diff options
Diffstat (limited to 'contrib/llvm/tools/clang/lib/Sema/SemaCXXScopeSpec.cpp')
-rw-r--r-- | contrib/llvm/tools/clang/lib/Sema/SemaCXXScopeSpec.cpp | 674 |
1 files changed, 674 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaCXXScopeSpec.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaCXXScopeSpec.cpp new file mode 100644 index 0000000..c0ec9e9 --- /dev/null +++ b/contrib/llvm/tools/clang/lib/Sema/SemaCXXScopeSpec.cpp @@ -0,0 +1,674 @@ +//===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements C++ semantic analysis for scope specifiers. +// +//===----------------------------------------------------------------------===// + +#include "Sema.h" +#include "Lookup.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/DeclTemplate.h" +#include "clang/AST/ExprCXX.h" +#include "clang/AST/NestedNameSpecifier.h" +#include "clang/Basic/PartialDiagnostic.h" +#include "clang/Parse/DeclSpec.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/Support/raw_ostream.h" +using namespace clang; + +/// \brief Find the current instantiation that associated with the given type. +static CXXRecordDecl *getCurrentInstantiationOf(QualType T) { + if (T.isNull()) + return 0; + + const Type *Ty = T->getCanonicalTypeInternal().getTypePtr(); + if (isa<RecordType>(Ty)) + return cast<CXXRecordDecl>(cast<RecordType>(Ty)->getDecl()); + else if (isa<InjectedClassNameType>(Ty)) + return cast<InjectedClassNameType>(Ty)->getDecl(); + else + return 0; +} + +/// \brief Compute the DeclContext that is associated with the given type. +/// +/// \param T the type for which we are attempting to find a DeclContext. +/// +/// \returns the declaration context represented by the type T, +/// or NULL if the declaration context cannot be computed (e.g., because it is +/// dependent and not the current instantiation). +DeclContext *Sema::computeDeclContext(QualType T) { + if (const TagType *Tag = T->getAs<TagType>()) + return Tag->getDecl(); + + return ::getCurrentInstantiationOf(T); +} + +/// \brief Compute the DeclContext that is associated with the given +/// scope specifier. +/// +/// \param SS the C++ scope specifier as it appears in the source +/// +/// \param EnteringContext when true, we will be entering the context of +/// this scope specifier, so we can retrieve the declaration context of a +/// class template or class template partial specialization even if it is +/// not the current instantiation. +/// +/// \returns the declaration context represented by the scope specifier @p SS, +/// or NULL if the declaration context cannot be computed (e.g., because it is +/// dependent and not the current instantiation). +DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS, + bool EnteringContext) { + if (!SS.isSet() || SS.isInvalid()) + return 0; + + NestedNameSpecifier *NNS + = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); + if (NNS->isDependent()) { + // If this nested-name-specifier refers to the current + // instantiation, return its DeclContext. + if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS)) + return Record; + + if (EnteringContext) { + const Type *NNSType = NNS->getAsType(); + if (!NNSType) { + // do nothing, fall out + } else if (const TemplateSpecializationType *SpecType + = NNSType->getAs<TemplateSpecializationType>()) { + // We are entering the context of the nested name specifier, so try to + // match the nested name specifier to either a primary class template + // or a class template partial specialization. + if (ClassTemplateDecl *ClassTemplate + = dyn_cast_or_null<ClassTemplateDecl>( + SpecType->getTemplateName().getAsTemplateDecl())) { + QualType ContextType + = Context.getCanonicalType(QualType(SpecType, 0)); + + // If the type of the nested name specifier is the same as the + // injected class name of the named class template, we're entering + // into that class template definition. + QualType Injected + = ClassTemplate->getInjectedClassNameSpecialization(Context); + if (Context.hasSameType(Injected, ContextType)) + return ClassTemplate->getTemplatedDecl(); + + // If the type of the nested name specifier is the same