diff options
Diffstat (limited to 'contrib/llvm/tools/clang/lib/CodeGen/Mangle.cpp')
-rw-r--r-- | contrib/llvm/tools/clang/lib/CodeGen/Mangle.cpp | 2201 |
1 files changed, 2201 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/Mangle.cpp b/contrib/llvm/tools/clang/lib/CodeGen/Mangle.cpp new file mode 100644 index 0000000..6c2a648 --- /dev/null +++ b/contrib/llvm/tools/clang/lib/CodeGen/Mangle.cpp @@ -0,0 +1,2201 @@ +//===--- Mangle.cpp - Mangle C++ Names --------------------------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// Implements C++ name mangling according to the Itanium C++ ABI, +// which is used in GCC 3.2 and newer (and many compilers that are +// ABI-compatible with GCC): +// +// http://www.codesourcery.com/public/cxx-abi/abi.html +// +//===----------------------------------------------------------------------===// +#include "Mangle.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/Decl.h" +#include "clang/AST/DeclCXX.h" +#include "clang/AST/DeclObjC.h" +#include "clang/AST/DeclTemplate.h" +#include "clang/AST/ExprCXX.h" +#include "clang/Basic/SourceManager.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Support/ErrorHandling.h" +#include "CGVTables.h" + +#define MANGLE_CHECKER 0 + +#if MANGLE_CHECKER +#include <cxxabi.h> +#endif + +using namespace clang; +using namespace CodeGen; + +MiscNameMangler::MiscNameMangler(MangleContext &C, + llvm::SmallVectorImpl<char> &Res) + : Context(C), Out(Res) { } + +void MiscNameMangler::mangleBlock(const BlockDecl *BD) { + // Mangle the context of the block. + // FIXME: We currently mimic GCC's mangling scheme, which leaves much to be + // desired. Come up with a better mangling scheme. + const DeclContext *DC = BD->getDeclContext(); + while (isa<BlockDecl>(DC) || isa<EnumDecl>(DC)) + DC = DC->getParent(); + if (DC->isFunctionOrMethod()) { + Out << "__"; + if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC)) + mangleObjCMethodName(Method); + else { + const NamedDecl *ND = cast<NamedDecl>(DC); + if (IdentifierInfo *II = ND->getIdentifier()) + Out << II->getName(); + else { + // FIXME: We were doing a mangleUnqualifiedName() before, but that's + // a private member of a class that will soon itself be private to the + // Itanium C++ ABI object. What should we do now? Right now, I'm just + // calling the mangleName() method on the MangleContext; is there a + // better way? + llvm::SmallString<64> Buffer; + Context.mangleName(ND, Buffer); + Out << Buffer; + } + } + Out << "_block_invoke_" << Context.getBlockId(BD, true); + } else { + Out << "__block_global_" << Context.getBlockId(BD, false); + } +} + +void MiscNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) { + llvm::SmallString<64> Name; + llvm::raw_svector_ostream OS(Name); + + const ObjCContainerDecl *CD = + dyn_cast<ObjCContainerDecl>(MD->getDeclContext()); + assert (CD && "Missing container decl in GetNameForMethod"); + OS << (MD->isInstanceMethod() ? '-' : '+') << '[' << CD->getName(); + if (const ObjCCategoryImplDecl *CID = dyn_cast<ObjCCategoryImplDecl>(CD)) + OS << '(' << CID << ')'; + OS << ' ' << MD->getSelector().getAsString() << ']'; + + Out << OS.str().size() << OS.str(); +} + +namespace { + +static const DeclContext *GetLocalClassFunctionDeclContext( + const DeclContext *DC) { + if (isa<CXXRecordDecl>(DC)) { + while (!DC->isNamespace() && !DC->isTranslationUnit() && + !isa<FunctionDecl>(DC)) + DC = DC->getParent(); + if (isa<FunctionDecl>(DC)) + return DC; + } + return 0; +} + +static const CXXMethodDecl *getStructor(const CXXMethodDecl *MD) { + assert((isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) && + "Passed in decl is not a ctor or dtor!"); + + if (const TemplateDecl *TD = MD->getPrimaryTemplate()) { + MD = cast<CXXMethodDecl>(TD->getTemplatedDecl()); + + assert((isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) && + "Templated decl is not a ctor or dtor!"); + } + + return MD; +} + +static const unsigned UnknownArity = ~0U; + +/// CXXNameMangler - Manage the mangling of a single name. +class CXXNameMangler { + MangleContext &Context; + llvm::raw_svector_ostream Out; + + const CXXMethodDecl *Structor; + unsigned StructorType; + + llvm::DenseMap<uintptr_t, unsigned> Substitutions; + + ASTContext &getASTContext() const { return Context.getASTContext(); } + +public: + CXXNameMangler(MangleContext &C, llvm::SmallVectorImpl<char> &Res) + : Context(C), Out(Res), Structor(0), StructorType(0) { } + CXXNameMangler(MangleContext &C, llvm::SmallVectorImpl<char> &Res, + const CXXConstructorDecl *D, CXXCtorType Type) + : Context(C), Out(Res), Structor(getStructor(D)), StructorType(Type) { } + CXXNameMangler(MangleContext &C, llvm::SmallVectorImpl<char> &Res, + const CXXDestructorDecl *D, CXXDtorType Type) + : Context(C), Out(Res), Structor(getStructor(D)), StructorType(Type) { } + +#if MANGLE_CHECKER + ~CXXNameMangler() { + if (Out.str()[0] == '\01') + return; + + int status = 0; + char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status); + assert(status == 0 && "Could not demangle mangled name!"); + free(result); + } +#endif + llvm::raw_svector_ostream &getStream() { return Out; } + + void mangle(const NamedDecl *D, llvm::StringRef Prefix = "_Z"); + void mangleCallOffset(int64_t NonVirtual, int64_t Virtual); + void mangleNumber(int64_t Number); + void mangleFunctionEncoding(const FunctionDecl *FD); + void mangleName(const NamedDecl *ND); + void mangleType(QualType T); + void mangleNameOrStandardSubstitution(const NamedDecl *ND); + +private: + bool mangleSubstitution(const NamedDecl *ND); + bool mangleSubstitution(QualType T); + bool mangleSubstitution(TemplateName Template); + bool mangleSubstitution(uintptr_t Ptr); + + bool mangleStandardSubstitution(const NamedDecl *ND); + + void addSubstitution(const NamedDecl *ND) { + ND = cast<NamedDecl>(ND->getCanonicalDecl()); + + addSubstitution(reinterpret_cast<uintptr_t>(ND)); + } + void addSubstitution(QualType T); + void addSubstitution(TemplateName Template); + void addSubstitution(uintptr_t Ptr); + + void mangleUnresolvedScope(NestedNameSpecifier *Qualifier); + void mangleUnresolvedName(NestedNameSpecifier *Qualifier, + DeclarationName Name, + unsigned KnownArity = UnknownArity); + + void mangleName(const TemplateDecl *TD, + const TemplateArgument *TemplateArgs, + unsigned NumTemplateArgs); + void mangleUnqualifiedName(const NamedDecl *ND) { + mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity); + } + void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name, + unsigned KnownArity); + void mangleUnscopedName(const NamedDecl *ND); + void mangleUnscopedTemplateName(const TemplateDecl *ND); + void mangleUnscopedTemplateName(TemplateName); + void mangleSourceName(const IdentifierInfo *II); + void mangleLocalName(const NamedDecl *ND); + void mangleNestedName(const NamedDecl *ND, const DeclContext *DC, + bool NoFunction=false); + void mangleNestedName(const TemplateDecl *TD, + const TemplateArgument *TemplateArgs, + unsigned NumTemplateArgs); + void manglePrefix(const DeclContext *DC, bool NoFunction=false); + void mangleTemplatePrefix(const TemplateDecl *ND); + void mangleTemplatePrefix(TemplateName Template); + void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity); + void mangleQualifiers(Qualifiers Quals); + + void mangleObjCMethodName(const ObjCMethodDecl *MD); + + // Declare manglers for every type class. +#define ABSTRACT_TYPE(CLASS, PARENT) +#define NON_CANONICAL_TYPE(CLASS, PARENT) +#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T); +#include "clang/AST/TypeNodes.def" + + void mangleType(const TagType*); + void mangleBareFunctionType(const FunctionType *T, + bool MangleReturnType); + + void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value); + void mangleMemberExpr(const Expr *Base, bool IsArrow, + NestedNameSpecifier *Qualifier, + DeclarationName Name, + unsigned KnownArity); + void mangleCalledExpression(const Expr *E, unsigned KnownArity); + void mangleExpression(const Expr *E); + void mangleCXXCtorType(CXXCtorType T); + void mangleCXXDtorType(CXXDtorType T); + + void mangleTemplateArgs(TemplateName Template, + const TemplateArgument *TemplateArgs, + unsigned NumTemplateArgs); + void mangleTemplateArgs(const TemplateParameterList &PL, + const TemplateArgument *TemplateArgs, + unsigned NumTemplateArgs); + void mangleTemplateArgs(const TemplateParameterList &PL, + const TemplateArgumentList &AL); + void mangleTemplateArg(const NamedDecl *P, const TemplateArgument &A); + + void mangleTemplateParameter(unsigned