultTy.isNull())
+ DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
+ break;
+ case BO_PtrMemD:
+ case BO_PtrMemI:
+ ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
+ Opc == BO_PtrMemI);
+ break;
+ case BO_Mul:
+ case BO_Div:
+ ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
+ Opc == BO_Div);
+ break;
+ case BO_Rem:
+ ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
+ break;
+ case BO_Add:
+ ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
+ break;
+ case BO_Sub:
+ ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
+ break;
+ case BO_Shl:
+ case BO_Shr:
+ ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
+ break;
+ case BO_LE:
+ case BO_LT:
+ case BO_GE:
+ case BO_GT:
+ ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, true);
+ break;
+ case BO_EQ:
+ case BO_NE:
+ ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, false);
+ break;
+ case BO_And:
+ case BO_Xor:
+ case BO_Or:
+ ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc);
+ break;
+ case BO_LAnd:
+ case BO_LOr:
+ ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
+ break;
+ case BO_MulAssign:
+ case BO_DivAssign:
+ CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
+ Opc == BO_DivAssign);
+ CompLHSTy = CompResultTy;
+ if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
+ ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
+ break;
+ case BO_RemAssign:
+ CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
+ CompLHSTy = CompResultTy;
+ if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
+ ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
+ break;
+ case BO_AddAssign:
+ CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
+ if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
+ ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
+ break;
+ case BO_SubAssign:
+ CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
+ if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
+ ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
+ break;
+ case BO_ShlAssign:
+ case BO_ShrAssign:
+ CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
+ CompLHSTy = CompResultTy;
+ if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
+ ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
+ break;
+ case BO_AndAssign:
+ case BO_XorAssign:
+ case BO_OrAssign:
+ CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, true);
+ CompLHSTy = CompResultTy;
+ if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
+ ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
+ break;
+ case BO_Comma:
+ ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
+ if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
+ VK = RHS.get()->getValueKind();
+ OK = RHS.get()->getObjectKind();
+ }
+ break;
+ }
+ if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
+ return ExprError();
+
+ // Check for array bounds violations for both sides of the BinaryOperator
+ CheckArrayAccess(LHS.get());
+ CheckArrayAccess(RHS.get());
+
+ if (CompResultTy.isNull())
+ return Owned(new (Context) BinaryOperator(LHS.take(), RHS.take(), Opc,
+ ResultTy, VK, OK, OpLoc));
+ if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
+ OK_ObjCProperty) {
+ VK = VK_LValue;
+ OK = LHS.get()->getObjectKind();
+ }
+ return Owned(new (Context) CompoundAssignOperator(LHS.take(), RHS.take(), Opc,
+ ResultTy, VK, OK, CompLHSTy,
+ CompResultTy, OpLoc));
+}
+
+/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
+/// operators are mixed in a way that suggests that the programmer forgot that
+/// comparison operators have higher precedence. The most typical example of
+/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
+static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
+ SourceLocation OpLoc, Expr *LHSExpr,
+ Expr *RHSExpr) {
+ typedef BinaryOperator BinOp;
+ BinOp::Opcode LHSopc = static_cast<BinOp::Opcode>(-1),
+ RHSopc = static_cast<BinOp::Opcode>(-1);
+ if (BinOp *BO = dyn_cast<BinOp>(LHSExpr))
+ LHSopc = BO->getOpcode();
+ if (BinOp *BO = dyn_cast<BinOp>(RHSExpr))
+ RHSopc = BO->getOpcode();
+
+ // Subs are not binary operators.
+ if (LHSopc == -1 && RHSopc == -1)
+ return;
+
+ // Bitwise operations are sometimes used as eager logical ops.
+ // Don't diagnose this.
+ if ((BinOp::isComparisonOp(LHSopc) || BinOp::isBitwiseOp(LHSopc)) &&
+ (BinOp::isComparisonOp(RHSopc) || BinOp::isBitwiseOp(RHSopc)))
+ return;
+
+ bool isLeftComp = BinOp::isComparisonOp(LHSopc);
+ bool isRightComp = BinOp::isComparisonOp(RHSopc);
+ if (!isLeftComp && !isRightComp) return;
+
+ SourceRange DiagRange = isLeftComp ? SourceRange(LHSExpr->getLocStart(),
+ OpLoc)
+ : SourceRange(OpLoc, RHSExpr->getLocEnd());
+ std::string OpStr = isLeftComp ? BinOp::getOpcodeStr(LHSopc)
+ : BinOp::getOpcodeStr(RHSopc);
+ SourceRange ParensRange = isLeftComp ?
+ SourceRange(cast<BinOp>(LHSExpr)->getRHS()->getLocStart(),
+ RHSExpr->getLocEnd())
+ : SourceRange(LHSExpr->getLocStart(),
+ cast<BinOp>(RHSExpr)->getLHS()->getLocStart());
+
+ Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
+ << DiagRange << BinOp::getOpcodeStr(Opc) << OpStr;
+ SuggestParentheses(Self, OpLoc,
+ Self.PDiag(diag::note_precedence_bitwise_silence) << OpStr,
+ RHSExpr->getSourceRange());
+ SuggestParentheses(Self, OpLoc,
+ Self.PDiag(diag::note_precedence_bitwise_first) << BinOp::getOpcodeStr(Opc),
+ ParensRange);
+}
+
+/// \brief It accepts a '&' expr that is inside a '|' one.
+/// Emit a diagnostic together with a fixit hint that wraps the '&' expression
+/// in parentheses.
+static void
+EmitDiagnosticForBitwiseAndInBitwiseOr(Sema &Self, SourceLocation OpLoc,
+ BinaryOperator *Bop) {
+ assert(Bop->getOpcode() == BO_And);
+ Self.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_and_in_bitwise_or)
+ << Bop->getSourceRange() << OpLoc;
+ SuggestParentheses(Self, Bop->getOperatorLoc(),
+ Self.PDiag(diag::note_bitwise_and_in_bitwise_or_silence),
+ Bop->getSourceRange());
+}
+
+/// \brief It accepts a '&&' expr that is inside a '||' one.
+/// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
+/// in parentheses.
+static void
+EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
+ BinaryOperator *Bop) {
+ assert(Bop->getOpcode() == BO_LAnd);
+ Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
+ << Bop->getSourceRange() << OpLoc;
+ SuggestParentheses(Self, Bop->getOperatorLoc(),
+ Self.PDiag(diag::note_logical_and_in_logical_or_silence),
+ Bop->getSourceRange());
+}
+
+/// \brief Returns true if the given expression can be evaluated as a constant
+/// 'true'.
+static bool EvaluatesAsTrue(Sema &S, Expr *E) {
+ bool Res;
+ return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
+}
+
+/// \brief Returns true if the given expression can be evaluated as a constant
+/// 'false'.
+static bool EvaluatesAsFalse(Sema &S, Expr *E) {
+ bool Res;
+ return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
+}
+
+/// \brief Look for '&&' in the left hand of a '||' expr.
+static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
+ Expr *LHSExpr, Expr *RHSExpr) {
+ if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
+ if (Bop->getOpcode() == BO_LAnd) {
+ // If it's "a && b || 0" don't warn since the precedence doesn't matter.
+ if (EvaluatesAsFalse(S, RHSExpr))
+ return;
+ // If it's "1 && a || b" don't warn since the precedence doesn't matter.
+ if (!EvaluatesAsTrue(S, Bop->getLHS()))
+ return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
+ } else if (Bop->getOpcode() == BO_LOr) {
+ if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
+ // If it's "a || b && 1 || c" we didn't warn earlier for
+ // "a || b && 1", but warn now.
+ if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
+ return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
+ }
+ }
+ }
+}
+
+/// \brief Look for '&&' in the right hand of a '||' expr.
+static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
+ Expr *LHSExpr, Expr *RHSExpr) {
+ if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
+ if (Bop->getOpcode() == BO_LAnd) {
+ // If it's "0 || a && b" don't warn since the precedence doesn't matter.
+ if (EvaluatesAsFalse(S, LHSExpr))
+ return;
+ // If it's "a || b && 1" don't warn since the precedence doesn't matter.
+ if (!EvaluatesAsTrue(S, Bop->getRHS()))
+ return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
+ }
+ }
+}
+
+/// \brief Look for '&' in the left or right hand of a '|' expr.
+static void DiagnoseBitwiseAndInBitwiseOr(Sema &S, SourceLocation OpLoc,
+ Expr *OrArg) {
+ if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrArg)) {
+ if (Bop->getOpcode() == BO_And)
+ return EmitDiagnosticForBitwiseAndInBitwiseOr(S, OpLoc, Bop);
+ }
+}
+
+/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
+/// precedence.
+static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
+ SourceLocation OpLoc, Expr *LHSExpr,
+ Expr *RHSExpr){
+ // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
+ if (BinaryOperator::isBitwiseOp(Opc))
+ DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
+
+ // Diagnose "arg1 & arg2 | arg3"
+ if (Opc == BO_Or && !OpLoc.isMacroID()/* Don't warn in macros. */) {
+ DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, LHSExpr);
+ DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, RHSExpr);
+ }
+
+ // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
+ // We don't warn for 'assert(a || b && "bad")' since this is safe.
+ if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
+ DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
+ DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
+ }
+}
+
+// Binary Operators. 'Tok' is the token for the operator.
+ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
+ tok::TokenKind Kind,
+ Expr *LHSExpr, Expr *RHSExpr) {
+ BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
+ assert((LHSExpr != 0) && "ActOnBinOp(): missing left expression");
+ assert((RHSExpr != 0) && "ActOnBinOp(): missing right expression");
+
+ // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
+ DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
+
+ return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
+}
+
+/// Build an overloaded binary operator expression in the given scope.
+static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
+ BinaryOperatorKind Opc,
+ Expr *LHS, Expr *RHS) {
+ // Find all of the overloaded operators visible from this
+ // point. We perform both an operator-name lookup from the local
+ // scope and an argument-dependent lookup based on the types of
+ // the arguments.
+ UnresolvedSet<16> Functions;
+ OverloadedOperatorKind OverOp
+ = BinaryOperator::getOverloadedOperator(Opc);
+ if (Sc && OverOp != OO_None)
+ S.LookupOverloadedOperatorName(OverOp, Sc, LHS->getType(),
+ RHS->getType(), Functions);
+
+ // Build the (potentially-overloaded, potentially-dependent)
+ // binary operation.
+ return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
+}
+
+ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
+ BinaryOperatorKind Opc,
+ Expr *LHSExpr, Expr *RHSExpr) {
+ // We want to end up calling one of checkPseudoObjectAssignment
+ // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
+ // both expressions are overloadable or either is type-dependent),
+ // or CreateBuiltinBinOp (in any other case). We also want to get
+ // any placeholder types out of the way.
+
+ // Handle pseudo-objects in the LHS.
+ if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
+ // Assignments with a pseudo-object l-value need special analysis.
+ if (pty->getKind() == BuiltinType::PseudoObject &&
+ BinaryOperator::isAssignmentOp(Opc))
+ return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
+
+ // Don't resolve overloads if the other type is overloadable.
+ if (pty->getKind() == BuiltinType::Overload) {
+ // We can't actually test that if we still have a placeholder,
+ // though. Fortunately, none of the exceptions we see in that
+ // code below are valid when the LHS is an overload set. Note
+ // that an overload set can be dependently-typed, but it never
+ // instantiates to having an overloadable type.
+ ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
+ if (resolvedRHS.isInvalid()) return ExprError();
+ RHSExpr = resolvedRHS.take();
+
+ if (RHSExpr->isTypeDependent() ||
+ RHSExpr->getType()->isOverloadableType())
+ return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
+ }
+
+ ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
+ if (LHS.isInvalid()) return ExprError();
+ LHSExpr = LHS.take();
+ }
+
+ // Handle pseudo-objects in the RHS.
+ if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
+ // An overload in the RHS can potentially be resolved by the type
+ // being assigned to.
+ if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
+ if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
+ return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
+
+ if (LHSExpr->getType()->isOverloadableType())
+ return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
+
+ return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
+ }
+
+ // Don't resolve overloads if the other type is overloadable.
+ if (pty->getKind() == BuiltinType::Overload &&
+ LHSExpr->getType()->isOverloadableType())
+ return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
+
+ ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
+ if (!resolvedRHS.isUsable()) return ExprError();
+ RHSExpr = resolvedRHS.take();
+ }
+
+ if (getLangOpts().CPlusPlus) {
+ // If either expression is type-dependent, always build an
+ // overloaded op.
+ if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
+ return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
+
+ // Otherwise, build an overloaded op if either expression has an
+ // overloadable type.
+ if (LHSExpr->getType()->isOverloadableType() ||
+ RHSExpr->getType()->isOverloadableType())
+ return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
+ }
+
+ // Build a built-in binary operation.
+ return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
+}
+
+ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
+ UnaryOperatorKind Opc,
+ Expr *InputExpr) {
+ ExprResult Input = Owned(InputExpr);
+ ExprValueKind VK = VK_RValue;
+ ExprObjectKind OK = OK_Ordinary;
+ QualType resultType;
+ switch (Opc) {
+ case UO_PreInc:
+ case UO_PreDec:
+ case UO_PostInc:
+ case UO_PostDec:
+ resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OpLoc,
+ Opc == UO_PreInc ||
+ Opc == UO_PostInc,
+ Opc == UO_PreInc ||
+ Opc == UO_PreDec);
+ break;
+ case UO_AddrOf:
+ resultType = CheckAddressOfOperand(*this, Input, OpLoc);
+ break;
+ case UO_Deref: {
+ Input = DefaultFunctionArrayLvalueConversion(Input.take());
+ resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
+ break;
+ }
+ case UO_Plus:
+ case UO_Minus:
+ Input = UsualUnaryConversions(Input.take());
+ if (Input.isInvalid()) return ExprError();
+ resultType = Input.get()->getType();
+ if (resultType->isDependentType())
+ break;
+ if (resultType->isArithmeticType() || // C99 6.5.3.3p1
+ resultType->isVectorType())
+ break;
+ else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6-7
+ resultType->isEnumeralType())
+ break;
+ else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
+ Opc == UO_Plus &&
+ resultType->isPointerType())
+ break;
+
+ return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
+ << resultType << Input.get()->getSourceRange());
+
+ case UO_Not: // bitwise complement
+ Input = UsualUnaryConversions(Input.take());
+ if (Input.isInvalid()) return ExprError();
+ resultType = Input.get()->getType();
+ if (resultType->isDependentType())
+ break;
+ // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
+ if (resultType->isComplexType() || resultType->isComplexIntegerType())
+ // C99 does not support '~' for complex conjugation.
