summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/Sema/SemaDecl.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/Sema/SemaDecl.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaDecl.cpp13006
1 files changed, 13006 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaDecl.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaDecl.cpp
new file mode 100644
index 0000000..328ce70
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaDecl.cpp
@@ -0,0 +1,13006 @@
+//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements semantic analysis for declarations.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Sema/SemaInternal.h"
+#include "TypeLocBuilder.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTLambda.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/CharUnits.h"
+#include "clang/AST/CommentDiagnostic.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/EvaluatedExprVisitor.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/StmtCXX.h"
+#include "clang/Basic/PartialDiagnostic.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Lex/HeaderSearch.h" // FIXME: Sema shouldn't depend on Lex
+#include "clang/Lex/ModuleLoader.h" // FIXME: Sema shouldn't depend on Lex
+#include "clang/Lex/Preprocessor.h" // FIXME: Sema shouldn't depend on Lex
+#include "clang/Parse/ParseDiagnostic.h"
+#include "clang/Sema/CXXFieldCollector.h"
+#include "clang/Sema/DeclSpec.h"
+#include "clang/Sema/DelayedDiagnostic.h"
+#include "clang/Sema/Initialization.h"
+#include "clang/Sema/Lookup.h"
+#include "clang/Sema/ParsedTemplate.h"
+#include "clang/Sema/Scope.h"
+#include "clang/Sema/ScopeInfo.h"
+#include "clang/Sema/Template.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/Triple.h"
+#include <algorithm>
+#include <cstring>
+#include <functional>
+using namespace clang;
+using namespace sema;
+
+Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
+ if (OwnedType) {
+ Decl *Group[2] = { OwnedType, Ptr };
+ return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
+ }
+
+ return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
+}
+
+namespace {
+
+class TypeNameValidatorCCC : public CorrectionCandidateCallback {
+ public:
+ TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
+ : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
+ WantExpressionKeywords = false;
+ WantCXXNamedCasts = false;
+ WantRemainingKeywords = false;
+ }
+
+ virtual bool ValidateCandidate(const TypoCorrection &candidate) {
+ if (NamedDecl *ND = candidate.getCorrectionDecl())
+ return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
+ (AllowInvalidDecl || !ND->isInvalidDecl());
+ else
+ return !WantClassName && candidate.isKeyword();
+ }
+
+ private:
+ bool AllowInvalidDecl;
+ bool WantClassName;
+};
+
+}
+
+/// \brief Determine whether the token kind starts a simple-type-specifier.
+bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
+ switch (Kind) {
+ // FIXME: Take into account the current language when deciding whether a
+ // token kind is a valid type specifier
+ case tok::kw_short:
+ case tok::kw_long:
+ case tok::kw___int64:
+ case tok::kw___int128:
+ case tok::kw_signed:
+ case tok::kw_unsigned:
+ case tok::kw_void:
+ case tok::kw_char:
+ case tok::kw_int:
+ case tok::kw_half:
+ case tok::kw_float:
+ case tok::kw_double:
+ case tok::kw_wchar_t:
+ case tok::kw_bool:
+ case tok::kw___underlying_type:
+ return true;
+
+ case tok::annot_typename:
+ case tok::kw_char16_t:
+ case tok::kw_char32_t:
+ case tok::kw_typeof:
+ case tok::annot_decltype:
+ case tok::kw_decltype:
+ return getLangOpts().CPlusPlus;
+
+ default:
+ break;
+ }
+
+ return false;
+}
+
+/// \brief If the identifier refers to a type name within this scope,
+/// return the declaration of that type.
+///
+/// This routine performs ordinary name lookup of the identifier II
+/// within the given scope, with optional C++ scope specifier SS, to
+/// determine whether the name refers to a type. If so, returns an
+/// opaque pointer (actually a QualType) corresponding to that
+/// type. Otherwise, returns NULL.
+ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
+ Scope *S, CXXScopeSpec *SS,
+ bool isClassName, bool HasTrailingDot,
+ ParsedType ObjectTypePtr,
+ bool IsCtorOrDtorName,
+ bool WantNontrivialTypeSourceInfo,
+ IdentifierInfo **CorrectedII) {
+ // Determine where we will perform name lookup.
+ DeclContext *LookupCtx = 0;
+ if (ObjectTypePtr) {
+ QualType ObjectType = ObjectTypePtr.get();
+ if (ObjectType->isRecordType())
+ LookupCtx = computeDeclContext(ObjectType);
+ } else if (SS && SS->isNotEmpty()) {
+ LookupCtx = computeDeclContext(*SS, false);
+
+ if (!LookupCtx) {
+ if (isDependentScopeSpecifier(*SS)) {
+ // C++ [temp.res]p3:
+ // A qualified-id that refers to a type and in which the
+ // nested-name-specifier depends on a template-parameter (14.6.2)
+ // shall be prefixed by the keyword typename to indicate that the
+ // qualified-id denotes a type, forming an
+ // elaborated-type-specifier (7.1.5.3).
+ //
+ // We therefore do not perform any name lookup if the result would
+ // refer to a member of an unknown specialization.
+ if (!isClassName && !IsCtorOrDtorName)
+ return ParsedType();
+
+ // We know from the grammar that this name refers to a type,
+ // so build a dependent node to describe the type.
+ if (WantNontrivialTypeSourceInfo)
+ return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
+
+ NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
+ QualType T =
+ CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
+ II, NameLoc);
+
+ return ParsedType::make(T);
+ }
+
+ return ParsedType();
+ }
+
+ if (!LookupCtx->isDependentContext() &&
+ RequireCompleteDeclContext(*SS, LookupCtx))
+ return ParsedType();
+ }
+
+ // FIXME: LookupNestedNameSpecifierName isn't the right kind of
+ // lookup for class-names.
+ LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
+ LookupOrdinaryName;
+ LookupResult Result(*this, &II, NameLoc, Kind);
+ if (LookupCtx) {
+ // Perform "qualified" name lookup into the declaration context we
+ // computed, which is either the type of the base of a member access
+ // expression or the declaration context associated with a prior
+ // nested-name-specifier.
+ LookupQualifiedName(Result, LookupCtx);
+
+ if (ObjectTypePtr && Result.empty()) {
+ // C++ [basic.lookup.classref]p3:
+ // If the unqualified-id is ~type-name, the type-name is looked up
+ // in the context of the entire postfix-expression. If the type T of
+ // the object expression is of a class type C, the type-name is also
+ // looked up in the scope of class C. At least one of the lookups shall
+ // find a name that refers to (possibly cv-qualified) T.
+ LookupName(Result, S);
+ }
+ } else {
+ // Perform unqualified name lookup.
+ LookupName(Result, S);
+ }
+
+ NamedDecl *IIDecl = 0;
+ switch (Result.getResultKind()) {
+ case LookupResult::NotFound:
+ case LookupResult::NotFoundInCurrentInstantiation:
+ if (CorrectedII) {
+ TypeNameValidatorCCC Validator(true, isClassName);
+ TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
+ Kind, S, SS, Validator);
+ IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
+ TemplateTy Template;
+ bool MemberOfUnknownSpecialization;
+ UnqualifiedId TemplateName;
+ TemplateName.setIdentifier(NewII, NameLoc);
+ NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
+ CXXScopeSpec NewSS, *NewSSPtr = SS;
+ if (SS && NNS) {
+ NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
+ NewSSPtr = &NewSS;
+ }
+ if (Correction && (NNS || NewII != &II) &&
+ // Ignore a correction to a template type as the to-be-corrected
+ // identifier is not a template (typo correction for template names
+ // is handled elsewhere).
+ !(getLangOpts().CPlusPlus && NewSSPtr &&
+ isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
+ false, Template, MemberOfUnknownSpecialization))) {
+ ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
+ isClassName, HasTrailingDot, ObjectTypePtr,
+ IsCtorOrDtorName,
+ WantNontrivialTypeSourceInfo);
+ if (Ty) {
+ diagnoseTypo(Correction,
+ PDiag(diag::err_unknown_type_or_class_name_suggest)
+ << Result.getLookupName() << isClassName);
+ if (SS && NNS)
+ SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
+ *CorrectedII = NewII;
+ return Ty;
+ }
+ }
+ }
+ // If typo correction failed or was not performed, fall through
+ case LookupResult::FoundOverloaded:
+ case LookupResult::FoundUnresolvedValue:
+ Result.suppressDiagnostics();
+ return ParsedType();
+
+ case LookupResult::Ambiguous:
+ // Recover from type-hiding ambiguities by hiding the type. We'll
+ // do the lookup again when looking for an object, and we can
+ // diagnose the error then. If we don't do this, then the error
+ // about hiding the type will be immediately followed by an error
+ // that only makes sense if the identifier was treated like a type.
+ if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
+ Result.suppressDiagnostics();
+ return ParsedType();
+ }
+
+ // Look to see if we have a type anywhere in the list of results.
+ for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
+ Res != ResEnd; ++Res) {
+ if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
+ if (!IIDecl ||
+ (*Res)->getLocation().getRawEncoding() <
+ IIDecl->getLocation().getRawEncoding())
+ IIDecl = *Res;
+ }
+ }
+
+ if (!IIDecl) {
+ // None of the entities we found is a type, so there is no way
+ // to even assume that the result is a type. In this case, don't
+ // complain about the ambiguity. The parser will either try to
+ // perform this lookup again (e.g., as an object name), which
+ // will produce the ambiguity, or will complain that it expected
+ // a type name.
+ Result.suppressDiagnostics();
+ return ParsedType();
+ }
+
+ // We found a type within the ambiguous lookup; diagnose the
+ // ambiguity and then return that type. This might be the right
+ // answer, or it might not be, but it suppresses any attempt to
+ // perform the name lookup again.
+ break;
+
+ case LookupResult::Found:
+ IIDecl = Result.getFoundDecl();
+ break;
+ }
+
+ assert(IIDecl && "Didn't find decl");
+
+ QualType T;
+ if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
+ DiagnoseUseOfDecl(IIDecl, NameLoc);
+
+ if (T.isNull())
+ T = Context.getTypeDeclType(TD);
+
+ // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
+ // constructor or destructor name (in such a case, the scope specifier
+ // will be attached to the enclosing Expr or Decl node).
+ if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
+ if (WantNontrivialTypeSourceInfo) {
+ // Construct a type with type-source information.
+ TypeLocBuilder Builder;
+ Builder.pushTypeSpec(T).setNameLoc(NameLoc);
+
+ T = getElaboratedType(ETK_None, *SS, T);
+ ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
+ ElabTL.setElaboratedKeywordLoc(SourceLocation());
+ ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
+ return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
+ } else {
+ T = getElaboratedType(ETK_None, *SS, T);
+ }
+ }
+ } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
+ (void)DiagnoseUseOfDecl(IDecl, NameLoc);
+ if (!HasTrailingDot)
+ T = Context.getObjCInterfaceType(IDecl);
+ }
+
+ if (T.isNull()) {
+ // If it's not plausibly a type, suppress diagnostics.
+ Result.suppressDiagnostics();
+ return ParsedType();
+ }
+ return ParsedType::make(T);
+}
+
+/// isTagName() - This method is called *for error recovery purposes only*
+/// to determine if the specified name is a valid tag name ("struct foo"). If
+/// so, this returns the TST for the tag corresponding to it (TST_enum,
+/// TST_union, TST_struct, TST_interface, TST_class). This is used to diagnose
+/// cases in C where the user forgot to specify the tag.
+DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
+ // Do a tag name lookup in this scope.
+ LookupResult R(*this, &II, SourceLocation(), LookupTagName);
+ LookupName(R, S, false);
+ R.suppressDiagnostics();
+ if (R.getResultKind() == LookupResult::Found)
+ if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
+ switch (TD->getTagKind()) {
+ case TTK_Struct: return DeclSpec::TST_struct;
+ case TTK_Interface: return DeclSpec::TST_interface;
+ case TTK_Union: return DeclSpec::TST_union;
+ case TTK_Class: return DeclSpec::TST_class;
+ case TTK_Enum: return DeclSpec::TST_enum;
+ }
+ }
+
+ return DeclSpec::TST_unspecified;
+}
+
+/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
+/// if a CXXScopeSpec's type is equal to the type of one of the base classes
+/// then downgrade the missing typename error to a warning.
+/// This is needed for MSVC compatibility; Example:
+/// @code
+/// template<class T> class A {
+/// public:
+/// typedef int TYPE;
+/// };
+/// template<class T> class B : public A<T> {
+/// public:
+/// A<T>::TYPE a; // no typename required because A<T> is a base class.
+/// };
+/// @endcode
+bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
+ if (CurContext->isRecord()) {
+ const Type *Ty = SS->getScopeRep()->getAsType();
+
+ CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
+ for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
+ BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
+ if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
+ return true;
+ return S->isFunctionPrototypeScope();
+ }
+ return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
+}
+
+bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
+ SourceLocation IILoc,
+ Scope *S,
+ CXXScopeSpec *SS,
+ ParsedType &SuggestedType) {
+ // We don't have anything to suggest (yet).
+ SuggestedType = ParsedType();
+
+ // There may have been a typo in the name of the type. Look up typo
+ // results, in case we have something that we can suggest.
+ TypeNameValidatorCCC Validator(false);
+ if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
+ LookupOrdinaryName, S, SS,
+ Validator)) {
+ if (Corrected.isKeyword()) {
+ // We corrected to a keyword.
+ diagnoseTypo(Corrected, PDiag(diag::err_unknown_typename_suggest) << II);
+ II = Corrected.getCorrectionAsIdentifierInfo();
+ } else {
+ // We found a similarly-named type or interface; suggest that.
+ if (!SS || !SS->isSet()) {
+ diagnoseTypo(Corrected,
+ PDiag(diag::err_unknown_typename_suggest) << II);
+ } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
+ std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
+ bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
+ II->getName().equals(CorrectedStr);
+ diagnoseTypo(Corrected,
+ PDiag(diag::err_unknown_nested_typename_suggest)
+ << II << DC << DroppedSpecifier << SS->getRange());
+ } else {
+ llvm_unreachable("could not have corrected a typo here");
+ }
+
+ CXXScopeSpec tmpSS;
+ if (Corrected.getCorrectionSpecifier())
+ tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
+ SourceRange(IILoc));
+ SuggestedType = getTypeName(*Corrected.getCorrectionAsIdentifierInfo(),
+ IILoc, S, tmpSS.isSet() ? &tmpSS : SS, false,
+ false, ParsedType(),
+ /*IsCtorOrDtorName=*/false,
+ /*NonTrivialTypeSourceInfo=*/true);
+ }
+ return true;
+ }
+
+ if (getLangOpts().CPlusPlus) {
+ // See if II is a class template that the user forgot to pass arguments to.
+ UnqualifiedId Name;
+ Name.setIdentifier(II, IILoc);
+ CXXScopeSpec EmptySS;
+ TemplateTy TemplateResult;
+ bool MemberOfUnknownSpecialization;
+ if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
+ Name, ParsedType(), true, TemplateResult,
+ MemberOfUnknownSpecialization) == TNK_Type_template) {
+ TemplateName TplName = TemplateResult.get();
+ Diag(IILoc, diag::err_template_missing_args) << TplName;
+ if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
+ Diag(TplDecl->getLocation(), diag::note_template_decl_here)
+ << TplDecl->getTemplateParameters()->getSourceRange();
+ }
+ return true;
+ }
+ }
+
+ // FIXME: Should we move the logic that tries to recover from a missing tag
+ // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
+
+ if (!SS || (!SS->isSet() && !SS->isInvalid()))
+ Diag(IILoc, diag::err_unknown_typename) << II;
+ else if (DeclContext *DC = computeDeclContext(*SS, false))
+ Diag(IILoc, diag::err_typename_nested_not_found)
+ << II << DC << SS->getRange();
+ else if (isDependentScopeSpecifier(*SS)) {
+ unsigned DiagID = diag::err_typename_missing;
+ if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
+ DiagID = diag::warn_typename_missing;
+
+ Diag(SS->getRange().getBegin(), DiagID)
+ << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
+ << SourceRange(SS->getRange().getBegin(), IILoc)
+ << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
+ SuggestedType = ActOnTypenameType(S, SourceLocation(),
+ *SS, *II, IILoc).get();
+ } else {
+ assert(SS && SS->isInvalid() &&
+ "Invalid scope specifier has already been diagnosed");
+ }
+
+ return true;
+}
+
+/// \brief Determine whether the given result set contains either a type name
+/// or
+static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
+ bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
+ NextToken.is(tok::less);
+
+ for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
+ if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
+ return true;
+
+ if (CheckTemplate && isa<TemplateDecl>(*I))
+ return true;
+ }
+
+ return false;
+}
+
+static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
+ Scope *S, CXXScopeSpec &SS,
+ IdentifierInfo *&Name,
+ SourceLocation NameLoc) {
+ LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
+ SemaRef.LookupParsedName(R, S, &SS);
+ if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
+ const char *TagName = 0;
+ const char *FixItTagName = 0;
+ switch (Tag->getTagKind()) {
+ case TTK_Class:
+ TagName = "class";
+ FixItTagName = "class ";
+ break;
+
+ case TTK_Enum:
+ TagName = "enum";
+ FixItTagName = "enum ";
+ break;
+
+ case TTK_Struct:
+ TagName = "struct";
+ FixItTagName = "struct ";
+ break;
+
+ case TTK_Interface:
+ TagName = "__interface";
+ FixItTagName = "__interface ";
+ break;
+
+ case TTK_Union:
+ TagName = "union";
+ FixItTagName = "union ";
+ break;
+ }
+
+ SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
+ << Name << TagName << SemaRef.getLangOpts().CPlusPlus
+ << FixItHint::CreateInsertion(NameLoc, FixItTagName);
+
+ for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
+ I != IEnd; ++I)
+ SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
+ << Name << TagName;
+
+ // Replace lookup results with just the tag decl.
+ Result.clear(Sema::LookupTagName);
+ SemaRef.LookupParsedName(Result, S, &SS);
+ return true;
+ }
+
+ return false;
+}
+
+/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
+static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
+ QualType T, SourceLocation NameLoc) {
+ ASTContext &Context = S.Context;
+
+ TypeLocBuilder Builder;
+ Builder.pushTypeSpec(T).setNameLoc(NameLoc);
+
+ T = S.getElaboratedType(ETK_None, SS, T);
+ ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
+ ElabTL.setElaboratedKeywordLoc(SourceLocation());
+ ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
+ return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
+}
+
+Sema::NameClassification Sema::ClassifyName(Scope *S,
+ CXXScopeSpec &SS,
+ IdentifierInfo *&Name,
+ SourceLocation NameLoc,
+ const Token &NextToken,
+ bool IsAddressOfOperand,
+ CorrectionCandidateCallback *CCC) {
+ DeclarationNameInfo NameInfo(Name, NameLoc);
+ ObjCMethodDecl *CurMethod = getCurMethodDecl();
+
+ if (NextToken.is(tok::coloncolon)) {
+ BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
+ QualType(), false, SS, 0, false);
+
+ }
+
+ LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
+ LookupParsedName(Result, S, &SS, !CurMethod);
+
+ // Perform lookup for Objective-C instance variables (including automatically
+ // synthesized instance variables), if we're in an Objective-C method.
+ // FIXME: This lookup really, really needs to be folded in to the normal
+ // unqualified lookup mechanism.
+ if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
+ ExprResult E = LookupInObjCMethod(Result, S, Name, true);
+ if (E.get() || E.isInvalid())
+ return E;
+ }
+
+ bool SecondTry = false;
+ bool IsFilteredTemplateName = false;
+
+Corrected:
+ switch (Result.getResultKind()) {
+ case LookupResult::NotFound:
+ // If an unqualified-id is followed by a '(', then we have a function
+ // call.
+ if (!SS.isSet() && NextToken.is(tok::l_paren)) {
+ // In C++, this is an ADL-only call.
+ // FIXME: Reference?
+ if (getLangOpts().CPlusPlus)
+ return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
+
+ // C90 6.3.2.2:
+ // If the expression that precedes the parenthesized argument list in a
+ // function call consists solely of an identifier, and if no
+ // declaration is visible for this identifier, the identifier is
+ // implicitly declared exactly as if, in the innermost block containing
+ // the function call, the declaration
+ //
+ // extern int identifier ();
+ //
+ // appeared.
+ //
+ // We also allow this in C99 as an extension.
+ if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
+ Result.addDecl(D);
+ Result.resolveKind();
+ return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
+ }
+ }
+
+ // In C, we first see whether there is a tag type by the same name, in
+ // which case it's likely that the user just forget to write "enum",
+ // "struct", or "union".
+ if (!getLangOpts().CPlusPlus && !SecondTry &&
+ isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
+ break;
+ }
+
+ // Perform typo correction to determine if there is another name that is
+ // close to this name.
+ if (!SecondTry && CCC) {
+ SecondTry = true;
+ if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
+ Result.getLookupKind(), S,
+ &SS, *CCC)) {
+ unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
+ unsigned QualifiedDiag = diag::err_no_member_suggest;
+
+ NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
+ NamedDecl *UnderlyingFirstDecl
+ = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
+ if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
+ UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
+ UnqualifiedDiag = diag::err_no_template_suggest;
+ QualifiedDiag = diag::err_no_member_template_suggest;
+ } else if (UnderlyingFirstDecl &&
+ (isa<TypeDecl>(UnderlyingFirstDecl) ||
+ isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
+ isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
+ UnqualifiedDiag = diag::err_unknown_typename_suggest;
+ QualifiedDiag = diag::err_unknown_nested_typename_suggest;
+ }
+
+ if (SS.isEmpty()) {
+ diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
+ } else {// FIXME: is this even reachable? Test it.
+ std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
+ bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
+ Name->getName().equals(CorrectedStr);
+ diagnoseTypo(Corrected, PDiag(QualifiedDiag)
+ << Name << computeDeclContext(SS, false)
+ << DroppedSpecifier << SS.getRange());
+ }
+
+ // Update the name, so that the caller has the new name.
+ Name = Corrected.getCorrectionAsIdentifierInfo();
+
+ // Typo correction corrected to a keyword.
+ if (Corrected.isKeyword())
+ return Name;
+
+ // Also update the LookupResult...
+ // FIXME: This should probably go away at some point
+ Result.clear();
+ Result.setLookupName(Corrected.getCorrection());
+ if (FirstDecl)
+ Result.addDecl(FirstDecl);
+
+ // If we found an Objective-C instance variable, let
+ // LookupInObjCMethod build the appropriate expression to
+ // reference the ivar.
+ // FIXME: This is a gross hack.
+ if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
+ Result.clear();
+ ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
+ return E;
+ }
+
+ goto Corrected;
+ }
+ }
+
+ // We failed to correct; just fall through and let the parser deal with it.
+ Result.suppressDiagnostics();
+ return NameClassification::Unknown();
+
+ case LookupResult::NotFoundInCurrentInstantiation: {
+ // We performed name lookup into the current instantiation, and there were
+ // dependent bases, so we treat this result the same way as any other
+ // dependent nested-name-specifier.
+
+ // C++ [temp.res]p2:
+ // A name used in a template declaration or definition and that is
+ // dependent on a template-parameter is assumed not to name a type
+ // unless the applicable name lookup finds a type name or the name is
+ // qualified by the keyword typename.
+ //
+ // FIXME: If the next token is '<', we might want to ask the parser to
+ // perform some heroics to see if we actually have a
+ // template-argument-list, which would indicate a missing 'template'
+ // keyword here.
+ return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
+ NameInfo, IsAddressOfOperand,
+ /*TemplateArgs=*/0);
+ }
+
+ case LookupResult::Found:
+ case LookupResult::FoundOverloaded:
+ case LookupResult::FoundUnresolvedValue:
+ break;
+
+ case LookupResult::Ambiguous:
+ if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
+ hasAnyAcceptableTemplateNames(Result)) {
+ // C++ [temp.local]p3:
+ // A lookup that finds an injected-class-name (10.2) can result in an
+ // ambiguity in certain cases (for example, if it is found in more than
+ // one base class). If all of the injected-class-names that are found
+ // refer to specializations of the same class template, and if the name
+ // is followed by a template-argument-list, the reference refers to the
+ // class template itself and not a specialization thereof, and is not
+ // ambiguous.
+ //
+ // This filtering can make an ambiguous result into an unambiguous one,
+ // so try again after filtering out template names.
+ FilterAcceptableTemplateNames(Result);
+ if (!Result.isAmbiguous()) {
+ IsFilteredTemplateName = true;
+ break;
+ }
+ }
+
+ // Diagnose the ambiguity and return an error.
+ return NameClassification::Error();
+ }
+
+ if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
+ (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
+ // C++ [temp.names]p3:
+ // After name lookup (3.4) finds that a name is a template-name or that
+ // an operator-function-id or a literal- operator-id refers to a set of
+ // overloaded functions any member of which is a function template if
+ // this is followed by a <, the < is always taken as the delimiter of a
+ // template-argument-list and never as the less-than operator.
+ if (!IsFilteredTemplateName)
+ FilterAcceptableTemplateNames(Result);
+
+ if (!Result.empty()) {
+ bool IsFunctionTemplate;
+ bool IsVarTemplate;
+ TemplateName Template;
+ if (Result.end() - Result.begin() > 1) {
+ IsFunctionTemplate = true;
+ Template = Context.getOverloadedTemplateName(Result.begin(),
+ Result.end());
+ } else {
+ TemplateDecl *TD
+ = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
+ IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
+ IsVarTemplate = isa<VarTemplateDecl>(TD);
+
+ if (SS.isSet() && !SS.isInvalid())
+ Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
+ /*TemplateKeyword=*/false,
+ TD);
+ else
+ Template = TemplateName(TD);
+ }
+
+ if (IsFunctionTemplate) {
+ // Function templates always go through overload resolution, at which
+ // point we'll perform the various checks (e.g., accessibility) we need
+ // to based on which function we selected.
+ Result.suppressDiagnostics();
+
+ return NameClassification::FunctionTemplate(Template);
+ }
+
+ return IsVarTemplate ? NameClassification::VarTemplate(Template)
+ : NameClassification::TypeTemplate(Template);
+ }
+ }
+
+ NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
+ if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
+ DiagnoseUseOfDecl(Type, NameLoc);
+ QualType T = Context.getTypeDeclType(Type);
+ if (SS.isNotEmpty())
+ return buildNestedType(*this, SS, T, NameLoc);
+ return ParsedType::make(T);
+ }
+
+ ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
+ if (!Class) {
+ // FIXME: It's unfortunate that we don't have a Type node for handling this.
+ if (ObjCCompatibleAliasDecl *Alias
+ = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
+ Class = Alias->getClassInterface();
+ }
+
+ if (Class) {
+ DiagnoseUseOfDecl(Class, NameLoc);
+
+ if (NextToken.is(tok::period)) {
+ // Interface. <something> is parsed as a property reference expression.
+ // Just return "unknown" as a fall-through for now.
+ Result.suppressDiagnostics();
+ return NameClassification::Unknown();
+ }
+
+ QualType T = Context.getObjCInterfaceType(Class);
+ return ParsedType::make(T);
+ }
+
+ // We can have a type template here if we're classifying a template argument.
+ if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
+ return NameClassification::TypeTemplate(
+ TemplateName(cast<TemplateDecl>(FirstDecl)));
+
+ // Check for a tag type hidden by a non-type decl in a few cases where it
+ // seems likely a type is wanted instead of the non-type that was found.
+ bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
+ if ((NextToken.is(tok::identifier) ||
+ (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
+ isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
+ TypeDecl *Type = Result.getAsSingle<TypeDecl>();
+ DiagnoseUseOfDecl(Type, NameLoc);
+ QualType T = Context.getTypeDeclType(Type);
+ if (SS.isNotEmpty())
+ return buildNestedType(*this, SS, T, NameLoc);
+ return ParsedType::make(T);
+ }
+
+ if (FirstDecl->isCXXClassMember())
+ return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
+
+ bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
+ return BuildDeclarationNameExpr(SS, Result, ADL);
+}
+
+// Determines the context to return to after temporarily entering a
+// context. This depends in an unnecessarily complicated way on the
+// exact ordering of callbacks from the parser.
+DeclContext *Sema::getContainingDC(DeclContext *DC) {
+
+ // Functions defined inline within classes aren't parsed until we've
+ // finished parsing the top-level class, so the top-level class is
+ // the context we'll need to return to.
+ // A Lambda call operator whose parent is a class must not be treated
+ // as an inline member function. A Lambda can be used legally
+ // either as an in-class member initializer or a default argument. These
+ // are parsed once the class has been marked complete and so the containing
+ // context would be the nested class (when the lambda is defined in one);
+ // If the class is not complete, then the lambda is being used in an
+ // ill-formed fashion (such as to specify the width of a bit-field, or
+ // in an array-bound) - in which case we still want to return the
+ // lexically containing DC (which could be a nested class).
+ if (isa<FunctionDecl>(DC) && !isLambdaCallOperator(DC)) {
+ DC = DC->getLexicalParent();
+
+ // A function not defined within a class will always return to its
+ // lexical context.
+ if (!isa<CXXRecordDecl>(DC))
+ return DC;
+
+ // A C++ inline method/friend is parsed *after* the topmost class
+ // it was declared in is fully parsed ("complete"); the topmost
+ // class is the context we need to return to.
+ while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
+ DC = RD;
+
+ // Return the declaration context of the topmost class the inline method is
+ // declared in.
+ return DC;
+ }
+
+ return DC->getLexicalParent();
+}
+
+void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
+ assert(getContainingDC(DC) == CurContext &&
+ "The next DeclContext should be lexically contained in the current one.");
+ CurContext = DC;
+ S->setEntity(DC);
+}
+
+void Sema::PopDeclContext() {
+ assert(CurContext && "DeclContext imbalance!");
+
+ CurContext = getContainingDC(CurContext);
+ assert(CurContext && "Popped translation unit!");
+}
+
+/// EnterDeclaratorContext - Used when we must lookup names in the context
+/// of a declarator's nested name specifier.
+///
+void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
+ // C++0x [basic.lookup.unqual]p13:
+ // A name used in the definition of a static data member of class
+ // X (after the qualified-id of the static member) is looked up as
+ // if the name was used in a member function of X.
+ // C++0x [basic.lookup.unqual]p14:
+ // If a variable member of a namespace is defined outside of the
+ // scope of its namespace then any name used in the definition of
+ // the variable member (after the declarator-id) is looked up as
+ // if the definition of the variable member occurred in its
+ // namespace.
+ // Both of these imply that we should push a scope whose context
+ // is the semantic context of the declaration. We can't use
+ // PushDeclContext here because that context is not necessarily
+ // lexically contained in the current context. Fortunately,
+ // the containing scope should have the appropriate information.
+
+ assert(!S->getEntity() && "scope already has entity");
+
+#ifndef NDEBUG
+ Scope *Ancestor = S->getParent();
+ while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
+ assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
+#endif
+
+ CurContext = DC;
+ S->setEntity(DC);
+}
+
+void Sema::ExitDeclaratorContext(Scope *S) {
+ assert(S->getEntity() == CurContext && "Context imbalance!");
+
+ // Switch back to the lexical context. The safety of this is
+ // enforced by an assert in EnterDeclaratorContext.
+ Scope *Ancestor = S->getParent();
+ while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
+ CurContext = Ancestor->getEntity();
+
+ // We don't need to do anything with the scope, which is going to
+ // disappear.
+}
+
+
+void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
+ FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
+ if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
+ // We assume that the caller has already called
+ // ActOnReenterTemplateScope
+ FD = TFD->getTemplatedDecl();
+ }
+ if (!FD)
+ return;
+
+ // Same implementation as PushDeclContext, but enters the context
+ // from the lexical parent, rather than the top-level class.
+ assert(CurContext == FD->getLexicalParent() &&
+ "The next DeclContext should be lexically contained in the current one.");
+ CurContext = FD;
+ S->setEntity(CurContext);
+
+ for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
+ ParmVarDecl *Param = FD->getParamDecl(P);
+ // If the parameter has an identifier, then add it to the scope
+ if (Param->getIdentifier()) {
+ S->AddDecl(Param);
+ IdResolver.AddDecl(Param);
+ }
+ }
+}
+
+
+void Sema::ActOnExitFunctionContext() {
+ // Same implementation as PopDeclContext, but returns to the lexical parent,
+ // rather than the top-level class.
+ assert(CurContext && "DeclContext imbalance!");
+ CurContext = CurContext->getLexicalParent();
+ assert(CurContext && "Popped translation unit!");
+}
+
+
+/// \brief Determine whether we allow overloading of the function
+/// PrevDecl with another declaration.
+///
+/// This routine determines whether overloading is possible, not
+/// whether some new function is actually an overload. It will return
+/// true in C++ (where we can always provide overloads) or, as an
+/// extension, in C when the previous function is already an
+/// overloaded function declaration or has the "overloadable"
+/// attribute.
+static bool AllowOverloadingOfFunction(LookupResult &Previous,
+ ASTContext &Context) {
+ if (Context.getLangOpts().CPlusPlus)
+ return true;
+
+ if (Previous.getResultKind() == LookupResult::FoundOverloaded)
+ return true;
+
+ return (Previous.getResultKind() == LookupResult::Found
+ && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
+}
+
+/// Add this decl to the scope shadowed decl chains.
+void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
+ // Move up the scope chain until we find the nearest enclosing
+ // non-transparent context. The declaration will be introduced into this
+ // scope.
+ while (S->getEntity() && S->getEntity()->isTransparentContext())
+ S = S->getParent();
+
+ // Add scoped declarations into their context, so that they can be
+ // found later. Declarations without a context won't be inserted
+ // into any context.
+ if (AddToContext)
+ CurContext->addDecl(D);
+
+ // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
+ // are function-local declarations.
+ if (getLangOpts().CPlusPlus && D->isOutOfLine() &&
+ !D->getDeclContext()->getRedeclContext()->Equals(
+ D->getLexicalDeclContext()->getRedeclContext()) &&
+ !D->getLexicalDeclContext()->isFunctionOrMethod())
+ return;
+
+ // Template instantiations should also not be pushed into scope.
+ if (isa<FunctionDecl>(D) &&
+ cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
+ return;
+
+ // If this replaces anything in the current scope,
+ IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
+ IEnd = IdResolver.end();
+ for (; I != IEnd; ++I) {
+ if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
+ S->RemoveDecl(*I);
+ IdResolver.RemoveDecl(*I);
+
+ // Should only need to replace one decl.
+ break;
+ }
+ }
+
+ S->AddDecl(D);
+
+ if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
+ // Implicitly-generated labels may end up getting generated in an order that
+ // isn't strictly lexical, which breaks name lookup. Be careful to insert
+ // the label at the appropriate place in the identifier chain.
+ for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
+ DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
+ if (IDC == CurContext) {
+ if (!S->isDeclScope(*I))
+ continue;
+ } else if (IDC->Encloses(CurContext))
+ break;
+ }
+
+ IdResolver.InsertDeclAfter(I, D);
+ } else {
+ IdResolver.AddDecl(D);
+ }
+}
+
+void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
+ if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
+ TUScope->AddDecl(D);
+}
+
+bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
+ bool ExplicitInstantiationOrSpecialization) {
+ return IdResolver.isDeclInScope(D, Ctx, S,
+ ExplicitInstantiationOrSpecialization);
+}
+
+Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
+ DeclContext *TargetDC = DC->getPrimaryContext();
+ do {
+ if (DeclContext *ScopeDC = S->getEntity())
+ if (ScopeDC->getPrimaryContext() == TargetDC)
+ return S;
+ } while ((S = S->getParent()));
+
+ return 0;
+}
+
+static bool isOutOfScopePreviousDeclaration(NamedDecl *,
+ DeclContext*,
+ ASTContext&);
+
+/// Filters out lookup results that don't fall within the given scope
+/// as determined by isDeclInScope.
+void Sema::FilterLookupForScope(LookupResult &R,
+ DeclContext *Ctx, Scope *S,
+ bool ConsiderLinkage,
+ bool ExplicitInstantiationOrSpecialization) {
+ LookupResult::Filter F = R.makeFilter();
+ while (F.hasNext()) {
+ NamedDecl *D = F.next();
+
+ if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
+ continue;
+
+ if (ConsiderLinkage &&
+ isOutOfScopePreviousDeclaration(D, Ctx, Context))
+ continue;
+
+ F.erase();
+ }
+
+ F.done();
+}
+
+static bool isUsingDecl(NamedDecl *D) {
+ return isa<UsingShadowDecl>(D) ||
+ isa<UnresolvedUsingTypenameDecl>(D) ||
+ isa<UnresolvedUsingValueDecl>(D);
+}
+
+/// Removes using shadow declarations from the lookup results.
+static void RemoveUsingDecls(LookupResult &R) {
+ LookupResult::Filter F = R.makeFilter();
+ while (F.hasNext())
+ if (isUsingDecl(F.next()))
+ F.erase();
+
+ F.done();
+}
+
+/// \brief Check for this common pattern:
+/// @code
+/// class S {
+/// S(const S&); // DO NOT IMPLEMENT
+/// void operator=(const S&); // DO NOT IMPLEMENT
+/// };
+/// @endcode
+static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
+ // FIXME: Should check for private access too but access is set after we get
+ // the decl here.
+ if (D->doesThisDeclarationHaveABody())
+ return false;
+
+ if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
+ return CD->isCopyConstructor();
+ if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
+ return Method->isCopyAssignmentOperator();
+ return false;
+}
+
+// We need this to handle
+//
+// typedef struct {
+// void *foo() { return 0; }
+// } A;
+//
+// When we see foo we don't know if after the typedef we will get 'A' or '*A'
+// for example. If 'A', foo will have external linkage. If we have '*A',
+// foo will have no linkage. Since we can't know untill we get to the end
+// of the typedef, this function finds out if D might have non external linkage.
+// Callers should verify at the end of the TU if it D has external linkage or
+// not.
+bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
+ const DeclContext *DC = D->getDeclContext();
+ while (!DC->isTranslationUnit()) {
+ if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
+ if (!RD->hasNameForLinkage())
+ return true;
+ }
+ DC = DC->getParent();
+ }
+
+ return !D->isExternallyVisible();
+}
+
+// FIXME: This needs to be refactored; some other isInMainFile users want
+// these semantics.
+static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
+ if (S.TUKind != TU_Complete)
+ return false;
+ return S.SourceMgr.isInMainFile(Loc);
+}
+
+bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
+ assert(D);
+
+ if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
+ return false;
+
+ // Ignore class templates.
+ if (D->getDeclContext()->isDependentContext() ||
+ D->getLexicalDeclContext()->isDependentContext())
+ return false;
+
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
+ return false;
+
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
+ if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
+ return false;
+ } else {
+ // 'static inline' functions are defined in headers; don't warn.
+ if (FD->isInlineSpecified() &&
+ !isMainFileLoc(*this, FD->getLocation()))
+ return false;
+ }
+
+ if (FD->doesThisDeclarationHaveABody() &&
+ Context.DeclMustBeEmitted(FD))
+ return false;
+ } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
+ // Constants and utility variables are defined in headers with internal
+ // linkage; don't warn. (Unlike functions, there isn't a convenient marker
+ // like "inline".)
+ if (!isMainFileLoc(*this, VD->getLocation()))
+ return false;
+
+ if (Context.DeclMustBeEmitted(VD))
+ return false;
+
+ if (VD->isStaticDataMember() &&
+ VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
+ return false;
+ } else {
+ return false;
+ }
+
+ // Only warn for unused decls internal to the translation unit.
+ return mightHaveNonExternalLinkage(D);
+}
+
+void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
+ if (!D)
+ return;
+
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ const FunctionDecl *First = FD->getFirstDecl();
+ if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
+ return; // First should already be in the vector.
+ }
+
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
+ const VarDecl *First = VD->getFirstDecl();
+ if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
+ return; // First should already be in the vector.
+ }
+
+ if (ShouldWarnIfUnusedFileScopedDecl(D))
+ UnusedFileScopedDecls.push_back(D);
+}
+
+static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
+ if (D->isInvalidDecl())
+ return false;
+
+ if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
+ return false;
+
+ if (isa<LabelDecl>(D))
+ return true;
+
+ // White-list anything that isn't a local variable.
+ if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
+ !D->getDeclContext()->isFunctionOrMethod())
+ return false;
+
+ // Types of valid local variables should be complete, so this should succeed.
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
+
+ // White-list anything with an __attribute__((unused)) type.
+ QualType Ty = VD->getType();
+
+ // Only look at the outermost level of typedef.
+ if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
+ if (TT->getDecl()->hasAttr<UnusedAttr>())
+ return false;
+ }
+
+ // If we failed to complete the type for some reason, or if the type is
+ // dependent, don't diagnose the variable.
+ if (Ty->isIncompleteType() || Ty->isDependentType())
+ return false;
+
+ if (const TagType *TT = Ty->getAs<TagType>()) {
+ const TagDecl *Tag = TT->getDecl();
+ if (Tag->hasAttr<UnusedAttr>())
+ return false;
+
+ if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
+ if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
+ return false;
+
+ if (const Expr *Init = VD->getInit()) {
+ if (const ExprWithCleanups *Cleanups = dyn_cast<ExprWithCleanups>(Init))
+ Init = Cleanups->getSubExpr();
+ const CXXConstructExpr *Construct =
+ dyn_cast<CXXConstructExpr>(Init);
+ if (Construct && !Construct->isElidable()) {
+ CXXConstructorDecl *CD = Construct->getConstructor();
+ if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>())
+ return false;
+ }
+ }
+ }
+ }
+
+ // TODO: __attribute__((unused)) templates?
+ }
+
+ return true;
+}
+
+static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
+ FixItHint &Hint) {
+ if (isa<LabelDecl>(D)) {
+ SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
+ tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
+ if (AfterColon.isInvalid())
+ return;
+ Hint = FixItHint::CreateRemoval(CharSourceRange::
+ getCharRange(D->getLocStart(), AfterColon));
+ }
+ return;
+}
+
+/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
+/// unless they are marked attr(unused).
+void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
+ FixItHint Hint;
+ if (!ShouldDiagnoseUnusedDecl(D))
+ return;
+
+ GenerateFixForUnusedDecl(D, Context, Hint);
+
+ unsigned DiagID;
+ if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
+ DiagID = diag::warn_unused_exception_param;
+ else if (isa<LabelDecl>(D))
+ DiagID = diag::warn_unused_label;
+ else
+ DiagID = diag::warn_unused_variable;
+
+ Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
+}
+
+static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
+ // Verify that we have no forward references left. If so, there was a goto
+ // or address of a label taken, but no definition of it. Label fwd
+ // definitions are indicated with a null substmt.
+ if (L->getStmt() == 0)
+ S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
+}
+
+void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
+ if (S->decl_empty()) return;
+ assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
+ "Scope shouldn't contain decls!");
+
+ for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
+ I != E; ++I) {
+ Decl *TmpD = (*I);
+ assert(TmpD && "This decl didn't get pushed??");
+
+ assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
+ NamedDecl *D = cast<NamedDecl>(TmpD);
+
+ if (!D->getDeclName()) continue;
+
+ // Diagnose unused variables in this scope.
+ if (!S->hasUnrecoverableErrorOccurred())
+ DiagnoseUnusedDecl(D);
+
+ // If this was a forward reference to a label, verify it was defined.
+ if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
+ CheckPoppedLabel(LD, *this);
+
+ // Remove this name from our lexical scope.
+ IdResolver.RemoveDecl(D);
+ }
+ DiagnoseUnusedBackingIvarInAccessor(S);
+}
+
+void Sema::ActOnStartFunctionDeclarator() {
+ ++InFunctionDeclarator;
+}
+
+void Sema::ActOnEndFunctionDeclarator() {
+ assert(InFunctionDeclarator);
+ --InFunctionDeclarator;
+}
+
+/// \brief Look for an Objective-C class in the translation unit.
+///
+/// \param Id The name of the Objective-C class we're looking for. If
+/// typo-correction fixes this name, the Id will be updated
+/// to the fixed name.
+///
+/// \param IdLoc The location of the name in the translation unit.
+///
+/// \param DoTypoCorrection If true, this routine will attempt typo correction
+/// if there is no class with the given name.
+///
+/// \returns The declaration of the named Objective-C class, or NULL if the
+/// class could not be found.
+ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
+ SourceLocation IdLoc,
+ bool DoTypoCorrection) {
+ // The third "scope" argument is 0 since we aren't enabling lazy built-in
+ // creation from this context.
+ NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
+
+ if (!IDecl && DoTypoCorrection) {
+ // Perform typo correction at the given location, but only if we
+ // find an Objective-C class name.
+ DeclFilterCCC<ObjCInterfaceDecl> Validator;
+ if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
+ LookupOrdinaryName, TUScope, NULL,
+ Validator)) {
+ diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
+ IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
+ Id = IDecl->getIdentifier();
+ }
+ }
+ ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
+ // This routine must always return a class definition, if any.
+ if (Def && Def->getDefinition())
+ Def = Def->getDefinition();
+ return Def;
+}
+
+/// getNonFieldDeclScope - Retrieves the innermost scope, starting
+/// from S, where a non-field would be declared. This routine copes
+/// with the difference between C and C++ scoping rules in structs and
+/// unions. For example, the following code is well-formed in C but
+/// ill-formed in C++:
+/// @code
+/// struct S6 {
+/// enum { BAR } e;
+/// };
+///
+/// void test_S6() {
+/// struct S6 a;
+/// a.e = BAR;
+/// }
+/// @endcode
+/// For the declaration of BAR, this routine will return a different
+/// scope. The scope S will be the scope of the unnamed enumeration
+/// within S6. In C++, this routine will return the scope associated
+/// with S6, because the enumeration's scope is a transparent
+/// context but structures can contain non-field names. In C, this
+/// routine will return the translation unit scope, since the
+/// enumeration's scope is a transparent context and structures cannot
+/// contain non-field names.
+Scope *Sema::getNonFieldDeclScope(Scope *S) {
+ while (((S->getFlags() & Scope::DeclScope) == 0) ||
+ (S->getEntity() && S->getEntity()->isTransparentContext()) ||
+ (S->isClassScope() && !getLangOpts().CPlusPlus))
+ S = S->getParent();
+ return S;
+}
+
+/// \brief Looks up the declaration of "struct objc_super" and
+/// saves it for later use in building builtin declaration of
+/// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
+/// pre-existing declaration exists no action takes place.
+static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
+ IdentifierInfo *II) {
+ if (!II->isStr("objc_msgSendSuper"))
+ return;
+ ASTContext &Context = ThisSema.Context;
+
+ LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
+ SourceLocation(), Sema::LookupTagName);
+ ThisSema.LookupName(Result, S);
+ if (Result.getResultKind() == LookupResult::Found)
+ if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
+ Context.setObjCSuperType(Context.getTagDeclType(TD));
+}
+
+/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
+/// file scope. lazily create a decl for it. ForRedeclaration is true
+/// if we're creating this built-in in anticipation of redeclaring the
+/// built-in.
+NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
+ Scope *S, bool ForRedeclaration,
+ SourceLocation Loc) {
+ LookupPredefedObjCSuperType(*this, S, II);
+
+ Builtin::ID BID = (Builtin::ID)bid;
+
+ ASTContext::GetBuiltinTypeError Error;
+ QualType R = Context.GetBuiltinType(BID, Error);
+ switch (Error) {
+ case ASTContext::GE_None:
+ // Okay
+ break;
+
+ case ASTContext::GE_Missing_stdio:
+ if (ForRedeclaration)
+ Diag(Loc, diag::warn_implicit_decl_requires_stdio)
+ << Context.BuiltinInfo.GetName(BID);
+ return 0;
+
+ case ASTContext::GE_Missing_setjmp:
+ if (ForRedeclaration)
+ Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
+ << Context.BuiltinInfo.GetName(BID);
+ return 0;
+
+ case ASTContext::GE_Missing_ucontext:
+ if (ForRedeclaration)
+ Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
+ << Context.BuiltinInfo.GetName(BID);
+ return 0;
+ }
+
+ if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
+ Diag(Loc, diag::ext_implicit_lib_function_decl)
+ << Context.BuiltinInfo.GetName(BID)
+ << R;
+ if (Context.BuiltinInfo.getHeaderName(BID) &&
+ Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
+ != DiagnosticsEngine::Ignored)
+ Diag(Loc, diag::note_please_include_header)
+ << Context.BuiltinInfo.getHeaderName(BID)
+ << Context.BuiltinInfo.GetName(BID);
+ }
+
+ DeclContext *Parent = Context.getTranslationUnitDecl();
+ if (getLangOpts().CPlusPlus) {
+ LinkageSpecDecl *CLinkageDecl =
+ LinkageSpecDecl::Create(Context, Parent, Loc, Loc,
+ LinkageSpecDecl::lang_c, false);
+ Parent->addDecl(CLinkageDecl);
+ Parent = CLinkageDecl;
+ }
+
+ FunctionDecl *New = FunctionDecl::Create(Context,
+ Parent,
+ Loc, Loc, II, R, /*TInfo=*/0,
+ SC_Extern,
+ false,
+ /*hasPrototype=*/true);
+ New->setImplicit();
+
+ // Create Decl objects for each parameter, adding them to the
+ // FunctionDecl.
+ if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
+ SmallVector<ParmVarDecl*, 16> Params;
+ for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
+ ParmVarDecl *parm =
+ ParmVarDecl::Create(Context, New, SourceLocation(),
+ SourceLocation(), 0,
+ FT->getArgType(i), /*TInfo=*/0,
+ SC_None, 0);
+ parm->setScopeInfo(0, i);
+ Params.push_back(parm);
+ }
+ New->setParams(Params);
+ }
+
+ AddKnownFunctionAttributes(New);
+ RegisterLocallyScopedExternCDecl(New, S);
+
+ // TUScope is the translation-unit scope to insert this function into.
+ // FIXME: This is hideous. We need to teach PushOnScopeChains to
+ // relate Scopes to DeclContexts, and probably eliminate CurContext
+ // entirely, but we're not there yet.
+ DeclContext *SavedContext = CurContext;
+ CurContext = Parent;
+ PushOnScopeChains(New, TUScope);
+ CurContext = SavedContext;
+ return New;
+}
+
+/// \brief Filter out any previous declarations that the given declaration
+/// should not consider because they are not permitted to conflict, e.g.,
+/// because they come from hidden sub-modules and do not refer to the same
+/// entity.
+static void filterNonConflictingPreviousDecls(ASTContext &context,
+ NamedDecl *decl,
+ LookupResult &previous){
+ // This is only interesting when modules are enabled.
+ if (!context.getLangOpts().Modules)
+ return;
+
+ // Empty sets are uninteresting.
+ if (previous.empty())
+ return;
+
+ LookupResult::Filter filter = previous.makeFilter();
+ while (filter.hasNext()) {
+ NamedDecl *old = filter.next();
+
+ // Non-hidden declarations are never ignored.
+ if (!old->isHidden())
+ continue;
+
+ if (!old->isExternallyVisible())
+ filter.erase();
+ }
+
+ filter.done();
+}
+
+bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
+ QualType OldType;
+ if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
+ OldType = OldTypedef->getUnderlyingType();
+ else
+ OldType = Context.getTypeDeclType(Old);
+ QualType NewType = New->getUnderlyingType();
+
+ if (NewType->isVariablyModifiedType()) {
+ // Must not redefine a typedef with a variably-modified type.
+ int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
+ Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
+ << Kind << NewType;
+ if (Old->getLocation().isValid())
+ Diag(Old->getLocation(), diag::note_previous_definition);
+ New->setInvalidDecl();
+ return true;
+ }
+
+ if (OldType != NewType &&
+ !OldType->isDependentType() &&
+ !NewType->isDependentType() &&
+ !Context.hasSameType(OldType, NewType)) {
+ int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
+ Diag(New->getLocation(), diag::err_redefinition_different_typedef)
+ << Kind << NewType << OldType;
+ if (Old->getLocation().isValid())
+ Diag(Old->getLocation(), diag::note_previous_definition);
+ New->setInvalidDecl();
+ return true;
+ }
+ return false;
+}
+
+/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
+/// same name and scope as a previous declaration 'Old'. Figure out
+/// how to resolve this situation, merging decls or emitting
+/// diagnostics as appropriate. If there was an error, set New to be invalid.
+///
+void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
+ // If the new decl is known invalid already, don't bother doing any
+ // merging checks.
+ if (New->isInvalidDecl()) return;
+
+ // Allow multiple definitions for ObjC built-in typedefs.
+ // FIXME: Verify the underlying types are equivalent!
+ if (getLangOpts().ObjC1) {
+ const IdentifierInfo *TypeID = New->getIdentifier();
+ switch (TypeID->getLength()) {
+ default: break;
+ case 2:
+ {
+ if (!TypeID->isStr("id"))
+ break;
+ QualType T = New->getUnderlyingType();
+ if (!T->isPointerType())
+ break;
+ if (!T->isVoidPointerType()) {
+ QualType PT = T->getAs<PointerType>()->getPointeeType();
+ if (!PT->isStructureType())
+ break;
+ }
+ Context.setObjCIdRedefinitionType(T);
+ // Install the built-in type for 'id', ignoring the current definition.
+ New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
+ return;
+ }
+ case 5:
+ if (!TypeID->isStr("Class"))
+ break;
+ Context.setObjCClassRedefinitionType(New->getUnderlyingType());
+ // Install the built-in type for 'Class', ignoring the current definition.
+ New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
+ return;
+ case 3:
+ if (!TypeID->isStr("SEL"))
+ break;
+ Context.setObjCSelRedefinitionType(New->getUnderlyingType());
+ // Install the built-in type for 'SEL', ignoring the current definition.
+ New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
+ return;
+ }
+ // Fall through - the typedef name was not a builtin type.
+ }
+
+ // Verify the old decl was also a type.
+ TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
+ if (!Old) {
+ Diag(New->getLocation(), diag::err_redefinition_different_kind)
+ << New->getDeclName();
+
+ NamedDecl *OldD = OldDecls.getRepresentativeDecl();
+ if (OldD->getLocation().isValid())
+ Diag(OldD->getLocation(), diag::note_previous_definition);
+
+ return New->setInvalidDecl();
+ }
+
+ // If the old declaration is invalid, just give up here.
+ if (Old->isInvalidDecl())
+ return New->setInvalidDecl();
+
+ // If the typedef types are not identical, reject them in all languages and
+ // with any extensions enabled.
+ if (isIncompatibleTypedef(Old, New))
+ return;
+
+ // The types match. Link up the redeclaration chain and merge attributes if
+ // the old declaration was a typedef.
+ if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
+ New->setPreviousDecl(Typedef);
+ mergeDeclAttributes(New, Old);
+ }
+
+ if (getLangOpts().MicrosoftExt)
+ return;
+
+ if (getLangOpts().CPlusPlus) {
+ // C++ [dcl.typedef]p2:
+ // In a given non-class scope, a typedef specifier can be used to
+ // redefine the name of any type declared in that scope to refer
+ // to the type to which it already refers.
+ if (!isa<CXXRecordDecl>(CurContext))
+ return;
+
+ // C++0x [dcl.typedef]p4:
+ // In a given class scope, a typedef specifier can be used to redefine
+ // any class-name declared in that scope that is not also a typedef-name
+ // to refer to the type to which it already refers.
+ //
+ // This wording came in via DR424, which was a correction to the
+ // wording in DR56, which accidentally banned code like:
+ //
+ // struct S {
+ // typedef struct A { } A;
+ // };
+ //
+ // in the C++03 standard. We implement the C++0x semantics, which
+ // allow the above but disallow
+ //
+ // struct S {
+ // typedef int I;
+ // typedef int I;
+ // };
+ //
+ // since that was the intent of DR56.
+ if (!isa<TypedefNameDecl>(Old))
+ return;
+
+ Diag(New->getLocation(), diag::err_redefinition)
+ << New->getDeclName();
+ Diag(Old->getLocation(), diag::note_previous_definition);
+ return New->setInvalidDecl();
+ }
+
+ // Modules always permit redefinition of typedefs, as does C11.
+ if (getLangOpts().Modules || getLangOpts().C11)
+ return;
+
+ // If we have a redefinition of a typedef in C, emit a warning. This warning
+ // is normally mapped to an error, but can be controlled with
+ // -Wtypedef-redefinition. If either the original or the redefinition is
+ // in a system header, don't emit this for compatibility with GCC.
+ if (getDiagnostics().getSuppressSystemWarnings() &&
+ (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
+ Context.getSourceManager().isInSystemHeader(New->getLocation())))
+ return;
+
+ Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
+ << New->getDeclName();
+ Diag(Old->getLocation(), diag::note_previous_definition);
+ return;
+}
+
+/// DeclhasAttr - returns true if decl Declaration already has the target
+/// attribute.
+static bool
+DeclHasAttr(const Decl *D, const Attr *A) {
+ // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
+ // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
+ // responsible for making sure they are consistent.
+ const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
+ if (AA)
+ return false;
+
+ // The following thread safety attributes can also be duplicated.
+ switch (A->getKind()) {
+ case attr::ExclusiveLocksRequired:
+ case attr::SharedLocksRequired:
+ case attr::LocksExcluded:
+ case attr::ExclusiveLockFunction:
+ case attr::SharedLockFunction:
+ case attr::UnlockFunction:
+ case attr::ExclusiveTrylockFunction:
+ case attr::SharedTrylockFunction:
+ case attr::GuardedBy:
+ case attr::PtGuardedBy:
+ case attr::AcquiredBefore:
+ case attr::AcquiredAfter:
+ return false;
+ default:
+ ;
+ }
+
+ const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
+ const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
+ for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
+ if ((*i)->getKind() == A->getKind()) {
+ if (Ann) {
+ if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
+ return true;
+ continue;
+ }
+ // FIXME: Don't hardcode this check
+ if (OA && isa<OwnershipAttr>(*i))
+ return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
+ return true;
+ }
+
+ return false;
+}
+
+static bool isAttributeTargetADefinition(Decl *D) {
+ if (VarDecl *VD = dyn_cast<VarDecl>(D))
+ return VD->isThisDeclarationADefinition();
+ if (TagDecl *TD = dyn_cast<TagDecl>(D))
+ return TD->isCompleteDefinition() || TD->isBeingDefined();
+ return true;
+}
+
+/// Merge alignment attributes from \p Old to \p New, taking into account the
+/// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
+///
+/// \return \c true if any attributes were added to \p New.
+static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
+ // Look for alignas attributes on Old, and pick out whichever attribute
+ // specifies the strictest alignment requirement.
+ AlignedAttr *OldAlignasAttr = 0;
+ AlignedAttr *OldStrictestAlignAttr = 0;
+ unsigned OldAlign = 0;
+ for (specific_attr_iterator<AlignedAttr>
+ I = Old->specific_attr_begin<AlignedAttr>(),
+ E = Old->specific_attr_end<AlignedAttr>(); I != E; ++I) {
+ // FIXME: We have no way of representing inherited dependent alignments
+ // in a case like:
+ // template<int A, int B> struct alignas(A) X;
+ // template<int A, int B> struct alignas(B) X {};
+ // For now, we just ignore any alignas attributes which are not on the
+ // definition in such a case.
+ if (I->isAlignmentDependent())
+ return false;
+
+ if (I->isAlignas())
+ OldAlignasAttr = *I;
+
+ unsigned Align = I->getAlignment(S.Context);
+ if (Align > OldAlign) {
+ OldAlign = Align;
+ OldStrictestAlignAttr = *I;
+ }
+ }
+
+ // Look for alignas attributes on New.
+ AlignedAttr *NewAlignasAttr = 0;
+ unsigned NewAlign = 0;
+ for (specific_attr_iterator<AlignedAttr>
+ I = New->specific_attr_begin<AlignedAttr>(),
+ E = New->specific_attr_end<AlignedAttr>(); I != E; ++I) {
+ if (I->isAlignmentDependent())
+ return false;
+
+ if (I->isAlignas())
+ NewAlignasAttr = *I;
+
+ unsigned Align = I->getAlignment(S.Context);
+ if (Align > NewAlign)
+ NewAlign = Align;
+ }
+
+ if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
+ // Both declarations have 'alignas' attributes. We require them to match.
+ // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
+ // fall short. (If two declarations both have alignas, they must both match
+ // every definition, and so must match each other if there is a definition.)
+
+ // If either declaration only contains 'alignas(0)' specifiers, then it
+ // specifies the natural alignment for the type.
+ if (OldAlign == 0 || NewAlign == 0) {
+ QualType Ty;
+ if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
+ Ty = VD->getType();
+ else
+ Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
+
+ if (OldAlign == 0)
+ OldAlign = S.Context.getTypeAlign(Ty);
+ if (NewAlign == 0)
+ NewAlign = S.Context.getTypeAlign(Ty);
+ }
+
+ if (OldAlign != NewAlign) {
+ S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
+ << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
+ << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
+ S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
+ }
+ }
+
+ if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
+ // C++11 [dcl.align]p6:
+ // if any declaration of an entity has an alignment-specifier,
+ // every defining declaration of that entity shall specify an
+ // equivalent alignment.
+ // C11 6.7.5/7:
+ // If the definition of an object does not have an alignment
+ // specifier, any other declaration of that object shall also
+ // have no alignment specifier.
+ S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
+ << OldAlignasAttr->isC11();
+ S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
+ << OldAlignasAttr->isC11();
+ }
+
+ bool AnyAdded = false;
+
+ // Ensure we have an attribute representing the strictest alignment.
+ if (OldAlign > NewAlign) {
+ AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
+ Clone->setInherited(true);
+ New->addAttr(Clone);
+ AnyAdded = true;
+ }
+
+ // Ensure we have an alignas attribute if the old declaration had one.
+ if (OldAlignasAttr && !NewAlignasAttr &&
+ !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
+ AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
+ Clone->setInherited(true);
+ New->addAttr(Clone);
+ AnyAdded = true;
+ }
+
+ return AnyAdded;
+}
+
+static bool mergeDeclAttribute(Sema &S, NamedDecl *D, InheritableAttr *Attr,
+ bool Override) {
+ InheritableAttr *NewAttr = NULL;
+ unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
+ if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
+ NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
+ AA->getIntroduced(), AA->getDeprecated(),
+ AA->getObsoleted(), AA->getUnavailable(),
+ AA->getMessage(), Override,
+ AttrSpellingListIndex);
+ else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
+ NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
+ AttrSpellingListIndex);
+ else if (TypeVisibilityAttr *VA = dyn_cast<TypeVisibilityAttr>(Attr))
+ NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
+ AttrSpellingListIndex);
+ else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
+ NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
+ AttrSpellingListIndex);
+ else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
+ NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
+ AttrSpellingListIndex);
+ else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
+ NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
+ FA->getFormatIdx(), FA->getFirstArg(),
+ AttrSpellingListIndex);
+ else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
+ NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
+ AttrSpellingListIndex);
+ else if (isa<AlignedAttr>(Attr))
+ // AlignedAttrs are handled separately, because we need to handle all
+ // such attributes on a declaration at the same time.
+ NewAttr = 0;
+ else if (!DeclHasAttr(D, Attr))
+ NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
+
+ if (NewAttr) {
+ NewAttr->setInherited(true);
+ D->addAttr(NewAttr);
+ return true;
+ }
+
+ return false;
+}
+
+static const Decl *getDefinition(const Decl *D) {
+ if (const TagDecl *TD = dyn_cast<TagDecl>(D))
+ return TD->getDefinition();
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
+ const VarDecl *Def = VD->getDefinition();
+ if (Def)
+ return Def;
+ return VD->getActingDefinition();
+ }
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ const FunctionDecl* Def;
+ if (FD->isDefined(Def))
+ return Def;
+ }
+ return NULL;
+}
+
+static bool hasAttribute(const Decl *D, attr::Kind Kind) {
+ for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
+ I != E; ++I) {
+ Attr *Attribute = *I;
+ if (Attribute->getKind() == Kind)
+ return true;
+ }
+ return false;
+}
+
+/// checkNewAttributesAfterDef - If we already have a definition, check that
+/// there are no new attributes in this declaration.
+static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
+ if (!New->hasAttrs())
+ return;
+
+ const Decl *Def = getDefinition(Old);
+ if (!Def || Def == New)
+ return;
+
+ AttrVec &NewAttributes = New->getAttrs();
+ for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
+ const Attr *NewAttribute = NewAttributes[I];
+
+ if (isa<AliasAttr>(NewAttribute)) {
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New))
+ S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def));
+ else {
+ VarDecl *VD = cast<VarDecl>(New);
+ unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
+ VarDecl::TentativeDefinition
+ ? diag::err_alias_after_tentative
+ : diag::err_redefinition;
+ S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
+ S.Diag(Def->getLocation(), diag::note_previous_definition);
+ VD->setInvalidDecl();
+ }
+ ++I;
+ continue;
+ }
+
+ if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
+ // Tentative definitions are only interesting for the alias check above.
+ if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
+ ++I;
+ continue;
+ }
+ }
+
+ if (hasAttribute(Def, NewAttribute->getKind())) {
+ ++I;
+ continue; // regular attr merging will take care of validating this.
+ }
+
+ if (isa<C11NoReturnAttr>(NewAttribute)) {
+ // C's _Noreturn is allowed to be added to a function after it is defined.
+ ++I;
+ continue;
+ } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
+ if (AA->isAlignas()) {
+ // C++11 [dcl.align]p6:
+ // if any declaration of an entity has an alignment-specifier,
+ // every defining declaration of that entity shall specify an
+ // equivalent alignment.
+ // C11 6.7.5/7:
+ // If the definition of an object does not have an alignment
+ // specifier, any other declaration of that object shall also
+ // have no alignment specifier.
+ S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
+ << AA->isC11();
+ S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
+ << AA->isC11();
+ NewAttributes.erase(NewAttributes.begin() + I);
+ --E;
+ continue;
+ }
+ }
+
+ S.Diag(NewAttribute->getLocation(),
+ diag::warn_attribute_precede_definition);
+ S.Diag(Def->getLocation(), diag::note_previous_definition);
+ NewAttributes.erase(NewAttributes.begin() + I);
+ --E;
+ }
+}
+
+/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
+void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
+ AvailabilityMergeKind AMK) {
+ if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
+ UsedAttr *NewAttr = OldAttr->clone(Context);
+ NewAttr->setInherited(true);
+ New->addAttr(NewAttr);
+ }
+
+ if (!Old->hasAttrs() && !New->hasAttrs())
+ return;
+
+ // attributes declared post-definition are currently ignored
+ checkNewAttributesAfterDef(*this, New, Old);
+
+ if (!Old->hasAttrs())
+ return;
+
+ bool foundAny = New->hasAttrs();
+
+ // Ensure that any moving of objects within the allocated map is done before
+ // we process them.
+ if (!foundAny) New->setAttrs(AttrVec());
+
+ for (specific_attr_iterator<InheritableAttr>
+ i = Old->specific_attr_begin<InheritableAttr>(),
+ e = Old->specific_attr_end<InheritableAttr>();
+ i != e; ++i) {
+ bool Override = false;
+ // Ignore deprecated/unavailable/availability attributes if requested.
+ if (isa<DeprecatedAttr>(*i) ||
+ isa<UnavailableAttr>(*i) ||
+ isa<AvailabilityAttr>(*i)) {
+ switch (AMK) {
+ case AMK_None:
+ continue;
+
+ case AMK_Redeclaration:
+ break;
+
+ case AMK_Override:
+ Override = true;
+ break;
+ }
+ }
+
+ // Already handled.
+ if (isa<UsedAttr>(*i))
+ continue;
+
+ if (mergeDeclAttribute(*this, New, *i, Override))
+ foundAny = true;
+ }
+
+ if (mergeAlignedAttrs(*this, New, Old))
+ foundAny = true;
+
+ if (!foundAny) New->dropAttrs();
+}
+
+/// mergeParamDeclAttributes - Copy attributes from the old parameter
+/// to the new one.
+static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
+ const ParmVarDecl *oldDecl,
+ Sema &S) {
+ // C++11 [dcl.attr.depend]p2:
+ // The first declaration of a function shall specify the
+ // carries_dependency attribute for its declarator-id if any declaration
+ // of the function specifies the carries_dependency attribute.
+ if (newDecl->hasAttr<CarriesDependencyAttr>() &&
+ !oldDecl->hasAttr<CarriesDependencyAttr>()) {
+ S.Diag(newDecl->getAttr<CarriesDependencyAttr>()->getLocation(),
+ diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
+ // Find the first declaration of the parameter.
+ // FIXME: Should we build redeclaration chains for function parameters?
+ const FunctionDecl *FirstFD =
+ cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
+ const ParmVarDecl *FirstVD =
+ FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
+ S.Diag(FirstVD->getLocation(),
+ diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
+ }
+
+ if (!oldDecl->hasAttrs())
+ return;
+
+ bool foundAny = newDecl->hasAttrs();
+
+ // Ensure that any moving of objects within the allocated map is
+ // done before we process them.
+ if (!foundAny) newDecl->setAttrs(AttrVec());
+
+ for (specific_attr_iterator<InheritableParamAttr>
+ i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
+ e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
+ if (!DeclHasAttr(newDecl, *i)) {
+ InheritableAttr *newAttr =
+ cast<InheritableParamAttr>((*i)->clone(S.Context));
+ newAttr->setInherited(true);
+ newDecl->addAttr(newAttr);
+ foundAny = true;
+ }
+ }
+
+ if (!foundAny) newDecl->dropAttrs();
+}
+
+namespace {
+
+/// Used in MergeFunctionDecl to keep track of function parameters in
+/// C.
+struct GNUCompatibleParamWarning {
+ ParmVarDecl *OldParm;
+ ParmVarDecl *NewParm;
+ QualType PromotedType;
+};
+
+}
+
+/// getSpecialMember - get the special member enum for a method.
+Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
+ if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
+ if (Ctor->isDefaultConstructor())
+ return Sema::CXXDefaultConstructor;
+
+ if (Ctor->isCopyConstructor())
+ return Sema::CXXCopyConstructor;
+
+ if (Ctor->isMoveConstructor())
+ return Sema::CXXMoveConstructor;
+ } else if (isa<CXXDestructorDecl>(MD)) {
+ return Sema::CXXDestructor;
+ } else if (MD->isCopyAssignmentOperator()) {
+ return Sema::CXXCopyAssignment;
+ } else if (MD->isMoveAssignmentOperator()) {
+ return Sema::CXXMoveAssignment;
+ }
+
+ return Sema::CXXInvalid;
+}
+
+/// canRedefineFunction - checks if a function can be redefined. Currently,
+/// only extern inline functions can be redefined, and even then only in
+/// GNU89 mode.
+static bool canRedefineFunction(const FunctionDecl *FD,
+ const LangOptions& LangOpts) {
+ return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
+ !LangOpts.CPlusPlus &&
+ FD->isInlineSpecified() &&
+ FD->getStorageClass() == SC_Extern);
+}
+
+const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
+ const AttributedType *AT = T->getAs<AttributedType>();
+ while (AT && !AT->isCallingConv())
+ AT = AT->getModifiedType()->getAs<AttributedType>();
+ return AT;
+}
+
+template <typename T>
+static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
+ const DeclContext *DC = Old->getDeclContext();
+ if (DC->isRecord())
+ return false;
+
+ LanguageLinkage OldLinkage = Old->getLanguageLinkage();
+ if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
+ return true;
+ if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
+ return true;
+ return false;
+}
+
+/// MergeFunctionDecl - We just parsed a function 'New' from
+/// declarator D which has the same name and scope as a previous
+/// declaration 'Old'. Figure out how to resolve this situation,
+/// merging decls or emitting diagnostics as appropriate.
+///
+/// In C++, New and Old must be declarations that are not
+/// overloaded. Use IsOverload to determine whether New and Old are
+/// overloaded, and to select the Old declaration that New should be
+/// merged with.
+///
+/// Returns true if there was an error, false otherwise.
+bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S,
+ bool MergeTypeWithOld) {
+ // Verify the old decl was also a function.
+ FunctionDecl *Old = 0;
+ if (FunctionTemplateDecl *OldFunctionTemplate
+ = dyn_cast<FunctionTemplateDecl>(OldD))
+ Old = OldFunctionTemplate->getTemplatedDecl();
+ else
+ Old = dyn_cast<FunctionDecl>(OldD);
+ if (!Old) {
+ if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
+ if (New->getFriendObjectKind()) {
+ Diag(New->getLocation(), diag::err_using_decl_friend);
+ Diag(Shadow->getTargetDecl()->getLocation(),
+ diag::note_using_decl_target);
+ Diag(Shadow->getUsingDecl()->getLocation(),
+ diag::note_using_decl) << 0;
+ return true;
+ }
+
+ Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
+ Diag(Shadow->getTargetDecl()->getLocation(),
+ diag::note_using_decl_target);
+ Diag(Shadow->getUsingDecl()->getLocation(),
+ diag::note_using_decl) << 0;
+ return true;
+ }
+
+ Diag(New->getLocation(), diag::err_redefinition_different_kind)
+ << New->getDeclName();
+ Diag(OldD->getLocation(), diag::note_previous_definition);
+ return true;
+ }
+
+ // If the old declaration is invalid, just give up here.
+ if (Old->isInvalidDecl())
+ return true;
+
+ // Determine whether the previous declaration was a definition,
+ // implicit declaration, or a declaration.
+ diag::kind PrevDiag;
+ if (Old->isThisDeclarationADefinition())
+ PrevDiag = diag::note_previous_definition;
+ else if (Old->isImplicit())
+ PrevDiag = diag::note_previous_implicit_declaration;
+ else
+ PrevDiag = diag::note_previous_declaration;
+
+ // Don't complain about this if we're in GNU89 mode and the old function
+ // is an extern inline function.
+ // Don't complain about specializations. They are not supposed to have
+ // storage classes.
+ if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
+ New->getStorageClass() == SC_Static &&
+ Old->hasExternalFormalLinkage() &&
+ !New->getTemplateSpecializationInfo() &&
+ !canRedefineFunction(Old, getLangOpts())) {
+ if (getLangOpts().MicrosoftExt) {
+ Diag(New->getLocation(), diag::warn_static_non_static) << New;
+ Diag(Old->getLocation(), PrevDiag);
+ } else {
+ Diag(New->getLocation(), diag::err_static_non_static) << New;
+ Diag(Old->getLocation(), PrevDiag);
+ return true;
+ }
+ }
+
+
+ // If a function is first declared with a calling convention, but is later
+ // declared or defined without one, all following decls assume the calling
+ // convention of the first.
+ //
+ // It's OK if a function is first declared without a calling convention,
+ // but is later declared or defined with the default calling convention.
+ //
+ // To test if either decl has an explicit calling convention, we look for
+ // AttributedType sugar nodes on the type as written. If they are missing or
+ // were canonicalized away, we assume the calling convention was implicit.
+ //
+ // Note also that we DO NOT return at this point, because we still have
+ // other tests to run.
+ QualType OldQType = Context.getCanonicalType(Old->getType());
+ QualType NewQType = Context.getCanonicalType(New->getType());
+ const FunctionType *OldType = cast<FunctionType>(OldQType);
+ const FunctionType *NewType = cast<FunctionType>(NewQType);
+ FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
+ FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
+ bool RequiresAdjustment = false;
+
+ if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
+ FunctionDecl *First = Old->getFirstDecl();
+ const FunctionType *FT =
+ First->getType().getCanonicalType()->castAs<FunctionType>();
+ FunctionType::ExtInfo FI = FT->getExtInfo();
+ bool NewCCExplicit = getCallingConvAttributedType(New->getType());
+ if (!NewCCExplicit) {
+ // Inherit the CC from the previous declaration if it was specified
+ // there but not here.
+ NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
+ RequiresAdjustment = true;
+ } else {
+ // Calling conventions aren't compatible, so complain.
+ bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
+ Diag(New->getLocation(), diag::err_cconv_change)
+ << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
+ << !FirstCCExplicit
+ << (!FirstCCExplicit ? "" :
+ FunctionType::getNameForCallConv(FI.getCC()));
+
+ // Put the note on the first decl, since it is the one that matters.
+ Diag(First->getLocation(), diag::note_previous_declaration);
+ return true;
+ }
+ }
+
+ // FIXME: diagnose the other way around?
+ if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
+ NewTypeInfo = NewTypeInfo.withNoReturn(true);
+ RequiresAdjustment = true;
+ }
+
+ // Merge regparm attribute.
+ if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
+ OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
+ if (NewTypeInfo.getHasRegParm()) {
+ Diag(New->getLocation(), diag::err_regparm_mismatch)
+ << NewType->getRegParmType()
+ << OldType->getRegParmType();
+ Diag(Old->getLocation(), diag::note_previous_declaration);
+ return true;
+ }
+
+ NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
+ RequiresAdjustment = true;
+ }
+
+ // Merge ns_returns_retained attribute.
+ if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
+ if (NewTypeInfo.getProducesResult()) {
+ Diag(New->getLocation(), diag::err_returns_retained_mismatch);
+ Diag(Old->getLocation(), diag::note_previous_declaration);
+ return true;
+ }
+
+ NewTypeInfo = NewTypeInfo.withProducesResult(true);
+ RequiresAdjustment = true;
+ }
+
+ if (RequiresAdjustment) {
+ const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
+ AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
+ New->setType(QualType(AdjustedType, 0));
+ NewQType = Context.getCanonicalType(New->getType());
+ NewType = cast<FunctionType>(NewQType);
+ }
+
+ // If this redeclaration makes the function inline, we may need to add it to
+ // UndefinedButUsed.
+ if (!Old->isInlined() && New->isInlined() &&
+ !New->hasAttr<GNUInlineAttr>() &&
+ (getLangOpts().CPlusPlus || !getLangOpts().GNUInline) &&
+ Old->isUsed(false) &&
+ !Old->isDefined() && !New->isThisDeclarationADefinition())
+ UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
+ SourceLocation()));
+
+ // If this redeclaration makes it newly gnu_inline, we don't want to warn
+ // about it.
+ if (New->hasAttr<GNUInlineAttr>() &&
+ Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
+ UndefinedButUsed.erase(Old->getCanonicalDecl());
+ }
+
+ if (getLangOpts().CPlusPlus) {
+ // (C++98 13.1p2):
+ // Certain function declarations cannot be overloaded:
+ // -- Function declarations that differ only in the return type
+ // cannot be overloaded.
+
+ // Go back to the type source info to compare the declared return types,
+ // per C++1y [dcl.type.auto]p13:
+ // Redeclarations or specializations of a function or function template
+ // with a declared return type that uses a placeholder type shall also
+ // use that placeholder, not a deduced type.
+ QualType OldDeclaredReturnType = (Old->getTypeSourceInfo()
+ ? Old->getTypeSourceInfo()->getType()->castAs<FunctionType>()
+ : OldType)->getResultType();
+ QualType NewDeclaredReturnType = (New->getTypeSourceInfo()
+ ? New->getTypeSourceInfo()->getType()->castAs<FunctionType>()
+ : NewType)->getResultType();
+ QualType ResQT;
+ if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
+ !((NewQType->isDependentType() || OldQType->isDependentType()) &&
+ New->isLocalExternDecl())) {
+ if (NewDeclaredReturnType->isObjCObjectPointerType() &&
+ OldDeclaredReturnType->isObjCObjectPointerType())
+ ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
+ if (ResQT.isNull()) {
+ if (New->isCXXClassMember() && New->isOutOfLine())
+ Diag(New->getLocation(),
+ diag::err_member_def_does_not_match_ret_type) << New;
+ else
+ Diag(New->getLocation(), diag::err_ovl_diff_return_type);
+ Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
+ return true;
+ }
+ else
+ NewQType = ResQT;
+ }
+
+ QualType OldReturnType = OldType->getResultType();
+ QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
+ if (OldReturnType != NewReturnType) {
+ // If this function has a deduced return type and has already been
+ // defined, copy the deduced value from the old declaration.
+ AutoType *OldAT = Old->getResultType()->getContainedAutoType();
+ if (OldAT && OldAT->isDeduced()) {
+ New->setType(
+ SubstAutoType(New->getType(),
+ OldAT->isDependentType() ? Context.DependentTy
+ : OldAT->getDeducedType()));
+ NewQType = Context.getCanonicalType(
+ SubstAutoType(NewQType,
+ OldAT->isDependentType() ? Context.DependentTy
+ : OldAT->getDeducedType()));
+ }
+ }
+
+ const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
+ CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
+ if (OldMethod && NewMethod) {
+ // Preserve triviality.
+ NewMethod->setTrivial(OldMethod->isTrivial());
+
+ // MSVC allows explicit template specialization at class scope:
+ // 2 CXMethodDecls referring to the same function will be injected.
+ // We don't want a redeclartion error.
+ bool IsClassScopeExplicitSpecialization =
+ OldMethod->isFunctionTemplateSpecialization() &&
+ NewMethod->isFunctionTemplateSpecialization();
+ bool isFriend = NewMethod->getFriendObjectKind();
+
+ if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
+ !IsClassScopeExplicitSpecialization) {
+ // -- Member function declarations with the same name and the
+ // same parameter types cannot be overloaded if any of them
+ // is a static member function declaration.
+ if (OldMethod->isStatic() != NewMethod->isStatic()) {
+ Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
+ Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
+ return true;
+ }
+
+ // C++ [class.mem]p1:
+ // [...] A member shall not be declared twice in the
+ // member-specification, except that a nested class or member
+ // class template can be declared and then later defined.
+ if (ActiveTemplateInstantiations.empty()) {
+ unsigned NewDiag;
+ if (isa<CXXConstructorDecl>(OldMethod))
+ NewDiag = diag::err_constructor_redeclared;
+ else if (isa<CXXDestructorDecl>(NewMethod))
+ NewDiag = diag::err_destructor_redeclared;
+ else if (isa<CXXConversionDecl>(NewMethod))
+ NewDiag = diag::err_conv_function_redeclared;
+ else
+ NewDiag = diag::err_member_redeclared;
+
+ Diag(New->getLocation(), NewDiag);
+ } else {
+ Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
+ << New << New->getType();
+ }
+ Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
+
+ // Complain if this is an explicit declaration of a special
+ // member that was initially declared implicitly.
+ //
+ // As an exception, it's okay to befriend such methods in order
+ // to permit the implicit constructor/destructor/operator calls.
+ } else if (OldMethod->isImplicit()) {
+ if (isFriend) {
+ NewMethod->setImplicit();
+ } else {
+ Diag(NewMethod->getLocation(),
+ diag::err_definition_of_implicitly_declared_member)
+ << New << getSpecialMember(OldMethod);
+ return true;
+ }
+ } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
+ Diag(NewMethod->getLocation(),
+ diag::err_definition_of_explicitly_defaulted_member)
+ << getSpecialMember(OldMethod);
+ return true;
+ }
+ }
+
+ // C++11 [dcl.attr.noreturn]p1:
+ // The first declaration of a function shall specify the noreturn
+ // attribute if any declaration of that function specifies the noreturn
+ // attribute.
+ if (New->hasAttr<CXX11NoReturnAttr>() &&
+ !Old->hasAttr<CXX11NoReturnAttr>()) {
+ Diag(New->getAttr<CXX11NoReturnAttr>()->getLocation(),
+ diag::err_noreturn_missing_on_first_decl);
+ Diag(Old->getFirstDecl()->getLocation(),
+ diag::note_noreturn_missing_first_decl);
+ }
+
+ // C++11 [dcl.attr.depend]p2:
+ // The first declaration of a function shall specify the
+ // carries_dependency attribute for its declarator-id if any declaration
+ // of the function specifies the carries_dependency attribute.
+ if (New->hasAttr<CarriesDependencyAttr>() &&
+ !Old->hasAttr<CarriesDependencyAttr>()) {
+ Diag(New->getAttr<CarriesDependencyAttr>()->getLocation(),
+ diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
+ Diag(Old->getFirstDecl()->getLocation(),
+ diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
+ }
+
+ // (C++98 8.3.5p3):
+ // All declarations for a function shall agree exactly in both the
+ // return type and the parameter-type-list.
+ // We also want to respect all the extended bits except noreturn.
+
+ // noreturn should now match unless the old type info didn't have it.
+ QualType OldQTypeForComparison = OldQType;
+ if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
+ assert(OldQType == QualType(OldType, 0));
+ const FunctionType *OldTypeForComparison
+ = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
+ OldQTypeForComparison = QualType(OldTypeForComparison, 0);
+ assert(OldQTypeForComparison.isCanonical());
+ }
+
+ if (haveIncompatibleLanguageLinkages(Old, New)) {
+ // As a special case, retain the language linkage from previous
+ // declarations of a friend function as an extension.
+ //
+ // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
+ // and is useful because there's otherwise no way to specify language
+ // linkage within class scope.
+ //
+ // Check cautiously as the friend object kind isn't yet complete.
+ if (New->getFriendObjectKind() != Decl::FOK_None) {
+ Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
+ Diag(Old->getLocation(), PrevDiag);
+ } else {
+ Diag(New->getLocation(), diag::err_different_language_linkage) << New;
+ Diag(Old->getLocation(), PrevDiag);
+ return true;
+ }
+ }
+
+ if (OldQTypeForComparison == NewQType)
+ return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
+
+ if ((NewQType->isDependentType() || OldQType->isDependentType()) &&
+ New->isLocalExternDecl()) {
+ // It's OK if we couldn't merge types for a local function declaraton
+ // if either the old or new type is dependent. We'll merge the types
+ // when we instantiate the function.
+ return false;
+ }
+
+ // Fall through for conflicting redeclarations and redefinitions.
+ }
+
+ // C: Function types need to be compatible, not identical. This handles
+ // duplicate function decls like "void f(int); void f(enum X);" properly.
+ if (!getLangOpts().CPlusPlus &&
+ Context.typesAreCompatible(OldQType, NewQType)) {
+ const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
+ const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
+ const FunctionProtoType *OldProto = 0;
+ if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
+ (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
+ // The old declaration provided a function prototype, but the
+ // new declaration does not. Merge in the prototype.
+ assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
+ SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
+ OldProto->arg_type_end());
+ NewQType = Context.getFunctionType(NewFuncType->getResultType(),
+ ParamTypes,
+ OldProto->getExtProtoInfo());
+ New->setType(NewQType);
+ New->setHasInheritedPrototype();
+
+ // Synthesize a parameter for each argument type.
+ SmallVector<ParmVarDecl*, 16> Params;
+ for (FunctionProtoType::arg_type_iterator
+ ParamType = OldProto->arg_type_begin(),
+ ParamEnd = OldProto->arg_type_end();
+ ParamType != ParamEnd; ++ParamType) {
+ ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
+ SourceLocation(),
+ SourceLocation(), 0,
+ *ParamType, /*TInfo=*/0,
+ SC_None,
+ 0);
+ Param->setScopeInfo(0, Params.size());
+ Param->setImplicit();
+ Params.push_back(Param);
+ }
+
+ New->setParams(Params);
+ }
+
+ return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
+ }
+
+ // GNU C permits a K&R definition to follow a prototype declaration
+ // if the declared types of the parameters in the K&R definition
+ // match the types in the prototype declaration, even when the
+ // promoted types of the parameters from the K&R definition differ
+ // from the types in the prototype. GCC then keeps the types from
+ // the prototype.
+ //
+ // If a variadic prototype is followed by a non-variadic K&R definition,
+ // the K&R definition becomes variadic. This is sort of an edge case, but
+ // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
+ // C99 6.9.1p8.
+ if (!getLangOpts().CPlusPlus &&
+ Old->hasPrototype() && !New->hasPrototype() &&
+ New->getType()->getAs<FunctionProtoType>() &&
+ Old->getNumParams() == New->getNumParams()) {
+ SmallVector<QualType, 16> ArgTypes;
+ SmallVector<GNUCompatibleParamWarning, 16> Warnings;
+ const FunctionProtoType *OldProto
+ = Old->getType()->getAs<FunctionProtoType>();
+ const FunctionProtoType *NewProto
+ = New->getType()->getAs<FunctionProtoType>();
+
+ // Determine whether this is the GNU C extension.
+ QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
+ NewProto->getResultType());
+ bool LooseCompatible = !MergedReturn.isNull();
+ for (unsigned Idx = 0, End = Old->getNumParams();
+ LooseCompatible && Idx != End; ++Idx) {
+ ParmVarDecl *OldParm = Old->getParamDecl(Idx);
+ ParmVarDecl *NewParm = New->getParamDecl(Idx);
+ if (Context.typesAreCompatible(OldParm->getType(),
+ NewProto->getArgType(Idx))) {
+ ArgTypes.push_back(NewParm->getType());
+ } else if (Context.typesAreCompatible(OldParm->getType(),
+ NewParm->getType(),
+ /*CompareUnqualified=*/true)) {
+ GNUCompatibleParamWarning Warn
+ = { OldParm, NewParm, NewProto->getArgType(Idx) };
+ Warnings.push_back(Warn);
+ ArgTypes.push_back(NewParm->getType());
+ } else
+ LooseCompatible = false;
+ }
+
+ if (LooseCompatible) {
+ for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
+ Diag(Warnings[Warn].NewParm->getLocation(),
+ diag::ext_param_promoted_not_compatible_with_prototype)
+ << Warnings[Warn].PromotedType
+ << Warnings[Warn].OldParm->getType();
+ if (Warnings[Warn].OldParm->getLocation().isValid())
+ Diag(Warnings[Warn].OldParm->getLocation(),
+ diag::note_previous_declaration);
+ }
+
+ if (MergeTypeWithOld)
+ New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
+ OldProto->getExtProtoInfo()));
+ return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
+ }
+
+ // Fall through to diagnose conflicting types.
+ }
+
+ // A function that has already been declared has been redeclared or
+ // defined with a different type; show an appropriate diagnostic.
+
+ // If the previous declaration was an implicitly-generated builtin
+ // declaration, then at the very least we should use a specialized note.
+ unsigned BuiltinID;
+ if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
+ // If it's actually a library-defined builtin function like 'malloc'
+ // or 'printf', just warn about the incompatible redeclaration.
+ if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
+ Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
+ Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
+ << Old << Old->getType();
+
+ // If this is a global redeclaration, just forget hereafter
+ // about the "builtin-ness" of the function.
+ //
+ // Doing this for local extern declarations is problematic. If
+ // the builtin declaration remains visible, a second invalid
+ // local declaration will produce a hard error; if it doesn't
+ // remain visible, a single bogus local redeclaration (which is
+ // actually only a warning) could break all the downstream code.
+ if (!New->getLexicalDeclContext()->isFunctionOrMethod())
+ New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
+
+ return false;
+ }
+
+ PrevDiag = diag::note_previous_builtin_declaration;
+ }
+
+ Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
+ Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
+ return true;
+}
+
+/// \brief Completes the merge of two function declarations that are
+/// known to be compatible.
+///
+/// This routine handles the merging of attributes and other
+/// properties of function declarations from the old declaration to
+/// the new declaration, once we know that New is in fact a
+/// redeclaration of Old.
+///
+/// \returns false
+bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
+ Scope *S, bool MergeTypeWithOld) {
+ // Merge the attributes
+ mergeDeclAttributes(New, Old);
+
+ // Merge "pure" flag.
+ if (Old->isPure())
+ New->setPure();
+
+ // Merge "used" flag.
+ if (Old->getMostRecentDecl()->isUsed(false))
+ New->setIsUsed();
+
+ // Merge attributes from the parameters. These can mismatch with K&R
+ // declarations.
+ if (New->getNumParams() == Old->getNumParams())
+ for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
+ mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
+ *this);
+
+ if (getLangOpts().CPlusPlus)
+ return MergeCXXFunctionDecl(New, Old, S);
+
+ // Merge the function types so the we get the composite types for the return
+ // and argument types. Per C11 6.2.7/4, only update the type if the old decl
+ // was visible.
+ QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
+ if (!Merged.isNull() && MergeTypeWithOld)
+ New->setType(Merged);
+
+ return false;
+}
+
+
+void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
+ ObjCMethodDecl *oldMethod) {
+
+ // Merge the attributes, including deprecated/unavailable
+ AvailabilityMergeKind MergeKind =
+ isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
+ : AMK_Override;
+ mergeDeclAttributes(newMethod, oldMethod, MergeKind);
+
+ // Merge attributes from the parameters.
+ ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
+ oe = oldMethod->param_end();
+ for (ObjCMethodDecl::param_iterator
+ ni = newMethod->param_begin(), ne = newMethod->param_end();
+ ni != ne && oi != oe; ++ni, ++oi)
+ mergeParamDeclAttributes(*ni, *oi, *this);
+
+ CheckObjCMethodOverride(newMethod, oldMethod);
+}
+
+/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
+/// scope as a previous declaration 'Old'. Figure out how to merge their types,
+/// emitting diagnostics as appropriate.
+///
+/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
+/// to here in AddInitializerToDecl. We can't check them before the initializer
+/// is attached.
+void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
+ bool MergeTypeWithOld) {
+ if (New->isInvalidDecl() || Old->isInvalidDecl())
+ return;
+
+ QualType MergedT;
+ if (getLangOpts().CPlusPlus) {
+ if (New->getType()->isUndeducedType()) {
+ // We don't know what the new type is until the initializer is attached.
+ return;
+ } else if (Context.hasSameType(New->getType(), Old->getType())) {
+ // These could still be something that needs exception specs checked.
+ return MergeVarDeclExceptionSpecs(New, Old);
+ }
+ // C++ [basic.link]p10:
+ // [...] the types specified by all declarations referring to a given
+ // object or function shall be identical, except that declarations for an
+ // array object can specify array types that differ by the presence or
+ // absence of a major array bound (8.3.4).
+ else if (Old->getType()->isIncompleteArrayType() &&
+ New->getType()->isArrayType()) {
+ const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
+ const ArrayType *NewArray = Context.getAsArrayType(New->getType());
+ if (Context.hasSameType(OldArray->getElementType(),
+ NewArray->getElementType()))
+ MergedT = New->getType();
+ } else if (Old->getType()->isArrayType() &&
+ New->getType()->isIncompleteArrayType()) {
+ const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
+ const ArrayType *NewArray = Context.getAsArrayType(New->getType());
+ if (Context.hasSameType(OldArray->getElementType(),
+ NewArray->getElementType()))
+ MergedT = Old->getType();
+ } else if (New->getType()->isObjCObjectPointerType() &&
+ Old->getType()->isObjCObjectPointerType()) {
+ MergedT = Context.mergeObjCGCQualifiers(New->getType(),
+ Old->getType());
+ }
+ } else {
+ // C 6.2.7p2:
+ // All declarations that refer to the same object or function shall have
+ // compatible type.
+ MergedT = Context.mergeTypes(New->getType(), Old->getType());
+ }
+ if (MergedT.isNull()) {
+ // It's OK if we couldn't merge types if either type is dependent, for a
+ // block-scope variable. In other cases (static data members of class
+ // templates, variable templates, ...), we require the types to be
+ // equivalent.
+ // FIXME: The C++ standard doesn't say anything about this.
+ if ((New->getType()->isDependentType() ||
+ Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
+ // If the old type was dependent, we can't merge with it, so the new type
+ // becomes dependent for now. We'll reproduce the original type when we
+ // instantiate the TypeSourceInfo for the variable.
+ if (!New->getType()->isDependentType() && MergeTypeWithOld)
+ New->setType(Context.DependentTy);
+ return;
+ }
+
+ // FIXME: Even if this merging succeeds, some other non-visible declaration
+ // of this variable might have an incompatible type. For instance:
+ //
+ // extern int arr[];
+ // void f() { extern int arr[2]; }
+ // void g() { extern int arr[3]; }
+ //
+ // Neither C nor C++ requires a diagnostic for this, but we should still try
+ // to diagnose it.
+ Diag(New->getLocation(), diag::err_redefinition_different_type)
+ << New->getDeclName() << New->getType() << Old->getType();
+ Diag(Old->getLocation(), diag::note_previous_definition);
+ return New->setInvalidDecl();
+ }
+
+ // Don't actually update the type on the new declaration if the old
+ // declaration was an extern declaration in a different scope.
+ if (MergeTypeWithOld)
+ New->setType(MergedT);
+}
+
+static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
+ LookupResult &Previous) {
+ // C11 6.2.7p4:
+ // For an identifier with internal or external linkage declared
+ // in a scope in which a prior declaration of that identifier is
+ // visible, if the prior declaration specifies internal or
+ // external linkage, the type of the identifier at the later
+ // declaration becomes the composite type.
+ //
+ // If the variable isn't visible, we do not merge with its type.
+ if (Previous.isShadowed())
+ return false;
+
+ if (S.getLangOpts().CPlusPlus) {
+ // C++11 [dcl.array]p3:
+ // If there is a preceding declaration of the entity in the same
+ // scope in which the bound was specified, an omitted array bound
+ // is taken to be the same as in that earlier declaration.
+ return NewVD->isPreviousDeclInSameBlockScope() ||
+ (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
+ !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
+ } else {
+ // If the old declaration was function-local, don't merge with its
+ // type unless we're in the same function.
+ return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
+ OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
+ }
+}
+
+/// MergeVarDecl - We just parsed a variable 'New' which has the same name
+/// and scope as a previous declaration 'Old'. Figure out how to resolve this
+/// situation, merging decls or emitting diagnostics as appropriate.
+///
+/// Tentative definition rules (C99 6.9.2p2) are checked by
+/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
+/// definitions here, since the initializer hasn't been attached.
+///
+void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
+ // If the new decl is already invalid, don't do any other checking.
+ if (New->isInvalidDecl())
+ return;
+
+ // Verify the old decl was also a variable or variable template.
+ VarDecl *Old = 0;
+ if (Previous.isSingleResult() &&
+ (Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
+ if (New->getDescribedVarTemplate())
+ Old = Old->getDescribedVarTemplate() ? Old : 0;
+ else
+ Old = Old->getDescribedVarTemplate() ? 0 : Old;
+ }
+ if (!Old) {
+ Diag(New->getLocation(), diag::err_redefinition_different_kind)
+ << New->getDeclName();
+ Diag(Previous.getRepresentativeDecl()->getLocation(),
+ diag::note_previous_definition);
+ return New->setInvalidDecl();
+ }
+
+ if (!shouldLinkPossiblyHiddenDecl(Old, New))
+ return;
+
+ // C++ [class.mem]p1:
+ // A member shall not be declared twice in the member-specification [...]
+ //
+ // Here, we need only consider static data members.
+ if (Old->isStaticDataMember() && !New->isOutOfLine()) {
+ Diag(New->getLocation(), diag::err_duplicate_member)
+ << New->getIdentifier();
+ Diag(Old->getLocation(), diag::note_previous_declaration);
+ New->setInvalidDecl();
+ }
+
+ mergeDeclAttributes(New, Old);
+ // Warn if an already-declared variable is made a weak_import in a subsequent
+ // declaration
+ if (New->getAttr<WeakImportAttr>() &&
+ Old->getStorageClass() == SC_None &&
+ !Old->getAttr<WeakImportAttr>()) {
+ Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
+ Diag(Old->getLocation(), diag::note_previous_definition);
+ // Remove weak_import attribute on new declaration.
+ New->dropAttr<WeakImportAttr>();
+ }
+
+ // Merge the types.
+ MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
+
+ if (New->isInvalidDecl())
+ return;
+
+ // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
+ if (New->getStorageClass() == SC_Static &&
+ !New->isStaticDataMember() &&
+ Old->hasExternalFormalLinkage()) {
+ Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
+ Diag(Old->getLocation(), diag::note_previous_definition);
+ return New->setInvalidDecl();
+ }
+ // C99 6.2.2p4:
+ // For an identifier declared with the storage-class specifier
+ // extern in a scope in which a prior declaration of that
+ // identifier is visible,23) if the prior declaration specifies
+ // internal or external linkage, the linkage of the identifier at
+ // the later declaration is the same as the linkage specified at
+ // the prior declaration. If no prior declaration is visible, or
+ // if the prior declaration specifies no linkage, then the
+ // identifier has external linkage.
+ if (New->hasExternalStorage() && Old->hasLinkage())
+ /* Okay */;
+ else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
+ !New->isStaticDataMember() &&
+ Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
+ Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
+ Diag(Old->getLocation(), diag::note_previous_definition);
+ return New->setInvalidDecl();
+ }
+
+ // Check if extern is followed by non-extern and vice-versa.
+ if (New->hasExternalStorage() &&
+ !Old->hasLinkage() && Old->isLocalVarDecl()) {
+ Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
+ Diag(Old->getLocation(), diag::note_previous_definition);
+ return New->setInvalidDecl();
+ }
+ if (Old->hasLinkage() && New->isLocalVarDecl() &&
+ !New->hasExternalStorage()) {
+ Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
+ Diag(Old->getLocation(), diag::note_previous_definition);
+ return New->setInvalidDecl();
+ }
+
+ // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
+
+ // FIXME: The test for external storage here seems wrong? We still
+ // need to check for mismatches.
+ if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
+ // Don't complain about out-of-line definitions of static members.
+ !(Old->getLexicalDeclContext()->isRecord() &&
+ !New->getLexicalDeclContext()->isRecord())) {
+ Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
+ Diag(Old->getLocation(), diag::note_previous_definition);
+ return New->setInvalidDecl();
+ }
+
+ if (New->getTLSKind() != Old->getTLSKind()) {
+ if (!Old->getTLSKind()) {
+ Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
+ Diag(Old->getLocation(), diag::note_previous_declaration);
+ } else if (!New->getTLSKind()) {
+ Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
+ Diag(Old->getLocation(), diag::note_previous_declaration);
+ } else {
+ // Do not allow redeclaration to change the variable between requiring
+ // static and dynamic initialization.
+ // FIXME: GCC allows this, but uses the TLS keyword on the first
+ // declaration to determine the kind. Do we need to be compatible here?
+ Diag(New->getLocation(), diag::err_thread_thread_different_kind)
+ << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
+ Diag(Old->getLocation(), diag::note_previous_declaration);
+ }
+ }
+
+ // C++ doesn't have tentative definitions, so go right ahead and check here.
+ const VarDecl *Def;
+ if (getLangOpts().CPlusPlus &&
+ New->isThisDeclarationADefinition() == VarDecl::Definition &&
+ (Def = Old->getDefinition())) {
+ Diag(New->getLocation(), diag::err_redefinition) << New;
+ Diag(Def->getLocation(), diag::note_previous_definition);
+ New->setInvalidDecl();
+ return;
+ }
+
+ if (haveIncompatibleLanguageLinkages(Old, New)) {
+ Diag(New->getLocation(), diag::err_different_language_linkage) << New;
+ Diag(Old->getLocation(), diag::note_previous_definition);
+ New->setInvalidDecl();
+ return;
+ }
+
+ // Merge "used" flag.
+ if (Old->getMostRecentDecl()->isUsed(false))
+ New->setIsUsed();
+
+ // Keep a chain of previous declarations.
+ New->setPreviousDecl(Old);
+
+ // Inherit access appropriately.
+ New->setAccess(Old->getAccess());
+
+ if (VarTemplateDecl *VTD = New->getDescribedVarTemplate()) {
+ if (New->isStaticDataMember() && New->isOutOfLine())
+ VTD->setAccess(New->getAccess());
+ }
+}
+
+/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
+/// no declarator (e.g. "struct foo;") is parsed.
+Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
+ DeclSpec &DS) {
+ return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
+}
+
+static void HandleTagNumbering(Sema &S, const TagDecl *Tag) {
+ if (!S.Context.getLangOpts().CPlusPlus)
+ return;
+
+ if (isa<CXXRecordDecl>(Tag->getParent())) {
+ // If this tag is the direct child of a class, number it if
+ // it is anonymous.
+ if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
+ return;
+ MangleNumberingContext &MCtx =
+ S.Context.getManglingNumberContext(Tag->getParent());
+ S.Context.setManglingNumber(Tag, MCtx.getManglingNumber(Tag));
+ return;
+ }
+
+ // If this tag isn't a direct child of a class, number it if it is local.
+ Decl *ManglingContextDecl;
+ if (MangleNumberingContext *MCtx =
+ S.getCurrentMangleNumberContext(Tag->getDeclContext(),
+ ManglingContextDecl)) {
+ S.Context.setManglingNumber(Tag, MCtx->getManglingNumber(Tag));
+ }
+}
+
+/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
+/// no declarator (e.g. "struct foo;") is parsed. It also accepts template
+/// parameters to cope with template friend declarations.
+Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
+ DeclSpec &DS,
+ MultiTemplateParamsArg TemplateParams,
+ bool IsExplicitInstantiation) {
+ Decl *TagD = 0;
+ TagDecl *Tag = 0;
+ if (DS.getTypeSpecType() == DeclSpec::TST_class ||
+ DS.getTypeSpecType() == DeclSpec::TST_struct ||
+ DS.getTypeSpecType() == DeclSpec::TST_interface ||
+ DS.getTypeSpecType() == DeclSpec::TST_union ||
+ DS.getTypeSpecType() == DeclSpec::TST_enum) {
+ TagD = DS.getRepAsDecl();
+
+ if (!TagD) // We probably had an error
+ return 0;
+
+ // Note that the above type specs guarantee that the
+ // type rep is a Decl, whereas in many of the others
+ // it's a Type.
+ if (isa<TagDecl>(TagD))
+ Tag = cast<TagDecl>(TagD);
+ else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
+ Tag = CTD->getTemplatedDecl();
+ }
+
+ if (Tag) {
+ HandleTagNumbering(*this, Tag);
+ Tag->setFreeStanding();
+ if (Tag->isInvalidDecl())
+ return Tag;
+ }
+
+ if (unsigned TypeQuals = DS.getTypeQualifiers()) {
+ // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
+ // or incomplete types shall not be restrict-qualified."
+ if (TypeQuals & DeclSpec::TQ_restrict)
+ Diag(DS.getRestrictSpecLoc(),
+ diag::err_typecheck_invalid_restrict_not_pointer_noarg)
+ << DS.getSourceRange();
+ }
+
+ if (DS.isConstexprSpecified()) {
+ // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
+ // and definitions of functions and variables.
+ if (Tag)
+ Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
+ << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
+ DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
+ DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
+ DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
+ else
+ Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
+ // Don't emit warnings after this error.
+ return TagD;
+ }
+
+ DiagnoseFunctionSpecifiers(DS);
+
+ if (DS.isFriendSpecified()) {
+ // If we're dealing with a decl but not a TagDecl, assume that
+ // whatever routines created it handled the friendship aspect.
+ if (TagD && !Tag)
+ return 0;
+ return ActOnFriendTypeDecl(S, DS, TemplateParams);
+ }
+
+ CXXScopeSpec &SS = DS.getTypeSpecScope();
+ bool IsExplicitSpecialization =
+ !TemplateParams.empty() && TemplateParams.back()->size() == 0;
+ if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
+ !IsExplicitInstantiation && !IsExplicitSpecialization) {
+ // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
+ // nested-name-specifier unless it is an explicit instantiation
+ // or an explicit specialization.
+ // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
+ Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
+ << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
+ DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
+ DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
+ DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4)
+ << SS.getRange();
+ return 0;
+ }
+
+ // Track whether this decl-specifier declares anything.
+ bool DeclaresAnything = true;
+
+ // Handle anonymous struct definitions.
+ if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
+ if (!Record->getDeclName() && Record->isCompleteDefinition() &&
+ DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
+ if (getLangOpts().CPlusPlus ||
+ Record->getDeclContext()->isRecord())
+ return BuildAnonymousStructOrUnion(S, DS, AS, Record);
+
+ DeclaresAnything = false;
+ }
+ }
+
+ // Check for Microsoft C extension: anonymous struct member.
+ if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
+ CurContext->isRecord() &&
+ DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
+ // Handle 2 kinds of anonymous struct:
+ // struct STRUCT;
+ // and
+ // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct.
+ RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
+ if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
+ (DS.getTypeSpecType() == DeclSpec::TST_typename &&
+ DS.getRepAsType().get()->isStructureType())) {
+ Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
+ << DS.getSourceRange();
+ return BuildMicrosoftCAnonymousStruct(S, DS, Record);
+ }
+ }
+
+ // Skip all the checks below if we have a type error.
+ if (DS.getTypeSpecType() == DeclSpec::TST_error ||
+ (TagD && TagD->isInvalidDecl()))
+ return TagD;
+
+ if (getLangOpts().CPlusPlus &&
+ DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
+ if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
+ if (Enum->enumerator_begin() == Enum->enumerator_end() &&
+ !Enum->getIdentifier() && !Enum->isInvalidDecl())
+ DeclaresAnything = false;
+
+ if (!DS.isMissingDeclaratorOk()) {
+ // Customize diagnostic for a typedef missing a name.
+ if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
+ Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
+ << DS.getSourceRange();
+ else
+ DeclaresAnything = false;
+ }
+
+ if (DS.isModulePrivateSpecified() &&
+ Tag && Tag->getDeclContext()->isFunctionOrMethod())
+ Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
+ << Tag->getTagKind()
+ << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
+
+ ActOnDocumentableDecl(TagD);
+
+ // C 6.7/2:
+ // A declaration [...] shall declare at least a declarator [...], a tag,
+ // or the members of an enumeration.
+ // C++ [dcl.dcl]p3:
+ // [If there are no declarators], and except for the declaration of an
+ // unnamed bit-field, the decl-specifier-seq shall introduce one or more
+ // names into the program, or shall redeclare a name introduced by a
+ // previous declaration.
+ if (!DeclaresAnything) {
+ // In C, we allow this as a (popular) extension / bug. Don't bother
+ // producing further diagnostics for redundant qualifiers after this.
+ Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange();
+ return TagD;
+ }
+
+ // C++ [dcl.stc]p1:
+ // If a storage-class-specifier appears in a decl-specifier-seq, [...] the
+ // init-declarator-list of the declaration shall not be empty.
+ // C++ [dcl.fct.spec]p1:
+ // If a cv-qualifier appears in a decl-specifier-seq, the
+ // init-declarator-list of the declaration shall not be empty.
+ //
+ // Spurious qualifiers here appear to be valid in C.
+ unsigned DiagID = diag::warn_standalone_specifier;
+ if (getLangOpts().CPlusPlus)
+ DiagID = diag::ext_standalone_specifier;
+
+ // Note that a linkage-specification sets a storage class, but
+ // 'extern "C" struct foo;' is actually valid and not theoretically
+ // useless.
+ if (DeclSpec::SCS SCS = DS.getStorageClassSpec())
+ if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
+ Diag(DS.getStorageClassSpecLoc(), DiagID)
+ << DeclSpec::getSpecifierName(SCS);
+
+ if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
+ Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
+ << DeclSpec::getSpecifierName(TSCS);
+ if (DS.getTypeQualifiers()) {
+ if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
+ Diag(DS.getConstSpecLoc(), DiagID) << "const";
+ if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
+ Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
+ // Restrict is covered above.
+ if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
+ Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
+ }
+
+ // Warn about ignored type attributes, for example:
+ // __attribute__((aligned)) struct A;
+ // Attributes should be placed after tag to apply to type declaration.
+ if (!DS.getAttributes().empty()) {
+ DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
+ if (TypeSpecType == DeclSpec::TST_class ||
+ TypeSpecType == DeclSpec::TST_struct ||
+ TypeSpecType == DeclSpec::TST_interface ||
+ TypeSpecType == DeclSpec::TST_union ||
+ TypeSpecType == DeclSpec::TST_enum) {
+ AttributeList* attrs = DS.getAttributes().getList();
+ while (attrs) {
+ Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
+ << attrs->getName()
+ << (TypeSpecType == DeclSpec::TST_class ? 0 :
+ TypeSpecType == DeclSpec::TST_struct ? 1 :
+ TypeSpecType == DeclSpec::TST_union ? 2 :
+ TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
+ attrs = attrs->getNext();
+ }
+ }
+ }
+
+ return TagD;
+}
+
+/// We are trying to inject an anonymous member into the given scope;
+/// check if there's an existing declaration that can't be overloaded.
+///
+/// \return true if this is a forbidden redeclaration
+static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
+ Scope *S,
+ DeclContext *Owner,
+ DeclarationName Name,
+ SourceLocation NameLoc,
+ unsigned diagnostic) {
+ LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
+ Sema::ForRedeclaration);
+ if (!SemaRef.LookupName(R, S)) return false;
+
+ if (R.getAsSingle<TagDecl>())
+ return false;
+
+ // Pick a representative declaration.
+ NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
+ assert(PrevDecl && "Expected a non-null Decl");
+
+ if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
+ return false;
+
+ SemaRef.Diag(NameLoc, diagnostic) << Name;
+ SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
+
+ return true;
+}
+
+/// InjectAnonymousStructOrUnionMembers - Inject the members of the
+/// anonymous struct or union AnonRecord into the owning context Owner
+/// and scope S. This routine will be invoked just after we realize
+/// that an unnamed union or struct is actually an anonymous union or
+/// struct, e.g.,
+///
+/// @code
+/// union {
+/// int i;
+/// float f;
+/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
+/// // f into the surrounding scope.x
+/// @endcode
+///
+/// This routine is recursive, injecting the names of nested anonymous
+/// structs/unions into the owning context and scope as well.
+static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
+ DeclContext *Owner,
+ RecordDecl *AnonRecord,
+ AccessSpecifier AS,
+ SmallVectorImpl<NamedDecl *> &Chaining,
+ bool MSAnonStruct) {
+ unsigned diagKind
+ = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
+ : diag::err_anonymous_struct_member_redecl;
+
+ bool Invalid = false;
+
+ // Look every FieldDecl and IndirectFieldDecl with a name.
+ for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
+ DEnd = AnonRecord->decls_end();
+ D != DEnd; ++D) {
+ if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
+ cast<NamedDecl>(*D)->getDeclName()) {
+ ValueDecl *VD = cast<ValueDecl>(*D);
+ if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
+ VD->getLocation(), diagKind)) {
+ // C++ [class.union]p2:
+ // The names of the members of an anonymous union shall be
+ // distinct from the names of any other entity in the
+ // scope in which the anonymous union is declared.
+ Invalid = true;
+ } else {
+ // C++ [class.union]p2:
+ // For the purpose of name lookup, after the anonymous union
+ // definition, the members of the anonymous union are
+ // considered to have been defined in the scope in which the
+ // anonymous union is declared.
+ unsigned OldChainingSize = Chaining.size();
+ if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
+ for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
+ PE = IF->chain_end(); PI != PE; ++PI)
+ Chaining.push_back(*PI);
+ else
+ Chaining.push_back(VD);
+
+ assert(Chaining.size() >= 2);
+ NamedDecl **NamedChain =
+ new (SemaRef.Context)NamedDecl*[Chaining.size()];
+ for (unsigned i = 0; i < Chaining.size(); i++)
+ NamedChain[i] = Chaining[i];
+
+ IndirectFieldDecl* IndirectField =
+ IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
+ VD->getIdentifier(), VD->getType(),
+ NamedChain, Chaining.size());
+
+ IndirectField->setAccess(AS);
+ IndirectField->setImplicit();
+ SemaRef.PushOnScopeChains(IndirectField, S);
+
+ // That includes picking up the appropriate access specifier.
+ if (AS != AS_none) IndirectField->setAccess(AS);
+
+ Chaining.resize(OldChainingSize);
+ }
+ }
+ }
+
+ return Invalid;
+}
+
+/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
+/// a VarDecl::StorageClass. Any error reporting is up to the caller:
+/// illegal input values are mapped to SC_None.
+static StorageClass
+StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
+ DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
+ assert(StorageClassSpec != DeclSpec::SCS_typedef &&
+ "Parser allowed 'typedef' as storage class VarDecl.");
+ switch (StorageClassSpec) {
+ case DeclSpec::SCS_unspecified: return SC_None;
+ case DeclSpec::SCS_extern:
+ if (DS.isExternInLinkageSpec())
+ return SC_None;
+ return SC_Extern;
+ case DeclSpec::SCS_static: return SC_Static;
+ case DeclSpec::SCS_auto: return SC_Auto;
+ case DeclSpec::SCS_register: return SC_Register;
+ case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
+ // Illegal SCSs map to None: error reporting is up to the caller.
+ case DeclSpec::SCS_mutable: // Fall through.
+ case DeclSpec::SCS_typedef: return SC_None;
+ }
+ llvm_unreachable("unknown storage class specifier");
+}
+
+/// BuildAnonymousStructOrUnion - Handle the declaration of an
+/// anonymous structure or union. Anonymous unions are a C++ feature
+/// (C++ [class.union]) and a C11 feature; anonymous structures
+/// are a C11 feature and GNU C++ extension.
+Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
+ AccessSpecifier AS,
+ RecordDecl *Record) {
+ DeclContext *Owner = Record->getDeclContext();
+
+ // Diagnose whether this anonymous struct/union is an extension.
+ if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
+ Diag(Record->getLocation(), diag::ext_anonymous_union);
+ else if (!Record->isUnion() && getLangOpts().CPlusPlus)
+ Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
+ else if (!Record->isUnion() && !getLangOpts().C11)
+ Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
+
+ // C and C++ require different kinds of checks for anonymous
+ // structs/unions.
+ bool Invalid = false;
+ if (getLangOpts().CPlusPlus) {
+ const char* PrevSpec = 0;
+ unsigned DiagID;
+ if (Record->isUnion()) {
+ // C++ [class.union]p6:
+ // Anonymous unions declared in a named namespace or in the
+ // global namespace shall be declared static.
+ if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
+ (isa<TranslationUnitDecl>(Owner) ||
+ (isa<NamespaceDecl>(Owner) &&
+ cast<NamespaceDecl>(Owner)->getDeclName()))) {
+ Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
+ << FixItHint::CreateInsertion(Record->getLocation(), "static ");
+
+ // Recover by adding 'static'.
+ DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
+ PrevSpec, DiagID);
+ }
+ // C++ [class.union]p6:
+ // A storage class is not allowed in a declaration of an
+ // anonymous union in a class scope.
+ else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
+ isa<RecordDecl>(Owner)) {
+ Diag(DS.getStorageClassSpecLoc(),
+ diag::err_anonymous_union_with_storage_spec)
+ << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
+
+ // Recover by removing the storage specifier.
+ DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
+ SourceLocation(),
+ PrevSpec, DiagID);
+ }
+ }
+
+ // Ignore const/volatile/restrict qualifiers.
+ if (DS.getTypeQualifiers()) {
+ if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
+ Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
+ << Record->isUnion() << "const"
+ << FixItHint::CreateRemoval(DS.getConstSpecLoc());
+ if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
+ Diag(DS.getVolatileSpecLoc(),
+ diag::ext_anonymous_struct_union_qualified)
+ << Record->isUnion() << "volatile"
+ << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
+ if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
+ Diag(DS.getRestrictSpecLoc(),
+ diag::ext_anonymous_struct_union_qualified)
+ << Record->isUnion() << "restrict"
+ << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
+ if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
+ Diag(DS.getAtomicSpecLoc(),
+ diag::ext_anonymous_struct_union_qualified)
+ << Record->isUnion() << "_Atomic"
+ << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
+
+ DS.ClearTypeQualifiers();
+ }
+
+ // C++ [class.union]p2:
+ // The member-specification of an anonymous union shall only
+ // define non-static data members. [Note: nested types and
+ // functions cannot be declared within an anonymous union. ]
+ for (DeclContext::decl_iterator Mem = Record->decls_begin(),
+ MemEnd = Record->decls_end();
+ Mem != MemEnd; ++Mem) {
+ if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
+ // C++ [class.union]p3:
+ // An anonymous union shall not have private or protected
+ // members (clause 11).
+ assert(FD->getAccess() != AS_none);
+ if (FD->getAccess() != AS_public) {
+ Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
+ << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
+ Invalid = true;
+ }
+
+ // C++ [class.union]p1
+ // An object of a class with a non-trivial constructor, a non-trivial
+ // copy constructor, a non-trivial destructor, or a non-trivial copy
+ // assignment operator cannot be a member of a union, nor can an
+ // array of such objects.
+ if (CheckNontrivialField(FD))
+ Invalid = true;
+ } else if ((*Mem)->isImplicit()) {
+ // Any implicit members are fine.
+ } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
+ // This is a type that showed up in an
+ // elaborated-type-specifier inside the anonymous struct or
+ // union, but which actually declares a type outside of the
+ // anonymous struct or union. It's okay.
+ } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
+ if (!MemRecord->isAnonymousStructOrUnion() &&
+ MemRecord->getDeclName()) {
+ // Visual C++ allows type definition in anonymous struct or union.
+ if (getLangOpts().MicrosoftExt)
+ Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
+ << (int)Record->isUnion();
+ else {
+ // This is a nested type declaration.
+ Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
+ << (int)Record->isUnion();
+ Invalid = true;
+ }
+ } else {
+ // This is an anonymous type definition within another anonymous type.
+ // This is a popular extension, provided by Plan9, MSVC and GCC, but
+ // not part of standard C++.
+ Diag(MemRecord->getLocation(),
+ diag::ext_anonymous_record_with_anonymous_type)
+ << (int)Record->isUnion();
+ }
+ } else if (isa<AccessSpecDecl>(*Mem)) {
+ // Any access specifier is fine.
+ } else {
+ // We have something that isn't a non-static data
+ // member. Complain about it.
+ unsigned DK = diag::err_anonymous_record_bad_member;
+ if (isa<TypeDecl>(*Mem))
+ DK = diag::err_anonymous_record_with_type;
+ else if (isa<FunctionDecl>(*Mem))
+ DK = diag::err_anonymous_record_with_function;
+ else if (isa<VarDecl>(*Mem))
+ DK = diag::err_anonymous_record_with_static;
+
+ // Visual C++ allows type definition in anonymous struct or union.
+ if (getLangOpts().MicrosoftExt &&
+ DK == diag::err_anonymous_record_with_type)
+ Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
+ << (int)Record->isUnion();
+ else {
+ Diag((*Mem)->getLocation(), DK)
+ << (int)Record->isUnion();
+ Invalid = true;
+ }
+ }
+ }
+ }
+
+ if (!Record->isUnion() && !Owner->isRecord()) {
+ Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
+ << (int)getLangOpts().CPlusPlus;
+ Invalid = true;
+ }
+
+ // Mock up a declarator.
+ Declarator Dc(DS, Declarator::MemberContext);
+ TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
+ assert(TInfo && "couldn't build declarator info for anonymous struct/union");
+
+ // Create a declaration for this anonymous struct/union.
+ NamedDecl *Anon = 0;
+ if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
+ Anon = FieldDecl::Create(Context, OwningClass,
+ DS.getLocStart(),
+ Record->getLocation(),
+ /*IdentifierInfo=*/0,
+ Context.getTypeDeclType(Record),
+ TInfo,
+ /*BitWidth=*/0, /*Mutable=*/false,
+ /*InitStyle=*/ICIS_NoInit);
+ Anon->setAccess(AS);
+ if (getLangOpts().CPlusPlus)
+ FieldCollector->Add(cast<FieldDecl>(Anon));
+ } else {
+ DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
+ VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
+ if (SCSpec == DeclSpec::SCS_mutable) {
+ // mutable can only appear on non-static class members, so it's always
+ // an error here
+ Diag(Record->getLocation(), diag::err_mutable_nonmember);
+ Invalid = true;
+ SC = SC_None;
+ }
+
+ Anon = VarDecl::Create(Context, Owner,
+ DS.getLocStart(),
+ Record->getLocation(), /*IdentifierInfo=*/0,
+ Context.getTypeDeclType(Record),
+ TInfo, SC);
+
+ // Default-initialize the implicit variable. This initialization will be
+ // trivial in almost all cases, except if a union member has an in-class
+ // initializer:
+ // union { int n = 0; };
+ ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
+ }
+ Anon->setImplicit();
+
+ // Add the anonymous struct/union object to the current
+ // context. We'll be referencing this object when we refer to one of
+ // its members.
+ Owner->addDecl(Anon);
+
+ // Inject the members of the anonymous struct/union into the owning
+ // context and into the identifier resolver chain for name lookup
+ // purposes.
+ SmallVector<NamedDecl*, 2> Chain;
+ Chain.push_back(Anon);
+
+ if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
+ Chain, false))
+ Invalid = true;
+
+ // Mark this as an anonymous struct/union type. Note that we do not
+ // do this until after we have already checked and injected the
+ // members of this anonymous struct/union type, because otherwise
+ // the members could be injected twice: once by DeclContext when it
+ // builds its lookup table, and once by
+ // InjectAnonymousStructOrUnionMembers.
+ Record->setAnonymousStructOrUnion(true);
+
+ if (Invalid)
+ Anon->setInvalidDecl();
+
+ return Anon;
+}
+
+/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
+/// Microsoft C anonymous structure.
+/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
+/// Example:
+///
+/// struct A { int a; };
+/// struct B { struct A; int b; };
+///
+/// void foo() {
+/// B var;
+/// var.a = 3;
+/// }
+///
+Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
+ RecordDecl *Record) {
+
+ // If there is no Record, get the record via the typedef.
+ if (!Record)
+ Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
+
+ // Mock up a declarator.
+ Declarator Dc(DS, Declarator::TypeNameContext);
+ TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
+ assert(TInfo && "couldn't build declarator info for anonymous struct");
+
+ // Create a declaration for this anonymous struct.
+ NamedDecl* Anon = FieldDecl::Create(Context,
+ cast<RecordDecl>(CurContext),
+ DS.getLocStart(),
+ DS.getLocStart(),
+ /*IdentifierInfo=*/0,
+ Context.getTypeDeclType(Record),
+ TInfo,
+ /*BitWidth=*/0, /*Mutable=*/false,
+ /*InitStyle=*/ICIS_NoInit);
+ Anon->setImplicit();
+
+ // Add the anonymous struct object to the current context.
+ CurContext->addDecl(Anon);
+
+ // Inject the members of the anonymous struct into the current
+ // context and into the identifier resolver chain for name lookup
+ // purposes.
+ SmallVector<NamedDecl*, 2> Chain;
+ Chain.push_back(Anon);
+
+ RecordDecl *RecordDef = Record->getDefinition();
+ if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
+ RecordDef, AS_none,
+ Chain, true))
+ Anon->setInvalidDecl();
+
+ return Anon;
+}
+
+/// GetNameForDeclarator - Determine the full declaration name for the
+/// given Declarator.
+DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
+ return GetNameFromUnqualifiedId(D.getName());
+}
+
+/// \brief Retrieves the declaration name from a parsed unqualified-id.
+DeclarationNameInfo
+Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
+ DeclarationNameInfo NameInfo;
+ NameInfo.setLoc(Name.StartLocation);
+
+ switch (Name.getKind()) {
+
+ case UnqualifiedId::IK_ImplicitSelfParam:
+ case UnqualifiedId::IK_Identifier:
+ NameInfo.setName(Name.Identifier);
+ NameInfo.setLoc(Name.StartLocation);
+ return NameInfo;
+
+ case UnqualifiedId::IK_OperatorFunctionId:
+ NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
+ Name.OperatorFunctionId.Operator));
+ NameInfo.setLoc(Name.StartLocation);
+ NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
+ = Name.OperatorFunctionId.SymbolLocations[0];
+ NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
+ = Name.EndLocation.getRawEncoding();
+ return NameInfo;
+
+ case UnqualifiedId::IK_LiteralOperatorId:
+ NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
+ Name.Identifier));
+ NameInfo.setLoc(Name.StartLocation);
+ NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
+ return NameInfo;
+
+ case UnqualifiedId::IK_ConversionFunctionId: {
+ TypeSourceInfo *TInfo;
+ QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
+ if (Ty.isNull())
+ return DeclarationNameInfo();
+ NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
+ Context.getCanonicalType(Ty)));
+ NameInfo.setLoc(Name.StartLocation);
+ NameInfo.setNamedTypeInfo(TInfo);
+ return NameInfo;
+ }
+
+ case UnqualifiedId::IK_ConstructorName: {
+ TypeSourceInfo *TInfo;
+ QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
+ if (Ty.isNull())
+ return DeclarationNameInfo();
+ NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
+ Context.getCanonicalType(Ty)));
+ NameInfo.setLoc(Name.StartLocation);
+ NameInfo.setNamedTypeInfo(TInfo);
+ return NameInfo;
+ }
+
+ case UnqualifiedId::IK_ConstructorTemplateId: {
+ // In well-formed code, we can only have a constructor
+ // template-id that refers to the current context, so go there
+ // to find the actual type being constructed.
+ CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
+ if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
+ return DeclarationNameInfo();
+
+ // Determine the type of the class being constructed.
+ QualType CurClassType = Context.getTypeDeclType(CurClass);
+
+ // FIXME: Check two things: that the template-id names the same type as
+ // CurClassType, and that the template-id does not occur when the name
+ // was qualified.
+
+ NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
+ Context.getCanonicalType(CurClassType)));
+ NameInfo.setLoc(Name.StartLocation);
+ // FIXME: should we retrieve TypeSourceInfo?
+ NameInfo.setNamedTypeInfo(0);
+ return NameInfo;
+ }
+
+ case UnqualifiedId::IK_DestructorName: {
+ TypeSourceInfo *TInfo;
+ QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
+ if (Ty.isNull())
+ return DeclarationNameInfo();
+ NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
+ Context.getCanonicalType(Ty)));
+ NameInfo.setLoc(Name.StartLocation);
+ NameInfo.setNamedTypeInfo(TInfo);
+ return NameInfo;
+ }
+
+ case UnqualifiedId::IK_TemplateId: {
+ TemplateName TName = Name.TemplateId->Template.get();
+ SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
+ return Context.getNameForTemplate(TName, TNameLoc);
+ }
+
+ } // switch (Name.getKind())
+
+ llvm_unreachable("Unknown name kind");
+}
+
+static QualType getCoreType(QualType Ty) {
+ do {
+ if (Ty->isPointerType() || Ty->isReferenceType())
+ Ty = Ty->getPointeeType();
+ else if (Ty->isArrayType())
+ Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
+ else
+ return Ty.withoutLocalFastQualifiers();
+ } while (true);
+}
+
+/// hasSimilarParameters - Determine whether the C++ functions Declaration
+/// and Definition have "nearly" matching parameters. This heuristic is
+/// used to improve diagnostics in the case where an out-of-line function
+/// definition doesn't match any declaration within the class or namespace.
+/// Also sets Params to the list of indices to the parameters that differ
+/// between the declaration and the definition. If hasSimilarParameters
+/// returns true and Params is empty, then all of the parameters match.
+static bool hasSimilarParameters(ASTContext &Context,
+ FunctionDecl *Declaration,
+ FunctionDecl *Definition,
+ SmallVectorImpl<unsigned> &Params) {
+ Params.clear();
+ if (Declaration->param_size() != Definition->param_size())
+ return false;
+ for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
+ QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
+ QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
+
+ // The parameter types are identical
+ if (Context.hasSameType(DefParamTy, DeclParamTy))
+ continue;
+
+ QualType DeclParamBaseTy = getCoreType(DeclParamTy);
+ QualType DefParamBaseTy = getCoreType(DefParamTy);
+ const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
+ const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
+
+ if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
+ (DeclTyName && DeclTyName == DefTyName))
+ Params.push_back(Idx);
+ else // The two parameters aren't even close
+ return false;
+ }
+
+ return true;
+}
+
+/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
+/// declarator needs to be rebuilt in the current instantiation.
+/// Any bits of declarator which appear before the name are valid for
+/// consideration here. That's specifically the type in the decl spec
+/// and the base type in any member-pointer chunks.
+static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
+ DeclarationName Name) {
+ // The types we specifically need to rebuild are:
+ // - typenames, typeofs, and decltypes
+ // - types which will become injected class names
+ // Of course, we also need to rebuild any type referencing such a
+ // type. It's safest to just say "dependent", but we call out a
+ // few cases here.
+
+ DeclSpec &DS = D.getMutableDeclSpec();
+ switch (DS.getTypeSpecType()) {
+ case DeclSpec::TST_typename:
+ case DeclSpec::TST_typeofType:
+ case DeclSpec::TST_underlyingType:
+ case DeclSpec::TST_atomic: {
+ // Grab the type from the parser.
+ TypeSourceInfo *TSI = 0;
+ QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
+ if (T.isNull() || !T->isDependentType()) break;
+
+ // Make sure there's a type source info. This isn't really much
+ // of a waste; most dependent types should have type source info
+ // attached already.
+ if (!TSI)
+ TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
+
+ // Rebuild the type in the current instantiation.
+ TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
+ if (!TSI) return true;
+
+ // Store the new type back in the decl spec.
+ ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
+ DS.UpdateTypeRep(LocType);
+ break;
+ }
+
+ case DeclSpec::TST_decltype:
+ case DeclSpec::TST_typeofExpr: {
+ Expr *E = DS.getRepAsExpr();
+ ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
+ if (Result.isInvalid()) return true;
+ DS.UpdateExprRep(Result.get());
+ break;
+ }
+
+ default:
+ // Nothing to do for these decl specs.
+ break;
+ }
+
+ // It doesn't matter what order we do this in.
+ for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
+ DeclaratorChunk &Chunk = D.getTypeObject(I);
+
+ // The only type information in the declarator which can come
+ // before the declaration name is the base type of a member
+ // pointer.
+ if (Chunk.Kind != DeclaratorChunk::MemberPointer)
+ continue;
+
+ // Rebuild the scope specifier in-place.
+ CXXScopeSpec &SS = Chunk.Mem.Scope();
+ if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
+ return true;
+ }
+
+ return false;
+}
+
+Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
+ D.setFunctionDefinitionKind(FDK_Declaration);
+ Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
+
+ if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
+ Dcl && Dcl->getDeclContext()->isFileContext())
+ Dcl->setTopLevelDeclInObjCContainer();
+
+ return Dcl;
+}
+
+/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
+/// If T is the name of a class, then each of the following shall have a
+/// name different from T:
+/// - every static data member of class T;
+/// - every member function of class T
+/// - every member of class T that is itself a type;
+/// \returns true if the declaration name violates these rules.
+bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
+ DeclarationNameInfo NameInfo) {
+ DeclarationName Name = NameInfo.getName();
+
+ if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
+ if (Record->getIdentifier() && Record->getDeclName() == Name) {
+ Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
+ return true;
+ }
+
+ return false;
+}
+
+/// \brief Diagnose a declaration whose declarator-id has the given
+/// nested-name-specifier.
+///
+/// \param SS The nested-name-specifier of the declarator-id.
+///
+/// \param DC The declaration context to which the nested-name-specifier
+/// resolves.
+///
+/// \param Name The name of the entity being declared.
+///
+/// \param Loc The location of the name of the entity being declared.
+///
+/// \returns true if we cannot safely recover from this error, false otherwise.
+bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
+ DeclarationName Name,
+ SourceLocation Loc) {
+ DeclContext *Cur = CurContext;
+ while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
+ Cur = Cur->getParent();
+
+ // C++ [dcl.meaning]p1:
+ // A declarator-id shall not be qualified except for the definition
+ // of a member function (9.3) or static data member (9.4) outside of
+ // its class, the definition or explicit instantiation of a function
+ // or variable member of a namespace outside of its namespace, or the
+ // definition of an explicit specialization outside of its namespace,
+ // or the declaration of a friend function that is a member of
+ // another class or namespace (11.3). [...]
+
+ // The user provided a superfluous scope specifier that refers back to the
+ // class or namespaces in which the entity is already declared.
+ //
+ // class X {
+ // void X::f();
+ // };
+ if (Cur->Equals(DC)) {
+ Diag(Loc, LangOpts.MicrosoftExt? diag::warn_member_extra_qualification
+ : diag::err_member_extra_qualification)
+ << Name << FixItHint::CreateRemoval(SS.getRange());
+ SS.clear();
+ return false;
+ }
+
+ // Check whether the qualifying scope encloses the scope of the original
+ // declaration.
+ if (!Cur->Encloses(DC)) {
+ if (Cur->isRecord())
+ Diag(Loc, diag::err_member_qualification)
+ << Name << SS.getRange();
+ else if (isa<TranslationUnitDecl>(DC))
+ Diag(Loc, diag::err_invalid_declarator_global_scope)
+ << Name << SS.getRange();
+ else if (isa<FunctionDecl>(Cur))
+ Diag(Loc, diag::err_invalid_declarator_in_function)
+ << Name << SS.getRange();
+ else if (isa<BlockDecl>(Cur))
+ Diag(Loc, diag::err_invalid_declarator_in_block)
+ << Name << SS.getRange();
+ else
+ Diag(Loc, diag::err_invalid_declarator_scope)
+ << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
+
+ return true;
+ }
+
+ if (Cur->isRecord()) {
+ // Cannot qualify members within a class.
+ Diag(Loc, diag::err_member_qualification)
+ << Name << SS.getRange();
+ SS.clear();
+
+ // C++ constructors and destructors with incorrect scopes can break
+ // our AST invariants by having the wrong underlying types. If
+ // that's the case, then drop this declaration entirely.
+ if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
+ Name.getNameKind() == DeclarationName::CXXDestructorName) &&
+ !Context.hasSameType(Name.getCXXNameType(),
+ Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
+ return true;
+
+ return false;
+ }
+
+ // C++11 [dcl.meaning]p1:
+ // [...] "The nested-name-specifier of the qualified declarator-id shall
+ // not begin with a decltype-specifer"
+ NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
+ while (SpecLoc.getPrefix())
+ SpecLoc = SpecLoc.getPrefix();
+ if (dyn_cast_or_null<DecltypeType>(
+ SpecLoc.getNestedNameSpecifier()->getAsType()))
+ Diag(Loc, diag::err_decltype_in_declarator)
+ << SpecLoc.getTypeLoc().getSourceRange();
+
+ return false;
+}
+
+NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
+ MultiTemplateParamsArg TemplateParamLists) {
+ // TODO: consider using NameInfo for diagnostic.
+ DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
+ DeclarationName Name = NameInfo.getName();
+
+ // All of these full declarators require an identifier. If it doesn't have
+ // one, the ParsedFreeStandingDeclSpec action should be used.
+ if (!Name) {
+ if (!D.isInvalidType()) // Reject this if we think it is valid.
+ Diag(D.getDeclSpec().getLocStart(),
+ diag::err_declarator_need_ident)
+ << D.getDeclSpec().getSourceRange() << D.getSourceRange();
+ return 0;
+ } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
+ return 0;
+
+ // The scope passed in may not be a decl scope. Zip up the scope tree until
+ // we find one that is.
+ while ((S->getFlags() & Scope::DeclScope) == 0 ||
+ (S->getFlags() & Scope::TemplateParamScope) != 0)
+ S = S->getParent();
+
+ DeclContext *DC = CurContext;
+ if (D.getCXXScopeSpec().isInvalid())
+ D.setInvalidType();
+ else if (D.getCXXScopeSpec().isSet()) {
+ if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
+ UPPC_DeclarationQualifier))
+ return 0;
+
+ bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
+ DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
+ if (!DC || isa<EnumDecl>(DC)) {
+ // If we could not compute the declaration context, it's because the
+ // declaration context is dependent but does not refer to a class,
+ // class template, or class template partial specialization. Complain
+ // and return early, to avoid the coming semantic disaster.
+ Diag(D.getIdentifierLoc(),
+ diag::err_template_qualified_declarator_no_match)
+ << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
+ << D.getCXXScopeSpec().getRange();
+ return 0;
+ }
+ bool IsDependentContext = DC->isDependentContext();
+
+ if (!IsDependentContext &&
+ RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
+ return 0;
+
+ if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
+ Diag(D.getIdentifierLoc(),
+ diag::err_member_def_undefined_record)
+ << Name << DC << D.getCXXScopeSpec().getRange();
+ D.setInvalidType();
+ } else if (!D.getDeclSpec().isFriendSpecified()) {
+ if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
+ Name, D.getIdentifierLoc())) {
+ if (DC->isRecord())
+ return 0;
+
+ D.setInvalidType();
+ }
+ }
+
+ // Check whether we need to rebuild the type of the given
+ // declaration in the current instantiation.
+ if (EnteringContext && IsDependentContext &&
+ TemplateParamLists.size() != 0) {
+ ContextRAII SavedContext(*this, DC);
+ if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
+ D.setInvalidType();
+ }
+ }
+
+ if (DiagnoseClassNameShadow(DC, NameInfo))
+ // If this is a typedef, we'll end up spewing multiple diagnostics.
+ // Just return early; it's safer.
+ if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
+ return 0;
+
+ TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
+ QualType R = TInfo->getType();
+
+ if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
+ UPPC_DeclarationType))
+ D.setInvalidType();
+
+ LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
+ ForRedeclaration);
+
+ // See if this is a redefinition of a variable in the same scope.
+ if (!D.getCXXScopeSpec().isSet()) {
+ bool IsLinkageLookup = false;
+ bool CreateBuiltins = false;
+
+ // If the declaration we're planning to build will be a function
+ // or object with linkage, then look for another declaration with
+ // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
+ //
+ // If the declaration we're planning to build will be declared with
+ // external linkage in the translation unit, create any builtin with
+ // the same name.
+ if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
+ /* Do nothing*/;
+ else if (CurContext->isFunctionOrMethod() &&
+ (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
+ R->isFunctionType())) {
+ IsLinkageLookup = true;
+ CreateBuiltins =
+ CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
+ } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
+ D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
+ CreateBuiltins = true;
+
+ if (IsLinkageLookup)
+ Previous.clear(LookupRedeclarationWithLinkage);
+
+ LookupName(Previous, S, CreateBuiltins);
+ } else { // Something like "int foo::x;"
+ LookupQualifiedName(Previous, DC);
+
+ // C++ [dcl.meaning]p1:
+ // When the declarator-id is qualified, the declaration shall refer to a
+ // previously declared member of the class or namespace to which the
+ // qualifier refers (or, in the case of a namespace, of an element of the
+ // inline namespace set of that namespace (7.3.1)) or to a specialization
+ // thereof; [...]
+ //
+ // Note that we already checked the context above, and that we do not have
+ // enough information to make sure that Previous contains the declaration
+ // we want to match. For example, given:
+ //
+ // class X {
+ // void f();
+ // void f(float);
+ // };
+ //
+ // void X::f(int) { } // ill-formed
+ //
+ // In this case, Previous will point to the overload set
+ // containing the two f's declared in X, but neither of them
+ // matches.
+
+ // C++ [dcl.meaning]p1:
+ // [...] the member shall not merely have been introduced by a
+ // using-declaration in the scope of the class or namespace nominated by
+ // the nested-name-specifier of the declarator-id.
+ RemoveUsingDecls(Previous);
+ }
+
+ if (Previous.isSingleResult() &&
+ Previous.getFoundDecl()->isTemplateParameter()) {
+ // Maybe we will complain about the shadowed template parameter.
+ if (!D.isInvalidType())
+ DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
+ Previous.getFoundDecl());
+
+ // Just pretend that we didn't see the previous declaration.
+ Previous.clear();
+ }
+
+ // In C++, the previous declaration we find might be a tag type
+ // (class or enum). In this case, the new declaration will hide the
+ // tag type. Note that this does does not apply if we're declaring a
+ // typedef (C++ [dcl.typedef]p4).
+ if (Previous.isSingleTagDecl() &&
+ D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
+ Previous.clear();
+
+ // Check that there are no default arguments other than in the parameters
+ // of a function declaration (C++ only).
+ if (getLangOpts().CPlusPlus)
+ CheckExtraCXXDefaultArguments(D);
+
+ NamedDecl *New;
+
+ bool AddToScope = true;
+ if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
+ if (TemplateParamLists.size()) {
+ Diag(D.getIdentifierLoc(), diag::err_template_typedef);
+ return 0;
+ }
+
+ New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
+ } else if (R->isFunctionType()) {
+ New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
+ TemplateParamLists,
+ AddToScope);
+ } else {
+ New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
+ AddToScope);
+ }
+
+ if (New == 0)
+ return 0;
+
+ // If this has an identifier and is not an invalid redeclaration or
+ // function template specialization, add it to the scope stack.
+ if (New->getDeclName() && AddToScope &&
+ !(D.isRedeclaration() && New->isInvalidDecl())) {
+ // Only make a locally-scoped extern declaration visible if it is the first
+ // declaration of this entity. Qualified lookup for such an entity should
+ // only find this declaration if there is no visible declaration of it.
+ bool AddToContext = !D.isRedeclaration() || !New->isLocalExternDecl();
+ PushOnScopeChains(New, S, AddToContext);
+ if (!AddToContext)
+ CurContext->addHiddenDecl(New);
+ }
+
+ return New;
+}
+
+/// Helper method to turn variable array types into constant array
+/// types in certain situations which would otherwise be errors (for
+/// GCC compatibility).
+static QualType TryToFixInvalidVariablyModifiedType(QualType T,
+ ASTContext &Context,
+ bool &SizeIsNegative,
+ llvm::APSInt &Oversized) {
+ // This method tries to turn a variable array into a constant
+ // array even when the size isn't an ICE. This is necessary
+ // for compatibility with code that depends on gcc's buggy
+ // constant expression folding, like struct {char x[(int)(char*)2];}
+ SizeIsNegative = false;
+ Oversized = 0;
+
+ if (T->isDependentType())
+ return QualType();
+
+ QualifierCollector Qs;
+ const Type *Ty = Qs.strip(T);
+
+ if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
+ QualType Pointee = PTy->getPointeeType();
+ QualType FixedType =
+ TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
+ Oversized);
+ if (FixedType.isNull()) return FixedType;
+ FixedType = Context.getPointerType(FixedType);
+ return Qs.apply(Context, FixedType);
+ }
+ if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
+ QualType Inner = PTy->getInnerType();
+ QualType FixedType =
+ TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
+ Oversized);
+ if (FixedType.isNull()) return FixedType;
+ FixedType = Context.getParenType(FixedType);
+ return Qs.apply(Context, FixedType);
+ }
+
+ const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
+ if (!VLATy)
+ return QualType();
+ // FIXME: We should probably handle this case
+ if (VLATy->getElementType()->isVariablyModifiedType())
+ return QualType();
+
+ llvm::APSInt Res;
+ if (!VLATy->getSizeExpr() ||
+ !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
+ return QualType();
+
+ // Check whether the array size is negative.
+ if (Res.isSigned() && Res.isNegative()) {
+ SizeIsNegative = true;
+ return QualType();
+ }
+
+ // Check whether the array is too large to be addressed.
+ unsigned ActiveSizeBits
+ = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
+ Res);
+ if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
+ Oversized = Res;
+ return QualType();
+ }
+
+ return Context.getConstantArrayType(VLATy->getElementType(),
+ Res, ArrayType::Normal, 0);
+}
+
+static void
+FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
+ if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
+ PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
+ FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
+ DstPTL.getPointeeLoc());
+ DstPTL.setStarLoc(SrcPTL.getStarLoc());
+ return;
+ }
+ if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
+ ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
+ FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
+ DstPTL.getInnerLoc());
+ DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
+ DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
+ return;
+ }
+ ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
+ ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
+ TypeLoc SrcElemTL = SrcATL.getElementLoc();
+ TypeLoc DstElemTL = DstATL.getElementLoc();
+ DstElemTL.initializeFullCopy(SrcElemTL);
+ DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
+ DstATL.setSizeExpr(SrcATL.getSizeExpr());
+ DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
+}
+
+/// Helper method to turn variable array types into constant array
+/// types in certain situations which would otherwise be errors (for
+/// GCC compatibility).
+static TypeSourceInfo*
+TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
+ ASTContext &Context,
+ bool &SizeIsNegative,
+ llvm::APSInt &Oversized) {
+ QualType FixedTy
+ = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
+ SizeIsNegative, Oversized);
+ if (FixedTy.isNull())
+ return 0;
+ TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
+ FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
+ FixedTInfo->getTypeLoc());
+ return FixedTInfo;
+}
+
+/// \brief Register the given locally-scoped extern "C" declaration so
+/// that it can be found later for redeclarations. We include any extern "C"
+/// declaration that is not visible in the translation unit here, not just
+/// function-scope declarations.
+void
+Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
+ if (!getLangOpts().CPlusPlus &&
+ ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
+ // Don't need to track declarations in the TU in C.
+ return;
+
+ // Note that we have a locally-scoped external with this name.
+ // FIXME: There can be multiple such declarations if they are functions marked
+ // __attribute__((overloadable)) declared in function scope in C.
+ LocallyScopedExternCDecls[ND->getDeclName()] = ND;
+}
+
+NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
+ if (ExternalSource) {
+ // Load locally-scoped external decls from the external source.
+ // FIXME: This is inefficient. Maybe add a DeclContext for extern "C" decls?
+ SmallVector<NamedDecl *, 4> Decls;
+ ExternalSource->ReadLocallyScopedExternCDecls(Decls);
+ for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
+ llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
+ = LocallyScopedExternCDecls.find(Decls[I]->getDeclName());
+ if (Pos == LocallyScopedExternCDecls.end())
+ LocallyScopedExternCDecls[Decls[I]->getDeclName()] = Decls[I];
+ }
+ }
+
+ NamedDecl *D = LocallyScopedExternCDecls.lookup(Name);
+ return D ? D->getMostRecentDecl() : 0;
+}
+
+/// \brief Diagnose function specifiers on a declaration of an identifier that
+/// does not identify a function.
+void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
+ // FIXME: We should probably indicate the identifier in question to avoid
+ // confusion for constructs like "inline int a(), b;"
+ if (DS.isInlineSpecified())
+ Diag(DS.getInlineSpecLoc(),
+ diag::err_inline_non_function);
+
+ if (DS.isVirtualSpecified())
+ Diag(DS.getVirtualSpecLoc(),
+ diag::err_virtual_non_function);
+
+ if (DS.isExplicitSpecified())
+ Diag(DS.getExplicitSpecLoc(),
+ diag::err_explicit_non_function);
+
+ if (DS.isNoreturnSpecified())
+ Diag(DS.getNoreturnSpecLoc(),
+ diag::err_noreturn_non_function);
+}
+
+NamedDecl*
+Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
+ TypeSourceInfo *TInfo, LookupResult &Previous) {
+ // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
+ if (D.getCXXScopeSpec().isSet()) {
+ Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
+ << D.getCXXScopeSpec().getRange();
+ D.setInvalidType();
+ // Pretend we didn't see the scope specifier.
+ DC = CurContext;
+ Previous.clear();
+ }
+
+ DiagnoseFunctionSpecifiers(D.getDeclSpec());
+
+ if (D.getDeclSpec().isConstexprSpecified())
+ Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
+ << 1;
+
+ if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
+ Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
+ << D.getName().getSourceRange();
+ return 0;
+ }
+
+ TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
+ if (!NewTD) return 0;
+
+ // Handle attributes prior to checking for duplicates in MergeVarDecl
+ ProcessDeclAttributes(S, NewTD, D);
+
+ CheckTypedefForVariablyModifiedType(S, NewTD);
+
+ bool Redeclaration = D.isRedeclaration();
+ NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
+ D.setRedeclaration(Redeclaration);
+ return ND;
+}
+
+void
+Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
+ // C99 6.7.7p2: If a typedef name specifies a variably modified type
+ // then it shall have block scope.
+ // Note that variably modified types must be fixed before merging the decl so
+ // that redeclarations will match.
+ TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
+ QualType T = TInfo->getType();
+ if (T->isVariablyModifiedType()) {
+ getCurFunction()->setHasBranchProtectedScope();
+
+ if (S->getFnParent() == 0) {
+ bool SizeIsNegative;
+ llvm::APSInt Oversized;
+ TypeSourceInfo *FixedTInfo =
+ TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
+ SizeIsNegative,
+ Oversized);
+ if (FixedTInfo) {
+ Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
+ NewTD->setTypeSourceInfo(FixedTInfo);
+ } else {
+ if (SizeIsNegative)
+ Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
+ else if (T->isVariableArrayType())
+ Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
+ else if (Oversized.getBoolValue())
+ Diag(NewTD->getLocation(), diag::err_array_too_large)
+ << Oversized.toString(10);
+ else
+ Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
+ NewTD->setInvalidDecl();
+ }
+ }
+ }
+}
+
+
+/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
+/// declares a typedef-name, either using the 'typedef' type specifier or via
+/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
+NamedDecl*
+Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
+ LookupResult &Previous, bool &Redeclaration) {
+ // Merge the decl with the existing one if appropriate. If the decl is
+ // in an outer scope, it isn't the same thing.
+ FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
+ /*ExplicitInstantiationOrSpecialization=*/false);
+ filterNonConflictingPreviousDecls(Context, NewTD, Previous);
+ if (!Previous.empty()) {
+ Redeclaration = true;
+ MergeTypedefNameDecl(NewTD, Previous);
+ }
+
+ // If this is the C FILE type, notify the AST context.
+ if (IdentifierInfo *II = NewTD->getIdentifier())
+ if (!NewTD->isInvalidDecl() &&
+ NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
+ if (II->isStr("FILE"))
+ Context.setFILEDecl(NewTD);
+ else if (II->isStr("jmp_buf"))
+ Context.setjmp_bufDecl(NewTD);
+ else if (II->isStr("sigjmp_buf"))
+ Context.setsigjmp_bufDecl(NewTD);
+ else if (II->isStr("ucontext_t"))
+ Context.setucontext_tDecl(NewTD);
+ }
+
+ return NewTD;
+}
+
+/// \brief Determines whether the given declaration is an out-of-scope
+/// previous declaration.
+///
+/// This routine should be invoked when name lookup has found a
+/// previous declaration (PrevDecl) that is not in the scope where a
+/// new declaration by the same name is being introduced. If the new
+/// declaration occurs in a local scope, previous declarations with
+/// linkage may still be considered previous declarations (C99
+/// 6.2.2p4-5, C++ [basic.link]p6).
+///
+/// \param PrevDecl the previous declaration found by name
+/// lookup
+///
+/// \param DC the context in which the new declaration is being
+/// declared.
+///
+/// \returns true if PrevDecl is an out-of-scope previous declaration
+/// for a new delcaration with the same name.
+static bool
+isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
+ ASTContext &Context) {
+ if (!PrevDecl)
+ return false;
+
+ if (!PrevDecl->hasLinkage())
+ return false;
+
+ if (Context.getLangOpts().CPlusPlus) {
+ // C++ [basic.link]p6:
+ // If there is a visible declaration of an entity with linkage
+ // having the same name and type, ignoring entities declared
+ // outside the innermost enclosing namespace scope, the block
+ // scope declaration declares that same entity and receives the
+ // linkage of the previous declaration.
+ DeclContext *OuterContext = DC->getRedeclContext();
+ if (!OuterContext->isFunctionOrMethod())
+ // This rule only applies to block-scope declarations.
+ return false;
+
+ DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
+ if (PrevOuterContext->isRecord())
+ // We found a member function: ignore it.
+ return false;
+
+ // Find the innermost enclosing namespace for the new and
+ // previous declarations.
+ OuterContext = OuterContext->getEnclosingNamespaceContext();
+ PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
+
+ // The previous declaration is in a different namespace, so it
+ // isn't the same function.
+ if (!OuterContext->Equals(PrevOuterContext))
+ return false;
+ }
+
+ return true;
+}
+
+static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
+ CXXScopeSpec &SS = D.getCXXScopeSpec();
+ if (!SS.isSet()) return;
+ DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
+}
+
+bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
+ QualType type = decl->getType();
+ Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
+ if (lifetime == Qualifiers::OCL_Autoreleasing) {
+ // Various kinds of declaration aren't allowed to be __autoreleasing.
+ unsigned kind = -1U;
+ if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
+ if (var->hasAttr<BlocksAttr>())
+ kind = 0; // __block
+ else if (!var->hasLocalStorage())
+ kind = 1; // global
+ } else if (isa<ObjCIvarDecl>(decl)) {
+ kind = 3; // ivar
+ } else if (isa<FieldDecl>(decl)) {
+ kind = 2; // field
+ }
+
+ if (kind != -1U) {
+ Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
+ << kind;
+ }
+ } else if (lifetime == Qualifiers::OCL_None) {
+ // Try to infer lifetime.
+ if (!type->isObjCLifetimeType())
+ return false;
+
+ lifetime = type->getObjCARCImplicitLifetime();
+ type = Context.getLifetimeQualifiedType(type, lifetime);
+ decl->setType(type);
+ }
+
+ if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
+ // Thread-local variables cannot have lifetime.
+ if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
+ var->getTLSKind()) {
+ Diag(var->getLocation(), diag::err_arc_thread_ownership)
+ << var->getType();
+ return true;
+ }
+ }
+
+ return false;
+}
+
+static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
+ // 'weak' only applies to declarations with external linkage.
+ if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
+ if (!ND.isExternallyVisible()) {
+ S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
+ ND.dropAttr<WeakAttr>();
+ }
+ }
+ if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
+ if (ND.isExternallyVisible()) {
+ S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
+ ND.dropAttr<WeakRefAttr>();
+ }
+ }
+
+ // 'selectany' only applies to externally visible varable declarations.
+ // It does not apply to functions.
+ if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
+ if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
+ S.Diag(Attr->getLocation(), diag::err_attribute_selectany_non_extern_data);
+ ND.dropAttr<SelectAnyAttr>();
+ }
+ }
+}
+
+/// Given that we are within the definition of the given function,
+/// will that definition behave like C99's 'inline', where the
+/// definition is discarded except for optimization purposes?
+static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
+ // Try to avoid calling GetGVALinkageForFunction.
+
+ // All cases of this require the 'inline' keyword.
+ if (!FD->isInlined()) return false;
+
+ // This is only possible in C++ with the gnu_inline attribute.
+ if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
+ return false;
+
+ // Okay, go ahead and call the relatively-more-expensive function.
+
+#ifndef NDEBUG
+ // AST quite reasonably asserts that it's working on a function
+ // definition. We don't really have a way to tell it that we're
+ // currently defining the function, so just lie to it in +Asserts
+ // builds. This is an awful hack.
+ FD->setLazyBody(1);
+#endif
+
+ bool isC99Inline = (S.Context.GetGVALinkageForFunction(FD) == GVA_C99Inline);
+
+#ifndef NDEBUG
+ FD->setLazyBody(0);
+#endif
+
+ return isC99Inline;
+}
+
+/// Determine whether a variable is extern "C" prior to attaching
+/// an initializer. We can't just call isExternC() here, because that
+/// will also compute and cache whether the declaration is externally
+/// visible, which might change when we attach the initializer.
+///
+/// This can only be used if the declaration is known to not be a
+/// redeclaration of an internal linkage declaration.
+///
+/// For instance:
+///
+/// auto x = []{};
+///
+/// Attaching the initializer here makes this declaration not externally
+/// visible, because its type has internal linkage.
+///
+/// FIXME: This is a hack.
+template<typename T>
+static bool isIncompleteDeclExternC(Sema &S, const T *D) {
+ if (S.getLangOpts().CPlusPlus) {
+ // In C++, the overloadable attribute negates the effects of extern "C".
+ if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
+ return false;
+ }
+ return D->isExternC();
+}
+
+static bool shouldConsiderLinkage(const VarDecl *VD) {
+ const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
+ if (DC->isFunctionOrMethod())
+ return VD->hasExternalStorage();
+ if (DC->isFileContext())
+ return true;
+ if (DC->isRecord())
+ return false;
+ llvm_unreachable("Unexpected context");
+}
+
+static bool shouldConsiderLinkage(const FunctionDecl *FD) {
+ const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
+ if (DC->isFileContext() || DC->isFunctionOrMethod())
+ return true;
+ if (DC->isRecord())
+ return false;
+ llvm_unreachable("Unexpected context");
+}
+
+/// Adjust the \c DeclContext for a function or variable that might be a
+/// function-local external declaration.
+bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
+ if (!DC->isFunctionOrMethod())
+ return false;
+
+ // If this is a local extern function or variable declared within a function
+ // template, don't add it into the enclosing namespace scope until it is
+ // instantiated; it might have a dependent type right now.
+ if (DC->isDependentContext())
+ return true;
+
+ // C++11 [basic.link]p7:
+ // When a block scope declaration of an entity with linkage is not found to
+ // refer to some other declaration, then that entity is a member of the
+ // innermost enclosing namespace.
+ //
+ // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
+ // semantically-enclosing namespace, not a lexically-enclosing one.
+ while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
+ DC = DC->getParent();
+ return true;
+}
+
+NamedDecl *
+Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
+ TypeSourceInfo *TInfo, LookupResult &Previous,
+ MultiTemplateParamsArg TemplateParamLists,
+ bool &AddToScope) {
+ QualType R = TInfo->getType();
+ DeclarationName Name = GetNameForDeclarator(D).getName();
+
+ DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
+ VarDecl::StorageClass SC =
+ StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
+
+ DeclContext *OriginalDC = DC;
+ bool IsLocalExternDecl = SC == SC_Extern &&
+ adjustContextForLocalExternDecl(DC);
+
+ if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16) {
+ // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
+ // half array type (unless the cl_khr_fp16 extension is enabled).
+ if (Context.getBaseElementType(R)->isHalfType()) {
+ Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
+ D.setInvalidType();
+ }
+ }
+
+ if (SCSpec == DeclSpec::SCS_mutable) {
+ // mutable can only appear on non-static class members, so it's always
+ // an error here
+ Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
+ D.setInvalidType();
+ SC = SC_None;
+ }
+
+ if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
+ !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
+ D.getDeclSpec().getStorageClassSpecLoc())) {
+ // In C++11, the 'register' storage class specifier is deprecated.
+ // Suppress the warning in system macros, it's used in macros in some
+ // popular C system headers, such as in glibc's htonl() macro.
+ Diag(D.getDeclSpec().getStorageClassSpecLoc(),
+ diag::warn_deprecated_register)
+ << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
+ }
+
+ IdentifierInfo *II = Name.getAsIdentifierInfo();
+ if (!II) {
+ Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
+ << Name;
+ return 0;
+ }
+
+ DiagnoseFunctionSpecifiers(D.getDeclSpec());
+
+ if (!DC->isRecord() && S->getFnParent() == 0) {
+ // C99 6.9p2: The storage-class specifiers auto and register shall not
+ // appear in the declaration specifiers in an external declaration.
