summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/CodeGen/CGStmtOpenMP.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/CodeGen/CGStmtOpenMP.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGStmtOpenMP.cpp2679
1 files changed, 2679 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGStmtOpenMP.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGStmtOpenMP.cpp
new file mode 100644
index 0000000..14917c2
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGStmtOpenMP.cpp
@@ -0,0 +1,2679 @@
+//===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code to emit OpenMP nodes as LLVM code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGOpenMPRuntime.h"
+#include "CodeGenFunction.h"
+#include "CodeGenModule.h"
+#include "TargetInfo.h"
+#include "clang/AST/Stmt.h"
+#include "clang/AST/StmtOpenMP.h"
+using namespace clang;
+using namespace CodeGen;
+
+void CodeGenFunction::GenerateOpenMPCapturedVars(
+ const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) {
+ const RecordDecl *RD = S.getCapturedRecordDecl();
+ auto CurField = RD->field_begin();
+ auto CurCap = S.captures().begin();
+ for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
+ E = S.capture_init_end();
+ I != E; ++I, ++CurField, ++CurCap) {
+ if (CurField->hasCapturedVLAType()) {
+ auto VAT = CurField->getCapturedVLAType();
+ auto *Val = VLASizeMap[VAT->getSizeExpr()];
+ CapturedVars.push_back(Val);
+ } else if (CurCap->capturesThis())
+ CapturedVars.push_back(CXXThisValue);
+ else if (CurCap->capturesVariableByCopy())
+ CapturedVars.push_back(
+ EmitLoadOfLValue(EmitLValue(*I), SourceLocation()).getScalarVal());
+ else {
+ assert(CurCap->capturesVariable() && "Expected capture by reference.");
+ CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer());
+ }
+ }
+}
+
+static Address castValueFromUintptr(CodeGenFunction &CGF, QualType DstType,
+ StringRef Name, LValue AddrLV,
+ bool isReferenceType = false) {
+ ASTContext &Ctx = CGF.getContext();
+
+ auto *CastedPtr = CGF.EmitScalarConversion(
+ AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(),
+ Ctx.getPointerType(DstType), SourceLocation());
+ auto TmpAddr =
+ CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType))
+ .getAddress();
+
+ // If we are dealing with references we need to return the address of the
+ // reference instead of the reference of the value.
+ if (isReferenceType) {
+ QualType RefType = Ctx.getLValueReferenceType(DstType);
+ auto *RefVal = TmpAddr.getPointer();
+ TmpAddr = CGF.CreateMemTemp(RefType, Twine(Name) + ".ref");
+ auto TmpLVal = CGF.MakeAddrLValue(TmpAddr, RefType);
+ CGF.EmitScalarInit(RefVal, TmpLVal);
+ }
+
+ return TmpAddr;
+}
+
+llvm::Function *
+CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) {
+ assert(
+ CapturedStmtInfo &&
+ "CapturedStmtInfo should be set when generating the captured function");
+ const CapturedDecl *CD = S.getCapturedDecl();
+ const RecordDecl *RD = S.getCapturedRecordDecl();
+ assert(CD->hasBody() && "missing CapturedDecl body");
+
+ // Build the argument list.
+ ASTContext &Ctx = CGM.getContext();
+ FunctionArgList Args;
+ Args.append(CD->param_begin(),
+ std::next(CD->param_begin(), CD->getContextParamPosition()));
+ auto I = S.captures().begin();
+ for (auto *FD : RD->fields()) {
+ QualType ArgType = FD->getType();
+ IdentifierInfo *II = nullptr;
+ VarDecl *CapVar = nullptr;
+
+ // If this is a capture by copy and the type is not a pointer, the outlined
+ // function argument type should be uintptr and the value properly casted to
+ // uintptr. This is necessary given that the runtime library is only able to
+ // deal with pointers. We can pass in the same way the VLA type sizes to the
+ // outlined function.
+ if ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) ||
+ I->capturesVariableArrayType())
+ ArgType = Ctx.getUIntPtrType();
+
+ if (I->capturesVariable() || I->capturesVariableByCopy()) {
+ CapVar = I->getCapturedVar();
+ II = CapVar->getIdentifier();
+ } else if (I->capturesThis())
+ II = &getContext().Idents.get("this");
+ else {
+ assert(I->capturesVariableArrayType());
+ II = &getContext().Idents.get("vla");
+ }
+ if (ArgType->isVariablyModifiedType())
+ ArgType = getContext().getVariableArrayDecayedType(ArgType);
+ Args.push_back(ImplicitParamDecl::Create(getContext(), nullptr,
+ FD->getLocation(), II, ArgType));
+ ++I;
+ }
+ Args.append(
+ std::next(CD->param_begin(), CD->getContextParamPosition() + 1),
+ CD->param_end());
+
+ // Create the function declaration.
+ FunctionType::ExtInfo ExtInfo;
+ const CGFunctionInfo &FuncInfo =
+ CGM.getTypes().arrangeFreeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo,
+ /*IsVariadic=*/false);
+ llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
+
+ llvm::Function *F = llvm::Function::Create(
+ FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
+ CapturedStmtInfo->getHelperName(), &CGM.getModule());
+ CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
+ if (CD->isNothrow())
+ F->addFnAttr(llvm::Attribute::NoUnwind);
+
+ // Generate the function.
+ StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(),
+ CD->getBody()->getLocStart());
+ unsigned Cnt = CD->getContextParamPosition();
+ I = S.captures().begin();
+ for (auto *FD : RD->fields()) {
+ // If we are capturing a pointer by copy we don't need to do anything, just
+ // use the value that we get from the arguments.
+ if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) {
+ setAddrOfLocalVar(I->getCapturedVar(), GetAddrOfLocalVar(Args[Cnt]));
+ ++Cnt, ++I;
+ continue;
+ }
+
+ LValue ArgLVal =
+ MakeAddrLValue(GetAddrOfLocalVar(Args[Cnt]), Args[Cnt]->getType(),
+ AlignmentSource::Decl);
+ if (FD->hasCapturedVLAType()) {
+ LValue CastedArgLVal =
+ MakeAddrLValue(castValueFromUintptr(*this, FD->getType(),
+ Args[Cnt]->getName(), ArgLVal),
+ FD->getType(), AlignmentSource::Decl);
+ auto *ExprArg =
+ EmitLoadOfLValue(CastedArgLVal, SourceLocation()).getScalarVal();
+ auto VAT = FD->getCapturedVLAType();
+ VLASizeMap[VAT->getSizeExpr()] = ExprArg;
+ } else if (I->capturesVariable()) {
+ auto *Var = I->getCapturedVar();
+ QualType VarTy = Var->getType();
+ Address ArgAddr = ArgLVal.getAddress();
+ if (!VarTy->isReferenceType()) {
+ ArgAddr = EmitLoadOfReference(
+ ArgAddr, ArgLVal.getType()->castAs<ReferenceType>());
+ }
+ setAddrOfLocalVar(
+ Var, Address(ArgAddr.getPointer(), getContext().getDeclAlign(Var)));
+ } else if (I->capturesVariableByCopy()) {
+ assert(!FD->getType()->isAnyPointerType() &&
+ "Not expecting a captured pointer.");
+ auto *Var = I->getCapturedVar();
+ QualType VarTy = Var->getType();
+ setAddrOfLocalVar(I->getCapturedVar(),
+ castValueFromUintptr(*this, FD->getType(),
+ Args[Cnt]->getName(), ArgLVal,
+ VarTy->isReferenceType()));
+ } else {
+ // If 'this' is captured, load it into CXXThisValue.
+ assert(I->capturesThis());
+ CXXThisValue =
+ EmitLoadOfLValue(ArgLVal, Args[Cnt]->getLocation()).getScalarVal();
+ }
+ ++Cnt, ++I;
+ }
+
+ PGO.assignRegionCounters(GlobalDecl(CD), F);
+ CapturedStmtInfo->EmitBody(*this, CD->getBody());
+ FinishFunction(CD->getBodyRBrace());
+
+ return F;
+}
+
+//===----------------------------------------------------------------------===//
+// OpenMP Directive Emission
+//===----------------------------------------------------------------------===//
+void CodeGenFunction::EmitOMPAggregateAssign(
+ Address DestAddr, Address SrcAddr, QualType OriginalType,
+ const llvm::function_ref<void(Address, Address)> &CopyGen) {
+ // Perform element-by-element initialization.
+ QualType ElementTy;
+
+ // Drill down to the base element type on both arrays.
+ auto ArrayTy = OriginalType->getAsArrayTypeUnsafe();
+ auto NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr);
+ SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
+
+ auto SrcBegin = SrcAddr.getPointer();
+ auto DestBegin = DestAddr.getPointer();
+ // Cast from pointer to array type to pointer to single element.
+ auto DestEnd = Builder.CreateGEP(DestBegin, NumElements);
+ // The basic structure here is a while-do loop.
+ auto BodyBB = createBasicBlock("omp.arraycpy.body");
+ auto DoneBB = createBasicBlock("omp.arraycpy.done");
+ auto IsEmpty =
+ Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty");
+ Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
+
+ // Enter the loop body, making that address the current address.
+ auto EntryBB = Builder.GetInsertBlock();
+ EmitBlock(BodyBB);
+
+ CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy);
+
+ llvm::PHINode *SrcElementPHI =
+ Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast");
+ SrcElementPHI->addIncoming(SrcBegin, EntryBB);
+ Address SrcElementCurrent =
+ Address(SrcElementPHI,
+ SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
+
+ llvm::PHINode *DestElementPHI =
+ Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
+ DestElementPHI->addIncoming(DestBegin, EntryBB);
+ Address DestElementCurrent =
+ Address(DestElementPHI,
+ DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
+
+ // Emit copy.
+ CopyGen(DestElementCurrent, SrcElementCurrent);
+
+ // Shift the address forward by one element.
+ auto DestElementNext = Builder.CreateConstGEP1_32(
+ DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
+ auto SrcElementNext = Builder.CreateConstGEP1_32(
+ SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element");
+ // Check whether we've reached the end.
+ auto Done =
+ Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
+ Builder.CreateCondBr(Done, DoneBB, BodyBB);
+ DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock());
+ SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock());
+
+ // Done.
+ EmitBlock(DoneBB, /*IsFinished=*/true);
+}
+
+/// \brief Emit initialization of arrays of complex types.
+/// \param DestAddr Address of the array.
+/// \param Type Type of array.
+/// \param Init Initial expression of array.
+static void EmitOMPAggregateInit(CodeGenFunction &CGF, Address DestAddr,
+ QualType Type, const Expr *Init) {
+ // Perform element-by-element initialization.
+ QualType ElementTy;
+
+ // Drill down to the base element type on both arrays.
+ auto ArrayTy = Type->getAsArrayTypeUnsafe();
+ auto NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, DestAddr);
+ DestAddr =
+ CGF.Builder.CreateElementBitCast(DestAddr, DestAddr.getElementType());
+
+ auto DestBegin = DestAddr.getPointer();
+ // Cast from pointer to array type to pointer to single element.
+ auto DestEnd = CGF.Builder.CreateGEP(DestBegin, NumElements);
+ // The basic structure here is a while-do loop.
+ auto BodyBB = CGF.createBasicBlock("omp.arrayinit.body");
+ auto DoneBB = CGF.createBasicBlock("omp.arrayinit.done");
+ auto IsEmpty =
+ CGF.Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arrayinit.isempty");
+ CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
+
+ // Enter the loop body, making that address the current address.
+ auto EntryBB = CGF.Builder.GetInsertBlock();
+ CGF.EmitBlock(BodyBB);
+
+ CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
+
+ llvm::PHINode *DestElementPHI = CGF.Builder.CreatePHI(
+ DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
+ DestElementPHI->addIncoming(DestBegin, EntryBB);
+ Address DestElementCurrent =
+ Address(DestElementPHI,
+ DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
+
+ // Emit copy.
+ {
+ CodeGenFunction::RunCleanupsScope InitScope(CGF);
+ CGF.EmitAnyExprToMem(Init, DestElementCurrent, ElementTy.getQualifiers(),
+ /*IsInitializer=*/false);
+ }
+
+ // Shift the address forward by one element.
+ auto DestElementNext = CGF.Builder.CreateConstGEP1_32(
+ DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
+ // Check whether we've reached the end.
+ auto Done =
+ CGF.Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
+ CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
+ DestElementPHI->addIncoming(DestElementNext, CGF.Builder.GetInsertBlock());
+
+ // Done.
+ CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
+}
+
+void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr,
+ Address SrcAddr, const VarDecl *DestVD,
+ const VarDecl *SrcVD, const Expr *Copy) {
+ if (OriginalType->isArrayType()) {
+ auto *BO = dyn_cast<BinaryOperator>(Copy);
+ if (BO && BO->getOpcode() == BO_Assign) {
+ // Perform simple memcpy for simple copying.
+ EmitAggregateAssign(DestAddr, SrcAddr, OriginalType);
+ } else {
+ // For arrays with complex element types perform element by element
+ // copying.
