summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/CodeGen/CGExprScalar.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/CodeGen/CGExprScalar.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGExprScalar.cpp479
1 files changed, 419 insertions, 60 deletions
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGExprScalar.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGExprScalar.cpp
index 1b85c45..1170b01 100644
--- a/contrib/llvm/tools/clang/lib/CodeGen/CGExprScalar.cpp
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGExprScalar.cpp
@@ -12,6 +12,7 @@
//===----------------------------------------------------------------------===//
#include "CodeGenFunction.h"
+#include "CGCleanup.h"
#include "CGCXXABI.h"
#include "CGDebugInfo.h"
#include "CGObjCRuntime.h"
@@ -24,10 +25,12 @@
#include "clang/AST/StmtVisitor.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Frontend/CodeGenOptions.h"
+#include "llvm/ADT/Optional.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
@@ -42,13 +45,85 @@ using llvm::Value;
//===----------------------------------------------------------------------===//
namespace {
+
+/// Determine whether the given binary operation may overflow.
+/// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
+/// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
+/// the returned overflow check is precise. The returned value is 'true' for
+/// all other opcodes, to be conservative.
+bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
+ BinaryOperator::Opcode Opcode, bool Signed,
+ llvm::APInt &Result) {
+ // Assume overflow is possible, unless we can prove otherwise.
+ bool Overflow = true;
+ const auto &LHSAP = LHS->getValue();
+ const auto &RHSAP = RHS->getValue();
+ if (Opcode == BO_Add) {
+ if (Signed)
+ Result = LHSAP.sadd_ov(RHSAP, Overflow);
+ else
+ Result = LHSAP.uadd_ov(RHSAP, Overflow);
+ } else if (Opcode == BO_Sub) {
+ if (Signed)
+ Result = LHSAP.ssub_ov(RHSAP, Overflow);
+ else
+ Result = LHSAP.usub_ov(RHSAP, Overflow);
+ } else if (Opcode == BO_Mul) {
+ if (Signed)
+ Result = LHSAP.smul_ov(RHSAP, Overflow);
+ else
+ Result = LHSAP.umul_ov(RHSAP, Overflow);
+ } else if (Opcode == BO_Div || Opcode == BO_Rem) {
+ if (Signed && !RHS->isZero())
+ Result = LHSAP.sdiv_ov(RHSAP, Overflow);
+ else
+ return false;
+ }
+ return Overflow;
+}
+
struct BinOpInfo {
Value *LHS;
Value *RHS;
QualType Ty; // Computation Type.
BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
- bool FPContractable;
+ FPOptions FPFeatures;
const Expr *E; // Entire expr, for error unsupported. May not be binop.
+
+ /// Check if the binop can result in integer overflow.
+ bool mayHaveIntegerOverflow() const {
+ // Without constant input, we can't rule out overflow.
+ auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
+ auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
+ if (!LHSCI || !RHSCI)
+ return true;
+
+ llvm::APInt Result;
+ return ::mayHaveIntegerOverflow(
+ LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
+ }
+
+ /// Check if the binop computes a division or a remainder.
+ bool isDivremOp() const {
+ return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
+ Opcode == BO_RemAssign;
+ }
+
+ /// Check if the binop can result in an integer division by zero.
+ bool mayHaveIntegerDivisionByZero() const {
+ if (isDivremOp())
+ if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
+ return CI->isZero();
+ return true;
+ }
+
+ /// Check if the binop can result in a float division by zero.
+ bool mayHaveFloatDivisionByZero() const {
+ if (isDivremOp())
+ if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
+ return CFP->isZero();
+ return true;
+ }
};
static bool MustVisitNullValue(const Expr *E) {
@@ -58,6 +133,83 @@ static bool MustVisitNullValue(const Expr *E) {
return E->getType()->isNullPtrType();
}
+/// If \p E is a widened promoted integer, get its base (unpromoted) type.
+static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
+ const Expr *E) {
+ const Expr *Base = E->IgnoreImpCasts();
+ if (E == Base)
+ return llvm::None;
+
+ QualType BaseTy = Base->getType();
+ if (!BaseTy->isPromotableIntegerType() ||
+ Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
+ return llvm::None;
+
+ return BaseTy;
+}
+
+/// Check if \p E is a widened promoted integer.
+static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
+ return getUnwidenedIntegerType(Ctx, E).hasValue();
+}
+
+/// Check if we can skip the overflow check for \p Op.
