summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/CodeGen/CGExprScalar.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/CodeGen/CGExprScalar.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGExprScalar.cpp2006
1 files changed, 2006 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGExprScalar.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGExprScalar.cpp
new file mode 100644
index 0000000..2108414
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGExprScalar.cpp
@@ -0,0 +1,2006 @@
+//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenFunction.h"
+#include "CGObjCRuntime.h"
+#include "CodeGenModule.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Basic/TargetInfo.h"
+#include "llvm/Constants.h"
+#include "llvm/Function.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/Intrinsics.h"
+#include "llvm/Module.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Target/TargetData.h"
+#include <cstdarg>
+
+using namespace clang;
+using namespace CodeGen;
+using llvm::Value;
+
+//===----------------------------------------------------------------------===//
+// Scalar Expression Emitter
+//===----------------------------------------------------------------------===//
+
+struct BinOpInfo {
+ Value *LHS;
+ Value *RHS;
+ QualType Ty; // Computation Type.
+ const BinaryOperator *E;
+};
+
+namespace {
+class ScalarExprEmitter
+ : public StmtVisitor<ScalarExprEmitter, Value*> {
+ CodeGenFunction &CGF;
+ CGBuilderTy &Builder;
+ bool IgnoreResultAssign;
+ llvm::LLVMContext &VMContext;
+public:
+
+ ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
+ : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
+ VMContext(cgf.getLLVMContext()) {
+ }
+
+ //===--------------------------------------------------------------------===//
+ // Utilities
+ //===--------------------------------------------------------------------===//
+
+ bool TestAndClearIgnoreResultAssign() {
+ bool I = IgnoreResultAssign;
+ IgnoreResultAssign = false;
+ return I;
+ }
+
+ const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
+ LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
+ LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
+
+ Value *EmitLoadOfLValue(LValue LV, QualType T) {
+ return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
+ }
+
+ /// EmitLoadOfLValue - Given an expression with complex type that represents a
+ /// value l-value, this method emits the address of the l-value, then loads
+ /// and returns the result.
+ Value *EmitLoadOfLValue(const Expr *E) {
+ return EmitLoadOfLValue(EmitCheckedLValue(E), E->getType());
+ }
+
+ /// EmitConversionToBool - Convert the specified expression value to a
+ /// boolean (i1) truth value. This is equivalent to "Val != 0".
+ Value *EmitConversionToBool(Value *Src, QualType DstTy);
+
+ /// EmitScalarConversion - Emit a conversion from the specified type to the
+ /// specified destination type, both of which are LLVM scalar types.
+ Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
+
+ /// EmitComplexToScalarConversion - Emit a conversion from the specified
+ /// complex type to the specified destination type, where the destination type
+ /// is an LLVM scalar type.
+ Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
+ QualType SrcTy, QualType DstTy);
+
+ /// EmitNullValue - Emit a value that corresponds to null for the given type.
+ Value *EmitNullValue(QualType Ty);
+
+ //===--------------------------------------------------------------------===//
+ // Visitor Methods
+ //===--------------------------------------------------------------------===//
+
+ Value *VisitStmt(Stmt *S) {
+ S->dump(CGF.getContext().getSourceManager());
+ assert(0 && "Stmt can't have complex result type!");
+ return 0;
+ }
+ Value *VisitExpr(Expr *S);
+
+ Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
+
+ // Leaves.
+ Value *VisitIntegerLiteral(const IntegerLiteral *E) {
+ return llvm::ConstantInt::get(VMContext, E->getValue());
+ }
+ Value *VisitFloatingLiteral(const FloatingLiteral *E) {
+ return llvm::ConstantFP::get(VMContext, E->getValue());
+ }
+ Value *VisitCharacterLiteral(const CharacterLiteral *E) {
+ return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
+ }
+ Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
+ return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
+ }
+ Value *VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) {
+ return EmitNullValue(E->getType());
+ }
+ Value *VisitGNUNullExpr(const GNUNullExpr *E) {
+ return EmitNullValue(E->getType());
+ }
+ Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
+ return llvm::ConstantInt::get(ConvertType(E->getType()),
+ CGF.getContext().typesAreCompatible(
+ E->getArgType1(), E->getArgType2()));
+ }
+ Value *VisitOffsetOfExpr(const OffsetOfExpr *E);
+ Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
+ Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
+ llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
+ return Builder.CreateBitCast(V, ConvertType(E->getType()));
+ }
+
+ // l-values.
+ Value *VisitDeclRefExpr(DeclRefExpr *E) {
+ Expr::EvalResult Result;
+ if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
+ assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
+ return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
+ }
+ return EmitLoadOfLValue(E);
+ }
+ Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
+ return CGF.EmitObjCSelectorExpr(E);
+ }
+ Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
+ return CGF.EmitObjCProtocolExpr(E);
+ }
+ Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
+ return EmitLoadOfLValue(E);
+ }
+ Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
+ return EmitLoadOfLValue(E);
+ }
+ Value *VisitObjCImplicitSetterGetterRefExpr(
+ ObjCImplicitSetterGetterRefExpr *E) {
+ return EmitLoadOfLValue(E);
+ }
+ Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
+ return CGF.EmitObjCMessageExpr(E).getScalarVal();
+ }
+
+ Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
+ LValue LV = CGF.EmitObjCIsaExpr(E);
+ Value *V = CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal();
+ return V;
+ }
+
+ Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
+ Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
+ Value *VisitMemberExpr(MemberExpr *E);
+ Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
+ Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
+ return EmitLoadOfLValue(E);
+ }
+
+ Value *VisitInitListExpr(InitListExpr *E);
+
+ Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
+ return CGF.CGM.EmitNullConstant(E->getType());
+ }
+ Value *VisitCastExpr(CastExpr *E) {
+ // Make sure to evaluate VLA bounds now so that we have them for later.
+ if (E->getType()->isVariablyModifiedType())
+ CGF.EmitVLASize(E->getType());
+
+ return EmitCastExpr(E);
+ }
+ Value *EmitCastExpr(CastExpr *E);
+
+ Value *VisitCallExpr(const CallExpr *E) {
+ if (E->getCallReturnType()->isReferenceType())
+ return EmitLoadOfLValue(E);
+
+ return CGF.EmitCallExpr(E).getScalarVal();
+ }
+
+ Value *VisitStmtExpr(const StmtExpr *E);
+
+ Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
+
+ // Unary Operators.
+ Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre) {
+ LValue LV = EmitLValue(E->getSubExpr());
+ return CGF.EmitScalarPrePostIncDec(E, LV, isInc, isPre);
+ }
+ Value *VisitUnaryPostDec(const UnaryOperator *E) {
+ return VisitPrePostIncDec(E, false, false);
+ }
+ Value *VisitUnaryPostInc(const UnaryOperator *E) {
+ return VisitPrePostIncDec(E, true, false);
+ }
+ Value *VisitUnaryPreDec(const UnaryOperator *E) {
+ return VisitPrePostIncDec(E, false, true);
+ }
+ Value *VisitUnaryPreInc(const UnaryOperator *E) {
+ return VisitPrePostIncDec(E, true, true);
+ }
+ Value *VisitUnaryAddrOf(const UnaryOperator *E) {
+ return EmitLValue(E->getSubExpr()).getAddress();
+ }
+ Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
+ Value *VisitUnaryPlus(const UnaryOperator *E) {
+ // This differs from gcc, though, most likely due to a bug in gcc.
+ TestAndClearIgnoreResultAssign();
+ return Visit(E->getSubExpr());
+ }
+ Value *VisitUnaryMinus (const UnaryOperator *E);
+ Value *VisitUnaryNot (const UnaryOperator *E);
+ Value *VisitUnaryLNot (const UnaryOperator *E);
+ Value *VisitUnaryReal (const UnaryOperator *E);
+ Value *VisitUnaryImag (const UnaryOperator *E);
+ Value *VisitUnaryExtension(const UnaryOperator *E) {
+ return Visit(E->getSubExpr());
+ }
+ Value *VisitUnaryOffsetOf(const UnaryOperator *E);
+
+ // C++
+ Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
+ return Visit(DAE->getExpr());
+ }
+ Value *VisitCXXThisExpr(CXXThisExpr *TE) {
+ return CGF.LoadCXXThis();
+ }
+
+ Value *VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
+ return CGF.EmitCXXExprWithTemporaries(E).getScalarVal();
+ }
+ Value *VisitCXXNewExpr(const CXXNewExpr *E) {
+ return CGF.EmitCXXNewExpr(E);
+ }
+ Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
+ CGF.EmitCXXDeleteExpr(E);
+ return 0;
+ }
+ Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
+ return llvm::ConstantInt::get(Builder.getInt1Ty(),
+ E->EvaluateTrait(CGF.getContext()));
+ }
+
+ Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
+ // C++ [expr.pseudo]p1:
+ // The result shall only be used as the operand for the function call
+ // operator (), and the result of such a call has type void. The only
+ // effect is the evaluation of the postfix-expression before the dot or
+ // arrow.
