diff options
Diffstat (limited to 'contrib/llvm/tools/clang/lib/CodeGen/TargetInfo.cpp')
-rw-r--r-- | contrib/llvm/tools/clang/lib/CodeGen/TargetInfo.cpp | 5619 |
1 files changed, 5619 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/TargetInfo.cpp b/contrib/llvm/tools/clang/lib/CodeGen/TargetInfo.cpp new file mode 100644 index 0000000..76acf87 --- /dev/null +++ b/contrib/llvm/tools/clang/lib/CodeGen/TargetInfo.cpp @@ -0,0 +1,5619 @@ +//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// These classes wrap the information about a call or function +// definition used to handle ABI compliancy. +// +//===----------------------------------------------------------------------===// + +#include "TargetInfo.h" +#include "ABIInfo.h" +#include "CGCXXABI.h" +#include "CodeGenFunction.h" +#include "clang/AST/RecordLayout.h" +#include "clang/CodeGen/CGFunctionInfo.h" +#include "clang/Frontend/CodeGenOptions.h" +#include "llvm/ADT/Triple.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Type.h" +#include "llvm/Support/raw_ostream.h" +using namespace clang; +using namespace CodeGen; + +static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, + llvm::Value *Array, + llvm::Value *Value, + unsigned FirstIndex, + unsigned LastIndex) { + // Alternatively, we could emit this as a loop in the source. + for (unsigned I = FirstIndex; I <= LastIndex; ++I) { + llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I); + Builder.CreateStore(Value, Cell); + } +} + +static bool isAggregateTypeForABI(QualType T) { + return !CodeGenFunction::hasScalarEvaluationKind(T) || + T->isMemberFunctionPointerType(); +} + +ABIInfo::~ABIInfo() {} + +static bool isRecordReturnIndirect(const RecordType *RT, + CGCXXABI &CXXABI) { + const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); + if (!RD) + return false; + return CXXABI.isReturnTypeIndirect(RD); +} + + +static bool isRecordReturnIndirect(QualType T, CGCXXABI &CXXABI) { + const RecordType *RT = T->getAs<RecordType>(); + if (!RT) + return false; + return isRecordReturnIndirect(RT, CXXABI); +} + +static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, + CGCXXABI &CXXABI) { + const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); + if (!RD) + return CGCXXABI::RAA_Default; + return CXXABI.getRecordArgABI(RD); +} + +static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, + CGCXXABI &CXXABI) { + const RecordType *RT = T->getAs<RecordType>(); + if (!RT) + return CGCXXABI::RAA_Default; + return getRecordArgABI(RT, CXXABI); +} + +CGCXXABI &ABIInfo::getCXXABI() const { + return CGT.getCXXABI(); +} + +ASTContext &ABIInfo::getContext() const { + return CGT.getContext(); +} + +llvm::LLVMContext &ABIInfo::getVMContext() const { + return CGT.getLLVMContext(); +} + +const llvm::DataLayout &ABIInfo::getDataLayout() const { + return CGT.getDataLayout(); +} + +const TargetInfo &ABIInfo::getTarget() const { + return CGT.getTarget(); +} + +void ABIArgInfo::dump() const { + raw_ostream &OS = llvm::errs(); + OS << "(ABIArgInfo Kind="; + switch (TheKind) { + case Direct: + OS << "Direct Type="; + if (llvm::Type *Ty = getCoerceToType()) + Ty->print(OS); + else + OS << "null"; + break; + case Extend: + OS << "Extend"; + break; + case Ignore: + OS << "Ignore"; + break; + case Indirect: + OS << "Indirect Align=" << getIndirectAlign() + << " ByVal=" << getIndirectByVal() + << " Realign=" << getIndirectRealign(); + break; + case Expand: + OS << "Expand"; + break; + } + OS << ")\n"; +} + +TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } + +// If someone can figure out a general rule for this, that would be great. +// It's probably just doomed to be platform-dependent, though. +unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { + // Verified for: + // x86-64 FreeBSD, Linux, Darwin + // x86-32 FreeBSD, Linux, Darwin + // PowerPC Linux, Darwin + // ARM Darwin (*not* EABI) + // AArch64 Linux + return 32; +} + +bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, + const FunctionNoProtoType *fnType) const { + // The following conventions are known to require this to be false: + // x86_stdcall + // MIPS + // For everything else, we just prefer false unless we opt out. + return false; +} + +void +TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, + llvm::SmallString<24> &Opt) const { + // This assumes the user is passing a library name like "rt" instead of a + // filename like "librt.a/so", and that they don't care whether it's static or + // dynamic. + Opt = "-l"; + Opt += Lib; +} + +static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); + +/// isEmptyField - Return true iff a the field is "empty", that is it +/// is an unnamed bit-field or an (array of) empty record(s). +static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, + bool AllowArrays) { + if (FD->isUnnamedBitfield()) + return true; + + QualType FT = FD->getType(); + + // Constant arrays of empty records count as empty, strip them off. + // Constant arrays of zero length always count as empty. + if (AllowArrays) + while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { + if (AT->getSize() == 0) + return true; + FT = AT->getElementType(); + } + + const RecordType *RT = FT->getAs<RecordType>(); + if (!RT) + return false; + + // C++ record fields are never empty, at least in the Itanium ABI. + // + // FIXME: We should use a predicate for whether this behavior is true in the + // current ABI. + if (isa<CXXRecordDecl>(RT->getDecl())) + return false; + + return isEmptyRecord(Context, FT, AllowArrays); +} + +/// isEmptyRecord - Return true iff a structure contains only empty +/// fields. Note that a structure with a flexible array member is not +/// considered empty. +static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { + const RecordType *RT = T->getAs<RecordType>(); + if (!RT) + return 0; + const RecordDecl *RD = RT->getDecl(); + if (RD->hasFlexibleArrayMember()) + return false; + + // If this is a C++ record, check the bases first. + if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) + for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), + e = CXXRD->bases_end(); i != e; ++i) + if (!isEmptyRecord(Context, i->getType(), true)) + return false; + + for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); + i != e; ++i) + if (!isEmptyField(Context, *i, AllowArrays)) + return false; + return true; +} + +/// isSingleElementStruct - Determine if a structure is a "single +/// element struct", i.e. it has exactly one non-empty field or +/// exactly one field which is itself a single element +/// struct. Structures with flexible array members are never +/// considered single element structs. +/// +/// \return The field declaration for the single non-empty field, if +/// it exists. +static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { + const RecordType *RT = T->getAsStructureType(); + if (!RT) + return 0; + + const RecordDecl *RD = RT->getDecl(); + if (RD->hasFlexibleArrayMember()) + return 0; + + const Type *Found = 0; + + // If this is a C++ record, check the bases first. + if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { + for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), + e = CXXRD->bases_end(); i != e; ++i) { + // Ignore empty records. + if (isEmptyRecord(Context, i->getType(), true)) + continue; + + // If we already found an element then this isn't a single-element struct. + if (Found) + return 0; + + // If this is non-empty and not a single element struct, the composite + // cannot be a single element struct. + Found = isSingleElementStruct(i->getType(), Context); + if (!Found) + return 0; + } + } + + // Check for single element. + for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); + i != e; ++i) { + const FieldDecl *FD = *i; + QualType FT = FD->getType(); + + // Ignore empty fields. + if (isEmptyField(Context, FD, true)) + continue; + + // If we already found an element then this isn't a single-element + // struct. + if (Found) + return 0; + + // Treat single element arrays as the element. + while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { + if (AT->getSize().getZExtValue() != 1) + break; + FT = AT->getElementType(); + } + + if (!isAggregateTypeForABI(FT)) { + Found = FT.getTypePtr(); + } else { + Found = isSingleElementStruct(FT, Context); + if (!Found) + return 0; + } + } + + // We don't consider a struct a single-element struct if it has + // padding beyond the element type. + if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) + return 0; + + return Found; +} + +static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { + // Treat complex types as the element type. + if (const ComplexType *CTy = Ty->getAs<ComplexType>()) + Ty = CTy->getElementType(); + + // Check for a type which we know has a simple scalar argument-passing + // convention without any padding. (We're specifically looking for 32 + // and 64-bit integer and integer-equivalents, float, and double.) + if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && + !Ty->isEnumeralType() && !Ty->isBlockPointerType()) + return false; + + uint64_t Size = Context.getTypeSize(Ty); + return Size == 32 || Size == 64; +} + +/// canExpandIndirectArgument - Test whether an argument type which is to be +/// passed indirectly (on the stack) would have the equivalent layout if it was +/// expanded into separate arguments. If so, we prefer to do the latter to avoid +/// inhibiting optimizations. +/// +// FIXME: This predicate is missing many cases, currently it just follows +// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We +// should probably make this smarter, or better yet make the LLVM backend +// capable of handling it. +static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) { + // We can only expand structure types. + const RecordType *RT = Ty->getAs<RecordType>(); + if (!RT) + return false; + + // We can only expand (C) structures. + // + // FIXME: This needs to be generalized to handle classes as well. + const RecordDecl *RD = RT->getDecl(); + if (!RD->isStruct() || isa<CXXRecordDecl>(RD)) + return false; + + uint64_t Size = 0; + + for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); + i != e; ++i) { + const FieldDecl *FD = *i; + + if (!is32Or64BitBasicType(FD->getType(), Context)) + return false; + + // FIXME: Reject bit-fields wholesale; there are two problems, we don't know + // how to expand them yet, and the predicate for telling if a bitfield still + // counts as "basic" is more complicated than what we were doing previously. + if (FD->isBitField()) + return false; + + Size += Context.getTypeSize(FD->getType()); + } + + // Make sure there are not any holes in the struct. + if (Size != Context.getTypeSize(Ty)) + return false; + + return true; +} + +namespace { +/// DefaultABIInfo - The default implementation for ABI specific +/// details. This implementation provides information which results in +/// self-consistent and sensible LLVM IR generation, but does not +/// conform to any particular ABI. +class DefaultABIInfo : public ABIInfo { +public: + DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} + + ABIArgInfo classifyReturnType(QualType RetTy) const; + ABIArgInfo classifyArgumentType(QualType RetTy) const; + + virtual void computeInfo(CGFunctionInfo &FI) const { + FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); + for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); + it != ie; ++it) + it->info = classifyArgumentType(it->type); + } + + virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const; +}; + +class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { +public: + DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) + : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} +}; + +llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const { + return 0; +} + +ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { + if (isAggregateTypeForABI(Ty)) { + // Records with non trivial destructors/constructors should not be passed + // by value. + if (isRecordReturnIndirect(Ty, getCXXABI())) + return ABIArgInfo::getIndirect(0, /*ByVal=*/false); + + return ABIArgInfo::getIndirect(0); + } + + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = Ty->getAs<EnumType>()) + Ty = EnumTy->getDecl()->getIntegerType(); + + return (Ty->isPromotableIntegerType() ? + ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); +} + +ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { + if (RetTy->isVoidType()) + return ABIArgInfo::getIgnore(); + + if (isAggregateTypeForABI(RetTy)) + return ABIArgInfo::getIndirect(0); + + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) + RetTy = EnumTy->getDecl()->getIntegerType(); + + return (RetTy->isPromotableIntegerType() ? + ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); +} + +//===----------------------------------------------------------------------===// +// le32/PNaCl bitcode ABI Implementation +// +// This is a simplified version of the x86_32 ABI. Arguments and return values +// are always passed on the stack. +//===----------------------------------------------------------------------===// + +class PNaClABIInfo : public ABIInfo { + public: + PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} + + ABIArgInfo classifyReturnType(QualType RetTy) const; + ABIArgInfo classifyArgumentType(QualType RetTy) const; + + virtual void computeInfo(CGFunctionInfo &FI) const; + virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const; +}; + +class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { + public: + PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) + : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} +}; + +void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { + FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); + + for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); + it != ie; ++it) + it->info = classifyArgumentType(it->type); + } + +llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const { + return 0; +} + +/// \brief Classify argument of given type \p Ty. +ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { + if (isAggregateTypeForABI(Ty)) { + if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) + return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); + return ABIArgInfo::getIndirect(0); + } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { + // Treat an enum type as its underlying type. + Ty = EnumTy->getDecl()->getIntegerType(); + } else if (Ty->isFloatingType()) { + // Floating-point types don't go inreg. + return ABIArgInfo::getDirect(); + } + + return (Ty->isPromotableIntegerType() ? + ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); +} + +ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { + if (RetTy->isVoidType()) + return ABIArgInfo::getIgnore(); + + // In the PNaCl ABI we always return records/structures on the stack. + if (isAggregateTypeForABI(RetTy)) + return ABIArgInfo::getIndirect(0); + + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) + RetTy = EnumTy->getDecl()->getIntegerType(); + + return (RetTy->isPromotableIntegerType() ? + ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); +} + +/// IsX86_MMXType - Return true if this is an MMX type. +bool IsX86_MMXType(llvm::Type *IRType) { + // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. + return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && + cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && + IRType->getScalarSizeInBits() != 64; +} + +static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, + StringRef Constraint, + llvm::Type* Ty) { + if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) { + if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { + // Invalid MMX constraint + return 0; + } + + return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); + } + + // No operation needed + return Ty; +} + +//===----------------------------------------------------------------------===// +// X86-32 ABI Implementation +//===----------------------------------------------------------------------===// + +/// X86_32ABIInfo - The X86-32 ABI information. +class X86_32ABIInfo : public ABIInfo { + enum Class { + Integer, + Float + }; + + static const unsigned MinABIStackAlignInBytes = 4; + + bool IsDarwinVectorABI; + bool IsSmallStructInRegABI; + bool IsWin32StructABI; + unsigned DefaultNumRegisterParameters; + + static bool isRegisterSize(unsigned Size) { + return (Size == 8 || Size == 16 || Size == 32 || Size == 64); + } + + static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context, + unsigned callingConvention); + + /// getIndirectResult - Give a source type \arg Ty, return a suitable result + /// such that the argument will be passed in memory. + ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, + unsigned &FreeRegs) const; + + /// \brief Return the alignment to use for the given type on the stack. + unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; + + Class classify(QualType Ty) const; + ABIArgInfo classifyReturnType(QualType RetTy, + unsigned callingConvention) const; + ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &FreeRegs, + bool IsFastCall) const; + bool shouldUseInReg(QualType Ty, unsigned &FreeRegs, + bool IsFastCall, bool &NeedsPadding) const; + +public: + + virtual void computeInfo(CGFunctionInfo &FI) const; + virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const; + + X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w, + unsigned r) + : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p), + IsWin32StructABI(w), DefaultNumRegisterParameters(r) {} +}; + +class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { +public: + X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, + bool d, bool p, bool w, unsigned r) + :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {} + + static bool isStructReturnInRegABI( + const llvm::Triple &Triple, const CodeGenOptions &Opts); + + void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, + CodeGen::CodeGenModule &CGM) const; + + int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const { + // Darwin uses different dwarf register numbers for EH. + if (CGM.getTarget().getTriple().isOSDarwin()) return 5; + return 4; + } + + bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, + llvm::Value *Address) const; + + llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, + StringRef Constraint, + llvm::Type* Ty) const { + return X86AdjustInlineAsmType(CGF, Constraint, Ty); + } + + llvm::Constant *getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const { + unsigned Sig = (0xeb << 0) | // jmp rel8 + (0x06 << 8) | // .+0x08 + ('F' << 16) | + ('T' << 24); + return llvm::ConstantInt::get(CGM.Int32Ty, Sig); + } + +}; + +} + +/// shouldReturnTypeInRegister - Determine if the given type should be +/// passed in a register (for the Darwin ABI). +bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, + ASTContext &Context, + unsigned callingConvention) { + uint64_t Size = Context.getTypeSize(Ty); + + // Type must be register sized. + if (!isRegisterSize(Size)) + return false; + + if (Ty->isVectorType()) { + // 64- and 128- bit vectors inside structures are not returned in + // registers. + if (Size == 64 || Size == 128) + return false; + + return true; + } + + // If this is a builtin, pointer, enum, complex type, member pointer, or + // member function pointer it is ok. + if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || + Ty->isAnyComplexType() || Ty->isEnumeralType() || + Ty->isBlockPointerType() || Ty->isMemberPointerType()) + return true; + + // Arrays are treated like records. + if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) + return shouldReturnTypeInRegister(AT->getElementType(), Context, + callingConvention); + + // Otherwise, it must be a record type. + const RecordType *RT = Ty->getAs<RecordType>(); + if (!RT) return false; + + // FIXME: Traverse bases here too. + + // For thiscall conventions, structures will never be returned in + // a register. This is for compatibility with the MSVC ABI + if (callingConvention == llvm::CallingConv::X86_ThisCall && + RT->isStructureType()) { + return false; + } + + // Structure types are passed in register if all fields would be + // passed in a register. + for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(), + e = RT->getDecl()->field_end(); i != e; ++i) { + const FieldDecl *FD = *i; + + // Empty fields are ignored. + if (isEmptyField(Context, FD, true)) + continue; + + // Check fields recursively. + if (!shouldReturnTypeInRegister(FD->getType(), Context, + callingConvention)) + return false; + } + return true; +} + +ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, + unsigned callingConvention) const { + if (RetTy->isVoidType()) + return ABIArgInfo::getIgnore(); + + if (const VectorType *VT = RetTy->getAs<VectorType>()) { + // On Darwin, some vectors are returned in registers. + if (IsDarwinVectorABI) { + uint64_t Size = getContext().getTypeSize(RetTy); + + // 128-bit vectors are a special case; they are returned in + // registers and we need to make sure to pick a type the LLVM + // backend will like. + if (Size == 128) + return ABIArgInfo::getDirect(llvm::VectorType::get( + llvm::Type::getInt64Ty(getVMContext()), 2)); + + // Always return in register if it fits in a general purpose + // register, or if it is 64 bits and has a single element. + if ((Size == 8 || Size == 16 || Size == 32) || + (Size == 64 && VT->getNumElements() == 1)) + return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), + Size)); + + return ABIArgInfo::getIndirect(0); + } + + return ABIArgInfo::getDirect(); + } + + if (isAggregateTypeForABI(RetTy)) { + if (const RecordType *RT = RetTy->getAs<RecordType>()) { + if (isRecordReturnIndirect(RT, getCXXABI())) + return ABIArgInfo::getIndirect(0, /*ByVal=*/false); + + // Structures with flexible arrays are always indirect. + if (RT->getDecl()->hasFlexibleArrayMember()) + return ABIArgInfo::getIndirect(0); + } + + // If specified, structs and unions are always indirect. + if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType()) + return ABIArgInfo::getIndirect(0); + + // Small structures which are register sized are generally returned + // in a register. + if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext(), + callingConvention)) { + uint64_t Size = getContext().getTypeSize(RetTy); + + // As a special-case, if the struct is a "single-element" struct, and + // the field is of type "float" or "double", return it in a + // floating-point register. (MSVC does not apply this special case.) + // We apply a similar transformation for pointer types to improve the + // quality of the generated IR. + if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) + if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) + || SeltTy->hasPointerRepresentation()) + return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); + + // FIXME: We should be able to narrow this integer in cases with dead + // padding. + return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); + } + + return ABIArgInfo::getIndirect(0); + } + + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) + RetTy = EnumTy->getDecl()->getIntegerType(); + + return (RetTy->isPromotableIntegerType() ? + ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); +} + +static bool isSSEVectorType(ASTContext &Context, QualType Ty) { + return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; +} + +static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { + const RecordType *RT = Ty->getAs<RecordType>(); + if (!RT) + return 0; + const RecordDecl *RD = RT->getDecl(); + + // If this is a C++ record, check the bases first. + if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) + for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), + e = CXXRD->bases_end(); i != e; ++i) + if (!isRecordWithSSEVectorType(Context, i->getType())) + return false; + + for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); + i != e; ++i) { + QualType FT = i->getType(); + + if (isSSEVectorType(Context, FT)) + return true; + + if (isRecordWithSSEVectorType(Context, FT)) + return true; + } + + return false; +} + +unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, + unsigned Align) const { + // Otherwise, if the alignment is less than or equal to the minimum ABI + // alignment, just use the default; the backend will handle this. + if (Align <= MinABIStackAlignInBytes) + return 0; // Use default alignment. + + // On non-Darwin, the stack type alignment is always 4. + if (!IsDarwinVectorABI) { + // Set explicit alignment, since we may need to realign the top. + return MinABIStackAlignInBytes; + } + + // Otherwise, if the type contains an SSE vector type, the alignment is 16. + if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || + isRecordWithSSEVectorType(getContext(), Ty))) + return 16; + + return MinABIStackAlignInBytes; +} + +ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, + unsigned &FreeRegs) const { + if (!ByVal) { + if (FreeRegs) { + --FreeRegs; // Non byval indirects just use one pointer. + return ABIArgInfo::getIndirectInReg(0, false); + } + return ABIArgInfo::getIndirect(0, false); + } + + // Compute the byval alignment. + unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; + unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); + if (StackAlign == 0) + return ABIArgInfo::getIndirect(4); + + // If the stack alignment is less than the type alignment, realign the + // argument. + if (StackAlign < TypeAlign) + return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, + /*Realign=*/true); + + return ABIArgInfo::getIndirect(StackAlign); +} + +X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { + const Type *T = isSingleElementStruct(Ty, getContext()); + if (!T) + T = Ty.getTypePtr(); + + if (const BuiltinType *BT = T->getAs<BuiltinType>()) { + BuiltinType::Kind K = BT->getKind(); + if (K == BuiltinType::Float || K == BuiltinType::Double) + return Float; + } + return Integer; +} + +bool X86_32ABIInfo::shouldUseInReg(QualType Ty, unsigned &FreeRegs, + bool IsFastCall, bool &NeedsPadding) const { + NeedsPadding = false; + Class C = classify(Ty); + if (C == Float) + return false; + + unsigned Size = getContext().getTypeSize(Ty); + unsigned SizeInRegs = (Size + 31) / 32; + + if (SizeInRegs == 0) + return false; + + if (SizeInRegs > FreeRegs) { + FreeRegs = 0; + return false; + } + + FreeRegs -= SizeInRegs; + + if (IsFastCall) { + if (Size > 32) + return false; + + if (Ty->isIntegralOrEnumerationType()) + return true; + + if (Ty->isPointerType()) + return true; + + if (Ty->isReferenceType()) + return true; + + if (FreeRegs) + NeedsPadding = true; + + return false; + } + + return true; +} + +ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, + unsigned &FreeRegs, + bool IsFastCall) const { + // FIXME: Set alignment on indirect arguments. + if (isAggregateTypeForABI(Ty)) { + if (const RecordType *RT = Ty->getAs<RecordType>()) { + if (IsWin32StructABI) + return getIndirectResult(Ty, true, FreeRegs); + + if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) + return getIndirectResult(Ty, RAA == CGCXXABI::RAA_DirectInMemory, FreeRegs); + + // Structures with flexible arrays are always indirect. + if (RT->getDecl()->hasFlexibleArrayMember()) + return getIndirectResult(Ty, true, FreeRegs); + } + + // Ignore empty structs/unions. + if (isEmptyRecord(getContext(), Ty, true)) + return ABIArgInfo::getIgnore(); + + llvm::LLVMContext &LLVMContext = getVMContext(); + llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); + bool NeedsPadding; + if (shouldUseInReg(Ty, FreeRegs, IsFastCall, NeedsPadding)) { + unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; + SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); + llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); + return ABIArgInfo::getDirectInReg(Result); + } + llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : 0; + + // Expand small (<= 128-bit) record types when we know that the stack layout + // of those arguments will match the struct. This is important because the + // LLVM backend isn't smart enough to remove byval, which inhibits many + // optimizations. + if (getContext().getTypeSize(Ty) <= 4*32 && + canExpandIndirectArgument(Ty, getContext())) + return ABIArgInfo::getExpandWithPadding(IsFastCall, PaddingType); + + return getIndirectResult(Ty, true, FreeRegs); + } + + if (const VectorType *VT = Ty->getAs<VectorType>()) { + // On Darwin, some vectors are passed in memory, we handle this by passing + // it as an i8/i16/i32/i64. + if (IsDarwinVectorABI) { + uint64_t Size = getContext().getTypeSize(Ty); + if ((Size == 8 || Size == 16 || Size == 32) || + (Size == 64 && VT->getNumElements() == 1)) + return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), + Size)); + } + + if (IsX86_MMXType(CGT.ConvertType(Ty))) + return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); + + return ABIArgInfo::getDirect(); + } + + + if (const EnumType *EnumTy = Ty->getAs<EnumType>()) + Ty = EnumTy->getDecl()->getIntegerType(); + + bool NeedsPadding; + bool InReg = shouldUseInReg(Ty, FreeRegs, IsFastCall, NeedsPadding); + + if (Ty->isPromotableIntegerType()) { + if (InReg) + return ABIArgInfo::getExtendInReg(); + return ABIArgInfo::getExtend(); + } + if (InReg) + return ABIArgInfo::getDirectInReg(); + return ABIArgInfo::getDirect(); +} + +void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { + FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), + FI.getCallingConvention()); + + unsigned CC = FI.getCallingConvention(); + bool IsFastCall = CC == llvm::CallingConv::X86_FastCall; + unsigned FreeRegs; + if (IsFastCall) + FreeRegs = 2; + else if (FI.getHasRegParm()) + FreeRegs = FI.getRegParm(); + else + FreeRegs = DefaultNumRegisterParameters; + + // If the return value is indirect, then the hidden argument is consuming one + // integer register. + if (FI.getReturnInfo().isIndirect() && FreeRegs) { + --FreeRegs; + ABIArgInfo &Old = FI.getReturnInfo(); + Old = ABIArgInfo::getIndirectInReg(Old.getIndirectAlign(), + Old.getIndirectByVal(), + Old.getIndirectRealign()); + } + + for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); + it != ie; ++it) + it->info = classifyArgumentType(it->type, FreeRegs, IsFastCall); +} + +llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const { + llvm::Type *BPP = CGF.Int8PtrPtrTy; + + CGBuilderTy &Builder = CGF.Builder; + llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, + "ap"); + llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); + + // Compute if the address needs to be aligned + unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity(); + Align = getTypeStackAlignInBytes(Ty, Align); + Align = std::max(Align, 4U); + if (Align > 4) { + // addr = (addr + align - 1) & -align; + llvm::Value *Offset = + llvm::ConstantInt::get(CGF.Int32Ty, Align - 1); + Addr = CGF.Builder.CreateGEP(Addr, Offset); + llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr, + CGF.Int32Ty); + llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align); + Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), + Addr->getType(), + "ap.cur.aligned"); + } + + llvm::Type *PTy = + llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); + llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); + + uint64_t Offset = + llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align); + llvm::Value *NextAddr = + Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), + "ap.next"); + Builder.CreateStore(NextAddr, VAListAddrAsBPP); + + return AddrTyped; +} + +void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D, + llvm::GlobalValue *GV, + CodeGen::CodeGenModule &CGM) const { + if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { + if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { + // Get the LLVM function. + llvm::Function *Fn = cast<llvm::Function>(GV); + + // Now add the 'alignstack' attribute with a value of 16. + llvm::AttrBuilder B; + B.addStackAlignmentAttr(16); + Fn->addAttributes(llvm::AttributeSet::FunctionIndex, + llvm::AttributeSet::get(CGM.getLLVMContext(), + llvm::AttributeSet::FunctionIndex, + B)); + } + } +} + +bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( + CodeGen::CodeGenFunction &CGF, + llvm::Value *Address) const { + CodeGen::CGBuilderTy &Builder = CGF.Builder; + + llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); + + // 0-7 are the eight integer registers; the order is different + // on Darwin (for EH), but the range is the same. + // 8 is %eip. + AssignToArrayRange(Builder, Address, Four8, 0, 8); + + if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { + // 12-16 are st(0..4). Not sure why we stop at 4. + // These have size 16, which is sizeof(long double) on + // platforms with 8-byte alignment for that type. + llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); + AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); + + } else { + // 9 is %eflags, which doesn't get a size on Darwin for some + // reason. + Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9)); + + // 11-16 are st(0..5). Not sure why we stop at 5. + // These have size 12, which is sizeof(long double) on + // platforms with 4-byte alignment for that type. + llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); + AssignToArrayRange(Builder, Address, Twelve8, 11, 16); + } + + return false; +} + +//===----------------------------------------------------------------------===// +// X86-64 ABI Implementation +//===----------------------------------------------------------------------===// + + +namespace { +/// X86_64ABIInfo - The X86_64 ABI information. +class X86_64ABIInfo : public ABIInfo { + enum Class { + Integer = 0, + SSE, + SSEUp, + X87, + X87Up, + ComplexX87, + NoClass, + Memory + }; + + /// merge - Implement the X86_64 ABI merging algorithm. + /// + /// Merge an accumulating classification \arg Accum with a field + /// classification \arg Field. + /// + /// \param Accum - The accumulating classification. This should + /// always be either NoClass or the result of a previous merge + /// call. In addition, this should never be Memory (the caller + /// should just return Memory for the aggregate). + static Class merge(Class Accum, Class Field); + + /// postMerge - Implement the X86_64 ABI post merging algorithm. + /// + /// Post merger cleanup, reduces a malformed Hi and Lo pair to + /// final MEMORY or SSE classes when necessary. + /// + /// \param AggregateSize - The size of the current aggregate in + /// the classification process. + /// + /// \param Lo - The classification for the parts of the type + /// residing in the low word of the containing object. + /// + /// \param Hi - The classification for the parts of the type + /// residing in the higher words of the containing object. + /// + void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; + + /// classify - Determine the x86_64 register classes in which the + /// given type T should be passed. + /// + /// \param Lo - The classification for the parts of the type + /// residing in the low word of the containing object. + /// + /// \param Hi - The classification for the parts of the type + /// residing in the high word of the containing object. + /// + /// \param OffsetBase - The bit offset of this type in the + /// containing object. Some parameters are classified different + /// depending on whether they straddle an eightbyte boundary. + /// + /// \param isNamedArg - Whether the argument in question is a "named" + /// argument, as used in AMD64-ABI 3.5.7. + /// + /// If a word is unused its result will be NoClass; if a type should + /// be passed in Memory then at least the classification of \arg Lo + /// will be Memory. + /// + /// The \arg Lo class will be NoClass iff the argument is ignored. + /// + /// If the \arg Lo class is ComplexX87, then the \arg Hi class will + /// also be ComplexX87. + void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, + bool isNamedArg) const; + + llvm::Type *GetByteVectorType(QualType Ty) const; + llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, + unsigned IROffset, QualType SourceTy, + unsigned SourceOffset) const; + llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, + unsigned IROffset, QualType SourceTy, + unsigned SourceOffset) const; + + /// getIndirectResult - Give a source type \arg Ty, return a suitable result + /// such that the argument will be returned in memory. + ABIArgInfo getIndirectReturnResult(QualType Ty) const; + + /// getIndirectResult - Give a source type \arg Ty, return a suitable result + /// such that the argument will be passed in memory. + /// + /// \param freeIntRegs - The number of free integer registers remaining + /// available. + ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; + + ABIArgInfo classifyReturnType(QualType RetTy) const; + + ABIArgInfo classifyArgumentType(QualType Ty, + unsigned freeIntRegs, + unsigned &neededInt, + unsigned &neededSSE, + bool isNamedArg) const; + + bool IsIllegalVectorType(QualType Ty) const; + + /// The 0.98 ABI revision clarified a lot of ambiguities, + /// unfortunately in ways that were not always consistent with + /// certain previous compilers. In particular, platforms which + /// required strict binary compatibility with older versions of GCC + /// may need to exempt themselves. + bool honorsRevision0_98() const { + return !getTarget().getTriple().isOSDarwin(); + } + + bool HasAVX; + // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on + // 64-bit hardware. + bool Has64BitPointers; + +public: + X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) : + ABIInfo(CGT), HasAVX(hasavx), + Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { + } + + bool isPassedUsingAVXType(QualType type) const { + unsigned neededInt, neededSSE; + // The freeIntRegs argument doesn't matter here. + ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, + /*isNamedArg*/true); + if (info.isDirect()) { + llvm::Type *ty = info.getCoerceToType(); + if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) + return (vectorTy->getBitWidth() > 128); + } + return false; + } + + virtual void computeInfo(CGFunctionInfo &FI) const; + + virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const; +}; + +/// WinX86_64ABIInfo - The Windows X86_64 ABI information. +class WinX86_64ABIInfo : public ABIInfo { + + ABIArgInfo classify(QualType Ty, bool IsReturnType) const; + +public: + WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} + + virtual void computeInfo(CGFunctionInfo &FI) const; + + virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const; +}; + +class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { +public: + X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) + : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {} + + const X86_64ABIInfo &getABIInfo() const { + return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); + } + + int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const { + return 7; + } + + bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, + llvm::Value *Address) const { + llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); + + // 0-15 are the 16 integer registers. + // 16 is %rip. + AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); + return false; + } + + llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, + StringRef Constraint, + llvm::Type* Ty) const { + return X86AdjustInlineAsmType(CGF, Constraint, Ty); + } + + bool isNoProtoCallVariadic(const CallArgList &args, + const FunctionNoProtoType *fnType) const { + // The default CC on x86-64 sets %al to the number of SSA + // registers used, and GCC sets this when calling an unprototyped + // function, so we override the default behavior. However, don't do + // that when AVX types are involved: the ABI explicitly states it is + // undefined, and it doesn't work in practice because of how the ABI + // defines varargs anyway. + if (fnType->getCallConv() == CC_C) { + bool HasAVXType = false; + for (CallArgList::const_iterator + it = args.begin(), ie = args.end(); it != ie; ++it) { + if (getABIInfo().isPassedUsingAVXType(it->Ty)) { + HasAVXType = true; + break; + } + } + + if (!HasAVXType) + return true; + } + + return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); + } + + llvm::Constant *getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const { + unsigned Sig = (0xeb << 0) | // jmp rel8 + (0x0a << 8) | // .+0x0c + ('F' << 16) | + ('T' << 24); + return llvm::ConstantInt::get(CGM.Int32Ty, Sig); + } + +}; + +static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { + // If the argument does not end in .lib, automatically add the suffix. This + // matches the behavior of MSVC. + std::string ArgStr = Lib; + if (!Lib.endswith_lower(".lib")) + ArgStr += ".lib"; + return ArgStr; +} + +class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { +public: + WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, + bool d, bool p, bool w, unsigned RegParms) + : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {} + + void getDependentLibraryOption(llvm::StringRef Lib, + llvm::SmallString<24> &Opt) const { + Opt = "/DEFAULTLIB:"; + Opt += qualifyWindowsLibrary(Lib); + } + + void getDetectMismatchOption(llvm::StringRef Name, + llvm::StringRef Value, + llvm::SmallString<32> &Opt) const { + Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; + } +}; + +class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { +public: + WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) + : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} + + int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const { + return 7; + } + + bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, + llvm::Value *Address) const { + llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); + + // 0-15 are the 16 integer registers. + // 16 is %rip. + AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); + return false; + } + + void getDependentLibraryOption(llvm::StringRef Lib, + llvm::SmallString<24> &Opt) const { + Opt = "/DEFAULTLIB:"; + Opt += qualifyWindowsLibrary(Lib); + } + + void getDetectMismatchOption(llvm::StringRef Name, + llvm::StringRef Value, + llvm::SmallString<32> &Opt) const { + Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; + } +}; + +} + +void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, + Class &Hi) const { + // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: + // + // (a) If one of the classes is Memory, the whole argument is passed in + // memory. + // + // (b) If X87UP is not preceded by X87, the whole argument is passed in + // memory. + // + // (c) If the size of the aggregate exceeds two eightbytes and the first + // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole + // argument is passed in memory. NOTE: This is necessary to keep the + // ABI working for processors that don't support the __m256 type. + // + // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. + // + // Some of these are enforced by the merging logic. Others can arise + // only with unions; for example: + // union { _Complex double; unsigned; } + // + // Note that clauses (b) and (c) were added in 0.98. + // + if (Hi == Memory) + Lo = Memory; + if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) + Lo = Memory; + if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) + Lo = Memory; + if (Hi == SSEUp && Lo != SSE) + Hi = SSE; +} + +X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { + // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is + // classified recursively so that always two fields are + // considered. The resulting class is calculated according to + // the classes of the fields in the eightbyte: + // + // (a) If both classes are equal, this is the resulting class. + // + // (b) If one of the classes is NO_CLASS, the resulting class is + // the other class. + // + // (c) If one of the classes is MEMORY, the result is the MEMORY + // class. + // + // (d) If one of the classes is INTEGER, the result is the + // INTEGER. + // + // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, + // MEMORY is used as class. + // + // (f) Otherwise class SSE is used. + + // Accum should never be memory (we should have returned) or + // ComplexX87 (because this cannot be passed in a structure). + assert((Accum != Memory && Accum != ComplexX87) && + "Invalid accumulated classification during merge."); + if (Accum == Field || Field == NoClass) + return Accum; + if (Field == Memory) + return Memory; + if (Accum == NoClass) + return Field; + if (Accum == Integer || Field == Integer) + return Integer; + if (Field == X87 || Field == X87Up || Field == ComplexX87 || + Accum == X87 || Accum == X87Up) + return Memory; + return SSE; +} + +void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, + Class &Lo, Class &Hi, bool isNamedArg) const { + // FIXME: This code can be simplified by introducing a simple value class for + // Class pairs with appropriate constructor methods for the various + // situations. + + // FIXME: Some of the split computations are wrong; unaligned vectors + // shouldn't be passed in registers for example, so there is no chance they + // can straddle an eightbyte. Verify & simplify. + + Lo = Hi = NoClass; + + Class &Current = OffsetBase < 64 ? Lo : Hi; + Current = Memory; + + if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { + BuiltinType::Kind k = BT->getKind(); + + if (k == BuiltinType::Void) { + Current = NoClass; + } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { + Lo = Integer; + Hi = Integer; + } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { + Current = Integer; + } else if ((k == BuiltinType::Float || k == BuiltinType::Double) || + (k == BuiltinType::LongDouble && + getTarget().getTriple().isOSNaCl())) { + Current = SSE; + } else if (k == BuiltinType::LongDouble) { + Lo = X87; + Hi = X87Up; + } + // FIXME: _Decimal32 and _Decimal64 are SSE. + // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). + return; + } + + if (const EnumType *ET = Ty->getAs<EnumType>()) { + // Classify the underlying integer type. + classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); + return; + } + + if (Ty->hasPointerRepresentation()) { + Current = Integer; + return; + } + + if (Ty->isMemberPointerType()) { + if (Ty->isMemberFunctionPointerType() && Has64BitPointers) + Lo = Hi = Integer; + else + Current = Integer; + return; + } + + if (const VectorType *VT = Ty->getAs<VectorType>()) { + uint64_t Size = getContext().getTypeSize(VT); + if (Size == 32) { + // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x + // float> as integer. + Current = Integer; + + // If this type crosses an eightbyte boundary, it should be + // split. + uint64_t EB_Real = (OffsetBase) / 64; + uint64_t EB_Imag = (OffsetBase + Size - 1) / 64; + if (EB_Real != EB_Imag) + Hi = Lo; + } else if (Size == 64) { + // gcc passes <1 x double> in memory. :( + if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) + return; + + // gcc passes <1 x long long> as INTEGER. + if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) || + VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) || + VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) || + VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong)) + Current = Integer; + else + Current = SSE; + + // If this type crosses an eightbyte boundary, it should be + // split. + if (OffsetBase && OffsetBase != 64) + Hi = Lo; + } else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) { + // Arguments of 256-bits are split into four eightbyte chunks. The + // least significant one belongs to class SSE and all the others to class + // SSEUP. The original Lo and Hi design considers that types can't be + // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. + // This design isn't correct for 256-bits, but since there're no cases + // where the upper parts would need to be inspected, avoid adding + // complexity and just consider Hi to match the 64-256 part. + // + // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in + // registers if they are "named", i.e. not part of the "..." of a + // variadic function. + Lo = SSE; + Hi = SSEUp; + } + return; + } + + if (const ComplexType *CT = Ty->getAs<ComplexType>()) { + QualType ET = getContext().getCanonicalType(CT->getElementType()); + + uint64_t Size = getContext().getTypeSize(Ty); + if (ET->isIntegralOrEnumerationType()) { + if (Size <= 64) + Current = Integer; + else if (Size <= 128) + Lo = Hi = Integer; + } else if (ET == getContext().FloatTy) + Current = SSE; + else if (ET == getContext().DoubleTy || + (ET == getContext().LongDoubleTy && + getTarget().getTriple().isOSNaCl())) + Lo = Hi = SSE; + else if (ET == getContext().LongDoubleTy) + Current = ComplexX87; + + // If this complex type crosses an eightbyte boundary then it + // should be split. + uint64_t EB_Real = (OffsetBase) / 64; + uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; + if (Hi == NoClass && EB_Real != EB_Imag) + Hi = Lo; + + return; + } + + if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { + // Arrays are treated like structures. + + uint64_t Size = getContext().getTypeSize(Ty); + + // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger + // than four eightbytes, ..., it has class MEMORY. + if (Size > 256) + return; + + // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned + // fields, it has class MEMORY. + // + // Only need to check alignment of array base. + if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) + return; + + // Otherwise implement simplified merge. We could be smarter about + // this, but it isn't worth it and would be harder to verify. + Current = NoClass; + uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); + uint64_t ArraySize = AT->getSize().getZExtValue(); + + // The only case a 256-bit wide vector could be used is when the array + // contains a single 256-bit element. Since Lo and Hi logic isn't extended + // to work for sizes wider than 128, early check and fallback to memory. + if (Size > 128 && EltSize != 256) + return; + + for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { + Class FieldLo, FieldHi; + classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); + Lo = merge(Lo, FieldLo); + Hi = merge(Hi, FieldHi); + if (Lo == Memory || Hi == Memory) + break; + } + + postMerge(Size, Lo, Hi); + assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); + return; + } + + if (const RecordType *RT = Ty->getAs<RecordType>()) { + uint64_t Size = getContext().getTypeSize(Ty); + + // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger + // than four eightbytes, ..., it has class MEMORY. + if (Size > 256) + return; + + // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial + // copy constructor or a non-trivial destructor, it is passed by invisible + // reference. + if (getRecordArgABI(RT, getCXXABI())) + return; + + const RecordDecl *RD = RT->getDecl(); + + // Assume variable sized types are passed in memory. + if (RD->hasFlexibleArrayMember()) + return; + + const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); + + // Reset Lo class, this will be recomputed. + Current = NoClass; + + // If this is a C++ record, classify the bases first. + if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { + for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), + e = CXXRD->bases_end(); i != e; ++i) { + assert(!i->isVirtual() && !i->getType()->isDependentType() && + "Unexpected base class!"); + const CXXRecordDecl *Base = + cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl()); + + // Classify this field. + // + // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a + // single eightbyte, each is classified separately. Each eightbyte gets + // initialized to class NO_CLASS. + Class FieldLo, FieldHi; + uint64_t Offset = + OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); + classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); + Lo = merge(Lo, FieldLo); + Hi = merge(Hi, FieldHi); + if (Lo == Memory || Hi == Memory) + break; + } + } + + // Classify the fields one at a time, merging the results. + unsigned idx = 0; + for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); + i != e; ++i, ++idx) { + uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); + bool BitField = i->isBitField(); + + // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than + // four eightbytes, or it contains unaligned fields, it has class MEMORY. + // + // The only case a 256-bit wide vector could be used is when the struct + // contains a single 256-bit element. Since Lo and Hi logic isn't extended + // to work for sizes wider than 128, early check and fallback to memory. + // + if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) { + Lo = Memory; + return; + } + // Note, skip this test for bit-fields, see below. + if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { + Lo = Memory; + return; + } + + // Classify this field. + // + // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate + // exceeds a single eightbyte, each is classified + // separately. Each eightbyte gets initialized to class + // NO_CLASS. + Class FieldLo, FieldHi; + + // Bit-fields require special handling, they do not force the + // structure to be passed in memory even if unaligned, and + // therefore they can straddle an eightbyte. + if (BitField) { + // Ignore padding bit-fields. + if (i->isUnnamedBitfield()) + continue; + + uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); + uint64_t Size = i->getBitWidthValue(getContext()); + + uint64_t EB_Lo = Offset / 64; + uint64_t EB_Hi = (Offset + Size - 1) / 64; + + if (EB_Lo) { + assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); + FieldLo = NoClass; + FieldHi = Integer; + } else { + FieldLo = Integer; + FieldHi = EB_Hi ? Integer : NoClass; + } + } else + classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); + Lo = merge(Lo, FieldLo); + Hi = merge(Hi, FieldHi); + if (Lo == Memory || Hi == Memory) + break; + } + + postMerge(Size, Lo, Hi); + } +} + +ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { + // If this is a scalar LLVM value then assume LLVM will pass it in the right + // place naturally. + if (!isAggregateTypeForABI(Ty)) { + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = Ty->getAs<EnumType>()) + Ty = EnumTy->getDecl()->getIntegerType(); + + return (Ty->isPromotableIntegerType() ? + ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); + } + + return ABIArgInfo::getIndirect(0); +} + +bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { + if (const VectorType *VecTy = Ty->getAs<VectorType>()) { + uint64_t Size = getContext().getTypeSize(VecTy); + unsigned LargestVector = HasAVX ? 256 : 128; + if (Size <= 64 || Size > LargestVector) + return true; + } + + return false; +} + +ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, + unsigned freeIntRegs) const { + // If this is a scalar LLVM value then assume LLVM will pass it in the right + // place naturally. + // + // This assumption is optimistic, as there could be free registers available + // when we need to pass this argument in memory, and LLVM could try to pass + // the argument in the free register. This does not seem to happen currently, + // but this code would be much safer if we could mark the argument with + // 'onstack'. See PR12193. + if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = Ty->getAs<EnumType>()) + Ty = EnumTy->getDecl()->getIntegerType(); + + return (Ty->isPromotableIntegerType() ? + ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); + } + + if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) + return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); + + // Compute the byval alignment. We specify the alignment of the byval in all + // cases so that the mid-level optimizer knows the alignment of the byval. + unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); + + // Attempt to avoid passing indirect results using byval when possible. This + // is important for good codegen. + // + // We do this by coercing the value into a scalar type which the backend can + // handle naturally (i.e., without using byval). + // + // For simplicity, we currently only do this when we have exhausted all of the + // free integer registers. Doing this when there are free integer registers + // would require more care, as we would have to ensure that the coerced value + // did not claim the unused register. That would require either reording the + // arguments to the function (so that any subsequent inreg values came first), + // or only doing this optimization when there were no following arguments that + // might be inreg. + // + // We currently expect it to be rare (particularly in well written code) for + // arguments to be passed on the stack when there are still free integer + // registers available (this would typically imply large structs being passed + // by value), so this seems like a fair tradeoff for now. + // + // We can revisit this if the backend grows support for 'onstack' parameter + // attributes. See PR12193. + if (freeIntRegs == 0) { + uint64_t Size = getContext().getTypeSize(Ty); + + // If this type fits in an eightbyte, coerce it into the matching integral + // type, which will end up on the stack (with alignment 8). + if (Align == 8 && Size <= 64) + return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), + Size)); + } + + return ABIArgInfo::getIndirect(Align); +} + +/// GetByteVectorType - The ABI specifies that a value should be passed in an +/// full vector XMM/YMM register. Pick an LLVM IR type that will be passed as a +/// vector register. +llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { + llvm::Type *IRType = CGT.ConvertType(Ty); + + // Wrapper structs that just contain vectors are passed just like vectors, + // strip them off if present. + llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType); + while (STy && STy->getNumElements() == 1) { + IRType = STy->getElementType(0); + STy = dyn_cast<llvm::StructType>(IRType); + } + + // If the preferred type is a 16-byte vector, prefer to pass it. + if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){ + llvm::Type *EltTy = VT->getElementType(); + unsigned BitWidth = VT->getBitWidth(); + if ((BitWidth >= 128 && BitWidth <= 256) && + (EltTy->isFloatTy() || EltTy->isDoubleTy() || + EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) || + EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) || + EltTy->isIntegerTy(128))) + return VT; + } + + return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2); +} + +/// BitsContainNoUserData - Return true if the specified [start,end) bit range +/// is known to either be off the end of the specified type or being in +/// alignment padding. The user type specified is known to be at most 128 bits +/// in size, and have passed through X86_64ABIInfo::classify with a successful +/// classification that put one of the two halves in the INTEGER class. +/// +/// It is conservatively correct to return false. +static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, + unsigned EndBit, ASTContext &Context) { + // If the bytes being queried are off the end of the type, there is no user + // data hiding here. This handles analysis of builtins, vectors and other + // types that don't contain interesting padding. + unsigned TySize = (unsigned)Context.getTypeSize(Ty); + if (TySize <= StartBit) + return true; + + if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { + unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); + unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); + + // Check each element to see if the element overlaps with the queried range. + for (unsigned i = 0; i != NumElts; ++i) { + // If the element is after the span we care about, then we're done.. + unsigned EltOffset = i*EltSize; + if (EltOffset >= EndBit) break; + + unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; + if (!BitsContainNoUserData(AT->getElementType(), EltStart, + EndBit-EltOffset, Context)) + return false; + } + // If it overlaps no elements, then it is safe to process as padding. + return true; + } + + if (const RecordType *RT = Ty->getAs<RecordType>()) { + const RecordDecl *RD = RT->getDecl(); + const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); + + // If this is a C++ record, check the bases first. + if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { + for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), + e = CXXRD->bases_end(); i != e; ++i) { + assert(!i->isVirtual() && !i->getType()->isDependentType() && + "Unexpected base class!"); + const CXXRecordDecl *Base = + cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl()); + + // If the base is after the span we care about, ignore it. + unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); + if (BaseOffset >= EndBit) continue; + + unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; + if (!BitsContainNoUserData(i->getType(), BaseStart, + EndBit-BaseOffset, Context)) + return false; + } + } + + // Verify that no field has data that overlaps the region of interest. Yes + // this could be sped up a lot by being smarter about queried fields, + // however we're only looking at structs up to 16 bytes, so we don't care + // much. + unsigned idx = 0; + for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); + i != e; ++i, ++idx) { + unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); + + // If we found a field after the region we care about, then we're done. + if (FieldOffset >= EndBit) break; + + unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; + if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, + Context)) + return false; + } + + // If nothing in this record overlapped the area of interest, then we're + // clean. + return true; + } + + return false; +} + +/// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a +/// float member at the specified offset. For example, {int,{float}} has a +/// float at offset 4. It is conservatively correct for this routine to return +/// false. +static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, + const llvm::DataLayout &TD) { + // Base case if we find a float. + if (IROffset == 0 && IRType->isFloatTy()) + return true; + + // If this is a struct, recurse into the field at the specified offset. + if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { + const llvm::StructLayout *SL = TD.getStructLayout(STy); + unsigned Elt = SL->getElementContainingOffset(IROffset); + IROffset -= SL->getElementOffset(Elt); + return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); + } + + // If this is an array, recurse into the field at the specified offset. + if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { + llvm::Type *EltTy = ATy->getElementType(); + unsigned EltSize = TD.getTypeAllocSize(EltTy); + IROffset -= IROffset/EltSize*EltSize; + return ContainsFloatAtOffset(EltTy, IROffset, TD); + } + + return false; +} + + +/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the +/// low 8 bytes of an XMM register, corresponding to the SSE class. +llvm::Type *X86_64ABIInfo:: +GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, + QualType SourceTy, unsigned SourceOffset) const { + // The only three choices we have are either double, <2 x float>, or float. We + // pass as float if the last 4 bytes is just padding. This happens for + // structs that contain 3 floats. + if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, + SourceOffset*8+64, getContext())) + return llvm::Type::getFloatTy(getVMContext()); + + // We want to pass as <2 x float> if the LLVM IR type contains a float at + // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the + // case. + if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && + ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) + return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); + + return llvm::Type::getDoubleTy(getVMContext()); +} + + +/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in +/// an 8-byte GPR. This means that we either have a scalar or we are talking +/// about the high or low part of an up-to-16-byte struct. This routine picks +/// the best LLVM IR type to represent this, which may be i64 or may be anything +/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, +/// etc). +/// +/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for +/// the source type. IROffset is an offset in bytes into the LLVM IR type that +/// the 8-byte value references. PrefType may be null. +/// +/// SourceTy is the source level type for the entire argument. SourceOffset is +/// an offset into this that we're processing (which is always either 0 or 8). +/// +llvm::Type *X86_64ABIInfo:: +GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, + QualType SourceTy, unsigned SourceOffset) const { + // If we're dealing with an un-offset LLVM IR type, then it means that we're + // returning an 8-byte unit starting with it. See if we can safely use it. + if (IROffset == 0) { + // Pointers and int64's always fill the 8-byte unit. + if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || + IRType->isIntegerTy(64)) + return IRType; + + // If we have a 1/2/4-byte integer, we can use it only if the rest of the + // goodness in the source type is just tail padding. This is allowed to + // kick in for struct {double,int} on the int, but not on + // struct{double,int,int} because we wouldn't return the second int. We + // have to do this analysis on the source type because we can't depend on + // unions being lowered a specific way etc. + if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || + IRType->isIntegerTy(32) || + (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { + unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : + cast<llvm::IntegerType>(IRType)->getBitWidth(); + + if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, + SourceOffset*8+64, getContext())) + return IRType; + } + } + + if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { + // If this is a struct, recurse into the field at the specified offset. + const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); + if (IROffset < SL->getSizeInBytes()) { + unsigned FieldIdx = SL->getElementContainingOffset(IROffset); + IROffset -= SL->getElementOffset(FieldIdx); + + return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, + SourceTy, SourceOffset); + } + } + + if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { + llvm::Type *EltTy = ATy->getElementType(); + unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); + unsigned EltOffset = IROffset/EltSize*EltSize; + return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, + SourceOffset); + } + + // Okay, we don't have any better idea of what to pass, so we pass this in an + // integer register that isn't too big to fit the rest of the struct. + unsigned TySizeInBytes = + (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); + + assert(TySizeInBytes != SourceOffset && "Empty field?"); + + // It is always safe to classify this as an integer type up to i64 that + // isn't larger than the structure. + return llvm::IntegerType::get(getVMContext(), + std::min(TySizeInBytes-SourceOffset, 8U)*8); +} + + +/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally +/// be used as elements of a two register pair to pass or return, return a +/// first class aggregate to represent them. For example, if the low part of +/// a by-value argument should be passed as i32* and the high part as float, +/// return {i32*, float}. +static llvm::Type * +GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, + const llvm::DataLayout &TD) { + // In order to correctly satisfy the ABI, we need to the high part to start + // at offset 8. If the high and low parts we inferred are both 4-byte types + // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have + // the second element at offset 8. Check for this: + unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); + unsigned HiAlign = TD.getABITypeAlignment(Hi); + unsigned HiStart = llvm::DataLayout::RoundUpAlignment(LoSize, HiAlign); + assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); + + // To handle this, we have to increase the size of the low part so that the + // second element will start at an 8 byte offset. We can't increase the size + // of the second element because it might make us access off the end of the + // struct. + if (HiStart != 8) { + // There are only two sorts of types the ABI generation code can produce for + // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32. + // Promote these to a larger type. + if (Lo->isFloatTy()) + Lo = llvm::Type::getDoubleTy(Lo->getContext()); + else { + assert(Lo->isIntegerTy() && "Invalid/unknown lo type"); + Lo = llvm::Type::getInt64Ty(Lo->getContext()); + } + } + + llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL); + + + // Verify that the second element is at an 8-byte offset. + assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && + "Invalid x86-64 argument pair!"); + return Result; +} + +ABIArgInfo X86_64ABIInfo:: +classifyReturnType(QualType RetTy) const { + // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the + // classification algorithm. + X86_64ABIInfo::Class Lo, Hi; + classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); + + // Check some