diff options
Diffstat (limited to 'contrib/llvm/tools/clang/lib/Sema/JumpDiagnostics.cpp')
-rw-r--r-- | contrib/llvm/tools/clang/lib/Sema/JumpDiagnostics.cpp | 519 |
1 files changed, 519 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/Sema/JumpDiagnostics.cpp b/contrib/llvm/tools/clang/lib/Sema/JumpDiagnostics.cpp new file mode 100644 index 0000000..543c1b6 --- /dev/null +++ b/contrib/llvm/tools/clang/lib/Sema/JumpDiagnostics.cpp @@ -0,0 +1,519 @@ +//===--- JumpDiagnostics.cpp - Analyze Jump Targets for VLA issues --------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the JumpScopeChecker class, which is used to diagnose +// jumps that enter a VLA scope in an invalid way. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/BitVector.h" +#include "Sema.h" +#include "clang/AST/Expr.h" +#include "clang/AST/StmtObjC.h" +#include "clang/AST/StmtCXX.h" +using namespace clang; + +namespace { + +/// JumpScopeChecker - This object is used by Sema to diagnose invalid jumps +/// into VLA and other protected scopes. For example, this rejects: +/// goto L; +/// int a[n]; +/// L: +/// +class JumpScopeChecker { + Sema &S; + + /// GotoScope - This is a record that we use to keep track of all of the + /// scopes that are introduced by VLAs and other things that scope jumps like + /// gotos. This scope tree has nothing to do with the source scope tree, + /// because you can have multiple VLA scopes per compound statement, and most + /// compound statements don't introduce any scopes. + struct GotoScope { + /// ParentScope - The index in ScopeMap of the parent scope. This is 0 for + /// the parent scope is the function body. + unsigned ParentScope; + + /// InDiag - The diagnostic to emit if there is a jump into this scope. + unsigned InDiag; + + /// OutDiag - The diagnostic to emit if there is an indirect jump out + /// of this scope. Direct jumps always clean up their current scope + /// in an orderly way. + unsigned OutDiag; + + /// Loc - Location to emit the diagnostic. + SourceLocation Loc; + + GotoScope(unsigned parentScope, unsigned InDiag, unsigned OutDiag, + SourceLocation L) + : ParentScope(parentScope), InDiag(InDiag), OutDiag(OutDiag), Loc(L) {} + }; + + llvm::SmallVector<GotoScope, 48> Scopes; + llvm::DenseMap<Stmt*, unsigned> LabelAndGotoScopes; + llvm::SmallVector<Stmt*, 16> Jumps; + + llvm::SmallVector<IndirectGotoStmt*, 4> IndirectJumps; + llvm::SmallVector<LabelStmt*, 4> IndirectJumpTargets; +public: + JumpScopeChecker(Stmt *Body, Sema &S); +private: + void BuildScopeInformation(Stmt *S, unsigned ParentScope); + void VerifyJumps(); + void VerifyIndirectJumps(); + void DiagnoseIndirectJump(IndirectGotoStmt *IG, unsigned IGScope, + LabelStmt *Target, unsigned TargetScope); + void CheckJump(Stmt *From, Stmt *To, + SourceLocation DiagLoc, unsigned JumpDiag); + + unsigned GetDeepestCommonScope(unsigned A, unsigned B); +}; +} // end anonymous namespace + + +JumpScopeChecker::JumpScopeChecker(Stmt *Body, Sema &s) : S(s) { + // Add a scope entry for function scope. + Scopes.push_back(GotoScope(~0U, ~0U, ~0U, SourceLocation())); + + // Build information for the top level compound statement, so that we have a + // defined scope record for every "goto" and label. + BuildScopeInformation(Body, 0); + + // Check that all jumps we saw are kosher. + VerifyJumps(); + VerifyIndirectJumps(); +} + +/// GetDeepestCommonScope - Finds the innermost scope enclosing the +/// two scopes. +unsigned JumpScopeChecker::GetDeepestCommonScope(unsigned A, unsigned B) { + while (A != B) { + // Inner scopes are created after outer scopes and therefore have + // higher indices. + if (A < B) { + assert(Scopes[B].ParentScope < B); + B = Scopes[B].ParentScope; + } else { + assert(Scopes[A].ParentScope < A); + A = Scopes[A].ParentScope; + } + } + return A; +} + +/// GetDiagForGotoScopeDecl - If this decl induces a new goto scope, return a +/// diagnostic that should be emitted if control goes over it. If not, return 0. +static std::pair<unsigned,unsigned> + GetDiagForGotoScopeDecl(const Decl *D, bool isCPlusPlus) { + if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { + unsigned InDiag = 0, OutDiag = 0; + if (VD->getType()->isVariablyModifiedType()) + InDiag = diag::note_protected_by_vla; + + if (VD->hasAttr<BlocksAttr>()) { + InDiag = diag::note_protected_by___block; + OutDiag = diag::note_exits___block; + } else if (VD->hasAttr<CleanupAttr>()) { + InDiag = diag::note_protected_by_cleanup; + OutDiag = diag::note_exits_cleanup; + } else if (isCPlusPlus) { + // FIXME: In C++0x, we have to check more conditions than "did we + // just give it an initializer?". See 6.7p3. + if (VD->hasLocalStorage() && VD->hasInit()) + InDiag = diag::note_protected_by_variable_init; + + CanQualType T = VD->getType()->getCanonicalTypeUnqualified(); + while (CanQual<ArrayType> AT = T->getAs<ArrayType>()) + T = AT->getElementType(); + if (CanQual<RecordType> RT = T->getAs<RecordType>()) + if (!cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor()) + OutDiag = diag::note_exits_dtor; + } + + return std::make_pair(InDiag, OutDiag); + } + + if (const TypedefDecl *TD = dyn_cast<TypedefDecl>(D)) { + if (TD->getUnderlyingType()->isVariablyModifiedType()) + return std::make_pair((unsigned) diag::note_protected_by_vla_typedef, 0); + } + + return std::make_pair(0U, 0U); +} + + +/// BuildScopeInformation - The statements from CI to CE are known to form a +/// coherent VLA scope with a specified parent node. Walk through the +/// statements, adding any labels or gotos to LabelAndGotoScopes and recursively +/// walking the AST as needed. +void JumpScopeChecker::BuildScopeInformation(Stmt *S, unsigned ParentScope) { + + // If we found a label, remember that it is in ParentScope scope. + switch (S->getStmtClass()) { + case Stmt::LabelStmtClass: + case Stmt::DefaultStmtClass: + case Stmt::CaseStmtClass: + LabelAndGotoScopes[S] = ParentScope; + break; + + case Stmt::AddrLabelExprClass: + IndirectJumpTargets.push_back(cast<AddrLabelExpr>(S)->getLabel()); + break; + + case Stmt::IndirectGotoStmtClass: + LabelAndGotoScopes[S] = ParentScope; + IndirectJumps.push_back(cast<IndirectGotoStmt>(S)); + break; + + case Stmt::GotoStmtClass: + case Stmt::SwitchStmtClass: + // Remember both what scope a goto is in as well as the fact that we have + // it. This makes the second scan not have to walk the AST again. + LabelAndGotoScopes[S] = ParentScope; + Jumps.push_back(S); + break; + + default: + break; + } + + for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E; + ++CI) { + Stmt *SubStmt = *CI; + if (SubStmt == 0) continue; + + bool isCPlusPlus = this->S.getLangOptions().CPlusPlus; + + // If this is a declstmt with a VLA definition, it defines a scope from here + // to the end of the containing context. + if (DeclStmt *DS = dyn_cast<DeclStmt>(SubStmt)) { + // The decl statement creates a scope if any of the decls in it are VLAs + // or have the cleanup attribute. + for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end(); + I != E; ++I) { + // If this decl causes a new scope, push and switch to it. + std::pair<unsigned,unsigned> Diags + = GetDiagForGotoScopeDecl(*I, isCPlusPlus); + if (Diags.first || Diags.second) { + Scopes.push_back(GotoScope(ParentScope, Diags.first, Diags.second, + (*I)->getLocation())); + ParentScope = Scopes.size()-1; + } + + // If the decl has an initializer, walk it with the potentially new + // scope we just installed. + if (VarDecl *VD = dyn_cast<VarDecl>(*I)) + if (Expr *Init = VD->getInit()) + BuildScopeInformation(Init, ParentScope); + } + continue; + } + + // Disallow jumps into any part of an @try statement by pushing a scope and + // walking all sub-stmts in that scope. + if (ObjCAtTryStmt *AT = dyn_cast<ObjCAtTryStmt>(SubStmt)) { + // Recursively walk the AST for the @try part. + Scopes.push_back(GotoScope(ParentScope, + diag::note_protected_by_objc_try, + diag::note_exits_objc_try, + AT->getAtTryLoc())); + if (Stmt *TryPart = AT->getTryBody()) + BuildScopeInformation(TryPart, Scopes.size()-1); + + // Jump from the catch to the finally or try is not valid. + for (unsigned I = 0, N = AT->getNumCatchStmts(); I != N; ++I) { + ObjCAtCatchStmt *AC = AT->getCatchStmt(I); + Scopes.push_back(GotoScope(ParentScope, + diag::note_protected_by_objc_catch, + diag::note_exits_objc_catch, + AC->getAtCatchLoc())); + // @catches are nested and it isn't + BuildScopeInformation(AC->getCatchBody(), Scopes.size()-1); + } + + // Jump from the finally to the try or catch is not valid. + if (ObjCAtFinallyStmt *AF = AT->getFinallyStmt()) { + Scopes.push_back(GotoScope(ParentScope, + diag::note_protected_by_objc_finally, + diag::note_exits_objc_finally, + AF->getAtFinallyLoc())); + BuildScopeInformation(AF, Scopes.size()-1); + } + + continue; + } + + // Disallow jumps into the protected statement of an @synchronized, but + // allow jumps into the object expression it protects. + if (ObjCAtSynchronizedStmt *AS = dyn_cast<ObjCAtSynchronizedStmt>(SubStmt)){ + // Recursively walk the AST for the @synchronized object expr, it is + // evaluated in the normal scope. + BuildScopeInformation(AS->getSynchExpr(), ParentScope); + + // Recursively walk the AST for the @synchronized part, protected by a new + // scope. + Scopes.push_back(GotoScope(ParentScope, + diag::note_protected_by_objc_synchronized, + diag::note_exits_objc_synchronized, + AS->getAtSynchronizedLoc())); + BuildScopeInformation(AS->getSynchBody(), Scopes.size()-1); + continue; + } + + // Disallow jumps into any part of a C++ try statement. This is pretty + // much the same as for Obj-C. + if (CXXTryStmt *TS = dyn_cast<CXXTryStmt>(SubStmt)) { + Scopes.push_back(GotoScope(ParentScope, + diag::note_protected_by_cxx_try, + diag::note_exits_cxx_try, + TS->getSourceRange().getBegin())); + if (Stmt *TryBlock = TS->getTryBlock()) + BuildScopeInformation(TryBlock, Scopes.size()-1); + + // Jump from the catch into the try is not allowed either. + for (unsigned I = 0, E = TS->getNumHandlers(); I != E; ++I) { + CXXCatchStmt *CS = TS->getHandler(I); + Scopes.push_back(GotoScope(ParentScope, + diag::note_protected_by_cxx_catch, + diag::note_exits_cxx_catch, + CS->getSourceRange().getBegin())); + BuildScopeInformation(CS->getHandlerBlock(), Scopes.size()-1); + } + + continue; + } + + // Recursively walk the AST. + BuildScopeInformation(SubStmt, ParentScope); + } +} + +/// VerifyJumps - Verify each element of the Jumps array to see if they are +/// valid, emitting diagnostics if not. +void JumpScopeChecker::VerifyJumps() { + while (!Jumps.empty()) { + Stmt *Jump = Jumps.pop_back_val(); + + // With a goto, + if (GotoStmt *GS = dyn_cast<GotoStmt>(Jump)) { + CheckJump(GS, GS->getLabel(), GS->getGotoLoc(), + diag::err_goto_into_protected_scope); + continue; + } + + SwitchStmt *SS = cast<SwitchStmt>(Jump); + for (SwitchCase *SC = SS->getSwitchCaseList(); SC; + SC = SC->getNextSwitchCase()) { + assert(LabelAndGotoScopes.count(SC) && "Case not visited?"); + CheckJump(SS, SC, SC->getLocStart(), + diag::err_switch_into_protected_scope); + } + } +} + +/// VerifyIndirectJumps - Verify whether any possible indirect jump +/// might cross a protection boundary. Unlike direct jumps, indirect +/// jumps count cleanups as protection boundaries: since there's no +/// way