+ if (SC == SC_Auto || SC == SC_Register) {
+ // If this is a register variable with an asm label specified, then this
+ // is a GNU extension.
+ if (SC == SC_Register && D.getAsmLabel())
+ Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
+ else
+ Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
+ D.setInvalidType();
+ }
+ }
+
+ if (getLangOpts().OpenCL) {
+ // Set up the special work-group-local storage class for variables in the
+ // OpenCL __local address space.
+ if (R.getAddressSpace() == LangAS::opencl_local) {
+ SC = SC_OpenCLWorkGroupLocal;
+ }
+
+ // OpenCL v1.2 s6.9.b p4:
+ // The sampler type cannot be used with the __local and __global address
+ // space qualifiers.
+ if (R->isSamplerT() && (R.getAddressSpace() == LangAS::opencl_local ||
+ R.getAddressSpace() == LangAS::opencl_global)) {
+ Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
+ }
+
+ // OpenCL 1.2 spec, p6.9 r:
+ // The event type cannot be used to declare a program scope variable.
+ // The event type cannot be used with the __local, __constant and __global
+ // address space qualifiers.
+ if (R->isEventT()) {
+ if (S->getParent() == 0) {
+ Diag(D.getLocStart(), diag::err_event_t_global_var);
+ D.setInvalidType();
+ }
+
+ if (R.getAddressSpace()) {
+ Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
+ D.setInvalidType();
+ }
+ }
+ }
+
+ bool IsExplicitSpecialization = false;
+ bool IsVariableTemplateSpecialization = false;
+ bool IsPartialSpecialization = false;
+ bool IsVariableTemplate = false;
+ VarTemplateDecl *PrevVarTemplate = 0;
+ VarDecl *NewVD = 0;
+ VarTemplateDecl *NewTemplate = 0;
+ if (!getLangOpts().CPlusPlus) {
+ NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
+ D.getIdentifierLoc(), II,
+ R, TInfo, SC);
+
+ if (D.isInvalidType())
+ NewVD->setInvalidDecl();
+ } else {
+ bool Invalid = false;
+
+ if (DC->isRecord() && !CurContext->isRecord()) {
+ // This is an out-of-line definition of a static data member.
+ switch (SC) {
+ case SC_None:
+ break;
+ case SC_Static:
+ Diag(D.getDeclSpec().getStorageClassSpecLoc(),
+ diag::err_static_out_of_line)
+ << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
+ break;
+ case SC_Auto:
+ case SC_Register:
+ case SC_Extern:
+ // [dcl.stc] p2: The auto or register specifiers shall be applied only
+ // to names of variables declared in a block or to function parameters.
+ // [dcl.stc] p6: The extern specifier cannot be used in the declaration
+ // of class members
+
+ Diag(D.getDeclSpec().getStorageClassSpecLoc(),
+ diag::err_storage_class_for_static_member)
+ << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
+ break;
+ case SC_PrivateExtern:
+ llvm_unreachable("C storage class in c++!");
+ case SC_OpenCLWorkGroupLocal:
+ llvm_unreachable("OpenCL storage class in c++!");
+ }
+ }
+
+ if (SC == SC_Static && CurContext->isRecord()) {
+ if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
+ if (RD->isLocalClass())
+ Diag(D.getIdentifierLoc(),
+ diag::err_static_data_member_not_allowed_in_local_class)
+ << Name << RD->getDeclName();
+
+ // C++98 [class.union]p1: If a union contains a static data member,
+ // the program is ill-formed. C++11 drops this restriction.
+ if (RD->isUnion())
+ Diag(D.getIdentifierLoc(),
+ getLangOpts().CPlusPlus11
+ ? diag::warn_cxx98_compat_static_data_member_in_union
+ : diag::ext_static_data_member_in_union) << Name;
+ // We conservatively disallow static data members in anonymous structs.
+ else if (!RD->getDeclName())
+ Diag(D.getIdentifierLoc(),
+ diag::err_static_data_member_not_allowed_in_anon_struct)
+ << Name << RD->isUnion();
+ }
+ }
+
+ NamedDecl *PrevDecl = 0;
+ if (Previous.begin() != Previous.end())
+ PrevDecl = (*Previous.begin())->getUnderlyingDecl();
+ PrevVarTemplate = dyn_cast_or_null<VarTemplateDecl>(PrevDecl);
+
+ // Match up the template parameter lists with the scope specifier, then
+ // determine whether we have a template or a template specialization.
+ TemplateParameterList *TemplateParams =
+ MatchTemplateParametersToScopeSpecifier(
+ D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
+ D.getCXXScopeSpec(), TemplateParamLists,
+ /*never a friend*/ false, IsExplicitSpecialization, Invalid);
+ if (TemplateParams) {
+ if (!TemplateParams->size() &&
+ D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
+ // There is an extraneous 'template<>' for this variable. Complain
+ // about it, but allow the declaration of the variable.
+ Diag(TemplateParams->getTemplateLoc(),
+ diag::err_template_variable_noparams)
+ << II
+ << SourceRange(TemplateParams->getTemplateLoc(),
+ TemplateParams->getRAngleLoc());
+ } else {
+ // Only C++1y supports variable templates (N3651).
+ Diag(D.getIdentifierLoc(),
+ getLangOpts().CPlusPlus1y
+ ? diag::warn_cxx11_compat_variable_template
+ : diag::ext_variable_template);
+
+ if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
+ // This is an explicit specialization or a partial specialization.
+ // Check that we can declare a specialization here
+
+ IsVariableTemplateSpecialization = true;
+ IsPartialSpecialization = TemplateParams->size() > 0;
+
+ } else { // if (TemplateParams->size() > 0)
+ // This is a template declaration.
+ IsVariableTemplate = true;
+
+ // Check that we can declare a template here.
+ if (CheckTemplateDeclScope(S, TemplateParams))
+ return 0;
+
+ // If there is a previous declaration with the same name, check
+ // whether this is a valid redeclaration.
+ if (PrevDecl && !isDeclInScope(PrevDecl, DC, S))
+ PrevDecl = PrevVarTemplate = 0;
+
+ if (PrevVarTemplate) {
+ // Ensure that the template parameter lists are compatible.
+ if (!TemplateParameterListsAreEqual(
+ TemplateParams, PrevVarTemplate->getTemplateParameters(),
+ /*Complain=*/true, TPL_TemplateMatch))
+ return 0;
+ } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
+ // Maybe we will complain about the shadowed template parameter.
+ DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
+
+ // Just pretend that we didn't see the previous declaration.
+ PrevDecl = 0;
+ } else if (PrevDecl) {
+ // C++ [temp]p5:
+ // ... a template name declared in namespace scope or in class
+ // scope shall be unique in that scope.
+ Diag(D.getIdentifierLoc(), diag::err_redefinition_different_kind)
+ << Name;
+ Diag(PrevDecl->getLocation(), diag::note_previous_definition);
+ return 0;
+ }
+
+ // Check the template parameter list of this declaration, possibly
+ // merging in the template parameter list from the previous variable
+ // template declaration.
+ if (CheckTemplateParameterList(
+ TemplateParams,
+ PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
+ : 0,
+ (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
+ DC->isDependentContext())
+ ? TPC_ClassTemplateMember
+ : TPC_VarTemplate))
+ Invalid = true;
+
+ if (D.getCXXScopeSpec().isSet()) {
+ // If the name of the template was qualified, we must be defining
+ // the template out-of-line.
+ if (!D.getCXXScopeSpec().isInvalid() && !Invalid &&
+ !PrevVarTemplate) {
+ Diag(D.getIdentifierLoc(), diag::err_member_decl_does_not_match)
+ << Name << DC << /*IsDefinition*/true
+ << D.getCXXScopeSpec().getRange();
+ Invalid = true;
+ }
+ }
+ }
+ }
+ } else if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
+ TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
+
+ // We have encountered something that the user meant to be a
+ // specialization (because it has explicitly-specified template
+ // arguments) but that was not introduced with a "template<>" (or had
+ // too few of them).
+ // FIXME: Differentiate between attempts for explicit instantiations
+ // (starting with "template") and the rest.
+ Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
+ << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
+ << FixItHint::CreateInsertion(D.getDeclSpec().getLocStart(),
+ "template<> ");
+ IsVariableTemplateSpecialization = true;
+ }
+
+ if (IsVariableTemplateSpecialization) {
+ if (!PrevVarTemplate) {
+ Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
+ << IsPartialSpecialization;
+ return 0;
+ }
+
+ SourceLocation TemplateKWLoc =
+ TemplateParamLists.size() > 0
+ ? TemplateParamLists[0]->getTemplateLoc()
+ : SourceLocation();
+ DeclResult Res = ActOnVarTemplateSpecialization(
+ S, PrevVarTemplate, D, TInfo, TemplateKWLoc, TemplateParams, SC,
+ IsPartialSpecialization);
+ if (Res.isInvalid())
+ return 0;
+ NewVD = cast<VarDecl>(Res.get());
+ AddToScope = false;
+ } else
+ NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
+ D.getIdentifierLoc(), II, R, TInfo, SC);
+
+ // If this is supposed to be a variable template, create it as such.
+ if (IsVariableTemplate) {
+ NewTemplate =
+ VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
+ TemplateParams, NewVD, PrevVarTemplate);
+ NewVD->setDescribedVarTemplate(NewTemplate);
+ }
+
+ // If this decl has an auto type in need of deduction, make a note of the
+ // Decl so we can diagnose uses of it in its own initializer.
+ if (D.getDeclSpec().containsPlaceholderType() && R->getContainedAutoType())
+ ParsingInitForAutoVars.insert(NewVD);
+
+ if (D.isInvalidType() || Invalid) {
+ NewVD->setInvalidDecl();
+ if (NewTemplate)
+ NewTemplate->setInvalidDecl();
+ }
+
+ SetNestedNameSpecifier(NewVD, D);
+
+ // FIXME: Do we need D.getCXXScopeSpec().isSet()?
+ if (TemplateParams && TemplateParamLists.size() > 1 &&
+ (!IsVariableTemplateSpecialization || D.getCXXScopeSpec().isSet())) {
+ NewVD->setTemplateParameterListsInfo(
+ Context, TemplateParamLists.size() - 1, TemplateParamLists.data());
+ } else if (IsVariableTemplateSpecialization ||
+ (!TemplateParams && TemplateParamLists.size() > 0 &&
+ (D.getCXXScopeSpec().isSet()))) {
+ NewVD->setTemplateParameterListsInfo(Context,
+ TemplateParamLists.size(),
+ TemplateParamLists.data());
+ }
+
+ if (D.getDeclSpec().isConstexprSpecified())
+ NewVD->setConstexpr(true);
+ }
+
+ // Set the lexical context. If the declarator has a C++ scope specifier, the
+ // lexical context will be different from the semantic context.
+ NewVD->setLexicalDeclContext(CurContext);
+ if (NewTemplate)
+ NewTemplate->setLexicalDeclContext(CurContext);
+
+ if (IsLocalExternDecl)
+ NewVD->setLocalExternDecl();
+
+ if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
+ if (NewVD->hasLocalStorage()) {
+ // C++11 [dcl.stc]p4:
+ // When thread_local is applied to a variable of block scope the
+ // storage-class-specifier static is implied if it does not appear
+ // explicitly.
+ // Core issue: 'static' is not implied if the variable is declared
+ // 'extern'.
+ if (SCSpec == DeclSpec::SCS_unspecified &&
+ TSCS == DeclSpec::TSCS_thread_local &&
+ DC->isFunctionOrMethod())
+ NewVD->setTSCSpec(TSCS);
+ else
+ Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
+ diag::err_thread_non_global)
+ << DeclSpec::getSpecifierName(TSCS);
+ } else if (!Context.getTargetInfo().isTLSSupported())
+ Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
+ diag::err_thread_unsupported);
+ else
+ NewVD->setTSCSpec(TSCS);
+ }
+
+ // C99 6.7.4p3
+ // An inline definition of a function with external linkage shall
+ // not contain a definition of a modifiable object with static or
+ // thread storage duration...
+ // We only apply this when the function is required to be defined
+ // elsewhere, i.e. when the function is not 'extern inline'. Note
+ // that a local variable with thread storage duration still has to
+ // be marked 'static'. Also note that it's possible to get these
+ // semantics in C++ using __attribute__((gnu_inline)).
+ if (SC == SC_Static && S->getFnParent() != 0 &&
+ !NewVD->getType().isConstQualified()) {
+ FunctionDecl *CurFD = getCurFunctionDecl();
+ if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
+ Diag(D.getDeclSpec().getStorageClassSpecLoc(),
+ diag::warn_static_local_in_extern_inline);
+ MaybeSuggestAddingStaticToDecl(CurFD);
+ }
+ }
+
+ if (D.getDeclSpec().isModulePrivateSpecified()) {
+ if (IsVariableTemplateSpecialization)
+ Diag(NewVD->getLocation(), diag::err_module_private_specialization)
+ << (IsPartialSpecialization ? 1 : 0)
+ << FixItHint::CreateRemoval(
+ D.getDeclSpec().getModulePrivateSpecLoc());
+ else if (IsExplicitSpecialization)
+ Diag(NewVD->getLocation(), diag::err_module_private_specialization)
+ << 2
+ << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
+ else if (NewVD->hasLocalStorage())
+ Diag(NewVD->getLocation(), diag::err_module_private_local)
+ << 0 << NewVD->getDeclName()
+ << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
+ << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
+ else {
+ NewVD->setModulePrivate();
+ if (NewTemplate)
+ NewTemplate->setModulePrivate();
+ }
+ }
+
+ // Handle attributes prior to checking for duplicates in MergeVarDecl
+ ProcessDeclAttributes(S, NewVD, D);
+
+ if (NewVD->hasAttrs())
+ CheckAlignasUnderalignment(NewVD);
+
+ if (getLangOpts().CUDA) {
+ // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
+ // storage [duration]."
+ if (SC == SC_None && S->getFnParent() != 0 &&
+ (NewVD->hasAttr<CUDASharedAttr>() ||
+ NewVD->hasAttr<CUDAConstantAttr>())) {
+ NewVD->setStorageClass(SC_Static);
+ }
+ }
+
+ // In auto-retain/release, infer strong retension for variables of
+ // retainable type.
+ if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
+ NewVD->setInvalidDecl();
+
+ // Handle GNU asm-label extension (encoded as an attribute).
+ if (Expr *E = (Expr*)D.getAsmLabel()) {
+ // The parser guarantees this is a string.
+ StringLiteral *SE = cast<StringLiteral>(E);
+ StringRef Label = SE->getString();
+ if (S->getFnParent() != 0) {
+ switch (SC) {
+ case SC_None:
+ case SC_Auto:
+ Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
+ break;
+ case SC_Register:
+ if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
+ Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
+ break;
+ case SC_Static:
+ case SC_Extern:
+ case SC_PrivateExtern:
+ case SC_OpenCLWorkGroupLocal:
+ break;
+ }
+ }
+
+ NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
+ Context, Label));
+ } else if (!ExtnameUndeclaredIdentifiers.empty()) {
+ llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
+ ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
+ if (I != ExtnameUndeclaredIdentifiers.end()) {
+ NewVD->addAttr(I->second);
+ ExtnameUndeclaredIdentifiers.erase(I);
+ }
+ }
+
+ // Diagnose shadowed variables before filtering for scope.
+ if (!D.getCXXScopeSpec().isSet())
+ CheckShadow(S, NewVD, Previous);
+
+ // Don't consider existing declarations that are in a different
+ // scope and are out-of-semantic-context declarations (if the new
+ // declaration has linkage).
+ FilterLookupForScope(
+ Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
+ IsExplicitSpecialization || IsVariableTemplateSpecialization);
+
+ // Check whether the previous declaration is in the same block scope. This
+ // affects whether we merge types with it, per C++11 [dcl.array]p3.
+ if (getLangOpts().CPlusPlus &&
+ NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
+ NewVD->setPreviousDeclInSameBlockScope(
+ Previous.isSingleResult() && !Previous.isShadowed() &&
+ isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
+
+ if (!getLangOpts().CPlusPlus) {
+ D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
+ } else {
+ // Merge the decl with the existing one if appropriate.
+ if (!Previous.empty()) {
+ if (Previous.isSingleResult() &&
+ isa<FieldDecl>(Previous.getFoundDecl()) &&
+ D.getCXXScopeSpec().isSet()) {
+ // The user tried to define a non-static data member
+ // out-of-line (C++ [dcl.meaning]p1).
+ Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
+ << D.getCXXScopeSpec().getRange();
+ Previous.clear();
+ NewVD->setInvalidDecl();
+ }
+ } else if (D.getCXXScopeSpec().isSet()) {
+ // No previous declaration in the qualifying scope.
+ Diag(D.getIdentifierLoc(), diag::err_no_member)
+ << Name << computeDeclContext(D.getCXXScopeSpec(), true)
+ << D.getCXXScopeSpec().getRange();
+ NewVD->setInvalidDecl();
+ }
+
+ if (!IsVariableTemplateSpecialization) {
+ if (PrevVarTemplate) {
+ LookupResult PrevDecl(*this, GetNameForDeclarator(D),
+ LookupOrdinaryName, ForRedeclaration);
+ PrevDecl.addDecl(PrevVarTemplate->getTemplatedDecl());
+ D.setRedeclaration(CheckVariableDeclaration(NewVD, PrevDecl));
+ } else
+ D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
+ }
+
+ // This is an explicit specialization of a static data member. Check it.
+ if (IsExplicitSpecialization && !NewVD->isInvalidDecl() &&
+ CheckMemberSpecialization(NewVD, Previous))
+ NewVD->setInvalidDecl();
+ }
+
+ ProcessPragmaWeak(S, NewVD);
+ checkAttributesAfterMerging(*this, *NewVD);
+
+ // If this is the first declaration of an extern C variable, update
+ // the map of such variables.
+ if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
+ isIncompleteDeclExternC(*this, NewVD))
+ RegisterLocallyScopedExternCDecl(NewVD, S);
+
+ if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
+ Decl *ManglingContextDecl;
+ if (MangleNumberingContext *MCtx =
+ getCurrentMangleNumberContext(NewVD->getDeclContext(),
+ ManglingContextDecl)) {
+ Context.setManglingNumber(NewVD, MCtx->getManglingNumber(NewVD));
+ }
+ }
+
+ // If we are providing an explicit specialization of a static variable
+ // template, make a note of that.
+ if (PrevVarTemplate && PrevVarTemplate->getInstantiatedFromMemberTemplate())
+ PrevVarTemplate->setMemberSpecialization();
+
+ if (NewTemplate) {
+ ActOnDocumentableDecl(NewTemplate);
+ return NewTemplate;
+ }
+
+ return NewVD;
+}
+
+/// \brief Diagnose variable or built-in function shadowing. Implements
+/// -Wshadow.
+///
+/// This method is called whenever a VarDecl is added to a "useful"
+/// scope.
+///
+/// \param S the scope in which the shadowing name is being declared
+/// \param R the lookup of the name
+///
+void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
+ // Return if warning is ignored.
+ if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
+ DiagnosticsEngine::Ignored)
+ return;
+
+ // Don't diagnose declarations at file scope.
+ if (D->hasGlobalStorage())
+ return;
+
+ DeclContext *NewDC = D->getDeclContext();
+
+ // Only diagnose if we're shadowing an unambiguous field or variable.
+ if (R.getResultKind() != LookupResult::Found)
+ return;
+
+ NamedDecl* ShadowedDecl = R.getFoundDecl();
+ if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
+ return;
+
+ // Fields are not shadowed by variables in C++ static methods.
+ if (isa<FieldDecl>(ShadowedDecl))
+ if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
+ if (MD->isStatic())
+ return;
+
+ if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
+ if (shadowedVar->isExternC()) {
+ // For shadowing external vars, make sure that we point to the global
+ // declaration, not a locally scoped extern declaration.
+ for (VarDecl::redecl_iterator
+ I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
+ I != E; ++I)
+ if (I->isFileVarDecl()) {
+ ShadowedDecl = *I;
+ break;
+ }
+ }
+
+ DeclContext *OldDC = ShadowedDecl->getDeclContext();
+
+ // Only warn about certain kinds of shadowing for class members.
+ if (NewDC && NewDC->isRecord()) {
+ // In particular, don't warn about shadowing non-class members.
+ if (!OldDC->isRecord())
+ return;
+
+ // TODO: should we warn about static data members shadowing
+ // static data members from base classes?
+
+ // TODO: don't diagnose for inaccessible shadowed members.
+ // This is hard to do perfectly because we might friend the
+ // shadowing context, but that's just a false negative.
+ }
+
+ // Determine what kind of declaration we're shadowing.
+ unsigned Kind;
+ if (isa<RecordDecl>(OldDC)) {
+ if (isa<FieldDecl>(ShadowedDecl))
+ Kind = 3; // field
+ else
+ Kind = 2; // static data member
+ } else if (OldDC->isFileContext())
+ Kind = 1; // global
+ else
+ Kind = 0; // local
+
+ DeclarationName Name = R.getLookupName();
+
+ // Emit warning and note.
+ Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
+ Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
+}
+
+/// \brief Check -Wshadow without the advantage of a previous lookup.
+void Sema::CheckShadow(Scope *S, VarDecl *D) {
+ if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
+ DiagnosticsEngine::Ignored)
+ return;
+
+ LookupResult R(*this, D->getDeclName(), D->getLocation(),
+ Sema::LookupOrdinaryName, Sema::ForRedeclaration);
+ LookupName(R, S);
+ CheckShadow(S, D, R);
+}
+
+/// Check for conflict between this global or extern "C" declaration and
+/// previous global or extern "C" declarations. This is only used in C++.
+template<typename T>
+static bool checkGlobalOrExternCConflict(
+ Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
+ assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
+ NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
+
+ if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
+ // The common case: this global doesn't conflict with any extern "C"
+ // declaration.
+ return false;
+ }
+
+ if (Prev) {
+ if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
+ // Both the old and new declarations have C language linkage. This is a
+ // redeclaration.
+ Previous.clear();
+ Previous.addDecl(Prev);
+ return true;
+ }
+
+ // This is a global, non-extern "C" declaration, and there is a previous
+ // non-global extern "C" declaration. Diagnose if this is a variable
+ // declaration.
+ if (!isa<VarDecl>(ND))
+ return false;
+ } else {
+ // The declaration is extern "C". Check for any declaration in the
+ // translation unit which might conflict.
+ if (IsGlobal) {
+ // We have already performed the lookup into the translation unit.
+ IsGlobal = false;
+ for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
+ I != E; ++I) {
+ if (isa<VarDecl>(*I)) {
+ Prev = *I;
+ break;
+ }
+ }
+ } else {
+ DeclContext::lookup_result R =
+ S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
+ for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
+ I != E; ++I) {
+ if (isa<VarDecl>(*I)) {
+ Prev = *I;
+ break;
+ }
+ // FIXME: If we have any other entity with this name in global scope,
+ // the declaration is ill-formed, but that is a defect: it breaks the
+ // 'stat' hack, for instance. Only variables can have mangled name
+ // clashes with extern "C" declarations, so only they deserve a
+ // diagnostic.
+ }
+ }
+
+ if (!Prev)
+ return false;
+ }
+
+ // Use the first declaration's location to ensure we point at something which
+ // is lexically inside an extern "C" linkage-spec.
+ assert(Prev && "should have found a previous declaration to diagnose");
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
+ Prev = FD->getFirstDecl();
+ else
+ Prev = cast<VarDecl>(Prev)->getFirstDecl();
+
+ S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
+ << IsGlobal << ND;
+ S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
+ << IsGlobal;
+ return false;
+}
+
+/// Apply special rules for handling extern "C" declarations. Returns \c true
+/// if we have found that this is a redeclaration of some prior entity.
+///
+/// Per C++ [dcl.link]p6:
+/// Two declarations [for a function or variable] with C language linkage
+/// with the same name that appear in different scopes refer to the same
+/// [entity]. An entity with C language linkage shall not be declared with
+/// the same name as an entity in global scope.
+template<typename T>
+static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
+ LookupResult &Previous) {
+ if (!S.getLangOpts().CPlusPlus) {
+ // In C, when declaring a global variable, look for a corresponding 'extern'
+ // variable declared in function scope. We don't need this in C++, because
+ // we find local extern decls in the surrounding file-scope DeclContext.
+ if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
+ if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
+ Previous.clear();
+ Previous.addDecl(Prev);
+ return true;
+ }
+ }
+ return false;
+ }
+
+ // A declaration in the translation unit can conflict with an extern "C"
+ // declaration.
+ if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
+ return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
+
+ // An extern "C" declaration can conflict with a declaration in the
+ // translation unit or can be a redeclaration of an extern "C" declaration
+ // in another scope.
+ if (isIncompleteDeclExternC(S,ND))
+ return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
+
+ // Neither global nor extern "C": nothing to do.
+ return false;
+}
+
+void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
+ // If the decl is already known invalid, don't check it.
+ if (NewVD->isInvalidDecl())
+ return;
+
+ TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
+ QualType T = TInfo->getType();
+
+ // Defer checking an 'auto' type until its initializer is attached.
+ if (T->isUndeducedType())
+ return;
+
+ if (T->isObjCObjectType()) {
+ Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
+ << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
+ T = Context.getObjCObjectPointerType(T);
+ NewVD->setType(T);
+ }
+
+ // Emit an error if an address space was applied to decl with local storage.
+ // This includes arrays of objects with address space qualifiers, but not
+ // automatic variables that point to other address spaces.
+ // ISO/IEC TR 18037 S5.1.2
+ if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
+ Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
+ NewVD->setInvalidDecl();
+ return;
+ }
+
+ // OpenCL v1.2 s6.5 - All program scope variables must be declared in the
+ // __constant address space.
+ if (getLangOpts().OpenCL && NewVD->isFileVarDecl()
+ && T.getAddressSpace() != LangAS::opencl_constant
+ && !T->isSamplerT()){
+ Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space);
+ NewVD->setInvalidDecl();
+ return;
+ }
+
+ // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
+ // scope.
+ if ((getLangOpts().OpenCLVersion >= 120)
+ && NewVD->isStaticLocal()) {
+ Diag(NewVD->getLocation(), diag::err_static_function_scope);
+ NewVD->setInvalidDecl();
+ return;
+ }
+
+ if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
+ && !NewVD->hasAttr<BlocksAttr>()) {
+ if (getLangOpts().getGC() != LangOptions::NonGC)
+ Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
+ else {
+ assert(!getLangOpts().ObjCAutoRefCount);
+ Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
+ }
+ }
+
+ bool isVM = T->isVariablyModifiedType();
+ if (isVM || NewVD->hasAttr<CleanupAttr>() ||
+ NewVD->hasAttr<BlocksAttr>())
+ getCurFunction()->setHasBranchProtectedScope();
+
+ if ((isVM && NewVD->hasLinkage()) ||
+ (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
+ bool SizeIsNegative;
+ llvm::APSInt Oversized;
+ TypeSourceInfo *FixedTInfo =
+ TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
+ SizeIsNegative, Oversized);
+ if (FixedTInfo == 0 && T->isVariableArrayType()) {
+ const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
+ // FIXME: This won't give the correct result for
+ // int a[10][n];
+ SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
+
+ if (NewVD->isFileVarDecl())
+ Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
+ << SizeRange;
+ else if (NewVD->isStaticLocal())
+ Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
+ << SizeRange;
+ else
+ Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
+ << SizeRange;
+ NewVD->setInvalidDecl();
+ return;
+ }
+
+ if (FixedTInfo == 0) {
+ if (NewVD->isFileVarDecl())
+ Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
+ else
+ Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
+ NewVD->setInvalidDecl();
+ return;
+ }
+
+ Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
+ NewVD->setType(FixedTInfo->getType());
+ NewVD->setTypeSourceInfo(FixedTInfo);
+ }
+
+ if (T->isVoidType()) {
+ // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
+ // of objects and functions.
+ if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
+ Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
+ << T;
+ NewVD->setInvalidDecl();
+ return;
+ }
+ }
+
+ if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
+ Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
+ NewVD->setInvalidDecl();
+ return;
+ }
+
+ if (isVM && NewVD->hasAttr<BlocksAttr>()) {
+ Diag(NewVD->getLocation(), diag::err_block_on_vm);
+ NewVD->setInvalidDecl();
+ return;
+ }
+
+ if (NewVD->isConstexpr() && !T->isDependentType() &&
+ RequireLiteralType(NewVD->getLocation(), T,
+ diag::err_constexpr_var_non_literal)) {
+ // Can't perform this check until the type is deduced.
+ NewVD->setInvalidDecl();
+ return;
+ }
+}
+
+/// \brief Perform semantic checking on a newly-created variable
+/// declaration.
+///
+/// This routine performs all of the type-checking required for a
+/// variable declaration once it has been built. It is used both to
+/// check variables after they have been parsed and their declarators
+/// have been translated into a declaration, and to check variables
+/// that have been instantiated from a template.
+///
+/// Sets NewVD->isInvalidDecl() if an error was encountered.
+///
+/// Returns true if the variable declaration is a redeclaration.
+bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
+ CheckVariableDeclarationType(NewVD);
+
+ // If the decl is already known invalid, don't check it.
+ if (NewVD->isInvalidDecl())
+ return false;
+
+ // If we did not find anything by this name, look for a non-visible
+ // extern "C" declaration with the same name.
+ if (Previous.empty() &&
+ checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
+ Previous.setShadowed();
+
+ // Filter out any non-conflicting previous declarations.
+ filterNonConflictingPreviousDecls(Context, NewVD, Previous);
+
+ if (!Previous.empty()) {
+ MergeVarDecl(NewVD, Previous);
+ return true;
+ }
+ return false;
+}
+
+/// \brief Data used with FindOverriddenMethod
+struct FindOverriddenMethodData {
+ Sema *S;
+ CXXMethodDecl *Method;
+};
+
+/// \brief Member lookup function that determines whether a given C++
+/// method overrides a method in a base class, to be used with
+/// CXXRecordDecl::lookupInBases().
+static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
+ CXXBasePath &Path,
+ void *UserData) {
+ RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
+
+ FindOverriddenMethodData *Data
+ = reinterpret_cast<FindOverriddenMethodData*>(UserData);
+
+ DeclarationName Name = Data->Method->getDeclName();
+
+ // FIXME: Do we care about other names here too?
+ if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
+ // We really want to find the base class destructor here.
+ QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
+ CanQualType CT = Data->S->Context.getCanonicalType(T);
+
+ Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
+ }
+
+ for (Path.Decls = BaseRecord->lookup(Name);
+ !Path.Decls.empty();
+ Path.Decls = Path.Decls.slice(1)) {
+ NamedDecl *D = Path.Decls.front();
+ if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
+ if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
+ return true;
+ }
+ }
+
+ return false;
+}
+
+namespace {
+ enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
+}
+/// \brief Report an error regarding overriding, along with any relevant
+/// overriden methods.
+///
+/// \param DiagID the primary error to report.
+/// \param MD the overriding method.
+/// \param OEK which overrides to include as notes.
+static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
+ OverrideErrorKind OEK = OEK_All) {
+ S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
+ for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
+ E = MD->end_overridden_methods();
+ I != E; ++I) {
+ // This check (& the OEK parameter) could be replaced by a predicate, but
+ // without lambdas that would be overkill. This is still nicer than writing
+ // out the diag loop 3 times.
+ if ((OEK == OEK_All) ||
+ (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
+ (OEK == OEK_Deleted && (*I)->isDeleted()))
+ S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
+ }
+}
+
+/// AddOverriddenMethods - See if a method overrides any in the base classes,
+/// and if so, check that it's a valid override and remember it.
+bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
+ // Look for virtual methods in base classes that this method might override.
+ CXXBasePaths Paths;
+ FindOverriddenMethodData Data;
+ Data.Method = MD;
+ Data.S = this;
+ bool hasDeletedOverridenMethods = false;
+ bool hasNonDeletedOverridenMethods = false;
+ bool AddedAny = false;
+ if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
+ for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
+ E = Paths.found_decls_end(); I != E; ++I) {
+ if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
+ MD->addOverriddenMethod(OldMD->getCanonicalDecl());
+ if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
+ !CheckOverridingFunctionAttributes(MD, OldMD) &&
+ !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
+ !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
+ hasDeletedOverridenMethods |= OldMD->isDeleted();
+ hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
+ AddedAny = true;
+ }
+ }
+ }
+ }
+
+ if (hasDeletedOverridenMethods && !MD->isDeleted()) {
+ ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
+ }
+ if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
+ ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
+ }
+
+ return AddedAny;
+}
+
+namespace {
+ // Struct for holding all of the extra arguments needed by
+ // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
+ struct ActOnFDArgs {
+ Scope *S;
+ Declarator &D;
+ MultiTemplateParamsArg TemplateParamLists;
+ bool AddToScope;
+ };
+}
+
+namespace {
+
+// Callback to only accept typo corrections that have a non-zero edit distance.
+// Also only accept corrections that have the same parent decl.
+class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
+ public:
+ DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
+ CXXRecordDecl *Parent)
+ : Context(Context), OriginalFD(TypoFD),
+ ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
+
+ virtual bool ValidateCandidate(const TypoCorrection &candidate) {
+ if (candidate.getEditDistance() == 0)
+ return false;
+
+ SmallVector<unsigned, 1> MismatchedParams;
+ for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
+ CDeclEnd = candidate.end();
+ CDecl != CDeclEnd; ++CDecl) {
+ FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
+
+ if (FD && !FD->hasBody() &&
+ hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
+ if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
+ CXXRecordDecl *Parent = MD->getParent();
+ if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
+ return true;
+ } else if (!ExpectedParent) {
+ return true;
+ }
+ }
+ }
+
+ return false;
+ }
+
+ private:
+ ASTContext &Context;
+ FunctionDecl *OriginalFD;
+ CXXRecordDecl *ExpectedParent;
+};
+
+}
+
+/// \brief Generate diagnostics for an invalid function redeclaration.
+///
+/// This routine handles generating the diagnostic messages for an invalid
+/// function redeclaration, including finding possible similar declarations
+/// or performing typo correction if there are no previous declarations with
+/// the same name.
+///
+/// Returns a NamedDecl iff typo correction was performed and substituting in
+/// the new declaration name does not cause new errors.
+static NamedDecl *DiagnoseInvalidRedeclaration(
+ Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
+ ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
+ DeclarationName Name = NewFD->getDeclName();
+ DeclContext *NewDC = NewFD->getDeclContext();
+ SmallVector<unsigned, 1> MismatchedParams;
+ SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
+ TypoCorrection Correction;
+ bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
+ unsigned DiagMsg = IsLocalFriend ? diag::err_no_matching_local_friend
+ : diag::err_member_decl_does_not_match;
+ LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
+ IsLocalFriend ? Sema::LookupLocalFriendName
+ : Sema::LookupOrdinaryName,
+ Sema::ForRedeclaration);
+
+ NewFD->setInvalidDecl();
+ if (IsLocalFriend)
+ SemaRef.LookupName(Prev, S);
+ else
+ SemaRef.LookupQualifiedName(Prev, NewDC);
+ assert(!Prev.isAmbiguous() &&
+ "Cannot have an ambiguity in previous-declaration lookup");
+ CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
+ DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
+ MD ? MD->getParent() : 0);
+ if (!Prev.empty()) {
+ for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
+ Func != FuncEnd; ++Func) {
+ FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
+ if (FD &&
+ hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
+ // Add 1 to the index so that 0 can mean the mismatch didn't
+ // involve a parameter
+ unsigned ParamNum =
+ MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
+ NearMatches.push_back(std::make_pair(FD, ParamNum));
+ }
+ }
+ // If the qualified name lookup yielded nothing, try typo correction
+ } else if ((Correction = SemaRef.CorrectTypo(
+ Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
+ &ExtraArgs.D.getCXXScopeSpec(), Validator,
+ IsLocalFriend ? 0 : NewDC))) {
+ // Set up everything for the call to ActOnFunctionDeclarator
+ ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
+ ExtraArgs.D.getIdentifierLoc());
+ Previous.clear();
+ Previous.setLookupName(Correction.getCorrection());
+ for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
+ CDeclEnd = Correction.end();
+ CDecl != CDeclEnd; ++CDecl) {
+ FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
+ if (FD && !FD->hasBody() &&
+ hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
+ Previous.addDecl(FD);
+ }
+ }
+ bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
+
+ NamedDecl *Result;
+ // Retry building the function declaration with the new previous
+ // declarations, and with errors suppressed.
+ {
+ // Trap errors.
+ Sema::SFINAETrap Trap(SemaRef);
+
+ // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
+ // pieces need to verify the typo-corrected C++ declaration and hopefully
+ // eliminate the need for the parameter pack ExtraArgs.
+ Result = SemaRef.ActOnFunctionDeclarator(
+ ExtraArgs.S, ExtraArgs.D,
+ Correction.getCorrectionDecl()->getDeclContext(),
+ NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
+ ExtraArgs.AddToScope);
+
+ if (Trap.hasErrorOccurred())
+ Result = 0;
+ }
+
+ if (Result) {
+ // Determine which correction we picked.
+ Decl *Canonical = Result->getCanonicalDecl();
+ for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
+ I != E; ++I)
+ if ((*I)->getCanonicalDecl() == Canonical)
+ Correction.setCorrectionDecl(*I);
+
+ SemaRef.diagnoseTypo(
+ Correction,
+ SemaRef.PDiag(IsLocalFriend
+ ? diag::err_no_matching_local_friend_suggest
+ : diag::err_member_decl_does_not_match_suggest)
+ << Name << NewDC << IsDefinition);
+ return Result;
+ }
+
+ // Pretend the typo correction never occurred
+ ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
+ ExtraArgs.D.getIdentifierLoc());
+ ExtraArgs.D.setRedeclaration(wasRedeclaration);
+ Previous.clear();
+ Previous.setLookupName(Name);
+ }
+
+ SemaRef.Diag(NewFD->getLocation(), DiagMsg)
+ << Name << NewDC << IsDefinition << NewFD->getLocation();
+
+ bool NewFDisConst = false;
+ if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
+ NewFDisConst = NewMD->isConst();
+
+ for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
+ NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
+ NearMatch != NearMatchEnd; ++NearMatch) {
+ FunctionDecl *FD = NearMatch->first;
+ CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
+ bool FDisConst = MD && MD->isConst();
+ bool IsMember = MD || !IsLocalFriend;
+
+ // FIXME: These notes are poorly worded for the local friend case.
+ if (unsigned Idx = NearMatch->second) {
+ ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
+ SourceLocation Loc = FDParam->getTypeSpecStartLoc();
+ if (Loc.isInvalid()) Loc = FD->getLocation();
+ SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
+ : diag::note_local_decl_close_param_match)
+ << Idx << FDParam->getType()
+ << NewFD->getParamDecl(Idx - 1)->getType();
+ } else if (FDisConst != NewFDisConst) {
+ SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
+ << NewFDisConst << FD->getSourceRange().getEnd();
+ } else
+ SemaRef.Diag(FD->getLocation(),
+ IsMember ? diag::note_member_def_close_match
+ : diag::note_local_decl_close_match);
+ }
+ return 0;
+}
+
+static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
+ Declarator &D) {
+ switch (D.getDeclSpec().getStorageClassSpec()) {
+ default: llvm_unreachable("Unknown storage class!");
+ case DeclSpec::SCS_auto:
+ case DeclSpec::SCS_register:
+ case DeclSpec::SCS_mutable:
+ SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
+ diag::err_typecheck_sclass_func);
+ D.setInvalidType();
+ break;
+ case DeclSpec::SCS_unspecified: break;
+ case DeclSpec::SCS_extern:
+ if (D.getDeclSpec().isExternInLinkageSpec())
+ return SC_None;
+ return SC_Extern;
+ case DeclSpec::SCS_static: {
+ if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
+ // C99 6.7.1p5:
+ // The declaration of an identifier for a function that has
+ // block scope shall have no explicit storage-class specifier
+ // other than extern
+ // See also (C++ [dcl.stc]p4).
+ SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
+ diag::err_static_block_func);
+ break;
+ } else
+ return SC_Static;
+ }
+ case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
+ }
+
+ // No explicit storage class has already been returned
+ return SC_None;
+}
+
+static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
+ DeclContext *DC, QualType &R,
+ TypeSourceInfo *TInfo,
+ FunctionDecl::StorageClass SC,
+ bool &IsVirtualOkay) {
+ DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
+ DeclarationName Name = NameInfo.getName();
+
+ FunctionDecl *NewFD = 0;
+ bool isInline = D.getDeclSpec().isInlineSpecified();
+
+ if (!SemaRef.getLangOpts().CPlusPlus) {
+ // Determine whether the function was written with a
+ // prototype. This true when:
+ // - there is a prototype in the declarator, or
+ // - the type R of the function is some kind of typedef or other reference
+ // to a type name (which eventually refers to a function type).
+ bool HasPrototype =
+ (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
+ (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
+
+ NewFD = FunctionDecl::Create(SemaRef.Context, DC,
+ D.getLocStart(), NameInfo, R,
+ TInfo, SC, isInline,
+ HasPrototype, false);
+ if (D.isInvalidType())
+ NewFD->setInvalidDecl();
+
+ // Set the lexical context.
+ NewFD->setLexicalDeclContext(SemaRef.CurContext);
+
+ return NewFD;
+ }
+
+ bool isExplicit = D.getDeclSpec().isExplicitSpecified();
+ bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
+
+ // Check that the return type is not an abstract class type.
+ // For record types, this is done by the AbstractClassUsageDiagnoser once
+ // the class has been completely parsed.
+ if (!DC->isRecord() &&
+ SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
+ R->getAs<FunctionType>()->getResultType(),
+ diag::err_abstract_type_in_decl,
+ SemaRef.AbstractReturnType))
+ D.setInvalidType();
+
+ if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
+ // This is a C++ constructor declaration.
+ assert(DC->isRecord() &&
+ "Constructors can only be declared in a member context");
+
+ R = SemaRef.CheckConstructorDeclarator(D, R, SC);
+ return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
+ D.getLocStart(), NameInfo,
+ R, TInfo, isExplicit, isInline,
+ /*isImplicitlyDeclared=*/false,
+ isConstexpr);
+
+ } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
+ // This is a C++ destructor declaration.
+ if (DC->isRecord()) {
+ R = SemaRef.CheckDestructorDeclarator(D, R, SC);
+ CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
+ CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
+ SemaRef.Context, Record,
+ D.getLocStart(),
+ NameInfo, R, TInfo, isInline,
+ /*isImplicitlyDeclared=*/false);
+
+ // If the class is complete, then we now create the implicit exception
+ // specification. If the class is incomplete or dependent, we can't do
+ // it yet.
+ if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
+ Record->getDefinition() && !Record->isBeingDefined() &&
+ R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
+ SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
+ }
+
+ // The Microsoft ABI requires that we perform the destructor body
+ // checks (i.e. operator delete() lookup) at every declaration, as
+ // any translation unit may need to emit a deleting destructor.
+ if (SemaRef.Context.getTargetInfo().getCXXABI().isMicrosoft() &&
+ !Record->isDependentType() && Record->getDefinition() &&
+ !Record->isBeingDefined()) {
+ SemaRef.CheckDestructor(NewDD);
+ }
+
+ IsVirtualOkay = true;
+ return NewDD;
+
+ } else {
+ SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
+ D.setInvalidType();
+
+ // Create a FunctionDecl to satisfy the function definition parsing
+ // code path.
+ return FunctionDecl::Create(SemaRef.Context, DC,
+ D.getLocStart(),
+ D.getIdentifierLoc(), Name, R, TInfo,
+ SC, isInline,
+ /*hasPrototype=*/true, isConstexpr);
+ }
+
+ } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
+ if (!DC->isRecord()) {
+ SemaRef.Diag(D.getIdentifierLoc(),
+ diag::err_conv_function_not_member);
+ return 0;
+ }
+
+ SemaRef.CheckConversionDeclarator(D, R, SC);
+ IsVirtualOkay = true;
+ return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
+ D.getLocStart(), NameInfo,
+ R, TInfo, isInline, isExplicit,
+ isConstexpr, SourceLocation());
+
+ } else if (DC->isRecord()) {
+ // If the name of the function is the same as the name of the record,
+ // then this must be an invalid constructor that has a return type.
+ // (The parser checks for a return type and makes the declarator a
+ // constructor if it has no return type).
+ if (Name.getAsIdentifierInfo() &&
+ Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
+ SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
+ << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
+ << SourceRange(D.getIdentifierLoc());
+ return 0;
+ }
+
+ // This is a C++ method declaration.
+ CXXMethodDecl *Ret = CXXMethodDecl::Create(SemaRef.Context,
+ cast<CXXRecordDecl>(DC),
+ D.getLocStart(), NameInfo, R,
+ TInfo, SC, isInline,
+ isConstexpr, SourceLocation());
+ IsVirtualOkay = !Ret->isStatic();
+ return Ret;
+ } else {
+ // Determine whether the function was written with a
+ // prototype. This true when:
+ // - we're in C++ (where every function has a prototype),
+ return FunctionDecl::Create(SemaRef.Context, DC,
+ D.getLocStart(),
+ NameInfo, R, TInfo, SC, isInline,
+ true/*HasPrototype*/, isConstexpr);
+ }
+}
+
+void Sema::checkVoidParamDecl(ParmVarDecl *Param) {
+ // In C++, the empty parameter-type-list must be spelled "void"; a
+ // typedef of void is not permitted.
+ if (getLangOpts().CPlusPlus &&
+ Param->getType().getUnqualifiedType() != Context.VoidTy) {
+ bool IsTypeAlias = false;
+ if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
+ IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
+ else if (const TemplateSpecializationType *TST =
+ Param->getType()->getAs<TemplateSpecializationType>())
+ IsTypeAlias = TST->isTypeAlias();
+ Diag(Param->getLocation(), diag::err_param_typedef_of_void)
+ << IsTypeAlias;
+ }
+}
+
+enum OpenCLParamType {
+ ValidKernelParam,
+ PtrPtrKernelParam,
+ PtrKernelParam,
+ InvalidKernelParam,
+ RecordKernelParam
+};
+
+static OpenCLParamType getOpenCLKernelParameterType(QualType PT) {
+ if (PT->isPointerType()) {
+ QualType PointeeType = PT->getPointeeType();
+ return PointeeType->isPointerType() ? PtrPtrKernelParam : PtrKernelParam;
+ }
+
+ // TODO: Forbid the other integer types (size_t, ptrdiff_t...) when they can
+ // be used as builtin types.
+
+ if (PT->isImageType())
+ return PtrKernelParam;
+
+ if (PT->isBooleanType())
+ return InvalidKernelParam;
+
+ if (PT->isEventT())
+ return InvalidKernelParam;
+
+ if (PT->isHalfType())
+ return InvalidKernelParam;
+
+ if (PT->isRecordType())
+ return RecordKernelParam;
+
+ return ValidKernelParam;
+}
+
+static void checkIsValidOpenCLKernelParameter(
+ Sema &S,
+ Declarator &D,
+ ParmVarDecl *Param,
+ llvm::SmallPtrSet<const Type *, 16> &ValidTypes) {
+ QualType PT = Param->getType();
+
+ // Cache the valid types we encounter to avoid rechecking structs that are
+ // used again
+ if (ValidTypes.count(PT.getTypePtr()))
+ return;
+
+ switch (getOpenCLKernelParameterType(PT)) {
+ case PtrPtrKernelParam:
+ // OpenCL v1.2 s6.9.a:
+ // A kernel function argument cannot be declared as a
+ // pointer to a pointer type.
+ S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
+ D.setInvalidType();
+ return;
+
+ // OpenCL v1.2 s6.9.k:
+ // Arguments to kernel functions in a program cannot be declared with the
+ // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
+ // uintptr_t or a struct and/or union that contain fields declared to be
+ // one of these built-in scalar types.
+
+ case InvalidKernelParam:
+ // OpenCL v1.2 s6.8 n:
+ // A kernel function argument cannot be declared
+ // of event_t type.
+ S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
+ D.setInvalidType();
+ return;
+
+ case PtrKernelParam:
+ case ValidKernelParam:
+ ValidTypes.insert(PT.getTypePtr());
+ return;
+
+ case RecordKernelParam:
+ break;
+ }
+
+ // Track nested structs we will inspect
+ SmallVector<const Decl *, 4> VisitStack;
+
+ // Track where we are in the nested structs. Items will migrate from
+ // VisitStack to HistoryStack as we do the DFS for bad field.
+ SmallVector<const FieldDecl *, 4> HistoryStack;
+ HistoryStack.push_back((const FieldDecl *) 0);
+
+ const RecordDecl *PD = PT->castAs<RecordType>()->getDecl();
+ VisitStack.push_back(PD);
+
+ assert(VisitStack.back() && "First decl null?");
+
+ do {
+ const Decl *Next = VisitStack.pop_back_val();
+ if (!Next) {
+ assert(!HistoryStack.empty());
+ // Found a marker, we have gone up a level
+ if (const FieldDecl *Hist = HistoryStack.pop_back_val())
+ ValidTypes.insert(Hist->getType().getTypePtr());
+
+ continue;
+ }
+
+ // Adds everything except the original parameter declaration (which is not a
+ // field itself) to the history stack.
+ const RecordDecl *RD;
+ if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
+ HistoryStack.push_back(Field);
+ RD = Field->getType()->castAs<RecordType>()->getDecl();
+ } else {
+ RD = cast<RecordDecl>(Next);
+ }
+
+ // Add a null marker so we know when we've gone back up a level
+ VisitStack.push_back((const Decl *) 0);
+
+ for (RecordDecl::field_iterator I = RD->field_begin(),
+ E = RD->field_end(); I != E; ++I) {
+ const FieldDecl *FD = *I;
+ QualType QT = FD->getType();
+
+ if (ValidTypes.count(QT.getTypePtr()))
+ continue;
+
+ OpenCLParamType ParamType = getOpenCLKernelParameterType(QT);
+ if (ParamType == ValidKernelParam)
+ continue;
+
+ if (ParamType == RecordKernelParam) {
+ VisitStack.push_back(FD);
+ continue;
+ }
+
+ // OpenCL v1.2 s6.9.p:
+ // Arguments to kernel functions that are declared to be a struct or union
+ // do not allow OpenCL objects to be passed as elements of the struct or
+ // union.
+ if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam) {
+ S.Diag(Param->getLocation(),
+ diag::err_record_with_pointers_kernel_param)
+ << PT->isUnionType()
+ << PT;
+ } else {
+ S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
+ }
+
+ S.Diag(PD->getLocation(), diag::note_within_field_of_type)
+ << PD->getDeclName();
+
+ // We have an error, now let's go back up through history and show where
+ // the offending field came from
+ for (ArrayRef<const FieldDecl *>::const_iterator I = HistoryStack.begin() + 1,
+ E = HistoryStack.end(); I != E; ++I) {
+ const FieldDecl *OuterField = *I;
+ S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
+ << OuterField->getType();
+ }
+
+ S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
+ << QT->isPointerType()
+ << QT;
+ D.setInvalidType();
+ return;
+ }
+ } while (!VisitStack.empty());
+}
+
+NamedDecl*
+Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
+ TypeSourceInfo *TInfo, LookupResult &Previous,
+ MultiTemplateParamsArg TemplateParamLists,
+ bool &AddToScope) {
+ QualType R = TInfo->getType();
+
+ assert(R.getTypePtr()->isFunctionType());
+
+ // TODO: consider using NameInfo for diagnostic.
+ DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
+ DeclarationName Name = NameInfo.getName();
+ FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
+
+ if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
+ Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
+ diag::err_invalid_thread)
+ << DeclSpec::getSpecifierName(TSCS);
+
+ if (D.isFirstDeclarationOfMember())
+ adjustMemberFunctionCC(R, D.isStaticMember());
+
+ bool isFriend = false;
+ FunctionTemplateDecl *FunctionTemplate = 0;
+ bool isExplicitSpecialization = false;
+ bool isFunctionTemplateSpecialization = false;
+
+ bool isDependentClassScopeExplicitSpecialization = false;
+ bool HasExplicitTemplateArgs = false;
+ TemplateArgumentListInfo TemplateArgs;
+
+ bool isVirtualOkay = false;
+
+ DeclContext *OriginalDC = DC;
+ bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
+
+ FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
+ isVirtualOkay);
+ if (!NewFD) return 0;
+
+ if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
+ NewFD->setTopLevelDeclInObjCContainer();
+
+ // Set the lexical context. If this is a function-scope declaration, or has a
+ // C++ scope specifier, or is the object of a friend declaration, the lexical
+ // context will be different from the semantic context.
+ NewFD->setLexicalDeclContext(CurContext);
+
+ if (IsLocalExternDecl)
+ NewFD->setLocalExternDecl();
+
+ if (getLangOpts().CPlusPlus) {
+ bool isInline = D.getDeclSpec().isInlineSpecified();
+ bool isVirtual = D.getDeclSpec().isVirtualSpecified();
+ bool isExplicit = D.getDeclSpec().isExplicitSpecified();
+ bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
+ isFriend = D.getDeclSpec().isFriendSpecified();
+ if (isFriend && !isInline && D.isFunctionDefinition()) {
+ // C++ [class.friend]p5
+ // A function can be defined in a friend declaration of a
+ // class . . . . Such a function is implicitly inline.
+ NewFD->setImplicitlyInline();
+ }
+
+ // If this is a method defined in an __interface, and is not a constructor
+ // or an overloaded operator, then set the pure flag (isVirtual will already
+ // return true).
+ if (const CXXRecordDecl *Parent =
+ dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
+ if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
+ NewFD->setPure(true);
+ }
+
+ SetNestedNameSpecifier(NewFD, D);
+ isExplicitSpecialization = false;
+ isFunctionTemplateSpecialization = false;
+ if (D.isInvalidType())
+ NewFD->setInvalidDecl();
+
+ // Match up the template parameter lists with the scope specifier, then
+ // determine whether we have a template or a template specialization.
