summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/CodeGen/MicrosoftCXXABI.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/CodeGen/MicrosoftCXXABI.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/MicrosoftCXXABI.cpp4175
1 files changed, 4175 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/MicrosoftCXXABI.cpp b/contrib/llvm/tools/clang/lib/CodeGen/MicrosoftCXXABI.cpp
new file mode 100644
index 0000000..93210d5
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/MicrosoftCXXABI.cpp
@@ -0,0 +1,4175 @@
+//===--- MicrosoftCXXABI.cpp - Emit LLVM Code from ASTs for a Module ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This provides C++ code generation targeting the Microsoft Visual C++ ABI.
+// The class in this file generates structures that follow the Microsoft
+// Visual C++ ABI, which is actually not very well documented at all outside
+// of Microsoft.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGCXXABI.h"
+#include "CGCleanup.h"
+#include "CGVTables.h"
+#include "CodeGenModule.h"
+#include "CodeGenTypes.h"
+#include "TargetInfo.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/StmtCXX.h"
+#include "clang/AST/VTableBuilder.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringSet.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/Intrinsics.h"
+
+using namespace clang;
+using namespace CodeGen;
+
+namespace {
+
+/// Holds all the vbtable globals for a given class.
+struct VBTableGlobals {
+ const VPtrInfoVector *VBTables;
+ SmallVector<llvm::GlobalVariable *, 2> Globals;
+};
+
+class MicrosoftCXXABI : public CGCXXABI {
+public:
+ MicrosoftCXXABI(CodeGenModule &CGM)
+ : CGCXXABI(CGM), BaseClassDescriptorType(nullptr),
+ ClassHierarchyDescriptorType(nullptr),
+ CompleteObjectLocatorType(nullptr), CatchableTypeType(nullptr),
+ ThrowInfoType(nullptr) {}
+
+ bool HasThisReturn(GlobalDecl GD) const override;
+ bool hasMostDerivedReturn(GlobalDecl GD) const override;
+
+ bool classifyReturnType(CGFunctionInfo &FI) const override;
+
+ RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override;
+
+ bool isSRetParameterAfterThis() const override { return true; }
+
+ bool isThisCompleteObject(GlobalDecl GD) const override {
+ // The Microsoft ABI doesn't use separate complete-object vs.
+ // base-object variants of constructors, but it does of destructors.
+ if (isa<CXXDestructorDecl>(GD.getDecl())) {
+ switch (GD.getDtorType()) {
+ case Dtor_Complete:
+ case Dtor_Deleting:
+ return true;
+
+ case Dtor_Base:
+ return false;
+
+ case Dtor_Comdat: llvm_unreachable("emitting dtor comdat as function?");
+ }
+ llvm_unreachable("bad dtor kind");
+ }
+
+ // No other kinds.
+ return false;
+ }
+
+ size_t getSrcArgforCopyCtor(const CXXConstructorDecl *CD,
+ FunctionArgList &Args) const override {
+ assert(Args.size() >= 2 &&
+ "expected the arglist to have at least two args!");
+ // The 'most_derived' parameter goes second if the ctor is variadic and
+ // has v-bases.
+ if (CD->getParent()->getNumVBases() > 0 &&
+ CD->getType()->castAs<FunctionProtoType>()->isVariadic())
+ return 2;
+ return 1;
+ }
+
+ std::vector<CharUnits> getVBPtrOffsets(const CXXRecordDecl *RD) override {
+ std::vector<CharUnits> VBPtrOffsets;
+ const ASTContext &Context = getContext();
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+
+ const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
+ for (const VPtrInfo *VBT : *VBGlobals.VBTables) {
+ const ASTRecordLayout &SubobjectLayout =
+ Context.getASTRecordLayout(VBT->BaseWithVPtr);
+ CharUnits Offs = VBT->NonVirtualOffset;
+ Offs += SubobjectLayout.getVBPtrOffset();
+ if (VBT->getVBaseWithVPtr())
+ Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr());
+ VBPtrOffsets.push_back(Offs);
+ }
+ llvm::array_pod_sort(VBPtrOffsets.begin(), VBPtrOffsets.end());
+ return VBPtrOffsets;
+ }
+
+ StringRef GetPureVirtualCallName() override { return "_purecall"; }
+ StringRef GetDeletedVirtualCallName() override { return "_purecall"; }
+
+ void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE,
+ Address Ptr, QualType ElementType,
+ const CXXDestructorDecl *Dtor) override;
+
+ void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override;
+ void emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) override;
+
+ void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override;
+
+ llvm::GlobalVariable *getMSCompleteObjectLocator(const CXXRecordDecl *RD,
+ const VPtrInfo *Info);
+
+ llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override;
+ CatchTypeInfo
+ getAddrOfCXXCatchHandlerType(QualType Ty, QualType CatchHandlerType) override;
+
+ /// MSVC needs an extra flag to indicate a catchall.
+ CatchTypeInfo getCatchAllTypeInfo() override {
+ return CatchTypeInfo{nullptr, 0x40};
+ }
+
+ bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override;
+ void EmitBadTypeidCall(CodeGenFunction &CGF) override;
+ llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy,
+ Address ThisPtr,
+ llvm::Type *StdTypeInfoPtrTy) override;
+
+ bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
+ QualType SrcRecordTy) override;
+
+ llvm::Value *EmitDynamicCastCall(CodeGenFunction &CGF, Address Value,
+ QualType SrcRecordTy, QualType DestTy,
+ QualType DestRecordTy,
+ llvm::BasicBlock *CastEnd) override;
+
+ llvm::Value *EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value,
+ QualType SrcRecordTy,
+ QualType DestTy) override;
+
+ bool EmitBadCastCall(CodeGenFunction &CGF) override;
+ bool canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const override {
+ return false;
+ }
+
+ llvm::Value *
+ GetVirtualBaseClassOffset(CodeGenFunction &CGF, Address This,
+ const CXXRecordDecl *ClassDecl,
+ const CXXRecordDecl *BaseClassDecl) override;
+
+ llvm::BasicBlock *
+ EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
+ const CXXRecordDecl *RD) override;
+
+ void initializeHiddenVirtualInheritanceMembers(CodeGenFunction &CGF,
+ const CXXRecordDecl *RD) override;
+
+ void EmitCXXConstructors(const CXXConstructorDecl *D) override;
+
+ // Background on MSVC destructors
+ // ==============================
+ //
+ // Both Itanium and MSVC ABIs have destructor variants. The variant names
+ // roughly correspond in the following way:
+ // Itanium Microsoft
+ // Base -> no name, just ~Class
+ // Complete -> vbase destructor
+ // Deleting -> scalar deleting destructor
+ // vector deleting destructor
+ //
+ // The base and complete destructors are the same as in Itanium, although the
+ // complete destructor does not accept a VTT parameter when there are virtual
+ // bases. A separate mechanism involving vtordisps is used to ensure that
+ // virtual methods of destroyed subobjects are not called.
+ //
+ // The deleting destructors accept an i32 bitfield as a second parameter. Bit
+ // 1 indicates if the memory should be deleted. Bit 2 indicates if the this
+ // pointer points to an array. The scalar deleting destructor assumes that
+ // bit 2 is zero, and therefore does not contain a loop.
+ //
+ // For virtual destructors, only one entry is reserved in the vftable, and it
+ // always points to the vector deleting destructor. The vector deleting
+ // destructor is the most general, so it can be used to destroy objects in
+ // place, delete single heap objects, or delete arrays.
+ //
+ // A TU defining a non-inline destructor is only guaranteed to emit a base
+ // destructor, and all of the other variants are emitted on an as-needed basis
+ // in COMDATs. Because a non-base destructor can be emitted in a TU that
+ // lacks a definition for the destructor, non-base destructors must always
+ // delegate to or alias the base destructor.
+
+ void buildStructorSignature(const CXXMethodDecl *MD, StructorType T,
+ SmallVectorImpl<CanQualType> &ArgTys) override;
+
+ /// Non-base dtors should be emitted as delegating thunks in this ABI.
+ bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor,
+ CXXDtorType DT) const override {
+ return DT != Dtor_Base;
+ }
+
+ void EmitCXXDestructors(const CXXDestructorDecl *D) override;
+
+ const CXXRecordDecl *
+ getThisArgumentTypeForMethod(const CXXMethodDecl *MD) override {
+ MD = MD->getCanonicalDecl();
+ if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD)) {
+ MicrosoftVTableContext::MethodVFTableLocation ML =
+ CGM.getMicrosoftVTableContext().getMethodVFTableLocation(MD);
+ // The vbases might be ordered differently in the final overrider object
+ // and the complete object, so the "this" argument may sometimes point to
+ // memory that has no particular type (e.g. past the complete object).
+ // In this case, we just use a generic pointer type.
+ // FIXME: might want to have a more precise type in the non-virtual
+ // multiple inheritance case.
+ if (ML.VBase || !ML.VFPtrOffset.isZero())
+ return nullptr;
+ }
+ return MD->getParent();
+ }
+
+ Address
+ adjustThisArgumentForVirtualFunctionCall(CodeGenFunction &CGF, GlobalDecl GD,
+ Address This,
+ bool VirtualCall) override;
+
+ void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy,
+ FunctionArgList &Params) override;
+
+ llvm::Value *adjustThisParameterInVirtualFunctionPrologue(
+ CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This) override;
+
+ void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override;
+
+ unsigned addImplicitConstructorArgs(CodeGenFunction &CGF,
+ const CXXConstructorDecl *D,
+ CXXCtorType Type, bool ForVirtualBase,
+ bool Delegating,
+ CallArgList &Args) override;
+
+ void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD,
+ CXXDtorType Type, bool ForVirtualBase,
+ bool Delegating, Address This) override;
+
+ void emitVTableBitSetEntries(VPtrInfo *Info, const CXXRecordDecl *RD,
+ llvm::GlobalVariable *VTable);
+
+ void emitVTableDefinitions(CodeGenVTables &CGVT,
+ const CXXRecordDecl *RD) override;
+
+ bool isVirtualOffsetNeededForVTableField(CodeGenFunction &CGF,
+ CodeGenFunction::VPtr Vptr) override;
+
+ /// Don't initialize vptrs if dynamic class
+ /// is marked with with the 'novtable' attribute.
+ bool doStructorsInitializeVPtrs(const CXXRecordDecl *VTableClass) override {
+ return !VTableClass->hasAttr<MSNoVTableAttr>();
+ }
+
+ llvm::Constant *
+ getVTableAddressPoint(BaseSubobject Base,
+ const CXXRecordDecl *VTableClass) override;
+
+ llvm::Value *getVTableAddressPointInStructor(
+ CodeGenFunction &CGF, const CXXRecordDecl *VTableClass,
+ BaseSubobject Base, const CXXRecordDecl *NearestVBase) override;
+
+ llvm::Constant *
+ getVTableAddressPointForConstExpr(BaseSubobject Base,
+ const CXXRecordDecl *VTableClass) override;
+
+ llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD,
+ CharUnits VPtrOffset) override;
+
+ llvm::Value *getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD,
+ Address This, llvm::Type *Ty,
+ SourceLocation Loc) override;
+
+ llvm::Value *EmitVirtualDestructorCall(CodeGenFunction &CGF,
+ const CXXDestructorDecl *Dtor,
+ CXXDtorType DtorType,
+ Address This,
+ const CXXMemberCallExpr *CE) override;
+
+ void adjustCallArgsForDestructorThunk(CodeGenFunction &CGF, GlobalDecl GD,
+ CallArgList &CallArgs) override {
+ assert(GD.getDtorType() == Dtor_Deleting &&
+ "Only deleting destructor thunks are available in this ABI");
+ CallArgs.add(RValue::get(getStructorImplicitParamValue(CGF)),
+ getContext().IntTy);
+ }
+
+ void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override;
+
+ llvm::GlobalVariable *
+ getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD,
+ llvm::GlobalVariable::LinkageTypes Linkage);
+
+ llvm::GlobalVariable *
+ getAddrOfVirtualDisplacementMap(const CXXRecordDecl *SrcRD,
+ const CXXRecordDecl *DstRD) {
+ SmallString<256> OutName;
+ llvm::raw_svector_ostream Out(OutName);
+ getMangleContext().mangleCXXVirtualDisplacementMap(SrcRD, DstRD, Out);
+ StringRef MangledName = OutName.str();
+
+ if (auto *VDispMap = CGM.getModule().getNamedGlobal(MangledName))
+ return VDispMap;
+
+ MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext();
+ unsigned NumEntries = 1 + SrcRD->getNumVBases();
+ SmallVector<llvm::Constant *, 4> Map(NumEntries,
+ llvm::UndefValue::get(CGM.IntTy));
+ Map[0] = llvm::ConstantInt::get(CGM.IntTy, 0);
+ bool AnyDifferent = false;
+ for (const auto &I : SrcRD->vbases()) {
+ const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl();
+ if (!DstRD->isVirtuallyDerivedFrom(VBase))
+ continue;
+
+ unsigned SrcVBIndex = VTContext.getVBTableIndex(SrcRD, VBase);
+ unsigned DstVBIndex = VTContext.getVBTableIndex(DstRD, VBase);
+ Map[SrcVBIndex] = llvm::ConstantInt::get(CGM.IntTy, DstVBIndex * 4);
+ AnyDifferent |= SrcVBIndex != DstVBIndex;
+ }
+ // This map would be useless, don't use it.
+ if (!AnyDifferent)
+ return nullptr;
+
+ llvm::ArrayType *VDispMapTy = llvm::ArrayType::get(CGM.IntTy, Map.size());
+ llvm::Constant *Init = llvm::ConstantArray::get(VDispMapTy, Map);
+ llvm::GlobalValue::LinkageTypes Linkage =
+ SrcRD->isExternallyVisible() && DstRD->isExternallyVisible()
+ ? llvm::GlobalValue::LinkOnceODRLinkage
+ : llvm::GlobalValue::InternalLinkage;
+ auto *VDispMap = new llvm::GlobalVariable(
+ CGM.getModule(), VDispMapTy, /*Constant=*/true, Linkage,
+ /*Initializer=*/Init, MangledName);
+ return VDispMap;
+ }
+
+ void emitVBTableDefinition(const VPtrInfo &VBT, const CXXRecordDecl *RD,
+ llvm::GlobalVariable *GV) const;
+
+ void setThunkLinkage(llvm::Function *Thunk, bool ForVTable,
+ GlobalDecl GD, bool ReturnAdjustment) override {
+ // Never dllimport/dllexport thunks.
+ Thunk->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
+
+ GVALinkage Linkage =
+ getContext().GetGVALinkageForFunction(cast<FunctionDecl>(GD.getDecl()));
+
+ if (Linkage == GVA_Internal)
+ Thunk->setLinkage(llvm::GlobalValue::InternalLinkage);
+ else if (ReturnAdjustment)
+ Thunk->setLinkage(llvm::GlobalValue::WeakODRLinkage);
+ else
+ Thunk->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
+ }
+
+ llvm::Value *performThisAdjustment(CodeGenFunction &CGF, Address This,
+ const ThisAdjustment &TA) override;
+
+ llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, Address Ret,
+ const ReturnAdjustment &RA) override;
+
+ void EmitThreadLocalInitFuncs(
+ CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals,
+ ArrayRef<llvm::Function *> CXXThreadLocalInits,
+ ArrayRef<const VarDecl *> CXXThreadLocalInitVars) override;
+
+ bool usesThreadWrapperFunction() const override { return false; }
+ LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD,
+ QualType LValType) override;
+
+ void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
+ llvm::GlobalVariable *DeclPtr,
+ bool PerformInit) override;
+ void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
+ llvm::Constant *Dtor, llvm::Constant *Addr) override;
+
+ // ==== Notes on array cookies =========
+ //
+ // MSVC seems to only use cookies when the class has a destructor; a
+ // two-argument usual array deallocation function isn't sufficient.
+ //
+ // For example, this code prints "100" and "1":
+ // struct A {
+ // char x;
+ // void *operator new[](size_t sz) {
+ // printf("%u\n", sz);
+ // return malloc(sz);
+ // }
+ // void operator delete[](void *p, size_t sz) {
+ // printf("%u\n", sz);
+ // free(p);
+ // }
+ // };
+ // int main() {
+ // A *p = new A[100];
+ // delete[] p;
+ // }
+ // Whereas it prints "104" and "104" if you give A a destructor.
+
+ bool requiresArrayCookie(const CXXDeleteExpr *expr,
+ QualType elementType) override;
+ bool requiresArrayCookie(const CXXNewExpr *expr) override;
+ CharUnits getArrayCookieSizeImpl(QualType type) override;
+ Address InitializeArrayCookie(CodeGenFunction &CGF,
+ Address NewPtr,
+ llvm::Value *NumElements,
+ const CXXNewExpr *expr,
+ QualType ElementType) override;
+ llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF,
+ Address allocPtr,
+ CharUnits cookieSize) override;
+
+ friend struct MSRTTIBuilder;
+
+ bool isImageRelative() const {
+ return CGM.getTarget().getPointerWidth(/*AddressSpace=*/0) == 64;
+ }
+
+ // 5 routines for constructing the llvm types for MS RTTI structs.
+ llvm::StructType *getTypeDescriptorType(StringRef TypeInfoString) {
+ llvm::SmallString<32> TDTypeName("rtti.TypeDescriptor");
+ TDTypeName += llvm::utostr(TypeInfoString.size());
+ llvm::StructType *&TypeDescriptorType =
+ TypeDescriptorTypeMap[TypeInfoString.size()];
+ if (TypeDescriptorType)
+ return TypeDescriptorType;
+ llvm::Type *FieldTypes[] = {
+ CGM.Int8PtrPtrTy,
+ CGM.Int8PtrTy,
+ llvm::ArrayType::get(CGM.Int8Ty, TypeInfoString.size() + 1)};
+ TypeDescriptorType =
+ llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, TDTypeName);
+ return TypeDescriptorType;
+ }
+
+ llvm::Type *getImageRelativeType(llvm::Type *PtrType) {
+ if (!isImageRelative())
+ return PtrType;
+ return CGM.IntTy;
+ }
+
+ llvm::StructType *getBaseClassDescriptorType() {
+ if (BaseClassDescriptorType)
+ return BaseClassDescriptorType;
+ llvm::Type *FieldTypes[] = {
+ getImageRelativeType(CGM.Int8PtrTy),
+ CGM.IntTy,
+ CGM.IntTy,
+ CGM.IntTy,
+ CGM.IntTy,
+ CGM.IntTy,
+ getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()),
+ };
+ BaseClassDescriptorType = llvm::StructType::create(
+ CGM.getLLVMContext(), FieldTypes, "rtti.BaseClassDescriptor");
+ return BaseClassDescriptorType;
+ }
+
+ llvm::StructType *getClassHierarchyDescriptorType() {
+ if (ClassHierarchyDescriptorType)
+ return ClassHierarchyDescriptorType;
+ // Forward-declare RTTIClassHierarchyDescriptor to break a cycle.
+ ClassHierarchyDescriptorType = llvm::StructType::create(
+ CGM.getLLVMContext(), "rtti.ClassHierarchyDescriptor");
+ llvm::Type *FieldTypes[] = {
+ CGM.IntTy,
+ CGM.IntTy,
+ CGM.IntTy,
+ getImageRelativeType(
+ getBaseClassDescriptorType()->getPointerTo()->getPointerTo()),
+ };
+ ClassHierarchyDescriptorType->setBody(FieldTypes);
+ return ClassHierarchyDescriptorType;
+ }
+
+ llvm::StructType *getCompleteObjectLocatorType() {
+ if (CompleteObjectLocatorType)
+ return CompleteObjectLocatorType;
+ CompleteObjectLocatorType = llvm::StructType::create(
+ CGM.getLLVMContext(), "rtti.CompleteObjectLocator");
+ llvm::Type *FieldTypes[] = {
+ CGM.IntTy,
+ CGM.IntTy,
+ CGM.IntTy,
+ getImageRelativeType(CGM.Int8PtrTy),
+ getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()),
+ getImageRelativeType(CompleteObjectLocatorType),
+ };
+ llvm::ArrayRef<llvm::Type *> FieldTypesRef(FieldTypes);
+ if (!isImageRelative())
+ FieldTypesRef = FieldTypesRef.drop_back();
+ CompleteObjectLocatorType->setBody(FieldTypesRef);
+ return CompleteObjectLocatorType;
+ }
+
+ llvm::GlobalVariable *getImageBase() {
+ StringRef Name = "__ImageBase";
+ if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name))
+ return GV;
+
+ return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty,
+ /*isConstant=*/true,
+ llvm::GlobalValue::ExternalLinkage,
+ /*Initializer=*/nullptr, Name);
+ }
+
+ llvm::Constant *getImageRelativeConstant(llvm::Constant *PtrVal) {
+ if (!isImageRelative())
+ return PtrVal;
+
+ if (PtrVal->isNullValue())
+ return llvm::Constant::getNullValue(CGM.IntTy);
+
+ llvm::Constant *ImageBaseAsInt =
+ llvm::ConstantExpr::getPtrToInt(getImageBase(), CGM.IntPtrTy);
+ llvm::Constant *PtrValAsInt =
+ llvm::ConstantExpr::getPtrToInt(PtrVal, CGM.IntPtrTy);
+ llvm::Constant *Diff =
+ llvm::ConstantExpr::getSub(PtrValAsInt, ImageBaseAsInt,
+ /*HasNUW=*/true, /*HasNSW=*/true);
+ return llvm::ConstantExpr::getTrunc(Diff, CGM.IntTy);
+ }
+
+private:
+ MicrosoftMangleContext &getMangleContext() {
+ return cast<MicrosoftMangleContext>(CodeGen::CGCXXABI::getMangleContext());
+ }
+
+ llvm::Constant *getZeroInt() {
+ return llvm::ConstantInt::get(CGM.IntTy, 0);
+ }
+
+ llvm::Constant *getAllOnesInt() {
+ return llvm::Constant::getAllOnesValue(CGM.IntTy);
+ }
+
+ CharUnits getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD);
+
+ void
+ GetNullMemberPointerFields(const MemberPointerType *MPT,
+ llvm::SmallVectorImpl<llvm::Constant *> &fields);
+
+ /// \brief Shared code for virtual base adjustment. Returns the offset from
+ /// the vbptr to the virtual base. Optionally returns the address of the
+ /// vbptr itself.
+ llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
+ Address Base,
+ llvm::Value *VBPtrOffset,
+ llvm::Value *VBTableOffset,
+ llvm::Value **VBPtr = nullptr);
+
+ llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
+ Address Base,
+ int32_t VBPtrOffset,
+ int32_t VBTableOffset,
+ llvm::Value **VBPtr = nullptr) {
+ assert(VBTableOffset % 4 == 0 && "should be byte offset into table of i32s");
+ llvm::Value *VBPOffset = llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset),
+ *VBTOffset = llvm::ConstantInt::get(CGM.IntTy, VBTableOffset);
+ return GetVBaseOffsetFromVBPtr(CGF, Base, VBPOffset, VBTOffset, VBPtr);
+ }
+
+ std::pair<Address, llvm::Value *>
+ performBaseAdjustment(CodeGenFunction &CGF, Address Value,
+ QualType SrcRecordTy);
+
+ /// \brief Performs a full virtual base adjustment. Used to dereference
+ /// pointers to members of virtual bases.
