summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/Sema/SemaChecking.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/Sema/SemaChecking.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaChecking.cpp2404
1 files changed, 2404 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaChecking.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaChecking.cpp
new file mode 100644
index 0000000..4f3f41b
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaChecking.cpp
@@ -0,0 +1,2404 @@
+//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements extra semantic analysis beyond what is enforced
+// by the C type system.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Sema.h"
+#include "clang/Analysis/Analyses/PrintfFormatString.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/CharUnits.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/StmtCXX.h"
+#include "clang/AST/StmtObjC.h"
+#include "clang/Lex/LiteralSupport.h"
+#include "clang/Lex/Preprocessor.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/STLExtras.h"
+#include "clang/Basic/TargetBuiltins.h"
+#include <limits>
+using namespace clang;
+
+/// getLocationOfStringLiteralByte - Return a source location that points to the
+/// specified byte of the specified string literal.
+///
+/// Strings are amazingly complex. They can be formed from multiple tokens and
+/// can have escape sequences in them in addition to the usual trigraph and
+/// escaped newline business. This routine handles this complexity.
+///
+SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
+ unsigned ByteNo) const {
+ assert(!SL->isWide() && "This doesn't work for wide strings yet");
+
+ // Loop over all of the tokens in this string until we find the one that
+ // contains the byte we're looking for.
+ unsigned TokNo = 0;
+ while (1) {
+ assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
+ SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
+
+ // Get the spelling of the string so that we can get the data that makes up
+ // the string literal, not the identifier for the macro it is potentially
+ // expanded through.
+ SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
+
+ // Re-lex the token to get its length and original spelling.
+ std::pair<FileID, unsigned> LocInfo =
+ SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
+ bool Invalid = false;
+ llvm::StringRef Buffer = SourceMgr.getBufferData(LocInfo.first, &Invalid);
+ if (Invalid)
+ return StrTokSpellingLoc;
+
+ const char *StrData = Buffer.data()+LocInfo.second;
+
+ // Create a langops struct and enable trigraphs. This is sufficient for
+ // relexing tokens.
+ LangOptions LangOpts;
+ LangOpts.Trigraphs = true;
+
+ // Create a lexer starting at the beginning of this token.
+ Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.begin(), StrData,
+ Buffer.end());
+ Token TheTok;
+ TheLexer.LexFromRawLexer(TheTok);
+
+ // Use the StringLiteralParser to compute the length of the string in bytes.
+ StringLiteralParser SLP(&TheTok, 1, PP, /*Complain=*/false);
+ unsigned TokNumBytes = SLP.GetStringLength();
+
+ // If the byte is in this token, return the location of the byte.
+ if (ByteNo < TokNumBytes ||
+ (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
+ unsigned Offset =
+ StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP,
+ /*Complain=*/false);
+
+ // Now that we know the offset of the token in the spelling, use the
+ // preprocessor to get the offset in the original source.
+ return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
+ }
+
+ // Move to the next string token.
+ ++TokNo;
+ ByteNo -= TokNumBytes;
+ }
+}
+
+/// CheckablePrintfAttr - does a function call have a "printf" attribute
+/// and arguments that merit checking?
+bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
+ if (Format->getType() == "printf") return true;
+ if (Format->getType() == "printf0") {
+ // printf0 allows null "format" string; if so don't check format/args
+ unsigned format_idx = Format->getFormatIdx() - 1;
+ // Does the index refer to the implicit object argument?
+ if (isa<CXXMemberCallExpr>(TheCall)) {
+ if (format_idx == 0)
+ return false;
+ --format_idx;
+ }
+ if (format_idx < TheCall->getNumArgs()) {
+ Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
+ if (!Format->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNull))
+ return true;
+ }
+ }
+ return false;
+}
+
+Action::OwningExprResult
+Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
+ OwningExprResult TheCallResult(Owned(TheCall));
+
+ switch (BuiltinID) {
+ case Builtin::BI__builtin___CFStringMakeConstantString:
+ assert(TheCall->getNumArgs() == 1 &&
+ "Wrong # arguments to builtin CFStringMakeConstantString");
+ if (CheckObjCString(TheCall->getArg(0)))
+ return ExprError();
+ break;
+ case Builtin::BI__builtin_stdarg_start:
+ case Builtin::BI__builtin_va_start:
+ if (SemaBuiltinVAStart(TheCall))
+ return ExprError();
+ break;
+ case Builtin::BI__builtin_isgreater:
+ case Builtin::BI__builtin_isgreaterequal:
+ case Builtin::BI__builtin_isless:
+ case Builtin::BI__builtin_islessequal:
+ case Builtin::BI__builtin_islessgreater:
+ case Builtin::BI__builtin_isunordered:
+ if (SemaBuiltinUnorderedCompare(TheCall))
+ return ExprError();
+ break;
+ case Builtin::BI__builtin_fpclassify:
+ if (SemaBuiltinFPClassification(TheCall, 6))
+ return ExprError();
+ break;
+ case Builtin::BI__builtin_isfinite:
+ case Builtin::BI__builtin_isinf:
+ case Builtin::BI__builtin_isinf_sign:
+ case Builtin::BI__builtin_isnan:
+ case Builtin::BI__builtin_isnormal:
+ if (SemaBuiltinFPClassification(TheCall, 1))
+ return ExprError();
+ break;
+ case Builtin::BI__builtin_return_address:
+ case Builtin::BI__builtin_frame_address: {
+ llvm::APSInt Result;
+ if (SemaBuiltinConstantArg(TheCall, 0, Result))
+ return ExprError();
+ break;
+ }
+ case Builtin::BI__builtin_eh_return_data_regno: {
+ llvm::APSInt Result;
+ if (SemaBuiltinConstantArg(TheCall, 0, Result))
+ return ExprError();
+ break;
+ }
+ case Builtin::BI__builtin_shufflevector:
+ return SemaBuiltinShuffleVector(TheCall);
+ // TheCall will be freed by the smart pointer here, but that's fine, since
+ // SemaBuiltinShuffleVector guts it, but then doesn't release it.
+ case Builtin::BI__builtin_prefetch:
+ if (SemaBuiltinPrefetch(TheCall))
+ return ExprError();
+ break;
+ case Builtin::BI__builtin_object_size:
+ if (SemaBuiltinObjectSize(TheCall))
+ return ExprError();
+ break;
+ case Builtin::BI__builtin_longjmp:
+ if (SemaBuiltinLongjmp(TheCall))
+ return ExprError();
+ break;
+ case Builtin::BI__sync_fetch_and_add:
+ case Builtin::BI__sync_fetch_and_sub:
+ case Builtin::BI__sync_fetch_and_or:
+ case Builtin::BI__sync_fetch_and_and:
+ case Builtin::BI__sync_fetch_and_xor:
+ case Builtin::BI__sync_add_and_fetch:
+ case Builtin::BI__sync_sub_and_fetch:
+ case Builtin::BI__sync_and_and_fetch:
+ case Builtin::BI__sync_or_and_fetch:
+ case Builtin::BI__sync_xor_and_fetch:
+ case Builtin::BI__sync_val_compare_and_swap:
+ case Builtin::BI__sync_bool_compare_and_swap:
+ case Builtin::BI__sync_lock_test_and_set:
+ case Builtin::BI__sync_lock_release:
+ if (SemaBuiltinAtomicOverloaded(TheCall))
+ return ExprError();
+ break;
+
+ // Target specific builtins start here.
+ case X86::BI__builtin_ia32_palignr128:
+ case X86::BI__builtin_ia32_palignr: {
+ llvm::APSInt Result;
+ if (SemaBuiltinConstantArg(TheCall, 2, Result))
+ return ExprError();
+ break;
+ }
+ }
+
+ return move(TheCallResult);
+}
+
+/// CheckFunctionCall - Check a direct function call for various correctness
+/// and safety properties not strictly enforced by the C type system.
+bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
+ // Get the IdentifierInfo* for the called function.
+ IdentifierInfo *FnInfo = FDecl->getIdentifier();
+
+ // None of the checks below are needed for functions that don't have
+ // simple names (e.g., C++ conversion functions).
+ if (!FnInfo)
+ return false;
+
+ // FIXME: This mechanism should be abstracted to be less fragile and
+ // more efficient. For example, just map function ids to custom
+ // handlers.
+
+ // Printf checking.
+ if (const FormatAttr *Format = FDecl->getAttr<FormatAttr>()) {
+ if (CheckablePrintfAttr(Format, TheCall)) {
+ bool HasVAListArg = Format->getFirstArg() == 0;
+ CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
+ HasVAListArg ? 0 : Format->getFirstArg() - 1);
+ }
+ }
+
+ for (const NonNullAttr *NonNull = FDecl->getAttr<NonNullAttr>(); NonNull;
+ NonNull = NonNull->getNext<NonNullAttr>())
+ CheckNonNullArguments(NonNull, TheCall);
+
+ return false;
+}
+
+bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
+ // Printf checking.
+ const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
+ if (!Format)
+ return false;
+
+ const VarDecl *V = dyn_cast<VarDecl>(NDecl);
+ if (!V)
+ return false;
+
+ QualType Ty = V->getType();
+ if (!Ty->isBlockPointerType())
+ return false;
+
+ if (!CheckablePrintfAttr(Format, TheCall))
+ return false;
+
+ bool HasVAListArg = Format->getFirstArg() == 0;
+ CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
+ HasVAListArg ? 0 : Format->getFirstArg() - 1);
+
+ return false;
+}
+
+/// SemaBuiltinAtomicOverloaded - We have a call to a function like
+/// __sync_fetch_and_add, which is an overloaded function based on the pointer
+/// type of its first argument. The main ActOnCallExpr routines have already
+/// promoted the types of arguments because all of these calls are prototyped as
+/// void(...).
+///
+/// This function goes through and does final semantic checking for these
+/// builtins,
+bool Sema::SemaBuiltinAtomicOverloaded(CallExpr *TheCall) {
+ DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
+ FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
+
+ // Ensure that we have at least one argument to do type inference from.
+ if (TheCall->getNumArgs() < 1)
+ return Diag(TheCall->getLocEnd(),
+ diag::err_typecheck_call_too_few_args_at_least)
+ << 0 << 1 << TheCall->getNumArgs()
+ << TheCall->getCallee()->getSourceRange();
+
+ // Inspect the first argument of the atomic builtin. This should always be
+ // a pointer type, whose element is an integral scalar or pointer type.
+ // Because it is a pointer type, we don't have to worry about any implicit
+ // casts here.