+ Diag(OpLoc, diag::ext_integer_complement_complex)
+ << resultType << Input.get()->getSourceRange();
+ else if (resultType->hasIntegerRepresentation())
+ break;
+ else {
+ return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
+ << resultType << Input.get()->getSourceRange());
+ }
+ break;
+
+ case UO_LNot: // logical negation
+ // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
+ Input = DefaultFunctionArrayLvalueConversion(Input.take());
+ if (Input.isInvalid()) return ExprError();
+ resultType = Input.get()->getType();
+
+ // Though we still have to promote half FP to float...
+ if (resultType->isHalfType()) {
+ Input = ImpCastExprToType(Input.take(), Context.FloatTy, CK_FloatingCast).take();
+ resultType = Context.FloatTy;
+ }
+
+ if (resultType->isDependentType())
+ break;
+ if (resultType->isScalarType()) {
+ // C99 6.5.3.3p1: ok, fallthrough;
+ if (Context.getLangOpts().CPlusPlus) {
+ // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
+ // operand contextually converted to bool.
+ Input = ImpCastExprToType(Input.take(), Context.BoolTy,
+ ScalarTypeToBooleanCastKind(resultType));
+ }
+ } else if (resultType->isExtVectorType()) {
+ // Vector logical not returns the signed variant of the operand type.
+ resultType = GetSignedVectorType(resultType);
+ break;
+ } else {
+ return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
+ << resultType << Input.get()->getSourceRange());
+ }
+
+ // LNot always has type int. C99 6.5.3.3p5.
+ // In C++, it's bool. C++ 5.3.1p8
+ resultType = Context.getLogicalOperationType();
+ break;
+ case UO_Real:
+ case UO_Imag:
+ resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
+ // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
+ // complex l-values to ordinary l-values and all other values to r-values.
+ if (Input.isInvalid()) return ExprError();
+ if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
+ if (Input.get()->getValueKind() != VK_RValue &&
+ Input.get()->getObjectKind() == OK_Ordinary)
+ VK = Input.get()->getValueKind();
+ } else if (!getLangOpts().CPlusPlus) {
+ // In C, a volatile scalar is read by __imag. In C++, it is not.
+ Input = DefaultLvalueConversion(Input.take());
+ }
+ break;
+ case UO_Extension:
+ resultType = Input.get()->getType();
+ VK = Input.get()->getValueKind();
+ OK = Input.get()->getObjectKind();
+ break;
+ }
+ if (resultType.isNull() || Input.isInvalid())
+ return ExprError();
+
+ // Check for array bounds violations in the operand of the UnaryOperator,
+ // except for the '*' and '&' operators that have to be handled specially
+ // by CheckArrayAccess (as there are special cases like &array[arraysize]
+ // that are explicitly defined as valid by the standard).
+ if (Opc != UO_AddrOf && Opc != UO_Deref)
+ CheckArrayAccess(Input.get());
+
+ return Owned(new (Context) UnaryOperator(Input.take(), Opc, resultType,
+ VK, OK, OpLoc));
+}
+
+/// \brief Determine whether the given expression is a qualified member
+/// access expression, of a form that could be turned into a pointer to member
+/// with the address-of operator.
+static bool isQualifiedMemberAccess(Expr *E) {
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
+ if (!DRE->getQualifier())
+ return false;
+
+ ValueDecl *VD = DRE->getDecl();
+ if (!VD->isCXXClassMember())
+ return false;
+
+ if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
+ return true;
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
+ return Method->isInstance();
+
+ return false;
+ }
+
+ if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
+ if (!ULE->getQualifier())
+ return false;
+
+ for (UnresolvedLookupExpr::decls_iterator D = ULE->decls_begin(),
+ DEnd = ULE->decls_end();
+ D != DEnd; ++D) {
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*D)) {
+ if (Method->isInstance())
+ return true;
+ } else {
+ // Overload set does not contain methods.
+ break;
+ }
+ }
+
+ return false;
+ }
+
+ return false;
+}
+
+ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
+ UnaryOperatorKind Opc, Expr *Input) {
+ // First things first: handle placeholders so that the
+ // overloaded-operator check considers the right type.
+ if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
+ // Increment and decrement of pseudo-object references.
+ if (pty->getKind() == BuiltinType::PseudoObject &&
+ UnaryOperator::isIncrementDecrementOp(Opc))
+ return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
+
+ // extension is always a builtin operator.
+ if (Opc == UO_Extension)
+ return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
+
+ // & gets special logic for several kinds of placeholder.
+ // The builtin code knows what to do.
+ if (Opc == UO_AddrOf &&
+ (pty->getKind() == BuiltinType::Overload ||
+ pty->getKind() == BuiltinType::UnknownAny ||
+ pty->getKind() == BuiltinType::BoundMember))
+ return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
+
+ // Anything else needs to be handled now.
+ ExprResult Result = CheckPlaceholderExpr(Input);
+ if (Result.isInvalid()) return ExprError();
+ Input = Result.take();
+ }
+
+ if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
+ UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
+ !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
+ // Find all of the overloaded operators visible from this
+ // point. We perform both an operator-name lookup from the local
+ // scope and an argument-dependent lookup based on the types of
+ // the arguments.
+ UnresolvedSet<16> Functions;
+ OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
+ if (S && OverOp != OO_None)
+ LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
+ Functions);
+
+ return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
+ }
+
+ return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
+}
+
+// Unary Operators. 'Tok' is the token for the operator.
+ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
+ tok::TokenKind Op, Expr *Input) {
+ return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
+}
+
+/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
+ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
+ LabelDecl *TheDecl) {
+ TheDecl->setUsed();
+ // Create the AST node. The address of a label always has type 'void*'.
+ return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
+ Context.getPointerType(Context.VoidTy)));
+}
+
+/// Given the last statement in a statement-expression, check whether
+/// the result is a producing expression (like a call to an
+/// ns_returns_retained function) and, if so, rebuild it to hoist the
+/// release out of the full-expression. Otherwise, return null.
+/// Cannot fail.
+static Expr *maybeRebuildARCConsumingStmt(Stmt *Statement) {
+ // Should always be wrapped with one of these.
+ ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Statement);
+ if (!cleanups) return 0;
+
+ ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(cleanups->getSubExpr());
+ if (!cast || cast->getCastKind() != CK_ARCConsumeObject)
+ return 0;
+
+ // Splice out the cast. This shouldn't modify any interesting
+ // features of the statement.
+ Expr *producer = cast->getSubExpr();
+ assert(producer->getType() == cast->getType());
+ assert(producer->getValueKind() == cast->getValueKind());
+ cleanups->setSubExpr(producer);
+ return cleanups;
+}
+
+void Sema::ActOnStartStmtExpr() {
+ PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
+}
+
+void Sema::ActOnStmtExprError() {
+ // Note that function is also called by TreeTransform when leaving a
+ // StmtExpr scope without rebuilding anything.
+
+ DiscardCleanupsInEvaluationContext();
+ PopExpressionEvaluationContext();
+}
+
+ExprResult
+Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
+ SourceLocation RPLoc) { // "({..})"
+ assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
+ CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
+
+ if (hasAnyUnrecoverableErrorsInThisFunction())
+ DiscardCleanupsInEvaluationContext();
+ assert(!ExprNeedsCleanups && "cleanups within StmtExpr not correctly bound!");
+ PopExpressionEvaluationContext();
+
+ bool isFileScope
+ = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
+ if (isFileScope)
+ return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
+
+ // FIXME: there are a variety of strange constraints to enforce here, for
+ // example, it is not possible to goto into a stmt expression apparently.
+ // More semantic analysis is needed.
+
+ // If there are sub stmts in the compound stmt, take the type of the last one
+ // as the type of the stmtexpr.
+ QualType Ty = Context.VoidTy;
+ bool StmtExprMayBindToTemp = false;
+ if (!Compound->body_empty()) {
+ Stmt *LastStmt = Compound->body_back();
+ LabelStmt *LastLabelStmt = 0;
+ // If LastStmt is a label, skip down through into the body.
+ while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
+ LastLabelStmt = Label;
+ LastStmt = Label->getSubStmt();
+ }
+
+ if (Expr *LastE = dyn_cast<Expr>(LastStmt)) {
+ // Do function/array conversion on the last expression, but not
+ // lvalue-to-rvalue. However, initialize an unqualified type.
+ ExprResult LastExpr = DefaultFunctionArrayConversion(LastE);
+ if (LastExpr.isInvalid())
+ return ExprError();
+ Ty = LastExpr.get()->getType().getUnqualifiedType();
+
+ if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) {
+ // In ARC, if the final expression ends in a consume, splice
+ // the consume out and bind it later. In the alternate case
+ // (when dealing with a retainable type), the result
+ // initialization will create a produce. In both cases the
+ // result will be +1, and we'll need to balance that out with
+ // a bind.
+ if (Expr *rebuiltLastStmt
+ = maybeRebuildARCConsumingStmt(LastExpr.get())) {
+ LastExpr = rebuiltLastStmt;
+ } else {
+ LastExpr = PerformCopyInitialization(
+ InitializedEntity::InitializeResult(LPLoc,
+ Ty,
+ false),
+ SourceLocation(),
+ LastExpr);
+ }
+
+ if (LastExpr.isInvalid())
+ return ExprError();
+ if (LastExpr.get() != 0) {
+ if (!LastLabelStmt)
+ Compound->setLastStmt(LastExpr.take());
+ else
+ LastLabelStmt->setSubStmt(LastExpr.take());
+ StmtExprMayBindToTemp = true;
+ }
+ }
+ }
+ }
+
+ // FIXME: Check that expression type is complete/non-abstract; statement
+ // expressions are not lvalues.
+ Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
+ if (StmtExprMayBindToTemp)
+ return MaybeBindToTemporary(ResStmtExpr);
+ return Owned(ResStmtExpr);
+}
+
+ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
+ TypeSourceInfo *TInfo,
+ OffsetOfComponent *CompPtr,
+ unsigned NumComponents,
+ SourceLocation RParenLoc) {
+ QualType ArgTy = TInfo->getType();
+ bool Dependent = ArgTy->isDependentType();
+ SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
+
+ // We must have at least one component that refers to the type, and the first
+ // one is known to be a field designator. Verify that the ArgTy represents
+ // a struct/union/class.
+ if (!Dependent && !ArgTy->isRecordType())
+ return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
+ << ArgTy << TypeRange);
+
+ // Type must be complete per C99 7.17p3 because a declaring a variable
+ // with an incomplete type would be ill-formed.
+ if (!Dependent
+ && RequireCompleteType(BuiltinLoc, ArgTy,
+ PDiag(diag::err_offsetof_incomplete_type)
+ << TypeRange))
+ return ExprError();
+
+ // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
+ // GCC extension, diagnose them.
+ // FIXME: This diagnostic isn't actually visible because the location is in
+ // a system header!
+ if (NumComponents != 1)
+ Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
+ << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
+
+ bool DidWarnAboutNonPOD = false;
+ QualType CurrentType = ArgTy;
+ typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
+ SmallVector<OffsetOfNode, 4> Comps;
+ SmallVector<Expr*, 4> Exprs;
+ for (unsigned i = 0; i != NumComponents; ++i) {
+ const OffsetOfComponent &OC = CompPtr[i];
+ if (OC.isBrackets) {
+ // Offset of an array sub-field. TODO: Should we allow vector elements?
+ if (!CurrentType->isDependentType()) {
+ const ArrayType *AT = Context.getAsArrayType(CurrentType);
+ if(!AT)
+ return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
+ << CurrentType);
+ CurrentType = AT->getElementType();
+ } else
+ CurrentType = Context.DependentTy;
+
+ ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
+ if (IdxRval.isInvalid())
+ return ExprError();
+ Expr *Idx = IdxRval.take();
+
+ // The expression must be an integral expression.
+ // FIXME: An integral constant expression?
+ if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
+ !Idx->getType()->isIntegerType())
+ return ExprError(Diag(Idx->getLocStart(),
+ diag::err_typecheck_subscript_not_integer)
+ << Idx->getSourceRange());
+
+ // Record this array index.
+ Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
+ Exprs.push_back(Idx);
+ continue;
+ }
+
+ // Offset of a field.
+ if (CurrentType->isDependentType()) {
+ // We have the offset of a field, but we can't look into the dependent
+ // type. Just record the identifier of the field.
+ Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
+ CurrentType = Context.DependentTy;
+ continue;
+ }
+
+ // We need to have a complete type to look into.
+ if (RequireCompleteType(OC.LocStart, CurrentType,
+ diag::err_offsetof_incomplete_type))
+ return ExprError();
+
+ // Look for the designated field.
+ const RecordType *RC = CurrentType->getAs<RecordType>();
+ if (!RC)
+ return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
+ << CurrentType);
+ RecordDecl *RD = RC->getDecl();
+
+ // C++ [lib.support.types]p5:
+ // The macro offsetof accepts a restricted set of type arguments in this
+ // International Standard. type shall be a POD structure or a POD union
+ // (clause 9).
+ if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
+ if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
+ DiagRuntimeBehavior(BuiltinLoc, 0,
+ PDiag(diag::warn_offsetof_non_pod_type)
+ << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
+ << CurrentType))
+ DidWarnAboutNonPOD = true;
+ }
+
+ // Look for the field.
+ LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
+ LookupQualifiedName(R, RD);
+ FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
+ IndirectFieldDecl *IndirectMemberDecl = 0;
+ if (!MemberDecl) {
+ if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
+ MemberDecl = IndirectMemberDecl->getAnonField();
+ }
+
+ if (!MemberDecl)
+ return ExprError(Diag(BuiltinLoc, diag::err_no_member)
+ << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
+ OC.LocEnd));
+
+ // C99 7.17p3:
+ // (If the specified member is a bit-field, the behavior is undefined.)
+ //
+ // We diagnose this as an error.
+ if (MemberDecl->isBitField()) {
+ Diag(OC.LocEnd, diag::err_offsetof_bitfield)
+ << MemberDecl->getDeclName()
+ << SourceRange(BuiltinLoc, RParenLoc);
+ Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
+ return ExprError();
+ }
+
+ RecordDecl *Parent = MemberDecl->getParent();
+ if (IndirectMemberDecl)
+ Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
+
+ // If the member was found in a base class, introduce OffsetOfNodes for
+ // the base class indirections.
+ CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
+ /*DetectVirtual=*/false);
+ if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
+ CXXBasePath &Path = Paths.front();
+ for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
+ B != BEnd; ++B)
+ Comps.push_back(OffsetOfNode(B->Base));
+ }
+
+ if (IndirectMemberDecl) {
+ for (IndirectFieldDecl::chain_iterator FI =
+ IndirectMemberDecl->chain_begin(),
+ FEnd = IndirectMemberDecl->chain_end(); FI != FEnd; FI++) {
+ assert(isa<FieldDecl>(*FI));
+ Comps.push_back(OffsetOfNode(OC.LocStart,
+ cast<FieldDecl>(*FI), OC.LocEnd));
+ }
+ } else
+ Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
+
+ CurrentType = MemberDecl->getType().getNonReferenceType();
+ }
+
+ return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc,
+ TInfo, Comps.data(), Comps.size(),
+ Exprs.data(), Exprs.size(), RParenLoc));
+}
+
+ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
+ SourceLocation BuiltinLoc,
+ SourceLocation TypeLoc,
+ ParsedType ParsedArgTy,
+ OffsetOfComponent *CompPtr,
+ unsigned NumComponents,
+ SourceLocation RParenLoc) {
+
+ TypeSourceInfo *ArgTInfo;
+ QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
+ if (ArgTy.isNull())
+ return ExprError();
+
+ if (!ArgTInfo)
+ ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
+
+ return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
+ RParenLoc);
+}
+
+
+ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
+ Expr *CondExpr,
+ Expr *LHSExpr, Expr *RHSExpr,
+ SourceLocation RPLoc) {
+ assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
+
+ ExprValueKind VK = VK_RValue;
+ ExprObjectKind OK = OK_Ordinary;
+ QualType resType;
+ bool ValueDependent = false;
+ if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
+ resType = Context.DependentTy;
+ ValueDependent = true;
+ } else {
+ // The conditional expression is required to be a constant expression.
+ llvm::APSInt condEval(32);
+ ExprResult CondICE = VerifyIntegerConstantExpression(CondExpr, &condEval,
+ PDiag(diag::err_typecheck_choose_expr_requires_constant), false);
+ if (CondICE.isInvalid())
+ return ExprError();
+ CondExpr = CondICE.take();
+
+ // If the condition is > zero, then the AST type is the same as the LSHExpr.
+ Expr *ActiveExpr = condEval.getZExtValue() ? LHSExpr : RHSExpr;
+
+ resType = ActiveExpr->getType();
+ ValueDependent = ActiveExpr->isValueDependent();
+ VK = ActiveExpr->getValueKind();
+ OK = ActiveExpr->getObjectKind();
+ }
+
+ return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
+ resType, VK, OK, RPLoc,
+ resType->isDependentType(),
+ ValueDependent));
+}
+
+//===----------------------------------------------------------------------===//
+// Clang Extensions.
+//===----------------------------------------------------------------------===//
+
+/// ActOnBlockStart - This callback is invoked when a block literal is started.
+void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
+ BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
+ PushBlockScope(CurScope, Block);
+ CurContext->addDecl(Block);
+ if (CurScope)
+ PushDeclContext(CurScope, Block);
+ else
+ CurContext = Block;
+
+ getCurBlock()->HasImplicitReturnType = true;
+
+ // Enter a new evaluation context to insulate the block from any
+ // cleanups from the enclosing full-expression.
+ PushExpressionEvaluationContext(PotentiallyEvaluated);
+}
+
+void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
+ assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
+ assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
+ BlockScopeInfo *CurBlock = getCurBlock();
+
+ TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
+ QualType T = Sig->getType();
+
+ // GetTypeForDeclarator always produces a function type for a block
+ // literal signature. Furthermore, it is always a FunctionProtoType
+ // unless the function was written with a typedef.
+ assert(T->isFunctionType() &&
+ "GetTypeForDeclarator made a non-function block signature");
+
+ // Look for an explicit signature in that function type.
+ FunctionProtoTypeLoc ExplicitSignature;
+
+ TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
+ if (isa<FunctionProtoTypeLoc>(tmp)) {
+ ExplicitSignature = cast<FunctionProtoTypeLoc>(tmp);
+
+ // Check whether that explicit signature was synthesized by
+ // GetTypeForDeclarator. If so, don't save that as part of the
+ // written signature.
+ if (ExplicitSignature.getLocalRangeBegin() ==
+ ExplicitSignature.getLocalRangeEnd()) {
+ // This would be much cheaper if we stored TypeLocs instead of
+ // TypeSourceInfos.
+ TypeLoc Result = ExplicitSignature.getResultLoc();
+ unsigned Size = Result.getFullDataSize();
+ Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
+ Sig->getTypeLoc().initializeFullCopy(Result, Size);
+
+ ExplicitSignature = FunctionProtoTypeLoc();
+ }
+ }
+
+ CurBlock->TheDecl->setSignatureAsWritten(Sig);
+ CurBlock->FunctionType = T;
+
+ const FunctionType *Fn = T->getAs<FunctionType>();
+ QualType RetTy = Fn->getResultType();
+ bool isVariadic =
+ (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
+
+ CurBlock->TheDecl->setIsVariadic(isVariadic);
+
+ // Don't allow returning a objc interface by value.
+ if (RetTy->isObjCObjectType()) {
+ Diag(ParamInfo.getLocStart(),
+ diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
+ return;
+ }
+
+ // Context.DependentTy is used as a placeholder for a missing block
+ // return type. TODO: what should we do with declarators like:
+ // ^ * { ... }
+ // If the answer is "apply template argument deduction"....
+ if (RetTy != Context.DependentTy) {
+ CurBlock->ReturnType = RetTy;
+ CurBlock->TheDecl->setBlockMissingReturnType(false);
+ CurBlock->HasImplicitReturnType = false;
+ }
+
+ // Push block parameters from the declarator if we had them.
+ SmallVector<ParmVarDecl*, 8> Params;
+ if (ExplicitSignature) {
+ for (unsigned I = 0, E = ExplicitSignature.getNumArgs(); I != E; ++I) {
+ ParmVarDecl *Param = ExplicitSignature.getArg(I);
+ if (Param->getIdentifier() == 0 &&
+ !Param->isImplicit() &&
+ !Param->isInvalidDecl() &&
+ !getLangOpts().CPlusPlus)
+ Diag(Param->getLocation(), diag::err_parameter_name_omitted);
+ Params.push_back(Param);
+ }
+
+ // Fake up parameter variables if we have a typedef, like
+ // ^ fntype { ... }
+ } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
+ for (FunctionProtoType::arg_type_iterator
+ I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
+ ParmVarDecl *Param =
+ BuildParmVarDeclForTypedef(CurBlock->TheDecl,
+ ParamInfo.getLocStart(),
+ *I);
+ Params.push_back(Param);
+ }
+ }
+
+ // Set the parameters on the block decl.
+ if (!Params.empty()) {
+ CurBlock->TheDecl->setParams(Params);
+ CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
+ CurBlock->TheDecl->param_end(),
+ /*CheckParameterNames=*/false);
+ }
+
+ // Finally we can process decl attributes.
+ ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
+
+ // Put the parameter variables in scope. We can bail out immediately
+ // if we don't have any.
+ if (Params.empty())
+ return;
+
+ for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
+ E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
+ (*AI)->setOwningFunction(CurBlock->TheDecl);
+
+ // If this has an identifier, add it to the scope stack.
+ if ((*AI)->getIdentifier()) {
+ CheckShadow(CurBlock->TheScope, *AI);
+
+ PushOnScopeChains(*AI, CurBlock->TheScope);
+ }
+ }
+}
+
+/// ActOnBlockError - If there is an error parsing a block, this callback
+/// is invoked to pop the information about the block from the action impl.
+void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
+ // Leave the expression-evaluation context.
+ DiscardCleanupsInEvaluationContext();
+ PopExpressionEvaluationContext();
+
+ // Pop off CurBlock, handle nested blocks.
+ PopDeclContext();
+ PopFunctionScopeInfo();
+}
+
+/// ActOnBlockStmtExpr - This is called when the body of a block statement
+/// literal was successfully completed. ^(int x){...}
+ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
+ Stmt *Body, Scope *CurScope) {
+ // If blocks are disabled, emit an error.
+ if (!LangOpts.Blocks)
+ Diag(CaretLoc, diag::err_blocks_disable);
+
+ // Leave the expression-evaluation context.
+ if (hasAnyUnrecoverableErrorsInThisFunction())
+ DiscardCleanupsInEvaluationContext();
+ assert(!ExprNeedsCleanups && "cleanups within block not correctly bound!");
+ PopExpressionEvaluationContext();
+
+ BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
+
+ PopDeclContext();
+
+ QualType RetTy = Context.VoidTy;
+ if (!BSI->ReturnType.isNull())
+ RetTy = BSI->ReturnType;
+
+ bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
+ QualType BlockTy;
+
+ // Set the captured variables on the block.
+ // FIXME: Share capture structure between BlockDecl and CapturingScopeInfo!
+ SmallVector<BlockDecl::Capture, 4> Captures;
+ for (unsigned i = 0, e = BSI->Captures.size(); i != e; i++) {
+ CapturingScopeInfo::Capture &Cap = BSI->Captures[i];
+ if (Cap.isThisCapture())
+ continue;
+ BlockDecl::Capture NewCap(Cap.getVariable(), Cap.isBlockCapture(),
+ Cap.isNested(), Cap.getCopyExpr());
+ Captures.push_back(NewCap);
+ }
+ BSI->TheDecl->setCaptures(Context, Captures.begin(), Captures.end(),
+ BSI->CXXThisCaptureIndex != 0);
+
+ // If the user wrote a function type in some form, try to use that.
+ if (!BSI->FunctionType.isNull()) {
+ const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
+
+ FunctionType::ExtInfo Ext = FTy->getExtInfo();
+ if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
+
+ // Turn protoless block types into nullary block types.
+ if (isa<FunctionNoProtoType>(FTy)) {
+ FunctionProtoType::ExtProtoInfo EPI;
+ EPI.ExtInfo = Ext;
+ BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
+
+ // Otherwise, if we don't need to change anything about the function type,
+ // preserve its sugar structure.
+ } else if (FTy->getResultType() == RetTy &&
+ (!NoReturn || FTy->getNoReturnAttr())) {
+ BlockTy = BSI->FunctionType;
+
+ // Otherwise, make the minimal modifications to the function type.
+ } else {
+ const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
+ FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
+ EPI.TypeQuals = 0; // FIXME: silently?
+ EPI.ExtInfo = Ext;
+ BlockTy = Context.getFunctionType(RetTy,
+ FPT->arg_type_begin(),
+ FPT->getNumArgs(),
+ EPI);
+ }
+
+ // If we don't have a function type, just build one from nothing.
+ } else {
+ FunctionProtoType::ExtProtoInfo EPI;
+ EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
+ BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
+ }
+
+ DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
+ BSI->TheDecl->param_end());
+ BlockTy = Context.getBlockPointerType(BlockTy);
+
+ // If needed, diagnose invalid gotos and switches in the block.
+ if (getCurFunction()->NeedsScopeChecking() &&
+ !hasAnyUnrecoverableErrorsInThisFunction())
+ DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
+
+ BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
+
+ computeNRVO(Body, getCurBlock());
+
+ BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
+ const AnalysisBasedWarnings::Policy &WP = AnalysisWarnings.getDefaultPolicy();
+ PopFunctionScopeInfo(&WP, Result->getBlockDecl(), Result);
+
+ // If the block isn't obviously global, i.e. it captures anything at
+ // all, then we need to do a few things in the surrounding context:
+ if (Result->getBlockDecl()->hasCaptures()) {
+ // First, this expression has a new cleanup object.
+ ExprCleanupObjects.push_back(Result->getBlockDecl());
+ ExprNeedsCleanups = true;
+
+ // It also gets a branch-protected scope if any of the captured
+ // variables needs destruction.
+ for (BlockDecl::capture_const_iterator
+ ci = Result->getBlockDecl()->capture_begin(),
+ ce = Result->getBlockDecl()->capture_end(); ci != ce; ++ci) {
+ const VarDecl *var = ci->getVariable();
+ if (var->getType().isDestructedType() != QualType::DK_none) {
+ getCurFunction()->setHasBranchProtectedScope();
+ break;
+ }
+ }
+ }
+
+ return Owned(Result);
+}
+
+ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
+ Expr *E, ParsedType Ty,
+ SourceLocation RPLoc) {
+ TypeSourceInfo *TInfo;
+ GetTypeFromParser(Ty, &TInfo);
+ return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
+}
+
+ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
+ Expr *E, TypeSourceInfo *TInfo,
+ SourceLocation RPLoc) {
+ Expr *OrigExpr = E;
+
+ // Get the va_list type
+ QualType VaListType = Context.getBuiltinVaListType();
+ if (VaListType->isArrayType()) {
+ // Deal with implicit array decay; for example, on x86-64,
+ // va_list is an array, but it's supposed to decay to
+ // a pointer for va_arg.
+ VaListType = Context.getArrayDecayedType(VaListType);
+ // Make sure the input expression also decays appropriately.
+ ExprResult Result = UsualUnaryConversions(E);
+ if (Result.isInvalid())
+ return ExprError();
+ E = Result.take();
+ } else {
+ // Otherwise, the va_list argument must be an l-value because
+ // it is modified by va_arg.
+ if (!E->isTypeDependent() &&
+ CheckForModifiableLvalue(E, BuiltinLoc, *this))
+ return ExprError();
+ }
+
+ if (!E->isTypeDependent() &&
+ !Context.hasSameType(VaListType, E->getType())) {
+ return ExprError(Diag(E->getLocStart(),
+ diag::err_first_argument_to_va_arg_not_of_type_va_list)
+ << OrigExpr->getType() << E->getSourceRange());
+ }
+
+ if (!TInfo->getType()->isDependentType()) {
+ if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
+ PDiag(diag::err_second_parameter_to_va_arg_incomplete)
+ << TInfo->getTypeLoc().getSourceRange()))
+ return ExprError();
+
+ if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
+ TInfo->getType(),
+ PDiag(diag::err_second_parameter_to_va_arg_abstract)
+ << TInfo->getTypeLoc().getSourceRange()))
+ return ExprError();
+
+ if (!TInfo->getType().isPODType(Context)) {
+ Diag(TInfo->getTypeLoc().getBeginLoc(),
+ TInfo->getType()->isObjCLifetimeType()
+ ? diag::warn_second_parameter_to_va_arg_ownership_qualified
+ : diag::warn_second_parameter_to_va_arg_not_pod)
+ << TInfo->getType()
+ << TInfo->getTypeLoc().getSourceRange();
+ }
+
+ // Check for va_arg where arguments of the given type will be promoted
+ // (i.e. this va_arg is guaranteed to have undefined behavior).