+static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
+ assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
+ "Expected a unary or binary operator");
+
+ // If the binop has constant inputs and we can prove there is no overflow,
+ // we can elide the overflow check.
+ if (!Op.mayHaveIntegerOverflow())
+ return true;
+
+ // If a unary op has a widened operand, the op cannot overflow.
+ if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
+ return IsWidenedIntegerOp(Ctx, UO->getSubExpr());
+
+ // We usually don't need overflow checks for binops with widened operands.
+ // Multiplication with promoted unsigned operands is a special case.
+ const auto *BO = cast<BinaryOperator>(Op.E);
+ auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
+ if (!OptionalLHSTy)
+ return false;
+
+ auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
+ if (!OptionalRHSTy)
+ return false;
+
+ QualType LHSTy = *OptionalLHSTy;
+ QualType RHSTy = *OptionalRHSTy;
+
+ // This is the simple case: binops without unsigned multiplication, and with
+ // widened operands. No overflow check is needed here.
+ if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
+ !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
+ return true;
+
+ // For unsigned multiplication the overflow check can be elided if either one
+ // of the unpromoted types are less than half the size of the promoted type.
+ unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
+ return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
+ (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
+}
+
+/// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions.
+static void updateFastMathFlags(llvm::FastMathFlags &FMF,
+ FPOptions FPFeatures) {
+ FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
+}
+
+/// Propagate fast-math flags from \p Op to the instruction in \p V.
+static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) {
+ if (auto *I = dyn_cast<llvm::Instruction>(V)) {
+ llvm::FastMathFlags FMF = I->getFastMathFlags();
+ updateFastMathFlags(FMF, Op.FPFeatures);
+ I->setFastMathFlags(FMF);
+ }
+ return V;
+}
+
class ScalarExprEmitter
: public StmtVisitor<ScalarExprEmitter, Value*> {
CodeGenFunction &CGF;
@@ -221,6 +373,15 @@ public:
Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
return Visit(GE->getResultExpr());
}
+ Value *VisitCoawaitExpr(CoawaitExpr *S) {
+ return CGF.EmitCoawaitExpr(*S).getScalarVal();
+ }
+ Value *VisitCoyieldExpr(CoyieldExpr *S) {
+ return CGF.EmitCoyieldExpr(*S).getScalarVal();
+ }
+ Value *VisitUnaryCoawait(const UnaryOperator *E) {
+ return Visit(E->getSubExpr());
+ }
// Leaves.
Value *VisitIntegerLiteral(const IntegerLiteral *E) {
@@ -300,6 +461,24 @@ public:
return V;
}
+ Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
+ VersionTuple Version = E->getVersion();
+
+ // If we're checking for a platform older than our minimum deployment
+ // target, we can fold the check away.
+ if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
+ return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
+
+ Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
+ llvm::Value *Args[] = {
+ llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()),
+ llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0),
+ llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0),
+ };
+
+ return CGF.EmitBuiltinAvailable(Args);
+ }
+
Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
@@ -405,11 +584,7 @@ public:
return CGF.LoadCXXThis();
}
- Value *VisitExprWithCleanups(ExprWithCleanups *E) {
- CGF.enterFullExpression(E);
- CodeGenFunction::RunCleanupsScope Scope(CGF);
- return Visit(E->getSubExpr());
- }
+ Value *VisitExprWithCleanups(ExprWithCleanups *E);
Value *VisitCXXNewExpr(const CXXNewExpr *E) {
return CGF.EmitCXXNewExpr(E);
}
@@ -464,16 +639,21 @@ public:
return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
// Fall through.
case LangOptions::SOB_Trapping:
+ if (CanElideOverflowCheck(CGF.getContext(), Ops))
+ return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
return EmitOverflowCheckedBinOp(Ops);
}
}
if (Ops.Ty->isUnsignedIntegerType() &&
- CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
+ CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
+ !CanElideOverflowCheck(CGF.getContext(), Ops))
return EmitOverflowCheckedBinOp(Ops);
- if (Ops.LHS->getType()->isFPOrFPVectorTy())
- return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
+ if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
+ Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
+ return propagateFMFlags(V, Ops);
+ }
return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
}
/// Create a binary op that checks for overflow.
@@ -1414,10 +1594,9 @@ Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
}
// Since target may map different address spaces in AST to the same address
// space, an address space conversion may end up as a bitcast.
