summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/CodeGen/CodeGenFunction.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/CodeGen/CodeGenFunction.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CodeGenFunction.cpp1683
1 files changed, 1683 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CodeGenFunction.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CodeGenFunction.cpp
new file mode 100644
index 0000000..5ca3a78
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CodeGenFunction.cpp
@@ -0,0 +1,1683 @@
+//===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This coordinates the per-function state used while generating code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenFunction.h"
+#include "CGCUDARuntime.h"
+#include "CGCXXABI.h"
+#include "CGDebugInfo.h"
+#include "CGOpenMPRuntime.h"
+#include "CodeGenModule.h"
+#include "CodeGenPGO.h"
+#include "TargetInfo.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/StmtCXX.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/CodeGen/CGFunctionInfo.h"
+#include "clang/Frontend/CodeGenOptions.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/Operator.h"
+using namespace clang;
+using namespace CodeGen;
+
+CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
+ : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
+ Builder(cgm.getModule().getContext(), llvm::ConstantFolder(),
+ CGBuilderInserterTy(this)),
+ CapturedStmtInfo(nullptr), SanOpts(&CGM.getLangOpts().Sanitize),
+ IsSanitizerScope(false), AutoreleaseResult(false), BlockInfo(nullptr),
+ BlockPointer(nullptr), LambdaThisCaptureField(nullptr),
+ NormalCleanupDest(nullptr), NextCleanupDestIndex(1),
+ FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr),
+ EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()),
+ DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr),
+ PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr),
+ CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0),
+ NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr),
+ CXXABIThisValue(nullptr), CXXThisValue(nullptr),
+ CXXDefaultInitExprThis(nullptr), CXXStructorImplicitParamDecl(nullptr),
+ CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
+ CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
+ TerminateHandler(nullptr), TrapBB(nullptr) {
+ if (!suppressNewContext)
+ CGM.getCXXABI().getMangleContext().startNewFunction();
+
+ llvm::FastMathFlags FMF;
+ if (CGM.getLangOpts().FastMath)
+ FMF.setUnsafeAlgebra();
+ if (CGM.getLangOpts().FiniteMathOnly) {
+ FMF.setNoNaNs();
+ FMF.setNoInfs();
+ }
+ Builder.SetFastMathFlags(FMF);
+}
+
+CodeGenFunction::~CodeGenFunction() {
+ assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
+
+ // If there are any unclaimed block infos, go ahead and destroy them
+ // now. This can happen if IR-gen gets clever and skips evaluating
+ // something.
+ if (FirstBlockInfo)
+ destroyBlockInfos(FirstBlockInfo);
+
+ if (getLangOpts().OpenMP) {
+ CGM.getOpenMPRuntime().FunctionFinished(*this);
+ }
+}
+
+
+llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
+ return CGM.getTypes().ConvertTypeForMem(T);
+}
+
+llvm::Type *CodeGenFunction::ConvertType(QualType T) {
+ return CGM.getTypes().ConvertType(T);
+}
+
+TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
+ type = type.getCanonicalType();
+ while (true) {
+ switch (type->getTypeClass()) {
+#define TYPE(name, parent)
+#define ABSTRACT_TYPE(name, parent)
+#define NON_CANONICAL_TYPE(name, parent) case Type::name:
+#define DEPENDENT_TYPE(name, parent) case Type::name:
+#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
+#include "clang/AST/TypeNodes.def"
+ llvm_unreachable("non-canonical or dependent type in IR-generation");
+
+ case Type::Auto:
+ llvm_unreachable("undeduced auto type in IR-generation");
+
+ // Various scalar types.
+ case Type::Builtin:
+ case Type::Pointer:
+ case Type::BlockPointer:
+ case Type::LValueReference:
+ case Type::RValueReference:
+ case Type::MemberPointer:
+ case Type::Vector:
+ case Type::ExtVector:
+ case Type::FunctionProto:
+ case Type::FunctionNoProto:
+ case Type::Enum:
+ case Type::ObjCObjectPointer:
+ return TEK_Scalar;
+
+ // Complexes.
+ case Type::Complex:
+ return TEK_Complex;
+
+ // Arrays, records, and Objective-C objects.
+ case Type::ConstantArray:
+ case Type::IncompleteArray:
+ case Type::VariableArray:
+ case Type::Record:
+ case Type::ObjCObject:
+ case Type::ObjCInterface:
+ return TEK_Aggregate;
+
+ // We operate on atomic values according to their underlying type.
+ case Type::Atomic:
+ type = cast<AtomicType>(type)->getValueType();
+ continue;
+ }
+ llvm_unreachable("unknown type kind!");
+ }
+}
+
+void CodeGenFunction::EmitReturnBlock() {
+ // For cleanliness, we try to avoid emitting the return block for
+ // simple cases.
+ llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
+
+ if (CurBB) {
+ assert(!CurBB->getTerminator() && "Unexpected terminated block.");
+
+ // We have a valid insert point, reuse it if it is empty or there are no
+ // explicit jumps to the return block.
+ if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
+ ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
+ delete ReturnBlock.getBlock();
+ } else
+ EmitBlock(ReturnBlock.getBlock());
+ return;
+ }
+
+ // Otherwise, if the return block is the target of a single direct
+ // branch then we can just put the code in that block instead. This
+ // cleans up functions which started with a unified return block.
+ if (ReturnBlock.getBlock()->hasOneUse()) {
+ llvm::BranchInst *BI =
+ dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
+ if (BI && BI->isUnconditional() &&
+ BI->getSuccessor(0) == ReturnBlock.getBlock()) {
+ // Reset insertion point, including debug location, and delete the
+ // branch. This is really subtle and only works because the next change
+ // in location will hit the caching in CGDebugInfo::EmitLocation and not
+ // override this.
+ Builder.SetCurrentDebugLocation(BI->getDebugLoc());
+ Builder.SetInsertPoint(BI->getParent());
+ BI->eraseFromParent();
+ delete ReturnBlock.getBlock();
+ return;
+ }
+ }
+
+ // FIXME: We are at an unreachable point, there is no reason to emit the block
+ // unless it has uses. However, we still need a place to put the debug
+ // region.end for now.
+
+ EmitBlock(ReturnBlock.getBlock());
+}
+
+static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
+ if (!BB) return;
+ if (!BB->use_empty())
+ return CGF.CurFn->getBasicBlockList().push_back(BB);
+ delete BB;
+}
+
+void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
+ assert(BreakContinueStack.empty() &&
+ "mismatched push/pop in break/continue stack!");
+
+ bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
+ && NumSimpleReturnExprs == NumReturnExprs
+ && ReturnBlock.getBlock()->use_empty();
+ // Usually the return expression is evaluated before the cleanup
+ // code. If the function contains only a simple return statement,
+ // such as a constant, the location before the cleanup code becomes
+ // the last useful breakpoint in the function, because the simple
+ // return expression will be evaluated after the cleanup code. To be
+ // safe, set the debug location for cleanup code to the location of
+ // the return statement. Otherwise the cleanup code should be at the
+ // end of the function's lexical scope.
