summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/CodeGen/TargetInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/CodeGen/TargetInfo.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/TargetInfo.cpp6860
1 files changed, 6860 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/TargetInfo.cpp b/contrib/llvm/tools/clang/lib/CodeGen/TargetInfo.cpp
new file mode 100644
index 0000000..5da22c3
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/TargetInfo.cpp
@@ -0,0 +1,6860 @@
+//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// These classes wrap the information about a call or function
+// definition used to handle ABI compliancy.
+//
+//===----------------------------------------------------------------------===//
+
+#include "TargetInfo.h"
+#include "ABIInfo.h"
+#include "CGCXXABI.h"
+#include "CodeGenFunction.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/CodeGen/CGFunctionInfo.h"
+#include "clang/Frontend/CodeGenOptions.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Support/raw_ostream.h"
+
+#include <algorithm> // std::sort
+
+using namespace clang;
+using namespace CodeGen;
+
+static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
+ llvm::Value *Array,
+ llvm::Value *Value,
+ unsigned FirstIndex,
+ unsigned LastIndex) {
+ // Alternatively, we could emit this as a loop in the source.
+ for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
+ llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
+ Builder.CreateStore(Value, Cell);
+ }
+}
+
+static bool isAggregateTypeForABI(QualType T) {
+ return !CodeGenFunction::hasScalarEvaluationKind(T) ||
+ T->isMemberFunctionPointerType();
+}
+
+ABIInfo::~ABIInfo() {}
+
+static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
+ CGCXXABI &CXXABI) {
+ const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
+ if (!RD)
+ return CGCXXABI::RAA_Default;
+ return CXXABI.getRecordArgABI(RD);
+}
+
+static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
+ CGCXXABI &CXXABI) {
+ const RecordType *RT = T->getAs<RecordType>();
+ if (!RT)
+ return CGCXXABI::RAA_Default;
+ return getRecordArgABI(RT, CXXABI);
+}
+
+CGCXXABI &ABIInfo::getCXXABI() const {
+ return CGT.getCXXABI();
+}
+
+ASTContext &ABIInfo::getContext() const {
+ return CGT.getContext();
+}
+
+llvm::LLVMContext &ABIInfo::getVMContext() const {
+ return CGT.getLLVMContext();
+}
+
+const llvm::DataLayout &ABIInfo::getDataLayout() const {
+ return CGT.getDataLayout();
+}
+
+const TargetInfo &ABIInfo::getTarget() const {
+ return CGT.getTarget();
+}
+
+void ABIArgInfo::dump() const {
+ raw_ostream &OS = llvm::errs();
+ OS << "(ABIArgInfo Kind=";
+ switch (TheKind) {
+ case Direct:
+ OS << "Direct Type=";
+ if (llvm::Type *Ty = getCoerceToType())
+ Ty->print(OS);
+ else
+ OS << "null";
+ break;
+ case Extend:
+ OS << "Extend";
+ break;
+ case Ignore:
+ OS << "Ignore";
+ break;
+ case InAlloca:
+ OS << "InAlloca Offset=" << getInAllocaFieldIndex();
+ break;
+ case Indirect:
+ OS << "Indirect Align=" << getIndirectAlign()
+ << " ByVal=" << getIndirectByVal()
+ << " Realign=" << getIndirectRealign();
+ break;
+ case Expand:
+ OS << "Expand";
+ break;
+ }
+ OS << ")\n";
+}
+
+TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
+
+// If someone can figure out a general rule for this, that would be great.
+// It's probably just doomed to be platform-dependent, though.
+unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
+ // Verified for:
+ // x86-64 FreeBSD, Linux, Darwin
+ // x86-32 FreeBSD, Linux, Darwin
+ // PowerPC Linux, Darwin
+ // ARM Darwin (*not* EABI)
+ // AArch64 Linux
+ return 32;
+}
+
+bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
+ const FunctionNoProtoType *fnType) const {
+ // The following conventions are known to require this to be false:
+ // x86_stdcall
+ // MIPS
+ // For everything else, we just prefer false unless we opt out.
+ return false;
+}
+
+void
+TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
+ llvm::SmallString<24> &Opt) const {
+ // This assumes the user is passing a library name like "rt" instead of a
+ // filename like "librt.a/so", and that they don't care whether it's static or
+ // dynamic.
+ Opt = "-l";
+ Opt += Lib;
+}
+
+static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
+
+/// isEmptyField - Return true iff a the field is "empty", that is it
+/// is an unnamed bit-field or an (array of) empty record(s).
+static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
+ bool AllowArrays) {
+ if (FD->isUnnamedBitfield())
+ return true;
+
+ QualType FT = FD->getType();
+
+ // Constant arrays of empty records count as empty, strip them off.
+ // Constant arrays of zero length always count as empty.
+ if (AllowArrays)
+ while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
+ if (AT->getSize() == 0)
+ return true;
+ FT = AT->getElementType();
+ }
+
+ const RecordType *RT = FT->getAs<RecordType>();
+ if (!RT)
+ return false;
+
+ // C++ record fields are never empty, at least in the Itanium ABI.
+ //
+ // FIXME: We should use a predicate for whether this behavior is true in the
+ // current ABI.
+ if (isa<CXXRecordDecl>(RT->getDecl()))
+ return false;
+
+ return isEmptyRecord(Context, FT, AllowArrays);
+}
+
+/// isEmptyRecord - Return true iff a structure contains only empty
+/// fields. Note that a structure with a flexible array member is not
+/// considered empty.
+static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
+ const RecordType *RT = T->getAs<RecordType>();
+ if (!RT)
+ return 0;
+ const RecordDecl *RD = RT->getDecl();
+ if (RD->hasFlexibleArrayMember())
+ return false;
+
+ // If this is a C++ record, check the bases first.
+ if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
+ for (const auto &I : CXXRD->bases())
+ if (!isEmptyRecord(Context, I.getType(), true))
+ return false;
+
+ for (const auto *I : RD->fields())
+ if (!isEmptyField(Context, I, AllowArrays))
+ return false;
+ return true;
+}
+
+/// isSingleElementStruct - Determine if a structure is a "single
+/// element struct", i.e. it has exactly one non-empty field or
+/// exactly one field which is itself a single element
+/// struct. Structures with flexible array members are never
+/// considered single element structs.
+///
+/// \return The field declaration for the single non-empty field, if
+/// it exists.
+static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
+ const RecordType *RT = T->getAsStructureType();
+ if (!RT)
+ return nullptr;
+
+ const RecordDecl *RD = RT->getDecl();
+ if (RD->hasFlexibleArrayMember())
+ return nullptr;
+
+ const Type *Found = nullptr;
+
+ // If this is a C++ record, check the bases first.
+ if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
+ for (const auto &I : CXXRD->bases()) {
+ // Ignore empty records.
+ if (isEmptyRecord(Context, I.getType(), true))
+ continue;
+
+ // If we already found an element then this isn't a single-element struct.
+ if (Found)
+ return nullptr;
+
+ // If this is non-empty and not a single element struct, the composite
+ // cannot be a single element struct.
+ Found = isSingleElementStruct(I.getType(), Context);
+ if (!Found)
+ return nullptr;
+ }
+ }
+
+ // Check for single element.
+ for (const auto *FD : RD->fields()) {
+ QualType FT = FD->getType();
+
+ // Ignore empty fields.
+ if (isEmptyField(Context, FD, true))
+ continue;
+
+ // If we already found an element then this isn't a single-element
+ // struct.
+ if (Found)
+ return nullptr;
+
+ // Treat single element arrays as the element.
+ while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
+ if (AT->getSize().getZExtValue() != 1)
+ break;
+ FT = AT->getElementType();
+ }
+
+ if (!isAggregateTypeForABI(FT)) {
+ Found = FT.getTypePtr();
+ } else {
+ Found = isSingleElementStruct(FT, Context);
+ if (!Found)
+ return nullptr;
+ }
+ }
+
+ // We don't consider a struct a single-element struct if it has
+ // padding beyond the element type.
+ if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
+ return nullptr;
+
+ return Found;
+}
+
+static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
+ // Treat complex types as the element type.
+ if (const ComplexType *CTy = Ty->getAs<ComplexType>())
+ Ty = CTy->getElementType();
+
+ // Check for a type which we know has a simple scalar argument-passing
+ // convention without any padding. (We're specifically looking for 32
+ // and 64-bit integer and integer-equivalents, float, and double.)
+ if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
+ !Ty->isEnumeralType() && !Ty->isBlockPointerType())
+ return false;
+
+ uint64_t Size = Context.getTypeSize(Ty);
+ return Size == 32 || Size == 64;
+}
+
+/// canExpandIndirectArgument - Test whether an argument type which is to be
+/// passed indirectly (on the stack) would have the equivalent layout if it was
+/// expanded into separate arguments. If so, we prefer to do the latter to avoid
+/// inhibiting optimizations.
+///
+// FIXME: This predicate is missing many cases, currently it just follows
+// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
+// should probably make this smarter, or better yet make the LLVM backend
+// capable of handling it.
+static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
+ // We can only expand structure types.
+ const RecordType *RT = Ty->getAs<RecordType>();
+ if (!RT)
+ return false;
+
+ // We can only expand (C) structures.
+ //
+ // FIXME: This needs to be generalized to handle classes as well.
+ const RecordDecl *RD = RT->getDecl();
+ if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
+ return false;
+
+ uint64_t Size = 0;
+
+ for (const auto *FD : RD->fields()) {
+ if (!is32Or64BitBasicType(FD->getType(), Context))
+ return false;
+
+ // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
+ // how to expand them yet, and the predicate for telling if a bitfield still
+ // counts as "basic" is more complicated than what we were doing previously.
+ if (FD->isBitField())
+ return false;
+
+ Size += Context.getTypeSize(FD->getType());
+ }
+
+ // Make sure there are not any holes in the struct.
+ if (Size != Context.getTypeSize(Ty))
+ return false;
+
+ return true;
+}
+
+namespace {
+/// DefaultABIInfo - The default implementation for ABI specific
+/// details. This implementation provides information which results in
+/// self-consistent and sensible LLVM IR generation, but does not
+/// conform to any particular ABI.
+class DefaultABIInfo : public ABIInfo {
+public:
+ DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
+
+ ABIArgInfo classifyReturnType(QualType RetTy) const;
+ ABIArgInfo classifyArgumentType(QualType RetTy) const;
+
+ void computeInfo(CGFunctionInfo &FI) const override {
+ if (!getCXXABI().classifyReturnType(FI))
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+ for (auto &I : FI.arguments())
+ I.info = classifyArgumentType(I.type);
+ }
+
+ llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const override;
+};
+
+class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
+ : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
+};
+
+llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const {
+ return nullptr;
+}
+
+ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
+ if (isAggregateTypeForABI(Ty))
+ return ABIArgInfo::getIndirect(0);
+
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ return (Ty->isPromotableIntegerType() ?
+ ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
+}
+
+ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
+ if (RetTy->isVoidType())
+ return ABIArgInfo::getIgnore();
+
+ if (isAggregateTypeForABI(RetTy))
+ return ABIArgInfo::getIndirect(0);
+
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
+ RetTy = EnumTy->getDecl()->getIntegerType();
+
+ return (RetTy->isPromotableIntegerType() ?
+ ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
+}
+
+//===----------------------------------------------------------------------===//
+// le32/PNaCl bitcode ABI Implementation
+//
+// This is a simplified version of the x86_32 ABI. Arguments and return values
+// are always passed on the stack.
+//===----------------------------------------------------------------------===//
+
+class PNaClABIInfo : public ABIInfo {
+ public:
+ PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
+
+ ABIArgInfo classifyReturnType(QualType RetTy) const;
+ ABIArgInfo classifyArgumentType(QualType RetTy) const;
+
+ void computeInfo(CGFunctionInfo &FI) const override;
+ llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const override;
+};
+
+class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
+ public:
+ PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
+ : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
+};
+
+void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
+ if (!getCXXABI().classifyReturnType(FI))
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+
+ for (auto &I : FI.arguments())
+ I.info = classifyArgumentType(I.type);
+}
+
+llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const {
+ return nullptr;
+}
+
+/// \brief Classify argument of given type \p Ty.
+ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
+ if (isAggregateTypeForABI(Ty)) {
+ if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
+ return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
+ return ABIArgInfo::getIndirect(0);
+ } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
+ // Treat an enum type as its underlying type.
+ Ty = EnumTy->getDecl()->getIntegerType();
+ } else if (Ty->isFloatingType()) {
+ // Floating-point types don't go inreg.
+ return ABIArgInfo::getDirect();
+ }
+
+ return (Ty->isPromotableIntegerType() ?
+ ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
+}
+
+ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
+ if (RetTy->isVoidType())
+ return ABIArgInfo::getIgnore();
+
+ // In the PNaCl ABI we always return records/structures on the stack.
+ if (isAggregateTypeForABI(RetTy))
+ return ABIArgInfo::getIndirect(0);
+
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
+ RetTy = EnumTy->getDecl()->getIntegerType();
+
+ return (RetTy->isPromotableIntegerType() ?
+ ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
+}
+
+/// IsX86_MMXType - Return true if this is an MMX type.
+bool IsX86_MMXType(llvm::Type *IRType) {
+ // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
+ return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
+ cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
+ IRType->getScalarSizeInBits() != 64;
+}
+
+static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
+ StringRef Constraint,
+ llvm::Type* Ty) {
+ if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
+ if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
+ // Invalid MMX constraint
+ return nullptr;
+ }
+
+ return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
+ }
+
+ // No operation needed
+ return Ty;
+}
+
+//===----------------------------------------------------------------------===//
+// X86-32 ABI Implementation
+//===----------------------------------------------------------------------===//
+
+/// \brief Similar to llvm::CCState, but for Clang.
+struct CCState {
+ CCState(unsigned CC) : CC(CC), FreeRegs(0) {}
+
+ unsigned CC;
+ unsigned FreeRegs;
+ unsigned StackOffset;
+ bool UseInAlloca;
+};
+
+/// X86_32ABIInfo - The X86-32 ABI information.
+class X86_32ABIInfo : public ABIInfo {
+ enum Class {
+ Integer,
+ Float
+ };
+
+ static const unsigned MinABIStackAlignInBytes = 4;
+
+ bool IsDarwinVectorABI;
+ bool IsSmallStructInRegABI;
+ bool IsWin32StructABI;
+ unsigned DefaultNumRegisterParameters;
+
+ static bool isRegisterSize(unsigned Size) {
+ return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
+ }
+
+ bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
+
+ /// getIndirectResult - Give a source type \arg Ty, return a suitable result
+ /// such that the argument will be passed in memory.
+ ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
+
+ ABIArgInfo getIndirectReturnResult(CCState &State) const;
+
+ /// \brief Return the alignment to use for the given type on the stack.
+ unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
+
+ Class classify(QualType Ty) const;
+ ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
+ ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
+ bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const;
+
+ /// \brief Rewrite the function info so that all memory arguments use
+ /// inalloca.
+ void rewriteWithInAlloca(CGFunctionInfo &FI) const;
+
+ void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
+ unsigned &StackOffset, ABIArgInfo &Info,
+ QualType Type) const;
+
+public:
+
+ void computeInfo(CGFunctionInfo &FI) const override;
+ llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const override;
+
+ X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w,
+ unsigned r)
+ : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
+ IsWin32StructABI(w), DefaultNumRegisterParameters(r) {}
+};
+
+class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
+ bool d, bool p, bool w, unsigned r)
+ :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {}
+
+ static bool isStructReturnInRegABI(
+ const llvm::Triple &Triple, const CodeGenOptions &Opts);
+
+ void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &CGM) const override;
+
+ int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
+ // Darwin uses different dwarf register numbers for EH.
+ if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
+ return 4;
+ }
+
+ bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const override;
+
+ llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
+ StringRef Constraint,
+ llvm::Type* Ty) const override {
+ return X86AdjustInlineAsmType(CGF, Constraint, Ty);
+ }
+
+ llvm::Constant *
+ getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
+ unsigned Sig = (0xeb << 0) | // jmp rel8
+ (0x06 << 8) | // .+0x08
+ ('F' << 16) |
+ ('T' << 24);
+ return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
+ }
+
+};
+
+}
+
+/// shouldReturnTypeInRegister - Determine if the given type should be
+/// passed in a register (for the Darwin ABI).
+bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
+ ASTContext &Context) const {
+ uint64_t Size = Context.getTypeSize(Ty);
+
+ // Type must be register sized.
+ if (!isRegisterSize(Size))
+ return false;
+
+ if (Ty->isVectorType()) {
+ // 64- and 128- bit vectors inside structures are not returned in
+ // registers.
+ if (Size == 64 || Size == 128)
+ return false;
+
+ return true;
+ }
+
+ // If this is a builtin, pointer, enum, complex type, member pointer, or
+ // member function pointer it is ok.
+ if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
+ Ty->isAnyComplexType() || Ty->isEnumeralType() ||
+ Ty->isBlockPointerType() || Ty->isMemberPointerType())
+ return true;
+
+ // Arrays are treated like records.
+ if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
+ return shouldReturnTypeInRegister(AT->getElementType(), Context);
+
+ // Otherwise, it must be a record type.
+ const RecordType *RT = Ty->getAs<RecordType>();
+ if (!RT) return false;
+
+ // FIXME: Traverse bases here too.
+
+ // Structure types are passed in register if all fields would be
+ // passed in a register.
+ for (const auto *FD : RT->getDecl()->fields()) {
+ // Empty fields are ignored.
+ if (isEmptyField(Context, FD, true))
+ continue;
+
+ // Check fields recursively.
+ if (!shouldReturnTypeInRegister(FD->getType(), Context))
+ return false;
+ }
+ return true;
+}
+
+ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(CCState &State) const {
+ // If the return value is indirect, then the hidden argument is consuming one
+ // integer register.
+ if (State.FreeRegs) {
+ --State.FreeRegs;
+ return ABIArgInfo::getIndirectInReg(/*Align=*/0, /*ByVal=*/false);
+ }
+ return ABIArgInfo::getIndirect(/*Align=*/0, /*ByVal=*/false);
+}
+
+ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, CCState &State) const {
+ if (RetTy->isVoidType())
+ return ABIArgInfo::getIgnore();
+
+ if (const VectorType *VT = RetTy->getAs<VectorType>()) {
+ // On Darwin, some vectors are returned in registers.
+ if (IsDarwinVectorABI) {
+ uint64_t Size = getContext().getTypeSize(RetTy);
+
+ // 128-bit vectors are a special case; they are returned in
+ // registers and we need to make sure to pick a type the LLVM
+ // backend will like.
+ if (Size == 128)
+ return ABIArgInfo::getDirect(llvm::VectorType::get(
+ llvm::Type::getInt64Ty(getVMContext()), 2));
+
+ // Always return in register if it fits in a general purpose
+ // register, or if it is 64 bits and has a single element.
+ if ((Size == 8 || Size == 16 || Size == 32) ||
+ (Size == 64 && VT->getNumElements() == 1))
+ return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
+ Size));
+
+ return getIndirectReturnResult(State);
+ }
+
+ return ABIArgInfo::getDirect();
+ }
+
+ if (isAggregateTypeForABI(RetTy)) {
+ if (const RecordType *RT = RetTy->getAs<RecordType>()) {
+ // Structures with flexible arrays are always indirect.
+ if (RT->getDecl()->hasFlexibleArrayMember())
+ return getIndirectReturnResult(State);
+ }
+
+ // If specified, structs and unions are always indirect.
+ if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
+ return getIndirectReturnResult(State);
+
+ // Small structures which are register sized are generally returned
+ // in a register.
+ if (shouldReturnTypeInRegister(RetTy, getContext())) {
+ uint64_t Size = getContext().getTypeSize(RetTy);
+
+ // As a special-case, if the struct is a "single-element" struct, and
+ // the field is of type "float" or "double", return it in a
+ // floating-point register. (MSVC does not apply this special case.)
+ // We apply a similar transformation for pointer types to improve the
+ // quality of the generated IR.
+ if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
+ if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
+ || SeltTy->hasPointerRepresentation())
+ return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
+
+ // FIXME: We should be able to narrow this integer in cases with dead
+ // padding.
+ return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
+ }
+
+ return getIndirectReturnResult(State);
+ }
+
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
+ RetTy = EnumTy->getDecl()->getIntegerType();
+
+ return (RetTy->isPromotableIntegerType() ?
+ ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
+}
+
+static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
+ return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
+}
+
+static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
+ const RecordType *RT = Ty->getAs<RecordType>();
+ if (!RT)
+ return 0;
+ const RecordDecl *RD = RT->getDecl();
+
+ // If this is a C++ record, check the bases first.
+ if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
+ for (const auto &I : CXXRD->bases())
+ if (!isRecordWithSSEVectorType(Context, I.getType()))
+ return false;
+
+ for (const auto *i : RD->fields()) {
+ QualType FT = i->getType();
+
+ if (isSSEVectorType(Context, FT))
+ return true;
+
+ if (isRecordWithSSEVectorType(Context, FT))
+ return true;
+ }
+
+ return false;
+}
+
+unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
+ unsigned Align) const {
+ // Otherwise, if the alignment is less than or equal to the minimum ABI
+ // alignment, just use the default; the backend will handle this.
+ if (Align <= MinABIStackAlignInBytes)
+ return 0; // Use default alignment.
+
+ // On non-Darwin, the stack type alignment is always 4.
+ if (!IsDarwinVectorABI) {
+ // Set explicit alignment, since we may need to realign the top.
+ return MinABIStackAlignInBytes;
+ }
+
+ // Otherwise, if the type contains an SSE vector type, the alignment is 16.
+ if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
+ isRecordWithSSEVectorType(getContext(), Ty)))
+ return 16;
+
+ return MinABIStackAlignInBytes;
+}
+
+ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
+ CCState &State) const {
+ if (!ByVal) {
+ if (State.FreeRegs) {
+ --State.FreeRegs; // Non-byval indirects just use one pointer.
+ return ABIArgInfo::getIndirectInReg(0, false);
+ }
+ return ABIArgInfo::getIndirect(0, false);
+ }
+
+ // Compute the byval alignment.
+ unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
+ unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
+ if (StackAlign == 0)
+ return ABIArgInfo::getIndirect(4, /*ByVal=*/true);
+
+ // If the stack alignment is less than the type alignment, realign the
+ // argument.
+ bool Realign = TypeAlign > StackAlign;
+ return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, Realign);
+}
+
+X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
+ const Type *T = isSingleElementStruct(Ty, getContext());
+ if (!T)
+ T = Ty.getTypePtr();
+
+ if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
+ BuiltinType::Kind K = BT->getKind();
+ if (K == BuiltinType::Float || K == BuiltinType::Double)
+ return Float;
+ }
+ return Integer;
+}
+
+bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State,
+ bool &NeedsPadding) const {
+ NeedsPadding = false;
+ Class C = classify(Ty);
+ if (C == Float)
+ return false;
+
+ unsigned Size = getContext().getTypeSize(Ty);
+ unsigned SizeInRegs = (Size + 31) / 32;
+
+ if (SizeInRegs == 0)
+ return false;
+
+ if (SizeInRegs > State.FreeRegs) {
+ State.FreeRegs = 0;
+ return false;
+ }
+
+ State.FreeRegs -= SizeInRegs;
+
+ if (State.CC == llvm::CallingConv::X86_FastCall) {
+ if (Size > 32)
+ return false;
+
+ if (Ty->isIntegralOrEnumerationType())
+ return true;
+
+ if (Ty->isPointerType())
+ return true;
+
+ if (Ty->isReferenceType())
+ return true;
+
+ if (State.FreeRegs)
+ NeedsPadding = true;
+
+ return false;
+ }
+
+ return true;
+}
+
+ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
+ CCState &State) const {
+ // FIXME: Set alignment on indirect arguments.
+ if (isAggregateTypeForABI(Ty)) {
+ if (const RecordType *RT = Ty->getAs<RecordType>()) {
+ // Check with the C++ ABI first.
+ CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
+ if (RAA == CGCXXABI::RAA_Indirect) {
+ return getIndirectResult(Ty, false, State);
+ } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
+ // The field index doesn't matter, we'll fix it up later.
+ return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
+ }
+
+ // Structs are always byval on win32, regardless of what they contain.
+ if (IsWin32StructABI)
+ return getIndirectResult(Ty, true, State);
+
+ // Structures with flexible arrays are always indirect.
+ if (RT->getDecl()->hasFlexibleArrayMember())
+ return getIndirectResult(Ty, true, State);
+ }
+
+ // Ignore empty structs/unions.
+ if (isEmptyRecord(getContext(), Ty, true))
+ return ABIArgInfo::getIgnore();
+
+ llvm::LLVMContext &LLVMContext = getVMContext();
+ llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
+ bool NeedsPadding;
+ if (shouldUseInReg(Ty, State, NeedsPadding)) {
+ unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
+ SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
+ llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
+ return ABIArgInfo::getDirectInReg(Result);
+ }
+ llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
+
+ // Expand small (<= 128-bit) record types when we know that the stack layout
+ // of those arguments will match the struct. This is important because the
+ // LLVM backend isn't smart enough to remove byval, which inhibits many
+ // optimizations.
+ if (getContext().getTypeSize(Ty) <= 4*32 &&
+ canExpandIndirectArgument(Ty, getContext()))
+ return ABIArgInfo::getExpandWithPadding(
+ State.CC == llvm::CallingConv::X86_FastCall, PaddingType);
+
+ return getIndirectResult(Ty, true, State);
+ }
+
+ if (const VectorType *VT = Ty->getAs<VectorType>()) {
+ // On Darwin, some vectors are passed in memory, we handle this by passing
+ // it as an i8/i16/i32/i64.
