diff options
Diffstat (limited to 'contrib/llvm/tools/clang/lib/Sema/SemaDeclCXX.cpp')
-rw-r--r-- | contrib/llvm/tools/clang/lib/Sema/SemaDeclCXX.cpp | 6294 |
1 files changed, 6294 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaDeclCXX.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaDeclCXX.cpp new file mode 100644 index 0000000..148d146 --- /dev/null +++ b/contrib/llvm/tools/clang/lib/Sema/SemaDeclCXX.cpp @@ -0,0 +1,6294 @@ +//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements semantic analysis for C++ declarations. +// +//===----------------------------------------------------------------------===// + +#include "Sema.h" +#include "SemaInit.h" +#include "Lookup.h" +#include "clang/AST/ASTConsumer.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/CharUnits.h" +#include "clang/AST/CXXInheritance.h" +#include "clang/AST/DeclVisitor.h" +#include "clang/AST/RecordLayout.h" +#include "clang/AST/StmtVisitor.h" +#include "clang/AST/TypeLoc.h" +#include "clang/AST/TypeOrdering.h" +#include "clang/Parse/DeclSpec.h" +#include "clang/Parse/Template.h" +#include "clang/Basic/PartialDiagnostic.h" +#include "clang/Lex/Preprocessor.h" +#include "llvm/ADT/STLExtras.h" +#include <map> +#include <set> + +using namespace clang; + +//===----------------------------------------------------------------------===// +// CheckDefaultArgumentVisitor +//===----------------------------------------------------------------------===// + +namespace { + /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses + /// the default argument of a parameter to determine whether it + /// contains any ill-formed subexpressions. For example, this will + /// diagnose the use of local variables or parameters within the + /// default argument expression. + class CheckDefaultArgumentVisitor + : public StmtVisitor<CheckDefaultArgumentVisitor, bool> { + Expr *DefaultArg; + Sema *S; + + public: + CheckDefaultArgumentVisitor(Expr *defarg, Sema *s) + : DefaultArg(defarg), S(s) {} + + bool VisitExpr(Expr *Node); + bool VisitDeclRefExpr(DeclRefExpr *DRE); + bool VisitCXXThisExpr(CXXThisExpr *ThisE); + }; + + /// VisitExpr - Visit all of the children of this expression. + bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) { + bool IsInvalid = false; + for (Stmt::child_iterator I = Node->child_begin(), + E = Node->child_end(); I != E; ++I) + IsInvalid |= Visit(*I); + return IsInvalid; + } + + /// VisitDeclRefExpr - Visit a reference to a declaration, to + /// determine whether this declaration can be used in the default + /// argument expression. + bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) { + NamedDecl *Decl = DRE->getDecl(); + if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) { + // C++ [dcl.fct.default]p9 + // Default arguments are evaluated each time the function is + // called. The order of evaluation of function arguments is + // unspecified. Consequently, parameters of a function shall not + // be used in default argument expressions, even if they are not + // evaluated. Parameters of a function declared before a default + // argument expression are in scope and can hide namespace and + // class member names. + return S->Diag(DRE->getSourceRange().getBegin(), + diag::err_param_default_argument_references_param) + << Param->getDeclName() << DefaultArg->getSourceRange(); + } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) { + // C++ [dcl.fct.default]p7 + // Local variables shall not be used in default argument + // expressions. + if (VDecl->isBlockVarDecl()) + return S->Diag(DRE->getSourceRange().getBegin(), + diag::err_param_default_argument_references_local) + << VDecl->getDeclName() << DefaultArg->getSourceRange(); + } + + return false; + } + + /// VisitCXXThisExpr - Visit a C++ "this" expression. + bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) { + // C++ [dcl.fct.default]p8: + // The keyword this shall not be used in a default argument of a + // member function. + return S->Diag(ThisE->getSourceRange().getBegin(), + diag::err_param_default_argument_references_this) + << ThisE->getSourceRange(); + } +} + +bool +Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg, + SourceLocation EqualLoc) { + if (RequireCompleteType(Param->getLocation(), Param->getType(), + diag::err_typecheck_decl_incomplete_type)) { + Param->setInvalidDecl(); + return true; + } + + Expr *Arg = (Expr *)DefaultArg.get(); + + // C++ [dcl.fct.default]p5 + // A default argument expression is implicitly converted (clause + // 4) to the parameter type. The default argument expression has + // the same semantic constraints as the initializer expression in + // a declaration of a variable of the parameter type, using the + // copy-initialization semantics (8.5). + InitializedEntity Entity = InitializedEntity::InitializeParameter(Param); + InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(), + EqualLoc); + InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1); + OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, + MultiExprArg(*this, (void**)&Arg, 1)); + if (Result.isInvalid()) + return true; + Arg = Result.takeAs<Expr>(); + + Arg = MaybeCreateCXXExprWithTemporaries(Arg); + + // Okay: add the default argument to the parameter + Param->setDefaultArg(Arg); + + DefaultArg.release(); + + return false; +} + +/// ActOnParamDefaultArgument - Check whether the default argument +/// provided for a function parameter is well-formed. If so, attach it +/// to the parameter declaration. +void +Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc, + ExprArg defarg) { + if (!param || !defarg.get()) + return; + + ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>()); + UnparsedDefaultArgLocs.erase(Param); + + ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>()); + + // Default arguments are only permitted in C++ + if (!getLangOptions().CPlusPlus) { + Diag(EqualLoc, diag::err_param_default_argument) + << DefaultArg->getSourceRange(); + Param->setInvalidDecl(); + return; + } + + // Check that the default argument is well-formed + CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this); + if (DefaultArgChecker.Visit(DefaultArg.get())) { + Param->setInvalidDecl(); + return; + } + + SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc); +} + +/// ActOnParamUnparsedDefaultArgument - We've seen a default +/// argument for a function parameter, but we can't parse it yet +/// because we're inside a class definition. Note that this default +/// argument will be parsed later. +void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param, + SourceLocation EqualLoc, + SourceLocation ArgLoc) { + if (!param) + return; + + ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>()); + if (Param) + Param->setUnparsedDefaultArg(); + + UnparsedDefaultArgLocs[Param] = ArgLoc; +} + +/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of +/// the default argument for the parameter param failed. +void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) { + if (!param) + return; + + ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>()); + + Param->setInvalidDecl(); + + UnparsedDefaultArgLocs.erase(Param); +} + +/// CheckExtraCXXDefaultArguments - Check for any extra default +/// arguments in the declarator, which is not a function declaration +/// or definition and therefore is not permitted to have default +/// arguments. This routine should be invoked for every declarator +/// that is not a function declaration or definition. +void Sema::CheckExtraCXXDefaultArguments(Declarator &D) { + // C++ [dcl.fct.default]p3 + // A default argument expression shall be specified only in the + // parameter-declaration-clause of a function declaration or in a + // template-parameter (14.1). It shall not be specified for a + // parameter pack. If it is specified in a + // parameter-declaration-clause, it shall not occur within a + // declarator or abstract-declarator of a parameter-declaration. + for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { + DeclaratorChunk &chunk = D.getTypeObject(i); + if (chunk.Kind == DeclaratorChunk::Function) { + for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) { + ParmVarDecl *Param = + cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>()); + if (Param->hasUnparsedDefaultArg()) { + CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens; + Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) + << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation()); + delete Toks; + chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0; + } else if (Param->getDefaultArg()) { + Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) + << Param->getDefaultArg()->getSourceRange(); + Param->setDefaultArg(0); + } + } + } + } +} + +// MergeCXXFunctionDecl - Merge two declarations of the same C++ +// function, once we already know that they have the same +// type. Subroutine of MergeFunctionDecl. Returns true if there was an +// error, false otherwise. +bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) { + bool Invalid = false; + + // C++ [dcl.fct.default]p4: + // For non-template functions, default arguments can be added in + // later declarations of a function in the same + // scope. Declarations in different scopes have completely + // distinct sets of default arguments. That is, declarations in + // inner scopes do not acquire default arguments from + // declarations in outer scopes, and vice versa. In a given + // function declaration, all parameters subsequent to a + // parameter with a default argument shall have default + // arguments supplied in this or previous declarations. A + // default argument shall not be redefined by a later + // declaration (not even to the same value). + // + // C++ [dcl.fct.default]p6: + // Except for member functions of class templates, the default arguments + // in a member function definition that appears outside of the class + // definition are added to the set of default arguments provided by the + // member function declaration in the class definition. + for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) { + ParmVarDecl *OldParam = Old->getParamDecl(p); + ParmVarDecl *NewParam = New->getParamDecl(p); + + if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) { + // FIXME: If we knew where the '=' was, we could easily provide a fix-it + // hint here. Alternatively, we could walk the type-source information + // for NewParam to find the last source location in the type... but it + // isn't worth the effort right now. This is the kind of test case that + // is hard to get right: + + // int f(int); + // void g(int (*fp)(int) = f); + // void g(int (*fp)(int) = &f); + Diag(NewParam->getLocation(), + diag::err_param_default_argument_redefinition) + << NewParam->getDefaultArgRange(); + + // Look for the function declaration where the default argument was + // actually written, which may be a declaration prior to Old. + for (FunctionDecl *Older = Old->getPreviousDeclaration(); + Older; Older = Older->getPreviousDeclaration()) { + if (!Older->getParamDecl(p)->hasDefaultArg()) + break; + + OldParam = Older->getParamDecl(p); + } + + Diag(OldParam->getLocation(), diag::note_previous_definition) + << OldParam->getDefaultArgRange(); + Invalid = true; + } else if (OldParam->hasDefaultArg()) { + // Merge the old default argument into the new parameter. + // It's important to use getInit() here; getDefaultArg() + // strips off any top-level CXXExprWithTemporaries. + NewParam->setHasInheritedDefaultArg(); + if (OldParam->hasUninstantiatedDefaultArg()) + NewParam->setUninstantiatedDefaultArg( + OldParam->getUninstantiatedDefaultArg()); + else + NewParam->setDefaultArg(OldParam->getInit()); + } else if (NewParam->hasDefaultArg()) { + if (New->getDescribedFunctionTemplate()) { + // Paragraph 4, quoted above, only applies to non-template functions. + Diag(NewParam->getLocation(), + diag::err_param_default_argument_template_redecl) + << NewParam->getDefaultArgRange(); + Diag(Old->getLocation(), diag::note_template_prev_declaration) + << false; + } else if (New->getTemplateSpecializationKind() + != TSK_ImplicitInstantiation && + New->getTemplateSpecializationKind() != TSK_Undeclared) { + // C++ [temp.expr.spec]p21: + // Default function arguments shall not be specified in a declaration + // or a definition for one of the following explicit specializations: + // - the explicit specialization of a function template; + // - the explicit specialization of a member function template; + // - the explicit specialization of a member function of a class + // template where the class template specialization to which the + // member function specialization belongs is implicitly + // instantiated. + Diag(NewParam->getLocation(), diag::err_template_spec_default_arg) + << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization) + << New->getDeclName() + << NewParam->getDefaultArgRange(); + } else if (New->getDeclContext()->isDependentContext()) { + // C++ [dcl.fct.default]p6 (DR217): + // Default arguments for a member function of a class template shall + // be specified on the initial declaration of the member function + // within the class template. + // + // Reading the tea leaves a bit in DR217 and its reference to DR205 + // leads me to the conclusion that one cannot add default function + // arguments for an out-of-line definition of a member function of a + // dependent type. + int WhichKind = 2; + if (CXXRecordDecl *Record + = dyn_cast<CXXRecordDecl>(New->getDeclContext())) { + if (Record->getDescribedClassTemplate()) + WhichKind = 0; + else if (isa<ClassTemplatePartialSpecializationDecl>(Record)) + WhichKind = 1; + else + WhichKind = 2; + } + + Diag(NewParam->getLocation(), + diag::err_param_default_argument_member_template_redecl) + << WhichKind + << NewParam->getDefaultArgRange(); + } + } + } + + if (CheckEquivalentExceptionSpec(Old, New)) + Invalid = true; + + return Invalid; +} + +/// CheckCXXDefaultArguments - Verify that the default arguments for a +/// function declaration are well-formed according to C++ +/// [dcl.fct.default]. +void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) { + unsigned NumParams = FD->getNumParams(); + unsigned p; + + // Find first parameter with a default argument + for (p = 0; p < NumParams; ++p) { + ParmVarDecl *Param = FD->getParamDecl(p); + if (Param->hasDefaultArg()) + break; + } + + // C++ [dcl.fct.default]p4: + // In a given function declaration, all parameters + // subsequent to a parameter with a default argument shall + // have default arguments supplied in this or previous + // declarations. A default argument shall not be redefined + // by a later declaration (not even to the same value). + unsigned LastMissingDefaultArg = 0; + for (; p < NumParams; ++p) { + ParmVarDecl *Param = FD->getParamDecl(p); + if (!Param->hasDefaultArg()) { + if (Param->isInvalidDecl()) + /* We already complained about this parameter. */; + else if (Param->getIdentifier()) + Diag(Param->getLocation(), + diag::err_param_default_argument_missing_name) + << Param->getIdentifier(); + else + Diag(Param->getLocation(), + diag::err_param_default_argument_missing); + + LastMissingDefaultArg = p; + } + } + + if (LastMissingDefaultArg > 0) { + // Some default arguments were missing. Clear out all of the + // default arguments up to (and including) the last missing + // default argument, so that we leave the function parameters + // in a semantically valid state. + for (p = 0; p <= LastMissingDefaultArg; ++p) { + ParmVarDecl *Param = FD->getParamDecl(p); + if (Param->hasDefaultArg()) { + if (!Param->hasUnparsedDefaultArg()) + Param->getDefaultArg()->Destroy(Context); + Param->setDefaultArg(0); + } + } + } +} + +/// isCurrentClassName - Determine whether the identifier II is the +/// name of the class type currently being defined. In the case of +/// nested classes, this will only return true if II is the name of +/// the innermost class. +bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *, + const CXXScopeSpec *SS) { + assert(getLangOptions().CPlusPlus && "No class names in C!"); + + CXXRecordDecl *CurDecl; + if (SS && SS->isSet() && !SS->isInvalid()) { + DeclContext *DC = computeDeclContext(*SS, true); + CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC); + } else + CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext); + + if (CurDecl && CurDecl->getIdentifier()) + return &II == CurDecl->getIdentifier(); + else + return false; +} + +/// \brief Check the validity of a C++ base class specifier. +/// +/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics +/// and returns NULL otherwise. +CXXBaseSpecifier * +Sema::CheckBaseSpecifier(CXXRecordDecl *Class, + SourceRange SpecifierRange, + bool Virtual, AccessSpecifier Access, + QualType BaseType, + SourceLocation BaseLoc) { + // C++ [class.union]p1: + // A union shall not have base classes. + if (Class->isUnion()) { + Diag(Class->getLocation(), diag::err_base_clause_on_union) + << SpecifierRange; + return 0; + } + + if (BaseType->isDependentType()) + return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, + Class->getTagKind() == TTK_Class, + Access, BaseType); + + // Base specifiers must be record types. + if (!BaseType->isRecordType()) { + Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange; + return 0; + } + + // C++ [class.union]p1: + // A union shall not be used as a base class. + if (BaseType->isUnionType()) { + Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange; + return 0; + } + + // C++ [class.derived]p2: + // The class-name in a base-specifier shall not be an incompletely + // defined class. + if (RequireCompleteType(BaseLoc, BaseType, + PDiag(diag::err_incomplete_base_class) + << SpecifierRange)) + return 0; + + // If the base class is polymorphic or isn't empty, the new one is/isn't, too. + RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl(); + assert(BaseDecl && "Record type has no declaration"); + BaseDecl = BaseDecl->getDefinition(); + assert(BaseDecl && "Base type is not incomplete, but has no definition"); + CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl); + assert(CXXBaseDecl && "Base type is not a C++ type"); + + // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases. + if (CXXBaseDecl->hasAttr<FinalAttr>()) { + Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString(); + Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl) + << BaseType; + return 0; + } + + SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual); + + // Create the base specifier. + return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, + Class->getTagKind() == TTK_Class, + Access, BaseType); +} + +void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class, + const CXXRecordDecl *BaseClass, + bool BaseIsVirtual) { + // A class with a non-empty base class is not empty. + // FIXME: Standard ref? + if (!BaseClass->isEmpty()) + Class->setEmpty(false); + + // C++ [class.virtual]p1: + // A class that [...] inherits a virtual function is called a polymorphic + // class. + if (BaseClass->isPolymorphic()) + Class->setPolymorphic(true); + + // C++ [dcl.init.aggr]p1: + // An aggregate is [...] a class with [...] no base classes [...]. + Class->setAggregate(false); + + // C++ [class]p4: + // A POD-struct is an aggregate class... + Class->setPOD(false); + + if (BaseIsVirtual) { + // C++ [class.ctor]p5: + // A constructor is trivial if its class has no virtual base classes. + Class->setHasTrivialConstructor(false); + + // C++ [class.copy]p6: + // A copy constructor is trivial if its class has no virtual base classes. + Class->setHasTrivialCopyConstructor(false); + + // C++ [class.copy]p11: + // A copy assignment operator is trivial if its class has no virtual + // base classes. + Class->setHasTrivialCopyAssignment(false); + + // C++0x [meta.unary.prop] is_empty: + // T is a class type, but not a union type, with ... no virtual base + // classes + Class->setEmpty(false); + } else { + // C++ [class.ctor]p5: + // A constructor is trivial if all the direct base classes of its + // class have trivial constructors. + if (!BaseClass->hasTrivialConstructor()) + Class->setHasTrivialConstructor(false); + + // C++ [class.copy]p6: + // A copy constructor is trivial if all the direct base classes of its + // class have trivial copy constructors. + if (!BaseClass->hasTrivialCopyConstructor()) + Class->setHasTrivialCopyConstructor(false); + + // C++ [class.copy]p11: + // A copy assignment operator is trivial if all the direct base classes + // of its class have trivial copy assignment operators. + if (!BaseClass->hasTrivialCopyAssignment()) + Class->setHasTrivialCopyAssignment(false); + } + + // C++ [class.ctor]p3: + // A destructor is trivial if all the direct base classes of its class + // have trivial destructors. + if (!BaseClass->hasTrivialDestructor()) + Class->setHasTrivialDestructor(false); +} + +/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is +/// one entry in the base class list of a class specifier, for +/// example: +/// class foo : public bar, virtual private baz { +/// 'public bar' and 'virtual private baz' are each base-specifiers. +Sema::BaseResult +Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange, + bool Virtual, AccessSpecifier Access, + TypeTy *basetype, SourceLocation BaseLoc) { + if (!classdecl) + return true; + + AdjustDeclIfTemplate(classdecl); + CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl.getAs<Decl>()); + if (!Class) + return true; + + QualType BaseType = GetTypeFromParser(basetype); + if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange, + Virtual, Access, + BaseType, BaseLoc)) + return BaseSpec; + + return true; +} + +/// \brief Performs the actual work of attaching the given base class +/// specifiers to a C++ class. +bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases, + unsigned NumBases) { + if (NumBases == 0) + return false; + + // Used to keep track of which base types we have already seen, so + // that we can properly diagnose redundant direct base types. Note + // that the key is always the unqualified canonical type of the base + // class. + std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes; + + // Copy non-redundant base specifiers into permanent storage. + unsigned NumGoodBases = 0; + bool Invalid = false; + for (unsigned idx = 0; idx < NumBases; ++idx) { + QualType NewBaseType + = Context.getCanonicalType(Bases[idx]->getType()); + NewBaseType = NewBaseType.getLocalUnqualifiedType(); + if (!Class->hasObjectMember()) { + if (const RecordType *FDTTy = + NewBaseType.getTypePtr()->getAs<RecordType>()) + if (FDTTy->getDecl()->hasObjectMember()) + Class->setHasObjectMember(true); + } + + if (KnownBaseTypes[NewBaseType]) { + // C++ [class.mi]p3: + // A class shall not be specified as a direct base class of a + // derived class more than once. + Diag(Bases[idx]->getSourceRange().getBegin(), + diag::err_duplicate_base_class) + << KnownBaseTypes[NewBaseType]->getType() + << Bases[idx]->getSourceRange(); + + // Delete the duplicate base class specifier; we're going to + // overwrite its pointer later. + Context.Deallocate(Bases[idx]); + + Invalid = true; + } else { + // Okay, add this new base class. + KnownBaseTypes[NewBaseType] = Bases[idx]; + Bases[NumGoodBases++] = Bases[idx]; + } + } + + // Attach the remaining base class specifiers to the derived class. + Class->setBases(Bases, NumGoodBases); + + // Delete the remaining (good) base class specifiers, since their + // data has been copied into the CXXRecordDecl. + for (unsigned idx = 0; idx < NumGoodBases; ++idx) + Context.Deallocate(Bases[idx]); + + return Invalid; +} + +/// ActOnBaseSpecifiers - Attach the given base specifiers to the +/// class, after checking whether there are any duplicate base +/// classes. +void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases, + unsigned NumBases) { + if (!ClassDecl || !Bases || !NumBases) + return; + + AdjustDeclIfTemplate(ClassDecl); + AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()), + (CXXBaseSpecifier**)(Bases), NumBases); +} + +static CXXRecordDecl *GetClassForType(QualType T) { + if (const RecordType *RT = T->getAs<RecordType>()) + return cast<CXXRecordDecl>(RT->getDecl()); + else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>()) + return ICT->getDecl(); + else + return 0; +} + +/// \brief Determine whether the type \p Derived is a C++ class that is +/// derived from the type \p Base. +bool Sema::IsDerivedFrom(QualType Derived, QualType Base) { + if (!getLangOptions().CPlusPlus) + return false; + + CXXRecordDecl *DerivedRD = GetClassForType(Derived); + if (!DerivedRD) + return false; + + CXXRecordDecl *BaseRD = GetClassForType(Base); + if (!BaseRD) + return false; + + // FIXME: instantiate DerivedRD if necessary. We need a PoI for this. + return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD); +} + +/// \brief Determine whether the type \p Derived is a C++ class that is +/// derived from the type \p Base. +bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) { + if (!getLangOptions().CPlusPlus) + return false; + + CXXRecordDecl *DerivedRD = GetClassForType(Derived); + if (!DerivedRD) + return false; + + CXXRecordDecl *BaseRD = GetClassForType(Base); + if (!BaseRD) + return false; + + return DerivedRD->isDerivedFrom(BaseRD, Paths); +} + +void Sema::BuildBasePathArray(const CXXBasePaths &Paths, + CXXBaseSpecifierArray &BasePathArray) { + assert(BasePathArray.empty() && "Base path array must be empty!"); + assert(Paths.isRecordingPaths() && "Must record paths!"); + + const CXXBasePath &Path = Paths.front(); + + // We first go backward and check if we have a virtual base. + // FIXME: It would be better if CXXBasePath had the base specifier for + // the nearest virtual base. + unsigned Start = 0; + for (unsigned I = Path.size(); I != 0; --I) { + if (Path[I - 1].Base->isVirtual()) { + Start = I - 1; + break; + } + } + + // Now add all bases. + for (unsigned I = Start, E = Path.size(); I != E; ++I) + BasePathArray.push_back(Path[I].Base); +} + +/// \brief Determine whether the given base path includes a virtual +/// base class. +bool Sema::BasePathInvolvesVirtualBase(const CXXBaseSpecifierArray &BasePath) { + for (CXXBaseSpecifierArray::iterator B = BasePath.begin(), + BEnd = BasePath.end(); + B != BEnd; ++B) + if ((*B)->isVirtual()) + return true; + + return false; +} + +/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base +/// conversion (where Derived and Base are class types) is +/// well-formed, meaning that the conversion is unambiguous (and +/// that all of the base classes are accessible). Returns true +/// and emits a diagnostic if the code is ill-formed, returns false +/// otherwise. Loc is the location where this routine should point to +/// if there is an error, and Range is the source range to highlight +/// if there is an error. +bool +Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, + unsigned InaccessibleBaseID, + unsigned AmbigiousBaseConvID, + SourceLocation Loc, SourceRange Range, + DeclarationName Name, + CXXBaseSpecifierArray *BasePath) { + // First, determine whether the path from Derived to Base is + // ambiguous. This is slightly more expensive than checking whether + // the Derived to Base conversion exists, because here we need to + // explore multiple paths to determine if there is an ambiguity. + CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, + /*DetectVirtual=*/false); + bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths); + assert(DerivationOkay && + "Can only be used with a derived-to-base conversion"); + (void)DerivationOkay; + + if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) { + if (InaccessibleBaseID) { + // Check that the base class can be accessed. + switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(), + InaccessibleBaseID)) { + case AR_inaccessible: + return true; + case AR_accessible: + case AR_dependent: + case AR_delayed: + break; + } + } + + // Build a base path if necessary. + if (BasePath) + BuildBasePathArray(Paths, *BasePath); + return false; + } + + // We know that the derived-to-base conversion is ambiguous, and + // we're going to produce a diagnostic. Perform the derived-to-base + // search just one more time to compute all of the possible paths so + // that we can print them out. This is more expensive than any of + // the previous derived-to-base checks we've done, but at this point + // performance isn't as much of an issue. + Paths.clear(); + Paths.setRecordingPaths(true); + bool StillOkay = IsDerivedFrom(Derived, Base, Paths); + assert(StillOkay && "Can only be used with a derived-to-base conversion"); + (void)StillOkay; + + // Build up a textual representation of the ambiguous paths, e.g., + // D -> B -> A, that will be used to illustrate the ambiguous + // conversions in the diagnostic. We only print one of the paths + // to each base class subobject. + std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); + + Diag(Loc, AmbigiousBaseConvID) + << Derived << Base << PathDisplayStr << Range << Name; + return true; +} + +bool +Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, + SourceLocation Loc, SourceRange Range, + CXXBaseSpecifierArray *BasePath, + bool IgnoreAccess) { + return CheckDerivedToBaseConversion(Derived, Base, + IgnoreAccess ? 