+ //
+ // If there are multiple branches to the return block, the branch
+ // instructions will get the location of the return statements and
+ // all will be fine.
+ if (CGDebugInfo *DI = getDebugInfo()) {
+ if (OnlySimpleReturnStmts)
+ DI->EmitLocation(Builder, LastStopPoint);
+ else
+ DI->EmitLocation(Builder, EndLoc);
+ }
+
+ // Pop any cleanups that might have been associated with the
+ // parameters. Do this in whatever block we're currently in; it's
+ // important to do this before we enter the return block or return
+ // edges will be *really* confused.
+ bool EmitRetDbgLoc = true;
+ if (EHStack.stable_begin() != PrologueCleanupDepth) {
+ PopCleanupBlocks(PrologueCleanupDepth);
+
+ // Make sure the line table doesn't jump back into the body for
+ // the ret after it's been at EndLoc.
+ EmitRetDbgLoc = false;
+
+ if (CGDebugInfo *DI = getDebugInfo())
+ if (OnlySimpleReturnStmts)
+ DI->EmitLocation(Builder, EndLoc);
+ }
+
+ // Emit function epilog (to return).
+ EmitReturnBlock();
+
+ if (ShouldInstrumentFunction())
+ EmitFunctionInstrumentation("__cyg_profile_func_exit");
+
+ // Emit debug descriptor for function end.
+ if (CGDebugInfo *DI = getDebugInfo()) {
+ DI->EmitFunctionEnd(Builder);
+ }
+
+ EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
+ EmitEndEHSpec(CurCodeDecl);
+
+ assert(EHStack.empty() &&
+ "did not remove all scopes from cleanup stack!");
+
+ // If someone did an indirect goto, emit the indirect goto block at the end of
+ // the function.
+ if (IndirectBranch) {
+ EmitBlock(IndirectBranch->getParent());
+ Builder.ClearInsertionPoint();
+ }
+
+ // Remove the AllocaInsertPt instruction, which is just a convenience for us.
+ llvm::Instruction *Ptr = AllocaInsertPt;
+ AllocaInsertPt = nullptr;
+ Ptr->eraseFromParent();
+
+ // If someone took the address of a label but never did an indirect goto, we
+ // made a zero entry PHI node, which is illegal, zap it now.
+ if (IndirectBranch) {
+ llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
+ if (PN->getNumIncomingValues() == 0) {
+ PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
+ PN->eraseFromParent();
+ }
+ }
+
+ EmitIfUsed(*this, EHResumeBlock);
+ EmitIfUsed(*this, TerminateLandingPad);
+ EmitIfUsed(*this, TerminateHandler);
+ EmitIfUsed(*this, UnreachableBlock);
+
+ if (CGM.getCodeGenOpts().EmitDeclMetadata)
+ EmitDeclMetadata();
+
+ for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
+ I = DeferredReplacements.begin(),
+ E = DeferredReplacements.end();
+ I != E; ++I) {
+ I->first->replaceAllUsesWith(I->second);
+ I->first->eraseFromParent();
+ }
+}
+
+/// ShouldInstrumentFunction - Return true if the current function should be
+/// instrumented with __cyg_profile_func_* calls
+bool CodeGenFunction::ShouldInstrumentFunction() {
+ if (!CGM.getCodeGenOpts().InstrumentFunctions)
+ return false;
+ if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
+ return false;
+ return true;
+}
+
+/// EmitFunctionInstrumentation - Emit LLVM code to call the specified
+/// instrumentation function with the current function and the call site, if
+/// function instrumentation is enabled.
+void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
+ // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
+ llvm::PointerType *PointerTy = Int8PtrTy;
+ llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
+ llvm::FunctionType *FunctionTy =
+ llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
+
+ llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
+ llvm::CallInst *CallSite = Builder.CreateCall(
+ CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
+ llvm::ConstantInt::get(Int32Ty, 0),
+ "callsite");
+
+ llvm::Value *args[] = {
+ llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
+ CallSite
+ };
+
+ EmitNounwindRuntimeCall(F, args);
+}
+
+void CodeGenFunction::EmitMCountInstrumentation() {
+ llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
+
+ llvm::Constant *MCountFn =
+ CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
+ EmitNounwindRuntimeCall(MCountFn);
+}
+
+// OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
+// information in the program executable. The argument information stored
+// includes the argument name, its type, the address and access qualifiers used.
+static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
+ CodeGenModule &CGM,llvm::LLVMContext &Context,
+ SmallVector <llvm::Value*, 5> &kernelMDArgs,
+ CGBuilderTy& Builder, ASTContext &ASTCtx) {
+ // Create MDNodes that represent the kernel arg metadata.
+ // Each MDNode is a list in the form of "key", N number of values which is
+ // the same number of values as their are kernel arguments.
+
+ const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
+
+ // MDNode for the kernel argument address space qualifiers.
+ SmallVector<llvm::Value*, 8> addressQuals;
+ addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space"));
+
+ // MDNode for the kernel argument access qualifiers (images only).
+ SmallVector<llvm::Value*, 8> accessQuals;
+ accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual"));
+
+ // MDNode for the kernel argument type names.
+ SmallVector<llvm::Value*, 8> argTypeNames;
+ argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type"));
+
+ // MDNode for the kernel argument type qualifiers.
+ SmallVector<llvm::Value*, 8> argTypeQuals;
+ argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual"));
+
+ // MDNode for the kernel argument names.
+ SmallVector<llvm::Value*, 8> argNames;
+ argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
+
+ for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
+ const ParmVarDecl *parm = FD->getParamDecl(i);
+ QualType ty = parm->getType();
+ std::string typeQuals;
+
+ if (ty->isPointerType()) {
+ QualType pointeeTy = ty->getPointeeType();
+
+ // Get address qualifier.
+ addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace(
+ pointeeTy.getAddressSpace())));
+
+ // Get argument type name.
+ std::string typeName =
+ pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
+
+ // Turn "unsigned type" to "utype"
+ std::string::size_type pos = typeName.find("unsigned");
+ if (pos != std::string::npos)
+ typeName.erase(pos+1, 8);
+
+ argTypeNames.push_back(llvm::MDString::get(Context, typeName));
+
+ // Get argument type qualifiers:
+ if (ty.isRestrictQualified())
+ typeQuals = "restrict";
+ if (pointeeTy.isConstQualified() ||
+ (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
+ typeQuals += typeQuals.empty() ? "const" : " const";
+ if (pointeeTy.isVolatileQualified())
+ typeQuals += typeQuals.empty() ? "volatile" : " volatile";
+ } else {
+ uint32_t AddrSpc = 0;
+ if (ty->isImageType())
+ AddrSpc =
+ CGM.getContext().getTargetAddressSpace(LangAS::opencl_global);
+
+ addressQuals.push_back(Builder.getInt32(AddrSpc));
+
+ // Get argument type name.