+ bool Invalid = false;
+ if (TemplateParameterList *TemplateParams =
+ MatchTemplateParametersToScopeSpecifier(
+ D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
+ D.getCXXScopeSpec(), TemplateParamLists, isFriend,
+ isExplicitSpecialization, Invalid)) {
+ if (TemplateParams->size() > 0) {
+ // This is a function template
+
+ // Check that we can declare a template here.
+ if (CheckTemplateDeclScope(S, TemplateParams))
+ return 0;
+
+ // A destructor cannot be a template.
+ if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
+ Diag(NewFD->getLocation(), diag::err_destructor_template);
+ return 0;
+ }
+
+ // If we're adding a template to a dependent context, we may need to
+ // rebuilding some of the types used within the template parameter list,
+ // now that we know what the current instantiation is.
+ if (DC->isDependentContext()) {
+ ContextRAII SavedContext(*this, DC);
+ if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
+ Invalid = true;
+ }
+
+
+ FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
+ NewFD->getLocation(),
+ Name, TemplateParams,
+ NewFD);
+ FunctionTemplate->setLexicalDeclContext(CurContext);
+ NewFD->setDescribedFunctionTemplate(FunctionTemplate);
+
+ // For source fidelity, store the other template param lists.
+ if (TemplateParamLists.size() > 1) {
+ NewFD->setTemplateParameterListsInfo(Context,
+ TemplateParamLists.size() - 1,
+ TemplateParamLists.data());
+ }
+ } else {
+ // This is a function template specialization.
+ isFunctionTemplateSpecialization = true;
+ // For source fidelity, store all the template param lists.
+ NewFD->setTemplateParameterListsInfo(Context,
+ TemplateParamLists.size(),
+ TemplateParamLists.data());
+
+ // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
+ if (isFriend) {
+ // We want to remove the "template<>", found here.
+ SourceRange RemoveRange = TemplateParams->getSourceRange();
+
+ // If we remove the template<> and the name is not a
+ // template-id, we're actually silently creating a problem:
+ // the friend declaration will refer to an untemplated decl,
+ // and clearly the user wants a template specialization. So
+ // we need to insert '<>' after the name.
+ SourceLocation InsertLoc;
+ if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
+ InsertLoc = D.getName().getSourceRange().getEnd();
+ InsertLoc = PP.getLocForEndOfToken(InsertLoc);
+ }
+
+ Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
+ << Name << RemoveRange
+ << FixItHint::CreateRemoval(RemoveRange)
+ << FixItHint::CreateInsertion(InsertLoc, "<>");
+ }
+ }
+ }
+ else {
+ // All template param lists were matched against the scope specifier:
+ // this is NOT (an explicit specialization of) a template.
+ if (TemplateParamLists.size() > 0)
+ // For source fidelity, store all the template param lists.
+ NewFD->setTemplateParameterListsInfo(Context,
+ TemplateParamLists.size(),
+ TemplateParamLists.data());
+ }
+
+ if (Invalid) {
+ NewFD->setInvalidDecl();
+ if (FunctionTemplate)
+ FunctionTemplate->setInvalidDecl();
+ }
+
+ // C++ [dcl.fct.spec]p5:
+ // The virtual specifier shall only be used in declarations of
+ // nonstatic class member functions that appear within a
+ // member-specification of a class declaration; see 10.3.
+ //
+ if (isVirtual && !NewFD->isInvalidDecl()) {
+ if (!isVirtualOkay) {
+ Diag(D.getDeclSpec().getVirtualSpecLoc(),
+ diag::err_virtual_non_function);
+ } else if (!CurContext->isRecord()) {
+ // 'virtual' was specified outside of the class.
+ Diag(D.getDeclSpec().getVirtualSpecLoc(),
+ diag::err_virtual_out_of_class)
+ << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
+ } else if (NewFD->getDescribedFunctionTemplate()) {
+ // C++ [temp.mem]p3:
+ // A member function template shall not be virtual.
+ Diag(D.getDeclSpec().getVirtualSpecLoc(),
+ diag::err_virtual_member_function_template)
+ << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
+ } else {
+ // Okay: Add virtual to the method.
+ NewFD->setVirtualAsWritten(true);
+ }
+
+ if (getLangOpts().CPlusPlus1y &&
+ NewFD->getResultType()->isUndeducedType())
+ Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
+ }
+
+ if (getLangOpts().CPlusPlus1y &&
+ (NewFD->isDependentContext() ||
+ (isFriend && CurContext->isDependentContext())) &&
+ NewFD->getResultType()->isUndeducedType()) {
+ // If the function template is referenced directly (for instance, as a
+ // member of the current instantiation), pretend it has a dependent type.
+ // This is not really justified by the standard, but is the only sane
+ // thing to do.
+ // FIXME: For a friend function, we have not marked the function as being
+ // a friend yet, so 'isDependentContext' on the FD doesn't work.
+ const FunctionProtoType *FPT =
+ NewFD->getType()->castAs<FunctionProtoType>();
+ QualType Result = SubstAutoType(FPT->getResultType(),
+ Context.DependentTy);
+ NewFD->setType(Context.getFunctionType(Result, FPT->getArgTypes(),
+ FPT->getExtProtoInfo()));
+ }
+
+ // C++ [dcl.fct.spec]p3:
+ // The inline specifier shall not appear on a block scope function
+ // declaration.
+ if (isInline && !NewFD->isInvalidDecl()) {
+ if (CurContext->isFunctionOrMethod()) {
+ // 'inline' is not allowed on block scope function declaration.
+ Diag(D.getDeclSpec().getInlineSpecLoc(),
+ diag::err_inline_declaration_block_scope) << Name
+ << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
+ }
+ }
+
+ // C++ [dcl.fct.spec]p6:
+ // The explicit specifier shall be used only in the declaration of a
+ // constructor or conversion function within its class definition;
+ // see 12.3.1 and 12.3.2.
+ if (isExplicit && !NewFD->isInvalidDecl()) {
+ if (!CurContext->isRecord()) {
+ // 'explicit' was specified outside of the class.
+ Diag(D.getDeclSpec().getExplicitSpecLoc(),
+ diag::err_explicit_out_of_class)
+ << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
+ } else if (!isa<CXXConstructorDecl>(NewFD) &&
+ !isa<CXXConversionDecl>(NewFD)) {
+ // 'explicit' was specified on a function that wasn't a constructor
+ // or conversion function.
+ Diag(D.getDeclSpec().getExplicitSpecLoc(),
+ diag::err_explicit_non_ctor_or_conv_function)
+ << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
+ }
+ }
+
+ if (isConstexpr) {
+ // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
+ // are implicitly inline.
+ NewFD->setImplicitlyInline();
+
+ // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
+ // be either constructors or to return a literal type. Therefore,
+ // destructors cannot be declared constexpr.
+ if (isa<CXXDestructorDecl>(NewFD))
+ Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
+ }
+
+ // If __module_private__ was specified, mark the function accordingly.
+ if (D.getDeclSpec().isModulePrivateSpecified()) {
+ if (isFunctionTemplateSpecialization) {
+ SourceLocation ModulePrivateLoc
+ = D.getDeclSpec().getModulePrivateSpecLoc();
+ Diag(ModulePrivateLoc, diag::err_module_private_specialization)
+ << 0
+ << FixItHint::CreateRemoval(ModulePrivateLoc);
+ } else {
+ NewFD->setModulePrivate();
+ if (FunctionTemplate)
+ FunctionTemplate->setModulePrivate();
+ }
+ }
+
+ if (isFriend) {
+ if (FunctionTemplate) {
+ FunctionTemplate->setObjectOfFriendDecl();
+ FunctionTemplate->setAccess(AS_public);
+ }
+ NewFD->setObjectOfFriendDecl();
+ NewFD->setAccess(AS_public);
+ }
+
+ // If a function is defined as defaulted or deleted, mark it as such now.
+ switch (D.getFunctionDefinitionKind()) {
+ case FDK_Declaration:
+ case FDK_Definition:
+ break;
+
+ case FDK_Defaulted:
+ NewFD->setDefaulted();
+ break;
+
+ case FDK_Deleted:
+ NewFD->setDeletedAsWritten();
+ break;
+ }
+
+ if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
+ D.isFunctionDefinition()) {
+ // C++ [class.mfct]p2:
+ // A member function may be defined (8.4) in its class definition, in
+ // which case it is an inline member function (7.1.2)
+ NewFD->setImplicitlyInline();
+ }
+
+ if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
+ !CurContext->isRecord()) {
+ // C++ [class.static]p1:
+ // A data or function member of a class may be declared static
+ // in a class definition, in which case it is a static member of
+ // the class.
+
+ // Complain about the 'static' specifier if it's on an out-of-line
+ // member function definition.
+ Diag(D.getDeclSpec().getStorageClassSpecLoc(),
+ diag::err_static_out_of_line)
+ << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
+ }
+
+ // C++11 [except.spec]p15:
+ // A deallocation function with no exception-specification is treated
+ // as if it were specified with noexcept(true).
+ const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
+ if ((Name.getCXXOverloadedOperator() == OO_Delete ||
+ Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
+ getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) {
+ FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
+ EPI.ExceptionSpecType = EST_BasicNoexcept;
+ NewFD->setType(Context.getFunctionType(FPT->getResultType(),
+ FPT->getArgTypes(), EPI));
+ }
+ }
+
+ // Filter out previous declarations that don't match the scope.
+ FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
+ isExplicitSpecialization ||
+ isFunctionTemplateSpecialization);
+
+ // Handle GNU asm-label extension (encoded as an attribute).
+ if (Expr *E = (Expr*) D.getAsmLabel()) {
+ // The parser guarantees this is a string.
+ StringLiteral *SE = cast<StringLiteral>(E);
+ NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
+ SE->getString()));
+ } else if (!ExtnameUndeclaredIdentifiers.empty()) {
+ llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
+ ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
+ if (I != ExtnameUndeclaredIdentifiers.end()) {
+ NewFD->addAttr(I->second);
+ ExtnameUndeclaredIdentifiers.erase(I);
+ }
+ }
+
+ // Copy the parameter declarations from the declarator D to the function
+ // declaration NewFD, if they are available. First scavenge them into Params.
+ SmallVector<ParmVarDecl*, 16> Params;
+ if (D.isFunctionDeclarator()) {
+ DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
+
+ // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
+ // function that takes no arguments, not a function that takes a
+ // single void argument.
+ // We let through "const void" here because Sema::GetTypeForDeclarator
+ // already checks for that case.
+ if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
+ FTI.ArgInfo[0].Param &&
+ cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
+ // Empty arg list, don't push any params.
+ checkVoidParamDecl(cast<ParmVarDecl>(FTI.ArgInfo[0].Param));
+ } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
+ for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
+ ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
+ assert(Param->getDeclContext() != NewFD && "Was set before ?");
+ Param->setDeclContext(NewFD);
+ Params.push_back(Param);
+
+ if (Param->isInvalidDecl())
+ NewFD->setInvalidDecl();
+ }
+ }
+
+ } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
+ // When we're declaring a function with a typedef, typeof, etc as in the
+ // following example, we'll need to synthesize (unnamed)
+ // parameters for use in the declaration.
+ //
+ // @code
+ // typedef void fn(int);
+ // fn f;
+ // @endcode
+
+ // Synthesize a parameter for each argument type.
+ for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
+ AE = FT->arg_type_end(); AI != AE; ++AI) {
+ ParmVarDecl *Param =
+ BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
+ Param->setScopeInfo(0, Params.size());
+ Params.push_back(Param);
+ }
+ } else {
+ assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
+ "Should not need args for typedef of non-prototype fn");
+ }
+
+ // Finally, we know we have the right number of parameters, install them.
+ NewFD->setParams(Params);
+
+ // Find all anonymous symbols defined during the declaration of this function
+ // and add to NewFD. This lets us track decls such 'enum Y' in:
+ //
+ // void f(enum Y {AA} x) {}
+ //
+ // which would otherwise incorrectly end up in the translation unit scope.
+ NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
+ DeclsInPrototypeScope.clear();
+
+ if (D.getDeclSpec().isNoreturnSpecified())
+ NewFD->addAttr(
+ ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
+ Context));
+
+ // Functions returning a variably modified type violate C99 6.7.5.2p2
+ // because all functions have linkage.
+ if (!NewFD->isInvalidDecl() &&
+ NewFD->getResultType()->isVariablyModifiedType()) {
+ Diag(NewFD->getLocation(), diag::err_vm_func_decl);
+ NewFD->setInvalidDecl();
+ }
+
+ // Handle attributes.
+ ProcessDeclAttributes(S, NewFD, D);
+
+ QualType RetType = NewFD->getResultType();
+ const CXXRecordDecl *Ret = RetType->isRecordType() ?
+ RetType->getAsCXXRecordDecl() : RetType->getPointeeCXXRecordDecl();
+ if (!NewFD->isInvalidDecl() && !NewFD->hasAttr<WarnUnusedResultAttr>() &&
+ Ret && Ret->hasAttr<WarnUnusedResultAttr>()) {
+ const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
+ // Attach the attribute to the new decl. Don't apply the attribute if it
+ // returns an instance of the class (e.g. assignment operators).
+ if (!MD || MD->getParent() != Ret) {
+ NewFD->addAttr(new (Context) WarnUnusedResultAttr(SourceRange(),
+ Context));
+ }
+ }
+
+ if (!getLangOpts().CPlusPlus) {
+ // Perform semantic checking on the function declaration.
+ bool isExplicitSpecialization=false;
+ if (!NewFD->isInvalidDecl() && NewFD->isMain())
+ CheckMain(NewFD, D.getDeclSpec());
+
+ if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
+ CheckMSVCRTEntryPoint(NewFD);
+
+ if (!NewFD->isInvalidDecl())
+ D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
+ isExplicitSpecialization));
+ else if (!Previous.empty())
+ // Make graceful recovery from an invalid redeclaration.
+ D.setRedeclaration(true);
+ assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
+ Previous.getResultKind() != LookupResult::FoundOverloaded) &&
+ "previous declaration set still overloaded");
+ } else {
+ // C++11 [replacement.functions]p3:
+ // The program's definitions shall not be specified as inline.
+ //
+ // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
+ //
+ // Suppress the diagnostic if the function is __attribute__((used)), since
+ // that forces an external definition to be emitted.
+ if (D.getDeclSpec().isInlineSpecified() &&
+ NewFD->isReplaceableGlobalAllocationFunction() &&
+ !NewFD->hasAttr<UsedAttr>())
+ Diag(D.getDeclSpec().getInlineSpecLoc(),
+ diag::ext_operator_new_delete_declared_inline)
+ << NewFD->getDeclName();
+
+ // If the declarator is a template-id, translate the parser's template
+ // argument list into our AST format.
+ if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
+ TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
+ TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
+ TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
+ ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
+ TemplateId->NumArgs);
+ translateTemplateArguments(TemplateArgsPtr,
+ TemplateArgs);
+
+ HasExplicitTemplateArgs = true;
+
+ if (NewFD->isInvalidDecl()) {
+ HasExplicitTemplateArgs = false;
+ } else if (FunctionTemplate) {
+ // Function template with explicit template arguments.
+ Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
+ << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
+
+ HasExplicitTemplateArgs = false;
+ } else if (!isFunctionTemplateSpecialization &&
+ !D.getDeclSpec().isFriendSpecified()) {
+ // We have encountered something that the user meant to be a
+ // specialization (because it has explicitly-specified template
+ // arguments) but that was not introduced with a "template<>" (or had
+ // too few of them).
+ // FIXME: Differentiate between attempts for explicit instantiations
+ // (starting with "template") and the rest.
+ Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
+ << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
+ << FixItHint::CreateInsertion(
+ D.getDeclSpec().getLocStart(),
+ "template<> ");
+ isFunctionTemplateSpecialization = true;
+ } else {
+ // "friend void foo<>(int);" is an implicit specialization decl.
+ isFunctionTemplateSpecialization = true;
+ }
+ } else if (isFriend && isFunctionTemplateSpecialization) {
+ // This combination is only possible in a recovery case; the user
+ // wrote something like:
+ // template <> friend void foo(int);
+ // which we're recovering from as if the user had written:
+ // friend void foo<>(int);
+ // Go ahead and fake up a template id.
+ HasExplicitTemplateArgs = true;
+ TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
+ TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
+ }
+
+ // If it's a friend (and only if it's a friend), it's possible
+ // that either the specialized function type or the specialized
+ // template is dependent, and therefore matching will fail. In
+ // this case, don't check the specialization yet.
+ bool InstantiationDependent = false;
+ if (isFunctionTemplateSpecialization && isFriend &&
+ (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
+ TemplateSpecializationType::anyDependentTemplateArguments(
+ TemplateArgs.getArgumentArray(), TemplateArgs.size(),
+ InstantiationDependent))) {
+ assert(HasExplicitTemplateArgs &&
+ "friend function specialization without template args");
+ if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
+ Previous))
+ NewFD->setInvalidDecl();
+ } else if (isFunctionTemplateSpecialization) {
+ if (CurContext->isDependentContext() && CurContext->isRecord()
+ && !isFriend) {
+ isDependentClassScopeExplicitSpecialization = true;
+ Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
+ diag::ext_function_specialization_in_class :
+ diag::err_function_specialization_in_class)
+ << NewFD->getDeclName();
+ } else if (CheckFunctionTemplateSpecialization(NewFD,
+ (HasExplicitTemplateArgs ? &TemplateArgs : 0),
+ Previous))
+ NewFD->setInvalidDecl();
+
+ // C++ [dcl.stc]p1:
+ // A storage-class-specifier shall not be specified in an explicit
+ // specialization (14.7.3)
+ FunctionTemplateSpecializationInfo *Info =
+ NewFD->getTemplateSpecializationInfo();
+ if (Info && SC != SC_None) {
+ if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
+ Diag(NewFD->getLocation(),
+ diag::err_explicit_specialization_inconsistent_storage_class)
+ << SC
+ << FixItHint::CreateRemoval(
+ D.getDeclSpec().getStorageClassSpecLoc());
+
+ else
+ Diag(NewFD->getLocation(),
+ diag::ext_explicit_specialization_storage_class)
+ << FixItHint::CreateRemoval(
+ D.getDeclSpec().getStorageClassSpecLoc());
+ }
+
+ } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
+ if (CheckMemberSpecialization(NewFD, Previous))
+ NewFD->setInvalidDecl();
+ }
+
+ // Perform semantic checking on the function declaration.
+ if (!isDependentClassScopeExplicitSpecialization) {
+ if (!NewFD->isInvalidDecl() && NewFD->isMain())
+ CheckMain(NewFD, D.getDeclSpec());
+
+ if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
+ CheckMSVCRTEntryPoint(NewFD);
+
+ if (NewFD->isInvalidDecl()) {
+ // If this is a class member, mark the class invalid immediately.
+ // This avoids some consistency errors later.
+ if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
+ methodDecl->getParent()->setInvalidDecl();
+ } else
+ D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
+ isExplicitSpecialization));
+ }
+
+ assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
+ Previous.getResultKind() != LookupResult::FoundOverloaded) &&
+ "previous declaration set still overloaded");
+
+ NamedDecl *PrincipalDecl = (FunctionTemplate
+ ? cast<NamedDecl>(FunctionTemplate)
+ : NewFD);
+
+ if (isFriend && D.isRedeclaration()) {
+ AccessSpecifier Access = AS_public;
+ if (!NewFD->isInvalidDecl())
+ Access = NewFD->getPreviousDecl()->getAccess();
+
+ NewFD->setAccess(Access);
+ if (FunctionTemplate) FunctionTemplate->setAccess(Access);
+ }
+
+ if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
+ PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
+ PrincipalDecl->setNonMemberOperator();
+
+ // If we have a function template, check the template parameter
+ // list. This will check and merge default template arguments.
+ if (FunctionTemplate) {
+ FunctionTemplateDecl *PrevTemplate =
+ FunctionTemplate->getPreviousDecl();
+ CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
+ PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
+ D.getDeclSpec().isFriendSpecified()
+ ? (D.isFunctionDefinition()
+ ? TPC_FriendFunctionTemplateDefinition
+ : TPC_FriendFunctionTemplate)
+ : (D.getCXXScopeSpec().isSet() &&
+ DC && DC->isRecord() &&
+ DC->isDependentContext())
+ ? TPC_ClassTemplateMember
+ : TPC_FunctionTemplate);
+ }
+
+ if (NewFD->isInvalidDecl()) {
+ // Ignore all the rest of this.
+ } else if (!D.isRedeclaration()) {
+ struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
+ AddToScope };
+ // Fake up an access specifier if it's supposed to be a class member.
+ if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
+ NewFD->setAccess(AS_public);
+
+ // Qualified decls generally require a previous declaration.
+ if (D.getCXXScopeSpec().isSet()) {
+ // ...with the major exception of templated-scope or
+ // dependent-scope friend declarations.
+
+ // TODO: we currently also suppress this check in dependent
+ // contexts because (1) the parameter depth will be off when
+ // matching friend templates and (2) we might actually be
+ // selecting a friend based on a dependent factor. But there
+ // are situations where these conditions don't apply and we
+ // can actually do this check immediately.
+ if (isFriend &&
+ (TemplateParamLists.size() ||
+ D.getCXXScopeSpec().getScopeRep()->isDependent() ||
+ CurContext->isDependentContext())) {
+ // ignore these
+ } else {
+ // The user tried to provide an out-of-line definition for a
+ // function that is a member of a class or namespace, but there
+ // was no such member function declared (C++ [class.mfct]p2,
+ // C++ [namespace.memdef]p2). For example:
+ //
+ // class X {
+ // void f() const;
+ // };
+ //
+ // void X::f() { } // ill-formed
+ //
+ // Complain about this problem, and attempt to suggest close
+ // matches (e.g., those that differ only in cv-qualifiers and
+ // whether the parameter types are references).
+
+ if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
+ *this, Previous, NewFD, ExtraArgs, false, 0)) {
+ AddToScope = ExtraArgs.AddToScope;
+ return Result;
+ }
+ }
+
+ // Unqualified local friend declarations are required to resolve
+ // to something.
+ } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
+ if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
+ *this, Previous, NewFD, ExtraArgs, true, S)) {
+ AddToScope = ExtraArgs.AddToScope;
+ return Result;
+ }
+ }
+
+ } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
+ !isFriend && !isFunctionTemplateSpecialization &&
+ !isExplicitSpecialization) {
+ // An out-of-line member function declaration must also be a
+ // definition (C++ [dcl.meaning]p1).
+ // Note that this is not the case for explicit specializations of
+ // function templates or member functions of class templates, per
+ // C++ [temp.expl.spec]p2. We also allow these declarations as an
+ // extension for compatibility with old SWIG code which likes to
+ // generate them.
+ Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
+ << D.getCXXScopeSpec().getRange();
+ }
+ }
+
+ ProcessPragmaWeak(S, NewFD);
+ checkAttributesAfterMerging(*this, *NewFD);
+
+ AddKnownFunctionAttributes(NewFD);
+
+ if (NewFD->hasAttr<OverloadableAttr>() &&
+ !NewFD->getType()->getAs<FunctionProtoType>()) {
+ Diag(NewFD->getLocation(),
+ diag::err_attribute_overloadable_no_prototype)
+ << NewFD;
+
+ // Turn this into a variadic function with no parameters.
+ const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
+ FunctionProtoType::ExtProtoInfo EPI(
+ Context.getDefaultCallingConvention(true, false));
+ EPI.Variadic = true;
+ EPI.ExtInfo = FT->getExtInfo();
+
+ QualType R = Context.getFunctionType(FT->getResultType(), None, EPI);
+ NewFD->setType(R);
+ }
+
+ // If there's a #pragma GCC visibility in scope, and this isn't a class
+ // member, set the visibility of this function.
+ if (!DC->isRecord() && NewFD->isExternallyVisible())
+ AddPushedVisibilityAttribute(NewFD);
+
+ // If there's a #pragma clang arc_cf_code_audited in scope, consider
+ // marking the function.
+ AddCFAuditedAttribute(NewFD);
+
+ // If this is the first declaration of an extern C variable, update
+ // the map of such variables.
+ if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
+ isIncompleteDeclExternC(*this, NewFD))
+ RegisterLocallyScopedExternCDecl(NewFD, S);
+
+ // Set this FunctionDecl's range up to the right paren.
+ NewFD->setRangeEnd(D.getSourceRange().getEnd());
+
+ if (getLangOpts().CPlusPlus) {
+ if (FunctionTemplate) {
+ if (NewFD->isInvalidDecl())
+ FunctionTemplate->setInvalidDecl();
+ return FunctionTemplate;
+ }
+ }
+
+ if (NewFD->hasAttr<OpenCLKernelAttr>()) {
+ // OpenCL v1.2 s6.8 static is invalid for kernel functions.
+ if ((getLangOpts().OpenCLVersion >= 120)
+ && (SC == SC_Static)) {
+ Diag(D.getIdentifierLoc(), diag::err_static_kernel);
+ D.setInvalidType();
+ }
+
+ // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
+ if (!NewFD->getResultType()->isVoidType()) {
+ Diag(D.getIdentifierLoc(),
+ diag::err_expected_kernel_void_return_type);
+ D.setInvalidType();
+ }
+
+ llvm::SmallPtrSet<const Type *, 16> ValidTypes;
+ for (FunctionDecl::param_iterator PI = NewFD->param_begin(),
+ PE = NewFD->param_end(); PI != PE; ++PI) {
+ ParmVarDecl *Param = *PI;
+ checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
+ }
+ }
+
+ MarkUnusedFileScopedDecl(NewFD);
+
+ if (getLangOpts().CUDA)
+ if (IdentifierInfo *II = NewFD->getIdentifier())
+ if (!NewFD->isInvalidDecl() &&
+ NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
+ if (II->isStr("cudaConfigureCall")) {
+ if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
+ Diag(NewFD->getLocation(), diag::err_config_scalar_return);
+
+ Context.setcudaConfigureCallDecl(NewFD);
+ }
+ }
+
+ // Here we have an function template explicit specialization at class scope.
+ // The actually specialization will be postponed to template instatiation
+ // time via the ClassScopeFunctionSpecializationDecl node.
+ if (isDependentClassScopeExplicitSpecialization) {
+ ClassScopeFunctionSpecializationDecl *NewSpec =
+ ClassScopeFunctionSpecializationDecl::Create(
+ Context, CurContext, SourceLocation(),
+ cast<CXXMethodDecl>(NewFD),
+ HasExplicitTemplateArgs, TemplateArgs);
+ CurContext->addDecl(NewSpec);
+ AddToScope = false;
+ }
+
+ return NewFD;
+}
+
+/// \brief Perform semantic checking of a new function declaration.
+///
+/// Performs semantic analysis of the new function declaration
+/// NewFD. This routine performs all semantic checking that does not
+/// require the actual declarator involved in the declaration, and is
+/// used both for the declaration of functions as they are parsed
+/// (called via ActOnDeclarator) and for the declaration of functions
+/// that have been instantiated via C++ template instantiation (called
+/// via InstantiateDecl).
+///
+/// \param IsExplicitSpecialization whether this new function declaration is
+/// an explicit specialization of the previous declaration.
+///
+/// This sets NewFD->isInvalidDecl() to true if there was an error.
+///
+/// \returns true if the function declaration is a redeclaration.
+bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
+ LookupResult &Previous,
+ bool IsExplicitSpecialization) {
+ assert(!NewFD->getResultType()->isVariablyModifiedType()
+ && "Variably modified return types are not handled here");
+
+ // Determine whether the type of this function should be merged with
+ // a previous visible declaration. This never happens for functions in C++,
+ // and always happens in C if the previous declaration was visible.
+ bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
+ !Previous.isShadowed();
+
+ // Filter out any non-conflicting previous declarations.
+ filterNonConflictingPreviousDecls(Context, NewFD, Previous);
+
+ bool Redeclaration = false;
+ NamedDecl *OldDecl = 0;
+
+ // Merge or overload the declaration with an existing declaration of
+ // the same name, if appropriate.
+ if (!Previous.empty()) {
+ // Determine whether NewFD is an overload of PrevDecl or
+ // a declaration that requires merging. If it's an overload,
+ // there's no more work to do here; we'll just add the new
+ // function to the scope.
+ if (!AllowOverloadingOfFunction(Previous, Context)) {
+ NamedDecl *Candidate = Previous.getFoundDecl();
+ if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
+ Redeclaration = true;
+ OldDecl = Candidate;
+ }
+ } else {
+ switch (CheckOverload(S, NewFD, Previous, OldDecl,
+ /*NewIsUsingDecl*/ false)) {
+ case Ovl_Match:
+ Redeclaration = true;
+ break;
+
+ case Ovl_NonFunction:
+ Redeclaration = true;
+ break;
+
+ case Ovl_Overload:
+ Redeclaration = false;
+ break;
+ }
+
+ if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
+ // If a function name is overloadable in C, then every function
+ // with that name must be marked "overloadable".
+ Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
+ << Redeclaration << NewFD;
+ NamedDecl *OverloadedDecl = 0;
+ if (Redeclaration)
+ OverloadedDecl = OldDecl;
+ else if (!Previous.empty())
+ OverloadedDecl = Previous.getRepresentativeDecl();
+ if (OverloadedDecl)
+ Diag(OverloadedDecl->getLocation(),
+ diag::note_attribute_overloadable_prev_overload);
+ NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
+ Context));
+ }
+ }
+ }
+
+ // Check for a previous extern "C" declaration with this name.
+ if (!Redeclaration &&
+ checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
+ filterNonConflictingPreviousDecls(Context, NewFD, Previous);
+ if (!Previous.empty()) {
+ // This is an extern "C" declaration with the same name as a previous
+ // declaration, and thus redeclares that entity...
+ Redeclaration = true;
+ OldDecl = Previous.getFoundDecl();
+ MergeTypeWithPrevious = false;
+
+ // ... except in the presence of __attribute__((overloadable)).
+ if (OldDecl->hasAttr<OverloadableAttr>()) {
+ if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
+ Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
+ << Redeclaration << NewFD;
+ Diag(Previous.getFoundDecl()->getLocation(),
+ diag::note_attribute_overloadable_prev_overload);
+ NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
+ Context));
+ }
+ if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
+ Redeclaration = false;
+ OldDecl = 0;
+ }
+ }
+ }
+ }
+
+ // C++11 [dcl.constexpr]p8:
+ // A constexpr specifier for a non-static member function that is not
+ // a constructor declares that member function to be const.
+ //
+ // This needs to be delayed until we know whether this is an out-of-line
+ // definition of a static member function.
+ //
+ // This rule is not present in C++1y, so we produce a backwards
+ // compatibility warning whenever it happens in C++11.
+ CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
+ if (!getLangOpts().CPlusPlus1y && MD && MD->isConstexpr() &&
+ !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
+ (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
+ CXXMethodDecl *OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl);
+ if (FunctionTemplateDecl *OldTD =
+ dyn_cast_or_null<FunctionTemplateDecl>(OldDecl))
+ OldMD = dyn_cast<CXXMethodDecl>(OldTD->getTemplatedDecl());
+ if (!OldMD || !OldMD->isStatic()) {
+ const FunctionProtoType *FPT =
+ MD->getType()->castAs<FunctionProtoType>();
+ FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
+ EPI.TypeQuals |= Qualifiers::Const;
+ MD->setType(Context.getFunctionType(FPT->getResultType(),
+ FPT->getArgTypes(), EPI));
+
+ // Warn that we did this, if we're not performing template instantiation.
+ // In that case, we'll have warned already when the template was defined.
+ if (ActiveTemplateInstantiations.empty()) {
+ SourceLocation AddConstLoc;
+ if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
+ .IgnoreParens().getAs<FunctionTypeLoc>())
+ AddConstLoc = PP.getLocForEndOfToken(FTL.getRParenLoc());
+
+ Diag(MD->getLocation(), diag::warn_cxx1y_compat_constexpr_not_const)
+ << FixItHint::CreateInsertion(AddConstLoc, " const");
+ }
+ }
+ }
+
+ if (Redeclaration) {
+ // NewFD and OldDecl represent declarations that need to be
+ // merged.
+ if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
+ NewFD->setInvalidDecl();
+ return Redeclaration;
+ }
+
+ Previous.clear();
+ Previous.addDecl(OldDecl);
+
+ if (FunctionTemplateDecl *OldTemplateDecl
+ = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
+ NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
+ FunctionTemplateDecl *NewTemplateDecl
+ = NewFD->getDescribedFunctionTemplate();
+ assert(NewTemplateDecl && "Template/non-template mismatch");
+ if (CXXMethodDecl *Method
+ = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
+ Method->setAccess(OldTemplateDecl->getAccess());
+ NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
+ }
+
+ // If this is an explicit specialization of a member that is a function
+ // template, mark it as a member specialization.
+ if (IsExplicitSpecialization &&
+ NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
+ NewTemplateDecl->setMemberSpecialization();
+ assert(OldTemplateDecl->isMemberSpecialization());
+ }
+
+ } else {
+ // This needs to happen first so that 'inline' propagates.
+ NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
+
+ if (isa<CXXMethodDecl>(NewFD)) {
+ // A valid redeclaration of a C++ method must be out-of-line,
+ // but (unfortunately) it's not necessarily a definition
+ // because of templates, which means that the previous
+ // declaration is not necessarily from the class definition.
+
+ // For just setting the access, that doesn't matter.
+ CXXMethodDecl *oldMethod = cast<CXXMethodDecl>(OldDecl);
+ NewFD->setAccess(oldMethod->getAccess());
+
+ // Update the key-function state if necessary for this ABI.
+ if (NewFD->isInlined() &&
+ !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
+ // setNonKeyFunction needs to work with the original
+ // declaration from the class definition, and isVirtual() is
+ // just faster in that case, so map back to that now.
+ oldMethod = cast<CXXMethodDecl>(oldMethod->getFirstDecl());
+ if (oldMethod->isVirtual()) {
+ Context.setNonKeyFunction(oldMethod);
+ }
+ }
+ }
+ }
+ }
+
+ // Semantic checking for this function declaration (in isolation).
+ if (getLangOpts().CPlusPlus) {
+ // C++-specific checks.
+ if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
+ CheckConstructor(Constructor);
+ } else if (CXXDestructorDecl *Destructor =
+ dyn_cast<CXXDestructorDecl>(NewFD)) {
+ CXXRecordDecl *Record = Destructor->getParent();
+ QualType ClassType = Context.getTypeDeclType(Record);
+
+ // FIXME: Shouldn't we be able to perform this check even when the class
+ // type is dependent? Both gcc and edg can handle that.
+ if (!ClassType->isDependentType()) {
+ DeclarationName Name
+ = Context.DeclarationNames.getCXXDestructorName(
+ Context.getCanonicalType(ClassType));
+ if (NewFD->getDeclName() != Name) {
+ Diag(NewFD->getLocation(), diag::err_destructor_name);
+ NewFD->setInvalidDecl();
+ return Redeclaration;
+ }
+ }
+ } else if (CXXConversionDecl *Conversion
+ = dyn_cast<CXXConversionDecl>(NewFD)) {
+ ActOnConversionDeclarator(Conversion);
+ }
+
+ // Find any virtual functions that this function overrides.
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
+ if (!Method->isFunctionTemplateSpecialization() &&
+ !Method->getDescribedFunctionTemplate() &&
+ Method->isCanonicalDecl()) {
+ if (AddOverriddenMethods(Method->getParent(), Method)) {
+ // If the function was marked as "static", we have a problem.
+ if (NewFD->getStorageClass() == SC_Static) {
+ ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
+ }
+ }
+ }
+
+ if (Method->isStatic())
+ checkThisInStaticMemberFunctionType(Method);
+ }
+
+ // Extra checking for C++ overloaded operators (C++ [over.oper]).
+ if (NewFD->isOverloadedOperator() &&
+ CheckOverloadedOperatorDeclaration(NewFD)) {
+ NewFD->setInvalidDecl();
+ return Redeclaration;
+ }
+
+ // Extra checking for C++0x literal operators (C++0x [over.literal]).
+ if (NewFD->getLiteralIdentifier() &&
+ CheckLiteralOperatorDeclaration(NewFD)) {
+ NewFD->setInvalidDecl();
+ return Redeclaration;
+ }
+
+ // In C++, check default arguments now that we have merged decls. Unless
+ // the lexical context is the class, because in this case this is done
+ // during delayed parsing anyway.
+ if (!CurContext->isRecord())
+ CheckCXXDefaultArguments(NewFD);
+
+ // If this function declares a builtin function, check the type of this
+ // declaration against the expected type for the builtin.
+ if (unsigned BuiltinID = NewFD->getBuiltinID()) {
+ ASTContext::GetBuiltinTypeError Error;
+ LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
+ QualType T = Context.GetBuiltinType(BuiltinID, Error);
+ if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
+ // The type of this function differs from the type of the builtin,
+ // so forget about the builtin entirely.
+ Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
+ }
+ }
+
+ // If this function is declared as being extern "C", then check to see if
+ // the function returns a UDT (class, struct, or union type) that is not C
+ // compatible, and if it does, warn the user.
+ // But, issue any diagnostic on the first declaration only.
+ if (NewFD->isExternC() && Previous.empty()) {
+ QualType R = NewFD->getResultType();
+ if (R->isIncompleteType() && !R->isVoidType())
+ Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
+ << NewFD << R;
+ else if (!R.isPODType(Context) && !R->isVoidType() &&
+ !R->isObjCObjectPointerType())
+ Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
+ }
+ }
+ return Redeclaration;
+}
+
+static SourceRange getResultSourceRange(const FunctionDecl *FD) {
+ const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
+ if (!TSI)
+ return SourceRange();
+
+ TypeLoc TL = TSI->getTypeLoc();
+ FunctionTypeLoc FunctionTL = TL.getAs<FunctionTypeLoc>();
+ if (!FunctionTL)
+ return SourceRange();
+
+ TypeLoc ResultTL = FunctionTL.getResultLoc();
+ if (ResultTL.getUnqualifiedLoc().getAs<BuiltinTypeLoc>())
+ return ResultTL.getSourceRange();
+
+ return SourceRange();
+}
+
+void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
+ // C++11 [basic.start.main]p3: A program that declares main to be inline,
+ // static or constexpr is ill-formed.
+ // C11 6.7.4p4: In a hosted environment, no function specifier(s) shall
+ // appear in a declaration of main.
+ // static main is not an error under C99, but we should warn about it.
+ // We accept _Noreturn main as an extension.
+ if (FD->getStorageClass() == SC_Static)
+ Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
+ ? diag::err_static_main : diag::warn_static_main)
+ << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
+ if (FD->isInlineSpecified())
+ Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
+ << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
+ if (DS.isNoreturnSpecified()) {
+ SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
+ SourceRange NoreturnRange(NoreturnLoc,
+ PP.getLocForEndOfToken(NoreturnLoc));
+ Diag(NoreturnLoc, diag::ext_noreturn_main);
+ Diag(NoreturnLoc, diag::note_main_remove_noreturn)
+ << FixItHint::CreateRemoval(NoreturnRange);
+ }
+ if (FD->isConstexpr()) {
+ Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
+ << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
+ FD->setConstexpr(false);
+ }
+
+ if (getLangOpts().OpenCL) {
+ Diag(FD->getLocation(), diag::err_opencl_no_main)
+ << FD->hasAttr<OpenCLKernelAttr>();
+ FD->setInvalidDecl();
+ return;
+ }
+
+ QualType T = FD->getType();
+ assert(T->isFunctionType() && "function decl is not of function type");
+ const FunctionType* FT = T->castAs<FunctionType>();
+
+ // All the standards say that main() should should return 'int'.
+ if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
+ // In C and C++, main magically returns 0 if you fall off the end;
+ // set the flag which tells us that.
+ // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
+ FD->setHasImplicitReturnZero(true);
+
+ // In C with GNU extensions we allow main() to have non-integer return
+ // type, but we should warn about the extension, and we disable the
+ // implicit-return-zero rule.
+ } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
+ Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
+
+ SourceRange ResultRange = getResultSourceRange(FD);
+ if (ResultRange.isValid())
+ Diag(ResultRange.getBegin(), diag::note_main_change_return_type)
+ << FixItHint::CreateReplacement(ResultRange, "int");
+
+ // Otherwise, this is just a flat-out error.
+ } else {
+ SourceRange ResultRange = getResultSourceRange(FD);
+ if (ResultRange.isValid())
+ Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
+ << FixItHint::CreateReplacement(ResultRange, "int");
+ else
+ Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
+
+ FD->setInvalidDecl(true);
+ }
+
+ // Treat protoless main() as nullary.
+ if (isa<FunctionNoProtoType>(FT)) return;
+
+ const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
+ unsigned nparams = FTP->getNumArgs();
+ assert(FD->getNumParams() == nparams);
+
+ bool HasExtraParameters = (nparams > 3);
+
+ // Darwin passes an undocumented fourth argument of type char**. If
+ // other platforms start sprouting these, the logic below will start
+ // getting shifty.
+ if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
+ HasExtraParameters = false;
+
+ if (HasExtraParameters) {
+ Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
+ FD->setInvalidDecl(true);
+ nparams = 3;
+ }
+
+ // FIXME: a lot of the following diagnostics would be improved
+ // if we had some location information about types.
+
+ QualType CharPP =
+ Context.getPointerType(Context.getPointerType(Context.CharTy));
+ QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
+
+ for (unsigned i = 0; i < nparams; ++i) {
+ QualType AT = FTP->getArgType(i);
+
+ bool mismatch = true;
+
+ if (Context.hasSameUnqualifiedType(AT, Expected[i]))
+ mismatch = false;
+ else if (Expected[i] == CharPP) {
+ // As an extension, the following forms are okay:
+ // char const **
+ // char const * const *
+ // char * const *
+
+ QualifierCollector qs;
+ const PointerType* PT;
+ if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
+ (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
+ Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
+ Context.CharTy)) {
+ qs.removeConst();
+ mismatch = !qs.empty();
+ }
+ }
+
+ if (mismatch) {
+ Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
+ // TODO: suggest replacing given type with expected type
+ FD->setInvalidDecl(true);
+ }
+ }
+
+ if (nparams == 1 && !FD->isInvalidDecl()) {
+ Diag(FD->getLocation(), diag::warn_main_one_arg);
+ }
+
+ if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
+ Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD->getName();
+ FD->setInvalidDecl();
+ }
+}
+
+void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
+ QualType T = FD->getType();
+ assert(T->isFunctionType() && "function decl is not of function type");
+ const FunctionType *FT = T->castAs<FunctionType>();
+
+ // Set an implicit return of 'zero' if the function can return some integral,
+ // enumeration, pointer or nullptr type.
+ if (FT->getResultType()->isIntegralOrEnumerationType() ||
+ FT->getResultType()->isAnyPointerType() ||
+ FT->getResultType()->isNullPtrType())
+ // DllMain is exempt because a return value of zero means it failed.
+ if (FD->getName() != "DllMain")
+ FD->setHasImplicitReturnZero(true);
+
+ if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
+ Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD->getName();
+ FD->setInvalidDecl();
+ }
+}
+
+bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
+ // FIXME: Need strict checking. In C89, we need to check for
+ // any assignment, increment, decrement, function-calls, or
+ // commas outside of a sizeof. In C99, it's the same list,
+ // except that the aforementioned are allowed in unevaluated
+ // expressions. Everything else falls under the
+ // "may accept other forms of constant expressions" exception.
+ // (We never end up here for C++, so the constant expression
+ // rules there don't matter.)
+ if (Init->isConstantInitializer(Context, false))
+ return false;
+ Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
+ << Init->getSourceRange();
+ return true;
+}
+
+namespace {
+ // Visits an initialization expression to see if OrigDecl is evaluated in
+ // its own initialization and throws a warning if it does.
+ class SelfReferenceChecker
+ : public EvaluatedExprVisitor<SelfReferenceChecker> {
+ Sema &S;
+ Decl *OrigDecl;
+ bool isRecordType;
+ bool isPODType;
+ bool isReferenceType;
+
+ public:
+ typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
+
+ SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
+ S(S), OrigDecl(OrigDecl) {
+ isPODType = false;
+ isRecordType = false;
+ isReferenceType = false;
+ if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
+ isPODType = VD->getType().isPODType(S.Context);
+ isRecordType = VD->getType()->isRecordType();
+ isReferenceType = VD->getType()->isReferenceType();
+ }
+ }
+
+ // For most expressions, the cast is directly above the DeclRefExpr.
+ // For conditional operators, the cast can be outside the conditional
+ // operator if both expressions are DeclRefExpr's.
+ void HandleValue(Expr *E) {
+ if (isReferenceType)
+ return;
+ E = E->IgnoreParenImpCasts();
+ if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
+ HandleDeclRefExpr(DRE);
+ return;
+ }
+
+ if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
+ HandleValue(CO->getTrueExpr());
+ HandleValue(CO->getFalseExpr());
+ return;
+ }
+
+ if (isa<MemberExpr>(E)) {
+ Expr *Base = E->IgnoreParenImpCasts();
+ while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
+ // Check for static member variables and don't warn on them.
+ if (!isa<FieldDecl>(ME->getMemberDecl()))
+ return;
+ Base = ME->getBase()->IgnoreParenImpCasts();
+ }
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
+ HandleDeclRefExpr(DRE);
+ return;
+ }
+ }
+
+ // Reference types are handled here since all uses of references are
+ // bad, not just r-value uses.
+ void VisitDeclRefExpr(DeclRefExpr *E) {
+ if (isReferenceType)
+ HandleDeclRefExpr(E);
+ }
+
+ void VisitImplicitCastExpr(ImplicitCastExpr *E) {
+ if (E->getCastKind() == CK_LValueToRValue ||
+ (isRecordType && E->getCastKind() == CK_NoOp))
+ HandleValue(E->getSubExpr());
+
+ Inherited::VisitImplicitCastExpr(E);
+ }
+
+ void VisitMemberExpr(MemberExpr *E) {
+ // Don't warn on arrays since they can be treated as pointers.
+ if (E->getType()->canDecayToPointerType()) return;
+
+ // Warn when a non-static method call is followed by non-static member
+ // field accesses, which is followed by a DeclRefExpr.
+ CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
+ bool Warn = (MD && !MD->isStatic());
+ Expr *Base = E->getBase()->IgnoreParenImpCasts();
+ while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
+ if (!isa<FieldDecl>(ME->getMemberDecl()))
+ Warn = false;
+ Base = ME->getBase()->IgnoreParenImpCasts();
+ }
+
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
+ if (Warn)
+ HandleDeclRefExpr(DRE);
+ return;
+ }
+
+ // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
+ // Visit that expression.
+ Visit(Base);
+ }
+
+ void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
+ if (E->getNumArgs() > 0)
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getArg(0)))
+ HandleDeclRefExpr(DRE);
+
+ Inherited::VisitCXXOperatorCallExpr(E);
+ }
+
+ void VisitUnaryOperator(UnaryOperator *E) {
+ // For POD record types, addresses of its own members are well-defined.
+ if (E->getOpcode() == UO_AddrOf && isRecordType &&
+ isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
+ if (!isPODType)
+ HandleValue(E->getSubExpr());
+ return;
+ }
+ Inherited::VisitUnaryOperator(E);
+ }
+
+ void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
+
+ void HandleDeclRefExpr(DeclRefExpr *DRE) {
+ Decl* ReferenceDecl = DRE->getDecl();
+ if (OrigDecl != ReferenceDecl) return;
+ unsigned diag;
+ if (isReferenceType) {
+ diag = diag::warn_uninit_self_reference_in_reference_init;
+ } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
+ diag = diag::warn_static_self_reference_in_init;
+ } else {
+ diag = diag::warn_uninit_self_reference_in_init;
+ }
+
+ S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
+ S.PDiag(diag)
+ << DRE->getNameInfo().getName()
+ << OrigDecl->getLocation()
+ << DRE->getSourceRange());
+ }
+ };
+
+ /// CheckSelfReference - Warns if OrigDecl is used in expression E.
+ static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
+ bool DirectInit) {
+ // Parameters arguments are occassionially constructed with itself,
+ // for instance, in recursive functions. Skip them.
+ if (isa<ParmVarDecl>(OrigDecl))
+ return;
+
+ E = E->IgnoreParens();
+
+ // Skip checking T a = a where T is not a record or reference type.
+ // Doing so is a way to silence uninitialized warnings.
+ if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
+ if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
+ if (ICE->getCastKind() == CK_LValueToRValue)
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
+ if (DRE->getDecl() == OrigDecl)
+ return;
+
+ SelfReferenceChecker(S, OrigDecl).Visit(E);
+ }
+}
+
+/// AddInitializerToDecl - Adds the initializer Init to the
+/// declaration dcl. If DirectInit is true, this is C++ direct
+/// initialization rather than copy initialization.
+void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
+ bool DirectInit, bool TypeMayContainAuto) {
+ // If there is no declaration, there was an error parsing it. Just ignore
+ // the initializer.
+ if (RealDecl == 0 || RealDecl->isInvalidDecl())
+ return;
+
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
+ // With declarators parsed the way they are, the parser cannot
+ // distinguish between a normal initializer and a pure-specifier.
+ // Thus this grotesque test.
+ IntegerLiteral *IL;
+ if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
+ Context.getCanonicalType(IL->getType()) == Context.IntTy)
+ CheckPureMethod(Method, Init->getSourceRange());
+ else {
+ Diag(Method->getLocation(), diag::err_member_function_initialization)
+ << Method->getDeclName() << Init->getSourceRange();
+ Method->setInvalidDecl();
+ }
+ return;
+ }
+
+ VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
+ if (!VDecl) {
+ assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
+ Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
+ RealDecl->setInvalidDecl();
+ return;
+ }
+ ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
+
+ // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
+ if (TypeMayContainAuto && VDecl->getType()->isUndeducedType()) {
+ Expr *DeduceInit = Init;
+ // Initializer could be a C++ direct-initializer. Deduction only works if it
+ // contains exactly one expression.
+ if (CXXDirectInit) {
+ if (CXXDirectInit->getNumExprs() == 0) {
+ // It isn't possible to write this directly, but it is possible to
+ // end up in this situation with "auto x(some_pack...);"
+ Diag(CXXDirectInit->getLocStart(),
+ VDecl->isInitCapture() ? diag::err_init_capture_no_expression
+ : diag::err_auto_var_init_no_expression)
+ << VDecl->getDeclName() << VDecl->getType()
+ << VDecl->getSourceRange();
+ RealDecl->setInvalidDecl();
+ return;
+ } else if (CXXDirectInit->getNumExprs() > 1) {
+ Diag(CXXDirectInit->getExpr(1)->getLocStart(),
+ VDecl->isInitCapture()
+ ? diag::err_init_capture_multiple_expressions
+ : diag::err_auto_var_init_multiple_expressions)
+ << VDecl->getDeclName() << VDecl->getType()
+ << VDecl->getSourceRange();
+ RealDecl->setInvalidDecl();
+ return;
+ } else {
+ DeduceInit = CXXDirectInit->getExpr(0);
+ }
+ }
+
+ // Expressions default to 'id' when we're in a debugger.
+ bool DefaultedToAuto = false;
+ if (getLangOpts().DebuggerCastResultToId &&
+ Init->getType() == Context.UnknownAnyTy) {
+ ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
+ if (Result.isInvalid()) {
+ VDecl->setInvalidDecl();
+ return;
+ }
+ Init = Result.take();
+ DefaultedToAuto = true;
+ }
+
+ QualType DeducedType;
+ if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
+ DAR_Failed)
+ DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
+ if (DeducedType.isNull()) {
+ RealDecl->setInvalidDecl();
+ return;
+ }
+ VDecl->setType(DeducedType);
+ assert(VDecl->isLinkageValid());
+
+ // In ARC, infer lifetime.
+ if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
+ VDecl->setInvalidDecl();
+
+ // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
+ // 'id' instead of a specific object type prevents most of our usual checks.
+ // We only want to warn outside of template instantiations, though:
+ // inside a template, the 'id' could have come from a parameter.
+ if (ActiveTemplateInstantiations.empty() && !DefaultedToAuto &&
+ DeducedType->isObjCIdType()) {
+ SourceLocation Loc =
+ VDecl->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
+ Diag(Loc, diag::warn_auto_var_is_id)
+ << VDecl->getDeclName() << DeduceInit->getSourceRange();
+ }
+
+ // If this is a redeclaration, check that the type we just deduced matches
+ // the previously declared type.
+ if (VarDecl *Old = VDecl->getPreviousDecl()) {
+ // We never need to merge the type, because we cannot form an incomplete
+ // array of auto, nor deduce such a type.
+ MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/false);
+ }
+
+ // Check the deduced type is valid for a variable declaration.
+ CheckVariableDeclarationType(VDecl);
+ if (VDecl->isInvalidDecl())
+ return;
+ }
+
+ if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
+ // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
+ Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
+ VDecl->setInvalidDecl();
+ return;
+ }
+
+ if (!VDecl->getType()->isDependentType()) {
+ // A definition must end up with a complete type, which means it must be
+ // complete with the restriction that an array type might be completed by
+ // the initializer; note that later code assumes this restriction.
+ QualType BaseDeclType = VDecl->getType();
+ if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
+ BaseDeclType = Array->getElementType();
+ if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
+ diag::err_typecheck_decl_incomplete_type)) {
+ RealDecl->setInvalidDecl();
+ return;
+ }
+
+ // The variable can not have an abstract class type.
+ if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
+ diag::err_abstract_type_in_decl,
+ AbstractVariableType))
+ VDecl->setInvalidDecl();
+ }
+
+ const VarDecl *Def;
+ if ((Def = VDecl->getDefinition()) && Def != VDecl) {
+ Diag(VDecl->getLocation(), diag::err_redefinition)
+ << VDecl->getDeclName();
+ Diag(Def->getLocation(), diag::note_previous_definition);
+ VDecl->setInvalidDecl();
+ return;
+ }
+
+ const VarDecl* PrevInit = 0;
+ if (getLangOpts().CPlusPlus) {
+ // C++ [class.static.data]p4
+ // If a static data member is of const integral or const
+ // enumeration type, its declaration in the class definition can
+ // specify a constant-initializer which shall be an integral
+ // constant expression (5.19). In that case, the member can appear
+ // in integral constant expressions. The member shall still be
+ // defined in a namespace scope if it is used in the program and the
+ // namespace scope definition shall not contain an initializer.
