summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/CodeGen/ItaniumCXXABI.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/CodeGen/ItaniumCXXABI.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/ItaniumCXXABI.cpp2990
1 files changed, 2990 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/ItaniumCXXABI.cpp b/contrib/llvm/tools/clang/lib/CodeGen/ItaniumCXXABI.cpp
new file mode 100644
index 0000000..d7e61f0
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/ItaniumCXXABI.cpp
@@ -0,0 +1,2990 @@
+//===------- ItaniumCXXABI.cpp - Emit LLVM Code from ASTs for a Module ----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This provides C++ code generation targeting the Itanium C++ ABI. The class
+// in this file generates structures that follow the Itanium C++ ABI, which is
+// documented at:
+// http://www.codesourcery.com/public/cxx-abi/abi.html
+// http://www.codesourcery.com/public/cxx-abi/abi-eh.html
+//
+// It also supports the closely-related ARM ABI, documented at:
+// http://infocenter.arm.com/help/topic/com.arm.doc.ihi0041c/IHI0041C_cppabi.pdf
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGCXXABI.h"
+#include "CGRecordLayout.h"
+#include "CGVTables.h"
+#include "CodeGenFunction.h"
+#include "CodeGenModule.h"
+#include "clang/AST/Mangle.h"
+#include "clang/AST/Type.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Value.h"
+
+using namespace clang;
+using namespace CodeGen;
+
+namespace {
+class ItaniumCXXABI : public CodeGen::CGCXXABI {
+ /// VTables - All the vtables which have been defined.
+ llvm::DenseMap<const CXXRecordDecl *, llvm::GlobalVariable *> VTables;
+
+protected:
+ bool UseARMMethodPtrABI;
+ bool UseARMGuardVarABI;
+
+ ItaniumMangleContext &getMangleContext() {
+ return cast<ItaniumMangleContext>(CodeGen::CGCXXABI::getMangleContext());
+ }
+
+public:
+ ItaniumCXXABI(CodeGen::CodeGenModule &CGM,
+ bool UseARMMethodPtrABI = false,
+ bool UseARMGuardVarABI = false) :
+ CGCXXABI(CGM), UseARMMethodPtrABI(UseARMMethodPtrABI),
+ UseARMGuardVarABI(UseARMGuardVarABI) { }
+
+ bool classifyReturnType(CGFunctionInfo &FI) const override;
+
+ RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override {
+ // Structures with either a non-trivial destructor or a non-trivial
+ // copy constructor are always indirect.
+ // FIXME: Use canCopyArgument() when it is fixed to handle lazily declared
+ // special members.
+ if (RD->hasNonTrivialDestructor() || RD->hasNonTrivialCopyConstructor())
+ return RAA_Indirect;
+ return RAA_Default;
+ }
+
+ bool isZeroInitializable(const MemberPointerType *MPT) override;
+
+ llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override;
+
+ llvm::Value *
+ EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF,
+ const Expr *E,
+ llvm::Value *&This,
+ llvm::Value *MemFnPtr,
+ const MemberPointerType *MPT) override;
+
+ llvm::Value *
+ EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E,
+ llvm::Value *Base,
+ llvm::Value *MemPtr,
+ const MemberPointerType *MPT) override;
+
+ llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF,
+ const CastExpr *E,
+ llvm::Value *Src) override;
+ llvm::Constant *EmitMemberPointerConversion(const CastExpr *E,
+ llvm::Constant *Src) override;
+
+ llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override;
+
+ llvm::Constant *EmitMemberPointer(const CXXMethodDecl *MD) override;
+ llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT,
+ CharUnits offset) override;
+ llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override;
+ llvm::Constant *BuildMemberPointer(const CXXMethodDecl *MD,
+ CharUnits ThisAdjustment);
+
+ llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF,
+ llvm::Value *L, llvm::Value *R,
+ const MemberPointerType *MPT,
+ bool Inequality) override;
+
+ llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
+ llvm::Value *Addr,
+ const MemberPointerType *MPT) override;
+
+ llvm::Value *adjustToCompleteObject(CodeGenFunction &CGF, llvm::Value *ptr,
+ QualType type) override;
+
+ void EmitFundamentalRTTIDescriptor(QualType Type);
+ void EmitFundamentalRTTIDescriptors();
+ llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override;
+
+ bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override;
+ void EmitBadTypeidCall(CodeGenFunction &CGF) override;
+ llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy,
+ llvm::Value *ThisPtr,
+ llvm::Type *StdTypeInfoPtrTy) override;
+
+ bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
+ QualType SrcRecordTy) override;
+
+ llvm::Value *EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value,
+ QualType SrcRecordTy, QualType DestTy,
+ QualType DestRecordTy,
+ llvm::BasicBlock *CastEnd) override;
+
+ llvm::Value *EmitDynamicCastToVoid(CodeGenFunction &CGF, llvm::Value *Value,
+ QualType SrcRecordTy,
+ QualType DestTy) override;
+
+ bool EmitBadCastCall(CodeGenFunction &CGF) override;
+
+ llvm::Value *
+ GetVirtualBaseClassOffset(CodeGenFunction &CGF, llvm::Value *This,
+ const CXXRecordDecl *ClassDecl,
+ const CXXRecordDecl *BaseClassDecl) override;
+
+ void BuildConstructorSignature(const CXXConstructorDecl *Ctor,
+ CXXCtorType T, CanQualType &ResTy,
+ SmallVectorImpl<CanQualType> &ArgTys) override;
+
+ void EmitCXXConstructors(const CXXConstructorDecl *D) override;
+
+ void BuildDestructorSignature(const CXXDestructorDecl *Dtor,
+ CXXDtorType T, CanQualType &ResTy,
+ SmallVectorImpl<CanQualType> &ArgTys) override;
+
+ bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor,
+ CXXDtorType DT) const override {
+ // Itanium does not emit any destructor variant as an inline thunk.
+ // Delegating may occur as an optimization, but all variants are either
+ // emitted with external linkage or as linkonce if they are inline and used.
+ return false;
+ }
+
+ void EmitCXXDestructors(const CXXDestructorDecl *D) override;
+
+ void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy,
+ FunctionArgList &Params) override;
+
+ void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override;
+
+ unsigned addImplicitConstructorArgs(CodeGenFunction &CGF,
+ const CXXConstructorDecl *D,
+ CXXCtorType Type, bool ForVirtualBase,
+ bool Delegating,
+ CallArgList &Args) override;
+
+ void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD,
+ CXXDtorType Type, bool ForVirtualBase,
+ bool Delegating, llvm::Value *This) override;
+
+ void emitVTableDefinitions(CodeGenVTables &CGVT,
+ const CXXRecordDecl *RD) override;
+
+ llvm::Value *getVTableAddressPointInStructor(
+ CodeGenFunction &CGF, const CXXRecordDecl *VTableClass,
+ BaseSubobject Base, const CXXRecordDecl *NearestVBase,
+ bool &NeedsVirtualOffset) override;
+
+ llvm::Constant *
+ getVTableAddressPointForConstExpr(BaseSubobject Base,
+ const CXXRecordDecl *VTableClass) override;
+
+ llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD,
+ CharUnits VPtrOffset) override;
+
+ llvm::Value *getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD,
+ llvm::Value *This,
+ llvm::Type *Ty) override;
+
+ void EmitVirtualDestructorCall(CodeGenFunction &CGF,
+ const CXXDestructorDecl *Dtor,
+ CXXDtorType DtorType, SourceLocation CallLoc,
+ llvm::Value *This) override;
+
+ void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override;
+
+ void setThunkLinkage(llvm::Function *Thunk, bool ForVTable, GlobalDecl GD,
+ bool ReturnAdjustment) override {
+ // Allow inlining of thunks by emitting them with available_externally
+ // linkage together with vtables when needed.
+ if (ForVTable)
+ Thunk->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
+ }
+
+ llvm::Value *performThisAdjustment(CodeGenFunction &CGF, llvm::Value *This,
+ const ThisAdjustment &TA) override;
+
+ llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, llvm::Value *Ret,
+ const ReturnAdjustment &RA) override;
+
+ StringRef GetPureVirtualCallName() override { return "__cxa_pure_virtual"; }
+ StringRef GetDeletedVirtualCallName() override
+ { return "__cxa_deleted_virtual"; }
+
+ CharUnits getArrayCookieSizeImpl(QualType elementType) override;
+ llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF,
+ llvm::Value *NewPtr,
+ llvm::Value *NumElements,
+ const CXXNewExpr *expr,
+ QualType ElementType) override;
+ llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF,
+ llvm::Value *allocPtr,
+ CharUnits cookieSize) override;
+
+ void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
+ llvm::GlobalVariable *DeclPtr,
+ bool PerformInit) override;
+ void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
+ llvm::Constant *dtor, llvm::Constant *addr) override;
+
+ llvm::Function *getOrCreateThreadLocalWrapper(const VarDecl *VD,
+ llvm::GlobalVariable *Var);
+ void EmitThreadLocalInitFuncs(
+ ArrayRef<std::pair<const VarDecl *, llvm::GlobalVariable *> > Decls,
+ llvm::Function *InitFunc) override;
+ LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD,
+ QualType LValType) override;
+
+ bool NeedsVTTParameter(GlobalDecl GD) override;
+
+ /**************************** RTTI Uniqueness ******************************/
+
+protected:
+ /// Returns true if the ABI requires RTTI type_info objects to be unique
+ /// across a program.
+ virtual bool shouldRTTIBeUnique() const { return true; }
+
+public:
+ /// What sort of unique-RTTI behavior should we use?
+ enum RTTIUniquenessKind {
+ /// We are guaranteeing, or need to guarantee, that the RTTI string
+ /// is unique.
+ RUK_Unique,
+
+ /// We are not guaranteeing uniqueness for the RTTI string, so we
+ /// can demote to hidden visibility but must use string comparisons.
+ RUK_NonUniqueHidden,
+
+ /// We are not guaranteeing uniqueness for the RTTI string, so we
+ /// have to use string comparisons, but we also have to emit it with
+ /// non-hidden visibility.
+ RUK_NonUniqueVisible
+ };
+
+ /// Return the required visibility status for the given type and linkage in
+ /// the current ABI.
+ RTTIUniquenessKind
+ classifyRTTIUniqueness(QualType CanTy,
+ llvm::GlobalValue::LinkageTypes Linkage) const;
+ friend class ItaniumRTTIBuilder;
+};
+
+class ARMCXXABI : public ItaniumCXXABI {
+public:
+ ARMCXXABI(CodeGen::CodeGenModule &CGM) :
+ ItaniumCXXABI(CGM, /* UseARMMethodPtrABI = */ true,
+ /* UseARMGuardVarABI = */ true) {}
+
+ bool HasThisReturn(GlobalDecl GD) const override {
+ return (isa<CXXConstructorDecl>(GD.getDecl()) || (
+ isa<CXXDestructorDecl>(GD.getDecl()) &&
+ GD.getDtorType() != Dtor_Deleting));
+ }
+
+ void EmitReturnFromThunk(CodeGenFunction &CGF, RValue RV,
+ QualType ResTy) override;
+
+ CharUnits getArrayCookieSizeImpl(QualType elementType) override;
+ llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF,
+ llvm::Value *NewPtr,
+ llvm::Value *NumElements,
+ const CXXNewExpr *expr,
+ QualType ElementType) override;
+ llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, llvm::Value *allocPtr,
+ CharUnits cookieSize) override;
+};
+
+class iOS64CXXABI : public ARMCXXABI {
+public:
+ iOS64CXXABI(CodeGen::CodeGenModule &CGM) : ARMCXXABI(CGM) {}
+
+ // ARM64 libraries are prepared for non-unique RTTI.
+ bool shouldRTTIBeUnique() const override { return false; }
+};
+}
+
+CodeGen::CGCXXABI *CodeGen::CreateItaniumCXXABI(CodeGenModule &CGM) {
+ switch (CGM.getTarget().getCXXABI().getKind()) {
+ // For IR-generation purposes, there's no significant difference
+ // between the ARM and iOS ABIs.
+ case TargetCXXABI::GenericARM:
+ case TargetCXXABI::iOS:
+ return new ARMCXXABI(CGM);
+
+ case TargetCXXABI::iOS64:
+ return new iOS64CXXABI(CGM);
+
+ // Note that AArch64 uses the generic ItaniumCXXABI class since it doesn't
+ // include the other 32-bit ARM oddities: constructor/destructor return values
+ // and array cookies.
+ case TargetCXXABI::GenericAArch64:
+ return new ItaniumCXXABI(CGM, /* UseARMMethodPtrABI = */ true,
+ /* UseARMGuardVarABI = */ true);
+
+ case TargetCXXABI::GenericItanium:
+ if (CGM.getContext().getTargetInfo().getTriple().getArch()
+ == llvm::Triple::le32) {
+ // For PNaCl, use ARM-style method pointers so that PNaCl code
+ // does not assume anything about the alignment of function
+ // pointers.
+ return new ItaniumCXXABI(CGM, /* UseARMMethodPtrABI = */ true,
+ /* UseARMGuardVarABI = */ false);
+ }
+ return new ItaniumCXXABI(CGM);
+
+ case TargetCXXABI::Microsoft:
+ llvm_unreachable("Microsoft ABI is not Itanium-based");
+ }
+ llvm_unreachable("bad ABI kind");
+}
+
+llvm::Type *
+ItaniumCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) {
+ if (MPT->isMemberDataPointer())
+ return CGM.PtrDiffTy;
+ return llvm::StructType::get(CGM.PtrDiffTy, CGM.PtrDiffTy, NULL);
+}
+
+/// In the Itanium and ARM ABIs, method pointers have the form:
+/// struct { ptrdiff_t ptr; ptrdiff_t adj; } memptr;
+///
+/// In the Itanium ABI:
+/// - method pointers are virtual if (memptr.ptr & 1) is nonzero
+/// - the this-adjustment is (memptr.adj)
+/// - the virtual offset is (memptr.ptr - 1)
+///
+/// In the ARM ABI:
+/// - method pointers are virtual if (memptr.adj & 1) is nonzero
+/// - the this-adjustment is (memptr.adj >> 1)
+/// - the virtual offset is (memptr.ptr)
+/// ARM uses 'adj' for the virtual flag because Thumb functions
+/// may be only single-byte aligned.
+///
+/// If the member is virtual, the adjusted 'this' pointer points
+/// to a vtable pointer from which the virtual offset is applied.
+///
+/// If the member is non-virtual, memptr.ptr is the address of
+/// the function to call.
+llvm::Value *ItaniumCXXABI::EmitLoadOfMemberFunctionPointer(
+ CodeGenFunction &CGF, const Expr *E, llvm::Value *&This,
+ llvm::Value *MemFnPtr, const MemberPointerType *MPT) {
+ CGBuilderTy &Builder = CGF.Builder;
+
+ const FunctionProtoType *FPT =
+ MPT->getPointeeType()->getAs<FunctionProtoType>();
+ const CXXRecordDecl *RD =
+ cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
+
+ llvm::FunctionType *FTy =
+ CGM.getTypes().GetFunctionType(
+ CGM.getTypes().arrangeCXXMethodType(RD, FPT));
+
+ llvm::Constant *ptrdiff_1 = llvm::ConstantInt::get(CGM.PtrDiffTy, 1);
+
+ llvm::BasicBlock *FnVirtual = CGF.createBasicBlock("memptr.virtual");
+ llvm::BasicBlock *FnNonVirtual = CGF.createBasicBlock("memptr.nonvirtual");
+ llvm::BasicBlock *FnEnd = CGF.createBasicBlock("memptr.end");
+
+ // Extract memptr.adj, which is in the second field.
+ llvm::Value *RawAdj = Builder.CreateExtractValue(MemFnPtr, 1, "memptr.adj");
+
+ // Compute the true adjustment.