+ EmitOMPAggregateAssign(
+ DestAddr, SrcAddr, OriginalType,
+ [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) {
+ // Working with the single array element, so have to remap
+ // destination and source variables to corresponding array
+ // elements.
+ CodeGenFunction::OMPPrivateScope Remap(*this);
+ Remap.addPrivate(DestVD, [DestElement]() -> Address {
+ return DestElement;
+ });
+ Remap.addPrivate(
+ SrcVD, [SrcElement]() -> Address { return SrcElement; });
+ (void)Remap.Privatize();
+ EmitIgnoredExpr(Copy);
+ });
+ }
+ } else {
+ // Remap pseudo source variable to private copy.
+ CodeGenFunction::OMPPrivateScope Remap(*this);
+ Remap.addPrivate(SrcVD, [SrcAddr]() -> Address { return SrcAddr; });
+ Remap.addPrivate(DestVD, [DestAddr]() -> Address { return DestAddr; });
+ (void)Remap.Privatize();
+ // Emit copying of the whole variable.
+ EmitIgnoredExpr(Copy);
+ }
+}
+
+bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
+ OMPPrivateScope &PrivateScope) {
+ if (!HaveInsertPoint())
+ return false;
+ llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate;
+ for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) {
+ auto IRef = C->varlist_begin();
+ auto InitsRef = C->inits().begin();
+ for (auto IInit : C->private_copies()) {
+ auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
+ if (EmittedAsFirstprivate.count(OrigVD) == 0) {
+ EmittedAsFirstprivate.insert(OrigVD);
+ auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
+ auto *VDInit = cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl());
+ bool IsRegistered;
+ DeclRefExpr DRE(
+ const_cast<VarDecl *>(OrigVD),
+ /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup(
+ OrigVD) != nullptr,
+ (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
+ Address OriginalAddr = EmitLValue(&DRE).getAddress();
+ QualType Type = OrigVD->getType();
+ if (Type->isArrayType()) {
+ // Emit VarDecl with copy init for arrays.
+ // Get the address of the original variable captured in current
+ // captured region.
+ IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
+ auto Emission = EmitAutoVarAlloca(*VD);
+ auto *Init = VD->getInit();
+ if (!isa<CXXConstructExpr>(Init) || isTrivialInitializer(Init)) {
+ // Perform simple memcpy.
+ EmitAggregateAssign(Emission.getAllocatedAddress(), OriginalAddr,
+ Type);
+ } else {
+ EmitOMPAggregateAssign(
+ Emission.getAllocatedAddress(), OriginalAddr, Type,
+ [this, VDInit, Init](Address DestElement,
+ Address SrcElement) {
+ // Clean up any temporaries needed by the initialization.
+ RunCleanupsScope InitScope(*this);
+ // Emit initialization for single element.
+ setAddrOfLocalVar(VDInit, SrcElement);
+ EmitAnyExprToMem(Init, DestElement,
+ Init->getType().getQualifiers(),
+ /*IsInitializer*/ false);
+ LocalDeclMap.erase(VDInit);
+ });
+ }
+ EmitAutoVarCleanups(Emission);
+ return Emission.getAllocatedAddress();
+ });
+ } else {
+ IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
+ // Emit private VarDecl with copy init.
+ // Remap temp VDInit variable to the address of the original
+ // variable
+ // (for proper handling of captured global variables).
+ setAddrOfLocalVar(VDInit, OriginalAddr);
+ EmitDecl(*VD);
+ LocalDeclMap.erase(VDInit);
+ return GetAddrOfLocalVar(VD);
+ });
+ }
+ assert(IsRegistered &&
+ "firstprivate var already registered as private");
+ // Silence the warning about unused variable.
+ (void)IsRegistered;
+ }
+ ++IRef, ++InitsRef;
+ }
+ }
+ return !EmittedAsFirstprivate.empty();
+}
+
+void CodeGenFunction::EmitOMPPrivateClause(
+ const OMPExecutableDirective &D,
+ CodeGenFunction::OMPPrivateScope &PrivateScope) {
+ if (!HaveInsertPoint())
+ return;
+ llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
+ for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) {
+ auto IRef = C->varlist_begin();
+ for (auto IInit : C->private_copies()) {
+ auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
+ if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
+ auto VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
+ bool IsRegistered =
+ PrivateScope.addPrivate(OrigVD, [&]() -> Address {
+ // Emit private VarDecl with copy init.
+ EmitDecl(*VD);
+ return GetAddrOfLocalVar(VD);
+ });
+ assert(IsRegistered && "private var already registered as private");
+ // Silence the warning about unused variable.
+ (void)IsRegistered;
+ }
+ ++IRef;
+ }
+ }
+}
+
+bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) {
+ if (!HaveInsertPoint())
+ return false;
+ // threadprivate_var1 = master_threadprivate_var1;
+ // operator=(threadprivate_var2, master_threadprivate_var2);
+ // ...
+ // __kmpc_barrier(&loc, global_tid);
+ llvm::DenseSet<const VarDecl *> CopiedVars;
+ llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr;
+ for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) {
+ auto IRef = C->varlist_begin();
+ auto ISrcRef = C->source_exprs().begin();
+ auto IDestRef = C->destination_exprs().begin();
+ for (auto *AssignOp : C->assignment_ops()) {
+ auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
+ QualType Type = VD->getType();
+ if (CopiedVars.insert(VD->getCanonicalDecl()).second) {
+
+ // Get the address of the master variable. If we are emitting code with
+ // TLS support, the address is passed from the master as field in the
+ // captured declaration.
+ Address MasterAddr = Address::invalid();
+ if (getLangOpts().OpenMPUseTLS &&
+ getContext().getTargetInfo().isTLSSupported()) {
+ assert(CapturedStmtInfo->lookup(VD) &&
+ "Copyin threadprivates should have been captured!");
+ DeclRefExpr DRE(const_cast<VarDecl *>(VD), true, (*IRef)->getType(),
+ VK_LValue, (*IRef)->getExprLoc());
+ MasterAddr = EmitLValue(&DRE).getAddress();
+ LocalDeclMap.erase(VD);
+ } else {
+ MasterAddr =
+ Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD)
+ : CGM.GetAddrOfGlobal(VD),
+ getContext().getDeclAlign(VD));
+ }
+ // Get the address of the threadprivate variable.
+ Address PrivateAddr = EmitLValue(*IRef).getAddress();
+ if (CopiedVars.size() == 1) {
+ // At first check if current thread is a master thread. If it is, no
+ // need to copy data.
+ CopyBegin = createBasicBlock("copyin.not.master");
+ CopyEnd = createBasicBlock("copyin.not.master.end");
+ Builder.CreateCondBr(
+ Builder.CreateICmpNE(
+ Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy),
+ Builder.CreatePtrToInt(PrivateAddr.getPointer(), CGM.IntPtrTy)),
+ CopyBegin, CopyEnd);
+ EmitBlock(CopyBegin);
+ }
+ auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
+ auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
+ EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp);
+ }
+ ++IRef;
+ ++ISrcRef;
+ ++IDestRef;
+ }
+ }
+ if (CopyEnd) {
+ // Exit out of copying procedure for non-master thread.
+ EmitBlock(CopyEnd, /*IsFinished=*/true);
+ return true;
+ }
+ return false;
+}
+
+bool CodeGenFunction::EmitOMPLastprivateClauseInit(
+ const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) {
+ if (!HaveInsertPoint())
+ return false;
+ bool HasAtLeastOneLastprivate = false;
+ llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
+ for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
+ HasAtLeastOneLastprivate = true;
+ auto IRef = C->varlist_begin();
+ auto IDestRef = C->destination_exprs().begin();
+ for (auto *IInit : C->private_copies()) {
+ // Keep the address of the original variable for future update at the end
+ // of the loop.
+ auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
+ if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) {
+ auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
+ PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() -> Address {
+ DeclRefExpr DRE(
+ const_cast<VarDecl *>(OrigVD),
+ /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup(
+ OrigVD) != nullptr,
+ (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
+ return EmitLValue(&DRE).getAddress();
+ });
+ // Check if the variable is also a firstprivate: in this case IInit is
+ // not generated. Initialization of this variable will happen in codegen
+ // for 'firstprivate' clause.
+ if (IInit) {
+ auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
+ bool IsRegistered =
+ PrivateScope.addPrivate(OrigVD, [&]() -> Address {
+ // Emit private VarDecl with copy init.
+ EmitDecl(*VD);
+ return GetAddrOfLocalVar(VD);
+ });
+ assert(IsRegistered &&
+ "lastprivate var already registered as private");
+ (void)IsRegistered;
+ }
+ }
+ ++IRef, ++IDestRef;
+ }
+ }
+ return HasAtLeastOneLastprivate;
+}
+
+void CodeGenFunction::EmitOMPLastprivateClauseFinal(
+ const OMPExecutableDirective &D, llvm::Value *IsLastIterCond) {
+ if (!HaveInsertPoint())
+ return;
+ // Emit following code:
+ // if (<IsLastIterCond>) {
+ // orig_var1 = private_orig_var1;
+ // ...
+ // orig_varn = private_orig_varn;
+ // }
+ llvm::BasicBlock *ThenBB = nullptr;
+ llvm::BasicBlock *DoneBB = nullptr;
+ if (IsLastIterCond) {
+ ThenBB = createBasicBlock(".omp.lastprivate.then");
+ DoneBB = createBasicBlock(".omp.lastprivate.done");
+ Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB);
+ EmitBlock(ThenBB);
+ }
+ llvm::DenseMap<const Decl *, const Expr *> LoopCountersAndUpdates;
+ const Expr *LastIterVal = nullptr;
+ const Expr *IVExpr = nullptr;
+ const Expr *IncExpr = nullptr;
+ if (auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) {
+ if (isOpenMPWorksharingDirective(D.getDirectiveKind())) {
+ LastIterVal = cast<VarDecl>(cast<DeclRefExpr>(
+ LoopDirective->getUpperBoundVariable())
+ ->getDecl())
+ ->getAnyInitializer();
+ IVExpr = LoopDirective->getIterationVariable();
+ IncExpr = LoopDirective->getInc();
+ auto IUpdate = LoopDirective->updates().begin();
+ for (auto *E : LoopDirective->counters()) {
+ auto *D = cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl();
+ LoopCountersAndUpdates[D] = *IUpdate;
+ ++IUpdate;
+ }
+ }
+ }
+ {
+ llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
+ bool FirstLCV = true;
+ for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
+ auto IRef = C->varlist_begin();
+ auto ISrcRef = C->source_exprs().begin();
+ auto IDestRef = C->destination_exprs().begin();
+ for (auto *AssignOp : C->assignment_ops()) {
+ auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
+ QualType Type = PrivateVD->getType();
+ auto *CanonicalVD = PrivateVD->getCanonicalDecl();
+ if (AlreadyEmittedVars.insert(CanonicalVD).second) {
+ // If lastprivate variable is a loop control variable for loop-based
+ // directive, update its value before copyin back to original
+ // variable.
+ if (auto *UpExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) {
+ if (FirstLCV && LastIterVal) {
+ EmitAnyExprToMem(LastIterVal, EmitLValue(IVExpr).getAddress(),
+ IVExpr->getType().getQualifiers(),
+ /*IsInitializer=*/false);
+ EmitIgnoredExpr(IncExpr);
+ FirstLCV = false;
+ }
+ EmitIgnoredExpr(UpExpr);
+ }
+ auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
+ auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
+ // Get the address of the original variable.
+ Address OriginalAddr = GetAddrOfLocalVar(DestVD);
+ // Get the address of the private variable.
+ Address PrivateAddr = GetAddrOfLocalVar(PrivateVD);
+ if (auto RefTy = PrivateVD->getType()->getAs<ReferenceType>())
+ PrivateAddr =
+ Address(Builder.CreateLoad(PrivateAddr),
+ getNaturalTypeAlignment(RefTy->getPointeeType()));
+ EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp);
+ }
+ ++IRef;
+ ++ISrcRef;
+ ++IDestRef;
+ }
+ }
+ }
+ if (IsLastIterCond) {
+ EmitBlock(DoneBB, /*IsFinished=*/true);
+ }
+}
+
+void CodeGenFunction::EmitOMPReductionClauseInit(
+ const OMPExecutableDirective &D,
+ CodeGenFunction::OMPPrivateScope &PrivateScope) {
+ if (!HaveInsertPoint())
+ return;
+ for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
+ auto ILHS = C->lhs_exprs().begin();
+ auto IRHS = C->rhs_exprs().begin();
+ auto IPriv = C->privates().begin();
+ for (auto IRef : C->varlists()) {
+ auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
+ auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
+ auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl());
+ if (auto *OASE = dyn_cast<OMPArraySectionExpr>(IRef)) {
+ auto *Base = OASE->getBase()->IgnoreParenImpCasts();
+ while (auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
+ Base = TempOASE->getBase()->IgnoreParenImpCasts();
+ while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
+ Base = TempASE->getBase()->IgnoreParenImpCasts();
+ auto *DE = cast<DeclRefExpr>(Base);
+ auto *OrigVD = cast<VarDecl>(DE->getDecl());
+ auto OASELValueLB = EmitOMPArraySectionExpr(OASE);
+ auto OASELValueUB =
+ EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false);
+ auto OriginalBaseLValue = EmitLValue(DE);
+ auto BaseLValue = OriginalBaseLValue;
+ auto *Zero = Builder.getInt64(/*C=*/0);
+ llvm::SmallVector<llvm::Value *, 4> Indexes;
+ Indexes.push_back(Zero);
+ auto *ItemTy =
+ OASELValueLB.getPointer()->getType()->getPointerElementType();
+ auto *Ty = BaseLValue.getPointer()->getType()->getPointerElementType();
+ while (Ty != ItemTy) {
+ Indexes.push_back(Zero);
+ Ty = Ty->getPointerElementType();
+ }
+ BaseLValue = MakeAddrLValue(
+ Address(Builder.CreateInBoundsGEP(BaseLValue.getPointer(), Indexes),
+ OASELValueLB.getAlignment()),
+ OASELValueLB.getType(), OASELValueLB.getAlignmentSource());
+ // Store the address of the original variable associated with the LHS
+ // implicit variable.