+ //
+ // We already performed a redefinition check above, but for static
+ // data members we also need to check whether there was an in-class
+ // declaration with an initializer.
+ if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
+ Diag(VDecl->getLocation(), diag::err_redefinition)
+ << VDecl->getDeclName();
+ Diag(PrevInit->getLocation(), diag::note_previous_definition);
+ return;
+ }
+
+ if (VDecl->hasLocalStorage())
+ getCurFunction()->setHasBranchProtectedScope();
+
+ if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
+ VDecl->setInvalidDecl();
+ return;
+ }
+ }
+
+ // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
+ // a kernel function cannot be initialized."
+ if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
+ Diag(VDecl->getLocation(), diag::err_local_cant_init);
+ VDecl->setInvalidDecl();
+ return;
+ }
+
+ // Get the decls type and save a reference for later, since
+ // CheckInitializerTypes may change it.
+ QualType DclT = VDecl->getType(), SavT = DclT;
+
+ // Expressions default to 'id' when we're in a debugger
+ // and we are assigning it to a variable of Objective-C pointer type.
+ if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
+ Init->getType() == Context.UnknownAnyTy) {
+ ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
+ if (Result.isInvalid()) {
+ VDecl->setInvalidDecl();
+ return;
+ }
+ Init = Result.take();
+ }
+
+ // Perform the initialization.
+ if (!VDecl->isInvalidDecl()) {
+ InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
+ InitializationKind Kind
+ = DirectInit ?
+ CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
+ Init->getLocStart(),
+ Init->getLocEnd())
+ : InitializationKind::CreateDirectList(
+ VDecl->getLocation())
+ : InitializationKind::CreateCopy(VDecl->getLocation(),
+ Init->getLocStart());
+
+ MultiExprArg Args = Init;
+ if (CXXDirectInit)
+ Args = MultiExprArg(CXXDirectInit->getExprs(),
+ CXXDirectInit->getNumExprs());
+
+ InitializationSequence InitSeq(*this, Entity, Kind, Args);
+ ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
+ if (Result.isInvalid()) {
+ VDecl->setInvalidDecl();
+ return;
+ }
+
+ Init = Result.takeAs<Expr>();
+ }
+
+ // Check for self-references within variable initializers.
+ // Variables declared within a function/method body (except for references)
+ // are handled by a dataflow analysis.
+ if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
+ VDecl->getType()->isReferenceType()) {
+ CheckSelfReference(*this, RealDecl, Init, DirectInit);
+ }
+
+ // If the type changed, it means we had an incomplete type that was
+ // completed by the initializer. For example:
+ // int ary[] = { 1, 3, 5 };
+ // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
+ if (!VDecl->isInvalidDecl() && (DclT != SavT))
+ VDecl->setType(DclT);
+
+ if (!VDecl->isInvalidDecl()) {
+ checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
+
+ if (VDecl->hasAttr<BlocksAttr>())
+ checkRetainCycles(VDecl, Init);
+
+ // It is safe to assign a weak reference into a strong variable.
+ // Although this code can still have problems:
+ // id x = self.weakProp;
+ // id y = self.weakProp;
+ // we do not warn to warn spuriously when 'x' and 'y' are on separate
+ // paths through the function. This should be revisited if
+ // -Wrepeated-use-of-weak is made flow-sensitive.
+ if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong) {
+ DiagnosticsEngine::Level Level =
+ Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
+ Init->getLocStart());
+ if (Level != DiagnosticsEngine::Ignored)
+ getCurFunction()->markSafeWeakUse(Init);
+ }
+ }
+
+ // The initialization is usually a full-expression.
+ //
+ // FIXME: If this is a braced initialization of an aggregate, it is not
+ // an expression, and each individual field initializer is a separate
+ // full-expression. For instance, in:
+ //
+ // struct Temp { ~Temp(); };
+ // struct S { S(Temp); };
+ // struct T { S a, b; } t = { Temp(), Temp() }
+ //
+ // we should destroy the first Temp before constructing the second.
+ ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
+ false,
+ VDecl->isConstexpr());
+ if (Result.isInvalid()) {
+ VDecl->setInvalidDecl();
+ return;
+ }
+ Init = Result.take();
+
+ // Attach the initializer to the decl.
+ VDecl->setInit(Init);
+
+ if (VDecl->isLocalVarDecl()) {
+ // C99 6.7.8p4: All the expressions in an initializer for an object that has
+ // static storage duration shall be constant expressions or string literals.
+ // C++ does not have this restriction.
+ if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl()) {
+ if (VDecl->getStorageClass() == SC_Static)
+ CheckForConstantInitializer(Init, DclT);
+ // C89 is stricter than C99 for non-static aggregate types.
+ // C89 6.5.7p3: All the expressions [...] in an initializer list
+ // for an object that has aggregate or union type shall be
+ // constant expressions.
+ else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
+ isa<InitListExpr>(Init) &&
+ !Init->isConstantInitializer(Context, false))
+ Diag(Init->getExprLoc(),
+ diag::ext_aggregate_init_not_constant)
+ << Init->getSourceRange();
+ }
+ } else if (VDecl->isStaticDataMember() &&
+ VDecl->getLexicalDeclContext()->isRecord()) {
+ // This is an in-class initialization for a static data member, e.g.,
+ //
+ // struct S {
+ // static const int value = 17;
+ // };
+
+ // C++ [class.mem]p4:
+ // A member-declarator can contain a constant-initializer only
+ // if it declares a static member (9.4) of const integral or
+ // const enumeration type, see 9.4.2.
+ //
+ // C++11 [class.static.data]p3:
+ // If a non-volatile const static data member is of integral or
+ // enumeration type, its declaration in the class definition can
+ // specify a brace-or-equal-initializer in which every initalizer-clause
+ // that is an assignment-expression is a constant expression. A static
+ // data member of literal type can be declared in the class definition
+ // with the constexpr specifier; if so, its declaration shall specify a
+ // brace-or-equal-initializer in which every initializer-clause that is
+ // an assignment-expression is a constant expression.
+
+ // Do nothing on dependent types.
+ if (DclT->isDependentType()) {
+
+ // Allow any 'static constexpr' members, whether or not they are of literal
+ // type. We separately check that every constexpr variable is of literal
+ // type.
+ } else if (VDecl->isConstexpr()) {
+
+ // Require constness.
+ } else if (!DclT.isConstQualified()) {
+ Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
+ << Init->getSourceRange();
+ VDecl->setInvalidDecl();
+
+ // We allow integer constant expressions in all cases.
+ } else if (DclT->isIntegralOrEnumerationType()) {
+ // Check whether the expression is a constant expression.
+ SourceLocation Loc;
+ if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
+ // In C++11, a non-constexpr const static data member with an
+ // in-class initializer cannot be volatile.
+ Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
+ else if (Init->isValueDependent())
+ ; // Nothing to check.
+ else if (Init->isIntegerConstantExpr(Context, &Loc))
+ ; // Ok, it's an ICE!
+ else if (Init->isEvaluatable(Context)) {
+ // If we can constant fold the initializer through heroics, accept it,
+ // but report this as a use of an extension for -pedantic.
+ Diag(Loc, diag::ext_in_class_initializer_non_constant)
+ << Init->getSourceRange();
+ } else {
+ // Otherwise, this is some crazy unknown case. Report the issue at the
+ // location provided by the isIntegerConstantExpr failed check.
+ Diag(Loc, diag::err_in_class_initializer_non_constant)
+ << Init->getSourceRange();
+ VDecl->setInvalidDecl();
+ }
+
+ // We allow foldable floating-point constants as an extension.
+ } else if (DclT->isFloatingType()) { // also permits complex, which is ok
+ // In C++98, this is a GNU extension. In C++11, it is not, but we support
+ // it anyway and provide a fixit to add the 'constexpr'.
+ if (getLangOpts().CPlusPlus11) {
+ Diag(VDecl->getLocation(),
+ diag::ext_in_class_initializer_float_type_cxx11)
+ << DclT << Init->getSourceRange();
+ Diag(VDecl->getLocStart(),
+ diag::note_in_class_initializer_float_type_cxx11)
+ << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
+ } else {
+ Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
+ << DclT << Init->getSourceRange();
+
+ if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
+ Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
+ << Init->getSourceRange();
+ VDecl->setInvalidDecl();
+ }
+ }
+
+ // Suggest adding 'constexpr' in C++11 for literal types.
+ } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
+ Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
+ << DclT << Init->getSourceRange()
+ << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
+ VDecl->setConstexpr(true);
+
+ } else {
+ Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
+ << DclT << Init->getSourceRange();
+ VDecl->setInvalidDecl();
+ }
+ } else if (VDecl->isFileVarDecl()) {
+ if (VDecl->getStorageClass() == SC_Extern &&
+ (!getLangOpts().CPlusPlus ||
+ !(Context.getBaseElementType(VDecl->getType()).isConstQualified() ||
+ VDecl->isExternC())) &&
+ !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
+ Diag(VDecl->getLocation(), diag::warn_extern_init);
+
+ // C99 6.7.8p4. All file scoped initializers need to be constant.
+ if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
+ CheckForConstantInitializer(Init, DclT);
+ else if (VDecl->getTLSKind() == VarDecl::TLS_Static &&
+ !VDecl->isInvalidDecl() && !DclT->isDependentType() &&
+ !Init->isValueDependent() && !VDecl->isConstexpr() &&
+ !Init->isConstantInitializer(
+ Context, VDecl->getType()->isReferenceType())) {
+ // GNU C++98 edits for __thread, [basic.start.init]p4:
+ // An object of thread storage duration shall not require dynamic
+ // initialization.
+ // FIXME: Need strict checking here.
+ Diag(VDecl->getLocation(), diag::err_thread_dynamic_init);
+ if (getLangOpts().CPlusPlus11)
+ Diag(VDecl->getLocation(), diag::note_use_thread_local);
+ }
+ }
+
+ // We will represent direct-initialization similarly to copy-initialization:
+ // int x(1); -as-> int x = 1;
+ // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
+ //
+ // Clients that want to distinguish between the two forms, can check for
+ // direct initializer using VarDecl::getInitStyle().
+ // A major benefit is that clients that don't particularly care about which
+ // exactly form was it (like the CodeGen) can handle both cases without
+ // special case code.
+
+ // C++ 8.5p11:
+ // The form of initialization (using parentheses or '=') is generally
+ // insignificant, but does matter when the entity being initialized has a
+ // class type.
+ if (CXXDirectInit) {
+ assert(DirectInit && "Call-style initializer must be direct init.");
+ VDecl->setInitStyle(VarDecl::CallInit);
+ } else if (DirectInit) {
+ // This must be list-initialization. No other way is direct-initialization.
+ VDecl->setInitStyle(VarDecl::ListInit);
+ }
+
+ CheckCompleteVariableDeclaration(VDecl);
+}
+
+/// ActOnInitializerError - Given that there was an error parsing an
+/// initializer for the given declaration, try to return to some form
+/// of sanity.
+void Sema::ActOnInitializerError(Decl *D) {
+ // Our main concern here is re-establishing invariants like "a
+ // variable's type is either dependent or complete".
+ if (!D || D->isInvalidDecl()) return;
+
+ VarDecl *VD = dyn_cast<VarDecl>(D);
+ if (!VD) return;
+
+ // Auto types are meaningless if we can't make sense of the initializer.
+ if (ParsingInitForAutoVars.count(D)) {
+ D->setInvalidDecl();
+ return;
+ }
+
+ QualType Ty = VD->getType();
+ if (Ty->isDependentType()) return;
+
+ // Require a complete type.
+ if (RequireCompleteType(VD->getLocation(),
+ Context.getBaseElementType(Ty),
+ diag::err_typecheck_decl_incomplete_type)) {
+ VD->setInvalidDecl();
+ return;
+ }
+
+ // Require an abstract type.
+ if (RequireNonAbstractType(VD->getLocation(), Ty,
+ diag::err_abstract_type_in_decl,
+ AbstractVariableType)) {
+ VD->setInvalidDecl();
+ return;
+ }
+
+ // Don't bother complaining about constructors or destructors,
+ // though.
+}
+
+void Sema::ActOnUninitializedDecl(Decl *RealDecl,
+ bool TypeMayContainAuto) {
+ // If there is no declaration, there was an error parsing it. Just ignore it.
+ if (RealDecl == 0)
+ return;
+
+ if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
+ QualType Type = Var->getType();
+
+ // C++11 [dcl.spec.auto]p3
+ if (TypeMayContainAuto && Type->getContainedAutoType()) {
+ Diag(Var->getLocation(), diag::err_auto_var_requires_init)
+ << Var->getDeclName() << Type;
+ Var->setInvalidDecl();
+ return;
+ }
+
+ // C++11 [class.static.data]p3: A static data member can be declared with
+ // the constexpr specifier; if so, its declaration shall specify
+ // a brace-or-equal-initializer.
+ // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
+ // the definition of a variable [...] or the declaration of a static data
+ // member.
+ if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
+ if (Var->isStaticDataMember())
+ Diag(Var->getLocation(),
+ diag::err_constexpr_static_mem_var_requires_init)
+ << Var->getDeclName();
+ else
+ Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
+ Var->setInvalidDecl();
+ return;
+ }
+
+ switch (Var->isThisDeclarationADefinition()) {
+ case VarDecl::Definition:
+ if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
+ break;
+
+ // We have an out-of-line definition of a static data member
+ // that has an in-class initializer, so we type-check this like
+ // a declaration.
+ //
+ // Fall through
+
+ case VarDecl::DeclarationOnly:
+ // It's only a declaration.
+
+ // Block scope. C99 6.7p7: If an identifier for an object is
+ // declared with no linkage (C99 6.2.2p6), the type for the
+ // object shall be complete.
+ if (!Type->isDependentType() && Var->isLocalVarDecl() &&
+ !Var->hasLinkage() && !Var->isInvalidDecl() &&
+ RequireCompleteType(Var->getLocation(), Type,
+ diag::err_typecheck_decl_incomplete_type))
+ Var->setInvalidDecl();
+
+ // Make sure that the type is not abstract.
+ if (!Type->isDependentType() && !Var->isInvalidDecl() &&
+ RequireNonAbstractType(Var->getLocation(), Type,
+ diag::err_abstract_type_in_decl,
+ AbstractVariableType))
+ Var->setInvalidDecl();
+ if (!Type->isDependentType() && !Var->isInvalidDecl() &&
+ Var->getStorageClass() == SC_PrivateExtern) {
+ Diag(Var->getLocation(), diag::warn_private_extern);
+ Diag(Var->getLocation(), diag::note_private_extern);
+ }
+
+ return;
+
+ case VarDecl::TentativeDefinition:
+ // File scope. C99 6.9.2p2: A declaration of an identifier for an
+ // object that has file scope without an initializer, and without a
+ // storage-class specifier or with the storage-class specifier "static",
+ // constitutes a tentative definition. Note: A tentative definition with
+ // external linkage is valid (C99 6.2.2p5).
+ if (!Var->isInvalidDecl()) {
+ if (const IncompleteArrayType *ArrayT
+ = Context.getAsIncompleteArrayType(Type)) {
+ if (RequireCompleteType(Var->getLocation(),
+ ArrayT->getElementType(),
+ diag::err_illegal_decl_array_incomplete_type))
+ Var->setInvalidDecl();
+ } else if (Var->getStorageClass() == SC_Static) {
+ // C99 6.9.2p3: If the declaration of an identifier for an object is
+ // a tentative definition and has internal linkage (C99 6.2.2p3), the
+ // declared type shall not be an incomplete type.
+ // NOTE: code such as the following
+ // static struct s;
+ // struct s { int a; };
+ // is accepted by gcc. Hence here we issue a warning instead of
+ // an error and we do not invalidate the static declaration.
+ // NOTE: to avoid multiple warnings, only check the first declaration.
+ if (Var->isFirstDecl())
+ RequireCompleteType(Var->getLocation(), Type,
+ diag::ext_typecheck_decl_incomplete_type);
+ }
+ }
+
+ // Record the tentative definition; we're done.
+ if (!Var->isInvalidDecl())
+ TentativeDefinitions.push_back(Var);
+ return;
+ }
+
+ // Provide a specific diagnostic for uninitialized variable
+ // definitions with incomplete array type.
+ if (Type->isIncompleteArrayType()) {
+ Diag(Var->getLocation(),
+ diag::err_typecheck_incomplete_array_needs_initializer);
+ Var->setInvalidDecl();
+ return;
+ }
+
+ // Provide a specific diagnostic for uninitialized variable
+ // definitions with reference type.
+ if (Type->isReferenceType()) {
+ Diag(Var->getLocation(), diag::err_reference_var_requires_init)
+ << Var->getDeclName()
+ << SourceRange(Var->getLocation(), Var->getLocation());
+ Var->setInvalidDecl();
+ return;
+ }
+
+ // Do not attempt to type-check the default initializer for a
+ // variable with dependent type.
+ if (Type->isDependentType())
+ return;
+
+ if (Var->isInvalidDecl())
+ return;
+
+ if (RequireCompleteType(Var->getLocation(),
+ Context.getBaseElementType(Type),
+ diag::err_typecheck_decl_incomplete_type)) {
+ Var->setInvalidDecl();
+ return;
+ }
+
+ // The variable can not have an abstract class type.
+ if (RequireNonAbstractType(Var->getLocation(), Type,
+ diag::err_abstract_type_in_decl,
+ AbstractVariableType)) {
+ Var->setInvalidDecl();
+ return;
+ }
+
+ // Check for jumps past the implicit initializer. C++0x
+ // clarifies that this applies to a "variable with automatic
+ // storage duration", not a "local variable".
+ // C++11 [stmt.dcl]p3
+ // A program that jumps from a point where a variable with automatic
+ // storage duration is not in scope to a point where it is in scope is
+ // ill-formed unless the variable has scalar type, class type with a
+ // trivial default constructor and a trivial destructor, a cv-qualified
+ // version of one of these types, or an array of one of the preceding
+ // types and is declared without an initializer.
+ if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
+ if (const RecordType *Record
+ = Context.getBaseElementType(Type)->getAs<RecordType>()) {
+ CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
+ // Mark the function for further checking even if the looser rules of
+ // C++11 do not require such checks, so that we can diagnose
+ // incompatibilities with C++98.
+ if (!CXXRecord->isPOD())
+ getCurFunction()->setHasBranchProtectedScope();
+ }
+ }
+
+ // C++03 [dcl.init]p9:
+ // If no initializer is specified for an object, and the
+ // object is of (possibly cv-qualified) non-POD class type (or
+ // array thereof), the object shall be default-initialized; if
+ // the object is of const-qualified type, the underlying class
+ // type shall have a user-declared default
+ // constructor. Otherwise, if no initializer is specified for
+ // a non- static object, the object and its subobjects, if
+ // any, have an indeterminate initial value); if the object
+ // or any of its subobjects are of const-qualified type, the
+ // program is ill-formed.
+ // C++0x [dcl.init]p11:
+ // If no initializer is specified for an object, the object is
+ // default-initialized; [...].
+ InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
+ InitializationKind Kind
+ = InitializationKind::CreateDefault(Var->getLocation());
+
+ InitializationSequence InitSeq(*this, Entity, Kind, None);
+ ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
+ if (Init.isInvalid())
+ Var->setInvalidDecl();
+ else if (Init.get()) {
+ Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
+ // This is important for template substitution.
+ Var->setInitStyle(VarDecl::CallInit);
+ }
+
+ CheckCompleteVariableDeclaration(Var);
+ }
+}
+
+void Sema::ActOnCXXForRangeDecl(Decl *D) {
+ VarDecl *VD = dyn_cast<VarDecl>(D);
+ if (!VD) {
+ Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
+ D->setInvalidDecl();
+ return;
+ }
+
+ VD->setCXXForRangeDecl(true);
+
+ // for-range-declaration cannot be given a storage class specifier.
+ int Error = -1;
+ switch (VD->getStorageClass()) {
+ case SC_None:
+ break;
+ case SC_Extern:
+ Error = 0;
+ break;
+ case SC_Static:
+ Error = 1;
+ break;
+ case SC_PrivateExtern:
+ Error = 2;
+ break;
+ case SC_Auto:
+ Error = 3;
+ break;
+ case SC_Register:
+ Error = 4;
+ break;
+ case SC_OpenCLWorkGroupLocal:
+ llvm_unreachable("Unexpected storage class");
+ }
+ if (VD->isConstexpr())
+ Error = 5;
+ if (Error != -1) {
+ Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
+ << VD->getDeclName() << Error;
+ D->setInvalidDecl();
+ }
+}
+
+void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
+ if (var->isInvalidDecl()) return;
+
+ // In ARC, don't allow jumps past the implicit initialization of a
+ // local retaining variable.
+ if (getLangOpts().ObjCAutoRefCount &&
+ var->hasLocalStorage()) {
+ switch (var->getType().getObjCLifetime()) {
+ case Qualifiers::OCL_None:
+ case Qualifiers::OCL_ExplicitNone:
+ case Qualifiers::OCL_Autoreleasing:
+ break;
+
+ case Qualifiers::OCL_Weak:
+ case Qualifiers::OCL_Strong:
+ getCurFunction()->setHasBranchProtectedScope();
+ break;
+ }
+ }
+
+ if (var->isThisDeclarationADefinition() &&
+ var->isExternallyVisible() && var->hasLinkage() &&
+ getDiagnostics().getDiagnosticLevel(
+ diag::warn_missing_variable_declarations,
+ var->getLocation())) {
+ // Find a previous declaration that's not a definition.
+ VarDecl *prev = var->getPreviousDecl();
+ while (prev && prev->isThisDeclarationADefinition())
+ prev = prev->getPreviousDecl();
+
+ if (!prev)
+ Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
+ }
+
+ if (var->getTLSKind() == VarDecl::TLS_Static &&
+ var->getType().isDestructedType()) {
+ // GNU C++98 edits for __thread, [basic.start.term]p3:
+ // The type of an object with thread storage duration shall not
+ // have a non-trivial destructor.
+ Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
+ if (getLangOpts().CPlusPlus11)
+ Diag(var->getLocation(), diag::note_use_thread_local);
+ }
+
+ // All the following checks are C++ only.
+ if (!getLangOpts().CPlusPlus) return;
+
+ QualType type = var->getType();
+ if (type->isDependentType()) return;
+
+ // __block variables might require us to capture a copy-initializer.
+ if (var->hasAttr<BlocksAttr>()) {
+ // It's currently invalid to ever have a __block variable with an
+ // array type; should we diagnose that here?
+
+ // Regardless, we don't want to ignore array nesting when
+ // constructing this copy.
+ if (type->isStructureOrClassType()) {
+ EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
+ SourceLocation poi = var->getLocation();
+ Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
+ ExprResult result
+ = PerformMoveOrCopyInitialization(
+ InitializedEntity::InitializeBlock(poi, type, false),
+ var, var->getType(), varRef, /*AllowNRVO=*/true);
+ if (!result.isInvalid()) {
+ result = MaybeCreateExprWithCleanups(result);
+ Expr *init = result.takeAs<Expr>();
+ Context.setBlockVarCopyInits(var, init);
+ }
+ }
+ }
+
+ Expr *Init = var->getInit();
+ bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
+ QualType baseType = Context.getBaseElementType(type);
+
+ if (!var->getDeclContext()->isDependentContext() &&
+ Init && !Init->isValueDependent()) {
+ if (IsGlobal && !var->isConstexpr() &&
+ getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
+ var->getLocation())
+ != DiagnosticsEngine::Ignored) {
+ // Warn about globals which don't have a constant initializer. Don't
+ // warn about globals with a non-trivial destructor because we already
+ // warned about them.
+ CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
+ if (!(RD && !RD->hasTrivialDestructor()) &&
+ !Init->isConstantInitializer(Context, baseType->isReferenceType()))
+ Diag(var->getLocation(), diag::warn_global_constructor)
+ << Init->getSourceRange();
+ }
+
+ if (var->isConstexpr()) {
+ SmallVector<PartialDiagnosticAt, 8> Notes;
+ if (!var->evaluateValue(Notes) || !var->isInitICE()) {
+ SourceLocation DiagLoc = var->getLocation();
+ // If the note doesn't add any useful information other than a source
+ // location, fold it into the primary diagnostic.
+ if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
+ diag::note_invalid_subexpr_in_const_expr) {
+ DiagLoc = Notes[0].first;
+ Notes.clear();
+ }
+ Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
+ << var << Init->getSourceRange();
+ for (unsigned I = 0, N = Notes.size(); I != N; ++I)
+ Diag(Notes[I].first, Notes[I].second);
+ }
+ } else if (var->isUsableInConstantExpressions(Context)) {
+ // Check whether the initializer of a const variable of integral or
+ // enumeration type is an ICE now, since we can't tell whether it was
+ // initialized by a constant expression if we check later.
+ var->checkInitIsICE();
+ }
+ }
+
+ // Require the destructor.
+ if (const RecordType *recordType = baseType->getAs<RecordType>())
+ FinalizeVarWithDestructor(var, recordType);
+}
+
+/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
+/// any semantic actions necessary after any initializer has been attached.
+void
+Sema::FinalizeDeclaration(Decl *ThisDecl) {
+ // Note that we are no longer parsing the initializer for this declaration.
+ ParsingInitForAutoVars.erase(ThisDecl);
+
+ VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
+ if (!VD)
+ return;
+
+ if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
+ if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
+ Diag(Attr->getLocation(), diag::warn_attribute_ignored) << "used";
+ VD->dropAttr<UsedAttr>();
+ }
+ }
+
+ if (!VD->isInvalidDecl() &&
+ VD->isThisDeclarationADefinition() == VarDecl::TentativeDefinition) {
+ if (const VarDecl *Def = VD->getDefinition()) {
+ if (Def->hasAttr<AliasAttr>()) {
+ Diag(VD->getLocation(), diag::err_tentative_after_alias)
+ << VD->getDeclName();
+ Diag(Def->getLocation(), diag::note_previous_definition);
+ VD->setInvalidDecl();
+ }
+ }
+ }
+
+ const DeclContext *DC = VD->getDeclContext();
+ // If there's a #pragma GCC visibility in scope, and this isn't a class
+ // member, set the visibility of this variable.
+ if (!DC->isRecord() && VD->isExternallyVisible())
+ AddPushedVisibilityAttribute(VD);
+
+ if (VD->isFileVarDecl())
+ MarkUnusedFileScopedDecl(VD);
+
+ // Now we have parsed the initializer and can update the table of magic
+ // tag values.
+ if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
+ !VD->getType()->isIntegralOrEnumerationType())
+ return;
+
+ for (specific_attr_iterator<TypeTagForDatatypeAttr>
+ I = ThisDecl->specific_attr_begin<TypeTagForDatatypeAttr>(),
+ E = ThisDecl->specific_attr_end<TypeTagForDatatypeAttr>();
+ I != E; ++I) {
+ const Expr *MagicValueExpr = VD->getInit();
+ if (!MagicValueExpr) {
+ continue;
+ }
+ llvm::APSInt MagicValueInt;
+ if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
+ Diag(I->getRange().getBegin(),
+ diag::err_type_tag_for_datatype_not_ice)
+ << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
+ continue;
+ }
+ if (MagicValueInt.getActiveBits() > 64) {
+ Diag(I->getRange().getBegin(),
+ diag::err_type_tag_for_datatype_too_large)
+ << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
+ continue;
+ }
+ uint64_t MagicValue = MagicValueInt.getZExtValue();
+ RegisterTypeTagForDatatype(I->getArgumentKind(),
+ MagicValue,
+ I->getMatchingCType(),
+ I->getLayoutCompatible(),
+ I->getMustBeNull());
+ }
+}
+
+Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
+ ArrayRef<Decl *> Group) {
+ SmallVector<Decl*, 8> Decls;
+
+ if (DS.isTypeSpecOwned())
+ Decls.push_back(DS.getRepAsDecl());
+
+ DeclaratorDecl *FirstDeclaratorInGroup = 0;
+ for (unsigned i = 0, e = Group.size(); i != e; ++i)
+ if (Decl *D = Group[i]) {
+ if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D))
+ if (!FirstDeclaratorInGroup)
+ FirstDeclaratorInGroup = DD;
+ Decls.push_back(D);
+ }
+
+ if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
+ if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
+ HandleTagNumbering(*this, Tag);
+ if (!Tag->hasNameForLinkage() && !Tag->hasDeclaratorForAnonDecl())
+ Tag->setDeclaratorForAnonDecl(FirstDeclaratorInGroup);
+ }
+ }
+
+ return BuildDeclaratorGroup(Decls, DS.containsPlaceholderType());
+}
+
+/// BuildDeclaratorGroup - convert a list of declarations into a declaration
+/// group, performing any necessary semantic checking.
+Sema::DeclGroupPtrTy
+Sema::BuildDeclaratorGroup(llvm::MutableArrayRef<Decl *> Group,
+ bool TypeMayContainAuto) {
+ // C++0x [dcl.spec.auto]p7:
+ // If the type deduced for the template parameter U is not the same in each
+ // deduction, the program is ill-formed.
+ // FIXME: When initializer-list support is added, a distinction is needed
+ // between the deduced type U and the deduced type which 'auto' stands for.
+ // auto a = 0, b = { 1, 2, 3 };
+ // is legal because the deduced type U is 'int' in both cases.
+ if (TypeMayContainAuto && Group.size() > 1) {
+ QualType Deduced;
+ CanQualType DeducedCanon;
+ VarDecl *DeducedDecl = 0;
+ for (unsigned i = 0, e = Group.size(); i != e; ++i) {
+ if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
+ AutoType *AT = D->getType()->getContainedAutoType();
+ // Don't reissue diagnostics when instantiating a template.
+ if (AT && D->isInvalidDecl())
+ break;
+ QualType U = AT ? AT->getDeducedType() : QualType();
+ if (!U.isNull()) {
+ CanQualType UCanon = Context.getCanonicalType(U);
+ if (Deduced.isNull()) {
+ Deduced = U;
+ DeducedCanon = UCanon;
+ DeducedDecl = D;
+ } else if (DeducedCanon != UCanon) {
+ Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
+ diag::err_auto_different_deductions)
+ << (AT->isDecltypeAuto() ? 1 : 0)
+ << Deduced << DeducedDecl->getDeclName()
+ << U << D->getDeclName()
+ << DeducedDecl->getInit()->getSourceRange()
+ << D->getInit()->getSourceRange();
+ D->setInvalidDecl();
+ break;
+ }
+ }
+ }
+ }
+ }
+
+ ActOnDocumentableDecls(Group);
+
+ return DeclGroupPtrTy::make(
+ DeclGroupRef::Create(Context, Group.data(), Group.size()));
+}
+
+void Sema::ActOnDocumentableDecl(Decl *D) {
+ ActOnDocumentableDecls(D);
+}
+
+void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
+ // Don't parse the comment if Doxygen diagnostics are ignored.
+ if (Group.empty() || !Group[0])
+ return;
+
+ if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
+ Group[0]->getLocation())
+ == DiagnosticsEngine::Ignored)
+ return;
+
+ if (Group.size() >= 2) {
+ // This is a decl group. Normally it will contain only declarations
+ // produced from declarator list. But in case we have any definitions or
+ // additional declaration references:
+ // 'typedef struct S {} S;'
+ // 'typedef struct S *S;'
+ // 'struct S *pS;'
+ // FinalizeDeclaratorGroup adds these as separate declarations.
+ Decl *MaybeTagDecl = Group[0];
+ if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
+ Group = Group.slice(1);
+ }
+ }
+
+ // See if there are any new comments that are not attached to a decl.
+ ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
+ if (!Comments.empty() &&
+ !Comments.back()->isAttached()) {
+ // There is at least one comment that not attached to a decl.
+ // Maybe it should be attached to one of these decls?
+ //
+ // Note that this way we pick up not only comments that precede the
+ // declaration, but also comments that *follow* the declaration -- thanks to
+ // the lookahead in the lexer: we've consumed the semicolon and looked
+ // ahead through comments.
+ for (unsigned i = 0, e = Group.size(); i != e; ++i)
+ Context.getCommentForDecl(Group[i], &PP);
+ }
+}
+
+/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
+/// to introduce parameters into function prototype scope.
+Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
+ const DeclSpec &DS = D.getDeclSpec();
+
+ // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
+
+ // C++03 [dcl.stc]p2 also permits 'auto'.
+ VarDecl::StorageClass StorageClass = SC_None;
+ if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
+ StorageClass = SC_Register;
+ } else if (getLangOpts().CPlusPlus &&
+ DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
+ StorageClass = SC_Auto;
+ } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
+ Diag(DS.getStorageClassSpecLoc(),
+ diag::err_invalid_storage_class_in_func_decl);
+ D.getMutableDeclSpec().ClearStorageClassSpecs();
+ }
+
+ if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
+ Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
+ << DeclSpec::getSpecifierName(TSCS);
+ if (DS.isConstexprSpecified())
+ Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
+ << 0;
+
+ DiagnoseFunctionSpecifiers(DS);
+
+ TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
+ QualType parmDeclType = TInfo->getType();
+
+ if (getLangOpts().CPlusPlus) {
+ // Check that there are no default arguments inside the type of this
+ // parameter.
+ CheckExtraCXXDefaultArguments(D);
+
+ // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
+ if (D.getCXXScopeSpec().isSet()) {
+ Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
+ << D.getCXXScopeSpec().getRange();
+ D.getCXXScopeSpec().clear();
+ }
+ }
+
+ // Ensure we have a valid name
+ IdentifierInfo *II = 0;
+ if (D.hasName()) {
+ II = D.getIdentifier();
+ if (!II) {
+ Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
+ << GetNameForDeclarator(D).getName().getAsString();
+ D.setInvalidType(true);
+ }
+ }
+
+ // Check for redeclaration of parameters, e.g. int foo(int x, int x);
+ if (II) {
+ LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
+ ForRedeclaration);
+ LookupName(R, S);
+ if (R.isSingleResult()) {
+ NamedDecl *PrevDecl = R.getFoundDecl();
+ if (PrevDecl->isTemplateParameter()) {
+ // Maybe we will complain about the shadowed template parameter.
+ DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
+ // Just pretend that we didn't see the previous declaration.
+ PrevDecl = 0;
+ } else if (S->isDeclScope(PrevDecl)) {
+ Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
+ Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
+
+ // Recover by removing the name
+ II = 0;
+ D.SetIdentifier(0, D.getIdentifierLoc());
+ D.setInvalidType(true);
+ }
+ }
+ }
+
+ // Temporarily put parameter variables in the translation unit, not
+ // the enclosing context. This prevents them from accidentally
+ // looking like class members in C++.
+ ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
+ D.getLocStart(),
+ D.getIdentifierLoc(), II,
+ parmDeclType, TInfo,
+ StorageClass);
+
+ if (D.isInvalidType())
+ New->setInvalidDecl();
+
+ assert(S->isFunctionPrototypeScope());
+ assert(S->getFunctionPrototypeDepth() >= 1);
+ New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
+ S->getNextFunctionPrototypeIndex());
+
+ // Add the parameter declaration into this scope.
+ S->AddDecl(New);
+ if (II)
+ IdResolver.AddDecl(New);
+
+ ProcessDeclAttributes(S, New, D);
+
+ if (D.getDeclSpec().isModulePrivateSpecified())
+ Diag(New->getLocation(), diag::err_module_private_local)
+ << 1 << New->getDeclName()
+ << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
+ << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
+
+ if (New->hasAttr<BlocksAttr>()) {
+ Diag(New->getLocation(), diag::err_block_on_nonlocal);
+ }
+ return New;
+}
+
+/// \brief Synthesizes a variable for a parameter arising from a
+/// typedef.
+ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
+ SourceLocation Loc,
+ QualType T) {
+ /* FIXME: setting StartLoc == Loc.
+ Would it be worth to modify callers so as to provide proper source
+ location for the unnamed parameters, embedding the parameter's type? */
+ ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
+ T, Context.getTrivialTypeSourceInfo(T, Loc),
+ SC_None, 0);
+ Param->setImplicit();
+ return Param;
+}
+
+void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
+ ParmVarDecl * const *ParamEnd) {
+ // Don't diagnose unused-parameter errors in template instantiations; we
+ // will already have done so in the template itself.
+ if (!ActiveTemplateInstantiations.empty())
+ return;
+
+ for (; Param != ParamEnd; ++Param) {
+ if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
+ !(*Param)->hasAttr<UnusedAttr>()) {
+ Diag((*Param)->getLocation(), diag::warn_unused_parameter)
+ << (*Param)->getDeclName();
+ }
+ }
+}
+
+void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
+ ParmVarDecl * const *ParamEnd,
+ QualType ReturnTy,
+ NamedDecl *D) {
+ if (LangOpts.NumLargeByValueCopy == 0) // No check.
+ return;
+
+ // Warn if the return value is pass-by-value and larger than the specified
+ // threshold.
+ if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
+ unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
+ if (Size > LangOpts.NumLargeByValueCopy)
+ Diag(D->getLocation(), diag::warn_return_value_size)
+ << D->getDeclName() << Size;
+ }
+
+ // Warn if any parameter is pass-by-value and larger than the specified
+ // threshold.
+ for (; Param != ParamEnd; ++Param) {
+ QualType T = (*Param)->getType();
+ if (T->isDependentType() || !T.isPODType(Context))
+ continue;
+ unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
+ if (Size > LangOpts.NumLargeByValueCopy)
+ Diag((*Param)->getLocation(), diag::warn_parameter_size)
+ << (*Param)->getDeclName() << Size;
+ }
+}
+
+ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
+ SourceLocation NameLoc, IdentifierInfo *Name,
+ QualType T, TypeSourceInfo *TSInfo,
+ VarDecl::StorageClass StorageClass) {
+ // In ARC, infer a lifetime qualifier for appropriate parameter types.
+ if (getLangOpts().ObjCAutoRefCount &&
+ T.getObjCLifetime() == Qualifiers::OCL_None &&
+ T->isObjCLifetimeType()) {
+
+ Qualifiers::ObjCLifetime lifetime;
+
+ // Special cases for arrays:
+ // - if it's const, use __unsafe_unretained
+ // - otherwise, it's an error
+ if (T->isArrayType()) {
+ if (!T.isConstQualified()) {
+ DelayedDiagnostics.add(
+ sema::DelayedDiagnostic::makeForbiddenType(
+ NameLoc, diag::err_arc_array_param_no_ownership, T, false));
+ }
+ lifetime = Qualifiers::OCL_ExplicitNone;
+ } else {
+ lifetime = T->getObjCARCImplicitLifetime();
+ }
+ T = Context.getLifetimeQualifiedType(T, lifetime);
+ }
+
+ ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
+ Context.getAdjustedParameterType(T),
+ TSInfo,
+ StorageClass, 0);
+
+ // Parameters can not be abstract class types.
+ // For record types, this is done by the AbstractClassUsageDiagnoser once
+ // the class has been completely parsed.
+ if (!CurContext->isRecord() &&
+ RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
+ AbstractParamType))
+ New->setInvalidDecl();
+
+ // Parameter declarators cannot be interface types. All ObjC objects are
+ // passed by reference.
+ if (T->isObjCObjectType()) {
+ SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
+ Diag(NameLoc,
+ diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
+ << FixItHint::CreateInsertion(TypeEndLoc, "*");
+ T = Context.getObjCObjectPointerType(T);
+ New->setType(T);
+ }
+
+ // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
+ // duration shall not be qualified by an address-space qualifier."
+ // Since all parameters have automatic store duration, they can not have
+ // an address space.
+ if (T.getAddressSpace() != 0) {
+ Diag(NameLoc, diag::err_arg_with_address_space);
+ New->setInvalidDecl();
+ }
+
+ return New;
+}
+
+void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
+ SourceLocation LocAfterDecls) {
+ DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
+
+ // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
+ // for a K&R function.
+ if (!FTI.hasPrototype) {
+ for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
+ --i;
+ if (FTI.ArgInfo[i].Param == 0) {
+ SmallString<256> Code;
+ llvm::raw_svector_ostream(Code) << " int "
+ << FTI.ArgInfo[i].Ident->getName()
+ << ";\n";
+ Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
+ << FTI.ArgInfo[i].Ident
+ << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
+
+ // Implicitly declare the argument as type 'int' for lack of a better
+ // type.
+ AttributeFactory attrs;
+ DeclSpec DS(attrs);
+ const char* PrevSpec; // unused
+ unsigned DiagID; // unused
+ DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
+ PrevSpec, DiagID);
+ // Use the identifier location for the type source range.
+ DS.SetRangeStart(FTI.ArgInfo[i].IdentLoc);
+ DS.SetRangeEnd(FTI.ArgInfo[i].IdentLoc);
+ Declarator ParamD(DS, Declarator::KNRTypeListContext);
+ ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
+ FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
+ }
+ }
+ }
+}
+
+Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
+ assert(getCurFunctionDecl() == 0 && "Function parsing confused");
+ assert(D.isFunctionDeclarator() && "Not a function declarator!");
+ Scope *ParentScope = FnBodyScope->getParent();
+
+ D.setFunctionDefinitionKind(FDK_Definition);
+ Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
+ return ActOnStartOfFunctionDef(FnBodyScope, DP);
+}
+
+static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
+ const FunctionDecl*& PossibleZeroParamPrototype) {
+ // Don't warn about invalid declarations.
+ if (FD->isInvalidDecl())
+ return false;
+
+ // Or declarations that aren't global.
+ if (!FD->isGlobal())
+ return false;
+
+ // Don't warn about C++ member functions.
+ if (isa<CXXMethodDecl>(FD))
+ return false;
+
+ // Don't warn about 'main'.
+ if (FD->isMain())
+ return false;
+
+ // Don't warn about inline functions.
+ if (FD->isInlined())
+ return false;
+
+ // Don't warn about function templates.
+ if (FD->getDescribedFunctionTemplate())
+ return false;
+
+ // Don't warn about function template specializations.
+ if (FD->isFunctionTemplateSpecialization())
+ return false;
+
+ // Don't warn for OpenCL kernels.
+ if (FD->hasAttr<OpenCLKernelAttr>())
+ return false;
+
+ bool MissingPrototype = true;
+ for (const FunctionDecl *Prev = FD->getPreviousDecl();
+ Prev; Prev = Prev->getPreviousDecl()) {
+ // Ignore any declarations that occur in function or method
+ // scope, because they aren't visible from the header.
+ if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
+ continue;
+
+ MissingPrototype = !Prev->getType()->isFunctionProtoType();
+ if (FD->getNumParams() == 0)
+ PossibleZeroParamPrototype = Prev;
+ break;
+ }
+
+ return MissingPrototype;
+}
+
+void
+Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
+ const FunctionDecl *EffectiveDefinition) {
+ // Don't complain if we're in GNU89 mode and the previous definition
+ // was an extern inline function.
+ const FunctionDecl *Definition = EffectiveDefinition;
+ if (!Definition)
+ if (!FD->isDefined(Definition))
+ return;
+
+ if (canRedefineFunction(Definition, getLangOpts()))
+ return;
+
+ if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
+ Definition->getStorageClass() == SC_Extern)
+ Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
+ << FD->getDeclName() << getLangOpts().CPlusPlus;
+ else
+ Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
+
+ Diag(Definition->getLocation(), diag::note_previous_definition);
+ FD->setInvalidDecl();
+}
+
+
+static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator,
+ Sema &S) {
+ CXXRecordDecl *const LambdaClass = CallOperator->getParent();
+
+ LambdaScopeInfo *LSI = S.PushLambdaScope();
+ LSI->CallOperator = CallOperator;
+ LSI->Lambda = LambdaClass;
+ LSI->ReturnType = CallOperator->getResultType();
+ const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
+
+ if (LCD == LCD_None)
+ LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
+ else if (LCD == LCD_ByCopy)
+ LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
+ else if (LCD == LCD_ByRef)
+ LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
+ DeclarationNameInfo DNI = CallOperator->getNameInfo();
+
+ LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
+ LSI->Mutable = !CallOperator->isConst();
+
+ // Add the captures to the LSI so they can be noted as already
+ // captured within tryCaptureVar.
+ for (LambdaExpr::capture_iterator C = LambdaClass->captures_begin(),
+ CEnd = LambdaClass->captures_end(); C != CEnd; ++C) {
+ if (C->capturesVariable()) {
+ VarDecl *VD = C->getCapturedVar();
+ if (VD->isInitCapture())
+ S.CurrentInstantiationScope->InstantiatedLocal(VD, VD);
+ QualType CaptureType = VD->getType();
+ const bool ByRef = C->getCaptureKind() == LCK_ByRef;
+ LSI->addCapture(VD, /*IsBlock*/false, ByRef,
+ /*RefersToEnclosingLocal*/true, C->getLocation(),
+ /*EllipsisLoc*/C->isPackExpansion()
+ ? C->getEllipsisLoc() : SourceLocation(),
+ CaptureType, /*Expr*/ 0);
+
+ } else if (C->capturesThis()) {
+ LSI->addThisCapture(/*Nested*/ false, C->getLocation(),
+ S.getCurrentThisType(), /*Expr*/ 0);
+ }
+ }
+}
+
+Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
+ // Clear the last template instantiation error context.
+ LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
+
+ if (!D)
+ return D;
+ FunctionDecl *FD = 0;
+
+ if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
+ FD = FunTmpl->getTemplatedDecl();
+ else
+ FD = cast<FunctionDecl>(D);
+ // If we are instantiating a generic lambda call operator, push
+ // a LambdaScopeInfo onto the function stack. But use the information
+ // that's already been calculated (ActOnLambdaExpr) to prime the current
+ // LambdaScopeInfo.
+ // When the template operator is being specialized, the LambdaScopeInfo,
+ // has to be properly restored so that tryCaptureVariable doesn't try
+ // and capture any new variables. In addition when calculating potential
+ // captures during transformation of nested lambdas, it is necessary to
+ // have the LSI properly restored.
+ if (isGenericLambdaCallOperatorSpecialization(FD)) {
+ assert(ActiveTemplateInstantiations.size() &&
+ "There should be an active template instantiation on the stack "
+ "when instantiating a generic lambda!");
+ RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this);
+ }
+ else
+ // Enter a new function scope
+ PushFunctionScope();
+
+ // See if this is a redefinition.
+ if (!FD->isLateTemplateParsed())
+ CheckForFunctionRedefinition(FD);
+
+ // Builtin functions cannot be defined.
+ if (unsigned BuiltinID = FD->getBuiltinID()) {
+ if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
+ !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
+ Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
+ FD->setInvalidDecl();
+ }
+ }
+
+ // The return type of a function definition must be complete
+ // (C99 6.9.1p3, C++ [dcl.fct]p6).
+ QualType ResultType = FD->getResultType();
+ if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
+ !FD->isInvalidDecl() &&
+ RequireCompleteType(FD->getLocation(), ResultType,
+ diag::err_func_def_incomplete_result))
+ FD->setInvalidDecl();
+
+ // GNU warning -Wmissing-prototypes:
+ // Warn if a global function is defined without a previous
+ // prototype declaration. This warning is issued even if the
+ // definition itself provides a prototype. The aim is to detect
+ // global functions that fail to be declared in header files.
+ const FunctionDecl *PossibleZeroParamPrototype = 0;
+ if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
+ Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
+
+ if (PossibleZeroParamPrototype) {
+ // We found a declaration that is not a prototype,
+ // but that could be a zero-parameter prototype
+ if (TypeSourceInfo *TI =
+ PossibleZeroParamPrototype->getTypeSourceInfo()) {
+ TypeLoc TL = TI->getTypeLoc();
+ if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
+ Diag(PossibleZeroParamPrototype->getLocation(),
+ diag::note_declaration_not_a_prototype)
+ << PossibleZeroParamPrototype
+ << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
+ }
+ }
+ }
+
+ if (FnBodyScope)
+ PushDeclContext(FnBodyScope, FD);
+
+ // Check the validity of our function parameters
+ CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
+ /*CheckParameterNames=*/true);
+
+ // Introduce our parameters into the function scope
+ for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
+ ParmVarDecl *Param = FD->getParamDecl(p);
+ Param->setOwningFunction(FD);
+
+ // If this has an identifier, add it to the scope stack.
+ if (Param->getIdentifier() && FnBodyScope) {
+ CheckShadow(FnBodyScope, Param);
+
+ PushOnScopeChains(Param, FnBodyScope);
+ }
+ }
+
+ // If we had any tags defined in the function prototype,
+ // introduce them into the function scope.
+ if (FnBodyScope) {
+ for (ArrayRef<NamedDecl *>::iterator
+ I = FD->getDeclsInPrototypeScope().begin(),
+ E = FD->getDeclsInPrototypeScope().end();
+ I != E; ++I) {
+ NamedDecl *D = *I;
+
+ // Some of these decls (like enums) may have been pinned to the translation unit
+ // for lack of a real context earlier. If so, remove from the translation unit
+ // and reattach to the current context.
+ if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
+ // Is the decl actually in the context?
+ for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
+ DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
+ if (*DI == D) {
+ Context.getTranslationUnitDecl()->removeDecl(D);
+ break;
+ }
+ }
+ // Either way, reassign the lexical decl context to our FunctionDecl.
+ D->setLexicalDeclContext(CurContext);
+ }
+
+ // If the decl has a non-null name, make accessible in the current scope.
+ if (!D->getName().empty())
+ PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
+
+ // Similarly, dive into enums and fish their constants out, making them
+ // accessible in this scope.
+ if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
+ for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
+ EE = ED->enumerator_end(); EI != EE; ++EI)
+ PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
+ }
+ }
+ }
+
+ // Ensure that the function's exception specification is instantiated.
+ if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
+ ResolveExceptionSpec(D->getLocation(), FPT);
+
+ // Checking attributes of current function definition
+ // dllimport attribute.
+ DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
+ if (DA && (!FD->getAttr<DLLExportAttr>())) {
+ // dllimport attribute cannot be directly applied to definition.
+ // Microsoft accepts dllimport for functions defined within class scope.
+ if (!DA->isInherited() &&
+ !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
+ Diag(FD->getLocation(),
+ diag::err_attribute_can_be_applied_only_to_symbol_declaration)
+ << "dllimport";
+ FD->setInvalidDecl();
+ return D;
+ }
+
+ // Visual C++ appears to not think this is an issue, so only issue
+ // a warning when Microsoft extensions are disabled.
+ if (!LangOpts.MicrosoftExt) {
+ // If a symbol previously declared dllimport is later defined, the
+ // attribute is ignored in subsequent references, and a warning is
+ // emitted.
+ Diag(FD->getLocation(),
+ diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
+ << FD->getName() << "dllimport";
+ }
+ }
+ // We want to attach documentation to original Decl (which might be
+ // a function template).
+ ActOnDocumentableDecl(D);
+ return D;
+}
+
+/// \brief Given the set of return statements within a function body,
+/// compute the variables that are subject to the named return value
+/// optimization.
+///
+/// Each of the variables that is subject to the named return value
+/// optimization will be marked as NRVO variables in the AST, and any
+/// return statement that has a marked NRVO variable as its NRVO candidate can
+/// use the named return value optimization.
+///
+/// This function applies a very simplistic algorithm for NRVO: if every return
+/// statement in the function has the same NRVO candidate, that candidate is
+/// the NRVO variable.
+///
+/// FIXME: Employ a smarter algorithm that accounts for multiple return
+/// statements and the lifetimes of the NRVO candidates. We should be able to
+/// find a maximal set of NRVO variables.
+void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
+ ReturnStmt **Returns = Scope->Returns.data();
+
+ const VarDecl *NRVOCandidate = 0;
+ for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
+ if (!Returns[I]->getNRVOCandidate())
+ return;
+
+ if (!NRVOCandidate)
+ NRVOCandidate = Returns[I]->getNRVOCandidate();
+ else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
+ return;
+ }
+
+ if (NRVOCandidate)
+ const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
+}
+
+bool Sema::canSkipFunctionBody(Decl *D) {
+ if (!Consumer.shouldSkipFunctionBody(D))
+ return false;
+
+ if (isa<ObjCMethodDecl>(D))
+ return true;
+
+ FunctionDecl *FD = 0;
+ if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
+ FD = FTD->getTemplatedDecl();
+ else
+ FD = cast<FunctionDecl>(D);
+
+ // We cannot skip the body of a function (or function template) which is
+ // constexpr, since we may need to evaluate its body in order to parse the
+ // rest of the file.
+ // We cannot skip the body of a function with an undeduced return type,
+ // because any callers of that function need to know the type.
+ return !FD->isConstexpr() && !FD->getResultType()->isUndeducedType();
+}
+
+Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
+ if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Decl))
+ FD->setHasSkippedBody();
+ else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Decl))
+ MD->setHasSkippedBody();
+ return ActOnFinishFunctionBody(Decl, 0);
+}
+
+Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
+ return ActOnFinishFunctionBody(D, BodyArg, false);
+}
+
+Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
+ bool IsInstantiation) {
+ FunctionDecl *FD = 0;
+ FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
+ if (FunTmpl)
+ FD = FunTmpl->getTemplatedDecl();
+ else
+ FD = dyn_cast_or_null<FunctionDecl>(dcl);
+
+ sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
+ sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
+
+ if (FD) {
+ FD->setBody(Body);
+
+ if (getLangOpts().CPlusPlus1y && !FD->isInvalidDecl() && Body &&
+ !FD->isDependentContext() && FD->getResultType()->isUndeducedType()) {
+ // If the function has a deduced result type but contains no 'return'
+ // statements, the result type as written must be exactly 'auto', and
+ // the deduced result type is 'void'.
+ if (!FD->getResultType()->getAs<AutoType>()) {
+ Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
+ << FD->getResultType();
+ FD->setInvalidDecl();
+ } else {
+ // Substitute 'void' for the 'auto' in the type.
+ TypeLoc ResultType = FD->getTypeSourceInfo()->getTypeLoc().