+ llvm::Value *Adj = RawAdj;
+ if (UseARMMethodPtrABI)
+ Adj = Builder.CreateAShr(Adj, ptrdiff_1, "memptr.adj.shifted");
+
+ // Apply the adjustment and cast back to the original struct type
+ // for consistency.
+ llvm::Value *Ptr = Builder.CreateBitCast(This, Builder.getInt8PtrTy());
+ Ptr = Builder.CreateInBoundsGEP(Ptr, Adj);
+ This = Builder.CreateBitCast(Ptr, This->getType(), "this.adjusted");
+
+ // Load the function pointer.
+ llvm::Value *FnAsInt = Builder.CreateExtractValue(MemFnPtr, 0, "memptr.ptr");
+
+ // If the LSB in the function pointer is 1, the function pointer points to
+ // a virtual function.
+ llvm::Value *IsVirtual;
+ if (UseARMMethodPtrABI)
+ IsVirtual = Builder.CreateAnd(RawAdj, ptrdiff_1);
+ else
+ IsVirtual = Builder.CreateAnd(FnAsInt, ptrdiff_1);
+ IsVirtual = Builder.CreateIsNotNull(IsVirtual, "memptr.isvirtual");
+ Builder.CreateCondBr(IsVirtual, FnVirtual, FnNonVirtual);
+
+ // In the virtual path, the adjustment left 'This' pointing to the
+ // vtable of the correct base subobject. The "function pointer" is an
+ // offset within the vtable (+1 for the virtual flag on non-ARM).
+ CGF.EmitBlock(FnVirtual);
+
+ // Cast the adjusted this to a pointer to vtable pointer and load.
+ llvm::Type *VTableTy = Builder.getInt8PtrTy();
+ llvm::Value *VTable = CGF.GetVTablePtr(This, VTableTy);
+
+ // Apply the offset.
+ llvm::Value *VTableOffset = FnAsInt;
+ if (!UseARMMethodPtrABI)
+ VTableOffset = Builder.CreateSub(VTableOffset, ptrdiff_1);
+ VTable = Builder.CreateGEP(VTable, VTableOffset);
+
+ // Load the virtual function to call.
+ VTable = Builder.CreateBitCast(VTable, FTy->getPointerTo()->getPointerTo());
+ llvm::Value *VirtualFn = Builder.CreateLoad(VTable, "memptr.virtualfn");
+ CGF.EmitBranch(FnEnd);
+
+ // In the non-virtual path, the function pointer is actually a
+ // function pointer.
+ CGF.EmitBlock(FnNonVirtual);
+ llvm::Value *NonVirtualFn =
+ Builder.CreateIntToPtr(FnAsInt, FTy->getPointerTo(), "memptr.nonvirtualfn");
+
+ // We're done.
+ CGF.EmitBlock(FnEnd);
+ llvm::PHINode *Callee = Builder.CreatePHI(FTy->getPointerTo(), 2);
+ Callee->addIncoming(VirtualFn, FnVirtual);
+ Callee->addIncoming(NonVirtualFn, FnNonVirtual);
+ return Callee;
+}
+
+/// Compute an l-value by applying the given pointer-to-member to a
+/// base object.
+llvm::Value *ItaniumCXXABI::EmitMemberDataPointerAddress(
+ CodeGenFunction &CGF, const Expr *E, llvm::Value *Base, llvm::Value *MemPtr,
+ const MemberPointerType *MPT) {
+ assert(MemPtr->getType() == CGM.PtrDiffTy);
+
+ CGBuilderTy &Builder = CGF.Builder;
+
+ unsigned AS = Base->getType()->getPointerAddressSpace();
+
+ // Cast to char*.
+ Base = Builder.CreateBitCast(Base, Builder.getInt8Ty()->getPointerTo(AS));
+
+ // Apply the offset, which we assume is non-null.
+ llvm::Value *Addr = Builder.CreateInBoundsGEP(Base, MemPtr, "memptr.offset");
+
+ // Cast the address to the appropriate pointer type, adopting the
+ // address space of the base pointer.
+ llvm::Type *PType
+ = CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS);
+ return Builder.CreateBitCast(Addr, PType);
+}
+
+/// Perform a bitcast, derived-to-base, or base-to-derived member pointer
+/// conversion.
+///
+/// Bitcast conversions are always a no-op under Itanium.
+///
+/// Obligatory offset/adjustment diagram:
+/// <-- offset --> <-- adjustment -->
+/// |--------------------------|----------------------|--------------------|
+/// ^Derived address point ^Base address point ^Member address point
+///
+/// So when converting a base member pointer to a derived member pointer,
+/// we add the offset to the adjustment because the address point has
+/// decreased; and conversely, when converting a derived MP to a base MP
+/// we subtract the offset from the adjustment because the address point
+/// has increased.
+///
+/// The standard forbids (at compile time) conversion to and from
+/// virtual bases, which is why we don't have to consider them here.
+///
+/// The standard forbids (at run time) casting a derived MP to a base
+/// MP when the derived MP does not point to a member of the base.
+/// This is why -1 is a reasonable choice for null data member
+/// pointers.
+llvm::Value *
+ItaniumCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF,
+ const CastExpr *E,
+ llvm::Value *src) {
+ assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
+ E->getCastKind() == CK_BaseToDerivedMemberPointer ||
+ E->getCastKind() == CK_ReinterpretMemberPointer);
+
+ // Under Itanium, reinterprets don't require any additional processing.
+ if (E->getCastKind() == CK_ReinterpretMemberPointer) return src;
+
+ // Use constant emission if we can.
+ if (isa<llvm::Constant>(src))
+ return EmitMemberPointerConversion(E, cast<llvm::Constant>(src));
+
+ llvm::Constant *adj = getMemberPointerAdjustment(E);
+ if (!adj) return src;
+
+ CGBuilderTy &Builder = CGF.Builder;
+ bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer);
+
+ const MemberPointerType *destTy =
+ E->getType()->castAs<MemberPointerType>();
+
+ // For member data pointers, this is just a matter of adding the
+ // offset if the source is non-null.
+ if (destTy->isMemberDataPointer()) {
+ llvm::Value *dst;
+ if (isDerivedToBase)
+ dst = Builder.CreateNSWSub(src, adj, "adj");
+ else
+ dst = Builder.CreateNSWAdd(src, adj, "adj");
+
+ // Null check.
+ llvm::Value *null = llvm::Constant::getAllOnesValue(src->getType());
+ llvm::Value *isNull = Builder.CreateICmpEQ(src, null, "memptr.isnull");
+ return Builder.CreateSelect(isNull, src, dst);
+ }
+
+ // The this-adjustment is left-shifted by 1 on ARM.
+ if (UseARMMethodPtrABI) {
+ uint64_t offset = cast<llvm::ConstantInt>(adj)->getZExtValue();
+ offset <<= 1;
+ adj = llvm::ConstantInt::get(adj->getType(), offset);
+ }
+
+ llvm::Value *srcAdj = Builder.CreateExtractValue(src, 1, "src.adj");
+ llvm::Value *dstAdj;
+ if (isDerivedToBase)
+ dstAdj = Builder.CreateNSWSub(srcAdj, adj, "adj");
+ else
+ dstAdj = Builder.CreateNSWAdd(srcAdj, adj, "adj");
+
+ return Builder.CreateInsertValue(src, dstAdj, 1);
+}
+
+llvm::Constant *
+ItaniumCXXABI::EmitMemberPointerConversion(const CastExpr *E,
+ llvm::Constant *src) {
+ assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
+ E->getCastKind() == CK_BaseToDerivedMemberPointer ||
+ E->getCastKind() == CK_ReinterpretMemberPointer);
+
+ // Under Itanium, reinterprets don't require any additional processing.
+ if (E->getCastKind() == CK_ReinterpretMemberPointer) return src;
+
+ // If the adjustment is trivial, we don't need to do anything.
+ llvm::Constant *adj = getMemberPointerAdjustment(E);
+ if (!adj) return src;
+
+ bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer);
+
+ const MemberPointerType *destTy =
+ E->getType()->castAs<MemberPointerType>();
+
+ // For member data pointers, this is just a matter of adding the
+ // offset if the source is non-null.
+ if (destTy->isMemberDataPointer()) {
+ // null maps to null.
+ if (src->isAllOnesValue()) return src;
+
+ if (isDerivedToBase)
+ return llvm::ConstantExpr::getNSWSub(src, adj);
+ else
+ return llvm::ConstantExpr::getNSWAdd(src, adj);
+ }
+
+ // The this-adjustment is left-shifted by 1 on ARM.
+ if (UseARMMethodPtrABI) {
+ uint64_t offset = cast<llvm::ConstantInt>(adj)->getZExtValue();
+ offset <<= 1;
+ adj = llvm::ConstantInt::get(adj->getType(), offset);
+ }
+
+ llvm::Constant *srcAdj = llvm::ConstantExpr::getExtractValue(src, 1);
+ llvm::Constant *dstAdj;
+ if (isDerivedToBase)
+ dstAdj = llvm::ConstantExpr::getNSWSub(srcAdj, adj);
+ else
+ dstAdj = llvm::ConstantExpr::getNSWAdd(srcAdj, adj);
+
+ return llvm::ConstantExpr::getInsertValue(src, dstAdj, 1);
+}
+
+llvm::Constant *
+ItaniumCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) {
+ // Itanium C++ ABI 2.3:
+ // A NULL pointer is represented as -1.
+ if (MPT->isMemberDataPointer())
+ return llvm::ConstantInt::get(CGM.PtrDiffTy, -1ULL, /*isSigned=*/true);
+
+ llvm::Constant *Zero = llvm::ConstantInt::get(CGM.PtrDiffTy, 0);
+ llvm::Constant *Values[2] = { Zero, Zero };
+ return llvm::ConstantStruct::getAnon(Values);
+}
+
+llvm::Constant *
+ItaniumCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT,
+ CharUnits offset) {
+ // Itanium C++ ABI 2.3:
+ // A pointer to data member is an offset from the base address of
+ // the class object containing it, represented as a ptrdiff_t
+ return llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity());
+}
+
+llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const CXXMethodDecl *MD) {
+ return BuildMemberPointer(MD, CharUnits::Zero());
+}
+
+llvm::Constant *ItaniumCXXABI::BuildMemberPointer(const CXXMethodDecl *MD,
+ CharUnits ThisAdjustment) {
+ assert(MD->isInstance() && "Member function must not be static!");
+ MD = MD->getCanonicalDecl();
+
+ CodeGenTypes &Types = CGM.getTypes();
+
+ // Get the function pointer (or index if this is a virtual function).
+ llvm::Constant *MemPtr[2];
+ if (MD->isVirtual()) {
+ uint64_t Index = CGM.getItaniumVTableContext().getMethodVTableIndex(MD);
+
+ const ASTContext &Context = getContext();
+ CharUnits PointerWidth =
+ Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
+ uint64_t VTableOffset = (Index * PointerWidth.getQuantity());
+
+ if (UseARMMethodPtrABI) {
+ // ARM C++ ABI 3.2.1:
+ // This ABI specifies that adj contains twice the this
+ // adjustment, plus 1 if the member function is virtual. The
+ // least significant bit of adj then makes exactly the same
+ // discrimination as the least significant bit of ptr does for
+ // Itanium.
+ MemPtr[0] = llvm::ConstantInt::get(CGM.PtrDiffTy, VTableOffset);
+ MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy,
+ 2 * ThisAdjustment.getQuantity() + 1);
+ } else {
+ // Itanium C++ ABI 2.3:
+ // For a virtual function, [the pointer field] is 1 plus the
+ // virtual table offset (in bytes) of the function,
+ // represented as a ptrdiff_t.
+ MemPtr[0] = llvm::ConstantInt::get(CGM.PtrDiffTy, VTableOffset + 1);
+ MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy,
+ ThisAdjustment.getQuantity());
+ }
+ } else {
+ const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
+ llvm::Type *Ty;
+ // Check whether the function has a computable LLVM signature.
+ if (Types.isFuncTypeConvertible(FPT)) {
+ // The function has a computable LLVM signature; use the correct type.
+ Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD));
+ } else {
+ // Use an arbitrary non-function type to tell GetAddrOfFunction that the
+ // function type is incomplete.
+ Ty = CGM.PtrDiffTy;
+ }
+ llvm::Constant *addr = CGM.GetAddrOfFunction(MD, Ty);
+
+ MemPtr[0] = llvm::ConstantExpr::getPtrToInt(addr, CGM.PtrDiffTy);
+ MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy,
+ (UseARMMethodPtrABI ? 2 : 1) *
+ ThisAdjustment.getQuantity());
+ }
+
+ return llvm::ConstantStruct::getAnon(MemPtr);
+}
+
+llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const APValue &MP,
+ QualType MPType) {
+ const MemberPointerType *MPT = MPType->castAs<MemberPointerType>();
+ const ValueDecl *MPD = MP.getMemberPointerDecl();
+ if (!MPD)
+ return EmitNullMemberPointer(MPT);
+
+ CharUnits ThisAdjustment = getMemberPointerPathAdjustment(MP);
+
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD))
+ return BuildMemberPointer(MD, ThisAdjustment);
+
+ CharUnits FieldOffset =
+ getContext().toCharUnitsFromBits(getContext().getFieldOffset(MPD));
+ return EmitMemberDataPointer(MPT, ThisAdjustment + FieldOffset);
+}
+
+/// The comparison algorithm is pretty easy: the member pointers are
+/// the same if they're either bitwise identical *or* both null.
+///
+/// ARM is different here only because null-ness is more complicated.
+llvm::Value *
+ItaniumCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF,
+ llvm::Value *L,
+ llvm::Value *R,
+ const MemberPointerType *MPT,
+ bool Inequality) {
+ CGBuilderTy &Builder = CGF.Builder;
+
+ llvm::ICmpInst::Predicate Eq;
+ llvm::Instruction::BinaryOps And, Or;
+ if (Inequality) {
+ Eq = llvm::ICmpInst::ICMP_NE;
+ And = llvm::Instruction::Or;
+ Or = llvm::Instruction::And;
+ } else {
+ Eq = llvm::ICmpInst::ICMP_EQ;
+ And = llvm::Instruction::And;
+ Or = llvm::Instruction::Or;
+ }
+
+ // Member data pointers are easy because there's a unique null
+ // value, so it just comes down to bitwise equality.
+ if (MPT->isMemberDataPointer())
+ return Builder.CreateICmp(Eq, L, R);
+
+ // For member function pointers, the tautologies are more complex.
+ // The Itanium tautology is:
+ // (L == R) <==> (L.ptr == R.ptr && (L.ptr == 0 || L.adj == R.adj))
+ // The ARM tautology is:
+ // (L == R) <==> (L.ptr == R.ptr &&
+ // (L.adj == R.adj ||
+ // (L.ptr == 0 && ((L.adj|R.adj) & 1) == 0)))
+ // The inequality tautologies have exactly the same structure, except
+ // applying De Morgan's laws.
+
+ llvm::Value *LPtr = Builder.CreateExtractValue(L, 0, "lhs.memptr.ptr");
+ llvm::Value *RPtr = Builder.CreateExtractValue(R, 0, "rhs.memptr.ptr");
+
+ // This condition tests whether L.ptr == R.ptr. This must always be
+ // true for equality to hold.
+ llvm::Value *PtrEq = Builder.CreateICmp(Eq, LPtr, RPtr, "cmp.ptr");
+
+ // This condition, together with the assumption that L.ptr == R.ptr,
+ // tests whether the pointers are both null. ARM imposes an extra
+ // condition.