+ QualType PromoteType;
+ if (TInfo->getType()->isPromotableIntegerType()) {
+ PromoteType = Context.getPromotedIntegerType(TInfo->getType());
+ if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
+ PromoteType = QualType();
+ }
+ if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
+ PromoteType = Context.DoubleTy;
+ if (!PromoteType.isNull())
+ Diag(TInfo->getTypeLoc().getBeginLoc(),
+ diag::warn_second_parameter_to_va_arg_never_compatible)
+ << TInfo->getType()
+ << PromoteType
+ << TInfo->getTypeLoc().getSourceRange();
+ }
+
+ QualType T = TInfo->getType().getNonLValueExprType(Context);
+ return Owned(new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T));
+}
+
+ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
+ // The type of __null will be int or long, depending on the size of
+ // pointers on the target.
+ QualType Ty;
+ unsigned pw = Context.getTargetInfo().getPointerWidth(0);
+ if (pw == Context.getTargetInfo().getIntWidth())
+ Ty = Context.IntTy;
+ else if (pw == Context.getTargetInfo().getLongWidth())
+ Ty = Context.LongTy;
+ else if (pw == Context.getTargetInfo().getLongLongWidth())
+ Ty = Context.LongLongTy;
+ else {
+ llvm_unreachable("I don't know size of pointer!");
+ }
+
+ return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
+}
+
+static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
+ Expr *SrcExpr, FixItHint &Hint) {
+ if (!SemaRef.getLangOpts().ObjC1)
+ return;
+
+ const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
+ if (!PT)
+ return;
+
+ // Check if the destination is of type 'id'.
+ if (!PT->isObjCIdType()) {
+ // Check if the destination is the 'NSString' interface.
+ const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
+ if (!ID || !ID->getIdentifier()->isStr("NSString"))
+ return;
+ }
+
+ // Ignore any parens, implicit casts (should only be
+ // array-to-pointer decays), and not-so-opaque values. The last is
+ // important for making this trigger for property assignments.
+ SrcExpr = SrcExpr->IgnoreParenImpCasts();
+ if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
+ if (OV->getSourceExpr())
+ SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
+
+ StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr);
+ if (!SL || !SL->isAscii())
+ return;
+
+ Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
+}
+
+bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
+ SourceLocation Loc,
+ QualType DstType, QualType SrcType,
+ Expr *SrcExpr, AssignmentAction Action,
+ bool *Complained) {
+ if (Complained)
+ *Complained = false;
+
+ // Decode the result (notice that AST's are still created for extensions).
+ bool CheckInferredResultType = false;
+ bool isInvalid = false;
+ unsigned DiagKind = 0;
+ FixItHint Hint;
+ ConversionFixItGenerator ConvHints;
+ bool MayHaveConvFixit = false;
+ bool MayHaveFunctionDiff = false;
+
+ switch (ConvTy) {
+ case Compatible: return false;
+ case PointerToInt:
+ DiagKind = diag::ext_typecheck_convert_pointer_int;
+ ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
+ MayHaveConvFixit = true;
+ break;
+ case IntToPointer:
+ DiagKind = diag::ext_typecheck_convert_int_pointer;
+ ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
+ MayHaveConvFixit = true;
+ break;
+ case IncompatiblePointer:
+ MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
+ DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
+ CheckInferredResultType = DstType->isObjCObjectPointerType() &&
+ SrcType->isObjCObjectPointerType();
+ if (Hint.isNull() && !CheckInferredResultType) {
+ ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
+ }
+ MayHaveConvFixit = true;
+ break;
+ case IncompatiblePointerSign:
+ DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
+ break;
+ case FunctionVoidPointer:
+ DiagKind = diag::ext_typecheck_convert_pointer_void_func;
+ break;
+ case IncompatiblePointerDiscardsQualifiers: {
+ // Perform array-to-pointer decay if necessary.
+ if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
+
+ Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
+ Qualifiers rhq = DstType->getPointeeType().getQualifiers();
+ if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
+ DiagKind = diag::err_typecheck_incompatible_address_space;
+ break;
+
+
+ } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
+ DiagKind = diag::err_typecheck_incompatible_ownership;
+ break;
+ }
+
+ llvm_unreachable("unknown error case for discarding qualifiers!");
+ // fallthrough
+ }
+ case CompatiblePointerDiscardsQualifiers:
+ // If the qualifiers lost were because we were applying the
+ // (deprecated) C++ conversion from a string literal to a char*
+ // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
+ // Ideally, this check would be performed in
+ // checkPointerTypesForAssignment. However, that would require a
+ // bit of refactoring (so that the second argument is an
+ // expression, rather than a type), which should be done as part
+ // of a larger effort to fix checkPointerTypesForAssignment for
+ // C++ semantics.
+ if (getLangOpts().CPlusPlus &&
+ IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
+ return false;
+ DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
+ break;
+ case IncompatibleNestedPointerQualifiers:
+ DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
+ break;
+ case IntToBlockPointer:
+ DiagKind = diag::err_int_to_block_pointer;
+ break;
+ case IncompatibleBlockPointer:
+ DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
+ break;
+ case IncompatibleObjCQualifiedId:
+ // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
+ // it can give a more specific diagnostic.
+ DiagKind = diag::warn_incompatible_qualified_id;
+ break;
+ case IncompatibleVectors:
+ DiagKind = diag::warn_incompatible_vectors;
+ break;
+ case IncompatibleObjCWeakRef:
+ DiagKind = diag::err_arc_weak_unavailable_assign;
+ break;
+ case Incompatible:
+ DiagKind = diag::err_typecheck_convert_incompatible;
+ ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
+ MayHaveConvFixit = true;
+ isInvalid = true;
+ MayHaveFunctionDiff = true;
+ break;
+ }
+
+ QualType FirstType, SecondType;
+ switch (Action) {
+ case AA_Assigning:
+ case AA_Initializing:
+ // The destination type comes first.
+ FirstType = DstType;
+ SecondType = SrcType;
+ break;
+
+ case AA_Returning:
+ case AA_Passing:
+ case AA_Converting:
+ case AA_Sending:
+ case AA_Casting:
+ // The source type comes first.
+ FirstType = SrcType;
+ SecondType = DstType;
+ break;
+ }
+
+ PartialDiagnostic FDiag = PDiag(DiagKind);
+ FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
+
+ // If we can fix the conversion, suggest the FixIts.
+ assert(ConvHints.isNull() || Hint.isNull());
+ if (!ConvHints.isNull()) {
+ for (std::vector<FixItHint>::iterator HI = ConvHints.Hints.begin(),
+ HE = ConvHints.Hints.end(); HI != HE; ++HI)
+ FDiag << *HI;
+ } else {
+ FDiag << Hint;
+ }
+ if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
+
+ if (MayHaveFunctionDiff)
+ HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
+
+ Diag(Loc, FDiag);
+
+ if (SecondType == Context.OverloadTy)
+ NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
+ FirstType);
+
+ if (CheckInferredResultType)
+ EmitRelatedResultTypeNote(SrcExpr);
+
+ if (Complained)
+ *Complained = true;
+ return isInvalid;
+}
+
+ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
+ llvm::APSInt *Result) {
+ return VerifyIntegerConstantExpression(E, Result,
+ PDiag(diag::err_expr_not_ice) << LangOpts.CPlusPlus);
+}
+
+ExprResult Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
+ PartialDiagnostic NotIceDiag,
+ bool AllowFold,
+ PartialDiagnostic FoldDiag) {
+ SourceLocation DiagLoc = E->getLocStart();
+
+ if (getLangOpts().CPlusPlus0x) {
+ // C++11 [expr.const]p5:
+ // If an expression of literal class type is used in a context where an
+ // integral constant expression is required, then that class type shall
+ // have a single non-explicit conversion function to an integral or
+ // unscoped enumeration type
+ ExprResult Converted;
+ if (NotIceDiag.getDiagID()) {
+ Converted = ConvertToIntegralOrEnumerationType(
+ DiagLoc, E,
+ PDiag(diag::err_ice_not_integral),
+ PDiag(diag::err_ice_incomplete_type),
+ PDiag(diag::err_ice_explicit_conversion),
+ PDiag(diag::note_ice_conversion_here),
+ PDiag(diag::err_ice_ambiguous_conversion),
+ PDiag(diag::note_ice_conversion_here),
+ PDiag(0),
+ /*AllowScopedEnumerations*/ false);
+ } else {
+ // The caller wants to silently enquire whether this is an ICE. Don't
+ // produce any diagnostics if it isn't.
+ Converted = ConvertToIntegralOrEnumerationType(
+ DiagLoc, E, PDiag(), PDiag(), PDiag(), PDiag(),
+ PDiag(), PDiag(), PDiag(), false);
+ }
+ if (Converted.isInvalid())
+ return Converted;
+ E = Converted.take();
+ if (!E->getType()->isIntegralOrUnscopedEnumerationType())
+ return ExprError();
+ } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
+ // An ICE must be of integral or unscoped enumeration type.
+ if (NotIceDiag.getDiagID())
+ Diag(DiagLoc, NotIceDiag) << E->getSourceRange();
+ return ExprError();
+ }
+
+ // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
+ // in the non-ICE case.
+ if (!getLangOpts().CPlusPlus0x && E->isIntegerConstantExpr(Context)) {
+ if (Result)
+ *Result = E->EvaluateKnownConstInt(Context);
+ return Owned(E);
+ }
+
+ Expr::EvalResult EvalResult;
+ llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
+ EvalResult.Diag = &Notes;
+
+ // Try to evaluate the expression, and produce diagnostics explaining why it's
+ // not a constant expression as a side-effect.
+ bool Folded = E->EvaluateAsRValue(EvalResult, Context) &&
+ EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
+
+ // In C++11, we can rely on diagnostics being produced for any expression
+ // which is not a constant expression. If no diagnostics were produced, then
+ // this is a constant expression.
+ if (Folded && getLangOpts().CPlusPlus0x && Notes.empty()) {
+ if (Result)
+ *Result = EvalResult.Val.getInt();
+ return Owned(E);
+ }
+
+ // If our only note is the usual "invalid subexpression" note, just point
+ // the caret at its location rather than producing an essentially
+ // redundant note.
+ if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
+ diag::note_invalid_subexpr_in_const_expr) {
+ DiagLoc = Notes[0].first;
+ Notes.clear();
+ }
+
+ if (!Folded || !AllowFold) {
+ if (NotIceDiag.getDiagID()) {
+ Diag(DiagLoc, NotIceDiag) << E->getSourceRange();
+ for (unsigned I = 0, N = Notes.size(); I != N; ++I)
+ Diag(Notes[I].first, Notes[I].second);
+ }
+
+ return ExprError();
+ }
+
+ if (FoldDiag.getDiagID())
+ Diag(DiagLoc, FoldDiag) << E->getSourceRange();
+ else
+ Diag(DiagLoc, diag::ext_expr_not_ice)
+ << E->getSourceRange() << LangOpts.CPlusPlus;
+ for (unsigned I = 0, N = Notes.size(); I != N; ++I)
+ Diag(Notes[I].first, Notes[I].second);
+
+ if (Result)
+ *Result = EvalResult.Val.getInt();
+ return Owned(E);
+}
+
+namespace {
+ // Handle the case where we conclude a expression which we speculatively
+ // considered to be unevaluated is actually evaluated.
+ class TransformToPE : public TreeTransform<TransformToPE> {
+ typedef TreeTransform<TransformToPE> BaseTransform;
+
+ public:
+ TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
+
+ // Make sure we redo semantic analysis
+ bool AlwaysRebuild() { return true; }
+
+ // Make sure we handle LabelStmts correctly.
+ // FIXME: This does the right thing, but maybe we need a more general
+ // fix to TreeTransform?
+ StmtResult TransformLabelStmt(LabelStmt *S) {
+ S->getDecl()->setStmt(0);
+ return BaseTransform::TransformLabelStmt(S);
+ }
+
+ // We need to special-case DeclRefExprs referring to FieldDecls which
+ // are not part of a member pointer formation; normal TreeTransforming
+ // doesn't catch this case because of the way we represent them in the AST.
+ // FIXME: This is a bit ugly; is it really the best way to handle this
+ // case?
+ //
+ // Error on DeclRefExprs referring to FieldDecls.
+ ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
+ if (isa<FieldDecl>(E->getDecl()) &&
+ SemaRef.ExprEvalContexts.back().Context != Sema::Unevaluated)
+ return SemaRef.Diag(E->getLocation(),
+ diag::err_invalid_non_static_member_use)
+ << E->getDecl() << E->getSourceRange();
+
+ return BaseTransform::TransformDeclRefExpr(E);
+ }
+
+ // Exception: filter out member pointer formation
+ ExprResult TransformUnaryOperator(UnaryOperator *E) {
+ if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
+ return E;
+
+ return BaseTransform::TransformUnaryOperator(E);
+ }
+
+ ExprResult TransformLambdaExpr(LambdaExpr *E) {
+ // Lambdas never need to be transformed.
+ return E;
+ }
+ };
+}
+
+ExprResult Sema::TranformToPotentiallyEvaluated(Expr *E) {
+ assert(ExprEvalContexts.back().Context == Unevaluated &&
+ "Should only transform unevaluated expressions");
+ ExprEvalContexts.back().Context =
+ ExprEvalContexts[ExprEvalContexts.size()-2].Context;
+ if (ExprEvalContexts.back().Context == Unevaluated)
+ return E;
+ return TransformToPE(*this).TransformExpr(E);
+}
+
+void
+Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
+ Decl *LambdaContextDecl,
+ bool IsDecltype) {
+ ExprEvalContexts.push_back(
+ ExpressionEvaluationContextRecord(NewContext,
+ ExprCleanupObjects.size(),
+ ExprNeedsCleanups,
+ LambdaContextDecl,
+ IsDecltype));
+ ExprNeedsCleanups = false;
+ if (!MaybeODRUseExprs.empty())
+ std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
+}
+
+void Sema::PopExpressionEvaluationContext() {
+ ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
+
+ if (!Rec.Lambdas.empty()) {
+ if (Rec.Context == Unevaluated) {
+ // C++11 [expr.prim.lambda]p2:
+ // A lambda-expression shall not appear in an unevaluated operand
+ // (Clause 5).
+ for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I)
+ Diag(Rec.Lambdas[I]->getLocStart(),
+ diag::err_lambda_unevaluated_operand);
+ } else {
+ // Mark the capture expressions odr-used. This was deferred
+ // during lambda expression creation.
