diff options
Diffstat (limited to 'contrib/llvm/tools/clang/lib/CodeGen/CGExprScalar.cpp')
-rw-r--r-- | contrib/llvm/tools/clang/lib/CodeGen/CGExprScalar.cpp | 3359 |
1 files changed, 3359 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGExprScalar.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGExprScalar.cpp new file mode 100644 index 0000000..f3a5387 --- /dev/null +++ b/contrib/llvm/tools/clang/lib/CodeGen/CGExprScalar.cpp @@ -0,0 +1,3359 @@ +//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This contains code to emit Expr nodes with scalar LLVM types as LLVM code. +// +//===----------------------------------------------------------------------===// + +#include "CodeGenFunction.h" +#include "CGCXXABI.h" +#include "CGDebugInfo.h" +#include "CGObjCRuntime.h" +#include "CodeGenModule.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/DeclObjC.h" +#include "clang/AST/RecordLayout.h" +#include "clang/AST/StmtVisitor.h" +#include "clang/Basic/TargetInfo.h" +#include "clang/Frontend/CodeGenOptions.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/Module.h" +#include "llvm/Support/CFG.h" +#include <cstdarg> + +using namespace clang; +using namespace CodeGen; +using llvm::Value; + +//===----------------------------------------------------------------------===// +// Scalar Expression Emitter +//===----------------------------------------------------------------------===// + +namespace { +struct BinOpInfo { + Value *LHS; + Value *RHS; + QualType Ty; // Computation Type. + BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform + bool FPContractable; + const Expr *E; // Entire expr, for error unsupported. May not be binop. +}; + +static bool MustVisitNullValue(const Expr *E) { + // If a null pointer expression's type is the C++0x nullptr_t, then + // it's not necessarily a simple constant and it must be evaluated + // for its potential side effects. + return E->getType()->isNullPtrType(); +} + +class ScalarExprEmitter + : public StmtVisitor<ScalarExprEmitter, Value*> { + CodeGenFunction &CGF; + CGBuilderTy &Builder; + bool IgnoreResultAssign; + llvm::LLVMContext &VMContext; +public: + + ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) + : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), + VMContext(cgf.getLLVMContext()) { + } + + //===--------------------------------------------------------------------===// + // Utilities + //===--------------------------------------------------------------------===// + + bool TestAndClearIgnoreResultAssign() { + bool I = IgnoreResultAssign; + IgnoreResultAssign = false; + return I; + } + + llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } + LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } + LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { + return CGF.EmitCheckedLValue(E, TCK); + } + + void EmitBinOpCheck(Value *Check, const BinOpInfo &Info); + + Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { + return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); + } + + /// EmitLoadOfLValue - Given an expression with complex type that represents a + /// value l-value, this method emits the address of the l-value, then loads + /// and returns the result. + Value *EmitLoadOfLValue(const Expr *E) { + return EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), + E->getExprLoc()); + } + + /// EmitConversionToBool - Convert the specified expression value to a + /// boolean (i1) truth value. This is equivalent to "Val != 0". + Value *EmitConversionToBool(Value *Src, QualType DstTy); + + /// \brief Emit a check that a conversion to or from a floating-point type + /// does not overflow. + void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, + Value *Src, QualType SrcType, + QualType DstType, llvm::Type *DstTy); + + /// EmitScalarConversion - Emit a conversion from the specified type to the + /// specified destination type, both of which are LLVM scalar types. + Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy); + + /// EmitComplexToScalarConversion - Emit a conversion from the specified + /// complex type to the specified destination type, where the destination type + /// is an LLVM scalar type. + Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, + QualType SrcTy, QualType DstTy); + + /// EmitNullValue - Emit a value that corresponds to null for the given type. + Value *EmitNullValue(QualType Ty); + + /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. + Value *EmitFloatToBoolConversion(Value *V) { + // Compare against 0.0 for fp scalars. + llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); + return Builder.CreateFCmpUNE(V, Zero, "tobool"); + } + + /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. + Value *EmitPointerToBoolConversion(Value *V) { + Value *Zero = llvm::ConstantPointerNull::get( + cast<llvm::PointerType>(V->getType())); + return Builder.CreateICmpNE(V, Zero, "tobool"); + } + + Value *EmitIntToBoolConversion(Value *V) { + // Because of the type rules of C, we often end up computing a + // logical value, then zero extending it to int, then wanting it + // as a logical value again. Optimize this common case. + if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { + if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { + Value *Result = ZI->getOperand(0); + // If there aren't any more uses, zap the instruction to save space. + // Note that there can be more uses, for example if this + // is the result of an assignment. + if (ZI->use_empty()) + ZI->eraseFromParent(); + return Result; + } + } + + return Builder.CreateIsNotNull(V, "tobool"); + } + + //===--------------------------------------------------------------------===// + // Visitor Methods + //===--------------------------------------------------------------------===// + + Value *Visit(Expr *E) { + return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); + } + + Value *VisitStmt(Stmt *S) { + S->dump(CGF.getContext().getSourceManager()); + llvm_unreachable("Stmt can't have complex result type!"); + } + Value *VisitExpr(Expr *S); + + Value *VisitParenExpr(ParenExpr *PE) { + return Visit(PE->getSubExpr()); + } + Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { + return Visit(E->getReplacement()); + } + Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { + return Visit(GE->getResultExpr()); + } + + // Leaves. + Value *VisitIntegerLiteral(const IntegerLiteral *E) { + return Builder.getInt(E->getValue()); + } + Value *VisitFloatingLiteral(const FloatingLiteral *E) { + return llvm::ConstantFP::get(VMContext, E->getValue()); + } + Value *VisitCharacterLiteral(const CharacterLiteral *E) { + return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); + } + Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { + return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); + } + Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { + return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); + } + Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { + return EmitNullValue(E->getType()); + } + Value *VisitGNUNullExpr(const GNUNullExpr *E) { + return EmitNullValue(E->getType()); + } + Value *VisitOffsetOfExpr(OffsetOfExpr *E); + Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); + Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { + llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); + return Builder.CreateBitCast(V, ConvertType(E->getType())); + } + + Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { + return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); + } + + Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { + return CGF.EmitPseudoObjectRValue(E).getScalarVal(); + } + + Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { + if (E->isGLValue()) + return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc()); + + // Otherwise, assume the mapping is the scalar directly. + return CGF.getOpaqueRValueMapping(E).getScalarVal(); + } + + // l-values. + Value *VisitDeclRefExpr(DeclRefExpr *E) { + if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) { + if (result.isReference()) + return EmitLoadOfLValue(result.getReferenceLValue(CGF, E), + E->getExprLoc()); + return result.getValue(); + } + return EmitLoadOfLValue(E); + } + + Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { + return CGF.EmitObjCSelectorExpr(E); + } + Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { + return CGF.EmitObjCProtocolExpr(E); + } + Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { + return EmitLoadOfLValue(E); + } + Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { + if (E->getMethodDecl() && + E->getMethodDecl()->getResultType()->isReferenceType()) + return EmitLoadOfLValue(E); + return CGF.EmitObjCMessageExpr(E).getScalarVal(); + } + + Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { + LValue LV = CGF.EmitObjCIsaExpr(E); + Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); + return V; + } + + Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); + Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); + Value *VisitConvertVectorExpr(ConvertVectorExpr *E); + Value *VisitMemberExpr(MemberExpr *E); + Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } + Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { + return EmitLoadOfLValue(E); + } + + Value *VisitInitListExpr(InitListExpr *E); + + Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { + return EmitNullValue(E->getType()); + } + Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { + if (E->getType()->isVariablyModifiedType()) + CGF.EmitVariablyModifiedType(E->getType()); + return VisitCastExpr(E); + } + Value *VisitCastExpr(CastExpr *E); + + Value *VisitCallExpr(const CallExpr *E) { + if (E->getCallReturnType()->isReferenceType()) + return EmitLoadOfLValue(E); + + return CGF.EmitCallExpr(E).getScalarVal(); + } + + Value *VisitStmtExpr(const StmtExpr *E); + + // Unary Operators. + Value *VisitUnaryPostDec(const UnaryOperator *E) { + LValue LV = EmitLValue(E->getSubExpr()); + return EmitScalarPrePostIncDec(E, LV, false, false); + } + Value *VisitUnaryPostInc(const UnaryOperator *E) { + LValue LV = EmitLValue(E->getSubExpr()); + return EmitScalarPrePostIncDec(E, LV, true, false); + } + Value *VisitUnaryPreDec(const UnaryOperator *E) { + LValue LV = EmitLValue(E->getSubExpr()); + return EmitScalarPrePostIncDec(E, LV, false, true); + } + Value *VisitUnaryPreInc(const UnaryOperator *E) { + LValue LV = EmitLValue(E->getSubExpr()); + return EmitScalarPrePostIncDec(E, LV, true, true); + } + + llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E, + llvm::Value *InVal, + llvm::Value *NextVal, + bool IsInc); + + llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, + bool isInc, bool isPre); + + + Value *VisitUnaryAddrOf(const UnaryOperator *E) { + if (isa<MemberPointerType>(E->getType())) // never sugared + return CGF.CGM.getMemberPointerConstant(E); + + return EmitLValue(E->getSubExpr()).getAddress(); + } + Value *VisitUnaryDeref(const UnaryOperator *E) { + if (E->getType()->isVoidType()) + return Visit(E->getSubExpr()); // the actual value should be unused + return EmitLoadOfLValue(E); + } + Value *VisitUnaryPlus(const UnaryOperator *E) { + // This differs from gcc, though, most likely due to a bug in gcc. + TestAndClearIgnoreResultAssign(); + return Visit(E->getSubExpr()); + } + Value *VisitUnaryMinus (const UnaryOperator *E); + Value *VisitUnaryNot (const UnaryOperator *E); + Value *VisitUnaryLNot (const UnaryOperator *E); + Value *VisitUnaryReal (const UnaryOperator *E); + Value *VisitUnaryImag (const UnaryOperator *E); + Value *VisitUnaryExtension(const UnaryOperator *E) { + return Visit(E->getSubExpr()); + } + + // C++ + Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { + return EmitLoadOfLValue(E); + } + + Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { + return Visit(DAE->getExpr()); + } + Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { + CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); + return Visit(DIE->getExpr()); + } + Value *VisitCXXThisExpr(CXXThisExpr *TE) { + return CGF.LoadCXXThis(); + } + + Value *VisitExprWithCleanups(ExprWithCleanups *E) { + CGF.enterFullExpression(E); + CodeGenFunction::RunCleanupsScope Scope(CGF); + return Visit(E->getSubExpr()); + } + Value *VisitCXXNewExpr(const CXXNewExpr *E) { + return CGF.EmitCXXNewExpr(E); + } + Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { + CGF.EmitCXXDeleteExpr(E); + return 0; + } + Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) { + return Builder.getInt1(E->getValue()); + } + + Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) { + return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); + } + + Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { + return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); + } + + Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { + return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); + } + + Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { + // C++ [expr.pseudo]p1: + // The result shall only be used as the operand for the function call + // operator (), and the result of such a call has type void. The only + // effect is the evaluation of the postfix-expression before the dot or + // arrow. + CGF.EmitScalarExpr(E->getBase()); + return 0; + } + + Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { + return EmitNullValue(E->getType()); + } + + Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { + CGF.EmitCXXThrowExpr(E); + return 0; + } + + Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { + return Builder.getInt1(E->getValue()); + } + + // Binary Operators. + Value *EmitMul(const BinOpInfo &Ops) { + if (Ops.Ty->isSignedIntegerOrEnumerationType()) { + switch (CGF.getLangOpts().getSignedOverflowBehavior()) { + case LangOptions::SOB_Defined: + return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); + case LangOptions::SOB_Undefined: + if (!CGF.SanOpts->SignedIntegerOverflow) + return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); + // Fall through. + case LangOptions::SOB_Trapping: + return EmitOverflowCheckedBinOp(Ops); + } + } + + if (Ops.