+ llvm::Value *Zero = llvm::Constant::getNullValue(LPtr->getType());
+ llvm::Value *EqZero = Builder.CreateICmp(Eq, LPtr, Zero, "cmp.ptr.null");
+
+ // This condition tests whether L.adj == R.adj. If this isn't
+ // true, the pointers are unequal unless they're both null.
+ llvm::Value *LAdj = Builder.CreateExtractValue(L, 1, "lhs.memptr.adj");
+ llvm::Value *RAdj = Builder.CreateExtractValue(R, 1, "rhs.memptr.adj");
+ llvm::Value *AdjEq = Builder.CreateICmp(Eq, LAdj, RAdj, "cmp.adj");
+
+ // Null member function pointers on ARM clear the low bit of Adj,
+ // so the zero condition has to check that neither low bit is set.
+ if (UseARMMethodPtrABI) {
+ llvm::Value *One = llvm::ConstantInt::get(LPtr->getType(), 1);
+
+ // Compute (l.adj | r.adj) & 1 and test it against zero.
+ llvm::Value *OrAdj = Builder.CreateOr(LAdj, RAdj, "or.adj");
+ llvm::Value *OrAdjAnd1 = Builder.CreateAnd(OrAdj, One);
+ llvm::Value *OrAdjAnd1EqZero = Builder.CreateICmp(Eq, OrAdjAnd1, Zero,
+ "cmp.or.adj");
+ EqZero = Builder.CreateBinOp(And, EqZero, OrAdjAnd1EqZero);
+ }
+
+ // Tie together all our conditions.
+ llvm::Value *Result = Builder.CreateBinOp(Or, EqZero, AdjEq);
+ Result = Builder.CreateBinOp(And, PtrEq, Result,
+ Inequality ? "memptr.ne" : "memptr.eq");
+ return Result;
+}
+
+llvm::Value *
+ItaniumCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
+ llvm::Value *MemPtr,
+ const MemberPointerType *MPT) {
+ CGBuilderTy &Builder = CGF.Builder;
+
+ /// For member data pointers, this is just a check against -1.
+ if (MPT->isMemberDataPointer()) {
+ assert(MemPtr->getType() == CGM.PtrDiffTy);
+ llvm::Value *NegativeOne =
+ llvm::Constant::getAllOnesValue(MemPtr->getType());
+ return Builder.CreateICmpNE(MemPtr, NegativeOne, "memptr.tobool");
+ }
+
+ // In Itanium, a member function pointer is not null if 'ptr' is not null.
+ llvm::Value *Ptr = Builder.CreateExtractValue(MemPtr, 0, "memptr.ptr");
+
+ llvm::Constant *Zero = llvm::ConstantInt::get(Ptr->getType(), 0);
+ llvm::Value *Result = Builder.CreateICmpNE(Ptr, Zero, "memptr.tobool");
+
+ // On ARM, a member function pointer is also non-null if the low bit of 'adj'
+ // (the virtual bit) is set.
+ if (UseARMMethodPtrABI) {
+ llvm::Constant *One = llvm::ConstantInt::get(Ptr->getType(), 1);
+ llvm::Value *Adj = Builder.CreateExtractValue(MemPtr, 1, "memptr.adj");
+ llvm::Value *VirtualBit = Builder.CreateAnd(Adj, One, "memptr.virtualbit");
+ llvm::Value *IsVirtual = Builder.CreateICmpNE(VirtualBit, Zero,
+ "memptr.isvirtual");
+ Result = Builder.CreateOr(Result, IsVirtual);
+ }
+
+ return Result;
+}
+
+bool ItaniumCXXABI::classifyReturnType(CGFunctionInfo &FI) const {
+ const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl();
+ if (!RD)
+ return false;
+
+ // Return indirectly if we have a non-trivial copy ctor or non-trivial dtor.
+ // FIXME: Use canCopyArgument() when it is fixed to handle lazily declared
+ // special members.
+ if (RD->hasNonTrivialDestructor() || RD->hasNonTrivialCopyConstructor()) {
+ FI.getReturnInfo() = ABIArgInfo::getIndirect(0, /*ByVal=*/false);
+ return true;
+ }
+ return false;
+}
+
+/// The Itanium ABI requires non-zero initialization only for data
+/// member pointers, for which '0' is a valid offset.
+bool ItaniumCXXABI::isZeroInitializable(const MemberPointerType *MPT) {
+ return MPT->getPointeeType()->isFunctionType();
+}
+
+/// The Itanium ABI always places an offset to the complete object
+/// at entry -2 in the vtable.
+llvm::Value *ItaniumCXXABI::adjustToCompleteObject(CodeGenFunction &CGF,
+ llvm::Value *ptr,
+ QualType type) {
+ // Grab the vtable pointer as an intptr_t*.
+ llvm::Value *vtable = CGF.GetVTablePtr(ptr, CGF.IntPtrTy->getPointerTo());
+
+ // Track back to entry -2 and pull out the offset there.
+ llvm::Value *offsetPtr =
+ CGF.Builder.CreateConstInBoundsGEP1_64(vtable, -2, "complete-offset.ptr");
+ llvm::LoadInst *offset = CGF.Builder.CreateLoad(offsetPtr);
+ offset->setAlignment(CGF.PointerAlignInBytes);
+
+ // Apply the offset.
+ ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy);
+ return CGF.Builder.CreateInBoundsGEP(ptr, offset);
+}
+
+static llvm::Constant *getItaniumDynamicCastFn(CodeGenFunction &CGF) {
+ // void *__dynamic_cast(const void *sub,
+ // const abi::__class_type_info *src,
+ // const abi::__class_type_info *dst,
+ // std::ptrdiff_t src2dst_offset);
+
+ llvm::Type *Int8PtrTy = CGF.Int8PtrTy;
+ llvm::Type *PtrDiffTy =
+ CGF.ConvertType(CGF.getContext().getPointerDiffType());
+
+ llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy };
+
+ llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, Args, false);
+
+ // Mark the function as nounwind readonly.
+ llvm::Attribute::AttrKind FuncAttrs[] = { llvm::Attribute::NoUnwind,
+ llvm::Attribute::ReadOnly };
+ llvm::AttributeSet Attrs = llvm::AttributeSet::get(
+ CGF.getLLVMContext(), llvm::AttributeSet::FunctionIndex, FuncAttrs);
+
+ return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast", Attrs);
+}
+
+static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) {
+ // void __cxa_bad_cast();
+ llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false);
+ return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast");
+}
+
+/// \brief Compute the src2dst_offset hint as described in the
+/// Itanium C++ ABI [2.9.7]
+static CharUnits computeOffsetHint(ASTContext &Context,
+ const CXXRecordDecl *Src,
+ const CXXRecordDecl *Dst) {
+ CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
+ /*DetectVirtual=*/false);
+
+ // If Dst is not derived from Src we can skip the whole computation below and
+ // return that Src is not a public base of Dst. Record all inheritance paths.
+ if (!Dst->isDerivedFrom(Src, Paths))
+ return CharUnits::fromQuantity(-2ULL);
+
+ unsigned NumPublicPaths = 0;
+ CharUnits Offset;
+
+ // Now walk all possible inheritance paths.
+ for (CXXBasePaths::paths_iterator I = Paths.begin(), E = Paths.end(); I != E;
+ ++I) {
+ if (I->Access != AS_public) // Ignore non-public inheritance.
+ continue;
+
+ ++NumPublicPaths;
+
+ for (CXXBasePath::iterator J = I->begin(), JE = I->end(); J != JE; ++J) {
+ // If the path contains a virtual base class we can't give any hint.
+ // -1: no hint.
+ if (J->Base->isVirtual())
+ return CharUnits::fromQuantity(-1ULL);
+
+ if (NumPublicPaths > 1) // Won't use offsets, skip computation.
+ continue;
+
+ // Accumulate the base class offsets.
+ const ASTRecordLayout &L = Context.getASTRecordLayout(J->Class);
+ Offset += L.getBaseClassOffset(J->Base->getType()->getAsCXXRecordDecl());
+ }
+ }
+
+ // -2: Src is not a public base of Dst.
+ if (NumPublicPaths == 0)
+ return CharUnits::fromQuantity(-2ULL);
+
+ // -3: Src is a multiple public base type but never a virtual base type.
+ if (NumPublicPaths > 1)
+ return CharUnits::fromQuantity(-3ULL);
+
+ // Otherwise, the Src type is a unique public nonvirtual base type of Dst.
+ // Return the offset of Src from the origin of Dst.
+ return Offset;
+}
+
+static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) {
+ // void __cxa_bad_typeid();
+ llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false);
+
+ return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid");
+}
+
+bool ItaniumCXXABI::shouldTypeidBeNullChecked(bool IsDeref,
+ QualType SrcRecordTy) {
+ return IsDeref;
+}
+
+void ItaniumCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) {
+ llvm::Value *Fn = getBadTypeidFn(CGF);
+ CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn();
+ CGF.Builder.CreateUnreachable();
+}
+
+llvm::Value *ItaniumCXXABI::EmitTypeid(CodeGenFunction &CGF,
+ QualType SrcRecordTy,
+ llvm::Value *ThisPtr,
+ llvm::Type *StdTypeInfoPtrTy) {
+ llvm::Value *Value =
+ CGF.GetVTablePtr(ThisPtr, StdTypeInfoPtrTy->getPointerTo());
+
+ // Load the type info.
+ Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL);
+ return CGF.Builder.CreateLoad(Value);
+}
+
+bool ItaniumCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
+ QualType SrcRecordTy) {
+ return SrcIsPtr;
+}
+
+llvm::Value *ItaniumCXXABI::EmitDynamicCastCall(
+ CodeGenFunction &CGF, llvm::Value *Value, QualType SrcRecordTy,
+ QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) {
+ llvm::Type *PtrDiffLTy =
+ CGF.ConvertType(CGF.getContext().getPointerDiffType());
+ llvm::Type *DestLTy = CGF.ConvertType(DestTy);
+
+ llvm::Value *SrcRTTI =
+ CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
+ llvm::Value *DestRTTI =
+ CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());
+
+ // Compute the offset hint.
+ const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
+ const CXXRecordDecl *DestDecl = DestRecordTy->getAsCXXRecordDecl();
+ llvm::Value *OffsetHint = llvm::ConstantInt::get(
+ PtrDiffLTy,
+ computeOffsetHint(CGF.getContext(), SrcDecl, DestDecl).getQuantity());
+
+ // Emit the call to __dynamic_cast.
+ Value = CGF.EmitCastToVoidPtr(Value);
+
+ llvm::Value *args[] = {Value, SrcRTTI, DestRTTI, OffsetHint};
+ Value = CGF.EmitNounwindRuntimeCall(getItaniumDynamicCastFn(CGF), args);
+ Value = CGF.Builder.CreateBitCast(Value, DestLTy);
+
+ /// C++ [expr.dynamic.cast]p9:
+ /// A failed cast to reference type throws std::bad_cast
+ if (DestTy->isReferenceType()) {
+ llvm::BasicBlock *BadCastBlock =
+ CGF.createBasicBlock("dynamic_cast.bad_cast");
+
+ llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value);
+ CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd);
+
+ CGF.EmitBlock(BadCastBlock);
+ EmitBadCastCall(CGF);
+ }
+
+ return Value;
+}
+
+llvm::Value *ItaniumCXXABI::EmitDynamicCastToVoid(CodeGenFunction &CGF,
+ llvm::Value *Value,
+ QualType SrcRecordTy,
+ QualType DestTy) {
+ llvm::Type *PtrDiffLTy =
+ CGF.ConvertType(CGF.getContext().getPointerDiffType());
+ llvm::Type *DestLTy = CGF.ConvertType(DestTy);
+
+ // Get the vtable pointer.
+ llvm::Value *VTable = CGF.GetVTablePtr(Value, PtrDiffLTy->getPointerTo());
+
+ // Get the offset-to-top from the vtable.
+ llvm::Value *OffsetToTop =
+ CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL);
+ OffsetToTop = CGF.Builder.CreateLoad(OffsetToTop, "offset.to.top");
+
+ // Finally, add the offset to the pointer.
+ Value = CGF.EmitCastToVoidPtr(Value);
+ Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop);
+
+ return CGF.Builder.CreateBitCast(Value, DestLTy);
+}
+
+bool ItaniumCXXABI::EmitBadCastCall(CodeGenFunction &CGF) {
+ llvm::Value *Fn = getBadCastFn(CGF);
+ CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn();
+ CGF.Builder.CreateUnreachable();
+ return true;
+}
+
+llvm::Value *
+ItaniumCXXABI::GetVirtualBaseClassOffset(CodeGenFunction &CGF,
+ llvm::Value *This,
+ const CXXRecordDecl *ClassDecl,
+ const CXXRecordDecl *BaseClassDecl) {
+ llvm::Value *VTablePtr = CGF.GetVTablePtr(This, CGM.Int8PtrTy);
+ CharUnits VBaseOffsetOffset =
+ CGM.getItaniumVTableContext().getVirtualBaseOffsetOffset(ClassDecl,
+ BaseClassDecl);
+
+ llvm::Value *VBaseOffsetPtr =
+ CGF.Builder.CreateConstGEP1_64(VTablePtr, VBaseOffsetOffset.getQuantity(),
+ "vbase.offset.ptr");
+ VBaseOffsetPtr = CGF.Builder.CreateBitCast(VBaseOffsetPtr,
+ CGM.PtrDiffTy->getPointerTo());
+
+ llvm::Value *VBaseOffset =
+ CGF.Builder.CreateLoad(VBaseOffsetPtr, "vbase.offset");
+
+ return VBaseOffset;
+}
+
+/// The generic ABI passes 'this', plus a VTT if it's initializing a
+/// base subobject.
+void
+ItaniumCXXABI::BuildConstructorSignature(const CXXConstructorDecl *Ctor,
+ CXXCtorType Type, CanQualType &ResTy,
+ SmallVectorImpl<CanQualType> &ArgTys) {
+ ASTContext &Context = getContext();
+
+ // All parameters are already in place except VTT, which goes after 'this'.
+ // These are Clang types, so we don't need to worry about sret yet.
+
+ // Check if we need to add a VTT parameter (which has type void **).
+ if (Type == Ctor_Base && Ctor->getParent()->getNumVBases() != 0)
+ ArgTys.insert(ArgTys.begin() + 1,
+ Context.getPointerType(Context.VoidPtrTy));
+}
+
+void ItaniumCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) {
+ // Just make sure we're in sync with TargetCXXABI.
+ assert(CGM.getTarget().getCXXABI().hasConstructorVariants());
+
+ // The constructor used for constructing this as a base class;
+ // ignores virtual bases.
+ CGM.EmitGlobal(GlobalDecl(D, Ctor_Base));
+
+ // The constructor used for constructing this as a complete class;
+ // constucts the virtual bases, then calls the base constructor.
+ if (!D->getParent()->isAbstract()) {
+ // We don't need to emit the complete ctor if the class is abstract.
+ CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete));
+ }
+}
+
+/// The generic ABI passes 'this', plus a VTT if it's destroying a
+/// base subobject.
+void ItaniumCXXABI::BuildDestructorSignature(const CXXDestructorDecl *Dtor,
+ CXXDtorType Type,
+ CanQualType &ResTy,
+ SmallVectorImpl<CanQualType> &ArgTys) {
+ ASTContext &Context = getContext();
+
+ // 'this' parameter is already there, as well as 'this' return if
+ // HasThisReturn(GlobalDecl(Dtor, Type)) is true
+
+ // Check if we need to add a VTT parameter (which has type void **).
+ if (Type == Dtor_Base && Dtor->getParent()->getNumVBases() != 0)
+ ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy));
+}
+
+void ItaniumCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) {
+ // The destructor used for destructing this as a base class; ignores
+ // virtual bases.
