summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/Sema/SemaCXXScopeSpec.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/Sema/SemaCXXScopeSpec.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaCXXScopeSpec.cpp674
1 files changed, 674 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaCXXScopeSpec.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaCXXScopeSpec.cpp
new file mode 100644
index 0000000..c0ec9e9
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaCXXScopeSpec.cpp
@@ -0,0 +1,674 @@
+//===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements C++ semantic analysis for scope specifiers.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Sema.h"
+#include "Lookup.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/NestedNameSpecifier.h"
+#include "clang/Basic/PartialDiagnostic.h"
+#include "clang/Parse/DeclSpec.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace clang;
+
+/// \brief Find the current instantiation that associated with the given type.
+static CXXRecordDecl *getCurrentInstantiationOf(QualType T) {
+ if (T.isNull())
+ return 0;
+
+ const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
+ if (isa<RecordType>(Ty))
+ return cast<CXXRecordDecl>(cast<RecordType>(Ty)->getDecl());
+ else if (isa<InjectedClassNameType>(Ty))
+ return cast<InjectedClassNameType>(Ty)->getDecl();
+ else
+ return 0;
+}
+
+/// \brief Compute the DeclContext that is associated with the given type.
+///
+/// \param T the type for which we are attempting to find a DeclContext.
+///
+/// \returns the declaration context represented by the type T,
+/// or NULL if the declaration context cannot be computed (e.g., because it is
+/// dependent and not the current instantiation).
+DeclContext *Sema::computeDeclContext(QualType T) {
+ if (const TagType *Tag = T->getAs<TagType>())
+ return Tag->getDecl();
+
+ return ::getCurrentInstantiationOf(T);
+}
+
+/// \brief Compute the DeclContext that is associated with the given
+/// scope specifier.
+///
+/// \param SS the C++ scope specifier as it appears in the source
+///
+/// \param EnteringContext when true, we will be entering the context of
+/// this scope specifier, so we can retrieve the declaration context of a
+/// class template or class template partial specialization even if it is
+/// not the current instantiation.
+///
+/// \returns the declaration context represented by the scope specifier @p SS,
+/// or NULL if the declaration context cannot be computed (e.g., because it is
+/// dependent and not the current instantiation).
+DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
+ bool EnteringContext) {
+ if (!SS.isSet() || SS.isInvalid())
+ return 0;
+
+ NestedNameSpecifier *NNS
+ = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
+ if (NNS->isDependent()) {
+ // If this nested-name-specifier refers to the current
+ // instantiation, return its DeclContext.
+ if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
+ return Record;
+
+ if (EnteringContext) {
+ const Type *NNSType = NNS->getAsType();
+ if (!NNSType) {
+ // do nothing, fall out
+ } else if (const TemplateSpecializationType *SpecType
+ = NNSType->getAs<TemplateSpecializationType>()) {
+ // We are entering the context of the nested name specifier, so try to
+ // match the nested name specifier to either a primary class template
+ // or a class template partial specialization.
+ if (ClassTemplateDecl *ClassTemplate
+ = dyn_cast_or_null<ClassTemplateDecl>(
+ SpecType->getTemplateName().getAsTemplateDecl())) {
+ QualType ContextType
+ = Context.getCanonicalType(QualType(SpecType, 0));
+
+ // If the type of the nested name specifier is the same as the
+ // injected class name of the named class template, we're entering
+ // into that class template definition.
+ QualType Injected
+ = ClassTemplate->getInjectedClassNameSpecialization(Context);
+ if (Context.hasSameType(Injected, ContextType))
+ return ClassTemplate->getTemplatedDecl();
+
+ // If the type of the nested name specifier is the same as the
+ // type of one of the class template's class template partial
+ // specializations, we're entering into the definition of that
+ // class template partial specialization.
+ if (ClassTemplatePartialSpecializationDecl *PartialSpec
+ = ClassTemplate->findPartialSpecialization(ContextType))
+ return PartialSpec;
+ }
+ } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
+ // The nested name specifier refers to a member of a class template.
