summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/Sema/SemaDecl.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/Sema/SemaDecl.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaDecl.cpp6708
1 files changed, 6708 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaDecl.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaDecl.cpp
new file mode 100644
index 0000000..af02099
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaDecl.cpp
@@ -0,0 +1,6708 @@
+//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements semantic analysis for declarations.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Sema.h"
+#include "SemaInit.h"
+#include "Lookup.h"
+#include "clang/AST/APValue.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/StmtCXX.h"
+#include "clang/Parse/DeclSpec.h"
+#include "clang/Parse/ParseDiagnostic.h"
+#include "clang/Parse/Template.h"
+#include "clang/Basic/PartialDiagnostic.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TargetInfo.h"
+// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Lex/HeaderSearch.h"
+#include "llvm/ADT/Triple.h"
+#include <algorithm>
+#include <cstring>
+#include <functional>
+using namespace clang;
+
+/// getDeclName - Return a pretty name for the specified decl if possible, or
+/// an empty string if not. This is used for pretty crash reporting.
+std::string Sema::getDeclName(DeclPtrTy d) {
+ Decl *D = d.getAs<Decl>();
+ if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
+ return DN->getQualifiedNameAsString();
+ return "";
+}
+
+Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
+ return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
+}
+
+/// \brief If the identifier refers to a type name within this scope,
+/// return the declaration of that type.
+///
+/// This routine performs ordinary name lookup of the identifier II
+/// within the given scope, with optional C++ scope specifier SS, to
+/// determine whether the name refers to a type. If so, returns an
+/// opaque pointer (actually a QualType) corresponding to that
+/// type. Otherwise, returns NULL.
+///
+/// If name lookup results in an ambiguity, this routine will complain
+/// and then return NULL.
+Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
+ Scope *S, CXXScopeSpec *SS,
+ bool isClassName,
+ TypeTy *ObjectTypePtr) {
+ // Determine where we will perform name lookup.
+ DeclContext *LookupCtx = 0;
+ if (ObjectTypePtr) {
+ QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
+ if (ObjectType->isRecordType())
+ LookupCtx = computeDeclContext(ObjectType);
+ } else if (SS && SS->isNotEmpty()) {
+ LookupCtx = computeDeclContext(*SS, false);
+
+ if (!LookupCtx) {
+ if (isDependentScopeSpecifier(*SS)) {
+ // C++ [temp.res]p3:
+ // A qualified-id that refers to a type and in which the
+ // nested-name-specifier depends on a template-parameter (14.6.2)
+ // shall be prefixed by the keyword typename to indicate that the
+ // qualified-id denotes a type, forming an
+ // elaborated-type-specifier (7.1.5.3).
+ //
+ // We therefore do not perform any name lookup if the result would
+ // refer to a member of an unknown specialization.
+ if (!isClassName)
+ return 0;
+
+ // We know from the grammar that this name refers to a type, so build a
+ // DependentNameType node to describe the type.
+ return CheckTypenameType(ETK_None,
+ (NestedNameSpecifier *)SS->getScopeRep(), II,
+ SourceLocation(), SS->getRange(), NameLoc
+ ).getAsOpaquePtr();
+ }
+
+ return 0;
+ }
+
+ if (!LookupCtx->isDependentContext() &&
+ RequireCompleteDeclContext(*SS, LookupCtx))
+ return 0;
+ }
+
+ // FIXME: LookupNestedNameSpecifierName isn't the right kind of
+ // lookup for class-names.
+ LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
+ LookupOrdinaryName;
+ LookupResult Result(*this, &II, NameLoc, Kind);
+ if (LookupCtx) {
+ // Perform "qualified" name lookup into the declaration context we
+ // computed, which is either the type of the base of a member access
+ // expression or the declaration context associated with a prior
+ // nested-name-specifier.
+ LookupQualifiedName(Result, LookupCtx);
+
+ if (ObjectTypePtr && Result.empty()) {
+ // C++ [basic.lookup.classref]p3:
+ // If the unqualified-id is ~type-name, the type-name is looked up
+ // in the context of the entire postfix-expression. If the type T of
+ // the object expression is of a class type C, the type-name is also
+ // looked up in the scope of class C. At least one of the lookups shall
+ // find a name that refers to (possibly cv-qualified) T.
+ LookupName(Result, S);
+ }
+ } else {
+ // Perform unqualified name lookup.
+ LookupName(Result, S);
+ }
+
+ NamedDecl *IIDecl = 0;
+ switch (Result.getResultKind()) {
+ case LookupResult::NotFound:
+ case LookupResult::NotFoundInCurrentInstantiation:
+ case LookupResult::FoundOverloaded:
+ case LookupResult::FoundUnresolvedValue:
+ Result.suppressDiagnostics();
+ return 0;
+
+ case LookupResult::Ambiguous:
+ // Recover from type-hiding ambiguities by hiding the type. We'll
+ // do the lookup again when looking for an object, and we can
+ // diagnose the error then. If we don't do this, then the error
+ // about hiding the type will be immediately followed by an error
+ // that only makes sense if the identifier was treated like a type.
+ if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
+ Result.suppressDiagnostics();
+ return 0;
+ }
+
+ // Look to see if we have a type anywhere in the list of results.
+ for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
+ Res != ResEnd; ++Res) {
+ if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
+ if (!IIDecl ||
+ (*Res)->getLocation().getRawEncoding() <
+ IIDecl->getLocation().getRawEncoding())
+ IIDecl = *Res;
+ }
+ }
+
+ if (!IIDecl) {
+ // None of the entities we found is a type, so there is no way
+ // to even assume that the result is a type. In this case, don't
+ // complain about the ambiguity. The parser will either try to
+ // perform this lookup again (e.g., as an object name), which
+ // will produce the ambiguity, or will complain that it expected
+ // a type name.
+ Result.suppressDiagnostics();
+ return 0;
+ }
+
+ // We found a type within the ambiguous lookup; diagnose the
+ // ambiguity and then return that type. This might be the right
+ // answer, or it might not be, but it suppresses any attempt to
+ // perform the name lookup again.
+ break;
+
+ case LookupResult::Found:
+ IIDecl = Result.getFoundDecl();
+ break;
+ }
+
+ assert(IIDecl && "Didn't find decl");
+
+ QualType T;
+ if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
+ DiagnoseUseOfDecl(IIDecl, NameLoc);
+
+ if (T.isNull())
+ T = Context.getTypeDeclType(TD);
+
+ if (SS)
+ T = getElaboratedType(ETK_None, *SS, T);
+
+ } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
+ T = Context.getObjCInterfaceType(IDecl);
+ } else if (UnresolvedUsingTypenameDecl *UUDecl =
+ dyn_cast<UnresolvedUsingTypenameDecl>(IIDecl)) {
+ // FIXME: preserve source structure information.
+ T = Context.getDependentNameType(ETK_None,
+ UUDecl->getTargetNestedNameSpecifier(),
+ &II);
+ } else {
+ // If it's not plausibly a type, suppress diagnostics.
+ Result.suppressDiagnostics();
+ return 0;
+ }
+
+ return T.getAsOpaquePtr();
+}
+
+/// isTagName() - This method is called *for error recovery purposes only*
+/// to determine if the specified name is a valid tag name ("struct foo"). If
+/// so, this returns the TST for the tag corresponding to it (TST_enum,
+/// TST_union, TST_struct, TST_class). This is used to diagnose cases in C
+/// where the user forgot to specify the tag.
+DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
+ // Do a tag name lookup in this scope.
+ LookupResult R(*this, &II, SourceLocation(), LookupTagName);
+ LookupName(R, S, false);
+ R.suppressDiagnostics();
+ if (R.getResultKind() == LookupResult::Found)
+ if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
+ switch (TD->getTagKind()) {
+ default: return DeclSpec::TST_unspecified;
+ case TTK_Struct: return DeclSpec::TST_struct;
+ case TTK_Union: return DeclSpec::TST_union;
+ case TTK_Class: return DeclSpec::TST_class;
+ case TTK_Enum: return DeclSpec::TST_enum;
+ }
+ }
+
+ return DeclSpec::TST_unspecified;
+}
+
+bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
+ SourceLocation IILoc,
+ Scope *S,
+ CXXScopeSpec *SS,
+ TypeTy *&SuggestedType) {
+ // We don't have anything to suggest (yet).
+ SuggestedType = 0;
+
+ // There may have been a typo in the name of the type. Look up typo
+ // results, in case we have something that we can suggest.
+ LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
+ NotForRedeclaration);
+
+ if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
+ if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
+ if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
+ !Result->isInvalidDecl()) {
+ // We found a similarly-named type or interface; suggest that.
+ if (!SS || !SS->isSet())
+ Diag(IILoc, diag::err_unknown_typename_suggest)
+ << &II << Lookup.getLookupName()
+ << FixItHint::CreateReplacement(SourceRange(IILoc),
+ Result->getNameAsString());
+ else if (DeclContext *DC = computeDeclContext(*SS, false))
+ Diag(IILoc, diag::err_unknown_nested_typename_suggest)
+ << &II << DC << Lookup.getLookupName() << SS->getRange()
+ << FixItHint::CreateReplacement(SourceRange(IILoc),
+ Result->getNameAsString());
+ else
+ llvm_unreachable("could not have corrected a typo here");
+
+ Diag(Result->getLocation(), diag::note_previous_decl)
+ << Result->getDeclName();
+
+ SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
+ return true;
+ }
+ } else if (Lookup.empty()) {
+ // We corrected to a keyword.
+ // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
+ Diag(IILoc, diag::err_unknown_typename_suggest)
+ << &II << Corrected;
+ return true;
+ }
+ }
+
+ if (getLangOptions().CPlusPlus) {
+ // See if II is a class template that the user forgot to pass arguments to.
+ UnqualifiedId Name;
+ Name.setIdentifier(&II, IILoc);
+ CXXScopeSpec EmptySS;
+ TemplateTy TemplateResult;
+ bool MemberOfUnknownSpecialization;
+ if (isTemplateName(S, SS ? *SS : EmptySS, Name, 0, true, TemplateResult,
+ MemberOfUnknownSpecialization) == TNK_Type_template) {
+ TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
+ Diag(IILoc, diag::err_template_missing_args) << TplName;
+ if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
+ Diag(TplDecl->getLocation(), diag::note_template_decl_here)
+ << TplDecl->getTemplateParameters()->getSourceRange();
+ }
+ return true;
+ }
+ }
+
+ // FIXME: Should we move the logic that tries to recover from a missing tag
+ // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
+
+ if (!SS || (!SS->isSet() && !SS->isInvalid()))
+ Diag(IILoc, diag::err_unknown_typename) << &II;
+ else if (DeclContext *DC = computeDeclContext(*SS, false))
+ Diag(IILoc, diag::err_typename_nested_not_found)
+ << &II << DC << SS->getRange();
+ else if (isDependentScopeSpecifier(*SS)) {
+ Diag(SS->getRange().getBegin(), diag::err_typename_missing)
+ << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
+ << SourceRange(SS->getRange().getBegin(), IILoc)
+ << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
+ SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
+ } else {
+ assert(SS && SS->isInvalid() &&
+ "Invalid scope specifier has already been diagnosed");
+ }
+
+ return true;
+}
+
+// Determines the context to return to after temporarily entering a
+// context. This depends in an unnecessarily complicated way on the
+// exact ordering of callbacks from the parser.
+DeclContext *Sema::getContainingDC(DeclContext *DC) {
+
+ // Functions defined inline within classes aren't parsed until we've
+ // finished parsing the top-level class, so the top-level class is
+ // the context we'll need to return to.
+ if (isa<FunctionDecl>(DC)) {
+ DC = DC->getLexicalParent();
+
+ // A function not defined within a class will always return to its
+ // lexical context.
+ if (!isa<CXXRecordDecl>(DC))
+ return DC;
+
+ // A C++ inline method/friend is parsed *after* the topmost class
+ // it was declared in is fully parsed ("complete"); the topmost
+ // class is the context we need to return to.
+ while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
+ DC = RD;
+
+ // Return the declaration context of the topmost class the inline method is
+ // declared in.
+ return DC;
+ }
+
+ if (isa<ObjCMethodDecl>(DC))
+ return Context.getTranslationUnitDecl();
+
+ return DC->getLexicalParent();
+}
+
+void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
+ assert(getContainingDC(DC) == CurContext &&
+ "The next DeclContext should be lexically contained in the current one.");
+ CurContext = DC;
+ S->setEntity(DC);
+}
+
+void Sema::PopDeclContext() {
+ assert(CurContext && "DeclContext imbalance!");
+
+ CurContext = getContainingDC(CurContext);
+}
+
+/// EnterDeclaratorContext - Used when we must lookup names in the context
+/// of a declarator's nested name specifier.
+///
+void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
+ // C++0x [basic.lookup.unqual]p13:
+ // A name used in the definition of a static data member of class
+ // X (after the qualified-id of the static member) is looked up as
+ // if the name was used in a member function of X.
+ // C++0x [basic.lookup.unqual]p14:
+ // If a variable member of a namespace is defined outside of the
+ // scope of its namespace then any name used in the definition of
+ // the variable member (after the declarator-id) is looked up as
+ // if the definition of the variable member occurred in its
+ // namespace.
+ // Both of these imply that we should push a scope whose context
+ // is the semantic context of the declaration. We can't use
+ // PushDeclContext here because that context is not necessarily
+ // lexically contained in the current context. Fortunately,
+ // the containing scope should have the appropriate information.
+
+ assert(!S->getEntity() && "scope already has entity");
+
+#ifndef NDEBUG
+ Scope *Ancestor = S->getParent();
+ while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
+ assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
+#endif
+
+ CurContext = DC;
+ S->setEntity(DC);
+}
+
+void Sema::ExitDeclaratorContext(Scope *S) {
+ assert(S->getEntity() == CurContext && "Context imbalance!");
+
+ // Switch back to the lexical context. The safety of this is
+ // enforced by an assert in EnterDeclaratorContext.
+ Scope *Ancestor = S->getParent();
+ while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
+ CurContext = (DeclContext*) Ancestor->getEntity();
+
+ // We don't need to do anything with the scope, which is going to
+ // disappear.
+}
+
+/// \brief Determine whether we allow overloading of the function
+/// PrevDecl with another declaration.
+///
+/// This routine determines whether overloading is possible, not
+/// whether some new function is actually an overload. It will return
+/// true in C++ (where we can always provide overloads) or, as an
+/// extension, in C when the previous function is already an
+/// overloaded function declaration or has the "overloadable"
+/// attribute.
+static bool AllowOverloadingOfFunction(LookupResult &Previous,
+ ASTContext &Context) {
+ if (Context.getLangOptions().CPlusPlus)
+ return true;
+
+ if (Previous.getResultKind() == LookupResult::FoundOverloaded)
+ return true;
+
+ return (Previous.getResultKind() == LookupResult::Found
+ && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
+}
+
+/// Add this decl to the scope shadowed decl chains.
+void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
+ // Move up the scope chain until we find the nearest enclosing
+ // non-transparent context. The declaration will be introduced into this
+ // scope.
+ while (S->getEntity() &&
+ ((DeclContext *)S->getEntity())->isTransparentContext())
+ S = S->getParent();
+
+ // Add scoped declarations into their context, so that they can be
+ // found later. Declarations without a context won't be inserted
+ // into any context.
+ if (AddToContext)
+ CurContext->addDecl(D);
+
+ // Out-of-line definitions shouldn't be pushed into scope in C++.
+ // Out-of-line variable and function definitions shouldn't even in C.
+ if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
+ D->isOutOfLine())
+ return;
+
+ // Template instantiations should also not be pushed into scope.
+ if (isa<FunctionDecl>(D) &&
+ cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
+ return;
+
+ // If this replaces anything in the current scope,
+ IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
+ IEnd = IdResolver.end();
+ for (; I != IEnd; ++I) {
+ if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
+ S->RemoveDecl(DeclPtrTy::make(*I));
+ IdResolver.RemoveDecl(*I);
+
+ // Should only need to replace one decl.
+ break;
+ }
+ }
+
+ S->AddDecl(DeclPtrTy::make(D));
+ IdResolver.AddDecl(D);
+}
+
+bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
+ return IdResolver.isDeclInScope(D, Ctx, Context, S);
+}
+
+static bool isOutOfScopePreviousDeclaration(NamedDecl *,
+ DeclContext*,
+ ASTContext&);
+
+/// Filters out lookup results that don't fall within the given scope
+/// as determined by isDeclInScope.
+static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
+ DeclContext *Ctx, Scope *S,
+ bool ConsiderLinkage) {
+ LookupResult::Filter F = R.makeFilter();
+ while (F.hasNext()) {
+ NamedDecl *D = F.next();
+
+ if (SemaRef.isDeclInScope(D, Ctx, S))
+ continue;
+
+ if (ConsiderLinkage &&
+ isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
+ continue;
+
+ F.erase();
+ }
+
+ F.done();
+}
+
+static bool isUsingDecl(NamedDecl *D) {
+ return isa<UsingShadowDecl>(D) ||
+ isa<UnresolvedUsingTypenameDecl>(D) ||
+ isa<UnresolvedUsingValueDecl>(D);
+}
+
+/// Removes using shadow declarations from the lookup results.
+static void RemoveUsingDecls(LookupResult &R) {
+ LookupResult::Filter F = R.makeFilter();
+ while (F.hasNext())
+ if (isUsingDecl(F.next()))
+ F.erase();
+
+ F.done();
+}
+
+static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
+ if (D->isInvalidDecl())
+ return false;
+
+ if (D->isUsed() || D->hasAttr<UnusedAttr>())
+ return false;
+
+ // White-list anything that isn't a local variable.
+ if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
+ !D->getDeclContext()->isFunctionOrMethod())
+ return false;
+
+ // Types of valid local variables should be complete, so this should succeed.
+ if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
+
+ // White-list anything with an __attribute__((unused)) type.
+ QualType Ty = VD->getType();
+
+ // Only look at the outermost level of typedef.
+ if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
+ if (TT->getDecl()->hasAttr<UnusedAttr>())
+ return false;
+ }
+
+ // If we failed to complete the type for some reason, or if the type is
+ // dependent, don't diagnose the variable.
+ if (Ty->isIncompleteType() || Ty->isDependentType())
+ return false;
+
+ if (const TagType *TT = Ty->getAs<TagType>()) {
+ const TagDecl *Tag = TT->getDecl();
+ if (Tag->hasAttr<UnusedAttr>())
+ return false;
+
+ if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
+ // FIXME: Checking for the presence of a user-declared constructor
+ // isn't completely accurate; we'd prefer to check that the initializer
+ // has no side effects.
+ if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
+ return false;
+ }
+ }
+
+ // TODO: __attribute__((unused)) templates?
+ }
+
+ return true;
+}
+
+void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
+ if (!ShouldDiagnoseUnusedDecl(D))
+ return;
+
+ if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
+ Diag(D->getLocation(), diag::warn_unused_exception_param)
+ << D->getDeclName();
+ else
+ Diag(D->getLocation(), diag::warn_unused_variable)
+ << D->getDeclName();
+}
+
+void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
+ if (S->decl_empty()) return;
+ assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
+ "Scope shouldn't contain decls!");
+
+ for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
+ I != E; ++I) {
+ Decl *TmpD = (*I).getAs<Decl>();
+ assert(TmpD && "This decl didn't get pushed??");
+
+ assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
+ NamedDecl *D = cast<NamedDecl>(TmpD);
+
+ if (!D->getDeclName()) continue;
+
+ // Diagnose unused variables in this scope.
+ if (S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
+ DiagnoseUnusedDecl(D);
+
+ // Remove this name from our lexical scope.
+ IdResolver.RemoveDecl(D);
+ }
+}
+
+/// \brief Look for an Objective-C class in the translation unit.
+///
+/// \param Id The name of the Objective-C class we're looking for. If
+/// typo-correction fixes this name, the Id will be updated
+/// to the fixed name.
+///
+/// \param IdLoc The location of the name in the translation unit.
+///
+/// \param TypoCorrection If true, this routine will attempt typo correction
+/// if there is no class with the given name.
+///
+/// \returns The declaration of the named Objective-C class, or NULL if the
+/// class could not be found.
+ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
+ SourceLocation IdLoc,
+ bool TypoCorrection) {
+ // The third "scope" argument is 0 since we aren't enabling lazy built-in
+ // creation from this context.
+ NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
+
+ if (!IDecl && TypoCorrection) {
+ // Perform typo correction at the given location, but only if we
+ // find an Objective-C class name.
+ LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
+ if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
+ (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
+ Diag(IdLoc, diag::err_undef_interface_suggest)
+ << Id << IDecl->getDeclName()
+ << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
+ Diag(IDecl->getLocation(), diag::note_previous_decl)
+ << IDecl->getDeclName();
+
+ Id = IDecl->getIdentifier();
+ }
+ }
+
+ return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
+}
+
+/// getNonFieldDeclScope - Retrieves the innermost scope, starting
+/// from S, where a non-field would be declared. This routine copes
+/// with the difference between C and C++ scoping rules in structs and
+/// unions. For example, the following code is well-formed in C but
+/// ill-formed in C++:
+/// @code
+/// struct S6 {
+/// enum { BAR } e;
+/// };
+///
+/// void test_S6() {
+/// struct S6 a;
+/// a.e = BAR;
+/// }
+/// @endcode
+/// For the declaration of BAR, this routine will return a different
+/// scope. The scope S will be the scope of the unnamed enumeration
+/// within S6. In C++, this routine will return the scope associated
+/// with S6, because the enumeration's scope is a transparent
+/// context but structures can contain non-field names. In C, this
+/// routine will return the translation unit scope, since the
+/// enumeration's scope is a transparent context and structures cannot
+/// contain non-field names.
+Scope *Sema::getNonFieldDeclScope(Scope *S) {
+ while (((S->getFlags() & Scope::DeclScope) == 0) ||
+ (S->getEntity() &&
+ ((DeclContext *)S->getEntity())->isTransparentContext()) ||
+ (S->isClassScope() && !getLangOptions().CPlusPlus))
+ S = S->getParent();
+ return S;
+}
+
+void Sema::InitBuiltinVaListType() {
+ if (!Context.getBuiltinVaListType().isNull())
+ return;
+
+ IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
+ NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, SourceLocation(),
+ LookupOrdinaryName, ForRedeclaration);
+ TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
+ Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
+}
+
+/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
+/// file scope. lazily create a decl for it. ForRedeclaration is true
+/// if we're creating this built-in in anticipation of redeclaring the
+/// built-in.
+NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
+ Scope *S, bool ForRedeclaration,
+ SourceLocation Loc) {
+ Builtin::ID BID = (Builtin::ID)bid;
+
+ if (Context.BuiltinInfo.hasVAListUse(BID))
+ InitBuiltinVaListType();
+
+ ASTContext::GetBuiltinTypeError Error;
+ QualType R = Context.GetBuiltinType(BID, Error);
+ switch (Error) {
+ case ASTContext::GE_None:
+ // Okay
+ break;
+
+ case ASTContext::GE_Missing_stdio:
+ if (ForRedeclaration)
+ Diag(Loc, diag::err_implicit_decl_requires_stdio)
+ << Context.BuiltinInfo.GetName(BID);
+ return 0;
+
+ case ASTContext::GE_Missing_setjmp:
+ if (ForRedeclaration)
+ Diag(Loc, diag::err_implicit_decl_requires_setjmp)
+ << Context.BuiltinInfo.GetName(BID);
+ return 0;
+ }
+
+ if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
+ Diag(Loc, diag::ext_implicit_lib_function_decl)
+ << Context.BuiltinInfo.GetName(BID)
+ << R;
+ if (Context.BuiltinInfo.getHeaderName(BID) &&
+ Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
+ != Diagnostic::Ignored)
+ Diag(Loc, diag::note_please_include_header)
+ << Context.BuiltinInfo.getHeaderName(BID)
+ << Context.BuiltinInfo.GetName(BID);
+ }
+
+ FunctionDecl *New = FunctionDecl::Create(Context,
+ Context.getTranslationUnitDecl(),
+ Loc, II, R, /*TInfo=*/0,
+ FunctionDecl::Extern,
+ FunctionDecl::None, false,
+ /*hasPrototype=*/true);
+ New->setImplicit();
+
+ // Create Decl objects for each parameter, adding them to the
+ // FunctionDecl.
+ if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
+ llvm::SmallVector<ParmVarDecl*, 16> Params;
+ for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
+ Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
+ FT->getArgType(i), /*TInfo=*/0,
+ VarDecl::None, VarDecl::None, 0));
+ New->setParams(Params.data(), Params.size());
+ }
+
+ AddKnownFunctionAttributes(New);
+
+ // TUScope is the translation-unit scope to insert this function into.
+ // FIXME: This is hideous. We need to teach PushOnScopeChains to
+ // relate Scopes to DeclContexts, and probably eliminate CurContext
+ // entirely, but we're not there yet.
+ DeclContext *SavedContext = CurContext;
+ CurContext = Context.getTranslationUnitDecl();
+ PushOnScopeChains(New, TUScope);
+ CurContext = SavedContext;
+ return New;
+}
+
+/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
+/// same name and scope as a previous declaration 'Old'. Figure out
+/// how to resolve this situation, merging decls or emitting
+/// diagnostics as appropriate. If there was an error, set New to be invalid.
+///
+void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
+ // If the new decl is known invalid already, don't bother doing any
+ // merging checks.
+ if (New->isInvalidDecl()) return;
+
+ // Allow multiple definitions for ObjC built-in typedefs.
+ // FIXME: Verify the underlying types are equivalent!
+ if (getLangOptions().ObjC1) {
+ const IdentifierInfo *TypeID = New->getIdentifier();
+ switch (TypeID->getLength()) {
+ default: break;
+ case 2:
+ if (!TypeID->isStr("id"))
+ break;
+ Context.ObjCIdRedefinitionType = New->getUnderlyingType();
+ // Install the built-in type for 'id', ignoring the current definition.
+ New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
+ return;
+ case 5:
+ if (!TypeID->isStr("Class"))
+ break;
+ Context.ObjCClassRedefinitionType = New->getUnderlyingType();
+ // Install the built-in type for 'Class', ignoring the current definition.
+ New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
+ return;
+ case 3:
+ if (!TypeID->isStr("SEL"))
+ break;
+ Context.ObjCSelRedefinitionType = New->getUnderlyingType();
+ // Install the built-in type for 'SEL', ignoring the current definition.
+ New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
+ return;
+ case 8:
+ if (!TypeID->isStr("Protocol"))
+ break;
+ Context.setObjCProtoType(New->getUnderlyingType());
+ return;
+ }
+ // Fall through - the typedef name was not a builtin type.
+ }
+
+ // Verify the old decl was also a type.
+ TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
+ if (!Old) {
+ Diag(New->getLocation(), diag::err_redefinition_different_kind)
+ << New->getDeclName();
+
+ NamedDecl *OldD = OldDecls.getRepresentativeDecl();
+ if (OldD->getLocation().isValid())
+ Diag(OldD->getLocation(), diag::note_previous_definition);
+
+ return New->setInvalidDecl();
+ }
+
+ // If the old declaration is invalid, just give up here.
+ if (Old->isInvalidDecl())
+ return New->setInvalidDecl();
+
+ // Determine the "old" type we'll use for checking and diagnostics.
+ QualType OldType;
+ if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
+ OldType = OldTypedef->getUnderlyingType();
+ else
+ OldType = Context.getTypeDeclType(Old);
+
+ // If the typedef types are not identical, reject them in all languages and
+ // with any extensions enabled.
+
+ if (OldType != New->getUnderlyingType() &&
+ Context.getCanonicalType(OldType) !=
+ Context.getCanonicalType(New->getUnderlyingType())) {
+ Diag(New->getLocation(), diag::err_redefinition_different_typedef)
+ << New->getUnderlyingType() << OldType;
+ if (Old->getLocation().isValid())
+ Diag(Old->getLocation(), diag::note_previous_definition);
+ return New->setInvalidDecl();
+ }
+
+ // The types match. Link up the redeclaration chain if the old
+ // declaration was a typedef.
+ // FIXME: this is a potential source of wierdness if the type
+ // spellings don't match exactly.