+ std::string typeName = ty.getUnqualifiedType().getAsString(Policy);
+
+ // Turn "unsigned type" to "utype"
+ std::string::size_type pos = typeName.find("unsigned");
+ if (pos != std::string::npos)
+ typeName.erase(pos+1, 8);
+
+ argTypeNames.push_back(llvm::MDString::get(Context, typeName));
+
+ // Get argument type qualifiers:
+ if (ty.isConstQualified())
+ typeQuals = "const";
+ if (ty.isVolatileQualified())
+ typeQuals += typeQuals.empty() ? "volatile" : " volatile";
+ }
+
+ argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
+
+ // Get image access qualifier:
+ if (ty->isImageType()) {
+ const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>();
+ if (A && A->isWriteOnly())
+ accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
+ else
+ accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
+ // FIXME: what about read_write?
+ } else
+ accessQuals.push_back(llvm::MDString::get(Context, "none"));
+
+ // Get argument name.
+ argNames.push_back(llvm::MDString::get(Context, parm->getName()));
+ }
+
+ kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals));
+ kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals));
+ kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames));
+ kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals));
+ kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
+}
+
+void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
+ llvm::Function *Fn)
+{
+ if (!FD->hasAttr<OpenCLKernelAttr>())
+ return;
+
+ llvm::LLVMContext &Context = getLLVMContext();
+
+ SmallVector <llvm::Value*, 5> kernelMDArgs;
+ kernelMDArgs.push_back(Fn);
+
+ if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
+ GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs,
+ Builder, getContext());
+
+ if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
+ QualType hintQTy = A->getTypeHint();
+ const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
+ bool isSignedInteger =
+ hintQTy->isSignedIntegerType() ||
+ (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
+ llvm::Value *attrMDArgs[] = {
+ llvm::MDString::get(Context, "vec_type_hint"),
+ llvm::UndefValue::get(CGM.getTypes().ConvertType(A->getTypeHint())),
+ llvm::ConstantInt::get(
+ llvm::IntegerType::get(Context, 32),
+ llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0)))
+ };
+ kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
+ }
+
+ if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
+ llvm::Value *attrMDArgs[] = {
+ llvm::MDString::get(Context, "work_group_size_hint"),
+ Builder.getInt32(A->getXDim()),
+ Builder.getInt32(A->getYDim()),
+ Builder.getInt32(A->getZDim())
+ };
+ kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
+ }
+
+ if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
+ llvm::Value *attrMDArgs[] = {
+ llvm::MDString::get(Context, "reqd_work_group_size"),
+ Builder.getInt32(A->getXDim()),
+ Builder.getInt32(A->getYDim()),
+ Builder.getInt32(A->getZDim())
+ };
+ kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
+ }
+
+ llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
+ llvm::NamedMDNode *OpenCLKernelMetadata =
+ CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
+ OpenCLKernelMetadata->addOperand(kernelMDNode);
+}
+
+/// Determine whether the function F ends with a return stmt.
+static bool endsWithReturn(const Decl* F) {
+ const Stmt *Body = nullptr;
+ if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
+ Body = FD->getBody();
+ else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
+ Body = OMD->getBody();
+
+ if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
+ auto LastStmt = CS->body_rbegin();
+ if (LastStmt != CS->body_rend())
+ return isa<ReturnStmt>(*LastStmt);
+ }
+ return false;
+}
+
+void CodeGenFunction::StartFunction(GlobalDecl GD,
+ QualType RetTy,
+ llvm::Function *Fn,
+ const CGFunctionInfo &FnInfo,
+ const FunctionArgList &Args,
+ SourceLocation Loc,
+ SourceLocation StartLoc) {
+ const Decl *D = GD.getDecl();
+
+ DidCallStackSave = false;
+ CurCodeDecl = D;
+ CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
+ FnRetTy = RetTy;
+ CurFn = Fn;
+ CurFnInfo = &FnInfo;
+ assert(CurFn->isDeclaration() && "Function already has body?");
+
+ if (CGM.getSanitizerBlacklist().isIn(*Fn))
+ SanOpts = &SanitizerOptions::Disabled;
+
+ // Pass inline keyword to optimizer if it appears explicitly on any
+ // declaration. Also, in the case of -fno-inline attach NoInline
+ // attribute to all function that are not marked AlwaysInline.
+ if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
+ if (!CGM.getCodeGenOpts().NoInline) {
+ for (auto RI : FD->redecls())
+ if (RI->isInlineSpecified()) {
+ Fn->addFnAttr(llvm::Attribute::InlineHint);
+ break;
+ }
+ } else if (!FD->hasAttr<AlwaysInlineAttr>())
+ Fn->addFnAttr(llvm::Attribute::NoInline);
+ }
+
+ if (getLangOpts().OpenCL) {
+ // Add metadata for a kernel function.
+ if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
+ EmitOpenCLKernelMetadata(FD, Fn);
+ }
+
+ // If we are checking function types, emit a function type signature as
+ // prefix data.
+ if (getLangOpts().CPlusPlus && SanOpts->Function) {
+ if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
+ if (llvm::Constant *PrefixSig =
+ CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
+ llvm::Constant *FTRTTIConst =
+ CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
+ llvm::Constant *PrefixStructElems[] = { PrefixSig, FTRTTIConst };
+ llvm::Constant *PrefixStructConst =
+ llvm::ConstantStruct::getAnon(PrefixStructElems, /*Packed=*/true);
+ Fn->setPrefixData(PrefixStructConst);
+ }
+ }
+ }
+
+ llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
+
+ // Create a marker to make it easy to insert allocas into the entryblock
+ // later. Don't create this with the builder, because we don't want it
+ // folded.
+ llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
+ AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
+ if (Builder.isNamePreserving())
+ AllocaInsertPt->setName("allocapt");
+
+ ReturnBlock = getJumpDestInCurrentScope("return");
+
+ Builder.SetInsertPoint(EntryBB);
+
+ // Emit subprogram debug descriptor.
+ if (CGDebugInfo *DI = getDebugInfo()) {
+ SmallVector<QualType, 16> ArgTypes;
+ for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
+ i != e; ++i) {
+ ArgTypes.push_back((*i)->getType());
+ }
+
+ QualType FnType =
+ getContext().getFunctionType(RetTy, ArgTypes,
+ FunctionProtoType::ExtProtoInfo());
+ DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
+ }
+
+ if (ShouldInstrumentFunction())
+ EmitFunctionInstrumentation("__cyg_profile_func_enter");
+
+ if (CGM.getCodeGenOpts().InstrumentForProfiling)
+ EmitMCountInstrumentation();
+
+ if (RetTy->isVoidType()) {
+ // Void type; nothing to return.
+ ReturnValue = nullptr;
+
+ // Count the implicit return.
+ if (!endsWithReturn(D))
+ ++NumReturnExprs;
+ } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
+ !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
+ // Indirect aggregate return; emit returned value directly into sret slot.
+ // This reduces code size, and affects correctness in C++.
+ auto AI = CurFn->arg_begin();
+ if (CurFnInfo->getReturnInfo().isSRetAfterThis())
+ ++AI;
+ ReturnValue = AI;
+ } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
+ !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
+ // Load the sret pointer from the argument struct and return into that.
+ unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
+ llvm::Function::arg_iterator EI = CurFn->arg_end();
+ --EI;
+ llvm::Value *Addr = Builder.CreateStructGEP(EI, Idx);
+ ReturnValue = Builder.CreateLoad(Addr, "agg.result");
+ } else {
+ ReturnValue = CreateIRTemp(RetTy, "retval");
+
+ // Tell the epilog emitter to autorelease the result. We do this
+ // now so that various specialized functions can suppress it
+ // during their IR-generation.
+ if (getLangOpts().ObjCAutoRefCount &&
+ !CurFnInfo->isReturnsRetained() &&
+ RetTy->isObjCRetainableType())
+ AutoreleaseResult = true;
+ }
+
+ EmitStartEHSpec(CurCodeDecl);
+
+ PrologueCleanupDepth = EHStack.stable_begin();
+ EmitFunctionProlog(*CurFnInfo, CurFn, Args);
+
+ if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
+ CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
+ if (MD->getParent()->isLambda() &&
+ MD->getOverloadedOperator() == OO_Call) {
+ // We're in a lambda; figure out the captures.
+ MD->getParent()->getCaptureFields(LambdaCaptureFields,
+ LambdaThisCaptureField);
+ if (LambdaThisCaptureField) {
+ // If this lambda captures this, load it.
+ LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
+ CXXThisValue = EmitLoadOfLValue(ThisLValue,
+ SourceLocation()).getScalarVal();
+ }
+ } else {
+ // Not in a lambda; just use 'this' from the method.
+ // FIXME: Should we generate a new load for each use of 'this'? The
+ // fast register allocator would be happier...
+ CXXThisValue = CXXABIThisValue;
+ }
+ }
+
+ // If any of the arguments have a variably modified type, make sure to
+ // emit the type size.
+ for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
+ i != e; ++i) {
+ const VarDecl *VD = *i;
+
+ // Dig out the type as written from ParmVarDecls; it's unclear whether
+ // the standard (C99 6.9.1p10) requires this, but we're following the
+ // precedent set by gcc.
+ QualType Ty;
+ if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
+ Ty = PVD->getOriginalType();
+ else
+ Ty = VD->getType();
+
+ if (Ty->isVariablyModifiedType())
+ EmitVariablyModifiedType(Ty);
+ }
+ // Emit a location at the end of the prologue.
+ if (CGDebugInfo *DI = getDebugInfo())
+ DI->EmitLocation(Builder, StartLoc);
+}
+
+void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
+ const Stmt *Body) {
+ RegionCounter Cnt = getPGORegionCounter(Body);
+ Cnt.beginRegion(Builder);
+ if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
+ EmitCompoundStmtWithoutScope(*S);
+ else
+ EmitStmt(Body);
+}
+
+/// When instrumenting to collect profile data, the counts for some blocks
+/// such as switch cases need to not include the fall-through counts, so
+/// emit a branch around the instrumentation code. When not instrumenting,
+/// this just calls EmitBlock().
+void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
+ RegionCounter &Cnt) {
+ llvm::BasicBlock *SkipCountBB = nullptr;
+ if (HaveInsertPoint() && CGM.getCodeGenOpts().ProfileInstrGenerate) {
+ // When instrumenting for profiling, the fallthrough to certain
+ // statements needs to skip over the instrumentation code so that we
+ // get an accurate count.
+ SkipCountBB = createBasicBlock("skipcount");
+ EmitBranch(SkipCountBB);
+ }
+ EmitBlock(BB);
+ Cnt.beginRegion(Builder, /*AddIncomingFallThrough=*/true);
+ if (SkipCountBB)
+ EmitBlock(SkipCountBB);
+}
+
+/// Tries to mark the given function nounwind based on the
+/// non-existence of any throwing calls within it. We believe this is
+/// lightweight enough to do at -O0.
+static void TryMarkNoThrow(llvm::Function *F) {
+ // LLVM treats 'nounwind' on a function as part of the type, so we
+ // can't do this on functions that can be overwritten.
+ if (F->mayBeOverridden()) return;
+
+ for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
+ for (llvm::BasicBlock::iterator
+ BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
+ if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
+ if (!Call->doesNotThrow())
+ return;
+ } else if (isa<llvm::ResumeInst>(&*BI)) {
+ return;
+ }
+ F->setDoesNotThrow();
+}
+
+static void EmitSizedDeallocationFunction(CodeGenFunction &CGF,
+ const FunctionDecl *UnsizedDealloc) {
+ // This is a weak discardable definition of the sized deallocation function.
+ CGF.CurFn->setLinkage(llvm::Function::LinkOnceAnyLinkage);
+
+ // Call the unsized deallocation function and forward the first argument
+ // unchanged.
+ llvm::Constant *Unsized = CGF.CGM.GetAddrOfFunction(UnsizedDealloc);
+ CGF.Builder.CreateCall(Unsized, &*CGF.CurFn->arg_begin());
+}
+
+void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
+ const CGFunctionInfo &FnInfo) {
+ const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
+
+ // Check if we should generate debug info for this function.
+ if (FD->hasAttr<NoDebugAttr>())
+ DebugInfo = nullptr; // disable debug info indefinitely for this function
+
+ FunctionArgList Args;
+ QualType ResTy = FD->getReturnType();
+
+ CurGD = GD;
+ const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
+ if (MD && MD->isInstance()) {
+ if (CGM.getCXXABI().HasThisReturn(GD))
+ ResTy = MD->getThisType(getContext());
+ CGM.getCXXABI().buildThisParam(*this, Args);
+ }
+
+ for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
+ Args.push_back(FD->getParamDecl(i));
+
+ if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
+ CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
+
+ SourceRange BodyRange;
+ if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
+ CurEHLocation = BodyRange.getEnd();
+
+ // Use the location of the start of the function to determine where
+ // the function definition is located. By default use the location
+ // of the declaration as the location for the subprogram. A function
+ // may lack a declaration in the source code if it is created by code
+ // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
+ SourceLocation Loc = FD->getLocation();
+
+ // If this is a function specialization then use the pattern body
+ // as the location for the function.
+ if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
+ if (SpecDecl->hasBody(SpecDecl))
+ Loc = SpecDecl->getLocation();
+
+ // Emit the standard function prologue.
+ StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
+
+ // Generate the body of the function.
+ PGO.assignRegionCounters(GD.getDecl(), CurFn);
+ if (isa<CXXDestructorDecl>(FD))
+ EmitDestructorBody(Args);
+ else if (isa<CXXConstructorDecl>(FD))
+ EmitConstructorBody(Args);
+ else if (getLangOpts().CUDA &&
+ !CGM.getCodeGenOpts().CUDAIsDevice &&
+ FD->hasAttr<CUDAGlobalAttr>())
+ CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
+ else if (isa<CXXConversionDecl>(FD) &&
+ cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
+ // The lambda conversion to block pointer is special; the semantics can't be
+ // expressed in the AST, so IRGen needs to special-case it.
