summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/CodeGen/CGVTables.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/CodeGen/CGVTables.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGVTables.cpp906
1 files changed, 906 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGVTables.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGVTables.cpp
new file mode 100644
index 0000000..57370a6
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGVTables.cpp
@@ -0,0 +1,906 @@
+//===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code dealing with C++ code generation of virtual tables.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenFunction.h"
+#include "CGCXXABI.h"
+#include "CodeGenModule.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/CodeGen/CGFunctionInfo.h"
+#include "clang/Frontend/CodeGenOptions.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include <algorithm>
+#include <cstdio>
+
+using namespace clang;
+using namespace CodeGen;
+
+CodeGenVTables::CodeGenVTables(CodeGenModule &CGM)
+ : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {}
+
+llvm::Constant *CodeGenModule::GetAddrOfThunk(GlobalDecl GD,
+ const ThunkInfo &Thunk) {
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
+
+ // Compute the mangled name.
+ SmallString<256> Name;
+ llvm::raw_svector_ostream Out(Name);
+ if (const CXXDestructorDecl* DD = dyn_cast<CXXDestructorDecl>(MD))
+ getCXXABI().getMangleContext().mangleCXXDtorThunk(DD, GD.getDtorType(),
+ Thunk.This, Out);
+ else
+ getCXXABI().getMangleContext().mangleThunk(MD, Thunk, Out);
+ Out.flush();
+
+ llvm::Type *Ty = getTypes().GetFunctionTypeForVTable(GD);
+ return GetOrCreateLLVMFunction(Name, Ty, GD, /*ForVTable=*/true,
+ /*DontDefer=*/true, /*IsThunk=*/true);
+}
+
+static void setThunkVisibility(CodeGenModule &CGM, const CXXMethodDecl *MD,
+ const ThunkInfo &Thunk, llvm::Function *Fn) {
+ CGM.setGlobalVisibility(Fn, MD);
+}
+
+#ifndef NDEBUG
+static bool similar(const ABIArgInfo &infoL, CanQualType typeL,
+ const ABIArgInfo &infoR, CanQualType typeR) {
+ return (infoL.getKind() == infoR.getKind() &&
+ (typeL == typeR ||
+ (isa<PointerType>(typeL) && isa<PointerType>(typeR)) ||
+ (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR))));
+}
+#endif
+
+static RValue PerformReturnAdjustment(CodeGenFunction &CGF,
+ QualType ResultType, RValue RV,
+ const ThunkInfo &Thunk) {
+ // Emit the return adjustment.
+ bool NullCheckValue = !ResultType->isReferenceType();
+
+ llvm::BasicBlock *AdjustNull = nullptr;
+ llvm::BasicBlock *AdjustNotNull = nullptr;
+ llvm::BasicBlock *AdjustEnd = nullptr;
+
+ llvm::Value *ReturnValue = RV.getScalarVal();
+
+ if (NullCheckValue) {
+ AdjustNull = CGF.createBasicBlock("adjust.null");
+ AdjustNotNull = CGF.createBasicBlock("adjust.notnull");
+ AdjustEnd = CGF.createBasicBlock("adjust.end");
+
+ llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue);
+ CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull);
+ CGF.EmitBlock(AdjustNotNull);
+ }
+
+ ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(CGF, ReturnValue,
+ Thunk.Return);
+
+ if (NullCheckValue) {
+ CGF.Builder.CreateBr(AdjustEnd);
+ CGF.EmitBlock(AdjustNull);
+ CGF.Builder.CreateBr(AdjustEnd);
+ CGF.EmitBlock(AdjustEnd);
+
+ llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2);
+ PHI->addIncoming(ReturnValue, AdjustNotNull);
+ PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()),
+ AdjustNull);
+ ReturnValue = PHI;
+ }
+
+ return RValue::get(ReturnValue);
+}
+
+// This function does roughly the same thing as GenerateThunk, but in a
+// very different way, so that va_start and va_end work correctly.
+// FIXME: This function assumes "this" is the first non-sret LLVM argument of
+// a function, and that there is an alloca built in the entry block
+// for all accesses to "this".
+// FIXME: This function assumes there is only one "ret" statement per function.
+// FIXME: Cloning isn't correct in the presence of indirect goto!
+// FIXME: This implementation of thunks bloats codesize by duplicating the
+// function definition. There are alternatives:
+// 1. Add some sort of stub support to LLVM for cases where we can
+// do a this adjustment, then a sibcall.