+ PrivateScope.addPrivate(LHSVD, [this, OASELValueLB]() -> Address {
+ return OASELValueLB.getAddress();
+ });
+ // Emit reduction copy.
+ bool IsRegistered = PrivateScope.addPrivate(
+ OrigVD, [this, PrivateVD, BaseLValue, OASELValueLB, OASELValueUB,
+ OriginalBaseLValue]() -> Address {
+ // Emit VarDecl with copy init for arrays.
+ // Get the address of the original variable captured in current
+ // captured region.
+ auto *Size = Builder.CreatePtrDiff(OASELValueUB.getPointer(),
+ OASELValueLB.getPointer());
+ Size = Builder.CreateNUWAdd(
+ Size, llvm::ConstantInt::get(Size->getType(), /*V=*/1));
+ CodeGenFunction::OpaqueValueMapping OpaqueMap(
+ *this, cast<OpaqueValueExpr>(
+ getContext()
+ .getAsVariableArrayType(PrivateVD->getType())
+ ->getSizeExpr()),
+ RValue::get(Size));
+ EmitVariablyModifiedType(PrivateVD->getType());
+ auto Emission = EmitAutoVarAlloca(*PrivateVD);
+ auto Addr = Emission.getAllocatedAddress();
+ auto *Init = PrivateVD->getInit();
+ EmitOMPAggregateInit(*this, Addr, PrivateVD->getType(), Init);
+ EmitAutoVarCleanups(Emission);
+ // Emit private VarDecl with reduction init.
+ auto *Offset = Builder.CreatePtrDiff(BaseLValue.getPointer(),
+ OASELValueLB.getPointer());
+ auto *Ptr = Builder.CreateGEP(Addr.getPointer(), Offset);
+ Ptr = Builder.CreatePointerBitCastOrAddrSpaceCast(
+ Ptr, OriginalBaseLValue.getPointer()->getType());
+ return Address(Ptr, OriginalBaseLValue.getAlignment());
+ });
+ assert(IsRegistered && "private var already registered as private");
+ // Silence the warning about unused variable.
+ (void)IsRegistered;
+ PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address {
+ return GetAddrOfLocalVar(PrivateVD);
+ });
+ } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(IRef)) {
+ auto *Base = ASE->getBase()->IgnoreParenImpCasts();
+ while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
+ Base = TempASE->getBase()->IgnoreParenImpCasts();
+ auto *DE = cast<DeclRefExpr>(Base);
+ auto *OrigVD = cast<VarDecl>(DE->getDecl());
+ auto ASELValue = EmitLValue(ASE);
+ auto OriginalBaseLValue = EmitLValue(DE);
+ auto BaseLValue = OriginalBaseLValue;
+ auto *Zero = Builder.getInt64(/*C=*/0);
+ llvm::SmallVector<llvm::Value *, 4> Indexes;
+ Indexes.push_back(Zero);
+ auto *ItemTy =
+ ASELValue.getPointer()->getType()->getPointerElementType();
+ auto *Ty = BaseLValue.getPointer()->getType()->getPointerElementType();
+ while (Ty != ItemTy) {
+ Indexes.push_back(Zero);
+ Ty = Ty->getPointerElementType();
+ }
+ BaseLValue = MakeAddrLValue(
+ Address(Builder.CreateInBoundsGEP(BaseLValue.getPointer(), Indexes),
+ ASELValue.getAlignment()),
+ ASELValue.getType(), ASELValue.getAlignmentSource());
+ // Store the address of the original variable associated with the LHS
+ // implicit variable.
+ PrivateScope.addPrivate(LHSVD, [this, ASELValue]() -> Address {
+ return ASELValue.getAddress();
+ });
+ // Emit reduction copy.
+ bool IsRegistered = PrivateScope.addPrivate(
+ OrigVD, [this, PrivateVD, BaseLValue, ASELValue,
+ OriginalBaseLValue]() -> Address {
+ // Emit private VarDecl with reduction init.
+ EmitDecl(*PrivateVD);
+ auto Addr = GetAddrOfLocalVar(PrivateVD);
+ auto *Offset = Builder.CreatePtrDiff(BaseLValue.getPointer(),
+ ASELValue.getPointer());
+ auto *Ptr = Builder.CreateGEP(Addr.getPointer(), Offset);
+ Ptr = Builder.CreatePointerBitCastOrAddrSpaceCast(
+ Ptr, OriginalBaseLValue.getPointer()->getType());
+ return Address(Ptr, OriginalBaseLValue.getAlignment());
+ });
+ assert(IsRegistered && "private var already registered as private");
+ // Silence the warning about unused variable.
+ (void)IsRegistered;
+ PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address {
+ return GetAddrOfLocalVar(PrivateVD);
+ });
+ } else {
+ auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl());
+ // Store the address of the original variable associated with the LHS
+ // implicit variable.
+ PrivateScope.addPrivate(LHSVD, [this, OrigVD, IRef]() -> Address {
+ DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
+ CapturedStmtInfo->lookup(OrigVD) != nullptr,
+ IRef->getType(), VK_LValue, IRef->getExprLoc());
+ return EmitLValue(&DRE).getAddress();
+ });
+ // Emit reduction copy.
+ bool IsRegistered =
+ PrivateScope.addPrivate(OrigVD, [this, PrivateVD]() -> Address {
+ // Emit private VarDecl with reduction init.
+ EmitDecl(*PrivateVD);
+ return GetAddrOfLocalVar(PrivateVD);
+ });
+ assert(IsRegistered && "private var already registered as private");
+ // Silence the warning about unused variable.
+ (void)IsRegistered;
+ PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address {
+ return GetAddrOfLocalVar(PrivateVD);
+ });
+ }
+ ++ILHS, ++IRHS, ++IPriv;
+ }
+ }
+}
+
+void CodeGenFunction::EmitOMPReductionClauseFinal(
+ const OMPExecutableDirective &D) {
+ if (!HaveInsertPoint())
+ return;
+ llvm::SmallVector<const Expr *, 8> Privates;
+ llvm::SmallVector<const Expr *, 8> LHSExprs;
+ llvm::SmallVector<const Expr *, 8> RHSExprs;
+ llvm::SmallVector<const Expr *, 8> ReductionOps;
+ bool HasAtLeastOneReduction = false;
+ for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
+ HasAtLeastOneReduction = true;
+ Privates.append(C->privates().begin(), C->privates().end());
+ LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
+ RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
+ ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
+ }
+ if (HasAtLeastOneReduction) {
+ // Emit nowait reduction if nowait clause is present or directive is a
+ // parallel directive (it always has implicit barrier).
+ CGM.getOpenMPRuntime().emitReduction(
+ *this, D.getLocEnd(), Privates, LHSExprs, RHSExprs, ReductionOps,
+ D.getSingleClause<OMPNowaitClause>() ||
+ isOpenMPParallelDirective(D.getDirectiveKind()) ||
+ D.getDirectiveKind() == OMPD_simd,
+ D.getDirectiveKind() == OMPD_simd);
+ }
+}
+
+static void emitCommonOMPParallelDirective(CodeGenFunction &CGF,
+ const OMPExecutableDirective &S,
+ OpenMPDirectiveKind InnermostKind,
+ const RegionCodeGenTy &CodeGen) {
+ auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
+ llvm::SmallVector<llvm::Value *, 16> CapturedVars;
+ CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
+ auto OutlinedFn = CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction(
+ S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
+ if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) {
+ CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
+ auto NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(),
+ /*IgnoreResultAssign*/ true);
+ CGF.CGM.getOpenMPRuntime().emitNumThreadsClause(
+ CGF, NumThreads, NumThreadsClause->getLocStart());
+ }
+ if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) {
+ CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
+ CGF.CGM.getOpenMPRuntime().emitProcBindClause(
+ CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getLocStart());
+ }
+ const Expr *IfCond = nullptr;
+ for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
+ if (C->getNameModifier() == OMPD_unknown ||
+ C->getNameModifier() == OMPD_parallel) {
+ IfCond = C->getCondition();
+ break;
+ }
+ }
+ CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getLocStart(), OutlinedFn,
+ CapturedVars, IfCond);
+}
+
+void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) {
+ LexicalScope Scope(*this, S.getSourceRange());
+ // Emit parallel region as a standalone region.
+ auto &&CodeGen = [&S](CodeGenFunction &CGF) {
+ OMPPrivateScope PrivateScope(CGF);
+ bool Copyins = CGF.EmitOMPCopyinClause(S);
+ bool Firstprivates = CGF.EmitOMPFirstprivateClause(S, PrivateScope);
+ if (Copyins || Firstprivates) {
+ // Emit implicit barrier to synchronize threads and avoid data races on
+ // initialization of firstprivate variables or propagation master's thread
+ // values of threadprivate variables to local instances of that variables
+ // of all other implicit threads.
+ CGF.CGM.getOpenMPRuntime().emitBarrierCall(
+ CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false,
+ /*ForceSimpleCall=*/true);
+ }
+ CGF.EmitOMPPrivateClause(S, PrivateScope);
+ CGF.EmitOMPReductionClauseInit(S, PrivateScope);
+ (void)PrivateScope.Privatize();
+ CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
+ CGF.EmitOMPReductionClauseFinal(S);
+ };
+ emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen);
+}
+
+void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D,
+ JumpDest LoopExit) {
+ RunCleanupsScope BodyScope(*this);
+ // Update counters values on current iteration.
+ for (auto I : D.updates()) {
+ EmitIgnoredExpr(I);
+ }
+ // Update the linear variables.
+ for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
+ for (auto U : C->updates()) {
+ EmitIgnoredExpr(U);
+ }
+ }
+
+ // On a continue in the body, jump to the end.
+ auto Continue = getJumpDestInCurrentScope("omp.body.continue");
+ BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
+ // Emit loop body.
+ EmitStmt(D.getBody());
+ // The end (updates/cleanups).
+ EmitBlock(Continue.getBlock());
+ BreakContinueStack.pop_back();
+ // TODO: Update lastprivates if the SeparateIter flag is true.
+ // This will be implemented in a follow-up OMPLastprivateClause patch, but
+ // result should be still correct without it, as we do not make these
+ // variables private yet.
+}
+
+void CodeGenFunction::EmitOMPInnerLoop(
+ const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
+ const Expr *IncExpr,
+ const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
+ const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen) {
+ auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end");
+
+ // Start the loop with a block that tests the condition.
+ auto CondBlock = createBasicBlock("omp.inner.for.cond");
+ EmitBlock(CondBlock);
+ LoopStack.push(CondBlock);
+
+ // If there are any cleanups between here and the loop-exit scope,
+ // create a block to stage a loop exit along.
+ auto ExitBlock = LoopExit.getBlock();
+ if (RequiresCleanup)
+ ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup");
+
+ auto LoopBody = createBasicBlock("omp.inner.for.body");
+
+ // Emit condition.
+ EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S));
+ if (ExitBlock != LoopExit.getBlock()) {
+ EmitBlock(ExitBlock);
+ EmitBranchThroughCleanup(LoopExit);
+ }
+
+ EmitBlock(LoopBody);
+ incrementProfileCounter(&S);
+
+ // Create a block for the increment.
+ auto Continue = getJumpDestInCurrentScope("omp.inner.for.inc");
+ BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
+
+ BodyGen(*this);
+
+ // Emit "IV = IV + 1" and a back-edge to the condition block.
+ EmitBlock(Continue.getBlock());
+ EmitIgnoredExpr(IncExpr);
+ PostIncGen(*this);
+ BreakContinueStack.pop_back();
+ EmitBranch(CondBlock);
+ LoopStack.pop();
+ // Emit the fall-through block.
+ EmitBlock(LoopExit.getBlock());
+}
+
+void CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) {
+ if (!HaveInsertPoint())
+ return;
+ // Emit inits for the linear variables.