+ for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I) {
+ LambdaExpr *Lambda = Rec.Lambdas[I];
+ for (LambdaExpr::capture_init_iterator
+ C = Lambda->capture_init_begin(),
+ CEnd = Lambda->capture_init_end();
+ C != CEnd; ++C) {
+ MarkDeclarationsReferencedInExpr(*C);
+ }
+ }
+ }
+ }
+
+ // When are coming out of an unevaluated context, clear out any
+ // temporaries that we may have created as part of the evaluation of
+ // the expression in that context: they aren't relevant because they
+ // will never be constructed.
+ if (Rec.Context == Unevaluated || Rec.Context == ConstantEvaluated) {
+ ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
+ ExprCleanupObjects.end());
+ ExprNeedsCleanups = Rec.ParentNeedsCleanups;
+ CleanupVarDeclMarking();
+ std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
+ // Otherwise, merge the contexts together.
+ } else {
+ ExprNeedsCleanups |= Rec.ParentNeedsCleanups;
+ MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
+ Rec.SavedMaybeODRUseExprs.end());
+ }
+
+ // Pop the current expression evaluation context off the stack.
+ ExprEvalContexts.pop_back();
+}
+
+void Sema::DiscardCleanupsInEvaluationContext() {
+ ExprCleanupObjects.erase(
+ ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
+ ExprCleanupObjects.end());
+ ExprNeedsCleanups = false;
+ MaybeODRUseExprs.clear();
+}
+
+ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
+ if (!E->getType()->isVariablyModifiedType())
+ return E;
+ return TranformToPotentiallyEvaluated(E);
+}
+
+static bool IsPotentiallyEvaluatedContext(Sema &SemaRef) {
+ // Do not mark anything as "used" within a dependent context; wait for
+ // an instantiation.
+ if (SemaRef.CurContext->isDependentContext())
+ return false;
+
+ switch (SemaRef.ExprEvalContexts.back().Context) {
+ case Sema::Unevaluated:
+ // We are in an expression that is not potentially evaluated; do nothing.
+ // (Depending on how you read the standard, we actually do need to do
+ // something here for null pointer constants, but the standard's
+ // definition of a null pointer constant is completely crazy.)
+ return false;
+
+ case Sema::ConstantEvaluated:
+ case Sema::PotentiallyEvaluated:
+ // We are in a potentially evaluated expression (or a constant-expression
+ // in C++03); we need to do implicit template instantiation, implicitly
+ // define class members, and mark most declarations as used.
+ return true;
+
+ case Sema::PotentiallyEvaluatedIfUsed:
+ // Referenced declarations will only be used if the construct in the
+ // containing expression is used.
+ return false;
+ }
+ llvm_unreachable("Invalid context");
+}
+
+/// \brief Mark a function referenced, and check whether it is odr-used
+/// (C++ [basic.def.odr]p2, C99 6.9p3)
+void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func) {
+ assert(Func && "No function?");
+
+ Func->setReferenced();
+
+ // Don't mark this function as used multiple times, unless it's a constexpr
+ // function which we need to instantiate.
+ if (Func->isUsed(false) &&
+ !(Func->isConstexpr() && !Func->getBody() &&
+ Func->isImplicitlyInstantiable()))
+ return;
+
+ if (!IsPotentiallyEvaluatedContext(*this))
+ return;
+
+ // Note that this declaration has been used.
+ if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
+ if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
+ if (Constructor->isDefaultConstructor()) {
+ if (Constructor->isTrivial())
+ return;
+ if (!Constructor->isUsed(false))
+ DefineImplicitDefaultConstructor(Loc, Constructor);
+ } else if (Constructor->isCopyConstructor()) {
+ if (!Constructor->isUsed(false))
+ DefineImplicitCopyConstructor(Loc, Constructor);
+ } else if (Constructor->isMoveConstructor()) {
+ if (!Constructor->isUsed(false))
+ DefineImplicitMoveConstructor(Loc, Constructor);
+ }
+ }
+
+ MarkVTableUsed(Loc, Constructor->getParent());
+ } else if (CXXDestructorDecl *Destructor =
+ dyn_cast<CXXDestructorDecl>(Func)) {
+ if (Destructor->isDefaulted() && !Destructor->isDeleted() &&
+ !Destructor->isUsed(false))
+ DefineImplicitDestructor(Loc, Destructor);
+ if (Destructor->isVirtual())
+ MarkVTableUsed(Loc, Destructor->getParent());
+ } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
+ if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted() &&
+ MethodDecl->isOverloadedOperator() &&
+ MethodDecl->getOverloadedOperator() == OO_Equal) {
+ if (!MethodDecl->isUsed(false)) {
+ if (MethodDecl->isCopyAssignmentOperator())
+ DefineImplicitCopyAssignment(Loc, MethodDecl);
+ else
+ DefineImplicitMoveAssignment(Loc, MethodDecl);
+ }
+ } else if (isa<CXXConversionDecl>(MethodDecl) &&
+ MethodDecl->getParent()->isLambda()) {
+ CXXConversionDecl *Conversion = cast<CXXConversionDecl>(MethodDecl);
+ if (Conversion->isLambdaToBlockPointerConversion())
+ DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
+ else
+ DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
+ } else if (MethodDecl->isVirtual())
+ MarkVTableUsed(Loc, MethodDecl->getParent());
+ }
+
+ // Recursive functions should be marked when used from another function.
+ // FIXME: Is this really right?
+ if (CurContext == Func) return;
+
+ // Implicit instantiation of function templates and member functions of
+ // class templates.
+ if (Func->isImplicitlyInstantiable()) {
+ bool AlreadyInstantiated = false;
+ SourceLocation PointOfInstantiation = Loc;
+ if (FunctionTemplateSpecializationInfo *SpecInfo
+ = Func->getTemplateSpecializationInfo()) {
+ if (SpecInfo->getPointOfInstantiation().isInvalid())
+ SpecInfo->setPointOfInstantiation(Loc);
+ else if (SpecInfo->getTemplateSpecializationKind()
+ == TSK_ImplicitInstantiation) {
+ AlreadyInstantiated = true;
+ PointOfInstantiation = SpecInfo->getPointOfInstantiation();
+ }
+ } else if (MemberSpecializationInfo *MSInfo
+ = Func->getMemberSpecializationInfo()) {
+ if (MSInfo->getPointOfInstantiation().isInvalid())
+ MSInfo->setPointOfInstantiation(Loc);
+ else if (MSInfo->getTemplateSpecializationKind()
+ == TSK_ImplicitInstantiation) {
+ AlreadyInstantiated = true;
+ PointOfInstantiation = MSInfo->getPointOfInstantiation();
+ }
+ }
+
+ if (!AlreadyInstantiated || Func->isConstexpr()) {
+ if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
+ cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass())
+ PendingLocalImplicitInstantiations.push_back(
+ std::make_pair(Func, PointOfInstantiation));
+ else if (Func->isConstexpr())
+ // Do not defer instantiations of constexpr functions, to avoid the
+ // expression evaluator needing to call back into Sema if it sees a
+ // call to such a function.
+ InstantiateFunctionDefinition(PointOfInstantiation, Func);
+ else {
+ PendingInstantiations.push_back(std::make_pair(Func,
+ PointOfInstantiation));
+ // Notify the consumer that a function was implicitly instantiated.
+ Consumer.HandleCXXImplicitFunctionInstantiation(Func);
+ }
+ }
+ } else {
+ // Walk redefinitions, as some of them may be instantiable.
+ for (FunctionDecl::redecl_iterator i(Func->redecls_begin()),
+ e(Func->redecls_end()); i != e; ++i) {
+ if (!i->isUsed(false) && i->isImplicitlyInstantiable())
+ MarkFunctionReferenced(Loc, *i);
+ }
+ }
+
+ // Keep track of used but undefined functions.
+ if (!Func->isPure() && !Func->hasBody() &&
+ Func->getLinkage() != ExternalLinkage) {
+ SourceLocation &old = UndefinedInternals[Func->getCanonicalDecl()];
+ if (old.isInvalid()) old = Loc;
+ }
+
+ Func->setUsed(true);
+}
+
+static void
+diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
+ VarDecl *var, DeclContext *DC) {
+ DeclContext *VarDC = var->getDeclContext();
+
+ // If the parameter still belongs to the translation unit, then
+ // we're actually just using one parameter in the declaration of
+ // the next.
+ if (isa<ParmVarDecl>(var) &&
+ isa<TranslationUnitDecl>(VarDC))
+ return;
+
+ // For C code, don't diagnose about capture if we're not actually in code
+ // right now; it's impossible to write a non-constant expression outside of
+ // function context, so we'll get other (more useful) diagnostics later.
+ //
+ // For C++, things get a bit more nasty... it would be nice to suppress this
+ // diagnostic for certain cases like using a local variable in an array bound
+ // for a member of a local class, but the correct predicate is not obvious.
+ if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
+ return;
+
+ if (isa<CXXMethodDecl>(VarDC) &&
+ cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
+ S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_lambda)
+ << var->getIdentifier();
+ } else if (FunctionDecl *fn = dyn_cast<FunctionDecl>(VarDC)) {
+ S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function)
+ << var->getIdentifier() << fn->getDeclName();
+ } else if (isa<BlockDecl>(VarDC)) {
+ S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_block)
+ << var->getIdentifier();
+ } else {
+ // FIXME: Is there any other context where a local variable can be
+ // declared?
+ S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_context)
+ << var->getIdentifier();
+ }
+
+ S.Diag(var->getLocation(), diag::note_local_variable_declared_here)
+ << var->getIdentifier();
+
+ // FIXME: Add additional diagnostic info about class etc. which prevents
+ // capture.
+}
+
+/// \brief Capture the given variable in the given lambda expression.
+static ExprResult captureInLambda(Sema &S, LambdaScopeInfo *LSI,
+ VarDecl *Var, QualType FieldType,
+ QualType DeclRefType,
+ SourceLocation Loc) {
+ CXXRecordDecl *Lambda = LSI->Lambda;
+
+ // Build the non-static data member.
+ FieldDecl *Field
+ = FieldDecl::Create(S.Context, Lambda, Loc, Loc, 0, FieldType,
+ S.Context.getTrivialTypeSourceInfo(FieldType, Loc),
+ 0, false, false);
+ Field->setImplicit(true);
+ Field->setAccess(AS_private);
+ Lambda->addDecl(Field);
+
+ // C++11 [expr.prim.lambda]p21:
+ // When the lambda-expression is evaluated, the entities that
+ // are captured by copy are used to direct-initialize each
+ // corresponding non-static data member of the resulting closure
+ // object. (For array members, the array elements are
+ // direct-initialized in increasing subscript order.) These
+ // initializations are performed in the (unspecified) order in
+ // which the non-static data members are declared.
+
+ // Introduce a new evaluation context for the initialization, so
+ // that temporaries introduced as part of the capture are retained
+ // to be re-"exported" from the lambda expression itself.
+ S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
+
+ // C++ [expr.prim.labda]p12:
+ // An entity captured by a lambda-expression is odr-used (3.2) in
+ // the scope containing the lambda-expression.
+ Expr *Ref = new (S.Context) DeclRefExpr(Var, false, DeclRefType,
+ VK_LValue, Loc);
+ Var->setReferenced(true);
+ Var->setUsed(true);
+
+ // When the field has array type, create index variables for each
+ // dimension of the array. We use these index variables to subscript
+ // the source array, and other clients (e.g., CodeGen) will perform
+ // the necessary iteration with these index variables.
+ SmallVector<VarDecl *, 4> IndexVariables;
+ QualType BaseType = FieldType;
+ QualType SizeType = S.Context.getSizeType();
+ LSI->ArrayIndexStarts.push_back(LSI->ArrayIndexVars.size());
+ while (const ConstantArrayType *Array
+ = S.Context.getAsConstantArrayType(BaseType)) {
+ // Create the iteration variable for this array index.
+ IdentifierInfo *IterationVarName = 0;
+ {
+ SmallString<8> Str;
+ llvm::raw_svector_ostream OS(Str);
+ OS << "__i" << IndexVariables.size();
+ IterationVarName = &S.Context.Idents.get(OS.str());
+ }
+ VarDecl *IterationVar
+ = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
+ IterationVarName, SizeType,
+ S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
+ SC_None, SC_None);
+ IndexVariables.push_back(IterationVar);
+ LSI->ArrayIndexVars.push_back(IterationVar);
+
+ // Create a reference to the iteration variable.
+ ExprResult IterationVarRef
+ = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
+ assert(!IterationVarRef.isInvalid() &&
+ "Reference to invented variable cannot fail!");
+ IterationVarRef = S.DefaultLvalueConversion(IterationVarRef.take());
+ assert(!IterationVarRef.isInvalid() &&
+ "Conversion of invented variable cannot fail!");
+
+ // Subscript the array with this iteration variable.
+ ExprResult Subscript = S.CreateBuiltinArraySubscriptExpr(
+ Ref, Loc, IterationVarRef.take(), Loc);
+ if (Subscript.isInvalid()) {
+ S.CleanupVarDeclMarking();
+ S.DiscardCleanupsInEvaluationContext();
+ S.PopExpressionEvaluationContext();
+ return ExprError();
+ }
+
+ Ref = Subscript.take();
+ BaseType = Array->getElementType();
+ }
+
+ // Construct the entity that we will be initializing. For an array, this
+ // will be first element in the array, which may require several levels
+ // of array-subscript entities.
+ SmallVector<InitializedEntity, 4> Entities;
+ Entities.reserve(1 + IndexVariables.size());
+ Entities.push_back(
+ InitializedEntity::InitializeLambdaCapture(Var, Field, Loc));
+ for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
+ Entities.push_back(InitializedEntity::InitializeElement(S.Context,
+ 0,
+ Entities.back()));
+
+ InitializationKind InitKind
+ = InitializationKind::CreateDirect(Loc, Loc, Loc);
+ InitializationSequence Init(S, Entities.back(), InitKind, &Ref, 1);
+ ExprResult Result(true);
+ if (!Init.Diagnose(S, Entities.back(), InitKind, &Ref, 1))
+ Result = Init.Perform(S, Entities.back(), InitKind,
+ MultiExprArg(S, &Ref, 1));
+
+ // If this initialization requires any cleanups (e.g., due to a
+ // default argument to a copy constructor), note that for the
+ // lambda.
+ if (S.ExprNeedsCleanups)
+ LSI->ExprNeedsCleanups = true;
+
+ // Exit the expression evaluation context used for the capture.