+ if (IsDarwinVectorABI) {
+ uint64_t Size = getContext().getTypeSize(Ty);
+ if ((Size == 8 || Size == 16 || Size == 32) ||
+ (Size == 64 && VT->getNumElements() == 1))
+ return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
+ Size));
+ }
+
+ if (IsX86_MMXType(CGT.ConvertType(Ty)))
+ return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
+
+ return ABIArgInfo::getDirect();
+ }
+
+
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ bool NeedsPadding;
+ bool InReg = shouldUseInReg(Ty, State, NeedsPadding);
+
+ if (Ty->isPromotableIntegerType()) {
+ if (InReg)
+ return ABIArgInfo::getExtendInReg();
+ return ABIArgInfo::getExtend();
+ }
+ if (InReg)
+ return ABIArgInfo::getDirectInReg();
+ return ABIArgInfo::getDirect();
+}
+
+void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
+ CCState State(FI.getCallingConvention());
+ if (State.CC == llvm::CallingConv::X86_FastCall)
+ State.FreeRegs = 2;
+ else if (FI.getHasRegParm())
+ State.FreeRegs = FI.getRegParm();
+ else
+ State.FreeRegs = DefaultNumRegisterParameters;
+
+ if (!getCXXABI().classifyReturnType(FI)) {
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
+ } else if (FI.getReturnInfo().isIndirect()) {
+ // The C++ ABI is not aware of register usage, so we have to check if the
+ // return value was sret and put it in a register ourselves if appropriate.
+ if (State.FreeRegs) {
+ --State.FreeRegs; // The sret parameter consumes a register.
+ FI.getReturnInfo().setInReg(true);
+ }
+ }
+
+ bool UsedInAlloca = false;
+ for (auto &I : FI.arguments()) {
+ I.info = classifyArgumentType(I.type, State);
+ UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
+ }
+
+ // If we needed to use inalloca for any argument, do a second pass and rewrite
+ // all the memory arguments to use inalloca.
+ if (UsedInAlloca)
+ rewriteWithInAlloca(FI);
+}
+
+void
+X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
+ unsigned &StackOffset,
+ ABIArgInfo &Info, QualType Type) const {
+ assert(StackOffset % 4U == 0 && "unaligned inalloca struct");
+ Info = ABIArgInfo::getInAlloca(FrameFields.size());
+ FrameFields.push_back(CGT.ConvertTypeForMem(Type));
+ StackOffset += getContext().getTypeSizeInChars(Type).getQuantity();
+
+ // Insert padding bytes to respect alignment. For x86_32, each argument is 4
+ // byte aligned.
+ if (StackOffset % 4U) {
+ unsigned OldOffset = StackOffset;
+ StackOffset = llvm::RoundUpToAlignment(StackOffset, 4U);
+ unsigned NumBytes = StackOffset - OldOffset;
+ assert(NumBytes);
+ llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
+ Ty = llvm::ArrayType::get(Ty, NumBytes);
+ FrameFields.push_back(Ty);
+ }
+}
+
+void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
+ assert(IsWin32StructABI && "inalloca only supported on win32");
+
+ // Build a packed struct type for all of the arguments in memory.
+ SmallVector<llvm::Type *, 6> FrameFields;
+
+ unsigned StackOffset = 0;
+
+ // Put the sret parameter into the inalloca struct if it's in memory.
+ ABIArgInfo &Ret = FI.getReturnInfo();
+ if (Ret.isIndirect() && !Ret.getInReg()) {
+ CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
+ addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
+ // On Windows, the hidden sret parameter is always returned in eax.
+ Ret.setInAllocaSRet(IsWin32StructABI);
+ }
+
+ // Skip the 'this' parameter in ecx.
+ CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
+ if (FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall)
+ ++I;
+
+ // Put arguments passed in memory into the struct.
+ for (; I != E; ++I) {
+
+ // Leave ignored and inreg arguments alone.
+ switch (I->info.getKind()) {
+ case ABIArgInfo::Indirect:
+ assert(I->info.getIndirectByVal());
+ break;
+ case ABIArgInfo::Ignore:
+ continue;
+ case ABIArgInfo::Direct:
+ case ABIArgInfo::Extend:
+ if (I->info.getInReg())
+ continue;
+ break;
+ default:
+ break;
+ }
+
+ addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
+ }
+
+ FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
+ /*isPacked=*/true));
+}
+
+llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const {
+ llvm::Type *BPP = CGF.Int8PtrPtrTy;
+
+ CGBuilderTy &Builder = CGF.Builder;
+ llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
+ "ap");
+ llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
+
+ // Compute if the address needs to be aligned
+ unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
+ Align = getTypeStackAlignInBytes(Ty, Align);
+ Align = std::max(Align, 4U);
+ if (Align > 4) {
+ // addr = (addr + align - 1) & -align;
+ llvm::Value *Offset =
+ llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
+ Addr = CGF.Builder.CreateGEP(Addr, Offset);
+ llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
+ CGF.Int32Ty);
+ llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
+ Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
+ Addr->getType(),
+ "ap.cur.aligned");
+ }
+
+ llvm::Type *PTy =
+ llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
+ llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
+
+ uint64_t Offset =
+ llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
+ llvm::Value *NextAddr =
+ Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
+ "ap.next");
+ Builder.CreateStore(NextAddr, VAListAddrAsBPP);
+
+ return AddrTyped;
+}
+
+bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
+ const llvm::Triple &Triple, const CodeGenOptions &Opts) {
+ assert(Triple.getArch() == llvm::Triple::x86);
+
+ switch (Opts.getStructReturnConvention()) {
+ case CodeGenOptions::SRCK_Default:
+ break;
+ case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return
+ return false;
+ case CodeGenOptions::SRCK_InRegs: // -freg-struct-return
+ return true;
+ }
+
+ if (Triple.isOSDarwin())
+ return true;
+
+ switch (Triple.getOS()) {
+ case llvm::Triple::AuroraUX:
+ case llvm::Triple::DragonFly:
+ case llvm::Triple::FreeBSD:
+ case llvm::Triple::OpenBSD:
+ case llvm::Triple::Bitrig:
+ return true;
+ case llvm::Triple::Win32:
+ switch (Triple.getEnvironment()) {
+ case llvm::Triple::UnknownEnvironment:
+ case llvm::Triple::Cygnus:
+ case llvm::Triple::GNU:
+ case llvm::Triple::MSVC:
+ return true;
+ default:
+ return false;
+ }
+ default:
+ return false;
+ }
+}
+
+void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
+ llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &CGM) const {
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
+ // Get the LLVM function.
+ llvm::Function *Fn = cast<llvm::Function>(GV);
+
+ // Now add the 'alignstack' attribute with a value of 16.
+ llvm::AttrBuilder B;
+ B.addStackAlignmentAttr(16);
+ Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
+ llvm::AttributeSet::get(CGM.getLLVMContext(),
+ llvm::AttributeSet::FunctionIndex,
+ B));
+ }
+ }
+}
+
+bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
+ CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const {
+ CodeGen::CGBuilderTy &Builder = CGF.Builder;
+
+ llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
+
+ // 0-7 are the eight integer registers; the order is different
+ // on Darwin (for EH), but the range is the same.
+ // 8 is %eip.
+ AssignToArrayRange(Builder, Address, Four8, 0, 8);
+
+ if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
+ // 12-16 are st(0..4). Not sure why we stop at 4.
+ // These have size 16, which is sizeof(long double) on
+ // platforms with 8-byte alignment for that type.
+ llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
+ AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
+
+ } else {
+ // 9 is %eflags, which doesn't get a size on Darwin for some
+ // reason.
+ Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
+
+ // 11-16 are st(0..5). Not sure why we stop at 5.
+ // These have size 12, which is sizeof(long double) on
+ // platforms with 4-byte alignment for that type.
+ llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
+ AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
+ }
+
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// X86-64 ABI Implementation
+//===----------------------------------------------------------------------===//
+
+
+namespace {
+/// X86_64ABIInfo - The X86_64 ABI information.
+class X86_64ABIInfo : public ABIInfo {
+ enum Class {
+ Integer = 0,
+ SSE,
+ SSEUp,
+ X87,
+ X87Up,
+ ComplexX87,
+ NoClass,
+ Memory
+ };
+
+ /// merge - Implement the X86_64 ABI merging algorithm.
+ ///
+ /// Merge an accumulating classification \arg Accum with a field
+ /// classification \arg Field.
+ ///
+ /// \param Accum - The accumulating classification. This should
+ /// always be either NoClass or the result of a previous merge
+ /// call. In addition, this should never be Memory (the caller
+ /// should just return Memory for the aggregate).
+ static Class merge(Class Accum, Class Field);
+
+ /// postMerge - Implement the X86_64 ABI post merging algorithm.
+ ///
+ /// Post merger cleanup, reduces a malformed Hi and Lo pair to
+ /// final MEMORY or SSE classes when necessary.
+ ///
+ /// \param AggregateSize - The size of the current aggregate in
+ /// the classification process.
+ ///
+ /// \param Lo - The classification for the parts of the type
+ /// residing in the low word of the containing object.
+ ///
+ /// \param Hi - The classification for the parts of the type
+ /// residing in the higher words of the containing object.
+ ///
+ void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
+
+ /// classify - Determine the x86_64 register classes in which the
+ /// given type T should be passed.
+ ///
+ /// \param Lo - The classification for the parts of the type
+ /// residing in the low word of the containing object.
+ ///
+ /// \param Hi - The classification for the parts of the type
+ /// residing in the high word of the containing object.
+ ///
+ /// \param OffsetBase - The bit offset of this type in the
+ /// containing object. Some parameters are classified different
+ /// depending on whether they straddle an eightbyte boundary.
+ ///
+ /// \param isNamedArg - Whether the argument in question is a "named"
+ /// argument, as used in AMD64-ABI 3.5.7.
+ ///
+ /// If a word is unused its result will be NoClass; if a type should
+ /// be passed in Memory then at least the classification of \arg Lo
+ /// will be Memory.
+ ///
+ /// The \arg Lo class will be NoClass iff the argument is ignored.
+ ///
+ /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
+ /// also be ComplexX87.
+ void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
+ bool isNamedArg) const;
+
+ llvm::Type *GetByteVectorType(QualType Ty) const;
+ llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
+ unsigned IROffset, QualType SourceTy,
+ unsigned SourceOffset) const;
+ llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
+ unsigned IROffset, QualType SourceTy,
+ unsigned SourceOffset) const;
+
+ /// getIndirectResult - Give a source type \arg Ty, return a suitable result
+ /// such that the argument will be returned in memory.
+ ABIArgInfo getIndirectReturnResult(QualType Ty) const;
+
+ /// getIndirectResult - Give a source type \arg Ty, return a suitable result
+ /// such that the argument will be passed in memory.
+ ///
+ /// \param freeIntRegs - The number of free integer registers remaining
+ /// available.
+ ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
+
+ ABIArgInfo classifyReturnType(QualType RetTy) const;
+
+ ABIArgInfo classifyArgumentType(QualType Ty,
+ unsigned freeIntRegs,
+ unsigned &neededInt,
+ unsigned &neededSSE,
+ bool isNamedArg) const;
+
+ bool IsIllegalVectorType(QualType Ty) const;
+
+ /// The 0.98 ABI revision clarified a lot of ambiguities,
+ /// unfortunately in ways that were not always consistent with
+ /// certain previous compilers. In particular, platforms which
+ /// required strict binary compatibility with older versions of GCC
+ /// may need to exempt themselves.
+ bool honorsRevision0_98() const {
+ return !getTarget().getTriple().isOSDarwin();
+ }
+
+ bool HasAVX;
+ // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
+ // 64-bit hardware.
+ bool Has64BitPointers;
+
+public:
+ X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
+ ABIInfo(CGT), HasAVX(hasavx),
+ Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
+ }
+
+ bool isPassedUsingAVXType(QualType type) const {
+ unsigned neededInt, neededSSE;
+ // The freeIntRegs argument doesn't matter here.
+ ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
+ /*isNamedArg*/true);
+ if (info.isDirect()) {
+ llvm::Type *ty = info.getCoerceToType();
+ if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
+ return (vectorTy->getBitWidth() > 128);
+ }
+ return false;
+ }
+
+ void computeInfo(CGFunctionInfo &FI) const override;
+
+ llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const override;
+};
+
+/// WinX86_64ABIInfo - The Windows X86_64 ABI information.
+class WinX86_64ABIInfo : public ABIInfo {
+
+ ABIArgInfo classify(QualType Ty, bool IsReturnType) const;
+
+public:
+ WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
+
+ void computeInfo(CGFunctionInfo &FI) const override;
+
+ llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const override;
+};
+
+class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
+ : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {}
+
+ const X86_64ABIInfo &getABIInfo() const {
+ return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
+ }
+
+ int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
+ return 7;
+ }
+
+ bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const override {
+ llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
+
+ // 0-15 are the 16 integer registers.
+ // 16 is %rip.
+ AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
+ return false;
+ }
+
+ llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
+ StringRef Constraint,
+ llvm::Type* Ty) const override {
+ return X86AdjustInlineAsmType(CGF, Constraint, Ty);
+ }
+
+ bool isNoProtoCallVariadic(const CallArgList &args,
+ const FunctionNoProtoType *fnType) const override {
+ // The default CC on x86-64 sets %al to the number of SSA
+ // registers used, and GCC sets this when calling an unprototyped
+ // function, so we override the default behavior. However, don't do
+ // that when AVX types are involved: the ABI explicitly states it is
+ // undefined, and it doesn't work in practice because of how the ABI
+ // defines varargs anyway.
+ if (fnType->getCallConv() == CC_C) {
+ bool HasAVXType = false;
+ for (CallArgList::const_iterator
+ it = args.begin(), ie = args.end(); it != ie; ++it) {
+ if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
+ HasAVXType = true;
+ break;
+ }
+ }
+
+ if (!HasAVXType)
+ return true;
+ }
+
+ return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
+ }
+
+ llvm::Constant *
+ getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
+ unsigned Sig = (0xeb << 0) | // jmp rel8
+ (0x0a << 8) | // .+0x0c
+ ('F' << 16) |
+ ('T' << 24);
+ return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
+ }
+
+};
+
+static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
+ // If the argument does not end in .lib, automatically add the suffix. This
+ // matches the behavior of MSVC.
+ std::string ArgStr = Lib;
+ if (!Lib.endswith_lower(".lib"))
+ ArgStr += ".lib";
+ return ArgStr;
+}
+
+class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
+public:
+ WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
+ bool d, bool p, bool w, unsigned RegParms)
+ : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {}
+
+ void getDependentLibraryOption(llvm::StringRef Lib,
+ llvm::SmallString<24> &Opt) const override {
+ Opt = "/DEFAULTLIB:";
+ Opt += qualifyWindowsLibrary(Lib);
+ }
+
+ void getDetectMismatchOption(llvm::StringRef Name,
+ llvm::StringRef Value,
+ llvm::SmallString<32> &Opt) const override {
+ Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
+ }
+};
+
+class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
+ : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
+
+ int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
+ return 7;
+ }
+
+ bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const override {
+ llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
+
+ // 0-15 are the 16 integer registers.
+ // 16 is %rip.
+ AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
+ return false;
+ }
+
+ void getDependentLibraryOption(llvm::StringRef Lib,
+ llvm::SmallString<24> &Opt) const override {
+ Opt = "/DEFAULTLIB:";
+ Opt += qualifyWindowsLibrary(Lib);
+ }
+
+ void getDetectMismatchOption(llvm::StringRef Name,
+ llvm::StringRef Value,
+ llvm::SmallString<32> &Opt) const override {
+ Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
+ }
+};
+
+}
+
+void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
+ Class &Hi) const {
+ // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
+ //
+ // (a) If one of the classes is Memory, the whole argument is passed in
+ // memory.
+ //
+ // (b) If X87UP is not preceded by X87, the whole argument is passed in
+ // memory.
+ //
+ // (c) If the size of the aggregate exceeds two eightbytes and the first
+ // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
+ // argument is passed in memory. NOTE: This is necessary to keep the
+ // ABI working for processors that don't support the __m256 type.
+ //
+ // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
+ //
+ // Some of these are enforced by the merging logic. Others can arise
+ // only with unions; for example:
+ // union { _Complex double; unsigned; }
+ //
+ // Note that clauses (b) and (c) were added in 0.98.
+ //
+ if (Hi == Memory)
+ Lo = Memory;
+ if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
+ Lo = Memory;
+ if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
+ Lo = Memory;
+ if (Hi == SSEUp && Lo != SSE)
+ Hi = SSE;
+}
+
+X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
+ // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
+ // classified recursively so that always two fields are
+ // considered. The resulting class is calculated according to
+ // the classes of the fields in the eightbyte:
+ //
+ // (a) If both classes are equal, this is the resulting class.
+ //
+ // (b) If one of the classes is NO_CLASS, the resulting class is
+ // the other class.
+ //
+ // (c) If one of the classes is MEMORY, the result is the MEMORY
+ // class.
+ //
+ // (d) If one of the classes is INTEGER, the result is the
+ // INTEGER.
+ //
+ // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
+ // MEMORY is used as class.
+ //
+ // (f) Otherwise class SSE is used.
+
+ // Accum should never be memory (we should have returned) or
+ // ComplexX87 (because this cannot be passed in a structure).
+ assert((Accum != Memory && Accum != ComplexX87) &&
+ "Invalid accumulated classification during merge.");
+ if (Accum == Field || Field == NoClass)
+ return Accum;
+ if (Field == Memory)
+ return Memory;
+ if (Accum == NoClass)
+ return Field;
+ if (Accum == Integer || Field == Integer)
+ return Integer;
+ if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
+ Accum == X87 || Accum == X87Up)
+ return Memory;
+ return SSE;
+}
+
+void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
+ Class &Lo, Class &Hi, bool isNamedArg) const {
+ // FIXME: This code can be simplified by introducing a simple value class for
+ // Class pairs with appropriate constructor methods for the various
+ // situations.
+
+ // FIXME: Some of the split computations are wrong; unaligned vectors
+ // shouldn't be passed in registers for example, so there is no chance they
+ // can straddle an eightbyte. Verify & simplify.
+
+ Lo = Hi = NoClass;
+
+ Class &Current = OffsetBase < 64 ? Lo : Hi;
+ Current = Memory;
+
+ if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
+ BuiltinType::Kind k = BT->getKind();
+
+ if (k == BuiltinType::Void) {
+ Current = NoClass;
+ } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
+ Lo = Integer;
+ Hi = Integer;
+ } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
+ Current = Integer;
+ } else if ((k == BuiltinType::Float || k == BuiltinType::Double) ||
+ (k == BuiltinType::LongDouble &&
+ getTarget().getTriple().isOSNaCl())) {
+ Current = SSE;
+ } else if (k == BuiltinType::LongDouble) {
+ Lo = X87;
+ Hi = X87Up;
+ }
+ // FIXME: _Decimal32 and _Decimal64 are SSE.
+ // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
+ return;
+ }
+
+ if (const EnumType *ET = Ty->getAs<EnumType>()) {
+ // Classify the underlying integer type.
+ classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
+ return;
+ }
+
+ if (Ty->hasPointerRepresentation()) {
+ Current = Integer;
+ return;
+ }
+
+ if (Ty->isMemberPointerType()) {
+ if (Ty->isMemberFunctionPointerType() && Has64BitPointers)
+ Lo = Hi = Integer;
+ else
+ Current = Integer;
+ return;
+ }
+
+ if (const VectorType *VT = Ty->getAs<VectorType>()) {
+ uint64_t Size = getContext().getTypeSize(VT);
+ if (Size == 32) {
+ // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
+ // float> as integer.
+ Current = Integer;
+
+ // If this type crosses an eightbyte boundary, it should be
+ // split.
+ uint64_t EB_Real = (OffsetBase) / 64;
+ uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
+ if (EB_Real != EB_Imag)
+ Hi = Lo;
+ } else if (Size == 64) {
+ // gcc passes <1 x double> in memory. :(
+ if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
+ return;
+
+ // gcc passes <1 x long long> as INTEGER.
+ if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
+ VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
+ VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
+ VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
+ Current = Integer;
+ else
+ Current = SSE;
+
+ // If this type crosses an eightbyte boundary, it should be
+ // split.
+ if (OffsetBase && OffsetBase != 64)
+ Hi = Lo;
+ } else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) {
+ // Arguments of 256-bits are split into four eightbyte chunks. The
+ // least significant one belongs to class SSE and all the others to class
+ // SSEUP. The original Lo and Hi design considers that types can't be
+ // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
+ // This design isn't correct for 256-bits, but since there're no cases
+ // where the upper parts would need to be inspected, avoid adding
+ // complexity and just consider Hi to match the 64-256 part.
+ //
+ // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
+ // registers if they are "named", i.e. not part of the "..." of a
+ // variadic function.
+ Lo = SSE;
+ Hi = SSEUp;
+ }
+ return;
+ }
+
+ if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
+ QualType ET = getContext().getCanonicalType(CT->getElementType());
+
+ uint64_t Size = getContext().getTypeSize(Ty);
+ if (ET->isIntegralOrEnumerationType()) {
+ if (Size <= 64)
+ Current = Integer;
+ else if (Size <= 128)
+ Lo = Hi = Integer;
+ } else if (ET == getContext().FloatTy)
+ Current = SSE;
+ else if (ET == getContext().DoubleTy ||
+ (ET == getContext().LongDoubleTy &&
+ getTarget().getTriple().isOSNaCl()))
+ Lo = Hi = SSE;
+ else if (ET == getContext().LongDoubleTy)
+ Current = ComplexX87;
+
+ // If this complex type crosses an eightbyte boundary then it
+ // should be split.
+ uint64_t EB_Real = (OffsetBase) / 64;
+ uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
+ if (Hi == NoClass && EB_Real != EB_Imag)
+ Hi = Lo;
+
+ return;
+ }
+
+ if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
+ // Arrays are treated like structures.
+
+ uint64_t Size = getContext().getTypeSize(Ty);
+
+ // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
+ // than four eightbytes, ..., it has class MEMORY.
+ if (Size > 256)
+ return;
+
+ // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
+ // fields, it has class MEMORY.
+ //
+ // Only need to check alignment of array base.
+ if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
+ return;
+
+ // Otherwise implement simplified merge. We could be smarter about
+ // this, but it isn't worth it and would be harder to verify.
+ Current = NoClass;
+ uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
+ uint64_t ArraySize = AT->getSize().getZExtValue();
+
+ // The only case a 256-bit wide vector could be used is when the array
+ // contains a single 256-bit element. Since Lo and Hi logic isn't extended
+ // to work for sizes wider than 128, early check and fallback to memory.
+ if (Size > 128 && EltSize != 256)
+ return;
+
+ for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
+ Class FieldLo, FieldHi;
+ classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
+ Lo = merge(Lo, FieldLo);
+ Hi = merge(Hi, FieldHi);
+ if (Lo == Memory || Hi == Memory)
+ break;
+ }
+
+ postMerge(Size, Lo, Hi);
+ assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
+ return;
+ }
+
+ if (const RecordType *RT = Ty->getAs<RecordType>()) {
+ uint64_t Size = getContext().getTypeSize(Ty);
+
+ // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
+ // than four eightbytes, ..., it has class MEMORY.
+ if (Size > 256)
+ return;
+
+ // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
+ // copy constructor or a non-trivial destructor, it is passed by invisible
+ // reference.
+ if (getRecordArgABI(RT, getCXXABI()))
+ return;
+
+ const RecordDecl *RD = RT->getDecl();
+
+ // Assume variable sized types are passed in memory.
+ if (RD->hasFlexibleArrayMember())
+ return;
+
+ const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
+
+ // Reset Lo class, this will be recomputed.
+ Current = NoClass;
+
+ // If this is a C++ record, classify the bases first.
+ if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
+ for (const auto &I : CXXRD->bases()) {
+ assert(!I.isVirtual() && !I.getType()->isDependentType() &&
+ "Unexpected base class!");
+ const CXXRecordDecl *Base =
+ cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
+
+ // Classify this field.
+ //
+ // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
+ // single eightbyte, each is classified separately. Each eightbyte gets
+ // initialized to class NO_CLASS.
+ Class FieldLo, FieldHi;
+ uint64_t Offset =
+ OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
+ classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
+ Lo = merge(Lo, FieldLo);
+ Hi = merge(Hi, FieldHi);
+ if (Lo == Memory || Hi == Memory)
+ break;
+ }
+ }
+
+ // Classify the fields one at a time, merging the results.
+ unsigned idx = 0;
+ for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
+ i != e; ++i, ++idx) {
+ uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
+ bool BitField = i->isBitField();
+
+ // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
+ // four eightbytes, or it contains unaligned fields, it has class MEMORY.
+ //
+ // The only case a 256-bit wide vector could be used is when the struct
+ // contains a single 256-bit element. Since Lo and Hi logic isn't extended
+ // to work for sizes wider than 128, early check and fallback to memory.
+ //
+ if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
+ Lo = Memory;
+ return;
+ }
+ // Note, skip this test for bit-fields, see below.
+ if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
+ Lo = Memory;
+ return;
+ }
+
+ // Classify this field.
+ //
+ // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
+ // exceeds a single eightbyte, each is classified
+ // separately. Each eightbyte gets initialized to class
+ // NO_CLASS.