+ Expr *FirstArg = TheCall->getArg(0);
+ if (!FirstArg->getType()->isPointerType())
+ return Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
+ << FirstArg->getType() << FirstArg->getSourceRange();
+
+ QualType ValType = FirstArg->getType()->getAs<PointerType>()->getPointeeType();
+ if (!ValType->isIntegerType() && !ValType->isPointerType() &&
+ !ValType->isBlockPointerType())
+ return Diag(DRE->getLocStart(),
+ diag::err_atomic_builtin_must_be_pointer_intptr)
+ << FirstArg->getType() << FirstArg->getSourceRange();
+
+ // We need to figure out which concrete builtin this maps onto. For example,
+ // __sync_fetch_and_add with a 2 byte object turns into
+ // __sync_fetch_and_add_2.
+#define BUILTIN_ROW(x) \
+ { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
+ Builtin::BI##x##_8, Builtin::BI##x##_16 }
+
+ static const unsigned BuiltinIndices[][5] = {
+ BUILTIN_ROW(__sync_fetch_and_add),
+ BUILTIN_ROW(__sync_fetch_and_sub),
+ BUILTIN_ROW(__sync_fetch_and_or),
+ BUILTIN_ROW(__sync_fetch_and_and),
+ BUILTIN_ROW(__sync_fetch_and_xor),
+
+ BUILTIN_ROW(__sync_add_and_fetch),
+ BUILTIN_ROW(__sync_sub_and_fetch),
+ BUILTIN_ROW(__sync_and_and_fetch),
+ BUILTIN_ROW(__sync_or_and_fetch),
+ BUILTIN_ROW(__sync_xor_and_fetch),
+
+ BUILTIN_ROW(__sync_val_compare_and_swap),
+ BUILTIN_ROW(__sync_bool_compare_and_swap),
+ BUILTIN_ROW(__sync_lock_test_and_set),
+ BUILTIN_ROW(__sync_lock_release)
+ };
+#undef BUILTIN_ROW
+
+ // Determine the index of the size.
+ unsigned SizeIndex;
+ switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
+ case 1: SizeIndex = 0; break;
+ case 2: SizeIndex = 1; break;
+ case 4: SizeIndex = 2; break;
+ case 8: SizeIndex = 3; break;
+ case 16: SizeIndex = 4; break;
+ default:
+ return Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
+ << FirstArg->getType() << FirstArg->getSourceRange();
+ }
+
+ // Each of these builtins has one pointer argument, followed by some number of
+ // values (0, 1 or 2) followed by a potentially empty varags list of stuff
+ // that we ignore. Find out which row of BuiltinIndices to read from as well
+ // as the number of fixed args.
+ unsigned BuiltinID = FDecl->getBuiltinID();
+ unsigned BuiltinIndex, NumFixed = 1;
+ switch (BuiltinID) {
+ default: assert(0 && "Unknown overloaded atomic builtin!");
+ case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
+ case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
+ case Builtin::BI__sync_fetch_and_or: BuiltinIndex = 2; break;
+ case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
+ case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
+
+ case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 5; break;
+ case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 6; break;
+ case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 7; break;
+ case Builtin::BI__sync_or_and_fetch: BuiltinIndex = 8; break;
+ case Builtin::BI__sync_xor_and_fetch: BuiltinIndex = 9; break;
+
+ case Builtin::BI__sync_val_compare_and_swap:
+ BuiltinIndex = 10;
+ NumFixed = 2;
+ break;
+ case Builtin::BI__sync_bool_compare_and_swap:
+ BuiltinIndex = 11;
+ NumFixed = 2;
+ break;
+ case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 12; break;
+ case Builtin::BI__sync_lock_release:
+ BuiltinIndex = 13;
+ NumFixed = 0;
+ break;
+ }
+
+ // Now that we know how many fixed arguments we expect, first check that we
+ // have at least that many.
+ if (TheCall->getNumArgs() < 1+NumFixed)
+ return Diag(TheCall->getLocEnd(),
+ diag::err_typecheck_call_too_few_args_at_least)
+ << 0 << 1+NumFixed << TheCall->getNumArgs()
+ << TheCall->getCallee()->getSourceRange();
+
+
+ // Get the decl for the concrete builtin from this, we can tell what the
+ // concrete integer type we should convert to is.
+ unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
+ const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
+ IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
+ FunctionDecl *NewBuiltinDecl =
+ cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
+ TUScope, false, DRE->getLocStart()));
+ const FunctionProtoType *BuiltinFT =
+ NewBuiltinDecl->getType()->getAs<FunctionProtoType>();
+ ValType = BuiltinFT->getArgType(0)->getAs<PointerType>()->getPointeeType();
+
+ // If the first type needs to be converted (e.g. void** -> int*), do it now.
+ if (BuiltinFT->getArgType(0) != FirstArg->getType()) {
+ ImpCastExprToType(FirstArg, BuiltinFT->getArgType(0), CastExpr::CK_BitCast);
+ TheCall->setArg(0, FirstArg);
+ }
+
+ // Next, walk the valid ones promoting to the right type.
+ for (unsigned i = 0; i != NumFixed; ++i) {
+ Expr *Arg = TheCall->getArg(i+1);
+
+ // If the argument is an implicit cast, then there was a promotion due to
+ // "...", just remove it now.
+ if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
+ Arg = ICE->getSubExpr();
+ ICE->setSubExpr(0);
+ ICE->Destroy(Context);
+ TheCall->setArg(i+1, Arg);
+ }
+
+ // GCC does an implicit conversion to the pointer or integer ValType. This
+ // can fail in some cases (1i -> int**), check for this error case now.
+ CastExpr::CastKind Kind = CastExpr::CK_Unknown;
+ CXXBaseSpecifierArray BasePath;
+ if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg, Kind, BasePath))
+ return true;
+
+ // Okay, we have something that *can* be converted to the right type. Check
+ // to see if there is a potentially weird extension going on here. This can
+ // happen when you do an atomic operation on something like an char* and
+ // pass in 42. The 42 gets converted to char. This is even more strange
+ // for things like 45.123 -> char, etc.
+ // FIXME: Do this check.
+ ImpCastExprToType(Arg, ValType, Kind);
+ TheCall->setArg(i+1, Arg);
+ }
+
+ // Switch the DeclRefExpr to refer to the new decl.
+ DRE->setDecl(NewBuiltinDecl);
+ DRE->setType(NewBuiltinDecl->getType());
+
+ // Set the callee in the CallExpr.
+ // FIXME: This leaks the original parens and implicit casts.
+ Expr *PromotedCall = DRE;
+ UsualUnaryConversions(PromotedCall);
+ TheCall->setCallee(PromotedCall);
+
+
+ // Change the result type of the call to match the result type of the decl.
+ TheCall->setType(NewBuiltinDecl->getResultType());
+ return false;
+}
+
+
+/// CheckObjCString - Checks that the argument to the builtin
+/// CFString constructor is correct
+/// FIXME: GCC currently emits the following warning:
+/// "warning: input conversion stopped due to an input byte that does not
+/// belong to the input codeset UTF-8"
+/// Note: It might also make sense to do the UTF-16 conversion here (would
+/// simplify the backend).
+bool Sema::CheckObjCString(Expr *Arg) {
+ Arg = Arg->IgnoreParenCasts();
+ StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
+
+ if (!Literal || Literal->isWide()) {
+ Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
+ << Arg->getSourceRange();
+ return true;
+ }
+
+ const char *Data = Literal->getStrData();
+ unsigned Length = Literal->getByteLength();
+
+ for (unsigned i = 0; i < Length; ++i) {
+ if (!Data[i]) {
+ Diag(getLocationOfStringLiteralByte(Literal, i),
+ diag::warn_cfstring_literal_contains_nul_character)
+ << Arg->getSourceRange();
+ break;
+ }
+ }
+
+ return false;
+}
+
+/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
+/// Emit an error and return true on failure, return false on success.
+bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
+ Expr *Fn = TheCall->getCallee();
+ if (TheCall->getNumArgs() > 2) {
+ Diag(TheCall->getArg(2)->getLocStart(),
+ diag::err_typecheck_call_too_many_args)
+ << 0 /*function call*/ << 2 << TheCall->getNumArgs()
+ << Fn->getSourceRange()
+ << SourceRange(TheCall->getArg(2)->getLocStart(),
+ (*(TheCall->arg_end()-1))->getLocEnd());
+ return true;
+ }
+
+ if (TheCall->getNumArgs() < 2) {
+ return Diag(TheCall->getLocEnd(),
+ diag::err_typecheck_call_too_few_args_at_least)
+ << 0 /*function call*/ << 2 << TheCall->getNumArgs();
+ }
+
+ // Determine whether the current function is variadic or not.
+ BlockScopeInfo *CurBlock = getCurBlock();
+ bool isVariadic;
+ if (CurBlock)
+ isVariadic = CurBlock->isVariadic;
+ else if (FunctionDecl *FD = getCurFunctionDecl())
+ isVariadic = FD->isVariadic();
+ else
+ isVariadic = getCurMethodDecl()->isVariadic();
+
+ if (!isVariadic) {
+ Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
+ return true;
+ }
+
+ // Verify that the second argument to the builtin is the last argument of the
+ // current function or method.
+ bool SecondArgIsLastNamedArgument = false;
+ const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
+
+ if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
+ if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
+ // FIXME: This isn't correct for methods (results in bogus warning).
+ // Get the last formal in the current function.
+ const ParmVarDecl *LastArg;
+ if (CurBlock)
+ LastArg = *(CurBlock->TheDecl->param_end()-1);
+ else if (FunctionDecl *FD = getCurFunctionDecl())
+ LastArg = *(FD->param_end()-1);
+ else
+ LastArg = *(getCurMethodDecl()->param_end()-1);
+ SecondArgIsLastNamedArgument = PV == LastArg;
+ }
+ }
+
+ if (!SecondArgIsLastNamedArgument)
+ Diag(TheCall->getArg(1)->getLocStart(),
+ diag::warn_second_parameter_of_va_start_not_last_named_argument);
+ return false;
+}
+
+/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
+/// friends. This is declared to take (...), so we have to check everything.
+bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
+ if (TheCall->getNumArgs() < 2)
+ return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
+ << 0 << 2 << TheCall->getNumArgs()/*function call*/;
+ if (TheCall->getNumArgs() > 2)
+ return Diag(TheCall->getArg(2)->getLocStart(),
+ diag::err_typecheck_call_too_many_args)
+ << 0 /*function call*/ << 2 << TheCall->getNumArgs()
+ << SourceRange(TheCall->getArg(2)->getLocStart(),
+ (*(TheCall->arg_end()-1))->getLocEnd());
+
+ Expr *OrigArg0 = TheCall->getArg(0);
+ Expr *OrigArg1 = TheCall->getArg(1);
+
+ // Do standard promotions between the two arguments, returning their common
+ // type.
+ QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
+
+ // Make sure any conversions are pushed back into the call; this is
+ // type safe since unordered compare builtins are declared as "_Bool
+ // foo(...)".
+ TheCall->setArg(0, OrigArg0);
+ TheCall->setArg(1, OrigArg1);
+
+ if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
+ return false;
+
+ // If the common type isn't a real floating type, then the arguments were
+ // invalid for this operation.
+ if (!Res->isRealFloatingType())
+ return Diag(OrigArg0->getLocStart(),
+ diag::err_typecheck_call_invalid_ordered_compare)
+ << OrigArg0->getType() << OrigArg1->getType()
+ << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
+
+ return false;
+}
+
+/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
+/// __builtin_isnan and friends. This is declared to take (...), so we have
+/// to check everything. We expect the last argument to be a floating point
+/// value.
+bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
+ if (TheCall->getNumArgs() < NumArgs)
+ return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
+ << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
+ if (TheCall->getNumArgs() > NumArgs)
+ return Diag(TheCall->getArg(NumArgs)->getLocStart(),
+ diag::err_typecheck_call_too_many_args)
+ << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
+ << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
+ (*(TheCall->arg_end()-1))->getLocEnd());
+
+ Expr *OrigArg = TheCall->getArg(NumArgs-1);
+
+ if (OrigArg->isTypeDependent())
+ return false;
+
+ // This operation requires a non-_Complex floating-point number.
+ if (!OrigArg->getType()->isRealFloatingType())
+ return Diag(OrigArg->getLocStart(),
+ diag::err_typecheck_call_invalid_unary_fp)
+ << OrigArg->getType() << OrigArg->getSourceRange();
+
+ // If this is an implicit conversion from float -> double, remove it.
+ if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
+ Expr *CastArg = Cast->getSubExpr();
+ if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
+ assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
+ "promotion from float to double is the only expected cast here");
+ Cast->setSubExpr(0);
+ Cast->Destroy(Context);
+ TheCall->setArg(NumArgs-1, CastArg);
+ OrigArg = CastArg;
+ }
+ }
+
+ return false;
+}
+
+/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
+// This is declared to take (...), so we have to check everything.
+Action::OwningExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
+ if (TheCall->getNumArgs() < 3)
+ return ExprError(Diag(TheCall->getLocEnd(),
+ diag::err_typecheck_call_too_few_args_at_least)
+ << 0 /*function call*/ << 3 << TheCall->getNumArgs()
+ << TheCall->getSourceRange());
+
+ unsigned numElements = std::numeric_limits<unsigned>::max();
+ if (!TheCall->getArg(0)->isTypeDependent() &&
+ !TheCall->getArg(1)->isTypeDependent()) {
+ QualType FAType = TheCall->getArg(0)->getType();
+ QualType SAType = TheCall->getArg(1)->getType();
+
+ if (!FAType->isVectorType() || !SAType->isVectorType()) {
+ Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
+ << SourceRange(TheCall->getArg(0)->getLocStart(),
+ TheCall->getArg(1)->getLocEnd());
+ return ExprError();
+ }
+
+ if (!Context.hasSameUnqualifiedType(FAType, SAType)) {
+ Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
+ << SourceRange(TheCall->getArg(0)->getLocStart(),
+ TheCall->getArg(1)->getLocEnd());
+ return ExprError();
+ }
+
+ numElements = FAType->getAs<VectorType>()->getNumElements();
+ if (TheCall->getNumArgs() != numElements+2) {
+ if (TheCall->getNumArgs() < numElements+2)
+ return ExprError(Diag(TheCall->getLocEnd(),
+ diag::err_typecheck_call_too_few_args)
+ << 0 /*function call*/
+ << numElements+2 << TheCall->getNumArgs()
+ << TheCall->getSourceRange());
+ return ExprError(Diag(TheCall->getLocEnd(),
+ diag::err_typecheck_call_too_many_args)
+ << 0 /*function call*/
+ << numElements+2 << TheCall->getNumArgs()
+ << TheCall->getSourceRange());
+ }
+ }
+
+ for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
+ if (TheCall->getArg(i)->isTypeDependent() ||
+ TheCall->getArg(i)->isValueDependent())
+ continue;
+
+ llvm::APSInt Result;
+ if (SemaBuiltinConstantArg(TheCall, i, Result))
+ return ExprError();
+
+ if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
+ return ExprError(Diag(TheCall->getLocStart(),
+ diag::err_shufflevector_argument_too_large)
+ << TheCall->getArg(i)->getSourceRange());
+ }
+
+ llvm::SmallVector<Expr*, 32> exprs;
+
+ for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
+ exprs.push_back(TheCall->getArg(i));
+ TheCall->setArg(i, 0);
+ }
+
+ return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
+ exprs.size(), exprs[0]->getType(),
+ TheCall->getCallee()->getLocStart(),
+ TheCall->getRParenLoc()));
+}
+
+/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
+// This is declared to take (const void*, ...) and can take two
+// optional constant int args.
+bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
+ unsigned NumArgs = TheCall->getNumArgs();
+
+ if (NumArgs > 3)
+ return Diag(TheCall->getLocEnd(),
+ diag::err_typecheck_call_too_many_args_at_most)
+ << 0 /*function call*/ << 3 << NumArgs
+ << TheCall->getSourceRange();
+
+ // Argument 0 is checked for us and the remaining arguments must be
+ // constant integers.
+ for (unsigned i = 1; i != NumArgs; ++i) {
+ Expr *Arg = TheCall->getArg(i);
+
+ llvm::APSInt Result;
+ if (SemaBuiltinConstantArg(TheCall, i, Result))
+ return true;
+
+ // FIXME: gcc issues a warning and rewrites these to 0. These
+ // seems especially odd for the third argument since the default
+ // is 3.
+ if (i == 1) {
+ if (Result.getLimitedValue() > 1)
+ return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
+ << "0" << "1" << Arg->getSourceRange();
+ } else {
+ if (Result.getLimitedValue() > 3)
+ return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
+ << "0" << "3" << Arg->getSourceRange();
+ }
+ }
+
+ return false;
+}
+
+/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
+/// TheCall is a constant expression.
+bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
+ llvm::APSInt &Result) {
+ Expr *Arg = TheCall->getArg(ArgNum);
+ DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
+ FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
+
+ if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
+
+ if (!Arg->isIntegerConstantExpr(Result, Context))
+ return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
+ << FDecl->getDeclName() << Arg->getSourceRange();
+
+ return false;
+}
+
+/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
+/// int type). This simply type checks that type is one of the defined
+/// constants (0-3).
+// For compatability check 0-3, llvm only handles 0 and 2.
+bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
+ llvm::APSInt Result;
+
+ // Check constant-ness first.
+ if (SemaBuiltinConstantArg(TheCall, 1, Result))
+ return true;
+
+ Expr *Arg = TheCall->getArg(1);
+ if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
+ return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
+ << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
+ }
+
+ return false;
+}
+
+/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
+/// This checks that val is a constant 1.
+bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
+ Expr *Arg = TheCall->getArg(1);
+ llvm::APSInt Result;
+
+ // TODO: This is less than ideal. Overload this to take a value.
+ if (SemaBuiltinConstantArg(TheCall, 1, Result))
+ return true;
+
+ if (Result != 1)
+ return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
+ << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
+
+ return false;
+}
+
+// Handle i > 1 ? "x" : "y", recursivelly
+bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
+ bool HasVAListArg,
+ unsigned format_idx, unsigned firstDataArg) {
+ if (E->isTypeDependent() || E->isValueDependent())
+ return false;
+
+ switch (E->getStmtClass()) {
+ case Stmt::ConditionalOperatorClass: {
+ const ConditionalOperator *C = cast<ConditionalOperator>(E);
+ return SemaCheckStringLiteral(C->getTrueExpr(), TheCall,
+ HasVAListArg, format_idx, firstDataArg)
+ && SemaCheckStringLiteral(C->getRHS(), TheCall,
+ HasVAListArg, format_idx, firstDataArg);
+ }
+
+ case Stmt::ImplicitCastExprClass: {
+ const ImplicitCastExpr *Expr = cast<ImplicitCastExpr>(E);
+ return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
+ format_idx, firstDataArg);
+ }
+
+ case Stmt::ParenExprClass: {
+ const ParenExpr *Expr = cast<ParenExpr>(E);
+ return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
+ format_idx, firstDataArg);
+ }
+
+ case Stmt::DeclRefExprClass: {
+ const DeclRefExpr *DR = cast<DeclRefExpr>(E);
+
+ // As an exception, do not flag errors for variables binding to
+ // const string literals.
+ if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
+ bool isConstant = false;
+ QualType T = DR->getType();
+
+ if (const ArrayType *AT = Context.getAsArrayType(T)) {
+ isConstant = AT->getElementType().isConstant(Context);
+ } else if (const PointerType *PT = T->getAs<PointerType>()) {
+ isConstant = T.isConstant(Context) &&
+ PT->getPointeeType().isConstant(Context);
+ }
+
+ if (isConstant) {
+ if (const Expr *Init = VD->getAnyInitializer())
+ return SemaCheckStringLiteral(Init, TheCall,
+ HasVAListArg, format_idx, firstDataArg);
+ }
+
+ // For vprintf* functions (i.e., HasVAListArg==true), we add a
+ // special check to see if the format string is a function parameter
+ // of the function calling the printf function. If the function
+ // has an attribute indicating it is a printf-like function, then we
+ // should suppress warnings concerning non-literals being used in a call
+ // to a vprintf function. For example:
+ //
+ // void
+ // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
+ // va_list ap;
+ // va_start(ap, fmt);
+ // vprintf(fmt, ap); // Do NOT emit a warning about "fmt".
+ // ...
+ //
+ //
+ // FIXME: We don't have full attribute support yet, so just check to see
+ // if the argument is a DeclRefExpr that references a parameter. We'll
+ // add proper support for checking the attribute later.