+ llvm::Value *AdjustVirtualBase(CodeGenFunction &CGF, const Expr *E,
+ const CXXRecordDecl *RD, Address Base,
+ llvm::Value *VirtualBaseAdjustmentOffset,
+ llvm::Value *VBPtrOffset /* optional */);
+
+ /// \brief Emits a full member pointer with the fields common to data and
+ /// function member pointers.
+ llvm::Constant *EmitFullMemberPointer(llvm::Constant *FirstField,
+ bool IsMemberFunction,
+ const CXXRecordDecl *RD,
+ CharUnits NonVirtualBaseAdjustment,
+ unsigned VBTableIndex);
+
+ bool MemberPointerConstantIsNull(const MemberPointerType *MPT,
+ llvm::Constant *MP);
+
+ /// \brief - Initialize all vbptrs of 'this' with RD as the complete type.
+ void EmitVBPtrStores(CodeGenFunction &CGF, const CXXRecordDecl *RD);
+
+ /// \brief Caching wrapper around VBTableBuilder::enumerateVBTables().
+ const VBTableGlobals &enumerateVBTables(const CXXRecordDecl *RD);
+
+ /// \brief Generate a thunk for calling a virtual member function MD.
+ llvm::Function *EmitVirtualMemPtrThunk(
+ const CXXMethodDecl *MD,
+ const MicrosoftVTableContext::MethodVFTableLocation &ML);
+
+public:
+ llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override;
+
+ bool isZeroInitializable(const MemberPointerType *MPT) override;
+
+ bool isMemberPointerConvertible(const MemberPointerType *MPT) const override {
+ const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
+ return RD->hasAttr<MSInheritanceAttr>();
+ }
+
+ llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override;
+
+ llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT,
+ CharUnits offset) override;
+ llvm::Constant *EmitMemberFunctionPointer(const CXXMethodDecl *MD) override;
+ llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override;
+
+ llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF,
+ llvm::Value *L,
+ llvm::Value *R,
+ const MemberPointerType *MPT,
+ bool Inequality) override;
+
+ llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
+ llvm::Value *MemPtr,
+ const MemberPointerType *MPT) override;
+
+ llvm::Value *
+ EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E,
+ Address Base, llvm::Value *MemPtr,
+ const MemberPointerType *MPT) override;
+
+ llvm::Value *EmitNonNullMemberPointerConversion(
+ const MemberPointerType *SrcTy, const MemberPointerType *DstTy,
+ CastKind CK, CastExpr::path_const_iterator PathBegin,
+ CastExpr::path_const_iterator PathEnd, llvm::Value *Src,
+ CGBuilderTy &Builder);
+
+ llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF,
+ const CastExpr *E,
+ llvm::Value *Src) override;
+
+ llvm::Constant *EmitMemberPointerConversion(const CastExpr *E,
+ llvm::Constant *Src) override;
+
+ llvm::Constant *EmitMemberPointerConversion(
+ const MemberPointerType *SrcTy, const MemberPointerType *DstTy,
+ CastKind CK, CastExpr::path_const_iterator PathBegin,
+ CastExpr::path_const_iterator PathEnd, llvm::Constant *Src);
+
+ llvm::Value *
+ EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, const Expr *E,
+ Address This, llvm::Value *&ThisPtrForCall,
+ llvm::Value *MemPtr,
+ const MemberPointerType *MPT) override;
+
+ void emitCXXStructor(const CXXMethodDecl *MD, StructorType Type) override;
+
+ llvm::StructType *getCatchableTypeType() {
+ if (CatchableTypeType)
+ return CatchableTypeType;
+ llvm::Type *FieldTypes[] = {
+ CGM.IntTy, // Flags
+ getImageRelativeType(CGM.Int8PtrTy), // TypeDescriptor
+ CGM.IntTy, // NonVirtualAdjustment
+ CGM.IntTy, // OffsetToVBPtr
+ CGM.IntTy, // VBTableIndex
+ CGM.IntTy, // Size
+ getImageRelativeType(CGM.Int8PtrTy) // CopyCtor
+ };
+ CatchableTypeType = llvm::StructType::create(
+ CGM.getLLVMContext(), FieldTypes, "eh.CatchableType");
+ return CatchableTypeType;
+ }
+
+ llvm::StructType *getCatchableTypeArrayType(uint32_t NumEntries) {
+ llvm::StructType *&CatchableTypeArrayType =
+ CatchableTypeArrayTypeMap[NumEntries];
+ if (CatchableTypeArrayType)
+ return CatchableTypeArrayType;
+
+ llvm::SmallString<23> CTATypeName("eh.CatchableTypeArray.");
+ CTATypeName += llvm::utostr(NumEntries);
+ llvm::Type *CTType =
+ getImageRelativeType(getCatchableTypeType()->getPointerTo());
+ llvm::Type *FieldTypes[] = {
+ CGM.IntTy, // NumEntries
+ llvm::ArrayType::get(CTType, NumEntries) // CatchableTypes
+ };
+ CatchableTypeArrayType =
+ llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, CTATypeName);
+ return CatchableTypeArrayType;
+ }
+
+ llvm::StructType *getThrowInfoType() {
+ if (ThrowInfoType)
+ return ThrowInfoType;
+ llvm::Type *FieldTypes[] = {
+ CGM.IntTy, // Flags
+ getImageRelativeType(CGM.Int8PtrTy), // CleanupFn
+ getImageRelativeType(CGM.Int8PtrTy), // ForwardCompat
+ getImageRelativeType(CGM.Int8PtrTy) // CatchableTypeArray
+ };
+ ThrowInfoType = llvm::StructType::create(CGM.getLLVMContext(), FieldTypes,
+ "eh.ThrowInfo");
+ return ThrowInfoType;
+ }
+
+ llvm::Constant *getThrowFn() {
+ // _CxxThrowException is passed an exception object and a ThrowInfo object
+ // which describes the exception.
+ llvm::Type *Args[] = {CGM.Int8PtrTy, getThrowInfoType()->getPointerTo()};
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(CGM.VoidTy, Args, /*IsVarArgs=*/false);
+ auto *Fn = cast<llvm::Function>(
+ CGM.CreateRuntimeFunction(FTy, "_CxxThrowException"));
+ // _CxxThrowException is stdcall on 32-bit x86 platforms.
+ if (CGM.getTarget().getTriple().getArch() == llvm::Triple::x86)
+ Fn->setCallingConv(llvm::CallingConv::X86_StdCall);
+ return Fn;
+ }
+
+ llvm::Function *getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD,
+ CXXCtorType CT);
+
+ llvm::Constant *getCatchableType(QualType T,
+ uint32_t NVOffset = 0,
+ int32_t VBPtrOffset = -1,
+ uint32_t VBIndex = 0);
+
+ llvm::GlobalVariable *getCatchableTypeArray(QualType T);
+
+ llvm::GlobalVariable *getThrowInfo(QualType T) override;
+
+private:
+ typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy;
+ typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalVariable *> VTablesMapTy;
+ typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalValue *> VFTablesMapTy;
+ /// \brief All the vftables that have been referenced.
+ VFTablesMapTy VFTablesMap;
+ VTablesMapTy VTablesMap;
+
+ /// \brief This set holds the record decls we've deferred vtable emission for.
+ llvm::SmallPtrSet<const CXXRecordDecl *, 4> DeferredVFTables;
+
+
+ /// \brief All the vbtables which have been referenced.
+ llvm::DenseMap<const CXXRecordDecl *, VBTableGlobals> VBTablesMap;
+
+ /// Info on the global variable used to guard initialization of static locals.
+ /// The BitIndex field is only used for externally invisible declarations.
+ struct GuardInfo {
+ GuardInfo() : Guard(nullptr), BitIndex(0) {}
+ llvm::GlobalVariable *Guard;
+ unsigned BitIndex;
+ };
+
+ /// Map from DeclContext to the current guard variable. We assume that the
+ /// AST is visited in source code order.
+ llvm::DenseMap<const DeclContext *, GuardInfo> GuardVariableMap;
+ llvm::DenseMap<const DeclContext *, GuardInfo> ThreadLocalGuardVariableMap;
+ llvm::DenseMap<const DeclContext *, unsigned> ThreadSafeGuardNumMap;
+
+ llvm::DenseMap<size_t, llvm::StructType *> TypeDescriptorTypeMap;
+ llvm::StructType *BaseClassDescriptorType;
+ llvm::StructType *ClassHierarchyDescriptorType;
+ llvm::StructType *CompleteObjectLocatorType;
+
+ llvm::DenseMap<QualType, llvm::GlobalVariable *> CatchableTypeArrays;
+
+ llvm::StructType *CatchableTypeType;
+ llvm::DenseMap<uint32_t, llvm::StructType *> CatchableTypeArrayTypeMap;
+ llvm::StructType *ThrowInfoType;
+};
+
+}
+
+CGCXXABI::RecordArgABI
+MicrosoftCXXABI::getRecordArgABI(const CXXRecordDecl *RD) const {
+ switch (CGM.getTarget().getTriple().getArch()) {
+ default:
+ // FIXME: Implement for other architectures.
+ return RAA_Default;
+
+ case llvm::Triple::x86:
+ // All record arguments are passed in memory on x86. Decide whether to
+ // construct the object directly in argument memory, or to construct the
+ // argument elsewhere and copy the bytes during the call.
+
+ // If C++ prohibits us from making a copy, construct the arguments directly
+ // into argument memory.
+ if (!canCopyArgument(RD))
+ return RAA_DirectInMemory;
+
+ // Otherwise, construct the argument into a temporary and copy the bytes
+ // into the outgoing argument memory.
+ return RAA_Default;
+
+ case llvm::Triple::x86_64:
+ // Win64 passes objects with non-trivial copy ctors indirectly.
+ if (RD->hasNonTrivialCopyConstructor())
+ return RAA_Indirect;
+
+ // If an object has a destructor, we'd really like to pass it indirectly
+ // because it allows us to elide copies. Unfortunately, MSVC makes that
+ // impossible for small types, which it will pass in a single register or
+ // stack slot. Most objects with dtors are large-ish, so handle that early.
+ // We can't call out all large objects as being indirect because there are
+ // multiple x64 calling conventions and the C++ ABI code shouldn't dictate
+ // how we pass large POD types.
+ if (RD->hasNonTrivialDestructor() &&
+ getContext().getTypeSize(RD->getTypeForDecl()) > 64)
+ return RAA_Indirect;
+
+ // We have a trivial copy constructor or no copy constructors, but we have
+ // to make sure it isn't deleted.
+ bool CopyDeleted = false;
+ for (const CXXConstructorDecl *CD : RD->ctors()) {
+ if (CD->isCopyConstructor()) {
+ assert(CD->isTrivial());
+ // We had at least one undeleted trivial copy ctor. Return directly.
+ if (!CD->isDeleted())
+ return RAA_Default;
+ CopyDeleted = true;
+ }
+ }
+
+ // The trivial copy constructor was deleted. Return indirectly.
+ if (CopyDeleted)
+ return RAA_Indirect;
+
+ // There were no copy ctors. Return in RAX.
+ return RAA_Default;
+ }
+
+ llvm_unreachable("invalid enum");
+}
+
+void MicrosoftCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF,
+ const CXXDeleteExpr *DE,
+ Address Ptr,
+ QualType ElementType,
+ const CXXDestructorDecl *Dtor) {
+ // FIXME: Provide a source location here even though there's no
+ // CXXMemberCallExpr for dtor call.
+ bool UseGlobalDelete = DE->isGlobalDelete();
+ CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting;
+ llvm::Value *MDThis =
+ EmitVirtualDestructorCall(CGF, Dtor, DtorType, Ptr, /*CE=*/nullptr);
+ if (UseGlobalDelete)
+ CGF.EmitDeleteCall(DE->getOperatorDelete(), MDThis, ElementType);
+}
+
+void MicrosoftCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) {
+ llvm::Value *Args[] = {
+ llvm::ConstantPointerNull::get(CGM.Int8PtrTy),
+ llvm::ConstantPointerNull::get(getThrowInfoType()->getPointerTo())};
+ auto *Fn = getThrowFn();
+ if (isNoReturn)
+ CGF.EmitNoreturnRuntimeCallOrInvoke(Fn, Args);
+ else
+ CGF.EmitRuntimeCallOrInvoke(Fn, Args);
+}
+
+namespace {
+struct CatchRetScope final : EHScopeStack::Cleanup {
+ llvm::CatchPadInst *CPI;
+
+ CatchRetScope(llvm::CatchPadInst *CPI) : CPI(CPI) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ llvm::BasicBlock *BB = CGF.createBasicBlock("catchret.dest");
+ CGF.Builder.CreateCatchRet(CPI, BB);
+ CGF.EmitBlock(BB);
+ }
+};
+}
+
+void MicrosoftCXXABI::emitBeginCatch(CodeGenFunction &CGF,
+ const CXXCatchStmt *S) {
+ // In the MS ABI, the runtime handles the copy, and the catch handler is
+ // responsible for destruction.
+ VarDecl *CatchParam = S->getExceptionDecl();
+ llvm::BasicBlock *CatchPadBB = CGF.Builder.GetInsertBlock();
+ llvm::CatchPadInst *CPI =
+ cast<llvm::CatchPadInst>(CatchPadBB->getFirstNonPHI());
+ CGF.CurrentFuncletPad = CPI;
+
+ // If this is a catch-all or the catch parameter is unnamed, we don't need to
+ // emit an alloca to the object.
+ if (!CatchParam || !CatchParam->getDeclName()) {
+ CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI);
+ return;
+ }
+
+ CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam);
+ CPI->setArgOperand(2, var.getObjectAddress(CGF).getPointer());
+ CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI);
+ CGF.EmitAutoVarCleanups(var);
+}
+
+/// We need to perform a generic polymorphic operation (like a typeid
+/// or a cast), which requires an object with a vfptr. Adjust the
+/// address to point to an object with a vfptr.
+std::pair<Address, llvm::Value *>
+MicrosoftCXXABI::performBaseAdjustment(CodeGenFunction &CGF, Address Value,
+ QualType SrcRecordTy) {
+ Value = CGF.Builder.CreateBitCast(Value, CGF.Int8PtrTy);
+ const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
+ const ASTContext &Context = getContext();
+
+ // If the class itself has a vfptr, great. This check implicitly
+ // covers non-virtual base subobjects: a class with its own virtual
+ // functions would be a candidate to be a primary base.
+ if (Context.getASTRecordLayout(SrcDecl).hasExtendableVFPtr())
+ return std::make_pair(Value, llvm::ConstantInt::get(CGF.Int32Ty, 0));
+
+ // Okay, one of the vbases must have a vfptr, or else this isn't
+ // actually a polymorphic class.
+ const CXXRecordDecl *PolymorphicBase = nullptr;
+ for (auto &Base : SrcDecl->vbases()) {
+ const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
+ if (Context.getASTRecordLayout(BaseDecl).hasExtendableVFPtr()) {
+ PolymorphicBase = BaseDecl;
+ break;
+ }
+ }
+ assert(PolymorphicBase && "polymorphic class has no apparent vfptr?");
+
+ llvm::Value *Offset =
+ GetVirtualBaseClassOffset(CGF, Value, SrcDecl, PolymorphicBase);
+ llvm::Value *Ptr = CGF.Builder.CreateInBoundsGEP(Value.getPointer(), Offset);
+ Offset = CGF.Builder.CreateTrunc(Offset, CGF.Int32Ty);
+ CharUnits VBaseAlign =
+ CGF.CGM.getVBaseAlignment(Value.getAlignment(), SrcDecl, PolymorphicBase);
+ return std::make_pair(Address(Ptr, VBaseAlign), Offset);
+}
+
+bool MicrosoftCXXABI::shouldTypeidBeNullChecked(bool IsDeref,
+ QualType SrcRecordTy) {
+ const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
+ return IsDeref &&
+ !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr();
+}
+
+static llvm::CallSite emitRTtypeidCall(CodeGenFunction &CGF,
+ llvm::Value *Argument) {
+ llvm::Type *ArgTypes[] = {CGF.Int8PtrTy};
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false);
+ llvm::Value *Args[] = {Argument};
+ llvm::Constant *Fn = CGF.CGM.CreateRuntimeFunction(FTy, "__RTtypeid");
+ return CGF.EmitRuntimeCallOrInvoke(Fn, Args);
+}
+
+void MicrosoftCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) {
+ llvm::CallSite Call =
+ emitRTtypeidCall(CGF, llvm::Constant::getNullValue(CGM.VoidPtrTy));
+ Call.setDoesNotReturn();
+ CGF.Builder.CreateUnreachable();
+}
+
+llvm::Value *MicrosoftCXXABI::EmitTypeid(CodeGenFunction &CGF,
+ QualType SrcRecordTy,
+ Address ThisPtr,
+ llvm::Type *StdTypeInfoPtrTy) {
+ llvm::Value *Offset;
+ std::tie(ThisPtr, Offset) = performBaseAdjustment(CGF, ThisPtr, SrcRecordTy);
+ auto Typeid = emitRTtypeidCall(CGF, ThisPtr.getPointer()).getInstruction();
+ return CGF.Builder.CreateBitCast(Typeid, StdTypeInfoPtrTy);
+}
+
+bool MicrosoftCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
+ QualType SrcRecordTy) {
+ const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
+ return SrcIsPtr &&
+ !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr();
+}
+
+llvm::Value *MicrosoftCXXABI::EmitDynamicCastCall(
+ CodeGenFunction &CGF, Address This, QualType SrcRecordTy,
+ QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) {
+ llvm::Type *DestLTy = CGF.ConvertType(DestTy);
+
+ llvm::Value *SrcRTTI =
+ CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
+ llvm::Value *DestRTTI =
+ CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());
+
+ llvm::Value *Offset;
+ std::tie(This, Offset) = performBaseAdjustment(CGF, This, SrcRecordTy);
+ llvm::Value *ThisPtr = This.getPointer();
+
+ // PVOID __RTDynamicCast(
+ // PVOID inptr,
+ // LONG VfDelta,
+ // PVOID SrcType,
+ // PVOID TargetType,
+ // BOOL isReference)
+ llvm::Type *ArgTypes[] = {CGF.Int8PtrTy, CGF.Int32Ty, CGF.Int8PtrTy,
+ CGF.Int8PtrTy, CGF.Int32Ty};
+ llvm::Constant *Function = CGF.CGM.CreateRuntimeFunction(
+ llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false),
+ "__RTDynamicCast");
+ llvm::Value *Args[] = {
+ ThisPtr, Offset, SrcRTTI, DestRTTI,
+ llvm::ConstantInt::get(CGF.Int32Ty, DestTy->isReferenceType())};
+ ThisPtr = CGF.EmitRuntimeCallOrInvoke(Function, Args).getInstruction();
+ return CGF.Builder.CreateBitCast(ThisPtr, DestLTy);
+}
+
+llvm::Value *
+MicrosoftCXXABI::EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value,
+ QualType SrcRecordTy,
+ QualType DestTy) {
+ llvm::Value *Offset;
+ std::tie(Value, Offset) = performBaseAdjustment(CGF, Value, SrcRecordTy);
+
+ // PVOID __RTCastToVoid(
+ // PVOID inptr)
+ llvm::Type *ArgTypes[] = {CGF.Int8PtrTy};
+ llvm::Constant *Function = CGF.CGM.CreateRuntimeFunction(
+ llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false),
+ "__RTCastToVoid");
+ llvm::Value *Args[] = {Value.getPointer()};
+ return CGF.EmitRuntimeCall(Function, Args);
+}
+
+bool MicrosoftCXXABI::EmitBadCastCall(CodeGenFunction &CGF) {
+ return false;
+}
+
+llvm::Value *MicrosoftCXXABI::GetVirtualBaseClassOffset(
+ CodeGenFunction &CGF, Address This, const CXXRecordDecl *ClassDecl,
+ const CXXRecordDecl *BaseClassDecl) {
+ const ASTContext &Context = getContext();
+ int64_t VBPtrChars =
+ Context.getASTRecordLayout(ClassDecl).getVBPtrOffset().getQuantity();
+ llvm::Value *VBPtrOffset = llvm::ConstantInt::get(CGM.PtrDiffTy, VBPtrChars);
+ CharUnits IntSize = Context.getTypeSizeInChars(Context.IntTy);
+ CharUnits VBTableChars =
+ IntSize *
+ CGM.getMicrosoftVTableContext().getVBTableIndex(ClassDecl, BaseClassDecl);
+ llvm::Value *VBTableOffset =
+ llvm::ConstantInt::get(CGM.IntTy, VBTableChars.getQuantity());
+
+ llvm::Value *VBPtrToNewBase =
+ GetVBaseOffsetFromVBPtr(CGF, This, VBPtrOffset, VBTableOffset);
+ VBPtrToNewBase =
+ CGF.Builder.CreateSExtOrBitCast(VBPtrToNewBase, CGM.PtrDiffTy);
+ return CGF.Builder.CreateNSWAdd(VBPtrOffset, VBPtrToNewBase);
+}
+
+bool MicrosoftCXXABI::HasThisReturn(GlobalDecl GD) const {
+ return isa<CXXConstructorDecl>(GD.getDecl());
+}
+
+static bool isDeletingDtor(GlobalDecl GD) {
+ return isa<CXXDestructorDecl>(GD.getDecl()) &&
+ GD.getDtorType() == Dtor_Deleting;
+}
+
+bool MicrosoftCXXABI::hasMostDerivedReturn(GlobalDecl GD) const {
+ return isDeletingDtor(GD);
+}
+
+bool MicrosoftCXXABI::classifyReturnType(CGFunctionInfo &FI) const {
+ const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl();
+ if (!RD)
+ return false;
+
+ CharUnits Align = CGM.getContext().getTypeAlignInChars(FI.getReturnType());
+ if (FI.isInstanceMethod()) {
+ // If it's an instance method, aggregates are always returned indirectly via
+ // the second parameter.
+ FI.getReturnInfo() = ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
+ FI.getReturnInfo().setSRetAfterThis(FI.isInstanceMethod());
+ return true;
+ } else if (!RD->isPOD()) {
+ // If it's a free function, non-POD types are returned indirectly.
+ FI.getReturnInfo() = ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
+ return true;
+ }
+
+ // Otherwise, use the C ABI rules.
+ return false;
+}
+
+llvm::BasicBlock *
+MicrosoftCXXABI::EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
+ const CXXRecordDecl *RD) {
+ llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF);
+ assert(IsMostDerivedClass &&
+ "ctor for a class with virtual bases must have an implicit parameter");
+ llvm::Value *IsCompleteObject =
+ CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object");
+
+ llvm::BasicBlock *CallVbaseCtorsBB = CGF.createBasicBlock("ctor.init_vbases");
+ llvm::BasicBlock *SkipVbaseCtorsBB = CGF.createBasicBlock("ctor.skip_vbases");
+ CGF.Builder.CreateCondBr(IsCompleteObject,
+ CallVbaseCtorsBB, SkipVbaseCtorsBB);
+
+ CGF.EmitBlock(CallVbaseCtorsBB);
+
+ // Fill in the vbtable pointers here.