0 + : diag::err_upcast_to_inaccessible_base, + diag::err_ambiguous_derived_to_base_conv, + Loc, Range, DeclarationName(), + BasePath); +} + + +/// @brief Builds a string representing ambiguous paths from a +/// specific derived class to different subobjects of the same base +/// class. +/// +/// This function builds a string that can be used in error messages +/// to show the different paths that one can take through the +/// inheritance hierarchy to go from the derived class to different +/// subobjects of a base class. The result looks something like this: +/// @code +/// struct D -> struct B -> struct A +/// struct D -> struct C -> struct A +/// @endcode +std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) { + std::string PathDisplayStr; + std::set<unsigned> DisplayedPaths; + for (CXXBasePaths::paths_iterator Path = Paths.begin(); + Path != Paths.end(); ++Path) { + if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) { + // We haven't displayed a path to this particular base + // class subobject yet. + PathDisplayStr += "\n "; + PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString(); + for (CXXBasePath::const_iterator Element = Path->begin(); + Element != Path->end(); ++Element) + PathDisplayStr += " -> " + Element->Base->getType().getAsString(); + } + } + + return PathDisplayStr; +} + +//===----------------------------------------------------------------------===// +// C++ class member Handling +//===----------------------------------------------------------------------===// + +/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member +/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the +/// bitfield width if there is one and 'InitExpr' specifies the initializer if +/// any. +Sema::DeclPtrTy +Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D, + MultiTemplateParamsArg TemplateParameterLists, + ExprTy *BW, ExprTy *InitExpr, bool IsDefinition, + bool Deleted) { + const DeclSpec &DS = D.getDeclSpec(); + DeclarationName Name = GetNameForDeclarator(D); + Expr *BitWidth = static_cast<Expr*>(BW); + Expr *Init = static_cast<Expr*>(InitExpr); + SourceLocation Loc = D.getIdentifierLoc(); + + bool isFunc = D.isFunctionDeclarator(); + + assert(!DS.isFriendSpecified()); + + // C++ 9.2p6: A member shall not be declared to have automatic storage + // duration (auto, register) or with the extern storage-class-specifier. + // C++ 7.1.1p8: The mutable specifier can be applied only to names of class + // data members and cannot be applied to names declared const or static, + // and cannot be applied to reference members. + switch (DS.getStorageClassSpec()) { + case DeclSpec::SCS_unspecified: + case DeclSpec::SCS_typedef: + case DeclSpec::SCS_static: + // FALL THROUGH. + break; + case DeclSpec::SCS_mutable: + if (isFunc) { + if (DS.getStorageClassSpecLoc().isValid()) + Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function); + else + Diag(DS.getThreadSpecLoc(), diag::err_mutable_function); + + // FIXME: It would be nicer if the keyword was ignored only for this + // declarator. Otherwise we could get follow-up errors. + D.getMutableDeclSpec().ClearStorageClassSpecs(); + } else { + QualType T = GetTypeForDeclarator(D, S); + diag::kind err = static_cast<diag::kind>(0); + if (T->isReferenceType()) + err = diag::err_mutable_reference; + else if (T.isConstQualified()) + err = diag::err_mutable_const; + if (err != 0) { + if (DS.getStorageClassSpecLoc().isValid()) + Diag(DS.getStorageClassSpecLoc(), err); + else + Diag(DS.getThreadSpecLoc(), err); + // FIXME: It would be nicer if the keyword was ignored only for this + // declarator. Otherwise we could get follow-up errors. + D.getMutableDeclSpec().ClearStorageClassSpecs(); + } + } + break; + default: + if (DS.getStorageClassSpecLoc().isValid()) + Diag(DS.getStorageClassSpecLoc(), + diag::err_storageclass_invalid_for_member); + else + Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member); + D.getMutableDeclSpec().ClearStorageClassSpecs(); + } + + if (!isFunc && + D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename && + D.getNumTypeObjects() == 0) { + // Check also for this case: + // + // typedef int f(); + // f a; + // + QualType TDType = GetTypeFromParser(DS.getTypeRep()); + isFunc = TDType->isFunctionType(); + } + + bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified || + DS.getStorageClassSpec() == DeclSpec::SCS_mutable) && + !isFunc); + + Decl *Member; + if (isInstField) { + // FIXME: Check for template parameters! + Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth, + AS); + assert(Member && "HandleField never returns null"); + } else { + Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition) + .getAs<Decl>(); + if (!Member) { + if (BitWidth) DeleteExpr(BitWidth); + return DeclPtrTy(); + } + + // Non-instance-fields can't have a bitfield. + if (BitWidth) { + if (Member->isInvalidDecl()) { + // don't emit another diagnostic. + } else if (isa<VarDecl>(Member)) { + // C++ 9.6p3: A bit-field shall not be a static member. + // "static member 'A' cannot be a bit-field" + Diag(Loc, diag::err_static_not_bitfield) + << Name << BitWidth->getSourceRange(); + } else if (isa<TypedefDecl>(Member)) { + // "typedef member 'x' cannot be a bit-field" + Diag(Loc, diag::err_typedef_not_bitfield) + << Name << BitWidth->getSourceRange(); + } else { + // A function typedef ("typedef int f(); f a;"). + // C++ 9.6p3: A bit-field shall have integral or enumeration type. + Diag(Loc, diag::err_not_integral_type_bitfield) + << Name << cast<ValueDecl>(Member)->getType() + << BitWidth->getSourceRange(); + } + + DeleteExpr(BitWidth); + BitWidth = 0; + Member->setInvalidDecl(); + } + + Member->setAccess(AS); + + // If we have declared a member function template, set the access of the + // templated declaration as well. + if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member)) + FunTmpl->getTemplatedDecl()->setAccess(AS); + } + + assert((Name || isInstField) && "No identifier for non-field ?"); + + if (Init) + AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false); + if (Deleted) // FIXME: Source location is not very good. + SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin()); + + if (isInstField) { + FieldCollector->Add(cast<FieldDecl>(Member)); + return DeclPtrTy(); + } + return DeclPtrTy::make(Member); +} + +/// \brief Find the direct and/or virtual base specifiers that +/// correspond to the given base type, for use in base initialization +/// within a constructor. +static bool FindBaseInitializer(Sema &SemaRef, + CXXRecordDecl *ClassDecl, + QualType BaseType, + const CXXBaseSpecifier *&DirectBaseSpec, + const CXXBaseSpecifier *&VirtualBaseSpec) { + // First, check for a direct base class. + DirectBaseSpec = 0; + for (CXXRecordDecl::base_class_const_iterator Base + = ClassDecl->bases_begin(); + Base != ClassDecl->bases_end(); ++Base) { + if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) { + // We found a direct base of this type. That's what we're + // initializing. + DirectBaseSpec = &*Base; + break; + } + } + + // Check for a virtual base class. + // FIXME: We might be able to short-circuit this if we know in advance that + // there are no virtual bases. + VirtualBaseSpec = 0; + if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) { + // We haven't found a base yet; search the class hierarchy for a + // virtual base class. + CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, + /*DetectVirtual=*/false); + if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl), + BaseType, Paths)) { + for (CXXBasePaths::paths_iterator Path = Paths.begin(); + Path != Paths.end(); ++Path) { + if (Path->back().Base->isVirtual()) { + VirtualBaseSpec = Path->back().Base; + break; + } + } + } + } + + return DirectBaseSpec || VirtualBaseSpec; +} + +/// ActOnMemInitializer - Handle a C++ member initializer. +Sema::MemInitResult +Sema::ActOnMemInitializer(DeclPtrTy ConstructorD, + Scope *S, + CXXScopeSpec &SS, + IdentifierInfo *MemberOrBase, + TypeTy *TemplateTypeTy, + SourceLocation IdLoc, + SourceLocation LParenLoc, + ExprTy **Args, unsigned NumArgs, + SourceLocation *CommaLocs, + SourceLocation RParenLoc) { + if (!ConstructorD) + return true; + + AdjustDeclIfTemplate(ConstructorD); + + CXXConstructorDecl *Constructor + = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>()); + if (!Constructor) { + // The user wrote a constructor initializer on a function that is + // not a C++ constructor. Ignore the error for now, because we may + // have more member initializers coming; we'll diagnose it just + // once in ActOnMemInitializers. + return true; + } + + CXXRecordDecl *ClassDecl = Constructor->getParent(); + + // C++ [class.base.init]p2: + // Names in a mem-initializer-id are looked up in the scope of the + // constructor’s class and, if not found in that scope, are looked + // up in the scope containing the constructor’s + // definition. [Note: if the constructor’s class contains a member + // with the same name as a direct or virtual base class of the + // class, a mem-initializer-id naming the member or base class and + // composed of a single identifier refers to the class member. A + // mem-initializer-id for the hidden base class may be specified + // using a qualified name. ] + if (!SS.getScopeRep() && !TemplateTypeTy) { + // Look for a member, first. + FieldDecl *Member = 0; + DeclContext::lookup_result Result + = ClassDecl->lookup(MemberOrBase); + if (Result.first != Result.second) + Member = dyn_cast<FieldDecl>(*Result.first); + + // FIXME: Handle members of an anonymous union. + + if (Member) + return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc, + LParenLoc, RParenLoc); + } + // It didn't name a member, so see if it names a class. + QualType BaseType; + TypeSourceInfo *TInfo = 0; + + if (TemplateTypeTy) { + BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo); + } else { + LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName); + LookupParsedName(R, S, &SS); + + TypeDecl *TyD = R.getAsSingle<TypeDecl>(); + if (!TyD) { + if (R.isAmbiguous()) return true; + + // We don't want access-control diagnostics here. + R.suppressDiagnostics(); + + if (SS.isSet() && isDependentScopeSpecifier(SS)) { + bool NotUnknownSpecialization = false; + DeclContext *DC = computeDeclContext(SS, false); + if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC)) + NotUnknownSpecialization = !Record->hasAnyDependentBases(); + + if (!NotUnknownSpecialization) { + // When the scope specifier can refer to a member of an unknown + // specialization, we take it as a type name. + BaseType = CheckTypenameType(ETK_None, + (NestedNameSpecifier *)SS.getScopeRep(), + *MemberOrBase, SourceLocation(), + SS.getRange(), IdLoc); + if (BaseType.isNull()) + return true; + + R.clear(); + } + } + + // If no results were found, try to correct typos. + if (R.empty() && BaseType.isNull() && + CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) && + R.isSingleResult()) { + if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) { + if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) { + // We have found a non-static data member with a similar + // name to what was typed; complain and initialize that + // member. + Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest) + << MemberOrBase << true << R.getLookupName() + << FixItHint::CreateReplacement(R.getNameLoc(), + R.getLookupName().getAsString()); + Diag(Member->getLocation(), diag::note_previous_decl) + << Member->getDeclName(); + + return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc, + LParenLoc, RParenLoc); + } + } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) { + const CXXBaseSpecifier *DirectBaseSpec; + const CXXBaseSpecifier *VirtualBaseSpec; + if (FindBaseInitializer(*this, ClassDecl, + Context.getTypeDeclType(Type), + DirectBaseSpec, VirtualBaseSpec)) { + // We have found a direct or virtual base class with a + // similar name to what was typed; complain and initialize + // that base class. + Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest) + << MemberOrBase << false << R.getLookupName() + << FixItHint::CreateReplacement(R.getNameLoc(), + R.getLookupName().getAsString()); + + const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec + : VirtualBaseSpec; + Diag(BaseSpec->getSourceRange().getBegin(), + diag::note_base_class_specified_here) + << BaseSpec->getType() + << BaseSpec->getSourceRange(); + + TyD = Type; + } + } + } + + if (!TyD && BaseType.isNull()) { + Diag(IdLoc, diag::err_mem_init_not_member_or_class) + << MemberOrBase << SourceRange(IdLoc, RParenLoc); + return true; + } + } + + if (BaseType.isNull()) { + BaseType = Context.getTypeDeclType(TyD); + if (SS.isSet()) { + NestedNameSpecifier *Qualifier = + static_cast<NestedNameSpecifier*>(SS.getScopeRep()); + + // FIXME: preserve source range information + BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType); + } + } + } + + if (!TInfo) + TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc); + + return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs, + LParenLoc, RParenLoc, ClassDecl); +} + +/// Checks an initializer expression for use of uninitialized fields, such as +/// containing the field that is being initialized. Returns true if there is an +/// uninitialized field was used an updates the SourceLocation parameter; false +/// otherwise. +static bool InitExprContainsUninitializedFields(const Stmt* S, + const FieldDecl* LhsField, + SourceLocation* L) { + const MemberExpr* ME = dyn_cast<MemberExpr>(S); + if (ME) { + const NamedDecl* RhsField = ME->getMemberDecl(); + if (RhsField == LhsField) { + // Initializing a field with itself. Throw a warning. + // But wait; there are exceptions! + // Exception #1: The field may not belong to this record. + // e.g. Foo(const Foo& rhs) : A(rhs.A) {} + const Expr* base = ME->getBase(); + if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) { + // Even though the field matches, it does not belong to this record. + return false; + } + // None of the exceptions triggered; return true to indicate an + // uninitialized field was used. + *L = ME->getMemberLoc(); + return true; + } + } + bool found = false; + for (Stmt::const_child_iterator it = S->child_begin(); + it != S->child_end() && found == false; + ++it) { + if (isa<CallExpr>(S)) { + // Do not descend into function calls or constructors, as the use + // of an uninitialized field may be valid. One would have to inspect + // the contents of the function/ctor to determine if it is safe or not. + // i.e. Pass-by-value is never safe, but pass-by-reference and pointers + // may be safe, depending on what the function/ctor does. + continue; + } + found = InitExprContainsUninitializedFields(*it, LhsField, L); + } + return found; +} + +Sema::MemInitResult +Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args, + unsigned NumArgs, SourceLocation IdLoc, + SourceLocation LParenLoc, + SourceLocation RParenLoc) { + // Diagnose value-uses of fields to initialize themselves, e.g. + // foo(foo) + // where foo is not also a parameter to the constructor. + // TODO: implement -Wuninitialized and fold this into that framework. + for (unsigned i = 0; i < NumArgs; ++i) { + SourceLocation L; + if (InitExprContainsUninitializedFields(Args[i], Member, &L)) { + // FIXME: Return true in the case when other fields are used before being + // uninitialized. For example, let this field be the i'th field. When + // initializing the i'th field, throw a warning if any of the >= i'th + // fields are used, as they are not yet initialized. + // Right now we are only handling the case where the i'th field uses + // itself in its initializer. + Diag(L, diag::warn_field_is_uninit); + } + } + + bool HasDependentArg = false; + for (unsigned i = 0; i < NumArgs; i++) + HasDependentArg |= Args[i]->isTypeDependent(); + + QualType FieldType = Member->getType(); + if (const ArrayType *Array = Context.getAsArrayType(FieldType)) + FieldType = Array->getElementType(); + if (FieldType->isDependentType() || HasDependentArg) { + // Can't check initialization for a member of dependent type or when + // any of the arguments are type-dependent expressions. + OwningExprResult Init + = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs, + RParenLoc)); + + // Erase any temporaries within this evaluation context; we're not + // going to track them in the AST, since we'll be rebuilding the + // ASTs during template instantiation. + ExprTemporaries.erase( + ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries, + ExprTemporaries.end()); + + return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc, + LParenLoc, + Init.takeAs<Expr>(), + RParenLoc); + + } + + if (Member->isInvalidDecl()) + return true; + + // Initialize the member. + InitializedEntity MemberEntity = + InitializedEntity::InitializeMember(Member, 0); + InitializationKind Kind = + InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc); + + InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs); + + OwningExprResult MemberInit = + InitSeq.Perform(*this, MemberEntity, Kind, + MultiExprArg(*this, (void**)Args, NumArgs), 0); + if (MemberInit.isInvalid()) + return true; + + // C++0x [class.base.init]p7: + // The initialization of each base and member constitutes a + // full-expression. + MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit)); + if (MemberInit.isInvalid()) + return true; + + // If we are in a dependent context, template instantiation will + // perform this type-checking again. Just save the arguments that we + // received in a ParenListExpr. + // FIXME: This isn't quite ideal, since our ASTs don't capture all + // of the information that we have about the member + // initializer. However, deconstructing the ASTs is a dicey process, + // and this approach is far more likely to get the corner cases right. + if (CurContext->isDependentContext()) { + // Bump the reference count of all of the arguments. + for (unsigned I = 0; I != NumArgs; ++I) + Args[I]->Retain(); + + OwningExprResult Init + = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs, + RParenLoc)); + return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc, + LParenLoc, + Init.takeAs<Expr>(), + RParenLoc); + } + + return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc, + LParenLoc, + MemberInit.takeAs<Expr>(), + RParenLoc); +} + +Sema::MemInitResult +Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo, + Expr **Args, unsigned NumArgs, + SourceLocation LParenLoc, SourceLocation RParenLoc, + CXXRecordDecl *ClassDecl) { + bool HasDependentArg = false; + for (unsigned i = 0; i < NumArgs; i++) + HasDependentArg |= Args[i]->isTypeDependent(); + + SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin(); + if (BaseType->isDependentType() || HasDependentArg) { + // Can't check initialization for a base of dependent type or when + // any of the arguments are type-dependent expressions. + OwningExprResult BaseInit + = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs, + RParenLoc)); + + // Erase any temporaries within this evaluation context; we're not + // going to track them in the AST, since we'll be rebuilding the + // ASTs during template instantiation. + ExprTemporaries.erase( + ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries, + ExprTemporaries.end()); + + return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo, + /*IsVirtual=*/false, + LParenLoc, + BaseInit.takeAs<Expr>(), + RParenLoc); + } + + if (!BaseType->isRecordType()) + return Diag(BaseLoc, diag::err_base_init_does_not_name_class) + << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); + + // C++ [class.base.init]p2: + // [...] Unless the mem-initializer-id names a nonstatic data + // member of the constructor’s class or a direct or virtual base + // of that class, the mem-initializer is ill-formed. A + // mem-initializer-list can initialize a base class using any + // name that denotes that base class type. + + // Check for direct and virtual base classes. + const CXXBaseSpecifier *DirectBaseSpec = 0; + const CXXBaseSpecifier *VirtualBaseSpec = 0; + FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec, + VirtualBaseSpec); + + // C++ [base.class.init]p2: + // If a mem-initializer-id is ambiguous because it designates both + // a direct non-virtual base class and an inherited virtual base + // class, the mem-initializer is ill-formed. + if (DirectBaseSpec && VirtualBaseSpec) + return Diag(BaseLoc, diag::err_base_init_direct_and_virtual) + << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); + // C++ [base.class.init]p2: + // Unless the mem-initializer-id names a nonstatic data membeer of the + // constructor's class ot a direst or virtual base of that class, the + // mem-initializer is ill-formed. + if (!DirectBaseSpec && !VirtualBaseSpec) + return Diag(BaseLoc, diag::err_not_direct_base_or_virtual) + << BaseType << Context.getTypeDeclType(ClassDecl) + << BaseTInfo->getTypeLoc().getLocalSourceRange(); + + CXXBaseSpecifier *BaseSpec + = const_cast<CXXBaseSpecifier *>(DirectBaseSpec); + if (!BaseSpec) + BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec); + + // Initialize the base. + InitializedEntity BaseEntity = + InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec); + InitializationKind Kind = + InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc); + + InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs); + + OwningExprResult BaseInit = + InitSeq.Perform(*this, BaseEntity, Kind, + MultiExprArg(*this, (void**)Args, NumArgs), 0); + if (BaseInit.isInvalid()) + return true; + + // C++0x [class.base.init]p7: + // The initialization of each base and member constitutes a + // full-expression. + BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit)); + if (BaseInit.isInvalid()) + return true; + + // If we are in a dependent context, template instantiation will + // perform this type-checking again. Just save the arguments that we + // received in a ParenListExpr. + // FIXME: This isn't quite ideal, since our ASTs don't capture all + // of the information that we have about the base + // initializer. However, deconstructing the ASTs is a dicey process, + // and this approach is far more likely to get the corner cases right. + if (CurContext->isDependentContext()) { + // Bump the reference count of all of the arguments. + for (unsigned I = 0; I != NumArgs; ++I) + Args[I]->Retain(); + + OwningExprResult Init + = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs, + RParenLoc)); + return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo, + BaseSpec->isVirtual(), + LParenLoc, + Init.takeAs<Expr>(), + RParenLoc); + } + + return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo, + BaseSpec->isVirtual(), + LParenLoc, + BaseInit.takeAs<Expr>(), + RParenLoc); +} + +/// ImplicitInitializerKind - How an implicit base or member initializer should +/// initialize its base or member. +enum ImplicitInitializerKind { + IIK_Default, + IIK_Copy, + IIK_Move +}; + +static bool +BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, + ImplicitInitializerKind ImplicitInitKind, + CXXBaseSpecifier *BaseSpec, + bool IsInheritedVirtualBase, + CXXBaseOrMemberInitializer *&CXXBaseInit) { + InitializedEntity InitEntity + = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec, + IsInheritedVirtualBase); + + Sema::OwningExprResult BaseInit(SemaRef); + + switch (ImplicitInitKind) { + case IIK_Default: { + InitializationKind InitKind + = InitializationKind::CreateDefault(Constructor->getLocation()); + InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0); + BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, + Sema::MultiExprArg(SemaRef, 0, 0)); + break; + } + + case IIK_Copy: { + ParmVarDecl *Param = Constructor->getParamDecl(0); + QualType ParamType = Param->getType().getNonReferenceType(); + + Expr *CopyCtorArg = + DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param, + Constructor->getLocation(), ParamType, 0); + + // Cast to the base class to avoid ambiguities. + QualType ArgTy = + SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(), + ParamType.getQualifiers()); + SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy, + CastExpr::CK_UncheckedDerivedToBase, + /*isLvalue=*/true, + CXXBaseSpecifierArray(BaseSpec)); + + InitializationKind InitKind + = InitializationKind::CreateDirect(Constructor->getLocation(), + SourceLocation(), SourceLocation()); + InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, + &CopyCtorArg, 1); + BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, + Sema::MultiExprArg(SemaRef, + (void**)&CopyCtorArg, 1)); + break; + } + + case IIK_Move: + assert(false && "Unhandled initializer kind!"); + } + + BaseInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(BaseInit)); + if (BaseInit.isInvalid()) + return true; + + CXXBaseInit = + new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context, + SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(), + SourceLocation()), + BaseSpec->isVirtual(), + SourceLocation(), + BaseInit.takeAs<Expr>(), + SourceLocation()); + + return false; +} + +static bool +BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, + ImplicitInitializerKind ImplicitInitKind, + FieldDecl *Field, + CXXBaseOrMemberInitializer *&CXXMemberInit) { + if (Field->isInvalidDecl()) + return true; + + if (ImplicitInitKind == IIK_Copy) { + SourceLocation Loc = Constructor->getLocation(); + ParmVarDecl *Param = Constructor->getParamDecl(0); + QualType ParamType = Param->getType().getNonReferenceType(); + + Expr *MemberExprBase = + DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param, + Loc, ParamType, 0); + + // Build a reference to this field within the parameter. + CXXScopeSpec SS; + LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc, + Sema::LookupMemberName); + MemberLookup.addDecl(Field, AS_public); + MemberLookup.resolveKind(); + Sema::OwningExprResult CopyCtorArg + = SemaRef.BuildMemberReferenceExpr(SemaRef.Owned(MemberExprBase), + ParamType, Loc, + /*IsArrow=*/false, + SS, + /*FirstQualifierInScope=*/0, + MemberLookup, + /*TemplateArgs=*/0); + if (CopyCtorArg.isInvalid()) + return true; + + // When the field we are copying is an array, create index variables for + // each dimension of the array. We use these index variables to subscript + // the source array, and other clients (e.g., CodeGen) will perform the + // necessary iteration with these index variables. + llvm::SmallVector<VarDecl *, 4> IndexVariables; + QualType BaseType = Field->getType(); + QualType SizeType = SemaRef.Context.getSizeType(); + while (const ConstantArrayType *Array + = SemaRef.Context.getAsConstantArrayType(BaseType)) { + // Create the iteration variable for this array index. + IdentifierInfo *IterationVarName = 0; + { + llvm::SmallString<8> Str; + llvm::raw_svector_ostream OS(Str); + OS << "__i" << IndexVariables.size(); + IterationVarName = &SemaRef.Context.Idents.get(OS.str()); + } + VarDecl *IterationVar + = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, + IterationVarName, SizeType, + SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc), + VarDecl::None, VarDecl::None); + IndexVariables.push_back(IterationVar); + + // Create a reference to the iteration variable. + Sema::OwningExprResult IterationVarRef + = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, Loc); + assert(!IterationVarRef.isInvalid() && + "Reference to invented variable cannot fail!"); + + // Subscript the array with this iteration variable. + CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(move(CopyCtorArg), + Loc, + move(IterationVarRef), + Loc); + if (CopyCtorArg.isInvalid()) + return true; + + BaseType = Array->getElementType(); + } + + // Construct the entity that we will be initializing. For an array, this + // will be first element in the array, which may require several levels + // of array-subscript entities. + llvm::SmallVector<InitializedEntity, 4> Entities; + Entities.reserve(1 + IndexVariables.size()); + Entities.push_back(InitializedEntity::InitializeMember(Field)); + for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I) + Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context, + 0, + Entities.back())); + + // Direct-initialize to use the copy constructor. + InitializationKind InitKind = + InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation()); + + Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>(); + InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind, + &CopyCtorArgE, 1); + + Sema::OwningExprResult MemberInit + = InitSeq.Perform(SemaRef, Entities.back(), InitKind, + Sema::MultiExprArg(SemaRef, (void**)&CopyCtorArgE, 1)); + MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit)); + if (MemberInit.isInvalid()) + return true; + + CXXMemberInit + = CXXBaseOrMemberInitializer::Create(SemaRef.Context, Field, Loc, Loc, + MemberInit.takeAs<Expr>(), Loc, + IndexVariables.data(), + IndexVariables.size()); + return false; + } + + assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!"); + + QualType FieldBaseElementType = + SemaRef.Context.getBaseElementType(Field->getType()); + + if (FieldBaseElementType->isRecordType()) { + InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field); + InitializationKind InitKind = + InitializationKind::CreateDefault(Constructor->getLocation()); + + InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0); + Sema::OwningExprResult MemberInit = + InitSeq.Perform(SemaRef, InitEntity, InitKind, + Sema::MultiExprArg(SemaRef, 0, 0)); + MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit)); + if (MemberInit.isInvalid()) + return true; + + CXXMemberInit = + new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context, + Field, SourceLocation(), + SourceLocation(), + MemberInit.takeAs<Expr>(), + SourceLocation()); + return false; + } + + if (FieldBaseElementType->isReferenceType()) { + SemaRef.Diag(Constructor->getLocation(), + diag::err_uninitialized_member_in_ctor) + << (int)Constructor->isImplicit() + << SemaRef.Context.getTagDeclType(Constructor->getParent()) + << 0 << Field->getDeclName(); + SemaRef.Diag(Field->getLocation(), diag::note_declared_at); + return true; + } + + if (FieldBaseElementType.isConstQualified()) { + SemaRef.Diag(Constructor->getLocation(), + diag::err_uninitialized_member_in_ctor) + << (int)Constructor->isImplicit() + << SemaRef.Context.getTagDeclType(Constructor->getParent()) + << 1 << Field->getDeclName(); + SemaRef.Diag(Field->getLocation(), diag::note_declared_at); + return true; + } + + // Nothing to initialize. + CXXMemberInit = 0; + return false; +} + +namespace { +struct BaseAndFieldInfo { + Sema &S; + CXXConstructorDecl *Ctor; + bool AnyErrorsInInits; + ImplicitInitializerKind IIK; + llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields; + llvm::SmallVector<CXXBaseOrMemberInitializer*, 8> AllToInit; + + BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits) + : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) { + // FIXME: Handle implicit move constructors. + if (Ctor->isImplicit() && Ctor->isCopyConstructor()) + IIK = IIK_Copy; + else + IIK = IIK_Default; + } +}; +} + +static bool CollectFieldInitializer(BaseAndFieldInfo &Info, + FieldDecl *Top, FieldDecl *Field) { + + // Overwhelmingly common case: we have a direct initializer for this field. + if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(Field)) { + Info.AllToInit.push_back(Init); + + if (Field != Top) { + Init->setMember(Top); + Init->setAnonUnionMember(Field); + } + return false; + } + + if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) { + const RecordType *FieldClassType = Field->getType()->getAs<RecordType>(); + assert(FieldClassType && "anonymous struct/union without record type"); + + // Walk through the members, tying in any initializers for fields + // we find. The earlier semantic checks should prevent redundant + // initialization of union members, given the requirement that + // union members never have non-trivial default constructors. + + // TODO: in C++0x, it might be legal to have union members with + // non-trivial default constructors in unions. Revise this + // implementation then with the appropriate semantics. + CXXRecordDecl *FieldClassDecl + = cast<CXXRecordDecl>(FieldClassType->getDecl()); + for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(), + EA = FieldClassDecl->field_end(); FA != EA; FA++) + if (CollectFieldInitializer(Info, Top, *FA)) + return true; + } + + // Don't try to build an implicit initializer if there were semantic + // errors in any of the initializers (and therefore we might be + // missing some that the user actually wrote). + if (Info.AnyErrorsInInits) + return false; + + CXXBaseOrMemberInitializer *Init = 0; + if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init)) + return true; + + // If the member doesn't need to be initialized, Init will still be null. + if (!Init) return false; + + Info.AllToInit.push_back(Init); + if (Top != Field) { + Init->setMember(Top); + Init->setAnonUnionMember(Field); + } + return false; +} + +bool +Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor, + CXXBaseOrMemberInitializer **Initializers, + unsigned NumInitializers, + bool AnyErrors) { + if (Constructor->getDeclContext()->isDependentContext()) { + // Just store the initializers as written, they will be checked during + // instantiation. + if (NumInitializers > 0) { + Constructor->setNumBaseOrMemberInitializers(NumInitializers); + CXXBaseOrMemberInitializer **baseOrMemberInitializers = + new (Context) CXXBaseOrMemberInitializer*[NumInitializers]; + memcpy(baseOrMemberInitializers, Initializers, + NumInitializers * sizeof(CXXBaseOrMemberInitializer*)); + Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers); + } + + return false; + } + + BaseAndFieldInfo Info(*this, Constructor, AnyErrors); + + // We need to build the initializer AST according to order of construction + // and not what user specified in the Initializers list. + CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition(); + if (!ClassDecl) + return true; + + bool HadError = false; + + for (unsigned i = 0; i < NumInitializers; i++) { + CXXBaseOrMemberInitializer *Member = Initializers[i]; + + if (Member->isBaseInitializer()) + Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member; + else + Info.AllBaseFields[Member->getMember()] = Member; + } + + // Keep track of the direct virtual bases. + llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases; + for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(), + E = ClassDecl->bases_end(); I != E; ++I) { + if (I->isVirtual()) + DirectVBases.insert(I); + } + + // Push virtual bases before others. + for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(), + E = ClassDecl->vbases_end(); VBase != E; ++VBase) { + + if (CXXBaseOrMemberInitializer *Value + = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) { + Info.AllToInit.push_back(Value); + } else if (!AnyErrors) { + bool IsInheritedVirtualBase = !DirectVBases.count(VBase); + CXXBaseOrMemberInitializer *CXXBaseInit; + if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, + VBase, IsInheritedVirtualBase, + CXXBaseInit)) { + HadError = true; + continue; + } + + Info.AllToInit.push_back(CXXBaseInit); + } + } + + // Non-virtual bases. + for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), + E = ClassDecl->bases_end(); Base != E; ++Base) { + // Virtuals are in the virtual base list and already constructed. + if (Base->isVirtual()) + continue; + + if (CXXBaseOrMemberInitializer *Value + = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) { + Info.AllToInit.push_back(Value); + } else if (!AnyErrors) { + CXXBaseOrMemberInitializer *CXXBaseInit; + if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, + Base, /*IsInheritedVirtualBase=*/false, + CXXBaseInit)) { + HadError = true; + continue; + } + + Info.AllToInit.push_back(CXXBaseInit); + } + } + + // Fields. + for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), + E = ClassDecl->field_end(); Field != E; ++Field) { + if ((*Field)->getType()->isIncompleteArrayType()) { + assert(ClassDecl->hasFlexibleArrayMember() && + "Incomplete array type is not valid"); + continue; + } + if (CollectFieldInitializer(Info, *Field, *Field)) + HadError = true; + } + + NumInitializers = Info.AllToInit.size(); + if (NumInitializers > 0) { + Constructor->setNumBaseOrMemberInitializers(NumInitializers); + CXXBaseOrMemberInitializer **baseOrMemberInitializers = + new (Context) CXXBaseOrMemberInitializer*[NumInitializers]; + memcpy(baseOrMemberInitializers, Info.AllToInit.data(), + NumInitializers * sizeof(CXXBaseOrMemberInitializer*)); + Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers); + + // Constructors implicitly reference the base and member + // destructors. + MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(), + Constructor->getParent()); + } + + return HadError; +} + +static void *GetKeyForTopLevelField(FieldDecl *Field) { + // For anonymous unions, use the class declaration as the key. + if (const RecordType *RT = Field->getType()->getAs<RecordType>()) { + if (RT->getDecl()->isAnonymousStructOrUnion()) + return static_cast<void *>(RT->getDecl()); + } + return static_cast<void *>(Field); +} + +static void *GetKeyForBase(ASTContext &Context, QualType BaseType) { + return Context.getCanonicalType(BaseType).getTypePtr(); +} + +static void *GetKeyForMember(ASTContext &Context, + CXXBaseOrMemberInitializer *Member, + bool MemberMaybeAnon = false) { + if (!Member->isMemberInitializer()) + return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0)); + + // For fields injected into the class via declaration of an anonymous union, + // use its anonymous union class declaration as the unique key. + FieldDecl *Field = Member->getMember(); + + // After SetBaseOrMemberInitializers call, Field is the anonymous union + // data member of the class. Data member used in the initializer list is + // in AnonUnionMember field. + if (MemberMaybeAnon && Field->isAnonymousStructOrUnion()) + Field = Member->getAnonUnionMember(); + + // If the field is a member of an anonymous struct or union, our key + // is the anonymous record decl that's a direct child of the class. + RecordDecl *RD = Field->getParent(); + if (RD->isAnonymousStructOrUnion()) { + while (true) { + RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext()); + if (Parent->isAnonymousStructOrUnion()) + RD = Parent; + else + break; + } + + return static_cast<void *>(RD); + } + + return static_cast<void *>(Field); +} + +static void +DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef, + const CXXConstructorDecl *Constructor, + CXXBaseOrMemberInitializer **Inits, + unsigned NumInits) { + if (Constructor->getDeclContext()->isDependentContext()) + return; + + if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order) + == Diagnostic::Ignored) + return; + + // Build the list of bases and members in the order that they'll + // actually be initialized. The explicit initializers should be in + // this same order but may be missing things. + llvm::SmallVector<const void*, 32> IdealInitKeys; + + const CXXRecordDecl *ClassDecl = Constructor->getParent(); + + // 1. Virtual bases. + for (CXXRecordDecl::base_class_const_iterator VBase = + ClassDecl->vbases_begin(), + E = ClassDecl->vbases_end(); VBase != E; ++VBase) + IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType())); + + // 2. Non-virtual bases. + for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(), + E = ClassDecl->bases_end(); Base != E; ++Base) { + if (Base->isVirtual()) + continue; + IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType())); + } + + // 3. Direct fields. + for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), + E = ClassDecl->field_end(); Field != E; ++Field) + IdealInitKeys.push_back(GetKeyForTopLevelField(*Field)); + + unsigned NumIdealInits = IdealInitKeys.size(); + unsigned IdealIndex = 0; + + CXXBaseOrMemberInitializer *PrevInit = 0; + for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) { + CXXBaseOrMemberInitializer *Init = Inits[InitIndex]; + void *InitKey = GetKeyForMember(SemaRef.Context, Init, true); + + // Scan forward to try to find this initializer in the idealized + // initializers list. + for (; IdealIndex != NumIdealInits; ++IdealIndex) + if (InitKey == IdealInitKeys[IdealIndex]) + break; + + // If we didn't find this initializer, it must be because we + // scanned past it on a previous iteration. That can only + // happen if we're out of order; emit a warning. + if (IdealIndex == NumIdealInits && PrevInit) { + Sema::SemaDiagnosticBuilder D = + SemaRef.Diag(PrevInit->getSourceLocation(), + diag::warn_initializer_out_of_order); + + if (PrevInit->isMemberInitializer()) + D << 0 << PrevInit->getMember()->getDeclName(); + else + D << 1 << PrevInit->getBaseClassInfo()->getType(); + + if (Init->isMemberInitializer()) + D << 0 << Init->getMember()->getDeclName(); + else + D << 1 << Init->getBaseClassInfo()->getType(); + + // Move back to the initializer's location in the ideal list. + for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex) + if (InitKey == IdealInitKeys[IdealIndex]) + break; + + assert(IdealIndex != NumIdealInits && + "initializer not found in initializer list"); + } + + PrevInit = Init; + } +} + +namespace { +bool CheckRedundantInit(Sema &S, + CXXBaseOrMemberInitializer *Init, + CXXBaseOrMemberInitializer *&PrevInit) { + if (!PrevInit) { + PrevInit = Init; + return false; + } + + if (FieldDecl *Field = Init->getMember()) + S.Diag(Init->getSourceLocation(), + diag::err_multiple_mem_initialization) + << Field->getDeclName() + << Init->getSourceRange(); + else { + Type *BaseClass = Init->getBaseClass(); + assert(BaseClass && "neither field nor base"); + S.Diag(Init->getSourceLocation(), + diag::err_multiple_base_initialization) + << QualType(BaseClass, 0) + << Init->getSourceRange(); + } + S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer) + << 0 << PrevInit->getSourceRange(); + + return true; +} + +typedef std::pair<NamedDecl *, CXXBaseOrMemberInitializer *> UnionEntry; +typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap; + +bool CheckRedundantUnionInit(Sema &S, + CXXBaseOrMemberInitializer *Init, + RedundantUnionMap &Unions) { + FieldDecl *Field = Init->getMember(); + RecordDecl *Parent = Field->getParent(); + if (!Parent->isAnonymousStructOrUnion()) + return false; + + NamedDecl *Child = Field; + do { + if (Parent->isUnion()) { + UnionEntry &En = Unions[Parent]; + if (En.first && En.first != Child) { + S.Diag(Init->getSourceLocation(), + diag::err_multiple_mem_union_initialization) + << Field->getDeclName() + << Init->getSourceRange(); + S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer) + << 0 << En.second->getSourceRange(); + return true; + } else if (!En.first) { + En.first = Child; + En.second = Init; + } + } + + Child = Parent; + Parent = cast<RecordDecl>(Parent->getDeclContext()); + } while (Parent->isAnonymousStructOrUnion()); + + return false; +} +} + +/// ActOnMemInitializers - Handle the member initializers for a constructor. +void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl, + SourceLocation ColonLoc, + MemInitTy **meminits, unsigned NumMemInits, + bool AnyErrors) { + if (!ConstructorDecl) + return; + + AdjustDeclIfTemplate(ConstructorDecl); + + CXXConstructorDecl *Constructor + = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>()); + + if (!Constructor) { + Diag(ColonLoc, diag::err_only_constructors_take_base_inits); + return; + } + + CXXBaseOrMemberInitializer **MemInits = + reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits); + + // Mapping for the duplicate initializers check. + // For member initializers, this is keyed with a FieldDecl*. + // For base initializers, this is keyed with a Type*. + llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members; + + // Mapping for the inconsistent anonymous-union initializers check. + RedundantUnionMap MemberUnions; + + bool HadError = false; + for (unsigned i = 0; i < NumMemInits; i++) { + CXXBaseOrMemberInitializer *Init = MemInits[i]; + + // Set the source order index. + Init->setSourceOrder(i); + + if (Init->isMemberInitializer()) { + FieldDecl *Field = Init->getMember(); + if (CheckRedundantInit(*this, Init, Members[Field]) || + CheckRedundantUnionInit(*this, Init, MemberUnions)) + HadError = true; + } else { + void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0)); + if (CheckRedundantInit(*this, Init, Members[Key])) + HadError = true; + } + } + + if (HadError) + return; + + DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits); + + SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors); +} + +void +Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location, + CXXRecordDecl *ClassDecl) { + // Ignore dependent contexts. + if (ClassDecl->isDependentContext()) + return; + + // FIXME: all the access-control diagnostics are positioned on the + // field/base declaration. That's probably good; that said, the + // user might reasonably want to know why the destructor is being + // emitted, and we currently don't say. + + // Non-static data members. + for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(), + E = ClassDecl->field_end(); I != E; ++I) { + FieldDecl *Field = *I; + if (Field->isInvalidDecl()) + continue; + QualType FieldType = Context.getBaseElementType(Field->getType()); + + const RecordType* RT = FieldType->getAs<RecordType>(); + if (!RT) + continue; + + CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); + if (FieldClassDecl->hasTrivialDestructor()) + continue; + + CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context); + CheckDestructorAccess(Field->getLocation(), Dtor, + PDiag(diag::err_access_dtor_field) + << Field->getDeclName() + << FieldType); + + MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor)); + } + + llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases; + + // Bases. + for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), + E = ClassDecl->bases_end(); Base != E; ++Base) { + // Bases are always records in a well-formed non-dependent class. + const RecordType *RT = Base->getType()->getAs<RecordType>(); + + // Remember direct virtual bases. + if (Base->isVirtual()) + DirectVirtualBases.insert(RT); + + // Ignore trivial destructors. + CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); + if (BaseClassDecl->hasTrivialDestructor()) + continue; + + CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context); + + // FIXME: caret should be on the start of the class name + CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor, + PDiag(diag::err_access_dtor_base) + << Base->getType() + << Base->getSourceRange()); + + MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor)); + } + + // Virtual bases. + for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(), + E = ClassDecl->vbases_end(); VBase != E; ++VBase) { + + // Bases are always records in a well-formed non-dependent class. + const RecordType *RT = VBase->getType()->getAs<RecordType>(); + + // Ignore direct virtual bases. + if (DirectVirtualBases.count(RT)) + continue; + + // Ignore trivial destructors. + CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); + if (BaseClassDecl->hasTrivialDestructor()) + continue; + + CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context); + CheckDestructorAccess(ClassDecl->getLocation(), Dtor, + PDiag(diag::err_access_dtor_vbase) + << VBase->getType()); + + MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor)); + } +} + +void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) { + if (!CDtorDecl) + return; + + if (CXXConstructorDecl *Constructor + = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>())) + SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false); +} + +bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, + unsigned DiagID, AbstractDiagSelID SelID, + const CXXRecordDecl *CurrentRD) { + if (SelID == -1) + return RequireNonAbstractType(Loc, T, + PDiag(DiagID), CurrentRD); + else + return RequireNonAbstractType(Loc, T, + PDiag(DiagID) << SelID, CurrentRD); +} + +bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, + const PartialDiagnostic &PD, + const CXXRecordDecl *CurrentRD) { + if (!getLangOptions().CPlusPlus) + return false; + + if (const ArrayType *AT = Context.getAsArrayType(T)) + return RequireNonAbstractType(Loc, AT->getElementType(), PD, + CurrentRD); + + if (const PointerType *PT = T->getAs<PointerType>()) { + // Find the innermost pointer type. + while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>()) + PT = T; + + if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType())) + return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD); + } + + const RecordType *RT = T->getAs<RecordType>(); + if (!RT) + return false; + + const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); + + if (CurrentRD && CurrentRD != RD) + return false; + + // FIXME: is this reasonable? It matches current behavior, but.... + if (!RD->getDefinition()) + return false; + + if (!RD->isAbstract()) + return false; + + Diag(Loc, PD) << RD->getDeclName(); + + // Check if we've already emitted the list of pure virtual functions for this + // class. + if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD)) + return true; + + CXXFinalOverriderMap FinalOverriders; + RD->getFinalOverriders(FinalOverriders); + + for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), + MEnd = FinalOverriders.end(); + M != MEnd; + ++M) { + for (OverridingMethods::iterator SO = M->second.begin(), + SOEnd = M->second.end(); + SO != SOEnd; ++SO) { + // C++ [class.abstract]p4: + // A class is abstract if it contains or inherits at least one + // pure virtual function for which the final overrider is pure + // virtual. + + // + if (SO->second.size() != 1) + continue; + + if (!SO->second.front().Method->isPure()) + continue; + + Diag(SO->second.front().Method->getLocation(), + diag::note_pure_virtual_function) + << SO->second.front().Method->getDeclName(); + } + } + + if (!PureVirtualClassDiagSet) + PureVirtualClassDiagSet.reset(new RecordDeclSetTy); + PureVirtualClassDiagSet->insert(RD); + + return true; +} + +namespace { + class AbstractClassUsageDiagnoser + : public DeclVisitor<AbstractClassUsageDiagnoser, bool> { + Sema &SemaRef; + CXXRecordDecl *AbstractClass; + + bool VisitDeclContext(const DeclContext *DC) { + bool Invalid = false; + + for (CXXRecordDecl::decl_iterator I = DC->decls_begin(), + E = DC->decls_end(); I != E; ++I) + Invalid |= Visit(*I); + + return Invalid; + } + + public: + AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac) + : SemaRef(SemaRef), AbstractClass(ac) { + Visit(SemaRef.Context.getTranslationUnitDecl()); + } + + bool VisitFunctionDecl(const FunctionDecl *FD) { + if (FD->isThisDeclarationADefinition()) { + // No need to do the check if we're in a definition, because it requires + // that the return/param types are complete. + // because that requires + return VisitDeclContext(FD); + } + + // Check the return type. + QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType(); + bool Invalid = + SemaRef.RequireNonAbstractType(FD->getLocation(), RTy, + diag::err_abstract_type_in_decl, + Sema::AbstractReturnType, + AbstractClass); + + for (FunctionDecl::param_const_iterator I = FD->param_begin(), + E = FD->param_end(); I != E; ++I) { + const ParmVarDecl *VD = *I; + Invalid |= + SemaRef.RequireNonAbstractType(VD->getLocation(), + VD->getOriginalType(), + diag::err_abstract_type_in_decl, + Sema::AbstractParamType, + AbstractClass); + } + + return Invalid; + } + + bool VisitDecl(const Decl* D) { + if (const DeclContext *DC = dyn_cast<DeclContext>(D)) + return VisitDeclContext(DC); + + return false; + } + }; +} + +/// \brief Perform semantic checks on a class definition that has been +/// completing, introducing implicitly-declared members, checking for +/// abstract types, etc. +void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) { + if (!Record || Record->isInvalidDecl()) + return; + + if (!Record->isDependentType()) + AddImplicitlyDeclaredMembersToClass(S, Record); + + if (Record->isInvalidDecl()) + return; + + // Set access bits correctly on the directly-declared conversions. + UnresolvedSetImpl *Convs = Record->getConversionFunctions(); + for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I) + Convs->setAccess(I, (*I)->getAccess()); + + // Determine whether we need to check for final overriders. We do + // this either when there are virtual base classes (in which case we + // may end up finding multiple final overriders for a given virtual + // function) or any of the base classes is abstract (in which case + // we might detect that this class is abstract). + bool CheckFinalOverriders = false; + if (Record->isPolymorphic() && !Record->isInvalidDecl() && + !Record->isDependentType()) { + if (Record->getNumVBases()) + CheckFinalOverriders = true; + else if (!Record->isAbstract()) { + for (CXXRecordDecl::base_class_const_iterator B = Record->bases_begin(), + BEnd = Record->bases_end(); + B != BEnd; ++B) { + CXXRecordDecl *BaseDecl + = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl()); + if (BaseDecl->isAbstract()) { + CheckFinalOverriders = true; + break; + } + } + } + } + + if (CheckFinalOverriders) { + CXXFinalOverriderMap FinalOverriders; + Record->getFinalOverriders(FinalOverriders); + + for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), + MEnd = FinalOverriders.end(); + M != MEnd; ++M) { + for (OverridingMethods::iterator SO = M->second.begin(), + SOEnd = M->second.end(); + SO != SOEnd; ++SO) { + assert(SO->second.size() > 0 && + "All virtual functions have overridding virtual functions"); + if (SO->second.size() == 1) { + // C++ [class.abstract]p4: + // A class is abstract if it contains or inherits at least one + // pure virtual function for which the final overrider is pure + // virtual. + if (SO->second.front().Method->isPure()) + Record->setAbstract(true); + continue; + } + + // C++ [class.virtual]p2: + // In a derived class, if a virtual member function of a base + // class subobject has more than one final overrider the + // program is ill-formed. + Diag(Record->getLocation(), diag::err_multiple_final_overriders) + << (NamedDecl *)M->first << Record; + Diag(M->first->getLocation(), diag::note_overridden_virtual_function); + for (OverridingMethods::overriding_iterator OM = SO->second.begin(), + OMEnd = SO->second.end(); + OM != OMEnd; ++OM) + Diag(OM->Method->getLocation(), diag::note_final_overrider) + << (NamedDecl *)M->first << OM->Method->getParent(); + + Record->setInvalidDecl(); + } + } + } + + if (Record->isAbstract() && !Record->isInvalidDecl()) + (void)AbstractClassUsageDiagnoser(*this, Record); + + // If this is not an aggregate type and has no user-declared constructor, + // complain about any non-static data members of reference or const scalar + // type, since they will never get initializers. + if (!Record->isInvalidDecl() && !Record->isDependentType() && + !