+// 2. We could transform the definition to take a va_list instead of an
+// actual variable argument list, then have the thunks (including a
+// no-op thunk for the regular definition) call va_start/va_end.
+// There's a bit of per-call overhead for this solution, but it's
+// better for codesize if the definition is long.
+void CodeGenFunction::GenerateVarArgsThunk(
+ llvm::Function *Fn,
+ const CGFunctionInfo &FnInfo,
+ GlobalDecl GD, const ThunkInfo &Thunk) {
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
+ const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
+ QualType ResultType = FPT->getReturnType();
+
+ // Get the original function
+ assert(FnInfo.isVariadic());
+ llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo);
+ llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
+ llvm::Function *BaseFn = cast<llvm::Function>(Callee);
+
+ // Clone to thunk.
+ llvm::ValueToValueMapTy VMap;
+ llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap,
+ /*ModuleLevelChanges=*/false);
+ CGM.getModule().getFunctionList().push_back(NewFn);
+ Fn->replaceAllUsesWith(NewFn);
+ NewFn->takeName(Fn);
+ Fn->eraseFromParent();
+ Fn = NewFn;
+
+ // "Initialize" CGF (minimally).
+ CurFn = Fn;
+
+ // Get the "this" value
+ llvm::Function::arg_iterator AI = Fn->arg_begin();
+ if (CGM.ReturnTypeUsesSRet(FnInfo))
+ ++AI;
+
+ // Find the first store of "this", which will be to the alloca associated
+ // with "this".
+ llvm::Value *ThisPtr = &*AI;
+ llvm::BasicBlock *EntryBB = Fn->begin();
+ llvm::Instruction *ThisStore =
+ std::find_if(EntryBB->begin(), EntryBB->end(), [&](llvm::Instruction &I) {
+ return isa<llvm::StoreInst>(I) && I.getOperand(0) == ThisPtr;
+ });
+ assert(ThisStore && "Store of this should be in entry block?");
+ // Adjust "this", if necessary.
+ Builder.SetInsertPoint(ThisStore);
+ llvm::Value *AdjustedThisPtr =
+ CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This);
+ ThisStore->setOperand(0, AdjustedThisPtr);
+
+ if (!Thunk.Return.isEmpty()) {
+ // Fix up the returned value, if necessary.
+ for (llvm::Function::iterator I = Fn->begin(), E = Fn->end(); I != E; I++) {
+ llvm::Instruction *T = I->getTerminator();
+ if (isa<llvm::ReturnInst>(T)) {
+ RValue RV = RValue::get(T->getOperand(0));
+ T->eraseFromParent();
+ Builder.SetInsertPoint(&*I);
+ RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk);
+ Builder.CreateRet(RV.getScalarVal());
+ break;
+ }
+ }
+ }
+}
+
+void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD,
+ const CGFunctionInfo &FnInfo) {
+ assert(!CurGD.getDecl() && "CurGD was already set!");
+ CurGD = GD;
+ CurFuncIsThunk = true;
+
+ // Build FunctionArgs.
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
+ QualType ThisType = MD->getThisType(getContext());
+ const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
+ QualType ResultType = CGM.getCXXABI().HasThisReturn(GD)
+ ? ThisType
+ : CGM.getCXXABI().hasMostDerivedReturn(GD)
+ ? CGM.getContext().VoidPtrTy
+ : FPT->getReturnType();
+ FunctionArgList FunctionArgs;
+
+ // Create the implicit 'this' parameter declaration.
+ CGM.getCXXABI().buildThisParam(*this, FunctionArgs);
+
+ // Add the rest of the parameters.
+ FunctionArgs.append(MD->param_begin(), MD->param_end());
+
+ if (isa<CXXDestructorDecl>(MD))
+ CGM.getCXXABI().addImplicitStructorParams(*this, ResultType, FunctionArgs);
+
+ // Start defining the function.
+ StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs,
+ MD->getLocation(), MD->getLocation());
+
+ // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves.
+ CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
+ CXXThisValue = CXXABIThisValue;
+}
+
+void CodeGenFunction::EmitCallAndReturnForThunk(llvm::Value *Callee,
+ const ThunkInfo *Thunk) {
+ assert(isa<CXXMethodDecl>(CurGD.getDecl()) &&
+ "Please use a new CGF for this thunk");
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl());
+
+ // Adjust the 'this' pointer if necessary
+ llvm::Value *AdjustedThisPtr = Thunk ? CGM.getCXXABI().performThisAdjustment(
+ *this, LoadCXXThis(), Thunk->This)
+ : LoadCXXThis();
+
+ if (CurFnInfo->usesInAlloca()) {
+ // We don't handle return adjusting thunks, because they require us to call
+ // the copy constructor. For now, fall through and pretend the return
+ // adjustment was empty so we don't crash.
