summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/CodeGen/CGExprCXX.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/CodeGen/CGExprCXX.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGExprCXX.cpp1478
1 files changed, 1478 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGExprCXX.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGExprCXX.cpp
new file mode 100644
index 0000000..bba7864
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGExprCXX.cpp
@@ -0,0 +1,1478 @@
+//===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code dealing with code generation of C++ expressions
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Frontend/CodeGenOptions.h"
+#include "CodeGenFunction.h"
+#include "CGCXXABI.h"
+#include "CGObjCRuntime.h"
+#include "CGDebugInfo.h"
+#include "llvm/Intrinsics.h"
+using namespace clang;
+using namespace CodeGen;
+
+RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD,
+ llvm::Value *Callee,
+ ReturnValueSlot ReturnValue,
+ llvm::Value *This,
+ llvm::Value *VTT,
+ CallExpr::const_arg_iterator ArgBeg,
+ CallExpr::const_arg_iterator ArgEnd) {
+ assert(MD->isInstance() &&
+ "Trying to emit a member call expr on a static method!");
+
+ const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
+
+ CallArgList Args;
+
+ // Push the this ptr.
+ Args.push_back(std::make_pair(RValue::get(This),
+ MD->getThisType(getContext())));
+
+ // If there is a VTT parameter, emit it.
+ if (VTT) {
+ QualType T = getContext().getPointerType(getContext().VoidPtrTy);
+ Args.push_back(std::make_pair(RValue::get(VTT), T));
+ }
+
+ // And the rest of the call args
+ EmitCallArgs(Args, FPT, ArgBeg, ArgEnd);
+
+ QualType ResultType = FPT->getResultType();
+ return EmitCall(CGM.getTypes().getFunctionInfo(ResultType, Args,
+ FPT->getExtInfo()),
+ Callee, ReturnValue, Args, MD);
+}
+
+static const CXXRecordDecl *getMostDerivedClassDecl(const Expr *Base) {
+ const Expr *E = Base;
+
+ while (true) {
+ E = E->IgnoreParens();
+ if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
+ if (CE->getCastKind() == CK_DerivedToBase ||
+ CE->getCastKind() == CK_UncheckedDerivedToBase ||
+ CE->getCastKind() == CK_NoOp) {
+ E = CE->getSubExpr();
+ continue;
+ }
+ }
+
+ break;
+ }
+
+ QualType DerivedType = E->getType();
+ if (const PointerType *PTy = DerivedType->getAs<PointerType>())
+ DerivedType = PTy->getPointeeType();
+
+ return cast<CXXRecordDecl>(DerivedType->castAs<RecordType>()->getDecl());
+}
+
+/// canDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
+/// expr can be devirtualized.
+static bool canDevirtualizeMemberFunctionCalls(ASTContext &Context,
+ const Expr *Base,
+ const CXXMethodDecl *MD) {
+
+ // When building with -fapple-kext, all calls must go through the vtable since
+ // the kernel linker can do runtime patching of vtables.
+ if (Context.getLangOptions().AppleKext)
+ return false;
+
+ // If the most derived class is marked final, we know that no subclass can
+ // override this member function and so we can devirtualize it. For example:
+ //
+ // struct A { virtual void f(); }
+ // struct B final : A { };
+ //
+ // void f(B *b) {
+ // b->f();
+ // }
+ //
+ const CXXRecordDecl *MostDerivedClassDecl = getMostDerivedClassDecl(Base);
+ if (MostDerivedClassDecl->hasAttr<FinalAttr>())
+ return true;
+
+ // If the member function is marked 'final', we know that it can't be
+ // overridden and can therefore devirtualize it.
+ if (MD->hasAttr<FinalAttr>())
+ return true;
+
+ // Similarly, if the class itself is marked 'final' it can't be overridden
+ // and we can therefore devirtualize the member function call.
+ if (MD->getParent()->hasAttr<FinalAttr>())
+ return true;
+
+ if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
+ if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
+ // This is a record decl. We know the type and can devirtualize it.
+ return VD->getType()->isRecordType();
+ }
+
+ return false;
+ }
+
+ // We can always devirtualize calls on temporary object expressions.
+ if (isa<CXXConstructExpr>(Base))
+ return true;
+
+ // And calls on bound temporaries.
+ if (isa<CXXBindTemporaryExpr>(Base))
+ return true;
+
+ // Check if this is a call expr that returns a record type.
+ if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
+ return CE->getCallReturnType()->isRecordType();
+
+ // We can't devirtualize the call.
+ return false;
+}
+
+// Note: This function also emit constructor calls to support a MSVC
+// extensions allowing explicit constructor function call.
+RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
+ ReturnValueSlot ReturnValue) {
+ if (isa<BinaryOperator>(CE->getCallee()->IgnoreParens()))
+ return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
+
+ const MemberExpr *ME = cast<MemberExpr>(CE->getCallee()->IgnoreParens());
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
+
+ CGDebugInfo *DI = getDebugInfo();
+ if (DI && CGM.getCodeGenOpts().LimitDebugInfo
+ && !isa<CallExpr>(ME->getBase())) {
+ QualType PQTy = ME->getBase()->IgnoreParenImpCasts()->getType();
+ if (const PointerType * PTy = dyn_cast<PointerType>(PQTy)) {
+ DI->getOrCreateRecordType(PTy->getPointeeType(),
+ MD->getParent()->getLocation());
+ }
+ }
+
+ if (MD->isStatic()) {
+ // The method is static, emit it as we would a regular call.
+ llvm::Value *Callee = CGM.GetAddrOfFunction(MD);
+ return EmitCall(getContext().getPointerType(MD->getType()), Callee,
+ ReturnValue, CE->arg_begin(), CE->arg_end());
+ }
+
+ // Compute the object pointer.
+ llvm::Value *This;
+ if (ME->isArrow())
+ This = EmitScalarExpr(ME->getBase());
+ else
+ This = EmitLValue(ME->getBase()).getAddress();
+
+ if (MD->isTrivial()) {
+ if (isa<CXXDestructorDecl>(MD)) return RValue::get(0);
+ if (isa<CXXConstructorDecl>(MD) &&
+ cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
+ return RValue::get(0);
+
+ if (MD->isCopyAssignmentOperator()) {
+ // We don't like to generate the trivial copy assignment operator when
+ // it isn't necessary; just produce the proper effect here.
+ llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
+ EmitAggregateCopy(This, RHS, CE->getType());
+ return RValue::get(This);
+ }
+
+ if (isa<CXXConstructorDecl>(MD) &&
+ cast<CXXConstructorDecl>(MD)->isCopyConstructor()) {
+ llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
+ EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS,
+ CE->arg_begin(), CE->arg_end());
+ return RValue::get(This);
+ }
+ llvm_unreachable("unknown trivial member function");
+ }
+
+ // Compute the function type we're calling.