+ CGF.EmitScalarExpr(E->getBase());
+ return 0;
+ }
+
+ Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
+ return EmitNullValue(E->getType());
+ }
+
+ Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
+ CGF.EmitCXXThrowExpr(E);
+ return 0;
+ }
+
+ // Binary Operators.
+ Value *EmitMul(const BinOpInfo &Ops) {
+ if (CGF.getContext().getLangOptions().OverflowChecking
+ && Ops.Ty->isSignedIntegerType())
+ return EmitOverflowCheckedBinOp(Ops);
+ if (Ops.LHS->getType()->isFPOrFPVectorTy())
+ return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
+ return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
+ }
+ /// Create a binary op that checks for overflow.
+ /// Currently only supports +, - and *.
+ Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
+ Value *EmitDiv(const BinOpInfo &Ops);
+ Value *EmitRem(const BinOpInfo &Ops);
+ Value *EmitAdd(const BinOpInfo &Ops);
+ Value *EmitSub(const BinOpInfo &Ops);
+ Value *EmitShl(const BinOpInfo &Ops);
+ Value *EmitShr(const BinOpInfo &Ops);
+ Value *EmitAnd(const BinOpInfo &Ops) {
+ return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
+ }
+ Value *EmitXor(const BinOpInfo &Ops) {
+ return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
+ }
+ Value *EmitOr (const BinOpInfo &Ops) {
+ return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
+ }
+
+ BinOpInfo EmitBinOps(const BinaryOperator *E);
+ LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
+ Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
+ Value *&BitFieldResult);
+
+ Value *EmitCompoundAssign(const CompoundAssignOperator *E,
+ Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
+
+ // Binary operators and binary compound assignment operators.
+#define HANDLEBINOP(OP) \
+ Value *VisitBin ## OP(const BinaryOperator *E) { \
+ return Emit ## OP(EmitBinOps(E)); \
+ } \
+ Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \
+ return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \
+ }
+ HANDLEBINOP(Mul)
+ HANDLEBINOP(Div)
+ HANDLEBINOP(Rem)
+ HANDLEBINOP(Add)
+ HANDLEBINOP(Sub)
+ HANDLEBINOP(Shl)
+ HANDLEBINOP(Shr)
+ HANDLEBINOP(And)
+ HANDLEBINOP(Xor)
+ HANDLEBINOP(Or)
+#undef HANDLEBINOP
+
+ // Comparisons.
+ Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
+ unsigned SICmpOpc, unsigned FCmpOpc);
+#define VISITCOMP(CODE, UI, SI, FP) \
+ Value *VisitBin##CODE(const BinaryOperator *E) { \
+ return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
+ llvm::FCmpInst::FP); }
+ VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
+ VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
+ VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
+ VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
+ VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
+ VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
+#undef VISITCOMP
+
+ Value *VisitBinAssign (const BinaryOperator *E);
+
+ Value *VisitBinLAnd (const BinaryOperator *E);
+ Value *VisitBinLOr (const BinaryOperator *E);
+ Value *VisitBinComma (const BinaryOperator *E);
+
+ Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
+ Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
+
+ // Other Operators.
+ Value *VisitBlockExpr(const BlockExpr *BE);
+ Value *VisitConditionalOperator(const ConditionalOperator *CO);
+ Value *VisitChooseExpr(ChooseExpr *CE);
+ Value *VisitVAArgExpr(VAArgExpr *VE);
+ Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
+ return CGF.EmitObjCStringLiteral(E);
+ }
+};
+} // end anonymous namespace.
+
+//===----------------------------------------------------------------------===//
+// Utilities
+//===----------------------------------------------------------------------===//
+
+/// EmitConversionToBool - Convert the specified expression value to a
+/// boolean (i1) truth value. This is equivalent to "Val != 0".
+Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
+ assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
+
+ if (SrcType->isRealFloatingType()) {
+ // Compare against 0.0 for fp scalars.
+ llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
+ return Builder.CreateFCmpUNE(Src, Zero, "tobool");
+ }
+
+ if (SrcType->isMemberPointerType()) {
+ // Compare against -1.
+ llvm::Value *NegativeOne = llvm::Constant::getAllOnesValue(Src->getType());
+ return Builder.CreateICmpNE(Src, NegativeOne, "tobool");
+ }
+
+ assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
+ "Unknown scalar type to convert");
+
+ // Because of the type rules of C, we often end up computing a logical value,
+ // then zero extending it to int, then wanting it as a logical value again.
+ // Optimize this common case.
+ if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
+ if (ZI->getOperand(0)->getType() ==
+ llvm::Type::getInt1Ty(CGF.getLLVMContext())) {
+ Value *Result = ZI->getOperand(0);
+ // If there aren't any more uses, zap the instruction to save space.
+ // Note that there can be more uses, for example if this
+ // is the result of an assignment.
+ if (ZI->use_empty())
+ ZI->eraseFromParent();
+ return Result;
+ }
+ }
+
+ // Compare against an integer or pointer null.
+ llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
+ return Builder.CreateICmpNE(Src, Zero, "tobool");
+}
+
+/// EmitScalarConversion - Emit a conversion from the specified type to the
+/// specified destination type, both of which are LLVM scalar types.
+Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
+ QualType DstType) {
+ SrcType = CGF.getContext().getCanonicalType(SrcType);
+ DstType = CGF.getContext().getCanonicalType(DstType);
+ if (SrcType == DstType) return Src;
+
+ if (DstType->isVoidType()) return 0;
+
+ llvm::LLVMContext &VMContext = CGF.getLLVMContext();
+
+ // Handle conversions to bool first, they are special: comparisons against 0.
+ if (DstType->isBooleanType())
+ return EmitConversionToBool(Src, SrcType);
+
+ const llvm::Type *DstTy = ConvertType(DstType);
+
+ // Ignore conversions like int -> uint.
+ if (Src->getType() == DstTy)
+ return Src;
+
+ // Handle pointer conversions next: pointers can only be converted to/from
+ // other pointers and integers. Check for pointer types in terms of LLVM, as
+ // some native types (like Obj-C id) may map to a pointer type.
+ if (isa<llvm::PointerType>(DstTy)) {
+ // The source value may be an integer, or a pointer.
+ if (isa<llvm::PointerType>(Src->getType()))
+ return Builder.CreateBitCast(Src, DstTy, "conv");
+
+ assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
+ // First, convert to the correct width so that we control the kind of
+ // extension.
+ const llvm::Type *MiddleTy =
+ llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
+ bool InputSigned = SrcType->isSignedIntegerType();
+ llvm::Value* IntResult =
+ Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
+ // Then, cast to pointer.
+ return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
+ }
+
+ if (isa<llvm::PointerType>(Src->getType())) {
+ // Must be an ptr to int cast.
+ assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
+ return Builder.CreatePtrToInt(Src, DstTy, "conv");
+ }
+
+ // A scalar can be splatted to an extended vector of the same element type
+ if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
+ // Cast the scalar to element type
+ QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
+ llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
+
+ // Insert the element in element zero of an undef vector
+ llvm::Value *UnV = llvm::UndefValue::get(DstTy);
+ llvm::Value *Idx =
+ llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0);
+ UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
+
+ // Splat the element across to all elements
+ llvm::SmallVector<llvm::Constant*, 16> Args;
+ unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
+ for (unsigned i = 0; i < NumElements; i++)
+ Args.push_back(llvm::ConstantInt::get(
+ llvm::Type::getInt32Ty(VMContext), 0));
+
+ llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
+ llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
+ return Yay;
+ }
+
+ // Allow bitcast from vector to integer/fp of the same size.
+ if (isa<llvm::VectorType>(Src->getType()) ||
+ isa<llvm::VectorType>(DstTy))
+ return Builder.CreateBitCast(Src, DstTy, "conv");
+
+ // Finally, we have the arithmetic types: real int/float.
+ if (isa<llvm::IntegerType>(Src->getType())) {
+ bool InputSigned = SrcType->isSignedIntegerType();
+ if (isa<llvm::IntegerType>(DstTy))
+ return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
+ else if (InputSigned)
+ return Builder.CreateSIToFP(Src, DstTy, "conv");
+ else
+ return Builder.CreateUIToFP(Src, DstTy, "conv");
+ }
+
+ assert(Src->getType()->isFloatingPointTy() && "Unknown real conversion");
+ if (isa<llvm::IntegerType>(DstTy)) {
+ if (DstType->isSignedIntegerType())
+ return Builder.CreateFPToSI(Src, DstTy, "conv");
+ else
+ return Builder.CreateFPToUI(Src, DstTy, "conv");
+ }
+
+ assert(DstTy->isFloatingPointTy() && "Unknown real conversion");
+ if (DstTy->getTypeID() < Src->getType()->getTypeID())
+ return Builder.CreateFPTrunc(Src, DstTy, "conv");
+ else
+ return Builder.CreateFPExt(Src, DstTy, "conv");
+}
+
+/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
+/// type to the specified destination type, where the destination type is an
+/// LLVM scalar type.