+ if (Thunk && !Thunk->Return.isEmpty()) {
+ CGM.ErrorUnsupported(
+ MD, "non-trivial argument copy for return-adjusting thunk");
+ }
+ EmitMustTailThunk(MD, AdjustedThisPtr, Callee);
+ return;
+ }
+
+ // Start building CallArgs.
+ CallArgList CallArgs;
+ QualType ThisType = MD->getThisType(getContext());
+ CallArgs.add(RValue::get(AdjustedThisPtr), ThisType);
+
+ if (isa<CXXDestructorDecl>(MD))
+ CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs);
+
+ // Add the rest of the arguments.
+ for (const ParmVarDecl *PD : MD->params())
+ EmitDelegateCallArg(CallArgs, PD, PD->getLocStart());
+
+ const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
+
+#ifndef NDEBUG
+ const CGFunctionInfo &CallFnInfo =
+ CGM.getTypes().arrangeCXXMethodCall(CallArgs, FPT,
+ RequiredArgs::forPrototypePlus(FPT, 1));
+ assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() &&
+ CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() &&
+ CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention());
+ assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types
+ similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(),
+ CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType()));
+ assert(CallFnInfo.arg_size() == CurFnInfo->arg_size());
+ for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i)
+ assert(similar(CallFnInfo.arg_begin()[i].info,
+ CallFnInfo.arg_begin()[i].type,
+ CurFnInfo->arg_begin()[i].info,
+ CurFnInfo->arg_begin()[i].type));
+#endif
+
+ // Determine whether we have a return value slot to use.
+ QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD)
+ ? ThisType
+ : CGM.getCXXABI().hasMostDerivedReturn(CurGD)
+ ? CGM.getContext().VoidPtrTy
+ : FPT->getReturnType();
+ ReturnValueSlot Slot;
+ if (!ResultType->isVoidType() &&
+ CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
+ !hasScalarEvaluationKind(CurFnInfo->getReturnType()))
+ Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified());
+
+ // Now emit our call.
+ llvm::Instruction *CallOrInvoke;
+ RValue RV = EmitCall(*CurFnInfo, Callee, Slot, CallArgs, MD, &CallOrInvoke);
+
+ // Consider return adjustment if we have ThunkInfo.
+ if (Thunk && !Thunk->Return.isEmpty())
+ RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk);
+
+ // Emit return.
+ if (!ResultType->isVoidType() && Slot.isNull())
+ CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType);
+
+ // Disable the final ARC autorelease.
+ AutoreleaseResult = false;
+
+ FinishFunction();
+}
+
+void CodeGenFunction::EmitMustTailThunk(const CXXMethodDecl *MD,
+ llvm::Value *AdjustedThisPtr,
+ llvm::Value *Callee) {
+ // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery
+ // to translate AST arguments into LLVM IR arguments. For thunks, we know
+ // that the caller prototype more or less matches the callee prototype with
+ // the exception of 'this'.
+ SmallVector<llvm::Value *, 8> Args;
+ for (llvm::Argument &A : CurFn->args())
+ Args.push_back(&A);
+
+ // Set the adjusted 'this' pointer.
+ const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info;
+ if (ThisAI.isDirect()) {
+ const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
+ int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0;
+ llvm::Type *ThisType = Args[ThisArgNo]->getType();
+ if (ThisType != AdjustedThisPtr->getType())
+ AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType);
+ Args[ThisArgNo] = AdjustedThisPtr;
+ } else {
+ assert(ThisAI.isInAlloca() && "this is passed directly or inalloca");
+ llvm::Value *ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl);
+ llvm::Type *ThisType =
+ cast<llvm::PointerType>(ThisAddr->getType())->getElementType();
+ if (ThisType != AdjustedThisPtr->getType())
+ AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType);
+ Builder.CreateStore(AdjustedThisPtr, ThisAddr);
+ }
+
+ // Emit the musttail call manually. Even if the prologue pushed cleanups, we
+ // don't actually want to run them.