- auto *Src = Visit(E);
- return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGF, Src,
- E->getType(),
- DestTy);
+ return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
+ CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
+ DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
}
case CK_AtomicToNonAtomic:
case CK_NonAtomicToAtomic:
@@ -1616,6 +1795,16 @@ Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
E->getExprLoc());
}
+Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
+ CGF.enterFullExpression(E);
+ CodeGenFunction::RunCleanupsScope Scope(CGF);
+ Value *V = Visit(E->getSubExpr());
+ // Defend against dominance problems caused by jumps out of expression
+ // evaluation through the shared cleanup block.
+ Scope.ForceCleanup({&V});
+ return V;
+}
+
//===----------------------------------------------------------------------===//
// Unary Operators
//===----------------------------------------------------------------------===//
@@ -1627,7 +1816,7 @@ static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
BinOp.Ty = E->getType();
BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
- BinOp.FPContractable = false;
+ // FIXME: once UnaryOperator carries FPFeatures, copy it here.
BinOp.E = E;
return BinOp;
}
@@ -1645,6 +1834,8 @@ llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
return Builder.CreateNSWAdd(InVal, Amount, Name);
// Fall through.
case LangOptions::SOB_Trapping:
+ if (IsWidenedIntegerOp(CGF.getContext(), E->getSubExpr()))
+ return Builder.CreateNSWAdd(InVal, Amount, Name);
return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
}
llvm_unreachable("Unknown SignedOverflowBehaviorTy");
@@ -1660,6 +1851,7 @@ ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
llvm::Value *input;
int amount = (isInc ? 1 : -1);
+ bool isSubtraction = !isInc;
if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
type = atomicTy->getValueType();
@@ -1749,7 +1941,9 @@ ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
if (CGF.getLangOpts().isSignedOverflowDefined())
value = Builder.CreateGEP(value, numElts, "vla.inc");
else
- value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
+ value = CGF.EmitCheckedInBoundsGEP(
+ value, numElts, /*SignedIndices=*/false, isSubtraction,
+ E->getExprLoc(), "vla.inc");
// Arithmetic on function pointers (!) is just +-1.
} else if (type->isFunctionType()) {
@@ -1759,7 +1953,9 @@ ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
if (CGF.getLangOpts().isSignedOverflowDefined())
value = Builder.CreateGEP(value, amt, "incdec.funcptr");
else
- value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
+ value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
+ isSubtraction, E->getExprLoc(),
+ "incdec.funcptr");
value = Builder.CreateBitCast(value, input->getType());
// For everything else, we can just do a simple increment.
@@ -1768,7 +1964,9 @@ ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
if (CGF.getLangOpts().isSignedOverflowDefined())
value = Builder.CreateGEP(value, amt, "incdec.ptr");
else
- value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
+ value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
+ isSubtraction, E->getExprLoc(),
+ "incdec.ptr");
}
// Vector increment/decrement.
@@ -1849,7 +2047,9 @@ ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
if (CGF.getLangOpts().isSignedOverflowDefined())
value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
else
- value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
+ value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
+ /*SignedIndices=*/false, isSubtraction,
+ E->getExprLoc(), "incdec.objptr");
value = Builder.CreateBitCast(value, input->getType());
}
@@ -1891,7 +2091,7 @@ Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
BinOp.Ty = E->getType();
BinOp.Opcode = BO_Sub;
- BinOp.FPContractable = false;
+ // FIXME: once UnaryOperator carries FPFeatures, copy it here.
BinOp.E = E;
return EmitSub(BinOp);
}
@@ -2112,7 +2312,7 @@ BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
Result.RHS = Visit(E->getRHS());
Result.Ty = E->getType();
Result.Opcode = E->getOpcode();
- Result.FPContractable = E->isFPContractable();
+ Result.FPFeatures = E->getFPFeatures();
Result.E = E;
return Result;
}
@@ -2132,7 +2332,7 @@ LValue ScalarExprEmitter::EmitCompoundAssignLValue(
OpInfo.RHS = Visit(E->getRHS());
OpInfo.Ty = E->getComputationResultType();
OpInfo.Opcode = E->getOpcode();
- OpInfo.FPContractable = E->isFPContractable();
+ OpInfo.FPFeatures = E->getFPFeatures();
OpInfo.E = E;
// Load/convert the LHS.
LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
@@ -2263,8 +2463,11 @@ void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
SanitizerKind::IntegerDivideByZero));
}
+ const auto *BO = cast<BinaryOperator>(Ops.E);
if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
- Ops.Ty->hasSignedIntegerRepresentation()) {
+ Ops.Ty->hasSignedIntegerRepresentation() &&
+ !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
+ Ops.mayHaveIntegerOverflow()) {
llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
llvm::Value *IntMin =
@@ -2287,11 +2490,13 @@ Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
CodeGenFunction::SanitizerScope SanScope(&CGF);
if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
- Ops.Ty->isIntegerType()) {
+ Ops.Ty->isIntegerType() &&
+ (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
} else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
- Ops.Ty->isRealFloatingType()) {
+ Ops.Ty->isRealFloatingType() &&
+ Ops.mayHaveFloatDivisionByZero()) {
llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
@@ -2324,12 +2529,13 @@ Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
// Rem in C can't be a floating point type: C99 6.5.5p2.
- if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
+ if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
+ CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
+ Ops.Ty->isIntegerType() &&
+ (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
CodeGenFunction::SanitizerScope SanScope(&CGF);
llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
-
- if (Ops.Ty->isIntegerType())
- EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
+ EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
}
if (Ops.Ty->hasUnsignedIntegerRepresentation())
@@ -2369,6 +2575,7 @@ Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
if (isSigned)
OpID |= 1;
+ CodeGenFunction::SanitizerScope SanScope(&CGF);
llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
@@ -2384,7 +2591,6 @@ Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
// If the signed-integer-overflow sanitizer is enabled, emit a call to its
// runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
- CodeGenFunction::SanitizerScope SanScope(&CGF);
llvm::Value *NotOverflow = Builder.CreateNot(overflow);
SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
: SanitizerKind::UnsignedIntegerOverflow;
@@ -2460,13 +2666,14 @@ static Value *emitPointerArithmetic(CodeGenFunction &CGF,
std::swap(pointerOperand, indexOperand);
}
+ bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
+
unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
auto &DL = CGF.CGM.getDataLayout();
auto PtrTy = cast<llvm::PointerType>(pointer->getType());
if (width != DL.getTypeSizeInBits(PtrTy)) {
// Zero-extend or sign-extend the pointer value according to
// whether the index is signed or not.
- bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned,
"idx.ext");
}
@@ -2510,7 +2717,9 @@ static Value *emitPointerArithmetic(CodeGenFunction &CGF,
pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
} else {
index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
- pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
+ pointer =
+ CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
+ op.E->getExprLoc(), "add.ptr");
}
return pointer;
}
@@ -2527,7 +2736,8 @@ static Value *emitPointerArithmetic(CodeGenFunction &CGF,
if (CGF.getLangOpts().isSignedOverflowDefined())
return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
- return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
+ return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
+ op.E->getExprLoc(), "add.ptr");
}
// Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
@@ -2577,12 +2787,7 @@ static Value* tryEmitFMulAdd(const BinOpInfo &op,
"Only fadd/fsub can be the root of an fmuladd.");
// Check whether this op is marked as fusable.
- if (!op.FPContractable)
- return nullptr;
-
- // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
- // either disabled, or handled entirely by the LLVM backend).
- if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
+ if (!op.FPFeatures.allowFPContractWithinStatement())
return nullptr;
// We have a potentially fusable op. Look for a mul on one of the operands.
@@ -2605,7 +2810,7 @@ static Value* tryEmitFMulAdd(const BinOpInfo &op,
Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
if (op.LHS->getType()->isPointerTy() ||
op.RHS->getType()->isPointerTy())
- return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
+ return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
if (op.Ty->isSignedIntegerOrEnumerationType()) {
switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
@@ -2616,12 +2821,15 @@ Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
// Fall through.
case LangOptions::SOB_Trapping:
+ if (CanElideOverflowCheck(CGF.getContext(), op))
+ return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
return EmitOverflowCheckedBinOp(op);
}
}
if (op.Ty->isUnsignedIntegerType() &&
- CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
+ CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
+ !CanElideOverflowCheck(CGF.getContext(), op))
return EmitOverflowCheckedBinOp(op);
if (op.LHS->getType()->isFPOrFPVectorTy()) {
@@ -2629,7 +2837,8 @@ Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
return FMulAdd;
- return Builder.CreateFAdd(op.LHS, op.RHS, "add");
+ Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add");
+ return propagateFMFlags(V, op);
}
return Builder.CreateAdd(op.LHS, op.RHS, "add");
@@ -2647,19 +2856,23 @@ Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
// Fall through.