Index); +}; +} + +static bool isInCLinkageSpecification(const Decl *D) { + D = D->getCanonicalDecl(); + for (const DeclContext *DC = D->getDeclContext(); + !DC->isTranslationUnit(); DC = DC->getParent()) { + if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC)) + return Linkage->getLanguage() == LinkageSpecDecl::lang_c; + } + + return false; +} + +bool MangleContext::shouldMangleDeclName(const NamedDecl *D) { + // In C, functions with no attributes never need to be mangled. Fastpath them. + if (!getASTContext().getLangOptions().CPlusPlus && !D->hasAttrs()) + return false; + + // Any decl can be declared with __asm("foo") on it, and this takes precedence + // over all other naming in the .o file. + if (D->hasAttr<AsmLabelAttr>()) + return true; + + // Clang's "overloadable" attribute extension to C/C++ implies name mangling + // (always) as does passing a C++ member function and a function + // whose name is not a simple identifier. + const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); + if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) || + !FD->getDeclName().isIdentifier())) + return true; + + // Otherwise, no mangling is done outside C++ mode. + if (!getASTContext().getLangOptions().CPlusPlus) + return false; + + // Variables at global scope with non-internal linkage are not mangled + if (!FD) { + const DeclContext *DC = D->getDeclContext(); + // Check for extern variable declared locally. + if (isa<FunctionDecl>(DC) && D->hasLinkage()) + while (!DC->isNamespace() && !DC->isTranslationUnit()) + DC = DC->getParent(); + if (DC->isTranslationUnit() && D->getLinkage() != InternalLinkage) + return false; + } + + // C functions and "main" are not mangled. + if ((FD && FD->isMain()) || isInCLinkageSpecification(D)) + return false; + + return true; +} + +void CXXNameMangler::mangle(const NamedDecl *D, llvm::StringRef Prefix) { + // Any decl can be declared with __asm("foo") on it, and this takes precedence + // over all other naming in the .o file. + if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) { + // If we have an asm name, then we use it as the mangling. + Out << '\01'; // LLVM IR Marker for __asm("foo") + Out << ALA->getLabel(); + return; + } + + // <mangled-name> ::= _Z <encoding> + // ::= <data name> + // ::= <special-name> + Out << Prefix; + if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) + mangleFunctionEncoding(FD); + else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) + mangleName(VD); + else + mangleName(cast<FieldDecl>(D)); +} + +void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) { + // <encoding> ::= <function name> <bare-function-type> + mangleName(FD); + + // Don't mangle in the type if this isn't a decl we should typically mangle. + if (!Context.shouldMangleDeclName(FD)) + return; + + // Whether the mangling of a function type includes the return type depends on + // the context and the nature of the function. The rules for deciding whether + // the return type is included are: + // + // 1. Template functions (names or types) have return types encoded, with + // the exceptions listed below. + // 2. Function types not appearing as part of a function name mangling, + // e.g. parameters, pointer types, etc., have return type encoded, with the + // exceptions listed below. + // 3. Non-template function names do not have return types encoded. + // + // The exceptions mentioned in (1) and (2) above, for which the return type is + // never included, are + // 1. Constructors. + // 2. Destructors. + // 3. Conversion operator functions, e.g. operator int. + bool MangleReturnType = false; + if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) { + if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) || + isa<CXXConversionDecl>(FD))) + MangleReturnType = true; + + // Mangle the type of the primary template. + FD = PrimaryTemplate->getTemplatedDecl(); + } + + // Do the canonicalization out here because parameter types can + // undergo additional canonicalization (e.g. array decay). + FunctionType *FT = cast<FunctionType>(Context.getASTContext() + .getCanonicalType(FD->getType())); + + mangleBareFunctionType(FT, MangleReturnType); +} + +/// isStd - Return whether a given namespace is the 'std' namespace. +static bool isStd(const NamespaceDecl *NS) { + const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier(); + return II && II->isStr("std"); +} + +static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) { + while (isa<LinkageSpecDecl>(DC)) { + DC = DC->getParent(); + } + + return DC; +} + +// isStdNamespace - Return whether a given decl context is a toplevel 'std' +// namespace. +static bool isStdNamespace(const DeclContext *DC) { + if (!DC->isNamespace()) + return false; + + if (!IgnoreLinkageSpecDecls(DC->getParent())->isTranslationUnit()) + return false; + + return isStd(cast<NamespaceDecl>(DC)); +} + +static const TemplateDecl * +isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) { + // Check if we have a function template. + if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){ + if (const TemplateDecl *TD = FD->getPrimaryTemplate()) { + TemplateArgs = FD->getTemplateSpecializationArgs(); + return TD; + } + } + + // Check if we have a class template. + if (const ClassTemplateSpecializationDecl *Spec = + dyn_cast<ClassTemplateSpecializationDecl>(ND)) { + TemplateArgs = &Spec->getTemplateArgs(); + return Spec->getSpecializedTemplate(); + } + + return 0; +} + +void CXXNameMangler::mangleName(const NamedDecl *ND) { + // <name> ::= <nested-name> + // ::= <unscoped-name> + // ::= <unscoped-template-name> <template-args> + // ::= <local-name> + // + const DeclContext *DC = ND->getDeclContext(); + + if (GetLocalClassFunctionDeclContext(DC)) { + mangleLocalName(ND); + return; + } + + // If this is an extern variable declared locally, the relevant DeclContext + // is that of the containing namespace, or the translation unit. + if (isa<FunctionDecl>(DC) && ND->hasLinkage()) + while (!DC->isNamespace() && !DC->isTranslationUnit()) + DC = DC->getParent(); + + while (isa<LinkageSpecDecl>(DC)) + DC = DC->getParent(); + + if (DC->isTranslationUnit() || isStdNamespace(DC)) { + // Check if we have a template. + const TemplateArgumentList *TemplateArgs = 0; + if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) { + mangleUnscopedTemplateName(TD); + TemplateParameterList *TemplateParameters = TD->getTemplateParameters(); + mangleTemplateArgs(*TemplateParameters, *TemplateArgs); + return; + } + + mangleUnscopedName(ND); + return; + } + + if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) { + mangleLocalName(ND); + return; + } + + mangleNestedName(ND, DC); +} +void CXXNameMangler::mangleName(const TemplateDecl *TD, + const TemplateArgument *TemplateArgs, + unsigned NumTemplateArgs) { + const DeclContext *DC = IgnoreLinkageSpecDecls(TD->getDeclContext()); + + if (DC->isTranslationUnit() || isStdNamespace(DC)) { + mangleUnscopedTemplateName(TD); + TemplateParameterList *TemplateParameters = TD->getTemplateParameters(); + mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs); + } else { + mangleNestedName(TD, TemplateArgs, NumTemplateArgs); + } +} + +void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) { + // <unscoped-name> ::= <unqualified-name> + // ::= St <unqualified-name> # ::std:: + if (isStdNamespace(ND->getDeclContext())) + Out << "St"; + + mangleUnqualifiedName(ND); +} + +void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) { + // <unscoped-template-name> ::= <unscoped-name> + // ::= <substitution> + if (mangleSubstitution(ND)) + return; + + // <template-template-param> ::= <template-param> + if (const TemplateTemplateParmDecl *TTP + = dyn_cast<TemplateTemplateParmDecl>(ND)) { + mangleTemplateParameter(TTP->getIndex()); + return; + } + + mangleUnscopedName(ND->getTemplatedDecl()); + addSubstitution(ND); +} + +void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) { + // <unscoped-template-name> ::= <unscoped-name> + // ::= <substitution> + if (TemplateDecl *TD = Template.getAsTemplateDecl()) + return mangleUnscopedTemplateName(TD); + + if (mangleSubstitution(Template)) + return; + + // FIXME: How to cope with operators here? + DependentTemplateName *Dependent = Template.getAsDependentTemplateName(); + assert(Dependent && "Not a dependent template name?"); + if (!Dependent->isIdentifier()) { + // FIXME: We can't possibly know the arity of the operator here! + Diagnostic &Diags = Context.getDiags(); + unsigned DiagID = Diags.getCustomDiagID(Diagnostic::Error, + "cannot