+ CGM.EmitGlobal(GlobalDecl(D, Dtor_Base));
+
+ // The destructor used for destructing this as a most-derived class;
+ // call the base destructor and then destructs any virtual bases.
+ CGM.EmitGlobal(GlobalDecl(D, Dtor_Complete));
+
+ // The destructor in a virtual table is always a 'deleting'
+ // destructor, which calls the complete destructor and then uses the
+ // appropriate operator delete.
+ if (D->isVirtual())
+ CGM.EmitGlobal(GlobalDecl(D, Dtor_Deleting));
+}
+
+void ItaniumCXXABI::addImplicitStructorParams(CodeGenFunction &CGF,
+ QualType &ResTy,
+ FunctionArgList &Params) {
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
+ assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD));
+
+ // Check if we need a VTT parameter as well.
+ if (NeedsVTTParameter(CGF.CurGD)) {
+ ASTContext &Context = getContext();
+
+ // FIXME: avoid the fake decl
+ QualType T = Context.getPointerType(Context.VoidPtrTy);
+ ImplicitParamDecl *VTTDecl
+ = ImplicitParamDecl::Create(Context, nullptr, MD->getLocation(),
+ &Context.Idents.get("vtt"), T);
+ Params.insert(Params.begin() + 1, VTTDecl);
+ getStructorImplicitParamDecl(CGF) = VTTDecl;
+ }
+}
+
+void ItaniumCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
+ /// Initialize the 'this' slot.
+ EmitThisParam(CGF);
+
+ /// Initialize the 'vtt' slot if needed.
+ if (getStructorImplicitParamDecl(CGF)) {
+ getStructorImplicitParamValue(CGF) = CGF.Builder.CreateLoad(
+ CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), "vtt");
+ }
+
+ /// If this is a function that the ABI specifies returns 'this', initialize
+ /// the return slot to 'this' at the start of the function.
+ ///
+ /// Unlike the setting of return types, this is done within the ABI
+ /// implementation instead of by clients of CGCXXABI because:
+ /// 1) getThisValue is currently protected
+ /// 2) in theory, an ABI could implement 'this' returns some other way;
+ /// HasThisReturn only specifies a contract, not the implementation
+ if (HasThisReturn(CGF.CurGD))
+ CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue);
+}
+
+unsigned ItaniumCXXABI::addImplicitConstructorArgs(
+ CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type,
+ bool ForVirtualBase, bool Delegating, CallArgList &Args) {
+ if (!NeedsVTTParameter(GlobalDecl(D, Type)))
+ return 0;
+
+ // Insert the implicit 'vtt' argument as the second argument.
+ llvm::Value *VTT =
+ CGF.GetVTTParameter(GlobalDecl(D, Type), ForVirtualBase, Delegating);
+ QualType VTTTy = getContext().getPointerType(getContext().VoidPtrTy);
+ Args.insert(Args.begin() + 1,
+ CallArg(RValue::get(VTT), VTTTy, /*needscopy=*/false));
+ return 1; // Added one arg.
+}
+
+void ItaniumCXXABI::EmitDestructorCall(CodeGenFunction &CGF,
+ const CXXDestructorDecl *DD,
+ CXXDtorType Type, bool ForVirtualBase,
+ bool Delegating, llvm::Value *This) {
+ GlobalDecl GD(DD, Type);
+ llvm::Value *VTT = CGF.GetVTTParameter(GD, ForVirtualBase, Delegating);
+ QualType VTTTy = getContext().getPointerType(getContext().VoidPtrTy);
+
+ llvm::Value *Callee = nullptr;
+ if (getContext().getLangOpts().AppleKext)
+ Callee = CGF.BuildAppleKextVirtualDestructorCall(DD, Type, DD->getParent());
+
+ if (!Callee)
+ Callee = CGM.GetAddrOfCXXDestructor(DD, Type);
+
+ // FIXME: Provide a source location here.
+ CGF.EmitCXXMemberCall(DD, SourceLocation(), Callee, ReturnValueSlot(), This,
+ VTT, VTTTy, nullptr, nullptr);
+}
+
+void ItaniumCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT,
+ const CXXRecordDecl *RD) {
+ llvm::GlobalVariable *VTable = getAddrOfVTable(RD, CharUnits());
+ if (VTable->hasInitializer())
+ return;
+
+ ItaniumVTableContext &VTContext = CGM.getItaniumVTableContext();
+ const VTableLayout &VTLayout = VTContext.getVTableLayout(RD);
+ llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD);
+ llvm::Constant *RTTI =
+ CGM.GetAddrOfRTTIDescriptor(CGM.getContext().getTagDeclType(RD));
+
+ // Create and set the initializer.
+ llvm::Constant *Init = CGVT.CreateVTableInitializer(
+ RD, VTLayout.vtable_component_begin(), VTLayout.getNumVTableComponents(),
+ VTLayout.vtable_thunk_begin(), VTLayout.getNumVTableThunks(), RTTI);
+ VTable->setInitializer(Init);
+
+ // Set the correct linkage.
+ VTable->setLinkage(Linkage);
+
+ // Set the right visibility.
+ CGM.setGlobalVisibility(VTable, RD);
+
+ // If this is the magic class __cxxabiv1::__fundamental_type_info,
+ // we will emit the typeinfo for the fundamental types. This is the
+ // same behaviour as GCC.
+ const DeclContext *DC = RD->getDeclContext();
+ if (RD->getIdentifier() &&
+ RD->getIdentifier()->isStr("__fundamental_type_info") &&
+ isa<NamespaceDecl>(DC) && cast<NamespaceDecl>(DC)->getIdentifier() &&
+ cast<NamespaceDecl>(DC)->getIdentifier()->isStr("__cxxabiv1") &&
+ DC->getParent()->isTranslationUnit())
+ EmitFundamentalRTTIDescriptors();
+}
+
+llvm::Value *ItaniumCXXABI::getVTableAddressPointInStructor(
+ CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base,
+ const CXXRecordDecl *NearestVBase, bool &NeedsVirtualOffset) {
+ bool NeedsVTTParam = CGM.getCXXABI().NeedsVTTParameter(CGF.CurGD);
+ NeedsVirtualOffset = (NeedsVTTParam && NearestVBase);
+
+ llvm::Value *VTableAddressPoint;
+ if (NeedsVTTParam && (Base.getBase()->getNumVBases() || NearestVBase)) {
+ // Get the secondary vpointer index.
+ uint64_t VirtualPointerIndex =
+ CGM.getVTables().getSecondaryVirtualPointerIndex(VTableClass, Base);
+
+ /// Load the VTT.
+ llvm::Value *VTT = CGF.LoadCXXVTT();
+ if (VirtualPointerIndex)
+ VTT = CGF.Builder.CreateConstInBoundsGEP1_64(VTT, VirtualPointerIndex);
+
+ // And load the address point from the VTT.
+ VTableAddressPoint = CGF.Builder.CreateLoad(VTT);
+ } else {
+ llvm::Constant *VTable =
+ CGM.getCXXABI().getAddrOfVTable(VTableClass, CharUnits());
+ uint64_t AddressPoint = CGM.getItaniumVTableContext()
+ .getVTableLayout(VTableClass)
+ .getAddressPoint(Base);
+ VTableAddressPoint =
+ CGF.Builder.CreateConstInBoundsGEP2_64(VTable, 0, AddressPoint);
+ }
+
+ return VTableAddressPoint;
+}
+
+llvm::Constant *ItaniumCXXABI::getVTableAddressPointForConstExpr(
+ BaseSubobject Base, const CXXRecordDecl *VTableClass) {
+ llvm::Constant *VTable = getAddrOfVTable(VTableClass, CharUnits());
+
+ // Find the appropriate vtable within the vtable group.
+ uint64_t AddressPoint = CGM.getItaniumVTableContext()
+ .getVTableLayout(VTableClass)
+ .getAddressPoint(Base);
+ llvm::Value *Indices[] = {
+ llvm::ConstantInt::get(CGM.Int64Ty, 0),
+ llvm::ConstantInt::get(CGM.Int64Ty, AddressPoint)
+ };
+
+ return llvm::ConstantExpr::getInBoundsGetElementPtr(VTable, Indices);
+}
+
+llvm::GlobalVariable *ItaniumCXXABI::getAddrOfVTable(const CXXRecordDecl *RD,
+ CharUnits VPtrOffset) {
+ assert(VPtrOffset.isZero() && "Itanium ABI only supports zero vptr offsets");
+
+ llvm::GlobalVariable *&VTable = VTables[RD];
+ if (VTable)
+ return VTable;
+
+ // Queue up this v-table for possible deferred emission.
+ CGM.addDeferredVTable(RD);
+
+ SmallString<256> OutName;
+ llvm::raw_svector_ostream Out(OutName);
+ getMangleContext().mangleCXXVTable(RD, Out);
+ Out.flush();
+ StringRef Name = OutName.str();
+
+ ItaniumVTableContext &VTContext = CGM.getItaniumVTableContext();
+ llvm::ArrayType *ArrayType = llvm::ArrayType::get(
+ CGM.Int8PtrTy, VTContext.getVTableLayout(RD).getNumVTableComponents());
+
+ VTable = CGM.CreateOrReplaceCXXRuntimeVariable(
+ Name, ArrayType, llvm::GlobalValue::ExternalLinkage);
+ VTable->setUnnamedAddr(true);
+
+ if (RD->hasAttr<DLLImportAttr>())
+ VTable->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
+ else if (RD->hasAttr<DLLExportAttr>())
+ VTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
+
+ return VTable;
+}
+
+llvm::Value *ItaniumCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF,
+ GlobalDecl GD,
+ llvm::Value *This,
+ llvm::Type *Ty) {
+ GD = GD.getCanonicalDecl();
+ Ty = Ty->getPointerTo()->getPointerTo();
+ llvm::Value *VTable = CGF.GetVTablePtr(This, Ty);
+
+ uint64_t VTableIndex = CGM.getItaniumVTableContext().getMethodVTableIndex(GD);
+ llvm::Value *VFuncPtr =
+ CGF.Builder.CreateConstInBoundsGEP1_64(VTable, VTableIndex, "vfn");
+ return CGF.Builder.CreateLoad(VFuncPtr);
+}
+
+void ItaniumCXXABI::EmitVirtualDestructorCall(CodeGenFunction &CGF,
+ const CXXDestructorDecl *Dtor,
+ CXXDtorType DtorType,
+ SourceLocation CallLoc,
+ llvm::Value *This) {
+ assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete);
+
+ const CGFunctionInfo *FInfo
+ = &CGM.getTypes().arrangeCXXDestructor(Dtor, DtorType);
+ llvm::Type *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo);
+ llvm::Value *Callee =
+ getVirtualFunctionPointer(CGF, GlobalDecl(Dtor, DtorType), This, Ty);
+
+ CGF.EmitCXXMemberCall(Dtor, CallLoc, Callee, ReturnValueSlot(), This,
+ /*ImplicitParam=*/nullptr, QualType(), nullptr,
+ nullptr);
+}
+
+void ItaniumCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) {
+ CodeGenVTables &VTables = CGM.getVTables();
+ llvm::GlobalVariable *VTT = VTables.GetAddrOfVTT(RD);
+ VTables.EmitVTTDefinition(VTT, CGM.getVTableLinkage(RD), RD);
+}
+
+static llvm::Value *performTypeAdjustment(CodeGenFunction &CGF,
+ llvm::Value *Ptr,
+ int64_t NonVirtualAdjustment,
+ int64_t VirtualAdjustment,
+ bool IsReturnAdjustment) {
+ if (!NonVirtualAdjustment && !VirtualAdjustment)
+ return Ptr;
+
+ llvm::Type *Int8PtrTy = CGF.Int8PtrTy;
+ llvm::Value *V = CGF.Builder.CreateBitCast(Ptr, Int8PtrTy);
+
+ if (NonVirtualAdjustment && !IsReturnAdjustment) {
+ // Perform the non-virtual adjustment for a base-to-derived cast.
+ V = CGF.Builder.CreateConstInBoundsGEP1_64(V, NonVirtualAdjustment);
+ }
+
+ if (VirtualAdjustment) {
+ llvm::Type *PtrDiffTy =
+ CGF.ConvertType(CGF.getContext().getPointerDiffType());
+
+ // Perform the virtual adjustment.
+ llvm::Value *VTablePtrPtr =
+ CGF.Builder.CreateBitCast(V, Int8PtrTy->getPointerTo());
+
+ llvm::Value *VTablePtr = CGF.Builder.CreateLoad(VTablePtrPtr);
+
+ llvm::Value *OffsetPtr =
+ CGF.Builder.CreateConstInBoundsGEP1_64(VTablePtr, VirtualAdjustment);
+
+ OffsetPtr = CGF.Builder.CreateBitCast(OffsetPtr, PtrDiffTy->getPointerTo());
+
+ // Load the adjustment offset from the vtable.
+ llvm::Value *Offset = CGF.Builder.CreateLoad(OffsetPtr);
+
+ // Adjust our pointer.
+ V = CGF.Builder.CreateInBoundsGEP(V, Offset);
+ }
+
+ if (NonVirtualAdjustment && IsReturnAdjustment) {
+ // Perform the non-virtual adjustment for a derived-to-base cast.
+ V = CGF.Builder.CreateConstInBoundsGEP1_64(V, NonVirtualAdjustment);
+ }
+
+ // Cast back to the original type.
+ return CGF.Builder.CreateBitCast(V, Ptr->getType());
+}
+
+llvm::Value *ItaniumCXXABI::performThisAdjustment(CodeGenFunction &CGF,
+ llvm::Value *This,
+ const ThisAdjustment &TA) {
+ return performTypeAdjustment(CGF, This, TA.NonVirtual,
+ TA.Virtual.Itanium.VCallOffsetOffset,
+ /*IsReturnAdjustment=*/false);
+}
+
+llvm::Value *
+ItaniumCXXABI::performReturnAdjustment(CodeGenFunction &CGF, llvm::Value *Ret,
+ const ReturnAdjustment &RA) {
+ return performTypeAdjustment(CGF, Ret, RA.NonVirtual,
+ RA.Virtual.Itanium.VBaseOffsetOffset,
+ /*IsReturnAdjustment=*/true);
+}
+
+void ARMCXXABI::EmitReturnFromThunk(CodeGenFunction &CGF,
+ RValue RV, QualType ResultType) {
+ if (!isa<CXXDestructorDecl>(CGF.CurGD.getDecl()))
+ return ItaniumCXXABI::EmitReturnFromThunk(CGF, RV, ResultType);
+
+ // Destructor thunks in the ARM ABI have indeterminate results.
+ llvm::Type *T =
+ cast<llvm::PointerType>(CGF.ReturnValue->getType())->getElementType();
+ RValue Undef = RValue::get(llvm::UndefValue::get(T));
+ return ItaniumCXXABI::EmitReturnFromThunk(CGF, Undef, ResultType);
+}
+
+/************************** Array allocation cookies **************************/
+
+CharUnits ItaniumCXXABI::getArrayCookieSizeImpl(QualType elementType) {
+ // The array cookie is a size_t; pad that up to the element alignment.
+ // The cookie is actually right-justified in that space.
+ return std::max(CharUnits::fromQuantity(CGM.SizeSizeInBytes),
+ CGM.getContext().getTypeAlignInChars(elementType));
+}
+
+llvm::Value *ItaniumCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
+ llvm::Value *NewPtr,
+ llvm::Value *NumElements,
+ const CXXNewExpr *expr,
+ QualType ElementType) {
+ assert(requiresArrayCookie(expr));
+
+ unsigned AS = NewPtr->getType()->getPointerAddressSpace();
+
+ ASTContext &Ctx = getContext();
+ QualType SizeTy = Ctx.getSizeType();
+ CharUnits SizeSize = Ctx.getTypeSizeInChars(SizeTy);
+
+ // The size of the cookie.