+ return RecordT->getDecl();
+ }
+ }
+
+ return 0;
+ }
+
+ switch (NNS->getKind()) {
+ case NestedNameSpecifier::Identifier:
+ assert(false && "Dependent nested-name-specifier has no DeclContext");
+ break;
+
+ case NestedNameSpecifier::Namespace:
+ return NNS->getAsNamespace();
+
+ case NestedNameSpecifier::TypeSpec:
+ case NestedNameSpecifier::TypeSpecWithTemplate: {
+ const TagType *Tag = NNS->getAsType()->getAs<TagType>();
+ assert(Tag && "Non-tag type in nested-name-specifier");
+ return Tag->getDecl();
+ } break;
+
+ case NestedNameSpecifier::Global:
+ return Context.getTranslationUnitDecl();
+ }
+
+ // Required to silence a GCC warning.
+ return 0;
+}
+
+bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
+ if (!SS.isSet() || SS.isInvalid())
+ return false;
+
+ NestedNameSpecifier *NNS
+ = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
+ return NNS->isDependent();
+}
+
+// \brief Determine whether this C++ scope specifier refers to an
+// unknown specialization, i.e., a dependent type that is not the
+// current instantiation.
+bool Sema::isUnknownSpecialization(const CXXScopeSpec &SS) {
+ if (!isDependentScopeSpecifier(SS))
+ return false;
+
+ NestedNameSpecifier *NNS
+ = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
+ return getCurrentInstantiationOf(NNS) == 0;
+}
+
+/// \brief If the given nested name specifier refers to the current
+/// instantiation, return the declaration that corresponds to that
+/// current instantiation (C++0x [temp.dep.type]p1).
+///
+/// \param NNS a dependent nested name specifier.
+CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
+ assert(getLangOptions().CPlusPlus && "Only callable in C++");
+ assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
+
+ if (!NNS->getAsType())
+ return 0;
+
+ QualType T = QualType(NNS->getAsType(), 0);
+ return ::getCurrentInstantiationOf(T);
+}
+
+/// \brief Require that the context specified by SS be complete.
+///
+/// If SS refers to a type, this routine checks whether the type is
+/// complete enough (or can be made complete enough) for name lookup
+/// into the DeclContext. A type that is not yet completed can be
+/// considered "complete enough" if it is a class/struct/union/enum
+/// that is currently being defined. Or, if we have a type that names
+/// a class template specialization that is not a complete type, we
+/// will attempt to instantiate that class template.
+bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
+ DeclContext *DC) {
+ assert(DC != 0 && "given null context");
+
+ if (TagDecl *Tag = dyn_cast<TagDecl>(DC)) {
+ // If this is a dependent type, then we consider it complete.
+ if (Tag->isDependentContext())
+ return false;
+
+ // If we're currently defining this type, then lookup into the
+ // type is okay: don't complain that it isn't complete yet.
+ const TagType *TagT = Context.getTypeDeclType(Tag)->getAs<TagType>();
+ if (TagT && TagT->isBeingDefined())
+ return false;
+
+ // The type must be complete.
+ if (RequireCompleteType(SS.getRange().getBegin(),
+ Context.getTypeDeclType(Tag),
+ PDiag(diag::err_incomplete_nested_name_spec)
+ << SS.getRange())) {
+ SS.setScopeRep(0); // Mark the ScopeSpec invalid.
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/// ActOnCXXGlobalScopeSpecifier - Return the object that represents the
+/// global scope ('::').
+Sema::CXXScopeTy *Sema::ActOnCXXGlobalScopeSpecifier(Scope *S,
+ SourceLocation CCLoc) {
+ return NestedNameSpecifier::GlobalSpecifier(Context);
+}
+
+/// \brief Determines whether the given declaration is an valid acceptable
+/// result for name lookup of a nested-name-specifier.
+bool Sema::isAcceptableNestedNameSpecifier(NamedDecl *SD) {
+ if (!SD)
+ return false;
+
+ // Namespace and namespace aliases are fine.
+ if (isa<NamespaceDecl>(SD) || isa<NamespaceAliasDecl>(SD))
+ return true;
+
+ if (!isa<TypeDecl>(SD))
+ return false;
+
+ // Determine whether we have a class (or, in C++0x, an enum) or
+ // a typedef thereof. If so, build the nested-name-specifier.
+ QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
+ if (T->isDependentType())
+ return true;
+ else if (TypedefDecl *TD = dyn_cast<TypedefDecl>(SD)) {
+ if (TD->getUnderlyingType()->isRecordType() ||
+ (Context.getLangOptions().CPlusPlus0x &&
+ TD->getUnderlyingType()->isEnumeralType()))
+ return true;
+ } else if (isa<RecordDecl>(SD) ||
+ (Context.getLangOptions().CPlusPlus0x && isa<EnumDecl>(SD)))
+ return true;
+
+ return false;
+}
+
+/// \brief If the given nested-name-specifier begins with a bare identifier
+/// (e.g., Base::), perform name lookup for that identifier as a
+/// nested-name-specifier within the given scope, and return the result of that
+/// name lookup.
+NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
+ if (!S || !NNS)
+ return 0;
+
+ while (NNS->getPrefix())
+ NNS = NNS->getPrefix();
+
+ if (NNS->getKind() != NestedNameSpecifier::Identifier)
+ return 0;
+
+ LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
+ LookupNestedNameSpecifierName);
+ LookupName(Found, S);
+ assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
+
+ if (!Found.isSingleResult())
+ return 0;
+
+ NamedDecl *Result = Found.getFoundDecl();
+ if (isAcceptableNestedNameSpecifier(Result))
+ return Result;
+
+ return 0;
+}
+
+bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
+ SourceLocation IdLoc,
+ IdentifierInfo &II,
+ TypeTy *ObjectTypePtr) {
+ QualType ObjectType = GetTypeFromParser(ObjectTypePtr);
+ LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
+
+ // Determine where to perform name lookup
+ DeclContext *LookupCtx = 0;
+ bool isDependent = false;
+ if (!ObjectType.isNull()) {
+ // This nested-name-specifier occurs in a member access expression, e.g.,
+ // x->B::f, and we are looking into the type of the object.
+ assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
+ LookupCtx = computeDeclContext(ObjectType);
+ isDependent = ObjectType->isDependentType();
+ } else if (SS.isSet()) {
+ // This nested-name-specifier occurs after another nested-name-specifier,
+ // so long into the context associated with the prior nested-name-specifier.
+ LookupCtx = computeDeclContext(SS, false);
+ isDependent = isDependentScopeSpecifier(SS);
+ Found.setContextRange(SS.getRange());
+ }
+
+ if (LookupCtx) {
+ // Perform "qualified" name lookup into the declaration context we
+ // computed, which is either the type of the base of a member access
+ // expression or the declaration context associated with a prior
+ // nested-name-specifier.
+
+ // The declaration context must be complete.
+ if (!LookupCtx->isDependentContext() &&
+ RequireCompleteDeclContext(SS, LookupCtx))
+ return false;
+
+ LookupQualifiedName(Found, LookupCtx);
+ } else if (isDependent) {
+ return false;
+ } else {
+ LookupName(Found, S);
+ }
+ Found.suppressDiagnostics();
+
+ if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
+ return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
+
+ return false;
+}
+
+/// \brief Build a new nested-name-specifier for "identifier::", as described
+/// by ActOnCXXNestedNameSpecifier.
+///
+/// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
+/// that it contains an extra parameter \p ScopeLookupResult, which provides
+/// the result of name lookup within the scope of the nested-name-specifier
+/// that was computed at template definition time.
+///
+/// If ErrorRecoveryLookup is true, then this call is used to improve error
+/// recovery. This means that it should not emit diagnostics, it should
+/// just return null on failure. It also means it should only return a valid
+/// scope if it *knows* that the result is correct. It should not return in a
+/// dependent context, for example.