+Value *ScalarExprEmitter::
+EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
+ QualType SrcTy, QualType DstTy) {
+ // Get the source element type.
+ SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
+
+ // Handle conversions to bool first, they are special: comparisons against 0.
+ if (DstTy->isBooleanType()) {
+ // Complex != 0 -> (Real != 0) | (Imag != 0)
+ Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy);
+ Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
+ return Builder.CreateOr(Src.first, Src.second, "tobool");
+ }
+
+ // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
+ // the imaginary part of the complex value is discarded and the value of the
+ // real part is converted according to the conversion rules for the
+ // corresponding real type.
+ return EmitScalarConversion(Src.first, SrcTy, DstTy);
+}
+
+Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
+ const llvm::Type *LTy = ConvertType(Ty);
+
+ if (!Ty->isMemberPointerType())
+ return llvm::Constant::getNullValue(LTy);
+
+ assert(!Ty->isMemberFunctionPointerType() &&
+ "member function pointers are not scalar!");
+
+ // Itanium C++ ABI 2.3:
+ // A NULL pointer is represented as -1.
+ return llvm::ConstantInt::get(LTy, -1ULL, /*isSigned=*/true);
+}
+
+//===----------------------------------------------------------------------===//
+// Visitor Methods
+//===----------------------------------------------------------------------===//
+
+Value *ScalarExprEmitter::VisitExpr(Expr *E) {
+ CGF.ErrorUnsupported(E, "scalar expression");
+ if (E->getType()->isVoidType())
+ return 0;
+ return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
+}
+
+Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
+ llvm::SmallVector<llvm::Constant*, 32> indices;
+ for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
+ indices.push_back(cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i))));
+ }
+ Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
+ Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
+ Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
+ return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
+}
+Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
+ Expr::EvalResult Result;
+ if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
+ if (E->isArrow())
+ CGF.EmitScalarExpr(E->getBase());
+ else
+ EmitLValue(E->getBase());
+ return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
+ }
+ return EmitLoadOfLValue(E);
+}
+
+Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
+ TestAndClearIgnoreResultAssign();
+
+ // Emit subscript expressions in rvalue context's. For most cases, this just
+ // loads the lvalue formed by the subscript expr. However, we have to be
+ // careful, because the base of a vector subscript is occasionally an rvalue,
+ // so we can't get it as an lvalue.
+ if (!E->getBase()->getType()->isVectorType())
+ return EmitLoadOfLValue(E);
+
+ // Handle the vector case. The base must be a vector, the index must be an
+ // integer value.
+ Value *Base = Visit(E->getBase());
+ Value *Idx = Visit(E->getIdx());
+ bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType();
+ Idx = Builder.CreateIntCast(Idx,
+ llvm::Type::getInt32Ty(CGF.getLLVMContext()),
+ IdxSigned,
+ "vecidxcast");
+ return Builder.CreateExtractElement(Base, Idx, "vecext");
+}
+
+static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
+ unsigned Off, const llvm::Type *I32Ty) {
+ int MV = SVI->getMaskValue(Idx);
+ if (MV == -1)
+ return llvm::UndefValue::get(I32Ty);
+ return llvm::ConstantInt::get(I32Ty, Off+MV);
+}
+
+Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
+ bool Ignore = TestAndClearIgnoreResultAssign();
+ (void)Ignore;
+ assert (Ignore == false && "init list ignored");
+ unsigned NumInitElements = E->getNumInits();
+
+ if (E->hadArrayRangeDesignator())
+ CGF.ErrorUnsupported(E, "GNU array range designator extension");
+
+ const llvm::VectorType *VType =
+ dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
+
+ // We have a scalar in braces. Just use the first element.
+ if (!VType)
+ return Visit(E->getInit(0));
+
+ unsigned ResElts = VType->getNumElements();
+ const llvm::Type *I32Ty = llvm::Type::getInt32Ty(CGF.getLLVMContext());
+
+ // Loop over initializers collecting the Value for each, and remembering
+ // whether the source was swizzle (ExtVectorElementExpr). This will allow
+ // us to fold the shuffle for the swizzle into the shuffle for the vector
+ // initializer, since LLVM optimizers generally do not want to touch
+ // shuffles.
+ unsigned CurIdx = 0;
+ bool VIsUndefShuffle = false;
+ llvm::Value *V = llvm::UndefValue::get(VType);
+ for (unsigned i = 0; i != NumInitElements; ++i) {
+ Expr *IE = E->getInit(i);
+ Value *Init = Visit(IE);
+ llvm::SmallVector<llvm::Constant*, 16> Args;
+
+ const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
+
+ // Handle scalar elements. If the scalar initializer is actually one
+ // element of a different vector of the same width, use shuffle instead of
+ // extract+insert.
+ if (!VVT) {
+ if (isa<ExtVectorElementExpr>(IE)) {
+ llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
+
+ if (EI->getVectorOperandType()->getNumElements() == ResElts) {
+ llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
+ Value *LHS = 0, *RHS = 0;
+ if (CurIdx == 0) {
+ // insert into undef -> shuffle (src, undef)
+ Args.push_back(C);
+ for (unsigned j = 1; j != ResElts; ++j)
+ Args.push_back(llvm::UndefValue::get(I32Ty));
+
+ LHS = EI->getVectorOperand();
+ RHS = V;
+ VIsUndefShuffle = true;
+ } else if (VIsUndefShuffle) {
+ // insert into undefshuffle && size match -> shuffle (v, src)
+ llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
+ for (unsigned j = 0; j != CurIdx; ++j)
+ Args.push_back(getMaskElt(SVV, j, 0, I32Ty));
+ Args.push_back(llvm::ConstantInt::get(I32Ty,
+ ResElts + C->getZExtValue()));
+ for (unsigned j = CurIdx + 1; j != ResElts; ++j)
+ Args.push_back(llvm::UndefValue::get(I32Ty));
+
+ LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
+ RHS = EI->getVectorOperand();
+ VIsUndefShuffle = false;
+ }
+ if (!Args.empty()) {
+ llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
+ V = Builder.CreateShuffleVector(LHS, RHS, Mask);
+ ++CurIdx;
+ continue;
+ }
+ }
+ }
+ Value *Idx = llvm::ConstantInt::get(I32Ty, CurIdx);
+ V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
+ VIsUndefShuffle = false;
+ ++CurIdx;
+ continue;
+ }
+
+ unsigned InitElts = VVT->getNumElements();
+
+ // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
+ // input is the same width as the vector being constructed, generate an
+ // optimized shuffle of the swizzle input into the result.
+ unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
+ if (isa<ExtVectorElementExpr>(IE)) {
+ llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
+ Value *SVOp = SVI->getOperand(0);
+ const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
+
+ if (OpTy->getNumElements() == ResElts) {
+ for (unsigned j = 0; j != CurIdx; ++j) {
+ // If the current vector initializer is a shuffle with undef, merge
+ // this shuffle directly into it.
+ if (VIsUndefShuffle) {
+ Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
+ I32Ty));
+ } else {
+ Args.push_back(llvm::ConstantInt::get(I32Ty, j));
+ }
+ }
+ for (unsigned j = 0, je = InitElts; j != je; ++j)
+ Args.push_back(getMaskElt(SVI, j, Offset, I32Ty));
+ for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
+ Args.push_back(llvm::UndefValue::get(I32Ty));
+
+ if (VIsUndefShuffle)
+ V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
+
+ Init = SVOp;
+ }
+ }
+
+ // Extend init to result vector length, and then shuffle its contribution
+ // to the vector initializer into V.
+ if (Args.empty()) {
+ for (unsigned j = 0; j != InitElts; ++j)
+ Args.push_back(llvm::ConstantInt::get(I32Ty, j));
+ for (unsigned j = InitElts; j != ResElts; ++j)
+ Args.push_back(llvm::UndefValue::get(I32Ty));
+ llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
+ Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
+ Mask, "vext");
+
+ Args.clear();
+ for (unsigned j = 0; j != CurIdx; ++j)
+ Args.push_back(llvm::ConstantInt::get(I32Ty, j));
+ for (unsigned j = 0; j != InitElts; ++j)
+ Args.push_back(llvm::ConstantInt::get(I32Ty, j+Offset));
+ for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
+ Args.push_back(llvm::UndefValue::get(I32Ty));
+ }
+
+ // If V is undef, make sure it ends up on the RHS of the shuffle to aid
+ // merging subsequent shuffles into this one.