+ CharUnits CookieSize =
+ std::max(SizeSize, Ctx.getTypeAlignInChars(ElementType));
+ assert(CookieSize == getArrayCookieSizeImpl(ElementType));
+
+ // Compute an offset to the cookie.
+ llvm::Value *CookiePtr = NewPtr;
+ CharUnits CookieOffset = CookieSize - SizeSize;
+ if (!CookieOffset.isZero())
+ CookiePtr = CGF.Builder.CreateConstInBoundsGEP1_64(CookiePtr,
+ CookieOffset.getQuantity());
+
+ // Write the number of elements into the appropriate slot.
+ llvm::Value *NumElementsPtr
+ = CGF.Builder.CreateBitCast(CookiePtr,
+ CGF.ConvertType(SizeTy)->getPointerTo(AS));
+ CGF.Builder.CreateStore(NumElements, NumElementsPtr);
+
+ // Finally, compute a pointer to the actual data buffer by skipping
+ // over the cookie completely.
+ return CGF.Builder.CreateConstInBoundsGEP1_64(NewPtr,
+ CookieSize.getQuantity());
+}
+
+llvm::Value *ItaniumCXXABI::readArrayCookieImpl(CodeGenFunction &CGF,
+ llvm::Value *allocPtr,
+ CharUnits cookieSize) {
+ // The element size is right-justified in the cookie.
+ llvm::Value *numElementsPtr = allocPtr;
+ CharUnits numElementsOffset =
+ cookieSize - CharUnits::fromQuantity(CGF.SizeSizeInBytes);
+ if (!numElementsOffset.isZero())
+ numElementsPtr =
+ CGF.Builder.CreateConstInBoundsGEP1_64(numElementsPtr,
+ numElementsOffset.getQuantity());
+
+ unsigned AS = allocPtr->getType()->getPointerAddressSpace();
+ numElementsPtr =
+ CGF.Builder.CreateBitCast(numElementsPtr, CGF.SizeTy->getPointerTo(AS));
+ return CGF.Builder.CreateLoad(numElementsPtr);
+}
+
+CharUnits ARMCXXABI::getArrayCookieSizeImpl(QualType elementType) {
+ // ARM says that the cookie is always:
+ // struct array_cookie {
+ // std::size_t element_size; // element_size != 0
+ // std::size_t element_count;
+ // };
+ // But the base ABI doesn't give anything an alignment greater than
+ // 8, so we can dismiss this as typical ABI-author blindness to
+ // actual language complexity and round up to the element alignment.
+ return std::max(CharUnits::fromQuantity(2 * CGM.SizeSizeInBytes),
+ CGM.getContext().getTypeAlignInChars(elementType));
+}
+
+llvm::Value *ARMCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
+ llvm::Value *newPtr,
+ llvm::Value *numElements,
+ const CXXNewExpr *expr,
+ QualType elementType) {
+ assert(requiresArrayCookie(expr));
+
+ // NewPtr is a char*, but we generalize to arbitrary addrspaces.
+ unsigned AS = newPtr->getType()->getPointerAddressSpace();
+
+ // The cookie is always at the start of the buffer.
+ llvm::Value *cookie = newPtr;
+
+ // The first element is the element size.
+ cookie = CGF.Builder.CreateBitCast(cookie, CGF.SizeTy->getPointerTo(AS));
+ llvm::Value *elementSize = llvm::ConstantInt::get(CGF.SizeTy,
+ getContext().getTypeSizeInChars(elementType).getQuantity());
+ CGF.Builder.CreateStore(elementSize, cookie);
+
+ // The second element is the element count.
+ cookie = CGF.Builder.CreateConstInBoundsGEP1_32(cookie, 1);
+ CGF.Builder.CreateStore(numElements, cookie);
+
+ // Finally, compute a pointer to the actual data buffer by skipping
+ // over the cookie completely.
+ CharUnits cookieSize = ARMCXXABI::getArrayCookieSizeImpl(elementType);
+ return CGF.Builder.CreateConstInBoundsGEP1_64(newPtr,
+ cookieSize.getQuantity());
+}
+
+llvm::Value *ARMCXXABI::readArrayCookieImpl(CodeGenFunction &CGF,
+ llvm::Value *allocPtr,
+ CharUnits cookieSize) {
+ // The number of elements is at offset sizeof(size_t) relative to
+ // the allocated pointer.
+ llvm::Value *numElementsPtr
+ = CGF.Builder.CreateConstInBoundsGEP1_64(allocPtr, CGF.SizeSizeInBytes);
+
+ unsigned AS = allocPtr->getType()->getPointerAddressSpace();
+ numElementsPtr =
+ CGF.Builder.CreateBitCast(numElementsPtr, CGF.SizeTy->getPointerTo(AS));
+ return CGF.Builder.CreateLoad(numElementsPtr);
+}
+
+/*********************** Static local initialization **************************/
+
+static llvm::Constant *getGuardAcquireFn(CodeGenModule &CGM,
+ llvm::PointerType *GuardPtrTy) {
+ // int __cxa_guard_acquire(__guard *guard_object);
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(CGM.getTypes().ConvertType(CGM.getContext().IntTy),
+ GuardPtrTy, /*isVarArg=*/false);
+ return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_acquire",
+ llvm::AttributeSet::get(CGM.getLLVMContext(),
+ llvm::AttributeSet::FunctionIndex,
+ llvm::Attribute::NoUnwind));
+}
+
+static llvm::Constant *getGuardReleaseFn(CodeGenModule &CGM,
+ llvm::PointerType *GuardPtrTy) {
+ // void __cxa_guard_release(__guard *guard_object);
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false);
+ return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_release",
+ llvm::AttributeSet::get(CGM.getLLVMContext(),
+ llvm::AttributeSet::FunctionIndex,
+ llvm::Attribute::NoUnwind));
+}
+
+static llvm::Constant *getGuardAbortFn(CodeGenModule &CGM,
+ llvm::PointerType *GuardPtrTy) {
+ // void __cxa_guard_abort(__guard *guard_object);
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false);
+ return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_abort",
+ llvm::AttributeSet::get(CGM.getLLVMContext(),
+ llvm::AttributeSet::FunctionIndex,
+ llvm::Attribute::NoUnwind));
+}
+
+namespace {
+ struct CallGuardAbort : EHScopeStack::Cleanup {
+ llvm::GlobalVariable *Guard;
+ CallGuardAbort(llvm::GlobalVariable *Guard) : Guard(Guard) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ CGF.EmitNounwindRuntimeCall(getGuardAbortFn(CGF.CGM, Guard->getType()),
+ Guard);
+ }
+ };
+}
+
+/// The ARM code here follows the Itanium code closely enough that we
+/// just special-case it at particular places.
+void ItaniumCXXABI::EmitGuardedInit(CodeGenFunction &CGF,
+ const VarDecl &D,
+ llvm::GlobalVariable *var,
+ bool shouldPerformInit) {
+ CGBuilderTy &Builder = CGF.Builder;
+
+ // We only need to use thread-safe statics for local non-TLS variables;
+ // global initialization is always single-threaded.
+ bool threadsafe = getContext().getLangOpts().ThreadsafeStatics &&
+ D.isLocalVarDecl() && !D.getTLSKind();
+
+ // If we have a global variable with internal linkage and thread-safe statics
+ // are disabled, we can just let the guard variable be of type i8.
+ bool useInt8GuardVariable = !threadsafe && var->hasInternalLinkage();
+
+ llvm::IntegerType *guardTy;
+ if (useInt8GuardVariable) {
+ guardTy = CGF.Int8Ty;
+ } else {
+ // Guard variables are 64 bits in the generic ABI and size width on ARM
+ // (i.e. 32-bit on AArch32, 64-bit on AArch64).
+ guardTy = (UseARMGuardVarABI ? CGF.SizeTy : CGF.Int64Ty);
+ }
+ llvm::PointerType *guardPtrTy = guardTy->getPointerTo();
+
+ // Create the guard variable if we don't already have it (as we
+ // might if we're double-emitting this function body).
+ llvm::GlobalVariable *guard = CGM.getStaticLocalDeclGuardAddress(&D);
+ if (!guard) {
+ // Mangle the name for the guard.
+ SmallString<256> guardName;
+ {
+ llvm::raw_svector_ostream out(guardName);
+ getMangleContext().mangleStaticGuardVariable(&D, out);
+ out.flush();
+ }
+
+ // Create the guard variable with a zero-initializer.
+ // Just absorb linkage and visibility from the guarded variable.
+ guard = new llvm::GlobalVariable(CGM.getModule(), guardTy,
+ false, var->getLinkage(),
+ llvm::ConstantInt::get(guardTy, 0),
+ guardName.str());
+ guard->setVisibility(var->getVisibility());
+ // If the variable is thread-local, so is its guard variable.
+ guard->setThreadLocalMode(var->getThreadLocalMode());
+
+ CGM.setStaticLocalDeclGuardAddress(&D, guard);
+ }
+
+ // Test whether the variable has completed initialization.
+ //
+ // Itanium C++ ABI 3.3.2:
+ // The following is pseudo-code showing how these functions can be used:
+ // if (obj_guard.first_byte == 0) {
+ // if ( __cxa_guard_acquire (&obj_guard) ) {
+ // try {
+ // ... initialize the object ...;
+ // } catch (...) {
+ // __cxa_guard_abort (&obj_guard);
+ // throw;
+ // }
+ // ... queue object destructor with __cxa_atexit() ...;
+ // __cxa_guard_release (&obj_guard);
+ // }
+ // }
+
+ // Load the first byte of the guard variable.
+ llvm::LoadInst *LI =
+ Builder.CreateLoad(Builder.CreateBitCast(guard, CGM.Int8PtrTy));
+ LI->setAlignment(1);
+
+ // Itanium ABI:
+ // An implementation supporting thread-safety on multiprocessor
+ // systems must also guarantee that references to the initialized
+ // object do not occur before the load of the initialization flag.
+ //
+ // In LLVM, we do this by marking the load Acquire.
+ if (threadsafe)
+ LI->setAtomic(llvm::Acquire);
+
+ // For ARM, we should only check the first bit, rather than the entire byte:
+ //
+ // ARM C++ ABI 3.2.3.1:
+ // To support the potential use of initialization guard variables
+ // as semaphores that are the target of ARM SWP and LDREX/STREX
+ // synchronizing instructions we define a static initialization
+ // guard variable to be a 4-byte aligned, 4-byte word with the
+ // following inline access protocol.
+ // #define INITIALIZED 1
+ // if ((obj_guard & INITIALIZED) != INITIALIZED) {
+ // if (__cxa_guard_acquire(&obj_guard))
+ // ...
+ // }
+ //
+ // and similarly for ARM64:
+ //
+ // ARM64 C++ ABI 3.2.2:
+ // This ABI instead only specifies the value bit 0 of the static guard
+ // variable; all other bits are platform defined. Bit 0 shall be 0 when the
+ // variable is not initialized and 1 when it is.
+ llvm::Value *V =
+ (UseARMGuardVarABI && !useInt8GuardVariable)
+ ? Builder.CreateAnd(LI, llvm::ConstantInt::get(CGM.Int8Ty, 1))
+ : LI;
+ llvm::Value *isInitialized = Builder.CreateIsNull(V, "guard.uninitialized");
+
+ llvm::BasicBlock *InitCheckBlock = CGF.createBasicBlock("init.check");
+ llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
+
+ // Check if the first byte of the guard variable is zero.
+ Builder.CreateCondBr(isInitialized, InitCheckBlock, EndBlock);
+
+ CGF.EmitBlock(InitCheckBlock);
+
+ // Variables used when coping with thread-safe statics and exceptions.
+ if (threadsafe) {
+ // Call __cxa_guard_acquire.
+ llvm::Value *V
+ = CGF.EmitNounwindRuntimeCall(getGuardAcquireFn(CGM, guardPtrTy), guard);
+
+ llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
+
+ Builder.CreateCondBr(Builder.CreateIsNotNull(V, "tobool"),
+ InitBlock, EndBlock);
+
+ // Call __cxa_guard_abort along the exceptional edge.
+ CGF.EHStack.pushCleanup<CallGuardAbort>(EHCleanup, guard);
+
+ CGF.EmitBlock(InitBlock);
+ }
+
+ // Emit the initializer and add a global destructor if appropriate.
+ CGF.EmitCXXGlobalVarDeclInit(D, var, shouldPerformInit);
+
+ if (threadsafe) {
+ // Pop the guard-abort cleanup if we pushed one.
+ CGF.PopCleanupBlock();
+
+ // Call __cxa_guard_release. This cannot throw.
+ CGF.EmitNounwindRuntimeCall(getGuardReleaseFn(CGM, guardPtrTy), guard);
+ } else {
+ Builder.CreateStore(llvm::ConstantInt::get(guardTy, 1), guard);
+ }
+
+ CGF.EmitBlock(EndBlock);
+}
+
+/// Register a global destructor using __cxa_atexit.
+static void emitGlobalDtorWithCXAAtExit(CodeGenFunction &CGF,
+ llvm::Constant *dtor,
+ llvm::Constant *addr,
+ bool TLS) {
+ const char *Name = "__cxa_atexit";
+ if (TLS) {
+ const llvm::Triple &T = CGF.getTarget().getTriple();
+ Name = T.isMacOSX() ? "_tlv_atexit" : "__cxa_thread_atexit";
+ }
+
+ // We're assuming that the destructor function is something we can
+ // reasonably call with the default CC. Go ahead and cast it to the
+ // right prototype.
+ llvm::Type *dtorTy =
+ llvm::FunctionType::get(CGF.VoidTy, CGF.Int8PtrTy, false)->getPointerTo();
+
+ // extern "C" int __cxa_atexit(void (*f)(void *), void *p, void *d);
+ llvm::Type *paramTys[] = { dtorTy, CGF.Int8PtrTy, CGF.Int8PtrTy };
+ llvm::FunctionType *atexitTy =
+ llvm::FunctionType::get(CGF.IntTy, paramTys, false);
+
+ // Fetch the actual function.
+ llvm::Constant *atexit = CGF.CGM.CreateRuntimeFunction(atexitTy, Name);
+ if (llvm::Function *fn = dyn_cast<llvm::Function>(atexit))
+ fn->setDoesNotThrow();
+
+ // Create a variable that binds the atexit to this shared object.
+ llvm::Constant *handle =
+ CGF.CGM.CreateRuntimeVariable(CGF.Int8Ty, "__dso_handle");
+
+ llvm::Value *args[] = {
+ llvm::ConstantExpr::getBitCast(dtor, dtorTy),
+ llvm::ConstantExpr::getBitCast(addr, CGF.Int8PtrTy),
+ handle
+ };
+ CGF.EmitNounwindRuntimeCall(atexit, args);
+}
+
+/// Register a global destructor as best as we know how.
+void ItaniumCXXABI::registerGlobalDtor(CodeGenFunction &CGF,
+ const VarDecl &D,
+ llvm::Constant *dtor,
+ llvm::Constant *addr) {
+ // Use __cxa_atexit if available.
+ if (CGM.getCodeGenOpts().CXAAtExit)
+ return emitGlobalDtorWithCXAAtExit(CGF, dtor, addr, D.getTLSKind());
+
+ if (D.getTLSKind())
+ CGM.ErrorUnsupported(&D, "non-trivial TLS destruction");
+
+ // In Apple kexts, we want to add a global destructor entry.
+ // FIXME: shouldn't this be guarded by some variable?
+ if (CGM.getLangOpts().AppleKext) {
+ // Generate a global destructor entry.