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow) + return EmitOverflowCheckedBinOp(Ops); + + if (Ops.LHS->getType()->isFPOrFPVectorTy()) + return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); + return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); + } + /// Create a binary op that checks for overflow. + /// Currently only supports +, - and *. + Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); + + // Check for undefined division and modulus behaviors. + void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, + llvm::Value *Zero,bool isDiv); + // Common helper for getting how wide LHS of shift is. + static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); + Value *EmitDiv(const BinOpInfo &Ops); + Value *EmitRem(const BinOpInfo &Ops); + Value *EmitAdd(const BinOpInfo &Ops); + Value *EmitSub(const BinOpInfo &Ops); + Value *EmitShl(const BinOpInfo &Ops); + Value *EmitShr(const BinOpInfo &Ops); + Value *EmitAnd(const BinOpInfo &Ops) { + return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); + } + Value *EmitXor(const BinOpInfo &Ops) { + return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); + } + Value *EmitOr (const BinOpInfo &Ops) { + return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); + } + + BinOpInfo EmitBinOps(const BinaryOperator *E); + LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, + Value *(ScalarExprEmitter::*F)(const BinOpInfo &), + Value *&Result); + + Value *EmitCompoundAssign(const CompoundAssignOperator *E, + Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); + + // Binary operators and binary compound assignment operators. +#define HANDLEBINOP(OP) \ + Value *VisitBin ## OP(const BinaryOperator *E) { \ + return Emit ## OP(EmitBinOps(E)); \ + } \ + Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ + return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ + } + HANDLEBINOP(Mul) + HANDLEBINOP(Div) + HANDLEBINOP(Rem) + HANDLEBINOP(Add) + HANDLEBINOP(Sub) + HANDLEBINOP(Shl) + HANDLEBINOP(Shr) + HANDLEBINOP(And) + HANDLEBINOP(Xor) + HANDLEBINOP(Or) +#undef HANDLEBINOP + + // Comparisons. + Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc, + unsigned SICmpOpc, unsigned FCmpOpc); +#define VISITCOMP(CODE, UI, SI, FP) \ + Value *VisitBin##CODE(const BinaryOperator *E) { \ + return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ + llvm::FCmpInst::FP); } + VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) + VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) + VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) + VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) + VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) + VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) +#undef VISITCOMP + + Value *VisitBinAssign (const BinaryOperator *E); + + Value *VisitBinLAnd (const BinaryOperator *E); + Value *VisitBinLOr (const BinaryOperator *E); + Value *VisitBinComma (const BinaryOperator *E); + + Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } + Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } + + // Other Operators. + Value *VisitBlockExpr(const BlockExpr *BE); + Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); + Value *VisitChooseExpr(ChooseExpr *CE); + Value *VisitVAArgExpr(VAArgExpr *VE); + Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { + return CGF.EmitObjCStringLiteral(E); + } + Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { + return CGF.EmitObjCBoxedExpr(E); + } + Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { + return CGF.EmitObjCArrayLiteral(E); + } + Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { + return CGF.EmitObjCDictionaryLiteral(E); + } + Value *VisitAsTypeExpr(AsTypeExpr *CE); + Value *VisitAtomicExpr(AtomicExpr *AE); +}; +} // end anonymous namespace. + +//===----------------------------------------------------------------------===// +// Utilities +//===----------------------------------------------------------------------===// + +/// EmitConversionToBool - Convert the specified expression value to a +/// boolean (i1) truth value. This is equivalent to "Val != 0". +Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { + assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); + + if (SrcType->isRealFloatingType()) + return EmitFloatToBoolConversion(Src); + + if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) + return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); + + assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && + "Unknown scalar type to convert"); + + if (isa<llvm::IntegerType>(Src->getType())) + return EmitIntToBoolConversion(Src); + + assert(isa<llvm::PointerType>(Src->getType())); + return EmitPointerToBoolConversion(Src); +} + +void ScalarExprEmitter::EmitFloatConversionCheck(Value *OrigSrc, + QualType OrigSrcType, + Value *Src, QualType SrcType, + QualType DstType, + llvm::Type *DstTy) { + using llvm::APFloat; + using llvm::APSInt; + + llvm::Type *SrcTy = Src->getType(); + + llvm::Value *Check = 0; + if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { + // Integer to floating-point. This can fail for unsigned short -> __half + // or unsigned __int128 -> float. + assert(DstType->isFloatingType()); + bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); + + APFloat LargestFloat = + APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); + APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); + + bool IsExact; + if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, + &IsExact) != APFloat::opOK) + // The range of representable values of this floating point type includes + // all values of this integer type. Don't need an overflow check. + return; + + llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); + if (SrcIsUnsigned) + Check = Builder.CreateICmpULE(Src, Max); + else { + llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); + llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); + llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); + Check = Builder.CreateAnd(GE, LE); + } + } else { + const llvm::fltSemantics &SrcSema = + CGF.getContext().getFloatTypeSemantics(OrigSrcType); + if (isa<llvm::IntegerType>(DstTy)) { + // Floating-point to integer. This has undefined behavior if the source is + // +-Inf, NaN, or doesn't fit into the destination type (after truncation + // to an integer). + unsigned Width = CGF.getContext().getIntWidth(DstType); + bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); + + APSInt Min = APSInt::getMinValue(Width, Unsigned); + APFloat MinSrc(SrcSema, APFloat::uninitialized); + if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & + APFloat::opOverflow) + // Don't need an overflow check for lower bound. Just check for + // -Inf/NaN. + MinSrc = APFloat::getInf(SrcSema, true); + else + // Find the largest value which is too small to represent (before + // truncation toward zero). + MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); + + APSInt Max = APSInt::getMaxValue(Width, Unsigned); + APFloat MaxSrc(SrcSema, APFloat::uninitialized); + if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & + APFloat::opOverflow) + // Don't need an overflow check for upper bound. Just check for + // +Inf/NaN. + MaxSrc = APFloat::getInf(SrcSema, false); + else + // Find the smallest value which is too large to represent (before + // truncation toward zero). + MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); + + // If we're converting from __half, convert the range to float to match + // the type of src. + if (OrigSrcType->isHalfType()) { + const llvm::fltSemantics &Sema = + CGF.getContext().getFloatTypeSemantics(SrcType); + bool IsInexact; + MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); + MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); + } + + llvm::Value *GE = + Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); + llvm::Value *LE = + Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); + Check = Builder.CreateAnd(GE, LE); + } else { + // FIXME: Maybe split this sanitizer out from float-cast-overflow. + // + // Floating-point to floating-point. This has undefined behavior if the + // source is not in the range of representable values of the destination + // type. The C and C++ standards are spectacularly unclear here. We + // diagnose finite out-of-range conversions, but allow infinities and NaNs + // to convert to the corresponding value in the smaller type. + // + // C11 Annex F gives all such conversions defined behavior for IEC 60559 + // conforming implementations. Unfortunately, LLVM's fptrunc instruction + // does not. + + // Converting from a lower rank to a higher rank can never have + // undefined behavior, since higher-rank types must have a superset + // of values of lower-rank types. + if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1) + return; + + assert(!OrigSrcType->isHalfType() && + "should not check conversion from __half, it has the lowest rank"); + + const llvm::fltSemantics &DstSema = + CGF.getContext().getFloatTypeSemantics(DstType); + APFloat MinBad = APFloat::getLargest(DstSema, false); + APFloat MaxBad = APFloat::getInf(DstSema, false); + + bool IsInexact; + MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); + MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); + + Value *AbsSrc = CGF.EmitNounwindRuntimeCall( + CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src); + llvm::Value *GE = + Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad)); + llvm::Value *LE = + Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad)); + Check = Builder.CreateNot(Builder.CreateAnd(GE, LE)); + } + } + + // FIXME: Provide a SourceLocation. + llvm::Constant *StaticArgs[] = { + CGF.EmitCheckTypeDescriptor(OrigSrcType), + CGF.EmitCheckTypeDescriptor(DstType) + }; + CGF.EmitCheck(Check, "float_cast_overflow", StaticArgs, OrigSrc, + CodeGenFunction::CRK_Recoverable); +} + +/// EmitScalarConversion - Emit a conversion from the specified type to the +/// specified destination type, both of which are LLVM scalar types. +Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, + QualType DstType) { + SrcType = CGF.getContext().getCanonicalType(SrcType); + DstType = CGF.getContext().getCanonicalType(DstType); + if (SrcType == DstType) return Src; + + if (DstType->isVoidType()) return 0; + + llvm::Value *OrigSrc = Src; + QualType OrigSrcType = SrcType; + llvm::Type *SrcTy = Src->getType(); + + // If casting to/from storage-only half FP, use special intrinsics. + if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { + Src = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), Src); + SrcType = CGF.getContext().FloatTy; + SrcTy = CGF.FloatTy; + } + + // Handle conversions to bool first, they are special: comparisons against 0. + if (DstType->isBooleanType()) + return EmitConversionToBool(Src, SrcType); + + llvm::Type *DstTy = ConvertType(DstType); + + // Ignore conversions like int -> uint. + if (SrcTy == DstTy) + return Src; + + // Handle pointer conversions next: pointers can only be converted to/from + // other pointers and integers. Check for pointer types in terms of LLVM, as + // some native types (like Obj-C id) may map to a pointer type. + if (isa<llvm::PointerType>(DstTy)) { + // The source value may be an integer, or a pointer. + if (isa<llvm::PointerType>(SrcTy)) + return Builder.CreateBitCast(Src, DstTy, "conv"); + + assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); + // First, convert to the correct width so that we control the kind of + // extension. + llvm::Type *MiddleTy = CGF.IntPtrTy; + bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); + llvm::Value* IntResult = + Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); + // Then, cast to pointer. + return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); + } + + if (isa<llvm::PointerType>(SrcTy)) { + // Must be an ptr to int cast. + assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); + return Builder.CreatePtrToInt(Src, DstTy, "conv"); + } + + // A scalar can be splatted to an extended vector of the same element type + if (DstType->isExtVectorType() && !SrcType->isVectorType()) { + // Cast the scalar to element type + QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType(); + llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy); + + // Splat the element across to all elements + unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); + return Builder.CreateVectorSplat(NumElements, Elt, "splat"); + } + + // Allow bitcast from vector to integer/fp of the same size. + if (isa<llvm::VectorType>(SrcTy) || + isa<llvm::VectorType>(DstTy)) + return Builder.CreateBitCast(Src, DstTy, "conv"); + + // Finally, we have the arithmetic types: real int/float. + Value *Res = NULL; + llvm::Type *ResTy = DstTy; + + // An overflowing conversion has undefined behavior if either the source type + // or the destination type is a floating-point type. + if (CGF.SanOpts->FloatCastOverflow && + (OrigSrcType->isFloatingType() || DstType->isFloatingType())) + EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, + DstTy); + + // Cast to half via float + if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) + DstTy = CGF.FloatTy; + + if (isa<llvm::IntegerType>(SrcTy)) { + bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); + if (isa<llvm::IntegerType>(DstTy)) + Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); + else if (InputSigned) + Res = Builder.CreateSIToFP(Src, DstTy, "conv"); + else + Res = Builder.CreateUIToFP(Src, DstTy, "conv"); + } else if (isa<llvm::IntegerType>(DstTy)) { + assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); + if (DstType->isSignedIntegerOrEnumerationType()) + Res = Builder.CreateFPToSI(Src, DstTy, "conv"); + else + Res = Builder.CreateFPToUI(Src, DstTy, "conv"); + } else { + assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && + "Unknown real conversion"); + if (DstTy->getTypeID() < SrcTy->getTypeID()) + Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); + else + Res = Builder.CreateFPExt(Src, DstTy, "conv"); + } + + if (DstTy != ResTy) { + assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); + Res = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), Res); + } + + return Res; +} + +/// EmitComplexToScalarConversion - Emit a conversion from the specified complex +/// type to the specified destination type, where the destination type is an +/// LLVM scalar type. +Value *ScalarExprEmitter:: +EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, + QualType SrcTy, QualType DstTy) { + // Get the source element type. + SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); + + // Handle conversions to bool first, they are special: comparisons against 0. + if (DstTy->isBooleanType()) { + // Complex != 0 -> (Real != 0) | (Imag != 0) + Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy); + Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy); + return Builder.CreateOr(Src.first, Src.second, "tobool"); + } + + // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, + // the