+Sema::CXXScopeTy *Sema::BuildCXXNestedNameSpecifier(Scope *S,
+ CXXScopeSpec &SS,
+ SourceLocation IdLoc,
+ SourceLocation CCLoc,
+ IdentifierInfo &II,
+ QualType ObjectType,
+ NamedDecl *ScopeLookupResult,
+ bool EnteringContext,
+ bool ErrorRecoveryLookup) {
+ NestedNameSpecifier *Prefix
+ = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
+
+ LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
+
+ // Determine where to perform name lookup
+ DeclContext *LookupCtx = 0;
+ bool isDependent = false;
+ if (!ObjectType.isNull()) {
+ // This nested-name-specifier occurs in a member access expression, e.g.,
+ // x->B::f, and we are looking into the type of the object.
+ assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
+ LookupCtx = computeDeclContext(ObjectType);
+ isDependent = ObjectType->isDependentType();
+ } else if (SS.isSet()) {
+ // This nested-name-specifier occurs after another nested-name-specifier,
+ // so long into the context associated with the prior nested-name-specifier.
+ LookupCtx = computeDeclContext(SS, EnteringContext);
+ isDependent = isDependentScopeSpecifier(SS);
+ Found.setContextRange(SS.getRange());
+ }
+
+
+ bool ObjectTypeSearchedInScope = false;
+ if (LookupCtx) {
+ // Perform "qualified" name lookup into the declaration context we
+ // computed, which is either the type of the base of a member access
+ // expression or the declaration context associated with a prior
+ // nested-name-specifier.
+
+ // The declaration context must be complete.
+ if (!LookupCtx->isDependentContext() &&
+ RequireCompleteDeclContext(SS, LookupCtx))
+ return 0;
+
+ LookupQualifiedName(Found, LookupCtx);
+
+ if (!ObjectType.isNull() && Found.empty()) {
+ // C++ [basic.lookup.classref]p4:
+ // If the id-expression in a class member access is a qualified-id of
+ // the form
+ //
+ // class-name-or-namespace-name::...
+ //
+ // the class-name-or-namespace-name following the . or -> operator is
+ // looked up both in the context of the entire postfix-expression and in
+ // the scope of the class of the object expression. If the name is found
+ // only in the scope of the class of the object expression, the name
+ // shall refer to a class-name. If the name is found only in the
+ // context of the entire postfix-expression, the name shall refer to a
+ // class-name or namespace-name. [...]
+ //
+ // Qualified name lookup into a class will not find a namespace-name,
+ // so we do not need to diagnoste that case specifically. However,
+ // this qualified name lookup may find nothing. In that case, perform
+ // unqualified name lookup in the given scope (if available) or
+ // reconstruct the result from when name lookup was performed at template
+ // definition time.
+ if (S)
+ LookupName(Found, S);
+ else if (ScopeLookupResult)
+ Found.addDecl(ScopeLookupResult);
+
+ ObjectTypeSearchedInScope = true;
+ }
+ } else if (isDependent) {
+ // Don't speculate if we're just trying to improve error recovery.
+ if (ErrorRecoveryLookup)
+ return 0;
+
+ // We were not able to compute the declaration context for a dependent
+ // base object type or prior nested-name-specifier, so this
+ // nested-name-specifier refers to an unknown specialization. Just build
+ // a dependent nested-name-specifier.
+ if (!Prefix)
+ return NestedNameSpecifier::Create(Context, &II);
+
+ return NestedNameSpecifier::Create(Context, Prefix, &II);
+ } else {
+ // Perform unqualified name lookup in the current scope.
+ LookupName(Found, S);
+ }
+
+ // FIXME: Deal with ambiguities cleanly.
+
+ if (Found.empty() && !ErrorRecoveryLookup) {
+ // We haven't found anything, and we're not recovering from a
+ // different kind of error, so look for typos.