as the + // type of one of the class template's class template partial + // specializations, we're entering into the definition of that + // class template partial specialization. + if (ClassTemplatePartialSpecializationDecl *PartialSpec + = ClassTemplate->findPartialSpecialization(ContextType)) + return PartialSpec; + } + } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) { + // The nested name specifier refers to a member of a class template. + return RecordT->getDecl(); + } + } + + return 0; + } + + switch (NNS->getKind()) { + case NestedNameSpecifier::Identifier: + assert(false && "Dependent nested-name-specifier has no DeclContext"); + break; + + case NestedNameSpecifier::Namespace: + return NNS->getAsNamespace(); + + case NestedNameSpecifier::TypeSpec: + case NestedNameSpecifier::TypeSpecWithTemplate: { + const TagType *Tag = NNS->getAsType()->getAs<TagType>(); + assert(Tag && "Non-tag type in nested-name-specifier"); + return Tag->getDecl(); + } break; + + case NestedNameSpecifier::Global: + return Context.getTranslationUnitDecl(); + } + + // Required to silence a GCC warning. + return 0; +} + +bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) { + if (!SS.isSet() || SS.isInvalid()) + return false; + + NestedNameSpecifier *NNS + = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); + return NNS->isDependent(); +} + +// \brief Determine whether this C++ scope specifier refers to an +// unknown specialization, i.e., a dependent type that is not the +// current instantiation. +bool Sema::isUnknownSpecialization(const CXXScopeSpec &SS) { + if (!isDependentScopeSpecifier(SS)) + return false; + + NestedNameSpecifier *NNS + = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); + return getCurrentInstantiationOf(NNS) == 0; +} + +/// \brief If the given nested name specifier refers to the current +/// instantiation, return the declaration that corresponds to that +/// current instantiation (C++0x [temp.dep.type]p1). +/// +/// \param NNS a dependent nested name specifier. +CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) { + assert(getLangOptions().CPlusPlus && "Only callable in C++"); + assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed"); + + if (!NNS->getAsType()) + return 0; + + QualType T = QualType(NNS->getAsType(), 0); + return ::getCurrentInstantiationOf(T); +} + +/// \brief Require that the context specified by SS be complete. +/// +/// If SS refers to a type, this routine checks whether the type is +/// complete enough (or can be made complete enough) for name lookup +/// into the DeclContext. A type that is not yet completed can be +/// considered "complete enough" if it is a class/struct/union/enum +/// that is currently being defined. Or, if we have a type that names +/// a class template specialization that is not a complete type, we +/// will attempt to instantiate that class template. +bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS, + DeclContext *DC) { + assert(DC != 0 && "given null context"); + + if (TagDecl *Tag = dyn_cast<TagDecl>(DC)) { + // If this is a dependent type, then we consider it complete. + if (Tag->isDependentContext()) + return false; + + // If we're currently defining this type, then lookup into the + // type is okay: don't complain that it isn't complete yet. + const TagType *TagT = Context.getTypeDeclType(Tag)->getAs<TagType>(); + if (TagT && TagT->isBeingDefined()) + return false; + + // The type must be complete. + if (RequireCompleteType(SS.getRange().getBegin(), + Context.getTypeDeclType(Tag), + PDiag(diag::err_incomplete_nested_name_spec) + << SS.getRange())) { + SS.setScopeRep(0); // Mark the ScopeSpec invalid. + return true; + } + } + + return false; +} + +/// ActOnCXXGlobalScopeSpecifier - Return the object that represents the +/// global scope ('::'). +Sema::CXXScopeTy *Sema::ActOnCXXGlobalScopeSpecifier(Scope *S, + SourceLocation CCLoc) { + return NestedNameSpecifier::GlobalSpecifier(Context); +} + +/// \brief Determines whether the given declaration is an valid acceptable +/// result for name lookup of a nested-name-specifier. +bool