+ EmitVBPtrStores(CGF, RD);
+
+ // CGF will put the base ctor calls in this basic block for us later.
+
+ return SkipVbaseCtorsBB;
+}
+
+void MicrosoftCXXABI::initializeHiddenVirtualInheritanceMembers(
+ CodeGenFunction &CGF, const CXXRecordDecl *RD) {
+ // In most cases, an override for a vbase virtual method can adjust
+ // the "this" parameter by applying a constant offset.
+ // However, this is not enough while a constructor or a destructor of some
+ // class X is being executed if all the following conditions are met:
+ // - X has virtual bases, (1)
+ // - X overrides a virtual method M of a vbase Y, (2)
+ // - X itself is a vbase of the most derived class.
+ //
+ // If (1) and (2) are true, the vtorDisp for vbase Y is a hidden member of X
+ // which holds the extra amount of "this" adjustment we must do when we use
+ // the X vftables (i.e. during X ctor or dtor).
+ // Outside the ctors and dtors, the values of vtorDisps are zero.
+
+ const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
+ typedef ASTRecordLayout::VBaseOffsetsMapTy VBOffsets;
+ const VBOffsets &VBaseMap = Layout.getVBaseOffsetsMap();
+ CGBuilderTy &Builder = CGF.Builder;
+
+ unsigned AS = getThisAddress(CGF).getAddressSpace();
+ llvm::Value *Int8This = nullptr; // Initialize lazily.
+
+ for (VBOffsets::const_iterator I = VBaseMap.begin(), E = VBaseMap.end();
+ I != E; ++I) {
+ if (!I->second.hasVtorDisp())
+ continue;
+
+ llvm::Value *VBaseOffset =
+ GetVirtualBaseClassOffset(CGF, getThisAddress(CGF), RD, I->first);
+ // FIXME: it doesn't look right that we SExt in GetVirtualBaseClassOffset()
+ // just to Trunc back immediately.
+ VBaseOffset = Builder.CreateTruncOrBitCast(VBaseOffset, CGF.Int32Ty);
+ uint64_t ConstantVBaseOffset =
+ Layout.getVBaseClassOffset(I->first).getQuantity();
+
+ // vtorDisp_for_vbase = vbptr[vbase_idx] - offsetof(RD, vbase).
+ llvm::Value *VtorDispValue = Builder.CreateSub(
+ VBaseOffset, llvm::ConstantInt::get(CGM.Int32Ty, ConstantVBaseOffset),
+ "vtordisp.value");
+
+ if (!Int8This)
+ Int8This = Builder.CreateBitCast(getThisValue(CGF),
+ CGF.Int8Ty->getPointerTo(AS));
+ llvm::Value *VtorDispPtr = Builder.CreateInBoundsGEP(Int8This, VBaseOffset);
+ // vtorDisp is always the 32-bits before the vbase in the class layout.
+ VtorDispPtr = Builder.CreateConstGEP1_32(VtorDispPtr, -4);
+ VtorDispPtr = Builder.CreateBitCast(
+ VtorDispPtr, CGF.Int32Ty->getPointerTo(AS), "vtordisp.ptr");
+
+ Builder.CreateAlignedStore(VtorDispValue, VtorDispPtr,
+ CharUnits::fromQuantity(4));
+ }
+}
+
+static bool hasDefaultCXXMethodCC(ASTContext &Context,
+ const CXXMethodDecl *MD) {
+ CallingConv ExpectedCallingConv = Context.getDefaultCallingConvention(
+ /*IsVariadic=*/false, /*IsCXXMethod=*/true);
+ CallingConv ActualCallingConv =
+ MD->getType()->getAs<FunctionProtoType>()->getCallConv();
+ return ExpectedCallingConv == ActualCallingConv;
+}
+
+void MicrosoftCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) {
+ // There's only one constructor type in this ABI.
+ CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete));
+
+ // Exported default constructors either have a simple call-site where they use
+ // the typical calling convention and have a single 'this' pointer for an
+ // argument -or- they get a wrapper function which appropriately thunks to the
+ // real default constructor. This thunk is the default constructor closure.
+ if (D->hasAttr<DLLExportAttr>() && D->isDefaultConstructor())
+ if (!hasDefaultCXXMethodCC(getContext(), D) || D->getNumParams() != 0) {
+ llvm::Function *Fn = getAddrOfCXXCtorClosure(D, Ctor_DefaultClosure);
+ Fn->setLinkage(llvm::GlobalValue::WeakODRLinkage);
+ Fn->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
+ }
+}
+
+void MicrosoftCXXABI::EmitVBPtrStores(CodeGenFunction &CGF,
+ const CXXRecordDecl *RD) {
+ Address This = getThisAddress(CGF);
+ This = CGF.Builder.CreateElementBitCast(This, CGM.Int8Ty, "this.int8");
+ const ASTContext &Context = getContext();
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+
+ const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
+ for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) {
+ const VPtrInfo *VBT = (*VBGlobals.VBTables)[I];
+ llvm::GlobalVariable *GV = VBGlobals.Globals[I];
+ const ASTRecordLayout &SubobjectLayout =
+ Context.getASTRecordLayout(VBT->BaseWithVPtr);
+ CharUnits Offs = VBT->NonVirtualOffset;
+ Offs += SubobjectLayout.getVBPtrOffset();
+ if (VBT->getVBaseWithVPtr())
+ Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr());
+ Address VBPtr = CGF.Builder.CreateConstInBoundsByteGEP(This, Offs);
+ llvm::Value *GVPtr =
+ CGF.Builder.CreateConstInBoundsGEP2_32(GV->getValueType(), GV, 0, 0);
+ VBPtr = CGF.Builder.CreateElementBitCast(VBPtr, GVPtr->getType(),
+ "vbptr." + VBT->ReusingBase->getName());
+ CGF.Builder.CreateStore(GVPtr, VBPtr);
+ }
+}
+
+void
+MicrosoftCXXABI::buildStructorSignature(const CXXMethodDecl *MD, StructorType T,
+ SmallVectorImpl<CanQualType> &ArgTys) {
+ // TODO: 'for base' flag
+ if (T == StructorType::Deleting) {
+ // The scalar deleting destructor takes an implicit int parameter.
+ ArgTys.push_back(getContext().IntTy);
+ }
+ auto *CD = dyn_cast<CXXConstructorDecl>(MD);
+ if (!CD)
+ return;
+
+ // All parameters are already in place except is_most_derived, which goes
+ // after 'this' if it's variadic and last if it's not.
+
+ const CXXRecordDecl *Class = CD->getParent();
+ const FunctionProtoType *FPT = CD->getType()->castAs<FunctionProtoType>();
+ if (Class->getNumVBases()) {
+ if (FPT->isVariadic())
+ ArgTys.insert(ArgTys.begin() + 1, getContext().IntTy);
+ else
+ ArgTys.push_back(getContext().IntTy);
+ }
+}
+
+void MicrosoftCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) {
+ // The TU defining a dtor is only guaranteed to emit a base destructor. All
+ // other destructor variants are delegating thunks.
+ CGM.EmitGlobal(GlobalDecl(D, Dtor_Base));
+}
+
+CharUnits
+MicrosoftCXXABI::getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) {
+ GD = GD.getCanonicalDecl();
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
+
+ GlobalDecl LookupGD = GD;
+ if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
+ // Complete destructors take a pointer to the complete object as a
+ // parameter, thus don't need this adjustment.
+ if (GD.getDtorType() == Dtor_Complete)
+ return CharUnits();
+
+ // There's no Dtor_Base in vftable but it shares the this adjustment with
+ // the deleting one, so look it up instead.
+ LookupGD = GlobalDecl(DD, Dtor_Deleting);
+ }
+
+ MicrosoftVTableContext::MethodVFTableLocation ML =
+ CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD);
+ CharUnits Adjustment = ML.VFPtrOffset;
+
+ // Normal virtual instance methods need to adjust from the vfptr that first
+ // defined the virtual method to the virtual base subobject, but destructors
+ // do not. The vector deleting destructor thunk applies this adjustment for
+ // us if necessary.
+ if (isa<CXXDestructorDecl>(MD))
+ Adjustment = CharUnits::Zero();
+
+ if (ML.VBase) {
+ const ASTRecordLayout &DerivedLayout =
+ getContext().getASTRecordLayout(MD->getParent());
+ Adjustment += DerivedLayout.getVBaseClassOffset(ML.VBase);
+ }
+
+ return Adjustment;
+}
+
+Address MicrosoftCXXABI::adjustThisArgumentForVirtualFunctionCall(
+ CodeGenFunction &CGF, GlobalDecl GD, Address This,
+ bool VirtualCall) {
+ if (!VirtualCall) {
+ // If the call of a virtual function is not virtual, we just have to
+ // compensate for the adjustment the virtual function does in its prologue.
+ CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD);
+ if (Adjustment.isZero())
+ return This;
+
+ This = CGF.Builder.CreateElementBitCast(This, CGF.Int8Ty);
+ assert(Adjustment.isPositive());
+ return CGF.Builder.CreateConstByteGEP(This, Adjustment);
+ }
+
+ GD = GD.getCanonicalDecl();
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
+
+ GlobalDecl LookupGD = GD;
+ if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
+ // Complete dtors take a pointer to the complete object,
+ // thus don't need adjustment.
+ if (GD.getDtorType() == Dtor_Complete)
+ return This;
+
+ // There's only Dtor_Deleting in vftable but it shares the this adjustment
+ // with the base one, so look up the deleting one instead.
+ LookupGD = GlobalDecl(DD, Dtor_Deleting);
+ }
+ MicrosoftVTableContext::MethodVFTableLocation ML =
+ CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD);
+
+ CharUnits StaticOffset = ML.VFPtrOffset;
+
+ // Base destructors expect 'this' to point to the beginning of the base
+ // subobject, not the first vfptr that happens to contain the virtual dtor.
+ // However, we still need to apply the virtual base adjustment.
+ if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
+ StaticOffset = CharUnits::Zero();
+
+ Address Result = This;
+ if (ML.VBase) {
+ Result = CGF.Builder.CreateElementBitCast(Result, CGF.Int8Ty);
+
+ const CXXRecordDecl *Derived = MD->getParent();
+ const CXXRecordDecl *VBase = ML.VBase;
+ llvm::Value *VBaseOffset =
+ GetVirtualBaseClassOffset(CGF, Result, Derived, VBase);
+ llvm::Value *VBasePtr =
+ CGF.Builder.CreateInBoundsGEP(Result.getPointer(), VBaseOffset);
+ CharUnits VBaseAlign =
+ CGF.CGM.getVBaseAlignment(Result.getAlignment(), Derived, VBase);
+ Result = Address(VBasePtr, VBaseAlign);
+ }
+ if (!StaticOffset.isZero()) {
+ assert(StaticOffset.isPositive());
+ Result = CGF.Builder.CreateElementBitCast(Result, CGF.Int8Ty);
+ if (ML.VBase) {
+ // Non-virtual adjustment might result in a pointer outside the allocated
+ // object, e.g. if the final overrider class is laid out after the virtual
+ // base that declares a method in the most derived class.
+ // FIXME: Update the code that emits this adjustment in thunks prologues.
+ Result = CGF.Builder.CreateConstByteGEP(Result, StaticOffset);
+ } else {
+ Result = CGF.Builder.CreateConstInBoundsByteGEP(Result, StaticOffset);
+ }
+ }
+ return Result;
+}
+
+void MicrosoftCXXABI::addImplicitStructorParams(CodeGenFunction &CGF,
+ QualType &ResTy,
+ FunctionArgList &Params) {
+ ASTContext &Context = getContext();
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
+ assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD));
+ if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) {
+ ImplicitParamDecl *IsMostDerived
+ = ImplicitParamDecl::Create(Context, nullptr,
+ CGF.CurGD.getDecl()->getLocation(),
+ &Context.Idents.get("is_most_derived"),
+ Context.IntTy);
+ // The 'most_derived' parameter goes second if the ctor is variadic and last
+ // if it's not. Dtors can't be variadic.
+ const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
+ if (FPT->isVariadic())
+ Params.insert(Params.begin() + 1, IsMostDerived);
+ else
+ Params.push_back(IsMostDerived);
+ getStructorImplicitParamDecl(CGF) = IsMostDerived;
+ } else if (isDeletingDtor(CGF.CurGD)) {
+ ImplicitParamDecl *ShouldDelete
+ = ImplicitParamDecl::Create(Context, nullptr,
+ CGF.CurGD.getDecl()->getLocation(),
+ &Context.Idents.get("should_call_delete"),
+ Context.IntTy);
+ Params.push_back(ShouldDelete);
+ getStructorImplicitParamDecl(CGF) = ShouldDelete;
+ }
+}
+
+llvm::Value *MicrosoftCXXABI::adjustThisParameterInVirtualFunctionPrologue(
+ CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This) {
+ // In this ABI, every virtual function takes a pointer to one of the
+ // subobjects that first defines it as the 'this' parameter, rather than a
+ // pointer to the final overrider subobject. Thus, we need to adjust it back
+ // to the final overrider subobject before use.
+ // See comments in the MicrosoftVFTableContext implementation for the details.
+ CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD);
+ if (Adjustment.isZero())
+ return This;
+
+ unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace();
+ llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS),
+ *thisTy = This->getType();
+
+ This = CGF.Builder.CreateBitCast(This, charPtrTy);
+ assert(Adjustment.isPositive());
+ This = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, This,
+ -Adjustment.getQuantity());
+ return CGF.Builder.CreateBitCast(This, thisTy);
+}
+
+void MicrosoftCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
+ EmitThisParam(CGF);
+
+ /// If this is a function that the ABI specifies returns 'this', initialize
+ /// the return slot to 'this' at the start of the function.
+ ///
+ /// Unlike the setting of return types, this is done within the ABI
+ /// implementation instead of by clients of CGCXXABI because:
+ /// 1) getThisValue is currently protected
+ /// 2) in theory, an ABI could implement 'this' returns some other way;
+ /// HasThisReturn only specifies a contract, not the implementation
+ if (HasThisReturn(CGF.CurGD))
+ CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue);
+ else if (hasMostDerivedReturn(CGF.CurGD))
+ CGF.Builder.CreateStore(CGF.EmitCastToVoidPtr(getThisValue(CGF)),
+ CGF.ReturnValue);
+
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
+ if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) {
+ assert(getStructorImplicitParamDecl(CGF) &&
+ "no implicit parameter for a constructor with virtual bases?");
+ getStructorImplicitParamValue(CGF)
+ = CGF.Builder.CreateLoad(
+ CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)),
+ "is_most_derived");
+ }
+
+ if (isDeletingDtor(CGF.CurGD)) {
+ assert(getStructorImplicitParamDecl(CGF) &&
+ "no implicit parameter for a deleting destructor?");
+ getStructorImplicitParamValue(CGF)
+ = CGF.Builder.CreateLoad(
+ CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)),
+ "should_call_delete");
+ }
+}
+
+unsigned MicrosoftCXXABI::addImplicitConstructorArgs(
+ CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type,
+ bool ForVirtualBase, bool Delegating, CallArgList &Args) {
+ assert(Type == Ctor_Complete || Type == Ctor_Base);
+
+ // Check if we need a 'most_derived' parameter.
+ if (!D->getParent()->getNumVBases())
+ return 0;
+
+ // Add the 'most_derived' argument second if we are variadic or last if not.
+ const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
+ llvm::Value *MostDerivedArg =
+ llvm::ConstantInt::get(CGM.Int32Ty, Type == Ctor_Complete);
+ RValue RV = RValue::get(MostDerivedArg);
+ if (MostDerivedArg) {
+ if (FPT->isVariadic())
+ Args.insert(Args.begin() + 1,
+ CallArg(RV, getContext().IntTy, /*needscopy=*/false));
+ else
+ Args.add(RV, getContext().IntTy);
+ }
+
+ return 1; // Added one arg.
+}
+
+void MicrosoftCXXABI::EmitDestructorCall(CodeGenFunction &CGF,
+ const CXXDestructorDecl *DD,
+ CXXDtorType Type, bool ForVirtualBase,
+ bool Delegating, Address This) {
+ llvm::Value *Callee = CGM.getAddrOfCXXStructor(DD, getFromDtorType(Type));
+
+ if (DD->isVirtual()) {
+ assert(Type != CXXDtorType::Dtor_Deleting &&
+ "The deleting destructor should only be called via a virtual call");
+ This = adjustThisArgumentForVirtualFunctionCall(CGF, GlobalDecl(DD, Type),
+ This, false);
+ }
+
+ CGF.EmitCXXStructorCall(DD, Callee, ReturnValueSlot(), This.getPointer(),
+ /*ImplicitParam=*/nullptr,
+ /*ImplicitParamTy=*/QualType(), nullptr,
+ getFromDtorType(Type));
+}
+
+void MicrosoftCXXABI::emitVTableBitSetEntries(VPtrInfo *Info,
+ const CXXRecordDecl *RD,
+ llvm::GlobalVariable *VTable) {
+ if (!getContext().getLangOpts().Sanitize.has(SanitizerKind::CFIVCall) &&
+ !getContext().getLangOpts().Sanitize.has(SanitizerKind::CFINVCall) &&
+ !getContext().getLangOpts().Sanitize.has(SanitizerKind::CFIDerivedCast) &&
+ !getContext().getLangOpts().Sanitize.has(SanitizerKind::CFIUnrelatedCast))
+ return;
+
+ llvm::NamedMDNode *BitsetsMD =
+ CGM.getModule().getOrInsertNamedMetadata("llvm.bitsets");
+
+ // The location of the first virtual function pointer in the virtual table,
+ // aka the "address point" on Itanium. This is at offset 0 if RTTI is
+ // disabled, or sizeof(void*) if RTTI is enabled.
+ CharUnits AddressPoint =
+ getContext().getLangOpts().RTTIData
+ ? getContext().toCharUnitsFromBits(
+ getContext().getTargetInfo().getPointerWidth(0))
+ : CharUnits::Zero();
+
+ if (Info->PathToBaseWithVPtr.empty()) {
+ if (!CGM.IsCFIBlacklistedRecord(RD))
+ CGM.CreateVTableBitSetEntry(BitsetsMD, VTable, AddressPoint, RD);
+ return;
+ }
+
+ // Add a bitset entry for the least derived base belonging to this vftable.
+ if (!CGM.IsCFIBlacklistedRecord(Info->PathToBaseWithVPtr.back()))
+ CGM.CreateVTableBitSetEntry(BitsetsMD, VTable, AddressPoint,
+ Info->PathToBaseWithVPtr.back());
+
+ // Add a bitset entry for each derived class that is laid out at the same
+ // offset as the least derived base.
+ for (unsigned I = Info->PathToBaseWithVPtr.size() - 1; I != 0; --I) {
+ const CXXRecordDecl *DerivedRD = Info->PathToBaseWithVPtr[I - 1];
+ const CXXRecordDecl *BaseRD = Info->PathToBaseWithVPtr[I];
+
+ const ASTRecordLayout &Layout =
+ getContext().getASTRecordLayout(DerivedRD);
+ CharUnits Offset;
+ auto VBI = Layout.getVBaseOffsetsMap().find(BaseRD);
+ if (VBI == Layout.getVBaseOffsetsMap().end())
+ Offset = Layout.getBaseClassOffset(BaseRD);
+ else
+ Offset = VBI->second.VBaseOffset;
+ if (!Offset.isZero())
+ return;
+ if (!CGM.IsCFIBlacklistedRecord(DerivedRD))
+ CGM.CreateVTableBitSetEntry(BitsetsMD, VTable, AddressPoint, DerivedRD);
+ }
+
+ // Finally do the same for the most derived class.
+ if (Info->FullOffsetInMDC.isZero() && !CGM.IsCFIBlacklistedRecord(RD))
+ CGM.CreateVTableBitSetEntry(BitsetsMD, VTable, AddressPoint, RD);
+}
+
+void MicrosoftCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT,
+ const CXXRecordDecl *RD) {
+ MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext();
+ const VPtrInfoVector &VFPtrs = VFTContext.getVFPtrOffsets(RD);
+
+ for (VPtrInfo *Info : VFPtrs) {
+ llvm::GlobalVariable *VTable = getAddrOfVTable(RD, Info->FullOffsetInMDC);
+ if (VTable->hasInitializer())
+ continue;
+
+ llvm::Constant *RTTI = getContext().getLangOpts().RTTIData
+ ? getMSCompleteObjectLocator(RD, Info)
+ : nullptr;
+
+ const VTableLayout &VTLayout =
+ VFTContext.getVFTableLayout(RD, Info->FullOffsetInMDC);
+ llvm::Constant *Init = CGVT.CreateVTableInitializer(
+ RD, VTLayout.vtable_component_begin(),
+ VTLayout.getNumVTableComponents(), VTLayout.vtable_thunk_begin(),
+ VTLayout.getNumVTableThunks(), RTTI);
+
+ VTable->setInitializer(Init);
+
+ emitVTableBitSetEntries(Info, RD, VTable);
+ }
+}
+
+bool MicrosoftCXXABI::isVirtualOffsetNeededForVTableField(
+ CodeGenFunction &CGF, CodeGenFunction::VPtr Vptr) {
+ return Vptr.NearestVBase != nullptr;
+}
+
+llvm::Value *MicrosoftCXXABI::getVTableAddressPointInStructor(
+ CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base,
+ const CXXRecordDecl *NearestVBase) {
+ llvm::Constant *VTableAddressPoint = getVTableAddressPoint(Base, VTableClass);
+ if (!VTableAddressPoint) {
+ assert(Base.getBase()->getNumVBases() &&
+ !getContext().getASTRecordLayout(Base.getBase()).hasOwnVFPtr());
+ }
+ return VTableAddressPoint;
+}
+
+static void mangleVFTableName(MicrosoftMangleContext &MangleContext,
+ const CXXRecordDecl *RD, const VPtrInfo *VFPtr,
+ SmallString<256> &Name) {
+ llvm::raw_svector_ostream Out(Name);
+ MangleContext.mangleCXXVFTable(RD, VFPtr->MangledPath, Out);
+}
+
+llvm::Constant *
+MicrosoftCXXABI::getVTableAddressPoint(BaseSubobject Base,
+ const CXXRecordDecl *VTableClass) {
+ (void)getAddrOfVTable(VTableClass, Base.getBaseOffset());
+ VFTableIdTy ID(VTableClass, Base.getBaseOffset());
+ return VFTablesMap[ID];
+}
+
+llvm::Constant *MicrosoftCXXABI::getVTableAddressPointForConstExpr(
+ BaseSubobject Base, const CXXRecordDecl *VTableClass) {
+ llvm::Constant *VFTable = getVTableAddressPoint(Base, VTableClass);
+ assert(VFTable && "Couldn't find a vftable for the given base?");
+ return VFTable;
+}
+
+llvm::GlobalVariable *MicrosoftCXXABI::getAddrOfVTable(const CXXRecordDecl *RD,
+ CharUnits VPtrOffset) {
+ // getAddrOfVTable may return 0 if asked to get an address of a vtable which
+ // shouldn't be used in the given record type. We want to cache this result in
+ // VFTablesMap, thus a simple zero check is not sufficient.