case LangOptions::SOB_Trapping:
+ if (CanElideOverflowCheck(CGF.getContext(), op))
+ return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
return EmitOverflowCheckedBinOp(op);
}
}
if (op.Ty->isUnsignedIntegerType() &&
- CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
+ CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
+ !CanElideOverflowCheck(CGF.getContext(), op))
return EmitOverflowCheckedBinOp(op);
if (op.LHS->getType()->isFPOrFPVectorTy()) {
// Try to form an fmuladd.
if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
return FMulAdd;
- return Builder.CreateFSub(op.LHS, op.RHS, "sub");
+ Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub");
+ return propagateFMFlags(V, op);
}
return Builder.CreateSub(op.LHS, op.RHS, "sub");
@@ -2668,7 +2881,7 @@ Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
// If the RHS is not a pointer, then we have normal pointer
// arithmetic.
if (!op.RHS->getType()->isPointerTy())
- return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
+ return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
// Otherwise, this is a pointer subtraction.
@@ -2751,8 +2964,8 @@ Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
isa<llvm::IntegerType>(Ops.LHS->getType())) {
CodeGenFunction::SanitizerScope SanScope(&CGF);
SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
- llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
- llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne);
+ llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
+ llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
if (SanitizeExponent) {
Checks.push_back(
@@ -2767,12 +2980,14 @@ Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
+ llvm::Value *PromotedWidthMinusOne =
+ (RHS == Ops.RHS) ? WidthMinusOne
+ : GetWidthMinusOneValue(Ops.LHS, RHS);
CGF.EmitBlock(CheckShiftBase);
- llvm::Value *BitsShiftedOff =
- Builder.CreateLShr(Ops.LHS,
- Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
- /*NUW*/true, /*NSW*/true),
- "shl.check");
+ llvm::Value *BitsShiftedOff = Builder.CreateLShr(
+ Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
+ /*NUW*/ true, /*NSW*/ true),
+ "shl.check");
if (CGF.getLangOpts().CPlusPlus) {
// In C99, we are not permitted to shift a 1 bit into the sign bit.
// Under C++11's rules, shifting a 1 bit into the sign bit is
@@ -3038,10 +3253,12 @@ Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
// because the result is altered by the store, i.e., [C99 6.5.16p1]
// 'An assignment expression has the value of the left operand after
// the assignment...'.
- if (LHS.isBitField())
+ if (LHS.isBitField()) {
CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
- else
+ } else {
+ CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
+ }
}
// If the result is clearly ignored, return now.
@@ -3327,9 +3544,11 @@ VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
// safe to evaluate the LHS and RHS unconditionally.
if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
- CGF.incrementProfileCounter(E);
-
llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
+ llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
+
+ CGF.incrementProfileCounter(E, StepV);
+
llvm::Value *LHS = Visit(lhsExpr);
llvm::Value *RHS = Visit(rhsExpr);
if (!LHS) {
@@ -3491,8 +3710,12 @@ Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
// vector to get a vec4, then a bitcast if the target type is different.
if (NumElementsSrc == 3 && NumElementsDst != 3) {
Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
- Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
- DstTy);
+
+ if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
+ Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
+ DstTy);
+ }
+
Src->setName("astype");
return Src;
}
@@ -3501,9 +3724,12 @@ Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
// to vec4 if the original type is not vec4, then a shuffle vector to
// get a vec3.
if (NumElementsSrc != 3 && NumElementsDst == 3) {
- auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4);
- Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
- Vec4Ty);
+ if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
+ auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4);
+ Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
+ Vec4Ty);
+ }
+
Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
Src->setName("astype");
return Src;
@@ -3626,3 +3852,136 @@ LValue CodeGenFunction::EmitCompoundAssignmentLValue(
llvm_unreachable("Unhandled compound assignment operator");
}
+
+Value *CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr,
+ ArrayRef<Value *> IdxList,
+ bool SignedIndices,
+ bool IsSubtraction,
+ SourceLocation Loc,
+ const Twine &Name) {
+ Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
+
+ // If the pointer overflow sanitizer isn't enabled, do nothing.
+ if (!SanOpts.has(SanitizerKind::PointerOverflow))
+ return GEPVal;
+
+ // If the GEP has already been reduced to a constant, leave it be.