+ return CGM.AddCXXDtorEntry(dtor, addr);
+ }
+
+ CGF.registerGlobalDtorWithAtExit(D, dtor, addr);
+}
+
+static bool isThreadWrapperReplaceable(const VarDecl *VD,
+ CodeGen::CodeGenModule &CGM) {
+ assert(!VD->isStaticLocal() && "static local VarDecls don't need wrappers!");
+ // OS X prefers to have references to thread local variables to go through
+ // the thread wrapper instead of directly referencing the backing variable.
+ return VD->getTLSKind() == VarDecl::TLS_Dynamic &&
+ CGM.getTarget().getTriple().isMacOSX();
+}
+
+/// Get the appropriate linkage for the wrapper function. This is essentially
+/// the weak form of the variable's linkage; every translation unit which needs
+/// the wrapper emits a copy, and we want the linker to merge them.
+static llvm::GlobalValue::LinkageTypes
+getThreadLocalWrapperLinkage(const VarDecl *VD, CodeGen::CodeGenModule &CGM) {
+ llvm::GlobalValue::LinkageTypes VarLinkage =
+ CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false);
+
+ // For internal linkage variables, we don't need an external or weak wrapper.
+ if (llvm::GlobalValue::isLocalLinkage(VarLinkage))
+ return VarLinkage;
+
+ // If the thread wrapper is replaceable, give it appropriate linkage.
+ if (isThreadWrapperReplaceable(VD, CGM)) {
+ if (llvm::GlobalVariable::isLinkOnceLinkage(VarLinkage) ||
+ llvm::GlobalVariable::isWeakODRLinkage(VarLinkage))
+ return llvm::GlobalVariable::WeakAnyLinkage;
+ return VarLinkage;
+ }
+ return llvm::GlobalValue::WeakODRLinkage;
+}
+
+llvm::Function *
+ItaniumCXXABI::getOrCreateThreadLocalWrapper(const VarDecl *VD,
+ llvm::GlobalVariable *Var) {
+ // Mangle the name for the thread_local wrapper function.
+ SmallString<256> WrapperName;
+ {
+ llvm::raw_svector_ostream Out(WrapperName);
+ getMangleContext().mangleItaniumThreadLocalWrapper(VD, Out);
+ Out.flush();
+ }
+
+ if (llvm::Value *V = Var->getParent()->getNamedValue(WrapperName))
+ return cast<llvm::Function>(V);
+
+ llvm::Type *RetTy = Var->getType();
+ if (VD->getType()->isReferenceType())
+ RetTy = RetTy->getPointerElementType();
+
+ llvm::FunctionType *FnTy = llvm::FunctionType::get(RetTy, false);
+ llvm::Function *Wrapper =
+ llvm::Function::Create(FnTy, getThreadLocalWrapperLinkage(VD, CGM),
+ WrapperName.str(), &CGM.getModule());
+ // Always resolve references to the wrapper at link time.
+ if (!Wrapper->hasLocalLinkage() && !isThreadWrapperReplaceable(VD, CGM))
+ Wrapper->setVisibility(llvm::GlobalValue::HiddenVisibility);
+ return Wrapper;
+}
+
+void ItaniumCXXABI::EmitThreadLocalInitFuncs(
+ ArrayRef<std::pair<const VarDecl *, llvm::GlobalVariable *> > Decls,
+ llvm::Function *InitFunc) {
+ for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
+ const VarDecl *VD = Decls[I].first;
+ llvm::GlobalVariable *Var = Decls[I].second;
+
+ // Some targets require that all access to thread local variables go through
+ // the thread wrapper. This means that we cannot attempt to create a thread
+ // wrapper or a thread helper.
+ if (isThreadWrapperReplaceable(VD, CGM) && !VD->hasDefinition())
+ continue;
+
+ // Mangle the name for the thread_local initialization function.
+ SmallString<256> InitFnName;
+ {
+ llvm::raw_svector_ostream Out(InitFnName);
+ getMangleContext().mangleItaniumThreadLocalInit(VD, Out);
+ Out.flush();
+ }
+
+ // If we have a definition for the variable, emit the initialization
+ // function as an alias to the global Init function (if any). Otherwise,
+ // produce a declaration of the initialization function.
+ llvm::GlobalValue *Init = nullptr;
+ bool InitIsInitFunc = false;
+ if (VD->hasDefinition()) {
+ InitIsInitFunc = true;
+ if (InitFunc)
+ Init = llvm::GlobalAlias::create(Var->getLinkage(), InitFnName.str(),
+ InitFunc);
+ } else {
+ // Emit a weak global function referring to the initialization function.
+ // This function will not exist if the TU defining the thread_local
+ // variable in question does not need any dynamic initialization for
+ // its thread_local variables.
+ llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, false);
+ Init = llvm::Function::Create(
+ FnTy, llvm::GlobalVariable::ExternalWeakLinkage, InitFnName.str(),
+ &CGM.getModule());
+ }
+
+ if (Init)
+ Init->setVisibility(Var->getVisibility());
+
+ llvm::Function *Wrapper = getOrCreateThreadLocalWrapper(VD, Var);
+ llvm::LLVMContext &Context = CGM.getModule().getContext();
+ llvm::BasicBlock *Entry = llvm::BasicBlock::Create(Context, "", Wrapper);
+ CGBuilderTy Builder(Entry);
+ if (InitIsInitFunc) {
+ if (Init)
+ Builder.CreateCall(Init);
+ } else {
+ // Don't know whether we have an init function. Call it if it exists.
+ llvm::Value *Have = Builder.CreateIsNotNull(Init);
+ llvm::BasicBlock *InitBB = llvm::BasicBlock::Create(Context, "", Wrapper);
+ llvm::BasicBlock *ExitBB = llvm::BasicBlock::Create(Context, "", Wrapper);
+ Builder.CreateCondBr(Have, InitBB, ExitBB);
+
+ Builder.SetInsertPoint(InitBB);
+ Builder.CreateCall(Init);
+ Builder.CreateBr(ExitBB);
+
+ Builder.SetInsertPoint(ExitBB);
+ }
+
+ // For a reference, the result of the wrapper function is a pointer to
+ // the referenced object.
+ llvm::Value *Val = Var;
+ if (VD->getType()->isReferenceType()) {
+ llvm::LoadInst *LI = Builder.CreateLoad(Val);
+ LI->setAlignment(CGM.getContext().getDeclAlign(VD).getQuantity());
+ Val = LI;
+ }
+
+ Builder.CreateRet(Val);
+ }
+}
+
+LValue ItaniumCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF,
+ const VarDecl *VD,
+ QualType LValType) {
+ QualType T = VD->getType();
+ llvm::Type *Ty = CGF.getTypes().ConvertTypeForMem(T);
+ llvm::Value *Val = CGF.CGM.GetAddrOfGlobalVar(VD, Ty);
+ llvm::Function *Wrapper =
+ getOrCreateThreadLocalWrapper(VD, cast<llvm::GlobalVariable>(Val));
+
+ Val = CGF.Builder.CreateCall(Wrapper);
+
+ LValue LV;
+ if (VD->getType()->isReferenceType())
+ LV = CGF.MakeNaturalAlignAddrLValue(Val, LValType);
+ else
+ LV = CGF.MakeAddrLValue(Val, LValType, CGF.getContext().getDeclAlign(VD));
+ // FIXME: need setObjCGCLValueClass?
+ return LV;
+}
+
+/// Return whether the given global decl needs a VTT parameter, which it does
+/// if it's a base constructor or destructor with virtual bases.
+bool ItaniumCXXABI::NeedsVTTParameter(GlobalDecl GD) {
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
+
+ // We don't have any virtual bases, just return early.
+ if (!MD->getParent()->getNumVBases())
+ return false;
+
+ // Check if we have a base constructor.
+ if (isa<CXXConstructorDecl>(MD) && GD.getCtorType() == Ctor_Base)
+ return true;
+
+ // Check if we have a base destructor.
+ if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
+ return true;
+
+ return false;
+}
+
+namespace {
+class ItaniumRTTIBuilder {
+ CodeGenModule &CGM; // Per-module state.
+ llvm::LLVMContext &VMContext;
+ const ItaniumCXXABI &CXXABI; // Per-module state.
+
+ /// Fields - The fields of the RTTI descriptor currently being built.
+ SmallVector<llvm::Constant *, 16> Fields;
+
+ /// GetAddrOfTypeName - Returns the mangled type name of the given type.
+ llvm::GlobalVariable *
+ GetAddrOfTypeName(QualType Ty, llvm::GlobalVariable::LinkageTypes Linkage);
+
+ /// GetAddrOfExternalRTTIDescriptor - Returns the constant for the RTTI
+ /// descriptor of the given type.
+ llvm::Constant *GetAddrOfExternalRTTIDescriptor(QualType Ty);
+
+ /// BuildVTablePointer - Build the vtable pointer for the given type.
+ void BuildVTablePointer(const Type *Ty);
+
+ /// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single
+ /// inheritance, according to the Itanium C++ ABI, 2.9.5p6b.
+ void BuildSIClassTypeInfo(const CXXRecordDecl *RD);
+
+ /// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for
+ /// classes with bases that do not satisfy the abi::__si_class_type_info
+ /// constraints, according ti the Itanium C++ ABI, 2.9.5p5c.
+ void BuildVMIClassTypeInfo(const CXXRecordDecl *RD);
+
+ /// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct, used
+ /// for pointer types.
+ void BuildPointerTypeInfo(QualType PointeeTy);
+
+ /// BuildObjCObjectTypeInfo - Build the appropriate kind of
+ /// type_info for an object type.
+ void BuildObjCObjectTypeInfo(const ObjCObjectType *Ty);
+
+ /// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info
+ /// struct, used for member pointer types.
+ void BuildPointerToMemberTypeInfo(const MemberPointerType *Ty);
+
+public:
+ ItaniumRTTIBuilder(const ItaniumCXXABI &ABI)
+ : CGM(ABI.CGM), VMContext(CGM.getModule().getContext()), CXXABI(ABI) {}
+
+ // Pointer type info flags.
+ enum {
+ /// PTI_Const - Type has const qualifier.
+ PTI_Const = 0x1,
+
+ /// PTI_Volatile - Type has volatile qualifier.
+ PTI_Volatile = 0x2,
+
+ /// PTI_Restrict - Type has restrict qualifier.
+ PTI_Restrict = 0x4,
+
+ /// PTI_Incomplete - Type is incomplete.
+ PTI_Incomplete = 0x8,
+
+ /// PTI_ContainingClassIncomplete - Containing class is incomplete.
+ /// (in pointer to member).
+ PTI_ContainingClassIncomplete = 0x10
+ };
+
+ // VMI type info flags.
+ enum {
+ /// VMI_NonDiamondRepeat - Class has non-diamond repeated inheritance.
+ VMI_NonDiamondRepeat = 0x1,
+
+ /// VMI_DiamondShaped - Class is diamond shaped.
+ VMI_DiamondShaped = 0x2
+ };
+
+ // Base class type info flags.
+ enum {
+ /// BCTI_Virtual - Base class is virtual.
+ BCTI_Virtual = 0x1,
+
+ /// BCTI_Public - Base class is public.
+ BCTI_Public = 0x2
+ };
+
+ /// BuildTypeInfo - Build the RTTI type info struct for the given type.
+ ///
+ /// \param Force - true to force the creation of this RTTI value
+ llvm::Constant *BuildTypeInfo(QualType Ty, bool Force = false);
+};
+}
+
+llvm::GlobalVariable *ItaniumRTTIBuilder::GetAddrOfTypeName(
+ QualType Ty, llvm::GlobalVariable::LinkageTypes Linkage) {
+ SmallString<256> OutName;
+ llvm::raw_svector_ostream Out(OutName);
+ CGM.getCXXABI().getMangleContext().mangleCXXRTTIName(Ty, Out);
+ Out.flush();
+ StringRef Name = OutName.str();
+
+ // We know that the mangled name of the type starts at index 4 of the
+ // mangled name of the typename, so we can just index into it in order to
+ // get the mangled name of the type.
+ llvm::Constant *Init = llvm::ConstantDataArray::getString(VMContext,
+ Name.substr(4));
+
+ llvm::GlobalVariable *GV =
+ CGM.CreateOrReplaceCXXRuntimeVariable(Name, Init->getType(), Linkage);
+
+ GV->setInitializer(Init);
+
+ return GV;
+}
+
+llvm::Constant *
+ItaniumRTTIBuilder::GetAddrOfExternalRTTIDescriptor(QualType Ty) {
+ // Mangle the RTTI name.
+ SmallString<256> OutName;
+ llvm::raw_svector_ostream Out(OutName);
+ CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty, Out);
+ Out.flush();
+ StringRef Name = OutName.str();
+
+ // Look for an existing global.
+ llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name);
+
+ if (!GV) {
+ // Create a new global variable.
+ GV = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy,
+ /*Constant=*/true,
+ llvm::GlobalValue::ExternalLinkage, nullptr,
+ Name);
+ }
+
+ return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy);
+}
+
+/// TypeInfoIsInStandardLibrary - Given a builtin type, returns whether the type
+/// info for that type is defined in the standard library.
+static bool TypeInfoIsInStandardLibrary(const BuiltinType *Ty) {
+ // Itanium C++ ABI 2.9.2:
+ // Basic type information (e.g. for "int", "bool", etc.) will be kept in
+ // the run-time support library. Specifically, the run-time support
+ // library should contain type_info objects for the types X, X* and
+ // X const*, for every X in: void, std::nullptr_t, bool, wchar_t, char,
+ // unsigned char, signed char, short, unsigned short, int, unsigned int,
+ // long, unsigned long, long long, unsigned long long, float, double,
+ // long double, char16_t, char32_t, and the IEEE 754r decimal and
+ // half-precision floating point types.
+ switch (Ty->getKind()) {
+ case BuiltinType::Void:
+ case BuiltinType::NullPtr:
+ case BuiltinType::Bool:
+ case BuiltinType::WChar_S:
+ case BuiltinType::WChar_U:
+ case BuiltinType::Char_U:
+ case BuiltinType::Char_S:
+ case BuiltinType::UChar:
+ case BuiltinType::SChar:
+ case BuiltinType::Short:
+ case BuiltinType::UShort:
+ case BuiltinType::Int:
+ case BuiltinType::UInt:
+ case BuiltinType::Long:
+ case BuiltinType::ULong:
+ case BuiltinType::LongLong:
+ case BuiltinType::ULongLong:
+ case BuiltinType::Half:
+ case BuiltinType::Float:
+ case BuiltinType::Double:
+ case BuiltinType::LongDouble:
+ case BuiltinType::Char16:
+ case BuiltinType::Char32:
+ case BuiltinType::Int128:
+ case BuiltinType::UInt128:
+ case BuiltinType::OCLImage1d:
+ case BuiltinType::OCLImage1dArray:
+ case BuiltinType::OCLImage1dBuffer:
+ case BuiltinType::OCLImage2d:
+ case BuiltinType::OCLImage2dArray:
+ case BuiltinType::OCLImage3d:
+ case BuiltinType::OCLSampler:
+ case BuiltinType::OCLEvent:
+ return true;
+
+ case BuiltinType::Dependent:
+#define BUILTIN_TYPE(Id, SingletonId)
+#define PLACEHOLDER_TYPE(Id, SingletonId) \
+ case BuiltinType::Id:
+#include "clang/AST/BuiltinTypes.def"
+ llvm_unreachable("asking for RRTI for a placeholder type!");
+
+ case BuiltinType::ObjCId:
+ case BuiltinType::ObjCClass:
+ case BuiltinType::ObjCSel:
+ llvm_unreachable("FIXME: Objective-C types are unsupported!");
+ }
+
+ llvm_unreachable("Invalid BuiltinType Kind!");
+}
+
+static bool TypeInfoIsInStandardLibrary(const PointerType *PointerTy) {
+ QualType PointeeTy = PointerTy->getPointeeType();
+ const BuiltinType *BuiltinTy = dyn_cast<BuiltinType>(PointeeTy);
+ if (!BuiltinTy)
+ return false;
+
+ // Check the qualifiers.