+ llvm::CallInst *Call = Builder.CreateCall(Callee, Args);
+ Call->setTailCallKind(llvm::CallInst::TCK_MustTail);
+
+ // Apply the standard set of call attributes.
+ unsigned CallingConv;
+ CodeGen::AttributeListType AttributeList;
+ CGM.ConstructAttributeList(*CurFnInfo, MD, AttributeList, CallingConv,
+ /*AttrOnCallSite=*/true);
+ llvm::AttributeSet Attrs =
+ llvm::AttributeSet::get(getLLVMContext(), AttributeList);
+ Call->setAttributes(Attrs);
+ Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
+
+ if (Call->getType()->isVoidTy())
+ Builder.CreateRetVoid();
+ else
+ Builder.CreateRet(Call);
+
+ // Finish the function to maintain CodeGenFunction invariants.
+ // FIXME: Don't emit unreachable code.
+ EmitBlock(createBasicBlock());
+ FinishFunction();
+}
+
+void CodeGenFunction::GenerateThunk(llvm::Function *Fn,
+ const CGFunctionInfo &FnInfo,
+ GlobalDecl GD, const ThunkInfo &Thunk) {
+ StartThunk(Fn, GD, FnInfo);
+
+ // Get our callee.
+ llvm::Type *Ty =
+ CGM.getTypes().GetFunctionType(CGM.getTypes().arrangeGlobalDeclaration(GD));
+ llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
+
+ // Make the call and return the result.
+ EmitCallAndReturnForThunk(Callee, &Thunk);
+
+ // Set the right linkage.
+ CGM.setFunctionLinkage(GD, Fn);
+
+ if (CGM.supportsCOMDAT() && Fn->isWeakForLinker())
+ Fn->setComdat(CGM.getModule().getOrInsertComdat(Fn->getName()));
+
+ // Set the right visibility.
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
+ setThunkVisibility(CGM, MD, Thunk, Fn);
+}
+
+void CodeGenVTables::emitThunk(GlobalDecl GD, const ThunkInfo &Thunk,
+ bool ForVTable) {
+ const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeGlobalDeclaration(GD);
+
+ // FIXME: re-use FnInfo in this computation.
+ llvm::Constant *C = CGM.GetAddrOfThunk(GD, Thunk);
+ llvm::GlobalValue *Entry;
+
+ // Strip off a bitcast if we got one back.
+ if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(C)) {
+ assert(CE->getOpcode() == llvm::Instruction::BitCast);
+ Entry = cast<llvm::GlobalValue>(CE->getOperand(0));
+ } else {
+ Entry = cast<llvm::GlobalValue>(C);
+ }
+
+ // There's already a declaration with the same name, check if it has the same
+ // type or if we need to replace it.
+ if (Entry->getType()->getElementType() !=
+ CGM.getTypes().GetFunctionTypeForVTable(GD)) {
+ llvm::GlobalValue *OldThunkFn = Entry;
+
+ // If the types mismatch then we have to rewrite the definition.
+ assert(OldThunkFn->isDeclaration() &&
+ "Shouldn't replace non-declaration");
+
+ // Remove the name from the old thunk function and get a new thunk.
+ OldThunkFn->setName(StringRef());
+ Entry = cast<llvm::GlobalValue>(CGM.GetAddrOfThunk(GD, Thunk));
+
+ // If needed, replace the old thunk with a bitcast.
+ if (!OldThunkFn->use_empty()) {
+ llvm::Constant *NewPtrForOldDecl =
+ llvm::ConstantExpr::getBitCast(Entry, OldThunkFn->getType());
+ OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl);
+ }
+
+ // Remove the old thunk.
+ OldThunkFn->eraseFromParent();
+ }
+
+ llvm::Function *ThunkFn = cast<llvm::Function>(Entry);
+ bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions();
+ bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions;
+
+ if (!ThunkFn->isDeclaration()) {
+ if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) {
+ // There is already a thunk emitted for this function, do nothing.
+ return;
+ }
+
+ // Change the linkage.
+ CGM.setFunctionLinkage(GD, ThunkFn);
+ return;
+ }
+
+ CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn);
+
+ if (ThunkFn->isVarArg()) {
+ // Varargs thunks are special; we can't just generate a call because
+ // we can't copy the varargs. Our implementation is rather
+ // expensive/sucky at the moment, so don't generate the thunk unless
+ // we have to.
+ // FIXME: Do something better here; GenerateVarArgsThunk is extremely ugly.