+ Class FieldLo, FieldHi;
+
+ // Bit-fields require special handling, they do not force the
+ // structure to be passed in memory even if unaligned, and
+ // therefore they can straddle an eightbyte.
+ if (BitField) {
+ // Ignore padding bit-fields.
+ if (i->isUnnamedBitfield())
+ continue;
+
+ uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
+ uint64_t Size = i->getBitWidthValue(getContext());
+
+ uint64_t EB_Lo = Offset / 64;
+ uint64_t EB_Hi = (Offset + Size - 1) / 64;
+
+ if (EB_Lo) {
+ assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
+ FieldLo = NoClass;
+ FieldHi = Integer;
+ } else {
+ FieldLo = Integer;
+ FieldHi = EB_Hi ? Integer : NoClass;
+ }
+ } else
+ classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
+ Lo = merge(Lo, FieldLo);
+ Hi = merge(Hi, FieldHi);
+ if (Lo == Memory || Hi == Memory)
+ break;
+ }
+
+ postMerge(Size, Lo, Hi);
+ }
+}
+
+ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
+ // If this is a scalar LLVM value then assume LLVM will pass it in the right
+ // place naturally.
+ if (!isAggregateTypeForABI(Ty)) {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ return (Ty->isPromotableIntegerType() ?
+ ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
+ }
+
+ return ABIArgInfo::getIndirect(0);
+}
+
+bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
+ if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
+ uint64_t Size = getContext().getTypeSize(VecTy);
+ unsigned LargestVector = HasAVX ? 256 : 128;
+ if (Size <= 64 || Size > LargestVector)
+ return true;
+ }
+
+ return false;
+}
+
+ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
+ unsigned freeIntRegs) const {
+ // If this is a scalar LLVM value then assume LLVM will pass it in the right
+ // place naturally.
+ //
+ // This assumption is optimistic, as there could be free registers available
+ // when we need to pass this argument in memory, and LLVM could try to pass
+ // the argument in the free register. This does not seem to happen currently,
+ // but this code would be much safer if we could mark the argument with
+ // 'onstack'. See PR12193.
+ if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ return (Ty->isPromotableIntegerType() ?
+ ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
+ }
+
+ if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
+ return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
+
+ // Compute the byval alignment. We specify the alignment of the byval in all
+ // cases so that the mid-level optimizer knows the alignment of the byval.
+ unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
+
+ // Attempt to avoid passing indirect results using byval when possible. This
+ // is important for good codegen.
+ //
+ // We do this by coercing the value into a scalar type which the backend can
+ // handle naturally (i.e., without using byval).
+ //
+ // For simplicity, we currently only do this when we have exhausted all of the
+ // free integer registers. Doing this when there are free integer registers
+ // would require more care, as we would have to ensure that the coerced value
+ // did not claim the unused register. That would require either reording the
+ // arguments to the function (so that any subsequent inreg values came first),
+ // or only doing this optimization when there were no following arguments that
+ // might be inreg.
+ //
+ // We currently expect it to be rare (particularly in well written code) for
+ // arguments to be passed on the stack when there are still free integer
+ // registers available (this would typically imply large structs being passed
+ // by value), so this seems like a fair tradeoff for now.
+ //
+ // We can revisit this if the backend grows support for 'onstack' parameter
+ // attributes. See PR12193.
+ if (freeIntRegs == 0) {
+ uint64_t Size = getContext().getTypeSize(Ty);
+
+ // If this type fits in an eightbyte, coerce it into the matching integral
+ // type, which will end up on the stack (with alignment 8).
+ if (Align == 8 && Size <= 64)
+ return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
+ Size));
+ }
+
+ return ABIArgInfo::getIndirect(Align);
+}
+
+/// GetByteVectorType - The ABI specifies that a value should be passed in an
+/// full vector XMM/YMM register. Pick an LLVM IR type that will be passed as a
+/// vector register.
+llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
+ llvm::Type *IRType = CGT.ConvertType(Ty);
+
+ // Wrapper structs that just contain vectors are passed just like vectors,
+ // strip them off if present.
+ llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
+ while (STy && STy->getNumElements() == 1) {
+ IRType = STy->getElementType(0);
+ STy = dyn_cast<llvm::StructType>(IRType);
+ }
+
+ // If the preferred type is a 16-byte vector, prefer to pass it.
+ if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
+ llvm::Type *EltTy = VT->getElementType();
+ unsigned BitWidth = VT->getBitWidth();
+ if ((BitWidth >= 128 && BitWidth <= 256) &&
+ (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
+ EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
+ EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
+ EltTy->isIntegerTy(128)))
+ return VT;
+ }
+
+ return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
+}
+
+/// BitsContainNoUserData - Return true if the specified [start,end) bit range
+/// is known to either be off the end of the specified type or being in
+/// alignment padding. The user type specified is known to be at most 128 bits
+/// in size, and have passed through X86_64ABIInfo::classify with a successful
+/// classification that put one of the two halves in the INTEGER class.
+///
+/// It is conservatively correct to return false.
+static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
+ unsigned EndBit, ASTContext &Context) {
+ // If the bytes being queried are off the end of the type, there is no user
+ // data hiding here. This handles analysis of builtins, vectors and other
+ // types that don't contain interesting padding.
+ unsigned TySize = (unsigned)Context.getTypeSize(Ty);
+ if (TySize <= StartBit)
+ return true;
+
+ if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
+ unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
+ unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
+
+ // Check each element to see if the element overlaps with the queried range.
+ for (unsigned i = 0; i != NumElts; ++i) {
+ // If the element is after the span we care about, then we're done..
+ unsigned EltOffset = i*EltSize;
+ if (EltOffset >= EndBit) break;
+
+ unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
+ if (!BitsContainNoUserData(AT->getElementType(), EltStart,
+ EndBit-EltOffset, Context))
+ return false;
+ }
+ // If it overlaps no elements, then it is safe to process as padding.
+ return true;
+ }
+
+ if (const RecordType *RT = Ty->getAs<RecordType>()) {
+ const RecordDecl *RD = RT->getDecl();
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+
+ // If this is a C++ record, check the bases first.
+ if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
+ for (const auto &I : CXXRD->bases()) {
+ assert(!I.isVirtual() && !I.getType()->isDependentType() &&
+ "Unexpected base class!");
+ const CXXRecordDecl *Base =
+ cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
+
+ // If the base is after the span we care about, ignore it.
+ unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
+ if (BaseOffset >= EndBit) continue;
+
+ unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
+ if (!BitsContainNoUserData(I.getType(), BaseStart,
+ EndBit-BaseOffset, Context))
+ return false;
+ }
+ }
+
+ // Verify that no field has data that overlaps the region of interest. Yes
+ // this could be sped up a lot by being smarter about queried fields,
+ // however we're only looking at structs up to 16 bytes, so we don't care
+ // much.
+ unsigned idx = 0;
+ for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
+ i != e; ++i, ++idx) {
+ unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
+
+ // If we found a field after the region we care about, then we're done.
+ if (FieldOffset >= EndBit) break;
+
+ unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
+ if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
+ Context))
+ return false;
+ }
+
+ // If nothing in this record overlapped the area of interest, then we're
+ // clean.
+ return true;
+ }
+
+ return false;
+}
+
+/// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
+/// float member at the specified offset. For example, {int,{float}} has a
+/// float at offset 4. It is conservatively correct for this routine to return
+/// false.
+static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
+ const llvm::DataLayout &TD) {
+ // Base case if we find a float.
+ if (IROffset == 0 && IRType->isFloatTy())
+ return true;
+
+ // If this is a struct, recurse into the field at the specified offset.
+ if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
+ const llvm::StructLayout *SL = TD.getStructLayout(STy);
+ unsigned Elt = SL->getElementContainingOffset(IROffset);
+ IROffset -= SL->getElementOffset(Elt);
+ return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
+ }
+
+ // If this is an array, recurse into the field at the specified offset.
+ if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
+ llvm::Type *EltTy = ATy->getElementType();
+ unsigned EltSize = TD.getTypeAllocSize(EltTy);
+ IROffset -= IROffset/EltSize*EltSize;
+ return ContainsFloatAtOffset(EltTy, IROffset, TD);
+ }
+
+ return false;
+}
+
+
+/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
+/// low 8 bytes of an XMM register, corresponding to the SSE class.
+llvm::Type *X86_64ABIInfo::
+GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
+ QualType SourceTy, unsigned SourceOffset) const {
+ // The only three choices we have are either double, <2 x float>, or float. We
+ // pass as float if the last 4 bytes is just padding. This happens for
+ // structs that contain 3 floats.
+ if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
+ SourceOffset*8+64, getContext()))
+ return llvm::Type::getFloatTy(getVMContext());
+
+ // We want to pass as <2 x float> if the LLVM IR type contains a float at
+ // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the
+ // case.
+ if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
+ ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
+ return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
+
+ return llvm::Type::getDoubleTy(getVMContext());
+}
+
+
+/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
+/// an 8-byte GPR. This means that we either have a scalar or we are talking
+/// about the high or low part of an up-to-16-byte struct. This routine picks
+/// the best LLVM IR type to represent this, which may be i64 or may be anything
+/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
+/// etc).
+///
+/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
+/// the source type. IROffset is an offset in bytes into the LLVM IR type that
+/// the 8-byte value references. PrefType may be null.
+///
+/// SourceTy is the source-level type for the entire argument. SourceOffset is
+/// an offset into this that we're processing (which is always either 0 or 8).
+///
+llvm::Type *X86_64ABIInfo::
+GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
+ QualType SourceTy, unsigned SourceOffset) const {
+ // If we're dealing with an un-offset LLVM IR type, then it means that we're
+ // returning an 8-byte unit starting with it. See if we can safely use it.
+ if (IROffset == 0) {
+ // Pointers and int64's always fill the 8-byte unit.
+ if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
+ IRType->isIntegerTy(64))
+ return IRType;
+
+ // If we have a 1/2/4-byte integer, we can use it only if the rest of the
+ // goodness in the source type is just tail padding. This is allowed to
+ // kick in for struct {double,int} on the int, but not on
+ // struct{double,int,int} because we wouldn't return the second int. We
+ // have to do this analysis on the source type because we can't depend on
+ // unions being lowered a specific way etc.
+ if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
+ IRType->isIntegerTy(32) ||
+ (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
+ unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
+ cast<llvm::IntegerType>(IRType)->getBitWidth();
+
+ if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
+ SourceOffset*8+64, getContext()))
+ return IRType;
+ }
+ }
+
+ if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
+ // If this is a struct, recurse into the field at the specified offset.
+ const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
+ if (IROffset < SL->getSizeInBytes()) {
+ unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
+ IROffset -= SL->getElementOffset(FieldIdx);
+
+ return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
+ SourceTy, SourceOffset);
+ }
+ }
+
+ if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
+ llvm::Type *EltTy = ATy->getElementType();
+ unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
+ unsigned EltOffset = IROffset/EltSize*EltSize;
+ return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
+ SourceOffset);
+ }
+
+ // Okay, we don't have any better idea of what to pass, so we pass this in an
+ // integer register that isn't too big to fit the rest of the struct.
+ unsigned TySizeInBytes =
+ (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
+
+ assert(TySizeInBytes != SourceOffset && "Empty field?");
+
+ // It is always safe to classify this as an integer type up to i64 that
+ // isn't larger than the structure.
+ return llvm::IntegerType::get(getVMContext(),
+ std::min(TySizeInBytes-SourceOffset, 8U)*8);
+}
+
+
+/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
+/// be used as elements of a two register pair to pass or return, return a
+/// first class aggregate to represent them. For example, if the low part of
+/// a by-value argument should be passed as i32* and the high part as float,
+/// return {i32*, float}.
+static llvm::Type *
+GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
+ const llvm::DataLayout &TD) {
+ // In order to correctly satisfy the ABI, we need to the high part to start
+ // at offset 8. If the high and low parts we inferred are both 4-byte types
+ // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
+ // the second element at offset 8. Check for this:
+ unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
+ unsigned HiAlign = TD.getABITypeAlignment(Hi);
+ unsigned HiStart = llvm::DataLayout::RoundUpAlignment(LoSize, HiAlign);
+ assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
+
+ // To handle this, we have to increase the size of the low part so that the
+ // second element will start at an 8 byte offset. We can't increase the size
+ // of the second element because it might make us access off the end of the
+ // struct.
+ if (HiStart != 8) {
+ // There are only two sorts of types the ABI generation code can produce for
+ // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
+ // Promote these to a larger type.
+ if (Lo->isFloatTy())
+ Lo = llvm::Type::getDoubleTy(Lo->getContext());
+ else {
+ assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
+ Lo = llvm::Type::getInt64Ty(Lo->getContext());
+ }
+ }
+
+ llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL);
+
+
+ // Verify that the second element is at an 8-byte offset.
+ assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
+ "Invalid x86-64 argument pair!");
+ return Result;
+}
+
+ABIArgInfo X86_64ABIInfo::
+classifyReturnType(QualType RetTy) const {
+ // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
+ // classification algorithm.
+ X86_64ABIInfo::Class Lo, Hi;
+ classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
+
+ // Check some invariants.
+ assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
+ assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
+
+ llvm::Type *ResType = nullptr;
+ switch (Lo) {
+ case NoClass:
+ if (Hi == NoClass)
+ return ABIArgInfo::getIgnore();
+ // If the low part is just padding, it takes no register, leave ResType
+ // null.
+ assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
+ "Unknown missing lo part");
+ break;
+
+ case SSEUp:
+ case X87Up:
+ llvm_unreachable("Invalid classification for lo word.");
+
+ // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
+ // hidden argument.
+ case Memory:
+ return getIndirectReturnResult(RetTy);
+
+ // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
+ // available register of the sequence %rax, %rdx is used.
+ case Integer:
+ ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
+
+ // If we have a sign or zero extended integer, make sure to return Extend
+ // so that the parameter gets the right LLVM IR attributes.
+ if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
+ RetTy = EnumTy->getDecl()->getIntegerType();
+
+ if (RetTy->isIntegralOrEnumerationType() &&
+ RetTy->isPromotableIntegerType())
+ return ABIArgInfo::getExtend();
+ }
+ break;
+
+ // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
+ // available SSE register of the sequence %xmm0, %xmm1 is used.
+ case SSE:
+ ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
+ break;
+
+ // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
+ // returned on the X87 stack in %st0 as 80-bit x87 number.
+ case X87:
+ ResType = llvm::Type::getX86_FP80Ty(getVMContext());
+ break;
+
+ // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
+ // part of the value is returned in %st0 and the imaginary part in
+ // %st1.
+ case ComplexX87:
+ assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
+ ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
+ llvm::Type::getX86_FP80Ty(getVMContext()),
+ NULL);
+ break;
+ }
+
+ llvm::Type *HighPart = nullptr;
+ switch (Hi) {
+ // Memory was handled previously and X87 should
+ // never occur as a hi class.
+ case Memory:
+ case X87:
+ llvm_unreachable("Invalid classification for hi word.");
+
+ case ComplexX87: // Previously handled.
+ case NoClass:
+ break;
+
+ case Integer:
+ HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
+ if (Lo == NoClass) // Return HighPart at offset 8 in memory.
+ return ABIArgInfo::getDirect(HighPart, 8);
+ break;
+ case SSE:
+ HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
+ if (Lo == NoClass) // Return HighPart at offset 8 in memory.
+ return ABIArgInfo::getDirect(HighPart, 8);
+ break;
+
+ // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
+ // is passed in the next available eightbyte chunk if the last used
+ // vector register.
+ //
+ // SSEUP should always be preceded by SSE, just widen.
+ case SSEUp:
+ assert(Lo == SSE && "Unexpected SSEUp classification.");
+ ResType = GetByteVectorType(RetTy);
+ break;
+
+ // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
+ // returned together with the previous X87 value in %st0.
+ case X87Up:
+ // If X87Up is preceded by X87, we don't need to do
+ // anything. However, in some cases with unions it may not be
+ // preceded by X87. In such situations we follow gcc and pass the
+ // extra bits in an SSE reg.
+ if (Lo != X87) {
+ HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
+ if (Lo == NoClass) // Return HighPart at offset 8 in memory.
+ return ABIArgInfo::getDirect(HighPart, 8);
+ }
+ break;
+ }
+
+ // If a high part was specified, merge it together with the low part. It is
+ // known to pass in the high eightbyte of the result. We do this by forming a
+ // first class struct aggregate with the high and low part: {low, high}
+ if (HighPart)
+ ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
+
+ return ABIArgInfo::getDirect(ResType);
+}
+
+ABIArgInfo X86_64ABIInfo::classifyArgumentType(
+ QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
+ bool isNamedArg)
+ const
+{
+ X86_64ABIInfo::Class Lo, Hi;
+ classify(Ty, 0, Lo, Hi, isNamedArg);
+
+ // Check some invariants.
+ // FIXME: Enforce these by construction.
+ assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
+ assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
+
+ neededInt = 0;
+ neededSSE = 0;
+ llvm::Type *ResType = nullptr;
+ switch (Lo) {
+ case NoClass:
+ if (Hi == NoClass)
+ return ABIArgInfo::getIgnore();
+ // If the low part is just padding, it takes no register, leave ResType
+ // null.
+ assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
+ "Unknown missing lo part");
+ break;
+
+ // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
+ // on the stack.
+ case Memory:
+
+ // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
+ // COMPLEX_X87, it is passed in memory.
+ case X87:
+ case ComplexX87:
+ if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
+ ++neededInt;
+ return getIndirectResult(Ty, freeIntRegs);
+
+ case SSEUp:
+ case X87Up:
+ llvm_unreachable("Invalid classification for lo word.");
+
+ // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
+ // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
+ // and %r9 is used.
+ case Integer:
+ ++neededInt;
+
+ // Pick an 8-byte type based on the preferred type.
+ ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
+
+ // If we have a sign or zero extended integer, make sure to return Extend
+ // so that the parameter gets the right LLVM IR attributes.
+ if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ if (Ty->isIntegralOrEnumerationType() &&
+ Ty->isPromotableIntegerType())
+ return ABIArgInfo::getExtend();
+ }
+
+ break;
+
+ // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
+ // available SSE register is used, the registers are taken in the
+ // order from %xmm0 to %xmm7.
+ case SSE: {
+ llvm::Type *IRType = CGT.ConvertType(Ty);
+ ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
+ ++neededSSE;
+ break;
+ }
+ }
+
+ llvm::Type *HighPart = nullptr;
+ switch (Hi) {
+ // Memory was handled previously, ComplexX87 and X87 should
+ // never occur as hi classes, and X87Up must be preceded by X87,
+ // which is passed in memory.
+ case Memory:
+ case X87:
+ case ComplexX87:
+ llvm_unreachable("Invalid classification for hi word.");
+
+ case NoClass: break;
+
+ case Integer:
+ ++neededInt;
+ // Pick an 8-byte type based on the preferred type.
+ HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
+
+ if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
+ return ABIArgInfo::getDirect(HighPart, 8);
+ break;
+
+ // X87Up generally doesn't occur here (long double is passed in
+ // memory), except in situations involving unions.
+ case X87Up:
+ case SSE:
+ HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
+
+ if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
+ return ABIArgInfo::getDirect(HighPart, 8);
+
+ ++neededSSE;
+ break;
+
+ // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
+ // eightbyte is passed in the upper half of the last used SSE
+ // register. This only happens when 128-bit vectors are passed.
+ case SSEUp:
+ assert(Lo == SSE && "Unexpected SSEUp classification");
+ ResType = GetByteVectorType(Ty);
+ break;
+ }
+
+ // If a high part was specified, merge it together with the low part. It is
+ // known to pass in the high eightbyte of the result. We do this by forming a
+ // first class struct aggregate with the high and low part: {low, high}
+ if (HighPart)
+ ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
+
+ return ABIArgInfo::getDirect(ResType);
+}
+
+void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
+
+ if (!getCXXABI().classifyReturnType(FI))
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+
+ // Keep track of the number of assigned registers.
+ unsigned freeIntRegs = 6, freeSSERegs = 8;
+
+ // If the return value is indirect, then the hidden argument is consuming one
+ // integer register.
+ if (FI.getReturnInfo().isIndirect())
+ --freeIntRegs;
+
+ bool isVariadic = FI.isVariadic();
+ unsigned numRequiredArgs = 0;
+ if (isVariadic)
+ numRequiredArgs = FI.getRequiredArgs().getNumRequiredArgs();
+
+ // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
+ // get assigned (in left-to-right order) for passing as follows...
+ for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
+ it != ie; ++it) {
+ bool isNamedArg = true;
+ if (isVariadic)
+ isNamedArg = (it - FI.arg_begin()) <
+ static_cast<signed>(numRequiredArgs);
+
+ unsigned neededInt, neededSSE;
+ it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
+ neededSSE, isNamedArg);
+
+ // AMD64-ABI 3.2.3p3: If there are no registers available for any
+ // eightbyte of an argument, the whole argument is passed on the
+ // stack. If registers have already been assigned for some
+ // eightbytes of such an argument, the assignments get reverted.
+ if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
+ freeIntRegs -= neededInt;
+ freeSSERegs -= neededSSE;
+ } else {
+ it->info = getIndirectResult(it->type, freeIntRegs);
+ }
+ }
+}
+
+static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
+ QualType Ty,
+ CodeGenFunction &CGF) {
+ llvm::Value *overflow_arg_area_p =
+ CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
+ llvm::Value *overflow_arg_area =
+ CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
+
+ // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
+ // byte boundary if alignment needed by type exceeds 8 byte boundary.
+ // It isn't stated explicitly in the standard, but in practice we use
+ // alignment greater than 16 where necessary.
+ uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
+ if (Align > 8) {
+ // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
+ llvm::Value *Offset =
+ llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
+ overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
+ llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
+ CGF.Int64Ty);
+ llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
+ overflow_arg_area =
+ CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
+ overflow_arg_area->getType(),
+ "overflow_arg_area.align");
+ }
+
+ // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
+ llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
+ llvm::Value *Res =
+ CGF.Builder.CreateBitCast(overflow_arg_area,
+ llvm::PointerType::getUnqual(LTy));
+
+ // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
+ // l->overflow_arg_area + sizeof(type).
+ // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
+ // an 8 byte boundary.
+
+ uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
+ llvm::Value *Offset =
+ llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7);
+ overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
+ "overflow_arg_area.next");
+ CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
+
+ // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
+ return Res;
+}
+
+llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const {
+ // Assume that va_list type is correct; should be pointer to LLVM type:
+ // struct {
+ // i32 gp_offset;
+ // i32 fp_offset;
+ // i8* overflow_arg_area;
+ // i8* reg_save_area;
+ // };
+ unsigned neededInt, neededSSE;
+
+ Ty = CGF.getContext().getCanonicalType(Ty);
+ ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
+ /*isNamedArg*/false);
+
+ // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
+ // in the registers. If not go to step 7.
+ if (!neededInt && !neededSSE)
+ return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
+
+ // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
+ // general purpose registers needed to pass type and num_fp to hold
+ // the number of floating point registers needed.
+
+ // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
+ // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
+ // l->fp_offset > 304 - num_fp * 16 go to step 7.
+ //
+ // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
+ // register save space).
+
+ llvm::Value *InRegs = nullptr;
+ llvm::Value *gp_offset_p = nullptr, *gp_offset = nullptr;
+ llvm::Value *fp_offset_p = nullptr, *fp_offset = nullptr;
+ if (neededInt) {
+ gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
+ gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
+ InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
+ InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
+ }
+
+ if (neededSSE) {
+ fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
+ fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
+ llvm::Value *FitsInFP =
+ llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
+ FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
+ InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
+ }
+
+ llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
+ llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
+ llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
+ CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
+
+ // Emit code to load the value if it was passed in registers.
+
+ CGF.EmitBlock(InRegBlock);
+
+ // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
+ // an offset of l->gp_offset and/or l->fp_offset. This may require
+ // copying to a temporary location in case the parameter is passed
+ // in different register classes or requires an alignment greater
+ // than 8 for general purpose registers and 16 for XMM registers.
+ //
+ // FIXME: This really results in shameful code when we end up needing to
+ // collect arguments from different places; often what should result in a
+ // simple assembling of a structure from scattered addresses has many more
+ // loads than necessary. Can we clean this up?
+ llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
+ llvm::Value *RegAddr =
+ CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
+ "reg_save_area");
+ if (neededInt && neededSSE) {
+ // FIXME: Cleanup.
+ assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
+ llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
+ llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
+ Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
+ assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
+ llvm::Type *TyLo = ST->getElementType(0);
+ llvm::Type *TyHi = ST->getElementType(1);
+ assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
+ "Unexpected ABI info for mixed regs");
+ llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
+ llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
+ llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
+ llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
+ llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
+ llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
+ llvm::Value *V =
+ CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
+ CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
+ V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
+ CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
+
+ RegAddr = CGF.Builder.CreateBitCast(Tmp,
+ llvm::PointerType::getUnqual(LTy));
+ } else if (neededInt) {
+ RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
+ RegAddr = CGF.Builder.CreateBitCast(RegAddr,
+ llvm::PointerType::getUnqual(LTy));
+
+ // Copy to a temporary if necessary to ensure the appropriate alignment.