+ IgnoreParens().castAs<FunctionProtoTypeLoc>().getResultLoc();
+ Context.adjustDeducedFunctionResultType(
+ FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
+ }
+ }
+
+ // The only way to be included in UndefinedButUsed is if there is an
+ // ODR use before the definition. Avoid the expensive map lookup if this
+ // is the first declaration.
+ if (!FD->isFirstDecl() && FD->getPreviousDecl()->isUsed()) {
+ if (!FD->isExternallyVisible())
+ UndefinedButUsed.erase(FD);
+ else if (FD->isInlined() &&
+ (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
+ (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>()))
+ UndefinedButUsed.erase(FD);
+ }
+
+ // If the function implicitly returns zero (like 'main') or is naked,
+ // don't complain about missing return statements.
+ if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
+ WP.disableCheckFallThrough();
+
+ // MSVC permits the use of pure specifier (=0) on function definition,
+ // defined at class scope, warn about this non standard construct.
+ if (getLangOpts().MicrosoftExt && FD->isPure() && FD->isCanonicalDecl())
+ Diag(FD->getLocation(), diag::warn_pure_function_definition);
+
+ if (!FD->isInvalidDecl()) {
+ DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
+ DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
+ FD->getResultType(), FD);
+
+ // If this is a constructor, we need a vtable.
+ if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
+ MarkVTableUsed(FD->getLocation(), Constructor->getParent());
+
+ // Try to apply the named return value optimization. We have to check
+ // if we can do this here because lambdas keep return statements around
+ // to deduce an implicit return type.
+ if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
+ !FD->isDependentContext())
+ computeNRVO(Body, getCurFunction());
+ }
+
+ assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
+ "Function parsing confused");
+ } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
+ assert(MD == getCurMethodDecl() && "Method parsing confused");
+ MD->setBody(Body);
+ if (!MD->isInvalidDecl()) {
+ DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
+ DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
+ MD->getResultType(), MD);
+
+ if (Body)
+ computeNRVO(Body, getCurFunction());
+ }
+ if (getCurFunction()->ObjCShouldCallSuper) {
+ Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
+ << MD->getSelector().getAsString();
+ getCurFunction()->ObjCShouldCallSuper = false;
+ }
+ } else {
+ return 0;
+ }
+
+ assert(!getCurFunction()->ObjCShouldCallSuper &&
+ "This should only be set for ObjC methods, which should have been "
+ "handled in the block above.");
+
+ // Verify and clean out per-function state.
+ if (Body) {
+ // C++ constructors that have function-try-blocks can't have return
+ // statements in the handlers of that block. (C++ [except.handle]p14)
+ // Verify this.
+ if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
+ DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
+
+ // Verify that gotos and switch cases don't jump into scopes illegally.
+ if (getCurFunction()->NeedsScopeChecking() &&
+ !dcl->isInvalidDecl() &&
+ !hasAnyUnrecoverableErrorsInThisFunction() &&
+ !PP.isCodeCompletionEnabled())
+ DiagnoseInvalidJumps(Body);
+
+ if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
+ if (!Destructor->getParent()->isDependentType())
+ CheckDestructor(Destructor);
+
+ MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
+ Destructor->getParent());
+ }
+
+ // If any errors have occurred, clear out any temporaries that may have
+ // been leftover. This ensures that these temporaries won't be picked up for
+ // deletion in some later function.
+ if (PP.getDiagnostics().hasErrorOccurred() ||
+ PP.getDiagnostics().getSuppressAllDiagnostics()) {
+ DiscardCleanupsInEvaluationContext();
+ }
+ if (!PP.getDiagnostics().hasUncompilableErrorOccurred() &&
+ !isa<FunctionTemplateDecl>(dcl)) {
+ // Since the body is valid, issue any analysis-based warnings that are
+ // enabled.
+ ActivePolicy = &WP;
+ }
+
+ if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
+ (!CheckConstexprFunctionDecl(FD) ||
+ !CheckConstexprFunctionBody(FD, Body)))
+ FD->setInvalidDecl();
+
+ assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
+ assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
+ assert(MaybeODRUseExprs.empty() &&
+ "Leftover expressions for odr-use checking");
+ }
+
+ if (!IsInstantiation)
+ PopDeclContext();
+
+ PopFunctionScopeInfo(ActivePolicy, dcl);
+ // If any errors have occurred, clear out any temporaries that may have
+ // been leftover. This ensures that these temporaries won't be picked up for
+ // deletion in some later function.
+ if (getDiagnostics().hasErrorOccurred()) {
+ DiscardCleanupsInEvaluationContext();
+ }
+
+ return dcl;
+}
+
+
+/// When we finish delayed parsing of an attribute, we must attach it to the
+/// relevant Decl.
+void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
+ ParsedAttributes &Attrs) {
+ // Always attach attributes to the underlying decl.
+ if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
+ D = TD->getTemplatedDecl();
+ ProcessDeclAttributeList(S, D, Attrs.getList());
+
+ if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
+ if (Method->isStatic())
+ checkThisInStaticMemberFunctionAttributes(Method);
+}
+
+
+/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
+/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
+NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
+ IdentifierInfo &II, Scope *S) {
+ // Before we produce a declaration for an implicitly defined
+ // function, see whether there was a locally-scoped declaration of
+ // this name as a function or variable. If so, use that
+ // (non-visible) declaration, and complain about it.
+ if (NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II)) {
+ Diag(Loc, diag::warn_use_out_of_scope_declaration) << ExternCPrev;
+ Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
+ return ExternCPrev;
+ }
+
+ // Extension in C99. Legal in C90, but warn about it.
+ unsigned diag_id;
+ if (II.getName().startswith("__builtin_"))
+ diag_id = diag::warn_builtin_unknown;
+ else if (getLangOpts().C99)
+ diag_id = diag::ext_implicit_function_decl;
+ else
+ diag_id = diag::warn_implicit_function_decl;
+ Diag(Loc, diag_id) << &II;
+
+ // Because typo correction is expensive, only do it if the implicit
+ // function declaration is going to be treated as an error.
+ if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
+ TypoCorrection Corrected;
+ DeclFilterCCC<FunctionDecl> Validator;
+ if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
+ LookupOrdinaryName, S, 0, Validator)))
+ diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
+ /*ErrorRecovery*/false);
+ }
+
+ // Set a Declarator for the implicit definition: int foo();
+ const char *Dummy;
+ AttributeFactory attrFactory;
+ DeclSpec DS(attrFactory);
+ unsigned DiagID;
+ bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
+ (void)Error; // Silence warning.
+ assert(!Error && "Error setting up implicit decl!");
+ SourceLocation NoLoc;
+ Declarator D(DS, Declarator::BlockContext);
+ D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
+ /*IsAmbiguous=*/false,
+ /*RParenLoc=*/NoLoc,
+ /*ArgInfo=*/0,
+ /*NumArgs=*/0,
+ /*EllipsisLoc=*/NoLoc,
+ /*RParenLoc=*/NoLoc,
+ /*TypeQuals=*/0,
+ /*RefQualifierIsLvalueRef=*/true,
+ /*RefQualifierLoc=*/NoLoc,
+ /*ConstQualifierLoc=*/NoLoc,
+ /*VolatileQualifierLoc=*/NoLoc,
+ /*MutableLoc=*/NoLoc,
+ EST_None,
+ /*ESpecLoc=*/NoLoc,
+ /*Exceptions=*/0,
+ /*ExceptionRanges=*/0,
+ /*NumExceptions=*/0,
+ /*NoexceptExpr=*/0,
+ Loc, Loc, D),
+ DS.getAttributes(),
+ SourceLocation());
+ D.SetIdentifier(&II, Loc);
+
+ // Insert this function into translation-unit scope.
+
+ DeclContext *PrevDC = CurContext;
+ CurContext = Context.getTranslationUnitDecl();
+
+ FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
+ FD->setImplicit();
+
+ CurContext = PrevDC;
+
+ AddKnownFunctionAttributes(FD);
+
+ return FD;
+}
+
+/// \brief Adds any function attributes that we know a priori based on
+/// the declaration of this function.
+///
+/// These attributes can apply both to implicitly-declared builtins
+/// (like __builtin___printf_chk) or to library-declared functions
+/// like NSLog or printf.
+///
+/// We need to check for duplicate attributes both here and where user-written
+/// attributes are applied to declarations.
+void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
+ if (FD->isInvalidDecl())
+ return;
+
+ // If this is a built-in function, map its builtin attributes to
+ // actual attributes.
+ if (unsigned BuiltinID = FD->getBuiltinID()) {
+ // Handle printf-formatting attributes.
+ unsigned FormatIdx;
+ bool HasVAListArg;
+ if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
+ if (!FD->getAttr<FormatAttr>()) {
+ const char *fmt = "printf";
+ unsigned int NumParams = FD->getNumParams();
+ if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
+ FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
+ fmt = "NSString";
+ FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
+ &Context.Idents.get(fmt),
+ FormatIdx+1,
+ HasVAListArg ? 0 : FormatIdx+2));
+ }
+ }
+ if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
+ HasVAListArg)) {
+ if (!FD->getAttr<FormatAttr>())
+ FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
+ &Context.Idents.get("scanf"),
+ FormatIdx+1,
+ HasVAListArg ? 0 : FormatIdx+2));
+ }
+
+ // Mark const if we don't care about errno and that is the only
+ // thing preventing the function from being const. This allows
+ // IRgen to use LLVM intrinsics for such functions.
+ if (!getLangOpts().MathErrno &&
+ Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
+ if (!FD->getAttr<ConstAttr>())
+ FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
+ }
+
+ if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
+ !FD->getAttr<ReturnsTwiceAttr>())
+ FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
+ if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
+ FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
+ if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
+ FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
+ }
+
+ IdentifierInfo *Name = FD->getIdentifier();
+ if (!Name)
+ return;
+ if ((!getLangOpts().CPlusPlus &&
+ FD->getDeclContext()->isTranslationUnit()) ||
+ (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
+ cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
+ LinkageSpecDecl::lang_c)) {
+ // Okay: this could be a libc/libm/Objective-C function we know
+ // about.
+ } else
+ return;
+
+ if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
+ // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
+ // target-specific builtins, perhaps?
+ if (!FD->getAttr<FormatAttr>())
+ FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
+ &Context.Idents.get("printf"), 2,
+ Name->isStr("vasprintf") ? 0 : 3));
+ }
+
+ if (Name->isStr("__CFStringMakeConstantString")) {
+ // We already have a __builtin___CFStringMakeConstantString,
+ // but builds that use -fno-constant-cfstrings don't go through that.
+ if (!FD->getAttr<FormatArgAttr>())
+ FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
+ }
+}
+
+TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
+ TypeSourceInfo *TInfo) {
+ assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
+ assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
+
+ if (!TInfo) {
+ assert(D.isInvalidType() && "no declarator info for valid type");
+ TInfo = Context.getTrivialTypeSourceInfo(T);
+ }
+
+ // Scope manipulation handled by caller.
+ TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
+ D.getLocStart(),
+ D.getIdentifierLoc(),
+ D.getIdentifier(),
+ TInfo);
+
+ // Bail out immediately if we have an invalid declaration.
+ if (D.isInvalidType()) {
+ NewTD->setInvalidDecl();
+ return NewTD;
+ }
+
+ if (D.getDeclSpec().isModulePrivateSpecified()) {
+ if (CurContext->isFunctionOrMethod())
+ Diag(NewTD->getLocation(), diag::err_module_private_local)
+ << 2 << NewTD->getDeclName()
+ << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
+ << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
+ else
+ NewTD->setModulePrivate();
+ }
+
+ // C++ [dcl.typedef]p8:
+ // If the typedef declaration defines an unnamed class (or
+ // enum), the first typedef-name declared by the declaration
+ // to be that class type (or enum type) is used to denote the
+ // class type (or enum type) for linkage purposes only.
+ // We need to check whether the type was declared in the declaration.
+ switch (D.getDeclSpec().getTypeSpecType()) {
+ case TST_enum:
+ case TST_struct:
+ case TST_interface:
+ case TST_union:
+ case TST_class: {
+ TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
+
+ // Do nothing if the tag is not anonymous or already has an
+ // associated typedef (from an earlier typedef in this decl group).
+ if (tagFromDeclSpec->getIdentifier()) break;
+ if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
+
+ // A well-formed anonymous tag must always be a TUK_Definition.
+ assert(tagFromDeclSpec->isThisDeclarationADefinition());
+
+ // The type must match the tag exactly; no qualifiers allowed.
+ if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
+ break;
+
+ // Otherwise, set this is the anon-decl typedef for the tag.
+ tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ return NewTD;
+}
+
+
+/// \brief Check that this is a valid underlying type for an enum declaration.
+bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
+ SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
+ QualType T = TI->getType();
+
+ if (T->isDependentType())
+ return false;
+
+ if (const BuiltinType *BT = T->getAs<BuiltinType>())
+ if (BT->isInteger())
+ return false;
+
+ Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
+ return true;
+}
+
+/// Check whether this is a valid redeclaration of a previous enumeration.
+/// \return true if the redeclaration was invalid.
+bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
+ QualType EnumUnderlyingTy,
+ const EnumDecl *Prev) {
+ bool IsFixed = !EnumUnderlyingTy.isNull();
+
+ if (IsScoped != Prev->isScoped()) {
+ Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
+ << Prev->isScoped();
+ Diag(Prev->getLocation(), diag::note_previous_use);
+ return true;
+ }
+
+ if (IsFixed && Prev->isFixed()) {
+ if (!EnumUnderlyingTy->isDependentType() &&
+ !Prev->getIntegerType()->isDependentType() &&
+ !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
+ Prev->getIntegerType())) {
+ Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
+ << EnumUnderlyingTy << Prev->getIntegerType();
+ Diag(Prev->getLocation(), diag::note_previous_use);
+ return true;
+ }
+ } else if (IsFixed != Prev->isFixed()) {
+ Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
+ << Prev->isFixed();
+ Diag(Prev->getLocation(), diag::note_previous_use);
+ return true;
+ }
+
+ return false;
+}
+
+/// \brief Get diagnostic %select index for tag kind for
+/// redeclaration diagnostic message.
+/// WARNING: Indexes apply to particular diagnostics only!
+///
+/// \returns diagnostic %select index.
+static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
+ switch (Tag) {
+ case TTK_Struct: return 0;
+ case TTK_Interface: return 1;
+ case TTK_Class: return 2;
+ default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
+ }
+}
+
+/// \brief Determine if tag kind is a class-key compatible with
+/// class for redeclaration (class, struct, or __interface).
+///
+/// \returns true iff the tag kind is compatible.
+static bool isClassCompatTagKind(TagTypeKind Tag)
+{
+ return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
+}
+
+/// \brief Determine whether a tag with a given kind is acceptable
+/// as a redeclaration of the given tag declaration.
+///
+/// \returns true if the new tag kind is acceptable, false otherwise.
+bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
+ TagTypeKind NewTag, bool isDefinition,
+ SourceLocation NewTagLoc,
+ const IdentifierInfo &Name) {
+ // C++ [dcl.type.elab]p3:
+ // The class-key or enum keyword present in the
+ // elaborated-type-specifier shall agree in kind with the
+ // declaration to which the name in the elaborated-type-specifier
+ // refers. This rule also applies to the form of
+ // elaborated-type-specifier that declares a class-name or
+ // friend class since it can be construed as referring to the
+ // definition of the class. Thus, in any
+ // elaborated-type-specifier, the enum keyword shall be used to
+ // refer to an enumeration (7.2), the union class-key shall be
+ // used to refer to a union (clause 9), and either the class or
+ // struct class-key shall be used to refer to a class (clause 9)
+ // declared using the class or struct class-key.
+ TagTypeKind OldTag = Previous->getTagKind();
+ if (!isDefinition || !isClassCompatTagKind(NewTag))
+ if (OldTag == NewTag)
+ return true;
+
+ if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
+ // Warn about the struct/class tag mismatch.
+ bool isTemplate = false;
+ if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
+ isTemplate = Record->getDescribedClassTemplate();
+
+ if (!ActiveTemplateInstantiations.empty()) {
+ // In a template instantiation, do not offer fix-its for tag mismatches
+ // since they usually mess up the template instead of fixing the problem.
+ Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
+ << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
+ << getRedeclDiagFromTagKind(OldTag);
+ return true;
+ }
+
+ if (isDefinition) {
+ // On definitions, check previous tags and issue a fix-it for each
+ // one that doesn't match the current tag.
+ if (Previous->getDefinition()) {
+ // Don't suggest fix-its for redefinitions.
+ return true;
+ }
+
+ bool previousMismatch = false;
+ for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
+ E(Previous->redecls_end()); I != E; ++I) {
+ if (I->getTagKind() != NewTag) {
+ if (!previousMismatch) {
+ previousMismatch = true;
+ Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
+ << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
+ << getRedeclDiagFromTagKind(I->getTagKind());
+ }
+ Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
+ << getRedeclDiagFromTagKind(NewTag)
+ << FixItHint::CreateReplacement(I->getInnerLocStart(),
+ TypeWithKeyword::getTagTypeKindName(NewTag));
+ }
+ }
+ return true;
+ }
+
+ // Check for a previous definition. If current tag and definition
+ // are same type, do nothing. If no definition, but disagree with
+ // with previous tag type, give a warning, but no fix-it.
+ const TagDecl *Redecl = Previous->getDefinition() ?
+ Previous->getDefinition() : Previous;
+ if (Redecl->getTagKind() == NewTag) {
+ return true;
+ }
+
+ Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
+ << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
+ << getRedeclDiagFromTagKind(OldTag);
+ Diag(Redecl->getLocation(), diag::note_previous_use);
+
+ // If there is a previous defintion, suggest a fix-it.
+ if (Previous->getDefinition()) {
+ Diag(NewTagLoc, diag::note_struct_class_suggestion)
+ << getRedeclDiagFromTagKind(Redecl->getTagKind())
+ << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
+ TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
+ }
+
+ return true;
+ }
+ return false;
+}
+
+/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'. In the
+/// former case, Name will be non-null. In the later case, Name will be null.
+/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
+/// reference/declaration/definition of a tag.
+Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
+ SourceLocation KWLoc, CXXScopeSpec &SS,
+ IdentifierInfo *Name, SourceLocation NameLoc,
+ AttributeList *Attr, AccessSpecifier AS,
+ SourceLocation ModulePrivateLoc,
+ MultiTemplateParamsArg TemplateParameterLists,
+ bool &OwnedDecl, bool &IsDependent,
+ SourceLocation ScopedEnumKWLoc,
+ bool ScopedEnumUsesClassTag,
+ TypeResult UnderlyingType) {
+ // If this is not a definition, it must have a name.
+ IdentifierInfo *OrigName = Name;
+ assert((Name != 0 || TUK == TUK_Definition) &&
+ "Nameless record must be a definition!");
+ assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
+
+ OwnedDecl = false;
+ TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
+ bool ScopedEnum = ScopedEnumKWLoc.isValid();
+
+ // FIXME: Check explicit specializations more carefully.
+ bool isExplicitSpecialization = false;
+ bool Invalid = false;
+
+ // We only need to do this matching if we have template parameters
+ // or a scope specifier, which also conveniently avoids this work
+ // for non-C++ cases.
+ if (TemplateParameterLists.size() > 0 ||
+ (SS.isNotEmpty() && TUK != TUK_Reference)) {
+ if (TemplateParameterList *TemplateParams =
+ MatchTemplateParametersToScopeSpecifier(
+ KWLoc, NameLoc, SS, TemplateParameterLists, TUK == TUK_Friend,
+ isExplicitSpecialization, Invalid)) {
+ if (Kind == TTK_Enum) {
+ Diag(KWLoc, diag::err_enum_template);
+ return 0;
+ }
+
+ if (TemplateParams->size() > 0) {
+ // This is a declaration or definition of a class template (which may
+ // be a member of another template).
+
+ if (Invalid)
+ return 0;
+
+ OwnedDecl = false;
+ DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
+ SS, Name, NameLoc, Attr,
+ TemplateParams, AS,
+ ModulePrivateLoc,
+ TemplateParameterLists.size()-1,
+ TemplateParameterLists.data());
+ return Result.get();
+ } else {
+ // The "template<>" header is extraneous.
+ Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
+ << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
+ isExplicitSpecialization = true;
+ }
+ }
+ }
+
+ // Figure out the underlying type if this a enum declaration. We need to do
+ // this early, because it's needed to detect if this is an incompatible
+ // redeclaration.
+ llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
+
+ if (Kind == TTK_Enum) {
+ if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
+ // No underlying type explicitly specified, or we failed to parse the
+ // type, default to int.
+ EnumUnderlying = Context.IntTy.getTypePtr();
+ else if (UnderlyingType.get()) {
+ // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
+ // integral type; any cv-qualification is ignored.
+ TypeSourceInfo *TI = 0;
+ GetTypeFromParser(UnderlyingType.get(), &TI);
+ EnumUnderlying = TI;
+
+ if (CheckEnumUnderlyingType(TI))
+ // Recover by falling back to int.
+ EnumUnderlying = Context.IntTy.getTypePtr();
+
+ if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
+ UPPC_FixedUnderlyingType))
+ EnumUnderlying = Context.IntTy.getTypePtr();
+
+ } else if (getLangOpts().MicrosoftMode)
+ // Microsoft enums are always of int type.
+ EnumUnderlying = Context.IntTy.getTypePtr();
+ }
+
+ DeclContext *SearchDC = CurContext;
+ DeclContext *DC = CurContext;
+ bool isStdBadAlloc = false;
+
+ RedeclarationKind Redecl = ForRedeclaration;
+ if (TUK == TUK_Friend || TUK == TUK_Reference)
+ Redecl = NotForRedeclaration;
+
+ LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
+ bool FriendSawTagOutsideEnclosingNamespace = false;
+ if (Name && SS.isNotEmpty()) {
+ // We have a nested-name tag ('struct foo::bar').
+
+ // Check for invalid 'foo::'.
+ if (SS.isInvalid()) {
+ Name = 0;
+ goto CreateNewDecl;
+ }
+
+ // If this is a friend or a reference to a class in a dependent
+ // context, don't try to make a decl for it.
+ if (TUK == TUK_Friend || TUK == TUK_Reference) {
+ DC = computeDeclContext(SS, false);
+ if (!DC) {
+ IsDependent = true;
+ return 0;
+ }
+ } else {
+ DC = computeDeclContext(SS, true);
+ if (!DC) {
+ Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
+ << SS.getRange();
+ return 0;
+ }
+ }
+
+ if (RequireCompleteDeclContext(SS, DC))
+ return 0;
+
+ SearchDC = DC;
+ // Look-up name inside 'foo::'.
+ LookupQualifiedName(Previous, DC);
+
+ if (Previous.isAmbiguous())
+ return 0;
+
+ if (Previous.empty()) {
+ // Name lookup did not find anything. However, if the
+ // nested-name-specifier refers to the current instantiation,
+ // and that current instantiation has any dependent base
+ // classes, we might find something at instantiation time: treat
+ // this as a dependent elaborated-type-specifier.
+ // But this only makes any sense for reference-like lookups.
+ if (Previous.wasNotFoundInCurrentInstantiation() &&
+ (TUK == TUK_Reference || TUK == TUK_Friend)) {
+ IsDependent = true;
+ return 0;
+ }
+
+ // A tag 'foo::bar' must already exist.
+ Diag(NameLoc, diag::err_not_tag_in_scope)
+ << Kind << Name << DC << SS.getRange();
+ Name = 0;
+ Invalid = true;
+ goto CreateNewDecl;
+ }
+ } else if (Name) {
+ // If this is a named struct, check to see if there was a previous forward
+ // declaration or definition.
+ // FIXME: We're looking into outer scopes here, even when we
+ // shouldn't be. Doing so can result in ambiguities that we
+ // shouldn't be diagnosing.
+ LookupName(Previous, S);
+
+ // When declaring or defining a tag, ignore ambiguities introduced
+ // by types using'ed into this scope.
+ if (Previous.isAmbiguous() &&
+ (TUK == TUK_Definition || TUK == TUK_Declaration)) {
+ LookupResult::Filter F = Previous.makeFilter();
+ while (F.hasNext()) {
+ NamedDecl *ND = F.next();
+ if (ND->getDeclContext()->getRedeclContext() != SearchDC)
+ F.erase();
+ }
+ F.done();
+ }
+
+ // C++11 [namespace.memdef]p3:
+ // If the name in a friend declaration is neither qualified nor
+ // a template-id and the declaration is a function or an
+ // elaborated-type-specifier, the lookup to determine whether
+ // the entity has been previously declared shall not consider
+ // any scopes outside the innermost enclosing namespace.
+ //
+ // Does it matter that this should be by scope instead of by
+ // semantic context?
+ if (!Previous.empty() && TUK == TUK_Friend) {
+ DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
+ LookupResult::Filter F = Previous.makeFilter();
+ while (F.hasNext()) {
+ NamedDecl *ND = F.next();
+ DeclContext *DC = ND->getDeclContext()->getRedeclContext();
+ if (DC->isFileContext() &&
+ !EnclosingNS->Encloses(ND->getDeclContext())) {
+ F.erase();
+ FriendSawTagOutsideEnclosingNamespace = true;
+ }
+ }
+ F.done();
+ }
+
+ // Note: there used to be some attempt at recovery here.
+ if (Previous.isAmbiguous())
+ return 0;
+
+ if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
+ // FIXME: This makes sure that we ignore the contexts associated
+ // with C structs, unions, and enums when looking for a matching
+ // tag declaration or definition. See the similar lookup tweak
+ // in Sema::LookupName; is there a better way to deal with this?
+ while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
+ SearchDC = SearchDC->getParent();
+ }
+ } else if (S->isFunctionPrototypeScope()) {
+ // If this is an enum declaration in function prototype scope, set its
+ // initial context to the translation unit.
+ // FIXME: [citation needed]
+ SearchDC = Context.getTranslationUnitDecl();
+ }
+
+ if (Previous.isSingleResult() &&
+ Previous.getFoundDecl()->isTemplateParameter()) {
+ // Maybe we will complain about the shadowed template parameter.
+ DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
+ // Just pretend that we didn't see the previous declaration.
+ Previous.clear();
+ }
+
+ if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
+ DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
+ // This is a declaration of or a reference to "std::bad_alloc".
+ isStdBadAlloc = true;
+
+ if (Previous.empty() && StdBadAlloc) {
+ // std::bad_alloc has been implicitly declared (but made invisible to
+ // name lookup). Fill in this implicit declaration as the previous
+ // declaration, so that the declarations get chained appropriately.
+ Previous.addDecl(getStdBadAlloc());
+ }
+ }
+
+ // If we didn't find a previous declaration, and this is a reference
+ // (or friend reference), move to the correct scope. In C++, we
+ // also need to do a redeclaration lookup there, just in case
+ // there's a shadow friend decl.
+ if (Name && Previous.empty() &&
+ (TUK == TUK_Reference || TUK == TUK_Friend)) {
+ if (Invalid) goto CreateNewDecl;
+ assert(SS.isEmpty());
+
+ if (TUK == TUK_Reference) {
+ // C++ [basic.scope.pdecl]p5:
+ // -- for an elaborated-type-specifier of the form
+ //
+ // class-key identifier
+ //
+ // if the elaborated-type-specifier is used in the
+ // decl-specifier-seq or parameter-declaration-clause of a
+ // function defined in namespace scope, the identifier is
+ // declared as a class-name in the namespace that contains
+ // the declaration; otherwise, except as a friend
+ // declaration, the identifier is declared in the smallest
+ // non-class, non-function-prototype scope that contains the
+ // declaration.
+ //
+ // C99 6.7.2.3p8 has a similar (but not identical!) provision for
+ // C structs and unions.
+ //
+ // It is an error in C++ to declare (rather than define) an enum
+ // type, including via an elaborated type specifier. We'll
+ // diagnose that later; for now, declare the enum in the same
+ // scope as we would have picked for any other tag type.
+ //
+ // GNU C also supports this behavior as part of its incomplete
+ // enum types extension, while GNU C++ does not.
+ //
+ // Find the context where we'll be declaring the tag.
+ // FIXME: We would like to maintain the current DeclContext as the
+ // lexical context,
+ while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
+ SearchDC = SearchDC->getParent();
+
+ // Find the scope where we'll be declaring the tag.
+ while (S->isClassScope() ||
+ (getLangOpts().CPlusPlus &&
+ S->isFunctionPrototypeScope()) ||
+ ((S->getFlags() & Scope::DeclScope) == 0) ||
+ (S->getEntity() && S->getEntity()->isTransparentContext()))
+ S = S->getParent();
+ } else {
+ assert(TUK == TUK_Friend);
+ // C++ [namespace.memdef]p3:
+ // If a friend declaration in a non-local class first declares a
+ // class or function, the friend class or function is a member of
+ // the innermost enclosing namespace.
+ SearchDC = SearchDC->getEnclosingNamespaceContext();
+ }
+
+ // In C++, we need to do a redeclaration lookup to properly
+ // diagnose some problems.
+ if (getLangOpts().CPlusPlus) {
+ Previous.setRedeclarationKind(ForRedeclaration);
+ LookupQualifiedName(Previous, SearchDC);
+ }
+ }
+
+ if (!Previous.empty()) {
+ NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
+
+ // It's okay to have a tag decl in the same scope as a typedef
+ // which hides a tag decl in the same scope. Finding this
+ // insanity with a redeclaration lookup can only actually happen
+ // in C++.
+ //
+ // This is also okay for elaborated-type-specifiers, which is
+ // technically forbidden by the current standard but which is
+ // okay according to the likely resolution of an open issue;
+ // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
+ if (getLangOpts().CPlusPlus) {
+ if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
+ if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
+ TagDecl *Tag = TT->getDecl();
+ if (Tag->getDeclName() == Name &&
+ Tag->getDeclContext()->getRedeclContext()
+ ->Equals(TD->getDeclContext()->getRedeclContext())) {
+ PrevDecl = Tag;
+ Previous.clear();
+ Previous.addDecl(Tag);
+ Previous.resolveKind();
+ }
+ }
+ }
+ }
+
+ if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
+ // If this is a use of a previous tag, or if the tag is already declared
+ // in the same scope (so that the definition/declaration completes or
+ // rementions the tag), reuse the decl.
+ if (TUK == TUK_Reference || TUK == TUK_Friend ||
+ isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
+ // Make sure that this wasn't declared as an enum and now used as a
+ // struct or something similar.
+ if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
+ TUK == TUK_Definition, KWLoc,
+ *Name)) {
+ bool SafeToContinue
+ = (PrevTagDecl->getTagKind() != TTK_Enum &&
+ Kind != TTK_Enum);
+ if (SafeToContinue)
+ Diag(KWLoc, diag::err_use_with_wrong_tag)
+ << Name
+ << FixItHint::CreateReplacement(SourceRange(KWLoc),
+ PrevTagDecl->getKindName());
+ else
+ Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
+ Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
+
+ if (SafeToContinue)
+ Kind = PrevTagDecl->getTagKind();
+ else {
+ // Recover by making this an anonymous redefinition.
+ Name = 0;
+ Previous.clear();
+ Invalid = true;
+ }
+ }
+
+ if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
+ const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
+
+ // If this is an elaborated-type-specifier for a scoped enumeration,
+ // the 'class' keyword is not necessary and not permitted.
+ if (TUK == TUK_Reference || TUK == TUK_Friend) {
+ if (ScopedEnum)
+ Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
+ << PrevEnum->isScoped()
+ << FixItHint::CreateRemoval(ScopedEnumKWLoc);
+ return PrevTagDecl;
+ }
+
+ QualType EnumUnderlyingTy;
+ if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
+ EnumUnderlyingTy = TI->getType();
+ else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
+ EnumUnderlyingTy = QualType(T, 0);
+
+ // All conflicts with previous declarations are recovered by
+ // returning the previous declaration, unless this is a definition,
+ // in which case we want the caller to bail out.
+ if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
+ ScopedEnum, EnumUnderlyingTy, PrevEnum))
+ return TUK == TUK_Declaration ? PrevTagDecl : 0;
+ }
+
+ // C++11 [class.mem]p1:
+ // A member shall not be declared twice in the member-specification,
+ // except that a nested class or member class template can be declared
+ // and then later defined.
+ if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
+ S->isDeclScope(PrevDecl)) {
+ Diag(NameLoc, diag::ext_member_redeclared);
+ Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
+ }
+
+ if (!Invalid) {
+ // If this is a use, just return the declaration we found.
+
+ // FIXME: In the future, return a variant or some other clue
+ // for the consumer of this Decl to know it doesn't own it.
+ // For our current ASTs this shouldn't be a problem, but will
+ // need to be changed with DeclGroups.
+ if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
+ getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
+ return PrevTagDecl;
+
+ // Diagnose attempts to redefine a tag.
+ if (TUK == TUK_Definition) {
+ if (TagDecl *Def = PrevTagDecl->getDefinition()) {
+ // If we're defining a specialization and the previous definition
+ // is from an implicit instantiation, don't emit an error
+ // here; we'll catch this in the general case below.
+ bool IsExplicitSpecializationAfterInstantiation = false;
+ if (isExplicitSpecialization) {
+ if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
+ IsExplicitSpecializationAfterInstantiation =
+ RD->getTemplateSpecializationKind() !=
+ TSK_ExplicitSpecialization;
+ else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
+ IsExplicitSpecializationAfterInstantiation =
+ ED->getTemplateSpecializationKind() !=
+ TSK_ExplicitSpecialization;
+ }
+
+ if (!IsExplicitSpecializationAfterInstantiation) {
+ // A redeclaration in function prototype scope in C isn't
+ // visible elsewhere, so merely issue a warning.
+ if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
+ Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
+ else
+ Diag(NameLoc, diag::err_redefinition) << Name;
+ Diag(Def->getLocation(), diag::note_previous_definition);
+ // If this is a redefinition, recover by making this
+ // struct be anonymous, which will make any later
+ // references get the previous definition.
+ Name = 0;
+ Previous.clear();
+ Invalid = true;
+ }
+ } else {
+ // If the type is currently being defined, complain
+ // about a nested redefinition.
+ const TagType *Tag
+ = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
+ if (Tag->isBeingDefined()) {
+ Diag(NameLoc, diag::err_nested_redefinition) << Name;
+ Diag(PrevTagDecl->getLocation(),
+ diag::note_previous_definition);
+ Name = 0;
+ Previous.clear();
+ Invalid = true;
+ }
+ }
+
+ // Okay, this is definition of a previously declared or referenced
+ // tag PrevDecl. We're going to create a new Decl for it.
+ }
+ }
+ // If we get here we have (another) forward declaration or we
+ // have a definition. Just create a new decl.
+
+ } else {
+ // If we get here, this is a definition of a new tag type in a nested
+ // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
+ // new decl/type. We set PrevDecl to NULL so that the entities
+ // have distinct types.
+ Previous.clear();
+ }
+ // If we get here, we're going to create a new Decl. If PrevDecl
+ // is non-NULL, it's a definition of the tag declared by
+ // PrevDecl. If it's NULL, we have a new definition.
+
+
+ // Otherwise, PrevDecl is not a tag, but was found with tag
+ // lookup. This is only actually possible in C++, where a few
+ // things like templates still live in the tag namespace.
+ } else {
+ // Use a better diagnostic if an elaborated-type-specifier
+ // found the wrong kind of type on the first
+ // (non-redeclaration) lookup.
+ if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
+ !Previous.isForRedeclaration()) {
+ unsigned Kind = 0;
+ if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
+ else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
+ else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
+ Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
+ Diag(PrevDecl->getLocation(), diag::note_declared_at);
+ Invalid = true;
+
+ // Otherwise, only diagnose if the declaration is in scope.
+ } else if (!isDeclInScope(PrevDecl, SearchDC, S,
+ isExplicitSpecialization)) {
+ // do nothing
+
+ // Diagnose implicit declarations introduced by elaborated types.
+ } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
+ unsigned Kind = 0;
+ if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
+ else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
+ else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
+ Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
+ Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
+ Invalid = true;
+
+ // Otherwise it's a declaration. Call out a particularly common
+ // case here.
+ } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
+ unsigned Kind = 0;
+ if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
+ Diag(NameLoc, diag::err_tag_definition_of_typedef)
+ << Name << Kind << TND->getUnderlyingType();
+ Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
+ Invalid = true;
+
+ // Otherwise, diagnose.
+ } else {
+ // The tag name clashes with something else in the target scope,
+ // issue an error and recover by making this tag be anonymous.
+ Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
+ Diag(PrevDecl->getLocation(), diag::note_previous_definition);
+ Name = 0;
+ Invalid = true;
+ }
+
+ // The existing declaration isn't relevant to us; we're in a
+ // new scope, so clear out the previous declaration.
+ Previous.clear();
+ }
+ }
+
+CreateNewDecl:
+
+ TagDecl *PrevDecl = 0;
+ if (Previous.isSingleResult())
+ PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
+
+ // If there is an identifier, use the location of the identifier as the
+ // location of the decl, otherwise use the location of the struct/union
+ // keyword.
+ SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
+
+ // Otherwise, create a new declaration. If there is a previous
+ // declaration of the same entity, the two will be linked via
+ // PrevDecl.
+ TagDecl *New;
+
+ bool IsForwardReference = false;
+ if (Kind == TTK_Enum) {
+ // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
+ // enum X { A, B, C } D; D should chain to X.
+ New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
+ cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
+ ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
+ // If this is an undefined enum, warn.
+ if (TUK != TUK_Definition && !Invalid) {
+ TagDecl *Def;
+ if ((getLangOpts().CPlusPlus11 || getLangOpts().ObjC2) &&
+ cast<EnumDecl>(New)->isFixed()) {
+ // C++0x: 7.2p2: opaque-enum-declaration.
+ // Conflicts are diagnosed above. Do nothing.
+ }
+ else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
+ Diag(Loc, diag::ext_forward_ref_enum_def)
+ << New;
+ Diag(Def->getLocation(), diag::note_previous_definition);
+ } else {
+ unsigned DiagID = diag::ext_forward_ref_enum;
+ if (getLangOpts().MicrosoftMode)
+ DiagID = diag::ext_ms_forward_ref_enum;
+ else if (getLangOpts().CPlusPlus)
+ DiagID = diag::err_forward_ref_enum;
+ Diag(Loc, DiagID);
+
+ // If this is a forward-declared reference to an enumeration, make a
+ // note of it; we won't actually be introducing the declaration into
+ // the declaration context.
+ if (TUK == TUK_Reference)
+ IsForwardReference = true;
+ }
+ }
+
+ if (EnumUnderlying) {
+ EnumDecl *ED = cast<EnumDecl>(New);
+ if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
+ ED->setIntegerTypeSourceInfo(TI);
+ else
+ ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
+ ED->setPromotionType(ED->getIntegerType());
+ }
+
+ } else {
+ // struct/union/class
+
+ // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
+ // struct X { int A; } D; D should chain to X.
+ if (getLangOpts().CPlusPlus) {
+ // FIXME: Look for a way to use RecordDecl for simple structs.
+ New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
+ cast_or_null<CXXRecordDecl>(PrevDecl));
+
+ if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
+ StdBadAlloc = cast<CXXRecordDecl>(New);
+ } else
+ New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
+ cast_or_null<RecordDecl>(PrevDecl));
+ }
+
+ // Maybe add qualifier info.
+ if (SS.isNotEmpty()) {
+ if (SS.isSet()) {
+ // If this is either a declaration or a definition, check the
+ // nested-name-specifier against the current context. We don't do this
+ // for explicit specializations, because they have similar checking
+ // (with more specific diagnostics) in the call to
+ // CheckMemberSpecialization, below.
+ if (!isExplicitSpecialization &&
+ (TUK == TUK_Definition || TUK == TUK_Declaration) &&
+ diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
+ Invalid = true;
+
+ New->setQualifierInfo(SS.getWithLocInContext(Context));
+ if (TemplateParameterLists.size() > 0) {
+ New->setTemplateParameterListsInfo(Context,
+ TemplateParameterLists.size(),
+ TemplateParameterLists.data());
+ }
+ }
+ else
+ Invalid = true;
+ }
+
+ if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
+ // Add alignment attributes if necessary; these attributes are checked when
+ // the ASTContext lays out the structure.
+ //
+ // It is important for implementing the correct semantics that this
+ // happen here (in act on tag decl). The #pragma pack stack is
+ // maintained as a result of parser callbacks which can occur at
+ // many points during the parsing of a struct declaration (because
+ // the #pragma tokens are effectively skipped over during the
+ // parsing of the struct).
+ if (TUK == TUK_Definition) {
+ AddAlignmentAttributesForRecord(RD);
+ AddMsStructLayoutForRecord(RD);
+ }
+ }
+
+ if (ModulePrivateLoc.isValid()) {
+ if (isExplicitSpecialization)
+ Diag(New->getLocation(), diag::err_module_private_specialization)
+ << 2
+ << FixItHint::CreateRemoval(ModulePrivateLoc);
+ // __module_private__ does not apply to local classes. However, we only
+ // diagnose this as an error when the declaration specifiers are
+ // freestanding. Here, we just ignore the __module_private__.
+ else if (!SearchDC->isFunctionOrMethod())
+ New->setModulePrivate();
+ }
+
+ // If this is a specialization of a member class (of a class template),
+ // check the specialization.
+ if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
+ Invalid = true;
+
+ if (Invalid)
+ New->setInvalidDecl();
+
+ if (Attr)
+ ProcessDeclAttributeList(S, New, Attr);
+
+ // If we're declaring or defining a tag in function prototype scope
+ // in C, note that this type can only be used within the function.
+ if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
+ Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
+
+ // Set the lexical context. If the tag has a C++ scope specifier, the
+ // lexical context will be different from the semantic context.
+ New->setLexicalDeclContext(CurContext);
+
+ // Mark this as a friend decl if applicable.
+ // In Microsoft mode, a friend declaration also acts as a forward
+ // declaration so we always pass true to setObjectOfFriendDecl to make
+ // the tag name visible.
+ if (TUK == TUK_Friend)
+ New->setObjectOfFriendDecl(!FriendSawTagOutsideEnclosingNamespace &&
+ getLangOpts().MicrosoftExt);
+
+ // Set the access specifier.
+ if (!Invalid && SearchDC->isRecord())
+ SetMemberAccessSpecifier(New, PrevDecl, AS);
+
+ if (TUK == TUK_Definition)
+ New->startDefinition();
+
+ // If this has an identifier, add it to the scope stack.
+ if (TUK == TUK_Friend) {
+ // We might be replacing an existing declaration in the lookup tables;
+ // if so, borrow its access specifier.
+ if (PrevDecl)
+ New->setAccess(PrevDecl->getAccess());
+
+ DeclContext *DC = New->getDeclContext()->getRedeclContext();
+ DC->makeDeclVisibleInContext(New);
+ if (Name) // can be null along some error paths
+ if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
+ PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
+ } else if (Name) {
+ S = getNonFieldDeclScope(S);
+ PushOnScopeChains(New, S, !IsForwardReference);
+ if (IsForwardReference)
+ SearchDC->makeDeclVisibleInContext(New);
+
+ } else {
+ CurContext->addDecl(New);
+ }
+
+ // If this is the C FILE type, notify the AST context.
+ if (IdentifierInfo *II = New->getIdentifier())
+ if (!New->isInvalidDecl() &&
+ New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
+ II->isStr("FILE"))
+ Context.setFILEDecl(New);
+
+ // If we were in function prototype scope (and not in C++ mode), add this
+ // tag to the list of decls to inject into the function definition scope.
+ if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
+ InFunctionDeclarator && Name)
+ DeclsInPrototypeScope.push_back(New);
+
+ if (PrevDecl)
+ mergeDeclAttributes(New, PrevDecl);
+
+ // If there's a #pragma GCC visibility in scope, set the visibility of this
+ // record.
+ AddPushedVisibilityAttribute(New);
+
+ OwnedDecl = true;
+ // In C++, don't return an invalid declaration. We can't recover well from
+ // the cases where we make the type anonymous.
+ return (Invalid && getLangOpts().CPlusPlus) ? 0 : New;
+}
+
+void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
+ AdjustDeclIfTemplate(TagD);
+ TagDecl *Tag = cast<TagDecl>(TagD);
+
+ // Enter the tag context.
+ PushDeclContext(S, Tag);
+
+ ActOnDocumentableDecl(TagD);
+
+ // If there's a #pragma GCC visibility in scope, set the visibility of this
+ // record.
+ AddPushedVisibilityAttribute(Tag);
+}
+
+Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
+ assert(isa<ObjCContainerDecl>(IDecl) &&
+ "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
+ DeclContext *OCD = cast<DeclContext>(IDecl);
+ assert(getContainingDC(OCD) == CurContext &&
+ "The next DeclContext should be lexically contained in the current one.");
+ CurContext = OCD;
+ return IDecl;
+}
+
+void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
+ SourceLocation FinalLoc,
+ bool IsFinalSpelledSealed,
+ SourceLocation LBraceLoc) {
+ AdjustDeclIfTemplate(TagD);
+ CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
+
+ FieldCollector->StartClass();
+
+ if (!Record->getIdentifier())
+ return;
+
+ if (FinalLoc.isValid())
+ Record->addAttr(new (Context)
+ FinalAttr(FinalLoc, Context, IsFinalSpelledSealed));
+
+ // C++ [class]p2:
+ // [...] The class-name is also inserted into the scope of the
+ // class itself; this is known as the injected-class-name. For
+ // purposes of access checking, the injected-class-name is treated
+ // as if it were a public member name.
+ CXXRecordDecl *InjectedClassName
+ = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
+ Record->getLocStart(), Record->getLocation(),
+ Record->getIdentifier(),
+ /*PrevDecl=*/0,
+ /*DelayTypeCreation=*/true);
+ Context.getTypeDeclType(InjectedClassName, Record);
+ InjectedClassName->setImplicit();
+ InjectedClassName->setAccess(AS_public);
+ if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
+ InjectedClassName->setDescribedClassTemplate(Template);
+ PushOnScopeChains(InjectedClassName, S);
+ assert(InjectedClassName->isInjectedClassName() &&
+ "Broken injected-class-name");
+}
+
+void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
+ SourceLocation RBraceLoc) {
+ AdjustDeclIfTemplate(TagD);
+ TagDecl *Tag = cast<TagDecl>(TagD);
+ Tag->setRBraceLoc(RBraceLoc);
+
+ // Make sure we "complete" the definition even it is invalid.
+ if (Tag->isBeingDefined()) {
+ assert(Tag->isInvalidDecl() && "We should already have completed it");
+ if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
+ RD->completeDefinition();
+ }
+
+ if (isa<CXXRecordDecl>(Tag))
+ FieldCollector->FinishClass();
+
+ // Exit this scope of this tag's definition.
+ PopDeclContext();
+
+ if (getCurLexicalContext()->isObjCContainer() &&
+ Tag->getDeclContext()->isFileContext())
+ Tag->setTopLevelDeclInObjCContainer();
+
+ // Notify the consumer that we've defined a tag.
+ if (!Tag->isInvalidDecl())
+ Consumer.HandleTagDeclDefinition(Tag);
+}
+
+void Sema::ActOnObjCContainerFinishDefinition() {
+ // Exit this scope of this interface definition.
+ PopDeclContext();
+}
+
+void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
+ assert(DC == CurContext && "Mismatch of container contexts");
+ OriginalLexicalContext = DC;
+ ActOnObjCContainerFinishDefinition();
+}
+
+void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
+ ActOnObjCContainerStartDefinition(cast<Decl>(DC));
+ OriginalLexicalContext = 0;
+}
+
+void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
+ AdjustDeclIfTemplate(TagD);
+ TagDecl *Tag = cast<TagDecl>(TagD);
+ Tag->setInvalidDecl();
+
+ // Make sure we "complete" the definition even it is invalid.
+ if (Tag->isBeingDefined()) {
+ if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
+ RD->completeDefinition();
+ }
+
+ // We're undoing ActOnTagStartDefinition here, not
+ // ActOnStartCXXMemberDeclarations, so we don't have to mess with
+ // the FieldCollector.
+
+ PopDeclContext();
+}
+
+// Note that FieldName may be null for anonymous bitfields.
+ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
+ IdentifierInfo *FieldName,
+ QualType FieldTy, bool IsMsStruct,
+ Expr *BitWidth, bool *ZeroWidth) {
+ // Default to true; that shouldn't confuse checks for emptiness
+ if (ZeroWidth)
+ *ZeroWidth = true;
+
+ // C99 6.7.2.1p4 - verify the field type.
+ // C++ 9.6p3: A bit-field shall have integral or enumeration type.
+ if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
+ // Handle incomplete types with specific error.
+ if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
+ return ExprError();
+ if (FieldName)
+ return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
+ << FieldName << FieldTy << BitWidth->getSourceRange();
+ return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
+ << FieldTy << BitWidth->getSourceRange();
+ } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
+ UPPC_BitFieldWidth))
+ return ExprError();
+
+ // If the bit-width is type- or value-dependent, don't try to check
+ // it now.
+ if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
+ return Owned(BitWidth);
+
+ llvm::APSInt Value;
+ ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
+ if (ICE.isInvalid())
+ return ICE;
+ BitWidth = ICE.take();
+
+ if (Value != 0 && ZeroWidth)
+ *ZeroWidth = false;
+
+ // Zero-width bitfield is ok for anonymous field.
+ if (Value == 0 && FieldName)
+ return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
+
+ if (Value.isSigned() && Value.isNegative()) {
+ if (FieldName)
+ return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
+ << FieldName << Value.toString(10);
+ return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
+ << Value.toString(10);
+ }
+
+ if (!FieldTy->isDependentType()) {
+ uint64_t TypeSize = Context.getTypeSize(FieldTy);
+ if (Value.getZExtValue() > TypeSize) {
+ if (!getLangOpts().CPlusPlus || IsMsStruct) {
+ if (FieldName)
+ return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
+ << FieldName << (unsigned)Value.getZExtValue()
+ << (unsigned)TypeSize;
+
+ return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
+ << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
+ }
+
+ if (FieldName)
+ Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
+ << FieldName << (unsigned)Value.getZExtValue()
+ << (unsigned)TypeSize;
+ else
+ Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
+ << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
+ }
+ }
+
+ return Owned(BitWidth);
+}
+
+/// ActOnField - Each field of a C struct/union is passed into this in order
+/// to create a FieldDecl object for it.
+Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
+ Declarator &D, Expr *BitfieldWidth) {
+ FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
+ DeclStart, D, static_cast<Expr*>(BitfieldWidth),
+ /*InitStyle=*/ICIS_NoInit, AS_public);
+ return Res;
+}
+
+/// HandleField - Analyze a field of a C struct or a C++ data member.
+///
+FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
+ SourceLocation DeclStart,
+ Declarator &D, Expr *BitWidth,
+ InClassInitStyle InitStyle,
+ AccessSpecifier AS) {
+ IdentifierInfo *II = D.getIdentifier();
+ SourceLocation Loc = DeclStart;
+ if (II) Loc = D.getIdentifierLoc();
+
+ TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
+ QualType T = TInfo->getType();
+ if (getLangOpts().CPlusPlus) {
+ CheckExtraCXXDefaultArguments(D);
+
+ if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
+ UPPC_DataMemberType)) {
+ D.setInvalidType();
+ T = Context.IntTy;
+ TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
+ }
+ }
+
+ // TR 18037 does not allow fields to be declared with address spaces.
+ if (T.getQualifiers().hasAddressSpace()) {
+ Diag(Loc, diag::err_field_with_address_space);
+ D.setInvalidType();
+ }
+
+ // OpenCL 1.2 spec, s6.9 r:
+ // The event type cannot be used to declare a structure or union field.
+ if (LangOpts.OpenCL && T->isEventT()) {
+ Diag(Loc, diag::err_event_t_struct_field);
+ D.setInvalidType();
+ }
+
+ DiagnoseFunctionSpecifiers(D.getDeclSpec());
+
+ if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
+ Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
+ diag::err_invalid_thread)
+ << DeclSpec::getSpecifierName(TSCS);
+
+ // Check to see if this name was declared as a member previously
+ NamedDecl *PrevDecl = 0;
+ LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
+ LookupName(Previous, S);
+ switch (Previous.getResultKind()) {
+ case LookupResult::Found:
+ case LookupResult::FoundUnresolvedValue:
+ PrevDecl = Previous.getAsSingle<NamedDecl>();
+ break;
+
+ case LookupResult::FoundOverloaded:
+ PrevDecl = Previous.getRepresentativeDecl();
+ break;
+
+ case LookupResult::NotFound:
+ case LookupResult::NotFoundInCurrentInstantiation:
+ case LookupResult::Ambiguous:
+ break;
+ }
+ Previous.suppressDiagnostics();
+
+ if (PrevDecl && PrevDecl->isTemplateParameter()) {
+ // Maybe we will complain about the shadowed template parameter.
+ DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
+ // Just pretend that we didn't see the previous declaration.
+ PrevDecl = 0;
+ }
+
+ if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
+ PrevDecl = 0;
+
+ bool Mutable
+ = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
+ SourceLocation TSSL = D.getLocStart();
+ FieldDecl *NewFD
+ = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
+ TSSL, AS, PrevDecl, &D);
+
+ if (NewFD->isInvalidDecl())
+ Record->setInvalidDecl();
+
+ if (D.getDeclSpec().isModulePrivateSpecified())
+ NewFD->setModulePrivate();
+
+ if (NewFD->isInvalidDecl() && PrevDecl) {
+ // Don't introduce NewFD into scope; there's already something
+ // with the same name in the same scope.
+ } else if (II) {
+ PushOnScopeChains(NewFD, S);
+ } else
+ Record->addDecl(NewFD);
+
+ return NewFD;
+}
+
+/// \brief Build a new FieldDecl and check its well-formedness.
+///
+/// This routine builds a new FieldDecl given the fields name, type,
+/// record, etc. \p PrevDecl should refer to any previous declaration
+/// with the same name and in the same scope as the field to be
+/// created.
+///
+/// \returns a new FieldDecl.