+
+ VFTableIdTy ID(RD, VPtrOffset);
+ VTablesMapTy::iterator I;
+ bool Inserted;
+ std::tie(I, Inserted) = VTablesMap.insert(std::make_pair(ID, nullptr));
+ if (!Inserted)
+ return I->second;
+
+ llvm::GlobalVariable *&VTable = I->second;
+
+ MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext();
+ const VPtrInfoVector &VFPtrs = VTContext.getVFPtrOffsets(RD);
+
+ if (DeferredVFTables.insert(RD).second) {
+ // We haven't processed this record type before.
+ // Queue up this v-table for possible deferred emission.
+ CGM.addDeferredVTable(RD);
+
+#ifndef NDEBUG
+ // Create all the vftables at once in order to make sure each vftable has
+ // a unique mangled name.
+ llvm::StringSet<> ObservedMangledNames;
+ for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) {
+ SmallString<256> Name;
+ mangleVFTableName(getMangleContext(), RD, VFPtrs[J], Name);
+ if (!ObservedMangledNames.insert(Name.str()).second)
+ llvm_unreachable("Already saw this mangling before?");
+ }
+#endif
+ }
+
+ VPtrInfo *const *VFPtrI =
+ std::find_if(VFPtrs.begin(), VFPtrs.end(), [&](VPtrInfo *VPI) {
+ return VPI->FullOffsetInMDC == VPtrOffset;
+ });
+ if (VFPtrI == VFPtrs.end()) {
+ VFTablesMap[ID] = nullptr;
+ return nullptr;
+ }
+ VPtrInfo *VFPtr = *VFPtrI;
+
+ SmallString<256> VFTableName;
+ mangleVFTableName(getMangleContext(), RD, VFPtr, VFTableName);
+
+ llvm::GlobalValue::LinkageTypes VFTableLinkage = CGM.getVTableLinkage(RD);
+ bool VFTableComesFromAnotherTU =
+ llvm::GlobalValue::isAvailableExternallyLinkage(VFTableLinkage) ||
+ llvm::GlobalValue::isExternalLinkage(VFTableLinkage);
+ bool VTableAliasIsRequred =
+ !VFTableComesFromAnotherTU && getContext().getLangOpts().RTTIData;
+
+ if (llvm::GlobalValue *VFTable =
+ CGM.getModule().getNamedGlobal(VFTableName)) {
+ VFTablesMap[ID] = VFTable;
+ VTable = VTableAliasIsRequred
+ ? cast<llvm::GlobalVariable>(
+ cast<llvm::GlobalAlias>(VFTable)->getBaseObject())
+ : cast<llvm::GlobalVariable>(VFTable);
+ return VTable;
+ }
+
+ uint64_t NumVTableSlots =
+ VTContext.getVFTableLayout(RD, VFPtr->FullOffsetInMDC)
+ .getNumVTableComponents();
+ llvm::GlobalValue::LinkageTypes VTableLinkage =
+ VTableAliasIsRequred ? llvm::GlobalValue::PrivateLinkage : VFTableLinkage;
+
+ StringRef VTableName = VTableAliasIsRequred ? StringRef() : VFTableName.str();
+
+ llvm::ArrayType *VTableType =
+ llvm::ArrayType::get(CGM.Int8PtrTy, NumVTableSlots);
+
+ // Create a backing variable for the contents of VTable. The VTable may
+ // or may not include space for a pointer to RTTI data.
+ llvm::GlobalValue *VFTable;
+ VTable = new llvm::GlobalVariable(CGM.getModule(), VTableType,
+ /*isConstant=*/true, VTableLinkage,
+ /*Initializer=*/nullptr, VTableName);
+ VTable->setUnnamedAddr(true);
+
+ llvm::Comdat *C = nullptr;
+ if (!VFTableComesFromAnotherTU &&
+ (llvm::GlobalValue::isWeakForLinker(VFTableLinkage) ||
+ (llvm::GlobalValue::isLocalLinkage(VFTableLinkage) &&
+ VTableAliasIsRequred)))
+ C = CGM.getModule().getOrInsertComdat(VFTableName.str());
+
+ // Only insert a pointer into the VFTable for RTTI data if we are not
+ // importing it. We never reference the RTTI data directly so there is no
+ // need to make room for it.
+ if (VTableAliasIsRequred) {
+ llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0),
+ llvm::ConstantInt::get(CGM.IntTy, 1)};
+ // Create a GEP which points just after the first entry in the VFTable,
+ // this should be the location of the first virtual method.
+ llvm::Constant *VTableGEP = llvm::ConstantExpr::getInBoundsGetElementPtr(
+ VTable->getValueType(), VTable, GEPIndices);
+ if (llvm::GlobalValue::isWeakForLinker(VFTableLinkage)) {
+ VFTableLinkage = llvm::GlobalValue::ExternalLinkage;
+ if (C)
+ C->setSelectionKind(llvm::Comdat::Largest);
+ }
+ VFTable = llvm::GlobalAlias::create(CGM.Int8PtrTy,
+ /*AddressSpace=*/0, VFTableLinkage,
+ VFTableName.str(), VTableGEP,
+ &CGM.getModule());
+ VFTable->setUnnamedAddr(true);
+ } else {
+ // We don't need a GlobalAlias to be a symbol for the VTable if we won't
+ // be referencing any RTTI data.
+ // The GlobalVariable will end up being an appropriate definition of the
+ // VFTable.
+ VFTable = VTable;
+ }
+ if (C)
+ VTable->setComdat(C);
+
+ if (RD->hasAttr<DLLImportAttr>())
+ VFTable->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
+ else if (RD->hasAttr<DLLExportAttr>())
+ VFTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
+
+ VFTablesMap[ID] = VFTable;
+ return VTable;
+}
+
+// Compute the identity of the most derived class whose virtual table is located
+// at the given offset into RD.
+static const CXXRecordDecl *getClassAtVTableLocation(ASTContext &Ctx,
+ const CXXRecordDecl *RD,
+ CharUnits Offset) {
+ if (Offset.isZero())
+ return RD;
+
+ const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(RD);
+ const CXXRecordDecl *MaxBase = nullptr;
+ CharUnits MaxBaseOffset;
+ for (auto &&B : RD->bases()) {
+ const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl();
+ CharUnits BaseOffset = Layout.getBaseClassOffset(Base);
+ if (BaseOffset <= Offset && BaseOffset >= MaxBaseOffset) {
+ MaxBase = Base;
+ MaxBaseOffset = BaseOffset;
+ }
+ }
+ for (auto &&B : RD->vbases()) {
+ const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl();
+ CharUnits BaseOffset = Layout.getVBaseClassOffset(Base);
+ if (BaseOffset <= Offset && BaseOffset >= MaxBaseOffset) {
+ MaxBase = Base;
+ MaxBaseOffset = BaseOffset;
+ }
+ }
+ assert(MaxBase);
+ return getClassAtVTableLocation(Ctx, MaxBase, Offset - MaxBaseOffset);
+}
+
+// Compute the identity of the most derived class whose virtual table is located
+// at the MethodVFTableLocation ML.
+static const CXXRecordDecl *
+getClassAtVTableLocation(ASTContext &Ctx, GlobalDecl GD,
+ MicrosoftVTableContext::MethodVFTableLocation &ML) {
+ const CXXRecordDecl *RD = ML.VBase;
+ if (!RD)
+ RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
+
+ return getClassAtVTableLocation(Ctx, RD, ML.VFPtrOffset);
+}
+
+llvm::Value *MicrosoftCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF,
+ GlobalDecl GD,
+ Address This,
+ llvm::Type *Ty,
+ SourceLocation Loc) {
+ GD = GD.getCanonicalDecl();
+ CGBuilderTy &Builder = CGF.Builder;
+
+ Ty = Ty->getPointerTo()->getPointerTo();
+ Address VPtr =
+ adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true);
+
+ auto *MethodDecl = cast<CXXMethodDecl>(GD.getDecl());
+ llvm::Value *VTable = CGF.GetVTablePtr(VPtr, Ty, MethodDecl->getParent());
+
+ MicrosoftVTableContext::MethodVFTableLocation ML =
+ CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD);
+ if (CGF.SanOpts.has(SanitizerKind::CFIVCall))
+ CGF.EmitVTablePtrCheck(getClassAtVTableLocation(getContext(), GD, ML),
+ VTable, CodeGenFunction::CFITCK_VCall, Loc);
+
+ llvm::Value *VFuncPtr =
+ Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn");
+ return Builder.CreateAlignedLoad(VFuncPtr, CGF.getPointerAlign());
+}
+
+llvm::Value *MicrosoftCXXABI::EmitVirtualDestructorCall(
+ CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType,
+ Address This, const CXXMemberCallExpr *CE) {
+ assert(CE == nullptr || CE->arg_begin() == CE->arg_end());
+ assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete);
+
+ // We have only one destructor in the vftable but can get both behaviors
+ // by passing an implicit int parameter.
+ GlobalDecl GD(Dtor, Dtor_Deleting);
+ const CGFunctionInfo *FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
+ Dtor, StructorType::Deleting);
+ llvm::Type *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo);
+ llvm::Value *Callee = getVirtualFunctionPointer(
+ CGF, GD, This, Ty, CE ? CE->getLocStart() : SourceLocation());
+
+ ASTContext &Context = getContext();
+ llvm::Value *ImplicitParam = llvm::ConstantInt::get(
+ llvm::IntegerType::getInt32Ty(CGF.getLLVMContext()),
+ DtorType == Dtor_Deleting);
+
+ This = adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true);
+ RValue RV = CGF.EmitCXXStructorCall(Dtor, Callee, ReturnValueSlot(),
+ This.getPointer(),
+ ImplicitParam, Context.IntTy, CE,
+ StructorType::Deleting);
+ return RV.getScalarVal();
+}
+
+const VBTableGlobals &
+MicrosoftCXXABI::enumerateVBTables(const CXXRecordDecl *RD) {
+ // At this layer, we can key the cache off of a single class, which is much
+ // easier than caching each vbtable individually.
+ llvm::DenseMap<const CXXRecordDecl*, VBTableGlobals>::iterator Entry;
+ bool Added;
+ std::tie(Entry, Added) =
+ VBTablesMap.insert(std::make_pair(RD, VBTableGlobals()));
+ VBTableGlobals &VBGlobals = Entry->second;
+ if (!Added)
+ return VBGlobals;
+
+ MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext();
+ VBGlobals.VBTables = &Context.enumerateVBTables(RD);
+
+ // Cache the globals for all vbtables so we don't have to recompute the
+ // mangled names.
+ llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD);
+ for (VPtrInfoVector::const_iterator I = VBGlobals.VBTables->begin(),
+ E = VBGlobals.VBTables->end();
+ I != E; ++I) {
+ VBGlobals.Globals.push_back(getAddrOfVBTable(**I, RD, Linkage));
+ }
+
+ return VBGlobals;
+}
+
+llvm::Function *MicrosoftCXXABI::EmitVirtualMemPtrThunk(
+ const CXXMethodDecl *MD,
+ const MicrosoftVTableContext::MethodVFTableLocation &ML) {
+ assert(!isa<CXXConstructorDecl>(MD) && !isa<CXXDestructorDecl>(MD) &&
+ "can't form pointers to ctors or virtual dtors");
+
+ // Calculate the mangled name.
+ SmallString<256> ThunkName;
+ llvm::raw_svector_ostream Out(ThunkName);
+ getMangleContext().mangleVirtualMemPtrThunk(MD, Out);
+
+ // If the thunk has been generated previously, just return it.
+ if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName))
+ return cast<llvm::Function>(GV);
+
+ // Create the llvm::Function.
+ const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeMSMemberPointerThunk(MD);
+ llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo);
+ llvm::Function *ThunkFn =
+ llvm::Function::Create(ThunkTy, llvm::Function::ExternalLinkage,
+ ThunkName.str(), &CGM.getModule());
+ assert(ThunkFn->getName() == ThunkName && "name was uniqued!");
+
+ ThunkFn->setLinkage(MD->isExternallyVisible()
+ ? llvm::GlobalValue::LinkOnceODRLinkage
+ : llvm::GlobalValue::InternalLinkage);
+ if (MD->isExternallyVisible())
+ ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
+
+ CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn);
+ CGM.SetLLVMFunctionAttributesForDefinition(MD, ThunkFn);
+
+ // Add the "thunk" attribute so that LLVM knows that the return type is
+ // meaningless. These thunks can be used to call functions with differing
+ // return types, and the caller is required to cast the prototype
+ // appropriately to extract the correct value.
+ ThunkFn->addFnAttr("thunk");
+
+ // These thunks can be compared, so they are not unnamed.
+ ThunkFn->setUnnamedAddr(false);
+
+ // Start codegen.
+ CodeGenFunction CGF(CGM);
+ CGF.CurGD = GlobalDecl(MD);
+ CGF.CurFuncIsThunk = true;
+
+ // Build FunctionArgs, but only include the implicit 'this' parameter
+ // declaration.
+ FunctionArgList FunctionArgs;
+ buildThisParam(CGF, FunctionArgs);
+
+ // Start defining the function.
+ CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo,
+ FunctionArgs, MD->getLocation(), SourceLocation());
+ EmitThisParam(CGF);
+
+ // Load the vfptr and then callee from the vftable. The callee should have
+ // adjusted 'this' so that the vfptr is at offset zero.
+ llvm::Value *VTable = CGF.GetVTablePtr(
+ getThisAddress(CGF), ThunkTy->getPointerTo()->getPointerTo(), MD->getParent());
+
+ llvm::Value *VFuncPtr =
+ CGF.Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn");
+ llvm::Value *Callee =
+ CGF.Builder.CreateAlignedLoad(VFuncPtr, CGF.getPointerAlign());
+
+ CGF.EmitMustTailThunk(MD, getThisValue(CGF), Callee);
+
+ return ThunkFn;
+}
+
+void MicrosoftCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) {
+ const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
+ for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) {
+ const VPtrInfo *VBT = (*VBGlobals.VBTables)[I];
+ llvm::GlobalVariable *GV = VBGlobals.Globals[I];
+ if (GV->isDeclaration())
+ emitVBTableDefinition(*VBT, RD, GV);
+ }
+}
+
+llvm::GlobalVariable *
+MicrosoftCXXABI::getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD,
+ llvm::GlobalVariable::LinkageTypes Linkage) {
+ SmallString<256> OutName;
+ llvm::raw_svector_ostream Out(OutName);
+ getMangleContext().mangleCXXVBTable(RD, VBT.MangledPath, Out);
+ StringRef Name = OutName.str();
+
+ llvm::ArrayType *VBTableType =
+ llvm::ArrayType::get(CGM.IntTy, 1 + VBT.ReusingBase->getNumVBases());
+
+ assert(!CGM.getModule().getNamedGlobal(Name) &&
+ "vbtable with this name already exists: mangling bug?");
+ llvm::GlobalVariable *GV =
+ CGM.CreateOrReplaceCXXRuntimeVariable(Name, VBTableType, Linkage);
+ GV->setUnnamedAddr(true);
+
+ if (RD->hasAttr<DLLImportAttr>())
+ GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
+ else if (RD->hasAttr<DLLExportAttr>())
+ GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
+
+ if (!GV->hasExternalLinkage())
+ emitVBTableDefinition(VBT, RD, GV);
+
+ return GV;
+}
+
+void MicrosoftCXXABI::emitVBTableDefinition(const VPtrInfo &VBT,
+ const CXXRecordDecl *RD,
+ llvm::GlobalVariable *GV) const {
+ const CXXRecordDecl *ReusingBase = VBT.ReusingBase;
+
+ assert(RD->getNumVBases() && ReusingBase->getNumVBases() &&
+ "should only emit vbtables for classes with vbtables");
+
+ const ASTRecordLayout &BaseLayout =
+ getContext().getASTRecordLayout(VBT.BaseWithVPtr);
+ const ASTRecordLayout &DerivedLayout = getContext().getASTRecordLayout(RD);
+
+ SmallVector<llvm::Constant *, 4> Offsets(1 + ReusingBase->getNumVBases(),
+ nullptr);
+
+ // The offset from ReusingBase's vbptr to itself always leads.
+ CharUnits VBPtrOffset = BaseLayout.getVBPtrOffset();
+ Offsets[0] = llvm::ConstantInt::get(CGM.IntTy, -VBPtrOffset.getQuantity());
+
+ MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext();
+ for (const auto &I : ReusingBase->vbases()) {
+ const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl();
+ CharUnits Offset = DerivedLayout.getVBaseClassOffset(VBase);
+ assert(!Offset.isNegative());
+
+ // Make it relative to the subobject vbptr.
+ CharUnits CompleteVBPtrOffset = VBT.NonVirtualOffset + VBPtrOffset;
+ if (VBT.getVBaseWithVPtr())
+ CompleteVBPtrOffset +=
+ DerivedLayout.getVBaseClassOffset(VBT.getVBaseWithVPtr());
+ Offset -= CompleteVBPtrOffset;
+
+ unsigned VBIndex = Context.getVBTableIndex(ReusingBase, VBase);
+ assert(Offsets[VBIndex] == nullptr && "The same vbindex seen twice?");
+ Offsets[VBIndex] = llvm::ConstantInt::get(CGM.IntTy, Offset.getQuantity());
+ }
+
+ assert(Offsets.size() ==
+ cast<llvm::ArrayType>(cast<llvm::PointerType>(GV->getType())
+ ->getElementType())->getNumElements());
+ llvm::ArrayType *VBTableType =
+ llvm::ArrayType::get(CGM.IntTy, Offsets.size());
+ llvm::Constant *Init = llvm::ConstantArray::get(VBTableType, Offsets);
+ GV->setInitializer(Init);
+}
+
+llvm::Value *MicrosoftCXXABI::performThisAdjustment(CodeGenFunction &CGF,
+ Address This,
+ const ThisAdjustment &TA) {
+ if (TA.isEmpty())
+ return This.getPointer();
+
+ This = CGF.Builder.CreateElementBitCast(This, CGF.Int8Ty);
+
+ llvm::Value *V;
+ if (TA.Virtual.isEmpty()) {
+ V = This.getPointer();
+ } else {
+ assert(TA.Virtual.Microsoft.VtordispOffset < 0);
+ // Adjust the this argument based on the vtordisp value.
+ Address VtorDispPtr =
+ CGF.Builder.CreateConstInBoundsByteGEP(This,
+ CharUnits::fromQuantity(TA.Virtual.Microsoft.VtordispOffset));
+ VtorDispPtr = CGF.Builder.CreateElementBitCast(VtorDispPtr, CGF.Int32Ty);
+ llvm::Value *VtorDisp = CGF.Builder.CreateLoad(VtorDispPtr, "vtordisp");
+ V = CGF.Builder.CreateGEP(This.getPointer(),
+ CGF.Builder.CreateNeg(VtorDisp));
+
+ // Unfortunately, having applied the vtordisp means that we no
+ // longer really have a known alignment for the vbptr step.
+ // We'll assume the vbptr is pointer-aligned.
+
+ if (TA.Virtual.Microsoft.VBPtrOffset) {
+ // If the final overrider is defined in a virtual base other than the one
+ // that holds the vfptr, we have to use a vtordispex thunk which looks up
+ // the vbtable of the derived class.
+ assert(TA.Virtual.Microsoft.VBPtrOffset > 0);
+ assert(TA.Virtual.Microsoft.VBOffsetOffset >= 0);
+ llvm::Value *VBPtr;
+ llvm::Value *VBaseOffset =
+ GetVBaseOffsetFromVBPtr(CGF, Address(V, CGF.getPointerAlign()),
+ -TA.Virtual.Microsoft.VBPtrOffset,
+ TA.Virtual.Microsoft.VBOffsetOffset, &VBPtr);
+ V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset);
+ }
+ }
+
+ if (TA.NonVirtual) {
+ // Non-virtual adjustment might result in a pointer outside the allocated
+ // object, e.g. if the final overrider class is laid out after the virtual
+ // base that declares a method in the most derived class.
+ V = CGF.Builder.CreateConstGEP1_32(V, TA.NonVirtual);
+ }
+
+ // Don't need to bitcast back, the call CodeGen will handle this.
+ return V;
+}
+
+llvm::Value *
+MicrosoftCXXABI::performReturnAdjustment(CodeGenFunction &CGF, Address Ret,
+ const ReturnAdjustment &RA) {
+ if (RA.isEmpty())
+ return Ret.getPointer();
+
+ auto OrigTy = Ret.getType();
+ Ret = CGF.Builder.CreateElementBitCast(Ret, CGF.Int8Ty);
+
+ llvm::Value *V = Ret.getPointer();
+ if (RA.Virtual.Microsoft.VBIndex) {
+ assert(RA.Virtual.Microsoft.VBIndex > 0);
+ int32_t IntSize = CGF.getIntSize().getQuantity();
+ llvm::Value *VBPtr;
+ llvm::Value *VBaseOffset =
+ GetVBaseOffsetFromVBPtr(CGF, Ret, RA.Virtual.Microsoft.VBPtrOffset,
+ IntSize * RA.Virtual.Microsoft.VBIndex, &VBPtr);
+ V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset);
+ }
+
+ if (RA.NonVirtual)
+ V = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, V, RA.NonVirtual);
+
+ // Cast back to the original type.
+ return CGF.Builder.CreateBitCast(V, OrigTy);
+}
+
+bool MicrosoftCXXABI::requiresArrayCookie(const CXXDeleteExpr *expr,
+ QualType elementType) {
+ // Microsoft seems to completely ignore the possibility of a
+ // two-argument usual deallocation function.
+ return elementType.isDestructedType();
+}
+
+bool MicrosoftCXXABI::requiresArrayCookie(const CXXNewExpr *expr) {
+ // Microsoft seems to completely ignore the possibility of a
+ // two-argument usual deallocation function.
+ return expr->getAllocatedType().isDestructedType();
+}
+
+CharUnits MicrosoftCXXABI::getArrayCookieSizeImpl(QualType type) {
+ // The array cookie is always a size_t; we then pad that out to the
+ // alignment of the element type.
+ ASTContext &Ctx = getContext();
+ return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()),
+ Ctx.getTypeAlignInChars(type));
+}
+
+llvm::Value *MicrosoftCXXABI::readArrayCookieImpl(CodeGenFunction &CGF,
+ Address allocPtr,
+ CharUnits cookieSize) {
+ Address numElementsPtr =
+ CGF.Builder.CreateElementBitCast(allocPtr, CGF.SizeTy);
+ return CGF.Builder.CreateLoad(numElementsPtr);
+}
+
+Address MicrosoftCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
+ Address newPtr,
+ llvm::Value *numElements,
+ const CXXNewExpr *expr,
+ QualType elementType) {
+ assert(requiresArrayCookie(expr));
+
+ // The size of the cookie.
+ CharUnits cookieSize = getArrayCookieSizeImpl(elementType);
+
+ // Compute an offset to the cookie.
+ Address cookiePtr = newPtr;
+
+ // Write the number of elements into the appropriate slot.