+ if (!UseAvailableExternallyLinkage) {
+ CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, Thunk);
+ CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD,
+ !Thunk.Return.isEmpty());
+ }
+ } else {
+ // Normal thunk body generation.
+ CodeGenFunction(CGM).GenerateThunk(ThunkFn, FnInfo, GD, Thunk);
+ CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD,
+ !Thunk.Return.isEmpty());
+ }
+}
+
+void CodeGenVTables::maybeEmitThunkForVTable(GlobalDecl GD,
+ const ThunkInfo &Thunk) {
+ // If the ABI has key functions, only the TU with the key function should emit
+ // the thunk. However, we can allow inlining of thunks if we emit them with
+ // available_externally linkage together with vtables when optimizations are
+ // enabled.
+ if (CGM.getTarget().getCXXABI().hasKeyFunctions() &&
+ !CGM.getCodeGenOpts().OptimizationLevel)
+ return;
+
+ // We can't emit thunks for member functions with incomplete types.
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
+ if (!CGM.getTypes().isFuncTypeConvertible(
+ MD->getType()->castAs<FunctionType>()))
+ return;
+
+ emitThunk(GD, Thunk, /*ForVTable=*/true);
+}
+
+void CodeGenVTables::EmitThunks(GlobalDecl GD)
+{
+ const CXXMethodDecl *MD =
+ cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl();
+
+ // We don't need to generate thunks for the base destructor.
+ if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
+ return;
+
+ const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector =
+ VTContext->getThunkInfo(GD);
+
+ if (!ThunkInfoVector)
+ return;
+
+ for (unsigned I = 0, E = ThunkInfoVector->size(); I != E; ++I)
+ emitThunk(GD, (*ThunkInfoVector)[I], /*ForVTable=*/false);
+}
+
+llvm::Constant *CodeGenVTables::CreateVTableInitializer(
+ const CXXRecordDecl *RD, const VTableComponent *Components,
+ unsigned NumComponents, const VTableLayout::VTableThunkTy *VTableThunks,
+ unsigned NumVTableThunks, llvm::Constant *RTTI) {
+ SmallVector<llvm::Constant *, 64> Inits;
+
+ llvm::Type *Int8PtrTy = CGM.Int8PtrTy;
+
+ llvm::Type *PtrDiffTy =
+ CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType());
+
+ unsigned NextVTableThunkIndex = 0;
+
+ llvm::Constant *PureVirtualFn = nullptr, *DeletedVirtualFn = nullptr;
+
+ for (unsigned I = 0; I != NumComponents; ++I) {
+ VTableComponent Component = Components[I];
+
+ llvm::Constant *Init = nullptr;
+
+ switch (Component.getKind()) {
+ case VTableComponent::CK_VCallOffset:
+ Init = llvm::ConstantInt::get(PtrDiffTy,
+ Component.getVCallOffset().getQuantity());
+ Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy);
+ break;
+ case VTableComponent::CK_VBaseOffset:
+ Init = llvm::ConstantInt::get(PtrDiffTy,
+ Component.getVBaseOffset().getQuantity());
+ Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy);
+ break;
+ case VTableComponent::CK_OffsetToTop:
+ Init = llvm::ConstantInt::get(PtrDiffTy,
+ Component.getOffsetToTop().getQuantity());
+ Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy);
+ break;
+ case VTableComponent::CK_RTTI:
+ Init = llvm::ConstantExpr::getBitCast(RTTI, Int8PtrTy);
+ break;
+ case VTableComponent::CK_FunctionPointer:
+ case VTableComponent::CK_CompleteDtorPointer:
+ case VTableComponent::CK_DeletingDtorPointer: {
+ GlobalDecl GD;
+
+ // Get the right global decl.
+ switch (Component.getKind()) {
+ default:
+ llvm_unreachable("Unexpected vtable component kind");
+ case VTableComponent::CK_FunctionPointer:
+ GD = Component.getFunctionDecl();
+ break;
+ case VTableComponent::CK_CompleteDtorPointer:
+ GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Complete);
+ break;
+ case VTableComponent::CK_DeletingDtorPointer:
+ GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Deleting);
+ break;
+ }
+
+ if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) {
+ // We have a pure virtual member function.