+///
+/// \todo The Declarator argument is a hack. It will be removed once
+FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
+ TypeSourceInfo *TInfo,
+ RecordDecl *Record, SourceLocation Loc,
+ bool Mutable, Expr *BitWidth,
+ InClassInitStyle InitStyle,
+ SourceLocation TSSL,
+ AccessSpecifier AS, NamedDecl *PrevDecl,
+ Declarator *D) {
+ IdentifierInfo *II = Name.getAsIdentifierInfo();
+ bool InvalidDecl = false;
+ if (D) InvalidDecl = D->isInvalidType();
+
+ // If we receive a broken type, recover by assuming 'int' and
+ // marking this declaration as invalid.
+ if (T.isNull()) {
+ InvalidDecl = true;
+ T = Context.IntTy;
+ }
+
+ QualType EltTy = Context.getBaseElementType(T);
+ if (!EltTy->isDependentType()) {
+ if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
+ // Fields of incomplete type force their record to be invalid.
+ Record->setInvalidDecl();
+ InvalidDecl = true;
+ } else {
+ NamedDecl *Def;
+ EltTy->isIncompleteType(&Def);
+ if (Def && Def->isInvalidDecl()) {
+ Record->setInvalidDecl();
+ InvalidDecl = true;
+ }
+ }
+ }
+
+ // OpenCL v1.2 s6.9.c: bitfields are not supported.
+ if (BitWidth && getLangOpts().OpenCL) {
+ Diag(Loc, diag::err_opencl_bitfields);
+ InvalidDecl = true;
+ }
+
+ // C99 6.7.2.1p8: A member of a structure or union may have any type other
+ // than a variably modified type.
+ if (!InvalidDecl && T->isVariablyModifiedType()) {
+ bool SizeIsNegative;
+ llvm::APSInt Oversized;
+
+ TypeSourceInfo *FixedTInfo =
+ TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
+ SizeIsNegative,
+ Oversized);
+ if (FixedTInfo) {
+ Diag(Loc, diag::warn_illegal_constant_array_size);
+ TInfo = FixedTInfo;
+ T = FixedTInfo->getType();
+ } else {
+ if (SizeIsNegative)
+ Diag(Loc, diag::err_typecheck_negative_array_size);
+ else if (Oversized.getBoolValue())
+ Diag(Loc, diag::err_array_too_large)
+ << Oversized.toString(10);
+ else
+ Diag(Loc, diag::err_typecheck_field_variable_size);
+ InvalidDecl = true;
+ }
+ }
+
+ // Fields can not have abstract class types
+ if (!InvalidDecl && RequireNonAbstractType(Loc, T,
+ diag::err_abstract_type_in_decl,
+ AbstractFieldType))
+ InvalidDecl = true;
+
+ bool ZeroWidth = false;
+ // If this is declared as a bit-field, check the bit-field.
+ if (!InvalidDecl && BitWidth) {
+ BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
+ &ZeroWidth).take();
+ if (!BitWidth) {
+ InvalidDecl = true;
+ BitWidth = 0;
+ ZeroWidth = false;
+ }
+ }
+
+ // Check that 'mutable' is consistent with the type of the declaration.
+ if (!InvalidDecl && Mutable) {
+ unsigned DiagID = 0;
+ if (T->isReferenceType())
+ DiagID = diag::err_mutable_reference;
+ else if (T.isConstQualified())
+ DiagID = diag::err_mutable_const;
+
+ if (DiagID) {
+ SourceLocation ErrLoc = Loc;
+ if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
+ ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
+ Diag(ErrLoc, DiagID);
+ Mutable = false;
+ InvalidDecl = true;
+ }
+ }
+
+ FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
+ BitWidth, Mutable, InitStyle);
+ if (InvalidDecl)
+ NewFD->setInvalidDecl();
+
+ if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
+ Diag(Loc, diag::err_duplicate_member) << II;
+ Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
+ NewFD->setInvalidDecl();
+ }
+
+ if (!InvalidDecl && getLangOpts().CPlusPlus) {
+ if (Record->isUnion()) {
+ if (const RecordType *RT = EltTy->getAs<RecordType>()) {
+ CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
+ if (RDecl->getDefinition()) {
+ // C++ [class.union]p1: An object of a class with a non-trivial
+ // constructor, a non-trivial copy constructor, a non-trivial
+ // destructor, or a non-trivial copy assignment operator
+ // cannot be a member of a union, nor can an array of such
+ // objects.
+ if (CheckNontrivialField(NewFD))
+ NewFD->setInvalidDecl();
+ }
+ }
+
+ // C++ [class.union]p1: If a union contains a member of reference type,
+ // the program is ill-formed, except when compiling with MSVC extensions
+ // enabled.
+ if (EltTy->isReferenceType()) {
+ Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
+ diag::ext_union_member_of_reference_type :
+ diag::err_union_member_of_reference_type)
+ << NewFD->getDeclName() << EltTy;
+ if (!getLangOpts().MicrosoftExt)
+ NewFD->setInvalidDecl();
+ }
+ }
+ }
+
+ // FIXME: We need to pass in the attributes given an AST
+ // representation, not a parser representation.
+ if (D) {
+ // FIXME: The current scope is almost... but not entirely... correct here.
+ ProcessDeclAttributes(getCurScope(), NewFD, *D);
+
+ if (NewFD->hasAttrs())
+ CheckAlignasUnderalignment(NewFD);
+ }
+
+ // In auto-retain/release, infer strong retension for fields of
+ // retainable type.
+ if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
+ NewFD->setInvalidDecl();
+
+ if (T.isObjCGCWeak())
+ Diag(Loc, diag::warn_attribute_weak_on_field);
+
+ NewFD->setAccess(AS);
+ return NewFD;
+}
+
+bool Sema::CheckNontrivialField(FieldDecl *FD) {
+ assert(FD);
+ assert(getLangOpts().CPlusPlus && "valid check only for C++");
+
+ if (FD->isInvalidDecl() || FD->getType()->isDependentType())
+ return false;
+
+ QualType EltTy = Context.getBaseElementType(FD->getType());
+ if (const RecordType *RT = EltTy->getAs<RecordType>()) {
+ CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
+ if (RDecl->getDefinition()) {
+ // We check for copy constructors before constructors
+ // because otherwise we'll never get complaints about
+ // copy constructors.
+
+ CXXSpecialMember member = CXXInvalid;
+ // We're required to check for any non-trivial constructors. Since the
+ // implicit default constructor is suppressed if there are any
+ // user-declared constructors, we just need to check that there is a
+ // trivial default constructor and a trivial copy constructor. (We don't
+ // worry about move constructors here, since this is a C++98 check.)
+ if (RDecl->hasNonTrivialCopyConstructor())
+ member = CXXCopyConstructor;
+ else if (!RDecl->hasTrivialDefaultConstructor())
+ member = CXXDefaultConstructor;
+ else if (RDecl->hasNonTrivialCopyAssignment())
+ member = CXXCopyAssignment;
+ else if (RDecl->hasNonTrivialDestructor())
+ member = CXXDestructor;
+
+ if (member != CXXInvalid) {
+ if (!getLangOpts().CPlusPlus11 &&
+ getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
+ // Objective-C++ ARC: it is an error to have a non-trivial field of
+ // a union. However, system headers in Objective-C programs
+ // occasionally have Objective-C lifetime objects within unions,
+ // and rather than cause the program to fail, we make those
+ // members unavailable.
+ SourceLocation Loc = FD->getLocation();
+ if (getSourceManager().isInSystemHeader(Loc)) {
+ if (!FD->hasAttr<UnavailableAttr>())
+ FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
+ "this system field has retaining ownership"));
+ return false;
+ }
+ }
+
+ Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
+ diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
+ diag::err_illegal_union_or_anon_struct_member)
+ << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
+ DiagnoseNontrivial(RDecl, member);
+ return !getLangOpts().CPlusPlus11;
+ }
+ }
+ }
+
+ return false;
+}
+
+/// TranslateIvarVisibility - Translate visibility from a token ID to an
+/// AST enum value.
+static ObjCIvarDecl::AccessControl
+TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
+ switch (ivarVisibility) {
+ default: llvm_unreachable("Unknown visitibility kind");
+ case tok::objc_private: return ObjCIvarDecl::Private;
+ case tok::objc_public: return ObjCIvarDecl::Public;
+ case tok::objc_protected: return ObjCIvarDecl::Protected;
+ case tok::objc_package: return ObjCIvarDecl::Package;
+ }
+}
+
+/// ActOnIvar - Each ivar field of an objective-c class is passed into this
+/// in order to create an IvarDecl object for it.
+Decl *Sema::ActOnIvar(Scope *S,
+ SourceLocation DeclStart,
+ Declarator &D, Expr *BitfieldWidth,
+ tok::ObjCKeywordKind Visibility) {
+
+ IdentifierInfo *II = D.getIdentifier();
+ Expr *BitWidth = (Expr*)BitfieldWidth;
+ SourceLocation Loc = DeclStart;
+ if (II) Loc = D.getIdentifierLoc();
+
+ // FIXME: Unnamed fields can be handled in various different ways, for
+ // example, unnamed unions inject all members into the struct namespace!
+
+ TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
+ QualType T = TInfo->getType();
+
+ if (BitWidth) {
+ // 6.7.2.1p3, 6.7.2.1p4
+ BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).take();
+ if (!BitWidth)
+ D.setInvalidType();
+ } else {
+ // Not a bitfield.
+
+ // validate II.
+
+ }
+ if (T->isReferenceType()) {
+ Diag(Loc, diag::err_ivar_reference_type);
+ D.setInvalidType();
+ }
+ // C99 6.7.2.1p8: A member of a structure or union may have any type other
+ // than a variably modified type.
+ else if (T->isVariablyModifiedType()) {
+ Diag(Loc, diag::err_typecheck_ivar_variable_size);
+ D.setInvalidType();
+ }
+
+ // Get the visibility (access control) for this ivar.
+ ObjCIvarDecl::AccessControl ac =
+ Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
+ : ObjCIvarDecl::None;
+ // Must set ivar's DeclContext to its enclosing interface.
+ ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
+ if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
+ return 0;
+ ObjCContainerDecl *EnclosingContext;
+ if (ObjCImplementationDecl *IMPDecl =
+ dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
+ if (LangOpts.ObjCRuntime.isFragile()) {
+ // Case of ivar declared in an implementation. Context is that of its class.
+ EnclosingContext = IMPDecl->getClassInterface();
+ assert(EnclosingContext && "Implementation has no class interface!");
+ }
+ else
+ EnclosingContext = EnclosingDecl;
+ } else {
+ if (ObjCCategoryDecl *CDecl =
+ dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
+ if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
+ Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
+ return 0;
+ }
+ }
+ EnclosingContext = EnclosingDecl;
+ }
+
+ // Construct the decl.
+ ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
+ DeclStart, Loc, II, T,
+ TInfo, ac, (Expr *)BitfieldWidth);
+
+ if (II) {
+ NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
+ ForRedeclaration);
+ if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
+ && !isa<TagDecl>(PrevDecl)) {
+ Diag(Loc, diag::err_duplicate_member) << II;
+ Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
+ NewID->setInvalidDecl();
+ }
+ }
+
+ // Process attributes attached to the ivar.
+ ProcessDeclAttributes(S, NewID, D);
+
+ if (D.isInvalidType())
+ NewID->setInvalidDecl();
+
+ // In ARC, infer 'retaining' for ivars of retainable type.
+ if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
+ NewID->setInvalidDecl();
+
+ if (D.getDeclSpec().isModulePrivateSpecified())
+ NewID->setModulePrivate();
+
+ if (II) {
+ // FIXME: When interfaces are DeclContexts, we'll need to add
+ // these to the interface.
+ S->AddDecl(NewID);
+ IdResolver.AddDecl(NewID);
+ }
+
+ if (LangOpts.ObjCRuntime.isNonFragile() &&
+ !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
+ Diag(Loc, diag::warn_ivars_in_interface);
+
+ return NewID;
+}
+
+/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
+/// class and class extensions. For every class \@interface and class
+/// extension \@interface, if the last ivar is a bitfield of any type,
+/// then add an implicit `char :0` ivar to the end of that interface.
+void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
+ SmallVectorImpl<Decl *> &AllIvarDecls) {
+ if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
+ return;
+
+ Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
+ ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
+
+ if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
+ return;
+ ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
+ if (!ID) {
+ if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
+ if (!CD->IsClassExtension())
+ return;
+ }
+ // No need to add this to end of @implementation.
+ else
+ return;
+ }
+ // All conditions are met. Add a new bitfield to the tail end of ivars.
+ llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
+ Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
+
+ Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
+ DeclLoc, DeclLoc, 0,
+ Context.CharTy,
+ Context.getTrivialTypeSourceInfo(Context.CharTy,
+ DeclLoc),
+ ObjCIvarDecl::Private, BW,
+ true);
+ AllIvarDecls.push_back(Ivar);
+}
+
+void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
+ ArrayRef<Decl *> Fields, SourceLocation LBrac,
+ SourceLocation RBrac, AttributeList *Attr) {
+ assert(EnclosingDecl && "missing record or interface decl");
+
+ // If this is an Objective-C @implementation or category and we have
+ // new fields here we should reset the layout of the interface since
+ // it will now change.
+ if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
+ ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
+ switch (DC->getKind()) {
+ default: break;
+ case Decl::ObjCCategory:
+ Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
+ break;
+ case Decl::ObjCImplementation:
+ Context.
+ ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
+ break;
+ }
+ }
+
+ RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
+
+ // Start counting up the number of named members; make sure to include
+ // members of anonymous structs and unions in the total.
+ unsigned NumNamedMembers = 0;
+ if (Record) {
+ for (RecordDecl::decl_iterator i = Record->decls_begin(),
+ e = Record->decls_end(); i != e; i++) {
+ if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
+ if (IFD->getDeclName())
+ ++NumNamedMembers;
+ }
+ }
+
+ // Verify that all the fields are okay.
+ SmallVector<FieldDecl*, 32> RecFields;
+
+ bool ARCErrReported = false;
+ for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
+ i != end; ++i) {
+ FieldDecl *FD = cast<FieldDecl>(*i);
+
+ // Get the type for the field.
+ const Type *FDTy = FD->getType().getTypePtr();
+
+ if (!FD->isAnonymousStructOrUnion()) {
+ // Remember all fields written by the user.
+ RecFields.push_back(FD);
+ }
+
+ // If the field is already invalid for some reason, don't emit more
+ // diagnostics about it.
+ if (FD->isInvalidDecl()) {
+ EnclosingDecl->setInvalidDecl();
+ continue;
+ }
+
+ // C99 6.7.2.1p2:
+ // A structure or union shall not contain a member with
+ // incomplete or function type (hence, a structure shall not
+ // contain an instance of itself, but may contain a pointer to
+ // an instance of itself), except that the last member of a
+ // structure with more than one named member may have incomplete
+ // array type; such a structure (and any union containing,
+ // possibly recursively, a member that is such a structure)
+ // shall not be a member of a structure or an element of an
+ // array.
+ if (FDTy->isFunctionType()) {
+ // Field declared as a function.
+ Diag(FD->getLocation(), diag::err_field_declared_as_function)
+ << FD->getDeclName();
+ FD->setInvalidDecl();
+ EnclosingDecl->setInvalidDecl();
+ continue;
+ } else if (FDTy->isIncompleteArrayType() && Record &&
+ ((i + 1 == Fields.end() && !Record->isUnion()) ||
+ ((getLangOpts().MicrosoftExt ||
+ getLangOpts().CPlusPlus) &&
+ (i + 1 == Fields.end() || Record->isUnion())))) {
+ // Flexible array member.
+ // Microsoft and g++ is more permissive regarding flexible array.
+ // It will accept flexible array in union and also
+ // as the sole element of a struct/class.
+ unsigned DiagID = 0;
+ if (Record->isUnion())
+ DiagID = getLangOpts().MicrosoftExt
+ ? diag::ext_flexible_array_union_ms
+ : getLangOpts().CPlusPlus
+ ? diag::ext_flexible_array_union_gnu
+ : diag::err_flexible_array_union;
+ else if (Fields.size() == 1)
+ DiagID = getLangOpts().MicrosoftExt
+ ? diag::ext_flexible_array_empty_aggregate_ms
+ : getLangOpts().CPlusPlus
+ ? diag::ext_flexible_array_empty_aggregate_gnu
+ : NumNamedMembers < 1
+ ? diag::err_flexible_array_empty_aggregate
+ : 0;
+
+ if (DiagID)
+ Diag(FD->getLocation(), DiagID) << FD->getDeclName()
+ << Record->getTagKind();
+ // While the layout of types that contain virtual bases is not specified
+ // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
+ // virtual bases after the derived members. This would make a flexible
+ // array member declared at the end of an object not adjacent to the end
+ // of the type.
+ if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record))
+ if (RD->getNumVBases() != 0)
+ Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
+ << FD->getDeclName() << Record->getTagKind();
+ if (!getLangOpts().C99)
+ Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
+ << FD->getDeclName() << Record->getTagKind();
+
+ if (!FD->getType()->isDependentType() &&
+ !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
+ Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
+ << FD->getDeclName() << FD->getType();
+ FD->setInvalidDecl();
+ EnclosingDecl->setInvalidDecl();
+ continue;
+ }
+ // Okay, we have a legal flexible array member at the end of the struct.
+ if (Record)
+ Record->setHasFlexibleArrayMember(true);
+ } else if (!FDTy->isDependentType() &&
+ RequireCompleteType(FD->getLocation(), FD->getType(),
+ diag::err_field_incomplete)) {
+ // Incomplete type
+ FD->setInvalidDecl();
+ EnclosingDecl->setInvalidDecl();
+ continue;
+ } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
+ if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
+ // If this is a member of a union, then entire union becomes "flexible".
+ if (Record && Record->isUnion()) {
+ Record->setHasFlexibleArrayMember(true);
+ } else {
+ // If this is a struct/class and this is not the last element, reject
+ // it. Note that GCC supports variable sized arrays in the middle of
+ // structures.
+ if (i + 1 != Fields.end())
+ Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
+ << FD->getDeclName() << FD->getType();
+ else {
+ // We support flexible arrays at the end of structs in
+ // other structs as an extension.
+ Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
+ << FD->getDeclName();
+ if (Record)
+ Record->setHasFlexibleArrayMember(true);
+ }
+ }
+ }
+ if (isa<ObjCContainerDecl>(EnclosingDecl) &&
+ RequireNonAbstractType(FD->getLocation(), FD->getType(),
+ diag::err_abstract_type_in_decl,
+ AbstractIvarType)) {
+ // Ivars can not have abstract class types
+ FD->setInvalidDecl();
+ }
+ if (Record && FDTTy->getDecl()->hasObjectMember())
+ Record->setHasObjectMember(true);
+ if (Record && FDTTy->getDecl()->hasVolatileMember())
+ Record->setHasVolatileMember(true);
+ } else if (FDTy->isObjCObjectType()) {
+ /// A field cannot be an Objective-c object
+ Diag(FD->getLocation(), diag::err_statically_allocated_object)
+ << FixItHint::CreateInsertion(FD->getLocation(), "*");
+ QualType T = Context.getObjCObjectPointerType(FD->getType());
+ FD->setType(T);
+ } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported &&
+ (!getLangOpts().CPlusPlus || Record->isUnion())) {
+ // It's an error in ARC if a field has lifetime.
+ // We don't want to report this in a system header, though,
+ // so we just make the field unavailable.
+ // FIXME: that's really not sufficient; we need to make the type
+ // itself invalid to, say, initialize or copy.
+ QualType T = FD->getType();
+ Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
+ if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
+ SourceLocation loc = FD->getLocation();
+ if (getSourceManager().isInSystemHeader(loc)) {
+ if (!FD->hasAttr<UnavailableAttr>()) {
+ FD->addAttr(new (Context) UnavailableAttr(loc, Context,
+ "this system field has retaining ownership"));
+ }
+ } else {
+ Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
+ << T->isBlockPointerType() << Record->getTagKind();
+ }
+ ARCErrReported = true;
+ }
+ } else if (getLangOpts().ObjC1 &&
+ getLangOpts().getGC() != LangOptions::NonGC &&
+ Record && !Record->hasObjectMember()) {
+ if (FD->getType()->isObjCObjectPointerType() ||
+ FD->getType().isObjCGCStrong())
+ Record->setHasObjectMember(true);
+ else if (Context.getAsArrayType(FD->getType())) {
+ QualType BaseType = Context.getBaseElementType(FD->getType());
+ if (BaseType->isRecordType() &&
+ BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
+ Record->setHasObjectMember(true);
+ else if (BaseType->isObjCObjectPointerType() ||
+ BaseType.isObjCGCStrong())
+ Record->setHasObjectMember(true);
+ }
+ }
+ if (Record && FD->getType().isVolatileQualified())
+ Record->setHasVolatileMember(true);
+ // Keep track of the number of named members.
+ if (FD->getIdentifier())
+ ++NumNamedMembers;
+ }
+
+ // Okay, we successfully defined 'Record'.
+ if (Record) {
+ bool Completed = false;
+ if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
+ if (!CXXRecord->isInvalidDecl()) {
+ // Set access bits correctly on the directly-declared conversions.
+ for (CXXRecordDecl::conversion_iterator
+ I = CXXRecord->conversion_begin(),
+ E = CXXRecord->conversion_end(); I != E; ++I)
+ I.setAccess((*I)->getAccess());
+
+ if (!CXXRecord->isDependentType()) {
+ if (CXXRecord->hasUserDeclaredDestructor()) {
+ // Adjust user-defined destructor exception spec.
+ if (getLangOpts().CPlusPlus11)
+ AdjustDestructorExceptionSpec(CXXRecord,
+ CXXRecord->getDestructor());
+
+ // The Microsoft ABI requires that we perform the destructor body
+ // checks (i.e. operator delete() lookup) at every declaration, as
+ // any translation unit may need to emit a deleting destructor.
+ if (Context.getTargetInfo().getCXXABI().isMicrosoft())
+ CheckDestructor(CXXRecord->getDestructor());
+ }
+
+ // Add any implicitly-declared members to this class.
+ AddImplicitlyDeclaredMembersToClass(CXXRecord);
+
+ // If we have virtual base classes, we may end up finding multiple
+ // final overriders for a given virtual function. Check for this
+ // problem now.
+ if (CXXRecord->getNumVBases()) {
+ CXXFinalOverriderMap FinalOverriders;
+ CXXRecord->getFinalOverriders(FinalOverriders);
+
+ for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
+ MEnd = FinalOverriders.end();
+ M != MEnd; ++M) {
+ for (OverridingMethods::iterator SO = M->second.begin(),
+ SOEnd = M->second.end();
+ SO != SOEnd; ++SO) {
+ assert(SO->second.size() > 0 &&
+ "Virtual function without overridding functions?");
+ if (SO->second.size() == 1)
+ continue;
+
+ // C++ [class.virtual]p2:
+ // In a derived class, if a virtual member function of a base
+ // class subobject has more than one final overrider the
+ // program is ill-formed.
+ Diag(Record->getLocation(), diag::err_multiple_final_overriders)
+ << (const NamedDecl *)M->first << Record;
+ Diag(M->first->getLocation(),
+ diag::note_overridden_virtual_function);
+ for (OverridingMethods::overriding_iterator
+ OM = SO->second.begin(),
+ OMEnd = SO->second.end();
+ OM != OMEnd; ++OM)
+ Diag(OM->Method->getLocation(), diag::note_final_overrider)
+ << (const NamedDecl *)M->first << OM->Method->getParent();
+
+ Record->setInvalidDecl();
+ }
+ }
+ CXXRecord->completeDefinition(&FinalOverriders);
+ Completed = true;
+ }
+ }
+ }
+ }
+
+ if (!Completed)
+ Record->completeDefinition();
+
+ if (Record->hasAttrs())
+ CheckAlignasUnderalignment(Record);
+
+ // Check if the structure/union declaration is a type that can have zero
+ // size in C. For C this is a language extension, for C++ it may cause
+ // compatibility problems.
+ bool CheckForZeroSize;
+ if (!getLangOpts().CPlusPlus) {
+ CheckForZeroSize = true;
+ } else {
+ // For C++ filter out types that cannot be referenced in C code.
+ CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
+ CheckForZeroSize =
+ CXXRecord->getLexicalDeclContext()->isExternCContext() &&
+ !CXXRecord->isDependentType() &&
+ CXXRecord->isCLike();
+ }
+ if (CheckForZeroSize) {
+ bool ZeroSize = true;
+ bool IsEmpty = true;
+ unsigned NonBitFields = 0;
+ for (RecordDecl::field_iterator I = Record->field_begin(),
+ E = Record->field_end();
+ (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
+ IsEmpty = false;
+ if (I->isUnnamedBitfield()) {
+ if (I->getBitWidthValue(Context) > 0)
+ ZeroSize = false;
+ } else {
+ ++NonBitFields;
+ QualType FieldType = I->getType();
+ if (FieldType->isIncompleteType() ||
+ !Context.getTypeSizeInChars(FieldType).isZero())
+ ZeroSize = false;
+ }
+ }
+
+ // Empty structs are an extension in C (C99 6.7.2.1p7). They are
+ // allowed in C++, but warn if its declaration is inside
+ // extern "C" block.
+ if (ZeroSize) {
+ Diag(RecLoc, getLangOpts().CPlusPlus ?
+ diag::warn_zero_size_struct_union_in_extern_c :
+ diag::warn_zero_size_struct_union_compat)
+ << IsEmpty << Record->isUnion() << (NonBitFields > 1);
+ }
+
+ // Structs without named members are extension in C (C99 6.7.2.1p7),
+ // but are accepted by GCC.
+ if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
+ Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
+ diag::ext_no_named_members_in_struct_union)
+ << Record->isUnion();
+ }
+ }
+ } else {
+ ObjCIvarDecl **ClsFields =
+ reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
+ if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
+ ID->setEndOfDefinitionLoc(RBrac);
+ // Add ivar's to class's DeclContext.
+ for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
+ ClsFields[i]->setLexicalDeclContext(ID);
+ ID->addDecl(ClsFields[i]);
+ }
+ // Must enforce the rule that ivars in the base classes may not be
+ // duplicates.
+ if (ID->getSuperClass())
+ DiagnoseDuplicateIvars(ID, ID->getSuperClass());
+ } else if (ObjCImplementationDecl *IMPDecl =
+ dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
+ assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
+ for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
+ // Ivar declared in @implementation never belongs to the implementation.
+ // Only it is in implementation's lexical context.
+ ClsFields[I]->setLexicalDeclContext(IMPDecl);
+ CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
+ IMPDecl->setIvarLBraceLoc(LBrac);
+ IMPDecl->setIvarRBraceLoc(RBrac);
+ } else if (ObjCCategoryDecl *CDecl =
+ dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
+ // case of ivars in class extension; all other cases have been
+ // reported as errors elsewhere.
+ // FIXME. Class extension does not have a LocEnd field.
+ // CDecl->setLocEnd(RBrac);
+ // Add ivar's to class extension's DeclContext.
+ // Diagnose redeclaration of private ivars.
+ ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
+ for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
+ if (IDecl) {
+ if (const ObjCIvarDecl *ClsIvar =
+ IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
+ Diag(ClsFields[i]->getLocation(),
+ diag::err_duplicate_ivar_declaration);
+ Diag(ClsIvar->getLocation(), diag::note_previous_definition);
+ continue;
+ }
+ for (ObjCInterfaceDecl::known_extensions_iterator
+ Ext = IDecl->known_extensions_begin(),
+ ExtEnd = IDecl->known_extensions_end();
+ Ext != ExtEnd; ++Ext) {
+ if (const ObjCIvarDecl *ClsExtIvar
+ = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
+ Diag(ClsFields[i]->getLocation(),
+ diag::err_duplicate_ivar_declaration);
+ Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
+ continue;
+ }
+ }
+ }
+ ClsFields[i]->setLexicalDeclContext(CDecl);
+ CDecl->addDecl(ClsFields[i]);
+ }
+ CDecl->setIvarLBraceLoc(LBrac);
+ CDecl->setIvarRBraceLoc(RBrac);
+ }
+ }
+
+ if (Attr)
+ ProcessDeclAttributeList(S, Record, Attr);
+}
+
+/// \brief Determine whether the given integral value is representable within
+/// the given type T.
+static bool isRepresentableIntegerValue(ASTContext &Context,
+ llvm::APSInt &Value,
+ QualType T) {
+ assert(T->isIntegralType(Context) && "Integral type required!");
+ unsigned BitWidth = Context.getIntWidth(T);
+
+ if (Value.isUnsigned() || Value.isNonNegative()) {
+ if (T->isSignedIntegerOrEnumerationType())
+ --BitWidth;
+ return Value.getActiveBits() <= BitWidth;
+ }
+ return Value.getMinSignedBits() <= BitWidth;
+}
+
+// \brief Given an integral type, return the next larger integral type
+// (or a NULL type of no such type exists).
+static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
+ // FIXME: Int128/UInt128 support, which also needs to be introduced into
+ // enum checking below.
+ assert(T->isIntegralType(Context) && "Integral type required!");
+ const unsigned NumTypes = 4;
+ QualType SignedIntegralTypes[NumTypes] = {
+ Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
+ };
+ QualType UnsignedIntegralTypes[NumTypes] = {
+ Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
+ Context.UnsignedLongLongTy
+ };
+
+ unsigned BitWidth = Context.getTypeSize(T);
+ QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
+ : UnsignedIntegralTypes;
+ for (unsigned I = 0; I != NumTypes; ++I)
+ if (Context.getTypeSize(Types[I]) > BitWidth)
+ return Types[I];
+
+ return QualType();
+}
+
+EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
+ EnumConstantDecl *LastEnumConst,
+ SourceLocation IdLoc,
+ IdentifierInfo *Id,
+ Expr *Val) {
+ unsigned IntWidth = Context.getTargetInfo().getIntWidth();
+ llvm::APSInt EnumVal(IntWidth);
+ QualType EltTy;
+
+ if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
+ Val = 0;
+
+ if (Val)
+ Val = DefaultLvalueConversion(Val).take();
+
+ if (Val) {
+ if (Enum->isDependentType() || Val->isTypeDependent())
+ EltTy = Context.DependentTy;
+ else {
+ SourceLocation ExpLoc;
+ if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
+ !getLangOpts().MicrosoftMode) {
+ // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
+ // constant-expression in the enumerator-definition shall be a converted
+ // constant expression of the underlying type.
+ EltTy = Enum->getIntegerType();
+ ExprResult Converted =
+ CheckConvertedConstantExpression(Val, EltTy, EnumVal,
+ CCEK_Enumerator);
+ if (Converted.isInvalid())
+ Val = 0;
+ else
+ Val = Converted.take();
+ } else if (!Val->isValueDependent() &&
+ !(Val = VerifyIntegerConstantExpression(Val,
+ &EnumVal).take())) {
+ // C99 6.7.2.2p2: Make sure we have an integer constant expression.
+ } else {
+ if (Enum->isFixed()) {
+ EltTy = Enum->getIntegerType();
+
+ // In Obj-C and Microsoft mode, require the enumeration value to be
+ // representable in the underlying type of the enumeration. In C++11,
+ // we perform a non-narrowing conversion as part of converted constant
+ // expression checking.
+ if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
+ if (getLangOpts().MicrosoftMode) {
+ Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
+ Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
+ } else
+ Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
+ } else
+ Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
+ } else if (getLangOpts().CPlusPlus) {
+ // C++11 [dcl.enum]p5:
+ // If the underlying type is not fixed, the type of each enumerator
+ // is the type of its initializing value:
+ // - If an initializer is specified for an enumerator, the
+ // initializing value has the same type as the expression.
+ EltTy = Val->getType();
+ } else {
+ // C99 6.7.2.2p2:
+ // The expression that defines the value of an enumeration constant
+ // shall be an integer constant expression that has a value
+ // representable as an int.
+
+ // Complain if the value is not representable in an int.
+ if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
+ Diag(IdLoc, diag::ext_enum_value_not_int)
+ << EnumVal.toString(10) << Val->getSourceRange()
+ << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
+ else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
+ // Force the type of the expression to 'int'.
+ Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
+ }
+ EltTy = Val->getType();
+ }
+ }
+ }
+ }
+
+ if (!Val) {
+ if (Enum->isDependentType())
+ EltTy = Context.DependentTy;
+ else if (!LastEnumConst) {
+ // C++0x [dcl.enum]p5:
+ // If the underlying type is not fixed, the type of each enumerator
+ // is the type of its initializing value:
+ // - If no initializer is specified for the first enumerator, the
+ // initializing value has an unspecified integral type.
+ //
+ // GCC uses 'int' for its unspecified integral type, as does
+ // C99 6.7.2.2p3.
+ if (Enum->isFixed()) {
+ EltTy = Enum->getIntegerType();
+ }
+ else {
+ EltTy = Context.IntTy;
+ }
+ } else {
+ // Assign the last value + 1.
+ EnumVal = LastEnumConst->getInitVal();
+ ++EnumVal;
+ EltTy = LastEnumConst->getType();
+
+ // Check for overflow on increment.
+ if (EnumVal < LastEnumConst->getInitVal()) {
+ // C++0x [dcl.enum]p5:
+ // If the underlying type is not fixed, the type of each enumerator
+ // is the type of its initializing value:
+ //
+ // - Otherwise the type of the initializing value is the same as
+ // the type of the initializing value of the preceding enumerator
+ // unless the incremented value is not representable in that type,
+ // in which case the type is an unspecified integral type
+ // sufficient to contain the incremented value. If no such type
+ // exists, the program is ill-formed.
+ QualType T = getNextLargerIntegralType(Context, EltTy);
+ if (T.isNull() || Enum->isFixed()) {
+ // There is no integral type larger enough to represent this
+ // value. Complain, then allow the value to wrap around.
+ EnumVal = LastEnumConst->getInitVal();
+ EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
+ ++EnumVal;
+ if (Enum->isFixed())
+ // When the underlying type is fixed, this is ill-formed.
+ Diag(IdLoc, diag::err_enumerator_wrapped)
+ << EnumVal.toString(10)
+ << EltTy;
+ else
+ Diag(IdLoc, diag::warn_enumerator_too_large)
+ << EnumVal.toString(10);
+ } else {
+ EltTy = T;
+ }
+
+ // Retrieve the last enumerator's value, extent that type to the
+ // type that is supposed to be large enough to represent the incremented
+ // value, then increment.
+ EnumVal = LastEnumConst->getInitVal();
+ EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
+ EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
+ ++EnumVal;
+
+ // If we're not in C++, diagnose the overflow of enumerator values,
+ // which in C99 means that the enumerator value is not representable in
+ // an int (C99 6.7.2.2p2). However, we support GCC's extension that
+ // permits enumerator values that are representable in some larger
+ // integral type.
+ if (!getLangOpts().CPlusPlus && !T.isNull())
+ Diag(IdLoc, diag::warn_enum_value_overflow);
+ } else if (!getLangOpts().CPlusPlus &&
+ !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
+ // Enforce C99 6.7.2.2p2 even when we compute the next value.
+ Diag(IdLoc, diag::ext_enum_value_not_int)
+ << EnumVal.toString(10) << 1;
+ }
+ }
+ }
+
+ if (!EltTy->isDependentType()) {
+ // Make the enumerator value match the signedness and size of the
+ // enumerator's type.
+ EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
+ EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
+ }
+
+ return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
+ Val, EnumVal);
+}
+
+
+Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
+ SourceLocation IdLoc, IdentifierInfo *Id,
+ AttributeList *Attr,
+ SourceLocation EqualLoc, Expr *Val) {
+ EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
+ EnumConstantDecl *LastEnumConst =
+ cast_or_null<EnumConstantDecl>(lastEnumConst);
+
+ // The scope passed in may not be a decl scope. Zip up the scope tree until
+ // we find one that is.
+ S = getNonFieldDeclScope(S);
+
+ // Verify that there isn't already something declared with this name in this
+ // scope.
+ NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
+ ForRedeclaration);
+ if (PrevDecl && PrevDecl->isTemplateParameter()) {
+ // Maybe we will complain about the shadowed template parameter.
+ DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
+ // Just pretend that we didn't see the previous declaration.
+ PrevDecl = 0;
+ }
+
+ if (PrevDecl) {
+ // When in C++, we may get a TagDecl with the same name; in this case the
+ // enum constant will 'hide' the tag.
+ assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
+ "Received TagDecl when not in C++!");
+ if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
+ if (isa<EnumConstantDecl>(PrevDecl))
+ Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
+ else
+ Diag(IdLoc, diag::err_redefinition) << Id;
+ Diag(PrevDecl->getLocation(), diag::note_previous_definition);
+ return 0;
+ }
+ }
+
+ // C++ [class.mem]p15:
+ // If T is the name of a class, then each of the following shall have a name
+ // different from T:
+ // - every enumerator of every member of class T that is an unscoped
+ // enumerated type
+ if (CXXRecordDecl *Record
+ = dyn_cast<CXXRecordDecl>(
+ TheEnumDecl->getDeclContext()->getRedeclContext()))
+ if (!TheEnumDecl->isScoped() &&
+ Record->getIdentifier() && Record->getIdentifier() == Id)
+ Diag(IdLoc, diag::err_member_name_of_class) << Id;
+
+ EnumConstantDecl *New =
+ CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
+
+ if (New) {
+ // Process attributes.
+ if (Attr) ProcessDeclAttributeList(S, New, Attr);
+
+ // Register this decl in the current scope stack.
+ New->setAccess(TheEnumDecl->getAccess());
+ PushOnScopeChains(New, S);
+ }
+
+ ActOnDocumentableDecl(New);
+
+ return New;
+}
+
+// Returns true when the enum initial expression does not trigger the
+// duplicate enum warning. A few common cases are exempted as follows:
+// Element2 = Element1
+// Element2 = Element1 + 1
+// Element2 = Element1 - 1
+// Where Element2 and Element1 are from the same enum.
+static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
+ Expr *InitExpr = ECD->getInitExpr();
+ if (!InitExpr)
+ return true;
+ InitExpr = InitExpr->IgnoreImpCasts();
+
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
+ if (!BO->isAdditiveOp())
+ return true;
+ IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
+ if (!IL)
+ return true;
+ if (IL->getValue() != 1)
+ return true;
+
+ InitExpr = BO->getLHS();
+ }
+
+ // This checks if the elements are from the same enum.
+ DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
+ if (!DRE)
+ return true;
+
+ EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
+ if (!EnumConstant)
+ return true;
+
+ if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
+ Enum)
+ return true;
+
+ return false;
+}
+
+struct DupKey {
+ int64_t val;
+ bool isTombstoneOrEmptyKey;
+ DupKey(int64_t val, bool isTombstoneOrEmptyKey)
+ : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
+};
+
+static DupKey GetDupKey(const llvm::APSInt& Val) {
+ return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
+ false);
+}
+
+struct DenseMapInfoDupKey {
+ static DupKey getEmptyKey() { return DupKey(0, true); }
+ static DupKey getTombstoneKey() { return DupKey(1, true); }
+ static unsigned getHashValue(const DupKey Key) {
+ return (unsigned)(Key.val * 37);
+ }
+ static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
+ return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
+ LHS.val == RHS.val;
+ }
+};
+
+// Emits a warning when an element is implicitly set a value that
+// a previous element has already been set to.
+static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
+ EnumDecl *Enum,
+ QualType EnumType) {
+ if (S.Diags.getDiagnosticLevel(diag::warn_duplicate_enum_values,
+ Enum->getLocation()) ==
+ DiagnosticsEngine::Ignored)
+ return;
+ // Avoid anonymous enums
+ if (!Enum->getIdentifier())
+ return;
+
+ // Only check for small enums.
+ if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
+ return;
+
+ typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
+ typedef SmallVector<ECDVector *, 3> DuplicatesVector;
+
+ typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
+ typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
+ ValueToVectorMap;
+
+ DuplicatesVector DupVector;
+ ValueToVectorMap EnumMap;
+
+ // Populate the EnumMap with all values represented by enum constants without
+ // an initialier.
+ for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
+ EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
+
+ // Null EnumConstantDecl means a previous diagnostic has been emitted for
+ // this constant. Skip this enum since it may be ill-formed.
+ if (!ECD) {
+ return;
+ }
+
+ if (ECD->getInitExpr())
+ continue;
+
+ DupKey Key = GetDupKey(ECD->getInitVal());
+ DeclOrVector &Entry = EnumMap[Key];
+
+ // First time encountering this value.
+ if (Entry.isNull())
+ Entry = ECD;
+ }
+
+ // Create vectors for any values that has duplicates.
+ for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
+ EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
+ if (!ValidDuplicateEnum(ECD, Enum))
+ continue;
+
+ DupKey Key = GetDupKey(ECD->getInitVal());
+
+ DeclOrVector& Entry = EnumMap[Key];
+ if (Entry.isNull())
+ continue;
+
+ if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
+ // Ensure constants are different.
+ if (D == ECD)
+ continue;
+
+ // Create new vector and push values onto it.
+ ECDVector *Vec = new ECDVector();
+ Vec->push_back(D);
+ Vec->push_back(ECD);
+
+ // Update entry to point to the duplicates vector.
+ Entry = Vec;
+
+ // Store the vector somewhere we can consult later for quick emission of
+ // diagnostics.
+ DupVector.push_back(Vec);
+ continue;
+ }
+
+ ECDVector *Vec = Entry.get<ECDVector*>();
+ // Make sure constants are not added more than once.
+ if (*Vec->begin() == ECD)
+ continue;
+
+ Vec->push_back(ECD);
+ }
+
+ // Emit diagnostics.
+ for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
+ DupVectorEnd = DupVector.end();
+ DupVectorIter != DupVectorEnd; ++DupVectorIter) {
+ ECDVector *Vec = *DupVectorIter;
+ assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
+
+ // Emit warning for one enum constant.
+ ECDVector::iterator I = Vec->begin();
+ S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
+ << (*I)->getName() << (*I)->getInitVal().toString(10)
+ << (*I)->getSourceRange();
+ ++I;
+
+ // Emit one note for each of the remaining enum constants with
+ // the same value.
+ for (ECDVector::iterator E = Vec->end(); I != E; ++I)
+ S.Diag((*I)->getLocation(), diag::note_duplicate_element)
+ << (*I)->getName() << (*I)->getInitVal().toString(10)
+ << (*I)->getSourceRange();
+ delete Vec;
+ }
+}
+
+void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
+ SourceLocation RBraceLoc, Decl *EnumDeclX,
+ ArrayRef<Decl *> Elements,
+ Scope *S, AttributeList *Attr) {
+ EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
+ QualType EnumType = Context.getTypeDeclType(Enum);
+
+ if (Attr)
+ ProcessDeclAttributeList(S, Enum, Attr);
+
+ if (Enum->isDependentType()) {
+ for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
+ EnumConstantDecl *ECD =
+ cast_or_null<EnumConstantDecl>(Elements[i]);
+ if (!ECD) continue;
+
+ ECD->setType(EnumType);
+ }
+
+ Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
+ return;
+ }
+
+ // TODO: If the result value doesn't fit in an int, it must be a long or long
+ // long value. ISO C does not support this, but GCC does as an extension,
+ // emit a warning.
+ unsigned IntWidth = Context.getTargetInfo().getIntWidth();
+ unsigned CharWidth = Context.getTargetInfo().getCharWidth();
+ unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
+
+ // Verify that all the values are okay, compute the size of the values, and
+ // reverse the list.
+ unsigned NumNegativeBits = 0;
+ unsigned NumPositiveBits = 0;
+
+ // Keep track of whether all elements have type int.
+ bool AllElementsInt = true;
+
+ for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
+ EnumConstantDecl *ECD =
+ cast_or_null<EnumConstantDecl>(Elements[i]);
+ if (!ECD) continue; // Already issued a diagnostic.
+
+ const llvm::APSInt &InitVal = ECD->getInitVal();
+
+ // Keep track of the size of positive and negative values.
+ if (InitVal.isUnsigned() || InitVal.isNonNegative())
+ NumPositiveBits = std::max(NumPositiveBits,
+ (unsigned)InitVal.getActiveBits());
+ else
+ NumNegativeBits = std::max(NumNegativeBits,
+ (unsigned)InitVal.getMinSignedBits());
+
+ // Keep track of whether every enum element has type int (very commmon).
+ if (AllElementsInt)
+ AllElementsInt = ECD->getType() == Context.IntTy;
+ }
+
+ // Figure out the type that should be used for this enum.
+ QualType BestType;
+ unsigned BestWidth;
+
+ // C++0x N3000 [conv.prom]p3:
+ // An rvalue of an unscoped enumeration type whose underlying
+ // type is not fixed can be converted to an rvalue of the first
+ // of the following types that can represent all the values of
+ // the enumeration: int, unsigned int, long int, unsigned long
+ // int, long long int, or unsigned long long int.
+ // C99 6.4.4.3p2:
+ // An identifier declared as an enumeration constant has type int.
+ // The C99 rule is modified by a gcc extension
+ QualType BestPromotionType;
+
+ bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
+ // -fshort-enums is the equivalent to specifying the packed attribute on all
+ // enum definitions.
+ if (LangOpts.ShortEnums)
+ Packed = true;
+
+ if (Enum->isFixed()) {
+ BestType = Enum->getIntegerType();
+ if (BestType->isPromotableIntegerType())
+ BestPromotionType = Context.getPromotedIntegerType(BestType);
+ else
+ BestPromotionType = BestType;
+ // We don't need to set BestWidth, because BestType is going to be the type
+ // of the enumerators, but we do anyway because otherwise some compilers
+ // warn that it might be used uninitialized.
+ BestWidth = CharWidth;
+ }
+ else if (NumNegativeBits) {
+ // If there is a negative value, figure out the smallest integer type (of
+ // int/long/longlong) that fits.
+ // If it's packed, check also if it fits a char or a short.
+ if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
+ BestType = Context.SignedCharTy;
+ BestWidth = CharWidth;
+ } else if (Packed && NumNegativeBits <= ShortWidth &&
+ NumPositiveBits < ShortWidth) {
+ BestType = Context.ShortTy;
+ BestWidth = ShortWidth;
+ } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
+ BestType = Context.IntTy;
+ BestWidth = IntWidth;
+ } else {
+ BestWidth = Context.getTargetInfo().getLongWidth();
+
+ if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
+ BestType = Context.LongTy;
+ } else {
+ BestWidth = Context.getTargetInfo().getLongLongWidth();
+
+ if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
+ Diag(Enum->getLocation(), diag::warn_enum_too_large);
+ BestType = Context.LongLongTy;
+ }
+ }
+ BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
+ } else {
+ // If there is no negative value, figure out the smallest type that fits
+ // all of the enumerator values.
+ // If it's packed, check also if it fits a char or a short.
+ if (Packed && NumPositiveBits <= CharWidth) {
+ BestType = Context.UnsignedCharTy;
+ BestPromotionType = Context.IntTy;
+ BestWidth = CharWidth;
+ } else if (Packed && NumPositiveBits <= ShortWidth) {
+ BestType = Context.UnsignedShortTy;
+ BestPromotionType = Context.IntTy;
+ BestWidth = ShortWidth;
+ } else if (NumPositiveBits <= IntWidth) {
+ BestType = Context.UnsignedIntTy;
+ BestWidth = IntWidth;
+ BestPromotionType
+ = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
+ ? Context.UnsignedIntTy : Context.IntTy;
+ } else if (NumPositiveBits <=
+ (BestWidth = Context.getTargetInfo().getLongWidth())) {
+ BestType = Context.UnsignedLongTy;
+ BestPromotionType
+ = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
+ ? Context.UnsignedLongTy : Context.LongTy;
+ } else {
+ BestWidth = Context.getTargetInfo().getLongLongWidth();
+ assert(NumPositiveBits <= BestWidth &&
+ "How could an initializer get larger than ULL?");
+ BestType = Context.UnsignedLongLongTy;
+ BestPromotionType
+ = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
+ ? Context.UnsignedLongLongTy : Context.LongLongTy;
+ }
+ }
+
+ // Loop over all of the enumerator constants, changing their types to match
+ // the type of the enum if needed.
+ for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
+ EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
+ if (!ECD) continue; // Already issued a diagnostic.
+
+ // Standard C says the enumerators have int type, but we allow, as an
+ // extension, the enumerators to be larger than int size. If each
+ // enumerator value fits in an int, type it as an int, otherwise type it the
+ // same as the enumerator decl itself. This means that in "enum { X = 1U }"
+ // that X has type 'int', not 'unsigned'.
+
+ // Determine whether the value fits into an int.
+ llvm::APSInt InitVal = ECD->getInitVal();
+
+ // If it fits into an integer type, force it. Otherwise force it to match
+ // the enum decl type.
+ QualType NewTy;
+ unsigned NewWidth;
+ bool NewSign;
+ if (!getLangOpts().CPlusPlus &&
+ !Enum->isFixed() &&
+ isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
+ NewTy = Context.IntTy;
+ NewWidth = IntWidth;
+ NewSign = true;
+ } else if (ECD->getType() == BestType) {
+ // Already the right type!
+ if (getLangOpts().CPlusPlus)
+ // C++ [dcl.enum]p4: Following the closing brace of an
+ // enum-specifier, each enumerator has the type of its
+ // enumeration.
+ ECD->setType(EnumType);
+ continue;
+ } else {
+ NewTy = BestType;
+ NewWidth = BestWidth;
+ NewSign = BestType->isSignedIntegerOrEnumerationType();
+ }
+
+ // Adjust the APSInt value.
+ InitVal = InitVal.extOrTrunc(NewWidth);
+ InitVal.setIsSigned(NewSign);
+ ECD->setInitVal(InitVal);
+
+ // Adjust the Expr initializer and type.
+ if (ECD->getInitExpr() &&
+ !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
+ ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
+ CK_IntegralCast,
+ ECD->getInitExpr(),
+ /*base paths*/ 0,
+ VK_RValue));
+ if (getLangOpts().CPlusPlus)
+ // C++ [dcl.enum]p4: Following the closing brace of an
+ // enum-specifier, each enumerator has the type of its
+ // enumeration.
+ ECD->setType(EnumType);
+ else
+ ECD->setType(NewTy);
+ }
+
+ Enum->completeDefinition(BestType, BestPromotionType,
+ NumPositiveBits, NumNegativeBits);
+
+ // If we're declaring a function, ensure this decl isn't forgotten about -
+ // it needs to go into the function scope.
+ if (InFunctionDeclarator)
+ DeclsInPrototypeScope.push_back(Enum);
+
+ CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
+
+ // Now that the enum type is defined, ensure it's not been underaligned.
+ if (Enum->hasAttrs())
+ CheckAlignasUnderalignment(Enum);
+}
+
+Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
+ SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+ StringLiteral *AsmString = cast<StringLiteral>(expr);
+
+ FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
+ AsmString, StartLoc,
+ EndLoc);
+ CurContext->addDecl(New);
+ return New;
+}
+
+DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
+ SourceLocation ImportLoc,
+ ModuleIdPath Path) {
+ Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
+ Module::AllVisible,
+ /*IsIncludeDirective=*/false);
+ if (!Mod)
+ return true;
+
+ SmallVector<SourceLocation, 2> IdentifierLocs;
+ Module *ModCheck = Mod;
+ for (unsigned I = 0, N = Path.size(); I != N; ++I) {
+ // If we've run out of module parents, just drop the remaining identifiers.
+ // We need the length to be consistent.
+ if (!ModCheck)
+ break;
+ ModCheck = ModCheck->Parent;
+
+ IdentifierLocs.push_back(Path[I].second);
+ }
+
+ ImportDecl *Import = ImportDecl::Create(Context,
+ Context.getTranslationUnitDecl(),
+ AtLoc.isValid()? AtLoc : ImportLoc,
+ Mod, IdentifierLocs);
+ Context.getTranslationUnitDecl()->addDecl(Import);
+ return Import;
+}
+
+void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
+ // FIXME: Should we synthesize an ImportDecl here?
+ PP.getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc,
+ /*Complain=*/true);
+}
+
+void Sema::createImplicitModuleImport(SourceLocation Loc, Module *Mod) {
+ // Create the implicit import declaration.
+ TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
+ ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
+ Loc, Mod, Loc);
+ TU->addDecl(ImportD);
+ Consumer.HandleImplicitImportDecl(ImportD);
+
+ // Make the module visible.
+ PP.getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc,
+ /*Complain=*/false);
+}
+
+void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
+ IdentifierInfo* AliasName,
+ SourceLocation PragmaLoc,
+ SourceLocation NameLoc,
+ SourceLocation AliasNameLoc) {
+ Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
+ LookupOrdinaryName);
+ AsmLabelAttr *Attr =
+ ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
+
+ if (PrevDecl)
+ PrevDecl->addAttr(Attr);
+ else
+ (void)ExtnameUndeclaredIdentifiers.insert(
+ std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
+}
+
+void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
+ SourceLocation PragmaLoc,
+ SourceLocation NameLoc) {
+ Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
+
+ if (PrevDecl) {
+ PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
+ } else {
+ (void)WeakUndeclaredIdentifiers.insert(
+ std::pair<IdentifierInfo*,WeakInfo>
+ (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
+ }
+}
+
+void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
+ IdentifierInfo* AliasName,
+ SourceLocation PragmaLoc,
+ SourceLocation NameLoc,
+ SourceLocation AliasNameLoc) {
+ Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
+ LookupOrdinaryName);
+ WeakInfo W = WeakInfo(Name, NameLoc);
+
+ if (PrevDecl) {
+ if (!PrevDecl->hasAttr<AliasAttr>())
+ if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
+ DeclApplyPragmaWeak(TUScope, ND, W);
+ } else {
+ (void)WeakUndeclaredIdentifiers.insert(
+ std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
+ }
+}
+
+Decl *Sema::getObjCDeclContext() const {
+ return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
+}
+
+AvailabilityResult Sema::getCurContextAvailability() const {
+ const Decl *D = cast<Decl>(getCurObjCLexicalContext());
+ return D->getAvailability();
+}
OpenPOWER on IntegriCloud