+ std::pair<CharUnits, CharUnits> SizeAlign =
+ CGF.getContext().getTypeInfoInChars(Ty);
+ uint64_t TySize = SizeAlign.first.getQuantity();
+ unsigned TyAlign = SizeAlign.second.getQuantity();
+ if (TyAlign > 8) {
+ llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
+ CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false);
+ RegAddr = Tmp;
+ }
+ } else if (neededSSE == 1) {
+ RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
+ RegAddr = CGF.Builder.CreateBitCast(RegAddr,
+ llvm::PointerType::getUnqual(LTy));
+ } else {
+ assert(neededSSE == 2 && "Invalid number of needed registers!");
+ // SSE registers are spaced 16 bytes apart in the register save
+ // area, we need to collect the two eightbytes together.
+ llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
+ llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
+ llvm::Type *DoubleTy = CGF.DoubleTy;
+ llvm::Type *DblPtrTy =
+ llvm::PointerType::getUnqual(DoubleTy);
+ llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, NULL);
+ llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty);
+ Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
+ V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
+ DblPtrTy));
+ CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
+ V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
+ DblPtrTy));
+ CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
+ RegAddr = CGF.Builder.CreateBitCast(Tmp,
+ llvm::PointerType::getUnqual(LTy));
+ }
+
+ // AMD64-ABI 3.5.7p5: Step 5. Set:
+ // l->gp_offset = l->gp_offset + num_gp * 8
+ // l->fp_offset = l->fp_offset + num_fp * 16.
+ if (neededInt) {
+ llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
+ CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
+ gp_offset_p);
+ }
+ if (neededSSE) {
+ llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
+ CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
+ fp_offset_p);
+ }
+ CGF.EmitBranch(ContBlock);
+
+ // Emit code to load the value if it was passed in memory.
+
+ CGF.EmitBlock(InMemBlock);
+ llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
+
+ // Return the appropriate result.
+
+ CGF.EmitBlock(ContBlock);
+ llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
+ "vaarg.addr");
+ ResAddr->addIncoming(RegAddr, InRegBlock);
+ ResAddr->addIncoming(MemAddr, InMemBlock);
+ return ResAddr;
+}
+
+ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, bool IsReturnType) const {
+
+ if (Ty->isVoidType())
+ return ABIArgInfo::getIgnore();
+
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ uint64_t Size = getContext().getTypeSize(Ty);
+
+ const RecordType *RT = Ty->getAs<RecordType>();
+ if (RT) {
+ if (!IsReturnType) {
+ if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
+ return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
+ }
+
+ if (RT->getDecl()->hasFlexibleArrayMember())
+ return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
+
+ // FIXME: mingw-w64-gcc emits 128-bit struct as i128
+ if (Size == 128 && getTarget().getTriple().isWindowsGNUEnvironment())
+ return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
+ Size));
+ }
+
+ if (Ty->isMemberPointerType()) {
+ // If the member pointer is represented by an LLVM int or ptr, pass it
+ // directly.
+ llvm::Type *LLTy = CGT.ConvertType(Ty);
+ if (LLTy->isPointerTy() || LLTy->isIntegerTy())
+ return ABIArgInfo::getDirect();
+ }
+
+ if (RT || Ty->isMemberPointerType()) {
+ // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
+ // not 1, 2, 4, or 8 bytes, must be passed by reference."
+ if (Size > 64 || !llvm::isPowerOf2_64(Size))
+ return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
+
+ // Otherwise, coerce it to a small integer.
+ return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
+ }
+
+ if (Ty->isPromotableIntegerType())
+ return ABIArgInfo::getExtend();
+
+ return ABIArgInfo::getDirect();
+}
+
+void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
+ if (!getCXXABI().classifyReturnType(FI))
+ FI.getReturnInfo() = classify(FI.getReturnType(), true);
+
+ for (auto &I : FI.arguments())
+ I.info = classify(I.type, false);
+}
+
+llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const {
+ llvm::Type *BPP = CGF.Int8PtrPtrTy;
+
+ CGBuilderTy &Builder = CGF.Builder;
+ llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
+ "ap");
+ llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
+ llvm::Type *PTy =
+ llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
+ llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
+
+ uint64_t Offset =
+ llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
+ llvm::Value *NextAddr =
+ Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
+ "ap.next");
+ Builder.CreateStore(NextAddr, VAListAddrAsBPP);
+
+ return AddrTyped;
+}
+
+namespace {
+
+class NaClX86_64ABIInfo : public ABIInfo {
+ public:
+ NaClX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
+ : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, HasAVX) {}
+ void computeInfo(CGFunctionInfo &FI) const override;
+ llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const override;
+ private:
+ PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv.
+ X86_64ABIInfo NInfo; // Used for everything else.
+};
+
+class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
+ public:
+ NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
+ : TargetCodeGenInfo(new NaClX86_64ABIInfo(CGT, HasAVX)) {}
+};
+
+}
+
+void NaClX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
+ if (FI.getASTCallingConvention() == CC_PnaclCall)
+ PInfo.computeInfo(FI);
+ else
+ NInfo.computeInfo(FI);
+}
+
+llvm::Value *NaClX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const {
+ // Always use the native convention; calling pnacl-style varargs functions
+ // is unuspported.
+ return NInfo.EmitVAArg(VAListAddr, Ty, CGF);
+}
+
+
+// PowerPC-32
+
+namespace {
+class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
+public:
+ PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
+
+ int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
+ // This is recovered from gcc output.
+ return 1; // r1 is the dedicated stack pointer
+ }
+
+ bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const override;
+};
+
+}
+
+bool
+PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const {
+ // This is calculated from the LLVM and GCC tables and verified
+ // against gcc output. AFAIK all ABIs use the same encoding.
+
+ CodeGen::CGBuilderTy &Builder = CGF.Builder;
+
+ llvm::IntegerType *i8 = CGF.Int8Ty;
+ llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
+ llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
+ llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
+
+ // 0-31: r0-31, the 4-byte general-purpose registers
+ AssignToArrayRange(Builder, Address, Four8, 0, 31);
+
+ // 32-63: fp0-31, the 8-byte floating-point registers
+ AssignToArrayRange(Builder, Address, Eight8, 32, 63);
+
+ // 64-76 are various 4-byte special-purpose registers:
+ // 64: mq
+ // 65: lr
+ // 66: ctr
+ // 67: ap
+ // 68-75 cr0-7
+ // 76: xer
+ AssignToArrayRange(Builder, Address, Four8, 64, 76);
+
+ // 77-108: v0-31, the 16-byte vector registers
+ AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
+
+ // 109: vrsave
+ // 110: vscr
+ // 111: spe_acc
+ // 112: spefscr
+ // 113: sfp
+ AssignToArrayRange(Builder, Address, Four8, 109, 113);
+
+ return false;
+}
+
+// PowerPC-64
+
+namespace {
+/// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
+class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
+public:
+ enum ABIKind {
+ ELFv1 = 0,
+ ELFv2
+ };
+
+private:
+ static const unsigned GPRBits = 64;
+ ABIKind Kind;
+
+public:
+ PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind)
+ : DefaultABIInfo(CGT), Kind(Kind) {}
+
+ bool isPromotableTypeForABI(QualType Ty) const;
+ bool isAlignedParamType(QualType Ty) const;
+ bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
+ uint64_t &Members) const;
+
+ ABIArgInfo classifyReturnType(QualType RetTy) const;
+ ABIArgInfo classifyArgumentType(QualType Ty) const;
+
+ // TODO: We can add more logic to computeInfo to improve performance.
+ // Example: For aggregate arguments that fit in a register, we could
+ // use getDirectInReg (as is done below for structs containing a single
+ // floating-point value) to avoid pushing them to memory on function
+ // entry. This would require changing the logic in PPCISelLowering
+ // when lowering the parameters in the caller and args in the callee.
+ void computeInfo(CGFunctionInfo &FI) const override {
+ if (!getCXXABI().classifyReturnType(FI))
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+ for (auto &I : FI.arguments()) {
+ // We rely on the default argument classification for the most part.
+ // One exception: An aggregate containing a single floating-point
+ // or vector item must be passed in a register if one is available.
+ const Type *T = isSingleElementStruct(I.type, getContext());
+ if (T) {
+ const BuiltinType *BT = T->getAs<BuiltinType>();
+ if ((T->isVectorType() && getContext().getTypeSize(T) == 128) ||
+ (BT && BT->isFloatingPoint())) {
+ QualType QT(T, 0);
+ I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
+ continue;
+ }
+ }
+ I.info = classifyArgumentType(I.type);
+ }
+ }
+
+ llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const override;
+};
+
+class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
+ PPC64_SVR4_ABIInfo::ABIKind Kind)
+ : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind)) {}
+
+ int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
+ // This is recovered from gcc output.
+ return 1; // r1 is the dedicated stack pointer
+ }
+
+ bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const override;
+};
+
+class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
+public:
+ PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
+
+ int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
+ // This is recovered from gcc output.
+ return 1; // r1 is the dedicated stack pointer
+ }
+
+ bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const override;
+};
+
+}
+
+// Return true if the ABI requires Ty to be passed sign- or zero-
+// extended to 64 bits.
+bool
+PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ // Promotable integer types are required to be promoted by the ABI.
+ if (Ty->isPromotableIntegerType())
+ return true;
+
+ // In addition to the usual promotable integer types, we also need to
+ // extend all 32-bit types, since the ABI requires promotion to 64 bits.
+ if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
+ switch (BT->getKind()) {
+ case BuiltinType::Int:
+ case BuiltinType::UInt:
+ return true;
+ default:
+ break;
+ }
+
+ return false;
+}
+
+/// isAlignedParamType - Determine whether a type requires 16-byte
+/// alignment in the parameter area.
+bool
+PPC64_SVR4_ABIInfo::isAlignedParamType(QualType Ty) const {
+ // Complex types are passed just like their elements.
+ if (const ComplexType *CTy = Ty->getAs<ComplexType>())
+ Ty = CTy->getElementType();
+
+ // Only vector types of size 16 bytes need alignment (larger types are
+ // passed via reference, smaller types are not aligned).
+ if (Ty->isVectorType())
+ return getContext().getTypeSize(Ty) == 128;
+
+ // For single-element float/vector structs, we consider the whole type
+ // to have the same alignment requirements as its single element.
+ const Type *AlignAsType = nullptr;
+ const Type *EltType = isSingleElementStruct(Ty, getContext());
+ if (EltType) {
+ const BuiltinType *BT = EltType->getAs<BuiltinType>();
+ if ((EltType->isVectorType() &&
+ getContext().getTypeSize(EltType) == 128) ||
+ (BT && BT->isFloatingPoint()))
+ AlignAsType = EltType;
+ }
+
+ // Likewise for ELFv2 homogeneous aggregates.
+ const Type *Base = nullptr;
+ uint64_t Members = 0;
+ if (!AlignAsType && Kind == ELFv2 &&
+ isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
+ AlignAsType = Base;
+
+ // With special case aggregates, only vector base types need alignment.
+ if (AlignAsType)
+ return AlignAsType->isVectorType();
+
+ // Otherwise, we only need alignment for any aggregate type that
+ // has an alignment requirement of >= 16 bytes.
+ if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128)
+ return true;
+
+ return false;
+}
+
+/// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
+/// aggregate. Base is set to the base element type, and Members is set
+/// to the number of base elements.
+bool
+PPC64_SVR4_ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
+ uint64_t &Members) const {
+ if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
+ uint64_t NElements = AT->getSize().getZExtValue();
+ if (NElements == 0)
+ return false;
+ if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
+ return false;
+ Members *= NElements;
+ } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
+ const RecordDecl *RD = RT->getDecl();
+ if (RD->hasFlexibleArrayMember())
+ return false;
+
+ Members = 0;
+ for (const auto *FD : RD->fields()) {
+ // Ignore (non-zero arrays of) empty records.
+ QualType FT = FD->getType();
+ while (const ConstantArrayType *AT =
+ getContext().getAsConstantArrayType(FT)) {
+ if (AT->getSize().getZExtValue() == 0)
+ return false;
+ FT = AT->getElementType();
+ }
+ if (isEmptyRecord(getContext(), FT, true))
+ continue;
+
+ // For compatibility with GCC, ignore empty bitfields in C++ mode.
+ if (getContext().getLangOpts().CPlusPlus &&
+ FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
+ continue;
+
+ uint64_t FldMembers;
+ if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
+ return false;
+
+ Members = (RD->isUnion() ?
+ std::max(Members, FldMembers) : Members + FldMembers);
+ }
+
+ if (!Base)
+ return false;
+
+ // Ensure there is no padding.
+ if (getContext().getTypeSize(Base) * Members !=
+ getContext().getTypeSize(Ty))
+ return false;
+ } else {
+ Members = 1;
+ if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
+ Members = 2;
+ Ty = CT->getElementType();
+ }
+
+ // Homogeneous aggregates for ELFv2 must have base types of float,
+ // double, long double, or 128-bit vectors.
+ if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
+ if (BT->getKind() != BuiltinType::Float &&
+ BT->getKind() != BuiltinType::Double &&
+ BT->getKind() != BuiltinType::LongDouble)
+ return false;
+ } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
+ if (getContext().getTypeSize(VT) != 128)
+ return false;
+ } else {
+ return false;
+ }
+
+ // The base type must be the same for all members. Types that
+ // agree in both total size and mode (float vs. vector) are
+ // treated as being equivalent here.
+ const Type *TyPtr = Ty.getTypePtr();
+ if (!Base)
+ Base = TyPtr;
+
+ if (Base->isVectorType() != TyPtr->isVectorType() ||
+ getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
+ return false;
+ }
+
+ // Vector types require one register, floating point types require one
+ // or two registers depending on their size.
+ uint32_t NumRegs = Base->isVectorType() ? 1 :
+ (getContext().getTypeSize(Base) + 63) / 64;
+
+ // Homogeneous Aggregates may occupy at most 8 registers.
+ return (Members > 0 && Members * NumRegs <= 8);
+}
+
+ABIArgInfo
+PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
+ if (Ty->isAnyComplexType())
+ return ABIArgInfo::getDirect();
+
+ // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
+ // or via reference (larger than 16 bytes).
+ if (Ty->isVectorType()) {
+ uint64_t Size = getContext().getTypeSize(Ty);
+ if (Size > 128)
+ return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
+ else if (Size < 128) {
+ llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
+ return ABIArgInfo::getDirect(CoerceTy);
+ }
+ }
+
+ if (isAggregateTypeForABI(Ty)) {
+ if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
+ return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
+
+ uint64_t ABIAlign = isAlignedParamType(Ty)? 16 : 8;
+ uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
+
+ // ELFv2 homogeneous aggregates are passed as array types.
+ const Type *Base = nullptr;
+ uint64_t Members = 0;
+ if (Kind == ELFv2 &&
+ isHomogeneousAggregate(Ty, Base, Members)) {
+ llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
+ llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
+ return ABIArgInfo::getDirect(CoerceTy);
+ }
+
+ // If an aggregate may end up fully in registers, we do not
+ // use the ByVal method, but pass the aggregate as array.
+ // This is usually beneficial since we avoid forcing the
+ // back-end to store the argument to memory.
+ uint64_t Bits = getContext().getTypeSize(Ty);
+ if (Bits > 0 && Bits <= 8 * GPRBits) {
+ llvm::Type *CoerceTy;
+
+ // Types up to 8 bytes are passed as integer type (which will be
+ // properly aligned in the argument save area doubleword).
+ if (Bits <= GPRBits)
+ CoerceTy = llvm::IntegerType::get(getVMContext(),
+ llvm::RoundUpToAlignment(Bits, 8));
+ // Larger types are passed as arrays, with the base type selected
+ // according to the required alignment in the save area.
+ else {
+ uint64_t RegBits = ABIAlign * 8;
+ uint64_t NumRegs = llvm::RoundUpToAlignment(Bits, RegBits) / RegBits;
+ llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
+ CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
+ }
+
+ return ABIArgInfo::getDirect(CoerceTy);
+ }
+
+ // All other aggregates are passed ByVal.
+ return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true,
+ /*Realign=*/TyAlign > ABIAlign);
+ }
+
+ return (isPromotableTypeForABI(Ty) ?
+ ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
+}
+
+ABIArgInfo
+PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
+ if (RetTy->isVoidType())
+ return ABIArgInfo::getIgnore();
+
+ if (RetTy->isAnyComplexType())
+ return ABIArgInfo::getDirect();
+
+ // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
+ // or via reference (larger than 16 bytes).
+ if (RetTy->isVectorType()) {
+ uint64_t Size = getContext().getTypeSize(RetTy);
+ if (Size > 128)
+ return ABIArgInfo::getIndirect(0);
+ else if (Size < 128) {
+ llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
+ return ABIArgInfo::getDirect(CoerceTy);
+ }
+ }
+
+ if (isAggregateTypeForABI(RetTy)) {
+ // ELFv2 homogeneous aggregates are returned as array types.
+ const Type *Base = nullptr;
+ uint64_t Members = 0;
+ if (Kind == ELFv2 &&
+ isHomogeneousAggregate(RetTy, Base, Members)) {
+ llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
+ llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
+ return ABIArgInfo::getDirect(CoerceTy);
+ }
+
+ // ELFv2 small aggregates are returned in up to two registers.
+ uint64_t Bits = getContext().getTypeSize(RetTy);
+ if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
+ if (Bits == 0)
+ return ABIArgInfo::getIgnore();
+
+ llvm::Type *CoerceTy;
+ if (Bits > GPRBits) {
+ CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
+ CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, NULL);
+ } else
+ CoerceTy = llvm::IntegerType::get(getVMContext(),
+ llvm::RoundUpToAlignment(Bits, 8));
+ return ABIArgInfo::getDirect(CoerceTy);
+ }
+
+ // All other aggregates are returned indirectly.
+ return ABIArgInfo::getIndirect(0);
+ }
+
+ return (isPromotableTypeForABI(RetTy) ?
+ ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
+}
+
+// Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
+llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
+ QualType Ty,
+ CodeGenFunction &CGF) const {
+ llvm::Type *BP = CGF.Int8PtrTy;
+ llvm::Type *BPP = CGF.Int8PtrPtrTy;
+
+ CGBuilderTy &Builder = CGF.Builder;
+ llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
+ llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
+
+ // Handle types that require 16-byte alignment in the parameter save area.
+ if (isAlignedParamType(Ty)) {
+ llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
+ AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(15));
+ AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt64(-16));
+ Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
+ }
+
+ // Update the va_list pointer. The pointer should be bumped by the
+ // size of the object. We can trust getTypeSize() except for a complex
+ // type whose base type is smaller than a doubleword. For these, the
+ // size of the object is 16 bytes; see below for further explanation.
+ unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8;
+ QualType BaseTy;
+ unsigned CplxBaseSize = 0;
+
+ if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
+ BaseTy = CTy->getElementType();
+ CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8;
+ if (CplxBaseSize < 8)
+ SizeInBytes = 16;
+ }
+
+ unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8);
+ llvm::Value *NextAddr =
+ Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset),
+ "ap.next");
+ Builder.CreateStore(NextAddr, VAListAddrAsBPP);
+
+ // If we have a complex type and the base type is smaller than 8 bytes,
+ // the ABI calls for the real and imaginary parts to be right-adjusted
+ // in separate doublewords. However, Clang expects us to produce a
+ // pointer to a structure with the two parts packed tightly. So generate
+ // loads of the real and imaginary parts relative to the va_list pointer,
+ // and store them to a temporary structure.
+ if (CplxBaseSize && CplxBaseSize < 8) {
+ llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
+ llvm::Value *ImagAddr = RealAddr;
+ if (CGF.CGM.getDataLayout().isBigEndian()) {
+ RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize));
+ ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize));
+ } else {
+ ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(8));
+ }
+ llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy));
+ RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy);
+ ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy);
+ llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal");
+ llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag");
+ llvm::Value *Ptr = CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty),
+ "vacplx");
+ llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, ".real");
+ llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, ".imag");
+ Builder.CreateStore(Real, RealPtr, false);
+ Builder.CreateStore(Imag, ImagPtr, false);
+ return Ptr;
+ }
+
+ // If the argument is smaller than 8 bytes, it is right-adjusted in
+ // its doubleword slot. Adjust the pointer to pick it up from the
+ // correct offset.
+ if (SizeInBytes < 8 && CGF.CGM.getDataLayout().isBigEndian()) {
+ llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
+ AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes));
+ Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
+ }
+
+ llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
+ return Builder.CreateBitCast(Addr, PTy);
+}
+
+static bool
+PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) {
+ // This is calculated from the LLVM and GCC tables and verified
+ // against gcc output. AFAIK all ABIs use the same encoding.
+
+ CodeGen::CGBuilderTy &Builder = CGF.Builder;
+
+ llvm::IntegerType *i8 = CGF.Int8Ty;
+ llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
+ llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
+ llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
+
+ // 0-31: r0-31, the 8-byte general-purpose registers
+ AssignToArrayRange(Builder, Address, Eight8, 0, 31);
+
+ // 32-63: fp0-31, the 8-byte floating-point registers
+ AssignToArrayRange(Builder, Address, Eight8, 32, 63);
+
+ // 64-76 are various 4-byte special-purpose registers:
+ // 64: mq
+ // 65: lr
+ // 66: ctr
+ // 67: ap
+ // 68-75 cr0-7
+ // 76: xer
+ AssignToArrayRange(Builder, Address, Four8, 64, 76);
+
+ // 77-108: v0-31, the 16-byte vector registers
+ AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
+
+ // 109: vrsave
+ // 110: vscr
+ // 111: spe_acc
+ // 112: spefscr
+ // 113: sfp
+ AssignToArrayRange(Builder, Address, Four8, 109, 113);
+
+ return false;
+}
+
+bool
+PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
+ CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const {
+
+ return PPC64_initDwarfEHRegSizeTable(CGF, Address);
+}
+
+bool
+PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const {
+
+ return PPC64_initDwarfEHRegSizeTable(CGF, Address);
+}
+
+//===----------------------------------------------------------------------===//
+// AArch64 ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class AArch64ABIInfo : public ABIInfo {
+public:
+ enum ABIKind {
+ AAPCS = 0,
+ DarwinPCS
+ };
+
+private:
+ ABIKind Kind;
+
+public:
+ AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {}
+
+private:
+ ABIKind getABIKind() const { return Kind; }
+ bool isDarwinPCS() const { return Kind == DarwinPCS; }
+
+ ABIArgInfo classifyReturnType(QualType RetTy) const;
+ ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &AllocatedVFP,
+ bool &IsHA, unsigned &AllocatedGPR,
+ bool &IsSmallAggr, bool IsNamedArg) const;
+ bool isIllegalVectorType(QualType Ty) const;
+
+ virtual void computeInfo(CGFunctionInfo &FI) const {
+ // To correctly handle Homogeneous Aggregate, we need to keep track of the
+ // number of SIMD and Floating-point registers allocated so far.
+ // If the argument is an HFA or an HVA and there are sufficient unallocated
+ // SIMD and Floating-point registers, then the argument is allocated to SIMD
+ // and Floating-point Registers (with one register per member of the HFA or
+ // HVA). Otherwise, the NSRN is set to 8.
+ unsigned AllocatedVFP = 0;
+
+ // To correctly handle small aggregates, we need to keep track of the number
+ // of GPRs allocated so far. If the small aggregate can't all fit into
+ // registers, it will be on stack. We don't allow the aggregate to be
+ // partially in registers.
+ unsigned AllocatedGPR = 0;
+
+ // Find the number of named arguments. Variadic arguments get special
+ // treatment with the Darwin ABI.
+ unsigned NumRequiredArgs = (FI.isVariadic() ?
+ FI.getRequiredArgs().getNumRequiredArgs() :
+ FI.arg_size());
+
+ if (!getCXXABI().classifyReturnType(FI))
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+ for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
+ it != ie; ++it) {
+ unsigned PreAllocation = AllocatedVFP, PreGPR = AllocatedGPR;
+ bool IsHA = false, IsSmallAggr = false;
+ const unsigned NumVFPs = 8;
+ const unsigned NumGPRs = 8;
+ bool IsNamedArg = ((it - FI.arg_begin()) <
+ static_cast<signed>(NumRequiredArgs));
+ it->info = classifyArgumentType(it->type, AllocatedVFP, IsHA,
+ AllocatedGPR, IsSmallAggr, IsNamedArg);
+
+ // Under AAPCS the 64-bit stack slot alignment means we can't pass HAs
+ // as sequences of floats since they'll get "holes" inserted as
+ // padding by the back end.
+ if (IsHA && AllocatedVFP > NumVFPs && !isDarwinPCS() &&
+ getContext().getTypeAlign(it->type) < 64) {
+ uint32_t NumStackSlots = getContext().getTypeSize(it->type);
+ NumStackSlots = llvm::RoundUpToAlignment(NumStackSlots, 64) / 64;
+
+ llvm::Type *CoerceTy = llvm::ArrayType::get(
+ llvm::Type::getDoubleTy(getVMContext()), NumStackSlots);
+ it->info = ABIArgInfo::getDirect(CoerceTy);
+ }
+
+ // If we do not have enough VFP registers for the HA, any VFP registers
+ // that are unallocated are marked as unavailable. To achieve this, we add
+ // padding of (NumVFPs - PreAllocation) floats.
+ if (IsHA && AllocatedVFP > NumVFPs && PreAllocation < NumVFPs) {
+ llvm::Type *PaddingTy = llvm::ArrayType::get(
+ llvm::Type::getFloatTy(getVMContext()), NumVFPs - PreAllocation);
+ it->info.setPaddingType(PaddingTy);
+ }
+
+ // If we do not have enough GPRs for the small aggregate, any GPR regs
+ // that are unallocated are marked as unavailable.