+ if (!PureVirtualFn) {
+ llvm::FunctionType *Ty =
+ llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
+ StringRef PureCallName = CGM.getCXXABI().GetPureVirtualCallName();
+ PureVirtualFn = CGM.CreateRuntimeFunction(Ty, PureCallName);
+ PureVirtualFn = llvm::ConstantExpr::getBitCast(PureVirtualFn,
+ CGM.Int8PtrTy);
+ }
+ Init = PureVirtualFn;
+ } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) {
+ if (!DeletedVirtualFn) {
+ llvm::FunctionType *Ty =
+ llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
+ StringRef DeletedCallName =
+ CGM.getCXXABI().GetDeletedVirtualCallName();
+ DeletedVirtualFn = CGM.CreateRuntimeFunction(Ty, DeletedCallName);
+ DeletedVirtualFn = llvm::ConstantExpr::getBitCast(DeletedVirtualFn,
+ CGM.Int8PtrTy);
+ }
+ Init = DeletedVirtualFn;
+ } else {
+ // Check if we should use a thunk.
+ if (NextVTableThunkIndex < NumVTableThunks &&
+ VTableThunks[NextVTableThunkIndex].first == I) {
+ const ThunkInfo &Thunk = VTableThunks[NextVTableThunkIndex].second;
+
+ maybeEmitThunkForVTable(GD, Thunk);
+ Init = CGM.GetAddrOfThunk(GD, Thunk);
+
+ NextVTableThunkIndex++;
+ } else {
+ llvm::Type *Ty = CGM.getTypes().GetFunctionTypeForVTable(GD);
+
+ Init = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
+ }
+
+ Init = llvm::ConstantExpr::getBitCast(Init, Int8PtrTy);
+ }
+ break;
+ }
+
+ case VTableComponent::CK_UnusedFunctionPointer:
+ Init = llvm::ConstantExpr::getNullValue(Int8PtrTy);
+ break;
+ };
+
+ Inits.push_back(Init);
+ }
+
+ llvm::ArrayType *ArrayType = llvm::ArrayType::get(Int8PtrTy, NumComponents);
+ return llvm::ConstantArray::get(ArrayType, Inits);
+}
+
+llvm::GlobalVariable *
+CodeGenVTables::GenerateConstructionVTable(const CXXRecordDecl *RD,
+ const BaseSubobject &Base,
+ bool BaseIsVirtual,
+ llvm::GlobalVariable::LinkageTypes Linkage,
+ VTableAddressPointsMapTy& AddressPoints) {
+ if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
+ DI->completeClassData(Base.getBase());
+
+ std::unique_ptr<VTableLayout> VTLayout(
+ getItaniumVTableContext().createConstructionVTableLayout(
+ Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD));
+
+ // Add the address points.
+ AddressPoints = VTLayout->getAddressPoints();
+
+ // Get the mangled construction vtable name.
+ SmallString<256> OutName;
+ llvm::raw_svector_ostream Out(OutName);
+ cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext())
+ .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(),
+ Base.getBase(), Out);
+ Out.flush();
+ StringRef Name = OutName.str();
+
+ llvm::ArrayType *ArrayType =
+ llvm::ArrayType::get(CGM.Int8PtrTy, VTLayout->getNumVTableComponents());
+
+ // Construction vtable symbols are not part of the Itanium ABI, so we cannot
+ // guarantee that they actually will be available externally. Instead, when
+ // emitting an available_externally VTT, we provide references to an internal
+ // linkage construction vtable. The ABI only requires complete-object vtables
+ // to be the same for all instances of a type, not construction vtables.
+ if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage)
+ Linkage = llvm::GlobalVariable::InternalLinkage;
+
+ // Create the variable that will hold the construction vtable.
+ llvm::GlobalVariable *VTable =
+ CGM.CreateOrReplaceCXXRuntimeVariable(Name, ArrayType, Linkage);
+ CGM.setGlobalVisibility(VTable, RD);
+
+ // V-tables are always unnamed_addr.
+ VTable->setUnnamedAddr(true);
+
+ llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor(
+ CGM.getContext().getTagDeclType(Base.getBase()));
+
+ // Create and set the initializer.
+ llvm::Constant *Init = CreateVTableInitializer(
+ Base.getBase(), VTLayout->vtable_component_begin(),
+ VTLayout->getNumVTableComponents(), VTLayout->vtable_thunk_begin(),
+ VTLayout->getNumVTableThunks(), RTTI);
+ VTable->setInitializer(Init);
+
+ CGM.EmitVTableBitSetEntries(VTable, *VTLayout.get());
+
+ return VTable;
+}
+
+/// Compute the required linkage of the v-table for the given class.