imaginary part of the complex value is discarded and the value of the + // real part is converted according to the conversion rules for the + // corresponding real type. + return EmitScalarConversion(Src.first, SrcTy, DstTy); +} + +Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { + return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); +} + +/// \brief Emit a sanitization check for the given "binary" operation (which +/// might actually be a unary increment which has been lowered to a binary +/// operation). The check passes if \p Check, which is an \c i1, is \c true. +void ScalarExprEmitter::EmitBinOpCheck(Value *Check, const BinOpInfo &Info) { + StringRef CheckName; + SmallVector<llvm::Constant *, 4> StaticData; + SmallVector<llvm::Value *, 2> DynamicData; + + BinaryOperatorKind Opcode = Info.Opcode; + if (BinaryOperator::isCompoundAssignmentOp(Opcode)) + Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); + + StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); + const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); + if (UO && UO->getOpcode() == UO_Minus) { + CheckName = "negate_overflow"; + StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); + DynamicData.push_back(Info.RHS); + } else { + if (BinaryOperator::isShiftOp(Opcode)) { + // Shift LHS negative or too large, or RHS out of bounds. + CheckName = "shift_out_of_bounds"; + const BinaryOperator *BO = cast<BinaryOperator>(Info.E); + StaticData.push_back( + CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); + StaticData.push_back( + CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); + } else if (Opcode == BO_Div || Opcode == BO_Rem) { + // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). + CheckName = "divrem_overflow"; + StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); + } else { + // Signed arithmetic overflow (+, -, *). + switch (Opcode) { + case BO_Add: CheckName = "add_overflow"; break; + case BO_Sub: CheckName = "sub_overflow"; break; + case BO_Mul: CheckName = "mul_overflow"; break; + default: llvm_unreachable("unexpected opcode for bin op check"); + } + StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); + } + DynamicData.push_back(Info.LHS); + DynamicData.push_back(Info.RHS); + } + + CGF.EmitCheck(Check, CheckName, StaticData, DynamicData, + CodeGenFunction::CRK_Recoverable); +} + +//===----------------------------------------------------------------------===// +// Visitor Methods +//===----------------------------------------------------------------------===// + +Value *ScalarExprEmitter::VisitExpr(Expr *E) { + CGF.ErrorUnsupported(E, "scalar expression"); + if (E->getType()->isVoidType()) + return 0; + return llvm::UndefValue::get(CGF.ConvertType(E->getType())); +} + +Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { + // Vector Mask Case + if (E->getNumSubExprs() == 2 || + (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) { + Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); + Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); + Value *Mask; + + llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); + unsigned LHSElts = LTy->getNumElements(); + + if (E->getNumSubExprs() == 3) { + Mask = CGF.EmitScalarExpr(E->getExpr(2)); + + // Shuffle LHS & RHS into one input vector. + SmallVector<llvm::Constant*, 32> concat; + for (unsigned i = 0; i != LHSElts; ++i) { + concat.push_back(Builder.getInt32(2*i)); + concat.push_back(Builder.getInt32(2*i+1)); + } + + Value* CV = llvm::ConstantVector::get(concat); + LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat"); + LHSElts *= 2; + } else { + Mask = RHS; + } + + llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); + llvm::Constant* EltMask; + + EltMask = llvm::ConstantInt::get(MTy->getElementType(), + llvm::NextPowerOf2(LHSElts-1)-1); + + // Mask off the high bits of each shuffle index. + Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(), + EltMask); + Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); + + // newv = undef + // mask = mask & maskbits + // for each elt + // n = extract mask i + // x = extract val n + // newv = insert newv, x, i + llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), + MTy->getNumElements()); + Value* NewV = llvm::UndefValue::get(RTy); + for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { + Value *IIndx = Builder.getInt32(i); + Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); + Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext"); + + Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); + NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); + } + return NewV; + } + + Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); + Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); + + SmallVector<llvm::Constant*, 32> indices; + for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { + llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); + // Check for -1 and output it as undef in the IR. + if (Idx.isSigned() && Idx.isAllOnesValue()) + indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); + else + indices.push_back(Builder.getInt32(Idx.getZExtValue())); + } + + Value *SV = llvm::ConstantVector::get(indices); + return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); +} + +Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { + QualType SrcType = E->getSrcExpr()->getType(), + DstType = E->getType(); + + Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); + + SrcType = CGF.getContext().getCanonicalType(SrcType); + DstType = CGF.getContext().getCanonicalType(DstType); + if (SrcType == DstType) return Src; + + assert(SrcType->isVectorType() && + "ConvertVector source type must be a vector"); + assert(DstType->isVectorType() && + "ConvertVector destination type must be a vector"); + + llvm::Type *SrcTy = Src->getType(); + llvm::Type *DstTy = ConvertType(DstType); + + // Ignore conversions like int -> uint. + if (SrcTy == DstTy) + return Src; + + QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(), + DstEltType = DstType->getAs<VectorType>()->getElementType(); + + assert(SrcTy->isVectorTy() && + "ConvertVector source IR type must be a vector"); + assert(DstTy->isVectorTy() && + "ConvertVector destination IR type must be a vector"); + + llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), + *DstEltTy = DstTy->getVectorElementType(); + + if (DstEltType->isBooleanType()) { + assert((SrcEltTy->isFloatingPointTy() || + isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); + + llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); + if (SrcEltTy->isFloatingPointTy()) { + return Builder.CreateFCmpUNE(Src, Zero, "tobool"); + } else { + return Builder.CreateICmpNE(Src, Zero, "tobool"); + } + } + + // We have the arithmetic types: real int/float. + Value *Res = NULL; + + if (isa<llvm::IntegerType>(SrcEltTy)) { + bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); + if (isa<llvm::IntegerType>(DstEltTy)) + Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); + else if (InputSigned) + Res = Builder.CreateSIToFP(Src, DstTy, "conv"); + else + Res = Builder.CreateUIToFP(Src, DstTy, "conv"); + } else if (isa<llvm::IntegerType>(DstEltTy)) { + assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); + if (DstEltType->isSignedIntegerOrEnumerationType()) + Res = Builder.CreateFPToSI(Src, DstTy, "conv"); + else + Res = Builder.CreateFPToUI(Src, DstTy, "conv"); + } else { + assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && + "Unknown real conversion"); + if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) + Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); + else + Res = Builder.CreateFPExt(Src, DstTy, "conv"); + } + + return Res; +} + +Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { + llvm::APSInt Value; + if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) { + if (E->isArrow()) + CGF.EmitScalarExpr(E->getBase()); + else + EmitLValue(E->getBase()); + return Builder.getInt(Value); + } + + return EmitLoadOfLValue(E); +} + +Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { + TestAndClearIgnoreResultAssign(); + + // Emit subscript expressions in rvalue context's. For most cases, this just + // loads the lvalue formed by the subscript expr. However, we have to be + // careful, because the base of a vector subscript is occasionally an rvalue, + // so we can't get it as an lvalue. + if (!E->getBase()->getType()->isVectorType()) + return EmitLoadOfLValue(E); + + // Handle the vector case. The base must be a vector, the index must be an + // integer value. + Value *Base = Visit(E->getBase()); + Value *Idx = Visit(E->getIdx()); + QualType IdxTy = E->getIdx()->getType(); + + if (CGF.SanOpts->ArrayBounds) + CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); + + bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); + Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast"); + return Builder.CreateExtractElement(Base, Idx, "vecext"); +} + +static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, + unsigned Off, llvm::Type *I32Ty) { + int MV = SVI->getMaskValue(Idx); + if (MV == -1) + return llvm::UndefValue::get(I32Ty); + return llvm::ConstantInt::get(I32Ty, Off+MV); +} + +Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { + bool Ignore = TestAndClearIgnoreResultAssign(); + (void)Ignore; + assert (Ignore == false && "init list ignored"); + unsigned NumInitElements = E->getNumInits(); + + if (E->hadArrayRangeDesignator()) + CGF.ErrorUnsupported(E, "GNU array range designator extension"); + + llvm::VectorType *VType = + dyn_cast<llvm::VectorType>(ConvertType(E->getType())); + + if (!VType) { + if (NumInitElements == 0) { + // C++11 value-initialization for the scalar. + return EmitNullValue(E->getType()); + } + // We have a scalar in braces. Just use the first element. + return Visit(E->getInit(0)); + } + + unsigned ResElts = VType->getNumElements(); + + // Loop over initializers collecting the Value for each, and remembering + // whether the source was swizzle (ExtVectorElementExpr). This will allow + // us to fold the shuffle for the swizzle into the shuffle for the vector + // initializer, since LLVM optimizers generally do not want to touch + // shuffles. + unsigned CurIdx = 0; + bool VIsUndefShuffle = false; + llvm::Value *V = llvm::UndefValue::get(VType); + for (unsigned i = 0; i != NumInitElements; ++i) { + Expr *IE = E->getInit(i); + Value *Init = Visit(IE); + SmallVector<llvm::Constant*, 16> Args; + + llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); + + // Handle scalar elements. If the scalar initializer is actually one + // element of a different vector of the same width, use shuffle instead of + // extract+insert. + if (!VVT) { + if (isa<ExtVectorElementExpr>(IE)) { + llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); + + if (EI->getVectorOperandType()->getNumElements() == ResElts) { + llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); + Value *LHS = 0, *RHS = 0; + if (CurIdx == 0) { + // insert into undef -> shuffle (src, undef) + Args.push_back(C); + Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); + + LHS = EI->getVectorOperand(); + RHS = V; + VIsUndefShuffle = true; + } else if (VIsUndefShuffle) { + // insert into undefshuffle && size match -> shuffle (v, src) + llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); + for (unsigned j = 0; j != CurIdx; ++j) + Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); + Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); + Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); + + LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); + RHS = EI->getVectorOperand(); + VIsUndefShuffle = false; + } + if (!Args.empty()) { + llvm::Constant *Mask = llvm::ConstantVector::get(Args); + V = Builder.CreateShuffleVector(LHS, RHS, Mask); + ++CurIdx; + continue; + } + } + } + V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), + "vecinit"); + VIsUndefShuffle = false; + ++CurIdx; + continue; + } + + unsigned InitElts = VVT->getNumElements(); + + // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's + // input is the same width as the vector being constructed, generate an + // optimized shuffle of the swizzle input into the result. + unsigned Offset = (CurIdx == 0) ? 0 : ResElts; + if (isa<ExtVectorElementExpr>(IE)) { + llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); + Value *SVOp = SVI->getOperand(0); + llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); + + if (OpTy->getNumElements() == ResElts) { + for (unsigned j = 0; j != CurIdx; ++j) { + // If the current vector initializer is a shuffle with undef, merge + // this shuffle directly into it. + if (VIsUndefShuffle) { + Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, + CGF.Int32Ty)); + } else { + Args.push_back(Builder.getInt32(j)); + } + } + for (unsigned j = 0, je = InitElts; j != je; ++j) + Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); + Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); + + if (VIsUndefShuffle) + V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); + + Init = SVOp; + } + } + + // Extend init to result vector length, and then shuffle its contribution + // to the vector initializer into V. + if (Args.empty()) { + for (unsigned j = 0; j != InitElts; ++j) + Args.push_back(Builder.getInt32(j)); + Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); + llvm::Constant *Mask = llvm::ConstantVector::get(Args); + Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), + Mask, "vext"); + + Args.clear(); + for (unsigned j = 0; j != CurIdx; ++j) + Args.push_back(Builder.getInt32(j)); + for (unsigned j = 0; j != InitElts; ++j) + Args.push_back(Builder.getInt32(j+Offset)); + Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); + } + + // If V is undef, make sure it ends up on the RHS of the shuffle to aid + // merging subsequent shuffles into this one. + if (CurIdx == 0) + std::swap(V, Init); + llvm::Constant *Mask = llvm::ConstantVector::get(Args); + V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); + VIsUndefShuffle = isa<llvm::UndefValue>(Init); + CurIdx += InitElts; + } + + // FIXME: evaluate codegen vs. shuffling against constant null vector. + // Emit remaining default initializers. + llvm::Type *EltTy = VType->getElementType(); + + // Emit remaining default initializers + for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { + Value *Idx = Builder.getInt32(CurIdx); + llvm::Value *Init = llvm::Constant::getNullValue(EltTy); + V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); + } + return