+ if (IsSmallAggr && AllocatedGPR > NumGPRs && PreGPR < NumGPRs) {
+ llvm::Type *PaddingTy = llvm::ArrayType::get(
+ llvm::Type::getInt32Ty(getVMContext()), NumGPRs - PreGPR);
+ it->info =
+ ABIArgInfo::getDirect(it->info.getCoerceToType(), 0, PaddingTy);
+ }
+ }
+ }
+
+ llvm::Value *EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const;
+
+ llvm::Value *EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const;
+
+ virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const {
+ return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
+ : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
+ }
+};
+
+class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
+ : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
+
+ StringRef getARCRetainAutoreleasedReturnValueMarker() const {
+ return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue";
+ }
+
+ int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { return 31; }
+
+ virtual bool doesReturnSlotInterfereWithArgs() const { return false; }
+};
+}
+
+static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
+ ASTContext &Context,
+ uint64_t *HAMembers = nullptr);
+
+ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty,
+ unsigned &AllocatedVFP,
+ bool &IsHA,
+ unsigned &AllocatedGPR,
+ bool &IsSmallAggr,
+ bool IsNamedArg) const {
+ // Handle illegal vector types here.
+ if (isIllegalVectorType(Ty)) {
+ uint64_t Size = getContext().getTypeSize(Ty);
+ if (Size <= 32) {
+ llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
+ AllocatedGPR++;
+ return ABIArgInfo::getDirect(ResType);
+ }
+ if (Size == 64) {
+ llvm::Type *ResType =
+ llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
+ AllocatedVFP++;
+ return ABIArgInfo::getDirect(ResType);
+ }
+ if (Size == 128) {
+ llvm::Type *ResType =
+ llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
+ AllocatedVFP++;
+ return ABIArgInfo::getDirect(ResType);
+ }
+ AllocatedGPR++;
+ return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
+ }
+ if (Ty->isVectorType())
+ // Size of a legal vector should be either 64 or 128.
+ AllocatedVFP++;
+ if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
+ if (BT->getKind() == BuiltinType::Half ||
+ BT->getKind() == BuiltinType::Float ||
+ BT->getKind() == BuiltinType::Double ||
+ BT->getKind() == BuiltinType::LongDouble)
+ AllocatedVFP++;
+ }
+
+ if (!isAggregateTypeForABI(Ty)) {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ if (!Ty->isFloatingType() && !Ty->isVectorType()) {
+ unsigned Alignment = getContext().getTypeAlign(Ty);
+ if (!isDarwinPCS() && Alignment > 64)
+ AllocatedGPR = llvm::RoundUpToAlignment(AllocatedGPR, Alignment / 64);
+
+ int RegsNeeded = getContext().getTypeSize(Ty) > 64 ? 2 : 1;
+ AllocatedGPR += RegsNeeded;
+ }
+ return (Ty->isPromotableIntegerType() && isDarwinPCS()
+ ? ABIArgInfo::getExtend()
+ : ABIArgInfo::getDirect());
+ }
+
+ // Structures with either a non-trivial destructor or a non-trivial
+ // copy constructor are always indirect.
+ if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
+ AllocatedGPR++;
+ return ABIArgInfo::getIndirect(0, /*ByVal=*/RAA ==
+ CGCXXABI::RAA_DirectInMemory);
+ }
+
+ // Empty records are always ignored on Darwin, but actually passed in C++ mode
+ // elsewhere for GNU compatibility.
+ if (isEmptyRecord(getContext(), Ty, true)) {
+ if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
+ return ABIArgInfo::getIgnore();
+
+ ++AllocatedGPR;
+ return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
+ }
+
+ // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
+ const Type *Base = nullptr;
+ uint64_t Members = 0;
+ if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) {
+ IsHA = true;
+ if (!IsNamedArg && isDarwinPCS()) {
+ // With the Darwin ABI, variadic arguments are always passed on the stack
+ // and should not be expanded. Treat variadic HFAs as arrays of doubles.
+ uint64_t Size = getContext().getTypeSize(Ty);
+ llvm::Type *BaseTy = llvm::Type::getDoubleTy(getVMContext());
+ return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
+ }
+ AllocatedVFP += Members;
+ return ABIArgInfo::getExpand();
+ }
+
+ // Aggregates <= 16 bytes are passed directly in registers or on the stack.
+ uint64_t Size = getContext().getTypeSize(Ty);
+ if (Size <= 128) {
+ unsigned Alignment = getContext().getTypeAlign(Ty);
+ if (!isDarwinPCS() && Alignment > 64)
+ AllocatedGPR = llvm::RoundUpToAlignment(AllocatedGPR, Alignment / 64);
+
+ Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
+ AllocatedGPR += Size / 64;
+ IsSmallAggr = true;
+ // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
+ // For aggregates with 16-byte alignment, we use i128.
+ if (Alignment < 128 && Size == 128) {
+ llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
+ return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
+ }
+ return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
+ }
+
+ AllocatedGPR++;
+ return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
+}
+
+ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
+ if (RetTy->isVoidType())
+ return ABIArgInfo::getIgnore();
+
+ // Large vector types should be returned via memory.
+ if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
+ return ABIArgInfo::getIndirect(0);
+
+ if (!isAggregateTypeForABI(RetTy)) {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
+ RetTy = EnumTy->getDecl()->getIntegerType();
+
+ return (RetTy->isPromotableIntegerType() && isDarwinPCS()
+ ? ABIArgInfo::getExtend()
+ : ABIArgInfo::getDirect());
+ }
+
+ if (isEmptyRecord(getContext(), RetTy, true))
+ return ABIArgInfo::getIgnore();
+
+ const Type *Base = nullptr;
+ if (isHomogeneousAggregate(RetTy, Base, getContext()))
+ // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
+ return ABIArgInfo::getDirect();
+
+ // Aggregates <= 16 bytes are returned directly in registers or on the stack.
+ uint64_t Size = getContext().getTypeSize(RetTy);
+ if (Size <= 128) {
+ Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
+ return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
+ }
+
+ return ABIArgInfo::getIndirect(0);
+}
+
+/// isIllegalVectorType - check whether the vector type is legal for AArch64.
+bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
+ if (const VectorType *VT = Ty->getAs<VectorType>()) {
+ // Check whether VT is legal.
+ unsigned NumElements = VT->getNumElements();
+ uint64_t Size = getContext().getTypeSize(VT);
+ // NumElements should be power of 2 between 1 and 16.
+ if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16)
+ return true;
+ return Size != 64 && (Size != 128 || NumElements == 1);
+ }
+ return false;
+}
+
+static llvm::Value *EmitAArch64VAArg(llvm::Value *VAListAddr, QualType Ty,
+ int AllocatedGPR, int AllocatedVFP,
+ bool IsIndirect, CodeGenFunction &CGF) {
+ // The AArch64 va_list type and handling is specified in the Procedure Call
+ // Standard, section B.4:
+ //
+ // struct {
+ // void *__stack;
+ // void *__gr_top;
+ // void *__vr_top;
+ // int __gr_offs;
+ // int __vr_offs;
+ // };
+
+ llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
+ llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
+ llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
+ llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
+ auto &Ctx = CGF.getContext();
+
+ llvm::Value *reg_offs_p = nullptr, *reg_offs = nullptr;
+ int reg_top_index;
+ int RegSize;
+ if (AllocatedGPR) {
+ assert(!AllocatedVFP && "Arguments never split between int & VFP regs");
+ // 3 is the field number of __gr_offs
+ reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
+ reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
+ reg_top_index = 1; // field number for __gr_top
+ RegSize = 8 * AllocatedGPR;
+ } else {
+ assert(!AllocatedGPR && "Argument must go in VFP or int regs");
+ // 4 is the field number of __vr_offs.
+ reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
+ reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
+ reg_top_index = 2; // field number for __vr_top
+ RegSize = 16 * AllocatedVFP;
+ }
+
+ //=======================================
+ // Find out where argument was passed
+ //=======================================
+
+ // If reg_offs >= 0 we're already using the stack for this type of
+ // argument. We don't want to keep updating reg_offs (in case it overflows,
+ // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
+ // whatever they get).
+ llvm::Value *UsingStack = nullptr;
+ UsingStack = CGF.Builder.CreateICmpSGE(
+ reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
+
+ CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
+
+ // Otherwise, at least some kind of argument could go in these registers, the
+ // question is whether this particular type is too big.
+ CGF.EmitBlock(MaybeRegBlock);
+
+ // Integer arguments may need to correct register alignment (for example a
+ // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
+ // align __gr_offs to calculate the potential address.
+ if (AllocatedGPR && !IsIndirect && Ctx.getTypeAlign(Ty) > 64) {
+ int Align = Ctx.getTypeAlign(Ty) / 8;
+
+ reg_offs = CGF.Builder.CreateAdd(
+ reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
+ "align_regoffs");
+ reg_offs = CGF.Builder.CreateAnd(
+ reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
+ "aligned_regoffs");
+ }
+
+ // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
+ llvm::Value *NewOffset = nullptr;
+ NewOffset = CGF.Builder.CreateAdd(
+ reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
+ CGF.Builder.CreateStore(NewOffset, reg_offs_p);
+
+ // Now we're in a position to decide whether this argument really was in
+ // registers or not.
+ llvm::Value *InRegs = nullptr;
+ InRegs = CGF.Builder.CreateICmpSLE(
+ NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
+
+ CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
+
+ //=======================================
+ // Argument was in registers
+ //=======================================
+
+ // Now we emit the code for if the argument was originally passed in
+ // registers. First start the appropriate block:
+ CGF.EmitBlock(InRegBlock);
+
+ llvm::Value *reg_top_p = nullptr, *reg_top = nullptr;
+ reg_top_p =
+ CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
+ reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
+ llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs);
+ llvm::Value *RegAddr = nullptr;
+ llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
+
+ if (IsIndirect) {
+ // If it's been passed indirectly (actually a struct), whatever we find from
+ // stored registers or on the stack will actually be a struct **.
+ MemTy = llvm::PointerType::getUnqual(MemTy);
+ }
+
+ const Type *Base = nullptr;
+ uint64_t NumMembers;
+ bool IsHFA = isHomogeneousAggregate(Ty, Base, Ctx, &NumMembers);
+ if (IsHFA && NumMembers > 1) {
+ // Homogeneous aggregates passed in registers will have their elements split
+ // and stored 16-bytes apart regardless of size (they're notionally in qN,
+ // qN+1, ...). We reload and store into a temporary local variable
+ // contiguously.
+ assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
+ llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
+ llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
+ llvm::Value *Tmp = CGF.CreateTempAlloca(HFATy);
+ int Offset = 0;
+
+ if (CGF.CGM.getDataLayout().isBigEndian() && Ctx.getTypeSize(Base) < 128)
+ Offset = 16 - Ctx.getTypeSize(Base) / 8;
+ for (unsigned i = 0; i < NumMembers; ++i) {
+ llvm::Value *BaseOffset =
+ llvm::ConstantInt::get(CGF.Int32Ty, 16 * i + Offset);
+ llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset);
+ LoadAddr = CGF.Builder.CreateBitCast(
+ LoadAddr, llvm::PointerType::getUnqual(BaseTy));
+ llvm::Value *StoreAddr = CGF.Builder.CreateStructGEP(Tmp, i);
+
+ llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
+ CGF.Builder.CreateStore(Elem, StoreAddr);
+ }
+
+ RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy);
+ } else {
+ // Otherwise the object is contiguous in memory
+ unsigned BeAlign = reg_top_index == 2 ? 16 : 8;
+ if (CGF.CGM.getDataLayout().isBigEndian() &&
+ (IsHFA || !isAggregateTypeForABI(Ty)) &&
+ Ctx.getTypeSize(Ty) < (BeAlign * 8)) {
+ int Offset = BeAlign - Ctx.getTypeSize(Ty) / 8;
+ BaseAddr = CGF.Builder.CreatePtrToInt(BaseAddr, CGF.Int64Ty);
+
+ BaseAddr = CGF.Builder.CreateAdd(
+ BaseAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be");
+
+ BaseAddr = CGF.Builder.CreateIntToPtr(BaseAddr, CGF.Int8PtrTy);
+ }
+
+ RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy);
+ }
+
+ CGF.EmitBranch(ContBlock);
+
+ //=======================================
+ // Argument was on the stack
+ //=======================================
+ CGF.EmitBlock(OnStackBlock);
+
+ llvm::Value *stack_p = nullptr, *OnStackAddr = nullptr;
+ stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
+ OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack");
+
+ // Again, stack arguments may need realigmnent. In this case both integer and
+ // floating-point ones might be affected.
+ if (!IsIndirect && Ctx.getTypeAlign(Ty) > 64) {
+ int Align = Ctx.getTypeAlign(Ty) / 8;
+
+ OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
+
+ OnStackAddr = CGF.Builder.CreateAdd(
+ OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
+ "align_stack");
+ OnStackAddr = CGF.Builder.CreateAnd(
+ OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
+ "align_stack");
+
+ OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
+ }
+
+ uint64_t StackSize;
+ if (IsIndirect)
+ StackSize = 8;
+ else
+ StackSize = Ctx.getTypeSize(Ty) / 8;
+
+ // All stack slots are 8 bytes
+ StackSize = llvm::RoundUpToAlignment(StackSize, 8);
+
+ llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize);
+ llvm::Value *NewStack =
+ CGF.Builder.CreateGEP(OnStackAddr, StackSizeC, "new_stack");
+
+ // Write the new value of __stack for the next call to va_arg
+ CGF.Builder.CreateStore(NewStack, stack_p);
+
+ if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
+ Ctx.getTypeSize(Ty) < 64) {
+ int Offset = 8 - Ctx.getTypeSize(Ty) / 8;
+ OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
+
+ OnStackAddr = CGF.Builder.CreateAdd(
+ OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be");
+
+ OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
+ }
+
+ OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy);
+
+ CGF.EmitBranch(ContBlock);
+
+ //=======================================
+ // Tidy up
+ //=======================================
+ CGF.EmitBlock(ContBlock);
+
+ llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr");
+ ResAddr->addIncoming(RegAddr, InRegBlock);
+ ResAddr->addIncoming(OnStackAddr, OnStackBlock);
+
+ if (IsIndirect)
+ return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr");
+
+ return ResAddr;
+}
+
+llvm::Value *AArch64ABIInfo::EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const {
+
+ unsigned AllocatedGPR = 0, AllocatedVFP = 0;
+ bool IsHA = false, IsSmallAggr = false;
+ ABIArgInfo AI = classifyArgumentType(Ty, AllocatedVFP, IsHA, AllocatedGPR,
+ IsSmallAggr, false /*IsNamedArg*/);
+
+ return EmitAArch64VAArg(VAListAddr, Ty, AllocatedGPR, AllocatedVFP,
+ AI.isIndirect(), CGF);
+}
+
+llvm::Value *AArch64ABIInfo::EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const {
+ // We do not support va_arg for aggregates or illegal vector types.
+ // Lower VAArg here for these cases and use the LLVM va_arg instruction for
+ // other cases.
+ if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
+ return nullptr;
+
+ uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
+ uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
+
+ const Type *Base = nullptr;
+ bool isHA = isHomogeneousAggregate(Ty, Base, getContext());
+
+ bool isIndirect = false;
+ // Arguments bigger than 16 bytes which aren't homogeneous aggregates should
+ // be passed indirectly.
+ if (Size > 16 && !isHA) {
+ isIndirect = true;
+ Size = 8;
+ Align = 8;
+ }
+
+ llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
+ llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
+
+ CGBuilderTy &Builder = CGF.Builder;
+ llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
+ llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
+
+ if (isEmptyRecord(getContext(), Ty, true)) {
+ // These are ignored for parameter passing purposes.
+ llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
+ return Builder.CreateBitCast(Addr, PTy);
+ }
+
+ const uint64_t MinABIAlign = 8;
+ if (Align > MinABIAlign) {
+ llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
+ Addr = Builder.CreateGEP(Addr, Offset);
+ llvm::Value *AsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
+ llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~(Align - 1));
+ llvm::Value *Aligned = Builder.CreateAnd(AsInt, Mask);
+ Addr = Builder.CreateIntToPtr(Aligned, BP, "ap.align");
+ }
+
+ uint64_t Offset = llvm::RoundUpToAlignment(Size, MinABIAlign);
+ llvm::Value *NextAddr = Builder.CreateGEP(
+ Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
+ Builder.CreateStore(NextAddr, VAListAddrAsBPP);
+
+ if (isIndirect)
+ Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
+ llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
+ llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
+
+ return AddrTyped;
+}
+
+//===----------------------------------------------------------------------===//
+// ARM ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class ARMABIInfo : public ABIInfo {
+public:
+ enum ABIKind {
+ APCS = 0,
+ AAPCS = 1,
+ AAPCS_VFP
+ };
+
+private:
+ ABIKind Kind;
+ mutable int VFPRegs[16];
+ const unsigned NumVFPs;
+ const unsigned NumGPRs;
+ mutable unsigned AllocatedGPRs;
+ mutable unsigned AllocatedVFPs;
+
+public:
+ ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind),
+ NumVFPs(16), NumGPRs(4) {
+ setRuntimeCC();
+ resetAllocatedRegs();
+ }
+
+ bool isEABI() const {
+ switch (getTarget().getTriple().getEnvironment()) {
+ case llvm::Triple::Android:
+ case llvm::Triple::EABI:
+ case llvm::Triple::EABIHF:
+ case llvm::Triple::GNUEABI:
+ case llvm::Triple::GNUEABIHF:
+ return true;
+ default:
+ return false;
+ }
+ }
+
+ bool isEABIHF() const {
+ switch (getTarget().getTriple().getEnvironment()) {
+ case llvm::Triple::EABIHF:
+ case llvm::Triple::GNUEABIHF:
+ return true;
+ default:
+ return false;
+ }
+ }
+
+ ABIKind getABIKind() const { return Kind; }
+
+private:
+ ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
+ ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
+ bool &IsCPRC) const;
+ bool isIllegalVectorType(QualType Ty) const;
+
+ void computeInfo(CGFunctionInfo &FI) const override;
+
+ llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const override;
+
+ llvm::CallingConv::ID getLLVMDefaultCC() const;
+ llvm::CallingConv::ID getABIDefaultCC() const;
+ void setRuntimeCC();
+
+ void markAllocatedGPRs(unsigned Alignment, unsigned NumRequired) const;
+ void markAllocatedVFPs(unsigned Alignment, unsigned NumRequired) const;
+ void resetAllocatedRegs(void) const;
+};
+
+class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
+ :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
+
+ const ARMABIInfo &getABIInfo() const {
+ return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
+ }
+
+ int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
+ return 13;
+ }
+
+ StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
+ return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
+ }
+
+ bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const override {
+ llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
+
+ // 0-15 are the 16 integer registers.
+ AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
+ return false;
+ }
+
+ unsigned getSizeOfUnwindException() const override {
+ if (getABIInfo().isEABI()) return 88;
+ return TargetCodeGenInfo::getSizeOfUnwindException();
+ }
+
+ void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &CGM) const override {
+ const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
+ if (!FD)
+ return;
+
+ const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
+ if (!Attr)
+ return;
+
+ const char *Kind;
+ switch (Attr->getInterrupt()) {
+ case ARMInterruptAttr::Generic: Kind = ""; break;
+ case ARMInterruptAttr::IRQ: Kind = "IRQ"; break;
+ case ARMInterruptAttr::FIQ: Kind = "FIQ"; break;
+ case ARMInterruptAttr::SWI: Kind = "SWI"; break;
+ case ARMInterruptAttr::ABORT: Kind = "ABORT"; break;
+ case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break;
+ }
+
+ llvm::Function *Fn = cast<llvm::Function>(GV);
+
+ Fn->addFnAttr("interrupt", Kind);
+
+ if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS)
+ return;
+
+ // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
+ // however this is not necessarily true on taking any interrupt. Instruct
+ // the backend to perform a realignment as part of the function prologue.
+ llvm::AttrBuilder B;
+ B.addStackAlignmentAttr(8);
+ Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
+ llvm::AttributeSet::get(CGM.getLLVMContext(),
+ llvm::AttributeSet::FunctionIndex,
+ B));
+ }
+
+};
+
+}
+
+void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
+ // To correctly handle Homogeneous Aggregate, we need to keep track of the
+ // VFP registers allocated so far.
+ // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
+ // VFP registers of the appropriate type unallocated then the argument is
+ // allocated to the lowest-numbered sequence of such registers.
+ // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
+ // unallocated are marked as unavailable.
+ resetAllocatedRegs();
+
+ if (getCXXABI().classifyReturnType(FI)) {
+ if (FI.getReturnInfo().isIndirect())
+ markAllocatedGPRs(1, 1);
+ } else {
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic());
+ }
+ for (auto &I : FI.arguments()) {
+ unsigned PreAllocationVFPs = AllocatedVFPs;
+ unsigned PreAllocationGPRs = AllocatedGPRs;
+ bool IsCPRC = false;
+ // 6.1.2.3 There is one VFP co-processor register class using registers
+ // s0-s15 (d0-d7) for passing arguments.
+ I.info = classifyArgumentType(I.type, FI.isVariadic(), IsCPRC);
+
+ // If we have allocated some arguments onto the stack (due to running
+ // out of VFP registers), we cannot split an argument between GPRs and
+ // the stack. If this situation occurs, we add padding to prevent the
+ // GPRs from being used. In this situation, the current argument could
+ // only be allocated by rule C.8, so rule C.6 would mark these GPRs as
+ // unusable anyway.
+ // We do not have to do this if the argument is being passed ByVal, as the
+ // backend can handle that situation correctly.
+ const bool StackUsed = PreAllocationGPRs > NumGPRs || PreAllocationVFPs > NumVFPs;
+ const bool IsByVal = I.info.isIndirect() && I.info.getIndirectByVal();
+ if (!IsCPRC && PreAllocationGPRs < NumGPRs && AllocatedGPRs > NumGPRs &&
+ StackUsed && !IsByVal) {
+ llvm::Type *PaddingTy = llvm::ArrayType::get(
+ llvm::Type::getInt32Ty(getVMContext()), NumGPRs - PreAllocationGPRs);
+ if (I.info.canHaveCoerceToType()) {
+ I.info = ABIArgInfo::getDirect(I.info.getCoerceToType() /* type */, 0 /* offset */,
+ PaddingTy);
+ } else {
+ I.info = ABIArgInfo::getDirect(nullptr /* type */, 0 /* offset */,
+ PaddingTy);
+ }
+ }
+ }
+
+ // Always honor user-specified calling convention.
+ if (FI.getCallingConvention() != llvm::CallingConv::C)
+ return;
+
+ llvm::CallingConv::ID cc = getRuntimeCC();
+ if (cc != llvm::CallingConv::C)
+ FI.setEffectiveCallingConvention(cc);
+}
+
+/// Return the default calling convention that LLVM will use.
+llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
+ // The default calling convention that LLVM will infer.
+ if (isEABIHF())
+ return llvm::CallingConv::ARM_AAPCS_VFP;
+ else if (isEABI())
+ return llvm::CallingConv::ARM_AAPCS;
+ else
+ return llvm::CallingConv::ARM_APCS;
+}
+
+/// Return the calling convention that our ABI would like us to use
+/// as the C calling convention.
+llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
+ switch (getABIKind()) {
+ case APCS: return llvm::CallingConv::ARM_APCS;
+ case AAPCS: return llvm::CallingConv::ARM_AAPCS;
+ case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
+ }
+ llvm_unreachable("bad ABI kind");
+}
+
+void ARMABIInfo::setRuntimeCC() {
+ assert(getRuntimeCC() == llvm::CallingConv::C);
+
+ // Don't muddy up the IR with a ton of explicit annotations if
+ // they'd just match what LLVM will infer from the triple.
+ llvm::CallingConv::ID abiCC = getABIDefaultCC();
+ if (abiCC != getLLVMDefaultCC())
+ RuntimeCC = abiCC;
+}
+
+/// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous
+/// aggregate. If HAMembers is non-null, the number of base elements
+/// contained in the type is returned through it; this is used for the
+/// recursive calls that check aggregate component types.
+static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
+ ASTContext &Context, uint64_t *HAMembers) {
+ uint64_t Members = 0;
+ if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
+ if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members))
+ return false;
+ Members *= AT->getSize().getZExtValue();
+ } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
+ const RecordDecl *RD = RT->getDecl();
+ if (RD->hasFlexibleArrayMember())
+ return false;
+
+ Members = 0;
+ for (const auto *FD : RD->fields()) {
+ uint64_t FldMembers;
+ if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers))
+ return false;
+
+ Members = (RD->isUnion() ?
+ std::max(Members, FldMembers) : Members + FldMembers);
+ }
+ } else {
+ Members = 1;
+ if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
+ Members = 2;
+ Ty = CT->getElementType();
+ }
+
+ // Homogeneous aggregates for AAPCS-VFP must have base types of float,
+ // double, or 64-bit or 128-bit vectors.
+ if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
+ if (BT->getKind() != BuiltinType::Float &&
+ BT->getKind() != BuiltinType::Double &&
+ BT->getKind() != BuiltinType::LongDouble)
+ return false;
+ } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
+ unsigned VecSize = Context.getTypeSize(VT);
+ if (VecSize != 64 && VecSize != 128)
+ return false;
+ } else {
+ return false;
+ }
+
+ // The base type must be the same for all members. Vector types of the
+ // same total size are treated as being equivalent here.