mangle dependent operator name"); + Diags.Report(FullSourceLoc(), DiagID); + return; + } + + mangleSourceName(Dependent->getIdentifier()); + addSubstitution(Template); +} + +void CXXNameMangler::mangleNumber(int64_t Number) { + // <number> ::= [n] <non-negative decimal integer> + if (Number < 0) { + Out << 'n'; + Number = -Number; + } + + Out << Number; +} + +void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) { + // <call-offset> ::= h <nv-offset> _ + // ::= v <v-offset> _ + // <nv-offset> ::= <offset number> # non-virtual base override + // <v-offset> ::= <offset number> _ <virtual offset number> + // # virtual base override, with vcall offset + if (!Virtual) { + Out << 'h'; + mangleNumber(NonVirtual); + Out << '_'; + return; + } + + Out << 'v'; + mangleNumber(NonVirtual); + Out << '_'; + mangleNumber(Virtual); + Out << '_'; +} + +void CXXNameMangler::mangleUnresolvedScope(NestedNameSpecifier *Qualifier) { + Qualifier = getASTContext().getCanonicalNestedNameSpecifier(Qualifier); + switch (Qualifier->getKind()) { + case NestedNameSpecifier::Global: + // nothing + break; + case NestedNameSpecifier::Namespace: + mangleName(Qualifier->getAsNamespace()); + break; + case NestedNameSpecifier::TypeSpec: + case NestedNameSpecifier::TypeSpecWithTemplate: { + const Type *QTy = Qualifier->getAsType(); + + if (const TemplateSpecializationType *TST = + dyn_cast<TemplateSpecializationType>(QTy)) { + if (!mangleSubstitution(QualType(TST, 0))) { + mangleTemplatePrefix(TST->getTemplateName()); + + // FIXME: GCC does not appear to mangle the template arguments when + // the template in question is a dependent template name. Should we + // emulate that badness? + mangleTemplateArgs(TST->getTemplateName(), TST->getArgs(), + TST->getNumArgs()); + addSubstitution(QualType(TST, 0)); + } + } else { + // We use the QualType mangle type variant here because it handles + // substitutions. + mangleType(QualType(QTy, 0)); + } + } + break; + case NestedNameSpecifier::Identifier: + // Member expressions can have these without prefixes. + if (Qualifier->getPrefix()) + mangleUnresolvedScope(Qualifier->getPrefix()); + mangleSourceName(Qualifier->getAsIdentifier()); + break; + } +} + +/// Mangles a name which was not resolved to a specific entity. +void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *Qualifier, + DeclarationName Name, + unsigned KnownArity) { + if (Qualifier) + mangleUnresolvedScope(Qualifier); + // FIXME: ambiguity of unqualified lookup with :: + + mangleUnqualifiedName(0, Name, KnownArity); +} + +void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND, + DeclarationName Name, + unsigned KnownArity) { + // <unqualified-name> ::= <operator-name> + // ::= <ctor-dtor-name> + // ::= <source-name> + switch (Name.getNameKind()) { + case DeclarationName::Identifier: { + if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) { + // We must avoid conflicts between internally- and externally- + // linked variable declaration names in the same TU. + // This naming convention is the same as that followed by GCC, though it + // shouldn't actually matter. + if (ND && isa<VarDecl>(ND) && ND->getLinkage() == InternalLinkage && + ND->getDeclContext()->isFileContext()) + Out << 'L'; + + mangleSourceName(II); + break; + } + + // Otherwise, an anonymous entity. We must have a declaration. + assert(ND && "mangling empty name without declaration"); + + if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { + if (NS->isAnonymousNamespace()) { + // This is how gcc mangles these names. + Out << "12_GLOBAL__N_1"; + break; + } + } + + // We must have an anonymous struct. + const TagDecl *TD = cast<TagDecl>(ND); + if (const TypedefDecl *D = TD->getTypedefForAnonDecl()) { + assert(TD->getDeclContext() == D->getDeclContext() && + "Typedef should not be in another decl context!"); + assert(D->getDeclName().getAsIdentifierInfo() && + "Typedef was not named!"); + mangleSourceName(D->getDeclName().getAsIdentifierInfo()); + break; + } + + // Get a unique id for the anonymous struct. + uint64_t AnonStructId = Context.getAnonymousStructId(TD); + + // Mangle it as a source name in the form + // [n] $_<id> + // where n is the length of the string. + llvm::SmallString<8> Str; + Str += "$_"; + Str += llvm::utostr(AnonStructId); + + Out << Str.size(); + Out << Str.str(); + break; + } + + case DeclarationName::ObjCZeroArgSelector: + case DeclarationName::ObjCOneArgSelector: + case DeclarationName::ObjCMultiArgSelector: + assert(false && "Can't mangle Objective-C selector names here!"); + break; + + case DeclarationName::CXXConstructorName: + if (ND == Structor) + // If the named decl is the C++ constructor we're mangling, use the type + // we were given. + mangleCXXCtorType(static_cast<CXXCtorType>(StructorType)); + else + // Otherwise, use the complete constructor name. This is relevant if a + // class with a constructor is declared within a constructor. + mangleCXXCtorType(Ctor_Complete); + break; + + case DeclarationName::CXXDestructorName: + if (ND == Structor) + // If the named decl is the C++ destructor we're mangling, use the type we + // were given. + mangleCXXDtorType(static_cast<CXXDtorType>(StructorType)); + else + // Otherwise, use the complete destructor name. This is relevant if a + // class with a destructor is declared within a destructor. + mangleCXXDtorType(Dtor_Complete); + break; + + case DeclarationName::CXXConversionFunctionName: + // <operator-name> ::= cv <type> # (cast) + Out << "cv"; + mangleType(Context.getASTContext().getCanonicalType(Name.getCXXNameType())); + break; + + case DeclarationName::CXXOperatorName: { + unsigned Arity; + if (ND) { + Arity = cast<FunctionDecl>(ND)->getNumParams(); + + // If we have a C++ member function, we need to include the 'this' pointer. + // FIXME: This does not make sense for operators that are static, but their + // names stay the same regardless of the arity (operator new for instance). + if (isa<CXXMethodDecl>(ND)) + Arity++; + } else + Arity = KnownArity; + + mangleOperatorName(Name.getCXXOverloadedOperator(), Arity); + break; + } + + case DeclarationName::CXXLiteralOperatorName: + // FIXME: This mangling is not yet official. + Out << "li"; + mangleSourceName(Name.getCXXLiteralIdentifier()); + break; + + case DeclarationName::CXXUsingDirective: + assert(false && "Can't mangle a using directive name!"); + break; + } +} + +void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) { + // <source-name> ::= <positive length number> <identifier> + // <number> ::= [n] <non-negative decimal integer> + // <identifier> ::= <unqualified source code identifier> + Out << II->getLength() << II->getName(); +} + +void CXXNameMangler::mangleNestedName(const NamedDecl *ND, + const DeclContext *DC, + bool NoFunction) { + // <nested-name> ::= N [<CV-qualifiers>] <prefix> <unqualified-name> E + // ::= N [<CV-qualifiers>] <template-prefix> <template-args> E + + Out << 'N'; + if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) + mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers())); + + // Check if we have a template. + const TemplateArgumentList *TemplateArgs = 0; + if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) { + mangleTemplatePrefix(TD); + TemplateParameterList *TemplateParameters = TD->getTemplateParameters(); + mangleTemplateArgs(*TemplateParameters, *TemplateArgs); + } + else { + manglePrefix(DC, NoFunction); + mangleUnqualifiedName(ND); + } + + Out << 'E'; +} +void CXXNameMangler::mangleNestedName(const TemplateDecl *TD, + const TemplateArgument *TemplateArgs, + unsigned NumTemplateArgs) { + // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E + + Out << 'N'; + + mangleTemplatePrefix(TD); + TemplateParameterList *TemplateParameters = TD->getTemplateParameters(); + mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs); + + Out << 'E'; +} + +void CXXNameMangler::mangleLocalName(const NamedDecl *ND) { + // <local-name> := Z <function encoding> E <entity name> [<discriminator>] + // := Z <function encoding> E s [<discriminator>] + // <discriminator> := _ <non-negative number> + const DeclContext *DC = ND->getDeclContext(); + Out << 'Z'; + + if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) { + mangleObjCMethodName(MD); + } + else if (const DeclContext *CDC = GetLocalClassFunctionDeclContext(DC)) { + mangleFunctionEncoding(cast<FunctionDecl>(CDC)); + Out << 'E'; + mangleNestedName(ND, DC, true /*NoFunction*/); + + // FIXME. This still does not cover all cases. + unsigned disc; + if (Context.getNextDiscriminator(ND, disc)) { + if (disc < 10) + Out << '_' << disc; + else + Out << "__" << disc << '_'; + } + + return; + } + else + mangleFunctionEncoding(cast<FunctionDecl>(DC)); + + Out << 'E'; + mangleUnqualifiedName(ND); +} + +void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) { + // <prefix> ::= <prefix> <unqualified-name> + // ::= <template-prefix> <template-args> + // ::= <template-param> + // ::= # empty + // ::= <substitution> + + while (isa<LinkageSpecDecl>(DC)) + DC = DC->getParent(); + + if (DC->isTranslationUnit()) + return; + + if (const BlockDecl *Block = dyn_cast<BlockDecl>(DC)) { + manglePrefix(DC->getParent(), NoFunction); + llvm::SmallString<64> Name; + Context.mangleBlock(Block, Name); + Out << Name.size() << Name; + return; + } + + if (mangleSubstitution(cast<NamedDecl>(DC))) + return; + + // Check if we have a template. + const TemplateArgumentList *TemplateArgs = 0; + if (const TemplateDecl *TD = isTemplate(cast<NamedDecl>(DC), TemplateArgs)) { + mangleTemplatePrefix(TD); + TemplateParameterList *TemplateParameters = TD->getTemplateParameters(); + mangleTemplateArgs(*TemplateParameters, *TemplateArgs); + } + else if(NoFunction && (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC))) + return; + else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC)) + mangleObjCMethodName(Method); + else { + manglePrefix(DC->getParent(), NoFunction); + mangleUnqualifiedName(cast<NamedDecl>(DC)); + } + + addSubstitution(cast<NamedDecl>(DC)); +} + +void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) { + // <template-prefix> ::= <prefix> <template unqualified-name> + // ::= <template-param> + // ::= <substitution> + if (TemplateDecl *TD = Template.getAsTemplateDecl()) + return mangleTemplatePrefix(TD); + + if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName()) + mangleUnresolvedScope(Qualified->getQualifier()); + + if (OverloadedTemplateStorage *Overloaded + = Template.getAsOverloadedTemplate()) { + mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(), + UnknownArity); + return; + } + + DependentTemplateName *Dependent = Template.getAsDependentTemplateName(); + assert(Dependent && "Unknown template name kind?"); + mangleUnresolvedScope(Dependent->getQualifier()); + mangleUnscopedTemplateName(Template); +} + +void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND) { + // <template-prefix> ::= <prefix> <template unqualified-name> + // ::= <template-param> + // ::= <substitution> + // <template-template-param> ::= <template-param> + // <substitution> + + if (mangleSubstitution(ND)) + return; + + // <template-template-param> ::= <template-param> + if (const TemplateTemplateParmDecl *TTP + = dyn_cast<TemplateTemplateParmDecl>(ND)) { + mangleTemplateParameter(TTP->getIndex()); + return; + } + + manglePrefix(ND->getDeclContext()); + mangleUnqualifiedName(ND->getTemplatedDecl()); + addSubstitution(ND); +} + +void +CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) { + switch (OO) { + // <operator-name> ::= nw # new + case OO_New: Out << "nw"; break; + // ::= na # new[] + case OO_Array_New: Out << "na"; break; + // ::= dl # delete + case OO_Delete: Out << "dl"; break; + // ::= da # delete[] + case OO_Array_Delete: Out << "da"; break; + // ::= ps # + (unary) + // ::= pl # + + case OO_Plus: + assert((Arity == 1 || Arity == 2) && "Invalid arity!"); + Out << (Arity == 1? "ps" : "pl"); break; + // ::= ng # - (unary) + // ::= mi # - + case OO_Minus: + assert((Arity == 1 || Arity == 2) && "Invalid arity!"); + Out << (Arity == 1? "ng" : "mi"); break; + // ::= ad # & (unary) + // ::= an # & + case OO_Amp: + assert((Arity == 1 || Arity == 2) && "Invalid arity!"); + Out << (Arity == 1? "ad" : "an"); break; + // ::= de # * (unary) + // ::= ml # * + case OO_Star: + assert((Arity == 1 || Arity == 2) && "Invalid arity!"); + Out << (Arity == 1? "de" : "ml"); break; + // ::= co # ~ + case OO_Tilde: Out << "co"; break; + // ::= dv # / + case OO_Slash: Out << "dv"; break; + // ::= rm # % + case OO_Percent: Out << "rm"; break; + // ::= or # | + case OO_Pipe: Out << "or"; break; + // ::= eo # ^ + case OO_Caret: Out << "eo"; break; + // ::= aS # = + case OO_Equal: Out << "aS"; break; + // ::= pL # += + case OO_PlusEqual: Out << "pL"; break; + // ::= mI # -= + case OO_MinusEqual: Out << "mI"; break; + // ::= mL # *= + case OO_StarEqual: Out << "mL"; break; + // ::= dV # /= + case OO_SlashEqual: Out << "dV"; break; + // ::= rM # %= + case OO_PercentEqual: Out << "rM"; break; + // ::= aN # &= + case OO_AmpEqual: Out << "aN"; break; + // ::= oR # |= + case OO_PipeEqual: Out << "oR"; break; + // ::= eO # ^= + case OO_CaretEqual: Out << "eO"; break; + // ::= ls # << + case OO_LessLess: Out << "ls"; break; + // ::= rs # >> + case OO_GreaterGreater: Out << "rs"; break; + // ::= lS # <<= + case OO_LessLessEqual: Out << "lS"; break; + // ::= rS # >>= + case OO_GreaterGreaterEqual: Out << "rS"; break; + // ::= eq # == + case OO_EqualEqual: Out << "eq"; break; + // ::= ne # != + case OO_ExclaimEqual: Out << "ne"; break; + // ::= lt # < + case OO_Less: Out << "lt"; break; + // ::= gt # > + case OO_Greater: Out << "gt"; break; + // ::= le # <= + case OO_LessEqual: Out << "le"; break; + // ::= ge # >= + case OO_GreaterEqual: Out << "ge"; break; + // ::= nt # ! + case OO_Exclaim: Out << "nt"; break; + // ::= aa # && + case OO_AmpAmp: Out << "aa"; break; + // ::= oo # || + case OO_PipePipe: Out << "oo"; break; + // ::= pp # ++ + case OO_PlusPlus: Out << "pp"; break; + // ::= mm # -- + case OO_MinusMinus: Out << "mm"; break; + // ::= cm # , + case OO_Comma: Out << "cm"; break; + // ::= pm # ->* + case OO_ArrowStar: Out << "pm"; break; + // ::= pt # -> + case OO_Arrow: Out << "pt"; break; + // ::= cl # () + case OO_Call: Out << "cl"; break; + // ::= ix # [] + case OO_Subscript: Out << "ix"; break; + + // ::= qu # ? + // The conditional operator can't be overloaded, but we still handle it when + // mangling expressions. + case OO_Conditional: Out << "qu"; break; + + case OO_None: + case NUM_OVERLOADED_OPERATORS: + assert(false && "Not an overloaded operator"); + break; + } +} + +void CXXNameMangler::mangleQualifiers(Qualifiers Quals) { + // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const + if (Quals.hasRestrict()) + Out << 'r'; + if (Quals.hasVolatile()) + Out << 'V'; + if (Quals.hasConst()) + Out << 'K'; + + // FIXME: For now, just drop all extension qualifiers on the floor. +} + +void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) { + llvm::SmallString<64> Buffer; + MiscNameMangler(Context, Buffer).mangleObjCMethodName(MD); + Out << Buffer; +} + +void CXXNameMangler::mangleType(QualType T) { + // Only operate on the canonical type! + T = Context.getASTContext().getCanonicalType(T); + + bool IsSubstitutable = T.hasLocalQualifiers() || !isa<BuiltinType>(T); + if (IsSubstitutable && mangleSubstitution(T)) + return; + + if (Qualifiers Quals = T.getLocalQualifiers()) { + mangleQualifiers(Quals); + // Recurse: even if the qualified type isn't yet substitutable, + // the unqualified type might be. + mangleType(T.getLocalUnqualifiedType()); + } else { + switch (T->getTypeClass()) { +#define ABSTRACT_TYPE(CLASS, PARENT) +#define NON_CANONICAL_TYPE(CLASS, PARENT) \ + case Type::CLASS: \ + llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \ + return; +#define TYPE(CLASS, PARENT) \ + case Type::CLASS: \ + mangleType(static_cast<const CLASS##Type*>(T.getTypePtr())); \ + break; +#include "clang/AST/TypeNodes.def" + } + } + + // Add the substitution. + if (IsSubstitutable) + addSubstitution(T); +} + +void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) { + if (!mangleStandardSubstitution(ND)) + mangleName(ND); +} + +void CXXNameMangler::mangleType(const BuiltinType *T) { + // <type> ::= <builtin-type> + // <builtin-type> ::= v # void + // ::= w # wchar_t + // ::= b # bool + // ::= c # char + // ::= a # signed char + // ::= h # unsigned char + // ::= s # short + // ::= t # unsigned short + // ::= i # int + // ::= j # unsigned int + // ::= l # long + // ::= m # unsigned long + // ::= x # long long, __int64 + // ::= y # unsigned long long, __int64 + // ::= n # __int128 + // UNSUPPORTED: ::= o # unsigned __int128 + // ::= f # float + // ::= d # double + // ::= e # long double, __float80 + // UNSUPPORTED: ::= g # __float128 + // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits) + // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits) + // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits) + // UNSUPPORTED: ::= Dh # IEEE 754r half-precision floating