+ EmitLambdaToBlockPointerBody(Args);
+ } else if (isa<CXXMethodDecl>(FD) &&
+ cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
+ // The lambda static invoker function is special, because it forwards or
+ // clones the body of the function call operator (but is actually static).
+ EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
+ } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
+ (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
+ cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
+ // Implicit copy-assignment gets the same special treatment as implicit
+ // copy-constructors.
+ emitImplicitAssignmentOperatorBody(Args);
+ } else if (Stmt *Body = FD->getBody()) {
+ EmitFunctionBody(Args, Body);
+ } else if (FunctionDecl *UnsizedDealloc =
+ FD->getCorrespondingUnsizedGlobalDeallocationFunction()) {
+ // Global sized deallocation functions get an implicit weak definition if
+ // they don't have an explicit definition.
+ EmitSizedDeallocationFunction(*this, UnsizedDealloc);
+ } else
+ llvm_unreachable("no definition for emitted function");
+
+ // C++11 [stmt.return]p2:
+ // Flowing off the end of a function [...] results in undefined behavior in
+ // a value-returning function.
+ // C11 6.9.1p12:
+ // If the '}' that terminates a function is reached, and the value of the
+ // function call is used by the caller, the behavior is undefined.
+ if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() &&
+ !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
+ if (SanOpts->Return) {
+ SanitizerScope SanScope(this);
+ EmitCheck(Builder.getFalse(), "missing_return",
+ EmitCheckSourceLocation(FD->getLocation()),
+ ArrayRef<llvm::Value *>(), CRK_Unrecoverable);
+ } else if (CGM.getCodeGenOpts().OptimizationLevel == 0)
+ Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap));
+ Builder.CreateUnreachable();
+ Builder.ClearInsertionPoint();
+ }
+
+ // Emit the standard function epilogue.
+ FinishFunction(BodyRange.getEnd());
+
+ // If we haven't marked the function nothrow through other means, do
+ // a quick pass now to see if we can.
+ if (!CurFn->doesNotThrow())
+ TryMarkNoThrow(CurFn);
+
+ PGO.emitInstrumentationData();
+ PGO.destroyRegionCounters();
+}
+
+/// ContainsLabel - Return true if the statement contains a label in it. If
+/// this statement is not executed normally, it not containing a label means
+/// that we can just remove the code.
+bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
+ // Null statement, not a label!
+ if (!S) return false;
+
+ // If this is a label, we have to emit the code, consider something like:
+ // if (0) { ... foo: bar(); } goto foo;
+ //
+ // TODO: If anyone cared, we could track __label__'s, since we know that you
+ // can't jump to one from outside their declared region.
+ if (isa<LabelStmt>(S))
+ return true;
+
+ // If this is a case/default statement, and we haven't seen a switch, we have
+ // to emit the code.
+ if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
+ return true;
+
+ // If this is a switch statement, we want to ignore cases below it.
+ if (isa<SwitchStmt>(S))
+ IgnoreCaseStmts = true;
+
+ // Scan subexpressions for verboten labels.
+ for (Stmt::const_child_range I = S->children(); I; ++I)
+ if (ContainsLabel(*I, IgnoreCaseStmts))
+ return true;
+
+ return false;
+}
+
+/// containsBreak - Return true if the statement contains a break out of it.
+/// If the statement (recursively) contains a switch or loop with a break
+/// inside of it, this is fine.
+bool CodeGenFunction::containsBreak(const Stmt *S) {
+ // Null statement, not a label!
+ if (!S) return false;
+
+ // If this is a switch or loop that defines its own break scope, then we can
+ // include it and anything inside of it.
+ if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
+ isa<ForStmt>(S))
+ return false;
+
+ if (isa<BreakStmt>(S))
+ return true;
+
+ // Scan subexpressions for verboten breaks.
+ for (Stmt::const_child_range I = S->children(); I; ++I)
+ if (containsBreak(*I))
+ return true;
+
+ return false;
+}
+
+
+/// ConstantFoldsToSimpleInteger - If the specified expression does not fold
+/// to a constant, or if it does but contains a label, return false. If it
+/// constant folds return true and set the boolean result in Result.
+bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
+ bool &ResultBool) {
+ llvm::APSInt ResultInt;
+ if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
+ return false;
+
+ ResultBool = ResultInt.getBoolValue();
+ return true;
+}
+
+/// ConstantFoldsToSimpleInteger - If the specified expression does not fold
+/// to a constant, or if it does but contains a label, return false. If it
+/// constant folds return true and set the folded value.
+bool CodeGenFunction::
+ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
+ // FIXME: Rename and handle conversion of other evaluatable things
+ // to bool.
+ llvm::APSInt Int;
+ if (!Cond->EvaluateAsInt(Int, getContext()))
+ return false; // Not foldable, not integer or not fully evaluatable.
+
+ if (CodeGenFunction::ContainsLabel(Cond))
+ return false; // Contains a label.
+
+ ResultInt = Int;
+ return true;
+}
+
+
+
+/// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
+/// statement) to the specified blocks. Based on the condition, this might try
+/// to simplify the codegen of the conditional based on the branch.
+///
+void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
+ llvm::BasicBlock *TrueBlock,
+ llvm::BasicBlock *FalseBlock,
+ uint64_t TrueCount) {
+ Cond = Cond->IgnoreParens();
+
+ if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
+
+ // Handle X && Y in a condition.
+ if (CondBOp->getOpcode() == BO_LAnd) {
+ RegionCounter Cnt = getPGORegionCounter(CondBOp);
+
+ // If we have "1 && X", simplify the code. "0 && X" would have constant
+ // folded if the case was simple enough.
+ bool ConstantBool = false;
+ if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
+ ConstantBool) {
+ // br(1 && X) -> br(X).
+ Cnt.beginRegion(Builder);
+ return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
+ TrueCount);
+ }
+
+ // If we have "X && 1", simplify the code to use an uncond branch.
+ // "X && 0" would have been constant folded to 0.
+ if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
+ ConstantBool) {
+ // br(X && 1) -> br(X).
+ return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
+ TrueCount);
+ }
+
+ // Emit the LHS as a conditional. If the LHS conditional is false, we
+ // want to jump to the FalseBlock.
+ llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
+ // The counter tells us how often we evaluate RHS, and all of TrueCount
+ // can be propagated to that branch.
+ uint64_t RHSCount = Cnt.getCount();
+
+ ConditionalEvaluation eval(*this);
+ EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
+ EmitBlock(LHSTrue);
+
+ // Any temporaries created here are conditional.
+ Cnt.beginRegion(Builder);
+ eval.begin(*this);
+ EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
+ eval.end(*this);
+
+ return;
+ }
+
+ if (CondBOp->getOpcode() == BO_LOr) {
+ RegionCounter Cnt = getPGORegionCounter(CondBOp);
+
+ // If we have "0 || X", simplify the code. "1 || X" would have constant
+ // folded if the case was simple enough.
+ bool ConstantBool = false;
+ if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
+ !ConstantBool) {
+ // br(0 || X) -> br(X).