+ if (isa<llvm::Constant>(GEPVal))
+ return GEPVal;
+
+ // Only check for overflows in the default address space.
+ if (GEPVal->getType()->getPointerAddressSpace())
+ return GEPVal;
+
+ auto *GEP = cast<llvm::GEPOperator>(GEPVal);
+ assert(GEP->isInBounds() && "Expected inbounds GEP");
+
+ SanitizerScope SanScope(this);
+ auto &VMContext = getLLVMContext();
+ const auto &DL = CGM.getDataLayout();
+ auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
+
+ // Grab references to the signed add/mul overflow intrinsics for intptr_t.
+ auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
+ auto *SAddIntrinsic =
+ CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
+ auto *SMulIntrinsic =
+ CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
+
+ // The total (signed) byte offset for the GEP.
+ llvm::Value *TotalOffset = nullptr;
+ // The offset overflow flag - true if the total offset overflows.
+ llvm::Value *OffsetOverflows = Builder.getFalse();
+
+ /// Return the result of the given binary operation.
+ auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
+ llvm::Value *RHS) -> llvm::Value * {
+ assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
+
+ // If the operands are constants, return a constant result.
+ if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
+ if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
+ llvm::APInt N;
+ bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
+ /*Signed=*/true, N);
+ if (HasOverflow)
+ OffsetOverflows = Builder.getTrue();
+ return llvm::ConstantInt::get(VMContext, N);
+ }
+ }
+
+ // Otherwise, compute the result with checked arithmetic.
+ auto *ResultAndOverflow = Builder.CreateCall(
+ (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
+ OffsetOverflows = Builder.CreateOr(
+ Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
+ return Builder.CreateExtractValue(ResultAndOverflow, 0);
+ };
+
+ // Determine the total byte offset by looking at each GEP operand.
+ for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
+ GTI != GTE; ++GTI) {
+ llvm::Value *LocalOffset;
+ auto *Index = GTI.getOperand();
+ // Compute the local offset contributed by this indexing step:
+ if (auto *STy = GTI.getStructTypeOrNull()) {
+ // For struct indexing, the local offset is the byte position of the
+ // specified field.
+ unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
+ LocalOffset = llvm::ConstantInt::get(
+ IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
+ } else {
+ // Otherwise this is array-like indexing. The local offset is the index
+ // multiplied by the element size.
+ auto *ElementSize = llvm::ConstantInt::get(
+ IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
+ auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
+ LocalOffset = eval(BO_Mul, ElementSize, IndexS);
+ }
+
+ // If this is the first offset, set it as the total offset. Otherwise, add
+ // the local offset into the running total.
+ if (!TotalOffset || TotalOffset == Zero)
+ TotalOffset = LocalOffset;
+ else
+ TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
+ }
+
+ // Common case: if the total offset is zero, don't emit a check.
+ if (TotalOffset == Zero)
+ return GEPVal;
+
+ // Now that we've computed the total offset, add it to the base pointer (with
+ // wrapping semantics).
+ auto *IntPtr = Builder.CreatePtrToInt(GEP->getPointerOperand(), IntPtrTy);
+ auto *ComputedGEP = Builder.CreateAdd(IntPtr, TotalOffset);
+
+ // The GEP is valid if:
+ // 1) The total offset doesn't overflow, and
+ // 2) The sign of the difference between the computed address and the base
+ // pointer matches the sign of the total offset.
+ llvm::Value *ValidGEP;
+ auto *NoOffsetOverflow = Builder.CreateNot(OffsetOverflows);
+ if (SignedIndices) {
+ auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
+ auto *PosOrZeroOffset = Builder.CreateICmpSGE(TotalOffset, Zero);
+ llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
+ ValidGEP = Builder.CreateAnd(
+ Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid),
+ NoOffsetOverflow);
+ } else if (!SignedIndices && !IsSubtraction) {
+ auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
+ ValidGEP = Builder.CreateAnd(PosOrZeroValid, NoOffsetOverflow);
+ } else {
+ auto *NegOrZeroValid = Builder.CreateICmpULE(ComputedGEP, IntPtr);
+ ValidGEP = Builder.CreateAnd(NegOrZeroValid, NoOffsetOverflow);
+ }
+
+ llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
+ // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
+ llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
+ EmitCheck(std::make_pair(ValidGEP, SanitizerKind::PointerOverflow),
+ SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
+
+ return GEPVal;
+}
OpenPOWER on IntegriCloud