+ Qualifiers Quals = PointeeTy.getQualifiers();
+ Quals.removeConst();
+
+ if (!Quals.empty())
+ return false;
+
+ return TypeInfoIsInStandardLibrary(BuiltinTy);
+}
+
+/// IsStandardLibraryRTTIDescriptor - Returns whether the type
+/// information for the given type exists in the standard library.
+static bool IsStandardLibraryRTTIDescriptor(QualType Ty) {
+ // Type info for builtin types is defined in the standard library.
+ if (const BuiltinType *BuiltinTy = dyn_cast<BuiltinType>(Ty))
+ return TypeInfoIsInStandardLibrary(BuiltinTy);
+
+ // Type info for some pointer types to builtin types is defined in the
+ // standard library.
+ if (const PointerType *PointerTy = dyn_cast<PointerType>(Ty))
+ return TypeInfoIsInStandardLibrary(PointerTy);
+
+ return false;
+}
+
+/// ShouldUseExternalRTTIDescriptor - Returns whether the type information for
+/// the given type exists somewhere else, and that we should not emit the type
+/// information in this translation unit. Assumes that it is not a
+/// standard-library type.
+static bool ShouldUseExternalRTTIDescriptor(CodeGenModule &CGM,
+ QualType Ty) {
+ ASTContext &Context = CGM.getContext();
+
+ // If RTTI is disabled, assume it might be disabled in the
+ // translation unit that defines any potential key function, too.
+ if (!Context.getLangOpts().RTTI) return false;
+
+ if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
+ const CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
+ if (!RD->hasDefinition())
+ return false;
+
+ if (!RD->isDynamicClass())
+ return false;
+
+ // FIXME: this may need to be reconsidered if the key function
+ // changes.
+ return CGM.getVTables().isVTableExternal(RD);
+ }
+
+ return false;
+}
+
+/// IsIncompleteClassType - Returns whether the given record type is incomplete.
+static bool IsIncompleteClassType(const RecordType *RecordTy) {
+ return !RecordTy->getDecl()->isCompleteDefinition();
+}
+
+/// ContainsIncompleteClassType - Returns whether the given type contains an
+/// incomplete class type. This is true if
+///
+/// * The given type is an incomplete class type.
+/// * The given type is a pointer type whose pointee type contains an
+/// incomplete class type.
+/// * The given type is a member pointer type whose class is an incomplete
+/// class type.
+/// * The given type is a member pointer type whoise pointee type contains an
+/// incomplete class type.
+/// is an indirect or direct pointer to an incomplete class type.
+static bool ContainsIncompleteClassType(QualType Ty) {
+ if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
+ if (IsIncompleteClassType(RecordTy))
+ return true;
+ }
+
+ if (const PointerType *PointerTy = dyn_cast<PointerType>(Ty))
+ return ContainsIncompleteClassType(PointerTy->getPointeeType());
+
+ if (const MemberPointerType *MemberPointerTy =
+ dyn_cast<MemberPointerType>(Ty)) {
+ // Check if the class type is incomplete.
+ const RecordType *ClassType = cast<RecordType>(MemberPointerTy->getClass());
+ if (IsIncompleteClassType(ClassType))
+ return true;
+
+ return ContainsIncompleteClassType(MemberPointerTy->getPointeeType());
+ }
+
+ return false;
+}
+
+// CanUseSingleInheritance - Return whether the given record decl has a "single,
+// public, non-virtual base at offset zero (i.e. the derived class is dynamic
+// iff the base is)", according to Itanium C++ ABI, 2.95p6b.
+static bool CanUseSingleInheritance(const CXXRecordDecl *RD) {
+ // Check the number of bases.
+ if (RD->getNumBases() != 1)
+ return false;
+
+ // Get the base.
+ CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin();
+
+ // Check that the base is not virtual.
+ if (Base->isVirtual())
+ return false;
+
+ // Check that the base is public.
+ if (Base->getAccessSpecifier() != AS_public)
+ return false;
+
+ // Check that the class is dynamic iff the base is.
+ const CXXRecordDecl *BaseDecl =
+ cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
+ if (!BaseDecl->isEmpty() &&
+ BaseDecl->isDynamicClass() != RD->isDynamicClass())
+ return false;
+
+ return true;
+}
+
+void ItaniumRTTIBuilder::BuildVTablePointer(const Type *Ty) {
+ // abi::__class_type_info.
+ static const char * const ClassTypeInfo =
+ "_ZTVN10__cxxabiv117__class_type_infoE";
+ // abi::__si_class_type_info.
+ static const char * const SIClassTypeInfo =
+ "_ZTVN10__cxxabiv120__si_class_type_infoE";
+ // abi::__vmi_class_type_info.
+ static const char * const VMIClassTypeInfo =
+ "_ZTVN10__cxxabiv121__vmi_class_type_infoE";
+
+ const char *VTableName = nullptr;
+
+ switch (Ty->getTypeClass()) {
+#define TYPE(Class, Base)
+#define ABSTRACT_TYPE(Class, Base)
+#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
+#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
+#define DEPENDENT_TYPE(Class, Base) case Type::Class:
+#include "clang/AST/TypeNodes.def"
+ llvm_unreachable("Non-canonical and dependent types shouldn't get here");
+
+ case Type::LValueReference:
+ case Type::RValueReference:
+ llvm_unreachable("References shouldn't get here");
+
+ case Type::Auto:
+ llvm_unreachable("Undeduced auto type shouldn't get here");
+
+ case Type::Builtin:
+ // GCC treats vector and complex types as fundamental types.
+ case Type::Vector:
+ case Type::ExtVector:
+ case Type::Complex:
+ case Type::Atomic:
+ // FIXME: GCC treats block pointers as fundamental types?!
+ case Type::BlockPointer:
+ // abi::__fundamental_type_info.
+ VTableName = "_ZTVN10__cxxabiv123__fundamental_type_infoE";
+ break;
+
+ case Type::ConstantArray:
+ case Type::IncompleteArray:
+ case Type::VariableArray:
+ // abi::__array_type_info.
+ VTableName = "_ZTVN10__cxxabiv117__array_type_infoE";
+ break;
+
+ case Type::FunctionNoProto:
+ case Type::FunctionProto:
+ // abi::__function_type_info.
+ VTableName = "_ZTVN10__cxxabiv120__function_type_infoE";
+ break;
+
+ case Type::Enum:
+ // abi::__enum_type_info.
+ VTableName = "_ZTVN10__cxxabiv116__enum_type_infoE";
+ break;
+
+ case Type::Record: {
+ const CXXRecordDecl *RD =
+ cast<CXXRecordDecl>(cast<RecordType>(Ty)->getDecl());
+
+ if (!RD->hasDefinition() || !RD->getNumBases()) {
+ VTableName = ClassTypeInfo;
+ } else if (CanUseSingleInheritance(RD)) {
+ VTableName = SIClassTypeInfo;
+ } else {
+ VTableName = VMIClassTypeInfo;
+ }
+
+ break;
+ }
+
+ case Type::ObjCObject:
+ // Ignore protocol qualifiers.
+ Ty = cast<ObjCObjectType>(Ty)->getBaseType().getTypePtr();
+
+ // Handle id and Class.
+ if (isa<BuiltinType>(Ty)) {
+ VTableName = ClassTypeInfo;
+ break;
+ }
+
+ assert(isa<ObjCInterfaceType>(Ty));
+ // Fall through.
+
+ case Type::ObjCInterface:
+ if (cast<ObjCInterfaceType>(Ty)->getDecl()->getSuperClass()) {
+ VTableName = SIClassTypeInfo;
+ } else {
+ VTableName = ClassTypeInfo;
+ }
+ break;
+
+ case Type::ObjCObjectPointer:
+ case Type::Pointer:
+ // abi::__pointer_type_info.
+ VTableName = "_ZTVN10__cxxabiv119__pointer_type_infoE";
+ break;
+
+ case Type::MemberPointer:
+ // abi::__pointer_to_member_type_info.
+ VTableName = "_ZTVN10__cxxabiv129__pointer_to_member_type_infoE";
+ break;
+ }
+
+ llvm::Constant *VTable =
+ CGM.getModule().getOrInsertGlobal(VTableName, CGM.Int8PtrTy);
+
+ llvm::Type *PtrDiffTy =
+ CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType());
+
+ // The vtable address point is 2.
+ llvm::Constant *Two = llvm::ConstantInt::get(PtrDiffTy, 2);
+ VTable = llvm::ConstantExpr::getInBoundsGetElementPtr(VTable, Two);
+ VTable = llvm::ConstantExpr::getBitCast(VTable, CGM.Int8PtrTy);
+
+ Fields.push_back(VTable);
+}
+
+/// \brief Return the linkage that the type info and type info name constants
+/// should have for the given type.
+static llvm::GlobalVariable::LinkageTypes getTypeInfoLinkage(CodeGenModule &CGM,
+ QualType Ty) {
+ // Itanium C++ ABI 2.9.5p7:
+ // In addition, it and all of the intermediate abi::__pointer_type_info
+ // structs in the chain down to the abi::__class_type_info for the
+ // incomplete class type must be prevented from resolving to the
+ // corresponding type_info structs for the complete class type, possibly
+ // by making them local static objects. Finally, a dummy class RTTI is
+ // generated for the incomplete type that will not resolve to the final
+ // complete class RTTI (because the latter need not exist), possibly by
+ // making it a local static object.
+ if (ContainsIncompleteClassType(Ty))
+ return llvm::GlobalValue::InternalLinkage;
+
+ switch (Ty->getLinkage()) {
+ case NoLinkage:
+ case InternalLinkage:
+ case UniqueExternalLinkage:
+ return llvm::GlobalValue::InternalLinkage;
+
+ case VisibleNoLinkage:
+ case ExternalLinkage:
+ if (!CGM.getLangOpts().RTTI) {
+ // RTTI is not enabled, which means that this type info struct is going
+ // to be used for exception handling. Give it linkonce_odr linkage.
+ return llvm::GlobalValue::LinkOnceODRLinkage;
+ }
+
+ if (const RecordType *Record = dyn_cast<RecordType>(Ty)) {
+ const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
+ if (RD->hasAttr<WeakAttr>())
+ return llvm::GlobalValue::WeakODRLinkage;
+ if (RD->isDynamicClass())
+ return CGM.getVTableLinkage(RD);
+ }
+
+ return llvm::GlobalValue::LinkOnceODRLinkage;
+ }
+
+ llvm_unreachable("Invalid linkage!");
+}
+
+llvm::Constant *ItaniumRTTIBuilder::BuildTypeInfo(QualType Ty, bool Force) {
+ // We want to operate on the canonical type.
+ Ty = CGM.getContext().getCanonicalType(Ty);
+
+ // Check if we've already emitted an RTTI descriptor for this type.
+ SmallString<256> OutName;
+ llvm::raw_svector_ostream Out(OutName);
+ CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty, Out);
+ Out.flush();
+ StringRef Name = OutName.str();
+
+ llvm::GlobalVariable *OldGV = CGM.getModule().getNamedGlobal(Name);
+ if (OldGV && !OldGV->isDeclaration()) {
+ assert(!OldGV->hasAvailableExternallyLinkage() &&
+ "available_externally typeinfos not yet implemented");
+
+ return llvm::ConstantExpr::getBitCast(OldGV, CGM.Int8PtrTy);
+ }
+
+ // Check if there is already an external RTTI descriptor for this type.
+ bool IsStdLib = IsStandardLibraryRTTIDescriptor(Ty);
+ if (!Force && (IsStdLib || ShouldUseExternalRTTIDescriptor(CGM, Ty)))
+ return GetAddrOfExternalRTTIDescriptor(Ty);
+
+ // Emit the standard library with external linkage.
+ llvm::GlobalVariable::LinkageTypes Linkage;
+ if (IsStdLib)
+ Linkage = llvm::GlobalValue::ExternalLinkage;
+ else
+ Linkage = getTypeInfoLinkage(CGM, Ty);
+
+ // Add the vtable pointer.
+ BuildVTablePointer(cast<Type>(Ty));
+
+ // And the name.
+ llvm::GlobalVariable *TypeName = GetAddrOfTypeName(Ty, Linkage);
+ llvm::Constant *TypeNameField;
+
+ // If we're supposed to demote the visibility, be sure to set a flag
+ // to use a string comparison for type_info comparisons.
+ ItaniumCXXABI::RTTIUniquenessKind RTTIUniqueness =
+ CXXABI.classifyRTTIUniqueness(Ty, Linkage);
+ if (RTTIUniqueness != ItaniumCXXABI::RUK_Unique) {
+ // The flag is the sign bit, which on ARM64 is defined to be clear
+ // for global pointers. This is very ARM64-specific.
+ TypeNameField = llvm::ConstantExpr::getPtrToInt(TypeName, CGM.Int64Ty);
+ llvm::Constant *flag =
+ llvm::ConstantInt::get(CGM.Int64Ty, ((uint64_t)1) << 63);
+ TypeNameField = llvm::ConstantExpr::getAdd(TypeNameField, flag);
+ TypeNameField =
+ llvm::ConstantExpr::getIntToPtr(TypeNameField, CGM.Int8PtrTy);
+ } else {
+ TypeNameField = llvm::ConstantExpr::getBitCast(TypeName, CGM.Int8PtrTy);
+ }
+ Fields.push_back(TypeNameField);
+
+ switch (Ty->getTypeClass()) {
+#define TYPE(Class, Base)
+#define ABSTRACT_TYPE(Class, Base)
+#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
+#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
+#define DEPENDENT_TYPE(Class, Base) case Type::Class:
+#include "clang/AST/TypeNodes.def"
+ llvm_unreachable("Non-canonical and dependent types shouldn't get here");
+
+ // GCC treats vector types as fundamental types.
+ case Type::Builtin:
+ case Type::Vector:
+ case Type::ExtVector:
+ case Type::Complex:
+ case Type::BlockPointer:
+ // Itanium C++ ABI 2.9.5p4:
+ // abi::__fundamental_type_info adds no data members to std::type_info.
+ break;
+
+ case Type::LValueReference:
+ case Type::RValueReference:
+ llvm_unreachable("References shouldn't get here");
+
+ case Type::Auto:
+ llvm_unreachable("Undeduced auto type shouldn't get here");
+
+ case Type::ConstantArray:
+ case Type::IncompleteArray:
+ case Type::VariableArray:
+ // Itanium C++ ABI 2.9.5p5:
+ // abi::__array_type_info adds no data members to std::type_info.
+ break;
+
+ case Type::FunctionNoProto:
+ case Type::FunctionProto:
+ // Itanium C++ ABI 2.9.5p5:
+ // abi::__function_type_info adds no data members to std::type_info.
+ break;
+
+ case Type::Enum:
+ // Itanium C++ ABI 2.9.5p5:
+ // abi::__enum_type_info adds no data members to std::type_info.
+ break;
+
+ case Type::Record: {
+ const CXXRecordDecl *RD =
+ cast<CXXRecordDecl>(cast<RecordType>(Ty)->getDecl());
+ if (!RD->hasDefinition() || !RD->getNumBases()) {
+ // We don't need to emit any fields.
+ break;
+ }
+
+ if (CanUseSingleInheritance(RD))
+ BuildSIClassTypeInfo(RD);
+ else
+ BuildVMIClassTypeInfo(RD);
+
+ break;
+ }
+
+ case Type::ObjCObject:
+ case Type::ObjCInterface:
+ BuildObjCObjectTypeInfo(cast<ObjCObjectType>(Ty));
+ break;
+
+ case Type::ObjCObjectPointer:
+ BuildPointerTypeInfo(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
+ break;
+
+ case Type::Pointer:
+ BuildPointerTypeInfo(cast<PointerType>(Ty)->getPointeeType());
+ break;
+
+ case Type::MemberPointer:
+ BuildPointerToMemberTypeInfo(cast<MemberPointerType>(Ty));
+ break;
+
+ case Type::Atomic:
+ // No fields, at least for the moment.