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) { + bool Complained = false; + for (RecordDecl::field_iterator F = Record->field_begin(), + FEnd = Record->field_end(); + F != FEnd; ++F) { + if (F->getType()->isReferenceType() || + (F->getType().isConstQualified() && F->getType()->isScalarType())) { + if (!Complained) { + Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst) + << Record->getTagKind() << Record; + Complained = true; + } + + Diag(F->getLocation(), diag::note_refconst_member_not_initialized) + << F->getType()->isReferenceType() + << F->getDeclName(); + } + } + } + + if (Record->isDynamicClass()) + DynamicClasses.push_back(Record); +} + +void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc, + DeclPtrTy TagDecl, + SourceLocation LBrac, + SourceLocation RBrac, + AttributeList *AttrList) { + if (!TagDecl) + return; + + AdjustDeclIfTemplate(TagDecl); + + ActOnFields(S, RLoc, TagDecl, + (DeclPtrTy*)FieldCollector->getCurFields(), + FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList); + + CheckCompletedCXXClass(S, + dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>())); +} + +/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared +/// special functions, such as the default constructor, copy +/// constructor, or destructor, to the given C++ class (C++ +/// [special]p1). This routine can only be executed just before the +/// definition of the class is complete. +/// +/// The scope, if provided, is the class scope. +void Sema::AddImplicitlyDeclaredMembersToClass(Scope *S, + CXXRecordDecl *ClassDecl) { + CanQualType ClassType + = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); + + // FIXME: Implicit declarations have exception specifications, which are + // the union of the specifications of the implicitly called functions. + + if (!ClassDecl->hasUserDeclaredConstructor()) { + // C++ [class.ctor]p5: + // A default constructor for a class X is a constructor of class X + // that can be called without an argument. If there is no + // user-declared constructor for class X, a default constructor is + // implicitly declared. An implicitly-declared default constructor + // is an inline public member of its class. + DeclarationName Name + = Context.DeclarationNames.getCXXConstructorName(ClassType); + CXXConstructorDecl *DefaultCon = + CXXConstructorDecl::Create(Context, ClassDecl, + ClassDecl->getLocation(), Name, + Context.getFunctionType(Context.VoidTy, + 0, 0, false, 0, + /*FIXME*/false, false, + 0, 0, + FunctionType::ExtInfo()), + /*TInfo=*/0, + /*isExplicit=*/false, + /*isInline=*/true, + /*isImplicitlyDeclared=*/true); + DefaultCon->setAccess(AS_public); + DefaultCon->setImplicit(); + DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor()); + if (S) + PushOnScopeChains(DefaultCon, S, true); + else + ClassDecl->addDecl(DefaultCon); + } + + if (!ClassDecl->hasUserDeclaredCopyConstructor()) { + // C++ [class.copy]p4: + // If the class definition does not explicitly declare a copy + // constructor, one is declared implicitly. + + // C++ [class.copy]p5: + // The implicitly-declared copy constructor for a class X will + // have the form + // + // X::X(const X&) + // + // if + bool HasConstCopyConstructor = true; + + // -- each direct or virtual base class B of X has a copy + // constructor whose first parameter is of type const B& or + // const volatile B&, and + for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(); + HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) { + const CXXRecordDecl *BaseClassDecl + = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); + HasConstCopyConstructor + = BaseClassDecl->hasConstCopyConstructor(Context); + } + + // -- for all the nonstatic data members of X that are of a + // class type M (or array thereof), each such class type + // has a copy constructor whose first parameter is of type + // const M& or const volatile M&. + for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(); + HasConstCopyConstructor && Field != ClassDecl->field_end(); + ++Field) { + QualType FieldType = (*Field)->getType(); + if (const ArrayType *Array = Context.getAsArrayType(FieldType)) + FieldType = Array->getElementType(); + if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { + const CXXRecordDecl *FieldClassDecl + = cast<CXXRecordDecl>(FieldClassType->getDecl()); + HasConstCopyConstructor + = FieldClassDecl->hasConstCopyConstructor(Context); + } + } + + // Otherwise, the implicitly declared copy constructor will have + // the form + // + // X::X(X&) + QualType ArgType = ClassType; + if (HasConstCopyConstructor) + ArgType = ArgType.withConst(); + ArgType = Context.getLValueReferenceType(ArgType); + + // An implicitly-declared copy constructor is an inline public + // member of its class. + DeclarationName Name + = Context.DeclarationNames.getCXXConstructorName(ClassType); + CXXConstructorDecl *CopyConstructor + = CXXConstructorDecl::Create(Context, ClassDecl, + ClassDecl->getLocation(), Name, + Context.getFunctionType(Context.VoidTy, + &ArgType, 1, + false, 0, + /*FIXME: hasExceptionSpec*/false, + false, 0, 0, + FunctionType::ExtInfo()), + /*TInfo=*/0, + /*isExplicit=*/false, + /*isInline=*/true, + /*isImplicitlyDeclared=*/true); + CopyConstructor->setAccess(AS_public); + CopyConstructor->setImplicit(); + CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor()); + + // Add the parameter to the constructor. + ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor, + ClassDecl->getLocation(), + /*IdentifierInfo=*/0, + ArgType, /*TInfo=*/0, + VarDecl::None, + VarDecl::None, 0); + CopyConstructor->setParams(&FromParam, 1); + if (S) + PushOnScopeChains(CopyConstructor, S, true); + else + ClassDecl->addDecl(CopyConstructor); + } + + if (!ClassDecl->hasUserDeclaredCopyAssignment()) { + // Note: The following rules are largely analoguous to the copy + // constructor rules. Note that virtual bases are not taken into account + // for determining the argument type of the operator. Note also that + // operators taking an object instead of a reference are allowed. + // + // C++ [class.copy]p10: + // If the class definition does not explicitly declare a copy + // assignment operator, one is declared implicitly. + // The implicitly-defined copy assignment operator for a class X + // will have the form + // + // X& X::operator=(const X&) + // + // if + bool HasConstCopyAssignment = true; + + // -- each direct base class B of X has a copy assignment operator + // whose parameter is of type const B&, const volatile B& or B, + // and + for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(); + HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) { + assert(!Base->getType()->isDependentType() && + "Cannot generate implicit members for class with dependent bases."); + const CXXRecordDecl *BaseClassDecl + = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); + const CXXMethodDecl *MD = 0; + HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context, + MD); + } + + // -- for all the nonstatic data members of X that are of a class + // type M (or array thereof), each such class type has a copy + // assignment operator whose parameter is of type const M&, + // const volatile M& or M. + for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(); + HasConstCopyAssignment && Field != ClassDecl->field_end(); + ++Field) { + QualType FieldType = (*Field)->getType(); + if (const ArrayType *Array = Context.getAsArrayType(FieldType)) + FieldType = Array->getElementType(); + if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { + const CXXRecordDecl *FieldClassDecl + = cast<CXXRecordDecl>(FieldClassType->getDecl()); + const CXXMethodDecl *MD = 0; + HasConstCopyAssignment + = FieldClassDecl->hasConstCopyAssignment(Context, MD); + } + } + + // Otherwise, the implicitly declared copy assignment operator will + // have the form + // + // X& X::operator=(X&) + QualType ArgType = ClassType; + QualType RetType = Context.getLValueReferenceType(ArgType); + if (HasConstCopyAssignment) + ArgType = ArgType.withConst(); + ArgType = Context.getLValueReferenceType(ArgType); + + // An implicitly-declared copy assignment operator is an inline public + // member of its class. + DeclarationName Name = + Context.DeclarationNames.getCXXOperatorName(OO_Equal); + CXXMethodDecl *CopyAssignment = + CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name, + Context.getFunctionType(RetType, &ArgType, 1, + false, 0, + /*FIXME: hasExceptionSpec*/false, + false, 0, 0, + FunctionType::ExtInfo()), + /*TInfo=*/0, /*isStatic=*/false, + /*StorageClassAsWritten=*/FunctionDecl::None, + /*isInline=*/true); + CopyAssignment->setAccess(AS_public); + CopyAssignment->setImplicit(); + CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment()); + CopyAssignment->setCopyAssignment(true); + + // Add the parameter to the operator. + ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment, + ClassDecl->getLocation(), + /*Id=*/0, + ArgType, /*TInfo=*/0, + VarDecl::None, + VarDecl::None, 0); + CopyAssignment->setParams(&FromParam, 1); + + // Don't call addedAssignmentOperator. There is no way to distinguish an + // implicit from an explicit assignment operator. + if (S) + PushOnScopeChains(CopyAssignment, S, true); + else + ClassDecl->addDecl(CopyAssignment); + AddOverriddenMethods(ClassDecl, CopyAssignment); + } + + if (!ClassDecl->hasUserDeclaredDestructor()) { + // C++ [class.dtor]p2: + // If a class has no user-declared destructor, a destructor is + // declared implicitly. An implicitly-declared destructor is an + // inline public member of its class. + QualType Ty = Context.getFunctionType(Context.VoidTy, + 0, 0, false, 0, + /*FIXME: hasExceptionSpec*/false, + false, 0, 0, FunctionType::ExtInfo()); + + DeclarationName Name + = Context.DeclarationNames.getCXXDestructorName(ClassType); + CXXDestructorDecl *Destructor + = CXXDestructorDecl::Create(Context, ClassDecl, + ClassDecl->getLocation(), Name, Ty, + /*isInline=*/true, + /*isImplicitlyDeclared=*/true); + Destructor->setAccess(AS_public); + Destructor->setImplicit(); + Destructor->setTrivial(ClassDecl->hasTrivialDestructor()); + if (S) + PushOnScopeChains(Destructor, S, true); + else + ClassDecl->addDecl(Destructor); + + // This could be uniqued if it ever proves significant. + Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty)); + + AddOverriddenMethods(ClassDecl, Destructor); + } +} + +void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) { + Decl *D = TemplateD.getAs<Decl>(); + if (!D) + return; + + TemplateParameterList *Params = 0; + if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) + Params = Template->getTemplateParameters(); + else if (ClassTemplatePartialSpecializationDecl *PartialSpec + = dyn_cast<ClassTemplatePartialSpecializationDecl>(D)) + Params = PartialSpec->getTemplateParameters(); + else + return; + + for (TemplateParameterList::iterator Param = Params->begin(), + ParamEnd = Params->end(); + Param != ParamEnd; ++Param) { + NamedDecl *Named = cast<NamedDecl>(*Param); + if (Named->getDeclName()) { + S->AddDecl(DeclPtrTy::make(Named)); + IdResolver.AddDecl(Named); + } + } +} + +void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) { + if (!RecordD) return; + AdjustDeclIfTemplate(RecordD); + CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>()); + PushDeclContext(S, Record); +} + +void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) { + if (!RecordD) return; + PopDeclContext(); +} + +/// ActOnStartDelayedCXXMethodDeclaration - We have completed +/// parsing a top-level (non-nested) C++ class, and we are now +/// parsing those parts of the given Method declaration that could +/// not be parsed earlier (C++ [class.mem]p2), such as default +/// arguments. This action should enter the scope of the given +/// Method declaration as if we had just parsed the qualified method +/// name. However, it should not bring the parameters into scope; +/// that will be performed by ActOnDelayedCXXMethodParameter. +void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) { +} + +/// ActOnDelayedCXXMethodParameter - We've already started a delayed +/// C++ method declaration. We're (re-)introducing the given +/// function parameter into scope for use in parsing later parts of +/// the method declaration. For example, we could see an +/// ActOnParamDefaultArgument event for this parameter. +void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) { + if (!ParamD) + return; + + ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>()); + + // If this parameter has an unparsed default argument, clear it out + // to make way for the parsed default argument. + if (Param->hasUnparsedDefaultArg()) + Param->setDefaultArg(0); + + S->AddDecl(DeclPtrTy::make(Param)); + if (Param->getDeclName()) + IdResolver.AddDecl(Param); +} + +/// ActOnFinishDelayedCXXMethodDeclaration - We have finished +/// processing the delayed method declaration for Method. The method +/// declaration is now considered finished. There may be a separate +/// ActOnStartOfFunctionDef action later (not necessarily +/// immediately!) for this method, if it was also defined inside the +/// class body. +void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) { + if (!MethodD) + return; + + AdjustDeclIfTemplate(MethodD); + + FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>()); + + // Now that we have our default arguments, check the constructor + // again. It could produce additional diagnostics or affect whether + // the class has implicitly-declared destructors, among other + // things. + if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) + CheckConstructor(Constructor); + + // Check the default arguments, which we may have added. + if (!Method->isInvalidDecl()) + CheckCXXDefaultArguments(Method); +} + +/// CheckConstructorDeclarator - Called by ActOnDeclarator to check +/// the well-formedness of the constructor declarator @p D with type @p +/// R. If there are any errors in the declarator, this routine will +/// emit diagnostics and set the invalid bit to true. In any case, the type +/// will be updated to reflect a well-formed type for the constructor and +/// returned. +QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R, + FunctionDecl::StorageClass &SC) { + bool isVirtual = D.getDeclSpec().isVirtualSpecified(); + + // C++ [class.ctor]p3: + // A constructor shall not be virtual (10.3) or static (9.4). A + // constructor can be invoked for a const, volatile or const + // volatile object. A constructor shall not be declared const, + // volatile, or const volatile (9.3.2). + if (isVirtual) { + if (!D.isInvalidType()) + Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) + << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc()) + << SourceRange(D.getIdentifierLoc()); + D.setInvalidType(); + } + if (SC == FunctionDecl::Static) { + if (!D.isInvalidType()) + Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) + << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) + << SourceRange(D.getIdentifierLoc()); + D.setInvalidType(); + SC = FunctionDecl::None; + } + + DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; + if (FTI.TypeQuals != 0) { + if (FTI.TypeQuals & Qualifiers::Const) + Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) + << "const" << SourceRange(D.getIdentifierLoc()); + if (FTI.TypeQuals & Qualifiers::Volatile) + Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) + << "volatile" << SourceRange(D.getIdentifierLoc()); + if (FTI.TypeQuals & Qualifiers::Restrict) + Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) + << "restrict" << SourceRange(D.getIdentifierLoc()); + } + + // Rebuild the function type "R" without any type qualifiers (in + // case any of the errors above fired) and with "void" as the + // return type, since constructors don't have return types. We + // *always* have to do this, because GetTypeForDeclarator will + // put in a result type of "int" when none was specified. + const FunctionProtoType *Proto = R->getAs<FunctionProtoType>(); + return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(), + Proto->getNumArgs(), + Proto->isVariadic(), 0, + Proto->hasExceptionSpec(), + Proto->hasAnyExceptionSpec(), + Proto->getNumExceptions(), + Proto->exception_begin(), + Proto->getExtInfo()); +} + +/// CheckConstructor - Checks a fully-formed constructor for +/// well-formedness, issuing any diagnostics required. Returns true if +/// the constructor declarator is invalid. +void Sema::CheckConstructor(CXXConstructorDecl *Constructor) { + CXXRecordDecl *ClassDecl + = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext()); + if (!ClassDecl) + return Constructor->setInvalidDecl(); + + // C++ [class.copy]p3: + // A declaration of a constructor for a class X is ill-formed if + // its first parameter is of type (optionally cv-qualified) X and + // either there are no other parameters or else all other + // parameters have default arguments. + if (!Constructor->isInvalidDecl() && + ((Constructor->getNumParams() == 1) || + (Constructor->getNumParams() > 1 && + Constructor->getParamDecl(1)->hasDefaultArg())) && + Constructor->getTemplateSpecializationKind() + != TSK_ImplicitInstantiation) { + QualType ParamType = Constructor->getParamDecl(0)->getType(); + QualType ClassTy = Context.getTagDeclType(ClassDecl); + if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) { + SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation(); + Diag(ParamLoc, diag::err_constructor_byvalue_arg) + << FixItHint::CreateInsertion(ParamLoc, " const &"); + + // FIXME: Rather that making the constructor invalid, we should endeavor + // to fix the type. + Constructor->setInvalidDecl(); + } + } + + // Notify the class that we've added a constructor. In principle we + // don't need to do this for out-of-line declarations; in practice + // we only instantiate the most recent declaration of a method, so + // we have to call this for everything but friends. + if (!Constructor->getFriendObjectKind()) + ClassDecl->addedConstructor(Context, Constructor); +} + +/// CheckDestructor - Checks a fully-formed destructor for well-formedness, +/// issuing any diagnostics required. Returns true on error. +bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) { + CXXRecordDecl *RD = Destructor->getParent(); + + if (Destructor->isVirtual()) { + SourceLocation Loc; + + if (!Destructor->isImplicit()) + Loc = Destructor->getLocation(); + else + Loc = RD->getLocation(); + + // If we have a virtual destructor, look up the deallocation function + FunctionDecl *OperatorDelete = 0; + DeclarationName Name = + Context.DeclarationNames.getCXXOperatorName(OO_Delete); + if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete)) + return true; + + Destructor->setOperatorDelete(OperatorDelete); + } + + return false; +} + +static inline bool +FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) { + return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 && + FTI.ArgInfo[0].Param && + FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()); +} + +/// CheckDestructorDeclarator - Called by ActOnDeclarator to check +/// the well-formednes of the destructor declarator @p D with type @p +/// R. If there are any errors in the declarator, this routine will +/// emit diagnostics and set the declarator to invalid. Even if this happens, +/// will be updated to reflect a well-formed type for the destructor and +/// returned. +QualType Sema::CheckDestructorDeclarator(Declarator &D, + FunctionDecl::StorageClass& SC) { + // C++ [class.dtor]p1: + // [...] A typedef-name that names a class is a class-name + // (7.1.3); however, a typedef-name that names a class shall not + // be used as the identifier in the declarator for a destructor + // declaration. + QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName); + if (isa<TypedefType>(DeclaratorType)) { + Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name) + << DeclaratorType; + D.setInvalidType(); + } + + // C++ [class.dtor]p2: + // A destructor is used to destroy objects of its class type. A + // destructor takes no parameters, and no return type can be + // specified for it (not even void). The address of a destructor + // shall not be taken. A destructor shall not be static. A + // destructor can be invoked for a const, volatile or const + // volatile object. A destructor shall not be declared const, + // volatile or const volatile (9.3.2). + if (SC == FunctionDecl::Static) { + if (!D.isInvalidType()) + Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be) + << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) + << SourceRange(D.getIdentifierLoc()); + SC = FunctionDecl::None; + D.setInvalidType(); + } + if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) { + // Destructors don't have return types, but the parser will + // happily parse something like: + // + // class X { + // float ~X(); + // }; + // + // The return type will be eliminated later. + Diag(D.getIdentifierLoc(), diag::err_destructor_return_type) + << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) + << SourceRange(D.getIdentifierLoc()); + } + + DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; + if (FTI.TypeQuals != 0 && !D.isInvalidType()) { + if (FTI.TypeQuals & Qualifiers::Const) + Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) + << "const" << SourceRange(D.getIdentifierLoc()); + if (FTI.TypeQuals & Qualifiers::Volatile) + Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) + << "volatile" << SourceRange(D.getIdentifierLoc()); + if (FTI.TypeQuals & Qualifiers::Restrict) + Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) + << "restrict" << SourceRange(D.getIdentifierLoc()); + D.setInvalidType(); + } + + // Make sure we don't have any parameters. + if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) { + Diag(D.getIdentifierLoc(), diag::err_destructor_with_params); + + // Delete the parameters. + FTI.freeArgs(); + D.setInvalidType(); + } + + // Make sure the destructor isn't variadic. + if (FTI.isVariadic) { + Diag(D.getIdentifierLoc(), diag::err_destructor_variadic); + D.setInvalidType(); + } + + // Rebuild the function type "R" without any type qualifiers or + // parameters (in case any of the errors above fired) and with + // "void" as the return type, since destructors don't have return + // types. We *always* have to do this, because GetTypeForDeclarator + // will put in a result type of "int" when none was specified. + // FIXME: Exceptions! + return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0, + false, false, 0, 0, FunctionType::ExtInfo()); +} + +/// CheckConversionDeclarator - Called by ActOnDeclarator to check the +/// well-formednes of the conversion function declarator @p D with +/// type @p R. If there are any errors in the declarator, this routine +/// will emit diagnostics and return true. Otherwise, it will return +/// false. Either way, the type @p R will be updated to reflect a +/// well-formed type for the conversion operator. +void Sema::CheckConversionDeclarator(Declarator &D, QualType &R, + FunctionDecl::StorageClass& SC) { + // C++ [class.conv.fct]p1: + // Neither parameter types nor return type can be specified. The + // type of a conversion function (8.3.5) is "function taking no + // parameter returning conversion-type-id." + if (SC == FunctionDecl::Static) { + if (!D.isInvalidType()) + Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member) + << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) + << SourceRange(D.getIdentifierLoc()); + D.setInvalidType(); + SC = FunctionDecl::None; + } + + QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId); + + if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) { + // Conversion functions don't have return types, but the parser will + // happily parse something like: + // + // class X { + // float operator bool(); + // }; + // + // The return type will be changed later anyway. + Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type) + << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) + << SourceRange(D.getIdentifierLoc()); + D.setInvalidType(); + } + + const FunctionProtoType *Proto = R->getAs<FunctionProtoType>(); + + // Make sure we don't have any parameters. + if (Proto->getNumArgs() > 0) { + Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params); + + // Delete the parameters. + D.getTypeObject(0).Fun.freeArgs(); + D.setInvalidType(); + } else if (Proto->isVariadic()) { + Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic); + D.setInvalidType(); + } + + // Diagnose "&operator bool()" and other such nonsense. This + // is actually a gcc extension which we don't support. + if (Proto->getResultType() != ConvType) { + Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl) + << Proto->getResultType(); + D.setInvalidType(); + ConvType = Proto->getResultType(); + } + + // C++ [class.conv.fct]p4: + // The