invariants. + assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); + assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); + + llvm::Type *ResType = 0; + switch (Lo) { + case NoClass: + if (Hi == NoClass) + return ABIArgInfo::getIgnore(); + // If the low part is just padding, it takes no register, leave ResType + // null. + assert((Hi == SSE || Hi == Integer || Hi == X87Up) && + "Unknown missing lo part"); + break; + + case SSEUp: + case X87Up: + llvm_unreachable("Invalid classification for lo word."); + + // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via + // hidden argument. + case Memory: + return getIndirectReturnResult(RetTy); + + // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next + // available register of the sequence %rax, %rdx is used. + case Integer: + ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); + + // If we have a sign or zero extended integer, make sure to return Extend + // so that the parameter gets the right LLVM IR attributes. + if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) + RetTy = EnumTy->getDecl()->getIntegerType(); + + if (RetTy->isIntegralOrEnumerationType() && + RetTy->isPromotableIntegerType()) + return ABIArgInfo::getExtend(); + } + break; + + // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next + // available SSE register of the sequence %xmm0, %xmm1 is used. + case SSE: + ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); + break; + + // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is + // returned on the X87 stack in %st0 as 80-bit x87 number. + case X87: + ResType = llvm::Type::getX86_FP80Ty(getVMContext()); + break; + + // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real + // part of the value is returned in %st0 and the imaginary part in + // %st1. + case ComplexX87: + assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); + ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), + llvm::Type::getX86_FP80Ty(getVMContext()), + NULL); + break; + } + + llvm::Type *HighPart = 0; + switch (Hi) { + // Memory was handled previously and X87 should + // never occur as a hi class. + case Memory: + case X87: + llvm_unreachable("Invalid classification for hi word."); + + case ComplexX87: // Previously handled. + case NoClass: + break; + + case Integer: + HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); + if (Lo == NoClass) // Return HighPart at offset 8 in memory. + return ABIArgInfo::getDirect(HighPart, 8); + break; + case SSE: + HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); + if (Lo == NoClass) // Return HighPart at offset 8 in memory. + return ABIArgInfo::getDirect(HighPart, 8); + break; + + // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte + // is passed in the next available eightbyte chunk if the last used + // vector register. + // + // SSEUP should always be preceded by SSE, just widen. + case SSEUp: + assert(Lo == SSE && "Unexpected SSEUp classification."); + ResType = GetByteVectorType(RetTy); + break; + + // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is + // returned together with the previous X87 value in %st0. + case X87Up: + // If X87Up is preceded by X87, we don't need to do + // anything. However, in some cases with unions it may not be + // preceded by X87. In such situations we follow gcc and pass the + // extra bits in an SSE reg. + if (Lo != X87) { + HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); + if (Lo == NoClass) // Return HighPart at offset 8 in memory. + return ABIArgInfo::getDirect(HighPart, 8); + } + break; + } + + // If a high part was specified, merge it together with the low part. It is + // known to pass in the high eightbyte of the result. We do this by forming a + // first class struct aggregate with the high and low part: {low, high} + if (HighPart) + ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); + + return ABIArgInfo::getDirect(ResType); +} + +ABIArgInfo X86_64ABIInfo::classifyArgumentType( + QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, + bool isNamedArg) + const +{ + X86_64ABIInfo::Class Lo, Hi; + classify(Ty, 0, Lo, Hi, isNamedArg); + + // Check some invariants. + // FIXME: Enforce these by construction. + assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); + assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); + + neededInt = 0; + neededSSE = 0; + llvm::Type *ResType = 0; + switch (Lo) { + case NoClass: + if (Hi == NoClass) + return ABIArgInfo::getIgnore(); + // If the low part is just padding, it takes no register, leave ResType + // null. + assert((Hi == SSE || Hi == Integer || Hi == X87Up) && + "Unknown missing lo part"); + break; + + // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument + // on the stack. + case Memory: + + // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or + // COMPLEX_X87, it is passed in memory. + case X87: + case ComplexX87: + if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) + ++neededInt; + return getIndirectResult(Ty, freeIntRegs); + + case SSEUp: + case X87Up: + llvm_unreachable("Invalid classification for lo word."); + + // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next + // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 + // and %r9 is used. + case Integer: + ++neededInt; + + // Pick an 8-byte type based on the preferred type. + ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); + + // If we have a sign or zero extended integer, make sure to return Extend + // so that the parameter gets the right LLVM IR attributes. + if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = Ty->getAs<EnumType>()) + Ty = EnumTy->getDecl()->getIntegerType(); + + if (Ty->isIntegralOrEnumerationType() && + Ty->isPromotableIntegerType()) + return ABIArgInfo::getExtend(); + } + + break; + + // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next + // available SSE register is used, the registers are taken in the + // order from %xmm0 to %xmm7. + case SSE: { + llvm::Type *IRType = CGT.ConvertType(Ty); + ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); + ++neededSSE; + break; + } + } + + llvm::Type *HighPart = 0; + switch (Hi) { + // Memory was handled previously, ComplexX87 and X87 should + // never occur as hi classes, and X87Up must be preceded by X87, + // which is passed in memory. + case Memory: + case X87: + case ComplexX87: + llvm_unreachable("Invalid classification for hi word."); + + case NoClass: break; + + case Integer: + ++neededInt; + // Pick an 8-byte type based on the preferred type. + HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); + + if (Lo == NoClass) // Pass HighPart at offset 8 in memory. + return ABIArgInfo::getDirect(HighPart, 8); + break; + + // X87Up generally doesn't occur here (long double is passed in + // memory), except in situations involving unions. + case X87Up: + case SSE: + HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); + + if (Lo == NoClass) // Pass HighPart at offset 8 in memory. + return ABIArgInfo::getDirect(HighPart, 8); + + ++neededSSE; + break; + + // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the + // eightbyte is passed in the upper half of the last used SSE + // register. This only happens when 128-bit vectors are passed. + case SSEUp: + assert(Lo == SSE && "Unexpected SSEUp classification"); + ResType = GetByteVectorType(Ty); + break; + } + + // If a high part was specified, merge it together with the low part. It is + // known to pass in the high eightbyte of the result. We do this by forming a + // first class struct aggregate with the high and low part: {low, high} + if (HighPart) + ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); + + return ABIArgInfo::getDirect(ResType); +} + +void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { + + FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); + + // Keep track of the number of assigned registers. + unsigned freeIntRegs = 6, freeSSERegs = 8; + + // If the return value is indirect, then the hidden argument is consuming one + // integer register. + if (FI.getReturnInfo().isIndirect()) + --freeIntRegs; + + bool isVariadic = FI.isVariadic(); + unsigned numRequiredArgs = 0; + if (isVariadic) + numRequiredArgs = FI.getRequiredArgs().getNumRequiredArgs(); + + // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers + // get assigned (in left-to-right order) for passing as follows... + for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); + it != ie; ++it) { + bool isNamedArg = true; + if (isVariadic) + isNamedArg = (it - FI.arg_begin()) < + static_cast<signed>(numRequiredArgs); + + unsigned neededInt, neededSSE; + it->info = classifyArgumentType(it->type, freeIntRegs, neededInt, + neededSSE, isNamedArg); + + // AMD64-ABI 3.2.3p3: If there are no registers available for any + // eightbyte of an argument, the whole argument is passed on the + // stack. If registers have already been assigned for some + // eightbytes of such an argument, the assignments get reverted. + if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) { + freeIntRegs -= neededInt; + freeSSERegs -= neededSSE; + } else { + it->info = getIndirectResult(it->type, freeIntRegs); + } + } +} + +static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr, + QualType Ty, + CodeGenFunction &CGF) { + llvm::Value *overflow_arg_area_p = + CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); + llvm::Value *overflow_arg_area = + CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); + + // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 + // byte boundary if alignment needed by type exceeds 8 byte boundary. + // It isn't stated explicitly in the standard, but in practice we use + // alignment greater than 16 where necessary. + uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; + if (Align > 8) { + // overflow_arg_area = (overflow_arg_area + align - 1) & -align; + llvm::Value *Offset = + llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); + overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset); + llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area, + CGF.Int64Ty); + llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align); + overflow_arg_area = + CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), + overflow_arg_area->getType(), + "overflow_arg_area.align"); + } + + // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. + llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); + llvm::Value *Res = + CGF.Builder.CreateBitCast(overflow_arg_area, + llvm::PointerType::getUnqual(LTy)); + + // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: + // l->overflow_arg_area + sizeof(type). + // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to + // an 8 byte boundary. + + uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; + llvm::Value *Offset = + llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); + overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, + "overflow_arg_area.next"); + CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); + + // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. + return Res; +} + +llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const { + // Assume that va_list type is correct; should be pointer to LLVM type: + // struct { + // i32 gp_offset; + // i32 fp_offset; + // i8* overflow_arg_area; + // i8* reg_save_area; + // }; + unsigned neededInt, neededSSE; + + Ty = CGF.getContext().getCanonicalType(Ty); + ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, + /*isNamedArg*/false); + + // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed + // in the registers. If not go to step 7. + if (!neededInt && !neededSSE) + return EmitVAArgFromMemory(VAListAddr, Ty, CGF); + + // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of + // general purpose registers needed to pass type and num_fp to hold + // the number of floating point registers needed. + + // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into + // registers. In the case: l->gp_offset > 48 - num_gp * 8 or + // l->fp_offset > 304 - num_fp * 16 go to step 7. + // + // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of + // register save space). + + llvm::Value *InRegs = 0; + llvm::Value *gp_offset_p = 0, *gp_offset = 0; + llvm::Value *fp_offset_p = 0, *fp_offset = 0; + if (neededInt) { + gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); + gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); + InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); + InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); + } + + if (neededSSE) { + fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); + fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); + llvm::Value *FitsInFP = + llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); + FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); + InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; + } + + llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); + llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); + llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); + CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); + + // Emit code to load the value if it was passed in registers. + + CGF.EmitBlock(InRegBlock); + + // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with + // an offset of l->gp_offset and/or l->fp_offset. This may require + // copying to a temporary location in case the parameter is passed + // in different register classes or requires an alignment greater + // than 8 for general purpose registers and 16 for XMM registers. + // + // FIXME: This really results in shameful code when we end up needing to + // collect arguments from different places; often what should result in a + // simple assembling of a structure from scattered addresses has many more + // loads than necessary. Can we clean this up? + llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); + llvm::Value *RegAddr = + CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3), + "reg_save_area"); + if (neededInt && neededSSE) { + // FIXME: Cleanup. + assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); + llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); + llvm::Value *Tmp = CGF.CreateMemTemp(Ty); + Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); + assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); + llvm::Type *TyLo = ST->getElementType(0); + llvm::Type *TyHi = ST->getElementType(1); + assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && + "Unexpected ABI info for mixed regs"); + llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); + llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); + llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); + llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); + llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr; + llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr; + llvm::Value *V = + CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); + CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); + V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); + CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); + + RegAddr = CGF.Builder.CreateBitCast(Tmp, + llvm::PointerType::getUnqual(LTy)); + } else if (neededInt) { + RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); + RegAddr = CGF.Builder.CreateBitCast(RegAddr, + llvm::PointerType::getUnqual(LTy)); + + // Copy to a temporary if necessary to ensure the appropriate alignment. + std::pair<CharUnits, CharUnits> SizeAlign = + CGF.getContext().getTypeInfoInChars(Ty); + uint64_t TySize = SizeAlign.first.getQuantity(); + unsigned TyAlign = SizeAlign.second.getQuantity(); + if (TyAlign > 8) { + llvm::Value *Tmp = CGF.CreateMemTemp(Ty); + CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false); + RegAddr = Tmp; + } + } else if (neededSSE == 1) { + RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); + RegAddr = CGF.Builder.CreateBitCast(RegAddr, + llvm::PointerType::getUnqual(LTy)); + } else { + assert(neededSSE == 2 && "Invalid number of needed registers!"); + // SSE registers are spaced 16 bytes apart in the register save + // area, we need to collect the two eightbytes together. + llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset); + llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16); + llvm::Type *DoubleTy = CGF.DoubleTy; + llvm::Type *DblPtrTy = + llvm::PointerType::getUnqual(DoubleTy); + llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, NULL); + llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty); + Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); + V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo, + DblPtrTy)); + CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); + V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi, + DblPtrTy)); + CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); + RegAddr = CGF.Builder.CreateBitCast(Tmp, + llvm::PointerType::getUnqual(LTy)); + } + + // AMD64-ABI 3.5.7p5: Step 5. Set: + // l->gp_offset = l->gp_offset + num_gp * 8 + // l->fp_offset = l->fp_offset + num_fp * 16. + if (neededInt) { + llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); + CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), + gp_offset_p); + } + if (neededSSE) { + llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); + CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), + fp_offset_p); + } + CGF.EmitBranch(ContBlock); + + // Emit code to load the value if it was passed in memory. + + CGF.EmitBlock(InMemBlock); + llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF); + + // Return the appropriate result. + + CGF.EmitBlock(ContBlock); + llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2, + "vaarg.addr"); + ResAddr->addIncoming(RegAddr, InRegBlock); + ResAddr->addIncoming(MemAddr, InMemBlock); + return ResAddr; +} + +ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, bool IsReturnType) const { + + if (Ty->isVoidType()) + return ABIArgInfo::getIgnore(); + + if (const EnumType *EnumTy = Ty->getAs<EnumType>()) + Ty = EnumTy->getDecl()->getIntegerType(); + + uint64_t Size = getContext().getTypeSize(Ty); + + if (const RecordType *RT = Ty->getAs<RecordType>()) { + if (IsReturnType) { + if (isRecordReturnIndirect(RT, getCXXABI())) + return ABIArgInfo::getIndirect(0, false); + } else { + if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) + return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); + } + + if (RT->getDecl()->hasFlexibleArrayMember()) + return ABIArgInfo::getIndirect(0, /*ByVal=*/false); + + // FIXME: mingw-w64-gcc emits 128-bit struct as i128 + if (Size == 128 && getTarget().getTriple().getOS() == llvm::Triple::MinGW32) + return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), + Size)); + + // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is + // not 1, 2, 4, or 8 bytes, must be passed by reference." + if (Size <= 64 && + (Size & (Size - 1)) == 0) + return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), + Size)); + + return ABIArgInfo::getIndirect(0, /*ByVal=*/false); + } + + if (Ty->isPromotableIntegerType()) + return ABIArgInfo::getExtend(); + + return ABIArgInfo::getDirect(); +} + +void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { + + QualType RetTy = FI.getReturnType(); + FI.getReturnInfo() = classify(RetTy, true); + + for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); + it != ie; ++it) + it->info = classify(it->type, false); +} + +llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const { + llvm::Type *BPP = CGF.Int8PtrPtrTy; + + CGBuilderTy &Builder = CGF.Builder; + llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, + "ap"); + llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); + llvm::Type *PTy = + llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); + llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); + + uint64_t Offset = + llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8); + llvm::Value *NextAddr = + Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), + "ap.next"); + Builder.CreateStore(NextAddr, VAListAddrAsBPP); + + return AddrTyped; +} + +namespace { + +class NaClX86_64ABIInfo : public ABIInfo { + public: + NaClX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) + : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, HasAVX) {} + virtual void computeInfo(CGFunctionInfo &FI) const; + virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const; + private: + PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv. + X86_64ABIInfo NInfo; // Used for everything else. +}; + +class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo { + public: + NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) + : TargetCodeGenInfo(new NaClX86_64ABIInfo(CGT, HasAVX)) {} +}; + +} + +void NaClX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { + if (FI.getASTCallingConvention() == CC_PnaclCall) + PInfo.computeInfo(FI); + else + NInfo.computeInfo(FI); +} + +llvm::Value *NaClX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const { + // Always use the native convention; calling pnacl-style varargs functions + // is unuspported. + return NInfo.EmitVAArg(VAListAddr, Ty, CGF); +} + + +// PowerPC-32 + +namespace { +class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo { +public: + PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} + + int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { + // This is recovered from gcc output. + return 1; // r1 is the dedicated stack pointer + } + + bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, + llvm::Value *Address) const; +}; + +} + +bool +PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, + llvm::Value *Address) const { + // This is calculated from the LLVM and GCC tables and verified + // against gcc output. AFAIK all ABIs use the same encoding. + + CodeGen::CGBuilderTy &Builder = CGF.Builder; + + llvm::IntegerType *i8 = CGF.Int8Ty; + llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); + llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); + llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); + + // 0-31: r0-31, the 4-byte general-purpose registers + AssignToArrayRange(Builder, Address, Four8, 0, 31); + + // 32-63: fp0-31, the 8-byte floating-point registers + AssignToArrayRange(Builder, Address, Eight8, 32, 63); + + // 64-76 are various 4-byte special-purpose registers: + // 64: mq + // 65: lr + // 66: ctr + // 67: ap + // 68-75 cr0-7 + // 76: xer + AssignToArrayRange(Builder, Address, Four8, 64, 76); + + // 77-108: v0-31, the 16-byte vector registers + AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); + + // 109: vrsave + // 110: vscr + // 111: spe_acc + // 112: spefscr + // 113: sfp + AssignToArrayRange(Builder, Address, Four8, 109, 113); + + return false; +} + +// PowerPC-64 + +namespace { +/// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. +class PPC64_SVR4_ABIInfo : public DefaultABIInfo { + +public: + PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} + + bool isPromotableTypeForABI(QualType Ty) const; + + ABIArgInfo classifyReturnType(QualType RetTy) const; + ABIArgInfo classifyArgumentType(QualType Ty) const; + + // TODO: We can add more logic to computeInfo to improve performance. + // Example: For aggregate arguments that fit in a register, we could + // use getDirectInReg (as is done below for structs containing a single + // floating-point value) to avoid pushing them to memory on function + // entry. This would require changing the logic in PPCISelLowering + // when lowering the parameters in the caller and args in the callee. + virtual void computeInfo(CGFunctionInfo &FI) const { + FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); + for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); + it != ie; ++it) { + // We rely on the default argument classification for the most part. + // One exception: An aggregate containing a single floating-point + // or vector item must be passed in a register if one is available. + const Type *T = isSingleElementStruct(it->type, getContext()); + if (T) { + const BuiltinType *BT = T->getAs<BuiltinType>(); + if (T->isVectorType() || (BT && BT->isFloatingPoint())) { + QualType QT(T, 0); + it->info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); + continue; + } + } + it->info = classifyArgumentType(it->type); + } + } + + virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, + QualType Ty, + CodeGenFunction &CGF) const; +}; + +class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { +public: + PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT) + : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT)) {} + + int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { + // This is recovered from gcc output. + return 1; // r1 is the dedicated stack pointer + } + + bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, + llvm::Value *Address) const; +}; + +class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { +public: + PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} + + int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { + // This is recovered from gcc output. + return 1; // r1 is the dedicated stack pointer + } + + bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, + llvm::Value *Address) const; +}; + +} + +// Return true if the ABI requires Ty to be passed sign- or zero- +// extended to 64 bits. +bool +PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = Ty->getAs<EnumType>()) + Ty = EnumTy->getDecl()->getIntegerType(); + + // Promotable integer types are required to be promoted by the ABI. + if (Ty->isPromotableIntegerType()) + return true; + + // In addition to the usual promotable integer types, we also need to + // extend all 32-bit types, since the ABI requires promotion to 64 bits. + if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) + switch (BT->getKind()) { + case BuiltinType::Int: + case BuiltinType::UInt: + return true; + default: + break; + } + + return false; +} + +ABIArgInfo +PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { + if (Ty->isAnyComplexType()) + return ABIArgInfo::getDirect(); + + if (isAggregateTypeForABI(Ty)) { + if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) + return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); + + return ABIArgInfo::getIndirect(0); + } + + return (isPromotableTypeForABI(Ty) ? + ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); +} + +ABIArgInfo +PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { + if (RetTy->isVoidType()) + return ABIArgInfo::getIgnore(); + + if (RetTy->isAnyComplexType()) + return ABIArgInfo::getDirect(); + + if (isAggregateTypeForABI(RetTy)) + return ABIArgInfo::getIndirect(0); + + return (isPromotableTypeForABI(RetTy) ? + ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); +} + +// Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. +llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr, + QualType Ty, + CodeGenFunction &CGF) const { + llvm::Type *BP = CGF.Int8PtrTy; + llvm::Type *BPP = CGF.Int8PtrPtrTy; + + CGBuilderTy &Builder = CGF.Builder; + llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); + llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); + + // Update the va_list pointer. The pointer should be bumped by the + // size of the object. We can trust getTypeSize() except for a complex + // type whose base type is smaller than a doubleword. For these, the + // size of the object is 16 bytes; see below for further explanation. + unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8; + QualType BaseTy; + unsigned CplxBaseSize = 0; + + if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { + BaseTy = CTy->getElementType(); + CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8; + if (CplxBaseSize < 8) + SizeInBytes = 16; + } + + unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8); + llvm::Value *NextAddr = + Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), + "ap.next"); + Builder.CreateStore(NextAddr, VAListAddrAsBPP); + + // If we have a complex type and the base type is smaller than 8 bytes, + // the ABI calls for the real and imaginary parts to be right-adjusted + // in separate doublewords. However, Clang expects us to produce a + // pointer to a structure with the two parts packed tightly. So generate + // loads of the real and imaginary parts relative to the va_list pointer, + // and store them to a temporary structure. + if (CplxBaseSize && CplxBaseSize < 8) { + llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); + llvm::Value *ImagAddr = RealAddr; + RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize)); + ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize)); + llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy)); + RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy); + ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy); + llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal"); + llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag"); + llvm::Value *Ptr = CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty), + "vacplx"); + llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, ".real"); + llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, ".imag"); + Builder.CreateStore(Real, RealPtr, false); + Builder.CreateStore(Imag, ImagPtr, false); + return Ptr; + } + + // If the argument is smaller than 8 bytes, it is right-adjusted in + // its doubleword slot. Adjust the pointer to pick it up from the + // correct offset. + if (SizeInBytes < 8) { + llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); + AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes)); + Addr = Builder.CreateIntToPtr(AddrAsInt, BP); + } + + llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); + return Builder.CreateBitCast(Addr, PTy); +} + +static bool +PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, + llvm::Value *Address) { + // This is calculated from the LLVM and GCC tables and verified + // against gcc output. AFAIK all ABIs use the same encoding. + + CodeGen::CGBuilderTy &Builder = CGF.Builder; + + llvm::IntegerType *i8 = CGF.Int8Ty; + llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); + llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); + llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); + + // 0-31: r0-31, the 8-byte general-purpose registers + AssignToArrayRange(Builder, Address, Eight8, 0, 31); + + // 32-63: fp0-31, the 8-byte floating-point registers + AssignToArrayRange(Builder, Address, Eight8, 32, 63); + + // 64-76 are various 4-byte special-purpose registers: + // 64: mq + // 65: lr + // 66: ctr + // 67: ap + // 68-75 cr0-7 + // 76: xer + AssignToArrayRange(Builder, Address, Four8, 64, 76); + + // 77-108: v0-31, the 16-byte vector registers + AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); + + // 109: vrsave + // 110: vscr + // 111: spe_acc + // 112: spefscr + // 113: sfp + AssignToArrayRange(Builder, Address, Four8, 109, 113); + + return false; +} + +bool +PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( + CodeGen::CodeGenFunction &CGF, + llvm::Value *Address) const { + + return PPC64_initDwarfEHRegSizeTable(CGF, Address); +} + +bool +PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, + llvm::Value *Address) const { + + return PPC64_initDwarfEHRegSizeTable(CGF, Address); +} + +//===----------------------------------------------------------------------===// +// ARM ABI Implementation +//===----------------------------------------------------------------------===// + +namespace { + +class ARMABIInfo : public ABIInfo { +public: + enum ABIKind { + APCS = 0, + AAPCS = 1, + AAPCS_VFP + }; + +private: + ABIKind Kind; + +public: + ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) { + setRuntimeCC(); + } + + bool isEABI() const { + StringRef Env = getTarget().getTriple().getEnvironmentName(); + return (Env == "gnueabi" || Env == "eabi" || + Env == "android" || Env == "androideabi"); + } + + ABIKind getABIKind() const { return Kind; } + +private: + ABIArgInfo classifyReturnType(QualType RetTy) const; + ABIArgInfo classifyArgumentType(QualType RetTy, int *VFPRegs, + unsigned &AllocatedVFP, + bool &IsHA) const; + bool isIllegalVectorType(QualType Ty) const; + + virtual void computeInfo(CGFunctionInfo &FI) const; + + virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const; + + llvm::CallingConv::ID getLLVMDefaultCC() const; + llvm::CallingConv::ID getABIDefaultCC() const; + void setRuntimeCC(); +}; + +class ARMTargetCodeGenInfo : public TargetCodeGenInfo { +public: + ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) + :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} + + const ARMABIInfo &getABIInfo() const { + return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); + } + + int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { + return 13; + } + + StringRef getARCRetainAutoreleasedReturnValueMarker() const { + return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue"; + } + + bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, + llvm::Value *Address) const { + llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); + + // 0-15 are the 16 integer registers. + AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); + return false; + } + + unsigned getSizeOfUnwindException() const { + if (getABIInfo().isEABI()) return 88; + return TargetCodeGenInfo::getSizeOfUnwindException(); + } + + void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, + CodeGen::CodeGenModule &CGM) const { + const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); + if (!FD) + return; + + const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); + if (!Attr) + return; + + const char *Kind; + switch (Attr->getInterrupt()) { + case ARMInterruptAttr::Generic: Kind = ""; break; + case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; + case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; + case ARMInterruptAttr::SWI: Kind = "SWI"; break; + case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; + case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; + } + + llvm::Function *Fn = cast<llvm::Function>(GV); + + Fn->addFnAttr("interrupt", Kind); + + if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS) + return; + + // AAPCS guarantees that sp will be 8-byte aligned on any public interface, + // however this is not necessarily true on taking any interrupt. Instruct + // the backend to perform a realignment as part of the function prologue. + llvm::AttrBuilder B; + B.addStackAlignmentAttr(8); + Fn->addAttributes(llvm::AttributeSet::FunctionIndex, + llvm::AttributeSet::get(CGM.getLLVMContext(), + llvm::AttributeSet::FunctionIndex, + B)); + } + +}; + +} + +void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { + // To correctly handle Homogeneous Aggregate, we need to keep track of the + // VFP registers allocated so far. + // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive + // VFP registers of the appropriate type unallocated then the argument is + // allocated to the lowest-numbered sequence of such registers. + // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are + // unallocated are marked as unavailable. + unsigned AllocatedVFP = 0; + int VFPRegs[16] = { 0 }; + FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); + for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); + it != ie; ++it) { + unsigned PreAllocation = AllocatedVFP; + bool IsHA = false; + // 6.1.2.3 There is one VFP co-processor register class using registers + // s0-s15 (d0-d7) for passing arguments. + const unsigned NumVFPs = 16; + it->info = classifyArgumentType(it->type, VFPRegs, AllocatedVFP, IsHA); + // If we do not have enough VFP registers for the HA, any VFP registers + // that are unallocated are marked as unavailable. To achieve this, we add + // padding of (NumVFPs - PreAllocation) floats. + if (IsHA && AllocatedVFP > NumVFPs && PreAllocation < NumVFPs) { + llvm::Type *PaddingTy = llvm::ArrayType::get( + llvm::Type::getFloatTy(getVMContext()), NumVFPs - PreAllocation); + it->info = ABIArgInfo::getExpandWithPadding(false, PaddingTy); + } + } + + // Always honor user-specified calling convention. + if (FI.getCallingConvention() != llvm::CallingConv::C) + return; + + llvm::CallingConv::ID cc = getRuntimeCC(); + if (cc != llvm::CallingConv::C) + FI.setEffectiveCallingConvention(cc); +} + +/// Return the default calling convention that LLVM will use. +llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { + // The default calling convention that LLVM will infer. + if (getTarget().getTriple().getEnvironmentName()=="gnueabihf") + return llvm::CallingConv::ARM_AAPCS_VFP; + else if (isEABI()) + return llvm::CallingConv::ARM_AAPCS; + else + return llvm::CallingConv::ARM_APCS; +} + +/// Return the calling convention that our ABI would like us to use +/// as the C calling convention. +llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { + switch (getABIKind()) { + case APCS: return llvm::CallingConv::ARM_APCS; + case AAPCS: return llvm::CallingConv::ARM_AAPCS; + case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; + } + llvm_unreachable("bad ABI kind"); +} + +void ARMABIInfo::setRuntimeCC() { + assert(getRuntimeCC() == llvm::CallingConv::C); + + // Don't muddy up the IR with a ton of explicit annotations if + // they'd just match what LLVM will infer from the triple. + llvm::CallingConv::ID abiCC = getABIDefaultCC(); + if (abiCC != getLLVMDefaultCC()) + RuntimeCC = abiCC; +} + +/// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous +/// aggregate. If HAMembers is non-null, the number of base elements +/// contained in the type is returned through it; this is used for the +/// recursive calls that check aggregate component types. +static bool isHomogeneousAggregate(QualType Ty, const Type *&Base, + ASTContext &Context, + uint64_t *HAMembers = 0) { + uint64_t Members = 0; + if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { + if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members)) + return false; + Members *= AT->getSize().getZExtValue(); + } else if (const RecordType *RT = Ty->getAs<RecordType>()) { + const RecordDecl *RD = RT->getDecl(); + if (RD->hasFlexibleArrayMember()) + return false; + + Members = 0; + for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); + i != e; ++i) { + const FieldDecl *FD = *i; + uint64_t FldMembers; + if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers)) + return false; + + Members = (RD->isUnion() ? + std::max(Members, FldMembers) : Members + FldMembers); + } + } else { + Members = 1; + if (const ComplexType *CT = Ty->getAs<ComplexType>()) { + Members = 2; + Ty = CT->getElementType(); + } + + // Homogeneous aggregates for AAPCS-VFP must have base types of float, + // double, or 64-bit or 128-bit vectors. + if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { + if (BT->getKind() != BuiltinType::Float && + BT->getKind() != BuiltinType::Double && + BT->getKind() != BuiltinType::LongDouble) + return false; + } else if (const VectorType *VT = Ty->getAs<VectorType>()) { + unsigned VecSize = Context.getTypeSize(VT); + if (VecSize != 64 && VecSize != 128) + return false; + } else { + return false; + } + + // The base type must be the same for all members. Vector types of the + // same total size are treated as being equivalent here. + const Type *TyPtr = Ty.getTypePtr(); + if (!Base) + Base = TyPtr; + if (Base != TyPtr && + (!Base->isVectorType() || !TyPtr->isVectorType() || + Context.getTypeSize(Base) != Context.getTypeSize(TyPtr))) + return false; + } + + // Homogeneous Aggregates can have at most 4 members of the base type. + if (HAMembers) + *HAMembers = Members; + + return (Members > 0 && Members <= 4); +} + +/// markAllocatedVFPs - update VFPRegs according to the alignment and +/// number of VFP registers (unit is S register) requested. +static void markAllocatedVFPs(int *VFPRegs, unsigned &AllocatedVFP, + unsigned Alignment, + unsigned NumRequired) { + // Early Exit. + if (AllocatedVFP >= 16) + return; + // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive + // VFP registers of the appropriate type unallocated then the argument is + // allocated to the lowest-numbered sequence of such registers. + for (unsigned I = 0; I < 16; I += Alignment) { + bool FoundSlot = true; + for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++) + if (J >= 16 || VFPRegs[J]) { + FoundSlot = false; + break; + } + if (FoundSlot) { + for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++) + VFPRegs[J] = 1; + AllocatedVFP += NumRequired; + return; + } + } + // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are + // unallocated are marked as unavailable. + for (unsigned I = 0; I < 16; I++) + VFPRegs[I] = 1; + AllocatedVFP = 17; // We do not have enough VFP registers. +} + +ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, int *VFPRegs, + unsigned &AllocatedVFP, + bool &IsHA) const { + // We update number of allocated VFPs according to + // 6.1.2.1 The following argument types are VFP CPRCs: + // A single-precision floating-point type (including promoted + // half-precision types); A double-precision floating-point type; + // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate + // with a Base Type of a single- or double-precision floating-point type, + // 64-bit containerized vectors or 128-bit containerized vectors with one + // to four Elements. + + // Handle illegal vector types here. + if (isIllegalVectorType(Ty)) { + uint64_t Size = getContext().getTypeSize(Ty); + if (Size <= 32) { + llvm::Type *ResType = + llvm::Type::getInt32Ty(getVMContext()); + return ABIArgInfo::getDirect(ResType); + } + if (Size == 64) { + llvm::Type *ResType = llvm::VectorType::get( + llvm::Type::getInt32Ty(getVMContext()), 2); + markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, 2); + return ABIArgInfo::getDirect(ResType); + } + if (Size == 128) { + llvm::Type *ResType = llvm::VectorType::get( + llvm::Type::getInt32Ty(getVMContext()), 4); + markAllocatedVFPs(VFPRegs, AllocatedVFP, 4, 4); + return ABIArgInfo::getDirect(ResType); + } + return ABIArgInfo::getIndirect(0, /*ByVal=*/false); + } + // Update VFPRegs for legal vector types. + if (const VectorType *VT = Ty->getAs<VectorType>()) { + uint64_t Size = getContext().getTypeSize(VT); + // Size of a legal vector should be power of 2 and above 64. + markAllocatedVFPs(VFPRegs, AllocatedVFP, Size >= 128 ? 4 : 2, Size / 32); + } + // Update VFPRegs for floating point types. + if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { + if (BT->getKind() == BuiltinType::Half || + BT->getKind() == BuiltinType::Float) + markAllocatedVFPs(VFPRegs, AllocatedVFP, 1, 1); + if (BT->getKind() == BuiltinType::Double || + BT->getKind() == BuiltinType::LongDouble) + markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, 2); + } + + if (!isAggregateTypeForABI(Ty)) { + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = Ty->getAs<EnumType>()) + Ty = EnumTy->getDecl()->getIntegerType(); + + return (Ty->isPromotableIntegerType() ? + ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); + } + + if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) + return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); + + // Ignore empty records. + if (isEmptyRecord(getContext(), Ty, true)) + return ABIArgInfo::getIgnore(); + + if (getABIKind() == ARMABIInfo::AAPCS_VFP) { + // Homogeneous Aggregates need to be expanded when we can fit the aggregate + // into VFP registers. + const Type *Base = 0; + uint64_t Members = 0; + if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) { + assert(Base && "Base class should be set for homogeneous aggregate"); + // Base can be a floating-point or a vector. + if (Base->isVectorType()) { + // ElementSize is in number of floats. + unsigned ElementSize = getContext().getTypeSize(Base) == 64 ? 