+ for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
+ for (auto Init : C->inits()) {
+ auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl());
+ auto *OrigVD = cast<VarDecl>(
+ cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())->getDecl());
+ DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
+ CapturedStmtInfo->lookup(OrigVD) != nullptr,
+ VD->getInit()->getType(), VK_LValue,
+ VD->getInit()->getExprLoc());
+ AutoVarEmission Emission = EmitAutoVarAlloca(*VD);
+ EmitExprAsInit(&DRE, VD,
+ MakeAddrLValue(Emission.getAllocatedAddress(), VD->getType()),
+ /*capturedByInit=*/false);
+ EmitAutoVarCleanups(Emission);
+ }
+ // Emit the linear steps for the linear clauses.
+ // If a step is not constant, it is pre-calculated before the loop.
+ if (auto CS = cast_or_null<BinaryOperator>(C->getCalcStep()))
+ if (auto SaveRef = cast<DeclRefExpr>(CS->getLHS())) {
+ EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl()));
+ // Emit calculation of the linear step.
+ EmitIgnoredExpr(CS);
+ }
+ }
+}
+
+static void emitLinearClauseFinal(CodeGenFunction &CGF,
+ const OMPLoopDirective &D) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ // Emit the final values of the linear variables.
+ for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
+ auto IC = C->varlist_begin();
+ for (auto F : C->finals()) {
+ auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl());
+ DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
+ CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr,
+ (*IC)->getType(), VK_LValue, (*IC)->getExprLoc());
+ Address OrigAddr = CGF.EmitLValue(&DRE).getAddress();
+ CodeGenFunction::OMPPrivateScope VarScope(CGF);
+ VarScope.addPrivate(OrigVD,
+ [OrigAddr]() -> Address { return OrigAddr; });
+ (void)VarScope.Privatize();
+ CGF.EmitIgnoredExpr(F);
+ ++IC;
+ }
+ }
+}
+
+static void emitAlignedClause(CodeGenFunction &CGF,
+ const OMPExecutableDirective &D) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) {
+ unsigned ClauseAlignment = 0;
+ if (auto AlignmentExpr = Clause->getAlignment()) {
+ auto AlignmentCI =
+ cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr));
+ ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue());
+ }
+ for (auto E : Clause->varlists()) {
+ unsigned Alignment = ClauseAlignment;
+ if (Alignment == 0) {
+ // OpenMP [2.8.1, Description]
+ // If no optional parameter is specified, implementation-defined default
+ // alignments for SIMD instructions on the target platforms are assumed.
+ Alignment =
+ CGF.getContext()
+ .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
+ E->getType()->getPointeeType()))
+ .getQuantity();
+ }
+ assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) &&
+ "alignment is not power of 2");
+ if (Alignment != 0) {
+ llvm::Value *PtrValue = CGF.EmitScalarExpr(E);
+ CGF.EmitAlignmentAssumption(PtrValue, Alignment);
+ }
+ }
+ }
+}
+
+static void emitPrivateLoopCounters(CodeGenFunction &CGF,
+ CodeGenFunction::OMPPrivateScope &LoopScope,
+ ArrayRef<Expr *> Counters,
+ ArrayRef<Expr *> PrivateCounters) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ auto I = PrivateCounters.begin();
+ for (auto *E : Counters) {
+ auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
+ auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl());
+ Address Addr = Address::invalid();
+ (void)LoopScope.addPrivate(PrivateVD, [&]() -> Address {
+ // Emit var without initialization.
+ auto VarEmission = CGF.EmitAutoVarAlloca(*PrivateVD);
+ CGF.EmitAutoVarCleanups(VarEmission);
+ Addr = VarEmission.getAllocatedAddress();
+ return Addr;
+ });
+ (void)LoopScope.addPrivate(VD, [&]() -> Address { return Addr; });
+ ++I;
+ }
+}
+
+static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S,
+ const Expr *Cond, llvm::BasicBlock *TrueBlock,
+ llvm::BasicBlock *FalseBlock, uint64_t TrueCount) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ {
+ CodeGenFunction::OMPPrivateScope PreCondScope(CGF);
+ emitPrivateLoopCounters(CGF, PreCondScope, S.counters(),
+ S.private_counters());
+ (void)PreCondScope.Privatize();
+ // Get initial values of real counters.
+ for (auto I : S.inits()) {
+ CGF.EmitIgnoredExpr(I);
+ }
+ }
+ // Check that loop is executed at least one time.
+ CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount);
+}
+
+static void
+emitPrivateLinearVars(CodeGenFunction &CGF, const OMPExecutableDirective &D,
+ CodeGenFunction::OMPPrivateScope &PrivateScope) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
+ auto CurPrivate = C->privates().begin();
+ for (auto *E : C->varlists()) {
+ auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
+ auto *PrivateVD =
+ cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl());
+ bool IsRegistered = PrivateScope.addPrivate(VD, [&]() -> Address {
+ // Emit private VarDecl with copy init.
+ CGF.EmitVarDecl(*PrivateVD);
+ return CGF.GetAddrOfLocalVar(PrivateVD);
+ });
+ assert(IsRegistered && "linear var already registered as private");
+ // Silence the warning about unused variable.
+ (void)IsRegistered;
+ ++CurPrivate;
+ }
+ }
+}
+
+static void emitSimdlenSafelenClause(CodeGenFunction &CGF,
+ const OMPExecutableDirective &D,
+ bool IsMonotonic) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) {
+ RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(),
+ /*ignoreResult=*/true);
+ llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
+ CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
+ // In presence of finite 'safelen', it may be unsafe to mark all
+ // the memory instructions parallel, because loop-carried
+ // dependences of 'safelen' iterations are possible.
+ if (!IsMonotonic)
+ CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>());
+ } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) {
+ RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(),
+ /*ignoreResult=*/true);
+ llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
+ CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
+ // In presence of finite 'safelen', it may be unsafe to mark all
+ // the memory instructions parallel, because loop-carried
+ // dependences of 'safelen' iterations are possible.
+ CGF.LoopStack.setParallel(false);
+ }
+}
+
+void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D,
+ bool IsMonotonic) {
+ // Walk clauses and process safelen/lastprivate.
+ LoopStack.setParallel(!IsMonotonic);
+ LoopStack.setVectorizeEnable(true);
+ emitSimdlenSafelenClause(*this, D, IsMonotonic);
+}
+
+void CodeGenFunction::EmitOMPSimdFinal(const OMPLoopDirective &D) {
+ if (!HaveInsertPoint())
+ return;
+ auto IC = D.counters().begin();
+ for (auto F : D.finals()) {
+ auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl());
+ if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD)) {
+ DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
+ CapturedStmtInfo->lookup(OrigVD) != nullptr,
+ (*IC)->getType(), VK_LValue, (*IC)->getExprLoc());
+ Address OrigAddr = EmitLValue(&DRE).getAddress();
+ OMPPrivateScope VarScope(*this);
+ VarScope.addPrivate(OrigVD,
+ [OrigAddr]() -> Address { return OrigAddr; });
+ (void)VarScope.Privatize();
+ EmitIgnoredExpr(F);
+ }
+ ++IC;
+ }
+ emitLinearClauseFinal(*this, D);
+}
+
+void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) {
+ auto &&CodeGen = [&S](CodeGenFunction &CGF) {
+ // if (PreCond) {
+ // for (IV in 0..LastIteration) BODY;
+ // <Final counter/linear vars updates>;
+ // }
+ //
+
+ // Emit: if (PreCond) - begin.
+ // If the condition constant folds and can be elided, avoid emitting the
+ // whole loop.
+ bool CondConstant;
+ llvm::BasicBlock *ContBlock = nullptr;
+ if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
+ if (!CondConstant)
+ return;
+ } else {
+ auto *ThenBlock = CGF.createBasicBlock("simd.if.then");
+ ContBlock = CGF.createBasicBlock("simd.if.end");
+ emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
+ CGF.getProfileCount(&S));
+ CGF.EmitBlock(ThenBlock);
+ CGF.incrementProfileCounter(&S);
+ }
+
+ // Emit the loop iteration variable.
+ const Expr *IVExpr = S.getIterationVariable();
+ const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
+ CGF.EmitVarDecl(*IVDecl);
+ CGF.EmitIgnoredExpr(S.getInit());
+
+ // Emit the iterations count variable.
+ // If it is not a variable, Sema decided to calculate iterations count on
+ // each iteration (e.g., it is foldable into a constant).
+ if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
+ CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
+ // Emit calculation of the iterations count.
+ CGF.EmitIgnoredExpr(S.getCalcLastIteration());
+ }
+
+ CGF.EmitOMPSimdInit(S);
+
+ emitAlignedClause(CGF, S);
+ CGF.EmitOMPLinearClauseInit(S);
+ bool HasLastprivateClause;
+ {
+ OMPPrivateScope LoopScope(CGF);
+ emitPrivateLoopCounters(CGF, LoopScope, S.counters(),
+ S.private_counters());
+ emitPrivateLinearVars(CGF, S, LoopScope);
+ CGF.EmitOMPPrivateClause(S, LoopScope);
+ CGF.EmitOMPReductionClauseInit(S, LoopScope);
+ HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
+ (void)LoopScope.Privatize();
+ CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
+ S.getInc(),
+ [&S](CodeGenFunction &CGF) {
+ CGF.EmitOMPLoopBody(S, JumpDest());
+ CGF.EmitStopPoint(&S);
+ },
+ [](CodeGenFunction &) {});
+ // Emit final copy of the lastprivate variables at the end of loops.
+ if (HasLastprivateClause) {
+ CGF.EmitOMPLastprivateClauseFinal(S);
+ }
+ CGF.EmitOMPReductionClauseFinal(S);
+ }
+ CGF.EmitOMPSimdFinal(S);
+ // Emit: if (PreCond) - end.
+ if (ContBlock) {
+ CGF.EmitBranch(ContBlock);
+ CGF.EmitBlock(ContBlock, true);
+ }
+ };
+ CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
+}
+
+void CodeGenFunction::EmitOMPForOuterLoop(
+ OpenMPScheduleClauseKind ScheduleKind, bool IsMonotonic,
+ const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered,
+ Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) {
+ auto &RT = CGM.getOpenMPRuntime();
+
+ // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime).
+ const bool DynamicOrOrdered = Ordered || RT.isDynamic(ScheduleKind);
+
+ assert((Ordered ||
+ !RT.isStaticNonchunked(ScheduleKind, /*Chunked=*/Chunk != nullptr)) &&
+ "static non-chunked schedule does not need outer loop");
+
+ // Emit outer loop.
+ //
+ // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
+ // When schedule(dynamic,chunk_size) is specified, the iterations are
+ // distributed to threads in the team in chunks as the threads request them.
+ // Each thread executes a chunk of iterations, then requests another chunk,
+ // until no chunks remain to be distributed. Each chunk contains chunk_size
+ // iterations, except for the last chunk to be distributed, which may have
+ // fewer iterations. When no chunk_size is specified, it defaults to 1.
+ //
+ // When schedule(guided,chunk_size) is specified, the iterations are assigned
+ // to threads in the team in chunks as the executing threads request them.
+ // Each thread executes a chunk of iterations, then requests another chunk,
+ // until no chunks remain to be assigned. For a chunk_size of 1, the size of
+ // each chunk is proportional to the number of unassigned iterations divided
+ // by the number of threads in the team, decreasing to 1. For a chunk_size
+ // with value k (greater than 1), the size of each chunk is determined in the
+ // same way, with the restriction that the chunks do not contain fewer than k
+ // iterations (except for the last chunk to be assigned, which may have fewer
+ // than k iterations).
+ //
+ // When schedule(auto) is specified, the decision regarding scheduling is
+ // delegated to the compiler and/or runtime system. The programmer gives the
+ // implementation the freedom to choose any possible mapping of iterations to
+ // threads in the team.
+ //
+ // When schedule(runtime) is specified, the decision regarding scheduling is
+ // deferred until run time, and the schedule and chunk size are taken from the
+ // run-sched-var ICV. If the ICV is set to auto, the schedule is
+ // implementation defined
+ //
+ // while(__kmpc_dispatch_next(&LB, &UB)) {
+ // idx = LB;
+ // while (idx <= UB) { BODY; ++idx;
+ // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only.
+ // } // inner loop
+ // }
+ //
+ // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
+ // When schedule(static, chunk_size) is specified, iterations are divided into
+ // chunks of size chunk_size, and the chunks are assigned to the threads in
+ // the team in a round-robin fashion in the order of the thread number.
+ //
+ // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) {
+ // while (idx <= UB) { BODY; ++idx; } // inner loop
+ // LB = LB + ST;
+ // UB = UB + ST;
+ // }
+ //
+
+ const Expr *IVExpr = S.getIterationVariable();
+ const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
+ const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
+
+ if (DynamicOrOrdered) {
+ llvm::Value *UBVal = EmitScalarExpr(S.getLastIteration());
+ RT.emitForDispatchInit(*this, S.getLocStart(), ScheduleKind,
+ IVSize, IVSigned, Ordered, UBVal, Chunk);
+ } else {
+ RT.emitForStaticInit(*this, S.getLocStart(), ScheduleKind,
+ IVSize, IVSigned, Ordered, IL, LB, UB, ST, Chunk);
+ }
+
+ auto LoopExit = getJumpDestInCurrentScope("omp.dispatch.end");
+
+ // Start the loop with a block that tests the condition.