V; +} + +static bool ShouldNullCheckClassCastValue(const CastExpr *CE) { + const Expr *E = CE->getSubExpr(); + + if (CE->getCastKind() == CK_UncheckedDerivedToBase) + return false; + + if (isa<CXXThisExpr>(E)) { + // We always assume that 'this' is never null. + return false; + } + + if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { + // And that glvalue casts are never null. + if (ICE->getValueKind() != VK_RValue) + return false; + } + + return true; +} + +// VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts +// have to handle a more broad range of conversions than explicit casts, as they +// handle things like function to ptr-to-function decay etc. +Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { + Expr *E = CE->getSubExpr(); + QualType DestTy = CE->getType(); + CastKind Kind = CE->getCastKind(); + + if (!DestTy->isVoidType()) + TestAndClearIgnoreResultAssign(); + + // Since almost all cast kinds apply to scalars, this switch doesn't have + // a default case, so the compiler will warn on a missing case. The cases + // are in the same order as in the CastKind enum. + switch (Kind) { + case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); + case CK_BuiltinFnToFnPtr: + llvm_unreachable("builtin functions are handled elsewhere"); + + case CK_LValueBitCast: + case CK_ObjCObjectLValueCast: { + Value *V = EmitLValue(E).getAddress(); + V = Builder.CreateBitCast(V, + ConvertType(CGF.getContext().getPointerType(DestTy))); + return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy), + CE->getExprLoc()); + } + + case CK_CPointerToObjCPointerCast: + case CK_BlockPointerToObjCPointerCast: + case CK_AnyPointerToBlockPointerCast: + case CK_BitCast: { + Value *Src = Visit(const_cast<Expr*>(E)); + return Builder.CreateBitCast(Src, ConvertType(DestTy)); + } + case CK_AtomicToNonAtomic: + case CK_NonAtomicToAtomic: + case CK_NoOp: + case CK_UserDefinedConversion: + return Visit(const_cast<Expr*>(E)); + + case CK_BaseToDerived: { + const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); + assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); + + llvm::Value *V = Visit(E); + + llvm::Value *Derived = + CGF.GetAddressOfDerivedClass(V, DerivedClassDecl, + CE->path_begin(), CE->path_end(), + ShouldNullCheckClassCastValue(CE)); + + // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is + // performed and the object is not of the derived type. + if (CGF.SanitizePerformTypeCheck) + CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), + Derived, DestTy->getPointeeType()); + + return Derived; + } + case CK_UncheckedDerivedToBase: + case CK_DerivedToBase: { + const CXXRecordDecl *DerivedClassDecl = + E->getType()->getPointeeCXXRecordDecl(); + assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!"); + + return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl, + CE->path_begin(), CE->path_end(), + ShouldNullCheckClassCastValue(CE)); + } + case CK_Dynamic: { + Value *V = Visit(const_cast<Expr*>(E)); + const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); + return CGF.EmitDynamicCast(V, DCE); + } + + case CK_ArrayToPointerDecay: { + assert(E->getType()->isArrayType() && + "Array to pointer decay must have array source type!"); + + Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays. + + // Note that VLA pointers are always decayed, so we don't need to do + // anything here. + if (!E->getType()->isVariableArrayType()) { + assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer"); + assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType()) + ->getElementType()) && + "Expected pointer to array"); + V = Builder.CreateStructGEP(V, 0, "arraydecay"); + } + + // Make sure the array decay ends up being the right type. This matters if + // the array type was of an incomplete type. + return CGF.Builder.CreateBitCast(V, ConvertType(CE->getType())); + } + case CK_FunctionToPointerDecay: + return EmitLValue(E).getAddress(); + + case CK_NullToPointer: + if (MustVisitNullValue(E)) + (void) Visit(E); + + return llvm::ConstantPointerNull::get( + cast<llvm::PointerType>(ConvertType(DestTy))); + + case CK_NullToMemberPointer: { + if (MustVisitNullValue(E)) + (void) Visit(E); + + const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); + return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); + } + + case CK_ReinterpretMemberPointer: + case CK_BaseToDerivedMemberPointer: + case CK_DerivedToBaseMemberPointer: { + Value *Src = Visit(E); + + // Note that the AST doesn't distinguish between checked and + // unchecked member pointer conversions, so we always have to + // implement checked conversions here. This is inefficient when + // actual control flow may be required in order to perform the + // check, which it is for data member pointers (but not member + // function pointers on Itanium and ARM). + return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); + } + + case CK_ARCProduceObject: + return CGF.EmitARCRetainScalarExpr(E); + case CK_ARCConsumeObject: + return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); + case CK_ARCReclaimReturnedObject: { + llvm::Value *value = Visit(E); + value = CGF.EmitARCRetainAutoreleasedReturnValue(value); + return CGF.EmitObjCConsumeObject(E->getType(), value); + } + case CK_ARCExtendBlockObject: + return CGF.EmitARCExtendBlockObject(E); + + case CK_CopyAndAutoreleaseBlockObject: + return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); + + case CK_FloatingRealToComplex: + case CK_FloatingComplexCast: + case CK_IntegralRealToComplex: + case CK_IntegralComplexCast: + case CK_IntegralComplexToFloatingComplex: + case CK_FloatingComplexToIntegralComplex: + case CK_ConstructorConversion: + case CK_ToUnion: + llvm_unreachable("scalar cast to non-scalar value"); + + case CK_LValueToRValue: + assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); + assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); + return Visit(const_cast<Expr*>(E)); + + case CK_IntegralToPointer: { + Value *Src = Visit(const_cast<Expr*>(E)); + + // First, convert to the correct width so that we control the kind of + // extension. + llvm::Type *MiddleTy = CGF.IntPtrTy; + bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); + llvm::Value* IntResult = + Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); + + return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy)); + } + case CK_PointerToIntegral: + assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); + return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy)); + + case CK_ToVoid: { + CGF.EmitIgnoredExpr(E); + return 0; + } + case CK_VectorSplat: { + llvm::Type *DstTy = ConvertType(DestTy); + Value *Elt = Visit(const_cast<Expr*>(E)); + Elt = EmitScalarConversion(Elt, E->getType(), + DestTy->getAs<VectorType>()->getElementType()); + + // Splat the element across to all elements + unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); + return Builder.CreateVectorSplat(NumElements, Elt, "splat");; + } + + case CK_IntegralCast: + case CK_IntegralToFloating: + case CK_FloatingToIntegral: + case CK_FloatingCast: + return EmitScalarConversion(Visit(E), E->getType(), DestTy); + case CK_IntegralToBoolean: + return EmitIntToBoolConversion(Visit(E)); + case CK_PointerToBoolean: + return EmitPointerToBoolConversion(Visit(E)); + case CK_FloatingToBoolean: + return EmitFloatToBoolConversion(Visit(E)); + case CK_MemberPointerToBoolean: { + llvm::Value *MemPtr = Visit(E); + const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); + return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); + } + + case CK_FloatingComplexToReal: + case CK_IntegralComplexToReal: + return CGF.EmitComplexExpr(E, false, true).first; + + case CK_FloatingComplexToBoolean: + case CK_IntegralComplexToBoolean: { + CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); + + // TODO: kill this function off, inline appropriate case here + return EmitComplexToScalarConversion(V, E->getType(), DestTy); + } + + case CK_ZeroToOCLEvent: { + assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non event type"); + return llvm::Constant::getNullValue(ConvertType(DestTy)); + } + + } + + llvm_unreachable("unknown scalar cast"); +} + +Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { + CodeGenFunction::StmtExprEvaluation eval(CGF); + llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), + !E->getType()->isVoidType()); + if (!RetAlloca) + return 0; + return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), + E->getExprLoc()); +} + +//===----------------------------------------------------------------------===// +// Unary Operators +//===----------------------------------------------------------------------===// + +llvm::Value *ScalarExprEmitter:: +EmitAddConsiderOverflowBehavior(const UnaryOperator *E, + llvm::Value *InVal, + llvm::Value *NextVal, bool IsInc) { + switch (CGF.getLangOpts().getSignedOverflowBehavior()) { + case LangOptions::SOB_Defined: + return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec"); + case LangOptions::SOB_Undefined: + if (!CGF.SanOpts->SignedIntegerOverflow) + return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec"); + // Fall through. + case LangOptions::SOB_Trapping: + BinOpInfo BinOp; + BinOp.LHS = InVal; + BinOp.RHS = NextVal; + BinOp.Ty = E->getType(); + BinOp.Opcode = BO_Add; + BinOp.FPContractable = false; + BinOp.E = E; + return EmitOverflowCheckedBinOp(BinOp); + } + llvm_unreachable("Unknown SignedOverflowBehaviorTy"); +} + +llvm::Value * +ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, + bool isInc, bool isPre) { + + QualType type = E->getSubExpr()->getType(); + llvm::PHINode *atomicPHI = 0; + llvm::Value *value; + llvm::Value *input; + + int amount = (isInc ? 1 : -1); + + if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { + type = atomicTy->getValueType(); + if (isInc && type->isBooleanType()) { + llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); + if (isPre) { + Builder.Insert(new llvm::StoreInst(True, + LV.getAddress(), LV.isVolatileQualified(), + LV.getAlignment().getQuantity(), + llvm::SequentiallyConsistent)); + return Builder.getTrue(); + } + // For atomic bool increment, we just store true and return it for + // preincrement, do an atomic swap with true for postincrement + return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, + LV.getAddress(), True, llvm::SequentiallyConsistent); + } + // Special case for atomic increment / decrement on integers, emit + // atomicrmw instructions. We skip this if we want to be doing overflow + // checking, and fall into the slow path with the atomic cmpxchg loop. + if (!type->isBooleanType() && type->isIntegerType() && + !(type->isUnsignedIntegerType() && + CGF.SanOpts->UnsignedIntegerOverflow) && + CGF.getLangOpts().getSignedOverflowBehavior() != + LangOptions::SOB_Trapping) { + llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : + llvm::AtomicRMWInst::Sub; + llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : + llvm::Instruction::Sub; + llvm::Value *amt = CGF.EmitToMemory( + llvm::ConstantInt::get(ConvertType(type), 1, true), type); + llvm::Value *old = Builder.CreateAtomicRMW(aop, + LV.getAddress(), amt, llvm::SequentiallyConsistent); + return isPre ? Builder.CreateBinOp(op, old, amt) : old; + } + value = EmitLoadOfLValue(LV, E->getExprLoc()); + input = value; + // For every other atomic operation, we need to emit a load-op-cmpxchg loop + llvm::BasicBlock *startBB = Builder.GetInsertBlock(); + llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); + value = CGF.EmitToMemory(value, type); + Builder.CreateBr(opBB); + Builder.SetInsertPoint(opBB); + atomicPHI = Builder.CreatePHI(value->getType(), 2); + atomicPHI->addIncoming(value, startBB); + value = atomicPHI; + } else { + value = EmitLoadOfLValue(LV, E->getExprLoc()); + input = value; + } + + // Special case of integer increment that we have to check first: bool++. + // Due to promotion rules, we get: + // bool++ -> bool = bool + 1 + // -> bool = (int)bool + 1 + // -> bool = ((int)bool + 1 != 0) + // An interesting aspect of this is that increment is always true. + // Decrement does not have this property. + if (isInc && type->isBooleanType()) { + value = Builder.getTrue(); + + // Most common case by far: integer increment. + } else if (type->isIntegerType()) { + + llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); + + // Note that signed integer inc/dec with width less than int can't + // overflow because of promotion rules; we're just eliding a few steps here. + if (value->getType()->getPrimitiveSizeInBits() >= + CGF.IntTy->getBitWidth() && + type->isSignedIntegerOrEnumerationType()) { + value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc); + } else if (value->getType()->getPrimitiveSizeInBits() >= + CGF.IntTy->getBitWidth() && type->isUnsignedIntegerType() && + CGF.SanOpts->UnsignedIntegerOverflow) { + BinOpInfo BinOp; + BinOp.LHS = value; + BinOp.RHS = llvm::ConstantInt::get(value->getType(), 1, false); + BinOp.Ty = E->getType(); + BinOp.Opcode = isInc ? BO_Add : BO_Sub; + BinOp.FPContractable = false; + BinOp.E = E; + value = EmitOverflowCheckedBinOp(BinOp); + } else + value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); + + // Next most common: pointer increment. + } else if (const PointerType *ptr = type->getAs<PointerType>()) { + QualType type = ptr->getPointeeType(); + + // VLA types don't have constant size. + if (const VariableArrayType *vla + = CGF.getContext().getAsVariableArrayType(type)) { + llvm::Value *numElts = CGF.getVLASize(vla).first; + if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); + if (CGF.getLangOpts().isSignedOverflowDefined()) + value = Builder.CreateGEP(value, numElts, "vla.inc"); + else + value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc"); + + // Arithmetic on function pointers (!) is just +-1. + } else if (type->isFunctionType()) { + llvm::Value *amt = Builder.getInt32(amount); + + value = CGF.EmitCastToVoidPtr(value); + if (CGF.getLangOpts().isSignedOverflowDefined()) + value = Builder.CreateGEP(value, amt, "incdec.funcptr"); + else + value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr"); + value = Builder.CreateBitCast(value, input->getType()); + + // For everything else, we can just do a simple increment. + } else { + llvm::Value *amt = Builder.getInt32(amount); + if (CGF.getLangOpts().isSignedOverflowDefined()) + value = Builder.CreateGEP(value, amt, "incdec.ptr"); + else + value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr"); + } + + // Vector increment/decrement. + } else if (type->isVectorType()) { + if (type->hasIntegerRepresentation()) { + llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); + + value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); + } else { + value = Builder.CreateFAdd( + value, + llvm::ConstantFP::get(value->getType(), amount), + isInc ? "inc" : "dec"); + } + + // Floating point. + } else if (type->isRealFloatingType()) { + // Add the inc/dec to the real part. + llvm::Value *amt; + + if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { + // Another special case: half FP increment should be done via float + value = + Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), + input); + } + + if (value->getType()->isFloatTy()) + amt = llvm::ConstantFP::get(VMContext, + llvm::APFloat(static_cast<float>(amount))); + else if (value->getType()->isDoubleTy()) + amt = llvm::ConstantFP::get(VMContext, + llvm::APFloat(static_cast<double>(amount))); + else { + llvm::APFloat F(static_cast<float>(amount)); + bool ignored; + F.convert(CGF.getTarget().getLongDoubleFormat(), + llvm::APFloat::rmTowardZero, &ignored); + amt = llvm::ConstantFP::get(VMContext, F); + } + value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); + + if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) + value = + Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), + value); + + // Objective-C pointer types. + } else { + const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); + value = CGF.EmitCastToVoidPtr(value); + + CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); + if (!isInc) size = -size; + llvm::Value *sizeValue = + llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); + + if (CGF.getLangOpts().isSignedOverflowDefined()) + value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); + else + value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr"); + value = Builder.CreateBitCast(value, input->getType()); + } + + if (atomicPHI) { + llvm::BasicBlock *opBB = Builder.GetInsertBlock(); + llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); + llvm::Value *old = Builder.CreateAtomicCmpXchg(LV.getAddress(), atomicPHI, + CGF.EmitToMemory(value, type), llvm::SequentiallyConsistent); + atomicPHI->addIncoming(old, opBB); + llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI); + Builder.CreateCondBr(success, contBB, opBB); + Builder.SetInsertPoint(contBB); + return isPre ? value : input; + } + + // Store the updated result through the lvalue. + if (LV.isBitField()) + CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); + else + CGF.EmitStoreThroughLValue(RValue::get(value), LV); + + // If this is a postinc, return the value read from memory, otherwise use the + // updated value. + return isPre ? value : input; +} + + + +Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { + TestAndClearIgnoreResultAssign(); + // Emit unary minus with EmitSub so we handle overflow cases etc. + BinOpInfo BinOp; + BinOp.RHS = Visit(E->getSubExpr()); + + if (BinOp.RHS->getType()->isFPOrFPVectorTy()) + BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); + else + BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); + BinOp.Ty = E->getType(); + BinOp.Opcode = BO_Sub; + BinOp.FPContractable = false; + BinOp.E = E; + return EmitSub(BinOp); +} + +Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { + TestAndClearIgnoreResultAssign(); + Value *Op = Visit(E->getSubExpr()); + return Builder.CreateNot(Op, "neg"); +} + +Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { + // Perform vector logical not on comparison with zero vector. + if (E->getType()->isExtVectorType()) { + Value *Oper = Visit(E->getSubExpr()); + Value *Zero = llvm::Constant::getNullValue(Oper->getType()); + Value *Result; + if (Oper->getType()->isFPOrFPVectorTy()) + Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); + else + Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); + return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); + } + + // Compare operand to zero. + Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); + + // Invert value. + // TODO: Could dynamically modify easy computations here. For example, if + // the operand is an icmp ne, turn into icmp eq. + BoolVal = Builder.CreateNot(BoolVal, "lnot"); + + // ZExt result to the expr type. + return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); +} + +Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { + // Try folding the offsetof to a constant. + llvm::APSInt Value; + if (E->EvaluateAsInt(Value, CGF.getContext())) + return Builder.getInt(Value); + + // Loop over the components of the offsetof to compute the value. + unsigned n = E->getNumComponents(); + llvm::Type* ResultType = ConvertType(E->getType()); + llvm::Value* Result = llvm::Constant::getNullValue(ResultType); + QualType CurrentType = E->getTypeSourceInfo()->getType(); + for (unsigned i = 0; i != n; ++i) { + OffsetOfExpr::OffsetOfNode ON = E->getComponent(i); + llvm::Value *Offset = 0; + switch (ON.getKind()) { + case OffsetOfExpr::OffsetOfNode::Array: { + // Compute the index + Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); + llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); + bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); + Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); + + // Save the element type + CurrentType = + CGF.getContext().getAsArrayType(CurrentType)->getElementType(); + + // Compute the element size + llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, + CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); + + // Multiply out to compute the result + Offset = Builder.CreateMul(Idx, ElemSize); + break; + } + + case OffsetOfExpr::OffsetOfNode::Field: { + FieldDecl *MemberDecl = ON.getField(); + RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); + const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); + + // Compute the index of the field in its parent. + unsigned i = 0; + // FIXME: It would be nice if we didn't have to loop here! + for (RecordDecl::field_iterator Field = RD->field_begin(), + FieldEnd = RD->field_end(); + Field != FieldEnd; ++Field, ++i) { + if (*Field == MemberDecl) + break; + } + assert(i < RL.getFieldCount() && "offsetof field in wrong type"); + + // Compute the offset to the field + int64_t OffsetInt = RL.getFieldOffset(i) / + CGF.getContext().getCharWidth(); + Offset = llvm::ConstantInt::get(ResultType, OffsetInt); + + // Save the element type. + CurrentType = MemberDecl->getType(); + break; + } + + case OffsetOfExpr::OffsetOfNode::Identifier: + llvm_unreachable("dependent __builtin_offsetof"); + + case OffsetOfExpr::OffsetOfNode::Base: { + if (ON.getBase()->isVirtual()) { + CGF.ErrorUnsupported(E, "virtual base in offsetof"); + continue; + } + + RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); + const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); + + // Save the element type. + CurrentType = ON.getBase()->getType(); + + // Compute the offset to the base. + const RecordType *BaseRT = CurrentType->getAs<RecordType>(); + CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); + CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); + Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); + break; + } + } + Result = Builder.CreateAdd(Result, Offset); + } + return Result; +} + +/// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of +/// argument of the sizeof expression as an integer. +Value * +ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( + const UnaryExprOrTypeTraitExpr *E) { + QualType TypeToSize = E->getTypeOfArgument(); + if (E->getKind() == UETT_SizeOf) { + if (const VariableArrayType *VAT = + CGF.getContext().getAsVariableArrayType(TypeToSize)) { + if (E->isArgumentType()) { + // sizeof(type) - make sure to emit the VLA size. + CGF.EmitVariablyModifiedType(TypeToSize); + } else { + // C99 6.5.3.4p2: If the argument is an expression of type + // VLA, it is evaluated. + CGF.EmitIgnoredExpr(E->getArgumentExpr()); + } + + QualType eltType; + llvm::Value *numElts; + llvm::tie(numElts, eltType) = CGF.getVLASize(VAT); + + llvm::Value *size = numElts; + + // Scale the number of non-VLA elements by the non-VLA element size. + CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); + if (!eltSize.isOne()) + size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts); + + return size; + } + } + + // If this isn't sizeof(vla), the result must be constant; use the constant + // folding logic so we don't have to duplicate it here. + return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); +} + +Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { + Expr *Op = E->getSubExpr(); + if (Op->getType()->isAnyComplexType()) { + // If it's an l-value, load through the appropriate subobject l-value. + // Note that we have to ask E because Op might be an l-value that + // this won't work for, e.g. an Obj-C property. + if (E->isGLValue()) + return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), + E->getExprLoc()).getScalarVal(); + + // Otherwise, calculate and project. + return CGF.EmitComplexExpr(Op, false, true).first; + } + + return Visit(Op); +} + +Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { + Expr *Op = E->getSubExpr(); + if (Op->getType()->isAnyComplexType()) { + // If it's an l-value, load through the appropriate subobject l-value. + // Note that we have to ask E because Op might be an l-value that + // this won't work for, e.g. an Obj-C property. + if (Op->isGLValue()) + return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), + E->getExprLoc()).getScalarVal(); + + // Otherwise, calculate and project. + return CGF.EmitComplexExpr(Op, true, false).second; + } + + // __imag on a scalar returns zero. Emit the subexpr to ensure side + // effects are evaluated, but not the actual value. + if (Op->isGLValue()) + CGF.EmitLValue(Op); + else + CGF.EmitScalarExpr(Op, true); + return llvm::Constant::getNullValue(ConvertType(E->getType())); +} + +//===----------------------------------------------------------------------===// +// Binary Operators +//===----------------------------------------------------------------------===// + +BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { + TestAndClearIgnoreResultAssign(); + BinOpInfo Result; + Result.LHS = Visit(E->getLHS()); + Result.RHS = Visit(E->getRHS()); + Result.Ty = E->getType(); + Result.Opcode = E->getOpcode(); + Result.FPContractable = E->isFPContractable(); + Result.E = E; + return Result; +} + +LValue ScalarExprEmitter::EmitCompoundAssignLValue( + const CompoundAssignOperator *E, + Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), + Value *&Result) { + QualType LHSTy = E->getLHS()->getType(); + BinOpInfo OpInfo; + + if (E->getComputationResultType()->isAnyComplexType()) + return CGF.EmitScalarCompooundAssignWithComplex(E, Result); + + // Emit the RHS first. __block variables need to have the rhs evaluated + // first, plus this should improve codegen a little. + OpInfo.RHS = Visit(E->getRHS()); + OpInfo.Ty = E->getComputationResultType(); + OpInfo.Opcode = E->getOpcode(); + OpInfo.FPContractable = false; + OpInfo.E = E; + // Load/convert the LHS. + LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); + + llvm::PHINode *atomicPHI = 0; + if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { + QualType type = atomicTy->getValueType(); + if (!type->isBooleanType() && type->isIntegerType() && + !(type->isUnsignedIntegerType() && + CGF.SanOpts->UnsignedIntegerOverflow) && + CGF.getLangOpts().getSignedOverflowBehavior() != + LangOptions::SOB_Trapping) { + llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; + switch (OpInfo.Opcode) { + // We don't have atomicrmw operands for *, %, /, <<, >> + case BO_MulAssign: case BO_DivAssign: + case BO_RemAssign: + case BO_ShlAssign: + case BO_ShrAssign: + break; + case BO_AddAssign: + aop = llvm::AtomicRMWInst::Add; + break; + case BO_SubAssign: + aop = llvm::AtomicRMWInst::Sub; + break; + case BO_AndAssign: + aop = llvm::AtomicRMWInst::And; + break; + case BO_XorAssign: + aop = llvm::AtomicRMWInst::Xor; + break; + case BO_OrAssign: + aop = llvm::AtomicRMWInst::Or; + break; + default: + llvm_unreachable("Invalid compound assignment type"); + } + if (aop != llvm::AtomicRMWInst::BAD_BINOP) { + llvm::Value *amt = CGF.EmitToMemory(EmitScalarConversion(OpInfo.RHS, + E->getRHS()->getType(), LHSTy), LHSTy); + Builder.CreateAtomicRMW(aop, LHSLV.getAddress(), amt, + llvm::SequentiallyConsistent); + return LHSLV; + } + } + // FIXME: For floating point types, we should be saving and restoring the + // floating point environment in the loop. + llvm::BasicBlock *startBB = Builder.GetInsertBlock(); + llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); + OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); + OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); + Builder.CreateBr(opBB); + Builder.SetInsertPoint(opBB); + atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); + atomicPHI->addIncoming(OpInfo.LHS, startBB); + OpInfo.LHS = atomicPHI; + } + else + OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); + + OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, + E->getComputationLHSType()); + + // Expand the binary operator. + Result = (this->*Func)(OpInfo); + + // Convert the result back to the LHS type. + Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy); + + if (atomicPHI) { + llvm::BasicBlock *opBB = Builder.GetInsertBlock(); + llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); + llvm::Value *old = Builder.CreateAtomicCmpXchg(LHSLV.getAddress(), atomicPHI, + CGF.EmitToMemory(Result, LHSTy), llvm::SequentiallyConsistent); + atomicPHI->addIncoming(old, opBB); + llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI); + Builder.CreateCondBr(success, contBB, opBB); + Builder.SetInsertPoint(contBB); + return LHSLV; + } + + // Store the result value into the LHS lvalue. Bit-fields are handled + // specially because the result is altered by the store, i.e., [C99 6.5.16p1] + // 'An assignment expression has the value of the left operand after the + // assignment...'. + if (LHSLV.isBitField()) + CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); + else + CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); + + return LHSLV; +} + +Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, + Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { + bool Ignore = TestAndClearIgnoreResultAssign(); + Value *RHS; + LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); + + // If the result is clearly ignored, return now. + if (Ignore) + return 0; + + // The result of an assignment in C is the assigned r-value. + if (!CGF.getLangOpts().CPlusPlus) + return RHS; + + // If the lvalue is non-volatile, return the computed value of the assignment. + if (!LHS.isVolatileQualified()) + return RHS; + + // Otherwise, reload the value. + return EmitLoadOfLValue(LHS, E->getExprLoc()); +} + +void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( + const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { + llvm::Value *Cond = 0; + + if (CGF.SanOpts->IntegerDivideByZero) + Cond = Builder.CreateICmpNE(Ops.RHS, Zero); + + if (CGF.SanOpts->SignedIntegerOverflow && + Ops.Ty->hasSignedIntegerRepresentation()) { + llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); + + llvm::Value *IntMin = + Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); + llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); + + llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); + llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); + llvm::Value *Overflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); + Cond = Cond ? Builder.CreateAnd(Cond, Overflow, "and") : Overflow; + } + + if (Cond) + EmitBinOpCheck(Cond, Ops); +} + +Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { + if ((CGF.SanOpts->IntegerDivideByZero || + CGF.SanOpts->SignedIntegerOverflow) && + Ops.Ty->isIntegerType()) { + llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); + EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); + } else if (CGF.SanOpts->FloatDivideByZero && + Ops.Ty->isRealFloatingType()) { + llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); + EmitBinOpCheck(Builder.CreateFCmpUNE(Ops.RHS, Zero), Ops); + } + + if (Ops.LHS->getType()->isFPOrFPVectorTy()) { + llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); + if (CGF.getLangOpts().OpenCL) { + // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp + llvm::Type *ValTy = Val->getType(); + if (ValTy->isFloatTy() || + (isa<llvm::VectorType>(ValTy) && + cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) + CGF.SetFPAccuracy(Val, 2.5); + } + return Val; + } + else if (Ops.Ty->hasUnsignedIntegerRepresentation()) + return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); + else + return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); +} + +Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { + // Rem in C can't be a floating point type: C99 6.5.5p2. + if (CGF.SanOpts->IntegerDivideByZero) { + llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); + + if (Ops.Ty->isIntegerType()) + EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); + } + + if (Ops.Ty->hasUnsignedIntegerRepresentation()) + return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); + else + return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); +} + +Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { + unsigned IID; + unsigned OpID = 0; + + bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); + switch (Ops.Opcode) { + case BO_Add: + case BO_AddAssign: + OpID = 1; + IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : + llvm::Intrinsic::uadd_with_overflow; + break; + case BO_Sub: + case BO_SubAssign: + OpID = 2; + IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : + llvm::Intrinsic::usub_with_overflow; + break; + case BO_Mul: + case BO_MulAssign: + OpID = 3; + IID = isSigned ? llvm::Intrinsic::smul_with_overflow : + llvm::Intrinsic::umul_with_overflow; + break; + default: + llvm_unreachable("Unsupported operation for overflow detection"); + } + OpID <<= 1; + if (isSigned) + OpID |= 1; + + llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); + + llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); + + Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS); + Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); + Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); + + // Handle overflow with llvm.trap if no custom handler has been specified. + const std::string *handlerName = + &CGF.getLangOpts().OverflowHandler; + if (handlerName->empty()) { + // If the signed-integer-overflow sanitizer is enabled, emit a call to its + // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. + if (!isSigned || CGF.SanOpts->SignedIntegerOverflow) + EmitBinOpCheck(Builder.CreateNot(overflow), Ops); + else + CGF.EmitTrapCheck(Builder.CreateNot(overflow)); + return result; + } + + // Branch in case of overflow. + llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); + llvm::Function::iterator insertPt = initialBB; + llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn, + llvm::next(insertPt)); + llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); + + Builder.CreateCondBr(overflow, overflowBB, continueBB); + + // If an overflow handler is set, then we want to call it and then use its + // result, if it returns. + Builder.SetInsertPoint(overflowBB); + + // Get the overflow handler. + llvm::Type *Int8Ty = CGF.Int8Ty; + llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; + llvm::FunctionType *handlerTy = + llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); + llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); + + // Sign extend the args to 64-bit, so that we can use the same handler for + // all types of overflow. + llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); + llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); + + // Call the handler with the two arguments, the operation, and the size of + // the result. + llvm::Value *handlerArgs[] = { + lhs, + rhs, + Builder.getInt8(OpID), + Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) + }; + llvm::Value *handlerResult = + CGF.EmitNounwindRuntimeCall(handler, handlerArgs); + + // Truncate the result back to the desired size. + handlerResult = Builder.CreateTrunc(handlerResult, opTy); + Builder.CreateBr(continueBB); + + Builder.SetInsertPoint(continueBB); + llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); + phi->addIncoming(result, initialBB); + phi->addIncoming(handlerResult, overflowBB); + + return phi; +} + +/// Emit pointer + index arithmetic. +static Value *emitPointerArithmetic(CodeGenFunction &CGF, + const BinOpInfo &op, + bool isSubtraction) { + // Must have binary (not unary) expr here. Unary pointer + // increment/decrement doesn't use this path. + const BinaryOperator *expr = cast<BinaryOperator>(op.E); + + Value *pointer = op.LHS; + Expr *pointerOperand = expr->getLHS(); + Value *index = op.RHS; + Expr *indexOperand = expr->getRHS(); + + // In a subtraction, the LHS is always the pointer. + if (!isSubtraction && !pointer->getType()->isPointerTy()) { + std::swap(pointer, index); + std::swap(pointerOperand, indexOperand); + } + + unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); + if (width != CGF.PointerWidthInBits) { + // Zero-extend or sign-extend the pointer value according to + // whether the index is signed or not. + bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); + index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned, + "idx.ext"); + } + + // If this is subtraction, negate the index. + if (isSubtraction) + index = CGF.Builder.CreateNeg(index, "idx.neg"); + + if (CGF.SanOpts->ArrayBounds) + CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), + /*Accessed*/ false); + + const PointerType *pointerType + = pointerOperand->getType()->getAs<PointerType>(); + if (!pointerType) { + QualType objectType = pointerOperand->getType() + ->castAs<ObjCObjectPointerType>() + ->getPointeeType(); + llvm::Value *objectSize + = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); + + index = CGF.Builder.CreateMul(index, objectSize); + + Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); + result = CGF.Builder.CreateGEP(result, index, "add.ptr"); + return CGF.Builder.CreateBitCast(result, pointer->getType()); + } + + QualType elementType = pointerType->getPointeeType(); + if (const VariableArrayType *vla + = CGF.getContext().getAsVariableArrayType(elementType)) { + // The element count here is the total number of non-VLA elements. + llvm::Value *numElements = CGF.getVLASize(vla).first; + + // Effectively, the multiply by the VLA size is part of the GEP. + // GEP indexes are signed, and scaling an index isn't permitted to + // signed-overflow, so we use the same semantics for our explicit + // multiply. We suppress this if overflow is not undefined behavior. + if (CGF.getLangOpts().isSignedOverflowDefined()) { + index = CGF.Builder.CreateMul(index, numElements, "vla.index"); + pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); + } else { + index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); + pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); + } + return pointer; + } + + // Explicitly handle GNU void* and function pointer arithmetic extensions. The + // GNU void* casts amount to no-ops since our void* type is i8*, but this is + // future proof. + if (elementType->isVoidType() || elementType->isFunctionType()) { + Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); + result = CGF.Builder.CreateGEP(result, index, "add.ptr"); + return CGF.Builder.CreateBitCast(result, pointer->getType()); + } + + if (CGF.getLangOpts().isSignedOverflowDefined()) + return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); + + return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); +} + +// Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and +// Addend. Use negMul and negAdd to negate the first operand of the Mul or +// the add operand respectively. This allows fmuladd to represent a*b-c, or +// c-a*b. Patterns in LLVM should catch the negated forms and translate them to +// efficient operations. +static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, + const CodeGenFunction &CGF, CGBuilderTy &Builder, + bool negMul, bool negAdd) { + assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); + + Value *MulOp0 = MulOp->getOperand(0); + Value *MulOp1 = MulOp->getOperand(1); + if (negMul) { + MulOp0 = + Builder.CreateFSub( + llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, + "neg"); + } else if (negAdd) { + Addend = + Builder.CreateFSub( + llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, + "neg"); + } + + Value *FMulAdd = + Builder.CreateCall3( + CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), + MulOp0, MulOp1, Addend); + MulOp->eraseFromParent(); + + return FMulAdd; +} + +// Check whether it would be legal to emit an fmuladd intrinsic call to +// represent op and if so, build the fmuladd. +// +// Checks that (a) the operation is fusable, and (b) -ffp-contract=on. +// Does NOT check the type of the operation - it's assumed that this function +// will be called from contexts where it's known that the type is contractable. +static Value* tryEmitFMulAdd(const BinOpInfo &op, + const CodeGenFunction &CGF, CGBuilderTy &Builder, + bool isSub=false) { + + assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || + op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && + "Only fadd/fsub can be the root of an fmuladd."); + + // Check whether this op is marked as fusable. + if (!op.FPContractable) + return 0; + + // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is + // either disabled, or handled entirely by the LLVM backend). + if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On) + return 0; + + // We have a potentially fusable op. Look for a mul on one of the operands. + if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { + if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) { + assert(LHSBinOp->getNumUses() == 0 && + "Operations with multiple uses shouldn't be contracted."); + return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); + } + } else if (llvm::BinaryOperator* RHSBinOp = + dyn_cast<llvm::BinaryOperator>(op.RHS)) { + if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) { + assert(RHSBinOp->getNumUses() == 0 && + "Operations with multiple uses shouldn't be contracted."); + return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); + } + } + + return 0; +} + +Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { + if (op.LHS->getType()->isPointerTy() || + op.RHS->getType()->isPointerTy()) + return emitPointerArithmetic(CGF, op, /*subtraction*/ false); + + if (op.Ty->isSignedIntegerOrEnumerationType()) { + switch (CGF.getLangOpts().getSignedOverflowBehavior()) { + case LangOptions::SOB_Defined: + return Builder.CreateAdd(op.LHS, op.RHS, "add"); + case LangOptions::SOB_Undefined: + if (!CGF.SanOpts->SignedIntegerOverflow) + return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); + // Fall through. + case LangOptions::SOB_Trapping: + return EmitOverflowCheckedBinOp(op); + } + } + + if (op.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow) + return EmitOverflowCheckedBinOp(op); + + if (op.LHS->getType()->isFPOrFPVectorTy()) { + // Try to form an fmuladd. + if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) + return FMulAdd; + + return Builder.CreateFAdd(op.LHS, op.RHS, "add"); + } + + return Builder.CreateAdd(op.LHS, op.RHS, "add"); +} + +Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { + // The LHS is always a pointer if either side is. + if (!op.LHS->getType()->isPointerTy()) { + if (op.Ty->isSignedIntegerOrEnumerationType()) { + switch (CGF.getLangOpts().getSignedOverflowBehavior()) { + case LangOptions::SOB_Defined: + return Builder.CreateSub(op.LHS, op.RHS, "sub"); + case LangOptions::SOB_Undefined: + if (!CGF.SanOpts->SignedIntegerOverflow) + return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); + // Fall through. + case LangOptions::SOB_Trapping: + return EmitOverflowCheckedBinOp(op); + } + } + + if (op.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow) + return EmitOverflowCheckedBinOp(op); + + if (op.LHS->getType()->isFPOrFPVectorTy()) { + // Try to form an fmuladd. + if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) + return FMulAdd; + return Builder.CreateFSub(op.LHS, op.RHS, "sub"); + } + + return Builder.CreateSub(op.LHS, op.RHS, "sub"); + } + + // If the RHS is not a pointer, then we have normal pointer + // arithmetic. + if (!op.RHS->getType()->isPointerTy()) + return emitPointerArithmetic(CGF, op, /*subtraction*/ true); + + // Otherwise, this is a pointer subtraction. + + // Do the raw subtraction part. + llvm::Value *LHS + = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); + llvm::Value *RHS + = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); + Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); + + // Okay, figure out the element size. + const BinaryOperator *expr = cast<BinaryOperator>(op.E); + QualType elementType = expr->getLHS()->getType()->getPointeeType(); + + llvm::Value *divisor = 0; + + // For a variable-length array, this is going to be non-constant. + if (const VariableArrayType *vla + = CGF.getContext().getAsVariableArrayType(elementType)) { + llvm::Value *numElements; + llvm::tie(numElements, elementType) = CGF.getVLASize(vla); + + divisor = numElements; + + // Scale the number of non-VLA elements by the non-VLA element size. + CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); + if (!eltSize.isOne()) + divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); + + // For everything elese, we can just compute it, safe in the + // assumption that Sema won't let anything through that we can't + // safely compute the size of. + } else { + CharUnits elementSize; + // Handle GCC extension for pointer arithmetic on void* and + // function pointer types. + if (elementType->isVoidType() || elementType->isFunctionType()) + elementSize = CharUnits::One(); + else + elementSize = CGF.getContext().getTypeSizeInChars(elementType); + + // Don't even emit the divide for element size of 1. + if (elementSize.isOne()) + return diffInChars; + + divisor = CGF.CGM.getSize(elementSize); + } + + // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since + // pointer difference in C is only defined in the case where both operands + // are pointing to elements of an array. + return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); +} + +Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { + llvm::IntegerType *Ty; + if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) + Ty = cast<llvm::IntegerType>(VT->getElementType()); + else + Ty = cast<llvm::IntegerType>(LHS->getType()); + return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); +} + +Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { + // LLVM requires the LHS and RHS to be the same type: promote or truncate the + // RHS to the same size as the LHS. + Value *RHS = Ops.RHS; + if (Ops.LHS->getType() != RHS->getType()) + RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); + + if (CGF.SanOpts->Shift && !CGF.getLangOpts().OpenCL && + isa<llvm::IntegerType>(Ops.LHS->getType())) { + llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS); + llvm::Value *Valid = Builder.CreateICmpULE(RHS, WidthMinusOne); + + if (Ops.Ty->hasSignedIntegerRepresentation()) { + llvm::BasicBlock *Orig = Builder.GetInsertBlock(); + llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); + llvm::BasicBlock *CheckBitsShifted = CGF.createBasicBlock("check"); + Builder.CreateCondBr(Valid, CheckBitsShifted, Cont); + + // Check whether we are shifting any non-zero bits off the top of the + // integer. + CGF.EmitBlock(CheckBitsShifted); + llvm::Value *BitsShiftedOff = + Builder.CreateLShr(Ops.LHS, + Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros", + /*NUW*/true, /*NSW*/true), + "shl.check"); + if (CGF.getLangOpts().CPlusPlus) { + // In C99, we are not permitted to shift a 1 bit into the sign bit. + // Under C++11's rules, shifting a 1 bit into the sign bit is + // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't + // define signed left shifts, so we use the C99 and C++11 rules there). + llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); + BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); + } + llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); + llvm::Value *SecondCheck = Builder.CreateICmpEQ(BitsShiftedOff, Zero); + CGF.EmitBlock(Cont); + llvm::PHINode *P = Builder.CreatePHI(Valid->getType(), 2); + P->addIncoming(Valid, Orig); + P->addIncoming(SecondCheck, CheckBitsShifted); + Valid = P; + } + + EmitBinOpCheck(Valid, Ops); + } + // OpenCL 6.3j: shift values are effectively % word size of LHS. + if (CGF.getLangOpts().OpenCL) + RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); + + return Builder.CreateShl(Ops.LHS, RHS, "shl"); +} + +Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { + // LLVM requires the LHS and RHS to be the same type: promote or truncate the + // RHS to the same size as the LHS. + Value *RHS = Ops.RHS; + if (Ops.LHS->getType() != RHS->getType()) + RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); + + if (CGF.SanOpts->Shift && !CGF.getLangOpts().OpenCL && + isa<llvm::IntegerType>(Ops.LHS->getType())) + EmitBinOpCheck(Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)), Ops); + + // OpenCL 6.3j: shift values are effectively % word size of LHS. + if (CGF.getLangOpts().OpenCL) + RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); + + if (Ops.Ty->hasUnsignedIntegerRepresentation()) + return Builder.CreateLShr(Ops.LHS, RHS, "shr"); + return Builder.CreateAShr(Ops.LHS, RHS, "shr"); +} + +enum IntrinsicType { VCMPEQ, VCMPGT }; +// return corresponding comparison intrinsic for given vector type +static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, + BuiltinType::Kind ElemKind) { + switch (ElemKind) { + default: llvm_unreachable("unexpected element type"); + case BuiltinType::Char_U: + case BuiltinType::UChar: + return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : + llvm::Intrinsic::ppc_altivec_vcmpgtub_p; + case BuiltinType::Char_S: + case BuiltinType::SChar: + return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : + llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; + case BuiltinType::UShort: + return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : + llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; + case BuiltinType::Short: + return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : + llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; + case BuiltinType::UInt: + case BuiltinType::ULong: + return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : + llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; + case BuiltinType::Int: + case BuiltinType::Long: + return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : + llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; + case BuiltinType::Float: + return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : + llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; + } +} + +Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc, + unsigned SICmpOpc, unsigned FCmpOpc) { + TestAndClearIgnoreResultAssign(); + Value *Result; + QualType LHSTy = E->getLHS()->getType(); + if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { + assert(E->getOpcode() == BO_EQ || + E->getOpcode() == BO_NE); + Value *LHS = CGF.EmitScalarExpr(E->getLHS()); + Value *RHS = CGF.EmitScalarExpr(E->getRHS()); + Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( + CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); + } else if (!LHSTy->isAnyComplexType()) { + Value *LHS = Visit(E->getLHS()); + Value *RHS = Visit(E->getRHS()); + + // If AltiVec, the comparison results in a numeric type, so we use + // intrinsics comparing vectors and giving 0 or 1 as a result + if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { + // constants for mapping CR6 register bits to predicate result + enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; + + llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; + + // in several cases vector arguments order will be reversed + Value *FirstVecArg = LHS, + *SecondVecArg = RHS; + + QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); + const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); + BuiltinType::Kind ElementKind = BTy->getKind(); + + switch(E->getOpcode()) { + default: llvm_unreachable("is not a comparison operation"); + case BO_EQ: + CR6 = CR6_LT; + ID = GetIntrinsic(VCMPEQ, ElementKind); + break; + case BO_NE: + CR6 = CR6_EQ; + ID = GetIntrinsic(VCMPEQ, ElementKind); + break; + case BO_LT: + CR6 = CR6_LT; + ID = GetIntrinsic(VCMPGT, ElementKind); + std::swap(FirstVecArg, SecondVecArg); + break; + case BO_GT: + CR6 = CR6_LT; + ID = GetIntrinsic(VCMPGT, ElementKind); + break; + case BO_LE: + if (ElementKind == BuiltinType::Float) { + CR6 = CR6_LT; + ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; + std::swap(FirstVecArg, SecondVecArg); + } + else { + CR6 = CR6_EQ; + ID = GetIntrinsic(VCMPGT, ElementKind); + } + break; + case BO_GE: + if (ElementKind == BuiltinType::Float) { + CR6 = CR6_LT; + ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; + } + else { + CR6 = CR6_EQ; + ID = GetIntrinsic(VCMPGT, ElementKind); + std::swap(FirstVecArg, SecondVecArg); + } + break; + } + + Value *CR6Param = Builder.getInt32(CR6); + llvm::Function *F = CGF.CGM.getIntrinsic(ID); + Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, ""); + return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType()); + } + + if (LHS->getType()->isFPOrFPVectorTy()) { + Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc, + LHS, RHS, "cmp"); + } else if (LHSTy->hasSignedIntegerRepresentation()) { + Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc, + LHS, RHS, "cmp"); + } else { + // Unsigned integers and pointers. + Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, + LHS, RHS, "cmp"); + } + + // If this is a vector comparison, sign extend the result to the appropriate + // vector integer type and return it (don't convert to bool). + if (LHSTy->isVectorType()) + return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); + + } else { + // Complex Comparison: can only be an equality comparison. + CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS()); + CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS()); + + QualType CETy = LHSTy->getAs<ComplexType>()->getElementType(); + + Value *ResultR, *ResultI; + if (CETy->isRealFloatingType()) { + ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, + LHS.first, RHS.first, "cmp.r"); + ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, + LHS.second, RHS.second, "cmp.i"); + } else { + // Complex comparisons can only be equality comparisons. As such, signed + // and unsigned opcodes are the same. + ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, + LHS.first, RHS.first, "cmp.r"); + ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, + LHS.second, RHS.second, "cmp.i"); + } + + if (E->getOpcode() == BO_EQ) { + Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); + } else { + assert(E->getOpcode() == BO_NE && + "Complex comparison other than == or != ?"); + Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); + } + } + + return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType()); +} + +Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { + bool Ignore = TestAndClearIgnoreResultAssign(); + + Value *RHS; + LValue LHS; + + switch (E->getLHS()->getType().getObjCLifetime()) { + case Qualifiers::OCL_Strong: + llvm::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); + break; + + case Qualifiers::OCL_Autoreleasing: + llvm::tie(LHS,RHS) = CGF.EmitARCStoreAutoreleasing(E); + break; + + case Qualifiers::OCL_Weak: + RHS = Visit(E->getRHS()); + LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); + RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); + break; + + // No reason to do any of these differently. + case Qualifiers::OCL_None: + case Qualifiers::OCL_ExplicitNone: + // __block variables need to have the rhs evaluated first, plus + // this should improve codegen just a little. + RHS = Visit(E->getRHS()); + LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); + + // Store the value into the LHS. Bit-fields are handled specially + // because the result is altered by the store, i.e., [C99 6.5.16p1] + // 'An assignment expression has the value of the left operand after + // the assignment...'. + if (LHS.isBitField()) + CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); + else + CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); + } + + // If the result is clearly ignored, return now. + if (Ignore) + return 0; + + // The result of an assignment in C is the assigned r-value. + if (!CGF.getLangOpts().CPlusPlus) + return RHS; + + // If the lvalue is non-volatile, return the computed value of the assignment. + if (!LHS.isVolatileQualified()) + return RHS; + + // Otherwise, reload the value. + return EmitLoadOfLValue(LHS, E->getExprLoc()); +} + +Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { + // Perform vector logical and on comparisons with zero vectors. + if (E->getType()->isVectorType()) { + Value *LHS = Visit(E->getLHS()); + Value *RHS = Visit(E->getRHS()); + Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); + if (LHS->getType()->isFPOrFPVectorTy()) { + LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); + RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); + } else { + LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); + RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); + } + Value *And = Builder.CreateAnd(LHS, RHS); + return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); + } + + llvm::Type *ResTy = ConvertType(E->getType()); + + // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. + // If we have 1 && X, just emit X without inserting the control flow. + bool LHSCondVal; + if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { + if (LHSCondVal) { // If we have 1 && X, just emit X. + Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); + // ZExt result to int or bool. + return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); + } + + // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. + if (!CGF.ContainsLabel(E->getRHS())) + return llvm::Constant::getNullValue(ResTy); + } + + llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); + llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); + + CodeGenFunction::ConditionalEvaluation eval(CGF); + + // Branch on the LHS first. If it is false, go to the failure (cont) block. + CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock); + + // Any edges into the ContBlock are now from an (indeterminate number of) + // edges from this first condition. All of these values will be false. Start + // setting up the PHI node in the Cont Block for this. + llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, + "", ContBlock); + for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); + PI != PE; ++PI) + PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); + + eval.begin(CGF); + CGF.EmitBlock(RHSBlock); + Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); + eval.end(CGF); + + // Reaquire the RHS block, as there may be subblocks inserted. + RHSBlock = Builder.GetInsertBlock(); + + // Emit an unconditional branch from this block to ContBlock. Insert an entry + // into the phi node for the edge with the value of RHSCond. + if (CGF.getDebugInfo()) + // There is no need to emit line number for unconditional branch. + Builder.SetCurrentDebugLocation(llvm::DebugLoc()); + CGF.EmitBlock(ContBlock); + PN->addIncoming(RHSCond, RHSBlock); + + // ZExt result to int. + return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); +} + +Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { + // Perform vector logical or on comparisons with zero vectors. + if (E->getType()->isVectorType()) { + Value *LHS = Visit(E->getLHS()); + Value *RHS = Visit(E->getRHS()); + Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); + if (LHS->getType()->isFPOrFPVectorTy()) { + LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); + RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); + } else { + LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); + RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); + } + Value *Or = Builder.CreateOr(LHS, RHS); + return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); + } + + llvm::Type *ResTy = ConvertType(E->getType()); + + // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. + // If we have 0 || X, just emit X without inserting the control flow. + bool LHSCondVal; + if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { + if (!LHSCondVal) { // If we have 0 || X, just emit X. + Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); + // ZExt result to int or bool. + return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); + } + + // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. + if (!CGF.ContainsLabel(E->getRHS())) + return llvm::ConstantInt::get(ResTy, 1); + } + + llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); + llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); + + CodeGenFunction::ConditionalEvaluation eval(CGF); + + // Branch on the LHS first. If it is true, go to the success (cont) block. + CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock); + + // Any edges into the ContBlock are now from an (indeterminate number of) + // edges from this first condition. All of these values will be true. Start + // setting up the PHI node in the Cont Block for this. + llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, + "", ContBlock); + for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); + PI != PE; ++PI) + PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); + + eval.begin(CGF); + + // Emit the RHS condition as a bool value. + CGF.EmitBlock(RHSBlock); + Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); + + eval.end(CGF); + + // Reaquire the RHS block, as there may be subblocks inserted. + RHSBlock = Builder.GetInsertBlock(); + + // Emit an unconditional branch from this block to ContBlock. Insert an entry + // into the phi node for the edge with the value of RHSCond. + CGF.EmitBlock(ContBlock); + PN->addIncoming(RHSCond, RHSBlock); + + // ZExt result to int. + return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); +} + +Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { + CGF.EmitIgnoredExpr(E->getLHS()); + CGF.EnsureInsertPoint(); + return Visit(E->getRHS()); +} + +//===----------------------------------------------------------------------===// +// Other Operators +//===----------------------------------------------------------------------===// + +/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified +/// expression is cheap enough and side-effect-free enough to evaluate +/// unconditionally instead of conditionally. This is used to convert control +/// flow into selects in some cases. +static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, + CodeGenFunction &CGF) { + // Anything that is an integer or floating point constant is fine. + return E->IgnoreParens()->isEvaluatable(CGF.getContext()); + + // Even non-volatile automatic variables can't be evaluated unconditionally. + // Referencing a thread_local may cause non-trivial initialization work to + // occur. If we're inside a lambda and one of the variables is from the scope + // outside the lambda, that function may have returned already. Reading its + // locals is a bad idea. Also, these reads may introduce races there didn't + // exist in the source-level program. +} + + +Value *ScalarExprEmitter:: +VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { + TestAndClearIgnoreResultAssign(); + + // Bind the common expression if necessary. + CodeGenFunction::OpaqueValueMapping binding(CGF, E); + + Expr *condExpr = E->getCond(); + Expr *lhsExpr = E->getTrueExpr(); + Expr *rhsExpr = E->getFalseExpr(); + + // If the condition constant folds and can be elided, try to avoid emitting + // the condition and the dead arm. + bool CondExprBool; + if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { + Expr *live = lhsExpr, *dead = rhsExpr; + if (!CondExprBool) std::swap(live, dead); + + // If the dead side doesn't have labels we need, just emit the Live part. + if (!CGF.ContainsLabel(dead)) { + Value *Result = Visit(live); + + // If the live part is a throw expression, it acts like it has a void + // type, so evaluating it returns a null Value*. However, a conditional + // with non-void type must return a non-null Value*. + if (!Result && !E->getType()->isVoidType()) + Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); + + return Result; + } + } + + // OpenCL: If the condition is a vector, we can treat this condition like + // the select function. + if (CGF.getLangOpts().OpenCL + && condExpr->getType()->isVectorType()) { + llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); + llvm::Value *LHS = Visit(lhsExpr); + llvm::Value *RHS = Visit(rhsExpr); + + llvm::Type *condType = ConvertType(condExpr->getType()); + llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); + + unsigned numElem = vecTy->getNumElements(); + llvm::Type *elemType = vecTy->getElementType(); + + llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); + llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); + llvm::Value *tmp = Builder.CreateSExt(TestMSB, + llvm::VectorType::get(elemType, + numElem), + "sext"); + llvm::Value *tmp2 = Builder.CreateNot(tmp); + + // Cast float to int to perform ANDs if necessary. + llvm::Value *RHSTmp = RHS; + llvm::Value *LHSTmp = LHS; + bool wasCast = false; + llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); + if (rhsVTy->getElementType()->isFloatingPointTy()) { + RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); + LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); + wasCast = true; + } + + llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); + llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); + llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); + if (wasCast) + tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); + + return tmp5; + } + + // If this is a really simple expression (like x ? 4 : 5), emit this as a + // select instead of as control flow. We can only do this if it is cheap and + // safe to evaluate the LHS and RHS unconditionally. + if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && + isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { + llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); + llvm::Value *LHS = Visit(lhsExpr); + llvm::Value *RHS = Visit(rhsExpr); + if (!LHS) { + // If the conditional has void type, make sure we return a null Value*. + assert(!RHS && "LHS and RHS types must match"); + return 0; + } + return Builder.CreateSelect(CondV, LHS, RHS, "cond"); + } + + llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); + llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); + llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); + + CodeGenFunction::ConditionalEvaluation eval(CGF); + CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock); + + CGF.EmitBlock(LHSBlock); + eval.begin(CGF); + Value *LHS = Visit(lhsExpr); + eval.end(CGF); + + LHSBlock = Builder.GetInsertBlock(); + Builder.CreateBr(ContBlock); + + CGF.EmitBlock(RHSBlock); + eval.begin(CGF); + Value *RHS = Visit(rhsExpr); + eval.end(CGF); + + RHSBlock = Builder.GetInsertBlock(); + CGF.EmitBlock(ContBlock); + + // If the LHS or RHS is a throw expression, it will be legitimately null. + if (!LHS) + return RHS; + if (!RHS) + return LHS; + + // Create a PHI node for the real part. + llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); + PN->addIncoming(LHS, LHSBlock); + PN->addIncoming(RHS, RHSBlock); + return PN; +} + +Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { + return Visit(E->getChosenSubExpr()); +} + +Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { + llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); + llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); + + // If EmitVAArg fails, we fall back to the LLVM instruction. + if (!ArgPtr) + return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType())); + + // FIXME Volatility. + return Builder.CreateLoad(ArgPtr); +} + +Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { + return CGF.EmitBlockLiteral(block); +} + +Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { + Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); + llvm::Type *DstTy = ConvertType(E->getType()); + + // Going from vec4->vec3 or vec3->vec4 is a special case and requires + // a shuffle vector instead of a bitcast. + llvm::Type *SrcTy = Src->getType(); + if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) { + unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements(); + unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements(); + if ((numElementsDst == 3 && numElementsSrc == 4) + || (numElementsDst == 4 && numElementsSrc == 3)) { + + + // In the case of going from int4->float3, a bitcast is needed before + // doing a shuffle. + llvm::Type *srcElemTy = + cast<llvm::VectorType>(SrcTy)->getElementType(); + llvm::Type *dstElemTy = + cast<llvm::VectorType>(DstTy)->getElementType(); + + if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy()) + || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) { + // Create a float type of the same size as the source or destination. + llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy, + numElementsSrc); + + Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast"); + } + + llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); + + SmallVector<llvm::Constant*, 3> Args; + Args.push_back(Builder.getInt32(0)); + Args.push_back(Builder.getInt32(1)); + Args.push_back(Builder.getInt32(2)); + + if (numElementsDst == 4) + Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); + + llvm::Constant *Mask = llvm::ConstantVector::get(Args); + + return Builder.CreateShuffleVector(Src, UnV, Mask, "astype"); + } + } + + return Builder.CreateBitCast(Src, DstTy, "astype"); +} + +Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { + return CGF.EmitAtomicExpr(E).getScalarVal(); +} + +//===----------------------------------------------------------------------===// +// Entry Point into this File +//===----------------------------------------------------------------------===// + +/// EmitScalarExpr - Emit the computation of the specified expression of scalar +/// type, ignoring the result. +Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { + assert(E && hasScalarEvaluationKind(E->getType()) && + "Invalid scalar expression to emit"); + + if (isa<CXXDefaultArgExpr>(E)) + disableDebugInfo(); + Value *V = ScalarExprEmitter(*this, IgnoreResultAssign) + .Visit(const_cast<Expr*>(E)); + if (isa<CXXDefaultArgExpr>(E)) + enableDebugInfo(); + return V; +} + +/// EmitScalarConversion - Emit a conversion from the specified type to the +/// specified destination type, both of which are LLVM scalar types. +Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, + QualType DstTy) { + assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && + "Invalid scalar expression to emit"); + return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy); +} + +/// EmitComplexToScalarConversion - Emit a conversion from the specified complex +/// type to the specified destination type, where the destination type is an +/// LLVM scalar type. +Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, + QualType SrcTy, + QualType DstTy) { + assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && + "Invalid complex -> scalar conversion"); + return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy, + DstTy); +} + + +llvm::Value *CodeGenFunction:: +EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, + bool isInc, bool isPre) { + return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); +} + +LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { + llvm::Value *V; + // object->isa or (*object).isa + // Generate code as for: *(Class*)object + // build Class* type + llvm::Type *ClassPtrTy = ConvertType(E->getType()); + + Expr *BaseExpr = E->getBase(); + if (BaseExpr->isRValue()) { + V = CreateMemTemp(E->getType(), "resval"); + llvm::Value *Src = EmitScalarExpr(BaseExpr); + Builder.CreateStore(Src, V); + V = ScalarExprEmitter(*this).EmitLoadOfLValue( + MakeNaturalAlignAddrLValue(V, E->getType()), E->getExprLoc()); + } else { + if (E->isArrow()) + V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr); + else + V = EmitLValue(BaseExpr).getAddress(); + } + + // build Class* type + ClassPtrTy = ClassPtrTy->getPointerTo(); + V = Builder.CreateBitCast(V, ClassPtrTy); + return MakeNaturalAlignAddrLValue(V, E->getType()); +} + + +LValue CodeGenFunction::EmitCompoundAssignmentLValue( + const CompoundAssignOperator *E) { + ScalarExprEmitter Scalar(*this); + Value *Result = 0; + switch (E->getOpcode()) { +#define COMPOUND_OP(Op) \ + case BO_##Op##Assign: \ + return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ + Result) + COMPOUND_OP(Mul); + COMPOUND_OP(Div); + COMPOUND_OP(Rem); + COMPOUND_OP(Add); + COMPOUND_OP(Sub); + COMPOUND_OP(Shl); + COMPOUND_OP(Shr); + COMPOUND_OP(And); + COMPOUND_OP(Xor); + COMPOUND_OP(Or); +#undef COMPOUND_OP + + case BO_PtrMemD: + case BO_PtrMemI: + case BO_Mul: + case BO_Div: + case BO_Rem: + case BO_Add: + case BO_Sub: + case BO_Shl: + case BO_Shr: + case BO_LT: + case BO_GT: + case BO_LE: + case BO_GE: + case BO_EQ: + case BO_NE: + case BO_And: + case BO_Xor: + case BO_Or: + case BO_LAnd: + case BO_LOr: + case BO_Assign: + case BO_Comma: + llvm_unreachable("Not valid compound assignment operators"); + } + + llvm_unreachable("Unhandled compound assignment operator"); +} |