+ const CGFunctionInfo *FInfo = 0;
+ if (isa<CXXDestructorDecl>(MD))
+ FInfo = &CGM.getTypes().getFunctionInfo(cast<CXXDestructorDecl>(MD),
+ Dtor_Complete);
+ else if (isa<CXXConstructorDecl>(MD))
+ FInfo = &CGM.getTypes().getFunctionInfo(cast<CXXConstructorDecl>(MD),
+ Ctor_Complete);
+ else
+ FInfo = &CGM.getTypes().getFunctionInfo(MD);
+
+ const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
+ const llvm::Type *Ty
+ = CGM.getTypes().GetFunctionType(*FInfo, FPT->isVariadic());
+
+ // C++ [class.virtual]p12:
+ // Explicit qualification with the scope operator (5.1) suppresses the
+ // virtual call mechanism.
+ //
+ // We also don't emit a virtual call if the base expression has a record type
+ // because then we know what the type is.
+ bool UseVirtualCall;
+ UseVirtualCall = MD->isVirtual() && !ME->hasQualifier()
+ && !canDevirtualizeMemberFunctionCalls(getContext(),
+ ME->getBase(), MD);
+ llvm::Value *Callee;
+ if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
+ if (UseVirtualCall) {
+ Callee = BuildVirtualCall(Dtor, Dtor_Complete, This, Ty);
+ } else {
+ if (getContext().getLangOptions().AppleKext &&
+ MD->isVirtual() &&
+ ME->hasQualifier())
+ Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
+ else
+ Callee = CGM.GetAddrOfFunction(GlobalDecl(Dtor, Dtor_Complete), Ty);
+ }
+ } else if (const CXXConstructorDecl *Ctor =
+ dyn_cast<CXXConstructorDecl>(MD)) {
+ Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty);
+ } else if (UseVirtualCall) {
+ Callee = BuildVirtualCall(MD, This, Ty);
+ } else {
+ if (getContext().getLangOptions().AppleKext &&
+ MD->isVirtual() &&
+ ME->hasQualifier())
+ Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
+ else
+ Callee = CGM.GetAddrOfFunction(MD, Ty);
+ }
+
+ return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0,
+ CE->arg_begin(), CE->arg_end());
+}
+
+RValue
+CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
+ ReturnValueSlot ReturnValue) {
+ const BinaryOperator *BO =
+ cast<BinaryOperator>(E->getCallee()->IgnoreParens());
+ const Expr *BaseExpr = BO->getLHS();
+ const Expr *MemFnExpr = BO->getRHS();
+
+ const MemberPointerType *MPT =
+ MemFnExpr->getType()->getAs<MemberPointerType>();
+
+ const FunctionProtoType *FPT =
+ MPT->getPointeeType()->getAs<FunctionProtoType>();
+ const CXXRecordDecl *RD =
+ cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
+
+ // Get the member function pointer.
+ llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
+
+ // Emit the 'this' pointer.
+ llvm::Value *This;
+
+ if (BO->getOpcode() == BO_PtrMemI)
+ This = EmitScalarExpr(BaseExpr);
+ else
+ This = EmitLValue(BaseExpr).getAddress();
+
+ // Ask the ABI to load the callee. Note that This is modified.
+ llvm::Value *Callee =
+ CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, This, MemFnPtr, MPT);
+
+ CallArgList Args;
+
+ QualType ThisType =
+ getContext().getPointerType(getContext().getTagDeclType(RD));
+
+ // Push the this ptr.
+ Args.push_back(std::make_pair(RValue::get(This), ThisType));
+
+ // And the rest of the call args
+ EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end());
+ const FunctionType *BO_FPT = BO->getType()->getAs<FunctionProtoType>();
+ return EmitCall(CGM.getTypes().getFunctionInfo(Args, BO_FPT), Callee,
+ ReturnValue, Args);
+}
+
+RValue
+CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
+ const CXXMethodDecl *MD,
+ ReturnValueSlot ReturnValue) {
+ assert(MD->isInstance() &&
+ "Trying to emit a member call expr on a static method!");
+ LValue LV = EmitLValue(E->getArg(0));
+ llvm::Value *This = LV.getAddress();
+
+ if (MD->isCopyAssignmentOperator()) {
+ const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(MD->getDeclContext());
+ if (ClassDecl->hasTrivialCopyAssignment()) {
+ assert(!ClassDecl->hasUserDeclaredCopyAssignment() &&
+ "EmitCXXOperatorMemberCallExpr - user declared copy assignment");
+ llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress();
+ QualType Ty = E->getType();
+ EmitAggregateCopy(This, Src, Ty);
+ return RValue::get(This);
+ }
+ }
+
+ const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
+ const llvm::Type *Ty =
+ CGM.getTypes().GetFunctionType(CGM.getTypes().getFunctionInfo(MD),
+ FPT->isVariadic());
+ llvm::Value *Callee;
+ if (MD->isVirtual() &&
+ !canDevirtualizeMemberFunctionCalls(getContext(),
+ E->getArg(0), MD))
+ Callee = BuildVirtualCall(MD, This, Ty);
+ else
+ Callee = CGM.GetAddrOfFunction(MD, Ty);
+
+ return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0,
+ E->arg_begin() + 1, E->arg_end());
+}
+
+void
+CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
+ AggValueSlot Dest) {
+ assert(!Dest.isIgnored() && "Must have a destination!");
+ const CXXConstructorDecl *CD = E->getConstructor();
+
+ // If we require zero initialization before (or instead of) calling the
+ // constructor, as can be the case with a non-user-provided default
+ // constructor, emit the zero initialization now.
+ if (E->requiresZeroInitialization())
+ EmitNullInitialization(Dest.getAddr(), E->getType());
+
+ // If this is a call to a trivial default constructor, do nothing.
+ if (CD->isTrivial() && CD->isDefaultConstructor())
+ return;
+
+ // Elide the constructor if we're constructing from a temporary.
+ // The temporary check is required because Sema sets this on NRVO
+ // returns.
+ if (getContext().getLangOptions().ElideConstructors && E->isElidable()) {
+ assert(getContext().hasSameUnqualifiedType(E->getType(),
+ E->getArg(0)->getType()));
+ if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
+ EmitAggExpr(E->getArg(0), Dest);
+ return;
+ }
+ }
+
+ const ConstantArrayType *Array
+ = getContext().getAsConstantArrayType(E->getType());
+ if (Array) {
+ QualType BaseElementTy = getContext().getBaseElementType(Array);
+ const llvm::Type *BasePtr = ConvertType(BaseElementTy);
+ BasePtr = llvm::PointerType::getUnqual(BasePtr);
+ llvm::Value *BaseAddrPtr =
+ Builder.CreateBitCast(Dest.getAddr(), BasePtr);
+
+ EmitCXXAggrConstructorCall(CD, Array, BaseAddrPtr,
+ E->arg_begin(), E->arg_end());
+ }
+ else {
+ CXXCtorType Type =
+ (E->getConstructionKind() == CXXConstructExpr::CK_Complete)
+ ? Ctor_Complete : Ctor_Base;
+ bool ForVirtualBase =
+ E->getConstructionKind() == CXXConstructExpr::CK_VirtualBase;
+
+ // Call the constructor.