+ const Type *TyPtr = Ty.getTypePtr();
+ if (!Base)
+ Base = TyPtr;
+
+ if (Base != TyPtr) {
+ // Homogeneous aggregates are defined as containing members with the
+ // same machine type. There are two cases in which two members have
+ // different TypePtrs but the same machine type:
+
+ // 1) Vectors of the same length, regardless of the type and number
+ // of their members.
+ const bool SameLengthVectors = Base->isVectorType() && TyPtr->isVectorType()
+ && (Context.getTypeSize(Base) == Context.getTypeSize(TyPtr));
+
+ // 2) In the 32-bit AAPCS, `double' and `long double' have the same
+ // machine type. This is not the case for the 64-bit AAPCS.
+ const bool SameSizeDoubles =
+ ( ( Base->isSpecificBuiltinType(BuiltinType::Double)
+ && TyPtr->isSpecificBuiltinType(BuiltinType::LongDouble))
+ || ( Base->isSpecificBuiltinType(BuiltinType::LongDouble)
+ && TyPtr->isSpecificBuiltinType(BuiltinType::Double)))
+ && (Context.getTypeSize(Base) == Context.getTypeSize(TyPtr));
+
+ if (!SameLengthVectors && !SameSizeDoubles)
+ return false;
+ }
+ }
+
+ // Homogeneous Aggregates can have at most 4 members of the base type.
+ if (HAMembers)
+ *HAMembers = Members;
+
+ return (Members > 0 && Members <= 4);
+}
+
+/// markAllocatedVFPs - update VFPRegs according to the alignment and
+/// number of VFP registers (unit is S register) requested.
+void ARMABIInfo::markAllocatedVFPs(unsigned Alignment,
+ unsigned NumRequired) const {
+ // Early Exit.
+ if (AllocatedVFPs >= 16) {
+ // We use AllocatedVFP > 16 to signal that some CPRCs were allocated on
+ // the stack.
+ AllocatedVFPs = 17;
+ return;
+ }
+ // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
+ // VFP registers of the appropriate type unallocated then the argument is
+ // allocated to the lowest-numbered sequence of such registers.
+ for (unsigned I = 0; I < 16; I += Alignment) {
+ bool FoundSlot = true;
+ for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
+ if (J >= 16 || VFPRegs[J]) {
+ FoundSlot = false;
+ break;
+ }
+ if (FoundSlot) {
+ for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
+ VFPRegs[J] = 1;
+ AllocatedVFPs += NumRequired;
+ return;
+ }
+ }
+ // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
+ // unallocated are marked as unavailable.
+ for (unsigned I = 0; I < 16; I++)
+ VFPRegs[I] = 1;
+ AllocatedVFPs = 17; // We do not have enough VFP registers.
+}
+
+/// Update AllocatedGPRs to record the number of general purpose registers
+/// which have been allocated. It is valid for AllocatedGPRs to go above 4,
+/// this represents arguments being stored on the stack.
+void ARMABIInfo::markAllocatedGPRs(unsigned Alignment,
+ unsigned NumRequired) const {
+ assert((Alignment == 1 || Alignment == 2) && "Alignment must be 4 or 8 bytes");
+
+ if (Alignment == 2 && AllocatedGPRs & 0x1)
+ AllocatedGPRs += 1;
+
+ AllocatedGPRs += NumRequired;
+}
+
+void ARMABIInfo::resetAllocatedRegs(void) const {
+ AllocatedGPRs = 0;
+ AllocatedVFPs = 0;
+ for (unsigned i = 0; i < NumVFPs; ++i)
+ VFPRegs[i] = 0;
+}
+
+ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
+ bool &IsCPRC) const {
+ // We update number of allocated VFPs according to
+ // 6.1.2.1 The following argument types are VFP CPRCs:
+ // A single-precision floating-point type (including promoted
+ // half-precision types); A double-precision floating-point type;
+ // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
+ // with a Base Type of a single- or double-precision floating-point type,
+ // 64-bit containerized vectors or 128-bit containerized vectors with one
+ // to four Elements.
+
+ // Handle illegal vector types here.
+ if (isIllegalVectorType(Ty)) {
+ uint64_t Size = getContext().getTypeSize(Ty);
+ if (Size <= 32) {
+ llvm::Type *ResType =
+ llvm::Type::getInt32Ty(getVMContext());
+ markAllocatedGPRs(1, 1);
+ return ABIArgInfo::getDirect(ResType);
+ }
+ if (Size == 64) {
+ llvm::Type *ResType = llvm::VectorType::get(
+ llvm::Type::getInt32Ty(getVMContext()), 2);
+ if (getABIKind() == ARMABIInfo::AAPCS || isVariadic){
+ markAllocatedGPRs(2, 2);
+ } else {
+ markAllocatedVFPs(2, 2);
+ IsCPRC = true;
+ }
+ return ABIArgInfo::getDirect(ResType);
+ }
+ if (Size == 128) {
+ llvm::Type *ResType = llvm::VectorType::get(
+ llvm::Type::getInt32Ty(getVMContext()), 4);
+ if (getABIKind() == ARMABIInfo::AAPCS || isVariadic) {
+ markAllocatedGPRs(2, 4);
+ } else {
+ markAllocatedVFPs(4, 4);
+ IsCPRC = true;
+ }
+ return ABIArgInfo::getDirect(ResType);
+ }
+ markAllocatedGPRs(1, 1);
+ return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
+ }
+ // Update VFPRegs for legal vector types.
+ if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) {
+ if (const VectorType *VT = Ty->getAs<VectorType>()) {
+ uint64_t Size = getContext().getTypeSize(VT);
+ // Size of a legal vector should be power of 2 and above 64.
+ markAllocatedVFPs(Size >= 128 ? 4 : 2, Size / 32);
+ IsCPRC = true;
+ }
+ }
+ // Update VFPRegs for floating point types.
+ if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) {
+ if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
+ if (BT->getKind() == BuiltinType::Half ||
+ BT->getKind() == BuiltinType::Float) {
+ markAllocatedVFPs(1, 1);
+ IsCPRC = true;
+ }
+ if (BT->getKind() == BuiltinType::Double ||
+ BT->getKind() == BuiltinType::LongDouble) {
+ markAllocatedVFPs(2, 2);
+ IsCPRC = true;
+ }
+ }
+ }
+
+ if (!isAggregateTypeForABI(Ty)) {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
+ Ty = EnumTy->getDecl()->getIntegerType();
+ }
+
+ unsigned Size = getContext().getTypeSize(Ty);
+ if (!IsCPRC)
+ markAllocatedGPRs(Size > 32 ? 2 : 1, (Size + 31) / 32);
+ return (Ty->isPromotableIntegerType() ?
+ ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
+ }
+
+ if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
+ markAllocatedGPRs(1, 1);
+ return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
+ }
+
+ // Ignore empty records.
+ if (isEmptyRecord(getContext(), Ty, true))
+ return ABIArgInfo::getIgnore();
+
+ if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) {
+ // Homogeneous Aggregates need to be expanded when we can fit the aggregate
+ // into VFP registers.
+ const Type *Base = nullptr;
+ uint64_t Members = 0;
+ if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) {
+ assert(Base && "Base class should be set for homogeneous aggregate");
+ // Base can be a floating-point or a vector.
+ if (Base->isVectorType()) {
+ // ElementSize is in number of floats.
+ unsigned ElementSize = getContext().getTypeSize(Base) == 64 ? 2 : 4;
+ markAllocatedVFPs(ElementSize,
+ Members * ElementSize);
+ } else if (Base->isSpecificBuiltinType(BuiltinType::Float))
+ markAllocatedVFPs(1, Members);
+ else {
+ assert(Base->isSpecificBuiltinType(BuiltinType::Double) ||
+ Base->isSpecificBuiltinType(BuiltinType::LongDouble));
+ markAllocatedVFPs(2, Members * 2);
+ }
+ IsCPRC = true;
+ return ABIArgInfo::getDirect();
+ }
+ }
+
+ // Support byval for ARM.
+ // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
+ // most 8-byte. We realign the indirect argument if type alignment is bigger
+ // than ABI alignment.
+ uint64_t ABIAlign = 4;
+ uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
+ if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
+ getABIKind() == ARMABIInfo::AAPCS)
+ ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
+ if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
+ // Update Allocated GPRs. Since this is only used when the size of the
+ // argument is greater than 64 bytes, this will always use up any available
+ // registers (of which there are 4). We also don't care about getting the
+ // alignment right, because general-purpose registers cannot be back-filled.
+ markAllocatedGPRs(1, 4);
+ return ABIArgInfo::getIndirect(TyAlign, /*ByVal=*/true,
+ /*Realign=*/TyAlign > ABIAlign);
+ }
+
+ // Otherwise, pass by coercing to a structure of the appropriate size.
+ llvm::Type* ElemTy;
+ unsigned SizeRegs;
+ // FIXME: Try to match the types of the arguments more accurately where
+ // we can.
+ if (getContext().getTypeAlign(Ty) <= 32) {
+ ElemTy = llvm::Type::getInt32Ty(getVMContext());
+ SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
+ markAllocatedGPRs(1, SizeRegs);
+ } else {
+ ElemTy = llvm::Type::getInt64Ty(getVMContext());
+ SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
+ markAllocatedGPRs(2, SizeRegs * 2);
+ }
+
+ llvm::Type *STy =
+ llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL);
+ return ABIArgInfo::getDirect(STy);
+}
+
+static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
+ llvm::LLVMContext &VMContext) {
+ // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
+ // is called integer-like if its size is less than or equal to one word, and
+ // the offset of each of its addressable sub-fields is zero.
+
+ uint64_t Size = Context.getTypeSize(Ty);
+
+ // Check that the type fits in a word.
+ if (Size > 32)
+ return false;
+
+ // FIXME: Handle vector types!
+ if (Ty->isVectorType())
+ return false;
+
+ // Float types are never treated as "integer like".
+ if (Ty->isRealFloatingType())
+ return false;
+
+ // If this is a builtin or pointer type then it is ok.
+ if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
+ return true;
+
+ // Small complex integer types are "integer like".
+ if (const ComplexType *CT = Ty->getAs<ComplexType>())
+ return isIntegerLikeType(CT->getElementType(), Context, VMContext);
+
+ // Single element and zero sized arrays should be allowed, by the definition
+ // above, but they are not.
+
+ // Otherwise, it must be a record type.
+ const RecordType *RT = Ty->getAs<RecordType>();
+ if (!RT) return false;
+
+ // Ignore records with flexible arrays.
+ const RecordDecl *RD = RT->getDecl();
+ if (RD->hasFlexibleArrayMember())
+ return false;
+
+ // Check that all sub-fields are at offset 0, and are themselves "integer
+ // like".
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+
+ bool HadField = false;
+ unsigned idx = 0;
+ for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
+ i != e; ++i, ++idx) {
+ const FieldDecl *FD = *i;
+
+ // Bit-fields are not addressable, we only need to verify they are "integer
+ // like". We still have to disallow a subsequent non-bitfield, for example:
+ // struct { int : 0; int x }
+ // is non-integer like according to gcc.
+ if (FD->isBitField()) {
+ if (!RD->isUnion())
+ HadField = true;
+
+ if (!isIntegerLikeType(FD->getType(), Context, VMContext))
+ return false;
+
+ continue;
+ }
+
+ // Check if this field is at offset 0.
+ if (Layout.getFieldOffset(idx) != 0)
+ return false;
+
+ if (!isIntegerLikeType(FD->getType(), Context, VMContext))
+ return false;
+
+ // Only allow at most one field in a structure. This doesn't match the
+ // wording above, but follows gcc in situations with a field following an
+ // empty structure.
+ if (!RD->isUnion()) {
+ if (HadField)
+ return false;
+
+ HadField = true;
+ }
+ }
+
+ return true;
+}
+
+ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
+ bool isVariadic) const {
+ if (RetTy->isVoidType())
+ return ABIArgInfo::getIgnore();
+
+ // Large vector types should be returned via memory.
+ if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
+ markAllocatedGPRs(1, 1);
+ return ABIArgInfo::getIndirect(0);
+ }
+
+ if (!isAggregateTypeForABI(RetTy)) {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
+ RetTy = EnumTy->getDecl()->getIntegerType();
+
+ return (RetTy->isPromotableIntegerType() ?
+ ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
+ }
+
+ // Are we following APCS?
+ if (getABIKind() == APCS) {
+ if (isEmptyRecord(getContext(), RetTy, false))
+ return ABIArgInfo::getIgnore();
+
+ // Complex types are all returned as packed integers.
+ //
+ // FIXME: Consider using 2 x vector types if the back end handles them
+ // correctly.
+ if (RetTy->isAnyComplexType())
+ return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
+ getContext().getTypeSize(RetTy)));
+
+ // Integer like structures are returned in r0.
+ if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
+ // Return in the smallest viable integer type.
+ uint64_t Size = getContext().getTypeSize(RetTy);
+ if (Size <= 8)
+ return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
+ if (Size <= 16)
+ return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
+ return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
+ }
+
+ // Otherwise return in memory.
+ markAllocatedGPRs(1, 1);
+ return ABIArgInfo::getIndirect(0);
+ }
+
+ // Otherwise this is an AAPCS variant.
+
+ if (isEmptyRecord(getContext(), RetTy, true))
+ return ABIArgInfo::getIgnore();
+
+ // Check for homogeneous aggregates with AAPCS-VFP.
+ if (getABIKind() == AAPCS_VFP && !isVariadic) {
+ const Type *Base = nullptr;
+ if (isHomogeneousAggregate(RetTy, Base, getContext())) {
+ assert(Base && "Base class should be set for homogeneous aggregate");
+ // Homogeneous Aggregates are returned directly.
+ return ABIArgInfo::getDirect();
+ }
+ }
+
+ // Aggregates <= 4 bytes are returned in r0; other aggregates
+ // are returned indirectly.
+ uint64_t Size = getContext().getTypeSize(RetTy);
+ if (Size <= 32) {
+ if (getDataLayout().isBigEndian())
+ // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
+ return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
+
+ // Return in the smallest viable integer type.
+ if (Size <= 8)
+ return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
+ if (Size <= 16)
+ return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
+ return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
+ }
+
+ markAllocatedGPRs(1, 1);
+ return ABIArgInfo::getIndirect(0);
+}
+
+/// isIllegalVector - check whether Ty is an illegal vector type.
+bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
+ if (const VectorType *VT = Ty->getAs<VectorType>()) {
+ // Check whether VT is legal.
+ unsigned NumElements = VT->getNumElements();
+ uint64_t Size = getContext().getTypeSize(VT);
+ // NumElements should be power of 2.
+ if ((NumElements & (NumElements - 1)) != 0)
+ return true;
+ // Size should be greater than 32 bits.
+ return Size <= 32;
+ }
+ return false;
+}
+
+llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const {
+ llvm::Type *BP = CGF.Int8PtrTy;
+ llvm::Type *BPP = CGF.Int8PtrPtrTy;
+
+ CGBuilderTy &Builder = CGF.Builder;
+ llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
+ llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
+
+ if (isEmptyRecord(getContext(), Ty, true)) {
+ // These are ignored for parameter passing purposes.
+ llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
+ return Builder.CreateBitCast(Addr, PTy);
+ }
+
+ uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
+ uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
+ bool IsIndirect = false;
+
+ // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
+ // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
+ if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
+ getABIKind() == ARMABIInfo::AAPCS)
+ TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
+ else
+ TyAlign = 4;
+ // Use indirect if size of the illegal vector is bigger than 16 bytes.
+ if (isIllegalVectorType(Ty) && Size > 16) {
+ IsIndirect = true;
+ Size = 4;
+ TyAlign = 4;
+ }
+
+ // Handle address alignment for ABI alignment > 4 bytes.
+ if (TyAlign > 4) {
+ assert((TyAlign & (TyAlign - 1)) == 0 &&
+ "Alignment is not power of 2!");
+ llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
+ AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
+ AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
+ Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
+ }
+
+ uint64_t Offset =
+ llvm::RoundUpToAlignment(Size, 4);
+ llvm::Value *NextAddr =
+ Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
+ "ap.next");
+ Builder.CreateStore(NextAddr, VAListAddrAsBPP);
+
+ if (IsIndirect)
+ Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
+ else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) {
+ // We can't directly cast ap.cur to pointer to a vector type, since ap.cur
+ // may not be correctly aligned for the vector type. We create an aligned
+ // temporary space and copy the content over from ap.cur to the temporary
+ // space. This is necessary if the natural alignment of the type is greater
+ // than the ABI alignment.
+ llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
+ CharUnits CharSize = getContext().getTypeSizeInChars(Ty);
+ llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty),
+ "var.align");
+ llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
+ llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy);
+ Builder.CreateMemCpy(Dst, Src,
+ llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()),
+ TyAlign, false);
+ Addr = AlignedTemp; //The content is in aligned location.
+ }
+ llvm::Type *PTy =
+ llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
+ llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
+
+ return AddrTyped;
+}
+
+namespace {
+
+class NaClARMABIInfo : public ABIInfo {
+ public:
+ NaClARMABIInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
+ : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, Kind) {}
+ void computeInfo(CGFunctionInfo &FI) const override;
+ llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const override;
+ private:
+ PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv.
+ ARMABIInfo NInfo; // Used for everything else.
+};
+
+class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo {
+ public:
+ NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
+ : TargetCodeGenInfo(new NaClARMABIInfo(CGT, Kind)) {}
+};
+
+}
+
+void NaClARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
+ if (FI.getASTCallingConvention() == CC_PnaclCall)
+ PInfo.computeInfo(FI);
+ else
+ static_cast<const ABIInfo&>(NInfo).computeInfo(FI);
+}
+
+llvm::Value *NaClARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const {
+ // Always use the native convention; calling pnacl-style varargs functions
+ // is unsupported.
+ return static_cast<const ABIInfo&>(NInfo).EmitVAArg(VAListAddr, Ty, CGF);
+}
+
+//===----------------------------------------------------------------------===//
+// NVPTX ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class NVPTXABIInfo : public ABIInfo {
+public:
+ NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
+
+ ABIArgInfo classifyReturnType(QualType RetTy) const;
+ ABIArgInfo classifyArgumentType(QualType Ty) const;
+
+ void computeInfo(CGFunctionInfo &FI) const override;
+ llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CFG) const override;
+};
+
+class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
+ : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
+
+ void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &M) const override;
+private:
+ // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
+ // resulting MDNode to the nvvm.annotations MDNode.
+ static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
+};
+
+ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
+ if (RetTy->isVoidType())
+ return ABIArgInfo::getIgnore();
+
+ // note: this is different from default ABI
+ if (!RetTy->isScalarType())
+ return ABIArgInfo::getDirect();
+
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
+ RetTy = EnumTy->getDecl()->getIntegerType();
+
+ return (RetTy->isPromotableIntegerType() ?
+ ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
+}
+
+ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ return (Ty->isPromotableIntegerType() ?
+ ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
+}
+
+void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
+ if (!getCXXABI().classifyReturnType(FI))
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+ for (auto &I : FI.arguments())
+ I.info = classifyArgumentType(I.type);
+
+ // Always honor user-specified calling convention.
+ if (FI.getCallingConvention() != llvm::CallingConv::C)
+ return;
+
+ FI.setEffectiveCallingConvention(getRuntimeCC());
+}
+
+llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CFG) const {
+ llvm_unreachable("NVPTX does not support varargs");
+}
+
+void NVPTXTargetCodeGenInfo::
+SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &M) const{
+ const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
+ if (!FD) return;
+
+ llvm::Function *F = cast<llvm::Function>(GV);
+
+ // Perform special handling in OpenCL mode
+ if (M.getLangOpts().OpenCL) {
+ // Use OpenCL function attributes to check for kernel functions
+ // By default, all functions are device functions
+ if (FD->hasAttr<OpenCLKernelAttr>()) {
+ // OpenCL __kernel functions get kernel metadata
+ // Create !{<func-ref>, metadata !"kernel", i32 1} node
+ addNVVMMetadata(F, "kernel", 1);
+ // And kernel functions are not subject to inlining
+ F->addFnAttr(llvm::Attribute::NoInline);
+ }
+ }
+
+ // Perform special handling in CUDA mode.
+ if (M.getLangOpts().CUDA) {
+ // CUDA __global__ functions get a kernel metadata entry. Since
+ // __global__ functions cannot be called from the device, we do not
+ // need to set the noinline attribute.
+ if (FD->hasAttr<CUDAGlobalAttr>()) {
+ // Create !{<func-ref>, metadata !"kernel", i32 1} node
+ addNVVMMetadata(F, "kernel", 1);
+ }
+ if (FD->hasAttr<CUDALaunchBoundsAttr>()) {
+ // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
+ addNVVMMetadata(F, "maxntidx",
+ FD->getAttr<CUDALaunchBoundsAttr>()->getMaxThreads());
+ // min blocks is a default argument for CUDALaunchBoundsAttr, so getting a
+ // zero value from getMinBlocks either means it was not specified in
+ // __launch_bounds__ or the user specified a 0 value. In both cases, we
+ // don't have to add a PTX directive.
+ int MinCTASM = FD->getAttr<CUDALaunchBoundsAttr>()->getMinBlocks();
+ if (MinCTASM > 0) {
+ // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
+ addNVVMMetadata(F, "minctasm", MinCTASM);
+ }
+ }
+ }
+}
+
+void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
+ int Operand) {
+ llvm::Module *M = F->getParent();
+ llvm::LLVMContext &Ctx = M->getContext();
+
+ // Get "nvvm.annotations" metadata node
+ llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
+
+ llvm::Value *MDVals[] = {
+ F, llvm::MDString::get(Ctx, Name),
+ llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand)};
+ // Append metadata to nvvm.annotations
+ MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
+}
+}
+
+//===----------------------------------------------------------------------===//
+// SystemZ ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class SystemZABIInfo : public ABIInfo {
+public:
+ SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
+
+ bool isPromotableIntegerType(QualType Ty) const;
+ bool isCompoundType(QualType Ty) const;
+ bool isFPArgumentType(QualType Ty) const;
+
+ ABIArgInfo classifyReturnType(QualType RetTy) const;
+ ABIArgInfo classifyArgumentType(QualType ArgTy) const;
+
+ void computeInfo(CGFunctionInfo &FI) const override {
+ if (!getCXXABI().classifyReturnType(FI))
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+ for (auto &I : FI.arguments())
+ I.info = classifyArgumentType(I.type);
+ }
+
+ llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const override;
+};
+
+class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
+ : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
+};
+
+}
+
+bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ // Promotable integer types are required to be promoted by the ABI.
+ if (Ty->isPromotableIntegerType())
+ return true;
+
+ // 32-bit values must also be promoted.
+ if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
+ switch (BT->getKind()) {
+ case BuiltinType::Int:
+ case BuiltinType::UInt:
+ return true;
+ default:
+ return false;
+ }
+ return false;
+}
+
+bool SystemZABIInfo::isCompoundType(QualType Ty) const {
+ return Ty->isAnyComplexType() || isAggregateTypeForABI(Ty);
+}
+
+bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
+ if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
+ switch (BT->getKind()) {
+ case BuiltinType::Float:
+ case BuiltinType::Double:
+ return true;
+ default:
+ return false;
+ }
+
+ if (const RecordType *RT = Ty->getAsStructureType()) {
+ const RecordDecl *RD = RT->getDecl();
+ bool Found = false;
+
+ // If this is a C++ record, check the bases first.
+ if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
+ for (const auto &I : CXXRD->bases()) {
+ QualType Base = I.getType();
+
+ // Empty bases don't affect things either way.
+ if (isEmptyRecord(getContext(), Base, true))
+ continue;
+
+ if (Found)
+ return false;
+ Found = isFPArgumentType(Base);
+ if (!Found)
+ return false;
+ }
+
+ // Check the fields.
+ for (const auto *FD : RD->fields()) {
+ // Empty bitfields don't affect things either way.
+ // Unlike isSingleElementStruct(), empty structure and array fields
+ // do count. So do anonymous bitfields that aren't zero-sized.
+ if (FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
+ return true;
+
+ // Unlike isSingleElementStruct(), arrays do not count.
+ // Nested isFPArgumentType structures still do though.
+ if (Found)
+ return false;
+ Found = isFPArgumentType(FD->getType());
+ if (!Found)
+ return false;
+ }
+
+ // Unlike isSingleElementStruct(), trailing padding is allowed.
+ // An 8-byte aligned struct s { float f; } is passed as a double.
+ return Found;
+ }
+
+ return false;
+}
+
+llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const {
+ // Assume that va_list type is correct; should be pointer to LLVM type:
+ // struct {
+ // i64 __gpr;
+ // i64 __fpr;
+ // i8 *__overflow_arg_area;
+ // i8 *__reg_save_area;
+ // };
+
+ // Every argument occupies 8 bytes and is passed by preference in either
+ // GPRs or FPRs.