+ Address numElementsPtr
+ = CGF.Builder.CreateElementBitCast(cookiePtr, CGF.SizeTy);
+ CGF.Builder.CreateStore(numElements, numElementsPtr);
+
+ // Finally, compute a pointer to the actual data buffer by skipping
+ // over the cookie completely.
+ return CGF.Builder.CreateConstInBoundsByteGEP(newPtr, cookieSize);
+}
+
+static void emitGlobalDtorWithTLRegDtor(CodeGenFunction &CGF, const VarDecl &VD,
+ llvm::Constant *Dtor,
+ llvm::Constant *Addr) {
+ // Create a function which calls the destructor.
+ llvm::Constant *DtorStub = CGF.createAtExitStub(VD, Dtor, Addr);
+
+ // extern "C" int __tlregdtor(void (*f)(void));
+ llvm::FunctionType *TLRegDtorTy = llvm::FunctionType::get(
+ CGF.IntTy, DtorStub->getType(), /*IsVarArg=*/false);
+
+ llvm::Constant *TLRegDtor =
+ CGF.CGM.CreateRuntimeFunction(TLRegDtorTy, "__tlregdtor");
+ if (llvm::Function *TLRegDtorFn = dyn_cast<llvm::Function>(TLRegDtor))
+ TLRegDtorFn->setDoesNotThrow();
+
+ CGF.EmitNounwindRuntimeCall(TLRegDtor, DtorStub);
+}
+
+void MicrosoftCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
+ llvm::Constant *Dtor,
+ llvm::Constant *Addr) {
+ if (D.getTLSKind())
+ return emitGlobalDtorWithTLRegDtor(CGF, D, Dtor, Addr);
+
+ // The default behavior is to use atexit.
+ CGF.registerGlobalDtorWithAtExit(D, Dtor, Addr);
+}
+
+void MicrosoftCXXABI::EmitThreadLocalInitFuncs(
+ CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals,
+ ArrayRef<llvm::Function *> CXXThreadLocalInits,
+ ArrayRef<const VarDecl *> CXXThreadLocalInitVars) {
+ // This will create a GV in the .CRT$XDU section. It will point to our
+ // initialization function. The CRT will call all of these function
+ // pointers at start-up time and, eventually, at thread-creation time.
+ auto AddToXDU = [&CGM](llvm::Function *InitFunc) {
+ llvm::GlobalVariable *InitFuncPtr = new llvm::GlobalVariable(
+ CGM.getModule(), InitFunc->getType(), /*IsConstant=*/true,
+ llvm::GlobalVariable::InternalLinkage, InitFunc,
+ Twine(InitFunc->getName(), "$initializer$"));
+ InitFuncPtr->setSection(".CRT$XDU");
+ // This variable has discardable linkage, we have to add it to @llvm.used to
+ // ensure it won't get discarded.
+ CGM.addUsedGlobal(InitFuncPtr);
+ return InitFuncPtr;
+ };
+
+ std::vector<llvm::Function *> NonComdatInits;
+ for (size_t I = 0, E = CXXThreadLocalInitVars.size(); I != E; ++I) {
+ llvm::GlobalVariable *GV = cast<llvm::GlobalVariable>(
+ CGM.GetGlobalValue(CGM.getMangledName(CXXThreadLocalInitVars[I])));
+ llvm::Function *F = CXXThreadLocalInits[I];
+
+ // If the GV is already in a comdat group, then we have to join it.
+ if (llvm::Comdat *C = GV->getComdat())
+ AddToXDU(F)->setComdat(C);
+ else
+ NonComdatInits.push_back(F);
+ }
+
+ if (!NonComdatInits.empty()) {
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
+ llvm::Function *InitFunc = CGM.CreateGlobalInitOrDestructFunction(
+ FTy, "__tls_init", CGM.getTypes().arrangeNullaryFunction(),
+ SourceLocation(), /*TLS=*/true);
+ CodeGenFunction(CGM).GenerateCXXGlobalInitFunc(InitFunc, NonComdatInits);
+
+ AddToXDU(InitFunc);
+ }
+}
+
+LValue MicrosoftCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF,
+ const VarDecl *VD,
+ QualType LValType) {
+ CGF.CGM.ErrorUnsupported(VD, "thread wrappers");
+ return LValue();
+}
+
+static ConstantAddress getInitThreadEpochPtr(CodeGenModule &CGM) {
+ StringRef VarName("_Init_thread_epoch");
+ CharUnits Align = CGM.getIntAlign();
+ if (auto *GV = CGM.getModule().getNamedGlobal(VarName))
+ return ConstantAddress(GV, Align);
+ auto *GV = new llvm::GlobalVariable(
+ CGM.getModule(), CGM.IntTy,
+ /*Constant=*/false, llvm::GlobalVariable::ExternalLinkage,
+ /*Initializer=*/nullptr, VarName,
+ /*InsertBefore=*/nullptr, llvm::GlobalVariable::GeneralDynamicTLSModel);
+ GV->setAlignment(Align.getQuantity());
+ return ConstantAddress(GV, Align);
+}
+
+static llvm::Constant *getInitThreadHeaderFn(CodeGenModule &CGM) {
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
+ CGM.IntTy->getPointerTo(), /*isVarArg=*/false);
+ return CGM.CreateRuntimeFunction(
+ FTy, "_Init_thread_header",
+ llvm::AttributeSet::get(CGM.getLLVMContext(),
+ llvm::AttributeSet::FunctionIndex,
+ llvm::Attribute::NoUnwind));
+}
+
+static llvm::Constant *getInitThreadFooterFn(CodeGenModule &CGM) {
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
+ CGM.IntTy->getPointerTo(), /*isVarArg=*/false);
+ return CGM.CreateRuntimeFunction(
+ FTy, "_Init_thread_footer",
+ llvm::AttributeSet::get(CGM.getLLVMContext(),
+ llvm::AttributeSet::FunctionIndex,
+ llvm::Attribute::NoUnwind));
+}
+
+static llvm::Constant *getInitThreadAbortFn(CodeGenModule &CGM) {
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
+ CGM.IntTy->getPointerTo(), /*isVarArg=*/false);
+ return CGM.CreateRuntimeFunction(
+ FTy, "_Init_thread_abort",
+ llvm::AttributeSet::get(CGM.getLLVMContext(),
+ llvm::AttributeSet::FunctionIndex,
+ llvm::Attribute::NoUnwind));
+}
+
+namespace {
+struct ResetGuardBit final : EHScopeStack::Cleanup {
+ Address Guard;
+ unsigned GuardNum;
+ ResetGuardBit(Address Guard, unsigned GuardNum)
+ : Guard(Guard), GuardNum(GuardNum) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ // Reset the bit in the mask so that the static variable may be
+ // reinitialized.
+ CGBuilderTy &Builder = CGF.Builder;
+ llvm::LoadInst *LI = Builder.CreateLoad(Guard);
+ llvm::ConstantInt *Mask =
+ llvm::ConstantInt::get(CGF.IntTy, ~(1U << GuardNum));
+ Builder.CreateStore(Builder.CreateAnd(LI, Mask), Guard);
+ }
+};
+
+struct CallInitThreadAbort final : EHScopeStack::Cleanup {
+ llvm::Value *Guard;
+ CallInitThreadAbort(Address Guard) : Guard(Guard.getPointer()) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ // Calling _Init_thread_abort will reset the guard's state.
+ CGF.EmitNounwindRuntimeCall(getInitThreadAbortFn(CGF.CGM), Guard);
+ }
+};
+}
+
+void MicrosoftCXXABI::EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
+ llvm::GlobalVariable *GV,
+ bool PerformInit) {
+ // MSVC only uses guards for static locals.
+ if (!D.isStaticLocal()) {
+ assert(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage());
+ // GlobalOpt is allowed to discard the initializer, so use linkonce_odr.
+ llvm::Function *F = CGF.CurFn;
+ F->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
+ F->setComdat(CGM.getModule().getOrInsertComdat(F->getName()));
+ CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
+ return;
+ }
+
+ bool ThreadlocalStatic = D.getTLSKind();
+ bool ThreadsafeStatic = getContext().getLangOpts().ThreadsafeStatics;
+
+ // Thread-safe static variables which aren't thread-specific have a
+ // per-variable guard.
+ bool HasPerVariableGuard = ThreadsafeStatic && !ThreadlocalStatic;
+
+ CGBuilderTy &Builder = CGF.Builder;
+ llvm::IntegerType *GuardTy = CGF.Int32Ty;
+ llvm::ConstantInt *Zero = llvm::ConstantInt::get(GuardTy, 0);
+ CharUnits GuardAlign = CharUnits::fromQuantity(4);
+
+ // Get the guard variable for this function if we have one already.
+ GuardInfo *GI = nullptr;
+ if (ThreadlocalStatic)
+ GI = &ThreadLocalGuardVariableMap[D.getDeclContext()];
+ else if (!ThreadsafeStatic)
+ GI = &GuardVariableMap[D.getDeclContext()];
+
+ llvm::GlobalVariable *GuardVar = GI ? GI->Guard : nullptr;
+ unsigned GuardNum;
+ if (D.isExternallyVisible()) {
+ // Externally visible variables have to be numbered in Sema to properly
+ // handle unreachable VarDecls.
+ GuardNum = getContext().getStaticLocalNumber(&D);
+ assert(GuardNum > 0);
+ GuardNum--;
+ } else if (HasPerVariableGuard) {
+ GuardNum = ThreadSafeGuardNumMap[D.getDeclContext()]++;
+ } else {
+ // Non-externally visible variables are numbered here in CodeGen.
+ GuardNum = GI->BitIndex++;
+ }
+
+ if (!HasPerVariableGuard && GuardNum >= 32) {
+ if (D.isExternallyVisible())
+ ErrorUnsupportedABI(CGF, "more than 32 guarded initializations");
+ GuardNum %= 32;
+ GuardVar = nullptr;
+ }
+
+ if (!GuardVar) {
+ // Mangle the name for the guard.
+ SmallString<256> GuardName;
+ {
+ llvm::raw_svector_ostream Out(GuardName);
+ if (HasPerVariableGuard)
+ getMangleContext().mangleThreadSafeStaticGuardVariable(&D, GuardNum,
+ Out);
+ else
+ getMangleContext().mangleStaticGuardVariable(&D, Out);
+ }
+
+ // Create the guard variable with a zero-initializer. Just absorb linkage,
+ // visibility and dll storage class from the guarded variable.
+ GuardVar =
+ new llvm::GlobalVariable(CGM.getModule(), GuardTy, /*isConstant=*/false,
+ GV->getLinkage(), Zero, GuardName.str());
+ GuardVar->setVisibility(GV->getVisibility());
+ GuardVar->setDLLStorageClass(GV->getDLLStorageClass());
+ GuardVar->setAlignment(GuardAlign.getQuantity());
+ if (GuardVar->isWeakForLinker())
+ GuardVar->setComdat(
+ CGM.getModule().getOrInsertComdat(GuardVar->getName()));
+ if (D.getTLSKind())
+ GuardVar->setThreadLocal(true);
+ if (GI && !HasPerVariableGuard)
+ GI->Guard = GuardVar;
+ }
+
+ ConstantAddress GuardAddr(GuardVar, GuardAlign);
+
+ assert(GuardVar->getLinkage() == GV->getLinkage() &&
+ "static local from the same function had different linkage");
+
+ if (!HasPerVariableGuard) {
+ // Pseudo code for the test:
+ // if (!(GuardVar & MyGuardBit)) {
+ // GuardVar |= MyGuardBit;
+ // ... initialize the object ...;
+ // }
+
+ // Test our bit from the guard variable.
+ llvm::ConstantInt *Bit = llvm::ConstantInt::get(GuardTy, 1U << GuardNum);
+ llvm::LoadInst *LI = Builder.CreateLoad(GuardAddr);
+ llvm::Value *IsInitialized =
+ Builder.CreateICmpNE(Builder.CreateAnd(LI, Bit), Zero);
+ llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
+ llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
+ Builder.CreateCondBr(IsInitialized, EndBlock, InitBlock);
+
+ // Set our bit in the guard variable and emit the initializer and add a global
+ // destructor if appropriate.
+ CGF.EmitBlock(InitBlock);
+ Builder.CreateStore(Builder.CreateOr(LI, Bit), GuardAddr);
+ CGF.EHStack.pushCleanup<ResetGuardBit>(EHCleanup, GuardAddr, GuardNum);
+ CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
+ CGF.PopCleanupBlock();
+ Builder.CreateBr(EndBlock);
+
+ // Continue.
+ CGF.EmitBlock(EndBlock);
+ } else {
+ // Pseudo code for the test:
+ // if (TSS > _Init_thread_epoch) {
+ // _Init_thread_header(&TSS);
+ // if (TSS == -1) {
+ // ... initialize the object ...;
+ // _Init_thread_footer(&TSS);
+ // }
+ // }
+ //
+ // The algorithm is almost identical to what can be found in the appendix
+ // found in N2325.
+
+ // This BasicBLock determines whether or not we have any work to do.
+ llvm::LoadInst *FirstGuardLoad = Builder.CreateLoad(GuardAddr);
+ FirstGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered);
+ llvm::LoadInst *InitThreadEpoch =
+ Builder.CreateLoad(getInitThreadEpochPtr(CGM));
+ llvm::Value *IsUninitialized =
+ Builder.CreateICmpSGT(FirstGuardLoad, InitThreadEpoch);
+ llvm::BasicBlock *AttemptInitBlock = CGF.createBasicBlock("init.attempt");
+ llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
+ Builder.CreateCondBr(IsUninitialized, AttemptInitBlock, EndBlock);
+
+ // This BasicBlock attempts to determine whether or not this thread is
+ // responsible for doing the initialization.
+ CGF.EmitBlock(AttemptInitBlock);
+ CGF.EmitNounwindRuntimeCall(getInitThreadHeaderFn(CGM),
+ GuardAddr.getPointer());
+ llvm::LoadInst *SecondGuardLoad = Builder.CreateLoad(GuardAddr);
+ SecondGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered);
+ llvm::Value *ShouldDoInit =
+ Builder.CreateICmpEQ(SecondGuardLoad, getAllOnesInt());
+ llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
+ Builder.CreateCondBr(ShouldDoInit, InitBlock, EndBlock);
+
+ // Ok, we ended up getting selected as the initializing thread.
+ CGF.EmitBlock(InitBlock);
+ CGF.EHStack.pushCleanup<CallInitThreadAbort>(EHCleanup, GuardAddr);
+ CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
+ CGF.PopCleanupBlock();
+ CGF.EmitNounwindRuntimeCall(getInitThreadFooterFn(CGM),
+ GuardAddr.getPointer());
+ Builder.CreateBr(EndBlock);
+
+ CGF.EmitBlock(EndBlock);
+ }
+}
+
+bool MicrosoftCXXABI::isZeroInitializable(const MemberPointerType *MPT) {
+ // Null-ness for function memptrs only depends on the first field, which is
+ // the function pointer. The rest don't matter, so we can zero initialize.
+ if (MPT->isMemberFunctionPointer())
+ return true;
+
+ // The virtual base adjustment field is always -1 for null, so if we have one
+ // we can't zero initialize. The field offset is sometimes also -1 if 0 is a
+ // valid field offset.
+ const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
+ MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
+ return (!MSInheritanceAttr::hasVBTableOffsetField(Inheritance) &&
+ RD->nullFieldOffsetIsZero());
+}
+
+llvm::Type *
+MicrosoftCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) {
+ const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
+ MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
+ llvm::SmallVector<llvm::Type *, 4> fields;
+ if (MPT->isMemberFunctionPointer())
+ fields.push_back(CGM.VoidPtrTy); // FunctionPointerOrVirtualThunk
+ else
+ fields.push_back(CGM.IntTy); // FieldOffset
+
+ if (MSInheritanceAttr::hasNVOffsetField(MPT->isMemberFunctionPointer(),
+ Inheritance))
+ fields.push_back(CGM.IntTy);
+ if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
+ fields.push_back(CGM.IntTy);
+ if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
+ fields.push_back(CGM.IntTy); // VirtualBaseAdjustmentOffset
+
+ if (fields.size() == 1)
+ return fields[0];
+ return llvm::StructType::get(CGM.getLLVMContext(), fields);
+}
+
+void MicrosoftCXXABI::
+GetNullMemberPointerFields(const MemberPointerType *MPT,
+ llvm::SmallVectorImpl<llvm::Constant *> &fields) {
+ assert(fields.empty());
+ const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
+ MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
+ if (MPT->isMemberFunctionPointer()) {
+ // FunctionPointerOrVirtualThunk
+ fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy));
+ } else {
+ if (RD->nullFieldOffsetIsZero())
+ fields.push_back(getZeroInt()); // FieldOffset
+ else
+ fields.push_back(getAllOnesInt()); // FieldOffset
+ }
+
+ if (MSInheritanceAttr::hasNVOffsetField(MPT->isMemberFunctionPointer(),
+ Inheritance))
+ fields.push_back(getZeroInt());
+ if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
+ fields.push_back(getZeroInt());
+ if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
+ fields.push_back(getAllOnesInt());
+}
+
+llvm::Constant *
+MicrosoftCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) {
+ llvm::SmallVector<llvm::Constant *, 4> fields;
+ GetNullMemberPointerFields(MPT, fields);
+ if (fields.size() == 1)
+ return fields[0];
+ llvm::Constant *Res = llvm::ConstantStruct::getAnon(fields);
+ assert(Res->getType() == ConvertMemberPointerType(MPT));
+ return Res;
+}
+
+llvm::Constant *
+MicrosoftCXXABI::EmitFullMemberPointer(llvm::Constant *FirstField,
+ bool IsMemberFunction,
+ const CXXRecordDecl *RD,
+ CharUnits NonVirtualBaseAdjustment,
+ unsigned VBTableIndex) {
+ MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
+
+ // Single inheritance class member pointer are represented as scalars instead
+ // of aggregates.
+ if (MSInheritanceAttr::hasOnlyOneField(IsMemberFunction, Inheritance))
+ return FirstField;
+
+ llvm::SmallVector<llvm::Constant *, 4> fields;
+ fields.push_back(FirstField);
+
+ if (MSInheritanceAttr::hasNVOffsetField(IsMemberFunction, Inheritance))
+ fields.push_back(llvm::ConstantInt::get(
+ CGM.IntTy, NonVirtualBaseAdjustment.getQuantity()));
+
+ if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance)) {
+ CharUnits Offs = CharUnits::Zero();
+ if (VBTableIndex)
+ Offs = getContext().getASTRecordLayout(RD).getVBPtrOffset();
+ fields.push_back(llvm::ConstantInt::get(CGM.IntTy, Offs.getQuantity()));
+ }
+
+ // The rest of the fields are adjusted by conversions to a more derived class.
+ if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
+ fields.push_back(llvm::ConstantInt::get(CGM.IntTy, VBTableIndex));
+
+ return llvm::ConstantStruct::getAnon(fields);
+}
+
+llvm::Constant *
+MicrosoftCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT,
+ CharUnits offset) {
+ const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
+ if (RD->getMSInheritanceModel() ==
+ MSInheritanceAttr::Keyword_virtual_inheritance)
+ offset -= getContext().getOffsetOfBaseWithVBPtr(RD);
+ llvm::Constant *FirstField =
+ llvm::ConstantInt::get(CGM.IntTy, offset.getQuantity());
+ return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/false, RD,
+ CharUnits::Zero(), /*VBTableIndex=*/0);
+}
+
+llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const APValue &MP,
+ QualType MPType) {
+ const MemberPointerType *DstTy = MPType->castAs<MemberPointerType>();
+ const ValueDecl *MPD = MP.getMemberPointerDecl();
+ if (!MPD)
+ return EmitNullMemberPointer(DstTy);
+
+ ASTContext &Ctx = getContext();
+ ArrayRef<const CXXRecordDecl *> MemberPointerPath = MP.getMemberPointerPath();
+
+ llvm::Constant *C;
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD)) {
+ C = EmitMemberFunctionPointer(MD);
+ } else {
+ CharUnits FieldOffset = Ctx.toCharUnitsFromBits(Ctx.getFieldOffset(MPD));
+ C = EmitMemberDataPointer(DstTy, FieldOffset);
+ }
+
+ if (!MemberPointerPath.empty()) {
+ const CXXRecordDecl *SrcRD = cast<CXXRecordDecl>(MPD->getDeclContext());
+ const Type *SrcRecTy = Ctx.getTypeDeclType(SrcRD).getTypePtr();
+ const MemberPointerType *SrcTy =
+ Ctx.getMemberPointerType(DstTy->getPointeeType(), SrcRecTy)
+ ->castAs<MemberPointerType>();
+
+ bool DerivedMember = MP.isMemberPointerToDerivedMember();
+ SmallVector<const CXXBaseSpecifier *, 4> DerivedToBasePath;
+ const CXXRecordDecl *PrevRD = SrcRD;
+ for (const CXXRecordDecl *PathElem : MemberPointerPath) {
+ const CXXRecordDecl *Base = nullptr;
+ const CXXRecordDecl *Derived = nullptr;
+ if (DerivedMember) {
+ Base = PathElem;
+ Derived = PrevRD;
+ } else {
+ Base = PrevRD;
+ Derived = PathElem;
+ }
+ for (const CXXBaseSpecifier &BS : Derived->bases())
+ if (BS.getType()->getAsCXXRecordDecl()->getCanonicalDecl() ==
+ Base->getCanonicalDecl())
+ DerivedToBasePath.push_back(&BS);
+ PrevRD = PathElem;
+ }
+ assert(DerivedToBasePath.size() == MemberPointerPath.size());
+
+ CastKind CK = DerivedMember ? CK_DerivedToBaseMemberPointer
+ : CK_BaseToDerivedMemberPointer;
+ C = EmitMemberPointerConversion(SrcTy, DstTy, CK, DerivedToBasePath.begin(),
+ DerivedToBasePath.end(), C);
+ }
+ return C;
+}
+
+llvm::Constant *
+MicrosoftCXXABI::EmitMemberFunctionPointer(const CXXMethodDecl *MD) {
+ assert(MD->isInstance() && "Member function must not be static!");
+
+ MD = MD->getCanonicalDecl();
+ CharUnits NonVirtualBaseAdjustment = CharUnits::Zero();
+ const CXXRecordDecl *RD = MD->getParent()->getMostRecentDecl();
+ CodeGenTypes &Types = CGM.getTypes();
+
+ unsigned VBTableIndex = 0;
+ llvm::Constant *FirstField;
+ const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
+ if (!MD->isVirtual()) {
+ llvm::Type *Ty;
+ // Check whether the function has a computable LLVM signature.
+ if (Types.isFuncTypeConvertible(FPT)) {
+ // The function has a computable LLVM signature; use the correct type.
+ Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD));
+ } else {
+ // Use an arbitrary non-function type to tell GetAddrOfFunction that the
+ // function type is incomplete.
+ Ty = CGM.PtrDiffTy;
+ }
+ FirstField = CGM.GetAddrOfFunction(MD, Ty);
+ } else {
+ auto &VTableContext = CGM.getMicrosoftVTableContext();
+ MicrosoftVTableContext::MethodVFTableLocation ML =
+ VTableContext.getMethodVFTableLocation(MD);
+ FirstField = EmitVirtualMemPtrThunk(MD, ML);
+ // Include the vfptr adjustment if the method is in a non-primary vftable.