conversion-type-id shall not represent a function type nor + // an array type. + if (ConvType->isArrayType()) { + Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array); + ConvType = Context.getPointerType(ConvType); + D.setInvalidType(); + } else if (ConvType->isFunctionType()) { + Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function); + ConvType = Context.getPointerType(ConvType); + D.setInvalidType(); + } + + // Rebuild the function type "R" without any parameters (in case any + // of the errors above fired) and with the conversion type as the + // return type. + if (D.isInvalidType()) { + R = Context.getFunctionType(ConvType, 0, 0, false, + Proto->getTypeQuals(), + Proto->hasExceptionSpec(), + Proto->hasAnyExceptionSpec(), + Proto->getNumExceptions(), + Proto->exception_begin(), + Proto->getExtInfo()); + } + + // C++0x explicit conversion operators. + if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x) + Diag(D.getDeclSpec().getExplicitSpecLoc(), + diag::warn_explicit_conversion_functions) + << SourceRange(D.getDeclSpec().getExplicitSpecLoc()); +} + +/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete +/// the declaration of the given C++ conversion function. This routine +/// is responsible for recording the conversion function in the C++ +/// class, if possible. +Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) { + assert(Conversion && "Expected to receive a conversion function declaration"); + + CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext()); + + // Make sure we aren't redeclaring the conversion function. + QualType ConvType = Context.getCanonicalType(Conversion->getConversionType()); + + // C++ [class.conv.fct]p1: + // [...] A conversion function is never used to convert a + // (possibly cv-qualified) object to the (possibly cv-qualified) + // same object type (or a reference to it), to a (possibly + // cv-qualified) base class of that type (or a reference to it), + // or to (possibly cv-qualified) void. + // FIXME: Suppress this warning if the conversion function ends up being a + // virtual function that overrides a virtual function in a base class. + QualType ClassType + = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); + if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>()) + ConvType = ConvTypeRef->getPointeeType(); + if (ConvType->isRecordType()) { + ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType(); + if (ConvType == ClassType) + Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used) + << ClassType; + else if (IsDerivedFrom(ClassType, ConvType)) + Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used) + << ClassType << ConvType; + } else if (ConvType->isVoidType()) { + Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used) + << ClassType << ConvType; + } + + if (Conversion->getPrimaryTemplate()) { + // ignore specializations + } else if (Conversion->getPreviousDeclaration()) { + if (FunctionTemplateDecl *ConversionTemplate + = Conversion->getDescribedFunctionTemplate()) { + if (ClassDecl->replaceConversion( + ConversionTemplate->getPreviousDeclaration(), + ConversionTemplate)) + return DeclPtrTy::make(ConversionTemplate); + } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(), + Conversion)) + return DeclPtrTy::make(Conversion); + assert(Conversion->isInvalidDecl() && "Conversion should not get here."); + } else if (FunctionTemplateDecl *ConversionTemplate + = Conversion->getDescribedFunctionTemplate()) + ClassDecl->addConversionFunction(ConversionTemplate); + else + ClassDecl->addConversionFunction(Conversion); + + return DeclPtrTy::make(Conversion); +} + +//===----------------------------------------------------------------------===// +// Namespace Handling +//===----------------------------------------------------------------------===// + +/// ActOnStartNamespaceDef - This is called at the start of a namespace +/// definition. +Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope, + SourceLocation IdentLoc, + IdentifierInfo *II, + SourceLocation LBrace, + AttributeList *AttrList) { + NamespaceDecl *Namespc = + NamespaceDecl::Create(Context, CurContext, IdentLoc, II); + Namespc->setLBracLoc(LBrace); + + Scope *DeclRegionScope = NamespcScope->getParent(); + + ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList); + + if (II) { + // C++ [namespace.def]p2: + // The identifier in an original-namespace-definition shall not have been + // previously defined in the declarative region in which the + // original-namespace-definition appears. The identifier in an + // original-namespace-definition is the name of the namespace. Subsequently + // in that declarative region, it is treated as an original-namespace-name. + + NamedDecl *PrevDecl + = LookupSingleName(DeclRegionScope, II, IdentLoc, LookupOrdinaryName, + ForRedeclaration); + + if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) { + // This is an extended namespace definition. + // Attach this namespace decl to the chain of extended namespace + // definitions. + OrigNS->setNextNamespace(Namespc); + Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace()); + + // Remove the previous declaration from the scope. + if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) { + IdResolver.RemoveDecl(OrigNS); + DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS)); + } + } else if (PrevDecl) { + // This is an invalid name redefinition. + Diag(Namespc->getLocation(), diag::err_redefinition_different_kind) + << Namespc->getDeclName(); + Diag(PrevDecl->getLocation(), diag::note_previous_definition); + Namespc->setInvalidDecl(); + // Continue on to push Namespc as current DeclContext and return it. + } else if (II->isStr("std") && + CurContext->getLookupContext()->isTranslationUnit()) { + // This is the first "real" definition of the namespace "std", so update + // our cache of the "std" namespace to point at this definition. + if (StdNamespace) { + // We had already defined a dummy namespace "std". Link this new + // namespace definition to the dummy namespace "std". + StdNamespace->setNextNamespace(Namespc); + StdNamespace->setLocation(IdentLoc); + Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace()); + } + + // Make our StdNamespace cache point at the first real definition of the + // "std" namespace. + StdNamespace = Namespc; + } + + PushOnScopeChains(Namespc, DeclRegionScope); + } else { + // Anonymous namespaces. + assert(Namespc->isAnonymousNamespace()); + + // Link the anonymous namespace into its parent. + NamespaceDecl *PrevDecl; + DeclContext *Parent = CurContext->getLookupContext(); + if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) { + PrevDecl = TU->getAnonymousNamespace(); + TU->setAnonymousNamespace(Namespc); + } else { + NamespaceDecl *ND = cast<NamespaceDecl>(Parent); + PrevDecl = ND->getAnonymousNamespace(); + ND->setAnonymousNamespace(Namespc); + } + + // Link the anonymous namespace with its previous declaration. + if (PrevDecl) { + assert(PrevDecl->isAnonymousNamespace()); + assert(!PrevDecl->getNextNamespace()); + Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace()); + PrevDecl->setNextNamespace(Namespc); + } + + CurContext->addDecl(Namespc); + + // C++ [namespace.unnamed]p1. An unnamed-namespace-definition + // behaves as if it were replaced by + // namespace unique { /* empty body */ } + // using namespace unique; + // namespace unique { namespace-body } + // where all occurrences of 'unique' in a translation unit are + // replaced by the same identifier and this identifier differs + // from all other identifiers in the entire program. + + // We just create the namespace with an empty name and then add an + // implicit using declaration, just like the standard suggests. + // + // CodeGen enforces the "universally unique" aspect by giving all + // declarations semantically contained within an anonymous + // namespace internal linkage. + + if (!PrevDecl) { + UsingDirectiveDecl* UD + = UsingDirectiveDecl::Create(Context, CurContext, + /* 'using' */ LBrace, + /* 'namespace' */ SourceLocation(), + /* qualifier */ SourceRange(), + /* NNS */ NULL, + /* identifier */ SourceLocation(), + Namespc, + /* Ancestor */ CurContext); + UD->setImplicit(); + CurContext->addDecl(UD); + } + } + + // Although we could have an invalid decl (i.e. the namespace name is a + // redefinition), push it as current DeclContext and try to continue parsing. + // FIXME: We should be able to push Namespc here, so that the each DeclContext + // for the namespace has the declarations that showed up in that particular + // namespace definition. + PushDeclContext(NamespcScope, Namespc); + return DeclPtrTy::make(Namespc); +} + +/// getNamespaceDecl - Returns the namespace a decl represents. If the decl +/// is a namespace alias, returns the namespace it points to. +static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) { + if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D)) + return AD->getNamespace(); + return dyn_cast_or_null<NamespaceDecl>(D); +} + +/// ActOnFinishNamespaceDef - This callback is called after a namespace is +/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef. +void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) { + Decl *Dcl = D.getAs<Decl>(); + NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl); + assert(Namespc && "Invalid parameter, expected NamespaceDecl"); + Namespc->setRBracLoc(RBrace); + PopDeclContext(); +} + +Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S, + SourceLocation UsingLoc, + SourceLocation NamespcLoc, + CXXScopeSpec &SS, + SourceLocation IdentLoc, + IdentifierInfo *NamespcName, + AttributeList *AttrList) { + assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); + assert(NamespcName && "Invalid NamespcName."); + assert(IdentLoc.isValid() && "Invalid NamespceName location."); + assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); + + UsingDirectiveDecl *UDir = 0; + + // Lookup namespace name. + LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName); + LookupParsedName(R, S, &SS); + if (R.isAmbiguous()) + return DeclPtrTy(); + + if (!R.empty()) { + NamedDecl *Named = R.getFoundDecl(); + assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named)) + && "expected namespace decl"); + // C++ [namespace.udir]p1: + // A using-directive specifies that the names in the nominated + // namespace can be used in the scope in which the + // using-directive appears after the using-directive. During + // unqualified name lookup (3.4.1), the names appear as if they + // were declared in the nearest enclosing namespace which + // contains both the using-directive and the nominated + // namespace. [Note: in this context, "contains" means "contains + // directly or indirectly". ] + + // Find enclosing context containing both using-directive and + // nominated namespace. + NamespaceDecl *NS = getNamespaceDecl(Named); + DeclContext *CommonAncestor = cast<DeclContext>(NS); + while (CommonAncestor && !CommonAncestor->Encloses(CurContext)) + CommonAncestor = CommonAncestor->getParent(); + + UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc, + SS.getRange(), + (NestedNameSpecifier *)SS.getScopeRep(), + IdentLoc, Named, CommonAncestor); + PushUsingDirective(S, UDir); + } else { + Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); + } + + // FIXME: We ignore attributes for now. + delete AttrList; + return DeclPtrTy::make(UDir); +} + +void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) { + // If scope has associated entity, then using directive is at namespace + // or translation unit scope. We add UsingDirectiveDecls, into + // it's lookup structure. + if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) + Ctx->addDecl(UDir); + else + // Otherwise it is block-sope. using-directives will affect lookup + // only to the end of scope. + S->PushUsingDirective(DeclPtrTy::make(UDir)); +} + + +Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S, + AccessSpecifier AS, + bool HasUsingKeyword, + SourceLocation UsingLoc, + CXXScopeSpec &SS, + UnqualifiedId &Name, + AttributeList *AttrList, + bool IsTypeName, + SourceLocation TypenameLoc) { + assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); + + switch (Name.getKind()) { + case UnqualifiedId::IK_Identifier: + case UnqualifiedId::IK_OperatorFunctionId: + case UnqualifiedId::IK_LiteralOperatorId: + case UnqualifiedId::IK_ConversionFunctionId: + break; + + case UnqualifiedId::IK_ConstructorName: + case UnqualifiedId::IK_ConstructorTemplateId: + // C++0x inherited constructors. + if (getLangOptions().CPlusPlus0x) break; + + Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor) + << SS.getRange(); + return DeclPtrTy(); + + case UnqualifiedId::IK_DestructorName: + Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor) + << SS.getRange(); + return DeclPtrTy(); + + case UnqualifiedId::IK_TemplateId: + Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id) + << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc); + return DeclPtrTy(); + } + + DeclarationName TargetName = GetNameFromUnqualifiedId(Name); + if (!TargetName) + return DeclPtrTy(); + + // Warn about using declarations. + // TODO: store that the declaration was written without 'using' and + // talk about access decls instead of using decls in the + // diagnostics. + if (!HasUsingKeyword) { + UsingLoc = Name.getSourceRange().getBegin(); + + Diag(UsingLoc, diag::warn_access_decl_deprecated) + << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using "); + } + + NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS, + Name.getSourceRange().getBegin(), + TargetName, AttrList, + /* IsInstantiation */ false, + IsTypeName, TypenameLoc); + if (UD) + PushOnScopeChains(UD, S, /*AddToContext*/ false); + + return DeclPtrTy::make(UD); +} + +/// Determines whether to create a using shadow decl for a particular +/// decl, given the set of decls existing prior to this using lookup. +bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig, + const LookupResult &Previous) { + // Diagnose finding a decl which is not from a base class of the + // current class. We do this now because there are cases where this + // function will silently decide not to build a shadow decl, which + // will pre-empt further diagnostics. + // + // We don't need to do this in C++0x because we do the check once on + // the qualifier. + // + // FIXME: diagnose the following if we care enough: + // struct A { int foo; }; + // struct B : A { using A::foo; }; + // template <class T> struct C : A {}; + // template <class T> struct D : C<T> { using B::foo; } // <--- + // This is invalid (during instantiation) in C++03 because B::foo + // resolves to the using decl in B, which is not a base class of D<T>. + // We can't diagnose it immediately because C<T> is an unknown + // specialization. The UsingShadowDecl in D<T> then points directly + // to A::foo, which will look well-formed when we instantiate. + // The right solution is to not collapse the shadow-decl chain. + if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) { + DeclContext *OrigDC = Orig->getDeclContext(); + + // Handle enums and anonymous structs. + if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent(); + CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC); + while (OrigRec->isAnonymousStructOrUnion()) + OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext()); + + if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) { + if (OrigDC == CurContext) { + Diag(Using->getLocation(), + diag::err_using_decl_nested_name_specifier_is_current_class) + << Using->getNestedNameRange(); + Diag(Orig->getLocation(), diag::note_using_decl_target); + return true; + } + + Diag(Using->getNestedNameRange().getBegin(), + diag::err_using_decl_nested_name_specifier_is_not_base_class) + << Using->getTargetNestedNameDecl() + << cast<CXXRecordDecl>(CurContext) + << Using->getNestedNameRange(); + Diag(Orig->getLocation(), diag::note_using_decl_target); + return true; + } + } + + if (Previous.empty()) return false; + + NamedDecl *Target = Orig; + if (isa<UsingShadowDecl>(Target)) + Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); + + // If the target happens to be one of the previous declarations, we + // don't have a conflict. + // + // FIXME: but we might be increasing its access, in which case we + // should redeclare it. + NamedDecl *NonTag = 0, *Tag = 0; + for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); + I != E; ++I) { + NamedDecl *D = (*I)->getUnderlyingDecl(); + if (D->getCanonicalDecl() == Target->getCanonicalDecl()) + return false; + + (isa<TagDecl>(D) ? Tag : NonTag) = D; + } + + if (Target->isFunctionOrFunctionTemplate()) { + FunctionDecl *FD; + if (isa<FunctionTemplateDecl>(Target)) + FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl(); + else + FD = cast<FunctionDecl>(Target); + + NamedDecl *OldDecl = 0; + switch (CheckOverload(FD, Previous, OldDecl)) { + case Ovl_Overload: + return false; + + case Ovl_NonFunction: + Diag(Using->getLocation(), diag::err_using_decl_conflict); + break; + + // We found a decl with the exact signature. + case Ovl_Match: + if (isa<UsingShadowDecl>(OldDecl)) { + // Silently ignore the possible conflict. + return false; + } + + // If we're in a record, we want to hide the target, so we + // return true (without a diagnostic) to tell the caller not to + // build a shadow decl. + if (CurContext->isRecord()) + return true; + + // If we're not in a record, this is an error. + Diag(Using->getLocation(), diag::err_using_decl_conflict); + break; + } + + Diag(Target->getLocation(), diag::note_using_decl_target); + Diag(OldDecl->getLocation(), diag::note_using_decl_conflict); + return true; + } + + // Target is not a function. + + if (isa<TagDecl>(Target)) { + // No conflict between a tag and a non-tag. + if (!Tag) return false; + + Diag(Using->getLocation(), diag::err_using_decl_conflict); + Diag(Target->getLocation(), diag::note_using_decl_target); + Diag(Tag->getLocation(), diag::note_using_decl_conflict); + return true; + } + + // No conflict between a tag and a non-tag. + if (!NonTag) return false; + + Diag(Using->getLocation(), diag::err_using_decl_conflict); + Diag(Target->getLocation(), diag::note_using_decl_target); + Diag(NonTag->getLocation(), diag::note_using_decl_conflict); + return true; +} + +/// Builds a shadow declaration corresponding to a 'using' declaration. +UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S, + UsingDecl *UD, + NamedDecl *Orig) { + + // If we resolved to another shadow declaration, just coalesce them. + NamedDecl *Target = Orig; + if (isa<UsingShadowDecl>(Target)) { + Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); + assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration"); + } + + UsingShadowDecl *Shadow + = UsingShadowDecl::Create(Context, CurContext, + UD->getLocation(), UD, Target); + UD->addShadowDecl(Shadow); + + if (S) + PushOnScopeChains(Shadow, S); + else + CurContext->addDecl(Shadow); + Shadow->setAccess(UD->getAccess()); + + // Register it as a conversion if appropriate. + if (Shadow->getDeclName().getNameKind() + == DeclarationName::CXXConversionFunctionName) + cast<CXXRecordDecl>(CurContext)->addConversionFunction(Shadow); + + if (Orig->isInvalidDecl() || UD->isInvalidDecl()) + Shadow->setInvalidDecl(); + + return Shadow; +} + +/// Hides a using shadow declaration. This is required by the current +/// using-decl implementation when a resolvable using declaration in a +/// class is followed by a declaration which would hide or override +/// one or more of the using decl's targets; for example: +/// +/// struct Base { void foo(int); }; +/// struct Derived : Base { +/// using Base::foo; +/// void foo(int); +/// }; +/// +/// The governing language is C++03 [namespace.udecl]p12: +/// +/// When a using-declaration brings names from a base class into a +/// derived class scope, member functions in the derived class +/// override and/or hide member functions with the same name and +/// parameter types in a base class (rather than conflicting). +/// +/// There are two ways to implement this: +/// (1) optimistically create shadow decls when they're not hidden +/// by existing declarations, or +/// (2) don't create any shadow decls (or at least don't make them +/// visible) until we've fully parsed/instantiated the class. +/// The problem with (1) is that we might have to retroactively remove +/// a shadow decl, which requires several O(n) operations because the +/// decl structures are (very reasonably) not designed for removal. +/// (2) avoids this but is very fiddly and phase-dependent. +void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) { + if (Shadow->getDeclName().getNameKind() == + DeclarationName::CXXConversionFunctionName) + cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow); + + // Remove it from the DeclContext... + Shadow->getDeclContext()->removeDecl(Shadow); + + // ...and the scope, if applicable... + if (S) { + S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow))); + IdResolver.RemoveDecl(Shadow); + } + + // ...and the using decl. + Shadow->getUsingDecl()->removeShadowDecl(Shadow); + + // TODO: complain somehow if Shadow was used. It shouldn't + // be possible for this to happen, because...? +} + +/// Builds a using declaration. +/// +/// \param IsInstantiation - Whether this call arises from an +/// instantiation of an unresolved using declaration. We treat +/// the lookup differently for these declarations. +NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS, + SourceLocation UsingLoc, + CXXScopeSpec &SS, + SourceLocation IdentLoc, + DeclarationName Name, + AttributeList *AttrList, + bool IsInstantiation, + bool IsTypeName, + SourceLocation TypenameLoc) { + assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); + assert(IdentLoc.isValid() && "Invalid TargetName location."); + + // FIXME: We ignore attributes for now. + delete AttrList; + + if (SS.isEmpty()) { + Diag(IdentLoc, diag::err_using_requires_qualname); + return 0; + } + + // Do the redeclaration lookup in the current scope. + LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName, + ForRedeclaration); + Previous.setHideTags(false); + if (S) { + LookupName(Previous, S); + + // It is really dumb that we have to do this. + LookupResult::Filter F = Previous.makeFilter(); + while (F.hasNext()) { + NamedDecl *D = F.next(); + if (!isDeclInScope(D, CurContext, S)) + F.erase(); + } + F.done(); + } else { + assert(IsInstantiation && "no scope in non-instantiation"); + assert(CurContext->isRecord() && "scope not record in instantiation"); + LookupQualifiedName(Previous, CurContext); + } + + NestedNameSpecifier *NNS = + static_cast<NestedNameSpecifier *>(SS.getScopeRep()); + + // Check for invalid redeclarations. + if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous)) + return 0; + + // Check for bad qualifiers. + if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc)) + return 0; + + DeclContext *LookupContext = computeDeclContext(SS); + NamedDecl *D; + if (!LookupContext) { + if (IsTypeName) { + // FIXME: not all declaration name kinds are legal here + D = UnresolvedUsingTypenameDecl::Create(Context, CurContext, + UsingLoc, TypenameLoc, + SS.getRange(), NNS, + IdentLoc, Name); + } else { + D = UnresolvedUsingValueDecl::Create(Context, CurContext, + UsingLoc, SS.getRange(), NNS, + IdentLoc, Name); + } + } else { + D = UsingDecl::Create(Context, CurContext, IdentLoc, + SS.getRange(), UsingLoc, NNS, Name, + IsTypeName); + } + D->setAccess(AS); + CurContext->addDecl(D); + + if (!LookupContext) return D; + UsingDecl *UD = cast<UsingDecl>(D); + + if (RequireCompleteDeclContext(SS, LookupContext)) { + UD->setInvalidDecl(); + return UD; + } + + // Look up the target name. + + LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName); + + // Unlike most lookups, we don't always want to hide tag + // declarations: tag names are visible through the using declaration + // even if hidden by ordinary names, *except* in a dependent context + // where it's important for the sanity of two-phase lookup. + if (!IsInstantiation) + R.setHideTags(false); + + LookupQualifiedName(R, LookupContext); + + if (R.empty()) { + Diag(IdentLoc, diag::err_no_member) + << Name << LookupContext << SS.getRange(); + UD->setInvalidDecl(); + return UD; + } + + if (R.isAmbiguous()) { + UD->setInvalidDecl(); + return UD; + } + + if (IsTypeName) { + // If we asked for a typename and got a non-type decl, error out. + if (!R.getAsSingle<TypeDecl>()) { + Diag(IdentLoc, diag::err_using_typename_non_type); + for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) + Diag((*I)->getUnderlyingDecl()->getLocation(), + diag::note_using_decl_target); + UD->setInvalidDecl(); + return UD; + } + } else { + // If we asked for a non-typename and we got a type, error out, + // but only if this is an instantiation of an unresolved using + // decl. Otherwise just silently find the type name. + if (IsInstantiation && R.getAsSingle<TypeDecl>()) { + Diag(IdentLoc, diag::err_using_dependent_value_is_type); + Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target); + UD->setInvalidDecl(); + return UD; + } + } + + // C++0x N2914 [namespace.udecl]p6: + // A using-declaration shall not name a namespace. + if (R.getAsSingle<NamespaceDecl>()) { + Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace) + << SS.getRange(); + UD->setInvalidDecl(); + return UD; + } + + for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { + if (!CheckUsingShadowDecl(UD, *I, Previous)) + BuildUsingShadowDecl(S, UD, *I); + } + + return UD; +} + +/// Checks that the given using declaration is not an invalid +/// redeclaration. Note that this is checking only for the using decl +/// itself, not for any ill-formedness among the UsingShadowDecls. +bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc, + bool isTypeName, + const CXXScopeSpec &SS, + SourceLocation NameLoc, + const LookupResult &Prev) { + // C++03 [namespace.udecl]p8: + // C++0x [namespace.udecl]p10: + // A using-declaration is a declaration and can therefore be used + // repeatedly where (and only where) multiple declarations are + // allowed. + // + // That's in non-member contexts. + if (!CurContext->getLookupContext()->isRecord()) + return false; + + NestedNameSpecifier *Qual + = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); + + for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) { + NamedDecl *D = *I; + + bool DTypename; + NestedNameSpecifier *DQual; + if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) { + DTypename = UD->isTypeName(); + DQual = UD->getTargetNestedNameDecl(); + } else if (UnresolvedUsingValueDecl *UD + = dyn_cast<UnresolvedUsingValueDecl>(D)) { + DTypename = false; + DQual = UD->getTargetNestedNameSpecifier(); + } else if (UnresolvedUsingTypenameDecl *UD + = dyn_cast<UnresolvedUsingTypenameDecl>(D)) { + DTypename = true; + DQual = UD->getTargetNestedNameSpecifier(); + } else continue; + + // using decls differ if one says 'typename' and the other doesn't. + // FIXME: non-dependent using decls? + if (isTypeName != DTypename) continue; + + // using decls differ if they name different scopes (but note that + // template instantiation can cause this check to trigger when it + // didn't before instantiation). + if (Context.getCanonicalNestedNameSpecifier(Qual) != + Context.getCanonicalNestedNameSpecifier(DQual)) + continue; + + Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange(); + Diag(D->getLocation(), diag::note_using_decl) << 1; + return true; + } + + return false; +} + + +/// Checks that the given nested-name qualifier used in a using decl +/// in the current context is appropriately related to the current +/// scope. If an error is found, diagnoses it and returns true. +bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc, + const CXXScopeSpec &SS, + SourceLocation NameLoc) { + DeclContext *NamedContext = computeDeclContext(SS); + + if (!CurContext->isRecord()) { + // C++03 [namespace.udecl]p3: + // C++0x [namespace.udecl]p8: + // A using-declaration for a class member shall be a member-declaration. + + // If we weren't able to compute a valid scope, it must be a + // dependent class scope. + if (!NamedContext || NamedContext->isRecord()) { + Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member) + << SS.getRange(); + return true; + } + + // Otherwise, everything is known to be fine. + return false; + } + + // The current scope is a record. + + // If the named context is dependent, we can't decide much. + if (!NamedContext) { + // FIXME: in C++0x, we can diagnose if we can prove that the + // nested-name-specifier does not refer to a base class, which is + // still possible in some cases. + + // Otherwise we have to conservatively report that things might be + // okay. + return false; + } + + if (!NamedContext->isRecord()) { + // Ideally this would point at the last name in the specifier, + // but we don't have that level of source info. + Diag(SS.getRange().getBegin(), + diag::err_using_decl_nested_name_specifier_is_not_class) + << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange(); + return true; + } + + if (getLangOptions().CPlusPlus0x) { + // C++0x [namespace.udecl]p3: + // In a using-declaration used as a member-declaration, the + // nested-name-specifier shall name a base class of the class + // being defined. + + if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom( + cast<CXXRecordDecl>(NamedContext))) { + if (CurContext == NamedContext) { + Diag(NameLoc, + diag::err_using_decl_nested_name_specifier_is_current_class) + << SS.getRange(); + return true; + } + + Diag(SS.getRange().getBegin(), + diag::err_using_decl_nested_name_specifier_is_not_base_class) + << (NestedNameSpecifier*) SS.getScopeRep() + << cast<CXXRecordDecl>(CurContext) + << SS.getRange(); + return true; + } + + return false; + } + + // C++03 [namespace.udecl]p4: + // A using-declaration used as a member-declaration shall refer + // to a member of a base class of the class being defined [etc.]