+ auto CondBlock = createBasicBlock("omp.dispatch.cond");
+ EmitBlock(CondBlock);
+ LoopStack.push(CondBlock);
+
+ llvm::Value *BoolCondVal = nullptr;
+ if (!DynamicOrOrdered) {
+ // UB = min(UB, GlobalUB)
+ EmitIgnoredExpr(S.getEnsureUpperBound());
+ // IV = LB
+ EmitIgnoredExpr(S.getInit());
+ // IV < UB
+ BoolCondVal = EvaluateExprAsBool(S.getCond());
+ } else {
+ BoolCondVal = RT.emitForNext(*this, S.getLocStart(), IVSize, IVSigned,
+ IL, LB, UB, ST);
+ }
+
+ // If there are any cleanups between here and the loop-exit scope,
+ // create a block to stage a loop exit along.
+ auto ExitBlock = LoopExit.getBlock();
+ if (LoopScope.requiresCleanups())
+ ExitBlock = createBasicBlock("omp.dispatch.cleanup");
+
+ auto LoopBody = createBasicBlock("omp.dispatch.body");
+ Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
+ if (ExitBlock != LoopExit.getBlock()) {
+ EmitBlock(ExitBlock);
+ EmitBranchThroughCleanup(LoopExit);
+ }
+ EmitBlock(LoopBody);
+
+ // Emit "IV = LB" (in case of static schedule, we have already calculated new
+ // LB for loop condition and emitted it above).
+ if (DynamicOrOrdered)
+ EmitIgnoredExpr(S.getInit());
+
+ // Create a block for the increment.
+ auto Continue = getJumpDestInCurrentScope("omp.dispatch.inc");
+ BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
+
+ // Generate !llvm.loop.parallel metadata for loads and stores for loops
+ // with dynamic/guided scheduling and without ordered clause.
+ if (!isOpenMPSimdDirective(S.getDirectiveKind()))
+ LoopStack.setParallel(!IsMonotonic);
+ else
+ EmitOMPSimdInit(S, IsMonotonic);
+
+ SourceLocation Loc = S.getLocStart();
+ EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(),
+ [&S, LoopExit](CodeGenFunction &CGF) {
+ CGF.EmitOMPLoopBody(S, LoopExit);
+ CGF.EmitStopPoint(&S);
+ },
+ [Ordered, IVSize, IVSigned, Loc](CodeGenFunction &CGF) {
+ if (Ordered) {
+ CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(
+ CGF, Loc, IVSize, IVSigned);
+ }
+ });
+
+ EmitBlock(Continue.getBlock());
+ BreakContinueStack.pop_back();
+ if (!DynamicOrOrdered) {
+ // Emit "LB = LB + Stride", "UB = UB + Stride".
+ EmitIgnoredExpr(S.getNextLowerBound());
+ EmitIgnoredExpr(S.getNextUpperBound());
+ }
+
+ EmitBranch(CondBlock);
+ LoopStack.pop();
+ // Emit the fall-through block.
+ EmitBlock(LoopExit.getBlock());
+
+ // Tell the runtime we are done.
+ if (!DynamicOrOrdered)
+ RT.emitForStaticFinish(*this, S.getLocEnd());
+}
+
+/// \brief Emit a helper variable and return corresponding lvalue.
+static LValue EmitOMPHelperVar(CodeGenFunction &CGF,
+ const DeclRefExpr *Helper) {
+ auto VDecl = cast<VarDecl>(Helper->getDecl());
+ CGF.EmitVarDecl(*VDecl);
+ return CGF.EmitLValue(Helper);
+}
+
+namespace {
+ struct ScheduleKindModifiersTy {
+ OpenMPScheduleClauseKind Kind;
+ OpenMPScheduleClauseModifier M1;
+ OpenMPScheduleClauseModifier M2;
+ ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind,
+ OpenMPScheduleClauseModifier M1,
+ OpenMPScheduleClauseModifier M2)
+ : Kind(Kind), M1(M1), M2(M2) {}
+ };
+} // namespace
+
+static std::pair<llvm::Value * /*Chunk*/, ScheduleKindModifiersTy>
+emitScheduleClause(CodeGenFunction &CGF, const OMPLoopDirective &S,
+ bool OuterRegion) {
+ // Detect the loop schedule kind and chunk.
+ auto ScheduleKind = OMPC_SCHEDULE_unknown;
+ OpenMPScheduleClauseModifier M1 = OMPC_SCHEDULE_MODIFIER_unknown;
+ OpenMPScheduleClauseModifier M2 = OMPC_SCHEDULE_MODIFIER_unknown;
+ llvm::Value *Chunk = nullptr;
+ if (const auto *C = S.getSingleClause<OMPScheduleClause>()) {
+ ScheduleKind = C->getScheduleKind();
+ M1 = C->getFirstScheduleModifier();
+ M2 = C->getSecondScheduleModifier();
+ if (const auto *Ch = C->getChunkSize()) {
+ if (auto *ImpRef = cast_or_null<DeclRefExpr>(C->getHelperChunkSize())) {
+ if (OuterRegion) {
+ const VarDecl *ImpVar = cast<VarDecl>(ImpRef->getDecl());
+ CGF.EmitVarDecl(*ImpVar);
+ CGF.EmitStoreThroughLValue(
+ CGF.EmitAnyExpr(Ch),
+ CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(ImpVar),
+ ImpVar->getType()));
+ } else {
+ Ch = ImpRef;
+ }
+ }
+ if (!C->getHelperChunkSize() || !OuterRegion) {
+ Chunk = CGF.EmitScalarExpr(Ch);
+ Chunk = CGF.EmitScalarConversion(Chunk, Ch->getType(),
+ S.getIterationVariable()->getType(),
+ S.getLocStart());
+ }
+ }
+ }
+ return std::make_pair(Chunk, ScheduleKindModifiersTy(ScheduleKind, M1, M2));
+}
+
+bool CodeGenFunction::EmitOMPWorksharingLoop(const OMPLoopDirective &S) {
+ // Emit the loop iteration variable.
+ auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
+ auto IVDecl = cast<VarDecl>(IVExpr->getDecl());
+ EmitVarDecl(*IVDecl);
+
+ // Emit the iterations count variable.
+ // If it is not a variable, Sema decided to calculate iterations count on each
+ // iteration (e.g., it is foldable into a constant).
+ if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
+ EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
+ // Emit calculation of the iterations count.
+ EmitIgnoredExpr(S.getCalcLastIteration());
+ }
+
+ auto &RT = CGM.getOpenMPRuntime();
+
+ bool HasLastprivateClause;
+ // Check pre-condition.
+ {
+ // Skip the entire loop if we don't meet the precondition.
+ // If the condition constant folds and can be elided, avoid emitting the
+ // whole loop.
+ bool CondConstant;
+ llvm::BasicBlock *ContBlock = nullptr;
+ if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
+ if (!CondConstant)
+ return false;
+ } else {
+ auto *ThenBlock = createBasicBlock("omp.precond.then");
+ ContBlock = createBasicBlock("omp.precond.end");
+ emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
+ getProfileCount(&S));
+ EmitBlock(ThenBlock);
+ incrementProfileCounter(&S);
+ }
+
+ emitAlignedClause(*this, S);
+ EmitOMPLinearClauseInit(S);
+ // Emit 'then' code.
+ {
+ // Emit helper vars inits.
+ LValue LB =
+ EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable()));
+ LValue UB =
+ EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable()));
+ LValue ST =
+ EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
+ LValue IL =
+ EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
+
+ OMPPrivateScope LoopScope(*this);
+ if (EmitOMPFirstprivateClause(S, LoopScope)) {
+ // Emit implicit barrier to synchronize threads and avoid data races on
+ // initialization of firstprivate variables.
+ CGM.getOpenMPRuntime().emitBarrierCall(
+ *this, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false,
+ /*ForceSimpleCall=*/true);
+ }
+ EmitOMPPrivateClause(S, LoopScope);
+ HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
+ EmitOMPReductionClauseInit(S, LoopScope);
+ emitPrivateLoopCounters(*this, LoopScope, S.counters(),
+ S.private_counters());
+ emitPrivateLinearVars(*this, S, LoopScope);
+ (void)LoopScope.Privatize();
+
+ // Detect the loop schedule kind and chunk.
+ llvm::Value *Chunk;
+ OpenMPScheduleClauseKind ScheduleKind;
+ auto ScheduleInfo =
+ emitScheduleClause(*this, S, /*OuterRegion=*/false);
+ Chunk = ScheduleInfo.first;
+ ScheduleKind = ScheduleInfo.second.Kind;
+ const OpenMPScheduleClauseModifier M1 = ScheduleInfo.second.M1;
+ const OpenMPScheduleClauseModifier M2 = ScheduleInfo.second.M2;
+ const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
+ const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
+ const bool Ordered = S.getSingleClause<OMPOrderedClause>() != nullptr;
+ // OpenMP 4.5, 2.7.1 Loop Construct, Description.
+ // If the static schedule kind is specified or if the ordered clause is
+ // specified, and if no monotonic modifier is specified, the effect will
+ // be as if the monotonic modifier was specified.
+ if (RT.isStaticNonchunked(ScheduleKind,
+ /* Chunked */ Chunk != nullptr) &&
+ !Ordered) {
+ if (isOpenMPSimdDirective(S.getDirectiveKind()))
+ EmitOMPSimdInit(S, /*IsMonotonic=*/true);
+ // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
+ // When no chunk_size is specified, the iteration space is divided into
+ // chunks that are approximately equal in size, and at most one chunk is
+ // distributed to each thread. Note that the size of the chunks is
+ // unspecified in this case.
+ RT.emitForStaticInit(*this, S.getLocStart(), ScheduleKind,
+ IVSize, IVSigned, Ordered,
+ IL.getAddress(), LB.getAddress(),
+ UB.getAddress(), ST.getAddress());
+ auto LoopExit =
+ getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
+ // UB = min(UB, GlobalUB);
+ EmitIgnoredExpr(S.getEnsureUpperBound());
+ // IV = LB;
+ EmitIgnoredExpr(S.getInit());
+ // while (idx <= UB) { BODY; ++idx; }
+ EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
+ S.getInc(),
+ [&S, LoopExit](CodeGenFunction &CGF) {
+ CGF.EmitOMPLoopBody(S, LoopExit);
+ CGF.EmitStopPoint(&S);
+ },
+ [](CodeGenFunction &) {});
+ EmitBlock(LoopExit.getBlock());
+ // Tell the runtime we are done.
+ RT.emitForStaticFinish(*this, S.getLocStart());
+ } else {
+ const bool IsMonotonic = Ordered ||
+ ScheduleKind == OMPC_SCHEDULE_static ||
+ ScheduleKind == OMPC_SCHEDULE_unknown ||
+ M1 == OMPC_SCHEDULE_MODIFIER_monotonic ||
+ M2 == OMPC_SCHEDULE_MODIFIER_monotonic;
+ // Emit the outer loop, which requests its work chunk [LB..UB] from
+ // runtime and runs the inner loop to process it.
+ EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered,
+ LB.getAddress(), UB.getAddress(), ST.getAddress(),
+ IL.getAddress(), Chunk);
+ }
+ EmitOMPReductionClauseFinal(S);
+ // Emit final copy of the lastprivate variables if IsLastIter != 0.
+ if (HasLastprivateClause)
+ EmitOMPLastprivateClauseFinal(
+ S, Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart())));
+ }
+ if (isOpenMPSimdDirective(S.getDirectiveKind())) {
+ EmitOMPSimdFinal(S);
+ }
+ // We're now done with the loop, so jump to the continuation block.
+ if (ContBlock) {
+ EmitBranch(ContBlock);
+ EmitBlock(ContBlock, true);
+ }
+ }
+ return HasLastprivateClause;
+}
+
+void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) {
+ LexicalScope Scope(*this, S.getSourceRange());
+ bool HasLastprivates = false;
+ auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF) {
+ HasLastprivates = CGF.EmitOMPWorksharingLoop(S);
+ };
+ CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen,
+ S.hasCancel());
+
+ // Emit an implicit barrier at the end.
+ if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) {
+ CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for);
+ }
+}
+
+void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) {
+ LexicalScope Scope(*this, S.getSourceRange());
+ bool HasLastprivates = false;
+ auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF) {
+ HasLastprivates = CGF.EmitOMPWorksharingLoop(S);
+ };
+ CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
+
+ // Emit an implicit barrier at the end.