Sema::isAcceptableNestedNameSpecifier(NamedDecl *SD) { + if (!SD) + return false; + + // Namespace and namespace aliases are fine. + if (isa<NamespaceDecl>(SD) || isa<NamespaceAliasDecl>(SD)) + return true; + + if (!isa<TypeDecl>(SD)) + return false; + + // Determine whether we have a class (or, in C++0x, an enum) or + // a typedef thereof. If so, build the nested-name-specifier. + QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD)); + if (T->isDependentType()) + return true; + else if (TypedefDecl *TD = dyn_cast<TypedefDecl>(SD)) { + if (TD->getUnderlyingType()->isRecordType() || + (Context.getLangOptions().CPlusPlus0x && + TD->getUnderlyingType()->isEnumeralType())) + return true; + } else if (isa<RecordDecl>(SD) || + (Context.getLangOptions().CPlusPlus0x && isa<EnumDecl>(SD))) + return true; + + return false; +} + +/// \brief If the given nested-name-specifier begins with a bare identifier +/// (e.g., Base::), perform name lookup for that identifier as a +/// nested-name-specifier within the given scope, and return the result of that +/// name lookup. +NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) { + if (!S || !NNS) + return 0; + + while (NNS->getPrefix()) + NNS = NNS->getPrefix(); + + if (NNS->getKind() != NestedNameSpecifier::Identifier) + return 0; + + LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(), + LookupNestedNameSpecifierName); + LookupName(Found, S); + assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet"); + + if (!Found.isSingleResult()) + return 0; + + NamedDecl *Result = Found.getFoundDecl(); + if (isAcceptableNestedNameSpecifier(Result)) + return Result; + + return 0; +} + +bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS, + SourceLocation IdLoc, + IdentifierInfo &II, + TypeTy *ObjectTypePtr) { + QualType ObjectType = GetTypeFromParser(ObjectTypePtr); + LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName); + + // Determine where to perform name lookup + DeclContext *LookupCtx = 0; + bool isDependent = false; + if (!ObjectType.isNull()) { + // This nested-name-specifier occurs in a member access expression, e.g., + // x->B::f, and we are looking into the type of the object. + assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); + LookupCtx = computeDeclContext(ObjectType); + isDependent = ObjectType->isDependentType(); + } else if (SS.isSet()) { + // This nested-name-specifier occurs after another nested-name-specifier, + // so long into the context associated with the prior nested-name-specifier. + LookupCtx = computeDeclContext(SS, false); + isDependent = isDependentScopeSpecifier(SS); + Found.setContextRange(SS.getRange()); + } + + if (LookupCtx) { + // Perform "qualified" name lookup into the declaration context we + // computed, which is either the type of the base of a member access + // expression or the declaration context associated with a prior + // nested-name-specifier. + + // The declaration context must be complete. + if (!LookupCtx->isDependentContext() && + RequireCompleteDeclContext(SS, LookupCtx)) + return false; + + LookupQualifiedName(Found, LookupCtx); + } else if (isDependent) { + return false; + } else { + LookupName(Found, S); + } + Found.suppressDiagnostics(); + + if (NamedDecl *ND = Found.getAsSingle<NamedDecl>()) + return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND); + + return false; +} + +/// \brief Build a new nested-name-specifier for "identifier::", as described +/// by ActOnCXXNestedNameSpecifier. +/// +/// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in +/// that it contains an extra parameter \p ScopeLookupResult, which provides +/// the result of name lookup within the scope of the nested-name-specifier +/// that was computed at template definition time. +/// +/// If ErrorRecoveryLookup is true, then this call is used to improve error +/// recovery. This means that it should not emit diagnostics, it should +/// just return null on failure. It also means it should only return a valid +/// scope if it *knows* that the result is correct. It should not return in a +/// dependent context, for example. +Sema::CXXScopeTy *Sema::BuildCXXNestedNameSpecifier(Scope *S, + CXXScopeSpec &SS, + SourceLocation IdLoc, + SourceLocation CCLoc, + IdentifierInfo &II, + QualType ObjectType, + NamedDecl *ScopeLookupResult, + bool EnteringContext, + bool ErrorRecoveryLookup) { + NestedNameSpecifier *Prefix + = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); + + LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName); + + // Determine where to perform name lookup + DeclContext *LookupCtx = 0; + bool isDependent = false; + if (!ObjectType.isNull()) { + // This nested-name-specifier occurs in a member access expression, e.g., + // x->B::f, and we are looking into the type of the object. + assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); + LookupCtx = computeDeclContext(ObjectType); + isDependent = ObjectType->isDependentType(); + } else if (SS.isSet()) { + // This nested-name-specifier occurs after another nested-name-specifier, + // so long into the context associated with the prior nested-name-specifier. + LookupCtx = computeDeclContext(SS, EnteringContext); + isDependent = isDependentScopeSpecifier(SS); + Found.setContextRange(SS.getRange()); + } + + + bool ObjectTypeSearchedInScope = false; + if (LookupCtx) { + // Perform "qualified" name lookup into the declaration context we + // computed, which is either the type of the base of a member access + // expression or the declaration context associated with a prior + // nested-name-specifier. + + // The declaration context must be complete. + if (!LookupCtx->isDependentContext() && + RequireCompleteDeclContext(SS, LookupCtx)) + return 0; + + LookupQualifiedName(Found, LookupCtx); + + if (!ObjectType.isNull() && Found.empty()) { + // C++ [basic.lookup.classref]p4: + // If the id-expression in a class member access is a qualified-id of + // the form + // + // class-name-or-namespace-name::... + // + // the class-name-or-namespace-name following the . or -> operator is + // looked up both in the context of the entire postfix-expression and in + // the scope of the class of the object expression. If the name is found + // only in the scope of the class of the object expression, the name + // shall refer to a class-name. If the name is found only in the + // context of the entire postfix-expression, the name shall refer to a + // class-name or namespace-name. [...] + // + // Qualified name lookup into a class will not find a namespace-name, + // so we do not need to diagnoste that case specifically. However, + // this qualified name lookup may find nothing. In that case, perform + // unqualified name lookup in the given scope (if available) or + // reconstruct the result from when name lookup was performed at template + // definition time. + if (S) + LookupName(Found, S); + else if (ScopeLookupResult) + Found.addDecl(ScopeLookupResult); + + ObjectTypeSearchedInScope = true; + } + } else if (isDependent) { + // Don't speculate if we're just trying to improve error recovery. + if (ErrorRecoveryLookup) + return 0; + + // We were not able to compute the declaration context for a dependent + // base object type or prior nested-name-specifier, so this + // nested-name-specifier refers to an unknown specialization. Just build + // a dependent nested-name-specifier. + if (!Prefix) + return NestedNameSpecifier::Create(Context, &II); + + return NestedNameSpecifier::Create(Context, Prefix, &II); + } else { + // Perform unqualified name lookup in the current scope. + LookupName(Found, S); + } + + // FIXME: Deal with ambiguities cleanly. + + if (Found.empty() && !ErrorRecoveryLookup) { + // We haven't found anything, and we're not recovering from a + // different kind of error, so look for typos. + DeclarationName Name = Found.getLookupName(); + if (CorrectTypo(Found, S, &SS, LookupCtx, EnteringContext, + CTC_NoKeywords) && + Found.isSingleResult() && + isAcceptableNestedNameSpecifier(Found.getAsSingle<NamedDecl>())) { + if (LookupCtx) + Diag(Found.getNameLoc(), diag::err_no_member_suggest) + << Name << LookupCtx << Found.getLookupName() << SS.getRange() + << FixItHint::CreateReplacement(Found.getNameLoc(), + Found.getLookupName().getAsString()); + else + Diag(Found.getNameLoc(), diag::err_undeclared_var_use_suggest) + << Name << Found.getLookupName() + << FixItHint::CreateReplacement(Found.getNameLoc(), + Found.getLookupName().getAsString()); + + if (NamedDecl *ND = Found.getAsSingle<NamedDecl>()) + Diag(ND->getLocation(), diag::note_previous_decl) + << ND->getDeclName(); + } else + Found.clear(); + } + + NamedDecl *SD = Found.getAsSingle<NamedDecl>(); + if (isAcceptableNestedNameSpecifier(SD)) { + if (!ObjectType.isNull() && !ObjectTypeSearchedInScope) { + // C++ [basic.lookup.classref]p4: + // [...] If the name is found in both contexts, the + // class-name-or-namespace-name shall refer to the same entity. + // + // We already found the name in the scope of the object. Now, look + // into the current scope (the scope of the postfix-expression) to + // see if we can find the same name there. As above, if there is no + // scope, reconstruct the result from the template instantiation itself. + NamedDecl *OuterDecl; + if (S) { + LookupResult FoundOuter(*this, &II, IdLoc, LookupNestedNameSpecifierName); + LookupName(FoundOuter, S); + OuterDecl = FoundOuter.getAsSingle<NamedDecl>(); + } else + OuterDecl = ScopeLookupResult; + + if (isAcceptableNestedNameSpecifier(OuterDecl) && + OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() && + (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) || + !Context.hasSameType( + Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)), + Context.getTypeDeclType(cast<TypeDecl>(SD))))) { + if (ErrorRecoveryLookup) + return 0; + + Diag(IdLoc, diag::err_nested_name_member_ref_lookup_ambiguous) + << &II; + Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type) + << ObjectType; + Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope); + + // Fall through so that we'll pick the name we found in the object + // type, since that's probably what the user wanted anyway. + } + } + + if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) + return NestedNameSpecifier::Create(Context, Prefix, Namespace); + + // FIXME: It would be nice to maintain the namespace alias name, then + // see through that alias when resolving the nested-name-specifier down to + // a declaration context. + if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) + return NestedNameSpecifier::Create(Context, Prefix, + + Alias->getNamespace()); + + QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD)); + return NestedNameSpecifier::Create(Context, Prefix, false, + T.getTypePtr()); + } + + // Otherwise, we have an error case. If we don't want diagnostics, just + // return an error now. + if (ErrorRecoveryLookup) + return 0; + + // If we didn't find anything during our lookup, try again with + // ordinary name lookup, which can help us produce better error + // messages. + if (Found.empty()) { + Found.clear(LookupOrdinaryName); + LookupName(Found, S); + } + + unsigned DiagID; + if (!Found.empty()) + DiagID = diag::err_expected_class_or_namespace; + else if (SS.isSet()) { + Diag(IdLoc, diag::err_no_member) << &II << LookupCtx << SS.getRange(); + return 0; + } else + DiagID = diag::err_undeclared_var_use; + + if (SS.isSet()) + Diag(IdLoc, DiagID) << &II << SS.getRange(); + else + Diag(IdLoc, DiagID) << &II; + + return 0; +} + +/// ActOnCXXNestedNameSpecifier - Called during parsing of a +/// nested-name-specifier. e.g. for "foo::bar::" we parsed "foo::" and now +/// we want to resolve "bar::". 'SS' is empty or the previously parsed +/// nested-name part ("foo::"), 'IdLoc' is the source location of 'bar', +/// 'CCLoc' is the location of '::' and 'II' is the identifier for 'bar'. +/// Returns a CXXScopeTy* object representing the C++ scope. +Sema::CXXScopeTy *Sema::ActOnCXXNestedNameSpecifier(Scope *S, + CXXScopeSpec &SS, + SourceLocation IdLoc, + SourceLocation CCLoc, + IdentifierInfo &II, + TypeTy *ObjectTypePtr, + bool EnteringContext) { + return BuildCXXNestedNameSpecifier(S, SS, IdLoc, CCLoc, II, + QualType::getFromOpaquePtr(ObjectTypePtr), + /*ScopeLookupResult=*/0, EnteringContext, + false); +} + +/// IsInvalidUnlessNestedName - This method is used for error recovery +/// purposes to determine whether the specified identifier is only valid as +/// a nested name specifier, for example a namespace name. It is +/// conservatively correct to always return false from this method. +/// +/// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier. +bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS, + IdentifierInfo &II, TypeTy *ObjectType, + bool EnteringContext) { + return BuildCXXNestedNameSpecifier(S, SS, SourceLocation(), SourceLocation(), + II, QualType::getFromOpaquePtr(ObjectType), + /*ScopeLookupResult=*/0, EnteringContext, + true); +} + +Sema::CXXScopeTy *Sema::ActOnCXXNestedNameSpecifier(Scope *S, + const CXXScopeSpec &SS, + TypeTy *Ty, + SourceRange TypeRange, + SourceLocation CCLoc) { + NestedNameSpecifier *Prefix + = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); + QualType T = GetTypeFromParser(Ty); + return NestedNameSpecifier::Create(Context, Prefix, /*FIXME:*/false, + T.getTypePtr()); +} + +bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) { + assert(SS.isSet() && "Parser passed invalid CXXScopeSpec."); + + NestedNameSpecifier *Qualifier = + static_cast<NestedNameSpecifier*>(SS.getScopeRep()); + + // There are only two places a well-formed program may qualify a + // declarator: first, when defining a namespace or class member + // out-of-line, and second, when naming an explicitly-qualified + // friend function. The latter case is governed by + // C++03 [basic.lookup.unqual]p10: + // In a friend declaration naming a member function, a name used + // in the function declarator and not part of a template-argument + // in a template-id is first looked up in the scope of the member + // function's class. If it is not found, or if the name is part of + // a template-argument in a template-id, the look up is as + // described for unqualified names in the definition of the class + // granting friendship. + // i.e. we don't push a scope unless it's a class member. + + switch (Qualifier->getKind()) { + case NestedNameSpecifier::Global: + case NestedNameSpecifier::Namespace: + // These are always namespace scopes. We never want to enter a + // namespace scope from anything but a file context. + return CurContext->getLookupContext()->isFileContext(); + + case NestedNameSpecifier::Identifier: + case NestedNameSpecifier::TypeSpec: + case NestedNameSpecifier::TypeSpecWithTemplate: + // These are never namespace scopes. + return true; + } + + // Silence bogus warning. + return false; +} + +/// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global +/// scope or nested-name-specifier) is parsed, part of a declarator-id. +/// After this method is called, according to [C++ 3.4.3p3], names should be +/// looked up in the declarator-id's scope, until the declarator is parsed and +/// ActOnCXXExitDeclaratorScope is called. +/// The 'SS' should be a non-empty valid CXXScopeSpec. +bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) { + assert(SS.isSet() && "Parser passed invalid CXXScopeSpec."); + + if (SS.isInvalid()) return true; + + DeclContext *DC = computeDeclContext(SS, true); + if (!DC) return true; + + // Before we enter a declarator's context, we need to make sure that + // it is a complete declaration context. + if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC)) + return true; + + EnterDeclaratorContext(S, DC); + + // Rebuild the nested name specifier for the new scope. + if (DC->isDependentContext()) + RebuildNestedNameSpecifierInCurrentInstantiation(SS); + + return false; +} + +/// ActOnCXXExitDeclaratorScope - Called when a declarator that previously +/// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same +/// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well. +/// Used to indicate that names should revert to being looked up in the +/// defining scope. +void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) { + assert(SS.isSet() && "Parser passed invalid CXXScopeSpec."); + if (SS.isInvalid()) + return; + assert(!SS.isInvalid() && computeDeclContext(SS, true) && + "exiting declarator scope we never really entered"); + ExitDeclaratorContext(S); +} |