+ if (CurIdx == 0)
+ std::swap(V, Init);
+ llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
+ V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
+ VIsUndefShuffle = isa<llvm::UndefValue>(Init);
+ CurIdx += InitElts;
+ }
+
+ // FIXME: evaluate codegen vs. shuffling against constant null vector.
+ // Emit remaining default initializers.
+ const llvm::Type *EltTy = VType->getElementType();
+
+ // Emit remaining default initializers
+ for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
+ Value *Idx = llvm::ConstantInt::get(I32Ty, CurIdx);
+ llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
+ V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
+ }
+ return V;
+}
+
+static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
+ const Expr *E = CE->getSubExpr();
+
+ if (CE->getCastKind() == CastExpr::CK_UncheckedDerivedToBase)
+ return false;
+
+ if (isa<CXXThisExpr>(E)) {
+ // We always assume that 'this' is never null.
+ return false;
+ }
+
+ if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
+ // And that lvalue casts are never null.
+ if (ICE->isLvalueCast())
+ return false;
+ }
+
+ return true;
+}
+
+// VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
+// have to handle a more broad range of conversions than explicit casts, as they
+// handle things like function to ptr-to-function decay etc.
+Value *ScalarExprEmitter::EmitCastExpr(CastExpr *CE) {
+ Expr *E = CE->getSubExpr();
+ QualType DestTy = CE->getType();
+ CastExpr::CastKind Kind = CE->getCastKind();
+
+ if (!DestTy->isVoidType())
+ TestAndClearIgnoreResultAssign();
+
+ // Since almost all cast kinds apply to scalars, this switch doesn't have
+ // a default case, so the compiler will warn on a missing case. The cases
+ // are in the same order as in the CastKind enum.
+ switch (Kind) {
+ case CastExpr::CK_Unknown:
+ // FIXME: All casts should have a known kind!
+ //assert(0 && "Unknown cast kind!");
+ break;
+
+ case CastExpr::CK_AnyPointerToObjCPointerCast:
+ case CastExpr::CK_AnyPointerToBlockPointerCast:
+ case CastExpr::CK_BitCast: {
+ Value *Src = Visit(const_cast<Expr*>(E));
+ return Builder.CreateBitCast(Src, ConvertType(DestTy));
+ }
+ case CastExpr::CK_NoOp:
+ case CastExpr::CK_UserDefinedConversion:
+ return Visit(const_cast<Expr*>(E));
+
+ case CastExpr::CK_BaseToDerived: {
+ const CXXRecordDecl *DerivedClassDecl =
+ DestTy->getCXXRecordDeclForPointerType();
+
+ return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
+ CE->getBasePath(),
+ ShouldNullCheckClassCastValue(CE));
+ }
+ case CastExpr::CK_UncheckedDerivedToBase:
+ case CastExpr::CK_DerivedToBase: {
+ const RecordType *DerivedClassTy =
+ E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
+ CXXRecordDecl *DerivedClassDecl =
+ cast<CXXRecordDecl>(DerivedClassTy->getDecl());
+
+ return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
+ CE->getBasePath(),
+ ShouldNullCheckClassCastValue(CE));
+ }
+ case CastExpr::CK_Dynamic: {
+ Value *V = Visit(const_cast<Expr*>(E));
+ const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
+ return CGF.EmitDynamicCast(V, DCE);
+ }
+ case CastExpr::CK_ToUnion:
+ assert(0 && "Should be unreachable!");
+ break;
+
+ case CastExpr::CK_ArrayToPointerDecay: {
+ assert(E->getType()->isArrayType() &&
+ "Array to pointer decay must have array source type!");
+
+ Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays.
+
+ // Note that VLA pointers are always decayed, so we don't need to do
+ // anything here.
+ if (!E->getType()->isVariableArrayType()) {
+ assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
+ assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
+ ->getElementType()) &&
+ "Expected pointer to array");
+ V = Builder.CreateStructGEP(V, 0, "arraydecay");
+ }
+
+ return V;
+ }
+ case CastExpr::CK_FunctionToPointerDecay:
+ return EmitLValue(E).getAddress();
+
+ case CastExpr::CK_NullToMemberPointer:
+ return CGF.CGM.EmitNullConstant(DestTy);
+
+ case CastExpr::CK_BaseToDerivedMemberPointer:
+ case CastExpr::CK_DerivedToBaseMemberPointer: {
+ Value *Src = Visit(E);
+
+ // See if we need to adjust the pointer.
+ const CXXRecordDecl *BaseDecl =
+ cast<CXXRecordDecl>(E->getType()->getAs<MemberPointerType>()->
+ getClass()->getAs<RecordType>()->getDecl());
+ const CXXRecordDecl *DerivedDecl =
+ cast<CXXRecordDecl>(CE->getType()->getAs<MemberPointerType>()->
+ getClass()->getAs<RecordType>()->getDecl());
+ if (CE->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer)
+ std::swap(DerivedDecl, BaseDecl);
+
+ if (llvm::Constant *Adj =
+ CGF.CGM.GetNonVirtualBaseClassOffset(DerivedDecl,
+ CE->getBasePath())) {
+ if (CE->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer)
+ Src = Builder.CreateSub(Src, Adj, "adj");
+ else
+ Src = Builder.CreateAdd(Src, Adj, "adj");
+ }
+ return Src;
+ }
+
+ case CastExpr::CK_ConstructorConversion:
+ assert(0 && "Should be unreachable!");
+ break;
+
+ case CastExpr::CK_IntegralToPointer: {
+ Value *Src = Visit(const_cast<Expr*>(E));
+
+ // First, convert to the correct width so that we control the kind of
+ // extension.
+ const llvm::Type *MiddleTy =
+ llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
+ bool InputSigned = E->getType()->isSignedIntegerType();
+ llvm::Value* IntResult =
+ Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
+
+ return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
+ }
+ case CastExpr::CK_PointerToIntegral: {
+ Value *Src = Visit(const_cast<Expr*>(E));
+ return Builder.CreatePtrToInt(Src, ConvertType(DestTy));
+ }
+ case CastExpr::CK_ToVoid: {
+ CGF.EmitAnyExpr(E, 0, false, true);
+ return 0;
+ }
+ case CastExpr::CK_VectorSplat: {
+ const llvm::Type *DstTy = ConvertType(DestTy);
+ Value *Elt = Visit(const_cast<Expr*>(E));
+
+ // Insert the element in element zero of an undef vector
+ llvm::Value *UnV = llvm::UndefValue::get(DstTy);
+ llvm::Value *Idx =
+ llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0);
+ UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
+
+ // Splat the element across to all elements
+ llvm::SmallVector<llvm::Constant*, 16> Args;
+ unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
+ for (unsigned i = 0; i < NumElements; i++)
+ Args.push_back(llvm::ConstantInt::get(
+ llvm::Type::getInt32Ty(VMContext), 0));
+
+ llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
+ llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
+ return Yay;
+ }
+ case CastExpr::CK_IntegralCast:
+ case CastExpr::CK_IntegralToFloating:
+ case CastExpr::CK_FloatingToIntegral:
+ case CastExpr::CK_FloatingCast:
+ return EmitScalarConversion(Visit(E), E->getType(), DestTy);
+
+ case CastExpr::CK_MemberPointerToBoolean:
+ return CGF.EvaluateExprAsBool(E);
+ }
+
+ // Handle cases where the source is an non-complex type.
+
+ if (!CGF.hasAggregateLLVMType(E->getType())) {
+ Value *Src = Visit(const_cast<Expr*>(E));
+
+ // Use EmitScalarConversion to perform the conversion.
+ return EmitScalarConversion(Src, E->getType(), DestTy);
+ }
+
+ if (E->getType()->isAnyComplexType()) {
+ // Handle cases where the source is a complex type.
+ bool IgnoreImag = true;
+ bool IgnoreImagAssign = true;
+ bool IgnoreReal = IgnoreResultAssign;
+ bool IgnoreRealAssign = IgnoreResultAssign;
+ if (DestTy->isBooleanType())
+ IgnoreImagAssign = IgnoreImag = false;
+ else if (DestTy->isVoidType()) {
+ IgnoreReal = IgnoreImag = false;
+ IgnoreRealAssign = IgnoreImagAssign = true;
+ }
+ CodeGenFunction::ComplexPairTy V
+ = CGF.EmitComplexExpr(E, IgnoreReal, IgnoreImag, IgnoreRealAssign,
+ IgnoreImagAssign);
+ return EmitComplexToScalarConversion(V, E->getType(), DestTy);
+ }
+
+ // Okay, this is a cast from an aggregate. It must be a cast to void. Just
+ // evaluate the result and return.