+ break;
+ }
+
+ llvm::Constant *Init = llvm::ConstantStruct::getAnon(Fields);
+
+ llvm::GlobalVariable *GV =
+ new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
+ /*Constant=*/true, Linkage, Init, Name);
+
+ // If there's already an old global variable, replace it with the new one.
+ if (OldGV) {
+ GV->takeName(OldGV);
+ llvm::Constant *NewPtr =
+ llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
+ OldGV->replaceAllUsesWith(NewPtr);
+ OldGV->eraseFromParent();
+ }
+
+ // The Itanium ABI specifies that type_info objects must be globally
+ // unique, with one exception: if the type is an incomplete class
+ // type or a (possibly indirect) pointer to one. That exception
+ // affects the general case of comparing type_info objects produced
+ // by the typeid operator, which is why the comparison operators on
+ // std::type_info generally use the type_info name pointers instead
+ // of the object addresses. However, the language's built-in uses
+ // of RTTI generally require class types to be complete, even when
+ // manipulating pointers to those class types. This allows the
+ // implementation of dynamic_cast to rely on address equality tests,
+ // which is much faster.
+
+ // All of this is to say that it's important that both the type_info
+ // object and the type_info name be uniqued when weakly emitted.
+
+ // Give the type_info object and name the formal visibility of the
+ // type itself.
+ llvm::GlobalValue::VisibilityTypes llvmVisibility;
+ if (llvm::GlobalValue::isLocalLinkage(Linkage))
+ // If the linkage is local, only default visibility makes sense.
+ llvmVisibility = llvm::GlobalValue::DefaultVisibility;
+ else if (RTTIUniqueness == ItaniumCXXABI::RUK_NonUniqueHidden)
+ llvmVisibility = llvm::GlobalValue::HiddenVisibility;
+ else
+ llvmVisibility = CodeGenModule::GetLLVMVisibility(Ty->getVisibility());
+ TypeName->setVisibility(llvmVisibility);
+ GV->setVisibility(llvmVisibility);
+
+ return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy);
+}
+
+/// ComputeQualifierFlags - Compute the pointer type info flags from the
+/// given qualifier.
+static unsigned ComputeQualifierFlags(Qualifiers Quals) {
+ unsigned Flags = 0;
+
+ if (Quals.hasConst())
+ Flags |= ItaniumRTTIBuilder::PTI_Const;
+ if (Quals.hasVolatile())
+ Flags |= ItaniumRTTIBuilder::PTI_Volatile;
+ if (Quals.hasRestrict())
+ Flags |= ItaniumRTTIBuilder::PTI_Restrict;
+
+ return Flags;
+}
+
+/// BuildObjCObjectTypeInfo - Build the appropriate kind of type_info
+/// for the given Objective-C object type.
+void ItaniumRTTIBuilder::BuildObjCObjectTypeInfo(const ObjCObjectType *OT) {
+ // Drop qualifiers.
+ const Type *T = OT->getBaseType().getTypePtr();
+ assert(isa<BuiltinType>(T) || isa<ObjCInterfaceType>(T));
+
+ // The builtin types are abi::__class_type_infos and don't require
+ // extra fields.
+ if (isa<BuiltinType>(T)) return;
+
+ ObjCInterfaceDecl *Class = cast<ObjCInterfaceType>(T)->getDecl();
+ ObjCInterfaceDecl *Super = Class->getSuperClass();
+
+ // Root classes are also __class_type_info.
+ if (!Super) return;
+
+ QualType SuperTy = CGM.getContext().getObjCInterfaceType(Super);
+
+ // Everything else is single inheritance.
+ llvm::Constant *BaseTypeInfo =
+ ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(SuperTy);
+ Fields.push_back(BaseTypeInfo);
+}
+
+/// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single
+/// inheritance, according to the Itanium C++ ABI, 2.95p6b.
+void ItaniumRTTIBuilder::BuildSIClassTypeInfo(const CXXRecordDecl *RD) {
+ // Itanium C++ ABI 2.9.5p6b:
+ // It adds to abi::__class_type_info a single member pointing to the
+ // type_info structure for the base type,
+ llvm::Constant *BaseTypeInfo =
+ ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(RD->bases_begin()->getType());
+ Fields.push_back(BaseTypeInfo);
+}
+
+namespace {
+ /// SeenBases - Contains virtual and non-virtual bases seen when traversing
+ /// a class hierarchy.
+ struct SeenBases {
+ llvm::SmallPtrSet<const CXXRecordDecl *, 16> NonVirtualBases;
+ llvm::SmallPtrSet<const CXXRecordDecl *, 16> VirtualBases;
+ };
+}
+
+/// ComputeVMIClassTypeInfoFlags - Compute the value of the flags member in
+/// abi::__vmi_class_type_info.
+///
+static unsigned ComputeVMIClassTypeInfoFlags(const CXXBaseSpecifier *Base,
+ SeenBases &Bases) {
+
+ unsigned Flags = 0;
+
+ const CXXRecordDecl *BaseDecl =
+ cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
+
+ if (Base->isVirtual()) {
+ // Mark the virtual base as seen.
+ if (!Bases.VirtualBases.insert(BaseDecl)) {
+ // If this virtual base has been seen before, then the class is diamond
+ // shaped.
+ Flags |= ItaniumRTTIBuilder::VMI_DiamondShaped;
+ } else {
+ if (Bases.NonVirtualBases.count(BaseDecl))
+ Flags |= ItaniumRTTIBuilder::VMI_NonDiamondRepeat;
+ }
+ } else {
+ // Mark the non-virtual base as seen.
+ if (!Bases.NonVirtualBases.insert(BaseDecl)) {
+ // If this non-virtual base has been seen before, then the class has non-
+ // diamond shaped repeated inheritance.
+ Flags |= ItaniumRTTIBuilder::VMI_NonDiamondRepeat;
+ } else {
+ if (Bases.VirtualBases.count(BaseDecl))
+ Flags |= ItaniumRTTIBuilder::VMI_NonDiamondRepeat;
+ }
+ }
+
+ // Walk all bases.
+ for (const auto &I : BaseDecl->bases())
+ Flags |= ComputeVMIClassTypeInfoFlags(&I, Bases);
+
+ return Flags;
+}
+
+static unsigned ComputeVMIClassTypeInfoFlags(const CXXRecordDecl *RD) {
+ unsigned Flags = 0;
+ SeenBases Bases;
+
+ // Walk all bases.
+ for (const auto &I : RD->bases())
+ Flags |= ComputeVMIClassTypeInfoFlags(&I, Bases);
+
+ return Flags;
+}
+
+/// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for
+/// classes with bases that do not satisfy the abi::__si_class_type_info
+/// constraints, according ti the Itanium C++ ABI, 2.9.5p5c.
+void ItaniumRTTIBuilder::BuildVMIClassTypeInfo(const CXXRecordDecl *RD) {
+ llvm::Type *UnsignedIntLTy =
+ CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy);
+
+ // Itanium C++ ABI 2.9.5p6c:
+ // __flags is a word with flags describing details about the class
+ // structure, which may be referenced by using the __flags_masks
+ // enumeration. These flags refer to both direct and indirect bases.
+ unsigned Flags = ComputeVMIClassTypeInfoFlags(RD);
+ Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags));
+
+ // Itanium C++ ABI 2.9.5p6c:
+ // __base_count is a word with the number of direct proper base class
+ // descriptions that follow.
+ Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, RD->getNumBases()));
+
+ if (!RD->getNumBases())
+ return;
+
+ llvm::Type *LongLTy =
+ CGM.getTypes().ConvertType(CGM.getContext().LongTy);
+
+ // Now add the base class descriptions.
+
+ // Itanium C++ ABI 2.9.5p6c:
+ // __base_info[] is an array of base class descriptions -- one for every
+ // direct proper base. Each description is of the type:
+ //
+ // struct abi::__base_class_type_info {
+ // public:
+ // const __class_type_info *__base_type;
+ // long __offset_flags;
+ //
+ // enum __offset_flags_masks {
+ // __virtual_mask = 0x1,
+ // __public_mask = 0x2,
+ // __offset_shift = 8
+ // };
+ // };
+ for (const auto &Base : RD->bases()) {
+ // The __base_type member points to the RTTI for the base type.
+ Fields.push_back(ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(Base.getType()));
+
+ const CXXRecordDecl *BaseDecl =
+ cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
+
+ int64_t OffsetFlags = 0;
+
+ // All but the lower 8 bits of __offset_flags are a signed offset.
+ // For a non-virtual base, this is the offset in the object of the base
+ // subobject. For a virtual base, this is the offset in the virtual table of
+ // the virtual base offset for the virtual base referenced (negative).
+ CharUnits Offset;
+ if (Base.isVirtual())
+ Offset =
+ CGM.getItaniumVTableContext().getVirtualBaseOffsetOffset(RD, BaseDecl);
+ else {
+ const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
+ Offset = Layout.getBaseClassOffset(BaseDecl);
+ };
+
+ OffsetFlags = uint64_t(Offset.getQuantity()) << 8;
+
+ // The low-order byte of __offset_flags contains flags, as given by the
+ // masks from the enumeration __offset_flags_masks.
+ if (Base.isVirtual())
+ OffsetFlags |= BCTI_Virtual;
+ if (Base.getAccessSpecifier() == AS_public)
+ OffsetFlags |= BCTI_Public;
+
+ Fields.push_back(llvm::ConstantInt::get(LongLTy, OffsetFlags));
+ }
+}
+
+/// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct,
+/// used for pointer types.
+void ItaniumRTTIBuilder::BuildPointerTypeInfo(QualType PointeeTy) {
+ Qualifiers Quals;
+ QualType UnqualifiedPointeeTy =
+ CGM.getContext().getUnqualifiedArrayType(PointeeTy, Quals);
+
+ // Itanium C++ ABI 2.9.5p7:
+ // __flags is a flag word describing the cv-qualification and other
+ // attributes of the type pointed to
+ unsigned Flags = ComputeQualifierFlags(Quals);
+
+ // Itanium C++ ABI 2.9.5p7:
+ // When the abi::__pbase_type_info is for a direct or indirect pointer to an
+ // incomplete class type, the incomplete target type flag is set.
+ if (ContainsIncompleteClassType(UnqualifiedPointeeTy))
+ Flags |= PTI_Incomplete;
+
+ llvm::Type *UnsignedIntLTy =
+ CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy);
+ Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags));
+
+ // Itanium C++ ABI 2.9.5p7:
+ // __pointee is a pointer to the std::type_info derivation for the
+ // unqualified type being pointed to.
+ llvm::Constant *PointeeTypeInfo =
+ ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(UnqualifiedPointeeTy);
+ Fields.push_back(PointeeTypeInfo);
+}
+
+/// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info
+/// struct, used for member pointer types.
+void
+ItaniumRTTIBuilder::BuildPointerToMemberTypeInfo(const MemberPointerType *Ty) {
+ QualType PointeeTy = Ty->getPointeeType();
+
+ Qualifiers Quals;
+ QualType UnqualifiedPointeeTy =
+ CGM.getContext().getUnqualifiedArrayType(PointeeTy, Quals);
+
+ // Itanium C++ ABI 2.9.5p7:
+ // __flags is a flag word describing the cv-qualification and other
+ // attributes of the type pointed to.
+ unsigned Flags = ComputeQualifierFlags(Quals);
+
+ const RecordType *ClassType = cast<RecordType>(Ty->getClass());
+
+ // Itanium C++ ABI 2.9.5p7:
+ // When the abi::__pbase_type_info is for a direct or indirect pointer to an
+ // incomplete class type, the incomplete target type flag is set.
+ if (ContainsIncompleteClassType(UnqualifiedPointeeTy))
+ Flags |= PTI_Incomplete;
+
+ if (IsIncompleteClassType(ClassType))
+ Flags |= PTI_ContainingClassIncomplete;
+
+ llvm::Type *UnsignedIntLTy =
+ CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy);
+ Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags));
+
+ // Itanium C++ ABI 2.9.5p7:
+ // __pointee is a pointer to the std::type_info derivation for the
+ // unqualified type being pointed to.
+ llvm::Constant *PointeeTypeInfo =
+ ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(UnqualifiedPointeeTy);
+ Fields.push_back(PointeeTypeInfo);
+
+ // Itanium C++ ABI 2.9.5p9:
+ // __context is a pointer to an abi::__class_type_info corresponding to the
+ // class type containing the member pointed to
+ // (e.g., the "A" in "int A::*").
+ Fields.push_back(
+ ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(QualType(ClassType, 0)));
+}
+
+llvm::Constant *ItaniumCXXABI::getAddrOfRTTIDescriptor(QualType Ty) {
+ return ItaniumRTTIBuilder(*this).BuildTypeInfo(Ty);
+}
+
+void ItaniumCXXABI::EmitFundamentalRTTIDescriptor(QualType Type) {
+ QualType PointerType = getContext().getPointerType(Type);
+ QualType PointerTypeConst = getContext().getPointerType(Type.withConst());
+ ItaniumRTTIBuilder(*this).BuildTypeInfo(Type, true);
+ ItaniumRTTIBuilder(*this).BuildTypeInfo(PointerType, true);
+ ItaniumRTTIBuilder(*this).BuildTypeInfo(PointerTypeConst, true);
+}
+
+void ItaniumCXXABI::EmitFundamentalRTTIDescriptors() {
+ QualType FundamentalTypes[] = {
+ getContext().VoidTy, getContext().NullPtrTy,
+ getContext().BoolTy, getContext().WCharTy,
+ getContext().CharTy, getContext().UnsignedCharTy,
+ getContext().SignedCharTy, getContext().ShortTy,
+ getContext().UnsignedShortTy, getContext().IntTy,
+ getContext().UnsignedIntTy, getContext().LongTy,
+ getContext().UnsignedLongTy, getContext().LongLongTy,
+ getContext().UnsignedLongLongTy, getContext().HalfTy,
+ getContext().FloatTy, getContext().DoubleTy,
+ getContext().LongDoubleTy, getContext().Char16Ty,
+ getContext().Char32Ty,
+ };
+ for (const QualType &FundamentalType : FundamentalTypes)
+ EmitFundamentalRTTIDescriptor(FundamentalType);
+}
+
+/// What sort of uniqueness rules should we use for the RTTI for the
+/// given type?
+ItaniumCXXABI::RTTIUniquenessKind ItaniumCXXABI::classifyRTTIUniqueness(
+ QualType CanTy, llvm::GlobalValue::LinkageTypes Linkage) const {
+ if (shouldRTTIBeUnique())
+ return RUK_Unique;
+
+ // It's only necessary for linkonce_odr or weak_odr linkage.
+ if (Linkage != llvm::GlobalValue::LinkOnceODRLinkage &&
+ Linkage != llvm::GlobalValue::WeakODRLinkage)
+ return RUK_Unique;
+
+ // It's only necessary with default visibility.
+ if (CanTy->getVisibility() != DefaultVisibility)
+ return RUK_Unique;
+
+ // If we're not required to publish this symbol, hide it.
+ if (Linkage == llvm::GlobalValue::LinkOnceODRLinkage)
+ return RUK_NonUniqueHidden;
+
+ // If we're required to publish this symbol, as we might be under an
+ // explicit instantiation, leave it with default visibility but
+ // enable string-comparisons.
+ assert(Linkage == llvm::GlobalValue::WeakODRLinkage);
+ return RUK_NonUniqueVisible;
+}
OpenPOWER on IntegriCloud