+ Cnt.beginRegion(Builder);
+ return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
+ TrueCount);
+ }
+
+ // If we have "X || 0", simplify the code to use an uncond branch.
+ // "X || 1" would have been constant folded to 1.
+ if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
+ !ConstantBool) {
+ // br(X || 0) -> br(X).
+ return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
+ TrueCount);
+ }
+
+ // Emit the LHS as a conditional. If the LHS conditional is true, we
+ // want to jump to the TrueBlock.
+ llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
+ // We have the count for entry to the RHS and for the whole expression
+ // being true, so we can divy up True count between the short circuit and
+ // the RHS.
+ uint64_t LHSCount = Cnt.getParentCount() - Cnt.getCount();
+ uint64_t RHSCount = TrueCount - LHSCount;
+
+ ConditionalEvaluation eval(*this);
+ EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
+ EmitBlock(LHSFalse);
+
+ // Any temporaries created here are conditional.
+ Cnt.beginRegion(Builder);
+ eval.begin(*this);
+ EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
+
+ eval.end(*this);
+
+ return;
+ }
+ }
+
+ if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
+ // br(!x, t, f) -> br(x, f, t)
+ if (CondUOp->getOpcode() == UO_LNot) {
+ // Negate the count.
+ uint64_t FalseCount = PGO.getCurrentRegionCount() - TrueCount;
+ // Negate the condition and swap the destination blocks.
+ return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
+ FalseCount);
+ }
+ }
+
+ if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
+ // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
+ llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
+ llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
+
+ RegionCounter Cnt = getPGORegionCounter(CondOp);
+ ConditionalEvaluation cond(*this);
+ EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, Cnt.getCount());
+
+ // When computing PGO branch weights, we only know the overall count for
+ // the true block. This code is essentially doing tail duplication of the
+ // naive code-gen, introducing new edges for which counts are not
+ // available. Divide the counts proportionally between the LHS and RHS of
+ // the conditional operator.
+ uint64_t LHSScaledTrueCount = 0;
+ if (TrueCount) {
+ double LHSRatio = Cnt.getCount() / (double) Cnt.getParentCount();
+ LHSScaledTrueCount = TrueCount * LHSRatio;
+ }
+
+ cond.begin(*this);
+ EmitBlock(LHSBlock);
+ Cnt.beginRegion(Builder);
+ EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
+ LHSScaledTrueCount);
+ cond.end(*this);
+
+ cond.begin(*this);
+ EmitBlock(RHSBlock);
+ EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
+ TrueCount - LHSScaledTrueCount);
+ cond.end(*this);
+
+ return;
+ }
+
+ if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
+ // Conditional operator handling can give us a throw expression as a
+ // condition for a case like:
+ // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
+ // Fold this to:
+ // br(c, throw x, br(y, t, f))
+ EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
+ return;
+ }
+
+ // Create branch weights based on the number of times we get here and the
+ // number of times the condition should be true.
+ uint64_t CurrentCount = std::max(PGO.getCurrentRegionCount(), TrueCount);
+ llvm::MDNode *Weights = PGO.createBranchWeights(TrueCount,
+ CurrentCount - TrueCount);
+
+ // Emit the code with the fully general case.
+ llvm::Value *CondV = EvaluateExprAsBool(Cond);
+ Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights);
+}
+
+/// ErrorUnsupported - Print out an error that codegen doesn't support the
+/// specified stmt yet.
+void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
+ CGM.ErrorUnsupported(S, Type);
+}
+
+/// emitNonZeroVLAInit - Emit the "zero" initialization of a
+/// variable-length array whose elements have a non-zero bit-pattern.
+///
+/// \param baseType the inner-most element type of the array
+/// \param src - a char* pointing to the bit-pattern for a single
+/// base element of the array
+/// \param sizeInChars - the total size of the VLA, in chars
+static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
+ llvm::Value *dest, llvm::Value *src,
+ llvm::Value *sizeInChars) {
+ std::pair<CharUnits,CharUnits> baseSizeAndAlign
+ = CGF.getContext().getTypeInfoInChars(baseType);
+
+ CGBuilderTy &Builder = CGF.Builder;
+
+ llvm::Value *baseSizeInChars
+ = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
+
+ llvm::Type *i8p = Builder.getInt8PtrTy();
+
+ llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
+ llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
+
+ llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
+ llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
+ llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
+
+ // Make a loop over the VLA. C99 guarantees that the VLA element
+ // count must be nonzero.
+ CGF.EmitBlock(loopBB);
+
+ llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
+ cur->addIncoming(begin, originBB);
+
+ // memcpy the individual element bit-pattern.
+ Builder.CreateMemCpy(cur, src, baseSizeInChars,
+ baseSizeAndAlign.second.getQuantity(),
+ /*volatile*/ false);
+
+ // Go to the next element.
+ llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
+
+ // Leave if that's the end of the VLA.
+ llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
+ Builder.CreateCondBr(done, contBB, loopBB);
+ cur->addIncoming(next, loopBB);
+
+ CGF.EmitBlock(contBB);
+}
+
+void
+CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
+ // Ignore empty classes in C++.
+ if (getLangOpts().CPlusPlus) {
+ if (const RecordType *RT = Ty->getAs<RecordType>()) {
+ if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
+ return;
+ }
+ }
+
+ // Cast the dest ptr to the appropriate i8 pointer type.
+ unsigned DestAS =
+ cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
+ llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
+ if (DestPtr->getType() != BP)
+ DestPtr = Builder.CreateBitCast(DestPtr, BP);
+
+ // Get size and alignment info for this aggregate.
+ std::pair<CharUnits, CharUnits> TypeInfo =
+ getContext().getTypeInfoInChars(Ty);
+ CharUnits Size = TypeInfo.first;
+ CharUnits Align = TypeInfo.second;
+
+ llvm::Value *SizeVal;
+ const VariableArrayType *vla;
+
+ // Don't bother emitting a zero-byte memset.
+ if (Size.isZero()) {
+ // But note that getTypeInfo returns 0 for a VLA.
+ if (const VariableArrayType *vlaType =
+ dyn_cast_or_null<VariableArrayType>(
+ getContext().getAsArrayType(Ty))) {
+ QualType eltType;
+ llvm::Value *numElts;
+ std::tie(numElts, eltType) = getVLASize(vlaType);
+
+ SizeVal = numElts;
+ CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
+ if (!eltSize.isOne())
+ SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
+ vla = vlaType;
+ } else {
+ return;
+ }
+ } else {
+ SizeVal = CGM.getSize(Size);
+ vla = nullptr;
+ }
+
+ // If the type contains a pointer to data member we can't memset it to zero.
+ // Instead, create a null constant and copy it to the destination.
+ // TODO: there are other patterns besides zero that we can usefully memset,
+ // like -1, which happens to be the pattern used by member-pointers.
+ if (!CGM.getTypes().isZeroInitializable(Ty)) {
+ // For a VLA, emit a single element, then splat that over the VLA.