+ NonVirtualBaseAdjustment += ML.VFPtrOffset;
+ if (ML.VBase)
+ VBTableIndex = VTableContext.getVBTableIndex(RD, ML.VBase) * 4;
+ }
+
+ if (VBTableIndex == 0 &&
+ RD->getMSInheritanceModel() ==
+ MSInheritanceAttr::Keyword_virtual_inheritance)
+ NonVirtualBaseAdjustment -= getContext().getOffsetOfBaseWithVBPtr(RD);
+
+ // The rest of the fields are common with data member pointers.
+ FirstField = llvm::ConstantExpr::getBitCast(FirstField, CGM.VoidPtrTy);
+ return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/true, RD,
+ NonVirtualBaseAdjustment, VBTableIndex);
+}
+
+/// Member pointers are the same if they're either bitwise identical *or* both
+/// null. Null-ness for function members is determined by the first field,
+/// while for data member pointers we must compare all fields.
+llvm::Value *
+MicrosoftCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF,
+ llvm::Value *L,
+ llvm::Value *R,
+ const MemberPointerType *MPT,
+ bool Inequality) {
+ CGBuilderTy &Builder = CGF.Builder;
+
+ // Handle != comparisons by switching the sense of all boolean operations.
+ llvm::ICmpInst::Predicate Eq;
+ llvm::Instruction::BinaryOps And, Or;
+ if (Inequality) {
+ Eq = llvm::ICmpInst::ICMP_NE;
+ And = llvm::Instruction::Or;
+ Or = llvm::Instruction::And;
+ } else {
+ Eq = llvm::ICmpInst::ICMP_EQ;
+ And = llvm::Instruction::And;
+ Or = llvm::Instruction::Or;
+ }
+
+ // If this is a single field member pointer (single inheritance), this is a
+ // single icmp.
+ const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
+ MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
+ if (MSInheritanceAttr::hasOnlyOneField(MPT->isMemberFunctionPointer(),
+ Inheritance))
+ return Builder.CreateICmp(Eq, L, R);
+
+ // Compare the first field.
+ llvm::Value *L0 = Builder.CreateExtractValue(L, 0, "lhs.0");
+ llvm::Value *R0 = Builder.CreateExtractValue(R, 0, "rhs.0");
+ llvm::Value *Cmp0 = Builder.CreateICmp(Eq, L0, R0, "memptr.cmp.first");
+
+ // Compare everything other than the first field.
+ llvm::Value *Res = nullptr;
+ llvm::StructType *LType = cast<llvm::StructType>(L->getType());
+ for (unsigned I = 1, E = LType->getNumElements(); I != E; ++I) {
+ llvm::Value *LF = Builder.CreateExtractValue(L, I);
+ llvm::Value *RF = Builder.CreateExtractValue(R, I);
+ llvm::Value *Cmp = Builder.CreateICmp(Eq, LF, RF, "memptr.cmp.rest");
+ if (Res)
+ Res = Builder.CreateBinOp(And, Res, Cmp);
+ else
+ Res = Cmp;
+ }
+
+ // Check if the first field is 0 if this is a function pointer.
+ if (MPT->isMemberFunctionPointer()) {
+ // (l1 == r1 && ...) || l0 == 0
+ llvm::Value *Zero = llvm::Constant::getNullValue(L0->getType());
+ llvm::Value *IsZero = Builder.CreateICmp(Eq, L0, Zero, "memptr.cmp.iszero");
+ Res = Builder.CreateBinOp(Or, Res, IsZero);
+ }
+
+ // Combine the comparison of the first field, which must always be true for
+ // this comparison to succeeed.
+ return Builder.CreateBinOp(And, Res, Cmp0, "memptr.cmp");
+}
+
+llvm::Value *
+MicrosoftCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
+ llvm::Value *MemPtr,
+ const MemberPointerType *MPT) {
+ CGBuilderTy &Builder = CGF.Builder;
+ llvm::SmallVector<llvm::Constant *, 4> fields;
+ // We only need one field for member functions.
+ if (MPT->isMemberFunctionPointer())
+ fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy));
+ else
+ GetNullMemberPointerFields(MPT, fields);
+ assert(!fields.empty());
+ llvm::Value *FirstField = MemPtr;
+ if (MemPtr->getType()->isStructTy())
+ FirstField = Builder.CreateExtractValue(MemPtr, 0);
+ llvm::Value *Res = Builder.CreateICmpNE(FirstField, fields[0], "memptr.cmp0");
+
+ // For function member pointers, we only need to test the function pointer
+ // field. The other fields if any can be garbage.
+ if (MPT->isMemberFunctionPointer())
+ return Res;
+
+ // Otherwise, emit a series of compares and combine the results.
+ for (int I = 1, E = fields.size(); I < E; ++I) {
+ llvm::Value *Field = Builder.CreateExtractValue(MemPtr, I);
+ llvm::Value *Next = Builder.CreateICmpNE(Field, fields[I], "memptr.cmp");
+ Res = Builder.CreateOr(Res, Next, "memptr.tobool");
+ }
+ return Res;
+}
+
+bool MicrosoftCXXABI::MemberPointerConstantIsNull(const MemberPointerType *MPT,
+ llvm::Constant *Val) {
+ // Function pointers are null if the pointer in the first field is null.
+ if (MPT->isMemberFunctionPointer()) {
+ llvm::Constant *FirstField = Val->getType()->isStructTy() ?
+ Val->getAggregateElement(0U) : Val;
+ return FirstField->isNullValue();
+ }
+
+ // If it's not a function pointer and it's zero initializable, we can easily
+ // check zero.
+ if (isZeroInitializable(MPT) && Val->isNullValue())
+ return true;
+
+ // Otherwise, break down all the fields for comparison. Hopefully these
+ // little Constants are reused, while a big null struct might not be.
+ llvm::SmallVector<llvm::Constant *, 4> Fields;
+ GetNullMemberPointerFields(MPT, Fields);
+ if (Fields.size() == 1) {
+ assert(Val->getType()->isIntegerTy());
+ return Val == Fields[0];
+ }
+
+ unsigned I, E;
+ for (I = 0, E = Fields.size(); I != E; ++I) {
+ if (Val->getAggregateElement(I) != Fields[I])
+ break;
+ }
+ return I == E;
+}
+
+llvm::Value *
+MicrosoftCXXABI::GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
+ Address This,
+ llvm::Value *VBPtrOffset,
+ llvm::Value *VBTableOffset,
+ llvm::Value **VBPtrOut) {
+ CGBuilderTy &Builder = CGF.Builder;
+ // Load the vbtable pointer from the vbptr in the instance.
+ This = Builder.CreateElementBitCast(This, CGM.Int8Ty);
+ llvm::Value *VBPtr =
+ Builder.CreateInBoundsGEP(This.getPointer(), VBPtrOffset, "vbptr");
+ if (VBPtrOut) *VBPtrOut = VBPtr;
+ VBPtr = Builder.CreateBitCast(VBPtr,
+ CGM.Int32Ty->getPointerTo(0)->getPointerTo(This.getAddressSpace()));
+
+ CharUnits VBPtrAlign;
+ if (auto CI = dyn_cast<llvm::ConstantInt>(VBPtrOffset)) {
+ VBPtrAlign = This.getAlignment().alignmentAtOffset(
+ CharUnits::fromQuantity(CI->getSExtValue()));
+ } else {
+ VBPtrAlign = CGF.getPointerAlign();
+ }
+
+ llvm::Value *VBTable = Builder.CreateAlignedLoad(VBPtr, VBPtrAlign, "vbtable");
+
+ // Translate from byte offset to table index. It improves analyzability.
+ llvm::Value *VBTableIndex = Builder.CreateAShr(
+ VBTableOffset, llvm::ConstantInt::get(VBTableOffset->getType(), 2),
+ "vbtindex", /*isExact=*/true);
+
+ // Load an i32 offset from the vb-table.
+ llvm::Value *VBaseOffs = Builder.CreateInBoundsGEP(VBTable, VBTableIndex);
+ VBaseOffs = Builder.CreateBitCast(VBaseOffs, CGM.Int32Ty->getPointerTo(0));
+ return Builder.CreateAlignedLoad(VBaseOffs, CharUnits::fromQuantity(4),
+ "vbase_offs");
+}
+
+// Returns an adjusted base cast to i8*, since we do more address arithmetic on
+// it.
+llvm::Value *MicrosoftCXXABI::AdjustVirtualBase(
+ CodeGenFunction &CGF, const Expr *E, const CXXRecordDecl *RD,
+ Address Base, llvm::Value *VBTableOffset, llvm::Value *VBPtrOffset) {
+ CGBuilderTy &Builder = CGF.Builder;
+ Base = Builder.CreateElementBitCast(Base, CGM.Int8Ty);
+ llvm::BasicBlock *OriginalBB = nullptr;
+ llvm::BasicBlock *SkipAdjustBB = nullptr;
+ llvm::BasicBlock *VBaseAdjustBB = nullptr;
+
+ // In the unspecified inheritance model, there might not be a vbtable at all,
+ // in which case we need to skip the virtual base lookup. If there is a
+ // vbtable, the first entry is a no-op entry that gives back the original
+ // base, so look for a virtual base adjustment offset of zero.
+ if (VBPtrOffset) {
+ OriginalBB = Builder.GetInsertBlock();
+ VBaseAdjustBB = CGF.createBasicBlock("memptr.vadjust");
+ SkipAdjustBB = CGF.createBasicBlock("memptr.skip_vadjust");
+ llvm::Value *IsVirtual =
+ Builder.CreateICmpNE(VBTableOffset, getZeroInt(),
+ "memptr.is_vbase");
+ Builder.CreateCondBr(IsVirtual, VBaseAdjustBB, SkipAdjustBB);
+ CGF.EmitBlock(VBaseAdjustBB);
+ }
+
+ // If we weren't given a dynamic vbptr offset, RD should be complete and we'll
+ // know the vbptr offset.
+ if (!VBPtrOffset) {
+ CharUnits offs = CharUnits::Zero();
+ if (!RD->hasDefinition()) {
+ DiagnosticsEngine &Diags = CGF.CGM.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(
+ DiagnosticsEngine::Error,
+ "member pointer representation requires a "
+ "complete class type for %0 to perform this expression");
+ Diags.Report(E->getExprLoc(), DiagID) << RD << E->getSourceRange();
+ } else if (RD->getNumVBases())
+ offs = getContext().getASTRecordLayout(RD).getVBPtrOffset();
+ VBPtrOffset = llvm::ConstantInt::get(CGM.IntTy, offs.getQuantity());
+ }
+ llvm::Value *VBPtr = nullptr;
+ llvm::Value *VBaseOffs =
+ GetVBaseOffsetFromVBPtr(CGF, Base, VBPtrOffset, VBTableOffset, &VBPtr);
+ llvm::Value *AdjustedBase = Builder.CreateInBoundsGEP(VBPtr, VBaseOffs);
+
+ // Merge control flow with the case where we didn't have to adjust.
+ if (VBaseAdjustBB) {
+ Builder.CreateBr(SkipAdjustBB);
+ CGF.EmitBlock(SkipAdjustBB);
+ llvm::PHINode *Phi = Builder.CreatePHI(CGM.Int8PtrTy, 2, "memptr.base");
+ Phi->addIncoming(Base.getPointer(), OriginalBB);
+ Phi->addIncoming(AdjustedBase, VBaseAdjustBB);
+ return Phi;
+ }
+ return AdjustedBase;
+}
+
+llvm::Value *MicrosoftCXXABI::EmitMemberDataPointerAddress(
+ CodeGenFunction &CGF, const Expr *E, Address Base, llvm::Value *MemPtr,
+ const MemberPointerType *MPT) {
+ assert(MPT->isMemberDataPointer());
+ unsigned AS = Base.getAddressSpace();
+ llvm::Type *PType =
+ CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS);
+ CGBuilderTy &Builder = CGF.Builder;
+ const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
+ MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
+
+ // Extract the fields we need, regardless of model. We'll apply them if we
+ // have them.
+ llvm::Value *FieldOffset = MemPtr;
+ llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
+ llvm::Value *VBPtrOffset = nullptr;
+ if (MemPtr->getType()->isStructTy()) {
+ // We need to extract values.
+ unsigned I = 0;
+ FieldOffset = Builder.CreateExtractValue(MemPtr, I++);
+ if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
+ VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++);
+ if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
+ VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++);
+ }
+
+ llvm::Value *Addr;
+ if (VirtualBaseAdjustmentOffset) {
+ Addr = AdjustVirtualBase(CGF, E, RD, Base, VirtualBaseAdjustmentOffset,
+ VBPtrOffset);
+ } else {
+ Addr = Base.getPointer();
+ }
+
+ // Cast to char*.
+ Addr = Builder.CreateBitCast(Addr, CGF.Int8Ty->getPointerTo(AS));
+
+ // Apply the offset, which we assume is non-null.
+ Addr = Builder.CreateInBoundsGEP(Addr, FieldOffset, "memptr.offset");
+
+ // Cast the address to the appropriate pointer type, adopting the address
+ // space of the base pointer.
+ return Builder.CreateBitCast(Addr, PType);
+}
+
+llvm::Value *
+MicrosoftCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF,
+ const CastExpr *E,
+ llvm::Value *Src) {
+ assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
+ E->getCastKind() == CK_BaseToDerivedMemberPointer ||
+ E->getCastKind() == CK_ReinterpretMemberPointer);
+
+ // Use constant emission if we can.
+ if (isa<llvm::Constant>(Src))
+ return EmitMemberPointerConversion(E, cast<llvm::Constant>(Src));
+
+ // We may be adding or dropping fields from the member pointer, so we need
+ // both types and the inheritance models of both records.
+ const MemberPointerType *SrcTy =
+ E->getSubExpr()->getType()->castAs<MemberPointerType>();
+ const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>();
+ bool IsFunc = SrcTy->isMemberFunctionPointer();
+
+ // If the classes use the same null representation, reinterpret_cast is a nop.
+ bool IsReinterpret = E->getCastKind() == CK_ReinterpretMemberPointer;
+ if (IsReinterpret && IsFunc)
+ return Src;
+
+ CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl();
+ CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl();
+ if (IsReinterpret &&
+ SrcRD->nullFieldOffsetIsZero() == DstRD->nullFieldOffsetIsZero())
+ return Src;
+
+ CGBuilderTy &Builder = CGF.Builder;
+
+ // Branch past the conversion if Src is null.
+ llvm::Value *IsNotNull = EmitMemberPointerIsNotNull(CGF, Src, SrcTy);
+ llvm::Constant *DstNull = EmitNullMemberPointer(DstTy);
+
+ // C++ 5.2.10p9: The null member pointer value is converted to the null member
+ // pointer value of the destination type.
+ if (IsReinterpret) {
+ // For reinterpret casts, sema ensures that src and dst are both functions
+ // or data and have the same size, which means the LLVM types should match.
+ assert(Src->getType() == DstNull->getType());
+ return Builder.CreateSelect(IsNotNull, Src, DstNull);
+ }
+
+ llvm::BasicBlock *OriginalBB = Builder.GetInsertBlock();
+ llvm::BasicBlock *ConvertBB = CGF.createBasicBlock("memptr.convert");
+ llvm::BasicBlock *ContinueBB = CGF.createBasicBlock("memptr.converted");
+ Builder.CreateCondBr(IsNotNull, ConvertBB, ContinueBB);
+ CGF.EmitBlock(ConvertBB);
+
+ llvm::Value *Dst = EmitNonNullMemberPointerConversion(
+ SrcTy, DstTy, E->getCastKind(), E->path_begin(), E->path_end(), Src,
+ Builder);
+
+ Builder.CreateBr(ContinueBB);
+
+ // In the continuation, choose between DstNull and Dst.
+ CGF.EmitBlock(ContinueBB);
+ llvm::PHINode *Phi = Builder.CreatePHI(DstNull->getType(), 2, "memptr.converted");
+ Phi->addIncoming(DstNull, OriginalBB);
+ Phi->addIncoming(Dst, ConvertBB);
+ return Phi;
+}
+
+llvm::Value *MicrosoftCXXABI::EmitNonNullMemberPointerConversion(
+ const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK,
+ CastExpr::path_const_iterator PathBegin,
+ CastExpr::path_const_iterator PathEnd, llvm::Value *Src,
+ CGBuilderTy &Builder) {
+ const CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl();
+ const CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl();
+ MSInheritanceAttr::Spelling SrcInheritance = SrcRD->getMSInheritanceModel();
+ MSInheritanceAttr::Spelling DstInheritance = DstRD->getMSInheritanceModel();
+ bool IsFunc = SrcTy->isMemberFunctionPointer();
+ bool IsConstant = isa<llvm::Constant>(Src);
+
+ // Decompose src.
+ llvm::Value *FirstField = Src;
+ llvm::Value *NonVirtualBaseAdjustment = getZeroInt();
+ llvm::Value *VirtualBaseAdjustmentOffset = getZeroInt();
+ llvm::Value *VBPtrOffset = getZeroInt();
+ if (!MSInheritanceAttr::hasOnlyOneField(IsFunc, SrcInheritance)) {
+ // We need to extract values.
+ unsigned I = 0;
+ FirstField = Builder.CreateExtractValue(Src, I++);
+ if (MSInheritanceAttr::hasNVOffsetField(IsFunc, SrcInheritance))
+ NonVirtualBaseAdjustment = Builder.CreateExtractValue(Src, I++);
+ if (MSInheritanceAttr::hasVBPtrOffsetField(SrcInheritance))
+ VBPtrOffset = Builder.CreateExtractValue(Src, I++);
+ if (MSInheritanceAttr::hasVBTableOffsetField(SrcInheritance))
+ VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Src, I++);
+ }
+
+ bool IsDerivedToBase = (CK == CK_DerivedToBaseMemberPointer);
+ const MemberPointerType *DerivedTy = IsDerivedToBase ? SrcTy : DstTy;
+ const CXXRecordDecl *DerivedClass = DerivedTy->getMostRecentCXXRecordDecl();
+
+ // For data pointers, we adjust the field offset directly. For functions, we
+ // have a separate field.
+ llvm::Value *&NVAdjustField = IsFunc ? NonVirtualBaseAdjustment : FirstField;
+
+ // The virtual inheritance model has a quirk: the virtual base table is always
+ // referenced when dereferencing a member pointer even if the member pointer
+ // is non-virtual. This is accounted for by adjusting the non-virtual offset
+ // to point backwards to the top of the MDC from the first VBase. Undo this
+ // adjustment to normalize the member pointer.
+ llvm::Value *SrcVBIndexEqZero =
+ Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt());
+ if (SrcInheritance == MSInheritanceAttr::Keyword_virtual_inheritance) {
+ if (int64_t SrcOffsetToFirstVBase =
+ getContext().getOffsetOfBaseWithVBPtr(SrcRD).getQuantity()) {
+ llvm::Value *UndoSrcAdjustment = Builder.CreateSelect(
+ SrcVBIndexEqZero,
+ llvm::ConstantInt::get(CGM.IntTy, SrcOffsetToFirstVBase),
+ getZeroInt());
+ NVAdjustField = Builder.CreateNSWAdd(NVAdjustField, UndoSrcAdjustment);
+ }
+ }
+
+ // A non-zero vbindex implies that we are dealing with a source member in a
+ // floating virtual base in addition to some non-virtual offset. If the
+ // vbindex is zero, we are dealing with a source that exists in a non-virtual,
+ // fixed, base. The difference between these two cases is that the vbindex +
+ // nvoffset *always* point to the member regardless of what context they are
+ // evaluated in so long as the vbindex is adjusted. A member inside a fixed
+ // base requires explicit nv adjustment.
+ llvm::Constant *BaseClassOffset = llvm::ConstantInt::get(
+ CGM.IntTy,
+ CGM.computeNonVirtualBaseClassOffset(DerivedClass, PathBegin, PathEnd)
+ .getQuantity());
+
+ llvm::Value *NVDisp;
+ if (IsDerivedToBase)
+ NVDisp = Builder.CreateNSWSub(NVAdjustField, BaseClassOffset, "adj");
+ else
+ NVDisp = Builder.CreateNSWAdd(NVAdjustField, BaseClassOffset, "adj");
+
+ NVAdjustField = Builder.CreateSelect(SrcVBIndexEqZero, NVDisp, getZeroInt());
+
+ // Update the vbindex to an appropriate value in the destination because
+ // SrcRD's vbtable might not be a strict prefix of the one in DstRD.
+ llvm::Value *DstVBIndexEqZero = SrcVBIndexEqZero;
+ if (MSInheritanceAttr::hasVBTableOffsetField(DstInheritance) &&
+ MSInheritanceAttr::hasVBTableOffsetField(SrcInheritance)) {
+ if (llvm::GlobalVariable *VDispMap =
+ getAddrOfVirtualDisplacementMap(SrcRD, DstRD)) {
+ llvm::Value *VBIndex = Builder.CreateExactUDiv(
+ VirtualBaseAdjustmentOffset, llvm::ConstantInt::get(CGM.IntTy, 4));
+ if (IsConstant) {
+ llvm::Constant *Mapping = VDispMap->getInitializer();
+ VirtualBaseAdjustmentOffset =
+ Mapping->getAggregateElement(cast<llvm::Constant>(VBIndex));
+ } else {
+ llvm::Value *Idxs[] = {getZeroInt(), VBIndex};
+ VirtualBaseAdjustmentOffset =
+ Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(VDispMap, Idxs),
+ CharUnits::fromQuantity(4));
+ }
+
+ DstVBIndexEqZero =
+ Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt());
+ }
+ }
+
+ // Set the VBPtrOffset to zero if the vbindex is zero. Otherwise, initialize
+ // it to the offset of the vbptr.
+ if (MSInheritanceAttr::hasVBPtrOffsetField(DstInheritance)) {
+ llvm::Value *DstVBPtrOffset = llvm::ConstantInt::get(
+ CGM.IntTy,
+ getContext().getASTRecordLayout(DstRD).getVBPtrOffset().getQuantity());
+ VBPtrOffset =
+ Builder.CreateSelect(DstVBIndexEqZero, getZeroInt(), DstVBPtrOffset);
+ }
+
+ // Likewise, apply a similar adjustment so that dereferencing the member
+ // pointer correctly accounts for the distance between the start of the first
+ // virtual base and the top of the MDC.
+ if (DstInheritance == MSInheritanceAttr::Keyword_virtual_inheritance) {
+ if (int64_t DstOffsetToFirstVBase =
+ getContext().getOffsetOfBaseWithVBPtr(DstRD).getQuantity()) {
+ llvm::Value *DoDstAdjustment = Builder.CreateSelect(
+ DstVBIndexEqZero,
+ llvm::ConstantInt::get(CGM.IntTy, DstOffsetToFirstVBase),
+ getZeroInt());
+ NVAdjustField = Builder.CreateNSWSub(NVAdjustField, DoDstAdjustment);
+ }
+ }
+
+ // Recompose dst from the null struct and the adjusted fields from src.