+ DeclarationName Name = Found.getLookupName();
+ if (CorrectTypo(Found, S, &SS, LookupCtx, EnteringContext,
+ CTC_NoKeywords) &&
+ Found.isSingleResult() &&
+ isAcceptableNestedNameSpecifier(Found.getAsSingle<NamedDecl>())) {
+ if (LookupCtx)
+ Diag(Found.getNameLoc(), diag::err_no_member_suggest)
+ << Name << LookupCtx << Found.getLookupName() << SS.getRange()
+ << FixItHint::CreateReplacement(Found.getNameLoc(),
+ Found.getLookupName().getAsString());
+ else
+ Diag(Found.getNameLoc(), diag::err_undeclared_var_use_suggest)
+ << Name << Found.getLookupName()
+ << FixItHint::CreateReplacement(Found.getNameLoc(),
+ Found.getLookupName().getAsString());
+
+ if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
+ Diag(ND->getLocation(), diag::note_previous_decl)
+ << ND->getDeclName();
+ } else
+ Found.clear();
+ }
+
+ NamedDecl *SD = Found.getAsSingle<NamedDecl>();
+ if (isAcceptableNestedNameSpecifier(SD)) {
+ if (!ObjectType.isNull() && !ObjectTypeSearchedInScope) {
+ // C++ [basic.lookup.classref]p4:
+ // [...] If the name is found in both contexts, the
+ // class-name-or-namespace-name shall refer to the same entity.
+ //
+ // We already found the name in the scope of the object. Now, look
+ // into the current scope (the scope of the postfix-expression) to
+ // see if we can find the same name there. As above, if there is no
+ // scope, reconstruct the result from the template instantiation itself.
+ NamedDecl *OuterDecl;
+ if (S) {
+ LookupResult FoundOuter(*this, &II, IdLoc, LookupNestedNameSpecifierName);
+ LookupName(FoundOuter, S);
+ OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
+ } else
+ OuterDecl = ScopeLookupResult;
+
+ if (isAcceptableNestedNameSpecifier(OuterDecl) &&
+ OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
+ (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
+ !Context.hasSameType(
+ Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
+ Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
+ if (ErrorRecoveryLookup)
+ return 0;
+
+ Diag(IdLoc, diag::err_nested_name_member_ref_lookup_ambiguous)
+ << &II;
+ Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
+ << ObjectType;
+ Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
+
+ // Fall through so that we'll pick the name we found in the object
+ // type, since that's probably what the user wanted anyway.
+ }
+ }
+
+ if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD))
+ return NestedNameSpecifier::Create(Context, Prefix, Namespace);
+
+ // FIXME: It would be nice to maintain the namespace alias name, then
+ // see through that alias when resolving the nested-name-specifier down to
+ // a declaration context.
+ if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD))
+ return NestedNameSpecifier::Create(Context, Prefix,
+
+ Alias->getNamespace());
+
+ QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
+ return NestedNameSpecifier::Create(Context, Prefix, false,
+ T.getTypePtr());
+ }
+
+ // Otherwise, we have an error case. If we don't want diagnostics, just
+ // return an error now.
+ if (ErrorRecoveryLookup)
+ return 0;
+
+ // If we didn't find anything during our lookup, try again with
+ // ordinary name lookup, which can help us produce better error
+ // messages.
+ if (Found.empty()) {
+ Found.clear(LookupOrdinaryName);
+ LookupName(Found, S);
+ }
+
+ unsigned DiagID;
+ if (!Found.empty())
+ DiagID = diag::err_expected_class_or_namespace;
+ else if (SS.isSet()) {
+ Diag(IdLoc, diag::err_no_member) << &II << LookupCtx << SS.getRange();
+ return 0;
+ } else
+ DiagID = diag::err_undeclared_var_use;
+
+ if (SS.isSet())
+ Diag(IdLoc, DiagID) << &II << SS.getRange();
+ else
+ Diag(IdLoc, DiagID) << &II;
+
+ return 0;
+}
+
+/// ActOnCXXNestedNameSpecifier - Called during parsing of a
+/// nested-name-specifier. e.g. for "foo::bar::" we parsed "foo::" and now
+/// we want to resolve "bar::". 'SS' is empty or the previously parsed
+/// nested-name part ("foo::"), 'IdLoc' is the source location of 'bar',
+/// 'CCLoc' is the location of '::' and 'II' is the identifier for 'bar'.
+/// Returns a CXXScopeTy* object representing the C++ scope.
+Sema::CXXScopeTy *Sema::ActOnCXXNestedNameSpecifier(Scope *S,
+ CXXScopeSpec &SS,
+ SourceLocation IdLoc,
+ SourceLocation CCLoc,
+ IdentifierInfo &II,
+ TypeTy *ObjectTypePtr,
+ bool EnteringContext) {
+ return BuildCXXNestedNameSpecifier(S, SS, IdLoc, CCLoc, II,
+ QualType::getFromOpaquePtr(ObjectTypePtr),
+ /*ScopeLookupResult=*/0, EnteringContext,
+ false);
+}
+
+/// IsInvalidUnlessNestedName - This method is used for error recovery
+/// purposes to determine whether the specified identifier is only valid as
+/// a nested name specifier, for example a namespace name. It is
+/// conservatively correct to always return false from this method.
+///
+/// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
+bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
+ IdentifierInfo &II, TypeTy *ObjectType,
+ bool EnteringContext) {
+ return BuildCXXNestedNameSpecifier(S, SS, SourceLocation(), SourceLocation(),
+ II, QualType::getFromOpaquePtr(ObjectType),
+ /*ScopeLookupResult=*/0, EnteringContext,
+ true);
+}
+
+Sema::CXXScopeTy *Sema::ActOnCXXNestedNameSpecifier(Scope *S,
+ const CXXScopeSpec &SS,
+ TypeTy *Ty,
+ SourceRange TypeRange,
+ SourceLocation CCLoc) {
+ NestedNameSpecifier *Prefix
+ = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
+ QualType T = GetTypeFromParser(Ty);
+ return NestedNameSpecifier::Create(Context, Prefix, /*FIXME:*/false,
+ T.getTypePtr());
+}
+
+bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
+ assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
+
+ NestedNameSpecifier *Qualifier =
+ static_cast<NestedNameSpecifier*>(SS.getScopeRep());
+
+ // There are only two places a well-formed program may qualify a
+ // declarator: first, when defining a namespace or class member
+ // out-of-line, and second, when naming an explicitly-qualified
+ // friend function. The latter case is governed by
+ // C++03 [basic.lookup.unqual]p10:
+ // In a friend declaration naming a member function, a name used
+ // in the function declarator and not part of a template-argument
+ // in a template-id is first looked up in the scope of the member
+ // function's class. If it is not found, or if the name is part of
+ // a template-argument in a template-id, the look up is as
+ // described for unqualified names in the definition of the class
+ // granting friendship.
+ // i.e. we don't push a scope unless it's a class member.
+
+ switch (Qualifier->getKind()) {
+ case NestedNameSpecifier::Global:
+ case NestedNameSpecifier::Namespace:
+ // These are always namespace scopes. We never want to enter a
+ // namespace scope from anything but a file context.
+ return CurContext->getLookupContext()->isFileContext();
+
+ case NestedNameSpecifier::Identifier:
+ case NestedNameSpecifier::TypeSpec:
+ case NestedNameSpecifier::TypeSpecWithTemplate:
+ // These are never namespace scopes.
+ return true;
+ }
+
+ // Silence bogus warning.
+ return false;
+}
+
+/// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
+/// scope or nested-name-specifier) is parsed, part of a declarator-id.
+/// After this method is called, according to [C++ 3.4.3p3], names should be
+/// looked up in the declarator-id's scope, until the declarator is parsed and
+/// ActOnCXXExitDeclaratorScope is called.
+/// The 'SS' should be a non-empty valid CXXScopeSpec.
+bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
+ assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
+
+ if (SS.isInvalid()) return true;
+
+ DeclContext *DC = computeDeclContext(SS, true);
+ if (!DC) return true;
+
+ // Before we enter a declarator's context, we need to make sure that
+ // it is a complete declaration context.
+ if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
+ return true;
+
+ EnterDeclaratorContext(S, DC);
+
+ // Rebuild the nested name specifier for the new scope.
+ if (DC->isDependentContext())
+ RebuildNestedNameSpecifierInCurrentInstantiation(SS);
+
+ return false;
+}
+
+/// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
+/// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
+/// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
+/// Used to indicate that names should revert to being looked up in the
+/// defining scope.
+void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
+ assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
+ if (SS.isInvalid())
+ return;
+ assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
+ "exiting declarator scope we never really entered");
+ ExitDeclaratorContext(S);
+}
OpenPOWER on IntegriCloud