+ if (vla) Ty = getContext().getBaseElementType(vla);
+
+ llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
+
+ llvm::GlobalVariable *NullVariable =
+ new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
+ /*isConstant=*/true,
+ llvm::GlobalVariable::PrivateLinkage,
+ NullConstant, Twine());
+ llvm::Value *SrcPtr =
+ Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
+
+ if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
+
+ // Get and call the appropriate llvm.memcpy overload.
+ Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
+ return;
+ }
+
+ // Otherwise, just memset the whole thing to zero. This is legal
+ // because in LLVM, all default initializers (other than the ones we just
+ // handled above) are guaranteed to have a bit pattern of all zeros.
+ Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
+ Align.getQuantity(), false);
+}
+
+llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
+ // Make sure that there is a block for the indirect goto.
+ if (!IndirectBranch)
+ GetIndirectGotoBlock();
+
+ llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
+
+ // Make sure the indirect branch includes all of the address-taken blocks.
+ IndirectBranch->addDestination(BB);
+ return llvm::BlockAddress::get(CurFn, BB);
+}
+
+llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
+ // If we already made the indirect branch for indirect goto, return its block.
+ if (IndirectBranch) return IndirectBranch->getParent();
+
+ CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
+
+ // Create the PHI node that indirect gotos will add entries to.
+ llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
+ "indirect.goto.dest");
+
+ // Create the indirect branch instruction.
+ IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
+ return IndirectBranch->getParent();
+}
+
+/// Computes the length of an array in elements, as well as the base
+/// element type and a properly-typed first element pointer.
+llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
+ QualType &baseType,
+ llvm::Value *&addr) {
+ const ArrayType *arrayType = origArrayType;
+
+ // If it's a VLA, we have to load the stored size. Note that
+ // this is the size of the VLA in bytes, not its size in elements.
+ llvm::Value *numVLAElements = nullptr;
+ if (isa<VariableArrayType>(arrayType)) {
+ numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
+
+ // Walk into all VLAs. This doesn't require changes to addr,
+ // which has type T* where T is the first non-VLA element type.
+ do {
+ QualType elementType = arrayType->getElementType();
+ arrayType = getContext().getAsArrayType(elementType);
+
+ // If we only have VLA components, 'addr' requires no adjustment.
+ if (!arrayType) {
+ baseType = elementType;
+ return numVLAElements;
+ }
+ } while (isa<VariableArrayType>(arrayType));
+
+ // We get out here only if we find a constant array type
+ // inside the VLA.
+ }
+
+ // We have some number of constant-length arrays, so addr should
+ // have LLVM type [M x [N x [...]]]*. Build a GEP that walks
+ // down to the first element of addr.
+ SmallVector<llvm::Value*, 8> gepIndices;
+
+ // GEP down to the array type.
+ llvm::ConstantInt *zero = Builder.getInt32(0);
+ gepIndices.push_back(zero);
+
+ uint64_t countFromCLAs = 1;
+ QualType eltType;
+
+ llvm::ArrayType *llvmArrayType =
+ dyn_cast<llvm::ArrayType>(
+ cast<llvm::PointerType>(addr->getType())->getElementType());
+ while (llvmArrayType) {
+ assert(isa<ConstantArrayType>(arrayType));
+ assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
+ == llvmArrayType->getNumElements());
+
+ gepIndices.push_back(zero);
+ countFromCLAs *= llvmArrayType->getNumElements();
+ eltType = arrayType->getElementType();
+
+ llvmArrayType =
+ dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
+ arrayType = getContext().getAsArrayType(arrayType->getElementType());
+ assert((!llvmArrayType || arrayType) &&
+ "LLVM and Clang types are out-of-synch");
+ }
+
+ if (arrayType) {
+ // From this point onwards, the Clang array type has been emitted
+ // as some other type (probably a packed struct). Compute the array
+ // size, and just emit the 'begin' expression as a bitcast.
+ while (arrayType) {
+ countFromCLAs *=
+ cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
+ eltType = arrayType->getElementType();
+ arrayType = getContext().getAsArrayType(eltType);
+ }
+
+ unsigned AddressSpace = addr->getType()->getPointerAddressSpace();
+ llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
+ addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
+ } else {
+ // Create the actual GEP.
+ addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
+ }
+
+ baseType = eltType;
+
+ llvm::Value *numElements
+ = llvm::ConstantInt::get(SizeTy, countFromCLAs);
+
+ // If we had any VLA dimensions, factor them in.
+ if (numVLAElements)
+ numElements = Builder.CreateNUWMul(numVLAElements, numElements);
+
+ return numElements;
+}
+
+std::pair<llvm::Value*, QualType>
+CodeGenFunction::getVLASize(QualType type) {
+ const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
+ assert(vla && "type was not a variable array type!");
+ return getVLASize(vla);
+}
+
+std::pair<llvm::Value*, QualType>
+CodeGenFunction::getVLASize(const VariableArrayType *type) {
+ // The number of elements so far; always size_t.
+ llvm::Value *numElements = nullptr;
+
+ QualType elementType;
+ do {
+ elementType = type->getElementType();
+ llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
+ assert(vlaSize && "no size for VLA!");
+ assert(vlaSize->getType() == SizeTy);
+
+ if (!numElements) {
+ numElements = vlaSize;
+ } else {
+ // It's undefined behavior if this wraps around, so mark it that way.
+ // FIXME: Teach -fsanitize=undefined to trap this.
+ numElements = Builder.CreateNUWMul(numElements, vlaSize);
+ }
+ } while ((type = getContext().getAsVariableArrayType(elementType)));
+
+ return std::pair<llvm::Value*,QualType>(numElements, elementType);
+}
+
+void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
+ assert(type->isVariablyModifiedType() &&
+ "Must pass variably modified type to EmitVLASizes!");
+
+ EnsureInsertPoint();
+
+ // We're going to walk down into the type and look for VLA
+ // expressions.
+ do {
+ assert(type->isVariablyModifiedType());
+
+ const Type *ty = type.getTypePtr();
+ switch (ty->getTypeClass()) {
+
+#define TYPE(Class, Base)
+#define ABSTRACT_TYPE(Class, Base)
+#define NON_CANONICAL_TYPE(Class, Base)
+#define DEPENDENT_TYPE(Class, Base) case Type::Class:
+#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
+#include "clang/AST/TypeNodes.def"
+ llvm_unreachable("unexpected dependent type!");
+
+ // These types are never variably-modified.
+ case Type::Builtin:
+ case Type::Complex:
+ case Type::Vector:
+ case Type::ExtVector:
+ case Type::Record:
+ case Type::Enum:
+ case Type::Elaborated:
+ case Type::TemplateSpecialization:
+ case Type::ObjCObject:
+ case Type::ObjCInterface:
+ case Type::ObjCObjectPointer:
+ llvm_unreachable("type class is never variably-modified!");
+
+ case Type::Adjusted:
+ type = cast<AdjustedType>(ty)->getAdjustedType();
+ break;
+
+ case Type::Decayed:
+ type = cast<DecayedType>(ty)->getPointeeType();
+ break;
+
+ case Type::Pointer:
+ type = cast<PointerType>(ty)->getPointeeType();
+ break;
+
+ case Type::BlockPointer:
+ type = cast<BlockPointerType>(ty)->getPointeeType();
+ break;
+
+ case Type::LValueReference:
+ case Type::RValueReference:
+ type = cast<ReferenceType>(ty)->getPointeeType();
+ break;
+
+ case Type::MemberPointer:
+ type = cast<MemberPointerType>(ty)->getPointeeType();
+ break;
+
+ case Type::ConstantArray:
+ case Type::IncompleteArray:
+ // Losing element qualification here is fine.