+///
+/// Note that we only call this at the end of the translation unit.
+llvm::GlobalVariable::LinkageTypes
+CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
+ if (!RD->isExternallyVisible())
+ return llvm::GlobalVariable::InternalLinkage;
+
+ // We're at the end of the translation unit, so the current key
+ // function is fully correct.
+ const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD);
+ if (keyFunction && !RD->hasAttr<DLLImportAttr>()) {
+ // If this class has a key function, use that to determine the
+ // linkage of the vtable.
+ const FunctionDecl *def = nullptr;
+ if (keyFunction->hasBody(def))
+ keyFunction = cast<CXXMethodDecl>(def);
+
+ switch (keyFunction->getTemplateSpecializationKind()) {
+ case TSK_Undeclared:
+ case TSK_ExplicitSpecialization:
+ assert(def && "Should not have been asked to emit this");
+ if (keyFunction->isInlined())
+ return !Context.getLangOpts().AppleKext ?
+ llvm::GlobalVariable::LinkOnceODRLinkage :
+ llvm::Function::InternalLinkage;
+
+ return llvm::GlobalVariable::ExternalLinkage;
+
+ case TSK_ImplicitInstantiation:
+ return !Context.getLangOpts().AppleKext ?
+ llvm::GlobalVariable::LinkOnceODRLinkage :
+ llvm::Function::InternalLinkage;
+
+ case TSK_ExplicitInstantiationDefinition:
+ return !Context.getLangOpts().AppleKext ?
+ llvm::GlobalVariable::WeakODRLinkage :
+ llvm::Function::InternalLinkage;
+
+ case TSK_ExplicitInstantiationDeclaration:
+ llvm_unreachable("Should not have been asked to emit this");
+ }
+ }
+
+ // -fapple-kext mode does not support weak linkage, so we must use
+ // internal linkage.
+ if (Context.getLangOpts().AppleKext)
+ return llvm::Function::InternalLinkage;
+
+ llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage =
+ llvm::GlobalValue::LinkOnceODRLinkage;
+ llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage =
+ llvm::GlobalValue::WeakODRLinkage;
+ if (RD->hasAttr<DLLExportAttr>()) {
+ // Cannot discard exported vtables.
+ DiscardableODRLinkage = NonDiscardableODRLinkage;
+ } else if (RD->hasAttr<DLLImportAttr>()) {
+ // Imported vtables are available externally.
+ DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage;
+ NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage;
+ }
+
+ switch (RD->getTemplateSpecializationKind()) {
+ case TSK_Undeclared:
+ case TSK_ExplicitSpecialization:
+ case TSK_ImplicitInstantiation:
+ return DiscardableODRLinkage;
+
+ case TSK_ExplicitInstantiationDeclaration:
+ return llvm::GlobalVariable::ExternalLinkage;
+
+ case TSK_ExplicitInstantiationDefinition:
+ return NonDiscardableODRLinkage;
+ }
+
+ llvm_unreachable("Invalid TemplateSpecializationKind!");
+}
+
+/// This is a callback from Sema to tell us that that a particular v-table is
+/// required to be emitted in this translation unit.
+///
+/// This is only called for vtables that _must_ be emitted (mainly due to key
+/// functions). For weak vtables, CodeGen tracks when they are needed and
+/// emits them as-needed.
+void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) {
+ VTables.GenerateClassData(theClass);
+}
+
+void
+CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) {
+ if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
+ DI->completeClassData(RD);
+
+ if (RD->getNumVBases())
+ CGM.getCXXABI().emitVirtualInheritanceTables(RD);
+
+ CGM.getCXXABI().emitVTableDefinitions(*this, RD);
+}
+
+/// At this point in the translation unit, does it appear that can we
+/// rely on the vtable being defined elsewhere in the program?
+///
+/// The response is really only definitive when called at the end of
+/// the translation unit.
+///
+/// The only semantic restriction here is that the object file should
+/// not contain a v-table definition when that v-table is defined
+/// strongly elsewhere. Otherwise, we'd just like to avoid emitting
+/// v-tables when unnecessary.
+bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) {
+ assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable.");
+
+ // If we have an explicit instantiation declaration (and not a
+ // definition), the v-table is defined elsewhere.
+ TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
+ if (TSK == TSK_ExplicitInstantiationDeclaration)
+ return true;
+
+ // Otherwise, if the class is an instantiated template, the
+ // v-table must be defined here.