+ EmitCXXConstructorCall(CD, Type, ForVirtualBase, Dest.getAddr(),
+ E->arg_begin(), E->arg_end());
+ }
+}
+
+void
+CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest,
+ llvm::Value *Src,
+ const Expr *Exp) {
+ if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
+ Exp = E->getSubExpr();
+ assert(isa<CXXConstructExpr>(Exp) &&
+ "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
+ const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
+ const CXXConstructorDecl *CD = E->getConstructor();
+ RunCleanupsScope Scope(*this);
+
+ // If we require zero initialization before (or instead of) calling the
+ // constructor, as can be the case with a non-user-provided default
+ // constructor, emit the zero initialization now.
+ // FIXME. Do I still need this for a copy ctor synthesis?
+ if (E->requiresZeroInitialization())
+ EmitNullInitialization(Dest, E->getType());
+
+ assert(!getContext().getAsConstantArrayType(E->getType())
+ && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
+ EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src,
+ E->arg_begin(), E->arg_end());
+}
+
+/// Check whether the given operator new[] is the global placement
+/// operator new[].
+static bool IsPlacementOperatorNewArray(ASTContext &Ctx,
+ const FunctionDecl *Fn) {
+ // Must be in global scope. Note that allocation functions can't be
+ // declared in namespaces.
+ if (!Fn->getDeclContext()->getRedeclContext()->isFileContext())
+ return false;
+
+ // Signature must be void *operator new[](size_t, void*).
+ // The size_t is common to all operator new[]s.
+ if (Fn->getNumParams() != 2)
+ return false;
+
+ CanQualType ParamType = Ctx.getCanonicalType(Fn->getParamDecl(1)->getType());
+ return (ParamType == Ctx.VoidPtrTy);
+}
+
+static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
+ const CXXNewExpr *E) {
+ if (!E->isArray())
+ return CharUnits::Zero();
+
+ // No cookie is required if the new operator being used is
+ // ::operator new[](size_t, void*).
+ const FunctionDecl *OperatorNew = E->getOperatorNew();
+ if (IsPlacementOperatorNewArray(CGF.getContext(), OperatorNew))
+ return CharUnits::Zero();
+
+ return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
+}
+
+static llvm::Value *EmitCXXNewAllocSize(ASTContext &Context,
+ CodeGenFunction &CGF,
+ const CXXNewExpr *E,
+ llvm::Value *&NumElements,
+ llvm::Value *&SizeWithoutCookie) {
+ QualType ElemType = E->getAllocatedType();
+
+ const llvm::IntegerType *SizeTy =
+ cast<llvm::IntegerType>(CGF.ConvertType(CGF.getContext().getSizeType()));
+
+ CharUnits TypeSize = CGF.getContext().getTypeSizeInChars(ElemType);
+
+ if (!E->isArray()) {
+ SizeWithoutCookie = llvm::ConstantInt::get(SizeTy, TypeSize.getQuantity());
+ return SizeWithoutCookie;
+ }
+
+ // Figure out the cookie size.
+ CharUnits CookieSize = CalculateCookiePadding(CGF, E);
+
+ // Emit the array size expression.
+ // We multiply the size of all dimensions for NumElements.
+ // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
+ NumElements = CGF.EmitScalarExpr(E->getArraySize());
+ assert(NumElements->getType() == SizeTy && "element count not a size_t");
+
+ uint64_t ArraySizeMultiplier = 1;
+ while (const ConstantArrayType *CAT
+ = CGF.getContext().getAsConstantArrayType(ElemType)) {
+ ElemType = CAT->getElementType();
+ ArraySizeMultiplier *= CAT->getSize().getZExtValue();
+ }
+
+ llvm::Value *Size;
+
+ // If someone is doing 'new int[42]' there is no need to do a dynamic check.
+ // Don't bloat the -O0 code.
+ if (llvm::ConstantInt *NumElementsC =
+ dyn_cast<llvm::ConstantInt>(NumElements)) {
+ llvm::APInt NEC = NumElementsC->getValue();
+ unsigned SizeWidth = NEC.getBitWidth();
+
+ // Determine if there is an overflow here by doing an extended multiply.
+ NEC = NEC.zext(SizeWidth*2);
+ llvm::APInt SC(SizeWidth*2, TypeSize.getQuantity());
+ SC *= NEC;
+
+ if (!CookieSize.isZero()) {
+ // Save the current size without a cookie. We don't care if an
+ // overflow's already happened because SizeWithoutCookie isn't
+ // used if the allocator returns null or throws, as it should
+ // always do on an overflow.
+ llvm::APInt SWC = SC.trunc(SizeWidth);
+ SizeWithoutCookie = llvm::ConstantInt::get(SizeTy, SWC);
+
+ // Add the cookie size.
+ SC += llvm::APInt(SizeWidth*2, CookieSize.getQuantity());
+ }
+
+ if (SC.countLeadingZeros() >= SizeWidth) {
+ SC = SC.trunc(SizeWidth);
+ Size = llvm::ConstantInt::get(SizeTy, SC);
+ } else {
+ // On overflow, produce a -1 so operator new throws.
+ Size = llvm::Constant::getAllOnesValue(SizeTy);
+ }
+
+ // Scale NumElements while we're at it.
+ uint64_t N = NEC.getZExtValue() * ArraySizeMultiplier;
+ NumElements = llvm::ConstantInt::get(SizeTy, N);
+
+ // Otherwise, we don't need to do an overflow-checked multiplication if
+ // we're multiplying by one.
+ } else if (TypeSize.isOne()) {
+ assert(ArraySizeMultiplier == 1);
+
+ Size = NumElements;
+
+ // If we need a cookie, add its size in with an overflow check.
+ // This is maybe a little paranoid.
+ if (!CookieSize.isZero()) {
+ SizeWithoutCookie = Size;
+
+ llvm::Value *CookieSizeV
+ = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
+
+ const llvm::Type *Types[] = { SizeTy };
+ llvm::Value *UAddF
+ = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, Types, 1);
+ llvm::Value *AddRes
+ = CGF.Builder.CreateCall2(UAddF, Size, CookieSizeV);
+
+ Size = CGF.Builder.CreateExtractValue(AddRes, 0);
+ llvm::Value *DidOverflow = CGF.Builder.CreateExtractValue(AddRes, 1);
+ Size = CGF.Builder.CreateSelect(DidOverflow,
+ llvm::ConstantInt::get(SizeTy, -1),
+ Size);
+ }
+
+ // Otherwise use the int.umul.with.overflow intrinsic.
+ } else {
+ llvm::Value *OutermostElementSize
+ = llvm::ConstantInt::get(SizeTy, TypeSize.getQuantity());
+
+ llvm::Value *NumOutermostElements = NumElements;
+
+ // Scale NumElements by the array size multiplier. This might
+ // overflow, but only if the multiplication below also overflows,
+ // in which case this multiplication isn't used.
+ if (ArraySizeMultiplier != 1)
+ NumElements = CGF.Builder.CreateMul(NumElements,
+ llvm::ConstantInt::get(SizeTy, ArraySizeMultiplier));
+
+ // The requested size of the outermost array is non-constant.
+ // Multiply that by the static size of the elements of that array;
+ // on unsigned overflow, set the size to -1 to trigger an
+ // exception from the allocation routine. This is sufficient to
+ // prevent buffer overruns from the allocator returning a
+ // seemingly valid pointer to insufficient space. This idea comes
+ // originally from MSVC, and GCC has an open bug requesting
+ // similar behavior:
+ // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=19351
+ //
+ // This will not be sufficient for C++0x, which requires a
+ // specific exception class (std::bad_array_new_length).