+ type = cast<ArrayType>(ty)->getElementType();
+ break;
+
+ case Type::VariableArray: {
+ // Losing element qualification here is fine.
+ const VariableArrayType *vat = cast<VariableArrayType>(ty);
+
+ // Unknown size indication requires no size computation.
+ // Otherwise, evaluate and record it.
+ if (const Expr *size = vat->getSizeExpr()) {
+ // It's possible that we might have emitted this already,
+ // e.g. with a typedef and a pointer to it.
+ llvm::Value *&entry = VLASizeMap[size];
+ if (!entry) {
+ llvm::Value *Size = EmitScalarExpr(size);
+
+ // C11 6.7.6.2p5:
+ // If the size is an expression that is not an integer constant
+ // expression [...] each time it is evaluated it shall have a value
+ // greater than zero.
+ if (SanOpts->VLABound &&
+ size->getType()->isSignedIntegerType()) {
+ SanitizerScope SanScope(this);
+ llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
+ llvm::Constant *StaticArgs[] = {
+ EmitCheckSourceLocation(size->getLocStart()),
+ EmitCheckTypeDescriptor(size->getType())
+ };
+ EmitCheck(Builder.CreateICmpSGT(Size, Zero),
+ "vla_bound_not_positive", StaticArgs, Size,
+ CRK_Recoverable);
+ }
+
+ // Always zexting here would be wrong if it weren't
+ // undefined behavior to have a negative bound.
+ entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
+ }
+ }
+ type = vat->getElementType();
+ break;
+ }
+
+ case Type::FunctionProto:
+ case Type::FunctionNoProto:
+ type = cast<FunctionType>(ty)->getReturnType();
+ break;
+
+ case Type::Paren:
+ case Type::TypeOf:
+ case Type::UnaryTransform:
+ case Type::Attributed:
+ case Type::SubstTemplateTypeParm:
+ case Type::PackExpansion:
+ // Keep walking after single level desugaring.
+ type = type.getSingleStepDesugaredType(getContext());
+ break;
+
+ case Type::Typedef:
+ case Type::Decltype:
+ case Type::Auto:
+ // Stop walking: nothing to do.
+ return;
+
+ case Type::TypeOfExpr:
+ // Stop walking: emit typeof expression.
+ EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
+ return;
+
+ case Type::Atomic:
+ type = cast<AtomicType>(ty)->getValueType();
+ break;
+ }
+ } while (type->isVariablyModifiedType());
+}
+
+llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
+ if (getContext().getBuiltinVaListType()->isArrayType())
+ return EmitScalarExpr(E);
+ return EmitLValue(E).getAddress();
+}
+
+void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
+ llvm::Constant *Init) {
+ assert (Init && "Invalid DeclRefExpr initializer!");
+ if (CGDebugInfo *Dbg = getDebugInfo())
+ if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
+ Dbg->EmitGlobalVariable(E->getDecl(), Init);
+}
+
+CodeGenFunction::PeepholeProtection
+CodeGenFunction::protectFromPeepholes(RValue rvalue) {
+ // At the moment, the only aggressive peephole we do in IR gen
+ // is trunc(zext) folding, but if we add more, we can easily
+ // extend this protection.
+
+ if (!rvalue.isScalar()) return PeepholeProtection();
+ llvm::Value *value = rvalue.getScalarVal();
+ if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
+
+ // Just make an extra bitcast.
+ assert(HaveInsertPoint());
+ llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
+ Builder.GetInsertBlock());
+
+ PeepholeProtection protection;
+ protection.Inst = inst;
+ return protection;
+}
+
+void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
+ if (!protection.Inst) return;
+
+ // In theory, we could try to duplicate the peepholes now, but whatever.
+ protection.Inst->eraseFromParent();
+}
+
+llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
+ llvm::Value *AnnotatedVal,
+ StringRef AnnotationStr,
+ SourceLocation Location) {
+ llvm::Value *Args[4] = {
+ AnnotatedVal,
+ Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
+ Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
+ CGM.EmitAnnotationLineNo(Location)
+ };
+ return Builder.CreateCall(AnnotationFn, Args);
+}
+
+void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
+ assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
+ // FIXME We create a new bitcast for every annotation because that's what
+ // llvm-gcc was doing.
+ for (const auto *I : D->specific_attrs<AnnotateAttr>())
+ EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
+ Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
+ I->getAnnotation(), D->getLocation());
+}
+
+llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
+ llvm::Value *V) {
+ assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
+ llvm::Type *VTy = V->getType();
+ llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
+ CGM.Int8PtrTy);
+
+ for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
+ // FIXME Always emit the cast inst so we can differentiate between
+ // annotation on the first field of a struct and annotation on the struct
+ // itself.
+ if (VTy != CGM.Int8PtrTy)
+ V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
+ V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
+ V = Builder.CreateBitCast(V, VTy);
+ }
+
+ return V;
+}
+
+CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
+
+CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
+ : CGF(CGF) {
+ assert(!CGF->IsSanitizerScope);
+ CGF->IsSanitizerScope = true;
+}
+
+CodeGenFunction::SanitizerScope::~SanitizerScope() {
+ CGF->IsSanitizerScope = false;
+}
+
+void CodeGenFunction::InsertHelper(llvm::Instruction *I,
+ const llvm::Twine &Name,
+ llvm::BasicBlock *BB,
+ llvm::BasicBlock::iterator InsertPt) const {
+ LoopStack.InsertHelper(I);
+ if (IsSanitizerScope) {
+ I->setMetadata(
+ CGM.getModule().getMDKindID("nosanitize"),
+ llvm::MDNode::get(CGM.getLLVMContext(), ArrayRef<llvm::Value *>()));
+ }
+}
+
+template <bool PreserveNames>
+void CGBuilderInserter<PreserveNames>::InsertHelper(
+ llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
+ llvm::BasicBlock::iterator InsertPt) const {
+ llvm::IRBuilderDefaultInserter<PreserveNames>::InsertHelper(I, Name, BB,
+ InsertPt);
+ if (CGF)
+ CGF->InsertHelper(I, Name, BB, InsertPt);
+}
+
+#ifdef NDEBUG
+#define PreserveNames false
+#else
+#define PreserveNames true
+#endif
+template void CGBuilderInserter<PreserveNames>::InsertHelper(
+ llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
+ llvm::BasicBlock::iterator InsertPt) const;
+#undef PreserveNames
OpenPOWER on IntegriCloud