+ if (TSK == TSK_ImplicitInstantiation ||
+ TSK == TSK_ExplicitInstantiationDefinition)
+ return false;
+
+ // Otherwise, if the class doesn't have a key function (possibly
+ // anymore), the v-table must be defined here.
+ const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD);
+ if (!keyFunction)
+ return false;
+
+ // Otherwise, if we don't have a definition of the key function, the
+ // v-table must be defined somewhere else.
+ return !keyFunction->hasBody();
+}
+
+/// Given that we're currently at the end of the translation unit, and
+/// we've emitted a reference to the v-table for this class, should
+/// we define that v-table?
+static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM,
+ const CXXRecordDecl *RD) {
+ return !CGM.getVTables().isVTableExternal(RD);
+}
+
+/// Given that at some point we emitted a reference to one or more
+/// v-tables, and that we are now at the end of the translation unit,
+/// decide whether we should emit them.
+void CodeGenModule::EmitDeferredVTables() {
+#ifndef NDEBUG
+ // Remember the size of DeferredVTables, because we're going to assume
+ // that this entire operation doesn't modify it.
+ size_t savedSize = DeferredVTables.size();
+#endif
+
+ typedef std::vector<const CXXRecordDecl *>::const_iterator const_iterator;
+ for (const_iterator i = DeferredVTables.begin(),
+ e = DeferredVTables.end(); i != e; ++i) {
+ const CXXRecordDecl *RD = *i;
+ if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD))
+ VTables.GenerateClassData(RD);
+ }
+
+ assert(savedSize == DeferredVTables.size() &&
+ "deferred extra v-tables during v-table emission?");
+ DeferredVTables.clear();
+}
+
+void CodeGenModule::EmitVTableBitSetEntries(llvm::GlobalVariable *VTable,
+ const VTableLayout &VTLayout) {
+ if (!LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
+ !LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
+ !LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
+ !LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast))
+ return;
+
+ llvm::Metadata *VTableMD = llvm::ConstantAsMetadata::get(VTable);
+
+ std::vector<llvm::MDTuple *> BitsetEntries;
+ // Create a bit set entry for each address point.
+ for (auto &&AP : VTLayout.getAddressPoints()) {
+ // FIXME: Add blacklisting scheme.
+ if (AP.first.getBase()->isInStdNamespace())
+ continue;
+
+ std::string OutName;
+ llvm::raw_string_ostream Out(OutName);
+ getCXXABI().getMangleContext().mangleCXXVTableBitSet(AP.first.getBase(),
+ Out);
+
+ CharUnits PointerWidth =
+ Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
+ uint64_t AddrPointOffset = AP.second * PointerWidth.getQuantity();
+
+ llvm::Metadata *BitsetOps[] = {
+ llvm::MDString::get(getLLVMContext(), Out.str()),
+ VTableMD,
+ llvm::ConstantAsMetadata::get(
+ llvm::ConstantInt::get(Int64Ty, AddrPointOffset))};
+ llvm::MDTuple *BitsetEntry =
+ llvm::MDTuple::get(getLLVMContext(), BitsetOps);
+ BitsetEntries.push_back(BitsetEntry);
+ }
+
+ // Sort the bit set entries for determinism.
+ std::sort(BitsetEntries.begin(), BitsetEntries.end(), [](llvm::MDTuple *T1,
+ llvm::MDTuple *T2) {
+ if (T1 == T2)
+ return false;
+
+ StringRef S1 = cast<llvm::MDString>(T1->getOperand(0))->getString();
+ StringRef S2 = cast<llvm::MDString>(T2->getOperand(0))->getString();
+ if (S1 < S2)
+ return true;
+ if (S1 != S2)
+ return false;
+
+ uint64_t Offset1 = cast<llvm::ConstantInt>(
+ cast<llvm::ConstantAsMetadata>(T1->getOperand(2))
+ ->getValue())->getZExtValue();
+ uint64_t Offset2 = cast<llvm::ConstantInt>(
+ cast<llvm::ConstantAsMetadata>(T2->getOperand(2))
+ ->getValue())->getZExtValue();
+ assert(Offset1 != Offset2);
+ return Offset1 < Offset2;
+ });
+
+ llvm::NamedMDNode *BitsetsMD =
+ getModule().getOrInsertNamedMetadata("llvm.bitsets");
+ for (auto BitsetEntry : BitsetEntries)
+ BitsetsMD->addOperand(BitsetEntry);
+}
OpenPOWER on IntegriCloud