+ llvm::Value *Dst;
+ if (MSInheritanceAttr::hasOnlyOneField(IsFunc, DstInheritance)) {
+ Dst = FirstField;
+ } else {
+ Dst = llvm::UndefValue::get(ConvertMemberPointerType(DstTy));
+ unsigned Idx = 0;
+ Dst = Builder.CreateInsertValue(Dst, FirstField, Idx++);
+ if (MSInheritanceAttr::hasNVOffsetField(IsFunc, DstInheritance))
+ Dst = Builder.CreateInsertValue(Dst, NonVirtualBaseAdjustment, Idx++);
+ if (MSInheritanceAttr::hasVBPtrOffsetField(DstInheritance))
+ Dst = Builder.CreateInsertValue(Dst, VBPtrOffset, Idx++);
+ if (MSInheritanceAttr::hasVBTableOffsetField(DstInheritance))
+ Dst = Builder.CreateInsertValue(Dst, VirtualBaseAdjustmentOffset, Idx++);
+ }
+ return Dst;
+}
+
+llvm::Constant *
+MicrosoftCXXABI::EmitMemberPointerConversion(const CastExpr *E,
+ llvm::Constant *Src) {
+ const MemberPointerType *SrcTy =
+ E->getSubExpr()->getType()->castAs<MemberPointerType>();
+ const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>();
+
+ CastKind CK = E->getCastKind();
+
+ return EmitMemberPointerConversion(SrcTy, DstTy, CK, E->path_begin(),
+ E->path_end(), Src);
+}
+
+llvm::Constant *MicrosoftCXXABI::EmitMemberPointerConversion(
+ const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK,
+ CastExpr::path_const_iterator PathBegin,
+ CastExpr::path_const_iterator PathEnd, llvm::Constant *Src) {
+ assert(CK == CK_DerivedToBaseMemberPointer ||
+ CK == CK_BaseToDerivedMemberPointer ||
+ CK == CK_ReinterpretMemberPointer);
+ // If src is null, emit a new null for dst. We can't return src because dst
+ // might have a new representation.
+ if (MemberPointerConstantIsNull(SrcTy, Src))
+ return EmitNullMemberPointer(DstTy);
+
+ // We don't need to do anything for reinterpret_casts of non-null member
+ // pointers. We should only get here when the two type representations have
+ // the same size.
+ if (CK == CK_ReinterpretMemberPointer)
+ return Src;
+
+ CGBuilderTy Builder(CGM, CGM.getLLVMContext());
+ auto *Dst = cast<llvm::Constant>(EmitNonNullMemberPointerConversion(
+ SrcTy, DstTy, CK, PathBegin, PathEnd, Src, Builder));
+
+ return Dst;
+}
+
+llvm::Value *MicrosoftCXXABI::EmitLoadOfMemberFunctionPointer(
+ CodeGenFunction &CGF, const Expr *E, Address This,
+ llvm::Value *&ThisPtrForCall, llvm::Value *MemPtr,
+ const MemberPointerType *MPT) {
+ assert(MPT->isMemberFunctionPointer());
+ const FunctionProtoType *FPT =
+ MPT->getPointeeType()->castAs<FunctionProtoType>();
+ const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
+ llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(
+ CGM.getTypes().arrangeCXXMethodType(RD, FPT, /*FD=*/nullptr));
+ CGBuilderTy &Builder = CGF.Builder;
+
+ MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
+
+ // Extract the fields we need, regardless of model. We'll apply them if we
+ // have them.
+ llvm::Value *FunctionPointer = MemPtr;
+ llvm::Value *NonVirtualBaseAdjustment = nullptr;
+ llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
+ llvm::Value *VBPtrOffset = nullptr;
+ if (MemPtr->getType()->isStructTy()) {
+ // We need to extract values.
+ unsigned I = 0;
+ FunctionPointer = Builder.CreateExtractValue(MemPtr, I++);
+ if (MSInheritanceAttr::hasNVOffsetField(MPT, Inheritance))
+ NonVirtualBaseAdjustment = Builder.CreateExtractValue(MemPtr, I++);
+ if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
+ VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++);
+ if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
+ VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++);
+ }
+
+ if (VirtualBaseAdjustmentOffset) {
+ ThisPtrForCall = AdjustVirtualBase(CGF, E, RD, This,
+ VirtualBaseAdjustmentOffset, VBPtrOffset);
+ } else {
+ ThisPtrForCall = This.getPointer();
+ }
+
+ if (NonVirtualBaseAdjustment) {
+ // Apply the adjustment and cast back to the original struct type.
+ llvm::Value *Ptr = Builder.CreateBitCast(ThisPtrForCall, CGF.Int8PtrTy);
+ Ptr = Builder.CreateInBoundsGEP(Ptr, NonVirtualBaseAdjustment);
+ ThisPtrForCall = Builder.CreateBitCast(Ptr, ThisPtrForCall->getType(),
+ "this.adjusted");
+ }
+
+ return Builder.CreateBitCast(FunctionPointer, FTy->getPointerTo());
+}
+
+CGCXXABI *clang::CodeGen::CreateMicrosoftCXXABI(CodeGenModule &CGM) {
+ return new MicrosoftCXXABI(CGM);
+}
+
+// MS RTTI Overview:
+// The run time type information emitted by cl.exe contains 5 distinct types of
+// structures. Many of them reference each other.
+//
+// TypeInfo: Static classes that are returned by typeid.
+//
+// CompleteObjectLocator: Referenced by vftables. They contain information
+// required for dynamic casting, including OffsetFromTop. They also contain
+// a reference to the TypeInfo for the type and a reference to the
+// CompleteHierarchyDescriptor for the type.
+//
+// ClassHieararchyDescriptor: Contains information about a class hierarchy.
+// Used during dynamic_cast to walk a class hierarchy. References a base
+// class array and the size of said array.
+//
+// BaseClassArray: Contains a list of classes in a hierarchy. BaseClassArray is
+// somewhat of a misnomer because the most derived class is also in the list
+// as well as multiple copies of virtual bases (if they occur multiple times
+// in the hiearchy.) The BaseClassArray contains one BaseClassDescriptor for
+// every path in the hierarchy, in pre-order depth first order. Note, we do
+// not declare a specific llvm type for BaseClassArray, it's merely an array
+// of BaseClassDescriptor pointers.
+//
+// BaseClassDescriptor: Contains information about a class in a class hierarchy.
+// BaseClassDescriptor is also somewhat of a misnomer for the same reason that
+// BaseClassArray is. It contains information about a class within a
+// hierarchy such as: is this base is ambiguous and what is its offset in the
+// vbtable. The names of the BaseClassDescriptors have all of their fields
+// mangled into them so they can be aggressively deduplicated by the linker.
+
+static llvm::GlobalVariable *getTypeInfoVTable(CodeGenModule &CGM) {
+ StringRef MangledName("\01??_7type_info@@6B@");
+ if (auto VTable = CGM.getModule().getNamedGlobal(MangledName))
+ return VTable;
+ return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy,
+ /*Constant=*/true,
+ llvm::GlobalVariable::ExternalLinkage,
+ /*Initializer=*/nullptr, MangledName);
+}
+
+namespace {
+
+/// \brief A Helper struct that stores information about a class in a class
+/// hierarchy. The information stored in these structs struct is used during
+/// the generation of ClassHierarchyDescriptors and BaseClassDescriptors.
+// During RTTI creation, MSRTTIClasses are stored in a contiguous array with
+// implicit depth first pre-order tree connectivity. getFirstChild and
+// getNextSibling allow us to walk the tree efficiently.
+struct MSRTTIClass {
+ enum {
+ IsPrivateOnPath = 1 | 8,
+ IsAmbiguous = 2,
+ IsPrivate = 4,
+ IsVirtual = 16,
+ HasHierarchyDescriptor = 64
+ };
+ MSRTTIClass(const CXXRecordDecl *RD) : RD(RD) {}
+ uint32_t initialize(const MSRTTIClass *Parent,
+ const CXXBaseSpecifier *Specifier);
+
+ MSRTTIClass *getFirstChild() { return this + 1; }
+ static MSRTTIClass *getNextChild(MSRTTIClass *Child) {
+ return Child + 1 + Child->NumBases;
+ }
+
+ const CXXRecordDecl *RD, *VirtualRoot;
+ uint32_t Flags, NumBases, OffsetInVBase;
+};
+
+/// \brief Recursively initialize the base class array.
+uint32_t MSRTTIClass::initialize(const MSRTTIClass *Parent,
+ const CXXBaseSpecifier *Specifier) {
+ Flags = HasHierarchyDescriptor;
+ if (!Parent) {
+ VirtualRoot = nullptr;
+ OffsetInVBase = 0;
+ } else {
+ if (Specifier->getAccessSpecifier() != AS_public)
+ Flags |= IsPrivate | IsPrivateOnPath;
+ if (Specifier->isVirtual()) {
+ Flags |= IsVirtual;
+ VirtualRoot = RD;
+ OffsetInVBase = 0;
+ } else {
+ if (Parent->Flags & IsPrivateOnPath)
+ Flags |= IsPrivateOnPath;
+ VirtualRoot = Parent->VirtualRoot;
+ OffsetInVBase = Parent->OffsetInVBase + RD->getASTContext()
+ .getASTRecordLayout(Parent->RD).getBaseClassOffset(RD).getQuantity();
+ }
+ }
+ NumBases = 0;
+ MSRTTIClass *Child = getFirstChild();
+ for (const CXXBaseSpecifier &Base : RD->bases()) {
+ NumBases += Child->initialize(this, &Base) + 1;
+ Child = getNextChild(Child);
+ }
+ return NumBases;
+}
+
+static llvm::GlobalValue::LinkageTypes getLinkageForRTTI(QualType Ty) {
+ switch (Ty->getLinkage()) {
+ case NoLinkage:
+ case InternalLinkage:
+ case UniqueExternalLinkage:
+ return llvm::GlobalValue::InternalLinkage;
+
+ case VisibleNoLinkage:
+ case ExternalLinkage:
+ return llvm::GlobalValue::LinkOnceODRLinkage;
+ }
+ llvm_unreachable("Invalid linkage!");
+}
+
+/// \brief An ephemeral helper class for building MS RTTI types. It caches some
+/// calls to the module and information about the most derived class in a
+/// hierarchy.
+struct MSRTTIBuilder {
+ enum {
+ HasBranchingHierarchy = 1,
+ HasVirtualBranchingHierarchy = 2,
+ HasAmbiguousBases = 4
+ };
+
+ MSRTTIBuilder(MicrosoftCXXABI &ABI, const CXXRecordDecl *RD)
+ : CGM(ABI.CGM), Context(CGM.getContext()),
+ VMContext(CGM.getLLVMContext()), Module(CGM.getModule()), RD(RD),
+ Linkage(getLinkageForRTTI(CGM.getContext().getTagDeclType(RD))),
+ ABI(ABI) {}
+
+ llvm::GlobalVariable *getBaseClassDescriptor(const MSRTTIClass &Classes);
+ llvm::GlobalVariable *
+ getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes);
+ llvm::GlobalVariable *getClassHierarchyDescriptor();
+ llvm::GlobalVariable *getCompleteObjectLocator(const VPtrInfo *Info);
+
+ CodeGenModule &CGM;
+ ASTContext &Context;
+ llvm::LLVMContext &VMContext;
+ llvm::Module &Module;
+ const CXXRecordDecl *RD;
+ llvm::GlobalVariable::LinkageTypes Linkage;
+ MicrosoftCXXABI &ABI;
+};
+
+} // namespace
+
+/// \brief Recursively serializes a class hierarchy in pre-order depth first
+/// order.
+static void serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> &Classes,
+ const CXXRecordDecl *RD) {
+ Classes.push_back(MSRTTIClass(RD));
+ for (const CXXBaseSpecifier &Base : RD->bases())
+ serializeClassHierarchy(Classes, Base.getType()->getAsCXXRecordDecl());
+}
+
+/// \brief Find ambiguity among base classes.
+static void
+detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> &Classes) {
+ llvm::SmallPtrSet<const CXXRecordDecl *, 8> VirtualBases;
+ llvm::SmallPtrSet<const CXXRecordDecl *, 8> UniqueBases;
+ llvm::SmallPtrSet<const CXXRecordDecl *, 8> AmbiguousBases;
+ for (MSRTTIClass *Class = &Classes.front(); Class <= &Classes.back();) {
+ if ((Class->Flags & MSRTTIClass::IsVirtual) &&
+ !VirtualBases.insert(Class->RD).second) {
+ Class = MSRTTIClass::getNextChild(Class);
+ continue;
+ }
+ if (!UniqueBases.insert(Class->RD).second)
+ AmbiguousBases.insert(Class->RD);
+ Class++;
+ }
+ if (AmbiguousBases.empty())
+ return;
+ for (MSRTTIClass &Class : Classes)
+ if (AmbiguousBases.count(Class.RD))
+ Class.Flags |= MSRTTIClass::IsAmbiguous;
+}
+
+llvm::GlobalVariable *MSRTTIBuilder::getClassHierarchyDescriptor() {
+ SmallString<256> MangledName;
+ {
+ llvm::raw_svector_ostream Out(MangledName);
+ ABI.getMangleContext().mangleCXXRTTIClassHierarchyDescriptor(RD, Out);
+ }
+
+ // Check to see if we've already declared this ClassHierarchyDescriptor.
+ if (auto CHD = Module.getNamedGlobal(MangledName))
+ return CHD;
+
+ // Serialize the class hierarchy and initialize the CHD Fields.
+ SmallVector<MSRTTIClass, 8> Classes;
+ serializeClassHierarchy(Classes, RD);
+ Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr);
+ detectAmbiguousBases(Classes);
+ int Flags = 0;
+ for (auto Class : Classes) {
+ if (Class.RD->getNumBases() > 1)
+ Flags |= HasBranchingHierarchy;
+ // Note: cl.exe does not calculate "HasAmbiguousBases" correctly. We
+ // believe the field isn't actually used.
+ if (Class.Flags & MSRTTIClass::IsAmbiguous)
+ Flags |= HasAmbiguousBases;
+ }
+ if ((Flags & HasBranchingHierarchy) && RD->getNumVBases() != 0)
+ Flags |= HasVirtualBranchingHierarchy;
+ // These gep indices are used to get the address of the first element of the
+ // base class array.
+ llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0),
+ llvm::ConstantInt::get(CGM.IntTy, 0)};
+
+ // Forward-declare the class hierarchy descriptor
+ auto Type = ABI.getClassHierarchyDescriptorType();
+ auto CHD = new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage,
+ /*Initializer=*/nullptr,
+ MangledName);
+ if (CHD->isWeakForLinker())
+ CHD->setComdat(CGM.getModule().getOrInsertComdat(CHD->getName()));
+
+ auto *Bases = getBaseClassArray(Classes);
+
+ // Initialize the base class ClassHierarchyDescriptor.
+ llvm::Constant *Fields[] = {
+ llvm::ConstantInt::get(CGM.IntTy, 0), // Unknown
+ llvm::ConstantInt::get(CGM.IntTy, Flags),
+ llvm::ConstantInt::get(CGM.IntTy, Classes.size()),
+ ABI.getImageRelativeConstant(llvm::ConstantExpr::getInBoundsGetElementPtr(
+ Bases->getValueType(), Bases,
+ llvm::ArrayRef<llvm::Value *>(GEPIndices))),
+ };
+ CHD->setInitializer(llvm::ConstantStruct::get(Type, Fields));
+ return CHD;
+}
+
+llvm::GlobalVariable *
+MSRTTIBuilder::getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes) {
+ SmallString<256> MangledName;
+ {
+ llvm::raw_svector_ostream Out(MangledName);
+ ABI.getMangleContext().mangleCXXRTTIBaseClassArray(RD, Out);
+ }
+
+ // Forward-declare the base class array.
+ // cl.exe pads the base class array with 1 (in 32 bit mode) or 4 (in 64 bit
+ // mode) bytes of padding. We provide a pointer sized amount of padding by
+ // adding +1 to Classes.size(). The sections have pointer alignment and are
+ // marked pick-any so it shouldn't matter.
+ llvm::Type *PtrType = ABI.getImageRelativeType(
+ ABI.getBaseClassDescriptorType()->getPointerTo());
+ auto *ArrType = llvm::ArrayType::get(PtrType, Classes.size() + 1);
+ auto *BCA =
+ new llvm::GlobalVariable(Module, ArrType,
+ /*Constant=*/true, Linkage,
+ /*Initializer=*/nullptr, MangledName);
+ if (BCA->isWeakForLinker())
+ BCA->setComdat(CGM.getModule().getOrInsertComdat(BCA->getName()));
+
+ // Initialize the BaseClassArray.
+ SmallVector<llvm::Constant *, 8> BaseClassArrayData;
+ for (MSRTTIClass &Class : Classes)
+ BaseClassArrayData.push_back(
+ ABI.getImageRelativeConstant(getBaseClassDescriptor(Class)));
+ BaseClassArrayData.push_back(llvm::Constant::getNullValue(PtrType));
+ BCA->setInitializer(llvm::ConstantArray::get(ArrType, BaseClassArrayData));
+ return BCA;
+}
+
+llvm::GlobalVariable *
+MSRTTIBuilder::getBaseClassDescriptor(const MSRTTIClass &Class) {
+ // Compute the fields for the BaseClassDescriptor. They are computed up front
+ // because they are mangled into the name of the object.
+ uint32_t OffsetInVBTable = 0;
+ int32_t VBPtrOffset = -1;
+ if (Class.VirtualRoot) {
+ auto &VTableContext = CGM.getMicrosoftVTableContext();
+ OffsetInVBTable = VTableContext.getVBTableIndex(RD, Class.VirtualRoot) * 4;
+ VBPtrOffset = Context.getASTRecordLayout(RD).getVBPtrOffset().getQuantity();
+ }
+
+ SmallString<256> MangledName;
+ {
+ llvm::raw_svector_ostream Out(MangledName);
+ ABI.getMangleContext().mangleCXXRTTIBaseClassDescriptor(
+ Class.RD, Class.OffsetInVBase, VBPtrOffset, OffsetInVBTable,
+ Class.Flags, Out);
+ }
+
+ // Check to see if we've already declared this object.
+ if (auto BCD = Module.getNamedGlobal(MangledName))
+ return BCD;
+
+ // Forward-declare the base class descriptor.
+ auto Type = ABI.getBaseClassDescriptorType();
+ auto BCD =
+ new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage,
+ /*Initializer=*/nullptr, MangledName);
+ if (BCD->isWeakForLinker())
+ BCD->setComdat(CGM.getModule().getOrInsertComdat(BCD->getName()));
+
+ // Initialize the BaseClassDescriptor.
+ llvm::Constant *Fields[] = {
+ ABI.getImageRelativeConstant(
+ ABI.getAddrOfRTTIDescriptor(Context.getTypeDeclType(Class.RD))),
+ llvm::ConstantInt::get(CGM.IntTy, Class.NumBases),
+ llvm::ConstantInt::get(CGM.IntTy, Class.OffsetInVBase),
+ llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset),
+ llvm::ConstantInt::get(CGM.IntTy, OffsetInVBTable),
+ llvm::ConstantInt::get(CGM.IntTy, Class.Flags),
+ ABI.getImageRelativeConstant(
+ MSRTTIBuilder(ABI, Class.RD).getClassHierarchyDescriptor()),
+ };
+ BCD->setInitializer(llvm::ConstantStruct::get(Type, Fields));
+ return BCD;
+}
+
+llvm::GlobalVariable *
+MSRTTIBuilder::getCompleteObjectLocator(const VPtrInfo *Info) {
+ SmallString<256> MangledName;
+ {
+ llvm::raw_svector_ostream Out(MangledName);
+ ABI.getMangleContext().mangleCXXRTTICompleteObjectLocator(RD, Info->MangledPath, Out);
+ }
+
+ // Check to see if we've already computed this complete object locator.
+ if (auto COL = Module.getNamedGlobal(MangledName))
+ return COL;
+
+ // Compute the fields of the complete object locator.
+ int OffsetToTop = Info->FullOffsetInMDC.getQuantity();
+ int VFPtrOffset = 0;
+ // The offset includes the vtordisp if one exists.
+ if (const CXXRecordDecl *VBase = Info->getVBaseWithVPtr())
+ if (Context.getASTRecordLayout(RD)
+ .getVBaseOffsetsMap()
+ .find(VBase)
+ ->second.hasVtorDisp())
+ VFPtrOffset = Info->NonVirtualOffset.getQuantity() + 4;
+
+ // Forward-declare the complete object locator.
+ llvm::StructType *Type = ABI.getCompleteObjectLocatorType();
+ auto COL = new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage,
+ /*Initializer=*/nullptr, MangledName);
+
+ // Initialize the CompleteObjectLocator.
+ llvm::Constant *Fields[] = {
+ llvm::ConstantInt::get(CGM.IntTy, ABI.isImageRelative()),
+ llvm::ConstantInt::get(CGM.IntTy, OffsetToTop),
+ llvm::ConstantInt::get(CGM.IntTy, VFPtrOffset),
+ ABI.getImageRelativeConstant(
+ CGM.GetAddrOfRTTIDescriptor(Context.getTypeDeclType(RD))),
+ ABI.getImageRelativeConstant(getClassHierarchyDescriptor()),
+ ABI.getImageRelativeConstant(COL),
+ };
+ llvm::ArrayRef<llvm::Constant *> FieldsRef(Fields);
+ if (!ABI.isImageRelative())
+ FieldsRef = FieldsRef.drop_back();
+ COL->setInitializer(llvm::ConstantStruct::get(Type, FieldsRef));
+ if (COL->isWeakForLinker())
+ COL->setComdat(CGM.getModule().getOrInsertComdat(COL->getName()));
+ return COL;
+}
+
+static QualType decomposeTypeForEH(ASTContext &Context, QualType T,
+ bool &IsConst, bool &IsVolatile) {
+ T = Context.getExceptionObjectType(T);
+
+ // C++14 [except.handle]p3:
+ // A handler is a match for an exception object of type E if [...]
+ // - the handler is of type cv T or const T& where T is a pointer type and
+ // E is a pointer type that can be converted to T by [...]
+ // - a qualification conversion
+ IsConst = false;
+ IsVolatile = false;
+ QualType PointeeType = T->getPointeeType();
+ if (!PointeeType.isNull()) {
+ IsConst = PointeeType.isConstQualified();
+ IsVolatile = PointeeType.isVolatileQualified();
+ }
+
+ // Member pointer types like "const int A::*" are represented by having RTTI
+ // for "int A::*" and separately storing the const qualifier.
+ if (const auto *MPTy = T->getAs<MemberPointerType>())
+ T = Context.getMemberPointerType(PointeeType.getUnqualifiedType(),
+ MPTy->getClass());
+
+ // Pointer types like "const int * const *" are represented by having RTTI
+ // for "const int **" and separately storing the const qualifier.
+ if (T->isPointerType())
+ T = Context.getPointerType(PointeeType.getUnqualifiedType());
+
+ return T;
+}
+
+CatchTypeInfo
+MicrosoftCXXABI::getAddrOfCXXCatchHandlerType(QualType Type,
+ QualType CatchHandlerType) {
+ // TypeDescriptors for exceptions never have qualified pointer types,
+ // qualifiers are stored seperately in order to support qualification
+ // conversions.