+ // That will require ABI support that has not yet been specified.
+ const llvm::Type *Types[] = { SizeTy };
+ llvm::Value *UMulF
+ = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, Types, 1);
+ llvm::Value *MulRes = CGF.Builder.CreateCall2(UMulF, NumOutermostElements,
+ OutermostElementSize);
+
+ // The overflow bit.
+ llvm::Value *DidOverflow = CGF.Builder.CreateExtractValue(MulRes, 1);
+
+ // The result of the multiplication.
+ Size = CGF.Builder.CreateExtractValue(MulRes, 0);
+
+ // If we have a cookie, we need to add that size in, too.
+ if (!CookieSize.isZero()) {
+ SizeWithoutCookie = Size;
+
+ llvm::Value *CookieSizeV
+ = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
+ llvm::Value *UAddF
+ = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, Types, 1);
+ llvm::Value *AddRes
+ = CGF.Builder.CreateCall2(UAddF, SizeWithoutCookie, CookieSizeV);
+
+ Size = CGF.Builder.CreateExtractValue(AddRes, 0);
+
+ llvm::Value *AddDidOverflow = CGF.Builder.CreateExtractValue(AddRes, 1);
+ DidOverflow = CGF.Builder.CreateAnd(DidOverflow, AddDidOverflow);
+ }
+
+ Size = CGF.Builder.CreateSelect(DidOverflow,
+ llvm::ConstantInt::get(SizeTy, -1),
+ Size);
+ }
+
+ if (CookieSize.isZero())
+ SizeWithoutCookie = Size;
+ else
+ assert(SizeWithoutCookie && "didn't set SizeWithoutCookie?");
+
+ return Size;
+}
+
+static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const CXXNewExpr *E,
+ llvm::Value *NewPtr) {
+
+ assert(E->getNumConstructorArgs() == 1 &&
+ "Can only have one argument to initializer of POD type.");
+
+ const Expr *Init = E->getConstructorArg(0);
+ QualType AllocType = E->getAllocatedType();
+
+ unsigned Alignment =
+ CGF.getContext().getTypeAlignInChars(AllocType).getQuantity();
+ if (!CGF.hasAggregateLLVMType(AllocType))
+ CGF.EmitStoreOfScalar(CGF.EmitScalarExpr(Init), NewPtr,
+ AllocType.isVolatileQualified(), Alignment,
+ AllocType);
+ else if (AllocType->isAnyComplexType())
+ CGF.EmitComplexExprIntoAddr(Init, NewPtr,
+ AllocType.isVolatileQualified());
+ else {
+ AggValueSlot Slot
+ = AggValueSlot::forAddr(NewPtr, AllocType.isVolatileQualified(), true);
+ CGF.EmitAggExpr(Init, Slot);
+ }
+}
+
+void
+CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E,
+ llvm::Value *NewPtr,
+ llvm::Value *NumElements) {
+ // We have a POD type.
+ if (E->getNumConstructorArgs() == 0)
+ return;
+
+ const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
+
+ // Create a temporary for the loop index and initialize it with 0.
+ llvm::Value *IndexPtr = CreateTempAlloca(SizeTy, "loop.index");
+ llvm::Value *Zero = llvm::Constant::getNullValue(SizeTy);
+ Builder.CreateStore(Zero, IndexPtr);
+
+ // Start the loop with a block that tests the condition.
+ llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
+ llvm::BasicBlock *AfterFor = createBasicBlock("for.end");
+
+ EmitBlock(CondBlock);
+
+ llvm::BasicBlock *ForBody = createBasicBlock("for.body");
+
+ // Generate: if (loop-index < number-of-elements fall to the loop body,
+ // otherwise, go to the block after the for-loop.
+ llvm::Value *Counter = Builder.CreateLoad(IndexPtr);
+ llvm::Value *IsLess = Builder.CreateICmpULT(Counter, NumElements, "isless");
+ // If the condition is true, execute the body.
+ Builder.CreateCondBr(IsLess, ForBody, AfterFor);
+
+ EmitBlock(ForBody);
+
+ llvm::BasicBlock *ContinueBlock = createBasicBlock("for.inc");
+ // Inside the loop body, emit the constructor call on the array element.
+ Counter = Builder.CreateLoad(IndexPtr);
+ llvm::Value *Address = Builder.CreateInBoundsGEP(NewPtr, Counter,
+ "arrayidx");
+ StoreAnyExprIntoOneUnit(*this, E, Address);
+
+ EmitBlock(ContinueBlock);
+
+ // Emit the increment of the loop counter.
+ llvm::Value *NextVal = llvm::ConstantInt::get(SizeTy, 1);
+ Counter = Builder.CreateLoad(IndexPtr);
+ NextVal = Builder.CreateAdd(Counter, NextVal, "inc");
+ Builder.CreateStore(NextVal, IndexPtr);
+
+ // Finally, branch back up to the condition for the next iteration.
+ EmitBranch(CondBlock);
+
+ // Emit the fall-through block.
+ EmitBlock(AfterFor, true);
+}
+
+static void EmitZeroMemSet(CodeGenFunction &CGF, QualType T,
+ llvm::Value *NewPtr, llvm::Value *Size) {
+ CGF.EmitCastToVoidPtr(NewPtr);
+ CharUnits Alignment = CGF.getContext().getTypeAlignInChars(T);
+ CGF.Builder.CreateMemSet(NewPtr, CGF.Builder.getInt8(0), Size,
+ Alignment.getQuantity(), false);
+}
+
+static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
+ llvm::Value *NewPtr,
+ llvm::Value *NumElements,
+ llvm::Value *AllocSizeWithoutCookie) {
+ if (E->isArray()) {
+ if (CXXConstructorDecl *Ctor = E->getConstructor()) {
+ bool RequiresZeroInitialization = false;
+ if (Ctor->getParent()->hasTrivialConstructor()) {
+ // If new expression did not specify value-initialization, then there
+ // is no initialization.
+ if (!E->hasInitializer() || Ctor->getParent()->isEmpty())
+ return;
+
+ if (CGF.CGM.getTypes().isZeroInitializable(E->getAllocatedType())) {
+ // Optimization: since zero initialization will just set the memory
+ // to all zeroes, generate a single memset to do it in one shot.
+ EmitZeroMemSet(CGF, E->getAllocatedType(), NewPtr,
+ AllocSizeWithoutCookie);
+ return;
+ }
+
+ RequiresZeroInitialization = true;
+ }
+
+ CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr,
+ E->constructor_arg_begin(),
+ E->constructor_arg_end(),
+ RequiresZeroInitialization);
+ return;
+ } else if (E->getNumConstructorArgs() == 1 &&
+ isa<ImplicitValueInitExpr>(E->getConstructorArg(0))) {
+ // Optimization: since zero initialization will just set the memory
+ // to all zeroes, generate a single memset to do it in one shot.