point (16 bits) + // ::= Di # char32_t + // ::= Ds # char16_t + // ::= u <source-name> # vendor extended type + // From our point of view, std::nullptr_t is a builtin, but as far as mangling + // is concerned, it's a type called std::nullptr_t. + switch (T->getKind()) { + case BuiltinType::Void: Out << 'v'; break; + case BuiltinType::Bool: Out << 'b'; break; + case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break; + case BuiltinType::UChar: Out << 'h'; break; + case BuiltinType::UShort: Out << 't'; break; + case BuiltinType::UInt: Out << 'j'; break; + case BuiltinType::ULong: Out << 'm'; break; + case BuiltinType::ULongLong: Out << 'y'; break; + case BuiltinType::UInt128: Out << 'o'; break; + case BuiltinType::SChar: Out << 'a'; break; + case BuiltinType::WChar: Out << 'w'; break; + case BuiltinType::Char16: Out << "Ds"; break; + case BuiltinType::Char32: Out << "Di"; break; + case BuiltinType::Short: Out << 's'; break; + case BuiltinType::Int: Out << 'i'; break; + case BuiltinType::Long: Out << 'l'; break; + case BuiltinType::LongLong: Out << 'x'; break; + case BuiltinType::Int128: Out << 'n'; break; + case BuiltinType::Float: Out << 'f'; break; + case BuiltinType::Double: Out << 'd'; break; + case BuiltinType::LongDouble: Out << 'e'; break; + case BuiltinType::NullPtr: Out << "St9nullptr_t"; break; + + case BuiltinType::Overload: + case BuiltinType::Dependent: + assert(false && + "Overloaded and dependent types shouldn't get to name mangling"); + break; + case BuiltinType::UndeducedAuto: + assert(0 && "Should not see undeduced auto here"); + break; + case BuiltinType::ObjCId: Out << "11objc_object"; break; + case BuiltinType::ObjCClass: Out << "10objc_class"; break; + case BuiltinType::ObjCSel: Out << "13objc_selector"; break; + } +} + +// <type> ::= <function-type> +// <function-type> ::= F [Y] <bare-function-type> E +void CXXNameMangler::mangleType(const FunctionProtoType *T) { + Out << 'F'; + // FIXME: We don't have enough information in the AST to produce the 'Y' + // encoding for extern "C" function types. + mangleBareFunctionType(T, /*MangleReturnType=*/true); + Out << 'E'; +} +void CXXNameMangler::mangleType(const FunctionNoProtoType *T) { + llvm_unreachable("Can't mangle K&R function prototypes"); +} +void CXXNameMangler::mangleBareFunctionType(const FunctionType *T, + bool MangleReturnType) { + // We should never be mangling something without a prototype. + const FunctionProtoType *Proto = cast<FunctionProtoType>(T); + + // <bare-function-type> ::= <signature type>+ + if (MangleReturnType) + mangleType(Proto->getResultType()); + + if (Proto->getNumArgs() == 0) { + Out << 'v'; + return; + } + + for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(), + ArgEnd = Proto->arg_type_end(); + Arg != ArgEnd; ++Arg) + mangleType(*Arg); + + // <builtin-type> ::= z # ellipsis + if (Proto->isVariadic()) + Out << 'z'; +} + +// <type> ::= <class-enum-type> +// <class-enum-type> ::= <name> +void CXXNameMangler::mangleType(const UnresolvedUsingType *T) { + mangleName(T->getDecl()); +} + +// <type> ::= <class-enum-type> +// <class-enum-type> ::= <name> +void CXXNameMangler::mangleType(const EnumType *T) { + mangleType(static_cast<const TagType*>(T)); +} +void CXXNameMangler::mangleType(const RecordType *T) { + mangleType(static_cast<const TagType*>(T)); +} +void CXXNameMangler::mangleType(const TagType *T) { + mangleName(T->getDecl()); +} + +// <type> ::= <array-type> +// <array-type> ::= A <positive dimension number> _ <element type> +// ::= A [<dimension expression>] _ <element type> +void CXXNameMangler::mangleType(const ConstantArrayType *T) { + Out << 'A' << T->getSize() << '_'; + mangleType(T->getElementType()); +} +void CXXNameMangler::mangleType(const VariableArrayType *T) { + Out << 'A'; + mangleExpression(T->getSizeExpr()); + Out << '_'; + mangleType(T->getElementType()); +} +void CXXNameMangler::mangleType(const DependentSizedArrayType *T) { + Out << 'A'; + mangleExpression(T->getSizeExpr()); + Out << '_'; + mangleType(T->getElementType()); +} +void CXXNameMangler::mangleType(const IncompleteArrayType *T) { + Out << 'A' << '_'; + mangleType(T->getElementType()); +} + +// <type> ::= <pointer-to-member-type> +// <pointer-to-member-type> ::= M <class type> <member type> +void CXXNameMangler::mangleType(const MemberPointerType *T) { + Out << 'M'; + mangleType(QualType(T->getClass(), 0)); + QualType PointeeType = T->getPointeeType(); + if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) { + mangleQualifiers(Qualifiers::fromCVRMask(FPT->getTypeQuals())); + mangleType(FPT); + } else + mangleType(PointeeType); +} + +// <type> ::= <template-param> +void CXXNameMangler::mangleType(const TemplateTypeParmType *T) { + mangleTemplateParameter(T->getIndex()); +} + +// FIXME: <type> ::= <template-template-param> <template-args> + +// <type> ::= P <type> # pointer-to +void CXXNameMangler::mangleType(const PointerType *T) { + Out << 'P'; + mangleType(T->getPointeeType()); +} +void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) { + Out << 'P'; + mangleType(T->getPointeeType()); +} + +// <type> ::= R <type> # reference-to +void CXXNameMangler::mangleType(const LValueReferenceType *T) { + Out << 'R'; + mangleType(T->getPointeeType()); +} + +// <type> ::= O <type> # rvalue reference-to (C++0x) +void CXXNameMangler::mangleType(const RValueReferenceType *T) { + Out << 'O'; + mangleType(T->getPointeeType()); +} + +// <type> ::= C <type> # complex pair (C 2000) +void CXXNameMangler::mangleType(const ComplexType *T) { + Out << 'C'; + mangleType(T->getElementType()); +} + +// GNU extension: vector types +// <type> ::= <vector-type> +// <vector-type> ::= Dv <positive dimension number> _ <element type> +// ::= Dv [<dimension expression>] _ <element type> +void CXXNameMangler::mangleType(const VectorType *T) { + Out << "Dv" << T->getNumElements() << '_'; + mangleType(T->getElementType()); +} +void CXXNameMangler::mangleType(const ExtVectorType *T) { + mangleType(static_cast<const VectorType*>(T)); +} +void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) { + Out << "Dv"; + mangleExpression(T->getSizeExpr()); + Out << '_'; + mangleType(T->getElementType()); +} + +void CXXNameMangler::mangleType(const ObjCInterfaceType *T) { + mangleSourceName(T->getDecl()->getIdentifier()); +} + +void CXXNameMangler::mangleType(const ObjCObjectType *T) { + // We don't allow overloading by different protocol qualification, + // so mangling them isn't necessary. + mangleType(T->getBaseType()); +} + +void CXXNameMangler::mangleType(const BlockPointerType *T) { + Out << "U13block_pointer"; + mangleType(T->getPointeeType()); +} + +void CXXNameMangler::mangleType(const InjectedClassNameType *T) { + // Mangle injected class name types as if the user had written the + // specialization out fully. It may not actually be possible to see + // this mangling, though. + mangleType(T->getInjectedSpecializationType()); +} + +void CXXNameMangler::mangleType(const TemplateSpecializationType *T) { + if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) { + mangleName(TD, T->getArgs(), T->getNumArgs()); + } else { + if (mangleSubstitution(QualType(T, 0))) + return; + + mangleTemplatePrefix(T->getTemplateName()); + + // FIXME: GCC does not appear to mangle the template arguments when + // the template in question is a dependent template name. Should we + // emulate that badness? + mangleTemplateArgs(T->getTemplateName(), T->getArgs(), T->getNumArgs()); + addSubstitution(QualType(T, 0)); + } +} + +void CXXNameMangler::mangleType(const DependentNameType *T) { + // Typename types are always nested + Out << 'N'; + if (T->getIdentifier()) { + mangleUnresolvedScope(T->getQualifier()); + mangleSourceName(T->getIdentifier()); + } else { + const TemplateSpecializationType *TST = T->getTemplateId(); + if (!mangleSubstitution(QualType(TST, 0))) { + mangleTemplatePrefix(TST->getTemplateName()); + + // FIXME: GCC does not appear to mangle the template arguments when + // the template in question is a dependent template name. Should we + // emulate that badness? + mangleTemplateArgs(TST->getTemplateName(), TST->getArgs(), + TST->getNumArgs()); + addSubstitution(QualType(TST, 0)); + } + } + + Out << 'E'; +} + +void CXXNameMangler::mangleType(const TypeOfType *T) { + // FIXME: this is pretty unsatisfactory, but there isn't an obvious + // "extension with parameters" mangling. + Out << "u6typeof"; +} + +void CXXNameMangler::mangleType(const TypeOfExprType *T) { + // FIXME: this is pretty unsatisfactory, but