. + + // Salient point: SS doesn't have to name a base class as long as + // lookup only finds members from base classes. Therefore we can + // diagnose here only if we can prove that that can't happen, + // i.e. if the class hierarchies provably don't intersect. + + // TODO: it would be nice if "definitely valid" results were cached + // in the UsingDecl and UsingShadowDecl so that these checks didn't + // need to be repeated. + + struct UserData { + llvm::DenseSet<const CXXRecordDecl*> Bases; + + static bool collect(const CXXRecordDecl *Base, void *OpaqueData) { + UserData *Data = reinterpret_cast<UserData*>(OpaqueData); + Data->Bases.insert(Base); + return true; + } + + bool hasDependentBases(const CXXRecordDecl *Class) { + return !Class->forallBases(collect, this); + } + + /// Returns true if the base is dependent or is one of the + /// accumulated base classes. + static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) { + UserData *Data = reinterpret_cast<UserData*>(OpaqueData); + return !Data->Bases.count(Base); + } + + bool mightShareBases(const CXXRecordDecl *Class) { + return Bases.count(Class) || !Class->forallBases(doesNotContain, this); + } + }; + + UserData Data; + + // Returns false if we find a dependent base. + if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext))) + return false; + + // Returns false if the class has a dependent base or if it or one + // of its bases is present in the base set of the current context. + if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext))) + return false; + + Diag(SS.getRange().getBegin(), + diag::err_using_decl_nested_name_specifier_is_not_base_class) + << (NestedNameSpecifier*) SS.getScopeRep() + << cast<CXXRecordDecl>(CurContext) + << SS.getRange(); + + return true; +} + +Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S, + SourceLocation NamespaceLoc, + SourceLocation AliasLoc, + IdentifierInfo *Alias, + CXXScopeSpec &SS, + SourceLocation IdentLoc, + IdentifierInfo *Ident) { + + // Lookup the namespace name. + LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName); + LookupParsedName(R, S, &SS); + + // Check if we have a previous declaration with the same name. + NamedDecl *PrevDecl + = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName, + ForRedeclaration); + if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S)) + PrevDecl = 0; + + if (PrevDecl) { + if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) { + // We already have an alias with the same name that points to the same + // namespace, so don't create a new one. + // FIXME: At some point, we'll want to create the (redundant) + // declaration to maintain better source information. + if (!R.isAmbiguous() && !R.empty() && + AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl()))) + return DeclPtrTy(); + } + + unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition : + diag::err_redefinition_different_kind; + Diag(AliasLoc, DiagID) << Alias; + Diag(PrevDecl->getLocation(), diag::note_previous_definition); + return DeclPtrTy(); + } + + if (R.isAmbiguous()) + return DeclPtrTy(); + + if (R.empty()) { + Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange(); + return DeclPtrTy(); + } + + NamespaceAliasDecl *AliasDecl = + NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc, + Alias, SS.getRange(), + (NestedNameSpecifier *)SS.getScopeRep(), + IdentLoc, R.getFoundDecl()); + + PushOnScopeChains(AliasDecl, S); + return DeclPtrTy::make(AliasDecl); +} + +namespace { + /// \brief Scoped object used to handle the state changes required in Sema + /// to implicitly define the body of a C++ member function; + class ImplicitlyDefinedFunctionScope { + Sema &S; + DeclContext *PreviousContext; + + public: + ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method) + : S(S), PreviousContext(S.CurContext) + { + S.CurContext = Method; + S.PushFunctionScope(); + S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated); + } + + ~ImplicitlyDefinedFunctionScope() { + S.PopExpressionEvaluationContext(); + S.PopFunctionOrBlockScope(); + S.CurContext = PreviousContext; + } + }; +} + +void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation, + CXXConstructorDecl *Constructor) { + assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() && + !Constructor->isUsed()) && + "DefineImplicitDefaultConstructor - call it for implicit default ctor"); + + CXXRecordDecl *ClassDecl = Constructor->getParent(); + assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor"); + + ImplicitlyDefinedFunctionScope Scope(*this, Constructor); + ErrorTrap Trap(*this); + if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false) || + Trap.hasErrorOccurred()) { + Diag(CurrentLocation, diag::note_member_synthesized_at) + << CXXConstructor << Context.getTagDeclType(ClassDecl); + Constructor->setInvalidDecl(); + } else { + Constructor->setUsed(); + MarkVTableUsed(CurrentLocation, ClassDecl); + } +} + +void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation, + CXXDestructorDecl *Destructor) { + assert((Destructor->isImplicit() && !Destructor->isUsed()) && + "DefineImplicitDestructor - call it for implicit default dtor"); + CXXRecordDecl *ClassDecl = Destructor->getParent(); + assert(ClassDecl && "DefineImplicitDestructor - invalid destructor"); + + if (Destructor->isInvalidDecl()) + return; + + ImplicitlyDefinedFunctionScope Scope(*this, Destructor); + + ErrorTrap Trap(*this); + MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(), + Destructor->getParent()); + + if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) { + Diag(CurrentLocation, diag::note_member_synthesized_at) + << CXXDestructor << Context.getTagDeclType(ClassDecl); + + Destructor->setInvalidDecl(); + return; + } + + Destructor->setUsed(); + MarkVTableUsed(CurrentLocation, ClassDecl); +} + +/// \brief Builds a statement that copies the given entity from \p From to +/// \c To. +/// +/// This routine is used to copy the members of a class with an +/// implicitly-declared copy assignment operator. When the entities being +/// copied are arrays, this routine builds for loops to copy them. +/// +/// \param S The Sema object used for type-checking. +/// +/// \param Loc The location where the implicit copy is being generated. +/// +/// \param T The type of the expressions being copied. Both expressions must +/// have this type. +/// +/// \param To The expression we are copying to. +/// +/// \param From The expression we are copying from. +/// +/// \param CopyingBaseSubobject Whether we're copying a base subobject. +/// Otherwise, it's a non-static member subobject. +/// +/// \param Depth Internal parameter recording the depth of the recursion. +/// +/// \returns A statement or a loop that copies the expressions. +static Sema::OwningStmtResult +BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T, + Sema::OwningExprResult To, Sema::OwningExprResult From, + bool CopyingBaseSubobject, unsigned Depth = 0) { + typedef Sema::OwningStmtResult OwningStmtResult; + typedef Sema::OwningExprResult OwningExprResult; + + // C++0x [class.copy]p30: + // Each subobject is assigned in the manner appropriate to its type: + // + // - if the subobject is of class type, the copy assignment operator + // for the class is used (as if by explicit qualification; that is, + // ignoring any possible virtual overriding functions in more derived + // classes); + if (const RecordType *RecordTy = T->getAs<RecordType>()) { + CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); + + // Look for operator=. + DeclarationName Name + = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal); + LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName); + S.LookupQualifiedName(OpLookup, ClassDecl, false); + + // Filter out any result that isn't a copy-assignment operator. + LookupResult::Filter F = OpLookup.makeFilter(); + while (F.hasNext()) { + NamedDecl *D = F.next(); + if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) + if (Method->isCopyAssignmentOperator()) + continue; + + F.erase(); + } + F.done(); + + // Suppress the protected check (C++ [class.protected]) for each of the + // assignment operators we found. This strange dance is required when + // we're assigning via a base classes's copy-assignment operator. To + // ensure that we're getting the right base class subobject (without + // ambiguities), we need to cast "this" to that subobject type; to + // ensure that we don't go through the virtual call mechanism, we need + // to qualify the operator= name with the base class (see below). However, + // this means that if the base class has a protected copy assignment + // operator, the protected member access check will fail. So, we + // rewrite "protected" access to "public" access in this case, since we + // know by construction that we're calling from a derived class. + if (CopyingBaseSubobject) { + for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end(); + L != LEnd; ++L) { + if (L.getAccess() == AS_protected) + L.setAccess(AS_public); + } + } + + // Create the nested-name-specifier that will be used to qualify the + // reference to operator=; this is required to suppress the virtual + // call mechanism. + CXXScopeSpec SS; + SS.setRange(Loc); + SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false, + T.getTypePtr())); + + // Create the reference to operator=. + OwningExprResult OpEqualRef + = S.BuildMemberReferenceExpr(move(To), T, Loc, /*isArrow=*/false, SS, + /*FirstQualifierInScope=*/0, OpLookup, + /*TemplateArgs=*/0, + /*SuppressQualifierCheck=*/true); + if (OpEqualRef.isInvalid()) + return S.StmtError(); + + // Build the call to the assignment operator. + Expr *FromE = From.takeAs<Expr>(); + OwningExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0, + OpEqualRef.takeAs<Expr>(), + Loc, &FromE, 1, 0, Loc); + if (Call.isInvalid()) + return S.StmtError(); + + return S.Owned(Call.takeAs<Stmt>()); + } + + // - if the subobject is of scalar type, the built-in assignment + // operator is used. + const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T); + if (!ArrayTy) { + OwningExprResult Assignment = S.CreateBuiltinBinOp(Loc, + BinaryOperator::Assign, + To.takeAs<Expr>(), + From.takeAs<Expr>()); + if (Assignment.isInvalid()) + return S.StmtError(); + + return S.Owned(Assignment.takeAs<Stmt>()); + } + + // - if the subobject is an array, each element is assigned, in the + // manner appropriate to the element type; + + // Construct a loop over the array bounds, e.g., + // + // for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0) + // + // that will copy each of the array elements. + QualType SizeType = S.Context.getSizeType(); + + // Create the iteration variable. + IdentifierInfo *IterationVarName = 0; + { + llvm::SmallString<8> Str; + llvm::raw_svector_ostream OS(Str); + OS << "__i" << Depth; + IterationVarName = &S.Context.Idents.get(OS.str()); + } + VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, + IterationVarName, SizeType, + S.Context.getTrivialTypeSourceInfo(SizeType, Loc), + VarDecl::None, VarDecl::None); + + // Initialize the iteration variable to zero. + llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0); + IterationVar->setInit(new (S.Context) IntegerLiteral(Zero, SizeType, Loc)); + + // Create a reference to the iteration variable; we'll use this several + // times throughout. + Expr *IterationVarRef + = S.BuildDeclRefExpr(IterationVar, SizeType, Loc).takeAs<Expr>(); + assert(IterationVarRef && "Reference to invented variable cannot fail!"); + + // Create the DeclStmt that holds the iteration variable. + Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc); + + // Create the comparison against the array bound. + llvm::APInt Upper = ArrayTy->getSize(); + Upper.zextOrTrunc(S.Context.getTypeSize(SizeType)); + OwningExprResult Comparison + = S.Owned(new (S.Context) BinaryOperator(IterationVarRef->Retain(), + new (S.Context) IntegerLiteral(Upper, SizeType, Loc), + BinaryOperator::NE, S.Context.BoolTy, Loc)); + + // Create the pre-increment of the iteration variable. + OwningExprResult Increment + = S.Owned(new (S.Context) UnaryOperator(IterationVarRef->Retain(), + UnaryOperator::PreInc, + SizeType, Loc)); + + // Subscript the "from" and "to" expressions with the iteration variable. + From = S.CreateBuiltinArraySubscriptExpr(move(From), Loc, + S.Owned(IterationVarRef->Retain()), + Loc); + To = S.CreateBuiltinArraySubscriptExpr(move(To), Loc, + S.Owned(IterationVarRef->Retain()), + Loc); + assert(!From.isInvalid() && "Builtin subscripting can't fail!"); + assert(!To.isInvalid() && "Builtin subscripting can't fail!"); + + // Build the copy for an individual element of the array. + OwningStmtResult Copy = BuildSingleCopyAssign(S, Loc, + ArrayTy->getElementType(), + move(To), move(From), + CopyingBaseSubobject, Depth+1); + if (Copy.isInvalid()) { + InitStmt->Destroy(S.Context); + return S.StmtError(); + } + + // Construct the loop that copies all elements of this array. + return S.ActOnForStmt(Loc, Loc, S.Owned(InitStmt), + S.MakeFullExpr(Comparison), + Sema::DeclPtrTy(), + S.MakeFullExpr(Increment), + Loc, move(Copy)); +} + +void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation, + CXXMethodDecl *CopyAssignOperator) { + assert((CopyAssignOperator->isImplicit() && + CopyAssignOperator->isOverloadedOperator() && + CopyAssignOperator->getOverloadedOperator() == OO_Equal && + !CopyAssignOperator->isUsed()) && + "DefineImplicitCopyAssignment called for wrong function"); + + CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent(); + + if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) { + CopyAssignOperator->setInvalidDecl(); + return; + } + + CopyAssignOperator->setUsed(); + + ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator); + ErrorTrap Trap(*this); + + // C++0x [class.copy]p30: + // The implicitly-defined or explicitly-defaulted copy assignment operator + // for a non-union class X performs memberwise copy assignment of its + // subobjects. The direct base classes of X are assigned first, in the + // order of their declaration in the base-specifier-list, and then the + // immediate non-static data members of X are assigned, in the order in + // which they were declared in the class definition. + + // The statements that form the synthesized function body. + ASTOwningVector<&ActionBase::DeleteStmt> Statements(*this); + + // The parameter for the "other" object, which we are copying from. + ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0); + Qualifiers OtherQuals = Other->getType().getQualifiers(); + QualType OtherRefType = Other->getType(); + if (const LValueReferenceType *OtherRef + = OtherRefType->getAs<LValueReferenceType>()) { + OtherRefType = OtherRef->getPointeeType(); + OtherQuals = OtherRefType.getQualifiers(); + } + + // Our location for everything implicitly-generated. + SourceLocation Loc = CopyAssignOperator->getLocation(); + + // Construct a reference to the "other" object. We'll be using this + // throughout the generated ASTs. + Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, Loc).takeAs<Expr>(); + assert(OtherRef && "Reference to parameter cannot fail!"); + + // Construct the "this" pointer. We'll be using this throughout the generated + // ASTs. + Expr *This = ActOnCXXThis(Loc).takeAs<Expr>(); + assert(This && "Reference to this cannot fail!"); + + // Assign base classes. + bool Invalid = false; + for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), + E = ClassDecl->bases_end(); Base != E; ++Base) { + // Form the assignment: + // static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other)); + QualType BaseType = Base->getType().getUnqualifiedType(); + CXXRecordDecl *BaseClassDecl = 0; + if (const RecordType *BaseRecordT = BaseType->getAs<RecordType>()) + BaseClassDecl = cast<CXXRecordDecl>(BaseRecordT->getDecl()); + else { + Invalid = true; + continue; + } + + // Construct the "from" expression, which is an implicit cast to the + // appropriately-qualified base type. + Expr *From = OtherRef->Retain(); + ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals), + CastExpr::CK_UncheckedDerivedToBase, /*isLvalue=*/true, + CXXBaseSpecifierArray(Base)); + + // Dereference "this". + OwningExprResult To = CreateBuiltinUnaryOp(Loc, UnaryOperator::Deref, + Owned(This->Retain())); + + // Implicitly cast "this" to the appropriately-qualified base type. + Expr *ToE = To.takeAs<Expr>(); + ImpCastExprToType(ToE, + Context.getCVRQualifiedType(BaseType, + CopyAssignOperator->getTypeQualifiers()), + CastExpr::CK_UncheckedDerivedToBase, + /*isLvalue=*/true, CXXBaseSpecifierArray(Base)); + To = Owned(ToE); + + // Build the copy. + OwningStmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType, + move(To), Owned(From), + /*CopyingBaseSubobject=*/true); + if (Copy.isInvalid()) { + Diag(CurrentLocation, diag::note_member_synthesized_at) + << CXXCopyAssignment << Context.getTagDeclType(ClassDecl); + CopyAssignOperator->setInvalidDecl(); + return; + } + + // Success! Record the copy. + Statements.push_back(Copy.takeAs<Expr>()); + } + + // \brief Reference to the __builtin_memcpy function. + Expr *BuiltinMemCpyRef = 0; + + // Assign non-static members. + for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), + FieldEnd = ClassDecl->field_end(); + Field != FieldEnd; ++Field) { + // Check for members of reference type; we can't copy those. + if (Field->getType()->isReferenceType()) { + Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) + << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); + Diag(Field->getLocation(), diag::note_declared_at); + Diag(CurrentLocation, diag::note_member_synthesized_at) + << CXXCopyAssignment << Context.getTagDeclType(ClassDecl); + Invalid = true; + continue; + } + + // Check for members of const-qualified, non-class type. + QualType BaseType = Context.getBaseElementType(Field->getType()); + if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) { + Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) + << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); + Diag(Field->getLocation(), diag::note_declared_at); + Diag(CurrentLocation, diag::note_member_synthesized_at) + << CXXCopyAssignment << Context.getTagDeclType(ClassDecl); + Invalid = true; + continue; + } + + QualType FieldType = Field->getType().getNonReferenceType(); + if (FieldType->isIncompleteArrayType()) { + assert(ClassDecl->hasFlexibleArrayMember() && + "Incomplete array type is not valid"); + continue; + } + + // Build references to the field in the object we're copying from and to. + CXXScopeSpec SS; // Intentionally empty + LookupResult MemberLookup(*this, Field->getDeclName(), Loc, + LookupMemberName); + MemberLookup.addDecl(*Field); + MemberLookup.resolveKind(); + OwningExprResult From = BuildMemberReferenceExpr(Owned(OtherRef->Retain()), + OtherRefType, + Loc, /*IsArrow=*/false, + SS, 0, MemberLookup, 0); + OwningExprResult To = BuildMemberReferenceExpr(Owned(This->Retain()), + This->getType(), + Loc, /*IsArrow=*/true, + SS, 0, MemberLookup, 0); + assert(!From.isInvalid() && "Implicit field reference cannot fail"); + assert(!To.isInvalid() && "Implicit field reference cannot fail"); + + // If the field should be copied with __builtin_memcpy rather than via + // explicit assignments, do so. This optimization only applies for arrays + // of scalars and arrays of class type with trivial copy-assignment + // operators. + if (FieldType->isArrayType() && + (!BaseType->isRecordType() || + cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()) + ->hasTrivialCopyAssignment())) { + // Compute the size of the memory buffer to be copied. + QualType SizeType = Context.getSizeType(); + llvm::APInt Size(Context.getTypeSize(SizeType), + Context.getTypeSizeInChars(BaseType).getQuantity()); + for (const ConstantArrayType *Array + = Context.getAsConstantArrayType(FieldType); + Array; + Array = Context.getAsConstantArrayType(Array->getElementType())) { + llvm::APInt ArraySize = Array->getSize(); + ArraySize.zextOrTrunc(Size.getBitWidth()); + Size *= ArraySize; + } + + // Take the address of the field references for "from" and "to". + From = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(From)); + To = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(To)); + + // Create a reference to the __builtin_memcpy builtin function. + if (!BuiltinMemCpyRef) { + LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc, + LookupOrdinaryName); + LookupName(R, TUScope, true); + + FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>(); + if (!BuiltinMemCpy) { + // Something went horribly wrong earlier, and we will have complained + // about it. + Invalid = true; + continue; + } + + BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy, + BuiltinMemCpy->getType(), + Loc, 0).takeAs<Expr>(); + assert(BuiltinMemCpyRef && "Builtin reference cannot fail"); + } + + ASTOwningVector<&ActionBase::DeleteExpr> CallArgs(*this); + CallArgs.push_back(To.takeAs<Expr>()); + CallArgs.push_back(From.takeAs<Expr>()); + CallArgs.push_back(new (Context) IntegerLiteral(Size, SizeType, Loc)); + llvm::SmallVector<SourceLocation, 4> Commas; // FIXME: Silly + Commas.push_back(Loc); + Commas.push_back(Loc); + OwningExprResult Call = ActOnCallExpr(/*Scope=*/0, + Owned(BuiltinMemCpyRef->Retain()), + Loc, move_arg(CallArgs), + Commas.data(), Loc); + assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!"); + Statements.push_back(Call.takeAs<Expr>()); + continue; + } + + // Build the copy of this field. + OwningStmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType, + move(To), move(From), + /*CopyingBaseSubobject=*/false); + if (Copy.isInvalid()) { + Diag(CurrentLocation, diag::note_member_synthesized_at) + << CXXCopyAssignment << Context.getTagDeclType(ClassDecl); + CopyAssignOperator->setInvalidDecl(); + return; + } + + // Success! Record the copy. + Statements.push_back(Copy.takeAs<Stmt>()); + } + + if (!Invalid) { + // Add a "return *this;" + OwningExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UnaryOperator::Deref, + Owned(This->Retain())); + + OwningStmtResult Return = ActOnReturnStmt(Loc, move(ThisObj)); + if (Return.isInvalid()) + Invalid = true; + else { + Statements.push_back(Return.takeAs<Stmt>()); + + if (Trap.hasErrorOccurred()) { + Diag(CurrentLocation, diag::note_member_synthesized_at) + << CXXCopyAssignment << Context.getTagDeclType(ClassDecl); + Invalid = true; + } + } + } + + if (Invalid) { + CopyAssignOperator->setInvalidDecl(); + return; + } + + OwningStmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements), + /*isStmtExpr=*/false); + assert(!Body.isInvalid() && "Compound statement creation cannot fail"); + CopyAssignOperator->setBody(Body.takeAs<Stmt>()); +} + +void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation, + CXXConstructorDecl *CopyConstructor, + unsigned TypeQuals) { + assert((CopyConstructor->isImplicit() && + CopyConstructor->isCopyConstructor(TypeQuals) && + !CopyConstructor->isUsed()) && + "DefineImplicitCopyConstructor - call it for implicit copy ctor"); + + CXXRecordDecl *ClassDecl = CopyConstructor->getParent(); + assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor"); + + ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor); + ErrorTrap Trap(*this); + + if (SetBaseOrMemberInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) || + Trap.hasErrorOccurred()) { + Diag(CurrentLocation, diag::note_member_synthesized_at) + << CXXCopyConstructor << Context.getTagDeclType(ClassDecl); + CopyConstructor->setInvalidDecl(); + } else { + CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(), + CopyConstructor->getLocation(), + MultiStmtArg(*this, 0, 0), + /*isStmtExpr=*/false) + .takeAs<Stmt>()); + } + + CopyConstructor->setUsed(); +} + +Sema::OwningExprResult +Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, + CXXConstructorDecl *Constructor, + MultiExprArg ExprArgs, + bool RequiresZeroInit, + CXXConstructExpr::ConstructionKind ConstructKind) { + bool Elidable = false; + + // C++0x [class.copy]p34: + // When certain criteria are met, an implementation is allowed to + // omit the copy/move construction of a class object, even if the + // copy/move constructor and/or destructor for the object have + // side effects. [...] + // - when a temporary class object that has not been bound to a + // reference (12.2) would be copied/moved to a class object + // with the same cv-unqualified type, the copy/move operation + // can be omitted by constructing the temporary object + // directly into the target of the omitted copy/move + if (Constructor->isCopyConstructor() && ExprArgs.size() >= 1) { + Expr *SubExpr = ((Expr **)ExprArgs.get())[0]; + Elidable = SubExpr->isTemporaryObject() && + Context.hasSameUnqualifiedType(SubExpr->getType(), + Context.getTypeDeclType(Constructor->getParent())); + } + + return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor, + Elidable, move(ExprArgs), RequiresZeroInit, + ConstructKind); +} + +/// BuildCXXConstructExpr - Creates a complete call to a constructor, +/// including handling of its default argument expressions. +Sema::OwningExprResult +Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, + CXXConstructorDecl *Constructor, bool Elidable, + MultiExprArg ExprArgs, + bool RequiresZeroInit, + CXXConstructExpr::ConstructionKind ConstructKind) { + unsigned NumExprs = ExprArgs.size(); + Expr **Exprs = (Expr **)ExprArgs.release(); + + MarkDeclarationReferenced(ConstructLoc, Constructor); + return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc, + Constructor, Elidable, Exprs, NumExprs, + RequiresZeroInit, ConstructKind)); +} + +bool Sema::InitializeVarWithConstructor(VarDecl *VD, + CXXConstructorDecl *Constructor, + MultiExprArg Exprs) { + OwningExprResult TempResult = + BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor, + move(Exprs)); + if (TempResult.isInvalid()) + return true; + + Expr *Temp = TempResult.takeAs<Expr>(); + MarkDeclarationReferenced(VD->getLocation(), Constructor); + Temp = MaybeCreateCXXExprWithTemporaries(Temp); + VD->setInit(Temp); + + return false; +} + +void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) { + CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl()); + if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() && + !