+ S.CleanupVarDeclMarking();
+ S.DiscardCleanupsInEvaluationContext();
+ S.PopExpressionEvaluationContext();
+ return Result;
+}
+
+bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
+ TryCaptureKind Kind, SourceLocation EllipsisLoc,
+ bool BuildAndDiagnose,
+ QualType &CaptureType,
+ QualType &DeclRefType) {
+ bool Nested = false;
+
+ DeclContext *DC = CurContext;
+ if (Var->getDeclContext() == DC) return true;
+ if (!Var->hasLocalStorage()) return true;
+
+ bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
+
+ // Walk up the stack to determine whether we can capture the variable,
+ // performing the "simple" checks that don't depend on type. We stop when
+ // we've either hit the declared scope of the variable or find an existing
+ // capture of that variable.
+ CaptureType = Var->getType();
+ DeclRefType = CaptureType.getNonReferenceType();
+ bool Explicit = (Kind != TryCapture_Implicit);
+ unsigned FunctionScopesIndex = FunctionScopes.size() - 1;
+ do {
+ // Only block literals and lambda expressions can capture; other
+ // scopes don't work.
+ DeclContext *ParentDC;
+ if (isa<BlockDecl>(DC))
+ ParentDC = DC->getParent();
+ else if (isa<CXXMethodDecl>(DC) &&
+ cast<CXXMethodDecl>(DC)->getOverloadedOperator() == OO_Call &&
+ cast<CXXRecordDecl>(DC->getParent())->isLambda())
+ ParentDC = DC->getParent()->getParent();
+ else {
+ if (BuildAndDiagnose)
+ diagnoseUncapturableValueReference(*this, Loc, Var, DC);
+ return true;
+ }
+
+ CapturingScopeInfo *CSI =
+ cast<CapturingScopeInfo>(FunctionScopes[FunctionScopesIndex]);
+
+ // Check whether we've already captured it.
+ if (CSI->CaptureMap.count(Var)) {
+ // If we found a capture, any subcaptures are nested.
+ Nested = true;
+
+ // Retrieve the capture type for this variable.
+ CaptureType = CSI->getCapture(Var).getCaptureType();
+
+ // Compute the type of an expression that refers to this variable.
+ DeclRefType = CaptureType.getNonReferenceType();
+
+ const CapturingScopeInfo::Capture &Cap = CSI->getCapture(Var);
+ if (Cap.isCopyCapture() &&
+ !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable))
+ DeclRefType.addConst();
+ break;
+ }
+
+ bool IsBlock = isa<BlockScopeInfo>(CSI);
+ bool IsLambda = !IsBlock;
+
+ // Lambdas are not allowed to capture unnamed variables
+ // (e.g. anonymous unions).
+ // FIXME: The C++11 rule don't actually state this explicitly, but I'm
+ // assuming that's the intent.
+ if (IsLambda && !Var->getDeclName()) {
+ if (BuildAndDiagnose) {
+ Diag(Loc, diag::err_lambda_capture_anonymous_var);
+ Diag(Var->getLocation(), diag::note_declared_at);
+ }
+ return true;
+ }
+
+ // Prohibit variably-modified types; they're difficult to deal with.
+ if (Var->getType()->isVariablyModifiedType()) {
+ if (BuildAndDiagnose) {
+ if (IsBlock)
+ Diag(Loc, diag::err_ref_vm_type);
+ else
+ Diag(Loc, diag::err_lambda_capture_vm_type) << Var->getDeclName();
+ Diag(Var->getLocation(), diag::note_previous_decl)
+ << Var->getDeclName();
+ }
+ return true;
+ }
+
+ // Lambdas are not allowed to capture __block variables; they don't
+ // support the expected semantics.
+ if (IsLambda && HasBlocksAttr) {
+ if (BuildAndDiagnose) {
+ Diag(Loc, diag::err_lambda_capture_block)
+ << Var->getDeclName();
+ Diag(Var->getLocation(), diag::note_previous_decl)
+ << Var->getDeclName();
+ }
+ return true;
+ }
+
+ if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
+ // No capture-default
+ if (BuildAndDiagnose) {
+ Diag(Loc, diag::err_lambda_impcap) << Var->getDeclName();
+ Diag(Var->getLocation(), diag::note_previous_decl)
+ << Var->getDeclName();
+ Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getLocStart(),
+ diag::note_lambda_decl);
+ }
+ return true;
+ }
+
+ FunctionScopesIndex--;
+ DC = ParentDC;
+ Explicit = false;
+ } while (!Var->getDeclContext()->Equals(DC));
+
+ // Walk back down the scope stack, computing the type of the capture at
+ // each step, checking type-specific requirements, and adding captures if
+ // requested.
+ for (unsigned I = ++FunctionScopesIndex, N = FunctionScopes.size(); I != N;
+ ++I) {
+ CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
+
+ // Compute the type of the capture and of a reference to the capture within
+ // this scope.
+ if (isa<BlockScopeInfo>(CSI)) {
+ Expr *CopyExpr = 0;
+ bool ByRef = false;
+
+ // Blocks are not allowed to capture arrays.
+ if (CaptureType->isArrayType()) {
+ if (BuildAndDiagnose) {
+ Diag(Loc, diag::err_ref_array_type);
+ Diag(Var->getLocation(), diag::note_previous_decl)
+ << Var->getDeclName();
+ }
+ return true;
+ }
+
+ // Forbid the block-capture of autoreleasing variables.
+ if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
+ if (BuildAndDiagnose) {
+ Diag(Loc, diag::err_arc_autoreleasing_capture)
+ << /*block*/ 0;
+ Diag(Var->getLocation(), diag::note_previous_decl)
+ << Var->getDeclName();
+ }
+ return true;
+ }
+
+ if (HasBlocksAttr || CaptureType->isReferenceType()) {
+ // Block capture by reference does not change the capture or
+ // declaration reference types.
+ ByRef = true;
+ } else {
+ // Block capture by copy introduces 'const'.
+ CaptureType = CaptureType.getNonReferenceType().withConst();
+ DeclRefType = CaptureType;
+
+ if (getLangOpts().CPlusPlus && BuildAndDiagnose) {
+ if (const RecordType *Record = DeclRefType->getAs<RecordType>()) {
+ // The capture logic needs the destructor, so make sure we mark it.
+ // Usually this is unnecessary because most local variables have
+ // their destructors marked at declaration time, but parameters are
+ // an exception because it's technically only the call site that
+ // actually requires the destructor.
+ if (isa<ParmVarDecl>(Var))
+ FinalizeVarWithDestructor(Var, Record);
+
+ // According to the blocks spec, the capture of a variable from
+ // the stack requires a const copy constructor. This is not true
+ // of the copy/move done to move a __block variable to the heap.
+ Expr *DeclRef = new (Context) DeclRefExpr(Var, false,
+ DeclRefType.withConst(),
+ VK_LValue, Loc);
+ ExprResult Result
+ = PerformCopyInitialization(
+ InitializedEntity::InitializeBlock(Var->getLocation(),
+ CaptureType, false),
+ Loc, Owned(DeclRef));
+
+ // Build a full-expression copy expression if initialization
+ // succeeded and used a non-trivial constructor. Recover from
+ // errors by pretending that the copy isn't necessary.
+ if (!Result.isInvalid() &&
+ !cast<CXXConstructExpr>(Result.get())->getConstructor()
+ ->isTrivial()) {
+ Result = MaybeCreateExprWithCleanups(Result);
+ CopyExpr = Result.take();
+ }
+ }
+ }
+ }
+
+ // Actually capture the variable.
+ if (BuildAndDiagnose)
+ CSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc,
+ SourceLocation(), CaptureType, CopyExpr);
+ Nested = true;
+ continue;
+ }
+
+ LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
+
+ // Determine whether we are capturing by reference or by value.
+ bool ByRef = false;
+ if (I == N - 1 && Kind != TryCapture_Implicit) {
+ ByRef = (Kind == TryCapture_ExplicitByRef);
+ } else {
+ ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
+ }
+
+ // Compute the type of the field that will capture this variable.
+ if (ByRef) {
+ // C++11 [expr.prim.lambda]p15:
+ // An entity is captured by reference if it is implicitly or
+ // explicitly captured but not captured by copy. It is
+ // unspecified whether additional unnamed non-static data
+ // members are declared in the closure type for entities
+ // captured by reference.
+ //
+ // FIXME: It is not clear whether we want to build an lvalue reference
+ // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
+ // to do the former, while EDG does the latter. Core issue 1249 will
+ // clarify, but for now we follow GCC because it's a more permissive and
+ // easily defensible position.
+ CaptureType = Context.getLValueReferenceType(DeclRefType);
+ } else {
+ // C++11 [expr.prim.lambda]p14:
+ // For each entity captured by copy, an unnamed non-static
+ // data member is declared in the closure type. The
+ // declaration order of these members is unspecified. The type
+ // of such a data member is the type of the corresponding
+ // captured entity if the entity is not a reference to an
+ // object, or the referenced type otherwise. [Note: If the
+ // captured entity is a reference to a function, the
+ // corresponding data member is also a reference to a
+ // function. - end note ]
+ if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
+ if (!RefType->getPointeeType()->isFunctionType())
+ CaptureType = RefType->getPointeeType();
+ }
+
+ // Forbid the lambda copy-capture of autoreleasing variables.
+ if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
+ if (BuildAndDiagnose) {
+ Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
+ Diag(Var->getLocation(), diag::note_previous_decl)
+ << Var->getDeclName();
+ }
+ return true;
+ }
+ }
+
+ // Capture this variable in the lambda.
+ Expr *CopyExpr = 0;
+ if (BuildAndDiagnose) {
+ ExprResult Result = captureInLambda(*this, LSI, Var, CaptureType,
+ DeclRefType, Loc);
+ if (!Result.isInvalid())
+ CopyExpr = Result.take();
+ }
+
+ // Compute the type of a reference to this captured variable.
+ if (ByRef)
+ DeclRefType = CaptureType.getNonReferenceType();
+ else {
+ // C++ [expr.prim.lambda]p5:
+ // The closure type for a lambda-expression has a public inline
+ // function call operator [...]. This function call operator is
+ // declared const (9.3.1) if and only if the lambda-expression’s
+ // parameter-declaration-clause is not followed by mutable.
+ DeclRefType = CaptureType.getNonReferenceType();
+ if (!LSI->Mutable && !CaptureType->isReferenceType())
+ DeclRefType.addConst();
+ }
+
+ // Add the capture.
+ if (BuildAndDiagnose)
+ CSI->addCapture(Var, /*IsBlock=*/false, ByRef, Nested, Loc,
+ EllipsisLoc, CaptureType, CopyExpr);
+ Nested = true;
+ }
+
+ return false;
+}
+
+bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
+ TryCaptureKind Kind, SourceLocation EllipsisLoc) {
+ QualType CaptureType;
+ QualType DeclRefType;
+ return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
+ /*BuildAndDiagnose=*/true, CaptureType,
+ DeclRefType);
+}
+
+QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
+ QualType CaptureType;
+ QualType DeclRefType;
+
+ // Determine whether we can capture this variable.
+ if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
+ /*BuildAndDiagnose=*/false, CaptureType, DeclRefType))
+ return QualType();
+
+ return DeclRefType;
+}
+
+static void MarkVarDeclODRUsed(Sema &SemaRef, VarDecl *Var,
+ SourceLocation Loc) {
+ // Keep track of used but undefined variables.
+ // FIXME: We shouldn't suppress this warning for static data members.
+ if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
+ Var->getLinkage() != ExternalLinkage &&
+ !(Var->isStaticDataMember() && Var->hasInit())) {
+ SourceLocation &old = SemaRef.UndefinedInternals[Var->getCanonicalDecl()];
+ if (old.isInvalid()) old = Loc;
+ }
+
+ SemaRef.tryCaptureVariable(Var, Loc);
+
+ Var->setUsed(true);
+}
+
+void Sema::UpdateMarkingForLValueToRValue(Expr *E) {
+ // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
+ // an object that satisfies the requirements for appearing in a
+ // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
+ // is immediately applied." This function handles the lvalue-to-rvalue
+ // conversion part.
+ MaybeODRUseExprs.erase(E->IgnoreParens());
+}
+
+ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
+ if (!Res.isUsable())
+ return Res;
+
+ // If a constant-expression is a reference to a variable where we delay
+ // deciding whether it is an odr-use, just assume we will apply the
+ // lvalue-to-rvalue conversion. In the one case where this doesn't happen
+ // (a non-type template argument), we have special handling anyway.
+ UpdateMarkingForLValueToRValue(Res.get());
+ return Res;
+}
+
+void Sema::CleanupVarDeclMarking() {
+ for (llvm::SmallPtrSetIterator<Expr*> i = MaybeODRUseExprs.begin(),
+ e = MaybeODRUseExprs.end();
+ i != e; ++i) {
+ VarDecl *Var;
+ SourceLocation Loc;
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(*i)) {
+ Var = cast<VarDecl>(DRE->getDecl());
+ Loc = DRE->getLocation();
+ } else if (MemberExpr *ME = dyn_cast<MemberExpr>(*i)) {
+ Var = cast<VarDecl>(ME->getMemberDecl());
+ Loc = ME->getMemberLoc();
+ } else {
+ llvm_unreachable("Unexpcted expression");
+ }
+
+ MarkVarDeclODRUsed(*this, Var, Loc);
+ }
+
+ MaybeODRUseExprs.clear();
+}
+
+// Mark a VarDecl referenced, and perform the necessary handling to compute
+// odr-uses.
+static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
+ VarDecl *Var, Expr *E) {
+ Var->setReferenced();
+
+ if (!IsPotentiallyEvaluatedContext(SemaRef))
+ return;
+
+ // Implicit instantiation of static data members of class templates.
+ if (Var->isStaticDataMember() && Var->getInstantiatedFromStaticDataMember()) {
+ MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
+ assert(MSInfo && "Missing member specialization information?");
+ bool AlreadyInstantiated = !MSInfo->getPointOfInstantiation().isInvalid();
+ if (MSInfo->getTemplateSpecializationKind() == TSK_ImplicitInstantiation &&
+ (!AlreadyInstantiated ||
+ Var->isUsableInConstantExpressions(SemaRef.Context))) {
+ if (!AlreadyInstantiated) {
+ // This is a modification of an existing AST node. Notify listeners.