+ CGF.EmitAggExpr(E, 0, false, true);
+ return 0;
+}
+
+Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
+ return CGF.EmitCompoundStmt(*E->getSubStmt(),
+ !E->getType()->isVoidType()).getScalarVal();
+}
+
+Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
+ llvm::Value *V = CGF.GetAddrOfBlockDecl(E);
+ if (E->getType().isObjCGCWeak())
+ return CGF.CGM.getObjCRuntime().EmitObjCWeakRead(CGF, V);
+ return Builder.CreateLoad(V, "tmp");
+}
+
+//===----------------------------------------------------------------------===//
+// Unary Operators
+//===----------------------------------------------------------------------===//
+
+Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
+ TestAndClearIgnoreResultAssign();
+ Value *Op = Visit(E->getSubExpr());
+ if (Op->getType()->isFPOrFPVectorTy())
+ return Builder.CreateFNeg(Op, "neg");
+ return Builder.CreateNeg(Op, "neg");
+}
+
+Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
+ TestAndClearIgnoreResultAssign();
+ Value *Op = Visit(E->getSubExpr());
+ return Builder.CreateNot(Op, "neg");
+}
+
+Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
+ // Compare operand to zero.
+ Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
+
+ // Invert value.
+ // TODO: Could dynamically modify easy computations here. For example, if
+ // the operand is an icmp ne, turn into icmp eq.
+ BoolVal = Builder.CreateNot(BoolVal, "lnot");
+
+ // ZExt result to the expr type.
+ return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
+}
+
+Value *ScalarExprEmitter::VisitOffsetOfExpr(const OffsetOfExpr *E) {
+ Expr::EvalResult Result;
+ if(E->Evaluate(Result, CGF.getContext()))
+ return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
+
+ // FIXME: Cannot support code generation for non-constant offsetof.
+ unsigned DiagID = CGF.CGM.getDiags().getCustomDiagID(Diagnostic::Error,
+ "cannot compile non-constant __builtin_offsetof");
+ CGF.CGM.getDiags().Report(CGF.getContext().getFullLoc(E->getLocStart()),
+ DiagID)
+ << E->getSourceRange();
+
+ return llvm::Constant::getNullValue(ConvertType(E->getType()));
+}
+
+/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
+/// argument of the sizeof expression as an integer.
+Value *
+ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
+ QualType TypeToSize = E->getTypeOfArgument();
+ if (E->isSizeOf()) {
+ if (const VariableArrayType *VAT =
+ CGF.getContext().getAsVariableArrayType(TypeToSize)) {
+ if (E->isArgumentType()) {
+ // sizeof(type) - make sure to emit the VLA size.
+ CGF.EmitVLASize(TypeToSize);
+ } else {
+ // C99 6.5.3.4p2: If the argument is an expression of type
+ // VLA, it is evaluated.
+ CGF.EmitAnyExpr(E->getArgumentExpr());
+ }
+
+ return CGF.GetVLASize(VAT);
+ }
+ }
+
+ // If this isn't sizeof(vla), the result must be constant; use the constant
+ // folding logic so we don't have to duplicate it here.
+ Expr::EvalResult Result;
+ E->Evaluate(Result, CGF.getContext());
+ return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
+}
+
+Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
+ Expr *Op = E->getSubExpr();
+ if (Op->getType()->isAnyComplexType())
+ return CGF.EmitComplexExpr(Op, false, true, false, true).first;
+ return Visit(Op);
+}
+Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
+ Expr *Op = E->getSubExpr();
+ if (Op->getType()->isAnyComplexType())
+ return CGF.EmitComplexExpr(Op, true, false, true, false).second;
+
+ // __imag on a scalar returns zero. Emit the subexpr to ensure side
+ // effects are evaluated, but not the actual value.
+ if (E->isLvalue(CGF.getContext()) == Expr::LV_Valid)
+ CGF.EmitLValue(Op);
+ else
+ CGF.EmitScalarExpr(Op, true);
+ return llvm::Constant::getNullValue(ConvertType(E->getType()));
+}
+
+Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E) {
+ Value* ResultAsPtr = EmitLValue(E->getSubExpr()).getAddress();
+ const llvm::Type* ResultType = ConvertType(E->getType());
+ return Builder.CreatePtrToInt(ResultAsPtr, ResultType, "offsetof");
+}
+
+//===----------------------------------------------------------------------===//
+// Binary Operators
+//===----------------------------------------------------------------------===//
+
+BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
+ TestAndClearIgnoreResultAssign();
+ BinOpInfo Result;
+ Result.LHS = Visit(E->getLHS());
+ Result.RHS = Visit(E->getRHS());
+ Result.Ty = E->getType();
+ Result.E = E;
+ return Result;
+}
+
+LValue ScalarExprEmitter::EmitCompoundAssignLValue(
+ const CompoundAssignOperator *E,
+ Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
+ Value *&BitFieldResult) {
+ QualType LHSTy = E->getLHS()->getType();
+ BitFieldResult = 0;
+ BinOpInfo OpInfo;
+
+ if (E->getComputationResultType()->isAnyComplexType()) {
+ // This needs to go through the complex expression emitter, but it's a tad
+ // complicated to do that... I'm leaving it out for now. (Note that we do
+ // actually need the imaginary part of the RHS for multiplication and
+ // division.)
+ CGF.ErrorUnsupported(E, "complex compound assignment");
+ llvm::UndefValue::get(CGF.ConvertType(E->getType()));
+ return LValue();
+ }
+
+ // Emit the RHS first. __block variables need to have the rhs evaluated
+ // first, plus this should improve codegen a little.
+ OpInfo.RHS = Visit(E->getRHS());
+ OpInfo.Ty = E->getComputationResultType();
+ OpInfo.E = E;
+ // Load/convert the LHS.
+ LValue LHSLV = EmitCheckedLValue(E->getLHS());
+ OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
+ OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
+ E->getComputationLHSType());
+
+ // Expand the binary operator.
+ Value *Result = (this->*Func)(OpInfo);
+
+ // Convert the result back to the LHS type.
+ Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
+
+ // Store the result value into the LHS lvalue. Bit-fields are handled
+ // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
+ // 'An assignment expression has the value of the left operand after the
+ // assignment...'.
+ if (LHSLV.isBitField()) {
+ if (!LHSLV.isVolatileQualified()) {
+ CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
+ &Result);
+ BitFieldResult = Result;
+ return LHSLV;
+ } else
+ CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy);
+ } else
+ CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
+ return LHSLV;
+}
+
+Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
+ Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
+ bool Ignore = TestAndClearIgnoreResultAssign();
+ Value *BitFieldResult;
+ LValue LHSLV = EmitCompoundAssignLValue(E, Func, BitFieldResult);
+ if (BitFieldResult)
+ return BitFieldResult;
+
+ if (Ignore)
+ return 0;
+ return EmitLoadOfLValue(LHSLV, E->getType());
+}
+
+
+Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
+ if (Ops.LHS->getType()->isFPOrFPVectorTy())
+ return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
+ else if (Ops.Ty->isUnsignedIntegerType())
+ return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
+ else
+ return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
+}
+
+Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
+ // Rem in C can't be a floating point type: C99 6.5.5p2.
+ if (Ops.Ty->isUnsignedIntegerType())
+ return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
+ else
+ return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
+}
+
+Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
+ unsigned IID;
+ unsigned OpID = 0;
+
+ switch (Ops.E->getOpcode()) {
+ case BinaryOperator::Add:
+ case BinaryOperator::AddAssign:
+ OpID = 1;
+ IID = llvm::Intrinsic::sadd_with_overflow;
+ break;
+ case BinaryOperator::Sub:
+ case BinaryOperator::SubAssign:
+ OpID = 2;
+ IID = llvm::Intrinsic::ssub_with_overflow;
+ break;
+ case BinaryOperator::Mul:
+ case BinaryOperator::MulAssign:
+ OpID = 3;
+ IID = llvm::Intrinsic::smul_with_overflow;
+ break;
+ default:
+ assert(false && "Unsupported operation for overflow detection");
+ IID = 0;
+ }
+ OpID <<= 1;
+ OpID |= 1;
+
+ const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
+
+ llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);
+
+ Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
+ Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
+ Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
+
+ // Branch in case of overflow.
+ llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
+ llvm::BasicBlock *overflowBB =
+ CGF.createBasicBlock("overflow", CGF.CurFn);
+ llvm::BasicBlock *continueBB =
+ CGF.createBasicBlock("overflow.continue", CGF.CurFn);
+
+ Builder.CreateCondBr(overflow, overflowBB, continueBB);
+
+ // Handle overflow
+
+ Builder.SetInsertPoint(overflowBB);
+
+ // Handler is:
+ // long long *__overflow_handler)(long long a, long long b, char op,
+ // char width)
+ std::vector<const llvm::Type*> handerArgTypes;
+ handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext));
+ handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext));
+ handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext));
+ handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext));
+ llvm::FunctionType *handlerTy = llvm::FunctionType::get(
+ llvm::Type::getInt64Ty(VMContext), handerArgTypes, false);
+ llvm::Value *handlerFunction =
+ CGF.CGM.getModule().getOrInsertGlobal("__overflow_handler",
+ llvm::PointerType::getUnqual(handlerTy));
+ handlerFunction = Builder.CreateLoad(handlerFunction);
+
+ llvm::Value *handlerResult = Builder.CreateCall4(handlerFunction,
+ Builder.CreateSExt(Ops.LHS, llvm::Type::getInt64Ty(VMContext)),
+ Builder.CreateSExt(Ops.RHS, llvm::Type::getInt64Ty(VMContext)),
+ llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext), OpID),
+ llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext),
+ cast<llvm::IntegerType>(opTy)->getBitWidth()));
+
+ handlerResult = Builder.CreateTrunc(handlerResult, opTy);
+
+ Builder.CreateBr(continueBB);
+
+ // Set up the continuation
+ Builder.SetInsertPoint(continueBB);
+ // Get the correct result
+ llvm::PHINode *phi = Builder.CreatePHI(opTy);
+ phi->reserveOperandSpace(2);
+ phi->addIncoming(result, initialBB);
+ phi->addIncoming(handlerResult, overflowBB);
+
+ return phi;
+}
+
+Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
+ if (!Ops.Ty->isAnyPointerType()) {
+ if (CGF.getContext().getLangOptions().OverflowChecking &&
+ Ops.Ty->isSignedIntegerType())
+ return EmitOverflowCheckedBinOp(Ops);
+
+ if (Ops.LHS->getType()->isFPOrFPVectorTy())
+ return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add");
+
+ // Signed integer overflow is undefined behavior.
+ if (Ops.Ty->isSignedIntegerType())
+ return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add");
+
+ return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
+ }
+
+ if (Ops.Ty->isPointerType() &&
+ Ops.Ty->getAs<PointerType>()->isVariableArrayType()) {
+ // The amount of the addition needs to account for the VLA size
+ CGF.ErrorUnsupported(Ops.E, "VLA pointer addition");
+ }
+ Value *Ptr, *Idx;
+ Expr *IdxExp;
+ const PointerType *PT = Ops.E->getLHS()->getType()->getAs<PointerType>();
+ const ObjCObjectPointerType *OPT =
+ Ops.E->getLHS()->getType()->getAs<ObjCObjectPointerType>();
+ if (PT || OPT) {
+ Ptr = Ops.LHS;
+ Idx = Ops.RHS;
+ IdxExp = Ops.E->getRHS();
+ } else { // int + pointer
+ PT = Ops.E->getRHS()->getType()->getAs<PointerType>();
+ OPT = Ops.E->getRHS()->getType()->getAs<ObjCObjectPointerType>();
+ assert((PT || OPT) && "Invalid add expr");
+ Ptr = Ops.RHS;
+ Idx = Ops.LHS;
+ IdxExp = Ops.E->getLHS();
+ }
+
+ unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
+ if (Width < CGF.LLVMPointerWidth) {
+ // Zero or sign extend the pointer value based on whether the index is
+ // signed or not.
+ const llvm::Type *IdxType =
+ llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
+ if (IdxExp->getType()->isSignedIntegerType())
+ Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
+ else
+ Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
+ }
+ const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType();
+ // Handle interface types, which are not represented with a concrete type.
+ if (const ObjCObjectType *OIT = ElementType->getAs<ObjCObjectType>()) {
+ llvm::Value *InterfaceSize =
+ llvm::ConstantInt::get(Idx->getType(),
+ CGF.getContext().getTypeSizeInChars(OIT).getQuantity());
+ Idx = Builder.CreateMul(Idx, InterfaceSize);
+ const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
+ Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
+ Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
+ return Builder.CreateBitCast(Res, Ptr->getType());
+ }
+
+ // Explicitly handle GNU void* and function pointer arithmetic extensions. The
+ // GNU void* casts amount to no-ops since our void* type is i8*, but this is
+ // future proof.
+ if (ElementType->isVoidType() || ElementType->isFunctionType()) {
+ const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
+ Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
+ Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
+ return Builder.CreateBitCast(Res, Ptr->getType());
+ }
+
+ return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr");
+}
+
+Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
+ if (!isa<llvm::PointerType>(Ops.LHS->getType())) {
+ if (CGF.getContext().getLangOptions().OverflowChecking
+ && Ops.Ty->isSignedIntegerType())
+ return EmitOverflowCheckedBinOp(Ops);
+
+ if (Ops.LHS->getType()->isFPOrFPVectorTy())
+ return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub");
+
+ // Signed integer overflow is undefined behavior.
+ if (Ops.Ty->isSignedIntegerType())
+ return Builder.CreateNSWSub(Ops.LHS, Ops.RHS, "sub");
+
+ return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
+ }
+
+ if (Ops.E->getLHS()->getType()->isPointerType() &&
+ Ops.E->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) {
+ // The amount of the addition needs to account for the VLA size for
+ // ptr-int
+ // The amount of the division needs to account for the VLA size for
+ // ptr-ptr.
+ CGF.ErrorUnsupported(Ops.E, "VLA pointer subtraction");
+ }
+
+ const QualType LHSType = Ops.E->getLHS()->getType();
+ const QualType LHSElementType = LHSType->getPointeeType();
+ if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
+ // pointer - int
+ Value *Idx = Ops.RHS;
+ unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
+ if (Width < CGF.LLVMPointerWidth) {
+ // Zero or sign extend the pointer value based on whether the index is
+ // signed or not.
+ const llvm::Type *IdxType =
+ llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
+ if (Ops.E->getRHS()->getType()->isSignedIntegerType())
+ Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
+ else
+ Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
+ }
+ Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
+
+ // Handle interface types, which are not represented with a concrete type.
+ if (const ObjCObjectType *OIT = LHSElementType->getAs<ObjCObjectType>()) {
+ llvm::Value *InterfaceSize =
+ llvm::ConstantInt::get(Idx->getType(),
+ CGF.getContext().
+ getTypeSizeInChars(OIT).getQuantity());
+ Idx = Builder.CreateMul(Idx, InterfaceSize);
+ const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
+ Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
+ Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
+ return Builder.CreateBitCast(Res, Ops.LHS->getType());
+ }
+
+ // Explicitly handle GNU void* and function pointer arithmetic
+ // extensions. The GNU void* casts amount to no-ops since our void* type is
+ // i8*, but this is future proof.
+ if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
+ const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
+ Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
+ Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
+ return Builder.CreateBitCast(Res, Ops.LHS->getType());
+ }
+
+ return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr");
+ } else {
+ // pointer - pointer
+ Value *LHS = Ops.LHS;
+ Value *RHS = Ops.RHS;
+
+ CharUnits ElementSize;
+
+ // Handle GCC extension for pointer arithmetic on void* and function pointer
+ // types.
+ if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
+ ElementSize = CharUnits::One();
+ } else {
+ ElementSize = CGF.getContext().getTypeSizeInChars(LHSElementType);
+ }
+
+ const llvm::Type *ResultType = ConvertType(Ops.Ty);
+ LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
+ RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
+ Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
+
+ // Optimize out the shift for element size of 1.
+ if (ElementSize.isOne())
+ return BytesBetween;
+
+ // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
+ // pointer difference in C is only defined in the case where both operands
+ // are pointing to elements of an array.
+ Value *BytesPerElt =
+ llvm::ConstantInt::get(ResultType, ElementSize.getQuantity());
+ return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
+ }
+}
+
+Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
+ // LLVM requires the LHS and RHS to be the same type: promote or truncate the
+ // RHS to the same size as the LHS.
+ Value *RHS = Ops.RHS;
+ if (Ops.LHS->getType() != RHS->getType())
+ RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
+
+ if (CGF.CatchUndefined
+ && isa<llvm::IntegerType>(Ops.LHS->getType())) {
+ unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
+ llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
+ CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
+ llvm::ConstantInt::get(RHS->getType(), Width)),
+ Cont, CGF.getTrapBB());
+ CGF.EmitBlock(Cont);
+ }
+
+ return Builder.CreateShl(Ops.LHS, RHS, "shl");
+}
+
+Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
+ // LLVM requires the LHS and RHS to be the same type: promote or truncate the
+ // RHS to the same size as the LHS.