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) { + CXXDestructorDecl *Destructor = ClassDecl->getDestructor(Context); + MarkDeclarationReferenced(VD->getLocation(), Destructor); + CheckDestructorAccess(VD->getLocation(), Destructor, + PDiag(diag::err_access_dtor_var) + << VD->getDeclName() + << VD->getType()); + } +} + +/// AddCXXDirectInitializerToDecl - This action is called immediately after +/// ActOnDeclarator, when a C++ direct initializer is present. +/// e.g: "int x(1);" +void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl, + SourceLocation LParenLoc, + MultiExprArg Exprs, + SourceLocation *CommaLocs, + SourceLocation RParenLoc) { + assert(Exprs.size() != 0 && Exprs.get() && "missing expressions"); + Decl *RealDecl = Dcl.getAs<Decl>(); + + // If there is no declaration, there was an error parsing it. Just ignore + // the initializer. + if (RealDecl == 0) + return; + + VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl); + if (!VDecl) { + Diag(RealDecl->getLocation(), diag::err_illegal_initializer); + RealDecl->setInvalidDecl(); + return; + } + + // We will represent direct-initialization similarly to copy-initialization: + // int x(1); -as-> int x = 1; + // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c); + // + // Clients that want to distinguish between the two forms, can check for + // direct initializer using VarDecl::hasCXXDirectInitializer(). + // A major benefit is that clients that don't particularly care about which + // exactly form was it (like the CodeGen) can handle both cases without + // special case code. + + // C++ 8.5p11: + // The form of initialization (using parentheses or '=') is generally + // insignificant, but does matter when the entity being initialized has a + // class type. + QualType DeclInitType = VDecl->getType(); + if (const ArrayType *Array = Context.getAsArrayType(DeclInitType)) + DeclInitType = Context.getBaseElementType(Array); + + if (!VDecl->getType()->isDependentType() && + RequireCompleteType(VDecl->getLocation(), VDecl->getType(), + diag::err_typecheck_decl_incomplete_type)) { + VDecl->setInvalidDecl(); + return; + } + + // The variable can not have an abstract class type. + if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(), + diag::err_abstract_type_in_decl, + AbstractVariableType)) + VDecl->setInvalidDecl(); + + const VarDecl *Def; + if ((Def = VDecl->getDefinition()) && Def != VDecl) { + Diag(VDecl->getLocation(), diag::err_redefinition) + << VDecl->getDeclName(); + Diag(Def->getLocation(), diag::note_previous_definition); + VDecl->setInvalidDecl(); + return; + } + + // If either the declaration has a dependent type or if any of the + // expressions is type-dependent, we represent the initialization + // via a ParenListExpr for later use during template instantiation. + if (VDecl->getType()->isDependentType() || + Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) { + // Let clients know that initialization was done with a direct initializer. + VDecl->setCXXDirectInitializer(true); + + // Store the initialization expressions as a ParenListExpr. + unsigned NumExprs = Exprs.size(); + VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc, + (Expr **)Exprs.release(), + NumExprs, RParenLoc)); + return; + } + + // Capture the variable that is being initialized and the style of + // initialization. + InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl); + + // FIXME: Poor source location information. + InitializationKind Kind + = InitializationKind::CreateDirect(VDecl->getLocation(), + LParenLoc, RParenLoc); + + InitializationSequence InitSeq(*this, Entity, Kind, + (Expr**)Exprs.get(), Exprs.size()); + OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs)); + if (Result.isInvalid()) { + VDecl->setInvalidDecl(); + return; + } + + Result = MaybeCreateCXXExprWithTemporaries(move(Result)); + VDecl->setInit(Result.takeAs<Expr>()); + VDecl->setCXXDirectInitializer(true); + + if (const RecordType *Record = VDecl->getType()->getAs<RecordType>()) + FinalizeVarWithDestructor(VDecl, Record); +} + +/// \brief Given a constructor and the set of arguments provided for the +/// constructor, convert the arguments and add any required default arguments +/// to form a proper call to this constructor. +/// +/// \returns true if an error occurred, false otherwise. +bool +Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor, + MultiExprArg ArgsPtr, + SourceLocation Loc, + ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) { + // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall. + unsigned NumArgs = ArgsPtr.size(); + Expr **Args = (Expr **)ArgsPtr.get(); + + const FunctionProtoType *Proto + = Constructor->getType()->getAs<FunctionProtoType>(); + assert(Proto && "Constructor without a prototype?"); + unsigned NumArgsInProto = Proto->getNumArgs(); + + // If too few arguments are available, we'll fill in the rest with defaults. + if (NumArgs < NumArgsInProto) + ConvertedArgs.reserve(NumArgsInProto); + else + ConvertedArgs.reserve(NumArgs); + + VariadicCallType CallType = + Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply; + llvm::SmallVector<Expr *, 8> AllArgs; + bool Invalid = GatherArgumentsForCall(Loc, Constructor, + Proto, 0, Args, NumArgs, AllArgs, + CallType); + for (unsigned i =0, size = AllArgs.size(); i < size; i++) + ConvertedArgs.push_back(AllArgs[i]); + return Invalid; +} + +static inline bool +CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef, + const FunctionDecl *FnDecl) { + const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext(); + if (isa<NamespaceDecl>(DC)) { + return SemaRef.Diag(FnDecl->getLocation(), + diag::err_operator_new_delete_declared_in_namespace) + << FnDecl->getDeclName(); + } + + if (isa<TranslationUnitDecl>(DC) && + FnDecl->getStorageClass() == FunctionDecl::Static) { + return SemaRef.Diag(FnDecl->getLocation(), + diag::err_operator_new_delete_declared_static) + << FnDecl->getDeclName(); + } + + return false; +} + +static inline bool +CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl, + CanQualType ExpectedResultType, + CanQualType ExpectedFirstParamType, + unsigned DependentParamTypeDiag, + unsigned InvalidParamTypeDiag) { + QualType ResultType = + FnDecl->getType()->getAs<FunctionType>()->getResultType(); + + // Check that the result type is not dependent. + if (ResultType->isDependentType()) + return SemaRef.Diag(FnDecl->getLocation(), + diag::err_operator_new_delete_dependent_result_type) + << FnDecl->getDeclName() << ExpectedResultType; + + // Check that the result type is what we expect. + if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType) + return SemaRef.Diag(FnDecl->getLocation(), + diag::err_operator_new_delete_invalid_result_type) + << FnDecl->getDeclName() << ExpectedResultType; + + // A function template must have at least 2 parameters. + if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2) + return SemaRef.Diag(FnDecl->getLocation(), + diag::err_operator_new_delete_template_too_few_parameters) + << FnDecl->getDeclName(); + + // The function decl must have at least 1 parameter. + if (FnDecl->getNumParams() == 0) + return SemaRef.Diag(FnDecl->getLocation(), + diag::err_operator_new_delete_too_few_parameters) + << FnDecl->getDeclName(); + + // Check the the first parameter type is not dependent. + QualType FirstParamType = FnDecl->getParamDecl(0)->getType(); + if (FirstParamType->isDependentType()) + return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag) + << FnDecl->getDeclName() << ExpectedFirstParamType; + + // Check that the first parameter type is what we expect. + if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() != + ExpectedFirstParamType) + return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag) + << FnDecl->getDeclName() << ExpectedFirstParamType; + + return false; +} + +static bool +CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) { + // C++ [basic.stc.dynamic.allocation]p1: + // A program is ill-formed if an allocation function is declared in a + // namespace scope other than global scope or declared static in global + // scope. + if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) + return true; + + CanQualType SizeTy = + SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType()); + + // C++ [basic.stc.dynamic.allocation]p1: + // The return type shall be void*. The first parameter shall have type + // std::size_t. + if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy, + SizeTy, + diag::err_operator_new_dependent_param_type, + diag::err_operator_new_param_type)) + return true; + + // C++ [basic.stc.dynamic.allocation]p1: + // The first parameter shall not have an associated default argument. + if (FnDecl->getParamDecl(0)->hasDefaultArg()) + return SemaRef.Diag(FnDecl->getLocation(), + diag::err_operator_new_default_arg) + << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange(); + + return false; +} + +static bool +CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) { + // C++ [basic.stc.dynamic.deallocation]p1: + // A program is ill-formed if deallocation functions are declared in a + // namespace scope other than global scope or declared static in global + // scope. + if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) + return true; + + // C++ [basic.stc.dynamic.deallocation]p2: + // Each deallocation function shall return void and its first parameter + // shall be void*. + if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy, + SemaRef.Context.VoidPtrTy, + diag::err_operator_delete_dependent_param_type, + diag::err_operator_delete_param_type)) + return true; + + QualType FirstParamType = FnDecl->getParamDecl(0)->getType(); + if (FirstParamType->isDependentType()) + return SemaRef.Diag(FnDecl->getLocation(), + diag::err_operator_delete_dependent_param_type) + << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy; + + if (SemaRef.Context.getCanonicalType(FirstParamType) != + SemaRef.Context.VoidPtrTy) + return SemaRef.Diag(FnDecl->getLocation(), + diag::err_operator_delete_param_type) + << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy; + + return false; +} + +/// CheckOverloadedOperatorDeclaration - Check whether the declaration +/// of this overloaded operator is well-formed. If so, returns false; +/// otherwise, emits appropriate diagnostics and returns true. +bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) { + assert(FnDecl && FnDecl->isOverloadedOperator() && + "Expected an overloaded operator declaration"); + + OverloadedOperatorKind Op = FnDecl->getOverloadedOperator(); + + // C++ [over.oper]p5: + // The allocation and deallocation functions, operator new, + // operator new[], operator delete and operator delete[], are + // described completely in 3.7.3. The attributes and restrictions + // found in the rest of this subclause do not apply to them unless + // explicitly stated in 3.7.3. + if (Op == OO_Delete || Op == OO_Array_Delete) + return CheckOperatorDeleteDeclaration(*this, FnDecl); + + if (Op == OO_New || Op == OO_Array_New) + return CheckOperatorNewDeclaration(*this, FnDecl); + + // C++ [over.oper]p6: + // An operator function shall either be a non-static member + // function or be a non-member function and have at least one + // parameter whose type is a class, a reference to a class, an + // enumeration, or a reference to an enumeration. + if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) { + if (MethodDecl->isStatic()) + return Diag(FnDecl->getLocation(), + diag::err_operator_overload_static) << FnDecl->getDeclName(); + } else { + bool ClassOrEnumParam = false; + for (FunctionDecl::param_iterator Param = FnDecl->param_begin(), + ParamEnd = FnDecl->param_end(); + Param != ParamEnd; ++Param) { + QualType ParamType = (*Param)->getType().getNonReferenceType(); + if (ParamType->isDependentType() || ParamType->isRecordType() || + ParamType->isEnumeralType()) { + ClassOrEnumParam = true; + break; + } + } + + if (!ClassOrEnumParam) + return Diag(FnDecl->getLocation(), + diag::err_operator_overload_needs_class_or_enum) + << FnDecl->getDeclName(); + } + + // C++ [over.oper]p8: + // An operator function cannot have default arguments (8.3.6), + // except where explicitly stated below. + // + // Only the function-call operator allows default arguments + // (C++ [over.call]p1). + if (Op != OO_Call) { + for (FunctionDecl::param_iterator Param = FnDecl->param_begin(); + Param != FnDecl->param_end(); ++Param) { + if ((*Param)->hasDefaultArg()) + return Diag((*Param)->getLocation(), + diag::err_operator_overload_default_arg) + << FnDecl->getDeclName() << (*Param)->getDefaultArgRange(); + } + } + + static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = { + { false, false, false } +#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ + , { Unary, Binary, MemberOnly } +#include "clang/Basic/OperatorKinds.def" + }; + + bool CanBeUnaryOperator = OperatorUses[Op][0]; + bool CanBeBinaryOperator = OperatorUses[Op][1]; + bool MustBeMemberOperator = OperatorUses[Op][2]; + + // C++ [over.oper]p8: + // [...] Operator functions cannot have more or fewer parameters + // than the number required for the corresponding operator, as + // described in the rest of this subclause. + unsigned NumParams = FnDecl->getNumParams() + + (isa<CXXMethodDecl>(FnDecl)? 1 : 0); + if (Op != OO_Call && + ((NumParams == 1 && !CanBeUnaryOperator) || + (NumParams == 2 && !CanBeBinaryOperator) || + (NumParams < 1) || (NumParams > 2))) { + // We have the wrong number of parameters. + unsigned ErrorKind; + if (CanBeUnaryOperator && CanBeBinaryOperator) { + ErrorKind = 2; // 2 -> unary or binary. + } else if (CanBeUnaryOperator) { + ErrorKind = 0; // 0 -> unary + } else { + assert(CanBeBinaryOperator && + "All non-call overloaded operators are unary or binary!"); + ErrorKind = 1; // 1 -> binary + } + + return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be) + << FnDecl->getDeclName() << NumParams << ErrorKind; + } + + // Overloaded operators other than operator() cannot be variadic. + if (Op != OO_Call && + FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) { + return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic) + << FnDecl->getDeclName(); + } + + // Some operators must be non-static member functions. + if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) { + return Diag(FnDecl->getLocation(), + diag::err_operator_overload_must_be_member) + << FnDecl->getDeclName(); + } + + // C++ [over.inc]p1: + // The user-defined function called operator++ implements the + // prefix and postfix ++ operator. If this function is a member + // function with no parameters, or a non-member function with one + // parameter of class or enumeration type, it defines the prefix + // increment operator ++ for objects of that type. If the function + // is a member function with one parameter (which shall be of type + // int) or a non-member function with two parameters (the second + // of which shall be of type int), it defines the postfix + // increment operator ++ for objects of that type. + if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) { + ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1); + bool ParamIsInt = false; + if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>()) + ParamIsInt = BT->getKind() == BuiltinType::Int; + + if (!ParamIsInt) + return Diag(LastParam->getLocation(), + diag::err_operator_overload_post_incdec_must_be_int) + << LastParam->getType() << (Op == OO_MinusMinus); + } + + // Notify the class if it got an assignment operator. + if (Op == OO_Equal) { + // Would have returned earlier otherwise. + assert(isa<CXXMethodDecl>(FnDecl) && + "Overloaded = not member, but not filtered."); + CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); + Method->getParent()->addedAssignmentOperator(Context, Method); + } + + return false; +} + +/// CheckLiteralOperatorDeclaration - Check whether the declaration +/// of this literal operator function is well-formed. If so, returns +/// false; otherwise, emits appropriate diagnostics and returns true. +bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) { + DeclContext *DC = FnDecl->getDeclContext(); + Decl::Kind Kind = DC->getDeclKind(); + if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace && + Kind != Decl::LinkageSpec) { + Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace) + << FnDecl->getDeclName(); + return true; + } + + bool Valid = false; + + // template <char...> type operator "" name() is the only valid template + // signature, and the only valid signature with no parameters. + if (FnDecl->param_size() == 0) { + if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) { + // Must have only one template parameter + TemplateParameterList *Params = TpDecl->getTemplateParameters(); + if (Params->size() == 1) { + NonTypeTemplateParmDecl *PmDecl = + cast<NonTypeTemplateParmDecl>(Params->getParam(0)); + + // The template parameter must be a char parameter pack. + // FIXME: This test will always fail because non-type parameter packs + // have not been implemented. + if (PmDecl && PmDecl->isTemplateParameterPack() && + Context.hasSameType(PmDecl->getType(), Context.CharTy)) + Valid = true; + } + } + } else { + // Check the first parameter + FunctionDecl::param_iterator Param = FnDecl->param_begin(); + + QualType T = (*Param)->getType(); + + // unsigned long long int, long double, and any character type are allowed + // as the only parameters. + if (Context.hasSameType(T, Context.UnsignedLongLongTy) || + Context.hasSameType(T, Context.LongDoubleTy) || + Context.hasSameType(T, Context.CharTy) || + Context.hasSameType(T, Context.WCharTy) || + Context.hasSameType(T, Context.Char16Ty) || + Context.hasSameType(T, Context.Char32Ty)) { + if (++Param == FnDecl->param_end()) + Valid = true; + goto FinishedParams; + } + + // Otherwise it must be a pointer to const; let's strip those qualifiers. + const PointerType *PT = T->getAs<PointerType>(); + if (!PT) + goto FinishedParams; + T = PT->getPointeeType(); + if (!T.isConstQualified()) + goto FinishedParams; + T = T.getUnqualifiedType(); + + // Move on to the second parameter; + ++Param; + + // If there is no second parameter, the first must be a const char * + if (Param == FnDecl->param_end()) { + if (Context.hasSameType(T, Context.CharTy)) + Valid = true; + goto FinishedParams; + } + + // const char *, const wchar_t*, const char16_t*, and const char32_t* + // are allowed as the first parameter to a two-parameter function + if (!(Context.hasSameType(T, Context.CharTy) || + Context.hasSameType(T, Context.WCharTy) || + Context.hasSameType(T, Context.Char16Ty) || + Context.hasSameType(T, Context.Char32Ty))) + goto FinishedParams; + + // The second and final parameter must be an std::size_t + T = (*Param)->getType().getUnqualifiedType(); + if (Context.hasSameType(T, Context.getSizeType()) && + ++Param == FnDecl->param_end()) + Valid = true; + } + + // FIXME: This diagnostic is absolutely terrible. +FinishedParams: + if (!Valid) { + Diag(FnDecl->getLocation(), diag::err_literal_operator_params) + << FnDecl->getDeclName(); + return true; + } + + return false; +} + +/// ActOnStartLinkageSpecification - Parsed the beginning of a C++ +/// linkage specification, including the language and (if present) +/// the '{'. ExternLoc is the location of the 'extern', LangLoc is +/// the location of the language string literal, which is provided +/// by Lang/StrSize. LBraceLoc, if valid, provides the location of +/// the '{' brace. Otherwise, this linkage specification does not +/// have any braces. +Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S, + SourceLocation ExternLoc, + SourceLocation LangLoc, + llvm::StringRef Lang, + SourceLocation LBraceLoc) { + LinkageSpecDecl::LanguageIDs Language; + if (Lang == "\"C\"") + Language = LinkageSpecDecl::lang_c; + else if (Lang == "\"C++\"") + Language = LinkageSpecDecl::lang_cxx; + else { + Diag(LangLoc, diag::err_bad_language); + return DeclPtrTy(); + } + + // FIXME: Add all the various semantics of linkage specifications + + LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, + LangLoc, Language, + LBraceLoc.isValid()); + CurContext->addDecl(D); + PushDeclContext(S, D); + return DeclPtrTy::make(D); +} + +/// ActOnFinishLinkageSpecification - Completely the definition of +/// the C++ linkage specification LinkageSpec. If RBraceLoc is +/// valid, it's the position of the closing '}' brace in a linkage +/// specification that uses braces. +Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S, + DeclPtrTy LinkageSpec, + SourceLocation RBraceLoc) { + if (LinkageSpec) + PopDeclContext(); + return LinkageSpec; +} + +/// \brief Perform semantic analysis for the variable declaration that +/// occurs within a C++ catch clause, returning the newly-created +/// variable. +VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType, + TypeSourceInfo *TInfo, + IdentifierInfo *Name, + SourceLocation Loc, + SourceRange Range) { + bool Invalid = false; + + // Arrays and functions decay. + if (ExDeclType->isArrayType()) + ExDeclType = Context.getArrayDecayedType(ExDeclType); + else if (ExDeclType->isFunctionType()) + ExDeclType = Context.getPointerType(ExDeclType); + + // C++ 15.3p1: The exception-declaration shall not denote an incomplete type. + // The exception-declaration shall not denote a pointer or reference to an + // incomplete type, other than [cv] void*. + // N2844 forbids rvalue references. + if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) { + Diag(Loc, diag::err_catch_rvalue_ref) << Range; + Invalid = true; + } + + // GCC allows catching pointers and references to incomplete types + // as an extension; so do we, but we warn by default. + + QualType BaseType = ExDeclType; + int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference + unsigned DK = diag::err_catch_incomplete; + bool IncompleteCatchIsInvalid = true; + if (const PointerType *Ptr = BaseType->getAs<PointerType>()) { + BaseType = Ptr->getPointeeType(); + Mode = 1; + DK = diag::ext_catch_incomplete_ptr; + IncompleteCatchIsInvalid = false; + } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) { + // For the purpose of error recovery, we treat rvalue refs like lvalue refs. + BaseType = Ref->getPointeeType(); + Mode = 2; + DK = diag::ext_catch_incomplete_ref; + IncompleteCatchIsInvalid = false; + } + if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) && + !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) && + IncompleteCatchIsInvalid) + Invalid = true; + + if (!Invalid && !ExDeclType->isDependentType() && + RequireNonAbstractType(Loc, ExDeclType, + diag::err_abstract_type_in_decl, + AbstractVariableType)) + Invalid = true; + + VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc, + Name, ExDeclType, TInfo, VarDecl::None, + VarDecl::None); + ExDecl->setExceptionVariable(true); + + if (!Invalid) { + if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) { + // C++ [except.handle]p16: + // The object declared in an exception-declaration or, if the + // exception-declaration does not specify a name, a temporary (12.2) is + // copy-initialized (8.5) from the exception object. [...] + // The object is destroyed when the handler exits, after the destruction + // of any automatic objects initialized within the handler. + // + // We just pretend to initialize the object with itself, then make sure + // it can be destroyed later. + InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl); + Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl, + Loc, ExDeclType, 0); + InitializationKind Kind = InitializationKind::CreateCopy(Loc, + SourceLocation()); + InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1); + OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, + MultiExprArg(*this, (void**)&ExDeclRef, 1)); + if (Result.isInvalid()) + Invalid = true; + else + FinalizeVarWithDestructor(ExDecl, RecordTy); + } + } + + if (Invalid) + ExDecl->setInvalidDecl(); + + return ExDecl; +} + +/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch +/// handler. +Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) { + TypeSourceInfo *TInfo = 0; + QualType ExDeclType = GetTypeForDeclarator(D, S, &TInfo); + + bool Invalid = D.isInvalidType(); + IdentifierInfo *II = D.getIdentifier(); + if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(), + LookupOrdinaryName, + ForRedeclaration)) { + // The scope should be freshly made just for us. There is just no way + // it contains any previous declaration. + assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl))); + if (PrevDecl->isTemplateParameter()) { + // Maybe we will complain about the shadowed template parameter. + DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); + } + } + + if (D.getCXXScopeSpec().isSet() && !Invalid) { + Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator) + << D.getCXXScopeSpec().getRange(); + Invalid = true; + } + + VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo, + D.getIdentifier(), + D.getIdentifierLoc(), + D.getDeclSpec().getSourceRange()); + + if (Invalid) + ExDecl->setInvalidDecl(); + + // Add the exception declaration into this scope. + if (II) + PushOnScopeChains(ExDecl, S); + else + CurContext->addDecl(ExDecl); + + ProcessDeclAttributes(S, ExDecl, D); + return DeclPtrTy::make(ExDecl); +} + +Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc, + ExprArg assertexpr, + ExprArg assertmessageexpr) { + Expr *AssertExpr = (Expr *)assertexpr.get(); + StringLiteral *AssertMessage = + cast<StringLiteral>((Expr *)assertmessageexpr.get()); + + if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) { + llvm::APSInt Value(32); + if (!AssertExpr->isIntegerConstantExpr(Value, Context)) { + Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) << + AssertExpr->getSourceRange(); + return DeclPtrTy(); + } + + if (Value == 0) { + Diag(AssertLoc, diag::err_static_assert_failed) + << AssertMessage->getString() << AssertExpr->getSourceRange(); + } + } + + assertexpr.release(); + assertmessageexpr.release(); + Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc, + AssertExpr, AssertMessage); + + CurContext->addDecl(Decl); + return DeclPtrTy::make(Decl); +} + +/// \brief Perform semantic analysis of the given friend type declaration. +/// +/// \returns A friend declaration that. +FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc, + TypeSourceInfo *TSInfo) { + assert(TSInfo && "NULL TypeSourceInfo for friend type declaration"); + + QualType T = TSInfo->getType(); + SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange(); + + if (!getLangOptions().CPlusPlus0x) { + // C++03 [class.friend]p2: + // An elaborated-type-specifier shall be used in a friend declaration + // for a class.