+ if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) {
+ CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for);
+ }
+}
+
+static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty,
+ const Twine &Name,
+ llvm::Value *Init = nullptr) {
+ auto LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty);
+ if (Init)
+ CGF.EmitScalarInit(Init, LVal);
+ return LVal;
+}
+
+OpenMPDirectiveKind
+CodeGenFunction::EmitSections(const OMPExecutableDirective &S) {
+ auto *Stmt = cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt();
+ auto *CS = dyn_cast<CompoundStmt>(Stmt);
+ if (CS && CS->size() > 1) {
+ bool HasLastprivates = false;
+ auto &&CodeGen = [&S, CS, &HasLastprivates](CodeGenFunction &CGF) {
+ auto &C = CGF.CGM.getContext();
+ auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
+ // Emit helper vars inits.
+ LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.",
+ CGF.Builder.getInt32(0));
+ auto *GlobalUBVal = CGF.Builder.getInt32(CS->size() - 1);
+ LValue UB =
+ createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal);
+ LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.",
+ CGF.Builder.getInt32(1));
+ LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.",
+ CGF.Builder.getInt32(0));
+ // Loop counter.
+ LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv.");
+ OpaqueValueExpr IVRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue);
+ CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV);
+ OpaqueValueExpr UBRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue);
+ CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB);
+ // Generate condition for loop.
+ BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue,
+ OK_Ordinary, S.getLocStart(),
+ /*fpContractable=*/false);
+ // Increment for loop counter.
+ UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue,
+ OK_Ordinary, S.getLocStart());
+ auto BodyGen = [CS, &S, &IV](CodeGenFunction &CGF) {
+ // Iterate through all sections and emit a switch construct:
+ // switch (IV) {
+ // case 0:
+ // <SectionStmt[0]>;
+ // break;
+ // ...
+ // case <NumSection> - 1:
+ // <SectionStmt[<NumSection> - 1]>;
+ // break;
+ // }
+ // .omp.sections.exit:
+ auto *ExitBB = CGF.createBasicBlock(".omp.sections.exit");
+ auto *SwitchStmt = CGF.Builder.CreateSwitch(
+ CGF.EmitLoadOfLValue(IV, S.getLocStart()).getScalarVal(), ExitBB,
+ CS->size());
+ unsigned CaseNumber = 0;
+ for (auto *SubStmt : CS->children()) {
+ auto CaseBB = CGF.createBasicBlock(".omp.sections.case");
+ CGF.EmitBlock(CaseBB);
+ SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB);
+ CGF.EmitStmt(SubStmt);
+ CGF.EmitBranch(ExitBB);
+ ++CaseNumber;
+ }
+ CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
+ };
+
+ CodeGenFunction::OMPPrivateScope LoopScope(CGF);
+ if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) {
+ // Emit implicit barrier to synchronize threads and avoid data races on
+ // initialization of firstprivate variables.
+ CGF.CGM.getOpenMPRuntime().emitBarrierCall(
+ CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false,
+ /*ForceSimpleCall=*/true);
+ }
+ CGF.EmitOMPPrivateClause(S, LoopScope);
+ HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
+ CGF.EmitOMPReductionClauseInit(S, LoopScope);
+ (void)LoopScope.Privatize();
+
+ // Emit static non-chunked loop.
+ CGF.CGM.getOpenMPRuntime().emitForStaticInit(
+ CGF, S.getLocStart(), OMPC_SCHEDULE_static, /*IVSize=*/32,
+ /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(),
+ LB.getAddress(), UB.getAddress(), ST.getAddress());
+ // UB = min(UB, GlobalUB);
+ auto *UBVal = CGF.EmitLoadOfScalar(UB, S.getLocStart());
+ auto *MinUBGlobalUB = CGF.Builder.CreateSelect(
+ CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal);
+ CGF.EmitStoreOfScalar(MinUBGlobalUB, UB);
+ // IV = LB;
+ CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getLocStart()), IV);
+ // while (idx <= UB) { BODY; ++idx; }
+ CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen,
+ [](CodeGenFunction &) {});
+ // Tell the runtime we are done.
+ CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocStart());
+ CGF.EmitOMPReductionClauseFinal(S);
+
+ // Emit final copy of the lastprivate variables if IsLastIter != 0.
+ if (HasLastprivates)
+ CGF.EmitOMPLastprivateClauseFinal(
+ S, CGF.Builder.CreateIsNotNull(
+ CGF.EmitLoadOfScalar(IL, S.getLocStart())));
+ };
+
+ bool HasCancel = false;
+ if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S))
+ HasCancel = OSD->hasCancel();
+ else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S))
+ HasCancel = OPSD->hasCancel();
+ CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen,
+ HasCancel);
+ // Emit barrier for lastprivates only if 'sections' directive has 'nowait'
+ // clause. Otherwise the barrier will be generated by the codegen for the
+ // directive.
+ if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) {
+ // Emit implicit barrier to synchronize threads and avoid data races on
+ // initialization of firstprivate variables.
+ CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(),
+ OMPD_unknown);
+ }
+ return OMPD_sections;
+ }
+ // If only one section is found - no need to generate loop, emit as a single
+ // region.
+ bool HasFirstprivates;
+ // No need to generate reductions for sections with single section region, we
+ // can use original shared variables for all operations.
+ bool HasReductions = S.hasClausesOfKind<OMPReductionClause>();
+ // No need to generate lastprivates for sections with single section region,
+ // we can use original shared variable for all calculations with barrier at
+ // the end of the sections.
+ bool HasLastprivates = S.hasClausesOfKind<OMPLastprivateClause>();
+ auto &&CodeGen = [Stmt, &S, &HasFirstprivates](CodeGenFunction &CGF) {
+ CodeGenFunction::OMPPrivateScope SingleScope(CGF);
+ HasFirstprivates = CGF.EmitOMPFirstprivateClause(S, SingleScope);
+ CGF.EmitOMPPrivateClause(S, SingleScope);
+ (void)SingleScope.Privatize();
+
+ CGF.EmitStmt(Stmt);
+ };
+ CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(),
+ llvm::None, llvm::None, llvm::None,
+ llvm::None);
+ // Emit barrier for firstprivates, lastprivates or reductions only if
+ // 'sections' directive has 'nowait' clause. Otherwise the barrier will be
+ // generated by the codegen for the directive.
+ if ((HasFirstprivates || HasLastprivates || HasReductions) &&
+ S.getSingleClause<OMPNowaitClause>()) {
+ // Emit implicit barrier to synchronize threads and avoid data races on
+ // initialization of firstprivate variables.
+ CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_unknown,
+ /*EmitChecks=*/false,
+ /*ForceSimpleCall=*/true);
+ }
+ return OMPD_single;
+}
+
+void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) {
+ LexicalScope Scope(*this, S.getSourceRange());
+ OpenMPDirectiveKind EmittedAs = EmitSections(S);
+ // Emit an implicit barrier at the end.
+ if (!S.getSingleClause<OMPNowaitClause>()) {
+ CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), EmittedAs);
+ }
+}
+
+void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) {
+ LexicalScope Scope(*this, S.getSourceRange());
+ auto &&CodeGen = [&S](CodeGenFunction &CGF) {
+ CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
+ };
+ CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen,
+ S.hasCancel());
+}
+
+void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) {
+ llvm::SmallVector<const Expr *, 8> CopyprivateVars;
+ llvm::SmallVector<const Expr *, 8> DestExprs;
+ llvm::SmallVector<const Expr *, 8> SrcExprs;
+ llvm::SmallVector<const Expr *, 8> AssignmentOps;
+ // Check if there are any 'copyprivate' clauses associated with this
+ // 'single'
+ // construct.
+ // Build a list of copyprivate variables along with helper expressions
+ // (<source>, <destination>, <destination>=<source> expressions)
+ for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) {
+ CopyprivateVars.append(C->varlists().begin(), C->varlists().end());
+ DestExprs.append(C->destination_exprs().begin(),
+ C->destination_exprs().end());
+ SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end());
+ AssignmentOps.append(C->assignment_ops().begin(),
+ C->assignment_ops().end());
+ }
+ LexicalScope Scope(*this, S.getSourceRange());
+ // Emit code for 'single' region along with 'copyprivate' clauses
+ bool HasFirstprivates;
+ auto &&CodeGen = [&S, &HasFirstprivates](CodeGenFunction &CGF) {
+ CodeGenFunction::OMPPrivateScope SingleScope(CGF);
+ HasFirstprivates = CGF.EmitOMPFirstprivateClause(S, SingleScope);
+ CGF.EmitOMPPrivateClause(S, SingleScope);
+ (void)SingleScope.Privatize();
+
+ CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
+ };
+ CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(),
+ CopyprivateVars, DestExprs, SrcExprs,
+ AssignmentOps);
+ // Emit an implicit barrier at the end (to avoid data race on firstprivate
+ // init or if no 'nowait' clause was specified and no 'copyprivate' clause).
+ if ((!S.getSingleClause<OMPNowaitClause>() || HasFirstprivates) &&
+ CopyprivateVars.empty()) {
+ CGM.getOpenMPRuntime().emitBarrierCall(
+ *this, S.getLocStart(),
+ S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single);
+ }
+}
+
+void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) {
+ LexicalScope Scope(*this, S.getSourceRange());
+ auto &&CodeGen = [&S](CodeGenFunction &CGF) {
+ CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
+ };
+ CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getLocStart());
+}
+
+void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) {
+ LexicalScope Scope(*this, S.getSourceRange());
+ auto &&CodeGen = [&S](CodeGenFunction &CGF) {
+ CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
+ };
+ Expr *Hint = nullptr;
+ if (auto *HintClause = S.getSingleClause<OMPHintClause>())
+ Hint = HintClause->getHint();
+ CGM.getOpenMPRuntime().emitCriticalRegion(*this,
+ S.getDirectiveName().getAsString(),
+ CodeGen, S.getLocStart(), Hint);
+}
+
+void CodeGenFunction::EmitOMPParallelForDirective(
+ const OMPParallelForDirective &S) {
+ // Emit directive as a combined directive that consists of two implicit
+ // directives: 'parallel' with 'for' directive.
+ LexicalScope Scope(*this, S.getSourceRange());
+ (void)emitScheduleClause(*this, S, /*OuterRegion=*/true);
+ auto &&CodeGen = [&S](CodeGenFunction &CGF) {
+ CGF.EmitOMPWorksharingLoop(S);
+ };
+ emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen);
+}
+
+void CodeGenFunction::EmitOMPParallelForSimdDirective(
+ const OMPParallelForSimdDirective &S) {
+ // Emit directive as a combined directive that consists of two implicit
+ // directives: 'parallel' with 'for' directive.
+ LexicalScope Scope(*this, S.getSourceRange());
+ (void)emitScheduleClause(*this, S, /*OuterRegion=*/true);
+ auto &&CodeGen = [&S](CodeGenFunction &CGF) {
+ CGF.EmitOMPWorksharingLoop(S);
+ };
+ emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen);
+}
+
+void CodeGenFunction::EmitOMPParallelSectionsDirective(
+ const OMPParallelSectionsDirective &S) {
+ // Emit directive as a combined directive that consists of two implicit
+ // directives: 'parallel' with 'sections' directive.
+ LexicalScope Scope(*this, S.getSourceRange());
+ auto &&CodeGen = [&S](CodeGenFunction &CGF) {
+ (void)CGF.EmitSections(S);
+ };
+ emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen);
+}
+
+void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) {
+ // Emit outlined function for task construct.
+ LexicalScope Scope(*this, S.getSourceRange());
+ auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
+ auto CapturedStruct = GenerateCapturedStmtArgument(*CS);
+ auto *I = CS->getCapturedDecl()->param_begin();
+ auto *PartId = std::next(I);
+ // The first function argument for tasks is a thread id, the second one is a
+ // part id (0 for tied tasks, >=0 for untied task).
+ llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
+ // Get list of private variables.
+ llvm::SmallVector<const Expr *, 8> PrivateVars;
+ llvm::SmallVector<const Expr *, 8> PrivateCopies;
+ for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) {
+ auto IRef = C->varlist_begin();
+ for (auto *IInit : C->private_copies()) {
+ auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
+ if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
+ PrivateVars.push_back(*IRef);
+ PrivateCopies.push_back(IInit);
+ }
+ ++IRef;
+ }
+ }
+ EmittedAsPrivate.clear();
+ // Get list of firstprivate variables.
+ llvm::SmallVector<const Expr *, 8> FirstprivateVars;
+ llvm::SmallVector<const Expr *, 8> FirstprivateCopies;
+ llvm::SmallVector<const Expr *, 8> FirstprivateInits;
+ for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
+ auto IRef = C->varlist_begin();
+ auto IElemInitRef = C->inits().begin();
+ for (auto *IInit : C->private_copies()) {
+ auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
+ if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
+ FirstprivateVars.push_back(*IRef);
+ FirstprivateCopies.push_back(IInit);
+ FirstprivateInits.push_back(*IElemInitRef);
+ }
+ ++IRef, ++IElemInitRef;
+ }
+ }
+ // Build list of dependences.