there isn't an obvious + // "extension with parameters" mangling. + Out << "u6typeof"; +} + +void CXXNameMangler::mangleType(const DecltypeType *T) { + Expr *E = T->getUnderlyingExpr(); + + // type ::= Dt <expression> E # decltype of an id-expression + // # or class member access + // ::= DT <expression> E # decltype of an expression + + // This purports to be an exhaustive list of id-expressions and + // class member accesses. Note that we do not ignore parentheses; + // parentheses change the semantics of decltype for these + // expressions (and cause the mangler to use the other form). + if (isa<DeclRefExpr>(E) || + isa<MemberExpr>(E) || + isa<UnresolvedLookupExpr>(E) || + isa<DependentScopeDeclRefExpr>(E) || + isa<CXXDependentScopeMemberExpr>(E) || + isa<UnresolvedMemberExpr>(E)) + Out << "Dt"; + else + Out << "DT"; + mangleExpression(E); + Out << 'E'; +} + +void CXXNameMangler::mangleIntegerLiteral(QualType T, + const llvm::APSInt &Value) { + // <expr-primary> ::= L <type> <value number> E # integer literal + Out << 'L'; + + mangleType(T); + if (T->isBooleanType()) { + // Boolean values are encoded as 0/1. + Out << (Value.getBoolValue() ? '1' : '0'); + } else { + if (Value.isNegative()) + Out << 'n'; + Value.abs().print(Out, false); + } + Out << 'E'; + +} + +void CXXNameMangler::mangleCalledExpression(const Expr *E, unsigned Arity) { + if (E->getType() != getASTContext().OverloadTy) + mangleExpression(E); + // propagate arity to dependent overloads? + + llvm::PointerIntPair<OverloadExpr*,1> R + = OverloadExpr::find(const_cast<Expr*>(E)); + if (R.getInt()) + Out << "an"; // & + const OverloadExpr *Ovl = R.getPointer(); + if (const UnresolvedMemberExpr *ME = dyn_cast<UnresolvedMemberExpr>(Ovl)) { + mangleMemberExpr(ME->getBase(), ME->isArrow(), ME->getQualifier(), + ME->getMemberName(), Arity); + return; + } + + mangleUnresolvedName(Ovl->getQualifier(), Ovl->getName(), Arity); +} + +/// Mangles a member expression. Implicit accesses are not handled, +/// but that should be okay, because you shouldn't be able to +/// make an implicit access in a function template declaration. +void CXXNameMangler::mangleMemberExpr(const Expr *Base, + bool IsArrow, + NestedNameSpecifier *Qualifier, + DeclarationName Member, + unsigned Arity) { + // gcc-4.4 uses 'dt' for dot expressions, which is reasonable. + // OTOH, gcc also mangles the name as an expression. + Out << (IsArrow ? "pt" : "dt"); + mangleExpression(Base); + mangleUnresolvedName(Qualifier, Member, Arity); +} + +void CXXNameMangler::mangleExpression(const Expr *E) { + // <expression> ::= <unary operator-name> <expression> + // ::= <binary operator-name> <expression> <expression> + // ::= <trinary operator-name> <expression> <expression> <expression> + // ::= cl <expression>* E # call + // ::= cv <type> expression # conversion with one argument + // ::= cv <type> _ <expression>* E # conversion with a different number of arguments + // ::= st <type> # sizeof (a type) + // ::= at <type> # alignof (a type) + // ::= <template-param> + // ::= <function-param> + // ::= sr <type> <unqualified-name> # dependent name + // ::= sr <type> <unqualified-name> <template-args> # dependent template-id + // ::= sZ <template-param> # size of a parameter pack + // ::= <expr-primary> + // <expr-primary> ::= L <type> <value number> E # integer literal + // ::= L <type <value float> E # floating literal + // ::= L <mangled-name> E # external name + switch (E->getStmtClass()) { + case Expr::NoStmtClass: +#define EXPR(Type, Base) +#define STMT(Type, Base) \ + case Expr::Type##Class: +#include "clang/AST/StmtNodes.inc" + llvm_unreachable("unexpected statement kind"); + break; + + default: { + // As bad as this diagnostic is, it's better than crashing. + Diagnostic &Diags = Context.getDiags(); + unsigned DiagID = Diags.getCustomDiagID(Diagnostic::Error, + "cannot yet mangle expression type %0"); + Diags.Report(FullSourceLoc(E->getExprLoc(), + getASTContext().getSourceManager()), + DiagID) + << E->getStmtClassName() << E->getSourceRange(); + break; + } + + case Expr::CallExprClass: { + const CallExpr *CE = cast<CallExpr>(E); + Out << "cl"; + mangleCalledExpression(CE->getCallee(), CE->getNumArgs()); + for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I) + mangleExpression(CE->getArg(I)); + Out << 'E'; + break; + } + + case Expr::MemberExprClass: { + const MemberExpr *ME = cast<MemberExpr>(E); + mangleMemberExpr(ME->getBase(), ME->isArrow(), + ME->getQualifier(), ME->getMemberDecl()->getDeclName(), + UnknownArity); + break; + } + + case Expr::UnresolvedMemberExprClass: { + const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E); + mangleMemberExpr(ME->getBase(), ME->isArrow(), + ME->getQualifier(), ME->getMemberName(), + UnknownArity); + break; + } + + case Expr::CXXDependentScopeMemberExprClass: { + const CXXDependentScopeMemberExpr *ME + = cast<CXXDependentScopeMemberExpr>(E); + mangleMemberExpr(ME->getBase(), ME->isArrow(), + ME->getQualifier(), ME->getMember(), + UnknownArity); + break; + } + + case Expr::UnresolvedLookupExprClass: { + // The ABI doesn't cover how to mangle overload sets, so we mangle + // using something as close as possible to the original lookup + // expression. + const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E); + mangleUnresolvedName(ULE->getQualifier(), ULE->getName(), UnknownArity); + break; + } + + case Expr::CXXUnresolvedConstructExprClass: { + const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E); + unsigned N = CE->arg_size(); + + Out << "cv"; + mangleType(CE->getType()); + if (N != 1) Out << '_'; + for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I)); + if (N != 1) Out << 'E'; + break; + } + + case Expr::CXXTemporaryObjectExprClass: + case Expr::CXXConstructExprClass: { + const CXXConstructExpr *CE = cast<CXXConstructExpr>(E); + unsigned N = CE->getNumArgs(); + + Out << "cv"; + mangleType(CE->getType()); + if (N != 1) Out << '_'; + for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I)); + if (N != 1) Out << 'E'; + break; + } + + case Expr::SizeOfAlignOfExprClass: { + const SizeOfAlignOfExpr *SAE = cast<SizeOfAlignOfExpr>(E); + if (SAE->isSizeOf()) Out << 's'; + else Out << 'a'; + if (SAE->isArgumentType()) { + Out << 't'; + mangleType(SAE->getArgumentType()); + } else { + Out << 'z'; + mangleExpression(SAE->getArgumentExpr()); + } + break; + } + + case Expr::UnaryOperatorClass: { + const UnaryOperator *UO = cast<UnaryOperator>(E); + mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()), + /*Arity=*/1); + mangleExpression(UO->getSubExpr()); + break; + } + + case Expr::BinaryOperatorClass: { + const BinaryOperator *BO = cast<BinaryOperator>(E); + mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()), + /*Arity=*/2); + mangleExpression(BO->getLHS()); + mangleExpression(BO->getRHS()); + break; + } + + case Expr::ConditionalOperatorClass: { + const ConditionalOperator *CO = cast<ConditionalOperator>(E); + mangleOperatorName(OO_Conditional, /*Arity=*/3); + mangleExpression(CO->getCond()); + mangleExpression(CO->getLHS()); + mangleExpression(CO->getRHS()); + break; + } + + case Expr::ImplicitCastExprClass: { + mangleExpression(cast<ImplicitCastExpr>(E)->getSubExpr()); + break; + } + + case Expr::CStyleCastExprClass: + case Expr::CXXStaticCastExprClass: + case Expr::CXXDynamicCastExprClass: + case Expr::CXXReinterpretCastExprClass: + case Expr::CXXConstCastExprClass: + case Expr::CXXFunctionalCastExprClass: { + const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E); + Out << "cv"; + mangleType(ECE->getType()); + mangleExpression(ECE->getSubExpr()); + break; + } + + case Expr::CXXOperatorCallExprClass: { + const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E); + unsigned NumArgs = CE->getNumArgs(); + mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs); + // Mangle the arguments. + for (unsigned i = 0; i != NumArgs; ++i) + mangleExpression(CE->getArg(i)); + break; + } + + case Expr::ParenExprClass: + mangleExpression(cast<ParenExpr>(E)->getSubExpr()); + break; + + case Expr::DeclRefExprClass: { + const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl(); + + switch (D->getKind()) { + default: + // <expr-primary> ::= L <mangled-name> E # external name + Out << 'L'; + mangle(D, "_Z"); + Out << 'E'; + break; + + case Decl::NonTypeTemplateParm: { + const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D); + mangleTemplateParameter(PD->getIndex()); + break; + } + + } + + break; + } + + case Expr::DependentScopeDeclRefExprClass: { + const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E); + NestedNameSpecifier *NNS = DRE->getQualifier(); + const Type *QTy = NNS->getAsType(); + + // When we're dealing with a nested-name-specifier that has just a + // dependent identifier in it, mangle that as a typename. FIXME: + // It isn't clear that we ever actually want to have such a + // nested-name-specifier; why not just represent it as a typename type? + if (!QTy && NNS->getAsIdentifier() && NNS->getPrefix()) { + QTy = getASTContext().getDependentNameType(ETK_Typename, + NNS->getPrefix(), + NNS->getAsIdentifier()) + .getTypePtr(); + } + assert(QTy && "Qualifier was not type!"); + + // ::= sr <type> <unqualified-name> # dependent name + Out << "sr"; + mangleType(QualType(QTy, 0)); + + assert(DRE->getDeclName().getNameKind() == DeclarationName::Identifier && + "Unhandled decl name kind!"); + mangleSourceName(DRE->getDeclName().getAsIdentifierInfo()); + + break; + } + + case Expr::CXXBindReferenceExprClass: + mangleExpression(cast<CXXBindReferenceExpr>(E)->getSubExpr()); + break; + + case Expr::CXXBindTemporaryExprClass: + mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr()); + break; + + case Expr::CXXExprWithTemporariesClass: + mangleExpression(cast<CXXExprWithTemporaries>(E)->getSubExpr()); + break; + + case Expr::FloatingLiteralClass: { + const FloatingLiteral *FL = cast<FloatingLiteral>(E); + Out << 'L'; + mangleType(FL->getType()); + + // TODO: avoid this copy with careful stream management. + llvm::SmallString<20> Buffer; + FL->getValue().bitcastToAPInt().toString(Buffer, 16, false); + Out.write(Buffer.data(), Buffer.size()); + + Out << 'E'; + break; + } + + case Expr::CharacterLiteralClass: + Out << 'L'; + mangleType(E->getType()); + Out << cast<CharacterLiteral>(E)->getValue(); + Out << 'E'; + break; + + case Expr::CXXBoolLiteralExprClass: + Out << "Lb"; + Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0'); + Out << 'E'; + break; + + case Expr::IntegerLiteralClass: + mangleIntegerLiteral(E->getType(), + llvm::APSInt(cast<IntegerLiteral>(E)->getValue())); + break; + + } +} + +// FIXME: <type> ::= G <type> # imaginary (C 2000) +// FIXME: <type> ::= U <source-name> <type> # vendor extended type qualifier + +void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) { + // <ctor-dtor-name> ::= C1 # complete object constructor + // ::= C2 # base object constructor + // ::= C3 # complete object allocating constructor + // + switch (T) { + case Ctor_Complete: + Out << "C1"; + break; + case Ctor_Base: + Out << "C2"; + break; + case Ctor_CompleteAllocating: + Out << "C3"; + break; + } +} + +void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) { + // <ctor-dtor-name> ::= D0 # deleting destructor + // ::= D1 # complete object destructor + // ::= D2 # base object destructor + // + switch (T) { + case Dtor_Deleting: + Out << "D0"; + break; + case Dtor_Complete: + Out << "D1"; + break; + case Dtor_Base: + Out << "D2"; + break; + } +} + +void CXXNameMangler::mangleTemplateArgs(TemplateName Template, + const TemplateArgument *TemplateArgs, + unsigned NumTemplateArgs) { + if (TemplateDecl *TD = Template.getAsTemplateDecl()) + return mangleTemplateArgs(*TD->getTemplateParameters(), TemplateArgs, + NumTemplateArgs); + + // <template-args> ::= I <template-arg>+ E + Out << 'I'; + for (unsigned i = 0; i != NumTemplateArgs; ++i) + mangleTemplateArg(0, TemplateArgs[i]); + Out << 'E'; +} + +void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL, + const TemplateArgumentList &AL) { + // <template-args> ::= I <template-arg>+ E + Out << 'I'; + for (unsigned i = 0, e = AL.size(); i != e; ++i) + mangleTemplateArg(PL.getParam(i), AL[i]); + Out << 'E'; +} + +void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL, + const TemplateArgument *TemplateArgs, + unsigned NumTemplateArgs) { + // <template-args> ::= I <template-arg>+ E + Out << 'I'; + for (unsigned i = 0; i != NumTemplateArgs; ++i) + mangleTemplateArg(PL.getParam(i), TemplateArgs[i]); + Out << 'E'; +} + +void CXXNameMangler::mangleTemplateArg(const NamedDecl *P, + const TemplateArgument &A) { + // <template-arg> ::= <type> # type or template + // ::= X <expression> E # expression + // ::= <expr-primary> # simple expressions + // ::= I <template-arg>* E # argument pack + // ::= sp <expression> # pack expansion of (C++0x) + switch (A.getKind()) { + default: + assert(0 && "Unknown template argument kind!"); + case TemplateArgument::Type: + mangleType(A.getAsType()); + break; + case TemplateArgument::Template: + assert(A.getAsTemplate().getAsTemplateDecl() && + "Can't get dependent template names here"); + mangleName(A.getAsTemplate().getAsTemplateDecl()); + break; + case TemplateArgument::Expression: + Out << 'X'; + mangleExpression(A.getAsExpr()); + Out << 'E'; + break; + case TemplateArgument::Integral: + mangleIntegerLiteral(A.getIntegralType(), *A.getAsIntegral()); + break; + case TemplateArgument::Declaration: { + assert(P && "Missing template parameter for declaration argument"); + // <expr-primary> ::= L <mangled-name> E # external name + + // Clang produces AST's where pointer-to-member-function expressions + // and pointer-to-function expressions are represented as a declaration not + // an expression. We compensate for it here to produce the correct mangling. + NamedDecl *D = cast<NamedDecl>(A.getAsDecl()); + const NonTypeTemplateParmDecl *Parameter = cast<NonTypeTemplateParmDecl>(P); + bool compensateMangling = D->isCXXClassMember() && + !Parameter->getType()->isReferenceType(); + if (compensateMangling) { + Out << 'X'; + mangleOperatorName(OO_Amp, 1); + } + + Out << 'L'; + // References to external entities use the mangled name; if the name would + // not normally be manged then mangle it as unqualified. + // + // FIXME: The ABI specifies that external names here should have _Z, but + // gcc leaves this off. + if (compensateMangling) + mangle(D, "_Z"); + else + mangle(D, "Z"); + Out << 'E'; + + if (compensateMangling) + Out << 'E'; + + break; + } + } +} + +void CXXNameMangler::mangleTemplateParameter(unsigned Index) { + // <template-param> ::= T_ # first template parameter + // ::= T <parameter-2 non-negative number> _ + if (Index == 0) + Out << "T_"; + else + Out << 'T' << (Index - 1) << '_'; +} + +// <substitution> ::= S <seq-id> _ +// ::= S_ +bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) { + // Try one of the standard substitutions first. + if (mangleStandardSubstitution(ND)) + return true; + + ND = cast<NamedDecl>(ND->getCanonicalDecl()); + return mangleSubstitution(reinterpret_cast<uintptr_t>(ND)); +} + +bool CXXNameMangler::mangleSubstitution(QualType T) { + if (!T.getCVRQualifiers()) { + if (const RecordType *RT = T->getAs<RecordType>()) + return mangleSubstitution(RT->getDecl()); + } + + uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr()); + + return mangleSubstitution(TypePtr); +} + +bool CXXNameMangler::mangleSubstitution(TemplateName Template) { + if (TemplateDecl *TD = Template.getAsTemplateDecl()) + return mangleSubstitution(TD); + + Template = Context.getASTContext().getCanonicalTemplateName(Template); + return mangleSubstitution( + reinterpret_cast<uintptr_t>(Template.getAsVoidPointer())); +} + +bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) { + llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr); + if (I == Substitutions.end()) + return false; + + unsigned SeqID = I->second; + if (SeqID == 0) + Out << "S_"; + else { + SeqID--; + + // <seq-id> is encoded in base-36, using digits and upper case letters. + char Buffer[10]; + char *BufferPtr = llvm::array_endof(Buffer); + + if (SeqID == 0) *--BufferPtr = '0'; + + while (SeqID) { + assert(BufferPtr > Buffer && "Buffer overflow!"); + + unsigned char c = static_cast<unsigned char>(SeqID) % 36; + + *--BufferPtr = (c < 10 ? '0' + c : 'A' + c - 10); + SeqID /= 36; + } + + Out << 'S' + << llvm::StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr) + << '_'; + } + + return true; +} + +static bool isCharType(QualType T) { + if (T.isNull()) + return false; + + return T->isSpecificBuiltinType(BuiltinType::Char_S) || + T->isSpecificBuiltinType(BuiltinType::Char_U); +} + +/// isCharSpecialization - Returns whether a given type is a template +/// specialization of a given name with a single argument of type char. +static bool isCharSpecialization(QualType T, const char *Name) { + if (T.isNull()) + return false; + + const RecordType *RT = T->getAs<RecordType>(); + if (!RT) + return false; + + const ClassTemplateSpecializationDecl *SD = + dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl()); + if (!SD) + return false; + + if (!isStdNamespace(SD->getDeclContext())) + return false; + + const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); + if (TemplateArgs.size() != 1) + return false; + + if (!isCharType(TemplateArgs[0].getAsType())) + return false; + + return SD->getIdentifier()->getName() == Name; +} + +template <std::size_t StrLen> +bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl *SD, + const char (&Str)[StrLen]) { + if (!SD->getIdentifier()->isStr(Str)) + return false; + + const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); + if (TemplateArgs.size() != 2) + return false; + + if (!isCharType(TemplateArgs[0].getAsType())) + return false; + + if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits")) + return false; + + return true; +} + +bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) { + // <substitution> ::= St # ::std:: + if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { + if (isStd(NS)) { + Out << "St"; + return true; + } + } + + if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) { + if (!isStdNamespace(TD->getDeclContext())) + return false; + + // <substitution> ::= Sa # ::std::allocator + if (TD->getIdentifier()->isStr("allocator")) { + Out << "Sa"; + return true; + } + + // <<substitution> ::= Sb # ::std::basic_string + if (TD->getIdentifier()->isStr("basic_string")) { + Out << "Sb"; + return true; + } + } + + if (const ClassTemplateSpecializationDecl *SD = + dyn_cast<ClassTemplateSpecializationDecl>(ND)) { + if (!isStdNamespace(SD->getDeclContext())) + return false; + + // <substitution> ::= Ss # ::std::basic_string<char, + // ::std::char_traits<char>, + // ::std::allocator<char> > + if (SD->getIdentifier()->isStr("basic_string")) { + const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); + + if (TemplateArgs.size() != 3) + return false; + + if (!isCharType(TemplateArgs[0].getAsType())) + return false; + + if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits")) + return false; + + if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator")) + return false; + + Out << "Ss"; + return true; + } + + // <substitution> ::= Si # ::std::basic_istream<char, + // ::std::char_traits<char> > + if (isStreamCharSpecialization(SD, "basic_istream")) { + Out << "Si"; + return true; + } + + // <substitution> ::= So # ::std::basic_ostream<char, + // ::std::char_traits<char> > + if (isStreamCharSpecialization(SD, "basic_ostream")) { + Out << "So"; + return true; + } + + // <substitution> ::= Sd # ::std::basic_iostream<char, + // ::std::char_traits<char> > + if (isStreamCharSpecialization(SD, "basic_iostream")) { + Out << "Sd"; + return true; + } + } + return false; +} + +void CXXNameMangler::addSubstitution(QualType T) { + if (!T.getCVRQualifiers()) { + if (const RecordType *RT = T->getAs<RecordType>()) { + addSubstitution(RT->getDecl()); + return; + } + } + + uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr()); + addSubstitution(TypePtr); +} + +void CXXNameMangler::addSubstitution(TemplateName Template) { + if (TemplateDecl *TD = Template.getAsTemplateDecl()) + return addSubstitution(TD); + + Template = Context.getASTContext().getCanonicalTemplateName(Template); + addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer())); +} + +void CXXNameMangler::addSubstitution(uintptr_t Ptr) { + unsigned SeqID = Substitutions.size(); + + assert(!Substitutions.count(Ptr) && "Substitution already exists!"); + Substitutions[Ptr] = SeqID; +} + +// + +/// \brief Mangles the name of the declaration D and emits that name to the +/// given output stream. +/// +/// If the declaration D requires a mangled name, this routine will emit that +/// mangled name to \p os and return true. Otherwise, \p os will be unchanged +/// and this routine will return false. In this case, the caller should just +/// emit the identifier of the declaration (\c D->getIdentifier()) as its +/// name. +void MangleContext::mangleName(const NamedDecl *D, + llvm::SmallVectorImpl<char> &Res) { + assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) && + "Invalid mangleName() call, argument is not a variable or function!"); + assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) && + "Invalid mangleName() call on 'structor decl!"); + + PrettyStackTraceDecl CrashInfo(D, SourceLocation(), + getASTContext().getSourceManager(), + "Mangling declaration"); + + CXXNameMangler Mangler(*this, Res); + return Mangler.mangle(D); +} + +void MangleContext::mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type, + llvm::SmallVectorImpl<char> &Res) { + CXXNameMangler Mangler(*this, Res, D, Type); + Mangler.mangle(D); +} + +void MangleContext::mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type, + llvm::SmallVectorImpl<char> &Res) { + CXXNameMangler Mangler(*this, Res, D, Type); + Mangler.mangle(D); +} + +void MangleContext::mangleBlock(const BlockDecl *BD, + llvm::SmallVectorImpl<char> &Res) { + MiscNameMangler Mangler(*this, Res); + Mangler.mangleBlock(BD); +} + +void MangleContext::mangleThunk(const CXXMethodDecl *MD, + const ThunkInfo &Thunk, + llvm::SmallVectorImpl<char> &Res) { + // <special-name> ::= T <call-offset> <base encoding> + // # base is the nominal target function of thunk + // <special-name> ::= Tc <call-offset> <call-offset> <base encoding> + // # base is the nominal target function of thunk + // # first call-offset is 'this' adjustment + // # second call-offset is result adjustment + + assert(!isa<CXXDestructorDecl>(MD) && + "Use mangleCXXDtor for destructor decls!"); + + CXXNameMangler Mangler(*this, Res); + Mangler.getStream() << "_ZT"; + if (!Thunk.Return.isEmpty()) + Mangler.getStream() << 'c'; + + // Mangle the 'this' pointer adjustment. + Mangler.mangleCallOffset(Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset); + + // Mangle the return pointer adjustment if there is one. + if (!Thunk.Return.isEmpty()) + Mangler.mangleCallOffset(Thunk.Return.NonVirtual, + Thunk.Return.VBaseOffsetOffset); + + Mangler.mangleFunctionEncoding(MD); +} + +void +MangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type, + const ThisAdjustment &ThisAdjustment, + llvm::SmallVectorImpl<char> &Res) { + // <special-name> ::= T <call-offset> <base encoding> + // # base is the nominal target function of thunk + + CXXNameMangler Mangler(*this, Res, DD, Type); + Mangler.getStream() << "_ZT"; + + // Mangle the 'this' pointer adjustment. + Mangler.mangleCallOffset(ThisAdjustment.NonVirtual, + ThisAdjustment.VCallOffsetOffset); + + Mangler.mangleFunctionEncoding(DD); +} + +/// mangleGuardVariable - Returns the mangled name for a guard variable +/// for the passed in VarDecl. +void MangleContext::mangleGuardVariable(const VarDecl *D, + llvm::SmallVectorImpl<char> &Res) { + // <special-name> ::= GV <object name> # Guard variable for one-time + // # initialization + CXXNameMangler Mangler(*this, Res); + Mangler.getStream() << "_ZGV"; + Mangler.mangleName(D); +} + +void MangleContext::mangleCXXVTable(const CXXRecordDecl *RD, + llvm::SmallVectorImpl<char> &Res) { + // <special-name> ::= TV <type> # virtual table + CXXNameMangler Mangler(*this, Res); + Mangler.getStream() << "_ZTV"; + Mangler.mangleNameOrStandardSubstitution(RD); +} + +void MangleContext::mangleCXXVTT(const CXXRecordDecl *RD, + llvm::SmallVectorImpl<char> &Res) { + // <special-name> ::= TT <type> # VTT structure + CXXNameMangler Mangler(*this, Res); + Mangler.getStream() << "_ZTT"; + Mangler.mangleNameOrStandardSubstitution(RD); +} + +void MangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset, + const CXXRecordDecl *Type, + llvm::SmallVectorImpl<char> &Res) { + // <special-name> ::= TC <type> <offset number> _ <base type> + CXXNameMangler Mangler(*this, Res); + Mangler.getStream() << "_ZTC"; + Mangler.mangleNameOrStandardSubstitution(RD); + Mangler.getStream() << Offset; + Mangler.getStream() << '_'; + Mangler.mangleNameOrStandardSubstitution(Type); +} + +void MangleContext::mangleCXXRTTI(QualType Ty, + llvm::SmallVectorImpl<char> &Res) { + // <special-name> ::= TI <type> # typeinfo structure + assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers"); + CXXNameMangler Mangler(*this, Res); + Mangler.getStream() << "_ZTI"; + Mangler.mangleType(Ty); +} + +void MangleContext::mangleCXXRTTIName(QualType Ty, + llvm::SmallVectorImpl<char> &Res) { + // <special-name> ::= TS <type> # typeinfo name (null terminated byte string) + CXXNameMangler Mangler(*this, Res); + Mangler.getStream() << "_ZTS"; + Mangler.mangleType(Ty); +} |