+ Ty = CGF.getContext().getCanonicalType(Ty);
+ ABIArgInfo AI = classifyArgumentType(Ty);
+ bool InFPRs = isFPArgumentType(Ty);
+
+ llvm::Type *APTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
+ bool IsIndirect = AI.isIndirect();
+ unsigned UnpaddedBitSize;
+ if (IsIndirect) {
+ APTy = llvm::PointerType::getUnqual(APTy);
+ UnpaddedBitSize = 64;
+ } else
+ UnpaddedBitSize = getContext().getTypeSize(Ty);
+ unsigned PaddedBitSize = 64;
+ assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size.");
+
+ unsigned PaddedSize = PaddedBitSize / 8;
+ unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8;
+
+ unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding;
+ if (InFPRs) {
+ MaxRegs = 4; // Maximum of 4 FPR arguments
+ RegCountField = 1; // __fpr
+ RegSaveIndex = 16; // save offset for f0
+ RegPadding = 0; // floats are passed in the high bits of an FPR
+ } else {
+ MaxRegs = 5; // Maximum of 5 GPR arguments
+ RegCountField = 0; // __gpr
+ RegSaveIndex = 2; // save offset for r2
+ RegPadding = Padding; // values are passed in the low bits of a GPR
+ }
+
+ llvm::Value *RegCountPtr =
+ CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
+ llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
+ llvm::Type *IndexTy = RegCount->getType();
+ llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
+ llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
+ "fits_in_regs");
+
+ llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
+ llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
+ llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
+ CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
+
+ // Emit code to load the value if it was passed in registers.
+ CGF.EmitBlock(InRegBlock);
+
+ // Work out the address of an argument register.
+ llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize);
+ llvm::Value *ScaledRegCount =
+ CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
+ llvm::Value *RegBase =
+ llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding);
+ llvm::Value *RegOffset =
+ CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
+ llvm::Value *RegSaveAreaPtr =
+ CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
+ llvm::Value *RegSaveArea =
+ CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
+ llvm::Value *RawRegAddr =
+ CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr");
+ llvm::Value *RegAddr =
+ CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr");
+
+ // Update the register count
+ llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
+ llvm::Value *NewRegCount =
+ CGF.Builder.CreateAdd(RegCount, One, "reg_count");
+ CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
+ CGF.EmitBranch(ContBlock);
+
+ // Emit code to load the value if it was passed in memory.
+ CGF.EmitBlock(InMemBlock);
+
+ // Work out the address of a stack argument.
+ llvm::Value *OverflowArgAreaPtr =
+ CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
+ llvm::Value *OverflowArgArea =
+ CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area");
+ llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding);
+ llvm::Value *RawMemAddr =
+ CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr");
+ llvm::Value *MemAddr =
+ CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr");
+
+ // Update overflow_arg_area_ptr pointer
+ llvm::Value *NewOverflowArgArea =
+ CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area");
+ CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
+ CGF.EmitBranch(ContBlock);
+
+ // Return the appropriate result.
+ CGF.EmitBlock(ContBlock);
+ llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr");
+ ResAddr->addIncoming(RegAddr, InRegBlock);
+ ResAddr->addIncoming(MemAddr, InMemBlock);
+
+ if (IsIndirect)
+ return CGF.Builder.CreateLoad(ResAddr, "indirect_arg");
+
+ return ResAddr;
+}
+
+ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
+ if (RetTy->isVoidType())
+ return ABIArgInfo::getIgnore();
+ if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
+ return ABIArgInfo::getIndirect(0);
+ return (isPromotableIntegerType(RetTy) ?
+ ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
+}
+
+ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
+ // Handle the generic C++ ABI.
+ if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
+ return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
+
+ // Integers and enums are extended to full register width.
+ if (isPromotableIntegerType(Ty))
+ return ABIArgInfo::getExtend();
+
+ // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
+ uint64_t Size = getContext().getTypeSize(Ty);
+ if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
+ return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
+
+ // Handle small structures.
+ if (const RecordType *RT = Ty->getAs<RecordType>()) {
+ // Structures with flexible arrays have variable length, so really
+ // fail the size test above.
+ const RecordDecl *RD = RT->getDecl();
+ if (RD->hasFlexibleArrayMember())
+ return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
+
+ // The structure is passed as an unextended integer, a float, or a double.
+ llvm::Type *PassTy;
+ if (isFPArgumentType(Ty)) {
+ assert(Size == 32 || Size == 64);
+ if (Size == 32)
+ PassTy = llvm::Type::getFloatTy(getVMContext());
+ else
+ PassTy = llvm::Type::getDoubleTy(getVMContext());
+ } else
+ PassTy = llvm::IntegerType::get(getVMContext(), Size);
+ return ABIArgInfo::getDirect(PassTy);
+ }
+
+ // Non-structure compounds are passed indirectly.
+ if (isCompoundType(Ty))
+ return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
+
+ return ABIArgInfo::getDirect(nullptr);
+}
+
+//===----------------------------------------------------------------------===//
+// MSP430 ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
+ : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
+ void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &M) const override;
+};
+
+}
+
+void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
+ llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &M) const {
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
+ // Handle 'interrupt' attribute:
+ llvm::Function *F = cast<llvm::Function>(GV);
+
+ // Step 1: Set ISR calling convention.
+ F->setCallingConv(llvm::CallingConv::MSP430_INTR);
+
+ // Step 2: Add attributes goodness.
+ F->addFnAttr(llvm::Attribute::NoInline);
+
+ // Step 3: Emit ISR vector alias.
+ unsigned Num = attr->getNumber() / 2;
+ llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
+ "__isr_" + Twine(Num), F);
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// MIPS ABI Implementation. This works for both little-endian and
+// big-endian variants.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class MipsABIInfo : public ABIInfo {
+ bool IsO32;
+ unsigned MinABIStackAlignInBytes, StackAlignInBytes;
+ void CoerceToIntArgs(uint64_t TySize,
+ SmallVectorImpl<llvm::Type *> &ArgList) const;
+ llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
+ llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
+ llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
+public:
+ MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
+ ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
+ StackAlignInBytes(IsO32 ? 8 : 16) {}
+
+ ABIArgInfo classifyReturnType(QualType RetTy) const;
+ ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
+ void computeInfo(CGFunctionInfo &FI) const override;
+ llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const override;
+};
+
+class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
+ unsigned SizeOfUnwindException;
+public:
+ MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
+ : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
+ SizeOfUnwindException(IsO32 ? 24 : 32) {}
+
+ int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
+ return 29;
+ }
+
+ void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &CGM) const override {
+ const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
+ if (!FD) return;
+ llvm::Function *Fn = cast<llvm::Function>(GV);
+ if (FD->hasAttr<Mips16Attr>()) {
+ Fn->addFnAttr("mips16");
+ }
+ else if (FD->hasAttr<NoMips16Attr>()) {
+ Fn->addFnAttr("nomips16");
+ }
+ }
+
+ bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const override;
+
+ unsigned getSizeOfUnwindException() const override {
+ return SizeOfUnwindException;
+ }
+};
+}
+
+void MipsABIInfo::CoerceToIntArgs(uint64_t TySize,
+ SmallVectorImpl<llvm::Type *> &ArgList) const {
+ llvm::IntegerType *IntTy =
+ llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
+
+ // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
+ for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
+ ArgList.push_back(IntTy);
+
+ // If necessary, add one more integer type to ArgList.
+ unsigned R = TySize % (MinABIStackAlignInBytes * 8);
+
+ if (R)
+ ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
+}
+
+// In N32/64, an aligned double precision floating point field is passed in
+// a register.
+llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
+ SmallVector<llvm::Type*, 8> ArgList, IntArgList;
+
+ if (IsO32) {
+ CoerceToIntArgs(TySize, ArgList);
+ return llvm::StructType::get(getVMContext(), ArgList);
+ }
+
+ if (Ty->isComplexType())
+ return CGT.ConvertType(Ty);
+
+ const RecordType *RT = Ty->getAs<RecordType>();
+
+ // Unions/vectors are passed in integer registers.
+ if (!RT || !RT->isStructureOrClassType()) {
+ CoerceToIntArgs(TySize, ArgList);
+ return llvm::StructType::get(getVMContext(), ArgList);
+ }
+
+ const RecordDecl *RD = RT->getDecl();
+ const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
+ assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
+
+ uint64_t LastOffset = 0;
+ unsigned idx = 0;
+ llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
+
+ // Iterate over fields in the struct/class and check if there are any aligned
+ // double fields.
+ for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
+ i != e; ++i, ++idx) {
+ const QualType Ty = i->getType();
+ const BuiltinType *BT = Ty->getAs<BuiltinType>();
+
+ if (!BT || BT->getKind() != BuiltinType::Double)
+ continue;
+
+ uint64_t Offset = Layout.getFieldOffset(idx);
+ if (Offset % 64) // Ignore doubles that are not aligned.
+ continue;
+
+ // Add ((Offset - LastOffset) / 64) args of type i64.
+ for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
+ ArgList.push_back(I64);
+
+ // Add double type.
+ ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
+ LastOffset = Offset + 64;
+ }
+
+ CoerceToIntArgs(TySize - LastOffset, IntArgList);
+ ArgList.append(IntArgList.begin(), IntArgList.end());
+
+ return llvm::StructType::get(getVMContext(), ArgList);
+}
+
+llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
+ uint64_t Offset) const {
+ if (OrigOffset + MinABIStackAlignInBytes > Offset)
+ return nullptr;
+
+ return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
+}
+
+ABIArgInfo
+MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
+ uint64_t OrigOffset = Offset;
+ uint64_t TySize = getContext().getTypeSize(Ty);
+ uint64_t Align = getContext().getTypeAlign(Ty) / 8;
+
+ Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
+ (uint64_t)StackAlignInBytes);
+ unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align);
+ Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
+
+ if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
+ // Ignore empty aggregates.
+ if (TySize == 0)
+ return ABIArgInfo::getIgnore();
+
+ if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
+ Offset = OrigOffset + MinABIStackAlignInBytes;
+ return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
+ }
+
+ // If we have reached here, aggregates are passed directly by coercing to
+ // another structure type. Padding is inserted if the offset of the
+ // aggregate is unaligned.
+ return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
+ getPaddingType(OrigOffset, CurrOffset));
+ }
+
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ if (Ty->isPromotableIntegerType())
+ return ABIArgInfo::getExtend();
+
+ return ABIArgInfo::getDirect(
+ nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
+}
+
+llvm::Type*
+MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
+ const RecordType *RT = RetTy->getAs<RecordType>();
+ SmallVector<llvm::Type*, 8> RTList;
+
+ if (RT && RT->isStructureOrClassType()) {
+ const RecordDecl *RD = RT->getDecl();
+ const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
+ unsigned FieldCnt = Layout.getFieldCount();
+
+ // N32/64 returns struct/classes in floating point registers if the
+ // following conditions are met:
+ // 1. The size of the struct/class is no larger than 128-bit.
+ // 2. The struct/class has one or two fields all of which are floating
+ // point types.
+ // 3. The offset of the first field is zero (this follows what gcc does).
+ //
+ // Any other composite results are returned in integer registers.
+ //
+ if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
+ RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
+ for (; b != e; ++b) {
+ const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
+
+ if (!BT || !BT->isFloatingPoint())
+ break;
+
+ RTList.push_back(CGT.ConvertType(b->getType()));
+ }
+
+ if (b == e)
+ return llvm::StructType::get(getVMContext(), RTList,
+ RD->hasAttr<PackedAttr>());
+
+ RTList.clear();
+ }
+ }
+
+ CoerceToIntArgs(Size, RTList);
+ return llvm::StructType::get(getVMContext(), RTList);
+}
+
+ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
+ uint64_t Size = getContext().getTypeSize(RetTy);
+
+ if (RetTy->isVoidType() || Size == 0)
+ return ABIArgInfo::getIgnore();
+
+ if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
+ if (Size <= 128) {
+ if (RetTy->isAnyComplexType())
+ return ABIArgInfo::getDirect();
+
+ // O32 returns integer vectors in registers.
+ if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())
+ return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
+
+ if (!IsO32)
+ return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
+ }
+
+ return ABIArgInfo::getIndirect(0);
+ }
+
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
+ RetTy = EnumTy->getDecl()->getIntegerType();
+
+ return (RetTy->isPromotableIntegerType() ?
+ ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
+}
+
+void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
+ ABIArgInfo &RetInfo = FI.getReturnInfo();
+ if (!getCXXABI().classifyReturnType(FI))
+ RetInfo = classifyReturnType(FI.getReturnType());
+
+ // Check if a pointer to an aggregate is passed as a hidden argument.
+ uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
+
+ for (auto &I : FI.arguments())
+ I.info = classifyArgumentType(I.type, Offset);
+}
+
+llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const {
+ llvm::Type *BP = CGF.Int8PtrTy;
+ llvm::Type *BPP = CGF.Int8PtrPtrTy;
+
+ CGBuilderTy &Builder = CGF.Builder;
+ llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
+ llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
+ int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8;
+ llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
+ llvm::Value *AddrTyped;
+ unsigned PtrWidth = getTarget().getPointerWidth(0);
+ llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
+
+ if (TypeAlign > MinABIStackAlignInBytes) {
+ llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
+ llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
+ llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
+ llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
+ llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
+ AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
+ }
+ else
+ AddrTyped = Builder.CreateBitCast(Addr, PTy);
+
+ llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
+ TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
+ uint64_t Offset =
+ llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign);
+ llvm::Value *NextAddr =
+ Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
+ "ap.next");
+ Builder.CreateStore(NextAddr, VAListAddrAsBPP);
+
+ return AddrTyped;
+}
+
+bool
+MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const {
+ // This information comes from gcc's implementation, which seems to
+ // as canonical as it gets.
+
+ // Everything on MIPS is 4 bytes. Double-precision FP registers
+ // are aliased to pairs of single-precision FP registers.
+ llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
+
+ // 0-31 are the general purpose registers, $0 - $31.
+ // 32-63 are the floating-point registers, $f0 - $f31.
+ // 64 and 65 are the multiply/divide registers, $hi and $lo.
+ // 66 is the (notional, I think) register for signal-handler return.
+ AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
+
+ // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
+ // They are one bit wide and ignored here.
+
+ // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
+ // (coprocessor 1 is the FP unit)
+ // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
+ // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
+ // 176-181 are the DSP accumulator registers.
+ AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
+// Currently subclassed only to implement custom OpenCL C function attribute
+// handling.
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
+public:
+ TCETargetCodeGenInfo(CodeGenTypes &CGT)
+ : DefaultTargetCodeGenInfo(CGT) {}
+
+ void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &M) const override;
+};
+
+void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
+ llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &M) const {
+ const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
+ if (!FD) return;
+
+ llvm::Function *F = cast<llvm::Function>(GV);
+
+ if (M.getLangOpts().OpenCL) {
+ if (FD->hasAttr<OpenCLKernelAttr>()) {
+ // OpenCL C Kernel functions are not subject to inlining
+ F->addFnAttr(llvm::Attribute::NoInline);
+ const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
+ if (Attr) {
+ // Convert the reqd_work_group_size() attributes to metadata.
+ llvm::LLVMContext &Context = F->getContext();
+ llvm::NamedMDNode *OpenCLMetadata =
+ M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
+
+ SmallVector<llvm::Value*, 5> Operands;
+ Operands.push_back(F);
+
+ Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
+ llvm::APInt(32, Attr->getXDim())));
+ Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
+ llvm::APInt(32, Attr->getYDim())));
+ Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
+ llvm::APInt(32, Attr->getZDim())));
+
+ // Add a boolean constant operand for "required" (true) or "hint" (false)
+ // for implementing the work_group_size_hint attr later. Currently
+ // always true as the hint is not yet implemented.
+ Operands.push_back(llvm::ConstantInt::getTrue(Context));
+ OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
+ }
+ }
+ }
+}
+
+}
+
+//===----------------------------------------------------------------------===//
+// Hexagon ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class HexagonABIInfo : public ABIInfo {
+
+
+public:
+ HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
+
+private:
+
+ ABIArgInfo classifyReturnType(QualType RetTy) const;
+ ABIArgInfo classifyArgumentType(QualType RetTy) const;
+
+ void computeInfo(CGFunctionInfo &FI) const override;
+
+ llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const override;
+};
+
+class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
+ :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
+
+ int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
+ return 29;
+ }
+};
+
+}
+
+void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
+ if (!getCXXABI().classifyReturnType(FI))
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+ for (auto &I : FI.arguments())
+ I.info = classifyArgumentType(I.type);
+}
+
+ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
+ if (!isAggregateTypeForABI(Ty)) {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ return (Ty->isPromotableIntegerType() ?
+ ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
+ }
+
+ // Ignore empty records.
+ if (isEmptyRecord(getContext(), Ty, true))
+ return ABIArgInfo::getIgnore();
+
+ if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
+ return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
+
+ uint64_t Size = getContext().getTypeSize(Ty);
+ if (Size > 64)
+ return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
+ // Pass in the smallest viable integer type.
+ else if (Size > 32)
+ return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
+ else if (Size > 16)
+ return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
+ else if (Size > 8)
+ return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
+ else
+ return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
+}
+
+ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
+ if (RetTy->isVoidType())
+ return ABIArgInfo::getIgnore();
+
+ // Large vector types should be returned via memory.
+ if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
+ return ABIArgInfo::getIndirect(0);
+
+ if (!isAggregateTypeForABI(RetTy)) {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
+ RetTy = EnumTy->getDecl()->getIntegerType();
+
+ return (RetTy->isPromotableIntegerType() ?
+ ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
+ }
+
+ if (isEmptyRecord(getContext(), RetTy, true))
+ return ABIArgInfo::getIgnore();
+
+ // Aggregates <= 8 bytes are returned in r0; other aggregates
+ // are returned indirectly.
+ uint64_t Size = getContext().getTypeSize(RetTy);
+ if (Size <= 64) {
+ // Return in the smallest viable integer type.
+ if (Size <= 8)
+ return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
+ if (Size <= 16)
+ return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
+ if (Size <= 32)
+ return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
+ return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
+ }
+
+ return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
+}
+
+llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const {
+ // FIXME: Need to handle alignment
+ llvm::Type *BPP = CGF.Int8PtrPtrTy;
+
+ CGBuilderTy &Builder = CGF.Builder;
+ llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
+ "ap");
+ llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
+ llvm::Type *PTy =
+ llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
+ llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
+
+ uint64_t Offset =
+ llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
+ llvm::Value *NextAddr =
+ Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
+ "ap.next");
+ Builder.CreateStore(NextAddr, VAListAddrAsBPP);
+
+ return AddrTyped;
+}
+
+
+//===----------------------------------------------------------------------===//
+// SPARC v9 ABI Implementation.
+// Based on the SPARC Compliance Definition version 2.4.1.
+//
+// Function arguments a mapped to a nominal "parameter array" and promoted to
+// registers depending on their type. Each argument occupies 8 or 16 bytes in
+// the array, structs larger than 16 bytes are passed indirectly.
+//
+// One case requires special care:
+//
+// struct mixed {
+// int i;
+// float f;
+// };
+//
+// When a struct mixed is passed by value, it only occupies 8 bytes in the
+// parameter array, but the int is passed in an integer register, and the float
+// is passed in a floating point register. This is represented as two arguments
+// with the LLVM IR inreg attribute:
+//
+// declare void f(i32 inreg %i, float inreg %f)
+//
+// The code generator will only allocate 4 bytes from the parameter array for
+// the inreg arguments. All other arguments are allocated a multiple of 8
+// bytes.
+//
+namespace {
+class SparcV9ABIInfo : public ABIInfo {
+public:
+ SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
+
+private:
+ ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
+ void computeInfo(CGFunctionInfo &FI) const override;
+ llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const override;
+
+ // Coercion type builder for structs passed in registers. The coercion type
+ // serves two purposes:
+ //
+ // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
+ // in registers.
+ // 2. Expose aligned floating point elements as first-level elements, so the
+ // code generator knows to pass them in floating point registers.
+ //
+ // We also compute the InReg flag which indicates that the struct contains
+ // aligned 32-bit floats.
+ //
+ struct CoerceBuilder {
+ llvm::LLVMContext &Context;
+ const llvm::DataLayout &DL;
+ SmallVector<llvm::Type*, 8> Elems;
+ uint64_t Size;
+ bool InReg;
+
+ CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
+ : Context(c), DL(dl), Size(0), InReg(false) {}
+
+ // Pad Elems with integers until Size is ToSize.
+ void pad(uint64_t ToSize) {
+ assert(ToSize >= Size && "Cannot remove elements");
+ if (ToSize == Size)
+ return;
+
+ // Finish the current 64-bit word.
+ uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64);
+ if (Aligned > Size && Aligned <= ToSize) {
+ Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
+ Size = Aligned;
+ }
+
+ // Add whole 64-bit words.
+ while (Size + 64 <= ToSize) {
+ Elems.push_back(llvm::Type::getInt64Ty(Context));
+ Size += 64;
+ }
+
+ // Final in-word padding.
+ if (Size < ToSize) {
+ Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
+ Size = ToSize;
+ }
+ }
+
+ // Add a floating point element at Offset.
+ void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
+ // Unaligned floats are treated as integers.
+ if (Offset % Bits)
+ return;
+ // The InReg flag is only required if there are any floats < 64 bits.
+ if (Bits < 64)
+ InReg = true;
+ pad(Offset);
+ Elems.push_back(Ty);
+ Size = Offset + Bits;
+ }
+
+ // Add a struct type to the coercion type, starting at Offset (in bits).
+ void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
+ const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
+ for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
+ llvm::Type *ElemTy = StrTy->getElementType(i);
+ uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
+ switch (ElemTy->getTypeID()) {
+ case llvm::Type::StructTyID:
+ addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
+ break;
+ case llvm::Type::FloatTyID:
+ addFloat(ElemOffset, ElemTy, 32);
+ break;
+ case llvm::Type::DoubleTyID:
+ addFloat(ElemOffset, ElemTy, 64);
+ break;
+ case llvm::Type::FP128TyID:
+ addFloat(ElemOffset, ElemTy, 128);
+ break;
+ case llvm::Type::PointerTyID:
+ if (ElemOffset % 64 == 0) {
+ pad(ElemOffset);
+ Elems.push_back(ElemTy);
+ Size += 64;
+ }
+ break;
+ default:
+ break;
+ }
+ }
+ }
+
+ // Check if Ty is a usable substitute for the coercion type.
+ bool isUsableType(llvm::StructType *Ty) const {
+ if (Ty->getNumElements() != Elems.size())
+ return false;
+ for (unsigned i = 0, e = Elems.size(); i != e; ++i)
+ if (Elems[i] != Ty->getElementType(i))
+ return false;
+ return true;
+ }
+
+ // Get the coercion type as a literal struct type.
+ llvm::Type *getType() const {
+ if (Elems.size() == 1)
+ return Elems.front();
+ else
+ return llvm::StructType::get(Context, Elems);
+ }
+ };
+};
+} // end anonymous namespace
+
+ABIArgInfo
+SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
+ if (Ty->isVoidType())
+ return ABIArgInfo::getIgnore();
+
+ uint64_t Size = getContext().getTypeSize(Ty);
+
+ // Anything too big to fit in registers is passed with an explicit indirect
+ // pointer / sret pointer.
+ if (Size > SizeLimit)
+ return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
+
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ // Integer types smaller than a register are extended.
+ if (Size < 64 && Ty->isIntegerType())
+ return ABIArgInfo::getExtend();
+
+ // Other non-aggregates go in registers.
+ if (!isAggregateTypeForABI(Ty))
+ return ABIArgInfo::getDirect();
+
+ // If a C++ object has either a non-trivial copy constructor or a non-trivial
+ // destructor, it is passed with an explicit indirect pointer / sret pointer.
+ if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
+ return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
+
+ // This is a small aggregate type that should be passed in registers.
+ // Build a coercion type from the LLVM struct type.
+ llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
+ if (!StrTy)
+ return ABIArgInfo::getDirect();
+
+ CoerceBuilder CB(getVMContext(), getDataLayout());
+ CB.addStruct(0, StrTy);
+ CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64));
+
+ // Try to use the original type for coercion.
+ llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
+
+ if (CB.InReg)
+ return ABIArgInfo::getDirectInReg(CoerceTy);
+ else
+ return ABIArgInfo::getDirect(CoerceTy);
+}
+
+llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const {
+ ABIArgInfo AI = classifyType(Ty, 16 * 8);
+ llvm::Type *ArgTy = CGT.ConvertType(Ty);
+ if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
+ AI.setCoerceToType(ArgTy);
+
+ llvm::Type *BPP = CGF.Int8PtrPtrTy;
+ CGBuilderTy &Builder = CGF.Builder;
+ llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
+ llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
+ llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
+ llvm::Value *ArgAddr;
+ unsigned Stride;
+
+ switch (AI.getKind()) {
+ case ABIArgInfo::Expand:
+ case ABIArgInfo::InAlloca:
+ llvm_unreachable("Unsupported ABI kind for va_arg");
+
+ case ABIArgInfo::Extend:
+ Stride = 8;
+ ArgAddr = Builder
+ .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy),
+ "extend");
+ break;
+
+ case ABIArgInfo::Direct:
+ Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
+ ArgAddr = Addr;
+ break;
+
+ case ABIArgInfo::Indirect:
+ Stride = 8;
+ ArgAddr = Builder.CreateBitCast(Addr,
+ llvm::PointerType::getUnqual(ArgPtrTy),
+ "indirect");
+ ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg");
+ break;
+
+ case ABIArgInfo::Ignore:
+ return llvm::UndefValue::get(ArgPtrTy);
+ }
+
+ // Update VAList.
+ Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next");
+ Builder.CreateStore(Addr, VAListAddrAsBPP);
+
+ return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr");
+}
+
+void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
+ FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
+ for (auto &I : FI.arguments())
+ I.info = classifyType(I.type, 16 * 8);
+}
+
+namespace {
+class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
+ : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
+
+ int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
+ return 14;
+ }
+
+ bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const override;
+};
+} // end anonymous namespace
+
+bool
+SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const {
+ // This is calculated from the LLVM and GCC tables and verified
+ // against gcc output. AFAIK all ABIs use the same encoding.
+
+ CodeGen::CGBuilderTy &Builder = CGF.Builder;
+
+ llvm::IntegerType *i8 = CGF.Int8Ty;
+ llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
+ llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
+
+ // 0-31: the 8-byte general-purpose registers
+ AssignToArrayRange(Builder, Address, Eight8, 0, 31);
+
+ // 32-63: f0-31, the 4-byte floating-point registers
+ AssignToArrayRange(Builder, Address, Four8, 32, 63);
+
+ // Y = 64
+ // PSR = 65
+ // WIM = 66
+ // TBR = 67
+ // PC = 68
+ // NPC = 69
+ // FSR = 70
+ // CSR = 71
+ AssignToArrayRange(Builder, Address, Eight8, 64, 71);
+
+ // 72-87: d0-15, the 8-byte floating-point registers
+ AssignToArrayRange(Builder, Address, Eight8, 72, 87);
+
+ return false;
+}
+
+
+//===----------------------------------------------------------------------===//
+// XCore ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+/// A SmallStringEnc instance is used to build up the TypeString by passing
+/// it by reference between functions that append to it.
+typedef llvm::SmallString<128> SmallStringEnc;
+
+/// TypeStringCache caches the meta encodings of Types.
+///
+/// The reason for caching TypeStrings is two fold:
+/// 1. To cache a type's encoding for later uses;
+/// 2. As a means to break recursive member type inclusion.
+///
+/// A cache Entry can have a Status of:
+/// NonRecursive: The type encoding is not recursive;
+/// Recursive: The type encoding is recursive;
+/// Incomplete: An incomplete TypeString;
+/// IncompleteUsed: An incomplete TypeString that has been used in a
+/// Recursive type encoding.
+///
+/// A NonRecursive entry will have all of its sub-members expanded as fully
+/// as possible. Whilst it may contain types which are recursive, the type
+/// itself is not recursive and thus its encoding may be safely used whenever
+/// the type is encountered.
+///
+/// A Recursive entry will have all of its sub-members expanded as fully as
+/// possible. The type itself is recursive and it may contain other types which
+/// are recursive. The Recursive encoding must not be used during the expansion
+/// of a recursive type's recursive branch. For simplicity the code uses
+/// IncompleteCount to reject all usage of Recursive encodings for member types.
+///
+/// An Incomplete entry is always a RecordType and only encodes its
+/// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
+/// are placed into the cache during type expansion as a means to identify and
+/// handle recursive inclusion of types as sub-members. If there is recursion
+/// the entry becomes IncompleteUsed.
+///
+/// During the expansion of a RecordType's members:
+///
+/// If the cache contains a NonRecursive encoding for the member type, the
+/// cached encoding is used;
+///
+/// If the cache contains a Recursive encoding for the member type, the
+/// cached encoding is 'Swapped' out, as it may be incorrect, and...
+///
+/// If the member is a RecordType, an Incomplete encoding is placed into the
+/// cache to break potential recursive inclusion of itself as a sub-member;
+///
+/// Once a member RecordType has been expanded, its temporary incomplete
+/// entry is removed from the cache. If a Recursive encoding was swapped out
+/// it is swapped back in;
+///
+/// If an incomplete entry is used to expand a sub-member, the incomplete
+/// entry is marked as IncompleteUsed. The cache keeps count of how many
+/// IncompleteUsed entries it currently contains in IncompleteUsedCount;
+///
+/// If a member's encoding is found to be a NonRecursive or Recursive viz:
+/// IncompleteUsedCount==0, the member's encoding is added to the cache.
+/// Else the member is part of a recursive type and thus the recursion has
+/// been exited too soon for the encoding to be correct for the member.
+///
+class TypeStringCache {
+ enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
+ struct Entry {
+ std::string Str; // The encoded TypeString for the type.
+ enum Status State; // Information about the encoding in 'Str'.
+ std::string Swapped; // A temporary place holder for a Recursive encoding
+ // during the expansion of RecordType's members.
+ };
+ std::map<const IdentifierInfo *, struct Entry> Map;
+ unsigned IncompleteCount; // Number of Incomplete entries in the Map.
+ unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
+public:
+ TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {};
+ void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
+ bool removeIncomplete(const IdentifierInfo *ID);
+ void addIfComplete(const IdentifierInfo *ID, StringRef Str,
+ bool IsRecursive);
+ StringRef lookupStr(const IdentifierInfo *ID);
+};
+
+/// TypeString encodings for enum & union fields must be order.
+/// FieldEncoding is a helper for this ordering process.
+class FieldEncoding {
+ bool HasName;
+ std::string Enc;
+public:
+ FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {};
+ StringRef str() {return Enc.c_str();};
+ bool operator<(const FieldEncoding &rhs) const {
+ if (HasName != rhs.HasName) return HasName;
+ return Enc < rhs.Enc;
+ }
+};
+
+class XCoreABIInfo : public DefaultABIInfo {
+public:
+ XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
+ llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const override;
+};
+
+class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
+ mutable TypeStringCache TSC;
+public:
+ XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
+ :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
+ void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &M) const override;
+};
+
+} // End anonymous namespace.
+
+llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const {
+ CGBuilderTy &Builder = CGF.Builder;
+
+ // Get the VAList.
+ llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr,
+ CGF.Int8PtrPtrTy);
+ llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP);
+
+ // Handle the argument.
+ ABIArgInfo AI = classifyArgumentType(Ty);
+ llvm::Type *ArgTy = CGT.ConvertType(Ty);
+ if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
+ AI.setCoerceToType(ArgTy);
+ llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
+ llvm::Value *Val;
+ uint64_t ArgSize = 0;
+ switch (AI.getKind()) {
+ case ABIArgInfo::Expand:
+ case ABIArgInfo::InAlloca:
+ llvm_unreachable("Unsupported ABI kind for va_arg");
+ case ABIArgInfo::Ignore:
+ Val = llvm::UndefValue::get(ArgPtrTy);
+ ArgSize = 0;
+ break;
+ case ABIArgInfo::Extend:
+ case ABIArgInfo::Direct:
+ Val = Builder.CreatePointerCast(AP, ArgPtrTy);
+ ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
+ if (ArgSize < 4)
+ ArgSize = 4;
+ break;
+ case ABIArgInfo::Indirect:
+ llvm::Value *ArgAddr;
+ ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy));
+ ArgAddr = Builder.CreateLoad(ArgAddr);
+ Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy);
+ ArgSize = 4;
+ break;
+ }
+
+ // Increment the VAList.
+ if (ArgSize) {
+ llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize);
+ Builder.CreateStore(APN, VAListAddrAsBPP);
+ }
+ return Val;
+}
+
+/// During the expansion of a RecordType, an incomplete TypeString is placed
+/// into the cache as a means to identify and break recursion.
+/// If there is a Recursive encoding in the cache, it is swapped out and will
+/// be reinserted by removeIncomplete().
+/// All other types of encoding should have been used rather than arriving here.
+void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
+ std::string StubEnc) {
+ if (!ID)
+ return;
+ Entry &E = Map[ID];
+ assert( (E.Str.empty() || E.State == Recursive) &&
+ "Incorrectly use of addIncomplete");
+ assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
+ E.Swapped.swap(E.Str); // swap out the Recursive
+ E.Str.swap(StubEnc);
+ E.State = Incomplete;
+ ++IncompleteCount;
+}
+
+/// Once the RecordType has been expanded, the temporary incomplete TypeString
+/// must be removed from the cache.
+/// If a Recursive was swapped out by addIncomplete(), it will be replaced.
+/// Returns true if the RecordType was defined recursively.
+bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
+ if (!ID)
+ return false;
+ auto I = Map.find(ID);
+ assert(I != Map.end() && "Entry not present");
+ Entry &E = I->second;
+ assert( (E.State == Incomplete ||
+ E.State == IncompleteUsed) &&
+ "Entry must be an incomplete type");
+ bool IsRecursive = false;
+ if (E.State == IncompleteUsed) {
+ // We made use of our Incomplete encoding, thus we are recursive.
+ IsRecursive = true;
+ --IncompleteUsedCount;
+ }
+ if (E.Swapped.empty())
+ Map.erase(I);
+ else {
+ // Swap the Recursive back.
+ E.Swapped.swap(E.Str);
+ E.Swapped.clear();
+ E.State = Recursive;
+ }
+ --IncompleteCount;
+ return IsRecursive;
+}
+
+/// Add the encoded TypeString to the cache only if it is NonRecursive or
+/// Recursive (viz: all sub-members were expanded as fully as possible).
+void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
+ bool IsRecursive) {
+ if (!ID || IncompleteUsedCount)
+ return; // No key or it is is an incomplete sub-type so don't add.
+ Entry &E = Map[ID];
+ if (IsRecursive && !E.Str.empty()) {
+ assert(E.State==Recursive && E.Str.size() == Str.size() &&
+ "This is not the same Recursive entry");
+ // The parent container was not recursive after all, so we could have used
+ // this Recursive sub-member entry after all, but we assumed the worse when
+ // we started viz: IncompleteCount!=0.
+ return;
+ }
+ assert(E.Str.empty() && "Entry already present");
+ E.Str = Str.str();
+ E.State = IsRecursive? Recursive : NonRecursive;
+}
+
+/// Return a cached TypeString encoding for the ID. If there isn't one, or we
+/// are recursively expanding a type (IncompleteCount != 0) and the cached
+/// encoding is Recursive, return an empty StringRef.
+StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
+ if (!ID)
+ return StringRef(); // We have no key.
+ auto I = Map.find(ID);
+ if (I == Map.end())
+ return StringRef(); // We have no encoding.
+ Entry &E = I->second;
+ if (E.State == Recursive && IncompleteCount)
+ return StringRef(); // We don't use Recursive encodings for member types.
+
+ if (E.State == Incomplete) {
+ // The incomplete type is being used to break out of recursion.
+ E.State = IncompleteUsed;
+ ++IncompleteUsedCount;
+ }
+ return E.Str.c_str();
+}
+
+/// The XCore ABI includes a type information section that communicates symbol
+/// type information to the linker. The linker uses this information to verify
+/// safety/correctness of things such as array bound and pointers et al.
+/// The ABI only requires C (and XC) language modules to emit TypeStrings.
+/// This type information (TypeString) is emitted into meta data for all global
+/// symbols: definitions, declarations, functions & variables.
+///
+/// The TypeString carries type, qualifier, name, size & value details.
+/// Please see 'Tools Development Guide' section 2.16.2 for format details:
+/// <https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf>
+/// The output is tested by test/CodeGen/xcore-stringtype.c.
+///
+static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
+ CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
+
+/// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
+void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &CGM) const {
+ SmallStringEnc Enc;
+ if (getTypeString(Enc, D, CGM, TSC)) {
+ llvm::LLVMContext &Ctx = CGM.getModule().getContext();
+ llvm::SmallVector<llvm::Value *, 2> MDVals;
+ MDVals.push_back(GV);
+ MDVals.push_back(llvm::MDString::get(Ctx, Enc.str()));
+ llvm::NamedMDNode *MD =
+ CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
+ MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
+ }
+}
+
+static bool appendType(SmallStringEnc &Enc, QualType QType,
+ const CodeGen::CodeGenModule &CGM,
+ TypeStringCache &TSC);
+
+/// Helper function for appendRecordType().
+/// Builds a SmallVector containing the encoded field types in declaration order.
+static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
+ const RecordDecl *RD,
+ const CodeGen::CodeGenModule &CGM,
+ TypeStringCache &TSC) {
+ for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
+ I != E; ++I) {
+ SmallStringEnc Enc;
+ Enc += "m(";
+ Enc += I->getName();
+ Enc += "){";
+ if (I->isBitField()) {
+ Enc += "b(";
+ llvm::raw_svector_ostream OS(Enc);
+ OS.resync();
+ OS << I->getBitWidthValue(CGM.getContext());
+ OS.flush();
+ Enc += ':';
+ }
+ if (!appendType(Enc, I->getType(), CGM, TSC))
+ return false;
+ if (I->isBitField())
+ Enc += ')';
+ Enc += '}';
+ FE.push_back(FieldEncoding(!I->getName().empty(), Enc));
+ }
+ return true;
+}
+
+/// Appends structure and union types to Enc and adds encoding to cache.
+/// Recursively calls appendType (via extractFieldType) for each field.
+/// Union types have their fields ordered according to the ABI.
+static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
+ const CodeGen::CodeGenModule &CGM,
+ TypeStringCache &TSC, const IdentifierInfo *ID) {
+ // Append the cached TypeString if we have one.
+ StringRef TypeString = TSC.lookupStr(ID);
+ if (!TypeString.empty()) {
+ Enc += TypeString;
+ return true;
+ }
+
+ // Start to emit an incomplete TypeString.
+ size_t Start = Enc.size();
+ Enc += (RT->isUnionType()? 'u' : 's');
+ Enc += '(';
+ if (ID)
+ Enc += ID->getName();
+ Enc += "){";
+
+ // We collect all encoded fields and order as necessary.
+ bool IsRecursive = false;
+ const RecordDecl *RD = RT->getDecl()->getDefinition();
+ if (RD && !RD->field_empty()) {
+ // An incomplete TypeString stub is placed in the cache for this RecordType
+ // so that recursive calls to this RecordType will use it whilst building a
+ // complete TypeString for this RecordType.
+ SmallVector<FieldEncoding, 16> FE;
+ std::string StubEnc(Enc.substr(Start).str());
+ StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString.
+ TSC.addIncomplete(ID, std::move(StubEnc));
+ if (!extractFieldType(FE, RD, CGM, TSC)) {
+ (void) TSC.removeIncomplete(ID);
+ return false;
+ }
+ IsRecursive = TSC.removeIncomplete(ID);
+ // The ABI requires unions to be sorted but not structures.
+ // See FieldEncoding::operator< for sort algorithm.
+ if (RT->isUnionType())
+ std::sort(FE.begin(), FE.end());
+ // We can now complete the TypeString.
+ unsigned E = FE.size();
+ for (unsigned I = 0; I != E; ++I) {
+ if (I)
+ Enc += ',';
+ Enc += FE[I].str();
+ }
+ }
+ Enc += '}';
+ TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
+ return true;
+}
+
+/// Appends enum types to Enc and adds the encoding to the cache.
+static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
+ TypeStringCache &TSC,
+ const IdentifierInfo *ID) {
+ // Append the cached TypeString if we have one.
+ StringRef TypeString = TSC.lookupStr(ID);
+ if (!TypeString.empty()) {
+ Enc += TypeString;
+ return true;
+ }
+
+ size_t Start = Enc.size();
+ Enc += "e(";
+ if (ID)
+ Enc += ID->getName();
+ Enc += "){";
+
+ // We collect all encoded enumerations and order them alphanumerically.
+ if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
+ SmallVector<FieldEncoding, 16> FE;
+ for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
+ ++I) {
+ SmallStringEnc EnumEnc;
+ EnumEnc += "m(";
+ EnumEnc += I->getName();
+ EnumEnc += "){";
+ I->getInitVal().toString(EnumEnc);
+ EnumEnc += '}';
+ FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
+ }
+ std::sort(FE.begin(), FE.end());
+ unsigned E = FE.size();
+ for (unsigned I = 0; I != E; ++I) {
+ if (I)
+ Enc += ',';
+ Enc += FE[I].str();
+ }
+ }
+ Enc += '}';
+ TSC.addIfComplete(ID, Enc.substr(Start), false);
+ return true;
+}
+
+/// Appends type's qualifier to Enc.
+/// This is done prior to appending the type's encoding.
+static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
+ // Qualifiers are emitted in alphabetical order.
+ static const char *Table[] = {"","c:","r:","cr:","v:","cv:","rv:","crv:"};
+ int Lookup = 0;
+ if (QT.isConstQualified())
+ Lookup += 1<<0;
+ if (QT.isRestrictQualified())
+ Lookup += 1<<1;
+ if (QT.isVolatileQualified())
+ Lookup += 1<<2;
+ Enc += Table[Lookup];
+}
+
+/// Appends built-in types to Enc.
+static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
+ const char *EncType;
+ switch (BT->getKind()) {
+ case BuiltinType::Void:
+ EncType = "0";
+ break;
+ case BuiltinType::Bool:
+ EncType = "b";
+ break;
+ case BuiltinType::Char_U:
+ EncType = "uc";
+ break;
+ case BuiltinType::UChar:
+ EncType = "uc";
+ break;
+ case BuiltinType::SChar:
+ EncType = "sc";
+ break;
+ case BuiltinType::UShort:
+ EncType = "us";
+ break;
+ case BuiltinType::Short:
+ EncType = "ss";
+ break;
+ case BuiltinType::UInt:
+ EncType = "ui";
+ break;
+ case BuiltinType::Int:
+ EncType = "si";
+ break;
+ case BuiltinType::ULong:
+ EncType = "ul";
+ break;
+ case BuiltinType::Long:
+ EncType = "sl";
+ break;
+ case BuiltinType::ULongLong:
+ EncType = "ull";
+ break;
+ case BuiltinType::LongLong:
+ EncType = "sll";
+ break;
+ case BuiltinType::Float:
+ EncType = "ft";
+ break;
+ case BuiltinType::Double:
+ EncType = "d";
+ break;
+ case BuiltinType::LongDouble:
+ EncType = "ld";
+ break;
+ default:
+ return false;
+ }
+ Enc += EncType;
+ return true;
+}
+
+/// Appends a pointer encoding to Enc before calling appendType for the pointee.
+static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
+ const CodeGen::CodeGenModule &CGM,
+ TypeStringCache &TSC) {
+ Enc += "p(";
+ if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
+ return false;
+ Enc += ')';
+ return true;
+}
+
+/// Appends array encoding to Enc before calling appendType for the element.
+static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
+ const ArrayType *AT,
+ const CodeGen::CodeGenModule &CGM,
+ TypeStringCache &TSC, StringRef NoSizeEnc) {
+ if (AT->getSizeModifier() != ArrayType::Normal)
+ return false;
+ Enc += "a(";
+ if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
+ CAT->getSize().toStringUnsigned(Enc);
+ else
+ Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
+ Enc += ':';
+ // The Qualifiers should be attached to the type rather than the array.
+ appendQualifier(Enc, QT);
+ if (!appendType(Enc, AT->getElementType(), CGM, TSC))
+ return false;
+ Enc += ')';
+ return true;
+}
+
+/// Appends a function encoding to Enc, calling appendType for the return type
+/// and the arguments.
+static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
+ const CodeGen::CodeGenModule &CGM,
+ TypeStringCache &TSC) {
+ Enc += "f{";
+ if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
+ return false;
+ Enc += "}(";
+ if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
+ // N.B. we are only interested in the adjusted param types.
+ auto I = FPT->param_type_begin();
+ auto E = FPT->param_type_end();
+ if (I != E) {
+ do {
+ if (!appendType(Enc, *I, CGM, TSC))
+ return false;
+ ++I;
+ if (I != E)
+ Enc += ',';
+ } while (I != E);
+ if (FPT->isVariadic())
+ Enc += ",va";
+ } else {
+ if (FPT->isVariadic())
+ Enc += "va";
+ else
+ Enc += '0';
+ }
+ }
+ Enc += ')';
+ return true;
+}
+
+/// Handles the type's qualifier before dispatching a call to handle specific
+/// type encodings.
+static bool appendType(SmallStringEnc &Enc, QualType QType,
+ const CodeGen::CodeGenModule &CGM,
+ TypeStringCache &TSC) {
+
+ QualType QT = QType.getCanonicalType();
+
+ if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
+ // The Qualifiers should be attached to the type rather than the array.
+ // Thus we don't call appendQualifier() here.
+ return appendArrayType(Enc, QT, AT, CGM, TSC, "");
+
+ appendQualifier(Enc, QT);
+
+ if (const BuiltinType *BT = QT->getAs<BuiltinType>())
+ return appendBuiltinType(Enc, BT);
+
+ if (const PointerType *PT = QT->getAs<PointerType>())
+ return appendPointerType(Enc, PT, CGM, TSC);
+
+ if (const EnumType *ET = QT->getAs<EnumType>())
+ return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
+
+ if (const RecordType *RT = QT->getAsStructureType())
+ return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
+
+ if (const RecordType *RT = QT->getAsUnionType())
+ return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
+
+ if (const FunctionType *FT = QT->getAs<FunctionType>())
+ return appendFunctionType(Enc, FT, CGM, TSC);
+
+ return false;
+}
+
+static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
+ CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
+ if (!D)
+ return false;
+
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ if (FD->getLanguageLinkage() != CLanguageLinkage)
+ return false;
+ return appendType(Enc, FD->getType(), CGM, TSC);
+ }
+
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
+ if (VD->getLanguageLinkage() != CLanguageLinkage)
+ return false;
+ QualType QT = VD->getType().getCanonicalType();
+ if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
+ // Global ArrayTypes are given a size of '*' if the size is unknown.
+ // The Qualifiers should be attached to the type rather than the array.
+ // Thus we don't call appendQualifier() here.
+ return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
+ }
+ return appendType(Enc, QT, CGM, TSC);
+ }
+ return false;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Driver code
+//===----------------------------------------------------------------------===//
+
+const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
+ if (TheTargetCodeGenInfo)
+ return *TheTargetCodeGenInfo;
+
+ const llvm::Triple &Triple = getTarget().getTriple();
+ switch (Triple.getArch()) {
+ default:
+ return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
+
+ case llvm::Triple::le32:
+ return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
+ case llvm::Triple::mips:
+ case llvm::Triple::mipsel:
+ return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
+
+ case llvm::Triple::mips64:
+ case llvm::Triple::mips64el:
+ return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
+
+ case llvm::Triple::aarch64:
+ case llvm::Triple::aarch64_be:
+ case llvm::Triple::arm64:
+ case llvm::Triple::arm64_be: {
+ AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
+ if (getTarget().getABI() == "darwinpcs")
+ Kind = AArch64ABIInfo::DarwinPCS;
+
+ return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind));
+ }
+
+ case llvm::Triple::arm:
+ case llvm::Triple::armeb:
+ case llvm::Triple::thumb:
+ case llvm::Triple::thumbeb:
+ {
+ ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
+ if (getTarget().getABI() == "apcs-gnu")
+ Kind = ARMABIInfo::APCS;
+ else if (CodeGenOpts.FloatABI == "hard" ||
+ (CodeGenOpts.FloatABI != "soft" &&
+ Triple.getEnvironment() == llvm::Triple::GNUEABIHF))
+ Kind = ARMABIInfo::AAPCS_VFP;
+
+ switch (Triple.getOS()) {
+ case llvm::Triple::NaCl:
+ return *(TheTargetCodeGenInfo =
+ new NaClARMTargetCodeGenInfo(Types, Kind));
+ default:
+ return *(TheTargetCodeGenInfo =
+ new ARMTargetCodeGenInfo(Types, Kind));
+ }
+ }
+
+ case llvm::Triple::ppc:
+ return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
+ case llvm::Triple::ppc64:
+ if (Triple.isOSBinFormatELF()) {
+ // FIXME: Should be switchable via command-line option.
+ PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
+ return *(TheTargetCodeGenInfo =
+ new PPC64_SVR4_TargetCodeGenInfo(Types, Kind));
+ } else
+ return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
+ case llvm::Triple::ppc64le: {
+ assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
+ // FIXME: Should be switchable via command-line option.
+ PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
+ return *(TheTargetCodeGenInfo =
+ new PPC64_SVR4_TargetCodeGenInfo(Types, Kind));
+ }
+
+ case llvm::Triple::nvptx:
+ case llvm::Triple::nvptx64:
+ return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
+
+ case llvm::Triple::msp430:
+ return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
+
+ case llvm::Triple::systemz:
+ return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
+
+ case llvm::Triple::tce:
+ return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
+
+ case llvm::Triple::x86: {
+ bool IsDarwinVectorABI = Triple.isOSDarwin();
+ bool IsSmallStructInRegABI =
+ X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
+ bool IsWin32FloatStructABI = Triple.isWindowsMSVCEnvironment();
+
+ if (Triple.getOS() == llvm::Triple::Win32) {
+ return *(TheTargetCodeGenInfo =
+ new WinX86_32TargetCodeGenInfo(Types,
+ IsDarwinVectorABI, IsSmallStructInRegABI,
+ IsWin32FloatStructABI,
+ CodeGenOpts.NumRegisterParameters));
+ } else {
+ return *(TheTargetCodeGenInfo =
+ new X86_32TargetCodeGenInfo(Types,
+ IsDarwinVectorABI, IsSmallStructInRegABI,
+ IsWin32FloatStructABI,
+ CodeGenOpts.NumRegisterParameters));
+ }
+ }
+
+ case llvm::Triple::x86_64: {
+ bool HasAVX = getTarget().getABI() == "avx";
+
+ switch (Triple.getOS()) {
+ case llvm::Triple::Win32:
+ return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
+ case llvm::Triple::NaCl:
+ return *(TheTargetCodeGenInfo = new NaClX86_64TargetCodeGenInfo(Types,
+ HasAVX));
+ default:
+ return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types,
+ HasAVX));
+ }
+ }
+ case llvm::Triple::hexagon:
+ return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
+ case llvm::Triple::sparcv9:
+ return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types));
+ case llvm::Triple::xcore:
+ return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types));
+ }
+}
OpenPOWER on IntegriCloud