+ Value *RHS = Ops.RHS;
+ if (Ops.LHS->getType() != RHS->getType())
+ RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
+
+ if (CGF.CatchUndefined
+ && isa<llvm::IntegerType>(Ops.LHS->getType())) {
+ unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
+ llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
+ CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
+ llvm::ConstantInt::get(RHS->getType(), Width)),
+ Cont, CGF.getTrapBB());
+ CGF.EmitBlock(Cont);
+ }
+
+ if (Ops.Ty->isUnsignedIntegerType())
+ return Builder.CreateLShr(Ops.LHS, RHS, "shr");
+ return Builder.CreateAShr(Ops.LHS, RHS, "shr");
+}
+
+Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
+ unsigned SICmpOpc, unsigned FCmpOpc) {
+ TestAndClearIgnoreResultAssign();
+ Value *Result;
+ QualType LHSTy = E->getLHS()->getType();
+ if (LHSTy->isMemberFunctionPointerType()) {
+ Value *LHSPtr = CGF.EmitAnyExprToTemp(E->getLHS()).getAggregateAddr();
+ Value *RHSPtr = CGF.EmitAnyExprToTemp(E->getRHS()).getAggregateAddr();
+ llvm::Value *LHSFunc = Builder.CreateStructGEP(LHSPtr, 0);
+ LHSFunc = Builder.CreateLoad(LHSFunc);
+ llvm::Value *RHSFunc = Builder.CreateStructGEP(RHSPtr, 0);
+ RHSFunc = Builder.CreateLoad(RHSFunc);
+ Value *ResultF = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
+ LHSFunc, RHSFunc, "cmp.func");
+ Value *NullPtr = llvm::Constant::getNullValue(LHSFunc->getType());
+ Value *ResultNull = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
+ LHSFunc, NullPtr, "cmp.null");
+ llvm::Value *LHSAdj = Builder.CreateStructGEP(LHSPtr, 1);
+ LHSAdj = Builder.CreateLoad(LHSAdj);
+ llvm::Value *RHSAdj = Builder.CreateStructGEP(RHSPtr, 1);
+ RHSAdj = Builder.CreateLoad(RHSAdj);
+ Value *ResultA = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
+ LHSAdj, RHSAdj, "cmp.adj");
+ if (E->getOpcode() == BinaryOperator::EQ) {
+ Result = Builder.CreateOr(ResultNull, ResultA, "or.na");
+ Result = Builder.CreateAnd(Result, ResultF, "and.f");
+ } else {
+ assert(E->getOpcode() == BinaryOperator::NE &&
+ "Member pointer comparison other than == or != ?");
+ Result = Builder.CreateAnd(ResultNull, ResultA, "and.na");
+ Result = Builder.CreateOr(Result, ResultF, "or.f");
+ }
+ } else if (!LHSTy->isAnyComplexType()) {
+ Value *LHS = Visit(E->getLHS());
+ Value *RHS = Visit(E->getRHS());
+
+ if (LHS->getType()->isFPOrFPVectorTy()) {
+ Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
+ LHS, RHS, "cmp");
+ } else if (LHSTy->isSignedIntegerType()) {
+ Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
+ LHS, RHS, "cmp");
+ } else {
+ // Unsigned integers and pointers.
+ Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
+ LHS, RHS, "cmp");
+ }
+
+ // If this is a vector comparison, sign extend the result to the appropriate
+ // vector integer type and return it (don't convert to bool).
+ if (LHSTy->isVectorType())
+ return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
+
+ } else {
+ // Complex Comparison: can only be an equality comparison.
+ CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
+ CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
+
+ QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
+
+ Value *ResultR, *ResultI;
+ if (CETy->isRealFloatingType()) {
+ ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
+ LHS.first, RHS.first, "cmp.r");
+ ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
+ LHS.second, RHS.second, "cmp.i");
+ } else {
+ // Complex comparisons can only be equality comparisons. As such, signed
+ // and unsigned opcodes are the same.
+ ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
+ LHS.first, RHS.first, "cmp.r");
+ ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
+ LHS.second, RHS.second, "cmp.i");
+ }
+
+ if (E->getOpcode() == BinaryOperator::EQ) {
+ Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
+ } else {
+ assert(E->getOpcode() == BinaryOperator::NE &&
+ "Complex comparison other than == or != ?");
+ Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
+ }
+ }
+
+ return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
+}
+
+Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
+ bool Ignore = TestAndClearIgnoreResultAssign();
+
+ // __block variables need to have the rhs evaluated first, plus this should
+ // improve codegen just a little.
+ Value *RHS = Visit(E->getRHS());
+ LValue LHS = EmitCheckedLValue(E->getLHS());
+
+ // Store the value into the LHS. Bit-fields are handled specially
+ // because the result is altered by the store, i.e., [C99 6.5.16p1]
+ // 'An assignment expression has the value of the left operand after
+ // the assignment...'.
+ if (LHS.isBitField()) {
+ if (!LHS.isVolatileQualified()) {
+ CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
+ &RHS);
+ return RHS;
+ } else
+ CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType());
+ } else
+ CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
+ if (Ignore)
+ return 0;
+ return EmitLoadOfLValue(LHS, E->getType());
+}
+
+Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
+ const llvm::Type *ResTy = ConvertType(E->getType());
+
+ // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
+ // If we have 1 && X, just emit X without inserting the control flow.
+ if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
+ if (Cond == 1) { // If we have 1 && X, just emit X.
+ Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
+ // ZExt result to int or bool.
+ return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
+ }
+
+ // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
+ if (!CGF.ContainsLabel(E->getRHS()))
+ return llvm::Constant::getNullValue(ResTy);
+ }
+
+ llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
+ llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
+
+ // Branch on the LHS first. If it is false, go to the failure (cont) block.
+ CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
+
+ // Any edges into the ContBlock are now from an (indeterminate number of)
+ // edges from this first condition. All of these values will be false. Start
+ // setting up the PHI node in the Cont Block for this.
+ llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
+ "", ContBlock);
+ PN->reserveOperandSpace(2); // Normal case, two inputs.
+ for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
+ PI != PE; ++PI)
+ PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
+
+ CGF.BeginConditionalBranch();
+ CGF.EmitBlock(RHSBlock);
+ Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
+ CGF.EndConditionalBranch();
+
+ // Reaquire the RHS block, as there may be subblocks inserted.
+ RHSBlock = Builder.GetInsertBlock();
+
+ // Emit an unconditional branch from this block to ContBlock. Insert an entry
+ // into the phi node for the edge with the value of RHSCond.
+ CGF.EmitBlock(ContBlock);
+ PN->addIncoming(RHSCond, RHSBlock);
+
+ // ZExt result to int.
+ return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
+}
+
+Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
+ const llvm::Type *ResTy = ConvertType(E->getType());
+
+ // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
+ // If we have 0 || X, just emit X without inserting the control flow.
+ if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
+ if (Cond == -1) { // If we have 0 || X, just emit X.
+ Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
+ // ZExt result to int or bool.
+ return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
+ }
+
+ // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
+ if (!CGF.ContainsLabel(E->getRHS()))
+ return llvm::ConstantInt::get(ResTy, 1);
+ }
+
+ llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
+ llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
+
+ // Branch on the LHS first. If it is true, go to the success (cont) block.
+ CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
+
+ // Any edges into the ContBlock are now from an (indeterminate number of)
+ // edges from this first condition. All of these values will be true. Start
+ // setting up the PHI node in the Cont Block for this.
+ llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
+ "", ContBlock);
+ PN->reserveOperandSpace(2); // Normal case, two inputs.
+ for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
+ PI != PE; ++PI)
+ PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
+
+ CGF.BeginConditionalBranch();
+
+ // Emit the RHS condition as a bool value.
+ CGF.EmitBlock(RHSBlock);
+ Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
+
+ CGF.EndConditionalBranch();
+
+ // Reaquire the RHS block, as there may be subblocks inserted.
+ RHSBlock = Builder.GetInsertBlock();
+
+ // Emit an unconditional branch from this block to ContBlock. Insert an entry
+ // into the phi node for the edge with the value of RHSCond.
+ CGF.EmitBlock(ContBlock);
+ PN->addIncoming(RHSCond, RHSBlock);
+
+ // ZExt result to int.
+ return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
+}
+
+Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
+ CGF.EmitStmt(E->getLHS());
+ CGF.EnsureInsertPoint();
+ return Visit(E->getRHS());
+}
+
+//===----------------------------------------------------------------------===//
+// Other Operators
+//===----------------------------------------------------------------------===//
+
+/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
+/// expression is cheap enough and side-effect-free enough to evaluate
+/// unconditionally instead of conditionally. This is used to convert control
+/// flow into selects in some cases.