* + // + // * The class-key of the elaborated-type-specifier is required. + if (!ActiveTemplateInstantiations.empty()) { + // Do not complain about the form of friend template types during + // template instantiation; we will already have complained when the + // template was declared. + } else if (!T->isElaboratedTypeSpecifier()) { + // If we evaluated the type to a record type, suggest putting + // a tag in front. + if (const RecordType *RT = T->getAs<RecordType>()) { + RecordDecl *RD = RT->getDecl(); + + std::string InsertionText = std::string(" ") + RD->getKindName(); + + Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type) + << (unsigned) RD->getTagKind() + << T + << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc), + InsertionText); + } else { + Diag(FriendLoc, diag::ext_nonclass_type_friend) + << T + << SourceRange(FriendLoc, TypeRange.getEnd()); + } + } else if (T->getAs<EnumType>()) { + Diag(FriendLoc, diag::ext_enum_friend) + << T + << SourceRange(FriendLoc, TypeRange.getEnd()); + } + } + + // C++0x [class.friend]p3: + // If the type specifier in a friend declaration designates a (possibly + // cv-qualified) class type, that class is declared as a friend; otherwise, + // the friend declaration is ignored. + + // FIXME: C++0x has some syntactic restrictions on friend type declarations + // in [class.friend]p3 that we do not implement. + + return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc); +} + +/// Handle a friend type declaration. This works in tandem with +/// ActOnTag. +/// +/// Notes on friend class templates: +/// +/// We generally treat friend class declarations as if they were +/// declaring a class. So, for example, the elaborated type specifier +/// in a friend declaration is required to obey the restrictions of a +/// class-head (i.e. no typedefs in the scope chain), template +/// parameters are required to match up with simple template-ids, &c. +/// However, unlike when declaring a template specialization, it's +/// okay to refer to a template specialization without an empty +/// template parameter declaration, e.g. +/// friend class A<T>::B<unsigned>; +/// We permit this as a special case; if there are any template +/// parameters present at all, require proper matching, i.e. +/// template <> template <class T> friend class A<int>::B; +Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS, + MultiTemplateParamsArg TempParams) { + SourceLocation Loc = DS.getSourceRange().getBegin(); + + assert(DS.isFriendSpecified()); + assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); + + // Try to convert the decl specifier to a type. This works for + // friend templates because ActOnTag never produces a ClassTemplateDecl + // for a TUK_Friend. + Declarator TheDeclarator(DS, Declarator::MemberContext); + TypeSourceInfo *TSI; + QualType T = GetTypeForDeclarator(TheDeclarator, S, &TSI); + if (TheDeclarator.isInvalidType()) + return DeclPtrTy(); + + if (!TSI) + TSI = Context.getTrivialTypeSourceInfo(T, DS.getSourceRange().getBegin()); + + // This is definitely an error in C++98. It's probably meant to + // be forbidden in C++0x, too, but the specification is just + // poorly written. + // + // The problem is with declarations like the following: + // template <T> friend A<T>::foo; + // where deciding whether a class C is a friend or not now hinges + // on whether there exists an instantiation of A that causes + // 'foo' to equal C. There are restrictions on class-heads + // (which we declare (by fiat) elaborated friend declarations to + // be) that makes this tractable. + // + // FIXME: handle "template <> friend class A<T>;", which + // is possibly well-formed? Who even knows? + if (TempParams.size() && !T->isElaboratedTypeSpecifier()) { + Diag(Loc, diag::err_tagless_friend_type_template) + << DS.getSourceRange(); + return DeclPtrTy(); + } + + // C++98 [class.friend]p1: A friend of a class is a function + // or class that is not a member of the class . . . + // This is fixed in DR77, which just barely didn't make the C++03 + // deadline. It's also a very silly restriction that seriously + // affects inner classes and which nobody else seems to implement; + // thus we never diagnose it, not even in -pedantic. + // + // But note that we could warn about it: it's always useless to + // friend one of your own members (it's not, however, worthless to + // friend a member of an arbitrary specialization of your template). + + Decl *D; + if (unsigned NumTempParamLists = TempParams.size()) + D = FriendTemplateDecl::Create(Context, CurContext, Loc, + NumTempParamLists, + (TemplateParameterList**) TempParams.release(), + TSI, + DS.getFriendSpecLoc()); + else + D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI); + + if (!D) + return DeclPtrTy(); + + D->setAccess(AS_public); + CurContext->addDecl(D); + + return DeclPtrTy::make(D); +} + +Sema::DeclPtrTy +Sema::ActOnFriendFunctionDecl(Scope *S, + Declarator &D, + bool IsDefinition, + MultiTemplateParamsArg TemplateParams) { + const DeclSpec &DS = D.getDeclSpec(); + + assert(DS.isFriendSpecified()); + assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); + + SourceLocation Loc = D.getIdentifierLoc(); + TypeSourceInfo *TInfo = 0; + QualType T = GetTypeForDeclarator(D, S, &TInfo); + + // C++ [class.friend]p1 + // A friend of a class is a function or class.... + // Note that this sees through typedefs, which is intended. + // It *doesn't* see through dependent types, which is correct + // according to [temp.arg.type]p3: + // If a declaration acquires a function type through a + // type dependent on a template-parameter and this causes + // a declaration that does not use the syntactic form of a + // function declarator to have a function type, the program + // is ill-formed. + if (!T->isFunctionType()) { + Diag(Loc, diag::err_unexpected_friend); + + // It might be worthwhile to try to recover by creating an + // appropriate declaration. + return DeclPtrTy(); + } + + // C++ [namespace.memdef]p3 + // - If a friend declaration in a non-local class first declares a + // class or function, the friend class or function is a member + // of the innermost enclosing namespace. + // - The name of the friend is not found by simple name lookup + // until a matching declaration is provided in that namespace + // scope (either before or after the class declaration granting + // friendship). + // - If a friend function is called, its name may be found by the + // name lookup that considers functions from namespaces and + // classes associated with the types of the function arguments. + // - When looking for a prior declaration of a class or a function + // declared as a friend, scopes outside the innermost enclosing + // namespace scope are not considered. + + CXXScopeSpec &ScopeQual = D.getCXXScopeSpec(); + DeclarationName Name = GetNameForDeclarator(D); + assert(Name); + + // The context we found the declaration in, or in which we should + // create the declaration. + DeclContext *DC; + + // FIXME: handle local classes + + // Recover from invalid scope qualifiers as if they just weren't there. + LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName, + ForRedeclaration); + if (!ScopeQual.isInvalid() && ScopeQual.isSet()) { + DC = computeDeclContext(ScopeQual); + + // FIXME: handle dependent contexts + if (!DC) return DeclPtrTy(); + if (RequireCompleteDeclContext(ScopeQual, DC)) return DeclPtrTy(); + + LookupQualifiedName(Previous, DC); + + // If searching in that context implicitly found a declaration in + // a different context, treat it like it wasn't found at all. + // TODO: better diagnostics for this case. Suggesting the right + // qualified scope would be nice... + // FIXME: getRepresentativeDecl() is not right here at all + if (Previous.empty() || + !Previous.getRepresentativeDecl()->getDeclContext()->Equals(DC)) { + D.setInvalidType(); + Diag(Loc, diag::err_qualified_friend_not_found) << Name << T; + return DeclPtrTy(); + } + + // C++ [class.friend]p1: A friend of a class is a function or + // class that is not a member of the class . . . + if (DC->Equals(CurContext)) + Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member); + + // Otherwise walk out to the nearest namespace scope looking for matches. + } else { + // TODO: handle local class contexts. + + DC = CurContext; + while (true) { + // Skip class contexts. If someone can cite chapter and verse + // for this behavior, that would be nice --- it's what GCC and + // EDG do, and it seems like a reasonable intent, but the spec + // really only says that checks for unqualified existing + // declarations should stop at the nearest enclosing namespace, + // not that they should only consider the nearest enclosing + // namespace. + while (DC->isRecord()) + DC = DC->getParent(); + + LookupQualifiedName(Previous, DC); + + // TODO: decide what we think about using declarations. + if (!Previous.empty()) + break; + + if (DC->isFileContext()) break; + DC = DC->getParent(); + } + + // C++ [class.friend]p1: A friend of a class is a function or + // class that is not a member of the class . . . + // C++0x changes this for both friend types and functions. + // Most C++ 98 compilers do seem to give an error here, so + // we do, too. + if (!Previous.empty() && DC->Equals(CurContext) + && !getLangOptions().CPlusPlus0x) + Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member); + } + + if (DC->isFileContext()) { + // This implies that it has to be an operator or function. + if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName || + D.getName().getKind() == UnqualifiedId::IK_DestructorName || + D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) { + Diag(Loc, diag::err_introducing_special_friend) << + (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 : + D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2); + return DeclPtrTy(); + } + } + + bool Redeclaration = false; + NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous, + move(TemplateParams), + IsDefinition, + Redeclaration); + if (!ND) return DeclPtrTy(); + + assert(ND->getDeclContext() == DC); + assert(ND->getLexicalDeclContext() == CurContext); + + // Add the function declaration to the appropriate lookup tables, + // adjusting the redeclarations list as necessary. We don't + // want to do this yet if the friending class is dependent. + // + // Also update the scope-based lookup if the target context's + // lookup context is in lexical scope. + if (!CurContext->isDependentContext()) { + DC = DC->getLookupContext(); + DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false); + if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) + PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false); + } + + FriendDecl *FrD = FriendDecl::Create(Context, CurContext, + D.getIdentifierLoc(), ND, + DS.getFriendSpecLoc()); + FrD->setAccess(AS_public); + CurContext->addDecl(FrD); + + return DeclPtrTy::make(ND); +} + +void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) { + AdjustDeclIfTemplate(dcl); + + Decl *Dcl = dcl.getAs<Decl>(); + FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl); + if (!Fn) { + Diag(DelLoc, diag::err_deleted_non_function); + return; + } + if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) { + Diag(DelLoc, diag::err_deleted_decl_not_first); + Diag(Prev->getLocation(), diag::note_previous_declaration); + // If the declaration wasn't the first, we delete the function anyway for + // recovery. + } + Fn->setDeleted(); +} + +static void SearchForReturnInStmt(Sema &Self, Stmt *S) { + for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E; + ++CI) { + Stmt *SubStmt = *CI; + if (!SubStmt) + continue; + if (isa<ReturnStmt>(SubStmt)) + Self.Diag(SubStmt->getSourceRange().getBegin(), + diag::err_return_in_constructor_handler); + if (!isa<Expr>(SubStmt)) + SearchForReturnInStmt(Self, SubStmt); + } +} + +void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) { + for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) { + CXXCatchStmt *Handler = TryBlock->getHandler(I); + SearchForReturnInStmt(*this, Handler); + } +} + +bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New, + const CXXMethodDecl *Old) { + QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType(); + QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType(); + + if (Context.hasSameType(NewTy, OldTy) || + NewTy->isDependentType() || OldTy->isDependentType()) + return false; + + // Check if the return types are covariant + QualType NewClassTy, OldClassTy; + + /// Both types must be pointers or references to classes. + if (const PointerType *NewPT = NewTy->getAs<PointerType>()) { + if (const PointerType *OldPT = OldTy->getAs<PointerType>()) { + NewClassTy = NewPT->getPointeeType(); + OldClassTy = OldPT->getPointeeType(); + } + } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) { + if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) { + if (NewRT->getTypeClass() == OldRT->getTypeClass()) { + NewClassTy = NewRT->getPointeeType(); + OldClassTy = OldRT->getPointeeType(); + } + } + } + + // The return types aren't either both pointers or references to a class type. + if (NewClassTy.isNull()) { + Diag(New->getLocation(), + diag::err_different_return_type_for_overriding_virtual_function) + << New->getDeclName() << NewTy << OldTy; + Diag(Old->getLocation(), diag::note_overridden_virtual_function); + + return true; + } + + // C++ [class.virtual]p6: + // If the return type of D::f differs from the return type of B::f, the + // class type in the return type of D::f shall be complete at the point of + // declaration of D::f or shall be the class type D. + if (const RecordType *RT = NewClassTy->getAs<RecordType>()) { + if (!RT->isBeingDefined() && + RequireCompleteType(New->getLocation(), NewClassTy, + PDiag(diag::err_covariant_return_incomplete) + << New->getDeclName())) + return true; + } + + if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) { + // Check if the new class derives from the old class. + if (!IsDerivedFrom(NewClassTy, OldClassTy)) { + Diag(New->getLocation(), + diag::err_covariant_return_not_derived) + << New->getDeclName() << NewTy << OldTy; + Diag(Old->getLocation(), diag::note_overridden_virtual_function); + return true; + } + + // Check if we the conversion from derived to base is valid. + if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy, + diag::err_covariant_return_inaccessible_base, + diag::err_covariant_return_ambiguous_derived_to_base_conv, + // FIXME: Should this point to the return type? + New->getLocation(), SourceRange(), New->getDeclName(), 0)) { + Diag(Old->getLocation(), diag::note_overridden_virtual_function); + return true; + } + } + + // The qualifiers of the return types must be the same. + if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) { + Diag(New->getLocation(), + diag::err_covariant_return_type_different_qualifications) + << New->getDeclName() << NewTy << OldTy; + Diag(Old->getLocation(), diag::note_overridden_virtual_function); + return true; + }; + + + // The new class type must have the same or less qualifiers as the old type. + if (NewClassTy.isMoreQualifiedThan(OldClassTy)) { + Diag(New->getLocation(), + diag::err_covariant_return_type_class_type_more_qualified) + << New->getDeclName() << NewTy << OldTy; + Diag(Old->getLocation(), diag::note_overridden_virtual_function); + return true; + }; + + return false; +} + +bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New, + const CXXMethodDecl *Old) +{ + if (Old->hasAttr<FinalAttr>()) { + Diag(New->getLocation(), diag::err_final_function_overridden) + << New->getDeclName(); + Diag(Old->getLocation(), diag::note_overridden_virtual_function); + return true; + } + + return false; +} + +/// \brief Mark the given method pure. +/// +/// \param Method the method to be marked pure. +/// +/// \param InitRange the source range that covers the "0" initializer. +bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) { + if (Method->isVirtual() || Method->getParent()->isDependentContext()) { + Method->setPure(); + + // A class is abstract if at least one function is pure virtual. + Method->getParent()->setAbstract(true); + return false; + } + + if (!Method->isInvalidDecl()) + Diag(Method->getLocation(), diag::err_non_virtual_pure) + << Method->getDeclName() << InitRange; + return true; +} + +/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse +/// an initializer for the out-of-line declaration 'Dcl'. The scope +/// is a fresh scope pushed for just this purpose. +/// +/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a +/// static data member of class X, names should be looked up in the scope of +/// class X. +void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) { + // If there is no declaration, there was an error parsing it. + Decl *D = Dcl.getAs<Decl>(); + if (D == 0) return; + + // We should only get called for declarations with scope specifiers, like: + // int foo::bar; + assert(D->isOutOfLine()); + EnterDeclaratorContext(S, D->getDeclContext()); +} + +/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an +/// initializer for the out-of-line declaration 'Dcl'. +void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) { + // If there is no declaration, there was an error parsing it. + Decl *D = Dcl.getAs<Decl>(); + if (D == 0) return; + + assert(D->isOutOfLine()); + ExitDeclaratorContext(S); +} + +/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a +/// C++ if/switch/while/for statement. +/// e.g: "if (int x = f()) {...}" +Action::DeclResult +Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) { + // C++ 6.4p2: + // The declarator shall not specify a function or an array. + // The type-specifier-seq shall not contain typedef and shall not declare a + // new class or enumeration. + assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && + "Parser allowed 'typedef' as storage class of condition decl."); + + TypeSourceInfo *TInfo = 0; + TagDecl *OwnedTag = 0; + QualType Ty = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag); + + if (Ty->isFunctionType()) { // The declarator shall not specify a function... + // We exit without creating a CXXConditionDeclExpr because a FunctionDecl + // would be created and CXXConditionDeclExpr wants a VarDecl. + Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type) + << D.getSourceRange(); + return DeclResult(); + } else if (OwnedTag && OwnedTag->isDefinition()) { + // The type-specifier-seq shall not declare a new class or enumeration. + Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition); + } + + DeclPtrTy Dcl = ActOnDeclarator(S, D); + if (!Dcl) + return DeclResult(); + + VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>()); + VD->setDeclaredInCondition(true); + return Dcl; +} + +void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class, + bool DefinitionRequired) { + // Ignore any vtable uses in unevaluated operands or for classes that do + // not have a vtable. + if (!Class->isDynamicClass() || Class->isDependentContext() || + CurContext->isDependentContext() || + ExprEvalContexts.back().Context == Unevaluated) + return; + + // Try to insert this class into the map. + Class = cast<CXXRecordDecl>(Class->getCanonicalDecl()); + std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool> + Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired)); + if (!Pos.second) { + // If we already had an entry, check to see if we are promoting this vtable + // to required a definition. If so, we need to reappend to the VTableUses + // list, since we may have already processed the first entry. + if (DefinitionRequired && !Pos.first->second) { + Pos.first->second = true; + } else { + // Otherwise, we can early exit. + return; + } + } + + // Local classes need to have their virtual members marked + // immediately. For all other classes, we mark their virtual members + // at the end of the translation unit. + if (Class->isLocalClass()) + MarkVirtualMembersReferenced(Loc, Class); + else + VTableUses.push_back(std::make_pair(Class, Loc)); +} + +bool Sema::DefineUsedVTables() { + // If any dynamic classes have their key function defined within + // this translation unit, then those vtables are considered "used" and must + // be emitted. + for (unsigned I = 0, N = DynamicClasses.size(); I != N; ++I) { + if (const CXXMethodDecl *KeyFunction + = Context.getKeyFunction(DynamicClasses[I])) { + const FunctionDecl *Definition = 0; + if (KeyFunction->getBody(Definition)) + MarkVTableUsed(Definition->getLocation(), DynamicClasses[I], true); + } + } + + if (VTableUses.empty()) + return false; + + // Note: The VTableUses vector could grow as a result of marking + // the members of a class as "used", so we check the size each + // time through the loop and prefer indices (with are stable) to + // iterators (which are not). + for (unsigned I = 0; I != VTableUses.size(); ++I) { + CXXRecordDecl *Class = VTableUses[I].first->getDefinition(); + if (!Class) + continue; + + SourceLocation Loc = VTableUses[I].second; + + // If this class has a key function, but that key function is + // defined in another translation unit, we don't need to emit the + // vtable even though we're using it. + const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class); + if (KeyFunction && !KeyFunction->getBody()) { + switch (KeyFunction->getTemplateSpecializationKind()) { + case TSK_Undeclared: + case TSK_ExplicitSpecialization: + case TSK_ExplicitInstantiationDeclaration: + // The key function is in another translation unit. + continue; + + case TSK_ExplicitInstantiationDefinition: + case TSK_ImplicitInstantiation: + // We will be instantiating the key function. + break; + } + } else if (!KeyFunction) { + // If we have a class with no key function that is the subject + // of an explicit instantiation declaration, suppress the + // vtable; it will live with the explicit instantiation + // definition. + bool IsExplicitInstantiationDeclaration + = Class->getTemplateSpecializationKind() + == TSK_ExplicitInstantiationDeclaration; + for (TagDecl::redecl_iterator R = Class->redecls_begin(), + REnd = Class->redecls_end(); + R != REnd; ++R) { + TemplateSpecializationKind TSK + = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind(); + if (TSK == TSK_ExplicitInstantiationDeclaration) + IsExplicitInstantiationDeclaration = true; + else if (TSK == TSK_ExplicitInstantiationDefinition) { + IsExplicitInstantiationDeclaration = false; + break; + } + } + + if (IsExplicitInstantiationDeclaration) + continue; + } + + // Mark all of the virtual members of this class as referenced, so + // that we can build a vtable. Then, tell the AST consumer that a + // vtable for this class is required. + MarkVirtualMembersReferenced(Loc, Class); + CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl()); + Consumer.HandleVTable(Class, VTablesUsed[Canonical]); + + // Optionally warn if we're emitting a weak vtable. + if (Class->getLinkage() == ExternalLinkage && + Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) { + if (!KeyFunction || (KeyFunction->getBody() && KeyFunction->isInlined())) + Diag(Class->getLocation(), diag::warn_weak_vtable) << Class; + } + } + VTableUses.clear(); + + return true; +} + +void Sema::MarkVirtualMembersReferenced(SourceLocation Loc, + const CXXRecordDecl *RD) { + for (CXXRecordDecl::method_iterator i = RD->method_begin(), + e = RD->method_end(); i != e; ++i) { + CXXMethodDecl *MD = *i; + + // C++ [basic.def.odr]p2: + // [...] A virtual member function is used if it is not pure. [...] + if (MD->isVirtual() && !MD->isPure()) + MarkDeclarationReferenced(Loc, MD); + } + + // Only classes that have virtual bases need a VTT. + if (RD->getNumVBases() == 0) + return; + + for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(), + e = RD->bases_end(); i != e; ++i) { + const CXXRecordDecl *Base = + cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl()); + if (i->isVirtual()) + continue; + if (Base->getNumVBases() == 0) + continue; + MarkVirtualMembersReferenced(Loc, Base); + } +} + +/// SetIvarInitializers - This routine builds initialization ASTs for the +/// Objective-C implementation whose ivars need be initialized. +void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) { + if (!getLangOptions().CPlusPlus) + return; + if (const ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) { + llvm::SmallVector<ObjCIvarDecl*, 8> ivars; + CollectIvarsToConstructOrDestruct(OID, ivars); + if (ivars.empty()) + return; + llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit; + for (unsigned i = 0; i < ivars.size(); i++) { + FieldDecl *Field = ivars[i]; + if (Field->isInvalidDecl()) + continue; + + CXXBaseOrMemberInitializer *Member; + InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field); + InitializationKind InitKind = + InitializationKind::CreateDefault(ObjCImplementation->getLocation()); + + InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0); + Sema::OwningExprResult MemberInit = + InitSeq.Perform(*this, InitEntity, InitKind, + Sema::MultiExprArg(*this, 0, 0)); + MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit)); + // Note, MemberInit could actually come back empty if no initialization + // is required (e.g., because it would call a trivial default constructor) + if (!MemberInit.get() || MemberInit.isInvalid()) + continue; + + Member = + new (Context) CXXBaseOrMemberInitializer(Context, + Field, SourceLocation(), + SourceLocation(), + MemberInit.takeAs<Expr>(), + SourceLocation()); + AllToInit.push_back(Member); + + // Be sure that the destructor is accessible and is marked as referenced. + if (const RecordType *RecordTy + = Context.getBaseElementType(Field->getType()) + ->getAs<RecordType>()) { + CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl()); + if (CXXDestructorDecl *Destructor + = const_cast<CXXDestructorDecl*>(RD->getDestructor(Context))) { + MarkDeclarationReferenced(Field->getLocation(), Destructor); + CheckDestructorAccess(Field->getLocation(), Destructor, + PDiag(diag::err_access_dtor_ivar) + << Context.getBaseElementType(Field->getType())); + } + } + } + ObjCImplementation->setIvarInitializers(Context, + AllToInit.data(), AllToInit.size()); + } +} |