+ if (isa<TypedefDecl>(Old))
+ New->setPreviousDeclaration(cast<TypedefDecl>(Old));
+
+ if (getLangOptions().Microsoft)
+ return;
+
+ if (getLangOptions().CPlusPlus) {
+ // C++ [dcl.typedef]p2:
+ // In a given non-class scope, a typedef specifier can be used to
+ // redefine the name of any type declared in that scope to refer
+ // to the type to which it already refers.
+ if (!isa<CXXRecordDecl>(CurContext))
+ return;
+
+ // C++0x [dcl.typedef]p4:
+ // In a given class scope, a typedef specifier can be used to redefine
+ // any class-name declared in that scope that is not also a typedef-name
+ // to refer to the type to which it already refers.
+ //
+ // This wording came in via DR424, which was a correction to the
+ // wording in DR56, which accidentally banned code like:
+ //
+ // struct S {
+ // typedef struct A { } A;
+ // };
+ //
+ // in the C++03 standard. We implement the C++0x semantics, which
+ // allow the above but disallow
+ //
+ // struct S {
+ // typedef int I;
+ // typedef int I;
+ // };
+ //
+ // since that was the intent of DR56.
+ if (!isa<TypedefDecl >(Old))
+ return;
+
+ Diag(New->getLocation(), diag::err_redefinition)
+ << New->getDeclName();
+ Diag(Old->getLocation(), diag::note_previous_definition);
+ return New->setInvalidDecl();
+ }
+
+ // If we have a redefinition of a typedef in C, emit a warning. This warning
+ // is normally mapped to an error, but can be controlled with
+ // -Wtypedef-redefinition. If either the original or the redefinition is
+ // in a system header, don't emit this for compatibility with GCC.
+ if (getDiagnostics().getSuppressSystemWarnings() &&
+ (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
+ Context.getSourceManager().isInSystemHeader(New->getLocation())))
+ return;
+
+ Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
+ << New->getDeclName();
+ Diag(Old->getLocation(), diag::note_previous_definition);
+ return;
+}
+
+/// DeclhasAttr - returns true if decl Declaration already has the target
+/// attribute.
+static bool
+DeclHasAttr(const Decl *decl, const Attr *target) {
+ for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
+ if (attr->getKind() == target->getKind())
+ return true;
+
+ return false;
+}
+
+/// MergeAttributes - append attributes from the Old decl to the New one.
+static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
+ for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
+ if (!DeclHasAttr(New, attr) && attr->isMerged()) {
+ Attr *NewAttr = attr->clone(C);
+ NewAttr->setInherited(true);
+ New->addAttr(NewAttr);
+ }
+ }
+}
+
+/// Used in MergeFunctionDecl to keep track of function parameters in
+/// C.
+struct GNUCompatibleParamWarning {
+ ParmVarDecl *OldParm;
+ ParmVarDecl *NewParm;
+ QualType PromotedType;
+};
+
+
+/// getSpecialMember - get the special member enum for a method.
+Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
+ if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
+ if (Ctor->isCopyConstructor())
+ return Sema::CXXCopyConstructor;
+
+ return Sema::CXXConstructor;
+ }
+
+ if (isa<CXXDestructorDecl>(MD))
+ return Sema::CXXDestructor;
+
+ assert(MD->isCopyAssignment() && "Must have copy assignment operator");
+ return Sema::CXXCopyAssignment;
+}
+
+/// canREdefineFunction - checks if a function can be redefined. Currently,
+/// only extern inline functions can be redefined, and even then only in
+/// GNU89 mode.
+static bool canRedefineFunction(const FunctionDecl *FD,
+ const LangOptions& LangOpts) {
+ return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
+ FD->isInlineSpecified() &&
+ FD->getStorageClass() == FunctionDecl::Extern);
+}
+
+/// MergeFunctionDecl - We just parsed a function 'New' from
+/// declarator D which has the same name and scope as a previous
+/// declaration 'Old'. Figure out how to resolve this situation,
+/// merging decls or emitting diagnostics as appropriate.
+///
+/// In C++, New and Old must be declarations that are not
+/// overloaded. Use IsOverload to determine whether New and Old are
+/// overloaded, and to select the Old declaration that New should be
+/// merged with.
+///
+/// Returns true if there was an error, false otherwise.
+bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
+ // Verify the old decl was also a function.
+ FunctionDecl *Old = 0;
+ if (FunctionTemplateDecl *OldFunctionTemplate
+ = dyn_cast<FunctionTemplateDecl>(OldD))
+ Old = OldFunctionTemplate->getTemplatedDecl();
+ else
+ Old = dyn_cast<FunctionDecl>(OldD);
+ if (!Old) {
+ if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
+ Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
+ Diag(Shadow->getTargetDecl()->getLocation(),
+ diag::note_using_decl_target);
+ Diag(Shadow->getUsingDecl()->getLocation(),
+ diag::note_using_decl) << 0;
+ return true;
+ }
+
+ Diag(New->getLocation(), diag::err_redefinition_different_kind)
+ << New->getDeclName();
+ Diag(OldD->getLocation(), diag::note_previous_definition);
+ return true;
+ }
+
+ // Determine whether the previous declaration was a definition,
+ // implicit declaration, or a declaration.
+ diag::kind PrevDiag;
+ if (Old->isThisDeclarationADefinition())
+ PrevDiag = diag::note_previous_definition;
+ else if (Old->isImplicit())
+ PrevDiag = diag::note_previous_implicit_declaration;
+ else
+ PrevDiag = diag::note_previous_declaration;
+
+ QualType OldQType = Context.getCanonicalType(Old->getType());
+ QualType NewQType = Context.getCanonicalType(New->getType());
+
+ // Don't complain about this if we're in GNU89 mode and the old function
+ // is an extern inline function.
+ if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
+ New->getStorageClass() == FunctionDecl::Static &&
+ Old->getStorageClass() != FunctionDecl::Static &&
+ !canRedefineFunction(Old, getLangOptions())) {
+ Diag(New->getLocation(), diag::err_static_non_static)
+ << New;
+ Diag(Old->getLocation(), PrevDiag);
+ return true;
+ }
+
+ // If a function is first declared with a calling convention, but is
+ // later declared or defined without one, the second decl assumes the
+ // calling convention of the first.
+ //
+ // For the new decl, we have to look at the NON-canonical type to tell the
+ // difference between a function that really doesn't have a calling
+ // convention and one that is declared cdecl. That's because in
+ // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
+ // because it is the default calling convention.
+ //
+ // Note also that we DO NOT return at this point, because we still have
+ // other tests to run.
+ const FunctionType *OldType = OldQType->getAs<FunctionType>();
+ const FunctionType *NewType = New->getType()->getAs<FunctionType>();
+ const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
+ const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
+ if (OldTypeInfo.getCC() != CC_Default &&
+ NewTypeInfo.getCC() == CC_Default) {
+ NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
+ New->setType(NewQType);
+ NewQType = Context.getCanonicalType(NewQType);
+ } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
+ NewTypeInfo.getCC())) {
+ // Calling conventions really aren't compatible, so complain.
+ Diag(New->getLocation(), diag::err_cconv_change)
+ << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
+ << (OldTypeInfo.getCC() == CC_Default)
+ << (OldTypeInfo.getCC() == CC_Default ? "" :
+ FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
+ Diag(Old->getLocation(), diag::note_previous_declaration);
+ return true;
+ }
+
+ // FIXME: diagnose the other way around?
+ if (OldType->getNoReturnAttr() &&
+ !NewType->getNoReturnAttr()) {
+ NewQType = Context.getNoReturnType(NewQType);
+ New->setType(NewQType);
+ assert(NewQType.isCanonical());
+ }
+
+ if (getLangOptions().CPlusPlus) {
+ // (C++98 13.1p2):
+ // Certain function declarations cannot be overloaded:
+ // -- Function declarations that differ only in the return type
+ // cannot be overloaded.
+ QualType OldReturnType
+ = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
+ QualType NewReturnType
+ = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
+ QualType ResQT;
+ if (OldReturnType != NewReturnType) {
+ if (NewReturnType->isObjCObjectPointerType()
+ && OldReturnType->isObjCObjectPointerType())
+ ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
+ if (ResQT.isNull()) {
+ Diag(New->getLocation(), diag::err_ovl_diff_return_type);
+ Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
+ return true;
+ }
+ else
+ NewQType = ResQT;
+ }
+
+ const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
+ CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
+ if (OldMethod && NewMethod) {
+ // Preserve triviality.
+ NewMethod->setTrivial(OldMethod->isTrivial());
+
+ bool isFriend = NewMethod->getFriendObjectKind();
+
+ if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
+ // -- Member function declarations with the same name and the
+ // same parameter types cannot be overloaded if any of them
+ // is a static member function declaration.
+ if (OldMethod->isStatic() || NewMethod->isStatic()) {
+ Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
+ Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
+ return true;
+ }
+
+ // C++ [class.mem]p1:
+ // [...] A member shall not be declared twice in the
+ // member-specification, except that a nested class or member
+ // class template can be declared and then later defined.
+ unsigned NewDiag;
+ if (isa<CXXConstructorDecl>(OldMethod))
+ NewDiag = diag::err_constructor_redeclared;
+ else if (isa<CXXDestructorDecl>(NewMethod))
+ NewDiag = diag::err_destructor_redeclared;
+ else if (isa<CXXConversionDecl>(NewMethod))
+ NewDiag = diag::err_conv_function_redeclared;
+ else
+ NewDiag = diag::err_member_redeclared;
+
+ Diag(New->getLocation(), NewDiag);
+ Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
+
+ // Complain if this is an explicit declaration of a special
+ // member that was initially declared implicitly.
+ //
+ // As an exception, it's okay to befriend such methods in order
+ // to permit the implicit constructor/destructor/operator calls.
+ } else if (OldMethod->isImplicit()) {
+ if (isFriend) {
+ NewMethod->setImplicit();
+ } else {
+ Diag(NewMethod->getLocation(),
+ diag::err_definition_of_implicitly_declared_member)
+ << New << getSpecialMember(OldMethod);
+ return true;
+ }
+ }
+ }
+
+ // (C++98 8.3.5p3):
+ // All declarations for a function shall agree exactly in both the
+ // return type and the parameter-type-list.
+ // attributes should be ignored when comparing.
+ if (Context.getNoReturnType(OldQType, false) ==
+ Context.getNoReturnType(NewQType, false))
+ return MergeCompatibleFunctionDecls(New, Old);
+
+ // Fall through for conflicting redeclarations and redefinitions.
+ }
+
+ // C: Function types need to be compatible, not identical. This handles
+ // duplicate function decls like "void f(int); void f(enum X);" properly.
+ if (!getLangOptions().CPlusPlus &&
+ Context.typesAreCompatible(OldQType, NewQType)) {
+ const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
+ const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
+ const FunctionProtoType *OldProto = 0;
+ if (isa<FunctionNoProtoType>(NewFuncType) &&
+ (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
+ // The old declaration provided a function prototype, but the
+ // new declaration does not. Merge in the prototype.
+ assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
+ llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
+ OldProto->arg_type_end());
+ NewQType = Context.getFunctionType(NewFuncType->getResultType(),
+ ParamTypes.data(), ParamTypes.size(),
+ OldProto->isVariadic(),
+ OldProto->getTypeQuals(),
+ false, false, 0, 0,
+ OldProto->getExtInfo());
+ New->setType(NewQType);
+ New->setHasInheritedPrototype();
+
+ // Synthesize a parameter for each argument type.
+ llvm::SmallVector<ParmVarDecl*, 16> Params;
+ for (FunctionProtoType::arg_type_iterator
+ ParamType = OldProto->arg_type_begin(),
+ ParamEnd = OldProto->arg_type_end();
+ ParamType != ParamEnd; ++ParamType) {
+ ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
+ SourceLocation(), 0,
+ *ParamType, /*TInfo=*/0,
+ VarDecl::None, VarDecl::None,
+ 0);
+ Param->setImplicit();
+ Params.push_back(Param);
+ }
+
+ New->setParams(Params.data(), Params.size());
+ }
+
+ return MergeCompatibleFunctionDecls(New, Old);
+ }
+
+ // GNU C permits a K&R definition to follow a prototype declaration
+ // if the declared types of the parameters in the K&R definition
+ // match the types in the prototype declaration, even when the
+ // promoted types of the parameters from the K&R definition differ
+ // from the types in the prototype. GCC then keeps the types from
+ // the prototype.
+ //
+ // If a variadic prototype is followed by a non-variadic K&R definition,
+ // the K&R definition becomes variadic. This is sort of an edge case, but
+ // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
+ // C99 6.9.1p8.
+ if (!getLangOptions().CPlusPlus &&
+ Old->hasPrototype() && !New->hasPrototype() &&
+ New->getType()->getAs<FunctionProtoType>() &&
+ Old->getNumParams() == New->getNumParams()) {
+ llvm::SmallVector<QualType, 16> ArgTypes;
+ llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
+ const FunctionProtoType *OldProto
+ = Old->getType()->getAs<FunctionProtoType>();
+ const FunctionProtoType *NewProto
+ = New->getType()->getAs<FunctionProtoType>();
+
+ // Determine whether this is the GNU C extension.
+ QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
+ NewProto->getResultType());
+ bool LooseCompatible = !MergedReturn.isNull();
+ for (unsigned Idx = 0, End = Old->getNumParams();
+ LooseCompatible && Idx != End; ++Idx) {
+ ParmVarDecl *OldParm = Old->getParamDecl(Idx);
+ ParmVarDecl *NewParm = New->getParamDecl(Idx);
+ if (Context.typesAreCompatible(OldParm->getType(),
+ NewProto->getArgType(Idx))) {
+ ArgTypes.push_back(NewParm->getType());
+ } else if (Context.typesAreCompatible(OldParm->getType(),
+ NewParm->getType())) {
+ GNUCompatibleParamWarning Warn
+ = { OldParm, NewParm, NewProto->getArgType(Idx) };
+ Warnings.push_back(Warn);
+ ArgTypes.push_back(NewParm->getType());
+ } else
+ LooseCompatible = false;
+ }
+
+ if (LooseCompatible) {
+ for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
+ Diag(Warnings[Warn].NewParm->getLocation(),
+ diag::ext_param_promoted_not_compatible_with_prototype)
+ << Warnings[Warn].PromotedType
+ << Warnings[Warn].OldParm->getType();
+ Diag(Warnings[Warn].OldParm->getLocation(),
+ diag::note_previous_declaration);
+ }
+
+ New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
+ ArgTypes.size(),
+ OldProto->isVariadic(), 0,
+ false, false, 0, 0,
+ OldProto->getExtInfo()));
+ return MergeCompatibleFunctionDecls(New, Old);
+ }
+
+ // Fall through to diagnose conflicting types.
+ }
+
+ // A function that has already been declared has been redeclared or defined
+ // with a different type- show appropriate diagnostic
+ if (unsigned BuiltinID = Old->getBuiltinID()) {
+ // The user has declared a builtin function with an incompatible
+ // signature.
+ if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
+ // The function the user is redeclaring is a library-defined
+ // function like 'malloc' or 'printf'. Warn about the
+ // redeclaration, then pretend that we don't know about this
+ // library built-in.
+ Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
+ Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
+ << Old << Old->getType();
+ New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
+ Old->setInvalidDecl();
+ return false;
+ }
+
+ PrevDiag = diag::note_previous_builtin_declaration;
+ }
+
+ Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
+ Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
+ return true;
+}
+
+/// \brief Completes the merge of two function declarations that are
+/// known to be compatible.
+///
+/// This routine handles the merging of attributes and other
+/// properties of function declarations form the old declaration to
+/// the new declaration, once we know that New is in fact a
+/// redeclaration of Old.
+///
+/// \returns false
+bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
+ // Merge the attributes
+ MergeAttributes(New, Old, Context);
+
+ // Merge the storage class.
+ if (Old->getStorageClass() != FunctionDecl::Extern &&
+ Old->getStorageClass() != FunctionDecl::None)
+ New->setStorageClass(Old->getStorageClass());
+
+ // Merge "pure" flag.
+ if (Old->isPure())
+ New->setPure();
+
+ // Merge the "deleted" flag.
+ if (Old->isDeleted())
+ New->setDeleted();
+
+ if (getLangOptions().CPlusPlus)
+ return MergeCXXFunctionDecl(New, Old);
+
+ return false;
+}
+
+/// MergeVarDecl - We just parsed a variable 'New' which has the same name
+/// and scope as a previous declaration 'Old'. Figure out how to resolve this
+/// situation, merging decls or emitting diagnostics as appropriate.
+///
+/// Tentative definition rules (C99 6.9.2p2) are checked by
+/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
+/// definitions here, since the initializer hasn't been attached.
+///
+void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
+ // If the new decl is already invalid, don't do any other checking.
+ if (New->isInvalidDecl())
+ return;
+
+ // Verify the old decl was also a variable.
+ VarDecl *Old = 0;
+ if (!Previous.isSingleResult() ||
+ !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
+ Diag(New->getLocation(), diag::err_redefinition_different_kind)
+ << New->getDeclName();
+ Diag(Previous.getRepresentativeDecl()->getLocation(),
+ diag::note_previous_definition);
+ return New->setInvalidDecl();
+ }
+
+ MergeAttributes(New, Old, Context);
+
+ // Merge the types
+ QualType MergedT;
+ if (getLangOptions().CPlusPlus) {
+ if (Context.hasSameType(New->getType(), Old->getType()))
+ MergedT = New->getType();
+ // C++ [basic.link]p10:
+ // [...] the types specified by all declarations referring to a given
+ // object or function shall be identical, except that declarations for an
+ // array object can specify array types that differ by the presence or
+ // absence of a major array bound (8.3.4).
+ else if (Old->getType()->isIncompleteArrayType() &&
+ New->getType()->isArrayType()) {
+ CanQual<ArrayType> OldArray
+ = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
+ CanQual<ArrayType> NewArray
+ = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
+ if (OldArray->getElementType() == NewArray->getElementType())
+ MergedT = New->getType();
+ } else if (Old->getType()->isArrayType() &&
+ New->getType()->isIncompleteArrayType()) {
+ CanQual<ArrayType> OldArray
+ = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
+ CanQual<ArrayType> NewArray
+ = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
+ if (OldArray->getElementType() == NewArray->getElementType())
+ MergedT = Old->getType();
+ } else if (New->getType()->isObjCObjectPointerType()
+ && Old->getType()->isObjCObjectPointerType()) {
+ MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
+ }
+ } else {
+ MergedT = Context.mergeTypes(New->getType(), Old->getType());
+ }
+ if (MergedT.isNull()) {
+ Diag(New->getLocation(), diag::err_redefinition_different_type)
+ << New->getDeclName();
+ Diag(Old->getLocation(), diag::note_previous_definition);
+ return New->setInvalidDecl();
+ }
+ New->setType(MergedT);
+
+ // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
+ if (New->getStorageClass() == VarDecl::Static &&
+ (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
+ Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
+ Diag(Old->getLocation(), diag::note_previous_definition);
+ return New->setInvalidDecl();
+ }
+ // C99 6.2.2p4:
+ // For an identifier declared with the storage-class specifier
+ // extern in a scope in which a prior declaration of that
+ // identifier is visible,23) if the prior declaration specifies
+ // internal or external linkage, the linkage of the identifier at
+ // the later declaration is the same as the linkage specified at
+ // the prior declaration. If no prior declaration is visible, or
+ // if the prior declaration specifies no linkage, then the
+ // identifier has external linkage.
+ if (New->hasExternalStorage() && Old->hasLinkage())
+ /* Okay */;
+ else if (New->getStorageClass() != VarDecl::Static &&
+ Old->getStorageClass() == VarDecl::Static) {
+ Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
+ Diag(Old->getLocation(), diag::note_previous_definition);
+ return New->setInvalidDecl();
+ }
+
+ // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
+
+ // FIXME: The test for external storage here seems wrong? We still
+ // need to check for mismatches.
+ if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
+ // Don't complain about out-of-line definitions of static members.
+ !(Old->getLexicalDeclContext()->isRecord() &&
+ !New->getLexicalDeclContext()->isRecord())) {
+ Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
+ Diag(Old->getLocation(), diag::note_previous_definition);
+ return New->setInvalidDecl();
+ }
+
+ if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
+ Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
+ Diag(Old->getLocation(), diag::note_previous_definition);
+ } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
+ Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
+ Diag(Old->getLocation(), diag::note_previous_definition);
+ }
+
+ // C++ doesn't have tentative definitions, so go right ahead and check here.
+ const VarDecl *Def;
+ if (getLangOptions().CPlusPlus &&
+ New->isThisDeclarationADefinition() == VarDecl::Definition &&
+ (Def = Old->getDefinition())) {
+ Diag(New->getLocation(), diag::err_redefinition)
+ << New->getDeclName();
+ Diag(Def->getLocation(), diag::note_previous_definition);
+ New->setInvalidDecl();
+ return;
+ }
+
+ // Keep a chain of previous declarations.
+ New->setPreviousDeclaration(Old);
+
+ // Inherit access appropriately.
+ New->setAccess(Old->getAccess());
+}
+
+/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
+/// no declarator (e.g. "struct foo;") is parsed.
+Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
+ DeclSpec &DS) {
+ // FIXME: Error on auto/register at file scope
+ // FIXME: Error on inline/virtual/explicit
+ // FIXME: Warn on useless __thread
+ // FIXME: Warn on useless const/volatile
+ // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
+ // FIXME: Warn on useless attributes
+ Decl *TagD = 0;
+ TagDecl *Tag = 0;
+ if (DS.getTypeSpecType() == DeclSpec::TST_class ||
+ DS.getTypeSpecType() == DeclSpec::TST_struct ||
+ DS.getTypeSpecType() == DeclSpec::TST_union ||
+ DS.getTypeSpecType() == DeclSpec::TST_enum) {
+ TagD = static_cast<Decl *>(DS.getTypeRep());
+
+ if (!TagD) // We probably had an error
+ return DeclPtrTy();
+
+ // Note that the above type specs guarantee that the
+ // type rep is a Decl, whereas in many of the others
+ // it's a Type.
+ Tag = dyn_cast<TagDecl>(TagD);
+ }
+
+ if (unsigned TypeQuals = DS.getTypeQualifiers()) {
+ // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
+ // or incomplete types shall not be restrict-qualified."
+ if (TypeQuals & DeclSpec::TQ_restrict)
+ Diag(DS.getRestrictSpecLoc(),
+ diag::err_typecheck_invalid_restrict_not_pointer_noarg)
+ << DS.getSourceRange();
+ }
+
+ if (DS.isFriendSpecified()) {
+ // If we're dealing with a class template decl, assume that the
+ // template routines are handling it.
+ if (TagD && isa<ClassTemplateDecl>(TagD))
+ return DeclPtrTy();
+ return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
+ }
+
+ if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
+ // If there are attributes in the DeclSpec, apply them to the record.
+ if (const AttributeList *AL = DS.getAttributes())
+ ProcessDeclAttributeList(S, Record, AL);
+
+ if (!Record->getDeclName() && Record->isDefinition() &&
+ DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
+ if (getLangOptions().CPlusPlus ||
+ Record->getDeclContext()->isRecord())
+ return BuildAnonymousStructOrUnion(S, DS, AS, Record);
+
+ Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
+ << DS.getSourceRange();
+ }
+
+ // Microsoft allows unnamed struct/union fields. Don't complain
+ // about them.
+ // FIXME: Should we support Microsoft's extensions in this area?
+ if (Record->getDeclName() && getLangOptions().Microsoft)
+ return DeclPtrTy::make(Tag);
+ }
+
+ if (!DS.isMissingDeclaratorOk() &&
+ DS.getTypeSpecType() != DeclSpec::TST_error) {
+ // Warn about typedefs of enums without names, since this is an
+ // extension in both Microsoft an GNU.
+ if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
+ Tag && isa<EnumDecl>(Tag)) {
+ Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
+ << DS.getSourceRange();
+ return DeclPtrTy::make(Tag);
+ }
+
+ Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
+ << DS.getSourceRange();
+ }
+
+ return DeclPtrTy::make(Tag);
+}
+
+/// We are trying to inject an anonymous member into the given scope;
+/// check if there's an existing declaration that can't be overloaded.
+///
+/// \return true if this is a forbidden redeclaration
+static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
+ Scope *S,
+ DeclContext *Owner,
+ DeclarationName Name,
+ SourceLocation NameLoc,
+ unsigned diagnostic) {
+ LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
+ Sema::ForRedeclaration);
+ if (!SemaRef.LookupName(R, S)) return false;
+
+ if (R.getAsSingle<TagDecl>())
+ return false;
+
+ // Pick a representative declaration.
+ NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
+ if (PrevDecl && Owner->isRecord()) {
+ RecordDecl *Record = cast<RecordDecl>(Owner);
+ if (!SemaRef.isDeclInScope(PrevDecl, Record, S))
+ return false;
+ }
+
+ SemaRef.Diag(NameLoc, diagnostic) << Name;
+ SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
+
+ return true;
+}
+
+/// InjectAnonymousStructOrUnionMembers - Inject the members of the
+/// anonymous struct or union AnonRecord into the owning context Owner
+/// and scope S. This routine will be invoked just after we realize
+/// that an unnamed union or struct is actually an anonymous union or
+/// struct, e.g.,
+///
+/// @code
+/// union {
+/// int i;
+/// float f;
+/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
+/// // f into the surrounding scope.x
+/// @endcode
+///
+/// This routine is recursive, injecting the names of nested anonymous
+/// structs/unions into the owning context and scope as well.
+static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
+ DeclContext *Owner,
+ RecordDecl *AnonRecord,
+ AccessSpecifier AS) {
+ unsigned diagKind
+ = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
+ : diag::err_anonymous_struct_member_redecl;
+
+ bool Invalid = false;
+ for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
+ FEnd = AnonRecord->field_end();
+ F != FEnd; ++F) {
+ if ((*F)->getDeclName()) {
+ if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, (*F)->getDeclName(),
+ (*F)->getLocation(), diagKind)) {
+ // C++ [class.union]p2:
+ // The names of the members of an anonymous union shall be
+ // distinct from the names of any other entity in the
+ // scope in which the anonymous union is declared.
+ Invalid = true;
+ } else {
+ // C++ [class.union]p2:
+ // For the purpose of name lookup, after the anonymous union
+ // definition, the members of the anonymous union are
+ // considered to have been defined in the scope in which the
+ // anonymous union is declared.
+ Owner->makeDeclVisibleInContext(*F);
+ S->AddDecl(Sema::DeclPtrTy::make(*F));
+ SemaRef.IdResolver.AddDecl(*F);
+
+ // That includes picking up the appropriate access specifier.
+ if (AS != AS_none) (*F)->setAccess(AS);
+ }
+ } else if (const RecordType *InnerRecordType
+ = (*F)->getType()->getAs<RecordType>()) {
+ RecordDecl *InnerRecord = InnerRecordType->getDecl();
+ if (InnerRecord->isAnonymousStructOrUnion())
+ Invalid = Invalid ||
+ InjectAnonymousStructOrUnionMembers(SemaRef, S, Owner,
+ InnerRecord, AS);
+ }
+ }
+
+ return Invalid;
+}
+
+/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
+/// a VarDecl::StorageClass. Any error reporting is up to the caller:
+/// illegal input values are mapped to VarDecl::None.
+/// If the input declaration context is a linkage specification
+/// with no braces, then Extern is mapped to None.
+static VarDecl::StorageClass
+StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec,
+ DeclContext *DC) {
+ switch (StorageClassSpec) {
+ case DeclSpec::SCS_unspecified: return VarDecl::None;
+ case DeclSpec::SCS_extern:
+ // If the current context is a C++ linkage specification
+ // having no braces, then the keyword "extern" is properly part
+ // of the linkage specification itself, rather than being
+ // the written storage class specifier.
+ return (DC && isa<LinkageSpecDecl>(DC) &&
+ !cast<LinkageSpecDecl>(DC)->hasBraces())
+ ? VarDecl::None : VarDecl::Extern;
+ case DeclSpec::SCS_static: return VarDecl::Static;
+ case DeclSpec::SCS_auto: return VarDecl::Auto;
+ case DeclSpec::SCS_register: return VarDecl::Register;
+ case DeclSpec::SCS_private_extern: return VarDecl::PrivateExtern;
+ // Illegal SCSs map to None: error reporting is up to the caller.
+ case DeclSpec::SCS_mutable: // Fall through.
+ case DeclSpec::SCS_typedef: return VarDecl::None;
+ }
+ llvm_unreachable("unknown storage class specifier");
+}
+
+/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
+/// a FunctionDecl::StorageClass. Any error reporting is up to the caller:
+/// illegal input values are mapped to FunctionDecl::None.
+/// If the input declaration context is a linkage specification
+/// with no braces, then Extern is mapped to None.
+static FunctionDecl::StorageClass
+StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec,
+ DeclContext *DC) {
+ switch (StorageClassSpec) {
+ case DeclSpec::SCS_unspecified: return FunctionDecl::None;
+ case DeclSpec::SCS_extern:
+ // If the current context is a C++ linkage specification
+ // having no braces, then the keyword "extern" is properly part
+ // of the linkage specification itself, rather than being
+ // the written storage class specifier.
+ return (DC && isa<LinkageSpecDecl>(DC) &&
+ !cast<LinkageSpecDecl>(DC)->hasBraces())
+ ? FunctionDecl::None : FunctionDecl::Extern;
+ case DeclSpec::SCS_static: return FunctionDecl::Static;
+ case DeclSpec::SCS_private_extern: return FunctionDecl::PrivateExtern;
+ // Illegal SCSs map to None: error reporting is up to the caller.
+ case DeclSpec::SCS_auto: // Fall through.
+ case DeclSpec::SCS_mutable: // Fall through.
+ case DeclSpec::SCS_register: // Fall through.
+ case DeclSpec::SCS_typedef: return FunctionDecl::None;
+ }
+ llvm_unreachable("unknown storage class specifier");
+}
+
+/// ActOnAnonymousStructOrUnion - Handle the declaration of an
+/// anonymous structure or union. Anonymous unions are a C++ feature
+/// (C++ [class.union]) and a GNU C extension; anonymous structures
+/// are a GNU C and GNU C++ extension.
+Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
+ AccessSpecifier AS,
+ RecordDecl *Record) {
+ DeclContext *Owner = Record->getDeclContext();
+
+ // Diagnose whether this anonymous struct/union is an extension.
+ if (Record->isUnion() && !getLangOptions().CPlusPlus)
+ Diag(Record->getLocation(), diag::ext_anonymous_union);
+ else if (!Record->isUnion())
+ Diag(Record->getLocation(), diag::ext_anonymous_struct);
+
+ // C and C++ require different kinds of checks for anonymous
+ // structs/unions.
+ bool Invalid = false;
+ if (getLangOptions().CPlusPlus) {
+ const char* PrevSpec = 0;
+ unsigned DiagID;
+ // C++ [class.union]p3:
+ // Anonymous unions declared in a named namespace or in the
+ // global namespace shall be declared static.
+ if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
+ (isa<TranslationUnitDecl>(Owner) ||
+ (isa<NamespaceDecl>(Owner) &&
+ cast<NamespaceDecl>(Owner)->getDeclName()))) {
+ Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
+ Invalid = true;
+
+ // Recover by adding 'static'.
+ DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
+ PrevSpec, DiagID);
+ }
+ // C++ [class.union]p3:
+ // A storage class is not allowed in a declaration of an
+ // anonymous union in a class scope.
+ else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
+ isa<RecordDecl>(Owner)) {
+ Diag(DS.getStorageClassSpecLoc(),
+ diag::err_anonymous_union_with_storage_spec);
+ Invalid = true;
+
+ // Recover by removing the storage specifier.
+ DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
+ PrevSpec, DiagID);
+ }
+
+ // C++ [class.union]p2:
+ // The member-specification of an anonymous union shall only
+ // define non-static data members. [Note: nested types and
+ // functions cannot be declared within an anonymous union. ]
+ for (DeclContext::decl_iterator Mem = Record->decls_begin(),
+ MemEnd = Record->decls_end();
+ Mem != MemEnd; ++Mem) {
+ if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
+ // C++ [class.union]p3:
+ // An anonymous union shall not have private or protected
+ // members (clause 11).
+ assert(FD->getAccess() != AS_none);
+ if (FD->getAccess() != AS_public) {
+ Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
+ << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
+ Invalid = true;
+ }
+ } else if ((*Mem)->isImplicit()) {
+ // Any implicit members are fine.
+ } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
+ // This is a type that showed up in an
+ // elaborated-type-specifier inside the anonymous struct or
+ // union, but which actually declares a type outside of the
+ // anonymous struct or union. It's okay.
+ } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
+ if (!MemRecord->isAnonymousStructOrUnion() &&
+ MemRecord->getDeclName()) {
+ // This is a nested type declaration.
+ Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
+ << (int)Record->isUnion();
+ Invalid = true;
+ }
+ } else {
+ // We have something that isn't a non-static data
+ // member. Complain about it.
+ unsigned DK = diag::err_anonymous_record_bad_member;
+ if (isa<TypeDecl>(*Mem))
+ DK = diag::err_anonymous_record_with_type;
+ else if (isa<FunctionDecl>(*Mem))
+ DK = diag::err_anonymous_record_with_function;
+ else if (isa<VarDecl>(*Mem))
+ DK = diag::err_anonymous_record_with_static;
+ Diag((*Mem)->getLocation(), DK)
+ << (int)Record->isUnion();
+ Invalid = true;
+ }
+ }
+ }
+
+ if (!Record->isUnion() && !Owner->isRecord()) {
+ Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
+ << (int)getLangOptions().CPlusPlus;
+ Invalid = true;
+ }
+
+ // Mock up a declarator.
+ Declarator Dc(DS, Declarator::TypeNameContext);
+ TypeSourceInfo *TInfo = 0;
+ GetTypeForDeclarator(Dc, S, &TInfo);
+ assert(TInfo && "couldn't build declarator info for anonymous struct/union");
+
+ // Create a declaration for this anonymous struct/union.
+ NamedDecl *Anon = 0;
+ if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
+ Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
+ /*IdentifierInfo=*/0,
+ Context.getTypeDeclType(Record),
+ TInfo,
+ /*BitWidth=*/0, /*Mutable=*/false);
+ Anon->setAccess(AS);
+ if (getLangOptions().CPlusPlus) {
+ FieldCollector->Add(cast<FieldDecl>(Anon));
+ if (!cast<CXXRecordDecl>(Record)->isEmpty())
+ cast<CXXRecordDecl>(OwningClass)->setEmpty(false);
+ }
+ } else {
+ DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
+ assert(SCSpec != DeclSpec::SCS_typedef &&
+ "Parser allowed 'typedef' as storage class VarDecl.");
+ VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec, 0);
+ if (SCSpec == DeclSpec::SCS_mutable) {
+ // mutable can only appear on non-static class members, so it's always
+ // an error here
+ Diag(Record->getLocation(), diag::err_mutable_nonmember);
+ Invalid = true;
+ SC = VarDecl::None;
+ }
+ SCSpec = DS.getStorageClassSpecAsWritten();
+ VarDecl::StorageClass SCAsWritten
+ = StorageClassSpecToVarDeclStorageClass(SCSpec, 0);
+
+ Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
+ /*IdentifierInfo=*/0,
+ Context.getTypeDeclType(Record),
+ TInfo, SC, SCAsWritten);
+ }
+ Anon->setImplicit();
+
+ // Add the anonymous struct/union object to the current
+ // context. We'll be referencing this object when we refer to one of
+ // its members.
+ Owner->addDecl(Anon);
+
+ // Inject the members of the anonymous struct/union into the owning
+ // context and into the identifier resolver chain for name lookup
+ // purposes.
+ if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS))
+ Invalid = true;
+
+ // Mark this as an anonymous struct/union type. Note that we do not
+ // do this until after we have already checked and injected the
+ // members of this anonymous struct/union type, because otherwise
+ // the members could be injected twice: once by DeclContext when it
+ // builds its lookup table, and once by
+ // InjectAnonymousStructOrUnionMembers.
+ Record->setAnonymousStructOrUnion(true);
+
+ if (Invalid)
+ Anon->setInvalidDecl();
+
+ return DeclPtrTy::make(Anon);
+}
+
+
+/// GetNameForDeclarator - Determine the full declaration name for the
+/// given Declarator.
+DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
+ return GetNameFromUnqualifiedId(D.getName());
+}
+
+/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
+DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
+ switch (Name.getKind()) {
+ case UnqualifiedId::IK_Identifier:
+ return DeclarationName(Name.Identifier);
+
+ case UnqualifiedId::IK_OperatorFunctionId:
+ return Context.DeclarationNames.getCXXOperatorName(
+ Name.OperatorFunctionId.Operator);
+
+ case UnqualifiedId::IK_LiteralOperatorId:
+ return Context.DeclarationNames.getCXXLiteralOperatorName(
+ Name.Identifier);
+
+ case UnqualifiedId::IK_ConversionFunctionId: {
+ QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
+ if (Ty.isNull())
+ return DeclarationName();
+
+ return Context.DeclarationNames.getCXXConversionFunctionName(
+ Context.getCanonicalType(Ty));
+ }
+
+ case UnqualifiedId::IK_ConstructorName: {
+ QualType Ty = GetTypeFromParser(Name.ConstructorName);
+ if (Ty.isNull())
+ return DeclarationName();
+
+ return Context.DeclarationNames.getCXXConstructorName(
+ Context.getCanonicalType(Ty));
+ }
+
+ case UnqualifiedId::IK_ConstructorTemplateId: {
+ // In well-formed code, we can only have a constructor
+ // template-id that refers to the current context, so go there
+ // to find the actual type being constructed.
+ CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
+ if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
+ return DeclarationName();
+
+ // Determine the type of the class being constructed.
+ QualType CurClassType = Context.getTypeDeclType(CurClass);
+
+ // FIXME: Check two things: that the template-id names the same type as
+ // CurClassType, and that the template-id does not occur when the name
+ // was qualified.
+
+ return Context.DeclarationNames.getCXXConstructorName(
+ Context.getCanonicalType(CurClassType));
+ }
+
+ case UnqualifiedId::IK_DestructorName: {
+ QualType Ty = GetTypeFromParser(Name.DestructorName);
+ if (Ty.isNull())
+ return DeclarationName();
+
+ return Context.DeclarationNames.getCXXDestructorName(
+ Context.getCanonicalType(Ty));
+ }
+
+ case UnqualifiedId::IK_TemplateId: {
+ TemplateName TName
+ = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
+ return Context.getNameForTemplate(TName);
+ }
+ }
+
+ assert(false && "Unknown name kind");
+ return DeclarationName();
+}
+
+/// isNearlyMatchingFunction - Determine whether the C++ functions
+/// Declaration and Definition are "nearly" matching. This heuristic
+/// is used to improve diagnostics in the case where an out-of-line
+/// function definition doesn't match any declaration within
+/// the class or namespace.
+static bool isNearlyMatchingFunction(ASTContext &Context,
+ FunctionDecl *Declaration,
+ FunctionDecl *Definition) {
+ if (Declaration->param_size() != Definition->param_size())
+ return false;
+ for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
+ QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
+ QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
+
+ if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
+ DefParamTy.getNonReferenceType()))
+ return false;
+ }
+
+ return true;
+}
+
+/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
+/// declarator needs to be rebuilt in the current instantiation.
+/// Any bits of declarator which appear before the name are valid for
+/// consideration here. That's specifically the type in the decl spec
+/// and the base type in any member-pointer chunks.
+static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
+ DeclarationName Name) {
+ // The types we specifically need to rebuild are:
+ // - typenames, typeofs, and decltypes
+ // - types which will become injected class names
+ // Of course, we also need to rebuild any type referencing such a
+ // type. It's safest to just say "dependent", but we call out a
+ // few cases here.
+
+ DeclSpec &DS = D.getMutableDeclSpec();
+ switch (DS.getTypeSpecType()) {
+ case DeclSpec::TST_typename:
+ case DeclSpec::TST_typeofType:
+ case DeclSpec::TST_typeofExpr:
+ case DeclSpec::TST_decltype: {
+ // Grab the type from the parser.
+ TypeSourceInfo *TSI = 0;
+ QualType T = S.GetTypeFromParser(DS.getTypeRep(), &TSI);
+ if (T.isNull() || !T->isDependentType()) break;
+
+ // Make sure there's a type source info. This isn't really much
+ // of a waste; most dependent types should have type source info
+ // attached already.
+ if (!TSI)
+ TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
+
+ // Rebuild the type in the current instantiation.
+ TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
+ if (!TSI) return true;
+
+ // Store the new type back in the decl spec.
+ QualType LocType = S.CreateLocInfoType(TSI->getType(), TSI);
+ DS.UpdateTypeRep(LocType.getAsOpaquePtr());
+ break;
+ }
+
+ default:
+ // Nothing to do for these decl specs.
+ break;
+ }
+
+ // It doesn't matter what order we do this in.
+ for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
+ DeclaratorChunk &Chunk = D.getTypeObject(I);
+
+ // The only type information in the declarator which can come
+ // before the declaration name is the base type of a member
+ // pointer.
+ if (Chunk.Kind != DeclaratorChunk::MemberPointer)
+ continue;
+
+ // Rebuild the scope specifier in-place.
+ CXXScopeSpec &SS = Chunk.Mem.Scope();
+ if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
+ return true;
+ }
+
+ return false;
+}
+
+Sema::DeclPtrTy
+Sema::HandleDeclarator(Scope *S, Declarator &D,
+ MultiTemplateParamsArg TemplateParamLists,
+ bool IsFunctionDefinition) {
+ DeclarationName Name = GetNameForDeclarator(D);
+
+ // All of these full declarators require an identifier. If it doesn't have
+ // one, the ParsedFreeStandingDeclSpec action should be used.
+ if (!Name) {
+ if (!D.isInvalidType()) // Reject this if we think it is valid.
+ Diag(D.getDeclSpec().getSourceRange().getBegin(),
+ diag::err_declarator_need_ident)
+ << D.getDeclSpec().getSourceRange() << D.getSourceRange();
+ return DeclPtrTy();
+ }
+
+ // The scope passed in may not be a decl scope. Zip up the scope tree until
+ // we find one that is.
+ while ((S->getFlags() & Scope::DeclScope) == 0 ||
+ (S->getFlags() & Scope::TemplateParamScope) != 0)
+ S = S->getParent();
+
+ DeclContext *DC = CurContext;
+ if (D.getCXXScopeSpec().isInvalid())
+ D.setInvalidType();
+ else if (D.getCXXScopeSpec().isSet()) {
+ bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
+ DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
+ if (!DC) {
+ // If we could not compute the declaration context, it's because the
+ // declaration context is dependent but does not refer to a class,
+ // class template, or class template partial specialization. Complain
+ // and return early, to avoid the coming semantic disaster.
+ Diag(D.getIdentifierLoc(),
+ diag::err_template_qualified_declarator_no_match)
+ << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
+ << D.getCXXScopeSpec().getRange();
+ return DeclPtrTy();
+ }
+
+ bool IsDependentContext = DC->isDependentContext();
+
+ if (!IsDependentContext &&
+ RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
+ return DeclPtrTy();
+
+ if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
+ Diag(D.getIdentifierLoc(),
+ diag::err_member_def_undefined_record)
+ << Name << DC << D.getCXXScopeSpec().getRange();
+ D.setInvalidType();
+ }
+
+ // Check whether we need to rebuild the type of the given
+ // declaration in the current instantiation.
+ if (EnteringContext && IsDependentContext &&
+ TemplateParamLists.size() != 0) {
+ ContextRAII SavedContext(*this, DC);
+ if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
+ D.setInvalidType();
+ }
+ }
+
+ NamedDecl *New;
+
+ TypeSourceInfo *TInfo = 0;
+ QualType R = GetTypeForDeclarator(D, S, &TInfo);
+
+ LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
+ ForRedeclaration);
+
+ // See if this is a redefinition of a variable in the same scope.
+ if (!D.getCXXScopeSpec().isSet()) {
+ bool IsLinkageLookup = false;
+
+ // If the declaration we're planning to build will be a function
+ // or object with linkage, then look for another declaration with
+ // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
+ if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
+ /* Do nothing*/;
+ else if (R->isFunctionType()) {
+ if (CurContext->isFunctionOrMethod() ||
+ D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
+ IsLinkageLookup = true;
+ } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
+ IsLinkageLookup = true;
+ else if (CurContext->getLookupContext()->isTranslationUnit() &&
+ D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
+ IsLinkageLookup = true;
+
+ if (IsLinkageLookup)
+ Previous.clear(LookupRedeclarationWithLinkage);
+
+ LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
+ } else { // Something like "int foo::x;"
+ LookupQualifiedName(Previous, DC);
+
+ // Don't consider using declarations as previous declarations for
+ // out-of-line members.
+ RemoveUsingDecls(Previous);
+
+ // C++ 7.3.1.2p2:
+ // Members (including explicit specializations of templates) of a named
+ // namespace can also be defined outside that namespace by explicit
+ // qualification of the name being defined, provided that the entity being
+ // defined was already declared in the namespace and the definition appears
+ // after the point of declaration in a namespace that encloses the
+ // declarations namespace.
+ //
+ // Note that we only check the context at this point. We don't yet
+ // have enough information to make sure that PrevDecl is actually
+ // the declaration we want to match. For example, given:
+ //
+ // class X {
+ // void f();
+ // void f(float);
+ // };
+ //
+ // void X::f(int) { } // ill-formed
+ //
+ // In this case, PrevDecl will point to the overload set
+ // containing the two f's declared in X, but neither of them
+ // matches.
+
+ // First check whether we named the global scope.
+ if (isa<TranslationUnitDecl>(DC)) {
+ Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
+ << Name << D.getCXXScopeSpec().getRange();
+ } else {
+ DeclContext *Cur = CurContext;
+ while (isa<LinkageSpecDecl>(Cur))
+ Cur = Cur->getParent();
+ if (!Cur->Encloses(DC)) {
+ // The qualifying scope doesn't enclose the original declaration.
+ // Emit diagnostic based on current scope.
+ SourceLocation L = D.getIdentifierLoc();
+ SourceRange R = D.getCXXScopeSpec().getRange();
+ if (isa<FunctionDecl>(Cur))
+ Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
+ else
+ Diag(L, diag::err_invalid_declarator_scope)
+ << Name << cast<NamedDecl>(DC) << R;
+ D.setInvalidType();
+ }
+ }
+ }
+
+ if (Previous.isSingleResult() &&
+ Previous.getFoundDecl()->isTemplateParameter()) {
+ // Maybe we will complain about the shadowed template parameter.
+ if (!D.isInvalidType())
+ if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
+ Previous.getFoundDecl()))
+ D.setInvalidType();
+
+ // Just pretend that we didn't see the previous declaration.
+ Previous.clear();
+ }
+
+ // In C++, the previous declaration we find might be a tag type
+ // (class or enum). In this case, the new declaration will hide the
+ // tag type. Note that this does does not apply if we're declaring a
+ // typedef (C++ [dcl.typedef]p4).
+ if (Previous.isSingleTagDecl() &&
+ D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
+ Previous.clear();
+
+ bool Redeclaration = false;
+ if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
+ if (TemplateParamLists.size()) {
+ Diag(D.getIdentifierLoc(), diag::err_template_typedef);
+ return DeclPtrTy();
+ }
+
+ New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
+ } else if (R->isFunctionType()) {
+ New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
+ move(TemplateParamLists),
+ IsFunctionDefinition, Redeclaration);
+ } else {
+ New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
+ move(TemplateParamLists),
+ Redeclaration);
+ }
+
+ if (New == 0)
+ return DeclPtrTy();
+
+ // If this has an identifier and is not an invalid redeclaration or
+ // function template specialization, add it to the scope stack.
+ if (Name && !(Redeclaration && New->isInvalidDecl()))
+ PushOnScopeChains(New, S);
+
+ return DeclPtrTy::make(New);
+}
+
+/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
+/// types into constant array types in certain situations which would otherwise
+/// be errors (for GCC compatibility).
+static QualType TryToFixInvalidVariablyModifiedType(QualType T,
+ ASTContext &Context,
+ bool &SizeIsNegative) {
+ // This method tries to turn a variable array into a constant
+ // array even when the size isn't an ICE. This is necessary
+ // for compatibility with code that depends on gcc's buggy
+ // constant expression folding, like struct {char x[(int)(char*)2];}
+ SizeIsNegative = false;
+
+ QualifierCollector Qs;
+ const Type *Ty = Qs.strip(T);
+
+ if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
+ QualType Pointee = PTy->getPointeeType();
+ QualType FixedType =
+ TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
+ if (FixedType.isNull()) return FixedType;
+ FixedType = Context.getPointerType(FixedType);
+ return Qs.apply(FixedType);
+ }
+
+ const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
+ if (!VLATy)
+ return QualType();
+ // FIXME: We should probably handle this case
+ if (VLATy->getElementType()->isVariablyModifiedType())
+ return QualType();
+
+ Expr::EvalResult EvalResult;
+ if (!VLATy->getSizeExpr() ||
+ !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
+ !EvalResult.Val.isInt())
+ return QualType();
+
+ llvm::APSInt &Res = EvalResult.Val.getInt();
+ if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
+ // TODO: preserve the size expression in declarator info
+ return Context.getConstantArrayType(VLATy->getElementType(),
+ Res, ArrayType::Normal, 0);
+ }
+
+ SizeIsNegative = true;
+ return QualType();
+}
+
+/// \brief Register the given locally-scoped external C declaration so
+/// that it can be found later for redeclarations
+void
+Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
+ const LookupResult &Previous,
+ Scope *S) {
+ assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
+ "Decl is not a locally-scoped decl!");
+ // Note that we have a locally-scoped external with this name.
+ LocallyScopedExternalDecls[ND->getDeclName()] = ND;
+
+ if (!Previous.isSingleResult())
+ return;
+
+ NamedDecl *PrevDecl = Previous.getFoundDecl();
+
+ // If there was a previous declaration of this variable, it may be
+ // in our identifier chain. Update the identifier chain with the new
+ // declaration.
+ if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
+ // The previous declaration was found on the identifer resolver
+ // chain, so remove it from its scope.
+ while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
+ S = S->getParent();
+
+ if (S)
+ S->RemoveDecl(DeclPtrTy::make(PrevDecl));
+ }
+}
+
+/// \brief Diagnose function specifiers on a declaration of an identifier that
+/// does not identify a function.
+void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
+ // FIXME: We should probably indicate the identifier in question to avoid
+ // confusion for constructs like "inline int a(), b;"
+ if (D.getDeclSpec().isInlineSpecified())
+ Diag(D.getDeclSpec().getInlineSpecLoc(),
+ diag::err_inline_non_function);
+
+ if (D.getDeclSpec().isVirtualSpecified())
+ Diag(D.getDeclSpec().getVirtualSpecLoc(),
+ diag::err_virtual_non_function);
+
+ if (D.getDeclSpec().isExplicitSpecified())
+ Diag(D.getDeclSpec().getExplicitSpecLoc(),
+ diag::err_explicit_non_function);
+}
+
+NamedDecl*
+Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
+ QualType R, TypeSourceInfo *TInfo,
+ LookupResult &Previous, bool &Redeclaration) {
+ // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
+ if (D.getCXXScopeSpec().isSet()) {
+ Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
+ << D.getCXXScopeSpec().getRange();
+ D.setInvalidType();
+ // Pretend we didn't see the scope specifier.
+ DC = CurContext;
+ Previous.clear();
+ }
+
+ if (getLangOptions().CPlusPlus) {
+ // Check that there are no default arguments (C++ only).
+ CheckExtraCXXDefaultArguments(D);
+ }
+
+ DiagnoseFunctionSpecifiers(D);
+
+ if (D.getDeclSpec().isThreadSpecified())
+ Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
+
+ TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
+ if (!NewTD) return 0;
+
+ // Handle attributes prior to checking for duplicates in MergeVarDecl
+ ProcessDeclAttributes(S, NewTD, D);
+
+ // Merge the decl with the existing one if appropriate. If the decl is
+ // in an outer scope, it isn't the same thing.
+ FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
+ if (!Previous.empty()) {
+ Redeclaration = true;
+ MergeTypeDefDecl(NewTD, Previous);
+ }
+
+ // C99 6.7.7p2: If a typedef name specifies a variably modified type
+ // then it shall have block scope.
+ QualType T = NewTD->getUnderlyingType();
+ if (T->isVariablyModifiedType()) {
+ FunctionNeedsScopeChecking() = true;
+
+ if (S->getFnParent() == 0) {
+ bool SizeIsNegative;
+ QualType FixedTy =
+ TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
+ if (!FixedTy.isNull()) {
+ Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
+ NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
+ } else {
+ if (SizeIsNegative)
+ Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
+ else if (T->isVariableArrayType())
+ Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
+ else
+ Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
+ NewTD->setInvalidDecl();
+ }
+ }
+ }
+
+ // If this is the C FILE type, notify the AST context.
+ if (IdentifierInfo *II = NewTD->getIdentifier())
+ if (!NewTD->isInvalidDecl() &&
+ NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
+ if (II->isStr("FILE"))
+ Context.setFILEDecl(NewTD);
+ else if (II->isStr("jmp_buf"))
+ Context.setjmp_bufDecl(NewTD);
+ else if (II->isStr("sigjmp_buf"))
+ Context.setsigjmp_bufDecl(NewTD);
+ }
+
+ return NewTD;
+}
+
+/// \brief Determines whether the given declaration is an out-of-scope
+/// previous declaration.
+///
+/// This routine should be invoked when name lookup has found a
+/// previous declaration (PrevDecl) that is not in the scope where a
+/// new declaration by the same name is being introduced. If the new
+/// declaration occurs in a local scope, previous declarations with
+/// linkage may still be considered previous declarations (C99
+/// 6.2.2p4-5, C++ [basic.link]p6).
+///
+/// \param PrevDecl the previous declaration found by name
+/// lookup
+///
+/// \param DC the context in which the new declaration is being
+/// declared.
+///
+/// \returns true if PrevDecl is an out-of-scope previous declaration
+/// for a new delcaration with the same name.
+static bool
+isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
+ ASTContext &Context) {
+ if (!PrevDecl)
+ return 0;
+
+ if (!PrevDecl->hasLinkage())
+ return false;
+
+ if (Context.getLangOptions().CPlusPlus) {
+ // C++ [basic.link]p6:
+ // If there is a visible declaration of an entity with linkage
+ // having the same name and type, ignoring entities declared
+ // outside the innermost enclosing namespace scope, the block
+ // scope declaration declares that same entity and receives the
+ // linkage of the previous declaration.
+ DeclContext *OuterContext = DC->getLookupContext();
+ if (!OuterContext->isFunctionOrMethod())
+ // This rule only applies to block-scope declarations.
+ return false;
+ else {
+ DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
+ if (PrevOuterContext->isRecord())
+ // We found a member function: ignore it.
+ return false;
+ else {
+ // Find the innermost enclosing namespace for the new and
+ // previous declarations.
+ while (!OuterContext->isFileContext())
+ OuterContext = OuterContext->getParent();
+ while (!PrevOuterContext->isFileContext())
+ PrevOuterContext = PrevOuterContext->getParent();
+
+ // The previous declaration is in a different namespace, so it
+ // isn't the same function.
+ if (OuterContext->getPrimaryContext() !=
+ PrevOuterContext->getPrimaryContext())
+ return false;
+ }
+ }
+ }
+
+ return true;
+}
+
+static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
+ CXXScopeSpec &SS = D.getCXXScopeSpec();
+ if (!SS.isSet()) return;
+ DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
+ SS.getRange());
+}
+
+NamedDecl*
+Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
+ QualType R, TypeSourceInfo *TInfo,
+ LookupResult &Previous,
+ MultiTemplateParamsArg TemplateParamLists,
+ bool &Redeclaration) {
+ DeclarationName Name = GetNameForDeclarator(D);
+
+ // Check that there are no default arguments (C++ only).
+ if (getLangOptions().CPlusPlus)
+ CheckExtraCXXDefaultArguments(D);
+
+ DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
+ assert(SCSpec != DeclSpec::SCS_typedef &&
+ "Parser allowed 'typedef' as storage class VarDecl.");
+ VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec, 0);
+ if (SCSpec == DeclSpec::SCS_mutable) {
+ // mutable can only appear on non-static class members, so it's always
+ // an error here
+ Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
+ D.setInvalidType();
+ SC = VarDecl::None;
+ }
+ SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
+ VarDecl::StorageClass SCAsWritten
+ = StorageClassSpecToVarDeclStorageClass(SCSpec, DC);
+
+ IdentifierInfo *II = Name.getAsIdentifierInfo();
+ if (!II) {
+ Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
+ << Name.getAsString();
+ return 0;
+ }
+
+ DiagnoseFunctionSpecifiers(D);
+
+ if (!DC->isRecord() && S->getFnParent() == 0) {
+ // C99 6.9p2: The storage-class specifiers auto and register shall not
+ // appear in the declaration specifiers in an external declaration.
+ if (SC == VarDecl::Auto || SC == VarDecl::Register) {
+
+ // If this is a register variable with an asm label specified, then this
+ // is a GNU extension.
+ if (SC == VarDecl::Register && D.getAsmLabel())
+ Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
+ else
+ Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
+ D.setInvalidType();
+ }
+ }
+ if (DC->isRecord() && !CurContext->isRecord()) {
+ // This is an out-of-line definition of a static data member.
+ if (SC == VarDecl::Static) {
+ Diag(D.getDeclSpec().getStorageClassSpecLoc(),
+ diag::err_static_out_of_line)
+ << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
+ } else if (SC == VarDecl::None)
+ SC = VarDecl::Static;
+ }
+ if (SC == VarDecl::Static) {
+ if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
+ if (RD->isLocalClass())
+ Diag(D.getIdentifierLoc(),
+ diag::err_static_data_member_not_allowed_in_local_class)
+ << Name << RD->getDeclName();
+ }
+ }
+
+ // Match up the template parameter lists with the scope specifier, then
+ // determine whether we have a template or a template specialization.
+ bool isExplicitSpecialization = false;
+ if (TemplateParameterList *TemplateParams
+ = MatchTemplateParametersToScopeSpecifier(
+ D.getDeclSpec().getSourceRange().getBegin(),
+ D.getCXXScopeSpec(),
+ (TemplateParameterList**)TemplateParamLists.get(),
+ TemplateParamLists.size(),
+ /*never a friend*/ false,
+ isExplicitSpecialization)) {
+ if (TemplateParams->size() > 0) {
+ // There is no such thing as a variable template.
+ Diag(D.getIdentifierLoc(), diag::err_template_variable)
+ << II
+ << SourceRange(TemplateParams->getTemplateLoc(),
+ TemplateParams->getRAngleLoc());
+ return 0;
+ } else {
+ // There is an extraneous 'template<>' for this variable. Complain
+ // about it, but allow the declaration of the variable.
+ Diag(TemplateParams->getTemplateLoc(),
+ diag::err_template_variable_noparams)
+ << II
+ << SourceRange(TemplateParams->getTemplateLoc(),
+ TemplateParams->getRAngleLoc());
+
+ isExplicitSpecialization = true;
+ }
+ }
+
+ VarDecl *NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
+ II, R, TInfo, SC, SCAsWritten);
+
+ if (D.isInvalidType())
+ NewVD->setInvalidDecl();
+
+ SetNestedNameSpecifier(NewVD, D);
+
+ if (D.getDeclSpec().isThreadSpecified()) {
+ if (NewVD->hasLocalStorage())
+ Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
+ else if (!Context.Target.isTLSSupported())
+ Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
+ else
+ NewVD->setThreadSpecified(true);
+ }
+
+ // Set the lexical context. If the declarator has a C++ scope specifier, the
+ // lexical context will be different from the semantic context.
+ NewVD->setLexicalDeclContext(CurContext);
+
+ // Handle attributes prior to checking for duplicates in MergeVarDecl
+ ProcessDeclAttributes(S, NewVD, D);
+
+ // Handle GNU asm-label extension (encoded as an attribute).
+ if (Expr *E = (Expr*) D.getAsmLabel()) {
+ // The parser guarantees this is a string.
+ StringLiteral *SE = cast<StringLiteral>(E);
+ NewVD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
+ }
+
+ // Diagnose shadowed variables before filtering for scope.
+ if (!D.getCXXScopeSpec().isSet())
+ CheckShadow(S, NewVD, Previous);
+
+ // Don't consider existing declarations that are in a different
+ // scope and are out-of-semantic-context declarations (if the new
+ // declaration has linkage).
+ FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
+
+ // Merge the decl with the existing one if appropriate.
+ if (!Previous.empty()) {
+ if (Previous.isSingleResult() &&
+ isa<FieldDecl>(Previous.getFoundDecl()) &&
+ D.getCXXScopeSpec().isSet()) {
+ // The user tried to define a non-static data member
+ // out-of-line (C++ [dcl.meaning]p1).
+ Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
+ << D.getCXXScopeSpec().getRange();
+ Previous.clear();
+ NewVD->setInvalidDecl();
+ }
+ } else if (D.getCXXScopeSpec().isSet()) {
+ // No previous declaration in the qualifying scope.
+ Diag(D.getIdentifierLoc(), diag::err_no_member)
+ << Name << computeDeclContext(D.getCXXScopeSpec(), true)
+ << D.getCXXScopeSpec().getRange();
+ NewVD->setInvalidDecl();
+ }
+
+ CheckVariableDeclaration(NewVD, Previous, Redeclaration);
+
+ // This is an explicit specialization of a static data member. Check it.
+ if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
+ CheckMemberSpecialization(NewVD, Previous))
+ NewVD->setInvalidDecl();
+
+ // attributes declared post-definition are currently ignored
+ if (Previous.isSingleResult()) {
+ VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
+ if (Def && (Def = Def->getDefinition()) &&
+ Def != NewVD && D.hasAttributes()) {
+ Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
+ Diag(Def->getLocation(), diag::note_previous_definition);
+ }
+ }
+
+ // If this is a locally-scoped extern C variable, update the map of
+ // such variables.
+ if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
+ !NewVD->isInvalidDecl())
+ RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
+
+ return NewVD;
+}
+
+/// \brief Diagnose variable or built-in function shadowing. Implements
+/// -Wshadow.
+///
+/// This method is called whenever a VarDecl is added to a "useful"
+/// scope.
+///
+/// \param S the scope in which the shadowing name is being declared
+/// \param R the lookup of the name
+///
+void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
+ // Return if warning is ignored.
+ if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
+ return;
+
+ // Don't diagnose declarations at file scope. The scope might not
+ // have a DeclContext if (e.g.) we're parsing a function prototype.
+ DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
+ if (NewDC && NewDC->isFileContext())
+ return;
+
+ // Only diagnose if we're shadowing an unambiguous field or variable.
+ if (R.getResultKind() != LookupResult::Found)
+ return;
+
+ NamedDecl* ShadowedDecl = R.getFoundDecl();
+ if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
+ return;
+
+ DeclContext *OldDC = ShadowedDecl->getDeclContext();
+
+ // Only warn about certain kinds of shadowing for class members.
+ if (NewDC && NewDC->isRecord()) {
+ // In particular, don't warn about shadowing non-class members.
+ if (!OldDC->isRecord())
+ return;
+
+ // TODO: should we warn about static data members shadowing
+ // static data members from base classes?
+
+ // TODO: don't diagnose for inaccessible shadowed members.
+ // This is hard to do perfectly because we might friend the
+ // shadowing context, but that's just a false negative.
+ }
+
+ // Determine what kind of declaration we're shadowing.
+ unsigned Kind;
+ if (isa<RecordDecl>(OldDC)) {
+ if (isa<FieldDecl>(ShadowedDecl))
+ Kind = 3; // field
+ else
+ Kind = 2; // static data member
+ } else if (OldDC->isFileContext())
+ Kind = 1; // global
+ else
+ Kind = 0; // local
+
+ DeclarationName Name = R.getLookupName();
+
+ // Emit warning and note.
+ Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
+ Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
+}
+
+/// \brief Check -Wshadow without the advantage of a previous lookup.
+void Sema::CheckShadow(Scope *S, VarDecl *D) {
+ LookupResult R(*this, D->getDeclName(), D->getLocation(),
+ Sema::LookupOrdinaryName, Sema::ForRedeclaration);
+ LookupName(R, S);
+ CheckShadow(S, D, R);
+}
+
+/// \brief Perform semantic checking on a newly-created variable
+/// declaration.
+///
+/// This routine performs all of the type-checking required for a
+/// variable declaration once it has been built. It is used both to
+/// check variables after they have been parsed and their declarators
+/// have been translated into a declaration, and to check variables
+/// that have been instantiated from a template.
+///
+/// Sets NewVD->isInvalidDecl() if an error was encountered.
+void Sema::CheckVariableDeclaration(VarDecl *NewVD,
+ LookupResult &Previous,
+ bool &Redeclaration) {
+ // If the decl is already known invalid, don't check it.
+ if (NewVD->isInvalidDecl())
+ return;
+
+ QualType T = NewVD->getType();
+
+ if (T->isObjCObjectType()) {
+ Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
+ return NewVD->setInvalidDecl();
+ }
+
+ // Emit an error if an address space was applied to decl with local storage.
+ // This includes arrays of objects with address space qualifiers, but not
+ // automatic variables that point to other address spaces.
+ // ISO/IEC TR 18037 S5.1.2
+ if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
+ Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
+ return NewVD->setInvalidDecl();
+ }
+
+ if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
+ && !NewVD->hasAttr<BlocksAttr>())
+ Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
+
+ bool isVM = T->isVariablyModifiedType();
+ if (isVM || NewVD->hasAttr<CleanupAttr>() ||
+ NewVD->hasAttr<BlocksAttr>() ||
+ // FIXME: We need to diagnose jumps passed initialized variables in C++.
+ // However, this turns on the scope checker for everything with a variable
+ // which may impact compile time. See if we can find a better solution
+ // to this, perhaps only checking functions that contain gotos in C++?
+ (LangOpts.CPlusPlus && NewVD->hasLocalStorage()))
+ FunctionNeedsScopeChecking() = true;
+
+ if ((isVM && NewVD->hasLinkage()) ||
+ (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
+ bool SizeIsNegative;
+ QualType FixedTy =
+ TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
+
+ if (FixedTy.isNull() && T->isVariableArrayType()) {
+ const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
+ // FIXME: This won't give the correct result for
+ // int a[10][n];
+ SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
+
+ if (NewVD->isFileVarDecl())
+ Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
+ << SizeRange;
+ else if (NewVD->getStorageClass() == VarDecl::Static)
+ Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
+ << SizeRange;
+ else
+ Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
+ << SizeRange;
+ return NewVD->setInvalidDecl();
+ }
+
+ if (FixedTy.isNull()) {
+ if (NewVD->isFileVarDecl())
+ Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
+ else
+ Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
+ return NewVD->setInvalidDecl();
+ }
+
+ Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
+ NewVD->setType(FixedTy);
+ }
+
+ if (Previous.empty() && NewVD->isExternC()) {
+ // Since we did not find anything by this name and we're declaring
+ // an extern "C" variable, look for a non-visible extern "C"
+ // declaration with the same name.
+ llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
+ = LocallyScopedExternalDecls.find(NewVD->getDeclName());
+ if (Pos != LocallyScopedExternalDecls.end())
+ Previous.addDecl(Pos->second);
+ }
+
+ if (T->isVoidType() && !NewVD->hasExternalStorage()) {
+ Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
+ << T;
+ return NewVD->setInvalidDecl();
+ }
+
+ if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
+ Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
+ return NewVD->setInvalidDecl();
+ }
+
+ if (isVM && NewVD->hasAttr<BlocksAttr>()) {
+ Diag(NewVD->getLocation(), diag::err_block_on_vm);
+ return NewVD->setInvalidDecl();
+ }
+
+ if (!Previous.empty()) {
+ Redeclaration = true;
+ MergeVarDecl(NewVD, Previous);
+ }
+}
+
+/// \brief Data used with FindOverriddenMethod
+struct FindOverriddenMethodData {
+ Sema *S;
+ CXXMethodDecl *Method;
+};
+
+/// \brief Member lookup function that determines whether a given C++
+/// method overrides a method in a base class, to be used with
+/// CXXRecordDecl::lookupInBases().
+static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
+ CXXBasePath &Path,
+ void *UserData) {
+ RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
+
+ FindOverriddenMethodData *Data
+ = reinterpret_cast<FindOverriddenMethodData*>(UserData);
+
+ DeclarationName Name = Data->Method->getDeclName();
+
+ // FIXME: Do we care about other names here too?
+ if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
+ // We really want to find the base class constructor here.
+ QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
+ CanQualType CT = Data->S->Context.getCanonicalType(T);
+
+ Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
+ }
+
+ for (Path.Decls = BaseRecord->lookup(Name);
+ Path.Decls.first != Path.Decls.second;
+ ++Path.Decls.first) {
+ if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
+ if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD))
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/// AddOverriddenMethods - See if a method overrides any in the base classes,
+/// and if so, check that it's a valid override and remember it.
+void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
+ // Look for virtual methods in base classes that this method might override.
+ CXXBasePaths Paths;
+ FindOverriddenMethodData Data;
+ Data.Method = MD;
+ Data.S = this;
+ if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
+ for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
+ E = Paths.found_decls_end(); I != E; ++I) {
+ if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
+ if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
+ !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
+ !CheckOverridingFunctionAttributes(MD, OldMD))
+ MD->addOverriddenMethod(OldMD->getCanonicalDecl());
+ }
+ }
+ }
+}
+
+NamedDecl*
+Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
+ QualType R, TypeSourceInfo *TInfo,
+ LookupResult &Previous,
+ MultiTemplateParamsArg TemplateParamLists,
+ bool IsFunctionDefinition, bool &Redeclaration) {
+ assert(R.getTypePtr()->isFunctionType());
+
+ DeclarationName Name = GetNameForDeclarator(D);
+ FunctionDecl::StorageClass SC = FunctionDecl::None;
+ switch (D.getDeclSpec().getStorageClassSpec()) {
+ default: assert(0 && "Unknown storage class!");
+ case DeclSpec::SCS_auto:
+ case DeclSpec::SCS_register:
+ case DeclSpec::SCS_mutable:
+ Diag(D.getDeclSpec().getStorageClassSpecLoc(),
+ diag::err_typecheck_sclass_func);
+ D.setInvalidType();
+ break;
+ case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
+ case DeclSpec::SCS_extern: SC = FunctionDecl::Extern; break;
+ case DeclSpec::SCS_static: {
+ if (CurContext->getLookupContext()->isFunctionOrMethod()) {
+ // C99 6.7.1p5:
+ // The declaration of an identifier for a function that has
+ // block scope shall have no explicit storage-class specifier
+ // other than extern
+ // See also (C++ [dcl.stc]p4).
+ Diag(D.getDeclSpec().getStorageClassSpecLoc(),
+ diag::err_static_block_func);
+ SC = FunctionDecl::None;
+ } else
+ SC = FunctionDecl::Static;
+ break;
+ }
+ case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
+ }
+
+ if (D.getDeclSpec().isThreadSpecified())
+ Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
+
+ bool isFriend = D.getDeclSpec().isFriendSpecified();
+ bool isInline = D.getDeclSpec().isInlineSpecified();
+ bool isVirtual = D.getDeclSpec().isVirtualSpecified();
+ bool isExplicit = D.getDeclSpec().isExplicitSpecified();
+
+ DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
+ FunctionDecl::StorageClass SCAsWritten
+ = StorageClassSpecToFunctionDeclStorageClass(SCSpec, DC);
+
+ // Check that the return type is not an abstract class type.
+ // For record types, this is done by the AbstractClassUsageDiagnoser once
+ // the class has been completely parsed.
+ if (!DC->isRecord() &&
+ RequireNonAbstractType(D.getIdentifierLoc(),
+ R->getAs<FunctionType>()->getResultType(),
+ diag::err_abstract_type_in_decl,
+ AbstractReturnType))
+ D.setInvalidType();
+
+ // Do not allow returning a objc interface by-value.
+ if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
+ Diag(D.getIdentifierLoc(),
+ diag::err_object_cannot_be_passed_returned_by_value) << 0
+ << R->getAs<FunctionType>()->getResultType();
+ D.setInvalidType();
+ }
+
+ bool isVirtualOkay = false;
+ FunctionDecl *NewFD;
+
+ if (isFriend) {
+ // C++ [class.friend]p5
+ // A function can be defined in a friend declaration of a
+ // class . . . . Such a function is implicitly inline.
+ isInline |= IsFunctionDefinition;
+ }
+
+ if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
+ // This is a C++ constructor declaration.
+ assert(DC->isRecord() &&
+ "Constructors can only be declared in a member context");
+
+ R = CheckConstructorDeclarator(D, R, SC);
+
+ // Create the new declaration
+ NewFD = CXXConstructorDecl::Create(Context,
+ cast<CXXRecordDecl>(DC),
+ D.getIdentifierLoc(), Name, R, TInfo,
+ isExplicit, isInline,
+ /*isImplicitlyDeclared=*/false);
+ } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
+ // This is a C++ destructor declaration.
+ if (DC->isRecord()) {
+ R = CheckDestructorDeclarator(D, SC);
+
+ NewFD = CXXDestructorDecl::Create(Context,
+ cast<CXXRecordDecl>(DC),
+ D.getIdentifierLoc(), Name, R,
+ isInline,
+ /*isImplicitlyDeclared=*/false);
+ NewFD->setTypeSourceInfo(TInfo);
+
+ isVirtualOkay = true;
+ } else {
+ Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
+
+ // Create a FunctionDecl to satisfy the function definition parsing
+ // code path.
+ NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
+ Name, R, TInfo, SC, SCAsWritten, isInline,
+ /*hasPrototype=*/true);
+ D.setInvalidType();
+ }
+ } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
+ if (!DC->isRecord()) {
+ Diag(D.getIdentifierLoc(),
+ diag::err_conv_function_not_member);
+ return 0;
+ }
+
+ CheckConversionDeclarator(D, R, SC);
+ NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
+ D.getIdentifierLoc(), Name, R, TInfo,
+ isInline, isExplicit);
+
+ isVirtualOkay = true;
+ } else if (DC->isRecord()) {
+ // If the of the function is the same as the name of the record, then this
+ // must be an invalid constructor that has a return type.
+ // (The parser checks for a return type and makes the declarator a
+ // constructor if it has no return type).
+ // must have an invalid constructor that has a return type
+ if (Name.getAsIdentifierInfo() &&
+ Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
+ Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
+ << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
+ << SourceRange(D.getIdentifierLoc());
+ return 0;
+ }
+
+ bool isStatic = SC == FunctionDecl::Static;
+
+ // [class.free]p1:
+ // Any allocation function for a class T is a static member
+ // (even if not explicitly declared static).
+ if (Name.getCXXOverloadedOperator() == OO_New ||
+ Name.getCXXOverloadedOperator() == OO_Array_New)
+ isStatic = true;
+
+ // [class.free]p6 Any deallocation function for a class X is a static member
+ // (even if not explicitly declared static).
+ if (Name.getCXXOverloadedOperator() == OO_Delete ||
+ Name.getCXXOverloadedOperator() == OO_Array_Delete)
+ isStatic = true;
+
+ // This is a C++ method declaration.
+ NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
+ D.getIdentifierLoc(), Name, R, TInfo,
+ isStatic, SCAsWritten, isInline);
+
+ isVirtualOkay = !isStatic;
+ } else {
+ // Determine whether the function was written with a
+ // prototype. This true when:
+ // - we're in C++ (where every function has a prototype),
+ // - there is a prototype in the declarator, or
+ // - the type R of the function is some kind of typedef or other reference
+ // to a type name (which eventually refers to a function type).
+ bool HasPrototype =
+ getLangOptions().CPlusPlus ||
+ (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
+ (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
+
+ NewFD = FunctionDecl::Create(Context, DC,
+ D.getIdentifierLoc(),
+ Name, R, TInfo, SC, SCAsWritten, isInline,
+ HasPrototype);
+ }
+
+ if (D.isInvalidType())
+ NewFD->setInvalidDecl();
+
+ SetNestedNameSpecifier(NewFD, D);
+
+ // Set the lexical context. If the declarator has a C++
+ // scope specifier, or is the object of a friend declaration, the
+ // lexical context will be different from the semantic context.
+ NewFD->setLexicalDeclContext(CurContext);
+
+ // Match up the template parameter lists with the scope specifier, then
+ // determine whether we have a template or a template specialization.
+ FunctionTemplateDecl *FunctionTemplate = 0;
+ bool isExplicitSpecialization = false;
+ bool isFunctionTemplateSpecialization = false;
+ if (TemplateParameterList *TemplateParams
+ = MatchTemplateParametersToScopeSpecifier(
+ D.getDeclSpec().getSourceRange().getBegin(),
+ D.getCXXScopeSpec(),
+ (TemplateParameterList**)TemplateParamLists.get(),
+ TemplateParamLists.size(),
+ isFriend,
+ isExplicitSpecialization)) {
+ if (TemplateParams->size() > 0) {
+ // This is a function template
+
+ // Check that we can declare a template here.
+ if (CheckTemplateDeclScope(S, TemplateParams))
+ return 0;
+
+ FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
+ NewFD->getLocation(),
+ Name, TemplateParams,
+ NewFD);
+ FunctionTemplate->setLexicalDeclContext(CurContext);
+ NewFD->setDescribedFunctionTemplate(FunctionTemplate);
+ } else {
+ // This is a function template specialization.
+ isFunctionTemplateSpecialization = true;
+
+ // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
+ if (isFriend && isFunctionTemplateSpecialization) {
+ // We want to remove the "template<>", found here.
+ SourceRange RemoveRange = TemplateParams->getSourceRange();
+
+ // If we remove the template<> and the name is not a
+ // template-id, we're actually silently creating a problem:
+ // the friend declaration will refer to an untemplated decl,
+ // and clearly the user wants a template specialization. So
+ // we need to insert '<>' after the name.
+ SourceLocation InsertLoc;
+ if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
+ InsertLoc = D.getName().getSourceRange().getEnd();
+ InsertLoc = PP.getLocForEndOfToken(InsertLoc);
+ }
+
+ Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
+ << Name << RemoveRange
+ << FixItHint::CreateRemoval(RemoveRange)
+ << FixItHint::CreateInsertion(InsertLoc, "<>");
+ }
+ }
+
+ // FIXME: Free this memory properly.
+ TemplateParamLists.release();
+ }
+
+ // C++ [dcl.fct.spec]p5:
+ // The virtual specifier shall only be used in declarations of
+ // nonstatic class member functions that appear within a
+ // member-specification of a class declaration; see 10.3.
+ //
+ if (isVirtual && !NewFD->isInvalidDecl()) {
+ if (!isVirtualOkay) {
+ Diag(D.getDeclSpec().getVirtualSpecLoc(),
+ diag::err_virtual_non_function);
+ } else if (!CurContext->isRecord()) {
+ // 'virtual' was specified outside of the class.
+ Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
+ << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
+ } else {
+ // Okay: Add virtual to the method.
+ CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
+ CurClass->setMethodAsVirtual(NewFD);
+ }
+ }
+
+ // C++ [dcl.fct.spec]p6:
+ // The explicit specifier shall be used only in the declaration of a
+ // constructor or conversion function within its class definition; see 12.3.1
+ // and 12.3.2.
+ if (isExplicit && !NewFD->isInvalidDecl()) {
+ if (!CurContext->isRecord()) {
+ // 'explicit' was specified outside of the class.
+ Diag(D.getDeclSpec().getExplicitSpecLoc(),
+ diag::err_explicit_out_of_class)
+ << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
+ } else if (!isa<CXXConstructorDecl>(NewFD) &&
+ !isa<CXXConversionDecl>(NewFD)) {
+ // 'explicit' was specified on a function that wasn't a constructor
+ // or conversion function.
+ Diag(D.getDeclSpec().getExplicitSpecLoc(),
+ diag::err_explicit_non_ctor_or_conv_function)
+ << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
+ }
+ }
+
+ // Filter out previous declarations that don't match the scope.
+ FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
+
+ if (isFriend) {
+ // DC is the namespace in which the function is being declared.
+ assert((DC->isFileContext() || !Previous.empty()) &&
+ "previously-undeclared friend function being created "
+ "in a non-namespace context");
+
+ // For now, claim that the objects have no previous declaration.
+ if (FunctionTemplate) {
+ FunctionTemplate->setObjectOfFriendDecl(false);
+ FunctionTemplate->setAccess(AS_public);
+ }
+ NewFD->setObjectOfFriendDecl(false);
+ NewFD->setAccess(AS_public);
+ }
+
+ if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
+ !CurContext->isRecord()) {
+ // C++ [class.static]p1:
+ // A data or function member of a class may be declared static
+ // in a class definition, in which case it is a static member of
+ // the class.
+
+ // Complain about the 'static' specifier if it's on an out-of-line
+ // member function definition.
+ Diag(D.getDeclSpec().getStorageClassSpecLoc(),
+ diag::err_static_out_of_line)
+ << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
+ }
+
+ // Handle GNU asm-label extension (encoded as an attribute).
+ if (Expr *E = (Expr*) D.getAsmLabel()) {
+ // The parser guarantees this is a string.
+ StringLiteral *SE = cast<StringLiteral>(E);
+ NewFD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
+ }
+
+ // Copy the parameter declarations from the declarator D to the function
+ // declaration NewFD, if they are available. First scavenge them into Params.
+ llvm::SmallVector<ParmVarDecl*, 16> Params;
+ if (D.getNumTypeObjects() > 0) {
+ DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
+
+ // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
+ // function that takes no arguments, not a function that takes a
+ // single void argument.
+ // We let through "const void" here because Sema::GetTypeForDeclarator
+ // already checks for that case.
+ if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
+ FTI.ArgInfo[0].Param &&
+ FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
+ // Empty arg list, don't push any params.
+ ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
+
+ // In C++, the empty parameter-type-list must be spelled "void"; a
+ // typedef of void is not permitted.
+ if (getLangOptions().CPlusPlus &&
+ Param->getType().getUnqualifiedType() != Context.VoidTy)
+ Diag(Param->getLocation(), diag::err_param_typedef_of_void);
+ // FIXME: Leaks decl?
+ } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
+ for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
+ ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
+ assert(Param->getDeclContext() != NewFD && "Was set before ?");
+ Param->setDeclContext(NewFD);
+ Params.push_back(Param);
+
+ if (Param->isInvalidDecl())
+ NewFD->setInvalidDecl();
+ }
+ }
+
+ } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
+ // When we're declaring a function with a typedef, typeof, etc as in the
+ // following example, we'll need to synthesize (unnamed)
+ // parameters for use in the declaration.
+ //
+ // @code
+ // typedef void fn(int);
+ // fn f;
+ // @endcode
+
+ // Synthesize a parameter for each argument type.
+ for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
+ AE = FT->arg_type_end(); AI != AE; ++AI) {
+ ParmVarDecl *Param = ParmVarDecl::Create(Context, NewFD,
+ D.getIdentifierLoc(), 0,
+ *AI,
+ Context.getTrivialTypeSourceInfo(*AI,
+ D.getIdentifierLoc()),
+ VarDecl::None,
+ VarDecl::None, 0);
+ Param->setImplicit();
+ Params.push_back(Param);
+ }
+ } else {
+ assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
+ "Should not need args for typedef of non-prototype fn");
+ }
+ // Finally, we know we have the right number of parameters, install them.
+ NewFD->setParams(Params.data(), Params.size());
+
+ // If the declarator is a template-id, translate the parser's template
+ // argument list into our AST format.
+ bool HasExplicitTemplateArgs = false;
+ TemplateArgumentListInfo TemplateArgs;
+ if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
+ TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
+ TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
+ TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
+ ASTTemplateArgsPtr TemplateArgsPtr(*this,
+ TemplateId->getTemplateArgs(),
+ TemplateId->NumArgs);
+ translateTemplateArguments(TemplateArgsPtr,
+ TemplateArgs);
+ TemplateArgsPtr.release();
+
+ HasExplicitTemplateArgs = true;
+
+ if (FunctionTemplate) {
+ // FIXME: Diagnose function template with explicit template
+ // arguments.
+ HasExplicitTemplateArgs = false;
+ } else if (!isFunctionTemplateSpecialization &&
+ !D.getDeclSpec().isFriendSpecified()) {
+ // We have encountered something that the user meant to be a
+ // specialization (because it has explicitly-specified template
+ // arguments) but that was not introduced with a "template<>" (or had
+ // too few of them).
+ Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
+ << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
+ << FixItHint::CreateInsertion(
+ D.getDeclSpec().getSourceRange().getBegin(),
+ "template<> ");
+ isFunctionTemplateSpecialization = true;
+ } else {
+ // "friend void foo<>(int);" is an implicit specialization decl.
+ isFunctionTemplateSpecialization = true;
+ }
+ } else if (isFriend && isFunctionTemplateSpecialization) {
+ // This combination is only possible in a recovery case; the user
+ // wrote something like:
+ // template <> friend void foo(int);
+ // which we're recovering from as if the user had written:
+ // friend void foo<>(int);
+ // Go ahead and fake up a template id.
+ HasExplicitTemplateArgs = true;
+ TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
+ TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
+ }
+
+ // If it's a friend (and only if it's a friend), it's possible
+ // that either the specialized function type or the specialized
+ // template is dependent, and therefore matching will fail. In
+ // this case, don't check the specialization yet.
+ if (isFunctionTemplateSpecialization && isFriend &&
+ (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
+ assert(HasExplicitTemplateArgs &&
+ "friend function specialization without template args");
+ if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
+ Previous))
+ NewFD->setInvalidDecl();
+ } else if (isFunctionTemplateSpecialization) {
+ if (CheckFunctionTemplateSpecialization(NewFD,
+ (HasExplicitTemplateArgs ? &TemplateArgs : 0),
+ Previous))
+ NewFD->setInvalidDecl();
+ } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
+ if (CheckMemberSpecialization(NewFD, Previous))
+ NewFD->setInvalidDecl();
+ }
+
+ // Perform semantic checking on the function declaration.
+ bool OverloadableAttrRequired = false; // FIXME: HACK!
+ CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
+ Redeclaration, /*FIXME:*/OverloadableAttrRequired);
+
+ assert((NewFD->isInvalidDecl() || !Redeclaration ||
+ Previous.getResultKind() != LookupResult::FoundOverloaded) &&
+ "previous declaration set still overloaded");
+
+ NamedDecl *PrincipalDecl = (FunctionTemplate
+ ? cast<NamedDecl>(FunctionTemplate)
+ : NewFD);
+
+ if (isFriend && Redeclaration) {
+ AccessSpecifier Access = AS_public;
+ if (!NewFD->isInvalidDecl())
+ Access = NewFD->getPreviousDeclaration()->getAccess();
+
+ NewFD->setAccess(Access);
+ if (FunctionTemplate) FunctionTemplate->setAccess(Access);
+
+ PrincipalDecl->setObjectOfFriendDecl(true);
+ }
+
+ if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
+ PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
+ PrincipalDecl->setNonMemberOperator();
+
+ // If we have a function template, check the template parameter
+ // list. This will check and merge default template arguments.
+ if (FunctionTemplate) {
+ FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
+ CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
+ PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
+ D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
+ : TPC_FunctionTemplate);
+ }
+
+ if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
+ // Fake up an access specifier if it's supposed to be a class member.
+ if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
+ NewFD->setAccess(AS_public);
+
+ // An out-of-line member function declaration must also be a
+ // definition (C++ [dcl.meaning]p1).
+ // Note that this is not the case for explicit specializations of
+ // function templates or member functions of class templates, per
+ // C++ [temp.expl.spec]p2.
+ if (!IsFunctionDefinition && !isFriend &&
+ !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
+ Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
+ << D.getCXXScopeSpec().getRange();
+ NewFD->setInvalidDecl();
+ } else if (!Redeclaration &&
+ !(isFriend && CurContext->isDependentContext())) {
+ // The user tried to provide an out-of-line definition for a
+ // function that is a member of a class or namespace, but there
+ // was no such member function declared (C++ [class.mfct]p2,
+ // C++ [namespace.memdef]p2). For example:
+ //
+ // class X {
+ // void f() const;
+ // };
+ //
+ // void X::f() { } // ill-formed
+ //
+ // Complain about this problem, and attempt to suggest close
+ // matches (e.g., those that differ only in cv-qualifiers and
+ // whether the parameter types are references).
+ Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
+ << Name << DC << D.getCXXScopeSpec().getRange();
+ NewFD->setInvalidDecl();
+
+ LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
+ ForRedeclaration);
+ LookupQualifiedName(Prev, DC);
+ assert(!Prev.isAmbiguous() &&
+ "Cannot have an ambiguity in previous-declaration lookup");
+ for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
+ Func != FuncEnd; ++Func) {
+ if (isa<FunctionDecl>(*Func) &&
+ isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
+ Diag((*Func)->getLocation(), diag::note_member_def_close_match);
+ }
+ }
+ }
+
+ // Handle attributes. We need to have merged decls when handling attributes
+ // (for example to check for conflicts, etc).
+ // FIXME: This needs to happen before we merge declarations. Then,
+ // let attribute merging cope with attribute conflicts.
+ ProcessDeclAttributes(S, NewFD, D);
+
+ // attributes declared post-definition are currently ignored
+ if (Redeclaration && Previous.isSingleResult()) {
+ const FunctionDecl *Def;
+ FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
+ if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
+ Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
+ Diag(Def->getLocation(), diag::note_previous_definition);
+ }
+ }
+
+ AddKnownFunctionAttributes(NewFD);
+
+ if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
+ // If a function name is overloadable in C, then every function
+ // with that name must be marked "overloadable".
+ Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
+ << Redeclaration << NewFD;
+ if (!Previous.empty())
+ Diag(Previous.getRepresentativeDecl()->getLocation(),
+ diag::note_attribute_overloadable_prev_overload);
+ NewFD->addAttr(::new (Context) OverloadableAttr());
+ }
+
+ // If this is a locally-scoped extern C function, update the
+ // map of such names.
+ if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
+ && !NewFD->isInvalidDecl())
+ RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
+
+ // Set this FunctionDecl's range up to the right paren.
+ NewFD->setLocEnd(D.getSourceRange().getEnd());
+
+ if (FunctionTemplate && NewFD->isInvalidDecl())
+ FunctionTemplate->setInvalidDecl();
+
+ if (FunctionTemplate)
+ return FunctionTemplate;
+
+
+ // Keep track of static, non-inlined function definitions that
+ // have not been used. We will warn later.
+ // FIXME: Also include static functions declared but not defined.
+ if (!NewFD->isInvalidDecl() && IsFunctionDefinition
+ && !NewFD->isInlined() && NewFD->getLinkage() == InternalLinkage
+ && !NewFD->isUsed() && !NewFD->hasAttr<UnusedAttr>()
+ && !NewFD->hasAttr<ConstructorAttr>()
+ && !NewFD->hasAttr<DestructorAttr>())
+ UnusedStaticFuncs.push_back(NewFD);
+
+ return NewFD;
+}
+
+/// \brief Perform semantic checking of a new function declaration.
+///
+/// Performs semantic analysis of the new function declaration
+/// NewFD. This routine performs all semantic checking that does not
+/// require the actual declarator involved in the declaration, and is
+/// used both for the declaration of functions as they are parsed
+/// (called via ActOnDeclarator) and for the declaration of functions
+/// that have been instantiated via C++ template instantiation (called
+/// via InstantiateDecl).
+///
+/// \param IsExplicitSpecialiation whether this new function declaration is
+/// an explicit specialization of the previous declaration.
+///
+/// This sets NewFD->isInvalidDecl() to true if there was an error.
+void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
+ LookupResult &Previous,
+ bool IsExplicitSpecialization,
+ bool &Redeclaration,
+ bool &OverloadableAttrRequired) {
+ // If NewFD is already known erroneous, don't do any of this checking.
+ if (NewFD->isInvalidDecl())
+ return;
+
+ if (NewFD->getResultType()->isVariablyModifiedType()) {
+ // Functions returning a variably modified type violate C99 6.7.5.2p2
+ // because all functions have linkage.
+ Diag(NewFD->getLocation(), diag::err_vm_func_decl);
+ return NewFD->setInvalidDecl();
+ }
+
+ if (NewFD->isMain())
+ CheckMain(NewFD);
+
+ // Check for a previous declaration of this name.
+ if (Previous.empty() && NewFD->isExternC()) {
+ // Since we did not find anything by this name and we're declaring
+ // an extern "C" function, look for a non-visible extern "C"
+ // declaration with the same name.
+ llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
+ = LocallyScopedExternalDecls.find(NewFD->getDeclName());
+ if (Pos != LocallyScopedExternalDecls.end())
+ Previous.addDecl(Pos->second);
+ }
+
+ // Merge or overload the declaration with an existing declaration of
+ // the same name, if appropriate.
+ if (!Previous.empty()) {
+ // Determine whether NewFD is an overload of PrevDecl or
+ // a declaration that requires merging. If it's an overload,
+ // there's no more work to do here; we'll just add the new
+ // function to the scope.
+
+ NamedDecl *OldDecl = 0;
+ if (!AllowOverloadingOfFunction(Previous, Context)) {
+ Redeclaration = true;
+ OldDecl = Previous.getFoundDecl();
+ } else {
+ if (!getLangOptions().CPlusPlus) {
+ OverloadableAttrRequired = true;
+
+ // Functions marked "overloadable" must have a prototype (that
+ // we can't get through declaration merging).
+ if (!NewFD->getType()->getAs<FunctionProtoType>()) {
+ Diag(NewFD->getLocation(),
+ diag::err_attribute_overloadable_no_prototype)
+ << NewFD;
+ Redeclaration = true;
+
+ // Turn this into a variadic function with no parameters.
+ QualType R = Context.getFunctionType(
+ NewFD->getType()->getAs<FunctionType>()->getResultType(),
+ 0, 0, true, 0, false, false, 0, 0,
+ FunctionType::ExtInfo());
+ NewFD->setType(R);
+ return NewFD->setInvalidDecl();
+ }
+ }
+
+ switch (CheckOverload(NewFD, Previous, OldDecl)) {
+ case Ovl_Match:
+ Redeclaration = true;
+ if (isa<UsingShadowDecl>(OldDecl) && CurContext->isRecord()) {
+ HideUsingShadowDecl(S, cast<UsingShadowDecl>(OldDecl));
+ Redeclaration = false;
+ }
+ break;
+
+ case Ovl_NonFunction:
+ Redeclaration = true;
+ break;
+
+ case Ovl_Overload:
+ Redeclaration = false;
+ break;
+ }
+ }
+
+ if (Redeclaration) {
+ // NewFD and OldDecl represent declarations that need to be
+ // merged.
+ if (MergeFunctionDecl(NewFD, OldDecl))
+ return NewFD->setInvalidDecl();
+
+ Previous.clear();
+ Previous.addDecl(OldDecl);
+
+ if (FunctionTemplateDecl *OldTemplateDecl
+ = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
+ NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
+ FunctionTemplateDecl *NewTemplateDecl
+ = NewFD->getDescribedFunctionTemplate();
+ assert(NewTemplateDecl && "Template/non-template mismatch");
+ if (CXXMethodDecl *Method
+ = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
+ Method->setAccess(OldTemplateDecl->getAccess());
+ NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
+ }
+
+ // If this is an explicit specialization of a member that is a function
+ // template, mark it as a member specialization.
+ if (IsExplicitSpecialization &&
+ NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
+ NewTemplateDecl->setMemberSpecialization();
+ assert(OldTemplateDecl->isMemberSpecialization());
+ }
+ } else {
+ if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
+ NewFD->setAccess(OldDecl->getAccess());
+ NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
+ }
+ }
+ }
+
+ // Semantic checking for this function declaration (in isolation).
+ if (getLangOptions().CPlusPlus) {
+ // C++-specific checks.
+ if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
+ CheckConstructor(Constructor);
+ } else if (CXXDestructorDecl *Destructor =
+ dyn_cast<CXXDestructorDecl>(NewFD)) {
+ CXXRecordDecl *Record = Destructor->getParent();
+ QualType ClassType = Context.getTypeDeclType(Record);
+
+ // FIXME: Shouldn't we be able to perform thisc heck even when the class
+ // type is dependent? Both gcc and edg can handle that.
+ if (!ClassType->isDependentType()) {
+ DeclarationName Name
+ = Context.DeclarationNames.getCXXDestructorName(
+ Context.getCanonicalType(ClassType));
+ if (NewFD->getDeclName() != Name) {
+ Diag(NewFD->getLocation(), diag::err_destructor_name);
+ return NewFD->setInvalidDecl();
+ }
+ }
+
+ Record->setUserDeclaredDestructor(true);
+ // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
+ // user-defined destructor.
+ Record->setPOD(false);
+
+ // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
+ // declared destructor.
+ // FIXME: C++0x: don't do this for "= default" destructors
+ Record->setHasTrivialDestructor(false);
+ } else if (CXXConversionDecl *Conversion
+ = dyn_cast<CXXConversionDecl>(NewFD)) {
+ ActOnConversionDeclarator(Conversion);
+ }
+
+ // Find any virtual functions that this function overrides.
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
+ if (!Method->isFunctionTemplateSpecialization() &&
+ !Method->getDescribedFunctionTemplate())
+ AddOverriddenMethods(Method->getParent(), Method);
+ }
+
+ // Additional checks for the destructor; make sure we do this after we
+ // figure out whether the destructor is virtual.
+ if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
+ if (!Destructor->getParent()->isDependentType())
+ CheckDestructor(Destructor);
+
+ // Extra checking for C++ overloaded operators (C++ [over.oper]).
+ if (NewFD->isOverloadedOperator() &&
+ CheckOverloadedOperatorDeclaration(NewFD))
+ return NewFD->setInvalidDecl();
+
+ // Extra checking for C++0x literal operators (C++0x [over.literal]).
+ if (NewFD->getLiteralIdentifier() &&
+ CheckLiteralOperatorDeclaration(NewFD))
+ return NewFD->setInvalidDecl();
+
+ // In C++, check default arguments now that we have merged decls. Unless
+ // the lexical context is the class, because in this case this is done
+ // during delayed parsing anyway.
+ if (!CurContext->isRecord())
+ CheckCXXDefaultArguments(NewFD);
+ }
+}
+
+void Sema::CheckMain(FunctionDecl* FD) {
+ // C++ [basic.start.main]p3: A program that declares main to be inline
+ // or static is ill-formed.
+ // C99 6.7.4p4: In a hosted environment, the inline function specifier
+ // shall not appear in a declaration of main.
+ // static main is not an error under C99, but we should warn about it.
+ bool isInline = FD->isInlineSpecified();
+ bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
+ if (isInline || isStatic) {
+ unsigned diagID = diag::warn_unusual_main_decl;
+ if (isInline || getLangOptions().CPlusPlus)
+ diagID = diag::err_unusual_main_decl;
+
+ int which = isStatic + (isInline << 1) - 1;
+ Diag(FD->getLocation(), diagID) << which;
+ }
+
+ QualType T = FD->getType();
+ assert(T->isFunctionType() && "function decl is not of function type");
+ const FunctionType* FT = T->getAs<FunctionType>();
+
+ if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
+ // TODO: add a replacement fixit to turn the return type into 'int'.
+ Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
+ FD->setInvalidDecl(true);
+ }
+
+ // Treat protoless main() as nullary.
+ if (isa<FunctionNoProtoType>(FT)) return;
+
+ const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
+ unsigned nparams = FTP->getNumArgs();
+ assert(FD->getNumParams() == nparams);
+
+ bool HasExtraParameters = (nparams > 3);
+
+ // Darwin passes an undocumented fourth argument of type char**. If
+ // other platforms start sprouting these, the logic below will start
+ // getting shifty.
+ if (nparams == 4 &&
+ Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
+ HasExtraParameters = false;
+
+ if (HasExtraParameters) {
+ Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
+ FD->setInvalidDecl(true);
+ nparams = 3;
+ }
+
+ // FIXME: a lot of the following diagnostics would be improved
+ // if we had some location information about types.
+
+ QualType CharPP =
+ Context.getPointerType(Context.getPointerType(Context.CharTy));
+ QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
+
+ for (unsigned i = 0; i < nparams; ++i) {
+ QualType AT = FTP->getArgType(i);
+
+ bool mismatch = true;
+
+ if (Context.hasSameUnqualifiedType(AT, Expected[i]))
+ mismatch = false;
+ else if (Expected[i] == CharPP) {
+ // As an extension, the following forms are okay:
+ // char const **
+ // char const * const *
+ // char * const *
+
+ QualifierCollector qs;
+ const PointerType* PT;
+ if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
+ (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
+ (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
+ qs.removeConst();
+ mismatch = !qs.empty();
+ }
+ }
+
+ if (mismatch) {
+ Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
+ // TODO: suggest replacing given type with expected type
+ FD->setInvalidDecl(true);
+ }
+ }
+
+ if (nparams == 1 && !FD->isInvalidDecl()) {
+ Diag(FD->getLocation(), diag::warn_main_one_arg);
+ }
+}
+
+bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
+ // FIXME: Need strict checking. In C89, we need to check for
+ // any assignment, increment, decrement, function-calls, or
+ // commas outside of a sizeof. In C99, it's the same list,
+ // except that the aforementioned are allowed in unevaluated
+ // expressions. Everything else falls under the
+ // "may accept other forms of constant expressions" exception.
+ // (We never end up here for C++, so the constant expression
+ // rules there don't matter.)
+ if (Init->isConstantInitializer(Context))
+ return false;
+ Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
+ << Init->getSourceRange();
+ return true;
+}
+
+void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
+ AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
+}
+
+/// AddInitializerToDecl - Adds the initializer Init to the
+/// declaration dcl. If DirectInit is true, this is C++ direct
+/// initialization rather than copy initialization.
+void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
+ Decl *RealDecl = dcl.getAs<Decl>();
+ // If there is no declaration, there was an error parsing it. Just ignore
+ // the initializer.
+ if (RealDecl == 0)
+ return;
+
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
+ // With declarators parsed the way they are, the parser cannot
+ // distinguish between a normal initializer and a pure-specifier.
+ // Thus this grotesque test.
+ IntegerLiteral *IL;
+ Expr *Init = static_cast<Expr *>(init.get());
+ if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
+ Context.getCanonicalType(IL->getType()) == Context.IntTy)
+ CheckPureMethod(Method, Init->getSourceRange());
+ else {
+ Diag(Method->getLocation(), diag::err_member_function_initialization)
+ << Method->getDeclName() << Init->getSourceRange();
+ Method->setInvalidDecl();
+ }
+ return;
+ }
+
+ VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
+ if (!VDecl) {
+ if (getLangOptions().CPlusPlus &&
+ RealDecl->getLexicalDeclContext()->isRecord() &&
+ isa<NamedDecl>(RealDecl))
+ Diag(RealDecl->getLocation(), diag::err_member_initialization)
+ << cast<NamedDecl>(RealDecl)->getDeclName();
+ else
+ Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
+ RealDecl->setInvalidDecl();
+ return;
+ }
+
+ // A definition must end up with a complete type, which means it must be
+ // complete with the restriction that an array type might be completed by the
+ // initializer; note that later code assumes this restriction.
+ QualType BaseDeclType = VDecl->getType();
+ if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
+ BaseDeclType = Array->getElementType();
+ if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
+ diag::err_typecheck_decl_incomplete_type)) {
+ RealDecl->setInvalidDecl();
+ return;
+ }
+
+ // The variable can not have an abstract class type.
+ if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
+ diag::err_abstract_type_in_decl,
+ AbstractVariableType))
+ VDecl->setInvalidDecl();
+
+ const VarDecl *Def;
+ if ((Def = VDecl->getDefinition()) && Def != VDecl) {
+ Diag(VDecl->getLocation(), diag::err_redefinition)
+ << VDecl->getDeclName();
+ Diag(Def->getLocation(), diag::note_previous_definition);
+ VDecl->setInvalidDecl();
+ return;
+ }
+
+ // Take ownership of the expression, now that we're sure we have somewhere
+ // to put it.
+ Expr *Init = init.takeAs<Expr>();
+ assert(Init && "missing initializer");
+
+ // Capture the variable that is being initialized and the style of
+ // initialization.
+ InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
+
+ // FIXME: Poor source location information.
+ InitializationKind Kind
+ = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
+ Init->getLocStart(),
+ Init->getLocEnd())
+ : InitializationKind::CreateCopy(VDecl->getLocation(),
+ Init->getLocStart());
+
+ // Get the decls type and save a reference for later, since
+ // CheckInitializerTypes may change it.
+ QualType DclT = VDecl->getType(), SavT = DclT;
+ if (VDecl->isBlockVarDecl()) {
+ if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
+ Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
+ VDecl->setInvalidDecl();
+ } else if (!VDecl->isInvalidDecl()) {
+ InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
+ OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
+ MultiExprArg(*this, (void**)&Init, 1),
+ &DclT);
+ if (Result.isInvalid()) {
+ VDecl->setInvalidDecl();
+ return;
+ }
+
+ Init = Result.takeAs<Expr>();
+
+ // C++ 3.6.2p2, allow dynamic initialization of static initializers.
+ // Don't check invalid declarations to avoid emitting useless diagnostics.
+ if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
+ if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
+ CheckForConstantInitializer(Init, DclT);
+ }
+ }
+ } else if (VDecl->isStaticDataMember() &&
+ VDecl->getLexicalDeclContext()->isRecord()) {
+ // This is an in-class initialization for a static data member, e.g.,
+ //
+ // struct S {
+ // static const int value = 17;
+ // };
+
+ // Attach the initializer
+ VDecl->setInit(Init);
+
+ // C++ [class.mem]p4:
+ // A member-declarator can contain a constant-initializer only
+ // if it declares a static member (9.4) of const integral or
+ // const enumeration type, see 9.4.2.
+ QualType T = VDecl->getType();
+ if (!T->isDependentType() &&
+ (!Context.getCanonicalType(T).isConstQualified() ||
+ !T->isIntegralType())) {
+ Diag(VDecl->getLocation(), diag::err_member_initialization)
+ << VDecl->getDeclName() << Init->getSourceRange();
+ VDecl->setInvalidDecl();
+ } else {
+ // C++ [class.static.data]p4:
+ // If a static data member is of const integral or const
+ // enumeration type, its declaration in the class definition
+ // can specify a constant-initializer which shall be an
+ // integral constant expression (5.19).
+ if (!Init->isTypeDependent() &&
+ !Init->getType()->isIntegralType()) {
+ // We have a non-dependent, non-integral or enumeration type.
+ Diag(Init->getSourceRange().getBegin(),
+ diag::err_in_class_initializer_non_integral_type)
+ << Init->getType() << Init->getSourceRange();
+ VDecl->setInvalidDecl();
+ } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
+ // Check whether the expression is a constant expression.
+ llvm::APSInt Value;
+ SourceLocation Loc;
+ if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
+ Diag(Loc, diag::err_in_class_initializer_non_constant)
+ << Init->getSourceRange();
+ VDecl->setInvalidDecl();
+ } else if (!VDecl->getType()->isDependentType())
+ ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
+ }
+ }
+ } else if (VDecl->isFileVarDecl()) {
+ if (VDecl->getStorageClass() == VarDecl::Extern &&
+ (!getLangOptions().CPlusPlus ||
+ !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
+ Diag(VDecl->getLocation(), diag::warn_extern_init);
+ if (!VDecl->isInvalidDecl()) {
+ InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
+ OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
+ MultiExprArg(*this, (void**)&Init, 1),
+ &DclT);
+ if (Result.isInvalid()) {
+ VDecl->setInvalidDecl();
+ return;
+ }
+
+ Init = Result.takeAs<Expr>();
+ }
+
+ // C++ 3.6.2p2, allow dynamic initialization of static initializers.
+ // Don't check invalid declarations to avoid emitting useless diagnostics.
+ if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
+ // C99 6.7.8p4. All file scoped initializers need to be constant.
+ CheckForConstantInitializer(Init, DclT);
+ }
+ }
+ // If the type changed, it means we had an incomplete type that was
+ // completed by the initializer. For example:
+ // int ary[] = { 1, 3, 5 };
+ // "ary" transitions from a VariableArrayType to a ConstantArrayType.
+ if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
+ VDecl->setType(DclT);
+ Init->setType(DclT);
+ }
+
+ Init = MaybeCreateCXXExprWithTemporaries(Init);
+ // Attach the initializer to the decl.
+ VDecl->setInit(Init);
+
+ if (getLangOptions().CPlusPlus) {
+ // Make sure we mark the destructor as used if necessary.
+ QualType InitType = VDecl->getType();
+ while (const ArrayType *Array = Context.getAsArrayType(InitType))
+ InitType = Context.getBaseElementType(Array);
+ if (const RecordType *Record = InitType->getAs<RecordType>())
+ FinalizeVarWithDestructor(VDecl, Record);
+ }
+
+ return;
+}
+
+/// ActOnInitializerError - Given that there was an error parsing an
+/// initializer for the given declaration, try to return to some form
+/// of sanity.
+void Sema::ActOnInitializerError(DeclPtrTy dcl) {
+ // Our main concern here is re-establishing invariants like "a
+ // variable's type is either dependent or complete".
+ Decl *D = dcl.getAs<Decl>();
+ if (!D || D->isInvalidDecl()) return;
+
+ VarDecl *VD = dyn_cast<VarDecl>(D);
+ if (!VD) return;
+
+ QualType Ty = VD->getType();
+ if (Ty->isDependentType()) return;
+
+ // Require a complete type.
+ if (RequireCompleteType(VD->getLocation(),
+ Context.getBaseElementType(Ty),
+ diag::err_typecheck_decl_incomplete_type)) {
+ VD->setInvalidDecl();
+ return;
+ }
+
+ // Require an abstract type.
+ if (RequireNonAbstractType(VD->getLocation(), Ty,
+ diag::err_abstract_type_in_decl,
+ AbstractVariableType)) {
+ VD->setInvalidDecl();
+ return;
+ }
+
+ // Don't bother complaining about constructors or destructors,
+ // though.
+}
+
+void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
+ bool TypeContainsUndeducedAuto) {
+ Decl *RealDecl = dcl.getAs<Decl>();
+
+ // If there is no declaration, there was an error parsing it. Just ignore it.
+ if (RealDecl == 0)
+ return;
+
+ if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
+ QualType Type = Var->getType();
+
+ // C++0x [dcl.spec.auto]p3
+ if (TypeContainsUndeducedAuto) {
+ Diag(Var->getLocation(), diag::err_auto_var_requires_init)
+ << Var->getDeclName() << Type;
+ Var->setInvalidDecl();
+ return;
+ }
+
+ switch (Var->isThisDeclarationADefinition()) {
+ case VarDecl::Definition:
+ if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
+ break;
+
+ // We have an out-of-line definition of a static data member
+ // that has an in-class initializer, so we type-check this like
+ // a declaration.
+ //
+ // Fall through
+
+ case VarDecl::DeclarationOnly:
+ // It's only a declaration.
+
+ // Block scope. C99 6.7p7: If an identifier for an object is
+ // declared with no linkage (C99 6.2.2p6), the type for the
+ // object shall be complete.
+ if (!Type->isDependentType() && Var->isBlockVarDecl() &&
+ !Var->getLinkage() && !Var->isInvalidDecl() &&
+ RequireCompleteType(Var->getLocation(), Type,
+ diag::err_typecheck_decl_incomplete_type))
+ Var->setInvalidDecl();
+
+ // Make sure that the type is not abstract.
+ if (!Type->isDependentType() && !Var->isInvalidDecl() &&
+ RequireNonAbstractType(Var->getLocation(), Type,
+ diag::err_abstract_type_in_decl,
+ AbstractVariableType))
+ Var->setInvalidDecl();
+ return;
+
+ case VarDecl::TentativeDefinition:
+ // File scope. C99 6.9.2p2: A declaration of an identifier for an
+ // object that has file scope without an initializer, and without a
+ // storage-class specifier or with the storage-class specifier "static",
+ // constitutes a tentative definition. Note: A tentative definition with
+ // external linkage is valid (C99 6.2.2p5).
+ if (!Var->isInvalidDecl()) {
+ if (const IncompleteArrayType *ArrayT
+ = Context.getAsIncompleteArrayType(Type)) {
+ if (RequireCompleteType(Var->getLocation(),
+ ArrayT->getElementType(),
+ diag::err_illegal_decl_array_incomplete_type))
+ Var->setInvalidDecl();
+ } else if (Var->getStorageClass() == VarDecl::Static) {
+ // C99 6.9.2p3: If the declaration of an identifier for an object is
+ // a tentative definition and has internal linkage (C99 6.2.2p3), the
+ // declared type shall not be an incomplete type.
+ // NOTE: code such as the following
+ // static struct s;
+ // struct s { int a; };
+ // is accepted by gcc. Hence here we issue a warning instead of
+ // an error and we do not invalidate the static declaration.
+ // NOTE: to avoid multiple warnings, only check the first declaration.
+ if (Var->getPreviousDeclaration() == 0)
+ RequireCompleteType(Var->getLocation(), Type,
+ diag::ext_typecheck_decl_incomplete_type);
+ }
+ }
+
+ // Record the tentative definition; we're done.
+ if (!Var->isInvalidDecl())
+ TentativeDefinitions.push_back(Var);
+ return;
+ }
+
+ // Provide a specific diagnostic for uninitialized variable
+ // definitions with incomplete array type.
+ if (Type->isIncompleteArrayType()) {
+ Diag(Var->getLocation(),
+ diag::err_typecheck_incomplete_array_needs_initializer);
+ Var->setInvalidDecl();
+ return;
+ }
+
+ // Provide a specific diagnostic for uninitialized variable
+ // definitions with reference type.
+ if (Type->isReferenceType()) {
+ Diag(Var->getLocation(), diag::err_reference_var_requires_init)
+ << Var->getDeclName()
+ << SourceRange(Var->getLocation(), Var->getLocation());
+ Var->setInvalidDecl();
+ return;
+ }
+
+ // Do not attempt to type-check the default initializer for a
+ // variable with dependent type.
+ if (Type->isDependentType())
+ return;
+
+ if (Var->isInvalidDecl())
+ return;
+
+ if (RequireCompleteType(Var->getLocation(),
+ Context.getBaseElementType(Type),
+ diag::err_typecheck_decl_incomplete_type)) {
+ Var->setInvalidDecl();
+ return;
+ }
+
+ // The variable can not have an abstract class type.
+ if (RequireNonAbstractType(Var->getLocation(), Type,
+ diag::err_abstract_type_in_decl,
+ AbstractVariableType)) {
+ Var->setInvalidDecl();
+ return;
+ }
+
+ const RecordType *Record
+ = Context.getBaseElementType(Type)->getAs<RecordType>();
+ if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
+ cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
+ // C++03 [dcl.init]p9:
+ // If no initializer is specified for an object, and the
+ // object is of (possibly cv-qualified) non-POD class type (or
+ // array thereof), the object shall be default-initialized; if
+ // the object is of const-qualified type, the underlying class
+ // type shall have a user-declared default
+ // constructor. Otherwise, if no initializer is specified for
+ // a non- static object, the object and its subobjects, if
+ // any, have an indeterminate initial value); if the object
+ // or any of its subobjects are of const-qualified type, the
+ // program is ill-formed.
+ // FIXME: DPG thinks it is very fishy that C++0x disables this.
+ } else {
+ InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
+ InitializationKind Kind
+ = InitializationKind::CreateDefault(Var->getLocation());
+
+ InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
+ OwningExprResult Init = InitSeq.Perform(*this, Entity, Kind,
+ MultiExprArg(*this, 0, 0));
+ if (Init.isInvalid())
+ Var->setInvalidDecl();
+ else if (Init.get())
+ Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
+ }
+
+ if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
+ FinalizeVarWithDestructor(Var, Record);
+ }
+}
+
+Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
+ DeclPtrTy *Group,
+ unsigned NumDecls) {
+ llvm::SmallVector<Decl*, 8> Decls;
+
+ if (DS.isTypeSpecOwned())
+ Decls.push_back((Decl*)DS.getTypeRep());
+
+ for (unsigned i = 0; i != NumDecls; ++i)
+ if (Decl *D = Group[i].getAs<Decl>())
+ Decls.push_back(D);
+
+ return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
+ Decls.data(), Decls.size()));
+}
+
+
+/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
+/// to introduce parameters into function prototype scope.
+Sema::DeclPtrTy
+Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
+ const DeclSpec &DS = D.getDeclSpec();
+
+ // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
+ VarDecl::StorageClass StorageClass = VarDecl::None;
+ VarDecl::StorageClass StorageClassAsWritten = VarDecl::None;
+ if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
+ StorageClass = VarDecl::Register;
+ StorageClassAsWritten = VarDecl::Register;
+ } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
+ Diag(DS.getStorageClassSpecLoc(),
+ diag::err_invalid_storage_class_in_func_decl);
+ D.getMutableDeclSpec().ClearStorageClassSpecs();
+ }
+
+ if (D.getDeclSpec().isThreadSpecified())
+ Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
+
+ DiagnoseFunctionSpecifiers(D);
+
+ // Check that there are no default arguments inside the type of this
+ // parameter (C++ only).
+ if (getLangOptions().CPlusPlus)
+ CheckExtraCXXDefaultArguments(D);
+
+ TypeSourceInfo *TInfo = 0;
+ TagDecl *OwnedDecl = 0;
+ QualType parmDeclType = GetTypeForDeclarator(D, S, &TInfo, &OwnedDecl);
+
+ if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
+ // C++ [dcl.fct]p6:
+ // Types shall not be defined in return or parameter types.
+ Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
+ << Context.getTypeDeclType(OwnedDecl);
+ }
+
+ // Check for redeclaration of parameters, e.g. int foo(int x, int x);
+ IdentifierInfo *II = D.getIdentifier();
+ if (II) {
+ LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
+ ForRedeclaration);
+ LookupName(R, S);
+ if (R.isSingleResult()) {
+ NamedDecl *PrevDecl = R.getFoundDecl();
+ if (PrevDecl->isTemplateParameter()) {
+ // Maybe we will complain about the shadowed template parameter.
+ DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
+ // Just pretend that we didn't see the previous declaration.
+ PrevDecl = 0;
+ } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
+ Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
+ Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
+
+ // Recover by removing the name
+ II = 0;
+ D.SetIdentifier(0, D.getIdentifierLoc());
+ D.setInvalidType(true);
+ }
+ }
+ }
+
+ // Temporarily put parameter variables in the translation unit, not
+ // the enclosing context. This prevents them from accidentally
+ // looking like class members in C++.
+ ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
+ TInfo, parmDeclType, II,
+ D.getIdentifierLoc(),
+ StorageClass, StorageClassAsWritten);
+
+ if (D.isInvalidType())
+ New->setInvalidDecl();
+
+ // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
+ if (D.getCXXScopeSpec().isSet()) {
+ Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
+ << D.getCXXScopeSpec().getRange();
+ New->setInvalidDecl();
+ }
+
+ // Add the parameter declaration into this scope.
+ S->AddDecl(DeclPtrTy::make(New));
+ if (II)
+ IdResolver.AddDecl(New);
+
+ ProcessDeclAttributes(S, New, D);
+
+ if (New->hasAttr<BlocksAttr>()) {
+ Diag(New->getLocation(), diag::err_block_on_nonlocal);
+ }
+ return DeclPtrTy::make(New);
+}
+
+ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
+ TypeSourceInfo *TSInfo, QualType T,
+ IdentifierInfo *Name,
+ SourceLocation NameLoc,
+ VarDecl::StorageClass StorageClass,
+ VarDecl::StorageClass StorageClassAsWritten) {
+ ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
+ adjustParameterType(T), TSInfo,
+ StorageClass, StorageClassAsWritten,
+ 0);
+
+ // Parameters can not be abstract class types.
+ // For record types, this is done by the AbstractClassUsageDiagnoser once
+ // the class has been completely parsed.
+ if (!CurContext->isRecord() &&
+ RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
+ AbstractParamType))
+ New->setInvalidDecl();
+
+ // Parameter declarators cannot be interface types. All ObjC objects are
+ // passed by reference.
+ if (T->isObjCObjectType()) {
+ Diag(NameLoc,
+ diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
+ New->setInvalidDecl();
+ }
+
+ // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
+ // duration shall not be qualified by an address-space qualifier."
+ // Since all parameters have automatic store duration, they can not have
+ // an address space.
+ if (T.getAddressSpace() != 0) {
+ Diag(NameLoc, diag::err_arg_with_address_space);
+ New->setInvalidDecl();
+ }
+
+ return New;
+}
+
+void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
+ SourceLocation LocAfterDecls) {
+ assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
+ "Not a function declarator!");
+ DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
+
+ // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
+ // for a K&R function.
+ if (!FTI.hasPrototype) {
+ for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
+ --i;
+ if (FTI.ArgInfo[i].Param == 0) {
+ llvm::SmallString<256> Code;
+ llvm::raw_svector_ostream(Code) << " int "
+ << FTI.ArgInfo[i].Ident->getName()
+ << ";\n";
+ Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
+ << FTI.ArgInfo[i].Ident
+ << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
+
+ // Implicitly declare the argument as type 'int' for lack of a better
+ // type.
+ DeclSpec DS;
+ const char* PrevSpec; // unused
+ unsigned DiagID; // unused
+ DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
+ PrevSpec, DiagID);
+ Declarator ParamD(DS, Declarator::KNRTypeListContext);
+ ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
+ FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
+ }
+ }
+ }
+}
+
+Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
+ Declarator &D) {
+ assert(getCurFunctionDecl() == 0 && "Function parsing confused");
+ assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
+ "Not a function declarator!");
+ DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
+
+ if (FTI.hasPrototype) {
+ // FIXME: Diagnose arguments without names in C.
+ }
+
+ Scope *ParentScope = FnBodyScope->getParent();
+
+ DeclPtrTy DP = HandleDeclarator(ParentScope, D,
+ MultiTemplateParamsArg(*this),
+ /*IsFunctionDefinition=*/true);
+ return ActOnStartOfFunctionDef(FnBodyScope, DP);
+}
+
+static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
+ // Don't warn about invalid declarations.
+ if (FD->isInvalidDecl())
+ return false;
+
+ // Or declarations that aren't global.
+ if (!FD->isGlobal())
+ return false;
+
+ // Don't warn about C++ member functions.
+ if (isa<CXXMethodDecl>(FD))
+ return false;
+
+ // Don't warn about 'main'.
+ if (FD->isMain())
+ return false;
+
+ // Don't warn about inline functions.
+ if (FD->isInlineSpecified())
+ return false;
+
+ // Don't warn about function templates.
+ if (FD->getDescribedFunctionTemplate())
+ return false;
+
+ // Don't warn about function template specializations.
+ if (FD->isFunctionTemplateSpecialization())
+ return false;
+
+ bool MissingPrototype = true;
+ for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
+ Prev; Prev = Prev->getPreviousDeclaration()) {
+ // Ignore any declarations that occur in function or method
+ // scope, because they aren't visible from the header.
+ if (Prev->getDeclContext()->isFunctionOrMethod())
+ continue;
+
+ MissingPrototype = !Prev->getType()->isFunctionProtoType();
+ break;
+ }
+
+ return MissingPrototype;
+}
+
+Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
+ // Clear the last template instantiation error context.
+ LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
+
+ if (!D)
+ return D;
+ FunctionDecl *FD = 0;
+
+ if (FunctionTemplateDecl *FunTmpl
+ = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
+ FD = FunTmpl->getTemplatedDecl();
+ else
+ FD = cast<FunctionDecl>(D.getAs<Decl>());
+
+ // Enter a new function scope
+ PushFunctionScope();
+
+ // See if this is a redefinition.
+ // But don't complain if we're in GNU89 mode and the previous definition
+ // was an extern inline function.
+ const FunctionDecl *Definition;
+ if (FD->getBody(Definition) &&
+ !canRedefineFunction(Definition, getLangOptions())) {
+ Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
+ Diag(Definition->getLocation(), diag::note_previous_definition);
+ }
+
+ // Builtin functions cannot be defined.
+ if (unsigned BuiltinID = FD->getBuiltinID()) {
+ if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
+ Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
+ FD->setInvalidDecl();
+ }
+ }
+
+ // The return type of a function definition must be complete
+ // (C99 6.9.1p3, C++ [dcl.fct]p6).
+ QualType ResultType = FD->getResultType();
+ if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
+ !FD->isInvalidDecl() &&
+ RequireCompleteType(FD->getLocation(), ResultType,
+ diag::err_func_def_incomplete_result))
+ FD->setInvalidDecl();
+
+ // GNU warning -Wmissing-prototypes:
+ // Warn if a global function is defined without a previous
+ // prototype declaration. This warning is issued even if the
+ // definition itself provides a prototype. The aim is to detect
+ // global functions that fail to be declared in header files.
+ if (ShouldWarnAboutMissingPrototype(FD))
+ Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
+
+ if (FnBodyScope)
+ PushDeclContext(FnBodyScope, FD);
+
+ // Check the validity of our function parameters
+ CheckParmsForFunctionDef(FD);
+
+ bool ShouldCheckShadow =
+ Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
+
+ // Introduce our parameters into the function scope
+ for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
+ ParmVarDecl *Param = FD->getParamDecl(p);
+ Param->setOwningFunction(FD);
+
+ // If this has an identifier, add it to the scope stack.
+ if (Param->getIdentifier() && FnBodyScope) {
+ if (ShouldCheckShadow)
+ CheckShadow(FnBodyScope, Param);
+
+ PushOnScopeChains(Param, FnBodyScope);
+ }
+ }
+
+ // Checking attributes of current function definition
+ // dllimport attribute.
+ if (FD->getAttr<DLLImportAttr>() &&
+ (!FD->getAttr<DLLExportAttr>())) {
+ // dllimport attribute cannot be applied to definition.
+ if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
+ Diag(FD->getLocation(),
+ diag::err_attribute_can_be_applied_only_to_symbol_declaration)
+ << "dllimport";
+ FD->setInvalidDecl();
+ return DeclPtrTy::make(FD);
+ }
+
+ // Visual C++ appears to not think this is an issue, so only issue
+ // a warning when Microsoft extensions are disabled.
+ if (!LangOpts.Microsoft) {
+ // If a symbol previously declared dllimport is later defined, the
+ // attribute is ignored in subsequent references, and a warning is
+ // emitted.
+ Diag(FD->getLocation(),
+ diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
+ << FD->getNameAsCString() << "dllimport";
+ }
+ }
+ return DeclPtrTy::make(FD);
+}
+
+/// \brief Given the set of return statements within a function body,
+/// compute the variables that are subject to the named return value
+/// optimization.
+///
+/// Each of the variables that is subject to the named return value
+/// optimization will be marked as NRVO variables in the AST, and any
+/// return statement that has a marked NRVO variable as its NRVO candidate can
+/// use the named return value optimization.
+///
+/// This function applies a very simplistic algorithm for NRVO: if every return
+/// statement in the function has the same NRVO candidate, that candidate is
+/// the NRVO variable.
+///
+/// FIXME: Employ a smarter algorithm that accounts for multiple return
+/// statements and the lifetimes of the NRVO candidates. We should be able to
+/// find a maximal set of NRVO variables.
+static void ComputeNRVO(Stmt *Body, ReturnStmt **Returns, unsigned NumReturns) {
+ const VarDecl *NRVOCandidate = 0;
+ for (unsigned I = 0; I != NumReturns; ++I) {
+ if (!Returns[I]->getNRVOCandidate())
+ return;
+
+ if (!NRVOCandidate)
+ NRVOCandidate = Returns[I]->getNRVOCandidate();
+ else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
+ return;
+ }
+
+ if (NRVOCandidate)
+ const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
+}
+
+Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
+ return ActOnFinishFunctionBody(D, move(BodyArg), false);
+}
+
+Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
+ bool IsInstantiation) {
+ Decl *dcl = D.getAs<Decl>();
+ Stmt *Body = BodyArg.takeAs<Stmt>();
+
+ FunctionDecl *FD = 0;
+ FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
+ if (FunTmpl)
+ FD = FunTmpl->getTemplatedDecl();
+ else
+ FD = dyn_cast_or_null<FunctionDecl>(dcl);
+
+ sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
+
+ if (FD) {
+ FD->setBody(Body);
+ if (FD->isMain()) {
+ // C and C++ allow for main to automagically return 0.
+ // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
+ FD->setHasImplicitReturnZero(true);
+ WP.disableCheckFallThrough();
+ }
+
+ if (!FD->isInvalidDecl()) {
+ DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
+
+ // If this is a constructor, we need a vtable.
+ if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
+ MarkVTableUsed(FD->getLocation(), Constructor->getParent());
+
+ ComputeNRVO(Body, FunctionScopes.back()->Returns.data(),
+ FunctionScopes.back()->Returns.size());
+ }
+
+ assert(FD == getCurFunctionDecl() && "Function parsing confused");
+ } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
+ assert(MD == getCurMethodDecl() && "Method parsing confused");
+ MD->setBody(Body);
+ MD->setEndLoc(Body->getLocEnd());
+ if (!MD->isInvalidDecl())
+ DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
+ } else {
+ Body->Destroy(Context);
+ return DeclPtrTy();
+ }
+
+ // Verify and clean out per-function state.
+
+ // Check goto/label use.
+ for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
+ I = getLabelMap().begin(), E = getLabelMap().end(); I != E; ++I) {
+ LabelStmt *L = I->second;
+
+ // Verify that we have no forward references left. If so, there was a goto
+ // or address of a label taken, but no definition of it. Label fwd
+ // definitions are indicated with a null substmt.
+ if (L->getSubStmt() != 0)
+ continue;
+
+ // Emit error.
+ Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
+
+ // At this point, we have gotos that use the bogus label. Stitch it into
+ // the function body so that they aren't leaked and that the AST is well
+ // formed.
+ if (Body == 0) {
+ // The whole function wasn't parsed correctly, just delete this.
+ L->Destroy(Context);
+ continue;
+ }
+
+ // Otherwise, the body is valid: we want to stitch the label decl into the
+ // function somewhere so that it is properly owned and so that the goto
+ // has a valid target. Do this by creating a new compound stmt with the
+ // label in it.
+
+ // Give the label a sub-statement.
+ L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
+
+ CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
+ cast<CXXTryStmt>(Body)->getTryBlock() :
+ cast<CompoundStmt>(Body);
+ llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
+ Compound->body_end());
+ Elements.push_back(L);
+ Compound->setStmts(Context, Elements.data(), Elements.size());
+ }
+
+ if (Body) {
+ // C++ constructors that have function-try-blocks can't have return
+ // statements in the handlers of that block. (C++ [except.handle]p14)
+ // Verify this.
+ if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
+ DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
+
+ // Verify that that gotos and switch cases don't jump into scopes illegally.
+ // Verify that that gotos and switch cases don't jump into scopes illegally.
+ if (FunctionNeedsScopeChecking() &&
+ !dcl->isInvalidDecl() &&
+ !hasAnyErrorsInThisFunction())
+ DiagnoseInvalidJumps(Body);
+
+ if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
+ MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
+ Destructor->getParent());
+
+ // If any errors have occurred, clear out any temporaries that may have
+ // been leftover. This ensures that these temporaries won't be picked up for
+ // deletion in some later function.
+ if (PP.getDiagnostics().hasErrorOccurred())
+ ExprTemporaries.clear();
+ else if (!isa<FunctionTemplateDecl>(dcl)) {
+ // Since the body is valid, issue any analysis-based warnings that are
+ // enabled.
+ QualType ResultType;
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
+ ResultType = FD->getResultType();
+ }
+ else {
+ ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
+ ResultType = MD->getResultType();
+ }
+ AnalysisWarnings.IssueWarnings(WP, dcl);
+ }
+
+ assert(ExprTemporaries.empty() && "Leftover temporaries in function");
+ }
+
+ if (!IsInstantiation)
+ PopDeclContext();
+
+ PopFunctionOrBlockScope();
+
+ // If any errors have occurred, clear out any temporaries that may have
+ // been leftover. This ensures that these temporaries won't be picked up for
+ // deletion in some later function.
+ if (getDiagnostics().hasErrorOccurred())
+ ExprTemporaries.clear();
+
+ return D;
+}
+
+/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
+/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
+NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
+ IdentifierInfo &II, Scope *S) {
+ // Before we produce a declaration for an implicitly defined
+ // function, see whether there was a locally-scoped declaration of
+ // this name as a function or variable. If so, use that
+ // (non-visible) declaration, and complain about it.
+ llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
+ = LocallyScopedExternalDecls.find(&II);
+ if (Pos != LocallyScopedExternalDecls.end()) {
+ Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
+ Diag(Pos->second->getLocation(), diag::note_previous_declaration);
+ return Pos->second;
+ }
+
+ // Extension in C99. Legal in C90, but warn about it.
+ if (II.getName().startswith("__builtin_"))
+ Diag(Loc, diag::warn_builtin_unknown) << &II;
+ else if (getLangOptions().C99)
+ Diag(Loc, diag::ext_implicit_function_decl) << &II;
+ else
+ Diag(Loc, diag::warn_implicit_function_decl) << &II;
+
+ // Set a Declarator for the implicit definition: int foo();
+ const char *Dummy;
+ DeclSpec DS;
+ unsigned DiagID;
+ bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
+ Error = Error; // Silence warning.
+ assert(!Error && "Error setting up implicit decl!");
+ Declarator D(DS, Declarator::BlockContext);
+ D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
+ 0, 0, false, SourceLocation(),
+ false, 0,0,0, Loc, Loc, D),
+ SourceLocation());
+ D.SetIdentifier(&II, Loc);
+
+ // Insert this function into translation-unit scope.
+
+ DeclContext *PrevDC = CurContext;
+ CurContext = Context.getTranslationUnitDecl();
+
+ FunctionDecl *FD =
+ dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
+ FD->setImplicit();
+
+ CurContext = PrevDC;
+
+ AddKnownFunctionAttributes(FD);
+
+ return FD;
+}
+
+/// \brief Adds any function attributes that we know a priori based on
+/// the declaration of this function.
+///
+/// These attributes can apply both to implicitly-declared builtins
+/// (like __builtin___printf_chk) or to library-declared functions
+/// like NSLog or printf.
+void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
+ if (FD->isInvalidDecl())
+ return;
+
+ // If this is a built-in function, map its builtin attributes to
+ // actual attributes.
+ if (unsigned BuiltinID = FD->getBuiltinID()) {
+ // Handle printf-formatting attributes.
+ unsigned FormatIdx;
+ bool HasVAListArg;
+ if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
+ if (!FD->getAttr<FormatAttr>())
+ FD->addAttr(::new (Context) FormatAttr(Context, "printf", FormatIdx+1,
+ HasVAListArg ? 0 : FormatIdx+2));
+ }
+
+ // Mark const if we don't care about errno and that is the only
+ // thing preventing the function from being const. This allows
+ // IRgen to use LLVM intrinsics for such functions.
+ if (!getLangOptions().MathErrno &&
+ Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
+ if (!FD->getAttr<ConstAttr>())
+ FD->addAttr(::new (Context) ConstAttr());
+ }
+
+ if (Context.BuiltinInfo.isNoReturn(BuiltinID))
+ FD->setType(Context.getNoReturnType(FD->getType()));
+ if (Context.BuiltinInfo.isNoThrow(BuiltinID))
+ FD->addAttr(::new (Context) NoThrowAttr());
+ if (Context.BuiltinInfo.isConst(BuiltinID))
+ FD->addAttr(::new (Context) ConstAttr());
+ }
+
+ IdentifierInfo *Name = FD->getIdentifier();
+ if (!Name)
+ return;
+ if ((!getLangOptions().CPlusPlus &&
+ FD->getDeclContext()->isTranslationUnit()) ||
+ (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
+ cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
+ LinkageSpecDecl::lang_c)) {
+ // Okay: this could be a libc/libm/Objective-C function we know
+ // about.
+ } else
+ return;
+
+ if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
+ // FIXME: NSLog and NSLogv should be target specific
+ if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
+ // FIXME: We known better than our headers.
+ const_cast<FormatAttr *>(Format)->setType(Context, "printf");
+ } else
+ FD->addAttr(::new (Context) FormatAttr(Context, "printf", 1,
+ Name->isStr("NSLogv") ? 0 : 2));
+ } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
+ // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
+ // target-specific builtins, perhaps?
+ if (!FD->getAttr<FormatAttr>())
+ FD->addAttr(::new (Context) FormatAttr(Context, "printf", 2,
+ Name->isStr("vasprintf") ? 0 : 3));
+ }
+}
+
+TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
+ TypeSourceInfo *TInfo) {
+ assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
+ assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
+
+ if (!TInfo) {
+ assert(D.isInvalidType() && "no declarator info for valid type");
+ TInfo = Context.getTrivialTypeSourceInfo(T);
+ }
+
+ // Scope manipulation handled by caller.
+ TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
+ D.getIdentifierLoc(),
+ D.getIdentifier(),
+ TInfo);
+
+ if (const TagType *TT = T->getAs<TagType>()) {
+ TagDecl *TD = TT->getDecl();
+
+ // If the TagDecl that the TypedefDecl points to is an anonymous decl
+ // keep track of the TypedefDecl.
+ if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
+ TD->setTypedefForAnonDecl(NewTD);
+ }
+
+ if (D.isInvalidType())
+ NewTD->setInvalidDecl();
+ return NewTD;
+}
+
+
+/// \brief Determine whether a tag with a given kind is acceptable
+/// as a redeclaration of the given tag declaration.
+///
+/// \returns true if the new tag kind is acceptable, false otherwise.
+bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
+ TagTypeKind NewTag,
+ SourceLocation NewTagLoc,
+ const IdentifierInfo &Name) {
+ // C++ [dcl.type.elab]p3:
+ // The class-key or enum keyword present in the
+ // elaborated-type-specifier shall agree in kind with the
+ // declaration to which the name in the elaborated-type-specifier
+ // refers. This rule also applies to the form of
+ // elaborated-type-specifier that declares a class-name or
+ // friend class since it can be construed as referring to the
+ // definition of the class. Thus, in any
+ // elaborated-type-specifier, the enum keyword shall be used to
+ // refer to an enumeration (7.2), the union class-key shall be
+ // used to refer to a union (clause 9), and either the class or
+ // struct class-key shall be used to refer to a class (clause 9)
+ // declared using the class or struct class-key.
+ TagTypeKind OldTag = Previous->getTagKind();
+ if (OldTag == NewTag)
+ return true;
+
+ if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
+ (NewTag == TTK_Struct || NewTag == TTK_Class)) {
+ // Warn about the struct/class tag mismatch.
+ bool isTemplate = false;
+ if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
+ isTemplate = Record->getDescribedClassTemplate();
+
+ Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
+ << (NewTag == TTK_Class)
+ << isTemplate << &Name
+ << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
+ OldTag == TTK_Class? "class" : "struct");
+ Diag(Previous->getLocation(), diag::note_previous_use);
+ return true;
+ }
+ return false;
+}
+
+/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'. In the
+/// former case, Name will be non-null. In the later case, Name will be null.
+/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
+/// reference/declaration/definition of a tag.
+Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
+ SourceLocation KWLoc, CXXScopeSpec &SS,
+ IdentifierInfo *Name, SourceLocation NameLoc,
+ AttributeList *Attr, AccessSpecifier AS,
+ MultiTemplateParamsArg TemplateParameterLists,
+ bool &OwnedDecl, bool &IsDependent) {
+ // If this is not a definition, it must have a name.
+ assert((Name != 0 || TUK == TUK_Definition) &&
+ "Nameless record must be a definition!");
+
+ OwnedDecl = false;
+ TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
+
+ // FIXME: Check explicit specializations more carefully.
+ bool isExplicitSpecialization = false;
+ if (TUK != TUK_Reference) {
+ if (TemplateParameterList *TemplateParams
+ = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
+ (TemplateParameterList**)TemplateParameterLists.get(),
+ TemplateParameterLists.size(),
+ TUK == TUK_Friend,
+ isExplicitSpecialization)) {
+ if (TemplateParams->size() > 0) {
+ // This is a declaration or definition of a class template (which may
+ // be a member of another template).
+ OwnedDecl = false;
+ DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
+ SS, Name, NameLoc, Attr,
+ TemplateParams,
+ AS);
+ TemplateParameterLists.release();
+ return Result.get();
+ } else {
+ // The "template<>" header is extraneous.
+ Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
+ << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
+ isExplicitSpecialization = true;
+ }
+ }
+
+ TemplateParameterLists.release();
+ }
+
+ DeclContext *SearchDC = CurContext;
+ DeclContext *DC = CurContext;
+ bool isStdBadAlloc = false;
+ bool Invalid = false;
+
+ RedeclarationKind Redecl = ForRedeclaration;
+ if (TUK == TUK_Friend || TUK == TUK_Reference)
+ Redecl = NotForRedeclaration;
+
+ LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
+
+ if (Name && SS.isNotEmpty()) {
+ // We have a nested-name tag ('struct foo::bar').
+
+ // Check for invalid 'foo::'.
+ if (SS.isInvalid()) {
+ Name = 0;
+ goto CreateNewDecl;
+ }
+
+ // If this is a friend or a reference to a class in a dependent
+ // context, don't try to make a decl for it.
+ if (TUK == TUK_Friend || TUK == TUK_Reference) {
+ DC = computeDeclContext(SS, false);
+ if (!DC) {
+ IsDependent = true;
+ return DeclPtrTy();
+ }
+ } else {
+ DC = computeDeclContext(SS, true);
+ if (!DC) {
+ Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
+ << SS.getRange();
+ return DeclPtrTy();
+ }
+ }
+
+ if (RequireCompleteDeclContext(SS, DC))
+ return DeclPtrTy::make((Decl *)0);
+
+ SearchDC = DC;
+ // Look-up name inside 'foo::'.
+ LookupQualifiedName(Previous, DC);
+
+ if (Previous.isAmbiguous())
+ return DeclPtrTy();
+
+ if (Previous.empty()) {
+ // Name lookup did not find anything. However, if the
+ // nested-name-specifier refers to the current instantiation,
+ // and that current instantiation has any dependent base
+ // classes, we might find something at instantiation time: treat
+ // this as a dependent elaborated-type-specifier.
+ if (Previous.wasNotFoundInCurrentInstantiation()) {
+ IsDependent = true;
+ return DeclPtrTy();
+ }
+
+ // A tag 'foo::bar' must already exist.
+ Diag(NameLoc, diag::err_not_tag_in_scope)
+ << Kind << Name << DC << SS.getRange();
+ Name = 0;
+ Invalid = true;
+ goto CreateNewDecl;
+ }
+ } else if (Name) {
+ // If this is a named struct, check to see if there was a previous forward
+ // declaration or definition.
+ // FIXME: We're looking into outer scopes here, even when we
+ // shouldn't be. Doing so can result in ambiguities that we
+ // shouldn't be diagnosing.
+ LookupName(Previous, S);
+
+ // Note: there used to be some attempt at recovery here.
+ if (Previous.isAmbiguous())
+ return DeclPtrTy();
+
+ if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
+ // FIXME: This makes sure that we ignore the contexts associated
+ // with C structs, unions, and enums when looking for a matching
+ // tag declaration or definition. See the similar lookup tweak
+ // in Sema::LookupName; is there a better way to deal with this?
+ while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
+ SearchDC = SearchDC->getParent();
+ }
+ }
+
+ if (Previous.isSingleResult() &&
+ Previous.getFoundDecl()->isTemplateParameter()) {
+ // Maybe we will complain about the shadowed template parameter.
+ DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
+ // Just pretend that we didn't see the previous declaration.
+ Previous.clear();
+ }
+
+ if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
+ DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
+ // This is a declaration of or a reference to "std::bad_alloc".
+ isStdBadAlloc = true;
+
+ if (Previous.empty() && StdBadAlloc) {
+ // std::bad_alloc has been implicitly declared (but made invisible to
+ // name lookup). Fill in this implicit declaration as the previous
+ // declaration, so that the declarations get chained appropriately.
+ Previous.addDecl(StdBadAlloc);
+ }
+ }
+
+ // If we didn't find a previous declaration, and this is a reference
+ // (or friend reference), move to the correct scope. In C++, we
+ // also need to do a redeclaration lookup there, just in case
+ // there's a shadow friend decl.
+ if (Name && Previous.empty() &&
+ (TUK == TUK_Reference || TUK == TUK_Friend)) {
+ if (Invalid) goto CreateNewDecl;
+ assert(SS.isEmpty());
+
+ if (TUK == TUK_Reference) {
+ // C++ [basic.scope.pdecl]p5:
+ // -- for an elaborated-type-specifier of the form
+ //
+ // class-key identifier
+ //
+ // if the elaborated-type-specifier is used in the
+ // decl-specifier-seq or parameter-declaration-clause of a
+ // function defined in namespace scope, the identifier is
+ // declared as a class-name in the namespace that contains
+ // the declaration; otherwise, except as a friend
+ // declaration, the identifier is declared in the smallest
+ // non-class, non-function-prototype scope that contains the
+ // declaration.
+ //
+ // C99 6.7.2.3p8 has a similar (but not identical!) provision for
+ // C structs and unions.
+ //
+ // It is an error in C++ to declare (rather than define) an enum
+ // type, including via an elaborated type specifier. We'll
+ // diagnose that later; for now, declare the enum in the same
+ // scope as we would have picked for any other tag type.
+ //
+ // GNU C also supports this behavior as part of its incomplete
+ // enum types extension, while GNU C++ does not.
+ //
+ // Find the context where we'll be declaring the tag.
+ // FIXME: We would like to maintain the current DeclContext as the
+ // lexical context,
+ while (SearchDC->isRecord())
+ SearchDC = SearchDC->getParent();
+
+ // Find the scope where we'll be declaring the tag.
+ while (S->isClassScope() ||
+ (getLangOptions().CPlusPlus &&
+ S->isFunctionPrototypeScope()) ||
+ ((S->getFlags() & Scope::DeclScope) == 0) ||
+ (S->getEntity() &&
+ ((DeclContext *)S->getEntity())->isTransparentContext()))
+ S = S->getParent();
+ } else {
+ assert(TUK == TUK_Friend);
+ // C++ [namespace.memdef]p3:
+ // If a friend declaration in a non-local class first declares a
+ // class or function, the friend class or function is a member of
+ // the innermost enclosing namespace.
+ SearchDC = SearchDC->getEnclosingNamespaceContext();
+ }
+
+ // In C++, we need to do a redeclaration lookup to properly
+ // diagnose some problems.
+ if (getLangOptions().CPlusPlus) {
+ Previous.setRedeclarationKind(ForRedeclaration);
+ LookupQualifiedName(Previous, SearchDC);
+ }
+ }
+
+ if (!Previous.empty()) {
+ NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
+
+ // It's okay to have a tag decl in the same scope as a typedef
+ // which hides a tag decl in the same scope. Finding this
+ // insanity with a redeclaration lookup can only actually happen
+ // in C++.
+ //
+ // This is also okay for elaborated-type-specifiers, which is
+ // technically forbidden by the current standard but which is
+ // okay according to the likely resolution of an open issue;
+ // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
+ if (getLangOptions().CPlusPlus) {
+ if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
+ if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
+ TagDecl *Tag = TT->getDecl();
+ if (Tag->getDeclName() == Name &&
+ Tag->getDeclContext()->getLookupContext()
+ ->Equals(TD->getDeclContext()->getLookupContext())) {
+ PrevDecl = Tag;
+ Previous.clear();
+ Previous.addDecl(Tag);
+ }
+ }
+ }
+ }
+
+ if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
+ // If this is a use of a previous tag, or if the tag is already declared
+ // in the same scope (so that the definition/declaration completes or
+ // rementions the tag), reuse the decl.
+ if (TUK == TUK_Reference || TUK == TUK_Friend ||
+ isDeclInScope(PrevDecl, SearchDC, S)) {
+ // Make sure that this wasn't declared as an enum and now used as a
+ // struct or something similar.
+ if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
+ bool SafeToContinue
+ = (PrevTagDecl->getTagKind() != TTK_Enum &&
+ Kind != TTK_Enum);
+ if (SafeToContinue)
+ Diag(KWLoc, diag::err_use_with_wrong_tag)
+ << Name
+ << FixItHint::CreateReplacement(SourceRange(KWLoc),
+ PrevTagDecl->getKindName());
+ else
+ Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
+ Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
+
+ if (SafeToContinue)
+ Kind = PrevTagDecl->getTagKind();
+ else {
+ // Recover by making this an anonymous redefinition.
+ Name = 0;
+ Previous.clear();
+ Invalid = true;
+ }
+ }
+
+ if (!Invalid) {
+ // If this is a use, just return the declaration we found.
+
+ // FIXME: In the future, return a variant or some other clue
+ // for the consumer of this Decl to know it doesn't own it.
+ // For our current ASTs this shouldn't be a problem, but will
+ // need to be changed with DeclGroups.
+ if (TUK == TUK_Reference || TUK == TUK_Friend)
+ return DeclPtrTy::make(PrevTagDecl);
+
+ // Diagnose attempts to redefine a tag.
+ if (TUK == TUK_Definition) {
+ if (TagDecl *Def = PrevTagDecl->getDefinition()) {
+ // If we're defining a specialization and the previous definition
+ // is from an implicit instantiation, don't emit an error
+ // here; we'll catch this in the general case below.
+ if (!isExplicitSpecialization ||
+ !isa<CXXRecordDecl>(Def) ||
+ cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
+ == TSK_ExplicitSpecialization) {
+ Diag(NameLoc, diag::err_redefinition) << Name;
+ Diag(Def->getLocation(), diag::note_previous_definition);
+ // If this is a redefinition, recover by making this
+ // struct be anonymous, which will make any later
+ // references get the previous definition.
+ Name = 0;
+ Previous.clear();
+ Invalid = true;
+ }
+ } else {
+ // If the type is currently being defined, complain
+ // about a nested redefinition.
+ TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
+ if (Tag->isBeingDefined()) {
+ Diag(NameLoc, diag::err_nested_redefinition) << Name;
+ Diag(PrevTagDecl->getLocation(),
+ diag::note_previous_definition);
+ Name = 0;
+ Previous.clear();
+ Invalid = true;
+ }
+ }
+
+ // Okay, this is definition of a previously declared or referenced
+ // tag PrevDecl. We're going to create a new Decl for it.
+ }
+ }
+ // If we get here we have (another) forward declaration or we
+ // have a definition. Just create a new decl.
+
+ } else {
+ // If we get here, this is a definition of a new tag type in a nested
+ // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
+ // new decl/type. We set PrevDecl to NULL so that the entities
+ // have distinct types.
+ Previous.clear();
+ }
+ // If we get here, we're going to create a new Decl. If PrevDecl
+ // is non-NULL, it's a definition of the tag declared by
+ // PrevDecl. If it's NULL, we have a new definition.
+
+
+ // Otherwise, PrevDecl is not a tag, but was found with tag
+ // lookup. This is only actually possible in C++, where a few
+ // things like templates still live in the tag namespace.
+ } else {
+ assert(getLangOptions().CPlusPlus);
+
+ // Use a better diagnostic if an elaborated-type-specifier
+ // found the wrong kind of type on the first
+ // (non-redeclaration) lookup.
+ if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
+ !Previous.isForRedeclaration()) {
+ unsigned Kind = 0;
+ if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
+ else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
+ Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
+ Diag(PrevDecl->getLocation(), diag::note_declared_at);
+ Invalid = true;
+
+ // Otherwise, only diagnose if the declaration is in scope.
+ } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
+ // do nothing
+
+ // Diagnose implicit declarations introduced by elaborated types.
+ } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
+ unsigned Kind = 0;
+ if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
+ else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
+ Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
+ Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
+ Invalid = true;
+
+ // Otherwise it's a declaration. Call out a particularly common
+ // case here.
+ } else if (isa<TypedefDecl>(PrevDecl)) {
+ Diag(NameLoc, diag::err_tag_definition_of_typedef)
+ << Name
+ << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
+ Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
+ Invalid = true;
+
+ // Otherwise, diagnose.
+ } else {
+ // The tag name clashes with something else in the target scope,
+ // issue an error and recover by making this tag be anonymous.
+ Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
+ Diag(PrevDecl->getLocation(), diag::note_previous_definition);
+ Name = 0;
+ Invalid = true;
+ }
+
+ // The existing declaration isn't relevant to us; we're in a
+ // new scope, so clear out the previous declaration.
+ Previous.clear();
+ }
+ }
+
+CreateNewDecl:
+
+ TagDecl *PrevDecl = 0;
+ if (Previous.isSingleResult())
+ PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
+
+ // If there is an identifier, use the location of the identifier as the
+ // location of the decl, otherwise use the location of the struct/union
+ // keyword.
+ SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
+
+ // Otherwise, create a new declaration. If there is a previous
+ // declaration of the same entity, the two will be linked via
+ // PrevDecl.
+ TagDecl *New;
+
+ if (Kind == TTK_Enum) {
+ // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
+ // enum X { A, B, C } D; D should chain to X.
+ New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
+ cast_or_null<EnumDecl>(PrevDecl));
+ // If this is an undefined enum, warn.
+ if (TUK != TUK_Definition && !Invalid) {
+ unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
+ : diag::ext_forward_ref_enum;
+ Diag(Loc, DK);
+ }
+ } else {
+ // struct/union/class
+
+ // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
+ // struct X { int A; } D; D should chain to X.
+ if (getLangOptions().CPlusPlus) {
+ // FIXME: Look for a way to use RecordDecl for simple structs.
+ New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
+ cast_or_null<CXXRecordDecl>(PrevDecl));
+
+ if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
+ StdBadAlloc = cast<CXXRecordDecl>(New);
+ } else
+ New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
+ cast_or_null<RecordDecl>(PrevDecl));
+ }
+
+ // Maybe add qualifier info.
+ if (SS.isNotEmpty()) {
+ if (SS.isSet()) {
+ NestedNameSpecifier *NNS
+ = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
+ New->setQualifierInfo(NNS, SS.getRange());
+ }
+ else
+ Invalid = true;
+ }
+
+ if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
+ // Add alignment attributes if necessary; these attributes are checked when
+ // the ASTContext lays out the structure.
+ //
+ // It is important for implementing the correct semantics that this
+ // happen here (in act on tag decl). The #pragma pack stack is
+ // maintained as a result of parser callbacks which can occur at
+ // many points during the parsing of a struct declaration (because
+ // the #pragma tokens are effectively skipped over during the
+ // parsing of the struct).
+ AddAlignmentAttributesForRecord(RD);
+ }
+
+ // If this is a specialization of a member class (of a class template),
+ // check the specialization.
+ if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
+ Invalid = true;
+
+ if (Invalid)
+ New->setInvalidDecl();
+
+ if (Attr)
+ ProcessDeclAttributeList(S, New, Attr);
+
+ // If we're declaring or defining a tag in function prototype scope
+ // in C, note that this type can only be used within the function.
+ if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
+ Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
+
+ // Set the lexical context. If the tag has a C++ scope specifier, the
+ // lexical context will be different from the semantic context.
+ New->setLexicalDeclContext(CurContext);
+
+ // Mark this as a friend decl if applicable.
+ if (TUK == TUK_Friend)
+ New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
+
+ // Set the access specifier.
+ if (!Invalid && SearchDC->isRecord())
+ SetMemberAccessSpecifier(New, PrevDecl, AS);
+
+ if (TUK == TUK_Definition)
+ New->startDefinition();
+
+ // If this has an identifier, add it to the scope stack.
+ if (TUK == TUK_Friend) {
+ // We might be replacing an existing declaration in the lookup tables;
+ // if so, borrow its access specifier.
+ if (PrevDecl)
+ New->setAccess(PrevDecl->getAccess());
+
+ DeclContext *DC = New->getDeclContext()->getLookupContext();
+ DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
+ if (Name) // can be null along some error paths
+ if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
+ PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
+ } else if (Name) {
+ S = getNonFieldDeclScope(S);
+ PushOnScopeChains(New, S);
+ } else {
+ CurContext->addDecl(New);
+ }
+
+ // If this is the C FILE type, notify the AST context.
+ if (IdentifierInfo *II = New->getIdentifier())
+ if (!New->isInvalidDecl() &&
+ New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
+ II->isStr("FILE"))
+ Context.setFILEDecl(New);
+
+ OwnedDecl = true;
+ return DeclPtrTy::make(New);
+}
+
+void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
+ AdjustDeclIfTemplate(TagD);
+ TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
+
+ // Enter the tag context.
+ PushDeclContext(S, Tag);
+}
+
+void Sema::ActOnStartCXXMemberDeclarations(Scope *S, DeclPtrTy TagD,
+ SourceLocation LBraceLoc) {
+ AdjustDeclIfTemplate(TagD);
+ CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD.getAs<Decl>());
+
+ FieldCollector->StartClass();
+
+ if (!Record->getIdentifier())
+ return;
+
+ // C++ [class]p2:
+ // [...] The class-name is also inserted into the scope of the
+ // class itself; this is known as the injected-class-name. For
+ // purposes of access checking, the injected-class-name is treated
+ // as if it were a public member name.
+ CXXRecordDecl *InjectedClassName
+ = CXXRecordDecl::Create(Context, Record->getTagKind(),
+ CurContext, Record->getLocation(),
+ Record->getIdentifier(),
+ Record->getTagKeywordLoc(),
+ Record);
+ InjectedClassName->setImplicit();
+ InjectedClassName->setAccess(AS_public);
+ if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
+ InjectedClassName->setDescribedClassTemplate(Template);
+ PushOnScopeChains(InjectedClassName, S);
+ assert(InjectedClassName->isInjectedClassName() &&
+ "Broken injected-class-name");
+}
+
+void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
+ SourceLocation RBraceLoc) {
+ AdjustDeclIfTemplate(TagD);
+ TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
+ Tag->setRBraceLoc(RBraceLoc);
+
+ if (isa<CXXRecordDecl>(Tag))
+ FieldCollector->FinishClass();
+
+ // Exit this scope of this tag's definition.
+ PopDeclContext();
+
+ // Notify the consumer that we've defined a tag.
+ Consumer.HandleTagDeclDefinition(Tag);
+}
+
+void Sema::ActOnTagDefinitionError(Scope *S, DeclPtrTy TagD) {
+ AdjustDeclIfTemplate(TagD);
+ TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
+ Tag->setInvalidDecl();
+
+ // We're undoing ActOnTagStartDefinition here, not
+ // ActOnStartCXXMemberDeclarations, so we don't have to mess with
+ // the FieldCollector.
+
+ PopDeclContext();
+}
+
+// Note that FieldName may be null for anonymous bitfields.
+bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
+ QualType FieldTy, const Expr *BitWidth,
+ bool *ZeroWidth) {
+ // Default to true; that shouldn't confuse checks for emptiness
+ if (ZeroWidth)
+ *ZeroWidth = true;
+
+ // C99 6.7.2.1p4 - verify the field type.
+ // C++ 9.6p3: A bit-field shall have integral or enumeration type.
+ if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
+ // Handle incomplete types with specific error.
+ if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
+ return true;
+ if (FieldName)
+ return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
+ << FieldName << FieldTy << BitWidth->getSourceRange();
+ return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
+ << FieldTy << BitWidth->getSourceRange();
+ }
+
+ // If the bit-width is type- or value-dependent, don't try to check
+ // it now.
+ if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
+ return false;
+
+ llvm::APSInt Value;
+ if (VerifyIntegerConstantExpression(BitWidth, &Value))
+ return true;
+
+ if (Value != 0 && ZeroWidth)
+ *ZeroWidth = false;
+
+ // Zero-width bitfield is ok for anonymous field.
+ if (Value == 0 && FieldName)
+ return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
+
+ if (Value.isSigned() && Value.isNegative()) {
+ if (FieldName)
+ return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
+ << FieldName << Value.toString(10);
+ return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
+ << Value.toString(10);
+ }
+
+ if (!FieldTy->isDependentType()) {
+ uint64_t TypeSize = Context.getTypeSize(FieldTy);
+ if (Value.getZExtValue() > TypeSize) {
+ if (!getLangOptions().CPlusPlus) {
+ if (FieldName)
+ return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
+ << FieldName << (unsigned)Value.getZExtValue()
+ << (unsigned)TypeSize;
+
+ return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
+ << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
+ }
+
+ if (FieldName)
+ Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
+ << FieldName << (unsigned)Value.getZExtValue()
+ << (unsigned)TypeSize;
+ else
+ Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
+ << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
+ }
+ }
+
+ return false;
+}
+
+/// ActOnField - Each field of a struct/union/class is passed into this in order
+/// to create a FieldDecl object for it.
+Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
+ SourceLocation DeclStart,
+ Declarator &D, ExprTy *BitfieldWidth) {
+ FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
+ DeclStart, D, static_cast<Expr*>(BitfieldWidth),
+ AS_public);
+ return DeclPtrTy::make(Res);
+}
+
+/// HandleField - Analyze a field of a C struct or a C++ data member.
+///
+FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
+ SourceLocation DeclStart,
+ Declarator &D, Expr *BitWidth,
+ AccessSpecifier AS) {
+ IdentifierInfo *II = D.getIdentifier();
+ SourceLocation Loc = DeclStart;
+ if (II) Loc = D.getIdentifierLoc();
+
+ TypeSourceInfo *TInfo = 0;
+ QualType T = GetTypeForDeclarator(D, S, &TInfo);
+ if (getLangOptions().CPlusPlus)
+ CheckExtraCXXDefaultArguments(D);
+
+ DiagnoseFunctionSpecifiers(D);
+
+ if (D.getDeclSpec().isThreadSpecified())
+ Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
+
+ NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
+ ForRedeclaration);
+
+ if (PrevDecl && PrevDecl->isTemplateParameter()) {
+ // Maybe we will complain about the shadowed template parameter.
+ DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
+ // Just pretend that we didn't see the previous declaration.
+ PrevDecl = 0;
+ }
+
+ if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
+ PrevDecl = 0;
+
+ bool Mutable
+ = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
+ SourceLocation TSSL = D.getSourceRange().getBegin();
+ FieldDecl *NewFD
+ = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
+ AS, PrevDecl, &D);
+
+ if (NewFD->isInvalidDecl())
+ Record->setInvalidDecl();
+
+ if (NewFD->isInvalidDecl() && PrevDecl) {
+ // Don't introduce NewFD into scope; there's already something
+ // with the same name in the same scope.
+ } else if (II) {
+ PushOnScopeChains(NewFD, S);
+ } else
+ Record->addDecl(NewFD);
+
+ return NewFD;
+}
+
+/// \brief Build a new FieldDecl and check its well-formedness.
+///
+/// This routine builds a new FieldDecl given the fields name, type,
+/// record, etc. \p PrevDecl should refer to any previous declaration
+/// with the same name and in the same scope as the field to be
+/// created.
+///
+/// \returns a new FieldDecl.
+///
+/// \todo The Declarator argument is a hack. It will be removed once
+FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
+ TypeSourceInfo *TInfo,
+ RecordDecl *Record, SourceLocation Loc,
+ bool Mutable, Expr *BitWidth,
+ SourceLocation TSSL,
+ AccessSpecifier AS, NamedDecl *PrevDecl,
+ Declarator *D) {
+ IdentifierInfo *II = Name.getAsIdentifierInfo();
+ bool InvalidDecl = false;
+ if (D) InvalidDecl = D->isInvalidType();
+
+ // If we receive a broken type, recover by assuming 'int' and
+ // marking this declaration as invalid.
+ if (T.isNull()) {
+ InvalidDecl = true;
+ T = Context.IntTy;
+ }
+
+ QualType EltTy = Context.getBaseElementType(T);
+ if (!EltTy->isDependentType() &&
+ RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
+ InvalidDecl = true;
+
+ // C99 6.7.2.1p8: A member of a structure or union may have any type other
+ // than a variably modified type.
+ if (!InvalidDecl && T->isVariablyModifiedType()) {
+ bool SizeIsNegative;
+ QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
+ SizeIsNegative);
+ if (!FixedTy.isNull()) {
+ Diag(Loc, diag::warn_illegal_constant_array_size);
+ T = FixedTy;
+ } else {
+ if (SizeIsNegative)
+ Diag(Loc, diag::err_typecheck_negative_array_size);
+ else
+ Diag(Loc, diag::err_typecheck_field_variable_size);
+ InvalidDecl = true;
+ }
+ }
+
+ // Fields can not have abstract class types
+ if (!InvalidDecl && RequireNonAbstractType(Loc, T,
+ diag::err_abstract_type_in_decl,
+ AbstractFieldType))
+ InvalidDecl = true;
+
+ bool ZeroWidth = false;
+ // If this is declared as a bit-field, check the bit-field.
+ if (!InvalidDecl && BitWidth &&
+ VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
+ InvalidDecl = true;
+ DeleteExpr(BitWidth);
+ BitWidth = 0;
+ ZeroWidth = false;
+ }
+
+ FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
+ BitWidth, Mutable);
+ if (InvalidDecl)
+ NewFD->setInvalidDecl();
+
+ if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
+ Diag(Loc, diag::err_duplicate_member) << II;
+ Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
+ NewFD->setInvalidDecl();
+ }
+
+ if (!InvalidDecl && getLangOptions().CPlusPlus) {
+ CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
+
+ if (!T->isPODType())
+ CXXRecord->setPOD(false);
+ if (!ZeroWidth)
+ CXXRecord->setEmpty(false);
+
+ if (const RecordType *RT = EltTy->getAs<RecordType>()) {
+ CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
+
+ if (!RDecl->hasTrivialConstructor())
+ CXXRecord->setHasTrivialConstructor(false);
+ if (!RDecl->hasTrivialCopyConstructor())
+ CXXRecord->setHasTrivialCopyConstructor(false);
+ if (!RDecl->hasTrivialCopyAssignment())
+ CXXRecord->setHasTrivialCopyAssignment(false);
+ if (!RDecl->hasTrivialDestructor())
+ CXXRecord->setHasTrivialDestructor(false);
+
+ // C++ 9.5p1: An object of a class with a non-trivial
+ // constructor, a non-trivial copy constructor, a non-trivial
+ // destructor, or a non-trivial copy assignment operator
+ // cannot be a member of a union, nor can an array of such
+ // objects.
+ // TODO: C++0x alters this restriction significantly.
+ if (Record->isUnion()) {
+ // We check for copy constructors before constructors
+ // because otherwise we'll never get complaints about
+ // copy constructors.
+
+ CXXSpecialMember member = CXXInvalid;
+ if (!RDecl->hasTrivialCopyConstructor())
+ member = CXXCopyConstructor;
+ else if (!RDecl->hasTrivialConstructor())
+ member = CXXConstructor;
+ else if (!RDecl->hasTrivialCopyAssignment())
+ member = CXXCopyAssignment;
+ else if (!RDecl->hasTrivialDestructor())
+ member = CXXDestructor;
+
+ if (member != CXXInvalid) {
+ Diag(Loc, diag::err_illegal_union_member) << Name << member;
+ DiagnoseNontrivial(RT, member);
+ NewFD->setInvalidDecl();
+ }
+ }
+ }
+ }
+
+ // FIXME: We need to pass in the attributes given an AST
+ // representation, not a parser representation.
+ if (D)
+ // FIXME: What to pass instead of TUScope?
+ ProcessDeclAttributes(TUScope, NewFD, *D);
+
+ if (T.isObjCGCWeak())
+ Diag(Loc, diag::warn_attribute_weak_on_field);
+
+ NewFD->setAccess(AS);
+
+ // C++ [dcl.init.aggr]p1:
+ // An aggregate is an array or a class (clause 9) with [...] no
+ // private or protected non-static data members (clause 11).
+ // A POD must be an aggregate.
+ if (getLangOptions().CPlusPlus &&
+ (AS == AS_private || AS == AS_protected)) {
+ CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
+ CXXRecord->setAggregate(false);
+ CXXRecord->setPOD(false);
+ }
+
+ return NewFD;
+}
+
+/// DiagnoseNontrivial - Given that a class has a non-trivial
+/// special member, figure out why.
+void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
+ QualType QT(T, 0U);
+ CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
+
+ // Check whether the member was user-declared.
+ switch (member) {
+ case CXXInvalid:
+ break;
+
+ case CXXConstructor:
+ if (RD->hasUserDeclaredConstructor()) {
+ typedef CXXRecordDecl::ctor_iterator ctor_iter;
+ for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
+ const FunctionDecl *body = 0;
+ ci->getBody(body);
+ if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
+ SourceLocation CtorLoc = ci->getLocation();
+ Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
+ return;
+ }
+ }
+
+ assert(0 && "found no user-declared constructors");
+ return;
+ }
+ break;
+
+ case CXXCopyConstructor:
+ if (RD->hasUserDeclaredCopyConstructor()) {
+ SourceLocation CtorLoc =
+ RD->getCopyConstructor(Context, 0)->getLocation();
+ Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
+ return;
+ }
+ break;
+
+ case CXXCopyAssignment:
+ if (RD->hasUserDeclaredCopyAssignment()) {
+ // FIXME: this should use the location of the copy
+ // assignment, not the type.
+ SourceLocation TyLoc = RD->getSourceRange().getBegin();
+ Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
+ return;
+ }
+ break;
+
+ case CXXDestructor:
+ if (RD->hasUserDeclaredDestructor()) {
+ SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
+ Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
+ return;
+ }
+ break;
+ }
+
+ typedef CXXRecordDecl::base_class_iterator base_iter;
+
+ // Virtual bases and members inhibit trivial copying/construction,
+ // but not trivial destruction.
+ if (member != CXXDestructor) {
+ // Check for virtual bases. vbases includes indirect virtual bases,
+ // so we just iterate through the direct bases.
+ for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
+ if (bi->isVirtual()) {
+ SourceLocation BaseLoc = bi->getSourceRange().getBegin();
+ Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
+ return;
+ }
+
+ // Check for virtual methods.
+ typedef CXXRecordDecl::method_iterator meth_iter;
+ for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
+ ++mi) {
+ if (mi->isVirtual()) {
+ SourceLocation MLoc = mi->getSourceRange().getBegin();
+ Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
+ return;
+ }
+ }
+ }
+
+ bool (CXXRecordDecl::*hasTrivial)() const;
+ switch (member) {
+ case CXXConstructor:
+ hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
+ case CXXCopyConstructor:
+ hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
+ case CXXCopyAssignment:
+ hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
+ case CXXDestructor:
+ hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
+ default:
+ assert(0 && "unexpected special member"); return;
+ }
+
+ // Check for nontrivial bases (and recurse).
+ for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
+ const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
+ assert(BaseRT && "Don't know how to handle dependent bases");
+ CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
+ if (!(BaseRecTy->*hasTrivial)()) {
+ SourceLocation BaseLoc = bi->getSourceRange().getBegin();
+ Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
+ DiagnoseNontrivial(BaseRT, member);
+ return;
+ }
+ }
+
+ // Check for nontrivial members (and recurse).
+ typedef RecordDecl::field_iterator field_iter;
+ for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
+ ++fi) {
+ QualType EltTy = Context.getBaseElementType((*fi)->getType());
+ if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
+ CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
+
+ if (!(EltRD->*hasTrivial)()) {
+ SourceLocation FLoc = (*fi)->getLocation();
+ Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
+ DiagnoseNontrivial(EltRT, member);
+ return;
+ }
+ }
+ }
+
+ assert(0 && "found no explanation for non-trivial member");
+}
+
+/// TranslateIvarVisibility - Translate visibility from a token ID to an
+/// AST enum value.
+static ObjCIvarDecl::AccessControl
+TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
+ switch (ivarVisibility) {
+ default: assert(0 && "Unknown visitibility kind");
+ case tok::objc_private: return ObjCIvarDecl::Private;
+ case tok::objc_public: return ObjCIvarDecl::Public;
+ case tok::objc_protected: return ObjCIvarDecl::Protected;
+ case tok::objc_package: return ObjCIvarDecl::Package;
+ }
+}
+
+/// ActOnIvar - Each ivar field of an objective-c class is passed into this
+/// in order to create an IvarDecl object for it.
+Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
+ SourceLocation DeclStart,
+ DeclPtrTy IntfDecl,
+ Declarator &D, ExprTy *BitfieldWidth,
+ tok::ObjCKeywordKind Visibility) {
+
+ IdentifierInfo *II = D.getIdentifier();
+ Expr *BitWidth = (Expr*)BitfieldWidth;
+ SourceLocation Loc = DeclStart;
+ if (II) Loc = D.getIdentifierLoc();
+
+ // FIXME: Unnamed fields can be handled in various different ways, for
+ // example, unnamed unions inject all members into the struct namespace!
+
+ TypeSourceInfo *TInfo = 0;
+ QualType T = GetTypeForDeclarator(D, S, &TInfo);
+
+ if (BitWidth) {
+ // 6.7.2.1p3, 6.7.2.1p4
+ if (VerifyBitField(Loc, II, T, BitWidth)) {
+ D.setInvalidType();
+ DeleteExpr(BitWidth);
+ BitWidth = 0;
+ }
+ } else {
+ // Not a bitfield.
+
+ // validate II.
+
+ }
+ if (T->isReferenceType()) {
+ Diag(Loc, diag::err_ivar_reference_type);
+ D.setInvalidType();
+ }
+ // C99 6.7.2.1p8: A member of a structure or union may have any type other
+ // than a variably modified type.
+ else if (T->isVariablyModifiedType()) {
+ Diag(Loc, diag::err_typecheck_ivar_variable_size);
+ D.setInvalidType();
+ }
+
+ // Get the visibility (access control) for this ivar.
+ ObjCIvarDecl::AccessControl ac =
+ Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
+ : ObjCIvarDecl::None;
+ // Must set ivar's DeclContext to its enclosing interface.
+ ObjCContainerDecl *EnclosingDecl = IntfDecl.getAs<ObjCContainerDecl>();
+ ObjCContainerDecl *EnclosingContext;
+ if (ObjCImplementationDecl *IMPDecl =
+ dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
+ // Case of ivar declared in an implementation. Context is that of its class.
+ EnclosingContext = IMPDecl->getClassInterface();
+ assert(EnclosingContext && "Implementation has no class interface!");
+ } else {
+ if (ObjCCategoryDecl *CDecl =
+ dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
+ if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
+ Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
+ return DeclPtrTy();
+ }
+ }
+ EnclosingContext = EnclosingDecl;
+ }
+
+ // Construct the decl.
+ ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
+ EnclosingContext, Loc, II, T,
+ TInfo, ac, (Expr *)BitfieldWidth);
+
+ if (II) {
+ NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
+ ForRedeclaration);
+ if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
+ && !isa<TagDecl>(PrevDecl)) {
+ Diag(Loc, diag::err_duplicate_member) << II;
+ Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
+ NewID->setInvalidDecl();
+ }
+ }
+
+ // Process attributes attached to the ivar.
+ ProcessDeclAttributes(S, NewID, D);
+
+ if (D.isInvalidType())
+ NewID->setInvalidDecl();
+
+ if (II) {
+ // FIXME: When interfaces are DeclContexts, we'll need to add
+ // these to the interface.
+ S->AddDecl(DeclPtrTy::make(NewID));
+ IdResolver.AddDecl(NewID);
+ }
+
+ return DeclPtrTy::make(NewID);
+}
+
+void Sema::ActOnFields(Scope* S,
+ SourceLocation RecLoc, DeclPtrTy RecDecl,
+ DeclPtrTy *Fields, unsigned NumFields,
+ SourceLocation LBrac, SourceLocation RBrac,
+ AttributeList *Attr) {
+ Decl *EnclosingDecl = RecDecl.getAs<Decl>();
+ assert(EnclosingDecl && "missing record or interface decl");
+
+ // If the decl this is being inserted into is invalid, then it may be a
+ // redeclaration or some other bogus case. Don't try to add fields to it.
+ if (EnclosingDecl->isInvalidDecl()) {
+ // FIXME: Deallocate fields?
+ return;
+ }
+
+
+ // Verify that all the fields are okay.
+ unsigned NumNamedMembers = 0;
+ llvm::SmallVector<FieldDecl*, 32> RecFields;
+
+ RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
+ for (unsigned i = 0; i != NumFields; ++i) {
+ FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
+
+ // Get the type for the field.
+ Type *FDTy = FD->getType().getTypePtr();
+
+ if (!FD->isAnonymousStructOrUnion()) {
+ // Remember all fields written by the user.
+ RecFields.push_back(FD);
+ }
+
+ // If the field is already invalid for some reason, don't emit more
+ // diagnostics about it.
+ if (FD->isInvalidDecl()) {
+ EnclosingDecl->setInvalidDecl();
+ continue;
+ }
+
+ // C99 6.7.2.1p2:
+ // A structure or union shall not contain a member with
+ // incomplete or function type (hence, a structure shall not
+ // contain an instance of itself, but may contain a pointer to
+ // an instance of itself), except that the last member of a
+ // structure with more than one named member may have incomplete
+ // array type; such a structure (and any union containing,
+ // possibly recursively, a member that is such a structure)
+ // shall not be a member of a structure or an element of an
+ // array.
+ if (FDTy->isFunctionType()) {
+ // Field declared as a function.
+ Diag(FD->getLocation(), diag::err_field_declared_as_function)
+ << FD->getDeclName();
+ FD->setInvalidDecl();
+ EnclosingDecl->setInvalidDecl();
+ continue;
+ } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
+ Record && Record->isStruct()) {
+ // Flexible array member.
+ if (NumNamedMembers < 1) {
+ Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
+ << FD->getDeclName();
+ FD->setInvalidDecl();
+ EnclosingDecl->setInvalidDecl();
+ continue;
+ }
+ if (!FD->getType()->isDependentType() &&
+ !Context.getBaseElementType(FD->getType())->isPODType()) {
+ Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
+ << FD->getDeclName() << FD->getType();
+ FD->setInvalidDecl();
+ EnclosingDecl->setInvalidDecl();
+ continue;
+ }
+
+ // Okay, we have a legal flexible array member at the end of the struct.
+ if (Record)
+ Record->setHasFlexibleArrayMember(true);
+ } else if (!FDTy->isDependentType() &&
+ RequireCompleteType(FD->getLocation(), FD->getType(),
+ diag::err_field_incomplete)) {
+ // Incomplete type
+ FD->setInvalidDecl();
+ EnclosingDecl->setInvalidDecl();
+ continue;
+ } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
+ if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
+ // If this is a member of a union, then entire union becomes "flexible".
+ if (Record && Record->isUnion()) {
+ Record->setHasFlexibleArrayMember(true);
+ } else {
+ // If this is a struct/class and this is not the last element, reject
+ // it. Note that GCC supports variable sized arrays in the middle of
+ // structures.
+ if (i != NumFields-1)
+ Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
+ << FD->getDeclName() << FD->getType();
+ else {
+ // We support flexible arrays at the end of structs in
+ // other structs as an extension.
+ Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
+ << FD->getDeclName();
+ if (Record)
+ Record->setHasFlexibleArrayMember(true);
+ }
+ }
+ }
+ if (Record && FDTTy->getDecl()->hasObjectMember())
+ Record->setHasObjectMember(true);
+ } else if (FDTy->isObjCObjectType()) {
+ /// A field cannot be an Objective-c object
+ Diag(FD->getLocation(), diag::err_statically_allocated_object);
+ FD->setInvalidDecl();
+ EnclosingDecl->setInvalidDecl();
+ continue;
+ } else if (getLangOptions().ObjC1 &&
+ getLangOptions().getGCMode() != LangOptions::NonGC &&
+ Record &&
+ (FD->getType()->isObjCObjectPointerType() ||
+ FD->getType().isObjCGCStrong()))
+ Record->setHasObjectMember(true);
+ // Keep track of the number of named members.
+ if (FD->getIdentifier())
+ ++NumNamedMembers;
+ }
+
+ // Okay, we successfully defined 'Record'.
+ if (Record) {
+ Record->completeDefinition();
+ } else {
+ ObjCIvarDecl **ClsFields =
+ reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
+ if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
+ ID->setLocEnd(RBrac);
+ // Add ivar's to class's DeclContext.
+ for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
+ ClsFields[i]->setLexicalDeclContext(ID);
+ ID->addDecl(ClsFields[i]);
+ }
+ // Must enforce the rule that ivars in the base classes may not be
+ // duplicates.
+ if (ID->getSuperClass())
+ DiagnoseDuplicateIvars(ID, ID->getSuperClass());
+ } else if (ObjCImplementationDecl *IMPDecl =
+ dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
+ assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
+ for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
+ // Ivar declared in @implementation never belongs to the implementation.
+ // Only it is in implementation's lexical context.
+ ClsFields[I]->setLexicalDeclContext(IMPDecl);
+ CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
+ } else if (ObjCCategoryDecl *CDecl =
+ dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
+ // case of ivars in class extension; all other cases have been
+ // reported as errors elsewhere.
+ // FIXME. Class extension does not have a LocEnd field.
+ // CDecl->setLocEnd(RBrac);
+ // Add ivar's to class extension's DeclContext.
+ for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
+ ClsFields[i]->setLexicalDeclContext(CDecl);
+ CDecl->addDecl(ClsFields[i]);
+ }
+ }
+ }
+
+ if (Attr)
+ ProcessDeclAttributeList(S, Record, Attr);
+}
+
+/// \brief Determine whether the given integral value is representable within
+/// the given type T.
+static bool isRepresentableIntegerValue(ASTContext &Context,
+ llvm::APSInt &Value,
+ QualType T) {
+ assert(T->isIntegralType() && "Integral type required!");
+ unsigned BitWidth = Context.getIntWidth(T);
+
+ if (Value.isUnsigned() || Value.isNonNegative())
+ return Value.getActiveBits() < BitWidth;
+
+ return Value.getMinSignedBits() <= BitWidth;
+}
+
+// \brief Given an integral type, return the next larger integral type
+// (or a NULL type of no such type exists).
+static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
+ // FIXME: Int128/UInt128 support, which also needs to be introduced into
+ // enum checking below.
+ assert(T->isIntegralType() && "Integral type required!");
+ const unsigned NumTypes = 4;
+ QualType SignedIntegralTypes[NumTypes] = {
+ Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
+ };
+ QualType UnsignedIntegralTypes[NumTypes] = {
+ Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
+ Context.UnsignedLongLongTy
+ };
+
+ unsigned BitWidth = Context.getTypeSize(T);
+ QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
+ : UnsignedIntegralTypes;
+ for (unsigned I = 0; I != NumTypes; ++I)
+ if (Context.getTypeSize(Types[I]) > BitWidth)
+ return Types[I];
+
+ return QualType();
+}
+
+EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
+ EnumConstantDecl *LastEnumConst,
+ SourceLocation IdLoc,
+ IdentifierInfo *Id,
+ ExprArg val) {
+ Expr *Val = (Expr *)val.get();
+
+ unsigned IntWidth = Context.Target.getIntWidth();
+ llvm::APSInt EnumVal(IntWidth);
+ QualType EltTy;
+ if (Val) {
+ if (Enum->isDependentType() || Val->isTypeDependent())
+ EltTy = Context.DependentTy;
+ else {
+ // C99 6.7.2.2p2: Make sure we have an integer constant expression.
+ SourceLocation ExpLoc;
+ if (!Val->isValueDependent() &&
+ VerifyIntegerConstantExpression(Val, &EnumVal)) {
+ Val = 0;
+ } else {
+ if (!getLangOptions().CPlusPlus) {
+ // C99 6.7.2.2p2:
+ // The expression that defines the value of an enumeration constant
+ // shall be an integer constant expression that has a value
+ // representable as an int.
+
+ // Complain if the value is not representable in an int.
+ if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
+ Diag(IdLoc, diag::ext_enum_value_not_int)
+ << EnumVal.toString(10) << Val->getSourceRange()
+ << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
+ else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
+ // Force the type of the expression to 'int'.
+ ImpCastExprToType(Val, Context.IntTy, CastExpr::CK_IntegralCast);
+
+ if (Val != val.get()) {
+ val.release();
+ val = Val;
+ }
+ }
+ }
+
+ // C++0x [dcl.enum]p5:
+ // If the underlying type is not fixed, the type of each enumerator
+ // is the type of its initializing value:
+ // - If an initializer is specified for an enumerator, the
+ // initializing value has the same type as the expression.
+ EltTy = Val->getType();
+ }
+ }
+ }
+
+ if (!Val) {
+ if (Enum->isDependentType())
+ EltTy = Context.DependentTy;
+ else if (!LastEnumConst) {
+ // C++0x [dcl.enum]p5:
+ // If the underlying type is not fixed, the type of each enumerator
+ // is the type of its initializing value:
+ // - If no initializer is specified for the first enumerator, the
+ // initializing value has an unspecified integral type.
+ //
+ // GCC uses 'int' for its unspecified integral type, as does
+ // C99 6.7.2.2p3.
+ EltTy = Context.IntTy;
+ } else {
+ // Assign the last value + 1.
+ EnumVal = LastEnumConst->getInitVal();
+ ++EnumVal;
+ EltTy = LastEnumConst->getType();
+
+ // Check for overflow on increment.
+ if (EnumVal < LastEnumConst->getInitVal()) {
+ // C++0x [dcl.enum]p5:
+ // If the underlying type is not fixed, the type of each enumerator
+ // is the type of its initializing value:
+ //
+ // - Otherwise the type of the initializing value is the same as
+ // the type of the initializing value of the preceding enumerator
+ // unless the incremented value is not representable in that type,
+ // in which case the type is an unspecified integral type
+ // sufficient to contain the incremented value. If no such type
+ // exists, the program is ill-formed.
+ QualType T = getNextLargerIntegralType(Context, EltTy);
+ if (T.isNull()) {
+ // There is no integral type larger enough to represent this
+ // value. Complain, then allow the value to wrap around.
+ EnumVal = LastEnumConst->getInitVal();
+ EnumVal.zext(EnumVal.getBitWidth() * 2);
+ Diag(IdLoc, diag::warn_enumerator_too_large)
+ << EnumVal.toString(10);
+ } else {
+ EltTy = T;
+ }
+
+ // Retrieve the last enumerator's value, extent that type to the
+ // type that is supposed to be large enough to represent the incremented
+ // value, then increment.
+ EnumVal = LastEnumConst->getInitVal();
+ EnumVal.setIsSigned(EltTy->isSignedIntegerType());
+ EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
+ ++EnumVal;
+
+ // If we're not in C++, diagnose the overflow of enumerator values,
+ // which in C99 means that the enumerator value is not representable in
+ // an int (C99 6.7.2.2p2). However, we support GCC's extension that
+ // permits enumerator values that are representable in some larger
+ // integral type.
+ if (!getLangOptions().CPlusPlus && !T.isNull())
+ Diag(IdLoc, diag::warn_enum_value_overflow);
+ } else if (!getLangOptions().CPlusPlus &&
+ !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
+ // Enforce C99 6.7.2.2p2 even when we compute the next value.
+ Diag(IdLoc, diag::ext_enum_value_not_int)
+ << EnumVal.toString(10) << 1;
+ }
+ }
+ }
+
+ if (!EltTy->isDependentType()) {
+ // Make the enumerator value match the signedness and size of the
+ // enumerator's type.
+ EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
+ EnumVal.setIsSigned(EltTy->isSignedIntegerType());
+ }
+
+ val.release();
+ return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
+ Val, EnumVal);
+}
+
+
+Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
+ DeclPtrTy lastEnumConst,
+ SourceLocation IdLoc,
+ IdentifierInfo *Id,
+ SourceLocation EqualLoc, ExprTy *val) {
+ EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
+ EnumConstantDecl *LastEnumConst =
+ cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
+ Expr *Val = static_cast<Expr*>(val);
+
+ // The scope passed in may not be a decl scope. Zip up the scope tree until
+ // we find one that is.
+ S = getNonFieldDeclScope(S);
+
+ // Verify that there isn't already something declared with this name in this
+ // scope.
+ NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
+ ForRedeclaration);
+ if (PrevDecl && PrevDecl->isTemplateParameter()) {
+ // Maybe we will complain about the shadowed template parameter.
+ DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
+ // Just pretend that we didn't see the previous declaration.
+ PrevDecl = 0;
+ }
+
+ if (PrevDecl) {
+ // When in C++, we may get a TagDecl with the same name; in this case the
+ // enum constant will 'hide' the tag.
+ assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
+ "Received TagDecl when not in C++!");
+ if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
+ if (isa<EnumConstantDecl>(PrevDecl))
+ Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
+ else
+ Diag(IdLoc, diag::err_redefinition) << Id;
+ Diag(PrevDecl->getLocation(), diag::note_previous_definition);
+ if (Val) Val->Destroy(Context);
+ return DeclPtrTy();
+ }
+ }
+
+ EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
+ IdLoc, Id, Owned(Val));
+
+ // Register this decl in the current scope stack.
+ if (New) {
+ New->setAccess(TheEnumDecl->getAccess());
+ PushOnScopeChains(New, S);
+ }
+
+ return DeclPtrTy::make(New);
+}
+
+void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
+ SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
+ DeclPtrTy *Elements, unsigned NumElements,
+ Scope *S, AttributeList *Attr) {
+ EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
+ QualType EnumType = Context.getTypeDeclType(Enum);
+
+ if (Attr)
+ ProcessDeclAttributeList(S, Enum, Attr);
+
+ if (Enum->isDependentType()) {
+ for (unsigned i = 0; i != NumElements; ++i) {
+ EnumConstantDecl *ECD =
+ cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
+ if (!ECD) continue;
+
+ ECD->setType(EnumType);
+ }
+
+ Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
+ return;
+ }
+
+ // TODO: If the result value doesn't fit in an int, it must be a long or long
+ // long value. ISO C does not support this, but GCC does as an extension,
+ // emit a warning.
+ unsigned IntWidth = Context.Target.getIntWidth();
+ unsigned CharWidth = Context.Target.getCharWidth();
+ unsigned ShortWidth = Context.Target.getShortWidth();
+
+ // Verify that all the values are okay, compute the size of the values, and
+ // reverse the list.
+ unsigned NumNegativeBits = 0;
+ unsigned NumPositiveBits = 0;
+
+ // Keep track of whether all elements have type int.
+ bool AllElementsInt = true;
+
+ for (unsigned i = 0; i != NumElements; ++i) {
+ EnumConstantDecl *ECD =
+ cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
+ if (!ECD) continue; // Already issued a diagnostic.
+
+ const llvm::APSInt &InitVal = ECD->getInitVal();
+
+ // Keep track of the size of positive and negative values.
+ if (InitVal.isUnsigned() || InitVal.isNonNegative())
+ NumPositiveBits = std::max(NumPositiveBits,
+ (unsigned)InitVal.getActiveBits());
+ else
+ NumNegativeBits = std::max(NumNegativeBits,
+ (unsigned)InitVal.getMinSignedBits());
+
+ // Keep track of whether every enum element has type int (very commmon).
+ if (AllElementsInt)
+ AllElementsInt = ECD->getType() == Context.IntTy;
+ }
+
+ // Figure out the type that should be used for this enum.
+ // FIXME: Support -fshort-enums.
+ QualType BestType;
+ unsigned BestWidth;
+
+ // C++0x N3000 [conv.prom]p3:
+ // An rvalue of an unscoped enumeration type whose underlying
+ // type is not fixed can be converted to an rvalue of the first
+ // of the following types that can represent all the values of
+ // the enumeration: int, unsigned int, long int, unsigned long
+ // int, long long int, or unsigned long long int.
+ // C99 6.4.4.3p2:
+ // An identifier declared as an enumeration constant has type int.
+ // The C99 rule is modified by a gcc extension
+ QualType BestPromotionType;
+
+ bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
+
+ if (NumNegativeBits) {
+ // If there is a negative value, figure out the smallest integer type (of
+ // int/long/longlong) that fits.
+ // If it's packed, check also if it fits a char or a short.
+ if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
+ BestType = Context.SignedCharTy;
+ BestWidth = CharWidth;
+ } else if (Packed && NumNegativeBits <= ShortWidth &&
+ NumPositiveBits < ShortWidth) {
+ BestType = Context.ShortTy;
+ BestWidth = ShortWidth;
+ } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
+ BestType = Context.IntTy;
+ BestWidth = IntWidth;
+ } else {
+ BestWidth = Context.Target.getLongWidth();
+
+ if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
+ BestType = Context.LongTy;
+ } else {
+ BestWidth = Context.Target.getLongLongWidth();
+
+ if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
+ Diag(Enum->getLocation(), diag::warn_enum_too_large);
+ BestType = Context.LongLongTy;
+ }
+ }
+ BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
+ } else {
+ // If there is no negative value, figure out the smallest type that fits
+ // all of the enumerator values.
+ // If it's packed, check also if it fits a char or a short.
+ if (Packed && NumPositiveBits <= CharWidth) {
+ BestType = Context.UnsignedCharTy;
+ BestPromotionType = Context.IntTy;
+ BestWidth = CharWidth;
+ } else if (Packed && NumPositiveBits <= ShortWidth) {
+ BestType = Context.UnsignedShortTy;
+ BestPromotionType = Context.IntTy;
+ BestWidth = ShortWidth;
+ } else if (NumPositiveBits <= IntWidth) {
+ BestType = Context.UnsignedIntTy;
+ BestWidth = IntWidth;
+ BestPromotionType
+ = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
+ ? Context.UnsignedIntTy : Context.IntTy;
+ } else if (NumPositiveBits <=
+ (BestWidth = Context.Target.getLongWidth())) {
+ BestType = Context.UnsignedLongTy;
+ BestPromotionType
+ = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
+ ? Context.UnsignedLongTy : Context.LongTy;
+ } else {
+ BestWidth = Context.Target.getLongLongWidth();
+ assert(NumPositiveBits <= BestWidth &&
+ "How could an initializer get larger than ULL?");
+ BestType = Context.UnsignedLongLongTy;
+ BestPromotionType
+ = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
+ ? Context.UnsignedLongLongTy : Context.LongLongTy;
+ }
+ }
+
+ // Loop over all of the enumerator constants, changing their types to match
+ // the type of the enum if needed.
+ for (unsigned i = 0; i != NumElements; ++i) {
+ EnumConstantDecl *ECD =
+ cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
+ if (!ECD) continue; // Already issued a diagnostic.
+
+ // Standard C says the enumerators have int type, but we allow, as an
+ // extension, the enumerators to be larger than int size. If each
+ // enumerator value fits in an int, type it as an int, otherwise type it the
+ // same as the enumerator decl itself. This means that in "enum { X = 1U }"
+ // that X has type 'int', not 'unsigned'.
+
+ // Determine whether the value fits into an int.
+ llvm::APSInt InitVal = ECD->getInitVal();
+
+ // If it fits into an integer type, force it. Otherwise force it to match
+ // the enum decl type.
+ QualType NewTy;
+ unsigned NewWidth;
+ bool NewSign;
+ if (!getLangOptions().CPlusPlus &&
+ isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
+ NewTy = Context.IntTy;
+ NewWidth = IntWidth;
+ NewSign = true;
+ } else if (ECD->getType() == BestType) {
+ // Already the right type!
+ if (getLangOptions().CPlusPlus)
+ // C++ [dcl.enum]p4: Following the closing brace of an
+ // enum-specifier, each enumerator has the type of its
+ // enumeration.
+ ECD->setType(EnumType);
+ continue;
+ } else {
+ NewTy = BestType;
+ NewWidth = BestWidth;
+ NewSign = BestType->isSignedIntegerType();
+ }
+
+ // Adjust the APSInt value.
+ InitVal.extOrTrunc(NewWidth);
+ InitVal.setIsSigned(NewSign);
+ ECD->setInitVal(InitVal);
+
+ // Adjust the Expr initializer and type.
+ if (ECD->getInitExpr())
+ ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
+ CastExpr::CK_IntegralCast,
+ ECD->getInitExpr(),
+ CXXBaseSpecifierArray(),
+ /*isLvalue=*/false));
+ if (getLangOptions().CPlusPlus)
+ // C++ [dcl.enum]p4: Following the closing brace of an
+ // enum-specifier, each enumerator has the type of its
+ // enumeration.
+ ECD->setType(EnumType);
+ else
+ ECD->setType(NewTy);
+ }
+
+ Enum->completeDefinition(BestType, BestPromotionType,
+ NumPositiveBits, NumNegativeBits);
+}
+
+Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
+ ExprArg expr) {
+ StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
+
+ FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
+ Loc, AsmString);
+ CurContext->addDecl(New);
+ return DeclPtrTy::make(New);
+}
+
+void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
+ SourceLocation PragmaLoc,
+ SourceLocation NameLoc) {
+ Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
+
+ if (PrevDecl) {
+ PrevDecl->addAttr(::new (Context) WeakAttr());
+ } else {
+ (void)WeakUndeclaredIdentifiers.insert(
+ std::pair<IdentifierInfo*,WeakInfo>
+ (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
+ }
+}
+
+void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
+ IdentifierInfo* AliasName,
+ SourceLocation PragmaLoc,
+ SourceLocation NameLoc,
+ SourceLocation AliasNameLoc) {
+ Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
+ LookupOrdinaryName);
+ WeakInfo W = WeakInfo(Name, NameLoc);
+
+ if (PrevDecl) {
+ if (!PrevDecl->hasAttr<AliasAttr>())
+ if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
+ DeclApplyPragmaWeak(TUScope, ND, W);
+ } else {
+ (void)WeakUndeclaredIdentifiers.insert(
+ std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
+ }
+}
OpenPOWER on IntegriCloud