+ EmitZeroMemSet(CGF, E->getAllocatedType(), NewPtr,
+ AllocSizeWithoutCookie);
+ return;
+ } else {
+ CGF.EmitNewArrayInitializer(E, NewPtr, NumElements);
+ return;
+ }
+ }
+
+ if (CXXConstructorDecl *Ctor = E->getConstructor()) {
+ // Per C++ [expr.new]p15, if we have an initializer, then we're performing
+ // direct initialization. C++ [dcl.init]p5 requires that we
+ // zero-initialize storage if there are no user-declared constructors.
+ if (E->hasInitializer() &&
+ !Ctor->getParent()->hasUserDeclaredConstructor() &&
+ !Ctor->getParent()->isEmpty())
+ CGF.EmitNullInitialization(NewPtr, E->getAllocatedType());
+
+ CGF.EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false,
+ NewPtr, E->constructor_arg_begin(),
+ E->constructor_arg_end());
+
+ return;
+ }
+ // We have a POD type.
+ if (E->getNumConstructorArgs() == 0)
+ return;
+
+ StoreAnyExprIntoOneUnit(CGF, E, NewPtr);
+}
+
+namespace {
+ /// A cleanup to call the given 'operator delete' function upon
+ /// abnormal exit from a new expression.
+ class CallDeleteDuringNew : public EHScopeStack::Cleanup {
+ size_t NumPlacementArgs;
+ const FunctionDecl *OperatorDelete;
+ llvm::Value *Ptr;
+ llvm::Value *AllocSize;
+
+ RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); }
+
+ public:
+ static size_t getExtraSize(size_t NumPlacementArgs) {
+ return NumPlacementArgs * sizeof(RValue);
+ }
+
+ CallDeleteDuringNew(size_t NumPlacementArgs,
+ const FunctionDecl *OperatorDelete,
+ llvm::Value *Ptr,
+ llvm::Value *AllocSize)
+ : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
+ Ptr(Ptr), AllocSize(AllocSize) {}
+
+ void setPlacementArg(unsigned I, RValue Arg) {
+ assert(I < NumPlacementArgs && "index out of range");
+ getPlacementArgs()[I] = Arg;
+ }
+
+ void Emit(CodeGenFunction &CGF, bool IsForEH) {
+ const FunctionProtoType *FPT
+ = OperatorDelete->getType()->getAs<FunctionProtoType>();
+ assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
+ (FPT->getNumArgs() == 2 && NumPlacementArgs == 0));
+
+ CallArgList DeleteArgs;
+
+ // The first argument is always a void*.
+ FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
+ DeleteArgs.push_back(std::make_pair(RValue::get(Ptr), *AI++));
+
+ // A member 'operator delete' can take an extra 'size_t' argument.
+ if (FPT->getNumArgs() == NumPlacementArgs + 2)
+ DeleteArgs.push_back(std::make_pair(RValue::get(AllocSize), *AI++));
+
+ // Pass the rest of the arguments, which must match exactly.
+ for (unsigned I = 0; I != NumPlacementArgs; ++I)
+ DeleteArgs.push_back(std::make_pair(getPlacementArgs()[I], *AI++));
+
+ // Call 'operator delete'.
+ CGF.EmitCall(CGF.CGM.getTypes().getFunctionInfo(DeleteArgs, FPT),
+ CGF.CGM.GetAddrOfFunction(OperatorDelete),
+ ReturnValueSlot(), DeleteArgs, OperatorDelete);
+ }
+ };
+
+ /// A cleanup to call the given 'operator delete' function upon
+ /// abnormal exit from a new expression when the new expression is
+ /// conditional.
+ class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup {
+ size_t NumPlacementArgs;
+ const FunctionDecl *OperatorDelete;
+ DominatingValue<RValue>::saved_type Ptr;
+ DominatingValue<RValue>::saved_type AllocSize;
+
+ DominatingValue<RValue>::saved_type *getPlacementArgs() {
+ return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1);
+ }
+
+ public:
+ static size_t getExtraSize(size_t NumPlacementArgs) {
+ return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type);
+ }
+
+ CallDeleteDuringConditionalNew(size_t NumPlacementArgs,
+ const FunctionDecl *OperatorDelete,
+ DominatingValue<RValue>::saved_type Ptr,
+ DominatingValue<RValue>::saved_type AllocSize)
+ : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
+ Ptr(Ptr), AllocSize(AllocSize) {}
+
+ void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) {
+ assert(I < NumPlacementArgs && "index out of range");
+ getPlacementArgs()[I] = Arg;
+ }
+
+ void Emit(CodeGenFunction &CGF, bool IsForEH) {
+ const FunctionProtoType *FPT
+ = OperatorDelete->getType()->getAs<FunctionProtoType>();
+ assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
+ (FPT->getNumArgs() == 2 && NumPlacementArgs == 0));
+
+ CallArgList DeleteArgs;
+
+ // The first argument is always a void*.
+ FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
+ DeleteArgs.push_back(std::make_pair(Ptr.restore(CGF), *AI++));
+
+ // A member 'operator delete' can take an extra 'size_t' argument.
+ if (FPT->getNumArgs() == NumPlacementArgs + 2) {
+ RValue RV = AllocSize.restore(CGF);
+ DeleteArgs.push_back(std::make_pair(RV, *AI++));
+ }
+
+ // Pass the rest of the arguments, which must match exactly.
+ for (unsigned I = 0; I != NumPlacementArgs; ++I) {
+ RValue RV = getPlacementArgs()[I].restore(CGF);
+ DeleteArgs.push_back(std::make_pair(RV, *AI++));
+ }
+
+ // Call 'operator delete'.
+ CGF.EmitCall(CGF.CGM.getTypes().getFunctionInfo(DeleteArgs, FPT),
+ CGF.CGM.GetAddrOfFunction(OperatorDelete),
+ ReturnValueSlot(), DeleteArgs, OperatorDelete);
+ }
+ };
+}
+
+/// Enter a cleanup to call 'operator delete' if the initializer in a
+/// new-expression throws.
+static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
+ const CXXNewExpr *E,
+ llvm::Value *NewPtr,
+ llvm::Value *AllocSize,
+ const CallArgList &NewArgs) {
+ // If we're not inside a conditional branch, then the cleanup will
+ // dominate and we can do the easier (and more efficient) thing.
+ if (!CGF.isInConditionalBranch()) {
+ CallDeleteDuringNew *Cleanup = CGF.EHStack
+ .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup,
+ E->getNumPlacementArgs(),
+ E->getOperatorDelete(),
+ NewPtr, AllocSize);
+ for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
+ Cleanup->setPlacementArg(I, NewArgs[I+1].first);
+
+ return;
+ }
+
+ // Otherwise, we need to save all this stuff.