+ bool IsConst, IsVolatile;
+ Type = decomposeTypeForEH(getContext(), Type, IsConst, IsVolatile);
+
+ bool IsReference = CatchHandlerType->isReferenceType();
+
+ uint32_t Flags = 0;
+ if (IsConst)
+ Flags |= 1;
+ if (IsVolatile)
+ Flags |= 2;
+ if (IsReference)
+ Flags |= 8;
+
+ return CatchTypeInfo{getAddrOfRTTIDescriptor(Type)->stripPointerCasts(),
+ Flags};
+}
+
+/// \brief Gets a TypeDescriptor. Returns a llvm::Constant * rather than a
+/// llvm::GlobalVariable * because different type descriptors have different
+/// types, and need to be abstracted. They are abstracting by casting the
+/// address to an Int8PtrTy.
+llvm::Constant *MicrosoftCXXABI::getAddrOfRTTIDescriptor(QualType Type) {
+ SmallString<256> MangledName;
+ {
+ llvm::raw_svector_ostream Out(MangledName);
+ getMangleContext().mangleCXXRTTI(Type, Out);
+ }
+
+ // Check to see if we've already declared this TypeDescriptor.
+ if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
+ return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy);
+
+ // Compute the fields for the TypeDescriptor.
+ SmallString<256> TypeInfoString;
+ {
+ llvm::raw_svector_ostream Out(TypeInfoString);
+ getMangleContext().mangleCXXRTTIName(Type, Out);
+ }
+
+ // Declare and initialize the TypeDescriptor.
+ llvm::Constant *Fields[] = {
+ getTypeInfoVTable(CGM), // VFPtr
+ llvm::ConstantPointerNull::get(CGM.Int8PtrTy), // Runtime data
+ llvm::ConstantDataArray::getString(CGM.getLLVMContext(), TypeInfoString)};
+ llvm::StructType *TypeDescriptorType =
+ getTypeDescriptorType(TypeInfoString);
+ auto *Var = new llvm::GlobalVariable(
+ CGM.getModule(), TypeDescriptorType, /*Constant=*/false,
+ getLinkageForRTTI(Type),
+ llvm::ConstantStruct::get(TypeDescriptorType, Fields),
+ MangledName);
+ if (Var->isWeakForLinker())
+ Var->setComdat(CGM.getModule().getOrInsertComdat(Var->getName()));
+ return llvm::ConstantExpr::getBitCast(Var, CGM.Int8PtrTy);
+}
+
+/// \brief Gets or a creates a Microsoft CompleteObjectLocator.
+llvm::GlobalVariable *
+MicrosoftCXXABI::getMSCompleteObjectLocator(const CXXRecordDecl *RD,
+ const VPtrInfo *Info) {
+ return MSRTTIBuilder(*this, RD).getCompleteObjectLocator(Info);
+}
+
+static void emitCXXConstructor(CodeGenModule &CGM,
+ const CXXConstructorDecl *ctor,
+ StructorType ctorType) {
+ // There are no constructor variants, always emit the complete destructor.
+ llvm::Function *Fn = CGM.codegenCXXStructor(ctor, StructorType::Complete);
+ CGM.maybeSetTrivialComdat(*ctor, *Fn);
+}
+
+static void emitCXXDestructor(CodeGenModule &CGM, const CXXDestructorDecl *dtor,
+ StructorType dtorType) {
+ // The complete destructor is equivalent to the base destructor for
+ // classes with no virtual bases, so try to emit it as an alias.
+ if (!dtor->getParent()->getNumVBases() &&
+ (dtorType == StructorType::Complete || dtorType == StructorType::Base)) {
+ bool ProducedAlias = !CGM.TryEmitDefinitionAsAlias(
+ GlobalDecl(dtor, Dtor_Complete), GlobalDecl(dtor, Dtor_Base), true);
+ if (ProducedAlias) {
+ if (dtorType == StructorType::Complete)
+ return;
+ if (dtor->isVirtual())
+ CGM.getVTables().EmitThunks(GlobalDecl(dtor, Dtor_Complete));
+ }
+ }
+
+ // The base destructor is equivalent to the base destructor of its
+ // base class if there is exactly one non-virtual base class with a
+ // non-trivial destructor, there are no fields with a non-trivial
+ // destructor, and the body of the destructor is trivial.
+ if (dtorType == StructorType::Base && !CGM.TryEmitBaseDestructorAsAlias(dtor))
+ return;
+
+ llvm::Function *Fn = CGM.codegenCXXStructor(dtor, dtorType);
+ if (Fn->isWeakForLinker())
+ Fn->setComdat(CGM.getModule().getOrInsertComdat(Fn->getName()));
+}
+
+void MicrosoftCXXABI::emitCXXStructor(const CXXMethodDecl *MD,
+ StructorType Type) {
+ if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
+ emitCXXConstructor(CGM, CD, Type);
+ return;
+ }
+ emitCXXDestructor(CGM, cast<CXXDestructorDecl>(MD), Type);
+}
+
+llvm::Function *
+MicrosoftCXXABI::getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD,
+ CXXCtorType CT) {
+ assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
+
+ // Calculate the mangled name.
+ SmallString<256> ThunkName;
+ llvm::raw_svector_ostream Out(ThunkName);
+ getMangleContext().mangleCXXCtor(CD, CT, Out);
+
+ // If the thunk has been generated previously, just return it.
+ if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName))
+ return cast<llvm::Function>(GV);
+
+ // Create the llvm::Function.
+ const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeMSCtorClosure(CD, CT);
+ llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo);
+ const CXXRecordDecl *RD = CD->getParent();
+ QualType RecordTy = getContext().getRecordType(RD);
+ llvm::Function *ThunkFn = llvm::Function::Create(
+ ThunkTy, getLinkageForRTTI(RecordTy), ThunkName.str(), &CGM.getModule());
+ ThunkFn->setCallingConv(static_cast<llvm::CallingConv::ID>(
+ FnInfo.getEffectiveCallingConvention()));
+ if (ThunkFn->isWeakForLinker())
+ ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
+ bool IsCopy = CT == Ctor_CopyingClosure;
+
+ // Start codegen.
+ CodeGenFunction CGF(CGM);
+ CGF.CurGD = GlobalDecl(CD, Ctor_Complete);
+
+ // Build FunctionArgs.
+ FunctionArgList FunctionArgs;
+
+ // A constructor always starts with a 'this' pointer as its first argument.
+ buildThisParam(CGF, FunctionArgs);
+
+ // Following the 'this' pointer is a reference to the source object that we
+ // are copying from.
+ ImplicitParamDecl SrcParam(
+ getContext(), nullptr, SourceLocation(), &getContext().Idents.get("src"),
+ getContext().getLValueReferenceType(RecordTy,
+ /*SpelledAsLValue=*/true));
+ if (IsCopy)
+ FunctionArgs.push_back(&SrcParam);
+
+ // Constructors for classes which utilize virtual bases have an additional
+ // parameter which indicates whether or not it is being delegated to by a more
+ // derived constructor.
+ ImplicitParamDecl IsMostDerived(getContext(), nullptr, SourceLocation(),
+ &getContext().Idents.get("is_most_derived"),
+ getContext().IntTy);
+ // Only add the parameter to the list if thie class has virtual bases.
+ if (RD->getNumVBases() > 0)
+ FunctionArgs.push_back(&IsMostDerived);
+
+ // Start defining the function.
+ CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo,
+ FunctionArgs, CD->getLocation(), SourceLocation());
+ EmitThisParam(CGF);
+ llvm::Value *This = getThisValue(CGF);
+
+ llvm::Value *SrcVal =
+ IsCopy ? CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&SrcParam), "src")
+ : nullptr;
+
+ CallArgList Args;
+
+ // Push the this ptr.
+ Args.add(RValue::get(This), CD->getThisType(getContext()));
+
+ // Push the src ptr.
+ if (SrcVal)
+ Args.add(RValue::get(SrcVal), SrcParam.getType());
+
+ // Add the rest of the default arguments.
+ std::vector<Stmt *> ArgVec;
+ for (unsigned I = IsCopy ? 1 : 0, E = CD->getNumParams(); I != E; ++I) {
+ Stmt *DefaultArg = getContext().getDefaultArgExprForConstructor(CD, I);
+ assert(DefaultArg && "sema forgot to instantiate default args");
+ ArgVec.push_back(DefaultArg);
+ }
+
+ CodeGenFunction::RunCleanupsScope Cleanups(CGF);
+
+ const auto *FPT = CD->getType()->castAs<FunctionProtoType>();
+ CGF.EmitCallArgs(Args, FPT, llvm::makeArrayRef(ArgVec), CD, IsCopy ? 1 : 0);
+
+ // Insert any ABI-specific implicit constructor arguments.
+ unsigned ExtraArgs = addImplicitConstructorArgs(CGF, CD, Ctor_Complete,
+ /*ForVirtualBase=*/false,
+ /*Delegating=*/false, Args);
+
+ // Call the destructor with our arguments.
+ llvm::Value *CalleeFn = CGM.getAddrOfCXXStructor(CD, StructorType::Complete);
+ const CGFunctionInfo &CalleeInfo = CGM.getTypes().arrangeCXXConstructorCall(
+ Args, CD, Ctor_Complete, ExtraArgs);
+ CGF.EmitCall(CalleeInfo, CalleeFn, ReturnValueSlot(), Args, CD);
+
+ Cleanups.ForceCleanup();
+
+ // Emit the ret instruction, remove any temporary instructions created for the
+ // aid of CodeGen.
+ CGF.FinishFunction(SourceLocation());
+
+ return ThunkFn;
+}
+
+llvm::Constant *MicrosoftCXXABI::getCatchableType(QualType T,
+ uint32_t NVOffset,
+ int32_t VBPtrOffset,
+ uint32_t VBIndex) {
+ assert(!T->isReferenceType());
+
+ CXXRecordDecl *RD = T->getAsCXXRecordDecl();
+ const CXXConstructorDecl *CD =
+ RD ? CGM.getContext().getCopyConstructorForExceptionObject(RD) : nullptr;
+ CXXCtorType CT = Ctor_Complete;
+ if (CD)
+ if (!hasDefaultCXXMethodCC(getContext(), CD) || CD->getNumParams() != 1)
+ CT = Ctor_CopyingClosure;
+
+ uint32_t Size = getContext().getTypeSizeInChars(T).getQuantity();
+ SmallString<256> MangledName;
+ {
+ llvm::raw_svector_ostream Out(MangledName);
+ getMangleContext().mangleCXXCatchableType(T, CD, CT, Size, NVOffset,
+ VBPtrOffset, VBIndex, Out);
+ }
+ if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
+ return getImageRelativeConstant(GV);
+
+ // The TypeDescriptor is used by the runtime to determine if a catch handler
+ // is appropriate for the exception object.
+ llvm::Constant *TD = getImageRelativeConstant(getAddrOfRTTIDescriptor(T));
+
+ // The runtime is responsible for calling the copy constructor if the
+ // exception is caught by value.
+ llvm::Constant *CopyCtor;
+ if (CD) {
+ if (CT == Ctor_CopyingClosure)
+ CopyCtor = getAddrOfCXXCtorClosure(CD, Ctor_CopyingClosure);
+ else
+ CopyCtor = CGM.getAddrOfCXXStructor(CD, StructorType::Complete);
+
+ CopyCtor = llvm::ConstantExpr::getBitCast(CopyCtor, CGM.Int8PtrTy);
+ } else {
+ CopyCtor = llvm::Constant::getNullValue(CGM.Int8PtrTy);
+ }
+ CopyCtor = getImageRelativeConstant(CopyCtor);
+
+ bool IsScalar = !RD;
+ bool HasVirtualBases = false;
+ bool IsStdBadAlloc = false; // std::bad_alloc is special for some reason.
+ QualType PointeeType = T;
+ if (T->isPointerType())
+ PointeeType = T->getPointeeType();
+ if (const CXXRecordDecl *RD = PointeeType->getAsCXXRecordDecl()) {
+ HasVirtualBases = RD->getNumVBases() > 0;
+ if (IdentifierInfo *II = RD->getIdentifier())
+ IsStdBadAlloc = II->isStr("bad_alloc") && RD->isInStdNamespace();
+ }
+
+ // Encode the relevant CatchableType properties into the Flags bitfield.
+ // FIXME: Figure out how bits 2 or 8 can get set.
+ uint32_t Flags = 0;
+ if (IsScalar)
+ Flags |= 1;
+ if (HasVirtualBases)
+ Flags |= 4;
+ if (IsStdBadAlloc)
+ Flags |= 16;
+
+ llvm::Constant *Fields[] = {
+ llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags
+ TD, // TypeDescriptor
+ llvm::ConstantInt::get(CGM.IntTy, NVOffset), // NonVirtualAdjustment
+ llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), // OffsetToVBPtr
+ llvm::ConstantInt::get(CGM.IntTy, VBIndex), // VBTableIndex
+ llvm::ConstantInt::get(CGM.IntTy, Size), // Size
+ CopyCtor // CopyCtor
+ };
+ llvm::StructType *CTType = getCatchableTypeType();
+ auto *GV = new llvm::GlobalVariable(
+ CGM.getModule(), CTType, /*Constant=*/true, getLinkageForRTTI(T),
+ llvm::ConstantStruct::get(CTType, Fields), MangledName);
+ GV->setUnnamedAddr(true);
+ GV->setSection(".xdata");
+ if (GV->isWeakForLinker())
+ GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName()));
+ return getImageRelativeConstant(GV);
+}
+
+llvm::GlobalVariable *MicrosoftCXXABI::getCatchableTypeArray(QualType T) {
+ assert(!T->isReferenceType());
+
+ // See if we've already generated a CatchableTypeArray for this type before.
+ llvm::GlobalVariable *&CTA = CatchableTypeArrays[T];
+ if (CTA)
+ return CTA;
+
+ // Ensure that we don't have duplicate entries in our CatchableTypeArray by
+ // using a SmallSetVector. Duplicates may arise due to virtual bases
+ // occurring more than once in the hierarchy.
+ llvm::SmallSetVector<llvm::Constant *, 2> CatchableTypes;
+
+ // C++14 [except.handle]p3:
+ // A handler is a match for an exception object of type E if [...]
+ // - the handler is of type cv T or cv T& and T is an unambiguous public
+ // base class of E, or
+ // - the handler is of type cv T or const T& where T is a pointer type and
+ // E is a pointer type that can be converted to T by [...]
+ // - a standard pointer conversion (4.10) not involving conversions to
+ // pointers to private or protected or ambiguous classes
+ const CXXRecordDecl *MostDerivedClass = nullptr;
+ bool IsPointer = T->isPointerType();
+ if (IsPointer)
+ MostDerivedClass = T->getPointeeType()->getAsCXXRecordDecl();
+ else
+ MostDerivedClass = T->getAsCXXRecordDecl();
+
+ // Collect all the unambiguous public bases of the MostDerivedClass.
+ if (MostDerivedClass) {
+ const ASTContext &Context = getContext();
+ const ASTRecordLayout &MostDerivedLayout =
+ Context.getASTRecordLayout(MostDerivedClass);
+ MicrosoftVTableContext &VTableContext = CGM.getMicrosoftVTableContext();
+ SmallVector<MSRTTIClass, 8> Classes;
+ serializeClassHierarchy(Classes, MostDerivedClass);
+ Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr);
+ detectAmbiguousBases(Classes);
+ for (const MSRTTIClass &Class : Classes) {
+ // Skip any ambiguous or private bases.
+ if (Class.Flags &
+ (MSRTTIClass::IsPrivateOnPath | MSRTTIClass::IsAmbiguous))
+ continue;
+ // Write down how to convert from a derived pointer to a base pointer.
+ uint32_t OffsetInVBTable = 0;
+ int32_t VBPtrOffset = -1;
+ if (Class.VirtualRoot) {
+ OffsetInVBTable =
+ VTableContext.getVBTableIndex(MostDerivedClass, Class.VirtualRoot)*4;
+ VBPtrOffset = MostDerivedLayout.getVBPtrOffset().getQuantity();
+ }
+
+ // Turn our record back into a pointer if the exception object is a
+ // pointer.
+ QualType RTTITy = QualType(Class.RD->getTypeForDecl(), 0);
+ if (IsPointer)
+ RTTITy = Context.getPointerType(RTTITy);
+ CatchableTypes.insert(getCatchableType(RTTITy, Class.OffsetInVBase,
+ VBPtrOffset, OffsetInVBTable));
+ }
+ }
+
+ // C++14 [except.handle]p3:
+ // A handler is a match for an exception object of type E if
+ // - The handler is of type cv T or cv T& and E and T are the same type
+ // (ignoring the top-level cv-qualifiers)
+ CatchableTypes.insert(getCatchableType(T));
+
+ // C++14 [except.handle]p3:
+ // A handler is a match for an exception object of type E if
+ // - the handler is of type cv T or const T& where T is a pointer type and
+ // E is a pointer type that can be converted to T by [...]
+ // - a standard pointer conversion (4.10) not involving conversions to
+ // pointers to private or protected or ambiguous classes
+ //
+ // C++14 [conv.ptr]p2:
+ // A prvalue of type "pointer to cv T," where T is an object type, can be
+ // converted to a prvalue of type "pointer to cv void".
+ if (IsPointer && T->getPointeeType()->isObjectType())
+ CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy));
+
+ // C++14 [except.handle]p3:
+ // A handler is a match for an exception object of type E if [...]
+ // - the handler is of type cv T or const T& where T is a pointer or
+ // pointer to member type and E is std::nullptr_t.
+ //
+ // We cannot possibly list all possible pointer types here, making this
+ // implementation incompatible with the standard. However, MSVC includes an
+ // entry for pointer-to-void in this case. Let's do the same.
+ if (T->isNullPtrType())
+ CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy));
+
+ uint32_t NumEntries = CatchableTypes.size();
+ llvm::Type *CTType =
+ getImageRelativeType(getCatchableTypeType()->getPointerTo());
+ llvm::ArrayType *AT = llvm::ArrayType::get(CTType, NumEntries);
+ llvm::StructType *CTAType = getCatchableTypeArrayType(NumEntries);
+ llvm::Constant *Fields[] = {
+ llvm::ConstantInt::get(CGM.IntTy, NumEntries), // NumEntries
+ llvm::ConstantArray::get(
+ AT, llvm::makeArrayRef(CatchableTypes.begin(),
+ CatchableTypes.end())) // CatchableTypes
+ };
+ SmallString<256> MangledName;
+ {
+ llvm::raw_svector_ostream Out(MangledName);
+ getMangleContext().mangleCXXCatchableTypeArray(T, NumEntries, Out);
+ }
+ CTA = new llvm::GlobalVariable(
+ CGM.getModule(), CTAType, /*Constant=*/true, getLinkageForRTTI(T),
+ llvm::ConstantStruct::get(CTAType, Fields), MangledName);
+ CTA->setUnnamedAddr(true);
+ CTA->setSection(".xdata");
+ if (CTA->isWeakForLinker())
+ CTA->setComdat(CGM.getModule().getOrInsertComdat(CTA->getName()));
+ return CTA;
+}
+
+llvm::GlobalVariable *MicrosoftCXXABI::getThrowInfo(QualType T) {
+ bool IsConst, IsVolatile;
+ T = decomposeTypeForEH(getContext(), T, IsConst, IsVolatile);
+
+ // The CatchableTypeArray enumerates the various (CV-unqualified) types that
+ // the exception object may be caught as.
+ llvm::GlobalVariable *CTA = getCatchableTypeArray(T);
+ // The first field in a CatchableTypeArray is the number of CatchableTypes.
+ // This is used as a component of the mangled name which means that we need to
+ // know what it is in order to see if we have previously generated the
+ // ThrowInfo.
+ uint32_t NumEntries =
+ cast<llvm::ConstantInt>(CTA->getInitializer()->getAggregateElement(0U))
+ ->getLimitedValue();
+
+ SmallString<256> MangledName;
+ {
+ llvm::raw_svector_ostream Out(MangledName);
+ getMangleContext().mangleCXXThrowInfo(T, IsConst, IsVolatile, NumEntries,
+ Out);
+ }
+
+ // Reuse a previously generated ThrowInfo if we have generated an appropriate
+ // one before.
+ if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
+ return GV;
+
+ // The RTTI TypeDescriptor uses an unqualified type but catch clauses must
+ // be at least as CV qualified. Encode this requirement into the Flags
+ // bitfield.
+ uint32_t Flags = 0;
+ if (IsConst)
+ Flags |= 1;
+ if (IsVolatile)
+ Flags |= 2;
+
+ // The cleanup-function (a destructor) must be called when the exception
+ // object's lifetime ends.
+ llvm::Constant *CleanupFn = llvm::Constant::getNullValue(CGM.Int8PtrTy);
+ if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
+ if (CXXDestructorDecl *DtorD = RD->getDestructor())
+ if (!DtorD->isTrivial())
+ CleanupFn = llvm::ConstantExpr::getBitCast(
+ CGM.getAddrOfCXXStructor(DtorD, StructorType::Complete),
+ CGM.Int8PtrTy);
+ // This is unused as far as we can tell, initialize it to null.
+ llvm::Constant *ForwardCompat =
+ getImageRelativeConstant(llvm::Constant::getNullValue(CGM.Int8PtrTy));
+ llvm::Constant *PointerToCatchableTypes = getImageRelativeConstant(
+ llvm::ConstantExpr::getBitCast(CTA, CGM.Int8PtrTy));
+ llvm::StructType *TIType = getThrowInfoType();
+ llvm::Constant *Fields[] = {
+ llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags
+ getImageRelativeConstant(CleanupFn), // CleanupFn
+ ForwardCompat, // ForwardCompat
+ PointerToCatchableTypes // CatchableTypeArray
+ };
+ auto *GV = new llvm::GlobalVariable(
+ CGM.getModule(), TIType, /*Constant=*/true, getLinkageForRTTI(T),
+ llvm::ConstantStruct::get(TIType, Fields), StringRef(MangledName));
+ GV->setUnnamedAddr(true);
+ GV->setSection(".xdata");
+ if (GV->isWeakForLinker())
+ GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName()));
+ return GV;
+}
+
+void MicrosoftCXXABI::emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) {
+ const Expr *SubExpr = E->getSubExpr();
+ QualType ThrowType = SubExpr->getType();
+ // The exception object lives on the stack and it's address is passed to the
+ // runtime function.
+ Address AI = CGF.CreateMemTemp(ThrowType);
+ CGF.EmitAnyExprToMem(SubExpr, AI, ThrowType.getQualifiers(),
+ /*IsInit=*/true);
+
+ // The so-called ThrowInfo is used to describe how the exception object may be
+ // caught.
+ llvm::GlobalVariable *TI = getThrowInfo(ThrowType);
+
+ // Call into the runtime to throw the exception.
+ llvm::Value *Args[] = {
+ CGF.Builder.CreateBitCast(AI.getPointer(), CGM.Int8PtrTy),
+ TI
+ };
+ CGF.EmitNoreturnRuntimeCallOrInvoke(getThrowFn(), Args);
+}
OpenPOWER on IntegriCloud