+ if (ASTMutationListener *L = SemaRef.getASTMutationListener())
+ L->StaticDataMemberInstantiated(Var);
+ MSInfo->setPointOfInstantiation(Loc);
+ }
+ SourceLocation PointOfInstantiation = MSInfo->getPointOfInstantiation();
+ if (Var->isUsableInConstantExpressions(SemaRef.Context))
+ // Do not defer instantiations of variables which could be used in a
+ // constant expression.
+ SemaRef.InstantiateStaticDataMemberDefinition(PointOfInstantiation,Var);
+ else
+ SemaRef.PendingInstantiations.push_back(
+ std::make_pair(Var, PointOfInstantiation));
+ }
+ }
+
+ // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
+ // an object that satisfies the requirements for appearing in a
+ // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
+ // is immediately applied." We check the first part here, and
+ // Sema::UpdateMarkingForLValueToRValue deals with the second part.
+ // Note that we use the C++11 definition everywhere because nothing in
+ // C++03 depends on whether we get the C++03 version correct. This does not
+ // apply to references, since they are not objects.
+ const VarDecl *DefVD;
+ if (E && !isa<ParmVarDecl>(Var) && !Var->getType()->isReferenceType() &&
+ Var->isUsableInConstantExpressions(SemaRef.Context) &&
+ Var->getAnyInitializer(DefVD) && DefVD->checkInitIsICE())
+ SemaRef.MaybeODRUseExprs.insert(E);
+ else
+ MarkVarDeclODRUsed(SemaRef, Var, Loc);
+}
+
+/// \brief Mark a variable referenced, and check whether it is odr-used
+/// (C++ [basic.def.odr]p2, C99 6.9p3). Note that this should not be
+/// used directly for normal expressions referring to VarDecl.
+void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
+ DoMarkVarDeclReferenced(*this, Loc, Var, 0);
+}
+
+static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
+ Decl *D, Expr *E) {
+ if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
+ DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
+ return;
+ }
+
+ SemaRef.MarkAnyDeclReferenced(Loc, D);
+}
+
+/// \brief Perform reference-marking and odr-use handling for a DeclRefExpr.
+void Sema::MarkDeclRefReferenced(DeclRefExpr *E) {
+ MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E);
+}
+
+/// \brief Perform reference-marking and odr-use handling for a MemberExpr.
+void Sema::MarkMemberReferenced(MemberExpr *E) {
+ MarkExprReferenced(*this, E->getMemberLoc(), E->getMemberDecl(), E);
+}
+
+/// \brief Perform marking for a reference to an arbitrary declaration. It
+/// marks the declaration referenced, and performs odr-use checking for functions
+/// and variables. This method should not be used when building an normal
+/// expression which refers to a variable.
+void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D) {
+ if (VarDecl *VD = dyn_cast<VarDecl>(D))
+ MarkVariableReferenced(Loc, VD);
+ else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
+ MarkFunctionReferenced(Loc, FD);
+ else
+ D->setReferenced();
+}
+
+namespace {
+ // Mark all of the declarations referenced
+ // FIXME: Not fully implemented yet! We need to have a better understanding
+ // of when we're entering
+ class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
+ Sema &S;
+ SourceLocation Loc;
+
+ public:
+ typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
+
+ MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
+
+ bool TraverseTemplateArgument(const TemplateArgument &Arg);
+ bool TraverseRecordType(RecordType *T);
+ };
+}
+
+bool MarkReferencedDecls::TraverseTemplateArgument(
+ const TemplateArgument &Arg) {
+ if (Arg.getKind() == TemplateArgument::Declaration) {
+ if (Decl *D = Arg.getAsDecl())
+ S.MarkAnyDeclReferenced(Loc, D);
+ }
+
+ return Inherited::TraverseTemplateArgument(Arg);
+}
+
+bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
+ if (ClassTemplateSpecializationDecl *Spec
+ = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
+ const TemplateArgumentList &Args = Spec->getTemplateArgs();
+ return TraverseTemplateArguments(Args.data(), Args.size());
+ }
+
+ return true;
+}
+
+void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
+ MarkReferencedDecls Marker(*this, Loc);
+ Marker.TraverseType(Context.getCanonicalType(T));
+}
+
+namespace {
+ /// \brief Helper class that marks all of the declarations referenced by
+ /// potentially-evaluated subexpressions as "referenced".
+ class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
+ Sema &S;
+ bool SkipLocalVariables;
+
+ public:
+ typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
+
+ EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
+ : Inherited(S.Context), S(S), SkipLocalVariables(SkipLocalVariables) { }
+
+ void VisitDeclRefExpr(DeclRefExpr *E) {
+ // If we were asked not to visit local variables, don't.
+ if (SkipLocalVariables) {
+ if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
+ if (VD->hasLocalStorage())
+ return;
+ }
+
+ S.MarkDeclRefReferenced(E);
+ }
+
+ void VisitMemberExpr(MemberExpr *E) {
+ S.MarkMemberReferenced(E);
+ Inherited::VisitMemberExpr(E);
+ }
+
+ void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
+ S.MarkFunctionReferenced(E->getLocStart(),
+ const_cast<CXXDestructorDecl*>(E->getTemporary()->getDestructor()));
+ Visit(E->getSubExpr());
+ }
+
+ void VisitCXXNewExpr(CXXNewExpr *E) {
+ if (E->getOperatorNew())
+ S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorNew());
+ if (E->getOperatorDelete())
+ S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
+ Inherited::VisitCXXNewExpr(E);
+ }
+
+ void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
+ if (E->getOperatorDelete())
+ S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
+ QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
+ if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
+ CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
+ S.MarkFunctionReferenced(E->getLocStart(),
+ S.LookupDestructor(Record));
+ }
+
+ Inherited::VisitCXXDeleteExpr(E);
+ }
+
+ void VisitCXXConstructExpr(CXXConstructExpr *E) {
+ S.MarkFunctionReferenced(E->getLocStart(), E->getConstructor());
+ Inherited::VisitCXXConstructExpr(E);
+ }
+
+ void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
+ Visit(E->getExpr());
+ }
+
+ void VisitImplicitCastExpr(ImplicitCastExpr *E) {
+ Inherited::VisitImplicitCastExpr(E);
+
+ if (E->getCastKind() == CK_LValueToRValue)
+ S.UpdateMarkingForLValueToRValue(E->getSubExpr());
+ }
+ };
+}
+
+/// \brief Mark any declarations that appear within this expression or any
+/// potentially-evaluated subexpressions as "referenced".
+///
+/// \param SkipLocalVariables If true, don't mark local variables as
+/// 'referenced'.
+void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
+ bool SkipLocalVariables) {
+ EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
+}
+
+/// \brief Emit a diagnostic that describes an effect on the run-time behavior
+/// of the program being compiled.
+///
+/// This routine emits the given diagnostic when the code currently being
+/// type-checked is "potentially evaluated", meaning that there is a
+/// possibility that the code will actually be executable. Code in sizeof()
+/// expressions, code used only during overload resolution, etc., are not
+/// potentially evaluated. This routine will suppress such diagnostics or,
+/// in the absolutely nutty case of potentially potentially evaluated
+/// expressions (C++ typeid), queue the diagnostic to potentially emit it
+/// later.
+///
+/// This routine should be used for all diagnostics that describe the run-time
+/// behavior of a program, such as passing a non-POD value through an ellipsis.
+/// Failure to do so will likely result in spurious diagnostics or failures
+/// during overload resolution or within sizeof/alignof/typeof/typeid.
+bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
+ const PartialDiagnostic &PD) {
+ switch (ExprEvalContexts.back().Context) {
+ case Unevaluated:
+ // The argument will never be evaluated, so don't complain.
+ break;
+
+ case ConstantEvaluated:
+ // Relevant diagnostics should be produced by constant evaluation.
+ break;
+
+ case PotentiallyEvaluated:
+ case PotentiallyEvaluatedIfUsed:
+ if (Statement && getCurFunctionOrMethodDecl()) {
+ FunctionScopes.back()->PossiblyUnreachableDiags.
+ push_back(sema::PossiblyUnreachableDiag(PD, Loc, Statement));
+ }
+ else
+ Diag(Loc, PD);
+
+ return true;
+ }
+
+ return false;
+}
+
+bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
+ CallExpr *CE, FunctionDecl *FD) {
+ if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
+ return false;
+
+ // If we're inside a decltype's expression, don't check for a valid return
+ // type or construct temporaries until we know whether this is the last call.
+ if (ExprEvalContexts.back().IsDecltype) {
+ ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
+ return false;
+ }
+
+ PartialDiagnostic Note =
+ FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
+ << FD->getDeclName() : PDiag();
+ SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
+
+ if (RequireCompleteType(Loc, ReturnType,
+ FD ?
+ PDiag(diag::err_call_function_incomplete_return)
+ << CE->getSourceRange() << FD->getDeclName() :
+ PDiag(diag::err_call_incomplete_return)
+ << CE->getSourceRange(),
+ std::make_pair(NoteLoc, Note)))
+ return true;
+
+ return false;
+}
+
+// Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
+// will prevent this condition from triggering, which is what we want.
+void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
+ SourceLocation Loc;
+
+ unsigned diagnostic = diag::warn_condition_is_assignment;
+ bool IsOrAssign = false;
+
+ if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
+ if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
+ return;
+
+ IsOrAssign = Op->getOpcode() == BO_OrAssign;
+
+ // Greylist some idioms by putting them into a warning subcategory.
+ if (ObjCMessageExpr *ME
+ = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
+ Selector Sel = ME->getSelector();
+
+ // self = [<foo> init...]
+ if (isSelfExpr(Op->getLHS()) && Sel.getNameForSlot(0).startswith("init"))
+ diagnostic = diag::warn_condition_is_idiomatic_assignment;
+
+ // <foo> = [<bar> nextObject]
+ else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
+ diagnostic = diag::warn_condition_is_idiomatic_assignment;
+ }
+
+ Loc = Op->getOperatorLoc();
+ } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
+ if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
+ return;
+
+ IsOrAssign = Op->getOperator() == OO_PipeEqual;
+ Loc = Op->getOperatorLoc();
+ } else {
+ // Not an assignment.
+ return;
+ }
+
+ Diag(Loc, diagnostic) << E->getSourceRange();
+
+ SourceLocation Open = E->getLocStart();
+ SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
+ Diag(Loc, diag::note_condition_assign_silence)
+ << FixItHint::CreateInsertion(Open, "(")
+ << FixItHint::CreateInsertion(Close, ")");
+
+ if (IsOrAssign)
+ Diag(Loc, diag::note_condition_or_assign_to_comparison)
+ << FixItHint::CreateReplacement(Loc, "!=");
+ else
+ Diag(Loc, diag::note_condition_assign_to_comparison)
+ << FixItHint::CreateReplacement(Loc, "==");
+}
+
+/// \brief Redundant parentheses over an equality comparison can indicate
+/// that the user intended an assignment used as condition.
+void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
+ // Don't warn if the parens came from a macro.
+ SourceLocation parenLoc = ParenE->getLocStart();
+ if (parenLoc.isInvalid() || parenLoc.isMacroID())
+ return;
+ // Don't warn for dependent expressions.
+ if (ParenE->isTypeDependent())
+ return;
+
+ Expr *E = ParenE->IgnoreParens();
+
+ if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
+ if (opE->getOpcode() == BO_EQ &&
+ opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
+ == Expr::MLV_Valid) {
+ SourceLocation Loc = opE->getOperatorLoc();
+
+ Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
+ SourceRange ParenERange = ParenE->getSourceRange();
+ Diag(Loc, diag::note_equality_comparison_silence)
+ << FixItHint::CreateRemoval(ParenERange.getBegin())
+ << FixItHint::CreateRemoval(ParenERange.getEnd());
+ Diag(Loc, diag::note_equality_comparison_to_assign)
+ << FixItHint::CreateReplacement(Loc, "=");
+ }
+}
+
+ExprResult Sema::CheckBooleanCondition(Expr *E, SourceLocation Loc) {
+ DiagnoseAssignmentAsCondition(E);
+ if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
+ DiagnoseEqualityWithExtraParens(parenE);
+
+ ExprResult result = CheckPlaceholderExpr(E);
+ if (result.isInvalid()) return ExprError();
+ E = result.take();
+
+ if (!E->isTypeDependent()) {
+ if (getLangOpts().CPlusPlus)
+ return CheckCXXBooleanCondition(E); // C++ 6.4p4
+
+ ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
+ if (ERes.isInvalid())
+ return ExprError();
+ E = ERes.take();
+
+ QualType T = E->getType();
+ if (!T->isScalarType()) { // C99 6.8.4.1p1
+ Diag(Loc, diag::err_typecheck_statement_requires_scalar)
+ << T << E->getSourceRange();
+ return ExprError();
+ }
+ }
+
+ return Owned(E);
+}
+
+ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
+ Expr *SubExpr) {
+ if (!SubExpr)
+ return ExprError();
+
+ return CheckBooleanCondition(SubExpr, Loc);
+}
+
+namespace {
+ /// A visitor for rebuilding a call to an __unknown_any expression
+ /// to have an appropriate type.
+ struct RebuildUnknownAnyFunction
+ : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
+
+ Sema &S;
+
+ RebuildUnknownAnyFunction(Sema &S) : S(S) {}
+
+ ExprResult VisitStmt(Stmt *S) {
+ llvm_unreachable("unexpected statement!");
+ }
+
+ ExprResult VisitExpr(Expr *E) {
+ S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
+ << E->getSourceRange();
+ return ExprError();
+ }
+
+ /// Rebuild an expression which simply semantically wraps another
+ /// expression which it shares the type and value kind of.
+ template <class T> ExprResult rebuildSugarExpr(T *E) {
+ ExprResult SubResult = Visit(E->getSubExpr());
+ if (SubResult.isInvalid()) return ExprError();
+
+ Expr *SubExpr = SubResult.take();
+ E->setSubExpr(SubExpr);
+ E->setType(SubExpr->getType());
+ E->setValueKind(SubExpr->getValueKind());
+ assert(E->getObjectKind() == OK_Ordinary);
+ return E;
+ }
+
+ ExprResult VisitParenExpr(ParenExpr *E) {
+ return rebuildSugarExpr(E);
+ }
+
+ ExprResult VisitUnaryExtension(UnaryOperator *E) {
+ return rebuildSugarExpr(E);
+ }
+
+ ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
+ ExprResult SubResult = Visit(E->getSubExpr());
+ if (SubResult.isInvalid()) return ExprError();
+
+ Expr *SubExpr = SubResult.take();
+ E->setSubExpr(SubExpr);
+ E->setType(S.Context.getPointerType(SubExpr->getType()));
+ assert(E->getValueKind() == VK_RValue);
+ assert(E->getObjectKind() == OK_Ordinary);
+ return E;
+ }
+
+ ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
+ if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
+
+ E->setType(VD->getType());
+
+ assert(E->getValueKind() == VK_RValue);
+ if (S.getLangOpts().CPlusPlus &&
+ !(isa<CXXMethodDecl>(VD) &&
+ cast<CXXMethodDecl>(VD)->isInstance()))
+ E->setValueKind(VK_LValue);
+
+ return E;
+ }
+
+ ExprResult VisitMemberExpr(MemberExpr *E) {
+ return resolveDecl(E, E->getMemberDecl());
+ }
+
+ ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
+ return resolveDecl(E, E->getDecl());
+ }
+ };
+}
+
+/// Given a function expression of unknown-any type, try to rebuild it
+/// to have a function type.