+ llvm::SmallVector<std::pair<OpenMPDependClauseKind, const Expr *>, 8>
+ Dependences;
+ for (const auto *C : S.getClausesOfKind<OMPDependClause>()) {
+ for (auto *IRef : C->varlists()) {
+ Dependences.push_back(std::make_pair(C->getDependencyKind(), IRef));
+ }
+ }
+ auto &&CodeGen = [PartId, &S, &PrivateVars, &FirstprivateVars](
+ CodeGenFunction &CGF) {
+ // Set proper addresses for generated private copies.
+ auto *CS = cast<CapturedStmt>(S.getAssociatedStmt());
+ OMPPrivateScope Scope(CGF);
+ if (!PrivateVars.empty() || !FirstprivateVars.empty()) {
+ auto *CopyFn = CGF.Builder.CreateLoad(
+ CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(3)));
+ auto *PrivatesPtr = CGF.Builder.CreateLoad(
+ CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(2)));
+ // Map privates.
+ llvm::SmallVector<std::pair<const VarDecl *, Address>, 16>
+ PrivatePtrs;
+ llvm::SmallVector<llvm::Value *, 16> CallArgs;
+ CallArgs.push_back(PrivatesPtr);
+ for (auto *E : PrivateVars) {
+ auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
+ Address PrivatePtr =
+ CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()));
+ PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr));
+ CallArgs.push_back(PrivatePtr.getPointer());
+ }
+ for (auto *E : FirstprivateVars) {
+ auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
+ Address PrivatePtr =
+ CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()));
+ PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr));
+ CallArgs.push_back(PrivatePtr.getPointer());
+ }
+ CGF.EmitRuntimeCall(CopyFn, CallArgs);
+ for (auto &&Pair : PrivatePtrs) {
+ Address Replacement(CGF.Builder.CreateLoad(Pair.second),
+ CGF.getContext().getDeclAlign(Pair.first));
+ Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; });
+ }
+ }
+ (void)Scope.Privatize();
+ if (*PartId) {
+ // TODO: emit code for untied tasks.
+ }
+ CGF.EmitStmt(CS->getCapturedStmt());
+ };
+ auto OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction(
+ S, *I, OMPD_task, CodeGen);
+ // Check if we should emit tied or untied task.
+ bool Tied = !S.getSingleClause<OMPUntiedClause>();
+ // Check if the task is final
+ llvm::PointerIntPair<llvm::Value *, 1, bool> Final;
+ if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) {
+ // If the condition constant folds and can be elided, try to avoid emitting
+ // the condition and the dead arm of the if/else.
+ auto *Cond = Clause->getCondition();
+ bool CondConstant;
+ if (ConstantFoldsToSimpleInteger(Cond, CondConstant))
+ Final.setInt(CondConstant);
+ else
+ Final.setPointer(EvaluateExprAsBool(Cond));
+ } else {
+ // By default the task is not final.
+ Final.setInt(/*IntVal=*/false);
+ }
+ auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
+ const Expr *IfCond = nullptr;
+ for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
+ if (C->getNameModifier() == OMPD_unknown ||
+ C->getNameModifier() == OMPD_task) {
+ IfCond = C->getCondition();
+ break;
+ }
+ }
+ CGM.getOpenMPRuntime().emitTaskCall(
+ *this, S.getLocStart(), S, Tied, Final, OutlinedFn, SharedsTy,
+ CapturedStruct, IfCond, PrivateVars, PrivateCopies, FirstprivateVars,
+ FirstprivateCopies, FirstprivateInits, Dependences);
+}
+
+void CodeGenFunction::EmitOMPTaskyieldDirective(
+ const OMPTaskyieldDirective &S) {
+ CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getLocStart());
+}
+
+void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) {
+ CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_barrier);
+}
+
+void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) {
+ CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getLocStart());
+}
+
+void CodeGenFunction::EmitOMPTaskgroupDirective(
+ const OMPTaskgroupDirective &S) {
+ LexicalScope Scope(*this, S.getSourceRange());
+ auto &&CodeGen = [&S](CodeGenFunction &CGF) {
+ CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
+ };
+ CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getLocStart());
+}
+
+void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) {
+ CGM.getOpenMPRuntime().emitFlush(*this, [&]() -> ArrayRef<const Expr *> {
+ if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) {
+ return llvm::makeArrayRef(FlushClause->varlist_begin(),
+ FlushClause->varlist_end());
+ }
+ return llvm::None;
+ }(), S.getLocStart());
+}
+
+void CodeGenFunction::EmitOMPDistributeDirective(
+ const OMPDistributeDirective &S) {
+ llvm_unreachable("CodeGen for 'omp distribute' is not supported yet.");
+}
+
+static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM,
+ const CapturedStmt *S) {
+ CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
+ CodeGenFunction::CGCapturedStmtInfo CapStmtInfo;
+ CGF.CapturedStmtInfo = &CapStmtInfo;
+ auto *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S);
+ Fn->addFnAttr(llvm::Attribute::NoInline);
+ return Fn;
+}
+
+void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) {
+ if (!S.getAssociatedStmt())
+ return;
+ LexicalScope Scope(*this, S.getSourceRange());
+ auto *C = S.getSingleClause<OMPSIMDClause>();
+ auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF) {
+ if (C) {
+ auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
+ llvm::SmallVector<llvm::Value *, 16> CapturedVars;
+ CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
+ auto *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS);
+ CGF.EmitNounwindRuntimeCall(OutlinedFn, CapturedVars);
+ } else {
+ CGF.EmitStmt(
+ cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
+ }
+ };
+ CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getLocStart(), !C);
+}
+
+static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val,
+ QualType SrcType, QualType DestType,
+ SourceLocation Loc) {
+ assert(CGF.hasScalarEvaluationKind(DestType) &&
+ "DestType must have scalar evaluation kind.");
+ assert(!Val.isAggregate() && "Must be a scalar or complex.");
+ return Val.isScalar()
+ ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestType,
+ Loc)
+ : CGF.EmitComplexToScalarConversion(Val.getComplexVal(), SrcType,
+ DestType, Loc);
+}
+
+static CodeGenFunction::ComplexPairTy
+convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType,
+ QualType DestType, SourceLocation Loc) {
+ assert(CGF.getEvaluationKind(DestType) == TEK_Complex &&
+ "DestType must have complex evaluation kind.");
+ CodeGenFunction::ComplexPairTy ComplexVal;
+ if (Val.isScalar()) {
+ // Convert the input element to the element type of the complex.
+ auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
+ auto ScalarVal = CGF.EmitScalarConversion(Val.getScalarVal(), SrcType,
+ DestElementType, Loc);
+ ComplexVal = CodeGenFunction::ComplexPairTy(
+ ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType()));
+ } else {
+ assert(Val.isComplex() && "Must be a scalar or complex.");
+ auto SrcElementType = SrcType->castAs<ComplexType>()->getElementType();
+ auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
+ ComplexVal.first = CGF.EmitScalarConversion(
+ Val.getComplexVal().first, SrcElementType, DestElementType, Loc);
+ ComplexVal.second = CGF.EmitScalarConversion(
+ Val.getComplexVal().second, SrcElementType, DestElementType, Loc);
+ }
+ return ComplexVal;
+}
+
+static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst,
+ LValue LVal, RValue RVal) {
+ if (LVal.isGlobalReg()) {
+ CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal);
+ } else {
+ CGF.EmitAtomicStore(RVal, LVal, IsSeqCst ? llvm::SequentiallyConsistent
+ : llvm::Monotonic,
+ LVal.isVolatile(), /*IsInit=*/false);
+ }
+}
+
+static void emitSimpleStore(CodeGenFunction &CGF, LValue LVal, RValue RVal,
+ QualType RValTy, SourceLocation Loc) {
+ switch (CGF.getEvaluationKind(LVal.getType())) {
+ case TEK_Scalar:
+ CGF.EmitStoreThroughLValue(RValue::get(convertToScalarValue(
+ CGF, RVal, RValTy, LVal.getType(), Loc)),
+ LVal);
+ break;
+ case TEK_Complex:
+ CGF.EmitStoreOfComplex(
+ convertToComplexValue(CGF, RVal, RValTy, LVal.getType(), Loc), LVal,
+ /*isInit=*/false);
+ break;
+ case TEK_Aggregate:
+ llvm_unreachable("Must be a scalar or complex.");
+ }
+}
+
+static void EmitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst,
+ const Expr *X, const Expr *V,
+ SourceLocation Loc) {
+ // v = x;
+ assert(V->isLValue() && "V of 'omp atomic read' is not lvalue");
+ assert(X->isLValue() && "X of 'omp atomic read' is not lvalue");
+ LValue XLValue = CGF.EmitLValue(X);
+ LValue VLValue = CGF.EmitLValue(V);
+ RValue Res = XLValue.isGlobalReg()
+ ? CGF.EmitLoadOfLValue(XLValue, Loc)
+ : CGF.EmitAtomicLoad(XLValue, Loc,
+ IsSeqCst ? llvm::SequentiallyConsistent
+ : llvm::Monotonic,
+ XLValue.isVolatile());
+ // OpenMP, 2.12.6, atomic Construct
+ // Any atomic construct with a seq_cst clause forces the atomically
+ // performed operation to include an implicit flush operation without a
+ // list.
+ if (IsSeqCst)
+ CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
+ emitSimpleStore(CGF, VLValue, Res, X->getType().getNonReferenceType(), Loc);
+}
+
+static void EmitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst,
+ const Expr *X, const Expr *E,
+ SourceLocation Loc) {
+ // x = expr;
+ assert(X->isLValue() && "X of 'omp atomic write' is not lvalue");
+ emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E));
+ // OpenMP, 2.12.6, atomic Construct
+ // Any atomic construct with a seq_cst clause forces the atomically
+ // performed operation to include an implicit flush operation without a
+ // list.
+ if (IsSeqCst)
+ CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
+}
+
+static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X,
+ RValue Update,
+ BinaryOperatorKind BO,
+ llvm::AtomicOrdering AO,
+ bool IsXLHSInRHSPart) {
+ auto &Context = CGF.CGM.getContext();
+ // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x'
+ // expression is simple and atomic is allowed for the given type for the
+ // target platform.
+ if (BO == BO_Comma || !Update.isScalar() ||
+ !Update.getScalarVal()->getType()->isIntegerTy() ||
+ !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) &&
+ (Update.getScalarVal()->getType() !=
+ X.getAddress().getElementType())) ||
+ !X.getAddress().getElementType()->isIntegerTy() ||
+ !Context.getTargetInfo().hasBuiltinAtomic(
+ Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment())))
+ return std::make_pair(false, RValue::get(nullptr));
+
+ llvm::AtomicRMWInst::BinOp RMWOp;
+ switch (BO) {
+ case BO_Add:
+ RMWOp = llvm::AtomicRMWInst::Add;
+ break;
+ case BO_Sub:
+ if (!IsXLHSInRHSPart)
+ return std::make_pair(false, RValue::get(nullptr));
+ RMWOp = llvm::AtomicRMWInst::Sub;
+ break;
+ case BO_And:
+ RMWOp = llvm::AtomicRMWInst::And;
+ break;
+ case BO_Or:
+ RMWOp = llvm::AtomicRMWInst::Or;
+ break;
+ case BO_Xor:
+ RMWOp = llvm::AtomicRMWInst::Xor;
+ break;
+ case BO_LT:
+ RMWOp = X.getType()->hasSignedIntegerRepresentation()
+ ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min
+ : llvm::AtomicRMWInst::Max)
+ : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin
+ : llvm::AtomicRMWInst::UMax);
+ break;
+ case BO_GT:
+ RMWOp = X.getType()->hasSignedIntegerRepresentation()
+ ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max
+ : llvm::AtomicRMWInst::Min)
+ : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax
+ : llvm::AtomicRMWInst::UMin);
+ break;
+ case BO_Assign:
+ RMWOp = llvm::AtomicRMWInst::Xchg;
+ break;
+ case BO_Mul:
+ case BO_Div:
+ case BO_Rem:
+ case BO_Shl:
+ case BO_Shr:
+ case BO_LAnd:
+ case BO_LOr:
+ return std::make_pair(false, RValue::get(nullptr));
+ case BO_PtrMemD:
+ case BO_PtrMemI:
+ case BO_LE:
+ case BO_GE:
+ case BO_EQ:
+ case BO_NE:
+ case BO_AddAssign:
+ case BO_SubAssign:
+ case BO_AndAssign:
+ case BO_OrAssign:
+ case BO_XorAssign:
+ case BO_MulAssign:
+ case BO_DivAssign:
+ case BO_RemAssign:
+ case BO_ShlAssign:
+ case BO_ShrAssign:
+ case BO_Comma:
+ llvm_unreachable("Unsupported atomic update operation");
+ }
+ auto *UpdateVal = Update.getScalarVal();
+ if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) {
+ UpdateVal = CGF.Builder.CreateIntCast(
+ IC, X.getAddress().getElementType(),
+ X.getType()->hasSignedIntegerRepresentation());
+ }
+ auto *Res = CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO);
+ return std::make_pair(true, RValue::get(Res));
+}
+
+std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr(
+ LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
+ llvm::AtomicOrdering AO, SourceLocation Loc,
+ const llvm::function_ref<RValue(RValue)> &CommonGen) {
+ // Update expressions are allowed to have the following forms:
+ // x binop= expr; -> xrval + expr;
+ // x++, ++x -> xrval + 1;
+ // x--, --x -> xrval - 1;
+ // x = x binop expr; -> xrval binop expr
+ // x = expr Op x; - > expr binop xrval;
+ auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart);
+ if (!Res.first) {
+ if (X.isGlobalReg()) {
+ // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop
+ // 'xrval'.
+ EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X);
+ } else {
+ // Perform compare-and-swap procedure.
+ EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified());
+ }
+ }
+ return Res;
+}
+
+static void EmitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst,
+ const Expr *X, const Expr *E,
+ const Expr *UE, bool IsXLHSInRHSPart,
+ SourceLocation Loc) {
+ assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
+ "Update expr in 'atomic update' must be a binary operator.");
+ auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
+ // Update expressions are allowed to have the following forms:
+ // x binop= expr; -> xrval + expr;
+ // x++, ++x -> xrval + 1;
+ // x--, --x -> xrval - 1;
+ // x = x binop expr; -> xrval binop expr
+ // x = expr Op x; - > expr binop xrval;
+ assert(X->isLValue() && "X of 'omp atomic update' is not lvalue");
+ LValue XLValue = CGF.EmitLValue(X);
+ RValue ExprRValue = CGF.EmitAnyExpr(E);
+ auto AO = IsSeqCst ? llvm::SequentiallyConsistent : llvm::Monotonic;
+ auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
+ auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
+ auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
+ auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
+ auto Gen =
+ [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) -> RValue {
+ CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
+ CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
+ return CGF.EmitAnyExpr(UE);
+ };
+ (void)CGF.EmitOMPAtomicSimpleUpdateExpr(
+ XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
+ // OpenMP, 2.12.6, atomic Construct
+ // Any atomic construct with a seq_cst clause forces the atomically
+ // performed operation to include an implicit flush operation without a
+ // list.
+ if (IsSeqCst)
+ CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
+}
+
+static RValue convertToType(CodeGenFunction &CGF, RValue Value,
+ QualType SourceType, QualType ResType,
+ SourceLocation Loc) {
+ switch (CGF.getEvaluationKind(ResType)) {
+ case TEK_Scalar:
+ return RValue::get(
+ convertToScalarValue(CGF, Value, SourceType, ResType, Loc));
+ case TEK_Complex: {
+ auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc);
+ return RValue::getComplex(Res.first, Res.second);
+ }
+ case TEK_Aggregate:
+ break;
+ }
+ llvm_unreachable("Must be a scalar or complex.");
+}
+
+static void EmitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst,
+ bool IsPostfixUpdate, const Expr *V,
+ const Expr *X, const Expr *E,
+ const Expr *UE, bool IsXLHSInRHSPart,
+ SourceLocation Loc) {
+ assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue");
+ assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue");
+ RValue NewVVal;
+ LValue VLValue = CGF.EmitLValue(V);
+ LValue XLValue = CGF.EmitLValue(X);
+ RValue ExprRValue = CGF.EmitAnyExpr(E);
+ auto AO = IsSeqCst ? llvm::SequentiallyConsistent : llvm::Monotonic;
+ QualType NewVValType;
+ if (UE) {
+ // 'x' is updated with some additional value.
+ assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
+ "Update expr in 'atomic capture' must be a binary operator.");
+ auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
+ // Update expressions are allowed to have the following forms:
+ // x binop= expr; -> xrval + expr;
+ // x++, ++x -> xrval + 1;
+ // x--, --x -> xrval - 1;
+ // x = x binop expr; -> xrval binop expr
+ // x = expr Op x; - > expr binop xrval;
+ auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
+ auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
+ auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
+ NewVValType = XRValExpr->getType();
+ auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
+ auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr,
+ IsSeqCst, IsPostfixUpdate](RValue XRValue) -> RValue {
+ CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
+ CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
+ RValue Res = CGF.EmitAnyExpr(UE);
+ NewVVal = IsPostfixUpdate ? XRValue : Res;
+ return Res;
+ };
+ auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
+ XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
+ if (Res.first) {
+ // 'atomicrmw' instruction was generated.
+ if (IsPostfixUpdate) {
+ // Use old value from 'atomicrmw'.
+ NewVVal = Res.second;
+ } else {
+ // 'atomicrmw' does not provide new value, so evaluate it using old
+ // value of 'x'.
+ CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
+ CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second);
+ NewVVal = CGF.EmitAnyExpr(UE);
+ }
+ }
+ } else {
+ // 'x' is simply rewritten with some 'expr'.
+ NewVValType = X->getType().getNonReferenceType();
+ ExprRValue = convertToType(CGF, ExprRValue, E->getType(),
+ X->getType().getNonReferenceType(), Loc);
+ auto &&Gen = [&CGF, &NewVVal, ExprRValue](RValue XRValue) -> RValue {
+ NewVVal = XRValue;
+ return ExprRValue;
+ };
+ // Try to perform atomicrmw xchg, otherwise simple exchange.
+ auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
+ XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO,
+ Loc, Gen);
+ if (Res.first) {
+ // 'atomicrmw' instruction was generated.
+ NewVVal = IsPostfixUpdate ? Res.second : ExprRValue;
+ }
+ }
+ // Emit post-update store to 'v' of old/new 'x' value.
+ emitSimpleStore(CGF, VLValue, NewVVal, NewVValType, Loc);
+ // OpenMP, 2.12.6, atomic Construct
+ // Any atomic construct with a seq_cst clause forces the atomically
+ // performed operation to include an implicit flush operation without a
+ // list.
+ if (IsSeqCst)
+ CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
+}
+
+static void EmitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind,
+ bool IsSeqCst, bool IsPostfixUpdate,
+ const Expr *X, const Expr *V, const Expr *E,
+ const Expr *UE, bool IsXLHSInRHSPart,
+ SourceLocation Loc) {
+ switch (Kind) {
+ case OMPC_read:
+ EmitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc);
+ break;
+ case OMPC_write:
+ EmitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc);
+ break;
+ case OMPC_unknown:
+ case OMPC_update:
+ EmitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc);
+ break;
+ case OMPC_capture:
+ EmitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE,
+ IsXLHSInRHSPart, Loc);
+ break;
+ case OMPC_if:
+ case OMPC_final:
+ case OMPC_num_threads:
+ case OMPC_private:
+ case OMPC_firstprivate:
+ case OMPC_lastprivate:
+ case OMPC_reduction:
+ case OMPC_safelen:
+ case OMPC_simdlen:
+ case OMPC_collapse:
+ case OMPC_default:
+ case OMPC_seq_cst:
+ case OMPC_shared:
+ case OMPC_linear:
+ case OMPC_aligned:
+ case OMPC_copyin:
+ case OMPC_copyprivate:
+ case OMPC_flush:
+ case OMPC_proc_bind:
+ case OMPC_schedule:
+ case OMPC_ordered:
+ case OMPC_nowait:
+ case OMPC_untied:
+ case OMPC_threadprivate:
+ case OMPC_depend:
+ case OMPC_mergeable:
+ case OMPC_device:
+ case OMPC_threads:
+ case OMPC_simd:
+ case OMPC_map:
+ case OMPC_num_teams:
+ case OMPC_thread_limit:
+ case OMPC_priority:
+ case OMPC_grainsize:
+ case OMPC_nogroup:
+ case OMPC_num_tasks:
+ case OMPC_hint:
+ llvm_unreachable("Clause is not allowed in 'omp atomic'.");
+ }
+}
+
+void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) {
+ bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>();
+ OpenMPClauseKind Kind = OMPC_unknown;
+ for (auto *C : S.clauses()) {
+ // Find first clause (skip seq_cst clause, if it is first).
+ if (C->getClauseKind() != OMPC_seq_cst) {
+ Kind = C->getClauseKind();
+ break;
+ }
+ }
+
+ const auto *CS =
+ S.getAssociatedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
+ if (const auto *EWC = dyn_cast<ExprWithCleanups>(CS)) {
+ enterFullExpression(EWC);
+ }
+ // Processing for statements under 'atomic capture'.
+ if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) {
+ for (const auto *C : Compound->body()) {
+ if (const auto *EWC = dyn_cast<ExprWithCleanups>(C)) {
+ enterFullExpression(EWC);
+ }
+ }
+ }
+
+ LexicalScope Scope(*this, S.getSourceRange());
+ auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF) {
+ CGF.EmitStopPoint(CS);
+ EmitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(),
+ S.getV(), S.getExpr(), S.getUpdateExpr(),
+ S.isXLHSInRHSPart(), S.getLocStart());
+ };
+ CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen);
+}
+
+void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) {
+ LexicalScope Scope(*this, S.getSourceRange());
+ const CapturedStmt &CS = *cast<CapturedStmt>(S.getAssociatedStmt());
+
+ llvm::SmallVector<llvm::Value *, 16> CapturedVars;
+ GenerateOpenMPCapturedVars(CS, CapturedVars);
+
+ llvm::Function *Fn = nullptr;
+ llvm::Constant *FnID = nullptr;
+
+ // Check if we have any if clause associated with the directive.
+ const Expr *IfCond = nullptr;
+
+ if (auto *C = S.getSingleClause<OMPIfClause>()) {
+ IfCond = C->getCondition();
+ }
+
+ // Check if we have any device clause associated with the directive.
+ const Expr *Device = nullptr;
+ if (auto *C = S.getSingleClause<OMPDeviceClause>()) {
+ Device = C->getDevice();
+ }
+
+ // Check if we have an if clause whose conditional always evaluates to false
+ // or if we do not have any targets specified. If so the target region is not
+ // an offload entry point.
+ bool IsOffloadEntry = true;
+ if (IfCond) {
+ bool Val;
+ if (ConstantFoldsToSimpleInteger(IfCond, Val) && !Val)
+ IsOffloadEntry = false;
+ }
+ if (CGM.getLangOpts().OMPTargetTriples.empty())
+ IsOffloadEntry = false;
+
+ assert(CurFuncDecl && "No parent declaration for target region!");
+ StringRef ParentName;
+ // In case we have Ctors/Dtors we use the complete type variant to produce
+ // the mangling of the device outlined kernel.
+ if (auto *D = dyn_cast<CXXConstructorDecl>(CurFuncDecl))
+ ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete));
+ else if (auto *D = dyn_cast<CXXDestructorDecl>(CurFuncDecl))
+ ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete));
+ else
+ ParentName =
+ CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CurFuncDecl)));
+
+ CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID,
+ IsOffloadEntry);
+
+ CGM.getOpenMPRuntime().emitTargetCall(*this, S, Fn, FnID, IfCond, Device,
+ CapturedVars);
+}
+
+void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &) {
+ llvm_unreachable("CodeGen for 'omp teams' is not supported yet.");
+}
+
+void CodeGenFunction::EmitOMPCancellationPointDirective(
+ const OMPCancellationPointDirective &S) {
+ CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getLocStart(),
+ S.getCancelRegion());
+}
+
+void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) {
+ const Expr *IfCond = nullptr;
+ for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
+ if (C->getNameModifier() == OMPD_unknown ||
+ C->getNameModifier() == OMPD_cancel) {
+ IfCond = C->getCondition();
+ break;
+ }
+ }
+ CGM.getOpenMPRuntime().emitCancelCall(*this, S.getLocStart(), IfCond,
+ S.getCancelRegion());
+}
+
+CodeGenFunction::JumpDest
+CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) {
+ if (Kind == OMPD_parallel || Kind == OMPD_task)
+ return ReturnBlock;
+ assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections ||
+ Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for);
+ return BreakContinueStack.back().BreakBlock;
+}
+
+// Generate the instructions for '#pragma omp target data' directive.
+void CodeGenFunction::EmitOMPTargetDataDirective(
+ const OMPTargetDataDirective &S) {
+ // emit the code inside the construct for now
+ auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
+ CGM.getOpenMPRuntime().emitInlinedDirective(
+ *this, OMPD_target_data,
+ [&CS](CodeGenFunction &CGF) { CGF.EmitStmt(CS->getCapturedStmt()); });
+}
+
+void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) {
+ // emit the code inside the construct for now
+ auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
+ CGM.getOpenMPRuntime().emitInlinedDirective(
+ *this, OMPD_taskloop,
+ [&CS](CodeGenFunction &CGF) { CGF.EmitStmt(CS->getCapturedStmt()); });
+}
+
+void CodeGenFunction::EmitOMPTaskLoopSimdDirective(
+ const OMPTaskLoopSimdDirective &S) {
+ // emit the code inside the construct for now
+ auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
+ CGM.getOpenMPRuntime().emitInlinedDirective(
+ *this, OMPD_taskloop_simd,
+ [&CS](CodeGenFunction &CGF) { CGF.EmitStmt(CS->getCapturedStmt()); });
+}
+
OpenPOWER on IntegriCloud