2 : 4; + markAllocatedVFPs(VFPRegs, AllocatedVFP, ElementSize, + Members * ElementSize); + } else if (Base->isSpecificBuiltinType(BuiltinType::Float)) + markAllocatedVFPs(VFPRegs, AllocatedVFP, 1, Members); + else { + assert(Base->isSpecificBuiltinType(BuiltinType::Double) || + Base->isSpecificBuiltinType(BuiltinType::LongDouble)); + markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, Members * 2); + } + IsHA = true; + return ABIArgInfo::getExpand(); + } + } + + // Support byval for ARM. + // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at + // most 8-byte. We realign the indirect argument if type alignment is bigger + // than ABI alignment. + uint64_t ABIAlign = 4; + uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; + if (getABIKind() == ARMABIInfo::AAPCS_VFP || + getABIKind() == ARMABIInfo::AAPCS) + ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); + if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { + return ABIArgInfo::getIndirect(0, /*ByVal=*/true, + /*Realign=*/TyAlign > ABIAlign); + } + + // Otherwise, pass by coercing to a structure of the appropriate size. + llvm::Type* ElemTy; + unsigned SizeRegs; + // FIXME: Try to match the types of the arguments more accurately where + // we can. + if (getContext().getTypeAlign(Ty) <= 32) { + ElemTy = llvm::Type::getInt32Ty(getVMContext()); + SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; + } else { + ElemTy = llvm::Type::getInt64Ty(getVMContext()); + SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; + } + + llvm::Type *STy = + llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL); + return ABIArgInfo::getDirect(STy); +} + +static bool isIntegerLikeType(QualType Ty, ASTContext &Context, + llvm::LLVMContext &VMContext) { + // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure + // is called integer-like if its size is less than or equal to one word, and + // the offset of each of its addressable sub-fields is zero. + + uint64_t Size = Context.getTypeSize(Ty); + + // Check that the type fits in a word. + if (Size > 32) + return false; + + // FIXME: Handle vector types! + if (Ty->isVectorType()) + return false; + + // Float types are never treated as "integer like". + if (Ty->isRealFloatingType()) + return false; + + // If this is a builtin or pointer type then it is ok. + if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) + return true; + + // Small complex integer types are "integer like". + if (const ComplexType *CT = Ty->getAs<ComplexType>()) + return isIntegerLikeType(CT->getElementType(), Context, VMContext); + + // Single element and zero sized arrays should be allowed, by the definition + // above, but they are not. + + // Otherwise, it must be a record type. + const RecordType *RT = Ty->getAs<RecordType>(); + if (!RT) return false; + + // Ignore records with flexible arrays. + const RecordDecl *RD = RT->getDecl(); + if (RD->hasFlexibleArrayMember()) + return false; + + // Check that all sub-fields are at offset 0, and are themselves "integer + // like". + const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); + + bool HadField = false; + unsigned idx = 0; + for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); + i != e; ++i, ++idx) { + const FieldDecl *FD = *i; + + // Bit-fields are not addressable, we only need to verify they are "integer + // like". We still have to disallow a subsequent non-bitfield, for example: + // struct { int : 0; int x } + // is non-integer like according to gcc. + if (FD->isBitField()) { + if (!RD->isUnion()) + HadField = true; + + if (!isIntegerLikeType(FD->getType(), Context, VMContext)) + return false; + + continue; + } + + // Check if this field is at offset 0. + if (Layout.getFieldOffset(idx) != 0) + return false; + + if (!isIntegerLikeType(FD->getType(), Context, VMContext)) + return false; + + // Only allow at most one field in a structure. This doesn't match the + // wording above, but follows gcc in situations with a field following an + // empty structure. + if (!RD->isUnion()) { + if (HadField) + return false; + + HadField = true; + } + } + + return true; +} + +ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const { + if (RetTy->isVoidType()) + return ABIArgInfo::getIgnore(); + + // Large vector types should be returned via memory. + if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) + return ABIArgInfo::getIndirect(0); + + if (!isAggregateTypeForABI(RetTy)) { + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) + RetTy = EnumTy->getDecl()->getIntegerType(); + + return (RetTy->isPromotableIntegerType() ? + ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); + } + + // Structures with either a non-trivial destructor or a non-trivial + // copy constructor are always indirect. + if (isRecordReturnIndirect(RetTy, getCXXABI())) + return ABIArgInfo::getIndirect(0, /*ByVal=*/false); + + // Are we following APCS? + if (getABIKind() == APCS) { + if (isEmptyRecord(getContext(), RetTy, false)) + return ABIArgInfo::getIgnore(); + + // Complex types are all returned as packed integers. + // + // FIXME: Consider using 2 x vector types if the back end handles them + // correctly. + if (RetTy->isAnyComplexType()) + return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), + getContext().getTypeSize(RetTy))); + + // Integer like structures are returned in r0. + if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { + // Return in the smallest viable integer type. + uint64_t Size = getContext().getTypeSize(RetTy); + if (Size <= 8) + return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); + if (Size <= 16) + return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); + return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); + } + + // Otherwise return in memory. + return ABIArgInfo::getIndirect(0); + } + + // Otherwise this is an AAPCS variant. + + if (isEmptyRecord(getContext(), RetTy, true)) + return ABIArgInfo::getIgnore(); + + // Check for homogeneous aggregates with AAPCS-VFP. + if (getABIKind() == AAPCS_VFP) { + const Type *Base = 0; + if (isHomogeneousAggregate(RetTy, Base, getContext())) { + assert(Base && "Base class should be set for homogeneous aggregate"); + // Homogeneous Aggregates are returned directly. + return ABIArgInfo::getDirect(); + } + } + + // Aggregates <= 4 bytes are returned in r0; other aggregates + // are returned indirectly. + uint64_t Size = getContext().getTypeSize(RetTy); + if (Size <= 32) { + // Return in the smallest viable integer type. + if (Size <= 8) + return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); + if (Size <= 16) + return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); + return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); + } + + return ABIArgInfo::getIndirect(0); +} + +/// isIllegalVector - check whether Ty is an illegal vector type. +bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { + if (const VectorType *VT = Ty->getAs<VectorType>()) { + // Check whether VT is legal. + unsigned NumElements = VT->getNumElements(); + uint64_t Size = getContext().getTypeSize(VT); + // NumElements should be power of 2. + if ((NumElements & (NumElements - 1)) != 0) + return true; + // Size should be greater than 32 bits. + return Size <= 32; + } + return false; +} + +llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const { + llvm::Type *BP = CGF.Int8PtrTy; + llvm::Type *BPP = CGF.Int8PtrPtrTy; + + CGBuilderTy &Builder = CGF.Builder; + llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); + llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); + + if (isEmptyRecord(getContext(), Ty, true)) { + // These are ignored for parameter passing purposes. + llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); + return Builder.CreateBitCast(Addr, PTy); + } + + uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8; + uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; + bool IsIndirect = false; + + // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for + // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. + if (getABIKind() == ARMABIInfo::AAPCS_VFP || + getABIKind() == ARMABIInfo::AAPCS) + TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); + else + TyAlign = 4; + // Use indirect if size of the illegal vector is bigger than 16 bytes. + if (isIllegalVectorType(Ty) && Size > 16) { + IsIndirect = true; + Size = 4; + TyAlign = 4; + } + + // Handle address alignment for ABI alignment > 4 bytes. + if (TyAlign > 4) { + assert((TyAlign & (TyAlign - 1)) == 0 && + "Alignment is not power of 2!"); + llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); + AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); + AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); + Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align"); + } + + uint64_t Offset = + llvm::RoundUpToAlignment(Size, 4); + llvm::Value *NextAddr = + Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), + "ap.next"); + Builder.CreateStore(NextAddr, VAListAddrAsBPP); + + if (IsIndirect) + Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP)); + else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) { + // We can't directly cast ap.cur to pointer to a vector type, since ap.cur + // may not be correctly aligned for the vector type. We create an aligned + // temporary space and copy the content over from ap.cur to the temporary + // space. This is necessary if the natural alignment of the type is greater + // than the ABI alignment. + llvm::Type *I8PtrTy = Builder.getInt8PtrTy(); + CharUnits CharSize = getContext().getTypeSizeInChars(Ty); + llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty), + "var.align"); + llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy); + llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy); + Builder.CreateMemCpy(Dst, Src, + llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()), + TyAlign, false); + Addr = AlignedTemp; //The content is in aligned location. + } + llvm::Type *PTy = + llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); + llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); + + return AddrTyped; +} + +namespace { + +class NaClARMABIInfo : public ABIInfo { + public: + NaClARMABIInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind) + : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, Kind) {} + virtual void computeInfo(CGFunctionInfo &FI) const; + virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const; + private: + PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv. + ARMABIInfo NInfo; // Used for everything else. +}; + +class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo { + public: + NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind) + : TargetCodeGenInfo(new NaClARMABIInfo(CGT, Kind)) {} +}; + +} + +void NaClARMABIInfo::computeInfo(CGFunctionInfo &FI) const { + if (FI.getASTCallingConvention() == CC_PnaclCall) + PInfo.computeInfo(FI); + else + static_cast<const ABIInfo&>(NInfo).computeInfo(FI); +} + +llvm::Value *NaClARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const { + // Always use the native convention; calling pnacl-style varargs functions + // is unsupported. + return static_cast<const ABIInfo&>(NInfo).EmitVAArg(VAListAddr, Ty, CGF); +} + +//===----------------------------------------------------------------------===// +// AArch64 ABI Implementation +//===----------------------------------------------------------------------===// + +namespace { + +class AArch64ABIInfo : public ABIInfo { +public: + AArch64ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} + +private: + // The AArch64 PCS is explicit about return types and argument types being + // handled identically, so we don't need to draw a distinction between + // Argument and Return classification. + ABIArgInfo classifyGenericType(QualType Ty, int &FreeIntRegs, + int &FreeVFPRegs) const; + + ABIArgInfo tryUseRegs(QualType Ty, int &FreeRegs, int RegsNeeded, bool IsInt, + llvm::Type *DirectTy = 0) const; + + virtual void computeInfo(CGFunctionInfo &FI) const; + + virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const; +}; + +class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { +public: + AArch64TargetCodeGenInfo(CodeGenTypes &CGT) + :TargetCodeGenInfo(new AArch64ABIInfo(CGT)) {} + + const AArch64ABIInfo &getABIInfo() const { + return static_cast<const AArch64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); + } + + int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { + return 31; + } + + bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, + llvm::Value *Address) const { + // 0-31 are x0-x30 and sp: 8 bytes each + llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); + AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 31); + + // 64-95 are v0-v31: 16 bytes each + llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); + AssignToArrayRange(CGF.Builder, Address, Sixteen8, 64, 95); + + return false; + } + +}; + +} + +void AArch64ABIInfo::computeInfo(CGFunctionInfo &FI) const { + int FreeIntRegs = 8, FreeVFPRegs = 8; + + FI.getReturnInfo() = classifyGenericType(FI.getReturnType(), + FreeIntRegs, FreeVFPRegs); + + FreeIntRegs = FreeVFPRegs = 8; + for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); + it != ie; ++it) { + it->info = classifyGenericType(it->type, FreeIntRegs, FreeVFPRegs); + + } +} + +ABIArgInfo +AArch64ABIInfo::tryUseRegs(QualType Ty, int &FreeRegs, int RegsNeeded, + bool IsInt, llvm::Type *DirectTy) const { + if (FreeRegs >= RegsNeeded) { + FreeRegs -= RegsNeeded; + return ABIArgInfo::getDirect(DirectTy); + } + + llvm::Type *Padding = 0; + + // We need padding so that later arguments don't get filled in anyway. That + // wouldn't happen if only ByVal arguments followed in the same category, but + // a large structure will simply seem to be a pointer as far as LLVM is + // concerned. + if (FreeRegs > 0) { + if (IsInt) + Padding = llvm::Type::getInt64Ty(getVMContext()); + else + Padding = llvm::Type::getFloatTy(getVMContext()); + + // Either [N x i64] or [N x float]. + Padding = llvm::ArrayType::get(Padding, FreeRegs); + FreeRegs = 0; + } + + return ABIArgInfo::getIndirect(getContext().getTypeAlign(Ty) / 8, + /*IsByVal=*/ true, /*Realign=*/ false, + Padding); +} + + +ABIArgInfo AArch64ABIInfo::classifyGenericType(QualType Ty, + int &FreeIntRegs, + int &FreeVFPRegs) const { + // Can only occurs for return, but harmless otherwise. + if (Ty->isVoidType()) + return ABIArgInfo::getIgnore(); + + // Large vector types should be returned via memory. There's no such concept + // in the ABI, but they'd be over 16 bytes anyway so no matter how they're + // classified they'd go into memory (see B.3). + if (Ty->isVectorType() && getContext().getTypeSize(Ty) > 128) { + if (FreeIntRegs > 0) + --FreeIntRegs; + return ABIArgInfo::getIndirect(0, /*ByVal=*/false); + } + + // All non-aggregate LLVM types have a concrete ABI representation so they can + // be passed directly. After this block we're guaranteed to be in a + // complicated case. + if (!isAggregateTypeForABI(Ty)) { + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = Ty->getAs<EnumType>()) + Ty = EnumTy->getDecl()->getIntegerType(); + + if (Ty->isFloatingType() || Ty->isVectorType()) + return tryUseRegs(Ty, FreeVFPRegs, /*RegsNeeded=*/ 1, /*IsInt=*/ false); + + assert(getContext().getTypeSize(Ty) <= 128 && + "unexpectedly large scalar type"); + + int RegsNeeded = getContext().getTypeSize(Ty) > 64 ? 2 : 1; + + // If the type may need padding registers to ensure "alignment", we must be + // careful when this is accounted for. Increasing the effective size covers + // all cases. + if (getContext().getTypeAlign(Ty) == 128) + RegsNeeded += FreeIntRegs % 2 != 0; + + return tryUseRegs(Ty, FreeIntRegs, RegsNeeded, /*IsInt=*/ true); + } + + if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { + if (FreeIntRegs > 0 && RAA == CGCXXABI::RAA_Indirect) + --FreeIntRegs; + return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); + } + + if (isEmptyRecord(getContext(), Ty, true)) { + if (!getContext().getLangOpts().CPlusPlus) { + // Empty structs outside C++ mode are a GNU extension, so no ABI can + // possibly tell us what to do. It turns out (I believe) that GCC ignores + // the object for parameter-passsing purposes. + return ABIArgInfo::getIgnore(); + } + + // The combination of C++98 9p5 (sizeof(struct) != 0) and the pseudocode + // description of va_arg in the PCS require that an empty struct does + // actually occupy space for parameter-passing. I'm hoping for a + // clarification giving an explicit paragraph to point to in future. + return tryUseRegs(Ty, FreeIntRegs, /*RegsNeeded=*/ 1, /*IsInt=*/ true, + llvm::Type::getInt8Ty(getVMContext())); + } + + // Homogeneous vector aggregates get passed in registers or on the stack. + const Type *Base = 0; + uint64_t NumMembers = 0; + if (isHomogeneousAggregate(Ty, Base, getContext(), &NumMembers)) { + assert(Base && "Base class should be set for homogeneous aggregate"); + // Homogeneous aggregates are passed and returned directly. + return tryUseRegs(Ty, FreeVFPRegs, /*RegsNeeded=*/ NumMembers, + /*IsInt=*/ false); + } + + uint64_t Size = getContext().getTypeSize(Ty); + if (Size <= 128) { + // Small structs can use the same direct type whether they're in registers + // or on the stack. + llvm::Type *BaseTy; + unsigned NumBases; + int SizeInRegs = (Size + 63) / 64; + + if (getContext().getTypeAlign(Ty) == 128) { + BaseTy = llvm::Type::getIntNTy(getVMContext(), 128); + NumBases = 1; + + // If the type may need padding registers to ensure "alignment", we must + // be careful when this is accounted for. Increasing the effective size + // covers all cases. + SizeInRegs += FreeIntRegs % 2 != 0; + } else { + BaseTy = llvm::Type::getInt64Ty(getVMContext()); + NumBases = SizeInRegs; + } + llvm::Type *DirectTy = llvm::ArrayType::get(BaseTy, NumBases); + + return tryUseRegs(Ty, FreeIntRegs, /*RegsNeeded=*/ SizeInRegs, + /*IsInt=*/ true, DirectTy); + } + + // If the aggregate is > 16 bytes, it's passed and returned indirectly. In + // LLVM terms the return uses an "sret" pointer, but that's handled elsewhere. + --FreeIntRegs; + return ABIArgInfo::getIndirect(0, /* byVal = */ false); +} + +llvm::Value *AArch64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const { + // The AArch64 va_list type and handling is specified in the Procedure Call + // Standard, section B.4: + // + // struct { + // void *__stack; + // void *__gr_top; + // void *__vr_top; + // int __gr_offs; + // int __vr_offs; + // }; + + assert(!CGF.CGM.getDataLayout().isBigEndian() + && "va_arg not implemented for big-endian AArch64"); + + int FreeIntRegs = 8, FreeVFPRegs = 8; + Ty = CGF.getContext().getCanonicalType(Ty); + ABIArgInfo AI = classifyGenericType(Ty, FreeIntRegs, FreeVFPRegs); + + llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); + llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); + llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); + llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); + + llvm::Value *reg_offs_p = 0, *reg_offs = 0; + int reg_top_index; + int RegSize; + if (FreeIntRegs < 8) { + assert(FreeVFPRegs == 8 && "Arguments never split between int & VFP regs"); + // 3 is the field number of __gr_offs + reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); + reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); + reg_top_index = 1; // field number for __gr_top + RegSize = 8 * (8 - FreeIntRegs); + } else { + assert(FreeVFPRegs < 8 && "Argument must go in VFP or int regs"); + // 4 is the field number of __vr_offs. + reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); + reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); + reg_top_index = 2; // field number for __vr_top + RegSize = 16 * (8 - FreeVFPRegs); + } + + //======================================= + // Find out where argument was passed + //======================================= + + // If reg_offs >= 0 we're already using the stack for this type of + // argument. We don't want to keep updating reg_offs (in case it overflows, + // though anyone passing 2GB of arguments, each at most 16 bytes, deserves + // whatever they get). + llvm::Value *UsingStack = 0; + UsingStack = CGF.Builder.CreateICmpSGE(reg_offs, + llvm::ConstantInt::get(CGF.Int32Ty, 0)); + + CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); + + // Otherwise, at least some kind of argument could go in these registers, the + // quesiton is whether this particular type is too big. + CGF.EmitBlock(MaybeRegBlock); + + // Integer arguments may need to correct register alignment (for example a + // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we + // align __gr_offs to calculate the potential address. + if (FreeIntRegs < 8 && AI.isDirect() && getContext().getTypeAlign(Ty) > 64) { + int Align = getContext().getTypeAlign(Ty) / 8; + + reg_offs = CGF.Builder.CreateAdd(reg_offs, + llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), + "align_regoffs"); + reg_offs = CGF.Builder.CreateAnd(reg_offs, + llvm::ConstantInt::get(CGF.Int32Ty, -Align), + "aligned_regoffs"); + } + + // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. + llvm::Value *NewOffset = 0; + NewOffset = CGF.Builder.CreateAdd(reg_offs, + llvm::ConstantInt::get(CGF.Int32Ty, RegSize), + "new_reg_offs"); + CGF.Builder.CreateStore(NewOffset, reg_offs_p); + + // Now we're in a position to decide whether this argument really was in + // registers or not. + llvm::Value *InRegs = 0; + InRegs = CGF.Builder.CreateICmpSLE(NewOffset, + llvm::ConstantInt::get(CGF.Int32Ty, 0), + "inreg"); + + CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); + + //======================================= + // Argument was in registers + //======================================= + + // Now we emit the code for if the argument was originally passed in + // registers. First start the appropriate block: + CGF.EmitBlock(InRegBlock); + + llvm::Value *reg_top_p = 0, *reg_top = 0; + reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); + reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); + llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs); + llvm::Value *RegAddr = 0; + llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); + + if (!AI.isDirect()) { + // If it's been passed indirectly (actually a struct), whatever we find from + // stored registers or on the stack will actually be a struct **. + MemTy = llvm::PointerType::getUnqual(MemTy); + } + + const Type *Base = 0; + uint64_t NumMembers; + if (isHomogeneousAggregate(Ty, Base, getContext(), &NumMembers) + && NumMembers > 1) { + // Homogeneous aggregates passed in registers will have their elements split + // and stored 16-bytes apart regardless of size (they're notionally in qN, + // qN+1, ...). We reload and store into a temporary local variable + // contiguously. + assert(AI.isDirect() && "Homogeneous aggregates should be passed directly"); + llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); + llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); + llvm::Value *Tmp = CGF.CreateTempAlloca(HFATy); + + for (unsigned i = 0; i < NumMembers; ++i) { + llvm::Value *BaseOffset = llvm::ConstantInt::get(CGF.Int32Ty, 16 * i); + llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset); + LoadAddr = CGF.Builder.CreateBitCast(LoadAddr, + llvm::PointerType::getUnqual(BaseTy)); + llvm::Value *StoreAddr = CGF.Builder.CreateStructGEP(Tmp, i); + + llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); + CGF.Builder.CreateStore(Elem, StoreAddr); + } + + RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy); + } else { + // Otherwise the object is contiguous in memory + RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy); + } + + CGF.EmitBranch(ContBlock); + + //======================================= + // Argument was on the stack + //======================================= + CGF.EmitBlock(OnStackBlock); + + llvm::Value *stack_p = 0, *OnStackAddr = 0; + stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); + OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack"); + + // Again, stack arguments may need realigmnent. In this case both integer and + // floating-point ones might be affected. + if (AI.isDirect() && getContext().getTypeAlign(Ty) > 64) { + int Align = getContext().getTypeAlign(Ty) / 8; + + OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty); + + OnStackAddr = CGF.Builder.CreateAdd(OnStackAddr, + llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), + "align_stack"); + OnStackAddr = CGF.Builder.CreateAnd(OnStackAddr, + llvm::ConstantInt::get(CGF.Int64Ty, -Align), + "align_stack"); + + OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy); + } + + uint64_t StackSize; + if (AI.isDirect()) + StackSize = getContext().getTypeSize(Ty) / 8; + else + StackSize = 8; + + // All stack slots are 8 bytes + StackSize = llvm::RoundUpToAlignment(StackSize, 8); + + llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize); + llvm::Value *NewStack = CGF.Builder.CreateGEP(OnStackAddr, StackSizeC, + "new_stack"); + + // Write the new value of __stack for the next call to va_arg + CGF.Builder.CreateStore(NewStack, stack_p); + + OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy); + + CGF.EmitBranch(ContBlock); + + //======================================= + // Tidy up + //======================================= + CGF.EmitBlock(ContBlock); + + llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr"); + ResAddr->addIncoming(RegAddr, InRegBlock); + ResAddr->addIncoming(OnStackAddr, OnStackBlock); + + if (AI.isDirect()) + return ResAddr; + + return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"); +} + +//===----------------------------------------------------------------------===// +// NVPTX ABI Implementation +//===----------------------------------------------------------------------===// + +namespace { + +class NVPTXABIInfo : public ABIInfo { +public: + NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} + + ABIArgInfo classifyReturnType(QualType RetTy) const; + ABIArgInfo classifyArgumentType(QualType Ty) const; + + virtual void computeInfo(CGFunctionInfo &FI) const; + virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CFG) const; +}; + +class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { +public: + NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) + : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} + + virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, + CodeGen::CodeGenModule &M) const; +private: + static void addKernelMetadata(llvm::Function *F); +}; + +ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { + if (RetTy->isVoidType()) + return ABIArgInfo::getIgnore(); + + // note: this is different from default ABI + if (!RetTy->isScalarType()) + return ABIArgInfo::getDirect(); + + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) + RetTy = EnumTy->getDecl()->getIntegerType(); + + return (RetTy->isPromotableIntegerType() ? + ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); +} + +ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = Ty->getAs<EnumType>()) + Ty = EnumTy->getDecl()->getIntegerType(); + + return (Ty->isPromotableIntegerType() ? + ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); +} + +void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { + FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); + for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); + it != ie; ++it) + it->info = classifyArgumentType(it->type); + + // Always honor user-specified calling convention. + if (FI.getCallingConvention() != llvm::CallingConv::C) + return; + + FI.setEffectiveCallingConvention(getRuntimeCC()); +} + +llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CFG) const { + llvm_unreachable("NVPTX does not support varargs"); +} + +void NVPTXTargetCodeGenInfo:: +SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, + CodeGen::CodeGenModule &M) const{ + const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); + if (!FD) return; + + llvm::Function *F = cast<llvm::Function>(GV); + + // Perform special handling in OpenCL mode + if (M.getLangOpts().OpenCL) { + // Use OpenCL function attributes to check for kernel functions + // By default, all functions are device functions + if (FD->hasAttr<OpenCLKernelAttr>()) { + // OpenCL __kernel functions get kernel metadata + addKernelMetadata(F); + // And kernel functions are not subject to inlining + F->addFnAttr(llvm::Attribute::NoInline); + } + } + + // Perform special handling in CUDA mode. + if (M.getLangOpts().CUDA) { + // CUDA __global__ functions get a kernel metadata entry. Since + // __global__ functions cannot be called from the device, we do not + // need to set the noinline attribute. + if (FD->getAttr<CUDAGlobalAttr>()) + addKernelMetadata(F); + } +} + +void NVPTXTargetCodeGenInfo::addKernelMetadata(llvm::Function *F) { + llvm::Module *M = F->getParent(); + llvm::LLVMContext &Ctx = M->getContext(); + + // Get "nvvm.annotations" metadata node + llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); + + // Create !{<func-ref>, metadata !"kernel", i32 1} node + llvm::SmallVector<llvm::Value *, 3> MDVals; + MDVals.push_back(F); + MDVals.push_back(llvm::MDString::get(Ctx, "kernel")); + MDVals.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1)); + + // Append metadata to nvvm.annotations + MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); +} + +} + +//===----------------------------------------------------------------------===// +// SystemZ ABI Implementation +//===----------------------------------------------------------------------===// + +namespace { + +class SystemZABIInfo : public ABIInfo { +public: + SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} + + bool isPromotableIntegerType(QualType Ty) const; + bool isCompoundType(QualType Ty) const; + bool isFPArgumentType(QualType Ty) const; + + ABIArgInfo classifyReturnType(QualType RetTy) const; + ABIArgInfo classifyArgumentType(QualType ArgTy) const; + + virtual void computeInfo(CGFunctionInfo &FI) const { + FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); + for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); + it != ie; ++it) + it->info = classifyArgumentType(it->type); + } + + virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const; +}; + +class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { +public: + SystemZTargetCodeGenInfo(CodeGenTypes &CGT) + : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {} +}; + +} + +bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = Ty->getAs<EnumType>()) + Ty = EnumTy->getDecl()->getIntegerType(); + + // Promotable integer types are required to be promoted by the ABI. + if (Ty->isPromotableIntegerType()) + return true; + + // 32-bit values must also be promoted. + if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) + switch (BT->getKind()) { + case BuiltinType::Int: + case BuiltinType::UInt: + return true; + default: + return false; + } + return false; +} + +bool SystemZABIInfo::isCompoundType(QualType Ty) const { + return Ty->isAnyComplexType() || isAggregateTypeForABI(Ty); +} + +bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { + if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) + switch (BT->getKind()) { + case BuiltinType::Float: + case BuiltinType::Double: + return true; + default: + return false; + } + + if (const RecordType *RT = Ty->getAsStructureType()) { + const RecordDecl *RD = RT->getDecl(); + bool Found = false; + + // If this is a C++ record, check the bases first. + if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) + for (CXXRecordDecl::base_class_const_iterator I = CXXRD->bases_begin(), + E = CXXRD->bases_end(); I != E; ++I) { + QualType Base = I->getType(); + + // Empty bases don't affect things either way. + if (isEmptyRecord(getContext(), Base, true)) + continue; + + if (Found) + return false; + Found = isFPArgumentType(Base); + if (!Found) + return false; + } + + // Check the fields. + for (RecordDecl::field_iterator I = RD->field_begin(), + E = RD->field_end(); I != E; ++I) { + const FieldDecl *FD = *I; + + // Empty bitfields don't affect things either way. + // Unlike isSingleElementStruct(), empty structure and array fields + // do count. So do anonymous bitfields that aren't zero-sized. + if (FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) + return true; + + // Unlike isSingleElementStruct(), arrays do not count. + // Nested isFPArgumentType structures still do though. + if (Found) + return false; + Found = isFPArgumentType(FD->getType()); + if (!Found) + return false; + } + + // Unlike isSingleElementStruct(), trailing padding is allowed. + // An 8-byte aligned struct s { float f; } is passed as a double. + return Found; + } + + return false; +} + +llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const { + // Assume that va_list type is correct; should be pointer to LLVM type: + // struct { + // i64 __gpr; + // i64 __fpr; + // i8 *__overflow_arg_area; + // i8 *__reg_save_area; + // }; + + // Every argument occupies 8 bytes and is passed by preference in either + // GPRs or FPRs. + Ty = CGF.getContext().getCanonicalType(Ty); + ABIArgInfo AI = classifyArgumentType(Ty); + bool InFPRs = isFPArgumentType(Ty); + + llvm::Type *APTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); + bool IsIndirect = AI.isIndirect(); + unsigned UnpaddedBitSize; + if (IsIndirect) { + APTy = llvm::PointerType::getUnqual(APTy); + UnpaddedBitSize = 64; + } else + UnpaddedBitSize = getContext().getTypeSize(Ty); + unsigned PaddedBitSize = 64; + assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size."); + + unsigned PaddedSize = PaddedBitSize / 8; + unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8; + + unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding; + if (InFPRs) { + MaxRegs = 4; // Maximum of 4 FPR arguments + RegCountField = 1; // __fpr + RegSaveIndex = 16; // save offset for f0 + RegPadding = 0; // floats are passed in the high bits of an FPR + } else { + MaxRegs = 5; // Maximum of 5 GPR arguments + RegCountField = 0; // __gpr + RegSaveIndex = 2; // save offset for r2 + RegPadding = Padding; // values are passed in the low bits of a GPR + } + + llvm::Value *RegCountPtr = + CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); + llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); + llvm::Type *IndexTy = RegCount->getType(); + llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); + llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, + "fits_in_regs"); + + llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); + llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); + llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); + CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); + + // Emit code to load the value if it was passed in registers. + CGF.EmitBlock(InRegBlock); + + // Work out the address of an argument register. + llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize); + llvm::Value *ScaledRegCount = + CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); + llvm::Value *RegBase = + llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding); + llvm::Value *RegOffset = + CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); + llvm::Value *RegSaveAreaPtr = + CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); + llvm::Value *RegSaveArea = + CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); + llvm::Value *RawRegAddr = + CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr"); + llvm::Value *RegAddr = + CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr"); + + // Update the register count + llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); + llvm::Value *NewRegCount = + CGF.Builder.CreateAdd(RegCount, One, "reg_count"); + CGF.Builder.CreateStore(NewRegCount, RegCountPtr); + CGF.EmitBranch(ContBlock); + + // Emit code to load the value if it was passed in memory. + CGF.EmitBlock(InMemBlock); + + // Work out the address of a stack argument. + llvm::Value *OverflowArgAreaPtr = + CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); + llvm::Value *OverflowArgArea = + CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"); + llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding); + llvm::Value *RawMemAddr = + CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr"); + llvm::Value *MemAddr = + CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr"); + + // Update overflow_arg_area_ptr pointer + llvm::Value *NewOverflowArgArea = + CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area"); + CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); + CGF.EmitBranch(ContBlock); + + // Return the appropriate result. + CGF.EmitBlock(ContBlock); + llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr"); + ResAddr->addIncoming(RegAddr, InRegBlock); + ResAddr->addIncoming(MemAddr, InMemBlock); + + if (IsIndirect) + return CGF.Builder.CreateLoad(ResAddr, "indirect_arg"); + + return ResAddr; +} + +bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( + const llvm::Triple &Triple, const CodeGenOptions &Opts) { + assert(Triple.getArch() == llvm::Triple::x86); + + switch (Opts.getStructReturnConvention()) { + case CodeGenOptions::SRCK_Default: + break; + case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return + return false; + case CodeGenOptions::SRCK_InRegs: // -freg-struct-return + return true; + } + + if (Triple.isOSDarwin()) + return true; + + switch (Triple.getOS()) { + case llvm::Triple::Cygwin: + case llvm::Triple::MinGW32: + case llvm::Triple::AuroraUX: + case llvm::Triple::DragonFly: + case llvm::Triple::FreeBSD: + case llvm::Triple::OpenBSD: + case llvm::Triple::Bitrig: + case llvm::Triple::Win32: + return true; + default: + return false; + } +} + +ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { + if (RetTy->isVoidType()) + return ABIArgInfo::getIgnore(); + if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) + return ABIArgInfo::getIndirect(0); + return (isPromotableIntegerType(RetTy) ? + ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); +} + +ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { + // Handle the generic C++ ABI. + if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) + return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); + + // Integers and enums are extended to full register width. + if (isPromotableIntegerType(Ty)) + return ABIArgInfo::getExtend(); + + // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. + uint64_t Size = getContext().getTypeSize(Ty); + if (Size != 8 && Size != 16 && Size != 32 && Size != 64) + return ABIArgInfo::getIndirect(0, /*ByVal=*/false); + + // Handle small structures. + if (const RecordType *RT = Ty->getAs<RecordType>()) { + // Structures with flexible arrays have variable length, so really + // fail the size test above. + const RecordDecl *RD = RT->getDecl(); + if (RD->hasFlexibleArrayMember()) + return ABIArgInfo::getIndirect(0, /*ByVal=*/false); + + // The structure is passed as an unextended integer, a float, or a double. + llvm::Type *PassTy; + if (isFPArgumentType(Ty)) { + assert(Size == 32 || Size == 64); + if (Size == 32) + PassTy = llvm::Type::getFloatTy(getVMContext()); + else + PassTy = llvm::Type::getDoubleTy(getVMContext()); + } else + PassTy = llvm::IntegerType::get(getVMContext(), Size); + return ABIArgInfo::getDirect(PassTy); + } + + // Non-structure compounds are passed indirectly. + if (isCompoundType(Ty)) + return ABIArgInfo::getIndirect(0, /*ByVal=*/false); + + return ABIArgInfo::getDirect(0); +} + +//===----------------------------------------------------------------------===// +// MSP430 ABI Implementation +//===----------------------------------------------------------------------===// + +namespace { + +class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { +public: + MSP430TargetCodeGenInfo(CodeGenTypes &CGT) + : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} + void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, + CodeGen::CodeGenModule &M) const; +}; + +} + +void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D, + llvm::GlobalValue *GV, + CodeGen::CodeGenModule &M) const { + if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { + if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { + // Handle 'interrupt' attribute: + llvm::Function *F = cast<llvm::Function>(GV); + + // Step 1: Set ISR calling convention. + F->setCallingConv(llvm::CallingConv::MSP430_INTR); + + // Step 2: Add attributes goodness. + F->addFnAttr(llvm::Attribute::NoInline); + + // Step 3: Emit ISR vector alias. + unsigned Num = attr->getNumber() / 2; + new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage, + "__isr_" + Twine(Num), + GV, &M.getModule()); + } + } +} + +//===----------------------------------------------------------------------===// +// MIPS ABI Implementation. This works for both little-endian and +// big-endian variants. +//===----------------------------------------------------------------------===// + +namespace { +class MipsABIInfo : public ABIInfo { + bool IsO32; + unsigned MinABIStackAlignInBytes, StackAlignInBytes; + void CoerceToIntArgs(uint64_t TySize, + SmallVectorImpl<llvm::Type *> &ArgList) const; + llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; + llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; + llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; +public: + MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : + ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), + StackAlignInBytes(IsO32 ? 8 : 16) {} + + ABIArgInfo classifyReturnType(QualType RetTy) const; + ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; + virtual void computeInfo(CGFunctionInfo &FI) const; + virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const; +}; + +class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { + unsigned SizeOfUnwindException; +public: + MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) + : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), + SizeOfUnwindException(IsO32 ? 24 : 32) {} + + int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const { + return 29; + } + + void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, + CodeGen::CodeGenModule &CGM) const { + const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); + if (!FD) return; + llvm::Function *Fn = cast<llvm::Function>(GV); + if (FD->hasAttr<Mips16Attr>()) { + Fn->addFnAttr("mips16"); + } + else if (FD->hasAttr<NoMips16Attr>()) { + Fn->addFnAttr("nomips16"); + } + } + + bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, + llvm::Value *Address) const; + + unsigned getSizeOfUnwindException() const { + return SizeOfUnwindException; + } +}; +} + +void MipsABIInfo::CoerceToIntArgs(uint64_t TySize, + SmallVectorImpl<llvm::Type *> &ArgList) const { + llvm::IntegerType *IntTy = + llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); + + // Add (TySize / MinABIStackAlignInBytes) args of IntTy. + for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) + ArgList.push_back(IntTy); + + // If necessary, add one more integer type to ArgList. + unsigned R = TySize % (MinABIStackAlignInBytes * 8); + + if (R) + ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); +} + +// In N32/64, an aligned double precision floating point field is passed in +// a register. +llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { + SmallVector<llvm::Type*, 8> ArgList, IntArgList; + + if (IsO32) { + CoerceToIntArgs(TySize, ArgList); + return llvm::StructType::get(getVMContext(), ArgList); + } + + if (Ty->isComplexType()) + return CGT.ConvertType(Ty); + + const RecordType *RT = Ty->getAs<RecordType>(); + + // Unions/vectors are passed in integer registers. + if (!RT || !RT->isStructureOrClassType()) { + CoerceToIntArgs(TySize, ArgList); + return llvm::StructType::get(getVMContext(), ArgList); + } + + const RecordDecl *RD = RT->getDecl(); + const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); + assert(!(TySize % 8) && "Size of structure must be multiple of 8."); + + uint64_t LastOffset = 0; + unsigned idx = 0; + llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); + + // Iterate over fields in the struct/class and check if there are any aligned + // double fields. + for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); + i != e; ++i, ++idx) { + const QualType Ty = i->getType(); + const BuiltinType *BT = Ty->getAs<BuiltinType>(); + + if (!BT || BT->getKind() != BuiltinType::Double) + continue; + + uint64_t Offset = Layout.getFieldOffset(idx); + if (Offset % 64) // Ignore doubles that are not aligned. + continue; + + // Add ((Offset - LastOffset) / 64) args of type i64. + for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) + ArgList.push_back(I64); + + // Add double type. + ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); + LastOffset = Offset + 64; + } + + CoerceToIntArgs(TySize - LastOffset, IntArgList); + ArgList.append(IntArgList.begin(), IntArgList.end()); + + return llvm::StructType::get(getVMContext(), ArgList); +} + +llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, + uint64_t Offset) const { + if (OrigOffset + MinABIStackAlignInBytes > Offset) + return 0; + + return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); +} + +ABIArgInfo +MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { + uint64_t OrigOffset = Offset; + uint64_t TySize = getContext().getTypeSize(Ty); + uint64_t Align = getContext().getTypeAlign(Ty) / 8; + + Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), + (uint64_t)StackAlignInBytes); + unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align); + Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8; + + if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { + // Ignore empty aggregates. + if (TySize == 0) + return ABIArgInfo::getIgnore(); + + if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { + Offset = OrigOffset + MinABIStackAlignInBytes; + return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); + } + + // If we have reached here, aggregates are passed directly by coercing to + // another structure type. Padding is inserted if the offset of the + // aggregate is unaligned. + return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, + getPaddingType(OrigOffset, CurrOffset)); + } + + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = Ty->getAs<EnumType>()) + Ty = EnumTy->getDecl()->getIntegerType(); + + if (Ty->isPromotableIntegerType()) + return ABIArgInfo::getExtend(); + + return ABIArgInfo::getDirect( + 0, 0, IsO32 ? 0 : getPaddingType(OrigOffset, CurrOffset)); +} + +llvm::Type* +MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { + const RecordType *RT = RetTy->getAs<RecordType>(); + SmallVector<llvm::Type*, 8> RTList; + + if (RT && RT->isStructureOrClassType()) { + const RecordDecl *RD = RT->getDecl(); + const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); + unsigned FieldCnt = Layout.getFieldCount(); + + // N32/64 returns struct/classes in floating point registers if the + // following conditions are met: + // 1. The size of the struct/class is no larger than 128-bit. + // 2. The struct/class has one or two fields all of which are floating + // point types. + // 3. The offset of the first field is zero (this follows what gcc does). + // + // Any other composite results are returned in integer registers. + // + if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { + RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); + for (; b != e; ++b) { + const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); + + if (!BT || !BT->isFloatingPoint()) + break; + + RTList.push_back(CGT.ConvertType(b->getType())); + } + + if (b == e) + return llvm::StructType::get(getVMContext(), RTList, + RD->hasAttr<PackedAttr>()); + + RTList.clear(); + } + } + + CoerceToIntArgs(Size, RTList); + return llvm::StructType::get(getVMContext(), RTList); +} + +ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { + uint64_t Size = getContext().getTypeSize(RetTy); + + if (RetTy->isVoidType() || Size == 0) + return ABIArgInfo::getIgnore(); + + if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { + if (isRecordReturnIndirect(RetTy, getCXXABI())) + return ABIArgInfo::getIndirect(0); + + if (Size <= 128) { + if (RetTy->isAnyComplexType()) + return ABIArgInfo::getDirect(); + + // O32 returns integer vectors in registers. + if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation()) + return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); + + if (!IsO32) + return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); + } + + return ABIArgInfo::getIndirect(0); + } + + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) + RetTy = EnumTy->getDecl()->getIntegerType(); + + return (RetTy->isPromotableIntegerType() ? + ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); +} + +void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { + ABIArgInfo &RetInfo = FI.getReturnInfo(); + RetInfo = classifyReturnType(FI.getReturnType()); + + // Check if a pointer to an aggregate is passed as a hidden argument. + uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; + + for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); + it != ie; ++it) + it->info = classifyArgumentType(it->type, Offset); +} + +llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const { + llvm::Type *BP = CGF.Int8PtrTy; + llvm::Type *BPP = CGF.Int8PtrPtrTy; + + CGBuilderTy &Builder = CGF.Builder; + llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); + llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); + int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8; + llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); + llvm::Value *AddrTyped; + unsigned PtrWidth = getTarget().getPointerWidth(0); + llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty; + + if (TypeAlign > MinABIStackAlignInBytes) { + llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy); + llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1); + llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign); + llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc); + llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask); + AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy); + } + else + AddrTyped = Builder.CreateBitCast(Addr, PTy); + + llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP); + TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes); + uint64_t Offset = + llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign); + llvm::Value *NextAddr = + Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset), + "ap.next"); + Builder.CreateStore(NextAddr, VAListAddrAsBPP); + + return AddrTyped; +} + +bool +MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, + llvm::Value *Address) const { + // This information comes from gcc's implementation, which seems to + // as canonical as it gets. + + // Everything on MIPS is 4 bytes. Double-precision FP registers + // are aliased to pairs of single-precision FP registers. + llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); + + // 0-31 are the general purpose registers, $0 - $31. + // 32-63 are the floating-point registers, $f0 - $f31. + // 64 and 65 are the multiply/divide registers, $hi and $lo. + // 66 is the (notional, I think) register for signal-handler return. + AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); + + // 67-74 are the floating-point status registers, $fcc0 - $fcc7. + // They are one bit wide and ignored here. + + // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. + // (coprocessor 1 is the FP unit) + // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. + // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. + // 176-181 are the DSP accumulator registers. + AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); + return false; +} + +//===----------------------------------------------------------------------===// +// TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. +// Currently subclassed only to implement custom OpenCL C function attribute +// handling. +//===----------------------------------------------------------------------===// + +namespace { + +class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { +public: + TCETargetCodeGenInfo(CodeGenTypes &CGT) + : DefaultTargetCodeGenInfo(CGT) {} + + virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, + CodeGen::CodeGenModule &M) const; +}; + +void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D, + llvm::GlobalValue *GV, + CodeGen::CodeGenModule &M) const { + const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); + if (!FD) return; + + llvm::Function *F = cast<llvm::Function>(GV); + + if (M.getLangOpts().OpenCL) { + if (FD->hasAttr<OpenCLKernelAttr>()) { + // OpenCL C Kernel functions are not subject to inlining + F->addFnAttr(llvm::Attribute::NoInline); + + if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) { + + // Convert the reqd_work_group_size() attributes to metadata. + llvm::LLVMContext &Context = F->getContext(); + llvm::NamedMDNode *OpenCLMetadata = + M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info"); + + SmallVector<llvm::Value*, 5> Operands; + Operands.push_back(F); + + Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, + llvm::APInt(32, + FD->getAttr<ReqdWorkGroupSizeAttr>()->getXDim()))); + Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, + llvm::APInt(32, + FD->getAttr<ReqdWorkGroupSizeAttr>()->getYDim()))); + Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, + llvm::APInt(32, + FD->getAttr<ReqdWorkGroupSizeAttr>()->getZDim()))); + + // Add a boolean constant operand for "required" (true) or "hint" (false) + // for implementing the work_group_size_hint attr later. Currently + // always true as the hint is not yet implemented. + Operands.push_back(llvm::ConstantInt::getTrue(Context)); + OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); + } + } + } +} + +} + +//===----------------------------------------------------------------------===// +// Hexagon ABI Implementation +//===----------------------------------------------------------------------===// + +namespace { + +class HexagonABIInfo : public ABIInfo { + + +public: + HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} + +private: + + ABIArgInfo classifyReturnType(QualType RetTy) const; + ABIArgInfo classifyArgumentType(QualType RetTy) const; + + virtual void computeInfo(CGFunctionInfo &FI) const; + + virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const; +}; + +class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { +public: + HexagonTargetCodeGenInfo(CodeGenTypes &CGT) + :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} + + int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { + return 29; + } +}; + +} + +void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { + FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); + for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); + it != ie; ++it) + it->info = classifyArgumentType(it->type); +} + +ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { + if (!isAggregateTypeForABI(Ty)) { + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = Ty->getAs<EnumType>()) + Ty = EnumTy->getDecl()->getIntegerType(); + + return (Ty->isPromotableIntegerType() ? + ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); + } + + // Ignore empty records. + if (isEmptyRecord(getContext(), Ty, true)) + return ABIArgInfo::getIgnore(); + + if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) + return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); + + uint64_t Size = getContext().getTypeSize(Ty); + if (Size > 64) + return ABIArgInfo::getIndirect(0, /*ByVal=*/true); + // Pass in the smallest viable integer type. + else if (Size > 32) + return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); + else if (Size > 16) + return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); + else if (Size > 8) + return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); + else + return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); +} + +ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { + if (RetTy->isVoidType()) + return ABIArgInfo::getIgnore(); + + // Large vector types should be returned via memory. + if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) + return ABIArgInfo::getIndirect(0); + + if (!isAggregateTypeForABI(RetTy)) { + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) + RetTy = EnumTy->getDecl()->getIntegerType(); + + return (RetTy->isPromotableIntegerType() ? + ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); + } + + // Structures with either a non-trivial destructor or a non-trivial + // copy constructor are always indirect. + if (isRecordReturnIndirect(RetTy, getCXXABI())) + return ABIArgInfo::getIndirect(0, /*ByVal=*/false); + + if (isEmptyRecord(getContext(), RetTy, true)) + return ABIArgInfo::getIgnore(); + + // Aggregates <= 8 bytes are returned in r0; other aggregates + // are returned indirectly. + uint64_t Size = getContext().getTypeSize(RetTy); + if (Size <= 64) { + // Return in the smallest viable integer type. + if (Size <= 8) + return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); + if (Size <= 16) + return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); + if (Size <= 32) + return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); + return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); + } + + return ABIArgInfo::getIndirect(0, /*ByVal=*/true); +} + +llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const { + // FIXME: Need to handle alignment + llvm::Type *BPP = CGF.Int8PtrPtrTy; + + CGBuilderTy &Builder = CGF.Builder; + llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, + "ap"); + llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); + llvm::Type *PTy = + llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); + llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); + + uint64_t Offset = + llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); + llvm::Value *NextAddr = + Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), + "ap.next"); + Builder.CreateStore(NextAddr, VAListAddrAsBPP); + + return AddrTyped; +} + + +//===----------------------------------------------------------------------===// +// SPARC v9 ABI Implementation. +// Based on the SPARC Compliance Definition version 2.4.1. +// +// Function arguments a mapped to a nominal "parameter array" and promoted to +// registers depending on their type. Each argument occupies 8 or 16 bytes in +// the array, structs larger than 16 bytes are passed indirectly. +// +// One case requires special care: +// +// struct mixed { +// int i; +// float f; +// }; +// +// When a struct mixed is passed by value, it only occupies 8 bytes in the +// parameter array, but the int is passed in an integer register, and the float +// is passed in a floating point register. This is represented as two arguments +// with the LLVM IR inreg attribute: +// +// declare void f(i32 inreg %i, float inreg %f) +// +// The code generator will only allocate 4 bytes from the parameter array for +// the inreg arguments. All other arguments are allocated a multiple of 8 +// bytes. +// +namespace { +class SparcV9ABIInfo : public ABIInfo { +public: + SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} + +private: + ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; + virtual void computeInfo(CGFunctionInfo &FI) const; + virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const; + + // Coercion type builder for structs passed in registers. The coercion type + // serves two purposes: + // + // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' + // in registers. + // 2. Expose aligned floating point elements as first-level elements, so the + // code generator knows to pass them in floating point registers. + // + // We also compute the InReg flag which indicates that the struct contains + // aligned 32-bit floats. + // + struct CoerceBuilder { + llvm::LLVMContext &Context; + const llvm::DataLayout &DL; + SmallVector<llvm::Type*, 8> Elems; + uint64_t Size; + bool InReg; + + CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) + : Context(c), DL(dl), Size(0), InReg(false) {} + + // Pad Elems with integers until Size is ToSize. + void pad(uint64_t ToSize) { + assert(ToSize >= Size && "Cannot remove elements"); + if (ToSize == Size) + return; + + // Finish the current 64-bit word. + uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64); + if (Aligned > Size && Aligned <= ToSize) { + Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); + Size = Aligned; + } + + // Add whole 64-bit words. + while (Size + 64 <= ToSize) { + Elems.push_back(llvm::Type::getInt64Ty(Context)); + Size += 64; + } + + // Final in-word padding. + if (Size < ToSize) { + Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); + Size = ToSize; + } + } + + // Add a floating point element at Offset. + void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { + // Unaligned floats are treated as integers. + if (Offset % Bits) + return; + // The InReg flag is only required if there are any floats < 64 bits. + if (Bits < 64) + InReg = true; + pad(Offset); + Elems.push_back(Ty); + Size = Offset + Bits; + } + + // Add a struct type to the coercion type, starting at Offset (in bits). + void addStruct(uint64_t Offset, llvm::StructType *StrTy) { + const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); + for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { + llvm::Type *ElemTy = StrTy->getElementType(i); + uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); + switch (ElemTy->getTypeID()) { + case llvm::Type::StructTyID: + addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); + break; + case llvm::Type::FloatTyID: + addFloat(ElemOffset, ElemTy, 32); + break; + case llvm::Type::DoubleTyID: + addFloat(ElemOffset, ElemTy, 64); + break; + case llvm::Type::FP128TyID: + addFloat(ElemOffset, ElemTy, 128); + break; + case llvm::Type::PointerTyID: + if (ElemOffset % 64 == 0) { + pad(ElemOffset); + Elems.push_back(ElemTy); + Size += 64; + } + break; + default: + break; + } + } + } + + // Check if Ty is a usable substitute for the coercion type. + bool isUsableType(llvm::StructType *Ty) const { + if (Ty->getNumElements() != Elems.size()) + return false; + for (unsigned i = 0, e = Elems.size(); i != e; ++i) + if (Elems[i] != Ty->getElementType(i)) + return false; + return true; + } + + // Get the coercion type as a literal struct type. + llvm::Type *getType() const { + if (Elems.size() == 1) + return Elems.front(); + else + return llvm::StructType::get(Context, Elems); + } + }; +}; +} // end anonymous namespace + +ABIArgInfo +SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { + if (Ty->isVoidType()) + return ABIArgInfo::getIgnore(); + + uint64_t Size = getContext().getTypeSize(Ty); + + // Anything too big to fit in registers is passed with an explicit indirect + // pointer / sret pointer. + if (Size > SizeLimit) + return ABIArgInfo::getIndirect(0, /*ByVal=*/false); + + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = Ty->getAs<EnumType>()) + Ty = EnumTy->getDecl()->getIntegerType(); + + // Integer types smaller than a register are extended. + if (Size < 64 && Ty->isIntegerType()) + return ABIArgInfo::getExtend(); + + // Other non-aggregates go in registers. + if (!isAggregateTypeForABI(Ty)) + return ABIArgInfo::getDirect(); + + // This is a small aggregate type that should be passed in registers. + // Build a coercion type from the LLVM struct type. + llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); + if (!StrTy) + return ABIArgInfo::getDirect(); + + CoerceBuilder CB(getVMContext(), getDataLayout()); + CB.addStruct(0, StrTy); + CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64)); + + // Try to use the original type for coercion. + llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); + + if (CB.InReg) + return ABIArgInfo::getDirectInReg(CoerceTy); + else + return ABIArgInfo::getDirect(CoerceTy); +} + +llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const { + ABIArgInfo AI = classifyType(Ty, 16 * 8); + llvm::Type *ArgTy = CGT.ConvertType(Ty); + if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) + AI.setCoerceToType(ArgTy); + + llvm::Type *BPP = CGF.Int8PtrPtrTy; + CGBuilderTy &Builder = CGF.Builder; + llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); + llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); + llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); + llvm::Value *ArgAddr; + unsigned Stride; + + switch (AI.getKind()) { + case ABIArgInfo::Expand: + llvm_unreachable("Unsupported ABI kind for va_arg"); + + case ABIArgInfo::Extend: + Stride = 8; + ArgAddr = Builder + .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy), + "extend"); + break; + + case ABIArgInfo::Direct: + Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); + ArgAddr = Addr; + break; + + case ABIArgInfo::Indirect: + Stride = 8; + ArgAddr = Builder.CreateBitCast(Addr, + llvm::PointerType::getUnqual(ArgPtrTy), + "indirect"); + ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg"); + break; + + case ABIArgInfo::Ignore: + return llvm::UndefValue::get(ArgPtrTy); + } + + // Update VAList. + Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next"); + Builder.CreateStore(Addr, VAListAddrAsBPP); + + return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr"); +} + +void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { + FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); + for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); + it != ie; ++it) + it->info = classifyType(it->type, 16 * 8); +} + +namespace { +class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { +public: + SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) + : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} +}; +} // end anonymous namespace + + +//===----------------------------------------------------------------------===// +// Xcore ABI Implementation +//===----------------------------------------------------------------------===// +namespace { +class XCoreABIInfo : public DefaultABIInfo { +public: + XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} + virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const; +}; + +class XcoreTargetCodeGenInfo : public TargetCodeGenInfo { +public: + XcoreTargetCodeGenInfo(CodeGenTypes &CGT) + :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} +}; +} // End anonymous namespace. + +llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const { + CGBuilderTy &Builder = CGF.Builder; + + // Get the VAList. + llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, + CGF.Int8PtrPtrTy); + llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP); + + // Handle the argument. + ABIArgInfo AI = classifyArgumentType(Ty); + llvm::Type *ArgTy = CGT.ConvertType(Ty); + if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) + AI.setCoerceToType(ArgTy); + llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); + llvm::Value *Val; + uint64_t ArgSize = 0; + switch (AI.getKind()) { + case ABIArgInfo::Expand: + llvm_unreachable("Unsupported ABI kind for va_arg"); + case ABIArgInfo::Ignore: + Val = llvm::UndefValue::get(ArgPtrTy); + ArgSize = 0; + break; + case ABIArgInfo::Extend: + case ABIArgInfo::Direct: + Val = Builder.CreatePointerCast(AP, ArgPtrTy); + ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); + if (ArgSize < 4) + ArgSize = 4; + break; + case ABIArgInfo::Indirect: + llvm::Value *ArgAddr; + ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy)); + ArgAddr = Builder.CreateLoad(ArgAddr); + Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy); + ArgSize = 4; + break; + } + + // Increment the VAList. + if (ArgSize) { + llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize); + Builder.CreateStore(APN, VAListAddrAsBPP); + } + return Val; +} + +//===----------------------------------------------------------------------===// +// Driver code +//===----------------------------------------------------------------------===// + +const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { + if (TheTargetCodeGenInfo) + return *TheTargetCodeGenInfo; + + const llvm::Triple &Triple = getTarget().getTriple(); + switch (Triple.getArch()) { + default: + return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types)); + + case llvm::Triple::le32: + return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types)); + case llvm::Triple::mips: + case llvm::Triple::mipsel: + return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true)); + + case llvm::Triple::mips64: + case llvm::Triple::mips64el: + return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false)); + + case llvm::Triple::aarch64: + return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types)); + + case llvm::Triple::arm: + case llvm::Triple::thumb: + { + ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; + if (strcmp(getTarget().getABI(), "apcs-gnu") == 0) + Kind = ARMABIInfo::APCS; + else if (CodeGenOpts.FloatABI == "hard" || + (CodeGenOpts.FloatABI != "soft" && + Triple.getEnvironment() == llvm::Triple::GNUEABIHF)) + Kind = ARMABIInfo::AAPCS_VFP; + + switch (Triple.getOS()) { + case llvm::Triple::NaCl: + return *(TheTargetCodeGenInfo = + new NaClARMTargetCodeGenInfo(Types, Kind)); + default: + return *(TheTargetCodeGenInfo = + new ARMTargetCodeGenInfo(Types, Kind)); + } + } + + case llvm::Triple::ppc: + return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types)); + case llvm::Triple::ppc64: + if (Triple.isOSBinFormatELF()) + return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types)); + else + return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types)); + case llvm::Triple::ppc64le: + assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); + return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types)); + + case llvm::Triple::nvptx: + case llvm::Triple::nvptx64: + return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types)); + + case llvm::Triple::msp430: + return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types)); + + case llvm::Triple::systemz: + return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types)); + + case llvm::Triple::tce: + return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types)); + + case llvm::Triple::x86: { + bool IsDarwinVectorABI = Triple.isOSDarwin(); + bool IsSmallStructInRegABI = + X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); + bool IsWin32FloatStructABI = (Triple.getOS() == llvm::Triple::Win32); + + if (Triple.getOS() == llvm::Triple::Win32) { + return *(TheTargetCodeGenInfo = + new WinX86_32TargetCodeGenInfo(Types, + IsDarwinVectorABI, IsSmallStructInRegABI, + IsWin32FloatStructABI, + CodeGenOpts.NumRegisterParameters)); + } else { + return *(TheTargetCodeGenInfo = + new X86_32TargetCodeGenInfo(Types, + IsDarwinVectorABI, IsSmallStructInRegABI, + IsWin32FloatStructABI, + CodeGenOpts.NumRegisterParameters)); + } + } + + case llvm::Triple::x86_64: { + bool HasAVX = strcmp(getTarget().getABI(), "avx") == 0; + + switch (Triple.getOS()) { + case llvm::Triple::Win32: + case llvm::Triple::MinGW32: + case llvm::Triple::Cygwin: + return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types)); + case llvm::Triple::NaCl: + return *(TheTargetCodeGenInfo = new NaClX86_64TargetCodeGenInfo(Types, + HasAVX)); + default: + return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types, + HasAVX)); + } + } + case llvm::Triple::hexagon: + return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types)); + case llvm::Triple::sparcv9: + return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types)); + case llvm::Triple::xcore: + return *(TheTargetCodeGenInfo = new XcoreTargetCodeGenInfo(Types)); + + } +} |