+static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
+ ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
+ if (Result.isInvalid()) return ExprError();
+ return S.DefaultFunctionArrayConversion(Result.take());
+}
+
+namespace {
+ /// A visitor for rebuilding an expression of type __unknown_anytype
+ /// into one which resolves the type directly on the referring
+ /// expression. Strict preservation of the original source
+ /// structure is not a goal.
+ struct RebuildUnknownAnyExpr
+ : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
+
+ Sema &S;
+
+ /// The current destination type.
+ QualType DestType;
+
+ RebuildUnknownAnyExpr(Sema &S, QualType CastType)
+ : S(S), DestType(CastType) {}
+
+ ExprResult VisitStmt(Stmt *S) {
+ llvm_unreachable("unexpected statement!");
+ }
+
+ ExprResult VisitExpr(Expr *E) {
+ S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
+ << E->getSourceRange();
+ return ExprError();
+ }
+
+ ExprResult VisitCallExpr(CallExpr *E);
+ ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
+
+ /// Rebuild an expression which simply semantically wraps another
+ /// expression which it shares the type and value kind of.
+ template <class T> ExprResult rebuildSugarExpr(T *E) {
+ ExprResult SubResult = Visit(E->getSubExpr());
+ if (SubResult.isInvalid()) return ExprError();
+ Expr *SubExpr = SubResult.take();
+ E->setSubExpr(SubExpr);
+ E->setType(SubExpr->getType());
+ E->setValueKind(SubExpr->getValueKind());
+ assert(E->getObjectKind() == OK_Ordinary);
+ return E;
+ }
+
+ ExprResult VisitParenExpr(ParenExpr *E) {
+ return rebuildSugarExpr(E);
+ }
+
+ ExprResult VisitUnaryExtension(UnaryOperator *E) {
+ return rebuildSugarExpr(E);
+ }
+
+ ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
+ const PointerType *Ptr = DestType->getAs<PointerType>();
+ if (!Ptr) {
+ S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
+ << E->getSourceRange();
+ return ExprError();
+ }
+ assert(E->getValueKind() == VK_RValue);
+ assert(E->getObjectKind() == OK_Ordinary);
+ E->setType(DestType);
+
+ // Build the sub-expression as if it were an object of the pointee type.
+ DestType = Ptr->getPointeeType();
+ ExprResult SubResult = Visit(E->getSubExpr());
+ if (SubResult.isInvalid()) return ExprError();
+ E->setSubExpr(SubResult.take());
+ return E;
+ }
+
+ ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
+
+ ExprResult resolveDecl(Expr *E, ValueDecl *VD);
+
+ ExprResult VisitMemberExpr(MemberExpr *E) {
+ return resolveDecl(E, E->getMemberDecl());
+ }
+
+ ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
+ return resolveDecl(E, E->getDecl());
+ }
+ };
+}
+
+/// Rebuilds a call expression which yielded __unknown_anytype.
+ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
+ Expr *CalleeExpr = E->getCallee();
+
+ enum FnKind {
+ FK_MemberFunction,
+ FK_FunctionPointer,
+ FK_BlockPointer
+ };
+
+ FnKind Kind;
+ QualType CalleeType = CalleeExpr->getType();
+ if (CalleeType == S.Context.BoundMemberTy) {
+ assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
+ Kind = FK_MemberFunction;
+ CalleeType = Expr::findBoundMemberType(CalleeExpr);
+ } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
+ CalleeType = Ptr->getPointeeType();
+ Kind = FK_FunctionPointer;
+ } else {
+ CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
+ Kind = FK_BlockPointer;
+ }
+ const FunctionType *FnType = CalleeType->castAs<FunctionType>();
+
+ // Verify that this is a legal result type of a function.
+ if (DestType->isArrayType() || DestType->isFunctionType()) {
+ unsigned diagID = diag::err_func_returning_array_function;
+ if (Kind == FK_BlockPointer)
+ diagID = diag::err_block_returning_array_function;
+
+ S.Diag(E->getExprLoc(), diagID)
+ << DestType->isFunctionType() << DestType;
+ return ExprError();
+ }
+
+ // Otherwise, go ahead and set DestType as the call's result.
+ E->setType(DestType.getNonLValueExprType(S.Context));
+ E->setValueKind(Expr::getValueKindForType(DestType));
+ assert(E->getObjectKind() == OK_Ordinary);
+
+ // Rebuild the function type, replacing the result type with DestType.
+ if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType))
+ DestType = S.Context.getFunctionType(DestType,
+ Proto->arg_type_begin(),
+ Proto->getNumArgs(),
+ Proto->getExtProtoInfo());
+ else
+ DestType = S.Context.getFunctionNoProtoType(DestType,
+ FnType->getExtInfo());
+
+ // Rebuild the appropriate pointer-to-function type.
+ switch (Kind) {
+ case FK_MemberFunction:
+ // Nothing to do.
+ break;
+
+ case FK_FunctionPointer:
+ DestType = S.Context.getPointerType(DestType);
+ break;
+
+ case FK_BlockPointer:
+ DestType = S.Context.getBlockPointerType(DestType);
+ break;
+ }
+
+ // Finally, we can recurse.
+ ExprResult CalleeResult = Visit(CalleeExpr);
+ if (!CalleeResult.isUsable()) return ExprError();
+ E->setCallee(CalleeResult.take());
+
+ // Bind a temporary if necessary.
+ return S.MaybeBindToTemporary(E);
+}
+
+ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
+ // Verify that this is a legal result type of a call.
+ if (DestType->isArrayType() || DestType->isFunctionType()) {
+ S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
+ << DestType->isFunctionType() << DestType;
+ return ExprError();
+ }
+
+ // Rewrite the method result type if available.
+ if (ObjCMethodDecl *Method = E->getMethodDecl()) {
+ assert(Method->getResultType() == S.Context.UnknownAnyTy);
+ Method->setResultType(DestType);
+ }
+
+ // Change the type of the message.
+ E->setType(DestType.getNonReferenceType());
+ E->setValueKind(Expr::getValueKindForType(DestType));
+
+ return S.MaybeBindToTemporary(E);
+}
+
+ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
+ // The only case we should ever see here is a function-to-pointer decay.
+ if (E->getCastKind() == CK_FunctionToPointerDecay) {
+ assert(E->getValueKind() == VK_RValue);
+ assert(E->getObjectKind() == OK_Ordinary);
+
+ E->setType(DestType);
+
+ // Rebuild the sub-expression as the pointee (function) type.
+ DestType = DestType->castAs<PointerType>()->getPointeeType();
+
+ ExprResult Result = Visit(E->getSubExpr());
+ if (!Result.isUsable()) return ExprError();
+
+ E->setSubExpr(Result.take());
+ return S.Owned(E);
+ } else if (E->getCastKind() == CK_LValueToRValue) {
+ assert(E->getValueKind() == VK_RValue);
+ assert(E->getObjectKind() == OK_Ordinary);
+
+ assert(isa<BlockPointerType>(E->getType()));
+
+ E->setType(DestType);
+
+ // The sub-expression has to be a lvalue reference, so rebuild it as such.
+ DestType = S.Context.getLValueReferenceType(DestType);
+
+ ExprResult Result = Visit(E->getSubExpr());
+ if (!Result.isUsable()) return ExprError();
+
+ E->setSubExpr(Result.take());
+ return S.Owned(E);
+ } else {
+ llvm_unreachable("Unhandled cast type!");
+ }
+}
+
+ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
+ ExprValueKind ValueKind = VK_LValue;
+ QualType Type = DestType;
+
+ // We know how to make this work for certain kinds of decls:
+
+ // - functions
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
+ if (const PointerType *Ptr = Type->getAs<PointerType>()) {
+ DestType = Ptr->getPointeeType();
+ ExprResult Result = resolveDecl(E, VD);
+ if (Result.isInvalid()) return ExprError();
+ return S.ImpCastExprToType(Result.take(), Type,
+ CK_FunctionToPointerDecay, VK_RValue);
+ }
+
+ if (!Type->isFunctionType()) {
+ S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
+ << VD << E->getSourceRange();
+ return ExprError();
+ }
+
+ if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
+ if (MD->isInstance()) {
+ ValueKind = VK_RValue;
+ Type = S.Context.BoundMemberTy;
+ }
+
+ // Function references aren't l-values in C.
+ if (!S.getLangOpts().CPlusPlus)
+ ValueKind = VK_RValue;
+
+ // - variables
+ } else if (isa<VarDecl>(VD)) {
+ if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
+ Type = RefTy->getPointeeType();
+ } else if (Type->isFunctionType()) {
+ S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
+ << VD << E->getSourceRange();
+ return ExprError();
+ }
+
+ // - nothing else
+ } else {
+ S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
+ << VD << E->getSourceRange();
+ return ExprError();
+ }
+
+ VD->setType(DestType);
+ E->setType(Type);
+ E->setValueKind(ValueKind);
+ return S.Owned(E);
+}
+
+/// Check a cast of an unknown-any type. We intentionally only
+/// trigger this for C-style casts.
+ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
+ Expr *CastExpr, CastKind &CastKind,
+ ExprValueKind &VK, CXXCastPath &Path) {
+ // Rewrite the casted expression from scratch.
+ ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
+ if (!result.isUsable()) return ExprError();
+
+ CastExpr = result.take();
+ VK = CastExpr->getValueKind();
+ CastKind = CK_NoOp;
+
+ return CastExpr;
+}
+
+ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
+ return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
+}
+
+static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
+ Expr *orig = E;
+ unsigned diagID = diag::err_uncasted_use_of_unknown_any;
+ while (true) {
+ E = E->IgnoreParenImpCasts();
+ if (CallExpr *call = dyn_cast<CallExpr>(E)) {
+ E = call->getCallee();
+ diagID = diag::err_uncasted_call_of_unknown_any;
+ } else {
+ break;
+ }
+ }
+
+ SourceLocation loc;
+ NamedDecl *d;
+ if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
+ loc = ref->getLocation();
+ d = ref->getDecl();
+ } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
+ loc = mem->getMemberLoc();
+ d = mem->getMemberDecl();
+ } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
+ diagID = diag::err_uncasted_call_of_unknown_any;
+ loc = msg->getSelectorStartLoc();
+ d = msg->getMethodDecl();
+ if (!d) {
+ S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
+ << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
+ << orig->getSourceRange();
+ return ExprError();
+ }
+ } else {
+ S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
+ << E->getSourceRange();
+ return ExprError();
+ }
+
+ S.Diag(loc, diagID) << d << orig->getSourceRange();
+
+ // Never recoverable.
+ return ExprError();
+}
+
+/// Check for operands with placeholder types and complain if found.
+/// Returns true if there was an error and no recovery was possible.
+ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
+ const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
+ if (!placeholderType) return Owned(E);
+
+ switch (placeholderType->getKind()) {
+
+ // Overloaded expressions.
+ case BuiltinType::Overload: {
+ // Try to resolve a single function template specialization.
+ // This is obligatory.
+ ExprResult result = Owned(E);
+ if (ResolveAndFixSingleFunctionTemplateSpecialization(result, false)) {
+ return result;
+
+ // If that failed, try to recover with a call.
+ } else {
+ tryToRecoverWithCall(result, PDiag(diag::err_ovl_unresolvable),
+ /*complain*/ true);
+ return result;
+ }
+ }
+
+ // Bound member functions.
+ case BuiltinType::BoundMember: {
+ ExprResult result = Owned(E);
+ tryToRecoverWithCall(result, PDiag(diag::err_bound_member_function),
+ /*complain*/ true);
+ return result;
+ }
+
+ // ARC unbridged casts.
+ case BuiltinType::ARCUnbridgedCast: {
+ Expr *realCast = stripARCUnbridgedCast(E);
+ diagnoseARCUnbridgedCast(realCast);
+ return Owned(realCast);
+ }
+
+ // Expressions of unknown type.
+ case BuiltinType::UnknownAny:
+ return diagnoseUnknownAnyExpr(*this, E);
+
+ // Pseudo-objects.
+ case BuiltinType::PseudoObject:
+ return checkPseudoObjectRValue(E);
+
+ // Everything else should be impossible.
+#define BUILTIN_TYPE(Id, SingletonId) \
+ case BuiltinType::Id:
+#define PLACEHOLDER_TYPE(Id, SingletonId)
+#include "clang/AST/BuiltinTypes.def"
+ break;
+ }
+
+ llvm_unreachable("invalid placeholder type!");
+}
+
+bool Sema::CheckCaseExpression(Expr *E) {
+ if (E->isTypeDependent())
+ return true;
+ if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
+ return E->getType()->isIntegralOrEnumerationType();
+ return false;
+}
+
+/// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
+ExprResult
+Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
+ assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
+ "Unknown Objective-C Boolean value!");
+ QualType ObjCBoolLiteralQT = Context.ObjCBuiltinBoolTy;
+ // signed char is the default type for boolean literals. Use 'BOOL'
+ // instead, if BOOL typedef is visible in its scope instead.
+ Decl *TD =
+ LookupSingleName(TUScope, &Context.Idents.get("BOOL"),
+ SourceLocation(), LookupOrdinaryName);
+ if (TypedefDecl *BoolTD = dyn_cast_or_null<TypedefDecl>(TD)) {
+ QualType QT = BoolTD->getUnderlyingType();
+ if (!QT->isIntegralOrUnscopedEnumerationType()) {
+ Diag(OpLoc, diag::warn_bool_for_boolean_literal) << QT;
+ Diag(BoolTD->getLocation(), diag::note_previous_declaration);
+ }
+ else
+ ObjCBoolLiteralQT = QT;
+ }
+
+ return Owned(new (Context) ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes,
+ ObjCBoolLiteralQT, OpLoc));
+}
OpenPOWER on IntegriCloud