+ DominatingValue<RValue>::saved_type SavedNewPtr =
+ DominatingValue<RValue>::save(CGF, RValue::get(NewPtr));
+ DominatingValue<RValue>::saved_type SavedAllocSize =
+ DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
+
+ CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack
+ .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(InactiveEHCleanup,
+ E->getNumPlacementArgs(),
+ E->getOperatorDelete(),
+ SavedNewPtr,
+ SavedAllocSize);
+ for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
+ Cleanup->setPlacementArg(I,
+ DominatingValue<RValue>::save(CGF, NewArgs[I+1].first));
+
+ CGF.ActivateCleanupBlock(CGF.EHStack.stable_begin());
+}
+
+llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
+ QualType AllocType = E->getAllocatedType();
+ if (AllocType->isArrayType())
+ while (const ArrayType *AType = getContext().getAsArrayType(AllocType))
+ AllocType = AType->getElementType();
+
+ FunctionDecl *NewFD = E->getOperatorNew();
+ const FunctionProtoType *NewFTy = NewFD->getType()->getAs<FunctionProtoType>();
+
+ CallArgList NewArgs;
+
+ // The allocation size is the first argument.
+ QualType SizeTy = getContext().getSizeType();
+
+ llvm::Value *NumElements = 0;
+ llvm::Value *AllocSizeWithoutCookie = 0;
+ llvm::Value *AllocSize = EmitCXXNewAllocSize(getContext(),
+ *this, E, NumElements,
+ AllocSizeWithoutCookie);
+
+ NewArgs.push_back(std::make_pair(RValue::get(AllocSize), SizeTy));
+
+ // Emit the rest of the arguments.
+ // FIXME: Ideally, this should just use EmitCallArgs.
+ CXXNewExpr::const_arg_iterator NewArg = E->placement_arg_begin();
+
+ // First, use the types from the function type.
+ // We start at 1 here because the first argument (the allocation size)
+ // has already been emitted.
+ for (unsigned i = 1, e = NewFTy->getNumArgs(); i != e; ++i, ++NewArg) {
+ QualType ArgType = NewFTy->getArgType(i);
+
+ assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
+ getTypePtr() ==
+ getContext().getCanonicalType(NewArg->getType()).getTypePtr() &&
+ "type mismatch in call argument!");
+
+ NewArgs.push_back(std::make_pair(EmitCallArg(*NewArg, ArgType),
+ ArgType));
+
+ }
+
+ // Either we've emitted all the call args, or we have a call to a
+ // variadic function.
+ assert((NewArg == E->placement_arg_end() || NewFTy->isVariadic()) &&
+ "Extra arguments in non-variadic function!");
+
+ // If we still have any arguments, emit them using the type of the argument.
+ for (CXXNewExpr::const_arg_iterator NewArgEnd = E->placement_arg_end();
+ NewArg != NewArgEnd; ++NewArg) {
+ QualType ArgType = NewArg->getType();
+ NewArgs.push_back(std::make_pair(EmitCallArg(*NewArg, ArgType),
+ ArgType));
+ }
+
+ // Emit the call to new.
+ RValue RV =
+ EmitCall(CGM.getTypes().getFunctionInfo(NewArgs, NewFTy),
+ CGM.GetAddrOfFunction(NewFD), ReturnValueSlot(), NewArgs, NewFD);
+
+ // If an allocation function is declared with an empty exception specification
+ // it returns null to indicate failure to allocate storage. [expr.new]p13.
+ // (We don't need to check for null when there's no new initializer and
+ // we're allocating a POD type).
+ bool NullCheckResult = NewFTy->hasEmptyExceptionSpec() &&
+ !(AllocType->isPODType() && !E->hasInitializer());
+
+ llvm::BasicBlock *NullCheckSource = 0;
+ llvm::BasicBlock *NewNotNull = 0;
+ llvm::BasicBlock *NewEnd = 0;
+
+ llvm::Value *NewPtr = RV.getScalarVal();
+ unsigned AS = cast<llvm::PointerType>(NewPtr->getType())->getAddressSpace();
+
+ if (NullCheckResult) {
+ NullCheckSource = Builder.GetInsertBlock();
+ NewNotNull = createBasicBlock("new.notnull");
+ NewEnd = createBasicBlock("new.end");
+
+ llvm::Value *IsNull = Builder.CreateIsNull(NewPtr, "new.isnull");
+ Builder.CreateCondBr(IsNull, NewEnd, NewNotNull);
+ EmitBlock(NewNotNull);
+ }
+
+ assert((AllocSize == AllocSizeWithoutCookie) ==
+ CalculateCookiePadding(*this, E).isZero());
+ if (AllocSize != AllocSizeWithoutCookie) {
+ assert(E->isArray());
+ NewPtr = CGM.getCXXABI().InitializeArrayCookie(*this, NewPtr, NumElements,
+ E, AllocType);
+ }
+
+ // If there's an operator delete, enter a cleanup to call it if an
+ // exception is thrown.
+ EHScopeStack::stable_iterator CallOperatorDelete;
+ if (E->getOperatorDelete()) {
+ EnterNewDeleteCleanup(*this, E, NewPtr, AllocSize, NewArgs);
+ CallOperatorDelete = EHStack.stable_begin();
+ }
+
+ const llvm::Type *ElementPtrTy
+ = ConvertTypeForMem(AllocType)->getPointerTo(AS);
+ NewPtr = Builder.CreateBitCast(NewPtr, ElementPtrTy);
+
+ if (E->isArray()) {
+ EmitNewInitializer(*this, E, NewPtr, NumElements, AllocSizeWithoutCookie);
+
+ // NewPtr is a pointer to the base element type. If we're
+ // allocating an array of arrays, we'll need to cast back to the
+ // array pointer type.
+ const llvm::Type *ResultTy = ConvertTypeForMem(E->getType());
+ if (NewPtr->getType() != ResultTy)
+ NewPtr = Builder.CreateBitCast(NewPtr, ResultTy);
+ } else {
+ EmitNewInitializer(*this, E, NewPtr, NumElements, AllocSizeWithoutCookie);
+ }
+
+ // Deactivate the 'operator delete' cleanup if we finished
+ // initialization.
+ if (CallOperatorDelete.isValid())
+ DeactivateCleanupBlock(CallOperatorDelete);
+
+ if (NullCheckResult) {
+ Builder.CreateBr(NewEnd);
+ llvm::BasicBlock *NotNullSource = Builder.GetInsertBlock();
+ EmitBlock(NewEnd);
+
+ llvm::PHINode *PHI = Builder.CreatePHI(NewPtr->getType());
+ PHI->reserveOperandSpace(2);
+ PHI->addIncoming(NewPtr, NotNullSource);
+ PHI->addIncoming(llvm::Constant::getNullValue(NewPtr->getType()),
+ NullCheckSource);
+
+ NewPtr = PHI;
+ }
+
+ return NewPtr;
+}
+
+void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
+ llvm::Value *Ptr,
+ QualType DeleteTy) {
+ assert(DeleteFD->getOverloadedOperator() == OO_Delete);
+
+ const FunctionProtoType *DeleteFTy =
+ DeleteFD->getType()->getAs<FunctionProtoType>();
+
+ CallArgList DeleteArgs;
+
+ // Check if we need to pass the size to the delete operator.
+ llvm::Value *Size = 0;
+ QualType SizeTy;
+ if (DeleteFTy->getNumArgs() == 2) {
+ SizeTy = DeleteFTy->getArgType(1);
+ CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
+ Size = llvm::ConstantInt::get(ConvertType(SizeTy),
+ DeleteTypeSize.getQuantity());
+ }
+
+ QualType ArgTy = DeleteFTy->getArgType(0);
+ llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
+ DeleteArgs.push_back(std::make_pair(RValue::get(DeletePtr), ArgTy));
+
+ if (Size)
+ DeleteArgs.push_back(std::make_pair(RValue::get(Size), SizeTy));
+
+ // Emit the call to delete.