+ if (HasVAListArg)
+ if (isa<ParmVarDecl>(VD))
+ return true;
+ }
+
+ return false;
+ }
+
+ case Stmt::CallExprClass: {
+ const CallExpr *CE = cast<CallExpr>(E);
+ if (const ImplicitCastExpr *ICE
+ = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
+ if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
+ if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
+ unsigned ArgIndex = FA->getFormatIdx();
+ const Expr *Arg = CE->getArg(ArgIndex - 1);
+
+ return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
+ format_idx, firstDataArg);
+ }
+ }
+ }
+ }
+
+ return false;
+ }
+ case Stmt::ObjCStringLiteralClass:
+ case Stmt::StringLiteralClass: {
+ const StringLiteral *StrE = NULL;
+
+ if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
+ StrE = ObjCFExpr->getString();
+ else
+ StrE = cast<StringLiteral>(E);
+
+ if (StrE) {
+ CheckPrintfString(StrE, E, TheCall, HasVAListArg, format_idx,
+ firstDataArg);
+ return true;
+ }
+
+ return false;
+ }
+
+ default:
+ return false;
+ }
+}
+
+void
+Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
+ const CallExpr *TheCall) {
+ for (NonNullAttr::iterator i = NonNull->begin(), e = NonNull->end();
+ i != e; ++i) {
+ const Expr *ArgExpr = TheCall->getArg(*i);
+ if (ArgExpr->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNotNull))
+ Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
+ << ArgExpr->getSourceRange();
+ }
+}
+
+/// CheckPrintfArguments - Check calls to printf (and similar functions) for
+/// correct use of format strings.
+///
+/// HasVAListArg - A predicate indicating whether the printf-like
+/// function is passed an explicit va_arg argument (e.g., vprintf)
+///
+/// format_idx - The index into Args for the format string.
+///
+/// Improper format strings to functions in the printf family can be
+/// the source of bizarre bugs and very serious security holes. A
+/// good source of information is available in the following paper
+/// (which includes additional references):
+///
+/// FormatGuard: Automatic Protection From printf Format String
+/// Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
+///
+/// TODO:
+/// Functionality implemented:
+///
+/// We can statically check the following properties for string
+/// literal format strings for non v.*printf functions (where the
+/// arguments are passed directly):
+//
+/// (1) Are the number of format conversions equal to the number of
+/// data arguments?
+///
+/// (2) Does each format conversion correctly match the type of the
+/// corresponding data argument?
+///
+/// Moreover, for all printf functions we can:
+///
+/// (3) Check for a missing format string (when not caught by type checking).
+///
+/// (4) Check for no-operation flags; e.g. using "#" with format
+/// conversion 'c' (TODO)
+///
+/// (5) Check the use of '%n', a major source of security holes.
+///
+/// (6) Check for malformed format conversions that don't specify anything.
+///
+/// (7) Check for empty format strings. e.g: printf("");
+///
+/// (8) Check that the format string is a wide literal.
+///
+/// All of these checks can be done by parsing the format string.
+///
+void
+Sema::CheckPrintfArguments(const CallExpr *TheCall, bool HasVAListArg,
+ unsigned format_idx, unsigned firstDataArg) {
+ const Expr *Fn = TheCall->getCallee();
+
+ // The way the format attribute works in GCC, the implicit this argument
+ // of member functions is counted. However, it doesn't appear in our own
+ // lists, so decrement format_idx in that case.
+ if (isa<CXXMemberCallExpr>(TheCall)) {
+ // Catch a format attribute mistakenly referring to the object argument.
+ if (format_idx == 0)
+ return;
+ --format_idx;
+ if(firstDataArg != 0)
+ --firstDataArg;
+ }
+
+ // CHECK: printf-like function is called with no format string.
+ if (format_idx >= TheCall->getNumArgs()) {
+ Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string)
+ << Fn->getSourceRange();
+ return;
+ }
+
+ const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
+
+ // CHECK: format string is not a string literal.
+ //
+ // Dynamically generated format strings are difficult to
+ // automatically vet at compile time. Requiring that format strings
+ // are string literals: (1) permits the checking of format strings by
+ // the compiler and thereby (2) can practically remove the source of
+ // many format string exploits.
+
+ // Format string can be either ObjC string (e.g. @"%d") or
+ // C string (e.g. "%d")
+ // ObjC string uses the same format specifiers as C string, so we can use
+ // the same format string checking logic for both ObjC and C strings.
+ if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
+ firstDataArg))
+ return; // Literal format string found, check done!
+
+ // If there are no arguments specified, warn with -Wformat-security, otherwise
+ // warn only with -Wformat-nonliteral.
+ if (TheCall->getNumArgs() == format_idx+1)
+ Diag(TheCall->getArg(format_idx)->getLocStart(),
+ diag::warn_printf_nonliteral_noargs)
+ << OrigFormatExpr->getSourceRange();
+ else
+ Diag(TheCall->getArg(format_idx)->getLocStart(),
+ diag::warn_printf_nonliteral)
+ << OrigFormatExpr->getSourceRange();
+}
+
+namespace {
+class CheckPrintfHandler : public analyze_printf::FormatStringHandler {
+ Sema &S;
+ const StringLiteral *FExpr;
+ const Expr *OrigFormatExpr;
+ const unsigned FirstDataArg;
+ const unsigned NumDataArgs;
+ const bool IsObjCLiteral;
+ const char *Beg; // Start of format string.
+ const bool HasVAListArg;
+ const CallExpr *TheCall;
+ unsigned FormatIdx;
+ llvm::BitVector CoveredArgs;
+ bool usesPositionalArgs;
+ bool atFirstArg;
+public:
+ CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
+ const Expr *origFormatExpr, unsigned firstDataArg,
+ unsigned numDataArgs, bool isObjCLiteral,
+ const char *beg, bool hasVAListArg,
+ const CallExpr *theCall, unsigned formatIdx)
+ : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
+ FirstDataArg(firstDataArg),
+ NumDataArgs(numDataArgs),
+ IsObjCLiteral(isObjCLiteral), Beg(beg),
+ HasVAListArg(hasVAListArg),
+ TheCall(theCall), FormatIdx(formatIdx),
+ usesPositionalArgs(false), atFirstArg(true) {
+ CoveredArgs.resize(numDataArgs);
+ CoveredArgs.reset();
+ }
+
+ void DoneProcessing();
+
+ void HandleIncompleteFormatSpecifier(const char *startSpecifier,
+ unsigned specifierLen);
+
+ bool
+ HandleInvalidConversionSpecifier(const analyze_printf::FormatSpecifier &FS,
+ const char *startSpecifier,
+ unsigned specifierLen);
+
+ virtual void HandleInvalidPosition(const char *startSpecifier,
+ unsigned specifierLen,
+ analyze_printf::PositionContext p);
+
+ virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
+
+ void HandleNullChar(const char *nullCharacter);
+
+ bool HandleFormatSpecifier(const analyze_printf::FormatSpecifier &FS,
+ const char *startSpecifier,
+ unsigned specifierLen);
+private:
+ SourceRange getFormatStringRange();
+ SourceRange getFormatSpecifierRange(const char *startSpecifier,
+ unsigned specifierLen);
+ SourceLocation getLocationOfByte(const char *x);
+
+ bool HandleAmount(const analyze_printf::OptionalAmount &Amt, unsigned k,
+ const char *startSpecifier, unsigned specifierLen);
+ void HandleFlags(const analyze_printf::FormatSpecifier &FS,
+ llvm::StringRef flag, llvm::StringRef cspec,
+ const char *startSpecifier, unsigned specifierLen);
+
+ const Expr *getDataArg(unsigned i) const;
+};
+}
+
+SourceRange CheckPrintfHandler::getFormatStringRange() {
+ return OrigFormatExpr->getSourceRange();
+}
+
+SourceRange CheckPrintfHandler::
+getFormatSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
+ return SourceRange(getLocationOfByte(startSpecifier),
+ getLocationOfByte(startSpecifier+specifierLen-1));
+}
+
+SourceLocation CheckPrintfHandler::getLocationOfByte(const char *x) {
+ return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
+}
+
+void CheckPrintfHandler::
+HandleIncompleteFormatSpecifier(const char *startSpecifier,
+ unsigned specifierLen) {
+ SourceLocation Loc = getLocationOfByte(startSpecifier);
+ S.Diag(Loc, diag::warn_printf_incomplete_specifier)
+ << getFormatSpecifierRange(startSpecifier, specifierLen);
+}
+
+void
+CheckPrintfHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
+ analyze_printf::PositionContext p) {
+ SourceLocation Loc = getLocationOfByte(startPos);
+ S.Diag(Loc, diag::warn_printf_invalid_positional_specifier)
+ << (unsigned) p << getFormatSpecifierRange(startPos, posLen);
+}
+
+void CheckPrintfHandler::HandleZeroPosition(const char *startPos,
+ unsigned posLen) {
+ SourceLocation Loc = getLocationOfByte(startPos);
+ S.Diag(Loc, diag::warn_printf_zero_positional_specifier)
+ << getFormatSpecifierRange(startPos, posLen);
+}
+
+bool CheckPrintfHandler::
+HandleInvalidConversionSpecifier(const analyze_printf::FormatSpecifier &FS,
+ const char *startSpecifier,
+ unsigned specifierLen) {
+
+ unsigned argIndex = FS.getArgIndex();
+ bool keepGoing = true;
+ if (argIndex < NumDataArgs) {
+ // Consider the argument coverered, even though the specifier doesn't
+ // make sense.
+ CoveredArgs.set(argIndex);
+ }
+ else {
+ // If argIndex exceeds the number of data arguments we
+ // don't issue a warning because that is just a cascade of warnings (and
+ // they may have intended '%%' anyway). We don't want to continue processing
+ // the format string after this point, however, as we will like just get
+ // gibberish when trying to match arguments.
+ keepGoing = false;
+ }
+
+ const analyze_printf::ConversionSpecifier &CS =
+ FS.getConversionSpecifier();
+ SourceLocation Loc = getLocationOfByte(CS.getStart());
+ S.Diag(Loc, diag::warn_printf_invalid_conversion)
+ << llvm::StringRef(CS.getStart(), CS.getLength())
+ << getFormatSpecifierRange(startSpecifier, specifierLen);
+
+ return keepGoing;
+}
+
+void CheckPrintfHandler::HandleNullChar(const char *nullCharacter) {
+ // The presence of a null character is likely an error.
+ S.Diag(getLocationOfByte(nullCharacter),
+ diag::warn_printf_format_string_contains_null_char)
+ << getFormatStringRange();
+}
+
+const Expr *CheckPrintfHandler::getDataArg(unsigned i) const {
+ return TheCall->getArg(FirstDataArg + i);
+}
+
+void CheckPrintfHandler::HandleFlags(const analyze_printf::FormatSpecifier &FS,
+ llvm::StringRef flag,
+ llvm::StringRef cspec,
+ const char *startSpecifier,
+ unsigned specifierLen) {
+ const analyze_printf::ConversionSpecifier &CS = FS.getConversionSpecifier();
+ S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_nonsensical_flag)
+ << flag << cspec << getFormatSpecifierRange(startSpecifier, specifierLen);
+}
+
+bool
+CheckPrintfHandler::HandleAmount(const analyze_printf::OptionalAmount &Amt,
+ unsigned k, const char *startSpecifier,
+ unsigned specifierLen) {
+
+ if (Amt.hasDataArgument()) {
+ if (!HasVAListArg) {
+ unsigned argIndex = Amt.getArgIndex();
+ if (argIndex >= NumDataArgs) {
+ S.Diag(getLocationOfByte(Amt.getStart()),
+ diag::warn_printf_asterisk_missing_arg)
+ << k << getFormatSpecifierRange(startSpecifier, specifierLen);
+ // Don't do any more checking. We will just emit
+ // spurious errors.
+ return false;
+ }
+
+ // Type check the data argument. It should be an 'int'.
+ // Although not in conformance with C99, we also allow the argument to be
+ // an 'unsigned int' as that is a reasonably safe case. GCC also
+ // doesn't emit a warning for that case.
+ CoveredArgs.set(argIndex);
+ const Expr *Arg = getDataArg(argIndex);
+ QualType T = Arg->getType();
+
+ const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
+ assert(ATR.isValid());
+
+ if (!ATR.matchesType(S.Context, T)) {
+ S.Diag(getLocationOfByte(Amt.getStart()),
+ diag::warn_printf_asterisk_wrong_type)
+ << k
+ << ATR.getRepresentativeType(S.Context) << T
+ << getFormatSpecifierRange(startSpecifier, specifierLen)
+ << Arg->getSourceRange();
+ // Don't do any more checking. We will just emit
+ // spurious errors.
+ return false;
+ }
+ }
+ }
+ return true;
+}
+
+bool
+CheckPrintfHandler::HandleFormatSpecifier(const analyze_printf::FormatSpecifier
+ &FS,
+ const char *startSpecifier,
+ unsigned specifierLen) {
+
+ using namespace analyze_printf;
+ const ConversionSpecifier &CS = FS.getConversionSpecifier();
+
+ if (atFirstArg) {
+ atFirstArg = false;
+ usesPositionalArgs = FS.usesPositionalArg();
+ }
+ else if (usesPositionalArgs != FS.usesPositionalArg()) {
+ // Cannot mix-and-match positional and non-positional arguments.
+ S.Diag(getLocationOfByte(CS.getStart()),
+ diag::warn_printf_mix_positional_nonpositional_args)
+ << getFormatSpecifierRange(startSpecifier, specifierLen);
+ return false;
+ }
+
+ // First check if the field width, precision, and conversion specifier
+ // have matching data arguments.
+ if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
+ startSpecifier, specifierLen)) {
+ return false;
+ }
+
+ if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
+ startSpecifier, specifierLen)) {
+ return false;
+ }
+
+ if (!CS.consumesDataArgument()) {
+ // FIXME: Technically specifying a precision or field width here
+ // makes no sense. Worth issuing a warning at some point.
+ return true;
+ }
+
+ // Consume the argument.
+ unsigned argIndex = FS.getArgIndex();
+ if (argIndex < NumDataArgs) {
+ // The check to see if the argIndex is valid will come later.
+ // We set the bit here because we may exit early from this
+ // function if we encounter some other error.
+ CoveredArgs.set(argIndex);
+ }
+
+ // Check for using an Objective-C specific conversion specifier
+ // in a non-ObjC literal.
+ if (!IsObjCLiteral && CS.isObjCArg()) {
+ return HandleInvalidConversionSpecifier(FS, startSpecifier, specifierLen);
+ }
+
+ // Are we using '%n'? Issue a warning about this being
+ // a possible security issue.
+ if (CS.getKind() == ConversionSpecifier::OutIntPtrArg) {
+ S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back)
+ << getFormatSpecifierRange(startSpecifier, specifierLen);
+ // Continue checking the other format specifiers.
+ return true;
+ }
+
+ if (CS.getKind() == ConversionSpecifier::VoidPtrArg) {
+ if (FS.getPrecision().getHowSpecified() != OptionalAmount::NotSpecified)
+ S.Diag(getLocationOfByte(CS.getStart()),
+ diag::warn_printf_nonsensical_precision)
+ << CS.getCharacters()
+ << getFormatSpecifierRange(startSpecifier, specifierLen);
+ }
+ if (CS.getKind() == ConversionSpecifier::VoidPtrArg ||
+ CS.getKind() == ConversionSpecifier::CStrArg) {
+ // FIXME: Instead of using "0", "+", etc., eventually get them from
+ // the FormatSpecifier.
+ if (FS.hasLeadingZeros())
+ HandleFlags(FS, "0", CS.getCharacters(), startSpecifier, specifierLen);
+ if (FS.hasPlusPrefix())
+ HandleFlags(FS, "+", CS.getCharacters(), startSpecifier, specifierLen);
+ if (FS.hasSpacePrefix())
+ HandleFlags(FS, " ", CS.getCharacters(), startSpecifier, specifierLen);
+ }
+
+ // The remaining checks depend on the data arguments.
+ if (HasVAListArg)
+ return true;
+
+ if (argIndex >= NumDataArgs) {
+ if (FS.usesPositionalArg()) {
+ S.Diag(getLocationOfByte(CS.getStart()),
+ diag::warn_printf_positional_arg_exceeds_data_args)
+ << (argIndex+1) << NumDataArgs
+ << getFormatSpecifierRange(startSpecifier, specifierLen);
+ }
+ else {
+ S.Diag(getLocationOfByte(CS.getStart()),
+ diag::warn_printf_insufficient_data_args)
+ << getFormatSpecifierRange(startSpecifier, specifierLen);
+ }
+
+ // Don't do any more checking.
+ return false;
+ }
+
+ // Now type check the data expression that matches the
+ // format specifier.
+ const Expr *Ex = getDataArg(argIndex);
+ const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
+ if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
+ // Check if we didn't match because of an implicit cast from a 'char'
+ // or 'short' to an 'int'. This is done because printf is a varargs
+ // function.
+ if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
+ if (ICE->getType() == S.Context.IntTy)
+ if (ATR.matchesType(S.Context, ICE->getSubExpr()->getType()))
+ return true;
+
+ S.Diag(getLocationOfByte(CS.getStart()),
+ diag::warn_printf_conversion_argument_type_mismatch)
+ << ATR.getRepresentativeType(S.Context) << Ex->getType()
+ << getFormatSpecifierRange(startSpecifier, specifierLen)
+ << Ex->getSourceRange();
+ }
+
+ return true;
+}
+
+void CheckPrintfHandler::DoneProcessing() {
+ // Does the number of data arguments exceed the number of
+ // format conversions in the format string?
+ if (!HasVAListArg) {
+ // Find any arguments that weren't covered.
+ CoveredArgs.flip();
+ signed notCoveredArg = CoveredArgs.find_first();
+ if (notCoveredArg >= 0) {
+ assert((unsigned)notCoveredArg < NumDataArgs);
+ S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(),
+ diag::warn_printf_data_arg_not_used)
+ << getFormatStringRange();
+ }
+ }
+}
+
+void Sema::CheckPrintfString(const StringLiteral *FExpr,
+ const Expr *OrigFormatExpr,
+ const CallExpr *TheCall, bool HasVAListArg,
+ unsigned format_idx, unsigned firstDataArg) {
+
+ // CHECK: is the format string a wide literal?
+ if (FExpr->isWide()) {
+ Diag(FExpr->getLocStart(),
+ diag::warn_printf_format_string_is_wide_literal)
+ << OrigFormatExpr->getSourceRange();
+ return;
+ }
+
+ // Str - The format string. NOTE: this is NOT null-terminated!
+ const char *Str = FExpr->getStrData();
+
+ // CHECK: empty format string?
+ unsigned StrLen = FExpr->getByteLength();
+
+ if (StrLen == 0) {
+ Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string)
+ << OrigFormatExpr->getSourceRange();
+ return;
+ }
+
+ CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
+ TheCall->getNumArgs() - firstDataArg,
+ isa<ObjCStringLiteral>(OrigFormatExpr), Str,
+ HasVAListArg, TheCall, format_idx);
+
+ if (!analyze_printf::ParseFormatString(H, Str, Str + StrLen))
+ H.DoneProcessing();
+}
+
+//===--- CHECK: Return Address of Stack Variable --------------------------===//
+
+static DeclRefExpr* EvalVal(Expr *E);
+static DeclRefExpr* EvalAddr(Expr* E);
+
+/// CheckReturnStackAddr - Check if a return statement returns the address
+/// of a stack variable.
+void
+Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
+ SourceLocation ReturnLoc) {
+
+ // Perform checking for returned stack addresses.
+ if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
+ if (DeclRefExpr *DR = EvalAddr(RetValExp))
+ Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
+ << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
+
+ // Skip over implicit cast expressions when checking for block expressions.
+ RetValExp = RetValExp->IgnoreParenCasts();
+
+ if (BlockExpr *C = dyn_cast<BlockExpr>(RetValExp))
+ if (C->hasBlockDeclRefExprs())
+ Diag(C->getLocStart(), diag::err_ret_local_block)
+ << C->getSourceRange();
+
+ if (AddrLabelExpr *ALE = dyn_cast<AddrLabelExpr>(RetValExp))
+ Diag(ALE->getLocStart(), diag::warn_ret_addr_label)
+ << ALE->getSourceRange();
+
+ } else if (lhsType->isReferenceType()) {
+ // Perform checking for stack values returned by reference.
+ // Check for a reference to the stack
+ if (DeclRefExpr *DR = EvalVal(RetValExp))
+ Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
+ << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
+ }
+}
+
+/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
+/// check if the expression in a return statement evaluates to an address
+/// to a location on the stack. The recursion is used to traverse the
+/// AST of the return expression, with recursion backtracking when we
+/// encounter a subexpression that (1) clearly does not lead to the address
+/// of a stack variable or (2) is something we cannot determine leads to
+/// the address of a stack variable based on such local checking.
+///
+/// EvalAddr processes expressions that are pointers that are used as
+/// references (and not L-values). EvalVal handles all other values.
+/// At the base case of the recursion is a check for a DeclRefExpr* in
+/// the refers to a stack variable.
+///
+/// This implementation handles:
+///
+/// * pointer-to-pointer casts
+/// * implicit conversions from array references to pointers
+/// * taking the address of fields
+/// * arbitrary interplay between "&" and "*" operators
+/// * pointer arithmetic from an address of a stack variable
+/// * taking the address of an array element where the array is on the stack
+static DeclRefExpr* EvalAddr(Expr *E) {
+ // We should only be called for evaluating pointer expressions.
+ assert((E->getType()->isAnyPointerType() ||
+ E->getType()->isBlockPointerType() ||
+ E->getType()->isObjCQualifiedIdType()) &&
+ "EvalAddr only works on pointers");
+
+ // Our "symbolic interpreter" is just a dispatch off the currently
+ // viewed AST node. We then recursively traverse the AST by calling
+ // EvalAddr and EvalVal appropriately.
+ switch (E->getStmtClass()) {
+ case Stmt::ParenExprClass:
+ // Ignore parentheses.
+ return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
+
+ case Stmt::UnaryOperatorClass: {
+ // The only unary operator that make sense to handle here
+ // is AddrOf. All others don't make sense as pointers.
+ UnaryOperator *U = cast<UnaryOperator>(E);
+
+ if (U->getOpcode() == UnaryOperator::AddrOf)
+ return EvalVal(U->getSubExpr());
+ else
+ return NULL;
+ }
+
+ case Stmt::BinaryOperatorClass: {
+ // Handle pointer arithmetic. All other binary operators are not valid
+ // in this context.
+ BinaryOperator *B = cast<BinaryOperator>(E);
+ BinaryOperator::Opcode op = B->getOpcode();
+
+ if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
+ return NULL;
+
+ Expr *Base = B->getLHS();
+
+ // Determine which argument is the real pointer base. It could be
+ // the RHS argument instead of the LHS.
+ if (!Base->getType()->isPointerType()) Base = B->getRHS();
+
+ assert (Base->getType()->isPointerType());
+ return EvalAddr(Base);
+ }
+
+ // For conditional operators we need to see if either the LHS or RHS are
+ // valid DeclRefExpr*s. If one of them is valid, we return it.
+ case Stmt::ConditionalOperatorClass: {
+ ConditionalOperator *C = cast<ConditionalOperator>(E);
+
+ // Handle the GNU extension for missing LHS.
+ if (Expr *lhsExpr = C->getLHS())
+ if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
+ return LHS;
+
+ return EvalAddr(C->getRHS());
+ }
+
+ // For casts, we need to handle conversions from arrays to
+ // pointer values, and pointer-to-pointer conversions.
+ case Stmt::ImplicitCastExprClass:
+ case Stmt::CStyleCastExprClass:
+ case Stmt::CXXFunctionalCastExprClass: {
+ Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
+ QualType T = SubExpr->getType();
+
+ if (SubExpr->getType()->isPointerType() ||
+ SubExpr->getType()->isBlockPointerType() ||
+ SubExpr->getType()->isObjCQualifiedIdType())
+ return EvalAddr(SubExpr);
+ else if (T->isArrayType())
+ return EvalVal(SubExpr);
+ else
+ return 0;
+ }
+
+ // C++ casts. For dynamic casts, static casts, and const casts, we
+ // are always converting from a pointer-to-pointer, so we just blow
+ // through the cast. In the case the dynamic cast doesn't fail (and
+ // return NULL), we take the conservative route and report cases
+ // where we return the address of a stack variable. For Reinterpre
+ // FIXME: The comment about is wrong; we're not always converting
+ // from pointer to pointer. I'm guessing that this code should also
+ // handle references to objects.
+ case Stmt::CXXStaticCastExprClass:
+ case Stmt::CXXDynamicCastExprClass:
+ case Stmt::CXXConstCastExprClass:
+ case Stmt::CXXReinterpretCastExprClass: {
+ Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
+ if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
+ return EvalAddr(S);
+ else
+ return NULL;
+ }
+
+ // Everything else: we simply don't reason about them.
+ default:
+ return NULL;
+ }
+}
+
+
+/// EvalVal - This function is complements EvalAddr in the mutual recursion.
+/// See the comments for EvalAddr for more details.
+static DeclRefExpr* EvalVal(Expr *E) {
+
+ // We should only be called for evaluating non-pointer expressions, or
+ // expressions with a pointer type that are not used as references but instead
+ // are l-values (e.g., DeclRefExpr with a pointer type).
+
+ // Our "symbolic interpreter" is just a dispatch off the currently
+ // viewed AST node. We then recursively traverse the AST by calling
+ // EvalAddr and EvalVal appropriately.
+ switch (E->getStmtClass()) {
+ case Stmt::DeclRefExprClass: {
+ // DeclRefExpr: the base case. When we hit a DeclRefExpr we are looking
+ // at code that refers to a variable's name. We check if it has local
+ // storage within the function, and if so, return the expression.
+ DeclRefExpr *DR = cast<DeclRefExpr>(E);
+
+ if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
+ if (V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
+
+ return NULL;
+ }
+
+ case Stmt::ParenExprClass:
+ // Ignore parentheses.
+ return EvalVal(cast<ParenExpr>(E)->getSubExpr());
+
+ case Stmt::UnaryOperatorClass: {
+ // The only unary operator that make sense to handle here
+ // is Deref. All others don't resolve to a "name." This includes
+ // handling all sorts of rvalues passed to a unary operator.
+ UnaryOperator *U = cast<UnaryOperator>(E);
+
+ if (U->getOpcode() == UnaryOperator::Deref)
+ return EvalAddr(U->getSubExpr());
+
+ return NULL;
+ }
+
+ case Stmt::ArraySubscriptExprClass: {
+ // Array subscripts are potential references to data on the stack. We
+ // retrieve the DeclRefExpr* for the array variable if it indeed
+ // has local storage.
+ return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
+ }
+
+ case Stmt::ConditionalOperatorClass: {
+ // For conditional operators we need to see if either the LHS or RHS are
+ // non-NULL DeclRefExpr's. If one is non-NULL, we return it.
+ ConditionalOperator *C = cast<ConditionalOperator>(E);
+
+ // Handle the GNU extension for missing LHS.
+ if (Expr *lhsExpr = C->getLHS())
+ if (DeclRefExpr *LHS = EvalVal(lhsExpr))
+ return LHS;
+
+ return EvalVal(C->getRHS());
+ }
+
+ // Accesses to members are potential references to data on the stack.
+ case Stmt::MemberExprClass: {
+ MemberExpr *M = cast<MemberExpr>(E);
+
+ // Check for indirect access. We only want direct field accesses.
+ if (!M->isArrow())
+ return EvalVal(M->getBase());
+ else
+ return NULL;
+ }
+
+ // Everything else: we simply don't reason about them.
+ default:
+ return NULL;
+ }
+}
+
+//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
+
+/// Check for comparisons of floating point operands using != and ==.
+/// Issue a warning if these are no self-comparisons, as they are not likely
+/// to do what the programmer intended.
+void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
+ bool EmitWarning = true;
+
+ Expr* LeftExprSansParen = lex->IgnoreParens();
+ Expr* RightExprSansParen = rex->IgnoreParens();
+
+ // Special case: check for x == x (which is OK).
+ // Do not emit warnings for such cases.
+ if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
+ if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
+ if (DRL->getDecl() == DRR->getDecl())
+ EmitWarning = false;
+
+
+ // Special case: check for comparisons against literals that can be exactly
+ // represented by APFloat. In such cases, do not emit a warning. This
+ // is a heuristic: often comparison against such literals are used to
+ // detect if a value in a variable has not changed. This clearly can
+ // lead to false negatives.
+ if (EmitWarning) {
+ if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
+ if (FLL->isExact())
+ EmitWarning = false;
+ } else
+ if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
+ if (FLR->isExact())
+ EmitWarning = false;
+ }
+ }
+
+ // Check for comparisons with builtin types.
+ if (EmitWarning)
+ if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
+ if (CL->isBuiltinCall(Context))
+ EmitWarning = false;
+
+ if (EmitWarning)
+ if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
+ if (CR->isBuiltinCall(Context))
+ EmitWarning = false;
+
+ // Emit the diagnostic.
+ if (EmitWarning)
+ Diag(loc, diag::warn_floatingpoint_eq)
+ << lex->getSourceRange() << rex->getSourceRange();
+}
+
+//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
+//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
+
+namespace {
+
+/// Structure recording the 'active' range of an integer-valued
+/// expression.
+struct IntRange {
+ /// The number of bits active in the int.
+ unsigned Width;
+
+ /// True if the int is known not to have negative values.
+ bool NonNegative;
+
+ IntRange() {}
+ IntRange(unsigned Width, bool NonNegative)
+ : Width(Width), NonNegative(NonNegative)
+ {}
+
+ // Returns the range of the bool type.
+ static IntRange forBoolType() {
+ return IntRange(1, true);
+ }
+
+ // Returns the range of an integral type.
+ static IntRange forType(ASTContext &C, QualType T) {
+ return forCanonicalType(C, T->getCanonicalTypeInternal().getTypePtr());
+ }
+
+ // Returns the range of an integeral type based on its canonical
+ // representation.
+ static IntRange forCanonicalType(ASTContext &C, const Type *T) {
+ assert(T->isCanonicalUnqualified());
+
+ if (const VectorType *VT = dyn_cast<VectorType>(T))
+ T = VT->getElementType().getTypePtr();
+ if (const ComplexType *CT = dyn_cast<ComplexType>(T))
+ T = CT->getElementType().getTypePtr();
+
+ if (const EnumType *ET = dyn_cast<EnumType>(T)) {
+ EnumDecl *Enum = ET->getDecl();
+ unsigned NumPositive = Enum->getNumPositiveBits();
+ unsigned NumNegative = Enum->getNumNegativeBits();
+
+ return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
+ }
+
+ const BuiltinType *BT = cast<BuiltinType>(T);
+ assert(BT->isInteger());
+
+ return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
+ }
+
+ // Returns the supremum of two ranges: i.e. their conservative merge.
+ static IntRange join(IntRange L, IntRange R) {
+ return IntRange(std::max(L.Width, R.Width),
+ L.NonNegative && R.NonNegative);
+ }
+
+ // Returns the infinum of two ranges: i.e. their aggressive merge.
+ static IntRange meet(IntRange L, IntRange R) {
+ return IntRange(std::min(L.Width, R.Width),
+ L.NonNegative || R.NonNegative);
+ }
+};
+
+IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
+ if (value.isSigned() && value.isNegative())
+ return IntRange(value.getMinSignedBits(), false);
+
+ if (value.getBitWidth() > MaxWidth)
+ value.trunc(MaxWidth);
+
+ // isNonNegative() just checks the sign bit without considering
+ // signedness.
+ return IntRange(value.getActiveBits(), true);
+}
+
+IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
+ unsigned MaxWidth) {
+ if (result.isInt())
+ return GetValueRange(C, result.getInt(), MaxWidth);
+
+ if (result.isVector()) {
+ IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
+ for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
+ IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
+ R = IntRange::join(R, El);
+ }
+ return R;
+ }
+
+ if (result.isComplexInt()) {
+ IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
+ IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
+ return IntRange::join(R, I);
+ }
+
+ // This can happen with lossless casts to intptr_t of "based" lvalues.
+ // Assume it might use arbitrary bits.
+ // FIXME: The only reason we need to pass the type in here is to get
+ // the sign right on this one case. It would be nice if APValue
+ // preserved this.
+ assert(result.isLValue());
+ return IntRange(MaxWidth, Ty->isUnsignedIntegerType());
+}
+
+/// Pseudo-evaluate the given integer expression, estimating the
+/// range of values it might take.
+///
+/// \param MaxWidth - the width to which the value will be truncated
+IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
+ E = E->IgnoreParens();
+
+ // Try a full evaluation first.
+ Expr::EvalResult result;
+ if (E->Evaluate(result, C))
+ return GetValueRange(C, result.Val, E->getType(), MaxWidth);
+
+ // I think we only want to look through implicit casts here; if the
+ // user has an explicit widening cast, we should treat the value as
+ // being of the new, wider type.
+ if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
+ if (CE->getCastKind() == CastExpr::CK_NoOp)
+ return GetExprRange(C, CE->getSubExpr(), MaxWidth);
+
+ IntRange OutputTypeRange = IntRange::forType(C, CE->getType());
+
+ bool isIntegerCast = (CE->getCastKind() == CastExpr::CK_IntegralCast);
+ if (!isIntegerCast && CE->getCastKind() == CastExpr::CK_Unknown)
+ isIntegerCast = CE->getSubExpr()->getType()->isIntegerType();
+
+ // Assume that non-integer casts can span the full range of the type.
+ if (!isIntegerCast)
+ return OutputTypeRange;
+
+ IntRange SubRange
+ = GetExprRange(C, CE->getSubExpr(),
+ std::min(MaxWidth, OutputTypeRange.Width));
+
+ // Bail out if the subexpr's range is as wide as the cast type.
+ if (SubRange.Width >= OutputTypeRange.Width)
+ return OutputTypeRange;
+
+ // Otherwise, we take the smaller width, and we're non-negative if
+ // either the output type or the subexpr is.
+ return IntRange(SubRange.Width,
+ SubRange.NonNegative || OutputTypeRange.NonNegative);
+ }
+
+ if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
+ // If we can fold the condition, just take that operand.
+ bool CondResult;
+ if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
+ return GetExprRange(C, CondResult ? CO->getTrueExpr()
+ : CO->getFalseExpr(),
+ MaxWidth);
+
+ // Otherwise, conservatively merge.
+ IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
+ IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
+ return IntRange::join(L, R);
+ }
+
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
+ switch (BO->getOpcode()) {
+
+ // Boolean-valued operations are single-bit and positive.
+ case BinaryOperator::LAnd:
+ case BinaryOperator::LOr:
+ case BinaryOperator::LT:
+ case BinaryOperator::GT:
+ case BinaryOperator::LE:
+ case BinaryOperator::GE:
+ case BinaryOperator::EQ:
+ case BinaryOperator::NE:
+ return IntRange::forBoolType();
+
+ // The type of these compound assignments is the type of the LHS,
+ // so the RHS is not necessarily an integer.
+ case BinaryOperator::MulAssign:
+ case BinaryOperator::DivAssign:
+ case BinaryOperator::RemAssign:
+ case BinaryOperator::AddAssign:
+ case BinaryOperator::SubAssign:
+ return IntRange::forType(C, E->getType());
+
+ // Operations with opaque sources are black-listed.
+ case BinaryOperator::PtrMemD:
+ case BinaryOperator::PtrMemI:
+ return IntRange::forType(C, E->getType());
+
+ // Bitwise-and uses the *infinum* of the two source ranges.
+ case BinaryOperator::And:
+ case BinaryOperator::AndAssign:
+ return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
+ GetExprRange(C, BO->getRHS(), MaxWidth));
+
+ // Left shift gets black-listed based on a judgement call.
+ case BinaryOperator::Shl:
+ // ...except that we want to treat '1 << (blah)' as logically
+ // positive. It's an important idiom.
+ if (IntegerLiteral *I
+ = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
+ if (I->getValue() == 1) {
+ IntRange R = IntRange::forType(C, E->getType());
+ return IntRange(R.Width, /*NonNegative*/ true);
+ }
+ }
+ // fallthrough
+
+ case BinaryOperator::ShlAssign:
+ return IntRange::forType(C, E->getType());
+
+ // Right shift by a constant can narrow its left argument.
+ case BinaryOperator::Shr:
+ case BinaryOperator::ShrAssign: {
+ IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
+
+ // If the shift amount is a positive constant, drop the width by
+ // that much.
+ llvm::APSInt shift;
+ if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
+ shift.isNonNegative()) {
+ unsigned zext = shift.getZExtValue();
+ if (zext >= L.Width)
+ L.Width = (L.NonNegative ? 0 : 1);
+ else
+ L.Width -= zext;
+ }
+
+ return L;
+ }
+
+ // Comma acts as its right operand.
+ case BinaryOperator::Comma:
+ return GetExprRange(C, BO->getRHS(), MaxWidth);
+
+ // Black-list pointer subtractions.
+ case BinaryOperator::Sub:
+ if (BO->getLHS()->getType()->isPointerType())
+ return IntRange::forType(C, E->getType());
+ // fallthrough
+
+ default:
+ break;
+ }
+
+ // Treat every other operator as if it were closed on the
+ // narrowest type that encompasses both operands.
+ IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
+ IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
+ return IntRange::join(L, R);
+ }
+
+ if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
+ switch (UO->getOpcode()) {
+ // Boolean-valued operations are white-listed.
+ case UnaryOperator::LNot:
+ return IntRange::forBoolType();
+
+ // Operations with opaque sources are black-listed.
+ case UnaryOperator::Deref:
+ case UnaryOperator::AddrOf: // should be impossible
+ case UnaryOperator::OffsetOf:
+ return IntRange::forType(C, E->getType());
+
+ default:
+ return GetExprRange(C, UO->getSubExpr(), MaxWidth);
+ }
+ }
+
+ if (dyn_cast<OffsetOfExpr>(E)) {
+ IntRange::forType(C, E->getType());
+ }
+
+ FieldDecl *BitField = E->getBitField();
+ if (BitField) {
+ llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
+ unsigned BitWidth = BitWidthAP.getZExtValue();
+
+ return IntRange(BitWidth, BitField->getType()->isUnsignedIntegerType());
+ }
+
+ return IntRange::forType(C, E->getType());
+}
+
+IntRange GetExprRange(ASTContext &C, Expr *E) {
+ return GetExprRange(C, E, C.getIntWidth(E->getType()));
+}
+
+/// Checks whether the given value, which currently has the given
+/// source semantics, has the same value when coerced through the
+/// target semantics.
+bool IsSameFloatAfterCast(const llvm::APFloat &value,
+ const llvm::fltSemantics &Src,
+ const llvm::fltSemantics &Tgt) {
+ llvm::APFloat truncated = value;
+
+ bool ignored;
+ truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
+ truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
+
+ return truncated.bitwiseIsEqual(value);
+}
+
+/// Checks whether the given value, which currently has the given
+/// source semantics, has the same value when coerced through the
+/// target semantics.
+///
+/// The value might be a vector of floats (or a complex number).
+bool IsSameFloatAfterCast(const APValue &value,
+ const llvm::fltSemantics &Src,
+ const llvm::fltSemantics &Tgt) {
+ if (value.isFloat())
+ return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
+
+ if (value.isVector()) {
+ for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
+ if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
+ return false;
+ return true;
+ }
+
+ assert(value.isComplexFloat());
+ return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
+ IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
+}
+
+void AnalyzeImplicitConversions(Sema &S, Expr *E);
+
+bool IsZero(Sema &S, Expr *E) {
+ llvm::APSInt Value;
+ return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
+}
+
+void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
+ BinaryOperator::Opcode op = E->getOpcode();
+ if (op == BinaryOperator::LT && IsZero(S, E->getRHS())) {
+ S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
+ << "< 0" << "false"
+ << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
+ } else if (op == BinaryOperator::GE && IsZero(S, E->getRHS())) {
+ S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
+ << ">= 0" << "true"
+ << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
+ } else if (op == BinaryOperator::GT && IsZero(S, E->getLHS())) {
+ S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
+ << "0 >" << "false"
+ << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
+ } else if (op == BinaryOperator::LE && IsZero(S, E->getLHS())) {
+ S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
+ << "0 <=" << "true"
+ << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
+ }
+}
+
+/// Analyze the operands of the given comparison. Implements the
+/// fallback case from AnalyzeComparison.
+void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
+ AnalyzeImplicitConversions(S, E->getLHS());
+ AnalyzeImplicitConversions(S, E->getRHS());
+}
+
+/// \brief Implements -Wsign-compare.
+///
+/// \param lex the left-hand expression
+/// \param rex the right-hand expression
+/// \param OpLoc the location of the joining operator
+/// \param BinOpc binary opcode or 0
+void AnalyzeComparison(Sema &S, BinaryOperator *E) {
+ // The type the comparison is being performed in.
+ QualType T = E->getLHS()->getType();
+ assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
+ && "comparison with mismatched types");
+
+ // We don't do anything special if this isn't an unsigned integral
+ // comparison: we're only interested in integral comparisons, and
+ // signed comparisons only happen in cases we don't care to warn about.
+ if (!T->isUnsignedIntegerType())
+ return AnalyzeImpConvsInComparison(S, E);
+
+ Expr *lex = E->getLHS()->IgnoreParenImpCasts();
+ Expr *rex = E->getRHS()->IgnoreParenImpCasts();
+
+ // Check to see if one of the (unmodified) operands is of different
+ // signedness.
+ Expr *signedOperand, *unsignedOperand;
+ if (lex->getType()->isSignedIntegerType()) {
+ assert(!rex->getType()->isSignedIntegerType() &&
+ "unsigned comparison between two signed integer expressions?");
+ signedOperand = lex;
+ unsignedOperand = rex;
+ } else if (rex->getType()->isSignedIntegerType()) {
+ signedOperand = rex;
+ unsignedOperand = lex;
+ } else {
+ CheckTrivialUnsignedComparison(S, E);
+ return AnalyzeImpConvsInComparison(S, E);
+ }
+
+ // Otherwise, calculate the effective range of the signed operand.
+ IntRange signedRange = GetExprRange(S.Context, signedOperand);
+
+ // Go ahead and analyze implicit conversions in the operands. Note
+ // that we skip the implicit conversions on both sides.
+ AnalyzeImplicitConversions(S, lex);
+ AnalyzeImplicitConversions(S, rex);
+
+ // If the signed range is non-negative, -Wsign-compare won't fire,
+ // but we should still check for comparisons which are always true
+ // or false.
+ if (signedRange.NonNegative)
+ return CheckTrivialUnsignedComparison(S, E);
+
+ // For (in)equality comparisons, if the unsigned operand is a
+ // constant which cannot collide with a overflowed signed operand,
+ // then reinterpreting the signed operand as unsigned will not
+ // change the result of the comparison.
+ if (E->isEqualityOp()) {
+ unsigned comparisonWidth = S.Context.getIntWidth(T);
+ IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
+
+ // We should never be unable to prove that the unsigned operand is
+ // non-negative.
+ assert(unsignedRange.NonNegative && "unsigned range includes negative?");
+
+ if (unsignedRange.Width < comparisonWidth)
+ return;
+ }
+
+ S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison)
+ << lex->getType() << rex->getType()
+ << lex->getSourceRange() << rex->getSourceRange();
+}
+
+/// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
+void DiagnoseImpCast(Sema &S, Expr *E, QualType T, unsigned diag) {
+ S.Diag(E->getExprLoc(), diag) << E->getType() << T << E->getSourceRange();
+}
+
+void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
+ bool *ICContext = 0) {
+ if (E->isTypeDependent() || E->isValueDependent()) return;
+
+ const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
+ const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
+ if (Source == Target) return;
+ if (Target->isDependentType()) return;
+
+ // Never diagnose implicit casts to bool.
+ if (Target->isSpecificBuiltinType(BuiltinType::Bool))
+ return;
+
+ // Strip vector types.
+ if (isa<VectorType>(Source)) {
+ if (!isa<VectorType>(Target))
+ return DiagnoseImpCast(S, E, T, diag::warn_impcast_vector_scalar);
+
+ Source = cast<VectorType>(Source)->getElementType().getTypePtr();
+ Target = cast<VectorType>(Target)->getElementType().getTypePtr();
+ }
+
+ // Strip complex types.
+ if (isa<ComplexType>(Source)) {
+ if (!isa<ComplexType>(Target))
+ return DiagnoseImpCast(S, E, T, diag::warn_impcast_complex_scalar);
+
+ Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
+ Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
+ }
+
+ const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
+ const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
+
+ // If the source is floating point...
+ if (SourceBT && SourceBT->isFloatingPoint()) {
+ // ...and the target is floating point...
+ if (TargetBT && TargetBT->isFloatingPoint()) {
+ // ...then warn if we're dropping FP rank.
+
+ // Builtin FP kinds are ordered by increasing FP rank.
+ if (SourceBT->getKind() > TargetBT->getKind()) {
+ // Don't warn about float constants that are precisely
+ // representable in the target type.
+ Expr::EvalResult result;
+ if (E->Evaluate(result, S.Context)) {
+ // Value might be a float, a float vector, or a float complex.
+ if (IsSameFloatAfterCast(result.Val,
+ S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
+ S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
+ return;
+ }
+
+ DiagnoseImpCast(S, E, T, diag::warn_impcast_float_precision);
+ }
+ return;
+ }
+
+ // If the target is integral, always warn.
+ if ((TargetBT && TargetBT->isInteger()))
+ // TODO: don't warn for integer values?
+ DiagnoseImpCast(S, E, T, diag::warn_impcast_float_integer);
+
+ return;
+ }
+
+ if (!Source->isIntegerType() || !Target->isIntegerType())
+ return;
+
+ IntRange SourceRange = GetExprRange(S.Context, E);
+ IntRange TargetRange = IntRange::forCanonicalType(S.Context, Target);
+
+ if (SourceRange.Width > TargetRange.Width) {
+ // People want to build with -Wshorten-64-to-32 and not -Wconversion
+ // and by god we'll let them.
+ if (SourceRange.Width == 64 && TargetRange.Width == 32)
+ return DiagnoseImpCast(S, E, T, diag::warn_impcast_integer_64_32);
+ return DiagnoseImpCast(S, E, T, diag::warn_impcast_integer_precision);
+ }
+
+ if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
+ (!TargetRange.NonNegative && SourceRange.NonNegative &&
+ SourceRange.Width == TargetRange.Width)) {
+ unsigned DiagID = diag::warn_impcast_integer_sign;
+
+ // Traditionally, gcc has warned about this under -Wsign-compare.
+ // We also want to warn about it in -Wconversion.
+ // So if -Wconversion is off, use a completely identical diagnostic
+ // in the sign-compare group.
+ // The conditional-checking code will
+ if (ICContext) {
+ DiagID = diag::warn_impcast_integer_sign_conditional;
+ *ICContext = true;
+ }
+
+ return DiagnoseImpCast(S, E, T, DiagID);
+ }
+
+ return;
+}
+
+void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
+
+void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
+ bool &ICContext) {
+ E = E->IgnoreParenImpCasts();
+
+ if (isa<ConditionalOperator>(E))
+ return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
+
+ AnalyzeImplicitConversions(S, E);
+ if (E->getType() != T)
+ return CheckImplicitConversion(S, E, T, &ICContext);
+ return;
+}
+
+void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
+ AnalyzeImplicitConversions(S, E->getCond());
+
+ bool Suspicious = false;
+ CheckConditionalOperand(S, E->getTrueExpr(), T, Suspicious);
+ CheckConditionalOperand(S, E->getFalseExpr(), T, Suspicious);
+
+ // If -Wconversion would have warned about either of the candidates
+ // for a signedness conversion to the context type...
+ if (!Suspicious) return;
+
+ // ...but it's currently ignored...
+ if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional))
+ return;
+
+ // ...and -Wsign-compare isn't...
+ if (!S.Diags.getDiagnosticLevel(diag::warn_mixed_sign_conditional))
+ return;
+
+ // ...then check whether it would have warned about either of the
+ // candidates for a signedness conversion to the condition type.
+ if (E->getType() != T) {
+ Suspicious = false;
+ CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
+ E->getType(), &Suspicious);
+ if (!Suspicious)
+ CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
+ E->getType(), &Suspicious);
+ if (!Suspicious)
+ return;
+ }
+
+ // If so, emit a diagnostic under -Wsign-compare.
+ Expr *lex = E->getTrueExpr()->IgnoreParenImpCasts();
+ Expr *rex = E->getFalseExpr()->IgnoreParenImpCasts();
+ S.Diag(E->getQuestionLoc(), diag::warn_mixed_sign_conditional)
+ << lex->getType() << rex->getType()
+ << lex->getSourceRange() << rex->getSourceRange();
+}
+
+/// AnalyzeImplicitConversions - Find and report any interesting
+/// implicit conversions in the given expression. There are a couple
+/// of competing diagnostics here, -Wconversion and -Wsign-compare.
+void AnalyzeImplicitConversions(Sema &S, Expr *OrigE) {
+ QualType T = OrigE->getType();
+ Expr *E = OrigE->IgnoreParenImpCasts();
+
+ // For conditional operators, we analyze the arguments as if they
+ // were being fed directly into the output.
+ if (isa<ConditionalOperator>(E)) {
+ ConditionalOperator *CO = cast<ConditionalOperator>(E);
+ CheckConditionalOperator(S, CO, T);
+ return;
+ }
+
+ // Go ahead and check any implicit conversions we might have skipped.
+ // The non-canonical typecheck is just an optimization;
+ // CheckImplicitConversion will filter out dead implicit conversions.
+ if (E->getType() != T)
+ CheckImplicitConversion(S, E, T);
+
+ // Now continue drilling into this expression.
+
+ // Skip past explicit casts.
+ if (isa<ExplicitCastExpr>(E)) {
+ E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
+ return AnalyzeImplicitConversions(S, E);
+ }
+
+ // Do a somewhat different check with comparison operators.
+ if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isComparisonOp())
+ return AnalyzeComparison(S, cast<BinaryOperator>(E));
+
+ // These break the otherwise-useful invariant below. Fortunately,
+ // we don't really need to recurse into them, because any internal
+ // expressions should have been analyzed already when they were
+ // built into statements.
+ if (isa<StmtExpr>(E)) return;
+
+ // Don't descend into unevaluated contexts.
+ if (isa<SizeOfAlignOfExpr>(E)) return;
+
+ // Now just recurse over the expression's children.
+ for (Stmt::child_iterator I = E->child_begin(), IE = E->child_end();
+ I != IE; ++I)
+ AnalyzeImplicitConversions(S, cast<Expr>(*I));
+}
+
+} // end anonymous namespace
+
+/// Diagnoses "dangerous" implicit conversions within the given
+/// expression (which is a full expression). Implements -Wconversion
+/// and -Wsign-compare.
+void Sema::CheckImplicitConversions(Expr *E) {
+ // Don't diagnose in unevaluated contexts.
+ if (ExprEvalContexts.back().Context == Sema::Unevaluated)
+ return;
+
+ // Don't diagnose for value- or type-dependent expressions.
+ if (E->isTypeDependent() || E->isValueDependent())
+ return;
+
+ AnalyzeImplicitConversions(*this, E);
+}
+
+/// CheckParmsForFunctionDef - Check that the parameters of the given
+/// function are appropriate for the definition of a function. This
+/// takes care of any checks that cannot be performed on the
+/// declaration itself, e.g., that the types of each of the function
+/// parameters are complete.
+bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
+ bool HasInvalidParm = false;
+ for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
+ ParmVarDecl *Param = FD->getParamDecl(p);
+
+ // C99 6.7.5.3p4: the parameters in a parameter type list in a
+ // function declarator that is part of a function definition of
+ // that function shall not have incomplete type.
+ //
+ // This is also C++ [dcl.fct]p6.
+ if (!Param->isInvalidDecl() &&
+ RequireCompleteType(Param->getLocation(), Param->getType(),
+ diag::err_typecheck_decl_incomplete_type)) {
+ Param->setInvalidDecl();
+ HasInvalidParm = true;
+ }
+
+ // C99 6.9.1p5: If the declarator includes a parameter type list, the
+ // declaration of each parameter shall include an identifier.
+ if (Param->getIdentifier() == 0 &&
+ !Param->isImplicit() &&
+ !getLangOptions().CPlusPlus)
+ Diag(Param->getLocation(), diag::err_parameter_name_omitted);
+
+ // C99 6.7.5.3p12:
+ // If the function declarator is not part of a definition of that
+ // function, parameters may have incomplete type and may use the [*]
+ // notation in their sequences of declarator specifiers to specify
+ // variable length array types.
+ QualType PType = Param->getOriginalType();
+ if (const ArrayType *AT = Context.getAsArrayType(PType)) {
+ if (AT->getSizeModifier() == ArrayType::Star) {
+ // FIXME: This diagnosic should point the the '[*]' if source-location
+ // information is added for it.
+ Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
+ }
+ }
+ }
+
+ return HasInvalidParm;
+}
OpenPOWER on IntegriCloud