to know where the jump is going, we can't implicitly run the +/// right cleanups the way we can with direct jumps. +/// +/// Thus, an indirect jump is "trivial" if it bypasses no +/// initializations and no teardowns. More formally, an indirect jump +/// from A to B is trivial if the path out from A to DCA(A,B) is +/// trivial and the path in from DCA(A,B) to B is trivial, where +/// DCA(A,B) is the deepest common ancestor of A and B. +/// Jump-triviality is transitive but asymmetric. +/// +/// A path in is trivial if none of the entered scopes have an InDiag. +/// A path out is trivial is none of the exited scopes have an OutDiag. +/// +/// Under these definitions, this function checks that the indirect +/// jump between A and B is trivial for every indirect goto statement A +/// and every label B whose address was taken in the function. +void JumpScopeChecker::VerifyIndirectJumps() { + if (IndirectJumps.empty()) return; + + // If there aren't any address-of-label expressions in this function, + // complain about the first indirect goto. + if (IndirectJumpTargets.empty()) { + S.Diag(IndirectJumps[0]->getGotoLoc(), + diag::err_indirect_goto_without_addrlabel); + return; + } + + // Collect a single representative of every scope containing an + // indirect goto. For most code bases, this substantially cuts + // down on the number of jump sites we'll have to consider later. + typedef std::pair<unsigned, IndirectGotoStmt*> JumpScope; + llvm::SmallVector<JumpScope, 32> JumpScopes; + { + llvm::DenseMap<unsigned, IndirectGotoStmt*> JumpScopesMap; + for (llvm::SmallVectorImpl<IndirectGotoStmt*>::iterator + I = IndirectJumps.begin(), E = IndirectJumps.end(); I != E; ++I) { + IndirectGotoStmt *IG = *I; + assert(LabelAndGotoScopes.count(IG) && + "indirect jump didn't get added to scopes?"); + unsigned IGScope = LabelAndGotoScopes[IG]; + IndirectGotoStmt *&Entry = JumpScopesMap[IGScope]; + if (!Entry) Entry = IG; + } + JumpScopes.reserve(JumpScopesMap.size()); + for (llvm::DenseMap<unsigned, IndirectGotoStmt*>::iterator + I = JumpScopesMap.begin(), E = JumpScopesMap.end(); I != E; ++I) + JumpScopes.push_back(*I); + } + + // Collect a single representative of every scope containing a + // label whose address was taken somewhere in the function. + // For most code bases, there will be only one such scope. + llvm::DenseMap<unsigned, LabelStmt*> TargetScopes; + for (llvm::SmallVectorImpl<LabelStmt*>::iterator + I = IndirectJumpTargets.begin(), E = IndirectJumpTargets.end(); + I != E; ++I) { + LabelStmt *TheLabel = *I; + assert(LabelAndGotoScopes.count(TheLabel) && + "Referenced label didn't get added to scopes?"); + unsigned LabelScope = LabelAndGotoScopes[TheLabel]; + LabelStmt *&Target = TargetScopes[LabelScope]; + if (!Target) Target = TheLabel; + } + + // For each target scope, make sure it's trivially reachable from + // every scope containing a jump site. + // + // A path between scopes always consists of exitting zero or more + // scopes, then entering zero or more scopes. We build a set of + // of scopes S from which the target scope can be trivially + // entered, then verify that every jump scope can be trivially + // exitted to reach a scope in S. + llvm::BitVector Reachable(Scopes.size(), false); + for (llvm::DenseMap<unsigned,LabelStmt*>::iterator + TI = TargetScopes.begin(), TE = TargetScopes.end(); TI != TE; ++TI) { + unsigned TargetScope = TI->first; + LabelStmt *TargetLabel = TI->second; + + Reachable.reset(); + + // Mark all the enclosing scopes from which you can safely jump + // into the target scope. 'Min' will end up being the index of + // the shallowest such scope. + unsigned Min = TargetScope; + while (true) { + Reachable.set(Min); + + // Don't go beyond the outermost scope. + if (Min == 0) break; + + // Stop if we can't trivially enter the current scope. + if (Scopes[Min].InDiag) break; + + Min = Scopes[Min].ParentScope; + } + + // Walk through all the jump sites, checking that they can trivially + // reach this label scope. + for (llvm::SmallVectorImpl<JumpScope>::iterator + I = JumpScopes.begin(), E = JumpScopes.end(); I != E; ++I) { + unsigned Scope = I->first; + + // Walk out the "scope chain" for this scope, looking for a scope + // we've marked reachable. For well-formed code this amortizes + // to O(JumpScopes.size() / Scopes.size()): we only iterate + // when we see something unmarked, and in well-formed code we + // mark everything we iterate past. + bool IsReachable = false; + while (true) { + if (Reachable.test(Scope)) { + // If we find something reachable, mark all the scopes we just + // walked through as reachable. + for (unsigned S = I->first; S != Scope; S = Scopes[S].ParentScope) + Reachable.set(S); + IsReachable = true; + break; + } + + // Don't walk out if we've reached the top-level scope or we've + // gotten shallower than the shallowest reachable scope. + if (Scope == 0 || Scope < Min) break; + + // Don't walk out through an out-diagnostic. + if (Scopes[Scope].OutDiag) break; + + Scope = Scopes[Scope].ParentScope; + } + + // Only diagnose if we didn't find something. + if (IsReachable) continue; + + DiagnoseIndirectJump(I->second, I->first, TargetLabel, TargetScope); + } + } +} + +/// Diagnose an indirect jump which is known to cross scopes. +void JumpScopeChecker::DiagnoseIndirectJump(IndirectGotoStmt *Jump, + unsigned JumpScope, + LabelStmt *Target, + unsigned TargetScope) { + assert(JumpScope != TargetScope); + + S.Diag(Jump->getGotoLoc(), diag::warn_indirect_goto_in_protected_scope); + S.Diag(Target->getIdentLoc(), diag::note_indirect_goto_target); + + unsigned Common = GetDeepestCommonScope(JumpScope, TargetScope); + + // Walk out the scope chain until we reach the common ancestor. + for (unsigned I = JumpScope; I != Common; I = Scopes[I].ParentScope) + if (Scopes[I].OutDiag) + S.Diag(Scopes[I].Loc, Scopes[I].OutDiag); + + // Now walk into the scopes containing the label whose address was taken. + for (unsigned I = TargetScope; I != Common; I = Scopes[I].ParentScope) + if (Scopes[I].InDiag) + S.Diag(Scopes[I].Loc, Scopes[I].InDiag); +} + +/// CheckJump - Validate that the specified jump statement is valid: that it is +/// jumping within or out of its current scope, not into a deeper one. +void JumpScopeChecker::CheckJump(Stmt *From, Stmt *To, + SourceLocation DiagLoc, unsigned JumpDiag) { + assert(LabelAndGotoScopes.count(From) && "Jump didn't get added to scopes?"); + unsigned FromScope = LabelAndGotoScopes[From]; + + assert(LabelAndGotoScopes.count(To) && "Jump didn't get added to scopes?"); + unsigned ToScope = LabelAndGotoScopes[To]; + + // Common case: exactly the same scope, which is fine. + if (FromScope == ToScope) return; + + unsigned CommonScope = GetDeepestCommonScope(FromScope, ToScope); + + // It's okay to jump out from a nested scope. + if (CommonScope == ToScope) return; + + // Pull out (and reverse) any scopes we might need to diagnose skipping. + llvm::SmallVector<unsigned, 10> ToScopes; + for (unsigned I = ToScope; I != CommonScope; I = Scopes[I].ParentScope) + if (Scopes[I].InDiag) + ToScopes.push_back(I); + + // If the only scopes present are cleanup scopes, we're okay. + if (ToScopes.empty()) return; + + S.Diag(DiagLoc, JumpDiag); + + // Emit diagnostics for whatever is left in ToScopes. + for (unsigned i = 0, e = ToScopes.size(); i != e; ++i) + S.Diag(Scopes[ToScopes[i]].Loc, Scopes[ToScopes[i]].InDiag); +} + +void Sema::DiagnoseInvalidJumps(Stmt *Body) { + (void)JumpScopeChecker(Body, *this); +} |