+static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
+ CodeGenFunction &CGF) {
+ if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
+ return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr(), CGF);
+
+ // TODO: Allow anything we can constant fold to an integer or fp constant.
+ if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
+ isa<FloatingLiteral>(E))
+ return true;
+
+ // Non-volatile automatic variables too, to get "cond ? X : Y" where
+ // X and Y are local variables.
+ if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
+ if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
+ if (VD->hasLocalStorage() && !(CGF.getContext()
+ .getCanonicalType(VD->getType())
+ .isVolatileQualified()))
+ return true;
+
+ return false;
+}
+
+
+Value *ScalarExprEmitter::
+VisitConditionalOperator(const ConditionalOperator *E) {
+ TestAndClearIgnoreResultAssign();
+ // If the condition constant folds and can be elided, try to avoid emitting
+ // the condition and the dead arm.
+ if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
+ Expr *Live = E->getLHS(), *Dead = E->getRHS();
+ if (Cond == -1)
+ std::swap(Live, Dead);
+
+ // If the dead side doesn't have labels we need, and if the Live side isn't
+ // the gnu missing ?: extension (which we could handle, but don't bother
+ // to), just emit the Live part.
+ if ((!Dead || !CGF.ContainsLabel(Dead)) && // No labels in dead part
+ Live) // Live part isn't missing.
+ return Visit(Live);
+ }
+
+
+ // If this is a really simple expression (like x ? 4 : 5), emit this as a
+ // select instead of as control flow. We can only do this if it is cheap and
+ // safe to evaluate the LHS and RHS unconditionally.
+ if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS(),
+ CGF) &&
+ isCheapEnoughToEvaluateUnconditionally(E->getRHS(), CGF)) {
+ llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
+ llvm::Value *LHS = Visit(E->getLHS());
+ llvm::Value *RHS = Visit(E->getRHS());
+ return Builder.CreateSelect(CondV, LHS, RHS, "cond");
+ }
+
+
+ llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
+ llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
+ llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
+ Value *CondVal = 0;
+
+ // If we don't have the GNU missing condition extension, emit a branch on bool
+ // the normal way.
+ if (E->getLHS()) {
+ // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
+ // the branch on bool.
+ CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
+ } else {
+ // Otherwise, for the ?: extension, evaluate the conditional and then
+ // convert it to bool the hard way. We do this explicitly because we need
+ // the unconverted value for the missing middle value of the ?:.
+ CondVal = CGF.EmitScalarExpr(E->getCond());
+
+ // In some cases, EmitScalarConversion will delete the "CondVal" expression
+ // if there are no extra uses (an optimization). Inhibit this by making an
+ // extra dead use, because we're going to add a use of CondVal later. We
+ // don't use the builder for this, because we don't want it to get optimized
+ // away. This leaves dead code, but the ?: extension isn't common.
+ new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder",
+ Builder.GetInsertBlock());
+
+ Value *CondBoolVal =
+ CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
+ CGF.getContext().BoolTy);
+ Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
+ }
+
+ CGF.BeginConditionalBranch();
+ CGF.EmitBlock(LHSBlock);
+
+ // Handle the GNU extension for missing LHS.
+ Value *LHS;
+ if (E->getLHS())
+ LHS = Visit(E->getLHS());
+ else // Perform promotions, to handle cases like "short ?: int"
+ LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
+
+ CGF.EndConditionalBranch();
+ LHSBlock = Builder.GetInsertBlock();
+ CGF.EmitBranch(ContBlock);
+
+ CGF.BeginConditionalBranch();
+ CGF.EmitBlock(RHSBlock);
+
+ Value *RHS = Visit(E->getRHS());
+ CGF.EndConditionalBranch();
+ RHSBlock = Builder.GetInsertBlock();
+ CGF.EmitBranch(ContBlock);
+
+ CGF.EmitBlock(ContBlock);
+
+ // If the LHS or RHS is a throw expression, it will be legitimately null.
+ if (!LHS)
+ return RHS;
+ if (!RHS)
+ return LHS;
+
+ // Create a PHI node for the real part.
+ llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
+ PN->reserveOperandSpace(2);
+ PN->addIncoming(LHS, LHSBlock);
+ PN->addIncoming(RHS, RHSBlock);
+ return PN;
+}
+
+Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
+ return Visit(E->getChosenSubExpr(CGF.getContext()));
+}
+
+Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
+ llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
+ llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
+
+ // If EmitVAArg fails, we fall back to the LLVM instruction.
+ if (!ArgPtr)
+ return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
+
+ // FIXME Volatility.
+ return Builder.CreateLoad(ArgPtr);
+}
+
+Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *BE) {
+ return CGF.BuildBlockLiteralTmp(BE);
+}
+
+//===----------------------------------------------------------------------===//
+// Entry Point into this File
+//===----------------------------------------------------------------------===//
+
+/// EmitScalarExpr - Emit the computation of the specified expression of scalar
+/// type, ignoring the result.
+Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
+ assert(E && !hasAggregateLLVMType(E->getType()) &&
+ "Invalid scalar expression to emit");
+
+ return ScalarExprEmitter(*this, IgnoreResultAssign)
+ .Visit(const_cast<Expr*>(E));
+}
+
+/// EmitScalarConversion - Emit a conversion from the specified type to the
+/// specified destination type, both of which are LLVM scalar types.
+Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
+ QualType DstTy) {
+ assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
+ "Invalid scalar expression to emit");
+ return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
+}
+
+/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
+/// type to the specified destination type, where the destination type is an
+/// LLVM scalar type.
+Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
+ QualType SrcTy,
+ QualType DstTy) {
+ assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
+ "Invalid complex -> scalar conversion");
+ return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
+ DstTy);
+}
+
+LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
+ llvm::Value *V;
+ // object->isa or (*object).isa
+ // Generate code as for: *(Class*)object
+ // build Class* type
+ const llvm::Type *ClassPtrTy = ConvertType(E->getType());
+
+ Expr *BaseExpr = E->getBase();
+ if (BaseExpr->isLvalue(getContext()) != Expr::LV_Valid) {
+ V = CreateTempAlloca(ClassPtrTy, "resval");
+ llvm::Value *Src = EmitScalarExpr(BaseExpr);
+ Builder.CreateStore(Src, V);
+ LValue LV = LValue::MakeAddr(V, MakeQualifiers(E->getType()));
+ V = ScalarExprEmitter(*this).EmitLoadOfLValue(LV, E->getType());
+ }
+ else {
+ if (E->isArrow())
+ V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
+ else
+ V = EmitLValue(BaseExpr).getAddress();
+ }
+
+ // build Class* type
+ ClassPtrTy = ClassPtrTy->getPointerTo();
+ V = Builder.CreateBitCast(V, ClassPtrTy);
+ LValue LV = LValue::MakeAddr(V, MakeQualifiers(E->getType()));
+ return LV;
+}
+
+
+LValue CodeGenFunction::EmitCompoundAssignOperatorLValue(
+ const CompoundAssignOperator *E) {
+ ScalarExprEmitter Scalar(*this);
+ Value *BitFieldResult = 0;
+ switch (E->getOpcode()) {
+#define COMPOUND_OP(Op) \
+ case BinaryOperator::Op##Assign: \
+ return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
+ BitFieldResult)
+ COMPOUND_OP(Mul);
+ COMPOUND_OP(Div);
+ COMPOUND_OP(Rem);
+ COMPOUND_OP(Add);
+ COMPOUND_OP(Sub);
+ COMPOUND_OP(Shl);
+ COMPOUND_OP(Shr);
+ COMPOUND_OP(And);
+ COMPOUND_OP(Xor);
+ COMPOUND_OP(Or);
+#undef COMPOUND_OP
+
+ case BinaryOperator::PtrMemD:
+ case BinaryOperator::PtrMemI:
+ case BinaryOperator::Mul:
+ case BinaryOperator::Div:
+ case BinaryOperator::Rem:
+ case BinaryOperator::Add:
+ case BinaryOperator::Sub:
+ case BinaryOperator::Shl:
+ case BinaryOperator::Shr:
+ case BinaryOperator::LT:
+ case BinaryOperator::GT:
+ case BinaryOperator::LE:
+ case BinaryOperator::GE:
+ case BinaryOperator::EQ:
+ case BinaryOperator::NE:
+ case BinaryOperator::And:
+ case BinaryOperator::Xor:
+ case BinaryOperator::Or:
+ case BinaryOperator::LAnd:
+ case BinaryOperator::LOr:
+ case BinaryOperator::Assign:
+ case BinaryOperator::Comma:
+ assert(false && "Not valid compound assignment operators");
+ break;
+ }
+
+ llvm_unreachable("Unhandled compound assignment operator");
+}
OpenPOWER on IntegriCloud