+ EmitCall(CGM.getTypes().getFunctionInfo(DeleteArgs, DeleteFTy),
+ CGM.GetAddrOfFunction(DeleteFD), ReturnValueSlot(),
+ DeleteArgs, DeleteFD);
+}
+
+namespace {
+ /// Calls the given 'operator delete' on a single object.
+ struct CallObjectDelete : EHScopeStack::Cleanup {
+ llvm::Value *Ptr;
+ const FunctionDecl *OperatorDelete;
+ QualType ElementType;
+
+ CallObjectDelete(llvm::Value *Ptr,
+ const FunctionDecl *OperatorDelete,
+ QualType ElementType)
+ : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
+
+ void Emit(CodeGenFunction &CGF, bool IsForEH) {
+ CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
+ }
+ };
+}
+
+/// Emit the code for deleting a single object.
+static void EmitObjectDelete(CodeGenFunction &CGF,
+ const FunctionDecl *OperatorDelete,
+ llvm::Value *Ptr,
+ QualType ElementType) {
+ // Find the destructor for the type, if applicable. If the
+ // destructor is virtual, we'll just emit the vcall and return.
+ const CXXDestructorDecl *Dtor = 0;
+ if (const RecordType *RT = ElementType->getAs<RecordType>()) {
+ CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
+ if (!RD->hasTrivialDestructor()) {
+ Dtor = RD->getDestructor();
+
+ if (Dtor->isVirtual()) {
+ const llvm::Type *Ty =
+ CGF.getTypes().GetFunctionType(CGF.getTypes().getFunctionInfo(Dtor,
+ Dtor_Complete),
+ /*isVariadic=*/false);
+
+ llvm::Value *Callee
+ = CGF.BuildVirtualCall(Dtor, Dtor_Deleting, Ptr, Ty);
+ CGF.EmitCXXMemberCall(Dtor, Callee, ReturnValueSlot(), Ptr, /*VTT=*/0,
+ 0, 0);
+
+ // The dtor took care of deleting the object.
+ return;
+ }
+ }
+ }
+
+ // Make sure that we call delete even if the dtor throws.
+ // This doesn't have to a conditional cleanup because we're going
+ // to pop it off in a second.
+ CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
+ Ptr, OperatorDelete, ElementType);
+
+ if (Dtor)
+ CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
+ /*ForVirtualBase=*/false, Ptr);
+
+ CGF.PopCleanupBlock();
+}
+
+namespace {
+ /// Calls the given 'operator delete' on an array of objects.
+ struct CallArrayDelete : EHScopeStack::Cleanup {
+ llvm::Value *Ptr;
+ const FunctionDecl *OperatorDelete;
+ llvm::Value *NumElements;
+ QualType ElementType;
+ CharUnits CookieSize;
+
+ CallArrayDelete(llvm::Value *Ptr,
+ const FunctionDecl *OperatorDelete,
+ llvm::Value *NumElements,
+ QualType ElementType,
+ CharUnits CookieSize)
+ : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
+ ElementType(ElementType), CookieSize(CookieSize) {}
+
+ void Emit(CodeGenFunction &CGF, bool IsForEH) {
+ const FunctionProtoType *DeleteFTy =
+ OperatorDelete->getType()->getAs<FunctionProtoType>();
+ assert(DeleteFTy->getNumArgs() == 1 || DeleteFTy->getNumArgs() == 2);
+
+ CallArgList Args;
+
+ // Pass the pointer as the first argument.
+ QualType VoidPtrTy = DeleteFTy->getArgType(0);
+ llvm::Value *DeletePtr
+ = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy));
+ Args.push_back(std::make_pair(RValue::get(DeletePtr), VoidPtrTy));
+
+ // Pass the original requested size as the second argument.
+ if (DeleteFTy->getNumArgs() == 2) {
+ QualType size_t = DeleteFTy->getArgType(1);
+ const llvm::IntegerType *SizeTy
+ = cast<llvm::IntegerType>(CGF.ConvertType(size_t));
+
+ CharUnits ElementTypeSize =
+ CGF.CGM.getContext().getTypeSizeInChars(ElementType);
+
+ // The size of an element, multiplied by the number of elements.
+ llvm::Value *Size
+ = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity());
+ Size = CGF.Builder.CreateMul(Size, NumElements);
+
+ // Plus the size of the cookie if applicable.
+ if (!CookieSize.isZero()) {
+ llvm::Value *CookieSizeV
+ = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
+ Size = CGF.Builder.CreateAdd(Size, CookieSizeV);
+ }
+
+ Args.push_back(std::make_pair(RValue::get(Size), size_t));
+ }
+
+ // Emit the call to delete.
+ CGF.EmitCall(CGF.getTypes().getFunctionInfo(Args, DeleteFTy),
+ CGF.CGM.GetAddrOfFunction(OperatorDelete),
+ ReturnValueSlot(), Args, OperatorDelete);
+ }
+ };
+}
+
+/// Emit the code for deleting an array of objects.
+static void EmitArrayDelete(CodeGenFunction &CGF,
+ const CXXDeleteExpr *E,
+ llvm::Value *Ptr,
+ QualType ElementType) {
+ llvm::Value *NumElements = 0;
+ llvm::Value *AllocatedPtr = 0;
+ CharUnits CookieSize;
+ CGF.CGM.getCXXABI().ReadArrayCookie(CGF, Ptr, E, ElementType,
+ NumElements, AllocatedPtr, CookieSize);
+
+ assert(AllocatedPtr && "ReadArrayCookie didn't set AllocatedPtr");
+
+ // Make sure that we call delete even if one of the dtors throws.
+ const FunctionDecl *OperatorDelete = E->getOperatorDelete();
+ CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
+ AllocatedPtr, OperatorDelete,
+ NumElements, ElementType,
+ CookieSize);
+
+ if (const CXXRecordDecl *RD = ElementType->getAsCXXRecordDecl()) {
+ if (!RD->hasTrivialDestructor()) {
+ assert(NumElements && "ReadArrayCookie didn't find element count"
+ " for a class with destructor");
+ CGF.EmitCXXAggrDestructorCall(RD->getDestructor(), NumElements, Ptr);
+ }
+ }
+
+ CGF.PopCleanupBlock();
+}
+
+void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
+
+ // Get at the argument before we performed the implicit conversion
+ // to void*.
+ const Expr *Arg = E->getArgument();
+ while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
+ if (ICE->getCastKind() != CK_UserDefinedConversion &&
+ ICE->getType()->isVoidPointerType())
+ Arg = ICE->getSubExpr();
+ else
+ break;
+ }
+
+ llvm::Value *Ptr = EmitScalarExpr(Arg);
+
+ // Null check the pointer.
+ llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
+ llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
+
+ llvm::Value *IsNull =
+ Builder.CreateICmpEQ(Ptr, llvm::Constant::getNullValue(Ptr->getType()),
+ "isnull");
+
+ Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
+ EmitBlock(DeleteNotNull);
+
+ // We might be deleting a pointer to array. If so, GEP down to the
+ // first non-array element.
+ // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
+ QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
+ if (DeleteTy->isConstantArrayType()) {
+ llvm::Value *Zero = Builder.getInt32(0);
+ llvm::SmallVector<llvm::Value*,8> GEP;
+
+ GEP.push_back(Zero); // point at the outermost array
+
+ // For each layer of array type we're pointing at:
+ while (const ConstantArrayType *Arr
+ = getContext().getAsConstantArrayType(DeleteTy)) {
+ // 1. Unpeel the array type.
+ DeleteTy = Arr->getElementType();
+
+ // 2. GEP to the first element of the array.
+ GEP.push_back(Zero);
+ }
+
+ Ptr = Builder.CreateInBoundsGEP(Ptr, GEP.begin(), GEP.end(), "del.first");
+ }
+
+ assert(ConvertTypeForMem(DeleteTy) ==
+ cast<llvm::PointerType>(Ptr->getType())->getElementType());
+
+ if (E->isArrayForm()) {
+ EmitArrayDelete(*this, E, Ptr, DeleteTy);
+ } else {
+ EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy);
+ }
+
+ EmitBlock(DeleteEnd);
+}
+
+llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
+ QualType Ty = E->getType();
+ const llvm::Type *LTy = ConvertType(Ty)->getPointerTo();
+
+ if (E->isTypeOperand()) {
+ llvm::Constant *TypeInfo =
+ CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand());
+ return Builder.CreateBitCast(TypeInfo, LTy);
+ }
+
+ Expr *subE = E->getExprOperand();
+ Ty = subE->getType();
+ CanQualType CanTy = CGM.getContext().getCanonicalType(Ty);
+ Ty = CanTy.getUnqualifiedType().getNonReferenceType();
+ if (const RecordType *RT = Ty->getAs<RecordType>()) {
+ const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
+ if (RD->isPolymorphic()) {
+ // FIXME: if subE is an lvalue do
+ LValue Obj = EmitLValue(subE);
+ llvm::Value *This = Obj.getAddress();
+ // We need to do a zero check for *p, unless it has NonNullAttr.
+ // FIXME: PointerType->hasAttr<NonNullAttr>()
+ bool CanBeZero = false;
+ if (UnaryOperator *UO = dyn_cast<UnaryOperator>(subE->IgnoreParens()))
+ if (UO->getOpcode() == UO_Deref)
+ CanBeZero = true;
+ if (CanBeZero) {
+ llvm::BasicBlock *NonZeroBlock = createBasicBlock();
+ llvm::BasicBlock *ZeroBlock = createBasicBlock();
+
+ llvm::Value *Zero = llvm::Constant::getNullValue(This->getType());
+ Builder.CreateCondBr(Builder.CreateICmpNE(This, Zero),
+ NonZeroBlock, ZeroBlock);
+ EmitBlock(ZeroBlock);
+ /// Call __cxa_bad_typeid
+ const llvm::Type *ResultType = llvm::Type::getVoidTy(getLLVMContext());
+ const llvm::FunctionType *FTy;
+ FTy = llvm::FunctionType::get(ResultType, false);
+ llvm::Value *F = CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid");
+ Builder.CreateCall(F)->setDoesNotReturn();
+ Builder.CreateUnreachable();
+ EmitBlock(NonZeroBlock);
+ }
+ llvm::Value *V = GetVTablePtr(This, LTy->getPointerTo());
+ V = Builder.CreateConstInBoundsGEP1_64(V, -1ULL);
+ V = Builder.CreateLoad(V);
+ return V;
+ }
+ }
+ return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(Ty), LTy);
+}
+
+llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *V,
+ const CXXDynamicCastExpr *DCE) {
+ QualType SrcTy = DCE->getSubExpr()->getType();
+ QualType DestTy = DCE->getTypeAsWritten();
+ QualType InnerType = DestTy->getPointeeType();
+
+ const llvm::Type *LTy = ConvertType(DCE->getType());
+
+ bool CanBeZero = false;
+ bool ToVoid = false;
+ bool ThrowOnBad = false;
+ if (DestTy->isPointerType()) {
+ // FIXME: if PointerType->hasAttr<NonNullAttr>(), we don't set this
+ CanBeZero = true;
+ if (InnerType->isVoidType())
+ ToVoid = true;
+ } else {
+ LTy = LTy->getPointerTo();
+
+ // FIXME: What if exceptions are disabled?
+ ThrowOnBad = true;
+ }
+
+ if (SrcTy->isPointerType() || SrcTy->isReferenceType())
+ SrcTy = SrcTy->getPointeeType();
+ SrcTy = SrcTy.getUnqualifiedType();
+
+ if (DestTy->isPointerType() || DestTy->isReferenceType())
+ DestTy = DestTy->getPointeeType();
+ DestTy = DestTy.getUnqualifiedType();
+
+ llvm::BasicBlock *ContBlock = createBasicBlock();
+ llvm::BasicBlock *NullBlock = 0;
+ llvm::BasicBlock *NonZeroBlock = 0;
+ if (CanBeZero) {
+ NonZeroBlock = createBasicBlock();
+ NullBlock = createBasicBlock();
+ Builder.CreateCondBr(Builder.CreateIsNotNull(V), NonZeroBlock, NullBlock);
+ EmitBlock(NonZeroBlock);
+ }
+
+ llvm::BasicBlock *BadCastBlock = 0;
+
+ const llvm::Type *PtrDiffTy = ConvertType(getContext().getPointerDiffType());
+
+ // See if this is a dynamic_cast(void*)
+ if (ToVoid) {
+ llvm::Value *This = V;
+ V = GetVTablePtr(This, PtrDiffTy->getPointerTo());
+ V = Builder.CreateConstInBoundsGEP1_64(V, -2ULL);
+ V = Builder.CreateLoad(V, "offset to top");
+ This = EmitCastToVoidPtr(This);
+ V = Builder.CreateInBoundsGEP(This, V);
+ V = Builder.CreateBitCast(V, LTy);
+ } else {
+ /// Call __dynamic_cast
+ const llvm::Type *ResultType = Int8PtrTy;
+ const llvm::FunctionType *FTy;
+ std::vector<const llvm::Type*> ArgTys;
+ ArgTys.push_back(Int8PtrTy);
+ ArgTys.push_back(Int8PtrTy);
+ ArgTys.push_back(Int8PtrTy);
+ ArgTys.push_back(PtrDiffTy);
+ FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
+
+ // FIXME: Calculate better hint.
+ llvm::Value *hint = llvm::ConstantInt::get(PtrDiffTy, -1ULL);
+
+ assert(SrcTy->isRecordType() && "Src type must be record type!");
+ assert(DestTy->isRecordType() && "Dest type must be record type!");
+
+ llvm::Value *SrcArg
+ = CGM.GetAddrOfRTTIDescriptor(SrcTy.getUnqualifiedType());
+ llvm::Value *DestArg
+ = CGM.GetAddrOfRTTIDescriptor(DestTy.getUnqualifiedType());
+
+ V = