diff options
Diffstat (limited to 'contrib/llvm/tools/clang/lib/CodeGen/TargetInfo.cpp')
-rw-r--r-- | contrib/llvm/tools/clang/lib/CodeGen/TargetInfo.cpp | 6860 |
1 files changed, 6860 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/TargetInfo.cpp b/contrib/llvm/tools/clang/lib/CodeGen/TargetInfo.cpp new file mode 100644 index 0000000..5da22c3 --- /dev/null +++ b/contrib/llvm/tools/clang/lib/CodeGen/TargetInfo.cpp @@ -0,0 +1,6860 @@ +//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// These classes wrap the information about a call or function +// definition used to handle ABI compliancy. +// +//===----------------------------------------------------------------------===// + +#include "TargetInfo.h" +#include "ABIInfo.h" +#include "CGCXXABI.h" +#include "CodeGenFunction.h" +#include "clang/AST/RecordLayout.h" +#include "clang/CodeGen/CGFunctionInfo.h" +#include "clang/Frontend/CodeGenOptions.h" +#include "llvm/ADT/Triple.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Type.h" +#include "llvm/Support/raw_ostream.h" + +#include <algorithm> // std::sort + +using namespace clang; +using namespace CodeGen; + +static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, + llvm::Value *Array, + llvm::Value *Value, + unsigned FirstIndex, + unsigned LastIndex) { + // Alternatively, we could emit this as a loop in the source. + for (unsigned I = FirstIndex; I <= LastIndex; ++I) { + llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I); + Builder.CreateStore(Value, Cell); + } +} + +static bool isAggregateTypeForABI(QualType T) { + return !CodeGenFunction::hasScalarEvaluationKind(T) || + T->isMemberFunctionPointerType(); +} + +ABIInfo::~ABIInfo() {} + +static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, + CGCXXABI &CXXABI) { + const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); + if (!RD) + return CGCXXABI::RAA_Default; + return CXXABI.getRecordArgABI(RD); +} + +static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, + CGCXXABI &CXXABI) { + const RecordType *RT = T->getAs<RecordType>(); + if (!RT) + return CGCXXABI::RAA_Default; + return getRecordArgABI(RT, CXXABI); +} + +CGCXXABI &ABIInfo::getCXXABI() const { + return CGT.getCXXABI(); +} + +ASTContext &ABIInfo::getContext() const { + return CGT.getContext(); +} + +llvm::LLVMContext &ABIInfo::getVMContext() const { + return CGT.getLLVMContext(); +} + +const llvm::DataLayout &ABIInfo::getDataLayout() const { + return CGT.getDataLayout(); +} + +const TargetInfo &ABIInfo::getTarget() const { + return CGT.getTarget(); +} + +void ABIArgInfo::dump() const { + raw_ostream &OS = llvm::errs(); + OS << "(ABIArgInfo Kind="; + switch (TheKind) { + case Direct: + OS << "Direct Type="; + if (llvm::Type *Ty = getCoerceToType()) + Ty->print(OS); + else + OS << "null"; + break; + case Extend: + OS << "Extend"; + break; + case Ignore: + OS << "Ignore"; + break; + case InAlloca: + OS << "InAlloca Offset=" << getInAllocaFieldIndex(); + break; + case Indirect: + OS << "Indirect Align=" << getIndirectAlign() + << " ByVal=" << getIndirectByVal() + << " Realign=" << getIndirectRealign(); + break; + case Expand: + OS << "Expand"; + break; + } + OS << ")\n"; +} + +TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } + +// If someone can figure out a general rule for this, that would be great. +// It's probably just doomed to be platform-dependent, though. +unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { + // Verified for: + // x86-64 FreeBSD, Linux, Darwin + // x86-32 FreeBSD, Linux, Darwin + // PowerPC Linux, Darwin + // ARM Darwin (*not* EABI) + // AArch64 Linux + return 32; +} + +bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, + const FunctionNoProtoType *fnType) const { + // The following conventions are known to require this to be false: + // x86_stdcall + // MIPS + // For everything else, we just prefer false unless we opt out. + return false; +} + +void +TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, + llvm::SmallString<24> &Opt) const { + // This assumes the user is passing a library name like "rt" instead of a + // filename like "librt.a/so", and that they don't care whether it's static or + // dynamic. + Opt = "-l"; + Opt += Lib; +} + +static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); + +/// isEmptyField - Return true iff a the field is "empty", that is it +/// is an unnamed bit-field or an (array of) empty record(s). +static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, + bool AllowArrays) { + if (FD->isUnnamedBitfield()) + return true; + + QualType FT = FD->getType(); + + // Constant arrays of empty records count as empty, strip them off. + // Constant arrays of zero length always count as empty. + if (AllowArrays) + while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { + if (AT->getSize() == 0) + return true; + FT = AT->getElementType(); + } + + const RecordType *RT = FT->getAs<RecordType>(); + if (!RT) + return false; + + // C++ record fields are never empty, at least in the Itanium ABI. + // + // FIXME: We should use a predicate for whether this behavior is true in the + // current ABI. + if (isa<CXXRecordDecl>(RT->getDecl())) + return false; + + return isEmptyRecord(Context, FT, AllowArrays); +} + +/// isEmptyRecord - Return true iff a structure contains only empty +/// fields. Note that a structure with a flexible array member is not +/// considered empty. +static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { + const RecordType *RT = T->getAs<RecordType>(); + if (!RT) + return 0; + const RecordDecl *RD = RT->getDecl(); + if (RD->hasFlexibleArrayMember()) + return false; + + // If this is a C++ record, check the bases first. + if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) + for (const auto &I : CXXRD->bases()) + if (!isEmptyRecord(Context, I.getType(), true)) + return false; + + for (const auto *I : RD->fields()) + if (!isEmptyField(Context, I, AllowArrays)) + return false; + return true; +} + +/// isSingleElementStruct - Determine if a structure is a "single +/// element struct", i.e. it has exactly one non-empty field or +/// exactly one field which is itself a single element +/// struct. Structures with flexible array members are never +/// considered single element structs. +/// +/// \return The field declaration for the single non-empty field, if +/// it exists. +static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { + const RecordType *RT = T->getAsStructureType(); + if (!RT) + return nullptr; + + const RecordDecl *RD = RT->getDecl(); + if (RD->hasFlexibleArrayMember()) + return nullptr; + + const Type *Found = nullptr; + + // If this is a C++ record, check the bases first. + if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { + for (const auto &I : CXXRD->bases()) { + // Ignore empty records. + if (isEmptyRecord(Context, I.getType(), true)) + continue; + + // If we already found an element then this isn't a single-element struct. + if (Found) + return nullptr; + + // If this is non-empty and not a single element struct, the composite + // cannot be a single element struct. + Found = isSingleElementStruct(I.getType(), Context); + if (!Found) + return nullptr; + } + } + + // Check for single element. + for (const auto *FD : RD->fields()) { + QualType FT = FD->getType(); + + // Ignore empty fields. + if (isEmptyField(Context, FD, true)) + continue; + + // If we already found an element then this isn't a single-element + // struct. + if (Found) + return nullptr; + + // Treat single element arrays as the element. + while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { + if (AT->getSize().getZExtValue() != 1) + break; + FT = AT->getElementType(); + } + + if (!isAggregateTypeForABI(FT)) { + Found = FT.getTypePtr(); + } else { + Found = isSingleElementStruct(FT, Context); + if (!Found) + return nullptr; + } + } + + // We don't consider a struct a single-element struct if it has + // padding beyond the element type. + if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) + return nullptr; + + return Found; +} + +static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { + // Treat complex types as the element type. + if (const ComplexType *CTy = Ty->getAs<ComplexType>()) + Ty = CTy->getElementType(); + + // Check for a type which we know has a simple scalar argument-passing + // convention without any padding. (We're specifically looking for 32 + // and 64-bit integer and integer-equivalents, float, and double.) + if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && + !Ty->isEnumeralType() && !Ty->isBlockPointerType()) + return false; + + uint64_t Size = Context.getTypeSize(Ty); + return Size == 32 || Size == 64; +} + +/// canExpandIndirectArgument - Test whether an argument type which is to be +/// passed indirectly (on the stack) would have the equivalent layout if it was +/// expanded into separate arguments. If so, we prefer to do the latter to avoid +/// inhibiting optimizations. +/// +// FIXME: This predicate is missing many cases, currently it just follows +// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We +// should probably make this smarter, or better yet make the LLVM backend +// capable of handling it. +static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) { + // We can only expand structure types. + const RecordType *RT = Ty->getAs<RecordType>(); + if (!RT) + return false; + + // We can only expand (C) structures. + // + // FIXME: This needs to be generalized to handle classes as well. + const RecordDecl *RD = RT->getDecl(); + if (!RD->isStruct() || isa<CXXRecordDecl>(RD)) + return false; + + uint64_t Size = 0; + + for (const auto *FD : RD->fields()) { + if (!is32Or64BitBasicType(FD->getType(), Context)) + return false; + + // FIXME: Reject bit-fields wholesale; there are two problems, we don't know + // how to expand them yet, and the predicate for telling if a bitfield still + // counts as "basic" is more complicated than what we were doing previously. + if (FD->isBitField()) + return false; + + Size += Context.getTypeSize(FD->getType()); + } + + // Make sure there are not any holes in the struct. + if (Size != Context.getTypeSize(Ty)) + return false; + + return true; +} + +namespace { +/// DefaultABIInfo - The default implementation for ABI specific +/// details. This implementation provides information which results in +/// self-consistent and sensible LLVM IR generation, but does not +/// conform to any particular ABI. +class DefaultABIInfo : public ABIInfo { +public: + DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} + + ABIArgInfo classifyReturnType(QualType RetTy) const; + ABIArgInfo classifyArgumentType(QualType RetTy) const; + + void computeInfo(CGFunctionInfo &FI) const override { + if (!getCXXABI().classifyReturnType(FI)) + FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); + for (auto &I : FI.arguments()) + I.info = classifyArgumentType(I.type); + } + + llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const override; +}; + +class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { +public: + DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) + : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} +}; + +llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const { + return nullptr; +} + +ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { + if (isAggregateTypeForABI(Ty)) + return ABIArgInfo::getIndirect(0); + + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = Ty->getAs<EnumType>()) + Ty = EnumTy->getDecl()->getIntegerType(); + + return (Ty->isPromotableIntegerType() ? + ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); +} + +ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { + if (RetTy->isVoidType()) + return ABIArgInfo::getIgnore(); + + if (isAggregateTypeForABI(RetTy)) + return ABIArgInfo::getIndirect(0); + + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) + RetTy = EnumTy->getDecl()->getIntegerType(); + + return (RetTy->isPromotableIntegerType() ? + ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); +} + +//===----------------------------------------------------------------------===// +// le32/PNaCl bitcode ABI Implementation +// +// This is a simplified version of the x86_32 ABI. Arguments and return values +// are always passed on the stack. +//===----------------------------------------------------------------------===// + +class PNaClABIInfo : public ABIInfo { + public: + PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} + + ABIArgInfo classifyReturnType(QualType RetTy) const; + ABIArgInfo classifyArgumentType(QualType RetTy) const; + + void computeInfo(CGFunctionInfo &FI) const override; + llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const override; +}; + +class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { + public: + PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) + : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} +}; + +void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { + if (!getCXXABI().classifyReturnType(FI)) + FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); + + for (auto &I : FI.arguments()) + I.info = classifyArgumentType(I.type); +} + +llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const { + return nullptr; +} + +/// \brief Classify argument of given type \p Ty. +ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { + if (isAggregateTypeForABI(Ty)) { + if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) + return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); + return ABIArgInfo::getIndirect(0); + } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { + // Treat an enum type as its underlying type. + Ty = EnumTy->getDecl()->getIntegerType(); + } else if (Ty->isFloatingType()) { + // Floating-point types don't go inreg. + return ABIArgInfo::getDirect(); + } + + return (Ty->isPromotableIntegerType() ? + ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); +} + +ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { + if (RetTy->isVoidType()) + return ABIArgInfo::getIgnore(); + + // In the PNaCl ABI we always return records/structures on the stack. + if (isAggregateTypeForABI(RetTy)) + return ABIArgInfo::getIndirect(0); + + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) + RetTy = EnumTy->getDecl()->getIntegerType(); + + return (RetTy->isPromotableIntegerType() ? + ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); +} + +/// IsX86_MMXType - Return true if this is an MMX type. +bool IsX86_MMXType(llvm::Type *IRType) { + // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. + return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && + cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && + IRType->getScalarSizeInBits() != 64; +} + +static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, + StringRef Constraint, + llvm::Type* Ty) { + if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) { + if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { + // Invalid MMX constraint + return nullptr; + } + + return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); + } + + // No operation needed + return Ty; +} + +//===----------------------------------------------------------------------===// +// X86-32 ABI Implementation +//===----------------------------------------------------------------------===// + +/// \brief Similar to llvm::CCState, but for Clang. +struct CCState { + CCState(unsigned CC) : CC(CC), FreeRegs(0) {} + + unsigned CC; + unsigned FreeRegs; + unsigned StackOffset; + bool UseInAlloca; +}; + +/// X86_32ABIInfo - The X86-32 ABI information. +class X86_32ABIInfo : public ABIInfo { + enum Class { + Integer, + Float + }; + + static const unsigned MinABIStackAlignInBytes = 4; + + bool IsDarwinVectorABI; + bool IsSmallStructInRegABI; + bool IsWin32StructABI; + unsigned DefaultNumRegisterParameters; + + static bool isRegisterSize(unsigned Size) { + return (Size == 8 || Size == 16 || Size == 32 || Size == 64); + } + + bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; + + /// getIndirectResult - Give a source type \arg Ty, return a suitable result + /// such that the argument will be passed in memory. + ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; + + ABIArgInfo getIndirectReturnResult(CCState &State) const; + + /// \brief Return the alignment to use for the given type on the stack. + unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; + + Class classify(QualType Ty) const; + ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; + ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; + bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const; + + /// \brief Rewrite the function info so that all memory arguments use + /// inalloca. + void rewriteWithInAlloca(CGFunctionInfo &FI) const; + + void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, + unsigned &StackOffset, ABIArgInfo &Info, + QualType Type) const; + +public: + + void computeInfo(CGFunctionInfo &FI) const override; + llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const override; + + X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w, + unsigned r) + : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p), + IsWin32StructABI(w), DefaultNumRegisterParameters(r) {} +}; + +class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { +public: + X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, + bool d, bool p, bool w, unsigned r) + :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {} + + static bool isStructReturnInRegABI( + const llvm::Triple &Triple, const CodeGenOptions &Opts); + + void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, + CodeGen::CodeGenModule &CGM) const override; + + int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { + // Darwin uses different dwarf register numbers for EH. + if (CGM.getTarget().getTriple().isOSDarwin()) return 5; + return 4; + } + + bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, + llvm::Value *Address) const override; + + llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, + StringRef Constraint, + llvm::Type* Ty) const override { + return X86AdjustInlineAsmType(CGF, Constraint, Ty); + } + + llvm::Constant * + getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { + unsigned Sig = (0xeb << 0) | // jmp rel8 + (0x06 << 8) | // .+0x08 + ('F' << 16) | + ('T' << 24); + return llvm::ConstantInt::get(CGM.Int32Ty, Sig); + } + +}; + +} + +/// shouldReturnTypeInRegister - Determine if the given type should be +/// passed in a register (for the Darwin ABI). +bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, + ASTContext &Context) const { + uint64_t Size = Context.getTypeSize(Ty); + + // Type must be register sized. + if (!isRegisterSize(Size)) + return false; + + if (Ty->isVectorType()) { + // 64- and 128- bit vectors inside structures are not returned in + // registers. + if (Size == 64 || Size == 128) + return false; + + return true; + } + + // If this is a builtin, pointer, enum, complex type, member pointer, or + // member function pointer it is ok. + if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || + Ty->isAnyComplexType() || Ty->isEnumeralType() || + Ty->isBlockPointerType() || Ty->isMemberPointerType()) + return true; + + // Arrays are treated like records. + if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) + return shouldReturnTypeInRegister(AT->getElementType(), Context); + + // Otherwise, it must be a record type. + const RecordType *RT = Ty->getAs<RecordType>(); + if (!RT) return false; + + // FIXME: Traverse bases here too. + + // Structure types are passed in register if all fields would be + // passed in a register. + for (const auto *FD : RT->getDecl()->fields()) { + // Empty fields are ignored. + if (isEmptyField(Context, FD, true)) + continue; + + // Check fields recursively. + if (!shouldReturnTypeInRegister(FD->getType(), Context)) + return false; + } + return true; +} + +ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(CCState &State) const { + // If the return value is indirect, then the hidden argument is consuming one + // integer register. + if (State.FreeRegs) { + --State.FreeRegs; + return ABIArgInfo::getIndirectInReg(/*Align=*/0, /*ByVal=*/false); + } + return ABIArgInfo::getIndirect(/*Align=*/0, /*ByVal=*/false); +} + +ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, CCState &State) const { + if (RetTy->isVoidType()) + return ABIArgInfo::getIgnore(); + + if (const VectorType *VT = RetTy->getAs<VectorType>()) { + // On Darwin, some vectors are returned in registers. + if (IsDarwinVectorABI) { + uint64_t Size = getContext().getTypeSize(RetTy); + + // 128-bit vectors are a special case; they are returned in + // registers and we need to make sure to pick a type the LLVM + // backend will like. + if (Size == 128) + return ABIArgInfo::getDirect(llvm::VectorType::get( + llvm::Type::getInt64Ty(getVMContext()), 2)); + + // Always return in register if it fits in a general purpose + // register, or if it is 64 bits and has a single element. + if ((Size == 8 || Size == 16 || Size == 32) || + (Size == 64 && VT->getNumElements() == 1)) + return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), + Size)); + + return getIndirectReturnResult(State); + } + + return ABIArgInfo::getDirect(); + } + + if (isAggregateTypeForABI(RetTy)) { + if (const RecordType *RT = RetTy->getAs<RecordType>()) { + // Structures with flexible arrays are always indirect. + if (RT->getDecl()->hasFlexibleArrayMember()) + return getIndirectReturnResult(State); + } + + // If specified, structs and unions are always indirect. + if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType()) + return getIndirectReturnResult(State); + + // Small structures which are register sized are generally returned + // in a register. + if (shouldReturnTypeInRegister(RetTy, getContext())) { + uint64_t Size = getContext().getTypeSize(RetTy); + + // As a special-case, if the struct is a "single-element" struct, and + // the field is of type "float" or "double", return it in a + // floating-point register. (MSVC does not apply this special case.) + // We apply a similar transformation for pointer types to improve the + // quality of the generated IR. + if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) + if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) + || SeltTy->hasPointerRepresentation()) + return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); + + // FIXME: We should be able to narrow this integer in cases with dead + // padding. + return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); + } + + return getIndirectReturnResult(State); + } + + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) + RetTy = EnumTy->getDecl()->getIntegerType(); + + return (RetTy->isPromotableIntegerType() ? + ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); +} + +static bool isSSEVectorType(ASTContext &Context, QualType Ty) { + return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; +} + +static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { + const RecordType *RT = Ty->getAs<RecordType>(); + if (!RT) + return 0; + const RecordDecl *RD = RT->getDecl(); + + // If this is a C++ record, check the bases first. + if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) + for (const auto &I : CXXRD->bases()) + if (!isRecordWithSSEVectorType(Context, I.getType())) + return false; + + for (const auto *i : RD->fields()) { + QualType FT = i->getType(); + + if (isSSEVectorType(Context, FT)) + return true; + + if (isRecordWithSSEVectorType(Context, FT)) + return true; + } + + return false; +} + +unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, + unsigned Align) const { + // Otherwise, if the alignment is less than or equal to the minimum ABI + // alignment, just use the default; the backend will handle this. + if (Align <= MinABIStackAlignInBytes) + return 0; // Use default alignment. + + // On non-Darwin, the stack type alignment is always 4. + if (!IsDarwinVectorABI) { + // Set explicit alignment, since we may need to realign the top. + return MinABIStackAlignInBytes; + } + + // Otherwise, if the type contains an SSE vector type, the alignment is 16. + if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || + isRecordWithSSEVectorType(getContext(), Ty))) + return 16; + + return MinABIStackAlignInBytes; +} + +ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, + CCState &State) const { + if (!ByVal) { + if (State.FreeRegs) { + --State.FreeRegs; // Non-byval indirects just use one pointer. + return ABIArgInfo::getIndirectInReg(0, false); + } + return ABIArgInfo::getIndirect(0, false); + } + + // Compute the byval alignment. + unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; + unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); + if (StackAlign == 0) + return ABIArgInfo::getIndirect(4, /*ByVal=*/true); + + // If the stack alignment is less than the type alignment, realign the + // argument. + bool Realign = TypeAlign > StackAlign; + return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, Realign); +} + +X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { + const Type *T = isSingleElementStruct(Ty, getContext()); + if (!T) + T = Ty.getTypePtr(); + + if (const BuiltinType *BT = T->getAs<BuiltinType>()) { + BuiltinType::Kind K = BT->getKind(); + if (K == BuiltinType::Float || K == BuiltinType::Double) + return Float; + } + return Integer; +} + +bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State, + bool &NeedsPadding) const { + NeedsPadding = false; + Class C = classify(Ty); + if (C == Float) + return false; + + unsigned Size = getContext().getTypeSize(Ty); + unsigned SizeInRegs = (Size + 31) / 32; + + if (SizeInRegs == 0) + return false; + + if (SizeInRegs > State.FreeRegs) { + State.FreeRegs = 0; + return false; + } + + State.FreeRegs -= SizeInRegs; + + if (State.CC == llvm::CallingConv::X86_FastCall) { + if (Size > 32) + return false; + + if (Ty->isIntegralOrEnumerationType()) + return true; + + if (Ty->isPointerType()) + return true; + + if (Ty->isReferenceType()) + return true; + + if (State.FreeRegs) + NeedsPadding = true; + + return false; + } + + return true; +} + +ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, + CCState &State) const { + // FIXME: Set alignment on indirect arguments. + if (isAggregateTypeForABI(Ty)) { + if (const RecordType *RT = Ty->getAs<RecordType>()) { + // Check with the C++ ABI first. + CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); + if (RAA == CGCXXABI::RAA_Indirect) { + return getIndirectResult(Ty, false, State); + } else if (RAA == CGCXXABI::RAA_DirectInMemory) { + // The field index doesn't matter, we'll fix it up later. + return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); + } + + // Structs are always byval on win32, regardless of what they contain. + if (IsWin32StructABI) + return getIndirectResult(Ty, true, State); + + // Structures with flexible arrays are always indirect. + if (RT->getDecl()->hasFlexibleArrayMember()) + return getIndirectResult(Ty, true, State); + } + + // Ignore empty structs/unions. + if (isEmptyRecord(getContext(), Ty, true)) + return ABIArgInfo::getIgnore(); + + llvm::LLVMContext &LLVMContext = getVMContext(); + llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); + bool NeedsPadding; + if (shouldUseInReg(Ty, State, NeedsPadding)) { + unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; + SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); + llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); + return ABIArgInfo::getDirectInReg(Result); + } + llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; + + // Expand small (<= 128-bit) record types when we know that the stack layout + // of those arguments will match the struct. This is important because the + // LLVM backend isn't smart enough to remove byval, which inhibits many + // optimizations. + if (getContext().getTypeSize(Ty) <= 4*32 && + canExpandIndirectArgument(Ty, getContext())) + return ABIArgInfo::getExpandWithPadding( + State.CC == llvm::CallingConv::X86_FastCall, PaddingType); + + return getIndirectResult(Ty, true, State); + } + + if (const VectorType *VT = Ty->getAs<VectorType>()) { + // On Darwin, some vectors are passed in memory, we handle this by passing + // it as an i8/i16/i32/i64. + if (IsDarwinVectorABI) { + uint64_t Size = getContext().getTypeSize(Ty); + if ((Size == 8 || Size == 16 || Size == 32) || + (Size == 64 && VT->getNumElements() == 1)) + return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), + Size)); + } + + if (IsX86_MMXType(CGT.ConvertType(Ty))) + return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); + + return ABIArgInfo::getDirect(); + } + + + if (const EnumType *EnumTy = Ty->getAs<EnumType>()) + Ty = EnumTy->getDecl()->getIntegerType(); + + bool NeedsPadding; + bool InReg = shouldUseInReg(Ty, State, NeedsPadding); + + if (Ty->isPromotableIntegerType()) { + if (InReg) + return ABIArgInfo::getExtendInReg(); + return ABIArgInfo::getExtend(); + } + if (InReg) + return ABIArgInfo::getDirectInReg(); + return ABIArgInfo::getDirect(); +} + +void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { + CCState State(FI.getCallingConvention()); + if (State.CC == llvm::CallingConv::X86_FastCall) + State.FreeRegs = 2; + else if (FI.getHasRegParm()) + State.FreeRegs = FI.getRegParm(); + else + State.FreeRegs = DefaultNumRegisterParameters; + + if (!getCXXABI().classifyReturnType(FI)) { + FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); + } else if (FI.getReturnInfo().isIndirect()) { + // The C++ ABI is not aware of register usage, so we have to check if the + // return value was sret and put it in a register ourselves if appropriate. + if (State.FreeRegs) { + --State.FreeRegs; // The sret parameter consumes a register. + FI.getReturnInfo().setInReg(true); + } + } + + bool UsedInAlloca = false; + for (auto &I : FI.arguments()) { + I.info = classifyArgumentType(I.type, State); + UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); + } + + // If we needed to use inalloca for any argument, do a second pass and rewrite + // all the memory arguments to use inalloca. + if (UsedInAlloca) + rewriteWithInAlloca(FI); +} + +void +X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, + unsigned &StackOffset, + ABIArgInfo &Info, QualType Type) const { + assert(StackOffset % 4U == 0 && "unaligned inalloca struct"); + Info = ABIArgInfo::getInAlloca(FrameFields.size()); + FrameFields.push_back(CGT.ConvertTypeForMem(Type)); + StackOffset += getContext().getTypeSizeInChars(Type).getQuantity(); + + // Insert padding bytes to respect alignment. For x86_32, each argument is 4 + // byte aligned. + if (StackOffset % 4U) { + unsigned OldOffset = StackOffset; + StackOffset = llvm::RoundUpToAlignment(StackOffset, 4U); + unsigned NumBytes = StackOffset - OldOffset; + assert(NumBytes); + llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); + Ty = llvm::ArrayType::get(Ty, NumBytes); + FrameFields.push_back(Ty); + } +} + +void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { + assert(IsWin32StructABI && "inalloca only supported on win32"); + + // Build a packed struct type for all of the arguments in memory. + SmallVector<llvm::Type *, 6> FrameFields; + + unsigned StackOffset = 0; + + // Put the sret parameter into the inalloca struct if it's in memory. + ABIArgInfo &Ret = FI.getReturnInfo(); + if (Ret.isIndirect() && !Ret.getInReg()) { + CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); + addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); + // On Windows, the hidden sret parameter is always returned in eax. + Ret.setInAllocaSRet(IsWin32StructABI); + } + + // Skip the 'this' parameter in ecx. + CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); + if (FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall) + ++I; + + // Put arguments passed in memory into the struct. + for (; I != E; ++I) { + + // Leave ignored and inreg arguments alone. + switch (I->info.getKind()) { + case ABIArgInfo::Indirect: + assert(I->info.getIndirectByVal()); + break; + case ABIArgInfo::Ignore: + continue; + case ABIArgInfo::Direct: + case ABIArgInfo::Extend: + if (I->info.getInReg()) + continue; + break; + default: + break; + } + + addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); + } + + FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, + /*isPacked=*/true)); +} + +llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const { + llvm::Type *BPP = CGF.Int8PtrPtrTy; + + CGBuilderTy &Builder = CGF.Builder; + llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, + "ap"); + llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); + + // Compute if the address needs to be aligned + unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity(); + Align = getTypeStackAlignInBytes(Ty, Align); + Align = std::max(Align, 4U); + if (Align > 4) { + // addr = (addr + align - 1) & -align; + llvm::Value *Offset = + llvm::ConstantInt::get(CGF.Int32Ty, Align - 1); + Addr = CGF.Builder.CreateGEP(Addr, Offset); + llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr, + CGF.Int32Ty); + llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align); + Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), + Addr->getType(), + "ap.cur.aligned"); + } + + llvm::Type *PTy = + llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); + llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); + + uint64_t Offset = + llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align); + llvm::Value *NextAddr = + Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), + "ap.next"); + Builder.CreateStore(NextAddr, VAListAddrAsBPP); + + return AddrTyped; +} + +bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( + const llvm::Triple &Triple, const CodeGenOptions &Opts) { + assert(Triple.getArch() == llvm::Triple::x86); + + switch (Opts.getStructReturnConvention()) { + case CodeGenOptions::SRCK_Default: + break; + case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return + return false; + case CodeGenOptions::SRCK_InRegs: // -freg-struct-return + return true; + } + + if (Triple.isOSDarwin()) + return true; + + switch (Triple.getOS()) { + case llvm::Triple::AuroraUX: + case llvm::Triple::DragonFly: + case llvm::Triple::FreeBSD: + case llvm::Triple::OpenBSD: + case llvm::Triple::Bitrig: + return true; + case llvm::Triple::Win32: + switch (Triple.getEnvironment()) { + case llvm::Triple::UnknownEnvironment: + case llvm::Triple::Cygnus: + case llvm::Triple::GNU: + case llvm::Triple::MSVC: + return true; + default: + return false; + } + default: + return false; + } +} + +void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D, + llvm::GlobalValue *GV, + CodeGen::CodeGenModule &CGM) const { + if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { + if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { + // Get the LLVM function. + llvm::Function *Fn = cast<llvm::Function>(GV); + + // Now add the 'alignstack' attribute with a value of 16. + llvm::AttrBuilder B; + B.addStackAlignmentAttr(16); + Fn->addAttributes(llvm::AttributeSet::FunctionIndex, + llvm::AttributeSet::get(CGM.getLLVMContext(), + llvm::AttributeSet::FunctionIndex, + B)); + } + } +} + +bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( + CodeGen::CodeGenFunction &CGF, + llvm::Value *Address) const { + CodeGen::CGBuilderTy &Builder = CGF.Builder; + + llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); + + // 0-7 are the eight integer registers; the order is different + // on Darwin (for EH), but the range is the same. + // 8 is %eip. + AssignToArrayRange(Builder, Address, Four8, 0, 8); + + if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { + // 12-16 are st(0..4). Not sure why we stop at 4. + // These have size 16, which is sizeof(long double) on + // platforms with 8-byte alignment for that type. + llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); + AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); + + } else { + // 9 is %eflags, which doesn't get a size on Darwin for some + // reason. + Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9)); + + // 11-16 are st(0..5). Not sure why we stop at 5. + // These have size 12, which is sizeof(long double) on + // platforms with 4-byte alignment for that type. + llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); + AssignToArrayRange(Builder, Address, Twelve8, 11, 16); + } + + return false; +} + +//===----------------------------------------------------------------------===// +// X86-64 ABI Implementation +//===----------------------------------------------------------------------===// + + +namespace { +/// X86_64ABIInfo - The X86_64 ABI information. +class X86_64ABIInfo : public ABIInfo { + enum Class { + Integer = 0, + SSE, + SSEUp, + X87, + X87Up, + ComplexX87, + NoClass, + Memory + }; + + /// merge - Implement the X86_64 ABI merging algorithm. + /// + /// Merge an accumulating classification \arg Accum with a field + /// classification \arg Field. + /// + /// \param Accum - The accumulating classification. This should + /// always be either NoClass or the result of a previous merge + /// call. In addition, this should never be Memory (the caller + /// should just return Memory for the aggregate). + static Class merge(Class Accum, Class Field); + + /// postMerge - Implement the X86_64 ABI post merging algorithm. + /// + /// Post merger cleanup, reduces a malformed Hi and Lo pair to + /// final MEMORY or SSE classes when necessary. + /// + /// \param AggregateSize - The size of the current aggregate in + /// the classification process. + /// + /// \param Lo - The classification for the parts of the type + /// residing in the low word of the containing object. + /// + /// \param Hi - The classification for the parts of the type + /// residing in the higher words of the containing object. + /// + void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; + + /// classify - Determine the x86_64 register classes in which the + /// given type T should be passed. + /// + /// \param Lo - The classification for the parts of the type + /// residing in the low word of the containing object. + /// + /// \param Hi - The classification for the parts of the type + /// residing in the high word of the containing object. + /// + /// \param OffsetBase - The bit offset of this type in the + /// containing object. Some parameters are classified different + /// depending on whether they straddle an eightbyte boundary. + /// + /// \param isNamedArg - Whether the argument in question is a "named" + /// argument, as used in AMD64-ABI 3.5.7. + /// + /// If a word is unused its result will be NoClass; if a type should + /// be passed in Memory then at least the classification of \arg Lo + /// will be Memory. + /// + /// The \arg Lo class will be NoClass iff the argument is ignored. + /// + /// If the \arg Lo class is ComplexX87, then the \arg Hi class will + /// also be ComplexX87. + void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, + bool isNamedArg) const; + + llvm::Type *GetByteVectorType(QualType Ty) const; + llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, + unsigned IROffset, QualType SourceTy, + unsigned SourceOffset) const; + llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, + unsigned IROffset, QualType SourceTy, + unsigned SourceOffset) const; + + /// getIndirectResult - Give a source type \arg Ty, return a suitable result + /// such that the argument will be returned in memory. + ABIArgInfo getIndirectReturnResult(QualType Ty) const; + + /// getIndirectResult - Give a source type \arg Ty, return a suitable result + /// such that the argument will be passed in memory. + /// + /// \param freeIntRegs - The number of free integer registers remaining + /// available. + ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; + + ABIArgInfo classifyReturnType(QualType RetTy) const; + + ABIArgInfo classifyArgumentType(QualType Ty, + unsigned freeIntRegs, + unsigned &neededInt, + unsigned &neededSSE, + bool isNamedArg) const; + + bool IsIllegalVectorType(QualType Ty) const; + + /// The 0.98 ABI revision clarified a lot of ambiguities, + /// unfortunately in ways that were not always consistent with + /// certain previous compilers. In particular, platforms which + /// required strict binary compatibility with older versions of GCC + /// may need to exempt themselves. + bool honorsRevision0_98() const { + return !getTarget().getTriple().isOSDarwin(); + } + + bool HasAVX; + // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on + // 64-bit hardware. + bool Has64BitPointers; + +public: + X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) : + ABIInfo(CGT), HasAVX(hasavx), + Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { + } + + bool isPassedUsingAVXType(QualType type) const { + unsigned neededInt, neededSSE; + // The freeIntRegs argument doesn't matter here. + ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, + /*isNamedArg*/true); + if (info.isDirect()) { + llvm::Type *ty = info.getCoerceToType(); + if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) + return (vectorTy->getBitWidth() > 128); + } + return false; + } + + void computeInfo(CGFunctionInfo &FI) const override; + + llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const override; +}; + +/// WinX86_64ABIInfo - The Windows X86_64 ABI information. +class WinX86_64ABIInfo : public ABIInfo { + + ABIArgInfo classify(QualType Ty, bool IsReturnType) const; + +public: + WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} + + void computeInfo(CGFunctionInfo &FI) const override; + + llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const override; +}; + +class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { +public: + X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) + : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {} + + const X86_64ABIInfo &getABIInfo() const { + return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); + } + + int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { + return 7; + } + + bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, + llvm::Value *Address) const override { + llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); + + // 0-15 are the 16 integer registers. + // 16 is %rip. + AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); + return false; + } + + llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, + StringRef Constraint, + llvm::Type* Ty) const override { + return X86AdjustInlineAsmType(CGF, Constraint, Ty); + } + + bool isNoProtoCallVariadic(const CallArgList &args, + const FunctionNoProtoType *fnType) const override { + // The default CC on x86-64 sets %al to the number of SSA + // registers used, and GCC sets this when calling an unprototyped + // function, so we override the default behavior. However, don't do + // that when AVX types are involved: the ABI explicitly states it is + // undefined, and it doesn't work in practice because of how the ABI + // defines varargs anyway. + if (fnType->getCallConv() == CC_C) { + bool HasAVXType = false; + for (CallArgList::const_iterator + it = args.begin(), ie = args.end(); it != ie; ++it) { + if (getABIInfo().isPassedUsingAVXType(it->Ty)) { + HasAVXType = true; + break; + } + } + + if (!HasAVXType) + return true; + } + + return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); + } + + llvm::Constant * + getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { + unsigned Sig = (0xeb << 0) | // jmp rel8 + (0x0a << 8) | // .+0x0c + ('F' << 16) | + ('T' << 24); + return llvm::ConstantInt::get(CGM.Int32Ty, Sig); + } + +}; + +static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { + // If the argument does not end in .lib, automatically add the suffix. This + // matches the behavior of MSVC. + std::string ArgStr = Lib; + if (!Lib.endswith_lower(".lib")) + ArgStr += ".lib"; + return ArgStr; +} + +class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { +public: + WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, + bool d, bool p, bool w, unsigned RegParms) + : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {} + + void getDependentLibraryOption(llvm::StringRef Lib, + llvm::SmallString<24> &Opt) const override { + Opt = "/DEFAULTLIB:"; + Opt += qualifyWindowsLibrary(Lib); + } + + void getDetectMismatchOption(llvm::StringRef Name, + llvm::StringRef Value, + llvm::SmallString<32> &Opt) const override { + Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; + } +}; + +class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { +public: + WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) + : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} + + int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { + return 7; + } + + bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, + llvm::Value *Address) const override { + llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); + + // 0-15 are the 16 integer registers. + // 16 is %rip. + AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); + return false; + } + + void getDependentLibraryOption(llvm::StringRef Lib, + llvm::SmallString<24> &Opt) const override { + Opt = "/DEFAULTLIB:"; + Opt += qualifyWindowsLibrary(Lib); + } + + void getDetectMismatchOption(llvm::StringRef Name, + llvm::StringRef Value, + llvm::SmallString<32> &Opt) const override { + Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; + } +}; + +} + +void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, + Class &Hi) const { + // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: + // + // (a) If one of the classes is Memory, the whole argument is passed in + // memory. + // + // (b) If X87UP is not preceded by X87, the whole argument is passed in + // memory. + // + // (c) If the size of the aggregate exceeds two eightbytes and the first + // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole + // argument is passed in memory. NOTE: This is necessary to keep the + // ABI working for processors that don't support the __m256 type. + // + // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. + // + // Some of these are enforced by the merging logic. Others can arise + // only with unions; for example: + // union { _Complex double; unsigned; } + // + // Note that clauses (b) and (c) were added in 0.98. + // + if (Hi == Memory) + Lo = Memory; + if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) + Lo = Memory; + if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) + Lo = Memory; + if (Hi == SSEUp && Lo != SSE) + Hi = SSE; +} + +X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { + // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is + // classified recursively so that always two fields are + // considered. The resulting class is calculated according to + // the classes of the fields in the eightbyte: + // + // (a) If both classes are equal, this is the resulting class. + // + // (b) If one of the classes is NO_CLASS, the resulting class is + // the other class. + // + // (c) If one of the classes is MEMORY, the result is the MEMORY + // class. + // + // (d) If one of the classes is INTEGER, the result is the + // INTEGER. + // + // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, + // MEMORY is used as class. + // + // (f) Otherwise class SSE is used. + + // Accum should never be memory (we should have returned) or + // ComplexX87 (because this cannot be passed in a structure). + assert((Accum != Memory && Accum != ComplexX87) && + "Invalid accumulated classification during merge."); + if (Accum == Field || Field == NoClass) + return Accum; + if (Field == Memory) + return Memory; + if (Accum == NoClass) + return Field; + if (Accum == Integer || Field == Integer) + return Integer; + if (Field == X87 || Field == X87Up || Field == ComplexX87 || + Accum == X87 || Accum == X87Up) + return Memory; + return SSE; +} + +void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, + Class &Lo, Class &Hi, bool isNamedArg) const { + // FIXME: This code can be simplified by introducing a simple value class for + // Class pairs with appropriate constructor methods for the various + // situations. + + // FIXME: Some of the split computations are wrong; unaligned vectors + // shouldn't be passed in registers for example, so there is no chance they + // can straddle an eightbyte. Verify & simplify. + + Lo = Hi = NoClass; + + Class &Current = OffsetBase < 64 ? Lo : Hi; + Current = Memory; + + if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { + BuiltinType::Kind k = BT->getKind(); + + if (k == BuiltinType::Void) { + Current = NoClass; + } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { + Lo = Integer; + Hi = Integer; + } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { + Current = Integer; + } else if ((k == BuiltinType::Float || k == BuiltinType::Double) || + (k == BuiltinType::LongDouble && + getTarget().getTriple().isOSNaCl())) { + Current = SSE; + } else if (k == BuiltinType::LongDouble) { + Lo = X87; + Hi = X87Up; + } + // FIXME: _Decimal32 and _Decimal64 are SSE. + // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). + return; + } + + if (const EnumType *ET = Ty->getAs<EnumType>()) { + // Classify the underlying integer type. + classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); + return; + } + + if (Ty->hasPointerRepresentation()) { + Current = Integer; + return; + } + + if (Ty->isMemberPointerType()) { + if (Ty->isMemberFunctionPointerType() && Has64BitPointers) + Lo = Hi = Integer; + else + Current = Integer; + return; + } + + if (const VectorType *VT = Ty->getAs<VectorType>()) { + uint64_t Size = getContext().getTypeSize(VT); + if (Size == 32) { + // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x + // float> as integer. + Current = Integer; + + // If this type crosses an eightbyte boundary, it should be + // split. + uint64_t EB_Real = (OffsetBase) / 64; + uint64_t EB_Imag = (OffsetBase + Size - 1) / 64; + if (EB_Real != EB_Imag) + Hi = Lo; + } else if (Size == 64) { + // gcc passes <1 x double> in memory. :( + if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) + return; + + // gcc passes <1 x long long> as INTEGER. + if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) || + VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) || + VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) || + VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong)) + Current = Integer; + else + Current = SSE; + + // If this type crosses an eightbyte boundary, it should be + // split. + if (OffsetBase && OffsetBase != 64) + Hi = Lo; + } else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) { + // Arguments of 256-bits are split into four eightbyte chunks. The + // least significant one belongs to class SSE and all the others to class + // SSEUP. The original Lo and Hi design considers that types can't be + // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. + // This design isn't correct for 256-bits, but since there're no cases + // where the upper parts would need to be inspected, avoid adding + // complexity and just consider Hi to match the 64-256 part. + // + // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in + // registers if they are "named", i.e. not part of the "..." of a + // variadic function. + Lo = SSE; + Hi = SSEUp; + } + return; + } + + if (const ComplexType *CT = Ty->getAs<ComplexType>()) { + QualType ET = getContext().getCanonicalType(CT->getElementType()); + + uint64_t Size = getContext().getTypeSize(Ty); + if (ET->isIntegralOrEnumerationType()) { + if (Size <= 64) + Current = Integer; + else if (Size <= 128) + Lo = Hi = Integer; + } else if (ET == getContext().FloatTy) + Current = SSE; + else if (ET == getContext().DoubleTy || + (ET == getContext().LongDoubleTy && + getTarget().getTriple().isOSNaCl())) + Lo = Hi = SSE; + else if (ET == getContext().LongDoubleTy) + Current = ComplexX87; + + // If this complex type crosses an eightbyte boundary then it + // should be split. + uint64_t EB_Real = (OffsetBase) / 64; + uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; + if (Hi == NoClass && EB_Real != EB_Imag) + Hi = Lo; + + return; + } + + if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { + // Arrays are treated like structures. + + uint64_t Size = getContext().getTypeSize(Ty); + + // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger + // than four eightbytes, ..., it has class MEMORY. + if (Size > 256) + return; + + // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned + // fields, it has class MEMORY. + // + // Only need to check alignment of array base. + if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) + return; + + // Otherwise implement simplified merge. We could be smarter about + // this, but it isn't worth it and would be harder to verify. + Current = NoClass; + uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); + uint64_t ArraySize = AT->getSize().getZExtValue(); + + // The only case a 256-bit wide vector could be used is when the array + // contains a single 256-bit element. Since Lo and Hi logic isn't extended + // to work for sizes wider than 128, early check and fallback to memory. + if (Size > 128 && EltSize != 256) + return; + + for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { + Class FieldLo, FieldHi; + classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); + Lo = merge(Lo, FieldLo); + Hi = merge(Hi, FieldHi); + if (Lo == Memory || Hi == Memory) + break; + } + + postMerge(Size, Lo, Hi); + assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); + return; + } + + if (const RecordType *RT = Ty->getAs<RecordType>()) { + uint64_t Size = getContext().getTypeSize(Ty); + + // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger + // than four eightbytes, ..., it has class MEMORY. + if (Size > 256) + return; + + // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial + // copy constructor or a non-trivial destructor, it is passed by invisible + // reference. + if (getRecordArgABI(RT, getCXXABI())) + return; + + const RecordDecl *RD = RT->getDecl(); + + // Assume variable sized types are passed in memory. + if (RD->hasFlexibleArrayMember()) + return; + + const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); + + // Reset Lo class, this will be recomputed. + Current = NoClass; + + // If this is a C++ record, classify the bases first. + if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { + for (const auto &I : CXXRD->bases()) { + assert(!I.isVirtual() && !I.getType()->isDependentType() && + "Unexpected base class!"); + const CXXRecordDecl *Base = + cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); + + // Classify this field. + // + // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a + // single eightbyte, each is classified separately. Each eightbyte gets + // initialized to class NO_CLASS. + Class FieldLo, FieldHi; + uint64_t Offset = + OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); + classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); + Lo = merge(Lo, FieldLo); + Hi = merge(Hi, FieldHi); + if (Lo == Memory || Hi == Memory) + break; + } + } + + // Classify the fields one at a time, merging the results. + unsigned idx = 0; + for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); + i != e; ++i, ++idx) { + uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); + bool BitField = i->isBitField(); + + // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than + // four eightbytes, or it contains unaligned fields, it has class MEMORY. + // + // The only case a 256-bit wide vector could be used is when the struct + // contains a single 256-bit element. Since Lo and Hi logic isn't extended + // to work for sizes wider than 128, early check and fallback to memory. + // + if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) { + Lo = Memory; + return; + } + // Note, skip this test for bit-fields, see below. + if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { + Lo = Memory; + return; + } + + // Classify this field. + // + // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate + // exceeds a single eightbyte, each is classified + // separately. Each eightbyte gets initialized to class + // NO_CLASS. + Class FieldLo, FieldHi; + + // Bit-fields require special handling, they do not force the + // structure to be passed in memory even if unaligned, and + // therefore they can straddle an eightbyte. + if (BitField) { + // Ignore padding bit-fields. + if (i->isUnnamedBitfield()) + continue; + + uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); + uint64_t Size = i->getBitWidthValue(getContext()); + + uint64_t EB_Lo = Offset / 64; + uint64_t EB_Hi = (Offset + Size - 1) / 64; + + if (EB_Lo) { + assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); + FieldLo = NoClass; + FieldHi = Integer; + } else { + FieldLo = Integer; + FieldHi = EB_Hi ? Integer : NoClass; + } + } else + classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); + Lo = merge(Lo, FieldLo); + Hi = merge(Hi, FieldHi); + if (Lo == Memory || Hi == Memory) + break; + } + + postMerge(Size, Lo, Hi); + } +} + +ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { + // If this is a scalar LLVM value then assume LLVM will pass it in the right + // place naturally. + if (!isAggregateTypeForABI(Ty)) { + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = Ty->getAs<EnumType>()) + Ty = EnumTy->getDecl()->getIntegerType(); + + return (Ty->isPromotableIntegerType() ? + ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); + } + + return ABIArgInfo::getIndirect(0); +} + +bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { + if (const VectorType *VecTy = Ty->getAs<VectorType>()) { + uint64_t Size = getContext().getTypeSize(VecTy); + unsigned LargestVector = HasAVX ? 256 : 128; + if (Size <= 64 || Size > LargestVector) + return true; + } + + return false; +} + +ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, + unsigned freeIntRegs) const { + // If this is a scalar LLVM value then assume LLVM will pass it in the right + // place naturally. + // + // This assumption is optimistic, as there could be free registers available + // when we need to pass this argument in memory, and LLVM could try to pass + // the argument in the free register. This does not seem to happen currently, + // but this code would be much safer if we could mark the argument with + // 'onstack'. See PR12193. + if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = Ty->getAs<EnumType>()) + Ty = EnumTy->getDecl()->getIntegerType(); + + return (Ty->isPromotableIntegerType() ? + ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); + } + + if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) + return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); + + // Compute the byval alignment. We specify the alignment of the byval in all + // cases so that the mid-level optimizer knows the alignment of the byval. + unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); + + // Attempt to avoid passing indirect results using byval when possible. This + // is important for good codegen. + // + // We do this by coercing the value into a scalar type which the backend can + // handle naturally (i.e., without using byval). + // + // For simplicity, we currently only do this when we have exhausted all of the + // free integer registers. Doing this when there are free integer registers + // would require more care, as we would have to ensure that the coerced value + // did not claim the unused register. That would require either reording the + // arguments to the function (so that any subsequent inreg values came first), + // or only doing this optimization when there were no following arguments that + // might be inreg. + // + // We currently expect it to be rare (particularly in well written code) for + // arguments to be passed on the stack when there are still free integer + // registers available (this would typically imply large structs being passed + // by value), so this seems like a fair tradeoff for now. + // + // We can revisit this if the backend grows support for 'onstack' parameter + // attributes. See PR12193. + if (freeIntRegs == 0) { + uint64_t Size = getContext().getTypeSize(Ty); + + // If this type fits in an eightbyte, coerce it into the matching integral + // type, which will end up on the stack (with alignment 8). + if (Align == 8 && Size <= 64) + return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), + Size)); + } + + return ABIArgInfo::getIndirect(Align); +} + +/// GetByteVectorType - The ABI specifies that a value should be passed in an +/// full vector XMM/YMM register. Pick an LLVM IR type that will be passed as a +/// vector register. +llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { + llvm::Type *IRType = CGT.ConvertType(Ty); + + // Wrapper structs that just contain vectors are passed just like vectors, + // strip them off if present. + llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType); + while (STy && STy->getNumElements() == 1) { + IRType = STy->getElementType(0); + STy = dyn_cast<llvm::StructType>(IRType); + } + + // If the preferred type is a 16-byte vector, prefer to pass it. + if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){ + llvm::Type *EltTy = VT->getElementType(); + unsigned BitWidth = VT->getBitWidth(); + if ((BitWidth >= 128 && BitWidth <= 256) && + (EltTy->isFloatTy() || EltTy->isDoubleTy() || + EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) || + EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) || + EltTy->isIntegerTy(128))) + return VT; + } + + return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2); +} + +/// BitsContainNoUserData - Return true if the specified [start,end) bit range +/// is known to either be off the end of the specified type or being in +/// alignment padding. The user type specified is known to be at most 128 bits +/// in size, and have passed through X86_64ABIInfo::classify with a successful +/// classification that put one of the two halves in the INTEGER class. +/// +/// It is conservatively correct to return false. +static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, + unsigned EndBit, ASTContext &Context) { + // If the bytes being queried are off the end of the type, there is no user + // data hiding here. This handles analysis of builtins, vectors and other + // types that don't contain interesting padding. + unsigned TySize = (unsigned)Context.getTypeSize(Ty); + if (TySize <= StartBit) + return true; + + if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { + unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); + unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); + + // Check each element to see if the element overlaps with the queried range. + for (unsigned i = 0; i != NumElts; ++i) { + // If the element is after the span we care about, then we're done.. + unsigned EltOffset = i*EltSize; + if (EltOffset >= EndBit) break; + + unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; + if (!BitsContainNoUserData(AT->getElementType(), EltStart, + EndBit-EltOffset, Context)) + return false; + } + // If it overlaps no elements, then it is safe to process as padding. + return true; + } + + if (const RecordType *RT = Ty->getAs<RecordType>()) { + const RecordDecl *RD = RT->getDecl(); + const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); + + // If this is a C++ record, check the bases first. + if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { + for (const auto &I : CXXRD->bases()) { + assert(!I.isVirtual() && !I.getType()->isDependentType() && + "Unexpected base class!"); + const CXXRecordDecl *Base = + cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); + + // If the base is after the span we care about, ignore it. + unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); + if (BaseOffset >= EndBit) continue; + + unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; + if (!BitsContainNoUserData(I.getType(), BaseStart, + EndBit-BaseOffset, Context)) + return false; + } + } + + // Verify that no field has data that overlaps the region of interest. Yes + // this could be sped up a lot by being smarter about queried fields, + // however we're only looking at structs up to 16 bytes, so we don't care + // much. + unsigned idx = 0; + for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); + i != e; ++i, ++idx) { + unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); + + // If we found a field after the region we care about, then we're done. + if (FieldOffset >= EndBit) break; + + unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; + if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, + Context)) + return false; + } + + // If nothing in this record overlapped the area of interest, then we're + // clean. + return true; + } + + return false; +} + +/// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a +/// float member at the specified offset. For example, {int,{float}} has a +/// float at offset 4. It is conservatively correct for this routine to return +/// false. +static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, + const llvm::DataLayout &TD) { + // Base case if we find a float. + if (IROffset == 0 && IRType->isFloatTy()) + return true; + + // If this is a struct, recurse into the field at the specified offset. + if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { + const llvm::StructLayout *SL = TD.getStructLayout(STy); + unsigned Elt = SL->getElementContainingOffset(IROffset); + IROffset -= SL->getElementOffset(Elt); + return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); + } + + // If this is an array, recurse into the field at the specified offset. + if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { + llvm::Type *EltTy = ATy->getElementType(); + unsigned EltSize = TD.getTypeAllocSize(EltTy); + IROffset -= IROffset/EltSize*EltSize; + return ContainsFloatAtOffset(EltTy, IROffset, TD); + } + + return false; +} + + +/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the +/// low 8 bytes of an XMM register, corresponding to the SSE class. +llvm::Type *X86_64ABIInfo:: +GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, + QualType SourceTy, unsigned SourceOffset) const { + // The only three choices we have are either double, <2 x float>, or float. We + // pass as float if the last 4 bytes is just padding. This happens for + // structs that contain 3 floats. + if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, + SourceOffset*8+64, getContext())) + return llvm::Type::getFloatTy(getVMContext()); + + // We want to pass as <2 x float> if the LLVM IR type contains a float at + // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the + // case. + if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && + ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) + return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); + + return llvm::Type::getDoubleTy(getVMContext()); +} + + +/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in +/// an 8-byte GPR. This means that we either have a scalar or we are talking +/// about the high or low part of an up-to-16-byte struct. This routine picks +/// the best LLVM IR type to represent this, which may be i64 or may be anything +/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, +/// etc). +/// +/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for +/// the source type. IROffset is an offset in bytes into the LLVM IR type that +/// the 8-byte value references. PrefType may be null. +/// +/// SourceTy is the source-level type for the entire argument. SourceOffset is +/// an offset into this that we're processing (which is always either 0 or 8). +/// +llvm::Type *X86_64ABIInfo:: +GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, + QualType SourceTy, unsigned SourceOffset) const { + // If we're dealing with an un-offset LLVM IR type, then it means that we're + // returning an 8-byte unit starting with it. See if we can safely use it. + if (IROffset == 0) { + // Pointers and int64's always fill the 8-byte unit. + if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || + IRType->isIntegerTy(64)) + return IRType; + + // If we have a 1/2/4-byte integer, we can use it only if the rest of the + // goodness in the source type is just tail padding. This is allowed to + // kick in for struct {double,int} on the int, but not on + // struct{double,int,int} because we wouldn't return the second int. We + // have to do this analysis on the source type because we can't depend on + // unions being lowered a specific way etc. + if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || + IRType->isIntegerTy(32) || + (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { + unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : + cast<llvm::IntegerType>(IRType)->getBitWidth(); + + if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, + SourceOffset*8+64, getContext())) + return IRType; + } + } + + if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { + // If this is a struct, recurse into the field at the specified offset. + const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); + if (IROffset < SL->getSizeInBytes()) { + unsigned FieldIdx = SL->getElementContainingOffset(IROffset); + IROffset -= SL->getElementOffset(FieldIdx); + + return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, + SourceTy, SourceOffset); + } + } + + if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { + llvm::Type *EltTy = ATy->getElementType(); + unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); + unsigned EltOffset = IROffset/EltSize*EltSize; + return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, + SourceOffset); + } + + // Okay, we don't have any better idea of what to pass, so we pass this in an + // integer register that isn't too big to fit the rest of the struct. + unsigned TySizeInBytes = + (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); + + assert(TySizeInBytes != SourceOffset && "Empty field?"); + + // It is always safe to classify this as an integer type up to i64 that + // isn't larger than the structure. + return llvm::IntegerType::get(getVMContext(), + std::min(TySizeInBytes-SourceOffset, 8U)*8); +} + + +/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally +/// be used as elements of a two register pair to pass or return, return a +/// first class aggregate to represent them. For example, if the low part of +/// a by-value argument should be passed as i32* and the high part as float, +/// return {i32*, float}. +static llvm::Type * +GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, + const llvm::DataLayout &TD) { + // In order to correctly satisfy the ABI, we need to the high part to start + // at offset 8. If the high and low parts we inferred are both 4-byte types + // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have + // the second element at offset 8. Check for this: + unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); + unsigned HiAlign = TD.getABITypeAlignment(Hi); + unsigned HiStart = llvm::DataLayout::RoundUpAlignment(LoSize, HiAlign); + assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); + + // To handle this, we have to increase the size of the low part so that the + // second element will start at an 8 byte offset. We can't increase the size + // of the second element because it might make us access off the end of the + // struct. + if (HiStart != 8) { + // There are only two sorts of types the ABI generation code can produce for + // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32. + // Promote these to a larger type. + if (Lo->isFloatTy()) + Lo = llvm::Type::getDoubleTy(Lo->getContext()); + else { + assert(Lo->isIntegerTy() && "Invalid/unknown lo type"); + Lo = llvm::Type::getInt64Ty(Lo->getContext()); + } + } + + llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL); + + + // Verify that the second element is at an 8-byte offset. + assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && + "Invalid x86-64 argument pair!"); + return Result; +} + +ABIArgInfo X86_64ABIInfo:: +classifyReturnType(QualType RetTy) const { + // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the + // classification algorithm. + X86_64ABIInfo::Class Lo, Hi; + classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); + + // Check some invariants. + assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); + assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); + + llvm::Type *ResType = nullptr; + switch (Lo) { + case NoClass: + if (Hi == NoClass) + return ABIArgInfo::getIgnore(); + // If the low part is just padding, it takes no register, leave ResType + // null. + assert((Hi == SSE || Hi == Integer || Hi == X87Up) && + "Unknown missing lo part"); + break; + + case SSEUp: + case X87Up: + llvm_unreachable("Invalid classification for lo word."); + + // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via + // hidden argument. + case Memory: + return getIndirectReturnResult(RetTy); + + // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next + // available register of the sequence %rax, %rdx is used. + case Integer: + ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); + + // If we have a sign or zero extended integer, make sure to return Extend + // so that the parameter gets the right LLVM IR attributes. + if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) + RetTy = EnumTy->getDecl()->getIntegerType(); + + if (RetTy->isIntegralOrEnumerationType() && + RetTy->isPromotableIntegerType()) + return ABIArgInfo::getExtend(); + } + break; + + // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next + // available SSE register of the sequence %xmm0, %xmm1 is used. + case SSE: + ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); + break; + + // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is + // returned on the X87 stack in %st0 as 80-bit x87 number. + case X87: + ResType = llvm::Type::getX86_FP80Ty(getVMContext()); + break; + + // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real + // part of the value is returned in %st0 and the imaginary part in + // %st1. + case ComplexX87: + assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); + ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), + llvm::Type::getX86_FP80Ty(getVMContext()), + NULL); + break; + } + + llvm::Type *HighPart = nullptr; + switch (Hi) { + // Memory was handled previously and X87 should + // never occur as a hi class. + case Memory: + case X87: + llvm_unreachable("Invalid classification for hi word."); + + case ComplexX87: // Previously handled. + case NoClass: + break; + + case Integer: + HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); + if (Lo == NoClass) // Return HighPart at offset 8 in memory. + return ABIArgInfo::getDirect(HighPart, 8); + break; + case SSE: + HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); + if (Lo == NoClass) // Return HighPart at offset 8 in memory. + return ABIArgInfo::getDirect(HighPart, 8); + break; + + // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte + // is passed in the next available eightbyte chunk if the last used + // vector register. + // + // SSEUP should always be preceded by SSE, just widen. + case SSEUp: + assert(Lo == SSE && "Unexpected SSEUp classification."); + ResType = GetByteVectorType(RetTy); + break; + + // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is + // returned together with the previous X87 value in %st0. + case X87Up: + // If X87Up is preceded by X87, we don't need to do + // anything. However, in some cases with unions it may not be + // preceded by X87. In such situations we follow gcc and pass the + // extra bits in an SSE reg. + if (Lo != X87) { + HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); + if (Lo == NoClass) // Return HighPart at offset 8 in memory. + return ABIArgInfo::getDirect(HighPart, 8); + } + break; + } + + // If a high part was specified, merge it together with the low part. It is + // known to pass in the high eightbyte of the result. We do this by forming a + // first class struct aggregate with the high and low part: {low, high} + if (HighPart) + ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); + + return ABIArgInfo::getDirect(ResType); +} + +ABIArgInfo X86_64ABIInfo::classifyArgumentType( + QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, + bool isNamedArg) + const +{ + X86_64ABIInfo::Class Lo, Hi; + classify(Ty, 0, Lo, Hi, isNamedArg); + + // Check some invariants. + // FIXME: Enforce these by construction. + assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); + assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); + + neededInt = 0; + neededSSE = 0; + llvm::Type *ResType = nullptr; + switch (Lo) { + case NoClass: + if (Hi == NoClass) + return ABIArgInfo::getIgnore(); + // If the low part is just padding, it takes no register, leave ResType + // null. + assert((Hi == SSE || Hi == Integer || Hi == X87Up) && + "Unknown missing lo part"); + break; + + // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument + // on the stack. + case Memory: + + // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or + // COMPLEX_X87, it is passed in memory. + case X87: + case ComplexX87: + if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) + ++neededInt; + return getIndirectResult(Ty, freeIntRegs); + + case SSEUp: + case X87Up: + llvm_unreachable("Invalid classification for lo word."); + + // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next + // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 + // and %r9 is used. + case Integer: + ++neededInt; + + // Pick an 8-byte type based on the preferred type. + ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); + + // If we have a sign or zero extended integer, make sure to return Extend + // so that the parameter gets the right LLVM IR attributes. + if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = Ty->getAs<EnumType>()) + Ty = EnumTy->getDecl()->getIntegerType(); + + if (Ty->isIntegralOrEnumerationType() && + Ty->isPromotableIntegerType()) + return ABIArgInfo::getExtend(); + } + + break; + + // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next + // available SSE register is used, the registers are taken in the + // order from %xmm0 to %xmm7. + case SSE: { + llvm::Type *IRType = CGT.ConvertType(Ty); + ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); + ++neededSSE; + break; + } + } + + llvm::Type *HighPart = nullptr; + switch (Hi) { + // Memory was handled previously, ComplexX87 and X87 should + // never occur as hi classes, and X87Up must be preceded by X87, + // which is passed in memory. + case Memory: + case X87: + case ComplexX87: + llvm_unreachable("Invalid classification for hi word."); + + case NoClass: break; + + case Integer: + ++neededInt; + // Pick an 8-byte type based on the preferred type. + HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); + + if (Lo == NoClass) // Pass HighPart at offset 8 in memory. + return ABIArgInfo::getDirect(HighPart, 8); + break; + + // X87Up generally doesn't occur here (long double is passed in + // memory), except in situations involving unions. + case X87Up: + case SSE: + HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); + + if (Lo == NoClass) // Pass HighPart at offset 8 in memory. + return ABIArgInfo::getDirect(HighPart, 8); + + ++neededSSE; + break; + + // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the + // eightbyte is passed in the upper half of the last used SSE + // register. This only happens when 128-bit vectors are passed. + case SSEUp: + assert(Lo == SSE && "Unexpected SSEUp classification"); + ResType = GetByteVectorType(Ty); + break; + } + + // If a high part was specified, merge it together with the low part. It is + // known to pass in the high eightbyte of the result. We do this by forming a + // first class struct aggregate with the high and low part: {low, high} + if (HighPart) + ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); + + return ABIArgInfo::getDirect(ResType); +} + +void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { + + if (!getCXXABI().classifyReturnType(FI)) + FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); + + // Keep track of the number of assigned registers. + unsigned freeIntRegs = 6, freeSSERegs = 8; + + // If the return value is indirect, then the hidden argument is consuming one + // integer register. + if (FI.getReturnInfo().isIndirect()) + --freeIntRegs; + + bool isVariadic = FI.isVariadic(); + unsigned numRequiredArgs = 0; + if (isVariadic) + numRequiredArgs = FI.getRequiredArgs().getNumRequiredArgs(); + + // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers + // get assigned (in left-to-right order) for passing as follows... + for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); + it != ie; ++it) { + bool isNamedArg = true; + if (isVariadic) + isNamedArg = (it - FI.arg_begin()) < + static_cast<signed>(numRequiredArgs); + + unsigned neededInt, neededSSE; + it->info = classifyArgumentType(it->type, freeIntRegs, neededInt, + neededSSE, isNamedArg); + + // AMD64-ABI 3.2.3p3: If there are no registers available for any + // eightbyte of an argument, the whole argument is passed on the + // stack. If registers have already been assigned for some + // eightbytes of such an argument, the assignments get reverted. + if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) { + freeIntRegs -= neededInt; + freeSSERegs -= neededSSE; + } else { + it->info = getIndirectResult(it->type, freeIntRegs); + } + } +} + +static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr, + QualType Ty, + CodeGenFunction &CGF) { + llvm::Value *overflow_arg_area_p = + CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); + llvm::Value *overflow_arg_area = + CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); + + // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 + // byte boundary if alignment needed by type exceeds 8 byte boundary. + // It isn't stated explicitly in the standard, but in practice we use + // alignment greater than 16 where necessary. + uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; + if (Align > 8) { + // overflow_arg_area = (overflow_arg_area + align - 1) & -align; + llvm::Value *Offset = + llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); + overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset); + llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area, + CGF.Int64Ty); + llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align); + overflow_arg_area = + CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), + overflow_arg_area->getType(), + "overflow_arg_area.align"); + } + + // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. + llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); + llvm::Value *Res = + CGF.Builder.CreateBitCast(overflow_arg_area, + llvm::PointerType::getUnqual(LTy)); + + // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: + // l->overflow_arg_area + sizeof(type). + // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to + // an 8 byte boundary. + + uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; + llvm::Value *Offset = + llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); + overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, + "overflow_arg_area.next"); + CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); + + // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. + return Res; +} + +llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const { + // Assume that va_list type is correct; should be pointer to LLVM type: + // struct { + // i32 gp_offset; + // i32 fp_offset; + // i8* overflow_arg_area; + // i8* reg_save_area; + // }; + unsigned neededInt, neededSSE; + + Ty = CGF.getContext().getCanonicalType(Ty); + ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, + /*isNamedArg*/false); + + // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed + // in the registers. If not go to step 7. + if (!neededInt && !neededSSE) + return EmitVAArgFromMemory(VAListAddr, Ty, CGF); + + // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of + // general purpose registers needed to pass type and num_fp to hold + // the number of floating point registers needed. + + // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into + // registers. In the case: l->gp_offset > 48 - num_gp * 8 or + // l->fp_offset > 304 - num_fp * 16 go to step 7. + // + // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of + // register save space). + + llvm::Value *InRegs = nullptr; + llvm::Value *gp_offset_p = nullptr, *gp_offset = nullptr; + llvm::Value *fp_offset_p = nullptr, *fp_offset = nullptr; + if (neededInt) { + gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); + gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); + InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); + InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); + } + + if (neededSSE) { + fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); + fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); + llvm::Value *FitsInFP = + llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); + FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); + InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; + } + + llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); + llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); + llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); + CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); + + // Emit code to load the value if it was passed in registers. + + CGF.EmitBlock(InRegBlock); + + // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with + // an offset of l->gp_offset and/or l->fp_offset. This may require + // copying to a temporary location in case the parameter is passed + // in different register classes or requires an alignment greater + // than 8 for general purpose registers and 16 for XMM registers. + // + // FIXME: This really results in shameful code when we end up needing to + // collect arguments from different places; often what should result in a + // simple assembling of a structure from scattered addresses has many more + // loads than necessary. Can we clean this up? + llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); + llvm::Value *RegAddr = + CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3), + "reg_save_area"); + if (neededInt && neededSSE) { + // FIXME: Cleanup. + assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); + llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); + llvm::Value *Tmp = CGF.CreateMemTemp(Ty); + Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); + assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); + llvm::Type *TyLo = ST->getElementType(0); + llvm::Type *TyHi = ST->getElementType(1); + assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && + "Unexpected ABI info for mixed regs"); + llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); + llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); + llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); + llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); + llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; + llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; + llvm::Value *V = + CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); + CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); + V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); + CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); + + RegAddr = CGF.Builder.CreateBitCast(Tmp, + llvm::PointerType::getUnqual(LTy)); + } else if (neededInt) { + RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); + RegAddr = CGF.Builder.CreateBitCast(RegAddr, + llvm::PointerType::getUnqual(LTy)); + + // Copy to a temporary if necessary to ensure the appropriate alignment. + std::pair<CharUnits, CharUnits> SizeAlign = + CGF.getContext().getTypeInfoInChars(Ty); + uint64_t TySize = SizeAlign.first.getQuantity(); + unsigned TyAlign = SizeAlign.second.getQuantity(); + if (TyAlign > 8) { + llvm::Value *Tmp = CGF.CreateMemTemp(Ty); + CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false); + RegAddr = Tmp; + } + } else if (neededSSE == 1) { + RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); + RegAddr = CGF.Builder.CreateBitCast(RegAddr, + llvm::PointerType::getUnqual(LTy)); + } else { + assert(neededSSE == 2 && "Invalid number of needed registers!"); + // SSE registers are spaced 16 bytes apart in the register save + // area, we need to collect the two eightbytes together. + llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset); + llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16); + llvm::Type *DoubleTy = CGF.DoubleTy; + llvm::Type *DblPtrTy = + llvm::PointerType::getUnqual(DoubleTy); + llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, NULL); + llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty); + Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); + V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo, + DblPtrTy)); + CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); + V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi, + DblPtrTy)); + CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); + RegAddr = CGF.Builder.CreateBitCast(Tmp, + llvm::PointerType::getUnqual(LTy)); + } + + // AMD64-ABI 3.5.7p5: Step 5. Set: + // l->gp_offset = l->gp_offset + num_gp * 8 + // l->fp_offset = l->fp_offset + num_fp * 16. + if (neededInt) { + llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); + CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), + gp_offset_p); + } + if (neededSSE) { + llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); + CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), + fp_offset_p); + } + CGF.EmitBranch(ContBlock); + + // Emit code to load the value if it was passed in memory. + + CGF.EmitBlock(InMemBlock); + llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF); + + // Return the appropriate result. + + CGF.EmitBlock(ContBlock); + llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2, + "vaarg.addr"); + ResAddr->addIncoming(RegAddr, InRegBlock); + ResAddr->addIncoming(MemAddr, InMemBlock); + return ResAddr; +} + +ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, bool IsReturnType) const { + + if (Ty->isVoidType()) + return ABIArgInfo::getIgnore(); + + if (const EnumType *EnumTy = Ty->getAs<EnumType>()) + Ty = EnumTy->getDecl()->getIntegerType(); + + uint64_t Size = getContext().getTypeSize(Ty); + + const RecordType *RT = Ty->getAs<RecordType>(); + if (RT) { + if (!IsReturnType) { + if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) + return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); + } + + if (RT->getDecl()->hasFlexibleArrayMember()) + return ABIArgInfo::getIndirect(0, /*ByVal=*/false); + + // FIXME: mingw-w64-gcc emits 128-bit struct as i128 + if (Size == 128 && getTarget().getTriple().isWindowsGNUEnvironment()) + return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), + Size)); + } + + if (Ty->isMemberPointerType()) { + // If the member pointer is represented by an LLVM int or ptr, pass it + // directly. + llvm::Type *LLTy = CGT.ConvertType(Ty); + if (LLTy->isPointerTy() || LLTy->isIntegerTy()) + return ABIArgInfo::getDirect(); + } + + if (RT || Ty->isMemberPointerType()) { + // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is + // not 1, 2, 4, or 8 bytes, must be passed by reference." + if (Size > 64 || !llvm::isPowerOf2_64(Size)) + return ABIArgInfo::getIndirect(0, /*ByVal=*/false); + + // Otherwise, coerce it to a small integer. + return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); + } + + if (Ty->isPromotableIntegerType()) + return ABIArgInfo::getExtend(); + + return ABIArgInfo::getDirect(); +} + +void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { + if (!getCXXABI().classifyReturnType(FI)) + FI.getReturnInfo() = classify(FI.getReturnType(), true); + + for (auto &I : FI.arguments()) + I.info = classify(I.type, false); +} + +llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const { + llvm::Type *BPP = CGF.Int8PtrPtrTy; + + CGBuilderTy &Builder = CGF.Builder; + llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, + "ap"); + llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); + llvm::Type *PTy = + llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); + llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); + + uint64_t Offset = + llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8); + llvm::Value *NextAddr = + Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), + "ap.next"); + Builder.CreateStore(NextAddr, VAListAddrAsBPP); + + return AddrTyped; +} + +namespace { + +class NaClX86_64ABIInfo : public ABIInfo { + public: + NaClX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) + : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, HasAVX) {} + void computeInfo(CGFunctionInfo &FI) const override; + llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const override; + private: + PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv. + X86_64ABIInfo NInfo; // Used for everything else. +}; + +class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo { + public: + NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) + : TargetCodeGenInfo(new NaClX86_64ABIInfo(CGT, HasAVX)) {} +}; + +} + +void NaClX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { + if (FI.getASTCallingConvention() == CC_PnaclCall) + PInfo.computeInfo(FI); + else + NInfo.computeInfo(FI); +} + +llvm::Value *NaClX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const { + // Always use the native convention; calling pnacl-style varargs functions + // is unuspported. + return NInfo.EmitVAArg(VAListAddr, Ty, CGF); +} + + +// PowerPC-32 + +namespace { +class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo { +public: + PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} + + int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { + // This is recovered from gcc output. + return 1; // r1 is the dedicated stack pointer + } + + bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, + llvm::Value *Address) const override; +}; + +} + +bool +PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, + llvm::Value *Address) const { + // This is calculated from the LLVM and GCC tables and verified + // against gcc output. AFAIK all ABIs use the same encoding. + + CodeGen::CGBuilderTy &Builder = CGF.Builder; + + llvm::IntegerType *i8 = CGF.Int8Ty; + llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); + llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); + llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); + + // 0-31: r0-31, the 4-byte general-purpose registers + AssignToArrayRange(Builder, Address, Four8, 0, 31); + + // 32-63: fp0-31, the 8-byte floating-point registers + AssignToArrayRange(Builder, Address, Eight8, 32, 63); + + // 64-76 are various 4-byte special-purpose registers: + // 64: mq + // 65: lr + // 66: ctr + // 67: ap + // 68-75 cr0-7 + // 76: xer + AssignToArrayRange(Builder, Address, Four8, 64, 76); + + // 77-108: v0-31, the 16-byte vector registers + AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); + + // 109: vrsave + // 110: vscr + // 111: spe_acc + // 112: spefscr + // 113: sfp + AssignToArrayRange(Builder, Address, Four8, 109, 113); + + return false; +} + +// PowerPC-64 + +namespace { +/// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. +class PPC64_SVR4_ABIInfo : public DefaultABIInfo { +public: + enum ABIKind { + ELFv1 = 0, + ELFv2 + }; + +private: + static const unsigned GPRBits = 64; + ABIKind Kind; + +public: + PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind) + : DefaultABIInfo(CGT), Kind(Kind) {} + + bool isPromotableTypeForABI(QualType Ty) const; + bool isAlignedParamType(QualType Ty) const; + bool isHomogeneousAggregate(QualType Ty, const Type *&Base, + uint64_t &Members) const; + + ABIArgInfo classifyReturnType(QualType RetTy) const; + ABIArgInfo classifyArgumentType(QualType Ty) const; + + // TODO: We can add more logic to computeInfo to improve performance. + // Example: For aggregate arguments that fit in a register, we could + // use getDirectInReg (as is done below for structs containing a single + // floating-point value) to avoid pushing them to memory on function + // entry. This would require changing the logic in PPCISelLowering + // when lowering the parameters in the caller and args in the callee. + void computeInfo(CGFunctionInfo &FI) const override { + if (!getCXXABI().classifyReturnType(FI)) + FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); + for (auto &I : FI.arguments()) { + // We rely on the default argument classification for the most part. + // One exception: An aggregate containing a single floating-point + // or vector item must be passed in a register if one is available. + const Type *T = isSingleElementStruct(I.type, getContext()); + if (T) { + const BuiltinType *BT = T->getAs<BuiltinType>(); + if ((T->isVectorType() && getContext().getTypeSize(T) == 128) || + (BT && BT->isFloatingPoint())) { + QualType QT(T, 0); + I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); + continue; + } + } + I.info = classifyArgumentType(I.type); + } + } + + llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const override; +}; + +class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { +public: + PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, + PPC64_SVR4_ABIInfo::ABIKind Kind) + : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind)) {} + + int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { + // This is recovered from gcc output. + return 1; // r1 is the dedicated stack pointer + } + + bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, + llvm::Value *Address) const override; +}; + +class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { +public: + PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} + + int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { + // This is recovered from gcc output. + return 1; // r1 is the dedicated stack pointer + } + + bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, + llvm::Value *Address) const override; +}; + +} + +// Return true if the ABI requires Ty to be passed sign- or zero- +// extended to 64 bits. +bool +PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = Ty->getAs<EnumType>()) + Ty = EnumTy->getDecl()->getIntegerType(); + + // Promotable integer types are required to be promoted by the ABI. + if (Ty->isPromotableIntegerType()) + return true; + + // In addition to the usual promotable integer types, we also need to + // extend all 32-bit types, since the ABI requires promotion to 64 bits. + if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) + switch (BT->getKind()) { + case BuiltinType::Int: + case BuiltinType::UInt: + return true; + default: + break; + } + + return false; +} + +/// isAlignedParamType - Determine whether a type requires 16-byte +/// alignment in the parameter area. +bool +PPC64_SVR4_ABIInfo::isAlignedParamType(QualType Ty) const { + // Complex types are passed just like their elements. + if (const ComplexType *CTy = Ty->getAs<ComplexType>()) + Ty = CTy->getElementType(); + + // Only vector types of size 16 bytes need alignment (larger types are + // passed via reference, smaller types are not aligned). + if (Ty->isVectorType()) + return getContext().getTypeSize(Ty) == 128; + + // For single-element float/vector structs, we consider the whole type + // to have the same alignment requirements as its single element. + const Type *AlignAsType = nullptr; + const Type *EltType = isSingleElementStruct(Ty, getContext()); + if (EltType) { + const BuiltinType *BT = EltType->getAs<BuiltinType>(); + if ((EltType->isVectorType() && + getContext().getTypeSize(EltType) == 128) || + (BT && BT->isFloatingPoint())) + AlignAsType = EltType; + } + + // Likewise for ELFv2 homogeneous aggregates. + const Type *Base = nullptr; + uint64_t Members = 0; + if (!AlignAsType && Kind == ELFv2 && + isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) + AlignAsType = Base; + + // With special case aggregates, only vector base types need alignment. + if (AlignAsType) + return AlignAsType->isVectorType(); + + // Otherwise, we only need alignment for any aggregate type that + // has an alignment requirement of >= 16 bytes. + if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) + return true; + + return false; +} + +/// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous +/// aggregate. Base is set to the base element type, and Members is set +/// to the number of base elements. +bool +PPC64_SVR4_ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, + uint64_t &Members) const { + if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { + uint64_t NElements = AT->getSize().getZExtValue(); + if (NElements == 0) + return false; + if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) + return false; + Members *= NElements; + } else if (const RecordType *RT = Ty->getAs<RecordType>()) { + const RecordDecl *RD = RT->getDecl(); + if (RD->hasFlexibleArrayMember()) + return false; + + Members = 0; + for (const auto *FD : RD->fields()) { + // Ignore (non-zero arrays of) empty records. + QualType FT = FD->getType(); + while (const ConstantArrayType *AT = + getContext().getAsConstantArrayType(FT)) { + if (AT->getSize().getZExtValue() == 0) + return false; + FT = AT->getElementType(); + } + if (isEmptyRecord(getContext(), FT, true)) + continue; + + // For compatibility with GCC, ignore empty bitfields in C++ mode. + if (getContext().getLangOpts().CPlusPlus && + FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) + continue; + + uint64_t FldMembers; + if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) + return false; + + Members = (RD->isUnion() ? + std::max(Members, FldMembers) : Members + FldMembers); + } + + if (!Base) + return false; + + // Ensure there is no padding. + if (getContext().getTypeSize(Base) * Members != + getContext().getTypeSize(Ty)) + return false; + } else { + Members = 1; + if (const ComplexType *CT = Ty->getAs<ComplexType>()) { + Members = 2; + Ty = CT->getElementType(); + } + + // Homogeneous aggregates for ELFv2 must have base types of float, + // double, long double, or 128-bit vectors. + if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { + if (BT->getKind() != BuiltinType::Float && + BT->getKind() != BuiltinType::Double && + BT->getKind() != BuiltinType::LongDouble) + return false; + } else if (const VectorType *VT = Ty->getAs<VectorType>()) { + if (getContext().getTypeSize(VT) != 128) + return false; + } else { + return false; + } + + // The base type must be the same for all members. Types that + // agree in both total size and mode (float vs. vector) are + // treated as being equivalent here. + const Type *TyPtr = Ty.getTypePtr(); + if (!Base) + Base = TyPtr; + + if (Base->isVectorType() != TyPtr->isVectorType() || + getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) + return false; + } + + // Vector types require one register, floating point types require one + // or two registers depending on their size. + uint32_t NumRegs = Base->isVectorType() ? 1 : + (getContext().getTypeSize(Base) + 63) / 64; + + // Homogeneous Aggregates may occupy at most 8 registers. + return (Members > 0 && Members * NumRegs <= 8); +} + +ABIArgInfo +PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { + if (Ty->isAnyComplexType()) + return ABIArgInfo::getDirect(); + + // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) + // or via reference (larger than 16 bytes). + if (Ty->isVectorType()) { + uint64_t Size = getContext().getTypeSize(Ty); + if (Size > 128) + return ABIArgInfo::getIndirect(0, /*ByVal=*/false); + else if (Size < 128) { + llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); + return ABIArgInfo::getDirect(CoerceTy); + } + } + + if (isAggregateTypeForABI(Ty)) { + if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) + return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); + + uint64_t ABIAlign = isAlignedParamType(Ty)? 16 : 8; + uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; + + // ELFv2 homogeneous aggregates are passed as array types. + const Type *Base = nullptr; + uint64_t Members = 0; + if (Kind == ELFv2 && + isHomogeneousAggregate(Ty, Base, Members)) { + llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); + llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); + return ABIArgInfo::getDirect(CoerceTy); + } + + // If an aggregate may end up fully in registers, we do not + // use the ByVal method, but pass the aggregate as array. + // This is usually beneficial since we avoid forcing the + // back-end to store the argument to memory. + uint64_t Bits = getContext().getTypeSize(Ty); + if (Bits > 0 && Bits <= 8 * GPRBits) { + llvm::Type *CoerceTy; + + // Types up to 8 bytes are passed as integer type (which will be + // properly aligned in the argument save area doubleword). + if (Bits <= GPRBits) + CoerceTy = llvm::IntegerType::get(getVMContext(), + llvm::RoundUpToAlignment(Bits, 8)); + // Larger types are passed as arrays, with the base type selected + // according to the required alignment in the save area. + else { + uint64_t RegBits = ABIAlign * 8; + uint64_t NumRegs = llvm::RoundUpToAlignment(Bits, RegBits) / RegBits; + llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); + CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); + } + + return ABIArgInfo::getDirect(CoerceTy); + } + + // All other aggregates are passed ByVal. + return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true, + /*Realign=*/TyAlign > ABIAlign); + } + + return (isPromotableTypeForABI(Ty) ? + ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); +} + +ABIArgInfo +PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { + if (RetTy->isVoidType()) + return ABIArgInfo::getIgnore(); + + if (RetTy->isAnyComplexType()) + return ABIArgInfo::getDirect(); + + // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) + // or via reference (larger than 16 bytes). + if (RetTy->isVectorType()) { + uint64_t Size = getContext().getTypeSize(RetTy); + if (Size > 128) + return ABIArgInfo::getIndirect(0); + else if (Size < 128) { + llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); + return ABIArgInfo::getDirect(CoerceTy); + } + } + + if (isAggregateTypeForABI(RetTy)) { + // ELFv2 homogeneous aggregates are returned as array types. + const Type *Base = nullptr; + uint64_t Members = 0; + if (Kind == ELFv2 && + isHomogeneousAggregate(RetTy, Base, Members)) { + llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); + llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); + return ABIArgInfo::getDirect(CoerceTy); + } + + // ELFv2 small aggregates are returned in up to two registers. + uint64_t Bits = getContext().getTypeSize(RetTy); + if (Kind == ELFv2 && Bits <= 2 * GPRBits) { + if (Bits == 0) + return ABIArgInfo::getIgnore(); + + llvm::Type *CoerceTy; + if (Bits > GPRBits) { + CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); + CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, NULL); + } else + CoerceTy = llvm::IntegerType::get(getVMContext(), + llvm::RoundUpToAlignment(Bits, 8)); + return ABIArgInfo::getDirect(CoerceTy); + } + + // All other aggregates are returned indirectly. + return ABIArgInfo::getIndirect(0); + } + + return (isPromotableTypeForABI(RetTy) ? + ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); +} + +// Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. +llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr, + QualType Ty, + CodeGenFunction &CGF) const { + llvm::Type *BP = CGF.Int8PtrTy; + llvm::Type *BPP = CGF.Int8PtrPtrTy; + + CGBuilderTy &Builder = CGF.Builder; + llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); + llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); + + // Handle types that require 16-byte alignment in the parameter save area. + if (isAlignedParamType(Ty)) { + llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); + AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(15)); + AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt64(-16)); + Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align"); + } + + // Update the va_list pointer. The pointer should be bumped by the + // size of the object. We can trust getTypeSize() except for a complex + // type whose base type is smaller than a doubleword. For these, the + // size of the object is 16 bytes; see below for further explanation. + unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8; + QualType BaseTy; + unsigned CplxBaseSize = 0; + + if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { + BaseTy = CTy->getElementType(); + CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8; + if (CplxBaseSize < 8) + SizeInBytes = 16; + } + + unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8); + llvm::Value *NextAddr = + Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), + "ap.next"); + Builder.CreateStore(NextAddr, VAListAddrAsBPP); + + // If we have a complex type and the base type is smaller than 8 bytes, + // the ABI calls for the real and imaginary parts to be right-adjusted + // in separate doublewords. However, Clang expects us to produce a + // pointer to a structure with the two parts packed tightly. So generate + // loads of the real and imaginary parts relative to the va_list pointer, + // and store them to a temporary structure. + if (CplxBaseSize && CplxBaseSize < 8) { + llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); + llvm::Value *ImagAddr = RealAddr; + if (CGF.CGM.getDataLayout().isBigEndian()) { + RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize)); + ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize)); + } else { + ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(8)); + } + llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy)); + RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy); + ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy); + llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal"); + llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag"); + llvm::Value *Ptr = CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty), + "vacplx"); + llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, ".real"); + llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, ".imag"); + Builder.CreateStore(Real, RealPtr, false); + Builder.CreateStore(Imag, ImagPtr, false); + return Ptr; + } + + // If the argument is smaller than 8 bytes, it is right-adjusted in + // its doubleword slot. Adjust the pointer to pick it up from the + // correct offset. + if (SizeInBytes < 8 && CGF.CGM.getDataLayout().isBigEndian()) { + llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); + AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes)); + Addr = Builder.CreateIntToPtr(AddrAsInt, BP); + } + + llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); + return Builder.CreateBitCast(Addr, PTy); +} + +static bool +PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, + llvm::Value *Address) { + // This is calculated from the LLVM and GCC tables and verified + // against gcc output. AFAIK all ABIs use the same encoding. + + CodeGen::CGBuilderTy &Builder = CGF.Builder; + + llvm::IntegerType *i8 = CGF.Int8Ty; + llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); + llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); + llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); + + // 0-31: r0-31, the 8-byte general-purpose registers + AssignToArrayRange(Builder, Address, Eight8, 0, 31); + + // 32-63: fp0-31, the 8-byte floating-point registers + AssignToArrayRange(Builder, Address, Eight8, 32, 63); + + // 64-76 are various 4-byte special-purpose registers: + // 64: mq + // 65: lr + // 66: ctr + // 67: ap + // 68-75 cr0-7 + // 76: xer + AssignToArrayRange(Builder, Address, Four8, 64, 76); + + // 77-108: v0-31, the 16-byte vector registers + AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); + + // 109: vrsave + // 110: vscr + // 111: spe_acc + // 112: spefscr + // 113: sfp + AssignToArrayRange(Builder, Address, Four8, 109, 113); + + return false; +} + +bool +PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( + CodeGen::CodeGenFunction &CGF, + llvm::Value *Address) const { + + return PPC64_initDwarfEHRegSizeTable(CGF, Address); +} + +bool +PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, + llvm::Value *Address) const { + + return PPC64_initDwarfEHRegSizeTable(CGF, Address); +} + +//===----------------------------------------------------------------------===// +// AArch64 ABI Implementation +//===----------------------------------------------------------------------===// + +namespace { + +class AArch64ABIInfo : public ABIInfo { +public: + enum ABIKind { + AAPCS = 0, + DarwinPCS + }; + +private: + ABIKind Kind; + +public: + AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {} + +private: + ABIKind getABIKind() const { return Kind; } + bool isDarwinPCS() const { return Kind == DarwinPCS; } + + ABIArgInfo classifyReturnType(QualType RetTy) const; + ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &AllocatedVFP, + bool &IsHA, unsigned &AllocatedGPR, + bool &IsSmallAggr, bool IsNamedArg) const; + bool isIllegalVectorType(QualType Ty) const; + + virtual void computeInfo(CGFunctionInfo &FI) const { + // To correctly handle Homogeneous Aggregate, we need to keep track of the + // number of SIMD and Floating-point registers allocated so far. + // If the argument is an HFA or an HVA and there are sufficient unallocated + // SIMD and Floating-point registers, then the argument is allocated to SIMD + // and Floating-point Registers (with one register per member of the HFA or + // HVA). Otherwise, the NSRN is set to 8. + unsigned AllocatedVFP = 0; + + // To correctly handle small aggregates, we need to keep track of the number + // of GPRs allocated so far. If the small aggregate can't all fit into + // registers, it will be on stack. We don't allow the aggregate to be + // partially in registers. + unsigned AllocatedGPR = 0; + + // Find the number of named arguments. Variadic arguments get special + // treatment with the Darwin ABI. + unsigned NumRequiredArgs = (FI.isVariadic() ? + FI.getRequiredArgs().getNumRequiredArgs() : + FI.arg_size()); + + if (!getCXXABI().classifyReturnType(FI)) + FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); + for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); + it != ie; ++it) { + unsigned PreAllocation = AllocatedVFP, PreGPR = AllocatedGPR; + bool IsHA = false, IsSmallAggr = false; + const unsigned NumVFPs = 8; + const unsigned NumGPRs = 8; + bool IsNamedArg = ((it - FI.arg_begin()) < + static_cast<signed>(NumRequiredArgs)); + it->info = classifyArgumentType(it->type, AllocatedVFP, IsHA, + AllocatedGPR, IsSmallAggr, IsNamedArg); + + // Under AAPCS the 64-bit stack slot alignment means we can't pass HAs + // as sequences of floats since they'll get "holes" inserted as + // padding by the back end. + if (IsHA && AllocatedVFP > NumVFPs && !isDarwinPCS() && + getContext().getTypeAlign(it->type) < 64) { + uint32_t NumStackSlots = getContext().getTypeSize(it->type); + NumStackSlots = llvm::RoundUpToAlignment(NumStackSlots, 64) / 64; + + llvm::Type *CoerceTy = llvm::ArrayType::get( + llvm::Type::getDoubleTy(getVMContext()), NumStackSlots); + it->info = ABIArgInfo::getDirect(CoerceTy); + } + + // If we do not have enough VFP registers for the HA, any VFP registers + // that are unallocated are marked as unavailable. To achieve this, we add + // padding of (NumVFPs - PreAllocation) floats. + if (IsHA && AllocatedVFP > NumVFPs && PreAllocation < NumVFPs) { + llvm::Type *PaddingTy = llvm::ArrayType::get( + llvm::Type::getFloatTy(getVMContext()), NumVFPs - PreAllocation); + it->info.setPaddingType(PaddingTy); + } + + // If we do not have enough GPRs for the small aggregate, any GPR regs + // that are unallocated are marked as unavailable. + if (IsSmallAggr && AllocatedGPR > NumGPRs && PreGPR < NumGPRs) { + llvm::Type *PaddingTy = llvm::ArrayType::get( + llvm::Type::getInt32Ty(getVMContext()), NumGPRs - PreGPR); + it->info = + ABIArgInfo::getDirect(it->info.getCoerceToType(), 0, PaddingTy); + } + } + } + + llvm::Value *EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const; + + llvm::Value *EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const; + + virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const { + return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) + : EmitAAPCSVAArg(VAListAddr, Ty, CGF); + } +}; + +class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { +public: + AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) + : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} + + StringRef getARCRetainAutoreleasedReturnValueMarker() const { + return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue"; + } + + int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { return 31; } + + virtual bool doesReturnSlotInterfereWithArgs() const { return false; } +}; +} + +static bool isHomogeneousAggregate(QualType Ty, const Type *&Base, + ASTContext &Context, + uint64_t *HAMembers = nullptr); + +ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty, + unsigned &AllocatedVFP, + bool &IsHA, + unsigned &AllocatedGPR, + bool &IsSmallAggr, + bool IsNamedArg) const { + // Handle illegal vector types here. + if (isIllegalVectorType(Ty)) { + uint64_t Size = getContext().getTypeSize(Ty); + if (Size <= 32) { + llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); + AllocatedGPR++; + return ABIArgInfo::getDirect(ResType); + } + if (Size == 64) { + llvm::Type *ResType = + llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); + AllocatedVFP++; + return ABIArgInfo::getDirect(ResType); + } + if (Size == 128) { + llvm::Type *ResType = + llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); + AllocatedVFP++; + return ABIArgInfo::getDirect(ResType); + } + AllocatedGPR++; + return ABIArgInfo::getIndirect(0, /*ByVal=*/false); + } + if (Ty->isVectorType()) + // Size of a legal vector should be either 64 or 128. + AllocatedVFP++; + if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { + if (BT->getKind() == BuiltinType::Half || + BT->getKind() == BuiltinType::Float || + BT->getKind() == BuiltinType::Double || + BT->getKind() == BuiltinType::LongDouble) + AllocatedVFP++; + } + + if (!isAggregateTypeForABI(Ty)) { + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = Ty->getAs<EnumType>()) + Ty = EnumTy->getDecl()->getIntegerType(); + + if (!Ty->isFloatingType() && !Ty->isVectorType()) { + unsigned Alignment = getContext().getTypeAlign(Ty); + if (!isDarwinPCS() && Alignment > 64) + AllocatedGPR = llvm::RoundUpToAlignment(AllocatedGPR, Alignment / 64); + + int RegsNeeded = getContext().getTypeSize(Ty) > 64 ? 2 : 1; + AllocatedGPR += RegsNeeded; + } + return (Ty->isPromotableIntegerType() && isDarwinPCS() + ? ABIArgInfo::getExtend() + : ABIArgInfo::getDirect()); + } + + // Structures with either a non-trivial destructor or a non-trivial + // copy constructor are always indirect. + if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { + AllocatedGPR++; + return ABIArgInfo::getIndirect(0, /*ByVal=*/RAA == + CGCXXABI::RAA_DirectInMemory); + } + + // Empty records are always ignored on Darwin, but actually passed in C++ mode + // elsewhere for GNU compatibility. + if (isEmptyRecord(getContext(), Ty, true)) { + if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) + return ABIArgInfo::getIgnore(); + + ++AllocatedGPR; + return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); + } + + // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. + const Type *Base = nullptr; + uint64_t Members = 0; + if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) { + IsHA = true; + if (!IsNamedArg && isDarwinPCS()) { + // With the Darwin ABI, variadic arguments are always passed on the stack + // and should not be expanded. Treat variadic HFAs as arrays of doubles. + uint64_t Size = getContext().getTypeSize(Ty); + llvm::Type *BaseTy = llvm::Type::getDoubleTy(getVMContext()); + return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); + } + AllocatedVFP += Members; + return ABIArgInfo::getExpand(); + } + + // Aggregates <= 16 bytes are passed directly in registers or on the stack. + uint64_t Size = getContext().getTypeSize(Ty); + if (Size <= 128) { + unsigned Alignment = getContext().getTypeAlign(Ty); + if (!isDarwinPCS() && Alignment > 64) + AllocatedGPR = llvm::RoundUpToAlignment(AllocatedGPR, Alignment / 64); + + Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes + AllocatedGPR += Size / 64; + IsSmallAggr = true; + // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. + // For aggregates with 16-byte alignment, we use i128. + if (Alignment < 128 && Size == 128) { + llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); + return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); + } + return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); + } + + AllocatedGPR++; + return ABIArgInfo::getIndirect(0, /*ByVal=*/false); +} + +ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { + if (RetTy->isVoidType()) + return ABIArgInfo::getIgnore(); + + // Large vector types should be returned via memory. + if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) + return ABIArgInfo::getIndirect(0); + + if (!isAggregateTypeForABI(RetTy)) { + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) + RetTy = EnumTy->getDecl()->getIntegerType(); + + return (RetTy->isPromotableIntegerType() && isDarwinPCS() + ? ABIArgInfo::getExtend() + : ABIArgInfo::getDirect()); + } + + if (isEmptyRecord(getContext(), RetTy, true)) + return ABIArgInfo::getIgnore(); + + const Type *Base = nullptr; + if (isHomogeneousAggregate(RetTy, Base, getContext())) + // Homogeneous Floating-point Aggregates (HFAs) are returned directly. + return ABIArgInfo::getDirect(); + + // Aggregates <= 16 bytes are returned directly in registers or on the stack. + uint64_t Size = getContext().getTypeSize(RetTy); + if (Size <= 128) { + Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes + return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); + } + + return ABIArgInfo::getIndirect(0); +} + +/// isIllegalVectorType - check whether the vector type is legal for AArch64. +bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { + if (const VectorType *VT = Ty->getAs<VectorType>()) { + // Check whether VT is legal. + unsigned NumElements = VT->getNumElements(); + uint64_t Size = getContext().getTypeSize(VT); + // NumElements should be power of 2 between 1 and 16. + if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16) + return true; + return Size != 64 && (Size != 128 || NumElements == 1); + } + return false; +} + +static llvm::Value *EmitAArch64VAArg(llvm::Value *VAListAddr, QualType Ty, + int AllocatedGPR, int AllocatedVFP, + bool IsIndirect, CodeGenFunction &CGF) { + // The AArch64 va_list type and handling is specified in the Procedure Call + // Standard, section B.4: + // + // struct { + // void *__stack; + // void *__gr_top; + // void *__vr_top; + // int __gr_offs; + // int __vr_offs; + // }; + + llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); + llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); + llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); + llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); + auto &Ctx = CGF.getContext(); + + llvm::Value *reg_offs_p = nullptr, *reg_offs = nullptr; + int reg_top_index; + int RegSize; + if (AllocatedGPR) { + assert(!AllocatedVFP && "Arguments never split between int & VFP regs"); + // 3 is the field number of __gr_offs + reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); + reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); + reg_top_index = 1; // field number for __gr_top + RegSize = 8 * AllocatedGPR; + } else { + assert(!AllocatedGPR && "Argument must go in VFP or int regs"); + // 4 is the field number of __vr_offs. + reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); + reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); + reg_top_index = 2; // field number for __vr_top + RegSize = 16 * AllocatedVFP; + } + + //======================================= + // Find out where argument was passed + //======================================= + + // If reg_offs >= 0 we're already using the stack for this type of + // argument. We don't want to keep updating reg_offs (in case it overflows, + // though anyone passing 2GB of arguments, each at most 16 bytes, deserves + // whatever they get). + llvm::Value *UsingStack = nullptr; + UsingStack = CGF.Builder.CreateICmpSGE( + reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); + + CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); + + // Otherwise, at least some kind of argument could go in these registers, the + // question is whether this particular type is too big. + CGF.EmitBlock(MaybeRegBlock); + + // Integer arguments may need to correct register alignment (for example a + // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we + // align __gr_offs to calculate the potential address. + if (AllocatedGPR && !IsIndirect && Ctx.getTypeAlign(Ty) > 64) { + int Align = Ctx.getTypeAlign(Ty) / 8; + + reg_offs = CGF.Builder.CreateAdd( + reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), + "align_regoffs"); + reg_offs = CGF.Builder.CreateAnd( + reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), + "aligned_regoffs"); + } + + // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. + llvm::Value *NewOffset = nullptr; + NewOffset = CGF.Builder.CreateAdd( + reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); + CGF.Builder.CreateStore(NewOffset, reg_offs_p); + + // Now we're in a position to decide whether this argument really was in + // registers or not. + llvm::Value *InRegs = nullptr; + InRegs = CGF.Builder.CreateICmpSLE( + NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); + + CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); + + //======================================= + // Argument was in registers + //======================================= + + // Now we emit the code for if the argument was originally passed in + // registers. First start the appropriate block: + CGF.EmitBlock(InRegBlock); + + llvm::Value *reg_top_p = nullptr, *reg_top = nullptr; + reg_top_p = + CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); + reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); + llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs); + llvm::Value *RegAddr = nullptr; + llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); + + if (IsIndirect) { + // If it's been passed indirectly (actually a struct), whatever we find from + // stored registers or on the stack will actually be a struct **. + MemTy = llvm::PointerType::getUnqual(MemTy); + } + + const Type *Base = nullptr; + uint64_t NumMembers; + bool IsHFA = isHomogeneousAggregate(Ty, Base, Ctx, &NumMembers); + if (IsHFA && NumMembers > 1) { + // Homogeneous aggregates passed in registers will have their elements split + // and stored 16-bytes apart regardless of size (they're notionally in qN, + // qN+1, ...). We reload and store into a temporary local variable + // contiguously. + assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); + llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); + llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); + llvm::Value *Tmp = CGF.CreateTempAlloca(HFATy); + int Offset = 0; + + if (CGF.CGM.getDataLayout().isBigEndian() && Ctx.getTypeSize(Base) < 128) + Offset = 16 - Ctx.getTypeSize(Base) / 8; + for (unsigned i = 0; i < NumMembers; ++i) { + llvm::Value *BaseOffset = + llvm::ConstantInt::get(CGF.Int32Ty, 16 * i + Offset); + llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset); + LoadAddr = CGF.Builder.CreateBitCast( + LoadAddr, llvm::PointerType::getUnqual(BaseTy)); + llvm::Value *StoreAddr = CGF.Builder.CreateStructGEP(Tmp, i); + + llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); + CGF.Builder.CreateStore(Elem, StoreAddr); + } + + RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy); + } else { + // Otherwise the object is contiguous in memory + unsigned BeAlign = reg_top_index == 2 ? 16 : 8; + if (CGF.CGM.getDataLayout().isBigEndian() && + (IsHFA || !isAggregateTypeForABI(Ty)) && + Ctx.getTypeSize(Ty) < (BeAlign * 8)) { + int Offset = BeAlign - Ctx.getTypeSize(Ty) / 8; + BaseAddr = CGF.Builder.CreatePtrToInt(BaseAddr, CGF.Int64Ty); + + BaseAddr = CGF.Builder.CreateAdd( + BaseAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be"); + + BaseAddr = CGF.Builder.CreateIntToPtr(BaseAddr, CGF.Int8PtrTy); + } + + RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy); + } + + CGF.EmitBranch(ContBlock); + + //======================================= + // Argument was on the stack + //======================================= + CGF.EmitBlock(OnStackBlock); + + llvm::Value *stack_p = nullptr, *OnStackAddr = nullptr; + stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); + OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack"); + + // Again, stack arguments may need realigmnent. In this case both integer and + // floating-point ones might be affected. + if (!IsIndirect && Ctx.getTypeAlign(Ty) > 64) { + int Align = Ctx.getTypeAlign(Ty) / 8; + + OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty); + + OnStackAddr = CGF.Builder.CreateAdd( + OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), + "align_stack"); + OnStackAddr = CGF.Builder.CreateAnd( + OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), + "align_stack"); + + OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy); + } + + uint64_t StackSize; + if (IsIndirect) + StackSize = 8; + else + StackSize = Ctx.getTypeSize(Ty) / 8; + + // All stack slots are 8 bytes + StackSize = llvm::RoundUpToAlignment(StackSize, 8); + + llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize); + llvm::Value *NewStack = + CGF.Builder.CreateGEP(OnStackAddr, StackSizeC, "new_stack"); + + // Write the new value of __stack for the next call to va_arg + CGF.Builder.CreateStore(NewStack, stack_p); + + if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && + Ctx.getTypeSize(Ty) < 64) { + int Offset = 8 - Ctx.getTypeSize(Ty) / 8; + OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty); + + OnStackAddr = CGF.Builder.CreateAdd( + OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be"); + + OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy); + } + + OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy); + + CGF.EmitBranch(ContBlock); + + //======================================= + // Tidy up + //======================================= + CGF.EmitBlock(ContBlock); + + llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr"); + ResAddr->addIncoming(RegAddr, InRegBlock); + ResAddr->addIncoming(OnStackAddr, OnStackBlock); + + if (IsIndirect) + return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"); + + return ResAddr; +} + +llvm::Value *AArch64ABIInfo::EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const { + + unsigned AllocatedGPR = 0, AllocatedVFP = 0; + bool IsHA = false, IsSmallAggr = false; + ABIArgInfo AI = classifyArgumentType(Ty, AllocatedVFP, IsHA, AllocatedGPR, + IsSmallAggr, false /*IsNamedArg*/); + + return EmitAArch64VAArg(VAListAddr, Ty, AllocatedGPR, AllocatedVFP, + AI.isIndirect(), CGF); +} + +llvm::Value *AArch64ABIInfo::EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const { + // We do not support va_arg for aggregates or illegal vector types. + // Lower VAArg here for these cases and use the LLVM va_arg instruction for + // other cases. + if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) + return nullptr; + + uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8; + uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; + + const Type *Base = nullptr; + bool isHA = isHomogeneousAggregate(Ty, Base, getContext()); + + bool isIndirect = false; + // Arguments bigger than 16 bytes which aren't homogeneous aggregates should + // be passed indirectly. + if (Size > 16 && !isHA) { + isIndirect = true; + Size = 8; + Align = 8; + } + + llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); + llvm::Type *BPP = llvm::PointerType::getUnqual(BP); + + CGBuilderTy &Builder = CGF.Builder; + llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); + llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); + + if (isEmptyRecord(getContext(), Ty, true)) { + // These are ignored for parameter passing purposes. + llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); + return Builder.CreateBitCast(Addr, PTy); + } + + const uint64_t MinABIAlign = 8; + if (Align > MinABIAlign) { + llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, Align - 1); + Addr = Builder.CreateGEP(Addr, Offset); + llvm::Value *AsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); + llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~(Align - 1)); + llvm::Value *Aligned = Builder.CreateAnd(AsInt, Mask); + Addr = Builder.CreateIntToPtr(Aligned, BP, "ap.align"); + } + + uint64_t Offset = llvm::RoundUpToAlignment(Size, MinABIAlign); + llvm::Value *NextAddr = Builder.CreateGEP( + Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); + Builder.CreateStore(NextAddr, VAListAddrAsBPP); + + if (isIndirect) + Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP)); + llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); + llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); + + return AddrTyped; +} + +//===----------------------------------------------------------------------===// +// ARM ABI Implementation +//===----------------------------------------------------------------------===// + +namespace { + +class ARMABIInfo : public ABIInfo { +public: + enum ABIKind { + APCS = 0, + AAPCS = 1, + AAPCS_VFP + }; + +private: + ABIKind Kind; + mutable int VFPRegs[16]; + const unsigned NumVFPs; + const unsigned NumGPRs; + mutable unsigned AllocatedGPRs; + mutable unsigned AllocatedVFPs; + +public: + ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind), + NumVFPs(16), NumGPRs(4) { + setRuntimeCC(); + resetAllocatedRegs(); + } + + bool isEABI() const { + switch (getTarget().getTriple().getEnvironment()) { + case llvm::Triple::Android: + case llvm::Triple::EABI: + case llvm::Triple::EABIHF: + case llvm::Triple::GNUEABI: + case llvm::Triple::GNUEABIHF: + return true; + default: + return false; + } + } + + bool isEABIHF() const { + switch (getTarget().getTriple().getEnvironment()) { + case llvm::Triple::EABIHF: + case llvm::Triple::GNUEABIHF: + return true; + default: + return false; + } + } + + ABIKind getABIKind() const { return Kind; } + +private: + ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; + ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, + bool &IsCPRC) const; + bool isIllegalVectorType(QualType Ty) const; + + void computeInfo(CGFunctionInfo &FI) const override; + + llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const override; + + llvm::CallingConv::ID getLLVMDefaultCC() const; + llvm::CallingConv::ID getABIDefaultCC() const; + void setRuntimeCC(); + + void markAllocatedGPRs(unsigned Alignment, unsigned NumRequired) const; + void markAllocatedVFPs(unsigned Alignment, unsigned NumRequired) const; + void resetAllocatedRegs(void) const; +}; + +class ARMTargetCodeGenInfo : public TargetCodeGenInfo { +public: + ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) + :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} + + const ARMABIInfo &getABIInfo() const { + return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); + } + + int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { + return 13; + } + + StringRef getARCRetainAutoreleasedReturnValueMarker() const override { + return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue"; + } + + bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, + llvm::Value *Address) const override { + llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); + + // 0-15 are the 16 integer registers. + AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); + return false; + } + + unsigned getSizeOfUnwindException() const override { + if (getABIInfo().isEABI()) return 88; + return TargetCodeGenInfo::getSizeOfUnwindException(); + } + + void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, + CodeGen::CodeGenModule &CGM) const override { + const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); + if (!FD) + return; + + const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); + if (!Attr) + return; + + const char *Kind; + switch (Attr->getInterrupt()) { + case ARMInterruptAttr::Generic: Kind = ""; break; + case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; + case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; + case ARMInterruptAttr::SWI: Kind = "SWI"; break; + case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; + case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; + } + + llvm::Function *Fn = cast<llvm::Function>(GV); + + Fn->addFnAttr("interrupt", Kind); + + if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS) + return; + + // AAPCS guarantees that sp will be 8-byte aligned on any public interface, + // however this is not necessarily true on taking any interrupt. Instruct + // the backend to perform a realignment as part of the function prologue. + llvm::AttrBuilder B; + B.addStackAlignmentAttr(8); + Fn->addAttributes(llvm::AttributeSet::FunctionIndex, + llvm::AttributeSet::get(CGM.getLLVMContext(), + llvm::AttributeSet::FunctionIndex, + B)); + } + +}; + +} + +void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { + // To correctly handle Homogeneous Aggregate, we need to keep track of the + // VFP registers allocated so far. + // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive + // VFP registers of the appropriate type unallocated then the argument is + // allocated to the lowest-numbered sequence of such registers. + // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are + // unallocated are marked as unavailable. + resetAllocatedRegs(); + + if (getCXXABI().classifyReturnType(FI)) { + if (FI.getReturnInfo().isIndirect()) + markAllocatedGPRs(1, 1); + } else { + FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic()); + } + for (auto &I : FI.arguments()) { + unsigned PreAllocationVFPs = AllocatedVFPs; + unsigned PreAllocationGPRs = AllocatedGPRs; + bool IsCPRC = false; + // 6.1.2.3 There is one VFP co-processor register class using registers + // s0-s15 (d0-d7) for passing arguments. + I.info = classifyArgumentType(I.type, FI.isVariadic(), IsCPRC); + + // If we have allocated some arguments onto the stack (due to running + // out of VFP registers), we cannot split an argument between GPRs and + // the stack. If this situation occurs, we add padding to prevent the + // GPRs from being used. In this situation, the current argument could + // only be allocated by rule C.8, so rule C.6 would mark these GPRs as + // unusable anyway. + // We do not have to do this if the argument is being passed ByVal, as the + // backend can handle that situation correctly. + const bool StackUsed = PreAllocationGPRs > NumGPRs || PreAllocationVFPs > NumVFPs; + const bool IsByVal = I.info.isIndirect() && I.info.getIndirectByVal(); + if (!IsCPRC && PreAllocationGPRs < NumGPRs && AllocatedGPRs > NumGPRs && + StackUsed && !IsByVal) { + llvm::Type *PaddingTy = llvm::ArrayType::get( + llvm::Type::getInt32Ty(getVMContext()), NumGPRs - PreAllocationGPRs); + if (I.info.canHaveCoerceToType()) { + I.info = ABIArgInfo::getDirect(I.info.getCoerceToType() /* type */, 0 /* offset */, + PaddingTy); + } else { + I.info = ABIArgInfo::getDirect(nullptr /* type */, 0 /* offset */, + PaddingTy); + } + } + } + + // Always honor user-specified calling convention. + if (FI.getCallingConvention() != llvm::CallingConv::C) + return; + + llvm::CallingConv::ID cc = getRuntimeCC(); + if (cc != llvm::CallingConv::C) + FI.setEffectiveCallingConvention(cc); +} + +/// Return the default calling convention that LLVM will use. +llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { + // The default calling convention that LLVM will infer. + if (isEABIHF()) + return llvm::CallingConv::ARM_AAPCS_VFP; + else if (isEABI()) + return llvm::CallingConv::ARM_AAPCS; + else + return llvm::CallingConv::ARM_APCS; +} + +/// Return the calling convention that our ABI would like us to use +/// as the C calling convention. +llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { + switch (getABIKind()) { + case APCS: return llvm::CallingConv::ARM_APCS; + case AAPCS: return llvm::CallingConv::ARM_AAPCS; + case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; + } + llvm_unreachable("bad ABI kind"); +} + +void ARMABIInfo::setRuntimeCC() { + assert(getRuntimeCC() == llvm::CallingConv::C); + + // Don't muddy up the IR with a ton of explicit annotations if + // they'd just match what LLVM will infer from the triple. + llvm::CallingConv::ID abiCC = getABIDefaultCC(); + if (abiCC != getLLVMDefaultCC()) + RuntimeCC = abiCC; +} + +/// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous +/// aggregate. If HAMembers is non-null, the number of base elements +/// contained in the type is returned through it; this is used for the +/// recursive calls that check aggregate component types. +static bool isHomogeneousAggregate(QualType Ty, const Type *&Base, + ASTContext &Context, uint64_t *HAMembers) { + uint64_t Members = 0; + if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { + if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members)) + return false; + Members *= AT->getSize().getZExtValue(); + } else if (const RecordType *RT = Ty->getAs<RecordType>()) { + const RecordDecl *RD = RT->getDecl(); + if (RD->hasFlexibleArrayMember()) + return false; + + Members = 0; + for (const auto *FD : RD->fields()) { + uint64_t FldMembers; + if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers)) + return false; + + Members = (RD->isUnion() ? + std::max(Members, FldMembers) : Members + FldMembers); + } + } else { + Members = 1; + if (const ComplexType *CT = Ty->getAs<ComplexType>()) { + Members = 2; + Ty = CT->getElementType(); + } + + // Homogeneous aggregates for AAPCS-VFP must have base types of float, + // double, or 64-bit or 128-bit vectors. + if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { + if (BT->getKind() != BuiltinType::Float && + BT->getKind() != BuiltinType::Double && + BT->getKind() != BuiltinType::LongDouble) + return false; + } else if (const VectorType *VT = Ty->getAs<VectorType>()) { + unsigned VecSize = Context.getTypeSize(VT); + if (VecSize != 64 && VecSize != 128) + return false; + } else { + return false; + } + + // The base type must be the same for all members. Vector types of the + // same total size are treated as being equivalent here. + const Type *TyPtr = Ty.getTypePtr(); + if (!Base) + Base = TyPtr; + + if (Base != TyPtr) { + // Homogeneous aggregates are defined as containing members with the + // same machine type. There are two cases in which two members have + // different TypePtrs but the same machine type: + + // 1) Vectors of the same length, regardless of the type and number + // of their members. + const bool SameLengthVectors = Base->isVectorType() && TyPtr->isVectorType() + && (Context.getTypeSize(Base) == Context.getTypeSize(TyPtr)); + + // 2) In the 32-bit AAPCS, `double' and `long double' have the same + // machine type. This is not the case for the 64-bit AAPCS. + const bool SameSizeDoubles = + ( ( Base->isSpecificBuiltinType(BuiltinType::Double) + && TyPtr->isSpecificBuiltinType(BuiltinType::LongDouble)) + || ( Base->isSpecificBuiltinType(BuiltinType::LongDouble) + && TyPtr->isSpecificBuiltinType(BuiltinType::Double))) + && (Context.getTypeSize(Base) == Context.getTypeSize(TyPtr)); + + if (!SameLengthVectors && !SameSizeDoubles) + return false; + } + } + + // Homogeneous Aggregates can have at most 4 members of the base type. + if (HAMembers) + *HAMembers = Members; + + return (Members > 0 && Members <= 4); +} + +/// markAllocatedVFPs - update VFPRegs according to the alignment and +/// number of VFP registers (unit is S register) requested. +void ARMABIInfo::markAllocatedVFPs(unsigned Alignment, + unsigned NumRequired) const { + // Early Exit. + if (AllocatedVFPs >= 16) { + // We use AllocatedVFP > 16 to signal that some CPRCs were allocated on + // the stack. + AllocatedVFPs = 17; + return; + } + // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive + // VFP registers of the appropriate type unallocated then the argument is + // allocated to the lowest-numbered sequence of such registers. + for (unsigned I = 0; I < 16; I += Alignment) { + bool FoundSlot = true; + for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++) + if (J >= 16 || VFPRegs[J]) { + FoundSlot = false; + break; + } + if (FoundSlot) { + for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++) + VFPRegs[J] = 1; + AllocatedVFPs += NumRequired; + return; + } + } + // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are + // unallocated are marked as unavailable. + for (unsigned I = 0; I < 16; I++) + VFPRegs[I] = 1; + AllocatedVFPs = 17; // We do not have enough VFP registers. +} + +/// Update AllocatedGPRs to record the number of general purpose registers +/// which have been allocated. It is valid for AllocatedGPRs to go above 4, +/// this represents arguments being stored on the stack. +void ARMABIInfo::markAllocatedGPRs(unsigned Alignment, + unsigned NumRequired) const { + assert((Alignment == 1 || Alignment == 2) && "Alignment must be 4 or 8 bytes"); + + if (Alignment == 2 && AllocatedGPRs & 0x1) + AllocatedGPRs += 1; + + AllocatedGPRs += NumRequired; +} + +void ARMABIInfo::resetAllocatedRegs(void) const { + AllocatedGPRs = 0; + AllocatedVFPs = 0; + for (unsigned i = 0; i < NumVFPs; ++i) + VFPRegs[i] = 0; +} + +ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, + bool &IsCPRC) const { + // We update number of allocated VFPs according to + // 6.1.2.1 The following argument types are VFP CPRCs: + // A single-precision floating-point type (including promoted + // half-precision types); A double-precision floating-point type; + // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate + // with a Base Type of a single- or double-precision floating-point type, + // 64-bit containerized vectors or 128-bit containerized vectors with one + // to four Elements. + + // Handle illegal vector types here. + if (isIllegalVectorType(Ty)) { + uint64_t Size = getContext().getTypeSize(Ty); + if (Size <= 32) { + llvm::Type *ResType = + llvm::Type::getInt32Ty(getVMContext()); + markAllocatedGPRs(1, 1); + return ABIArgInfo::getDirect(ResType); + } + if (Size == 64) { + llvm::Type *ResType = llvm::VectorType::get( + llvm::Type::getInt32Ty(getVMContext()), 2); + if (getABIKind() == ARMABIInfo::AAPCS || isVariadic){ + markAllocatedGPRs(2, 2); + } else { + markAllocatedVFPs(2, 2); + IsCPRC = true; + } + return ABIArgInfo::getDirect(ResType); + } + if (Size == 128) { + llvm::Type *ResType = llvm::VectorType::get( + llvm::Type::getInt32Ty(getVMContext()), 4); + if (getABIKind() == ARMABIInfo::AAPCS || isVariadic) { + markAllocatedGPRs(2, 4); + } else { + markAllocatedVFPs(4, 4); + IsCPRC = true; + } + return ABIArgInfo::getDirect(ResType); + } + markAllocatedGPRs(1, 1); + return ABIArgInfo::getIndirect(0, /*ByVal=*/false); + } + // Update VFPRegs for legal vector types. + if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) { + if (const VectorType *VT = Ty->getAs<VectorType>()) { + uint64_t Size = getContext().getTypeSize(VT); + // Size of a legal vector should be power of 2 and above 64. + markAllocatedVFPs(Size >= 128 ? 4 : 2, Size / 32); + IsCPRC = true; + } + } + // Update VFPRegs for floating point types. + if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) { + if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { + if (BT->getKind() == BuiltinType::Half || + BT->getKind() == BuiltinType::Float) { + markAllocatedVFPs(1, 1); + IsCPRC = true; + } + if (BT->getKind() == BuiltinType::Double || + BT->getKind() == BuiltinType::LongDouble) { + markAllocatedVFPs(2, 2); + IsCPRC = true; + } + } + } + + if (!isAggregateTypeForABI(Ty)) { + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { + Ty = EnumTy->getDecl()->getIntegerType(); + } + + unsigned Size = getContext().getTypeSize(Ty); + if (!IsCPRC) + markAllocatedGPRs(Size > 32 ? 2 : 1, (Size + 31) / 32); + return (Ty->isPromotableIntegerType() ? + ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); + } + + if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { + markAllocatedGPRs(1, 1); + return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); + } + + // Ignore empty records. + if (isEmptyRecord(getContext(), Ty, true)) + return ABIArgInfo::getIgnore(); + + if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) { + // Homogeneous Aggregates need to be expanded when we can fit the aggregate + // into VFP registers. + const Type *Base = nullptr; + uint64_t Members = 0; + if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) { + assert(Base && "Base class should be set for homogeneous aggregate"); + // Base can be a floating-point or a vector. + if (Base->isVectorType()) { + // ElementSize is in number of floats. + unsigned ElementSize = getContext().getTypeSize(Base) == 64 ? 2 : 4; + markAllocatedVFPs(ElementSize, + Members * ElementSize); + } else if (Base->isSpecificBuiltinType(BuiltinType::Float)) + markAllocatedVFPs(1, Members); + else { + assert(Base->isSpecificBuiltinType(BuiltinType::Double) || + Base->isSpecificBuiltinType(BuiltinType::LongDouble)); + markAllocatedVFPs(2, Members * 2); + } + IsCPRC = true; + return ABIArgInfo::getDirect(); + } + } + + // Support byval for ARM. + // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at + // most 8-byte. We realign the indirect argument if type alignment is bigger + // than ABI alignment. + uint64_t ABIAlign = 4; + uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; + if (getABIKind() == ARMABIInfo::AAPCS_VFP || + getABIKind() == ARMABIInfo::AAPCS) + ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); + if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { + // Update Allocated GPRs. Since this is only used when the size of the + // argument is greater than 64 bytes, this will always use up any available + // registers (of which there are 4). We also don't care about getting the + // alignment right, because general-purpose registers cannot be back-filled. + markAllocatedGPRs(1, 4); + return ABIArgInfo::getIndirect(TyAlign, /*ByVal=*/true, + /*Realign=*/TyAlign > ABIAlign); + } + + // Otherwise, pass by coercing to a structure of the appropriate size. + llvm::Type* ElemTy; + unsigned SizeRegs; + // FIXME: Try to match the types of the arguments more accurately where + // we can. + if (getContext().getTypeAlign(Ty) <= 32) { + ElemTy = llvm::Type::getInt32Ty(getVMContext()); + SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; + markAllocatedGPRs(1, SizeRegs); + } else { + ElemTy = llvm::Type::getInt64Ty(getVMContext()); + SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; + markAllocatedGPRs(2, SizeRegs * 2); + } + + llvm::Type *STy = + llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL); + return ABIArgInfo::getDirect(STy); +} + +static bool isIntegerLikeType(QualType Ty, ASTContext &Context, + llvm::LLVMContext &VMContext) { + // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure + // is called integer-like if its size is less than or equal to one word, and + // the offset of each of its addressable sub-fields is zero. + + uint64_t Size = Context.getTypeSize(Ty); + + // Check that the type fits in a word. + if (Size > 32) + return false; + + // FIXME: Handle vector types! + if (Ty->isVectorType()) + return false; + + // Float types are never treated as "integer like". + if (Ty->isRealFloatingType()) + return false; + + // If this is a builtin or pointer type then it is ok. + if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) + return true; + + // Small complex integer types are "integer like". + if (const ComplexType *CT = Ty->getAs<ComplexType>()) + return isIntegerLikeType(CT->getElementType(), Context, VMContext); + + // Single element and zero sized arrays should be allowed, by the definition + // above, but they are not. + + // Otherwise, it must be a record type. + const RecordType *RT = Ty->getAs<RecordType>(); + if (!RT) return false; + + // Ignore records with flexible arrays. + const RecordDecl *RD = RT->getDecl(); + if (RD->hasFlexibleArrayMember()) + return false; + + // Check that all sub-fields are at offset 0, and are themselves "integer + // like". + const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); + + bool HadField = false; + unsigned idx = 0; + for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); + i != e; ++i, ++idx) { + const FieldDecl *FD = *i; + + // Bit-fields are not addressable, we only need to verify they are "integer + // like". We still have to disallow a subsequent non-bitfield, for example: + // struct { int : 0; int x } + // is non-integer like according to gcc. + if (FD->isBitField()) { + if (!RD->isUnion()) + HadField = true; + + if (!isIntegerLikeType(FD->getType(), Context, VMContext)) + return false; + + continue; + } + + // Check if this field is at offset 0. + if (Layout.getFieldOffset(idx) != 0) + return false; + + if (!isIntegerLikeType(FD->getType(), Context, VMContext)) + return false; + + // Only allow at most one field in a structure. This doesn't match the + // wording above, but follows gcc in situations with a field following an + // empty structure. + if (!RD->isUnion()) { + if (HadField) + return false; + + HadField = true; + } + } + + return true; +} + +ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, + bool isVariadic) const { + if (RetTy->isVoidType()) + return ABIArgInfo::getIgnore(); + + // Large vector types should be returned via memory. + if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) { + markAllocatedGPRs(1, 1); + return ABIArgInfo::getIndirect(0); + } + + if (!isAggregateTypeForABI(RetTy)) { + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) + RetTy = EnumTy->getDecl()->getIntegerType(); + + return (RetTy->isPromotableIntegerType() ? + ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); + } + + // Are we following APCS? + if (getABIKind() == APCS) { + if (isEmptyRecord(getContext(), RetTy, false)) + return ABIArgInfo::getIgnore(); + + // Complex types are all returned as packed integers. + // + // FIXME: Consider using 2 x vector types if the back end handles them + // correctly. + if (RetTy->isAnyComplexType()) + return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), + getContext().getTypeSize(RetTy))); + + // Integer like structures are returned in r0. + if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { + // Return in the smallest viable integer type. + uint64_t Size = getContext().getTypeSize(RetTy); + if (Size <= 8) + return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); + if (Size <= 16) + return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); + return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); + } + + // Otherwise return in memory. + markAllocatedGPRs(1, 1); + return ABIArgInfo::getIndirect(0); + } + + // Otherwise this is an AAPCS variant. + + if (isEmptyRecord(getContext(), RetTy, true)) + return ABIArgInfo::getIgnore(); + + // Check for homogeneous aggregates with AAPCS-VFP. + if (getABIKind() == AAPCS_VFP && !isVariadic) { + const Type *Base = nullptr; + if (isHomogeneousAggregate(RetTy, Base, getContext())) { + assert(Base && "Base class should be set for homogeneous aggregate"); + // Homogeneous Aggregates are returned directly. + return ABIArgInfo::getDirect(); + } + } + + // Aggregates <= 4 bytes are returned in r0; other aggregates + // are returned indirectly. + uint64_t Size = getContext().getTypeSize(RetTy); + if (Size <= 32) { + if (getDataLayout().isBigEndian()) + // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) + return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); + + // Return in the smallest viable integer type. + if (Size <= 8) + return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); + if (Size <= 16) + return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); + return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); + } + + markAllocatedGPRs(1, 1); + return ABIArgInfo::getIndirect(0); +} + +/// isIllegalVector - check whether Ty is an illegal vector type. +bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { + if (const VectorType *VT = Ty->getAs<VectorType>()) { + // Check whether VT is legal. + unsigned NumElements = VT->getNumElements(); + uint64_t Size = getContext().getTypeSize(VT); + // NumElements should be power of 2. + if ((NumElements & (NumElements - 1)) != 0) + return true; + // Size should be greater than 32 bits. + return Size <= 32; + } + return false; +} + +llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const { + llvm::Type *BP = CGF.Int8PtrTy; + llvm::Type *BPP = CGF.Int8PtrPtrTy; + + CGBuilderTy &Builder = CGF.Builder; + llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); + llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); + + if (isEmptyRecord(getContext(), Ty, true)) { + // These are ignored for parameter passing purposes. + llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); + return Builder.CreateBitCast(Addr, PTy); + } + + uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8; + uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; + bool IsIndirect = false; + + // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for + // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. + if (getABIKind() == ARMABIInfo::AAPCS_VFP || + getABIKind() == ARMABIInfo::AAPCS) + TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); + else + TyAlign = 4; + // Use indirect if size of the illegal vector is bigger than 16 bytes. + if (isIllegalVectorType(Ty) && Size > 16) { + IsIndirect = true; + Size = 4; + TyAlign = 4; + } + + // Handle address alignment for ABI alignment > 4 bytes. + if (TyAlign > 4) { + assert((TyAlign & (TyAlign - 1)) == 0 && + "Alignment is not power of 2!"); + llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); + AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); + AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); + Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align"); + } + + uint64_t Offset = + llvm::RoundUpToAlignment(Size, 4); + llvm::Value *NextAddr = + Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), + "ap.next"); + Builder.CreateStore(NextAddr, VAListAddrAsBPP); + + if (IsIndirect) + Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP)); + else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) { + // We can't directly cast ap.cur to pointer to a vector type, since ap.cur + // may not be correctly aligned for the vector type. We create an aligned + // temporary space and copy the content over from ap.cur to the temporary + // space. This is necessary if the natural alignment of the type is greater + // than the ABI alignment. + llvm::Type *I8PtrTy = Builder.getInt8PtrTy(); + CharUnits CharSize = getContext().getTypeSizeInChars(Ty); + llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty), + "var.align"); + llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy); + llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy); + Builder.CreateMemCpy(Dst, Src, + llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()), + TyAlign, false); + Addr = AlignedTemp; //The content is in aligned location. + } + llvm::Type *PTy = + llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); + llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); + + return AddrTyped; +} + +namespace { + +class NaClARMABIInfo : public ABIInfo { + public: + NaClARMABIInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind) + : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, Kind) {} + void computeInfo(CGFunctionInfo &FI) const override; + llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const override; + private: + PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv. + ARMABIInfo NInfo; // Used for everything else. +}; + +class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo { + public: + NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind) + : TargetCodeGenInfo(new NaClARMABIInfo(CGT, Kind)) {} +}; + +} + +void NaClARMABIInfo::computeInfo(CGFunctionInfo &FI) const { + if (FI.getASTCallingConvention() == CC_PnaclCall) + PInfo.computeInfo(FI); + else + static_cast<const ABIInfo&>(NInfo).computeInfo(FI); +} + +llvm::Value *NaClARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const { + // Always use the native convention; calling pnacl-style varargs functions + // is unsupported. + return static_cast<const ABIInfo&>(NInfo).EmitVAArg(VAListAddr, Ty, CGF); +} + +//===----------------------------------------------------------------------===// +// NVPTX ABI Implementation +//===----------------------------------------------------------------------===// + +namespace { + +class NVPTXABIInfo : public ABIInfo { +public: + NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} + + ABIArgInfo classifyReturnType(QualType RetTy) const; + ABIArgInfo classifyArgumentType(QualType Ty) const; + + void computeInfo(CGFunctionInfo &FI) const override; + llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CFG) const override; +}; + +class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { +public: + NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) + : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} + + void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, + CodeGen::CodeGenModule &M) const override; +private: + // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the + // resulting MDNode to the nvvm.annotations MDNode. + static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); +}; + +ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { + if (RetTy->isVoidType()) + return ABIArgInfo::getIgnore(); + + // note: this is different from default ABI + if (!RetTy->isScalarType()) + return ABIArgInfo::getDirect(); + + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) + RetTy = EnumTy->getDecl()->getIntegerType(); + + return (RetTy->isPromotableIntegerType() ? + ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); +} + +ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = Ty->getAs<EnumType>()) + Ty = EnumTy->getDecl()->getIntegerType(); + + return (Ty->isPromotableIntegerType() ? + ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); +} + +void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { + if (!getCXXABI().classifyReturnType(FI)) + FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); + for (auto &I : FI.arguments()) + I.info = classifyArgumentType(I.type); + + // Always honor user-specified calling convention. + if (FI.getCallingConvention() != llvm::CallingConv::C) + return; + + FI.setEffectiveCallingConvention(getRuntimeCC()); +} + +llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CFG) const { + llvm_unreachable("NVPTX does not support varargs"); +} + +void NVPTXTargetCodeGenInfo:: +SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, + CodeGen::CodeGenModule &M) const{ + const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); + if (!FD) return; + + llvm::Function *F = cast<llvm::Function>(GV); + + // Perform special handling in OpenCL mode + if (M.getLangOpts().OpenCL) { + // Use OpenCL function attributes to check for kernel functions + // By default, all functions are device functions + if (FD->hasAttr<OpenCLKernelAttr>()) { + // OpenCL __kernel functions get kernel metadata + // Create !{<func-ref>, metadata !"kernel", i32 1} node + addNVVMMetadata(F, "kernel", 1); + // And kernel functions are not subject to inlining + F->addFnAttr(llvm::Attribute::NoInline); + } + } + + // Perform special handling in CUDA mode. + if (M.getLangOpts().CUDA) { + // CUDA __global__ functions get a kernel metadata entry. Since + // __global__ functions cannot be called from the device, we do not + // need to set the noinline attribute. + if (FD->hasAttr<CUDAGlobalAttr>()) { + // Create !{<func-ref>, metadata !"kernel", i32 1} node + addNVVMMetadata(F, "kernel", 1); + } + if (FD->hasAttr<CUDALaunchBoundsAttr>()) { + // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node + addNVVMMetadata(F, "maxntidx", + FD->getAttr<CUDALaunchBoundsAttr>()->getMaxThreads()); + // min blocks is a default argument for CUDALaunchBoundsAttr, so getting a + // zero value from getMinBlocks either means it was not specified in + // __launch_bounds__ or the user specified a 0 value. In both cases, we + // don't have to add a PTX directive. + int MinCTASM = FD->getAttr<CUDALaunchBoundsAttr>()->getMinBlocks(); + if (MinCTASM > 0) { + // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node + addNVVMMetadata(F, "minctasm", MinCTASM); + } + } + } +} + +void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, + int Operand) { + llvm::Module *M = F->getParent(); + llvm::LLVMContext &Ctx = M->getContext(); + + // Get "nvvm.annotations" metadata node + llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); + + llvm::Value *MDVals[] = { + F, llvm::MDString::get(Ctx, Name), + llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand)}; + // Append metadata to nvvm.annotations + MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); +} +} + +//===----------------------------------------------------------------------===// +// SystemZ ABI Implementation +//===----------------------------------------------------------------------===// + +namespace { + +class SystemZABIInfo : public ABIInfo { +public: + SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} + + bool isPromotableIntegerType(QualType Ty) const; + bool isCompoundType(QualType Ty) const; + bool isFPArgumentType(QualType Ty) const; + + ABIArgInfo classifyReturnType(QualType RetTy) const; + ABIArgInfo classifyArgumentType(QualType ArgTy) const; + + void computeInfo(CGFunctionInfo &FI) const override { + if (!getCXXABI().classifyReturnType(FI)) + FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); + for (auto &I : FI.arguments()) + I.info = classifyArgumentType(I.type); + } + + llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const override; +}; + +class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { +public: + SystemZTargetCodeGenInfo(CodeGenTypes &CGT) + : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {} +}; + +} + +bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = Ty->getAs<EnumType>()) + Ty = EnumTy->getDecl()->getIntegerType(); + + // Promotable integer types are required to be promoted by the ABI. + if (Ty->isPromotableIntegerType()) + return true; + + // 32-bit values must also be promoted. + if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) + switch (BT->getKind()) { + case BuiltinType::Int: + case BuiltinType::UInt: + return true; + default: + return false; + } + return false; +} + +bool SystemZABIInfo::isCompoundType(QualType Ty) const { + return Ty->isAnyComplexType() || isAggregateTypeForABI(Ty); +} + +bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { + if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) + switch (BT->getKind()) { + case BuiltinType::Float: + case BuiltinType::Double: + return true; + default: + return false; + } + + if (const RecordType *RT = Ty->getAsStructureType()) { + const RecordDecl *RD = RT->getDecl(); + bool Found = false; + + // If this is a C++ record, check the bases first. + if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) + for (const auto &I : CXXRD->bases()) { + QualType Base = I.getType(); + + // Empty bases don't affect things either way. + if (isEmptyRecord(getContext(), Base, true)) + continue; + + if (Found) + return false; + Found = isFPArgumentType(Base); + if (!Found) + return false; + } + + // Check the fields. + for (const auto *FD : RD->fields()) { + // Empty bitfields don't affect things either way. + // Unlike isSingleElementStruct(), empty structure and array fields + // do count. So do anonymous bitfields that aren't zero-sized. + if (FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) + return true; + + // Unlike isSingleElementStruct(), arrays do not count. + // Nested isFPArgumentType structures still do though. + if (Found) + return false; + Found = isFPArgumentType(FD->getType()); + if (!Found) + return false; + } + + // Unlike isSingleElementStruct(), trailing padding is allowed. + // An 8-byte aligned struct s { float f; } is passed as a double. + return Found; + } + + return false; +} + +llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const { + // Assume that va_list type is correct; should be pointer to LLVM type: + // struct { + // i64 __gpr; + // i64 __fpr; + // i8 *__overflow_arg_area; + // i8 *__reg_save_area; + // }; + + // Every argument occupies 8 bytes and is passed by preference in either + // GPRs or FPRs. + Ty = CGF.getContext().getCanonicalType(Ty); + ABIArgInfo AI = classifyArgumentType(Ty); + bool InFPRs = isFPArgumentType(Ty); + + llvm::Type *APTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); + bool IsIndirect = AI.isIndirect(); + unsigned UnpaddedBitSize; + if (IsIndirect) { + APTy = llvm::PointerType::getUnqual(APTy); + UnpaddedBitSize = 64; + } else + UnpaddedBitSize = getContext().getTypeSize(Ty); + unsigned PaddedBitSize = 64; + assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size."); + + unsigned PaddedSize = PaddedBitSize / 8; + unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8; + + unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding; + if (InFPRs) { + MaxRegs = 4; // Maximum of 4 FPR arguments + RegCountField = 1; // __fpr + RegSaveIndex = 16; // save offset for f0 + RegPadding = 0; // floats are passed in the high bits of an FPR + } else { + MaxRegs = 5; // Maximum of 5 GPR arguments + RegCountField = 0; // __gpr + RegSaveIndex = 2; // save offset for r2 + RegPadding = Padding; // values are passed in the low bits of a GPR + } + + llvm::Value *RegCountPtr = + CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); + llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); + llvm::Type *IndexTy = RegCount->getType(); + llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); + llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, + "fits_in_regs"); + + llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); + llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); + llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); + CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); + + // Emit code to load the value if it was passed in registers. + CGF.EmitBlock(InRegBlock); + + // Work out the address of an argument register. + llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize); + llvm::Value *ScaledRegCount = + CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); + llvm::Value *RegBase = + llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding); + llvm::Value *RegOffset = + CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); + llvm::Value *RegSaveAreaPtr = + CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); + llvm::Value *RegSaveArea = + CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); + llvm::Value *RawRegAddr = + CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr"); + llvm::Value *RegAddr = + CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr"); + + // Update the register count + llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); + llvm::Value *NewRegCount = + CGF.Builder.CreateAdd(RegCount, One, "reg_count"); + CGF.Builder.CreateStore(NewRegCount, RegCountPtr); + CGF.EmitBranch(ContBlock); + + // Emit code to load the value if it was passed in memory. + CGF.EmitBlock(InMemBlock); + + // Work out the address of a stack argument. + llvm::Value *OverflowArgAreaPtr = + CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); + llvm::Value *OverflowArgArea = + CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"); + llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding); + llvm::Value *RawMemAddr = + CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr"); + llvm::Value *MemAddr = + CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr"); + + // Update overflow_arg_area_ptr pointer + llvm::Value *NewOverflowArgArea = + CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area"); + CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); + CGF.EmitBranch(ContBlock); + + // Return the appropriate result. + CGF.EmitBlock(ContBlock); + llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr"); + ResAddr->addIncoming(RegAddr, InRegBlock); + ResAddr->addIncoming(MemAddr, InMemBlock); + + if (IsIndirect) + return CGF.Builder.CreateLoad(ResAddr, "indirect_arg"); + + return ResAddr; +} + +ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { + if (RetTy->isVoidType()) + return ABIArgInfo::getIgnore(); + if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) + return ABIArgInfo::getIndirect(0); + return (isPromotableIntegerType(RetTy) ? + ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); +} + +ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { + // Handle the generic C++ ABI. + if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) + return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); + + // Integers and enums are extended to full register width. + if (isPromotableIntegerType(Ty)) + return ABIArgInfo::getExtend(); + + // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. + uint64_t Size = getContext().getTypeSize(Ty); + if (Size != 8 && Size != 16 && Size != 32 && Size != 64) + return ABIArgInfo::getIndirect(0, /*ByVal=*/false); + + // Handle small structures. + if (const RecordType *RT = Ty->getAs<RecordType>()) { + // Structures with flexible arrays have variable length, so really + // fail the size test above. + const RecordDecl *RD = RT->getDecl(); + if (RD->hasFlexibleArrayMember()) + return ABIArgInfo::getIndirect(0, /*ByVal=*/false); + + // The structure is passed as an unextended integer, a float, or a double. + llvm::Type *PassTy; + if (isFPArgumentType(Ty)) { + assert(Size == 32 || Size == 64); + if (Size == 32) + PassTy = llvm::Type::getFloatTy(getVMContext()); + else + PassTy = llvm::Type::getDoubleTy(getVMContext()); + } else + PassTy = llvm::IntegerType::get(getVMContext(), Size); + return ABIArgInfo::getDirect(PassTy); + } + + // Non-structure compounds are passed indirectly. + if (isCompoundType(Ty)) + return ABIArgInfo::getIndirect(0, /*ByVal=*/false); + + return ABIArgInfo::getDirect(nullptr); +} + +//===----------------------------------------------------------------------===// +// MSP430 ABI Implementation +//===----------------------------------------------------------------------===// + +namespace { + +class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { +public: + MSP430TargetCodeGenInfo(CodeGenTypes &CGT) + : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} + void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, + CodeGen::CodeGenModule &M) const override; +}; + +} + +void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D, + llvm::GlobalValue *GV, + CodeGen::CodeGenModule &M) const { + if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { + if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { + // Handle 'interrupt' attribute: + llvm::Function *F = cast<llvm::Function>(GV); + + // Step 1: Set ISR calling convention. + F->setCallingConv(llvm::CallingConv::MSP430_INTR); + + // Step 2: Add attributes goodness. + F->addFnAttr(llvm::Attribute::NoInline); + + // Step 3: Emit ISR vector alias. + unsigned Num = attr->getNumber() / 2; + llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, + "__isr_" + Twine(Num), F); + } + } +} + +//===----------------------------------------------------------------------===// +// MIPS ABI Implementation. This works for both little-endian and +// big-endian variants. +//===----------------------------------------------------------------------===// + +namespace { +class MipsABIInfo : public ABIInfo { + bool IsO32; + unsigned MinABIStackAlignInBytes, StackAlignInBytes; + void CoerceToIntArgs(uint64_t TySize, + SmallVectorImpl<llvm::Type *> &ArgList) const; + llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; + llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; + llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; +public: + MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : + ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), + StackAlignInBytes(IsO32 ? 8 : 16) {} + + ABIArgInfo classifyReturnType(QualType RetTy) const; + ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; + void computeInfo(CGFunctionInfo &FI) const override; + llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const override; +}; + +class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { + unsigned SizeOfUnwindException; +public: + MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) + : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), + SizeOfUnwindException(IsO32 ? 24 : 32) {} + + int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { + return 29; + } + + void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, + CodeGen::CodeGenModule &CGM) const override { + const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); + if (!FD) return; + llvm::Function *Fn = cast<llvm::Function>(GV); + if (FD->hasAttr<Mips16Attr>()) { + Fn->addFnAttr("mips16"); + } + else if (FD->hasAttr<NoMips16Attr>()) { + Fn->addFnAttr("nomips16"); + } + } + + bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, + llvm::Value *Address) const override; + + unsigned getSizeOfUnwindException() const override { + return SizeOfUnwindException; + } +}; +} + +void MipsABIInfo::CoerceToIntArgs(uint64_t TySize, + SmallVectorImpl<llvm::Type *> &ArgList) const { + llvm::IntegerType *IntTy = + llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); + + // Add (TySize / MinABIStackAlignInBytes) args of IntTy. + for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) + ArgList.push_back(IntTy); + + // If necessary, add one more integer type to ArgList. + unsigned R = TySize % (MinABIStackAlignInBytes * 8); + + if (R) + ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); +} + +// In N32/64, an aligned double precision floating point field is passed in +// a register. +llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { + SmallVector<llvm::Type*, 8> ArgList, IntArgList; + + if (IsO32) { + CoerceToIntArgs(TySize, ArgList); + return llvm::StructType::get(getVMContext(), ArgList); + } + + if (Ty->isComplexType()) + return CGT.ConvertType(Ty); + + const RecordType *RT = Ty->getAs<RecordType>(); + + // Unions/vectors are passed in integer registers. + if (!RT || !RT->isStructureOrClassType()) { + CoerceToIntArgs(TySize, ArgList); + return llvm::StructType::get(getVMContext(), ArgList); + } + + const RecordDecl *RD = RT->getDecl(); + const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); + assert(!(TySize % 8) && "Size of structure must be multiple of 8."); + + uint64_t LastOffset = 0; + unsigned idx = 0; + llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); + + // Iterate over fields in the struct/class and check if there are any aligned + // double fields. + for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); + i != e; ++i, ++idx) { + const QualType Ty = i->getType(); + const BuiltinType *BT = Ty->getAs<BuiltinType>(); + + if (!BT || BT->getKind() != BuiltinType::Double) + continue; + + uint64_t Offset = Layout.getFieldOffset(idx); + if (Offset % 64) // Ignore doubles that are not aligned. + continue; + + // Add ((Offset - LastOffset) / 64) args of type i64. + for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) + ArgList.push_back(I64); + + // Add double type. + ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); + LastOffset = Offset + 64; + } + + CoerceToIntArgs(TySize - LastOffset, IntArgList); + ArgList.append(IntArgList.begin(), IntArgList.end()); + + return llvm::StructType::get(getVMContext(), ArgList); +} + +llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, + uint64_t Offset) const { + if (OrigOffset + MinABIStackAlignInBytes > Offset) + return nullptr; + + return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); +} + +ABIArgInfo +MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { + uint64_t OrigOffset = Offset; + uint64_t TySize = getContext().getTypeSize(Ty); + uint64_t Align = getContext().getTypeAlign(Ty) / 8; + + Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), + (uint64_t)StackAlignInBytes); + unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align); + Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8; + + if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { + // Ignore empty aggregates. + if (TySize == 0) + return ABIArgInfo::getIgnore(); + + if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { + Offset = OrigOffset + MinABIStackAlignInBytes; + return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); + } + + // If we have reached here, aggregates are passed directly by coercing to + // another structure type. Padding is inserted if the offset of the + // aggregate is unaligned. + return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, + getPaddingType(OrigOffset, CurrOffset)); + } + + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = Ty->getAs<EnumType>()) + Ty = EnumTy->getDecl()->getIntegerType(); + + if (Ty->isPromotableIntegerType()) + return ABIArgInfo::getExtend(); + + return ABIArgInfo::getDirect( + nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); +} + +llvm::Type* +MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { + const RecordType *RT = RetTy->getAs<RecordType>(); + SmallVector<llvm::Type*, 8> RTList; + + if (RT && RT->isStructureOrClassType()) { + const RecordDecl *RD = RT->getDecl(); + const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); + unsigned FieldCnt = Layout.getFieldCount(); + + // N32/64 returns struct/classes in floating point registers if the + // following conditions are met: + // 1. The size of the struct/class is no larger than 128-bit. + // 2. The struct/class has one or two fields all of which are floating + // point types. + // 3. The offset of the first field is zero (this follows what gcc does). + // + // Any other composite results are returned in integer registers. + // + if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { + RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); + for (; b != e; ++b) { + const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); + + if (!BT || !BT->isFloatingPoint()) + break; + + RTList.push_back(CGT.ConvertType(b->getType())); + } + + if (b == e) + return llvm::StructType::get(getVMContext(), RTList, + RD->hasAttr<PackedAttr>()); + + RTList.clear(); + } + } + + CoerceToIntArgs(Size, RTList); + return llvm::StructType::get(getVMContext(), RTList); +} + +ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { + uint64_t Size = getContext().getTypeSize(RetTy); + + if (RetTy->isVoidType() || Size == 0) + return ABIArgInfo::getIgnore(); + + if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { + if (Size <= 128) { + if (RetTy->isAnyComplexType()) + return ABIArgInfo::getDirect(); + + // O32 returns integer vectors in registers. + if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation()) + return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); + + if (!IsO32) + return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); + } + + return ABIArgInfo::getIndirect(0); + } + + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) + RetTy = EnumTy->getDecl()->getIntegerType(); + + return (RetTy->isPromotableIntegerType() ? + ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); +} + +void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { + ABIArgInfo &RetInfo = FI.getReturnInfo(); + if (!getCXXABI().classifyReturnType(FI)) + RetInfo = classifyReturnType(FI.getReturnType()); + + // Check if a pointer to an aggregate is passed as a hidden argument. + uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; + + for (auto &I : FI.arguments()) + I.info = classifyArgumentType(I.type, Offset); +} + +llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const { + llvm::Type *BP = CGF.Int8PtrTy; + llvm::Type *BPP = CGF.Int8PtrPtrTy; + + CGBuilderTy &Builder = CGF.Builder; + llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); + llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); + int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8; + llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); + llvm::Value *AddrTyped; + unsigned PtrWidth = getTarget().getPointerWidth(0); + llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty; + + if (TypeAlign > MinABIStackAlignInBytes) { + llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy); + llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1); + llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign); + llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc); + llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask); + AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy); + } + else + AddrTyped = Builder.CreateBitCast(Addr, PTy); + + llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP); + TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes); + uint64_t Offset = + llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign); + llvm::Value *NextAddr = + Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset), + "ap.next"); + Builder.CreateStore(NextAddr, VAListAddrAsBPP); + + return AddrTyped; +} + +bool +MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, + llvm::Value *Address) const { + // This information comes from gcc's implementation, which seems to + // as canonical as it gets. + + // Everything on MIPS is 4 bytes. Double-precision FP registers + // are aliased to pairs of single-precision FP registers. + llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); + + // 0-31 are the general purpose registers, $0 - $31. + // 32-63 are the floating-point registers, $f0 - $f31. + // 64 and 65 are the multiply/divide registers, $hi and $lo. + // 66 is the (notional, I think) register for signal-handler return. + AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); + + // 67-74 are the floating-point status registers, $fcc0 - $fcc7. + // They are one bit wide and ignored here. + + // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. + // (coprocessor 1 is the FP unit) + // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. + // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. + // 176-181 are the DSP accumulator registers. + AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); + return false; +} + +//===----------------------------------------------------------------------===// +// TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. +// Currently subclassed only to implement custom OpenCL C function attribute +// handling. +//===----------------------------------------------------------------------===// + +namespace { + +class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { +public: + TCETargetCodeGenInfo(CodeGenTypes &CGT) + : DefaultTargetCodeGenInfo(CGT) {} + + void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, + CodeGen::CodeGenModule &M) const override; +}; + +void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D, + llvm::GlobalValue *GV, + CodeGen::CodeGenModule &M) const { + const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); + if (!FD) return; + + llvm::Function *F = cast<llvm::Function>(GV); + + if (M.getLangOpts().OpenCL) { + if (FD->hasAttr<OpenCLKernelAttr>()) { + // OpenCL C Kernel functions are not subject to inlining + F->addFnAttr(llvm::Attribute::NoInline); + const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); + if (Attr) { + // Convert the reqd_work_group_size() attributes to metadata. + llvm::LLVMContext &Context = F->getContext(); + llvm::NamedMDNode *OpenCLMetadata = + M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info"); + + SmallVector<llvm::Value*, 5> Operands; + Operands.push_back(F); + + Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, + llvm::APInt(32, Attr->getXDim()))); + Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, + llvm::APInt(32, Attr->getYDim()))); + Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, + llvm::APInt(32, Attr->getZDim()))); + + // Add a boolean constant operand for "required" (true) or "hint" (false) + // for implementing the work_group_size_hint attr later. Currently + // always true as the hint is not yet implemented. + Operands.push_back(llvm::ConstantInt::getTrue(Context)); + OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); + } + } + } +} + +} + +//===----------------------------------------------------------------------===// +// Hexagon ABI Implementation +//===----------------------------------------------------------------------===// + +namespace { + +class HexagonABIInfo : public ABIInfo { + + +public: + HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} + +private: + + ABIArgInfo classifyReturnType(QualType RetTy) const; + ABIArgInfo classifyArgumentType(QualType RetTy) const; + + void computeInfo(CGFunctionInfo &FI) const override; + + llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const override; +}; + +class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { +public: + HexagonTargetCodeGenInfo(CodeGenTypes &CGT) + :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} + + int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { + return 29; + } +}; + +} + +void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { + if (!getCXXABI().classifyReturnType(FI)) + FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); + for (auto &I : FI.arguments()) + I.info = classifyArgumentType(I.type); +} + +ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { + if (!isAggregateTypeForABI(Ty)) { + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = Ty->getAs<EnumType>()) + Ty = EnumTy->getDecl()->getIntegerType(); + + return (Ty->isPromotableIntegerType() ? + ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); + } + + // Ignore empty records. + if (isEmptyRecord(getContext(), Ty, true)) + return ABIArgInfo::getIgnore(); + + if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) + return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); + + uint64_t Size = getContext().getTypeSize(Ty); + if (Size > 64) + return ABIArgInfo::getIndirect(0, /*ByVal=*/true); + // Pass in the smallest viable integer type. + else if (Size > 32) + return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); + else if (Size > 16) + return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); + else if (Size > 8) + return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); + else + return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); +} + +ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { + if (RetTy->isVoidType()) + return ABIArgInfo::getIgnore(); + + // Large vector types should be returned via memory. + if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) + return ABIArgInfo::getIndirect(0); + + if (!isAggregateTypeForABI(RetTy)) { + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) + RetTy = EnumTy->getDecl()->getIntegerType(); + + return (RetTy->isPromotableIntegerType() ? + ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); + } + + if (isEmptyRecord(getContext(), RetTy, true)) + return ABIArgInfo::getIgnore(); + + // Aggregates <= 8 bytes are returned in r0; other aggregates + // are returned indirectly. + uint64_t Size = getContext().getTypeSize(RetTy); + if (Size <= 64) { + // Return in the smallest viable integer type. + if (Size <= 8) + return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); + if (Size <= 16) + return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); + if (Size <= 32) + return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); + return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); + } + + return ABIArgInfo::getIndirect(0, /*ByVal=*/true); +} + +llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const { + // FIXME: Need to handle alignment + llvm::Type *BPP = CGF.Int8PtrPtrTy; + + CGBuilderTy &Builder = CGF.Builder; + llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, + "ap"); + llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); + llvm::Type *PTy = + llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); + llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); + + uint64_t Offset = + llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); + llvm::Value *NextAddr = + Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), + "ap.next"); + Builder.CreateStore(NextAddr, VAListAddrAsBPP); + + return AddrTyped; +} + + +//===----------------------------------------------------------------------===// +// SPARC v9 ABI Implementation. +// Based on the SPARC Compliance Definition version 2.4.1. +// +// Function arguments a mapped to a nominal "parameter array" and promoted to +// registers depending on their type. Each argument occupies 8 or 16 bytes in +// the array, structs larger than 16 bytes are passed indirectly. +// +// One case requires special care: +// +// struct mixed { +// int i; +// float f; +// }; +// +// When a struct mixed is passed by value, it only occupies 8 bytes in the +// parameter array, but the int is passed in an integer register, and the float +// is passed in a floating point register. This is represented as two arguments +// with the LLVM IR inreg attribute: +// +// declare void f(i32 inreg %i, float inreg %f) +// +// The code generator will only allocate 4 bytes from the parameter array for +// the inreg arguments. All other arguments are allocated a multiple of 8 +// bytes. +// +namespace { +class SparcV9ABIInfo : public ABIInfo { +public: + SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} + +private: + ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; + void computeInfo(CGFunctionInfo &FI) const override; + llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const override; + + // Coercion type builder for structs passed in registers. The coercion type + // serves two purposes: + // + // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' + // in registers. + // 2. Expose aligned floating point elements as first-level elements, so the + // code generator knows to pass them in floating point registers. + // + // We also compute the InReg flag which indicates that the struct contains + // aligned 32-bit floats. + // + struct CoerceBuilder { + llvm::LLVMContext &Context; + const llvm::DataLayout &DL; + SmallVector<llvm::Type*, 8> Elems; + uint64_t Size; + bool InReg; + + CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) + : Context(c), DL(dl), Size(0), InReg(false) {} + + // Pad Elems with integers until Size is ToSize. + void pad(uint64_t ToSize) { + assert(ToSize >= Size && "Cannot remove elements"); + if (ToSize == Size) + return; + + // Finish the current 64-bit word. + uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64); + if (Aligned > Size && Aligned <= ToSize) { + Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); + Size = Aligned; + } + + // Add whole 64-bit words. + while (Size + 64 <= ToSize) { + Elems.push_back(llvm::Type::getInt64Ty(Context)); + Size += 64; + } + + // Final in-word padding. + if (Size < ToSize) { + Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); + Size = ToSize; + } + } + + // Add a floating point element at Offset. + void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { + // Unaligned floats are treated as integers. + if (Offset % Bits) + return; + // The InReg flag is only required if there are any floats < 64 bits. + if (Bits < 64) + InReg = true; + pad(Offset); + Elems.push_back(Ty); + Size = Offset + Bits; + } + + // Add a struct type to the coercion type, starting at Offset (in bits). + void addStruct(uint64_t Offset, llvm::StructType *StrTy) { + const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); + for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { + llvm::Type *ElemTy = StrTy->getElementType(i); + uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); + switch (ElemTy->getTypeID()) { + case llvm::Type::StructTyID: + addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); + break; + case llvm::Type::FloatTyID: + addFloat(ElemOffset, ElemTy, 32); + break; + case llvm::Type::DoubleTyID: + addFloat(ElemOffset, ElemTy, 64); + break; + case llvm::Type::FP128TyID: + addFloat(ElemOffset, ElemTy, 128); + break; + case llvm::Type::PointerTyID: + if (ElemOffset % 64 == 0) { + pad(ElemOffset); + Elems.push_back(ElemTy); + Size += 64; + } + break; + default: + break; + } + } + } + + // Check if Ty is a usable substitute for the coercion type. + bool isUsableType(llvm::StructType *Ty) const { + if (Ty->getNumElements() != Elems.size()) + return false; + for (unsigned i = 0, e = Elems.size(); i != e; ++i) + if (Elems[i] != Ty->getElementType(i)) + return false; + return true; + } + + // Get the coercion type as a literal struct type. + llvm::Type *getType() const { + if (Elems.size() == 1) + return Elems.front(); + else + return llvm::StructType::get(Context, Elems); + } + }; +}; +} // end anonymous namespace + +ABIArgInfo +SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { + if (Ty->isVoidType()) + return ABIArgInfo::getIgnore(); + + uint64_t Size = getContext().getTypeSize(Ty); + + // Anything too big to fit in registers is passed with an explicit indirect + // pointer / sret pointer. + if (Size > SizeLimit) + return ABIArgInfo::getIndirect(0, /*ByVal=*/false); + + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = Ty->getAs<EnumType>()) + Ty = EnumTy->getDecl()->getIntegerType(); + + // Integer types smaller than a register are extended. + if (Size < 64 && Ty->isIntegerType()) + return ABIArgInfo::getExtend(); + + // Other non-aggregates go in registers. + if (!isAggregateTypeForABI(Ty)) + return ABIArgInfo::getDirect(); + + // If a C++ object has either a non-trivial copy constructor or a non-trivial + // destructor, it is passed with an explicit indirect pointer / sret pointer. + if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) + return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); + + // This is a small aggregate type that should be passed in registers. + // Build a coercion type from the LLVM struct type. + llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); + if (!StrTy) + return ABIArgInfo::getDirect(); + + CoerceBuilder CB(getVMContext(), getDataLayout()); + CB.addStruct(0, StrTy); + CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64)); + + // Try to use the original type for coercion. + llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); + + if (CB.InReg) + return ABIArgInfo::getDirectInReg(CoerceTy); + else + return ABIArgInfo::getDirect(CoerceTy); +} + +llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const { + ABIArgInfo AI = classifyType(Ty, 16 * 8); + llvm::Type *ArgTy = CGT.ConvertType(Ty); + if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) + AI.setCoerceToType(ArgTy); + + llvm::Type *BPP = CGF.Int8PtrPtrTy; + CGBuilderTy &Builder = CGF.Builder; + llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); + llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); + llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); + llvm::Value *ArgAddr; + unsigned Stride; + + switch (AI.getKind()) { + case ABIArgInfo::Expand: + case ABIArgInfo::InAlloca: + llvm_unreachable("Unsupported ABI kind for va_arg"); + + case ABIArgInfo::Extend: + Stride = 8; + ArgAddr = Builder + .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy), + "extend"); + break; + + case ABIArgInfo::Direct: + Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); + ArgAddr = Addr; + break; + + case ABIArgInfo::Indirect: + Stride = 8; + ArgAddr = Builder.CreateBitCast(Addr, + llvm::PointerType::getUnqual(ArgPtrTy), + "indirect"); + ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg"); + break; + + case ABIArgInfo::Ignore: + return llvm::UndefValue::get(ArgPtrTy); + } + + // Update VAList. + Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next"); + Builder.CreateStore(Addr, VAListAddrAsBPP); + + return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr"); +} + +void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { + FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); + for (auto &I : FI.arguments()) + I.info = classifyType(I.type, 16 * 8); +} + +namespace { +class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { +public: + SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) + : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} + + int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { + return 14; + } + + bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, + llvm::Value *Address) const override; +}; +} // end anonymous namespace + +bool +SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, + llvm::Value *Address) const { + // This is calculated from the LLVM and GCC tables and verified + // against gcc output. AFAIK all ABIs use the same encoding. + + CodeGen::CGBuilderTy &Builder = CGF.Builder; + + llvm::IntegerType *i8 = CGF.Int8Ty; + llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); + llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); + + // 0-31: the 8-byte general-purpose registers + AssignToArrayRange(Builder, Address, Eight8, 0, 31); + + // 32-63: f0-31, the 4-byte floating-point registers + AssignToArrayRange(Builder, Address, Four8, 32, 63); + + // Y = 64 + // PSR = 65 + // WIM = 66 + // TBR = 67 + // PC = 68 + // NPC = 69 + // FSR = 70 + // CSR = 71 + AssignToArrayRange(Builder, Address, Eight8, 64, 71); + + // 72-87: d0-15, the 8-byte floating-point registers + AssignToArrayRange(Builder, Address, Eight8, 72, 87); + + return false; +} + + +//===----------------------------------------------------------------------===// +// XCore ABI Implementation +//===----------------------------------------------------------------------===// + +namespace { + +/// A SmallStringEnc instance is used to build up the TypeString by passing +/// it by reference between functions that append to it. +typedef llvm::SmallString<128> SmallStringEnc; + +/// TypeStringCache caches the meta encodings of Types. +/// +/// The reason for caching TypeStrings is two fold: +/// 1. To cache a type's encoding for later uses; +/// 2. As a means to break recursive member type inclusion. +/// +/// A cache Entry can have a Status of: +/// NonRecursive: The type encoding is not recursive; +/// Recursive: The type encoding is recursive; +/// Incomplete: An incomplete TypeString; +/// IncompleteUsed: An incomplete TypeString that has been used in a +/// Recursive type encoding. +/// +/// A NonRecursive entry will have all of its sub-members expanded as fully +/// as possible. Whilst it may contain types which are recursive, the type +/// itself is not recursive and thus its encoding may be safely used whenever +/// the type is encountered. +/// +/// A Recursive entry will have all of its sub-members expanded as fully as +/// possible. The type itself is recursive and it may contain other types which +/// are recursive. The Recursive encoding must not be used during the expansion +/// of a recursive type's recursive branch. For simplicity the code uses +/// IncompleteCount to reject all usage of Recursive encodings for member types. +/// +/// An Incomplete entry is always a RecordType and only encodes its +/// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and +/// are placed into the cache during type expansion as a means to identify and +/// handle recursive inclusion of types as sub-members. If there is recursion +/// the entry becomes IncompleteUsed. +/// +/// During the expansion of a RecordType's members: +/// +/// If the cache contains a NonRecursive encoding for the member type, the +/// cached encoding is used; +/// +/// If the cache contains a Recursive encoding for the member type, the +/// cached encoding is 'Swapped' out, as it may be incorrect, and... +/// +/// If the member is a RecordType, an Incomplete encoding is placed into the +/// cache to break potential recursive inclusion of itself as a sub-member; +/// +/// Once a member RecordType has been expanded, its temporary incomplete +/// entry is removed from the cache. If a Recursive encoding was swapped out +/// it is swapped back in; +/// +/// If an incomplete entry is used to expand a sub-member, the incomplete +/// entry is marked as IncompleteUsed. The cache keeps count of how many +/// IncompleteUsed entries it currently contains in IncompleteUsedCount; +/// +/// If a member's encoding is found to be a NonRecursive or Recursive viz: +/// IncompleteUsedCount==0, the member's encoding is added to the cache. +/// Else the member is part of a recursive type and thus the recursion has +/// been exited too soon for the encoding to be correct for the member. +/// +class TypeStringCache { + enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; + struct Entry { + std::string Str; // The encoded TypeString for the type. + enum Status State; // Information about the encoding in 'Str'. + std::string Swapped; // A temporary place holder for a Recursive encoding + // during the expansion of RecordType's members. + }; + std::map<const IdentifierInfo *, struct Entry> Map; + unsigned IncompleteCount; // Number of Incomplete entries in the Map. + unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. +public: + TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}; + void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); + bool removeIncomplete(const IdentifierInfo *ID); + void addIfComplete(const IdentifierInfo *ID, StringRef Str, + bool IsRecursive); + StringRef lookupStr(const IdentifierInfo *ID); +}; + +/// TypeString encodings for enum & union fields must be order. +/// FieldEncoding is a helper for this ordering process. +class FieldEncoding { + bool HasName; + std::string Enc; +public: + FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}; + StringRef str() {return Enc.c_str();}; + bool operator<(const FieldEncoding &rhs) const { + if (HasName != rhs.HasName) return HasName; + return Enc < rhs.Enc; + } +}; + +class XCoreABIInfo : public DefaultABIInfo { +public: + XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} + llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const override; +}; + +class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { + mutable TypeStringCache TSC; +public: + XCoreTargetCodeGenInfo(CodeGenTypes &CGT) + :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} + void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, + CodeGen::CodeGenModule &M) const override; +}; + +} // End anonymous namespace. + +llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const { + CGBuilderTy &Builder = CGF.Builder; + + // Get the VAList. + llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, + CGF.Int8PtrPtrTy); + llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP); + + // Handle the argument. + ABIArgInfo AI = classifyArgumentType(Ty); + llvm::Type *ArgTy = CGT.ConvertType(Ty); + if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) + AI.setCoerceToType(ArgTy); + llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); + llvm::Value *Val; + uint64_t ArgSize = 0; + switch (AI.getKind()) { + case ABIArgInfo::Expand: + case ABIArgInfo::InAlloca: + llvm_unreachable("Unsupported ABI kind for va_arg"); + case ABIArgInfo::Ignore: + Val = llvm::UndefValue::get(ArgPtrTy); + ArgSize = 0; + break; + case ABIArgInfo::Extend: + case ABIArgInfo::Direct: + Val = Builder.CreatePointerCast(AP, ArgPtrTy); + ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); + if (ArgSize < 4) + ArgSize = 4; + break; + case ABIArgInfo::Indirect: + llvm::Value *ArgAddr; + ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy)); + ArgAddr = Builder.CreateLoad(ArgAddr); + Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy); + ArgSize = 4; + break; + } + + // Increment the VAList. + if (ArgSize) { + llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize); + Builder.CreateStore(APN, VAListAddrAsBPP); + } + return Val; +} + +/// During the expansion of a RecordType, an incomplete TypeString is placed +/// into the cache as a means to identify and break recursion. +/// If there is a Recursive encoding in the cache, it is swapped out and will +/// be reinserted by removeIncomplete(). +/// All other types of encoding should have been used rather than arriving here. +void TypeStringCache::addIncomplete(const IdentifierInfo *ID, + std::string StubEnc) { + if (!ID) + return; + Entry &E = Map[ID]; + assert( (E.Str.empty() || E.State == Recursive) && + "Incorrectly use of addIncomplete"); + assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); + E.Swapped.swap(E.Str); // swap out the Recursive + E.Str.swap(StubEnc); + E.State = Incomplete; + ++IncompleteCount; +} + +/// Once the RecordType has been expanded, the temporary incomplete TypeString +/// must be removed from the cache. +/// If a Recursive was swapped out by addIncomplete(), it will be replaced. +/// Returns true if the RecordType was defined recursively. +bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { + if (!ID) + return false; + auto I = Map.find(ID); + assert(I != Map.end() && "Entry not present"); + Entry &E = I->second; + assert( (E.State == Incomplete || + E.State == IncompleteUsed) && + "Entry must be an incomplete type"); + bool IsRecursive = false; + if (E.State == IncompleteUsed) { + // We made use of our Incomplete encoding, thus we are recursive. + IsRecursive = true; + --IncompleteUsedCount; + } + if (E.Swapped.empty()) + Map.erase(I); + else { + // Swap the Recursive back. + E.Swapped.swap(E.Str); + E.Swapped.clear(); + E.State = Recursive; + } + --IncompleteCount; + return IsRecursive; +} + +/// Add the encoded TypeString to the cache only if it is NonRecursive or +/// Recursive (viz: all sub-members were expanded as fully as possible). +void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, + bool IsRecursive) { + if (!ID || IncompleteUsedCount) + return; // No key or it is is an incomplete sub-type so don't add. + Entry &E = Map[ID]; + if (IsRecursive && !E.Str.empty()) { + assert(E.State==Recursive && E.Str.size() == Str.size() && + "This is not the same Recursive entry"); + // The parent container was not recursive after all, so we could have used + // this Recursive sub-member entry after all, but we assumed the worse when + // we started viz: IncompleteCount!=0. + return; + } + assert(E.Str.empty() && "Entry already present"); + E.Str = Str.str(); + E.State = IsRecursive? Recursive : NonRecursive; +} + +/// Return a cached TypeString encoding for the ID. If there isn't one, or we +/// are recursively expanding a type (IncompleteCount != 0) and the cached +/// encoding is Recursive, return an empty StringRef. +StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { + if (!ID) + return StringRef(); // We have no key. + auto I = Map.find(ID); + if (I == Map.end()) + return StringRef(); // We have no encoding. + Entry &E = I->second; + if (E.State == Recursive && IncompleteCount) + return StringRef(); // We don't use Recursive encodings for member types. + + if (E.State == Incomplete) { + // The incomplete type is being used to break out of recursion. + E.State = IncompleteUsed; + ++IncompleteUsedCount; + } + return E.Str.c_str(); +} + +/// The XCore ABI includes a type information section that communicates symbol +/// type information to the linker. The linker uses this information to verify +/// safety/correctness of things such as array bound and pointers et al. +/// The ABI only requires C (and XC) language modules to emit TypeStrings. +/// This type information (TypeString) is emitted into meta data for all global +/// symbols: definitions, declarations, functions & variables. +/// +/// The TypeString carries type, qualifier, name, size & value details. +/// Please see 'Tools Development Guide' section 2.16.2 for format details: +/// <https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf> +/// The output is tested by test/CodeGen/xcore-stringtype.c. +/// +static bool getTypeString(SmallStringEnc &Enc, const Decl *D, + CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); + +/// XCore uses emitTargetMD to emit TypeString metadata for global symbols. +void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, + CodeGen::CodeGenModule &CGM) const { + SmallStringEnc Enc; + if (getTypeString(Enc, D, CGM, TSC)) { + llvm::LLVMContext &Ctx = CGM.getModule().getContext(); + llvm::SmallVector<llvm::Value *, 2> MDVals; + MDVals.push_back(GV); + MDVals.push_back(llvm::MDString::get(Ctx, Enc.str())); + llvm::NamedMDNode *MD = + CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); + MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); + } +} + +static bool appendType(SmallStringEnc &Enc, QualType QType, + const CodeGen::CodeGenModule &CGM, + TypeStringCache &TSC); + +/// Helper function for appendRecordType(). +/// Builds a SmallVector containing the encoded field types in declaration order. +static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, + const RecordDecl *RD, + const CodeGen::CodeGenModule &CGM, + TypeStringCache &TSC) { + for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); + I != E; ++I) { + SmallStringEnc Enc; + Enc += "m("; + Enc += I->getName(); + Enc += "){"; + if (I->isBitField()) { + Enc += "b("; + llvm::raw_svector_ostream OS(Enc); + OS.resync(); + OS << I->getBitWidthValue(CGM.getContext()); + OS.flush(); + Enc += ':'; + } + if (!appendType(Enc, I->getType(), CGM, TSC)) + return false; + if (I->isBitField()) + Enc += ')'; + Enc += '}'; + FE.push_back(FieldEncoding(!I->getName().empty(), Enc)); + } + return true; +} + +/// Appends structure and union types to Enc and adds encoding to cache. +/// Recursively calls appendType (via extractFieldType) for each field. +/// Union types have their fields ordered according to the ABI. +static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, + const CodeGen::CodeGenModule &CGM, + TypeStringCache &TSC, const IdentifierInfo *ID) { + // Append the cached TypeString if we have one. + StringRef TypeString = TSC.lookupStr(ID); + if (!TypeString.empty()) { + Enc += TypeString; + return true; + } + + // Start to emit an incomplete TypeString. + size_t Start = Enc.size(); + Enc += (RT->isUnionType()? 'u' : 's'); + Enc += '('; + if (ID) + Enc += ID->getName(); + Enc += "){"; + + // We collect all encoded fields and order as necessary. + bool IsRecursive = false; + const RecordDecl *RD = RT->getDecl()->getDefinition(); + if (RD && !RD->field_empty()) { + // An incomplete TypeString stub is placed in the cache for this RecordType + // so that recursive calls to this RecordType will use it whilst building a + // complete TypeString for this RecordType. + SmallVector<FieldEncoding, 16> FE; + std::string StubEnc(Enc.substr(Start).str()); + StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. + TSC.addIncomplete(ID, std::move(StubEnc)); + if (!extractFieldType(FE, RD, CGM, TSC)) { + (void) TSC.removeIncomplete(ID); + return false; + } + IsRecursive = TSC.removeIncomplete(ID); + // The ABI requires unions to be sorted but not structures. + // See FieldEncoding::operator< for sort algorithm. + if (RT->isUnionType()) + std::sort(FE.begin(), FE.end()); + // We can now complete the TypeString. + unsigned E = FE.size(); + for (unsigned I = 0; I != E; ++I) { + if (I) + Enc += ','; + Enc += FE[I].str(); + } + } + Enc += '}'; + TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); + return true; +} + +/// Appends enum types to Enc and adds the encoding to the cache. +static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, + TypeStringCache &TSC, + const IdentifierInfo *ID) { + // Append the cached TypeString if we have one. + StringRef TypeString = TSC.lookupStr(ID); + if (!TypeString.empty()) { + Enc += TypeString; + return true; + } + + size_t Start = Enc.size(); + Enc += "e("; + if (ID) + Enc += ID->getName(); + Enc += "){"; + + // We collect all encoded enumerations and order them alphanumerically. + if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { + SmallVector<FieldEncoding, 16> FE; + for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; + ++I) { + SmallStringEnc EnumEnc; + EnumEnc += "m("; + EnumEnc += I->getName(); + EnumEnc += "){"; + I->getInitVal().toString(EnumEnc); + EnumEnc += '}'; + FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); + } + std::sort(FE.begin(), FE.end()); + unsigned E = FE.size(); + for (unsigned I = 0; I != E; ++I) { + if (I) + Enc += ','; + Enc += FE[I].str(); + } + } + Enc += '}'; + TSC.addIfComplete(ID, Enc.substr(Start), false); + return true; +} + +/// Appends type's qualifier to Enc. +/// This is done prior to appending the type's encoding. +static void appendQualifier(SmallStringEnc &Enc, QualType QT) { + // Qualifiers are emitted in alphabetical order. + static const char *Table[] = {"","c:","r:","cr:","v:","cv:","rv:","crv:"}; + int Lookup = 0; + if (QT.isConstQualified()) + Lookup += 1<<0; + if (QT.isRestrictQualified()) + Lookup += 1<<1; + if (QT.isVolatileQualified()) + Lookup += 1<<2; + Enc += Table[Lookup]; +} + +/// Appends built-in types to Enc. +static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { + const char *EncType; + switch (BT->getKind()) { + case BuiltinType::Void: + EncType = "0"; + break; + case BuiltinType::Bool: + EncType = "b"; + break; + case BuiltinType::Char_U: + EncType = "uc"; + break; + case BuiltinType::UChar: + EncType = "uc"; + break; + case BuiltinType::SChar: + EncType = "sc"; + break; + case BuiltinType::UShort: + EncType = "us"; + break; + case BuiltinType::Short: + EncType = "ss"; + break; + case BuiltinType::UInt: + EncType = "ui"; + break; + case BuiltinType::Int: + EncType = "si"; + break; + case BuiltinType::ULong: + EncType = "ul"; + break; + case BuiltinType::Long: + EncType = "sl"; + break; + case BuiltinType::ULongLong: + EncType = "ull"; + break; + case BuiltinType::LongLong: + EncType = "sll"; + break; + case BuiltinType::Float: + EncType = "ft"; + break; + case BuiltinType::Double: + EncType = "d"; + break; + case BuiltinType::LongDouble: + EncType = "ld"; + break; + default: + return false; + } + Enc += EncType; + return true; +} + +/// Appends a pointer encoding to Enc before calling appendType for the pointee. +static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, + const CodeGen::CodeGenModule &CGM, + TypeStringCache &TSC) { + Enc += "p("; + if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) + return false; + Enc += ')'; + return true; +} + +/// Appends array encoding to Enc before calling appendType for the element. +static bool appendArrayType(SmallStringEnc &Enc, QualType QT, + const ArrayType *AT, + const CodeGen::CodeGenModule &CGM, + TypeStringCache &TSC, StringRef NoSizeEnc) { + if (AT->getSizeModifier() != ArrayType::Normal) + return false; + Enc += "a("; + if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) + CAT->getSize().toStringUnsigned(Enc); + else + Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". + Enc += ':'; + // The Qualifiers should be attached to the type rather than the array. + appendQualifier(Enc, QT); + if (!appendType(Enc, AT->getElementType(), CGM, TSC)) + return false; + Enc += ')'; + return true; +} + +/// Appends a function encoding to Enc, calling appendType for the return type +/// and the arguments. +static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, + const CodeGen::CodeGenModule &CGM, + TypeStringCache &TSC) { + Enc += "f{"; + if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) + return false; + Enc += "}("; + if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { + // N.B. we are only interested in the adjusted param types. + auto I = FPT->param_type_begin(); + auto E = FPT->param_type_end(); + if (I != E) { + do { + if (!appendType(Enc, *I, CGM, TSC)) + return false; + ++I; + if (I != E) + Enc += ','; + } while (I != E); + if (FPT->isVariadic()) + Enc += ",va"; + } else { + if (FPT->isVariadic()) + Enc += "va"; + else + Enc += '0'; + } + } + Enc += ')'; + return true; +} + +/// Handles the type's qualifier before dispatching a call to handle specific +/// type encodings. +static bool appendType(SmallStringEnc &Enc, QualType QType, + const CodeGen::CodeGenModule &CGM, + TypeStringCache &TSC) { + + QualType QT = QType.getCanonicalType(); + + if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) + // The Qualifiers should be attached to the type rather than the array. + // Thus we don't call appendQualifier() here. + return appendArrayType(Enc, QT, AT, CGM, TSC, ""); + + appendQualifier(Enc, QT); + + if (const BuiltinType *BT = QT->getAs<BuiltinType>()) + return appendBuiltinType(Enc, BT); + + if (const PointerType *PT = QT->getAs<PointerType>()) + return appendPointerType(Enc, PT, CGM, TSC); + + if (const EnumType *ET = QT->getAs<EnumType>()) + return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); + + if (const RecordType *RT = QT->getAsStructureType()) + return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); + + if (const RecordType *RT = QT->getAsUnionType()) + return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); + + if (const FunctionType *FT = QT->getAs<FunctionType>()) + return appendFunctionType(Enc, FT, CGM, TSC); + + return false; +} + +static bool getTypeString(SmallStringEnc &Enc, const Decl *D, + CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { + if (!D) + return false; + + if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { + if (FD->getLanguageLinkage() != CLanguageLinkage) + return false; + return appendType(Enc, FD->getType(), CGM, TSC); + } + + if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { + if (VD->getLanguageLinkage() != CLanguageLinkage) + return false; + QualType QT = VD->getType().getCanonicalType(); + if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { + // Global ArrayTypes are given a size of '*' if the size is unknown. + // The Qualifiers should be attached to the type rather than the array. + // Thus we don't call appendQualifier() here. + return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); + } + return appendType(Enc, QT, CGM, TSC); + } + return false; +} + + +//===----------------------------------------------------------------------===// +// Driver code +//===----------------------------------------------------------------------===// + +const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { + if (TheTargetCodeGenInfo) + return *TheTargetCodeGenInfo; + + const llvm::Triple &Triple = getTarget().getTriple(); + switch (Triple.getArch()) { + default: + return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types)); + + case llvm::Triple::le32: + return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types)); + case llvm::Triple::mips: + case llvm::Triple::mipsel: + return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true)); + + case llvm::Triple::mips64: + case llvm::Triple::mips64el: + return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false)); + + case llvm::Triple::aarch64: + case llvm::Triple::aarch64_be: + case llvm::Triple::arm64: + case llvm::Triple::arm64_be: { + AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; + if (getTarget().getABI() == "darwinpcs") + Kind = AArch64ABIInfo::DarwinPCS; + + return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind)); + } + + case llvm::Triple::arm: + case llvm::Triple::armeb: + case llvm::Triple::thumb: + case llvm::Triple::thumbeb: + { + ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; + if (getTarget().getABI() == "apcs-gnu") + Kind = ARMABIInfo::APCS; + else if (CodeGenOpts.FloatABI == "hard" || + (CodeGenOpts.FloatABI != "soft" && + Triple.getEnvironment() == llvm::Triple::GNUEABIHF)) + Kind = ARMABIInfo::AAPCS_VFP; + + switch (Triple.getOS()) { + case llvm::Triple::NaCl: + return *(TheTargetCodeGenInfo = + new NaClARMTargetCodeGenInfo(Types, Kind)); + default: + return *(TheTargetCodeGenInfo = + new ARMTargetCodeGenInfo(Types, Kind)); + } + } + + case llvm::Triple::ppc: + return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types)); + case llvm::Triple::ppc64: + if (Triple.isOSBinFormatELF()) { + // FIXME: Should be switchable via command-line option. + PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; + return *(TheTargetCodeGenInfo = + new PPC64_SVR4_TargetCodeGenInfo(Types, Kind)); + } else + return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types)); + case llvm::Triple::ppc64le: { + assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); + // FIXME: Should be switchable via command-line option. + PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; + return *(TheTargetCodeGenInfo = + new PPC64_SVR4_TargetCodeGenInfo(Types, Kind)); + } + + case llvm::Triple::nvptx: + case llvm::Triple::nvptx64: + return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types)); + + case llvm::Triple::msp430: + return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types)); + + case llvm::Triple::systemz: + return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types)); + + case llvm::Triple::tce: + return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types)); + + case llvm::Triple::x86: { + bool IsDarwinVectorABI = Triple.isOSDarwin(); + bool IsSmallStructInRegABI = + X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); + bool IsWin32FloatStructABI = Triple.isWindowsMSVCEnvironment(); + + if (Triple.getOS() == llvm::Triple::Win32) { + return *(TheTargetCodeGenInfo = + new WinX86_32TargetCodeGenInfo(Types, + IsDarwinVectorABI, IsSmallStructInRegABI, + IsWin32FloatStructABI, + CodeGenOpts.NumRegisterParameters)); + } else { + return *(TheTargetCodeGenInfo = + new X86_32TargetCodeGenInfo(Types, + IsDarwinVectorABI, IsSmallStructInRegABI, + IsWin32FloatStructABI, + CodeGenOpts.NumRegisterParameters)); + } + } + + case llvm::Triple::x86_64: { + bool HasAVX = getTarget().getABI() == "avx"; + + switch (Triple.getOS()) { + case llvm::Triple::Win32: + return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types)); + case llvm::Triple::NaCl: + return *(TheTargetCodeGenInfo = new NaClX86_64TargetCodeGenInfo(Types, + HasAVX)); + default: + return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types, + HasAVX)); + } + } + case llvm::Triple::hexagon: + return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types)); + case llvm::Triple::sparcv9: + return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types)); + case llvm::Triple::xcore: + return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types)); + } +} |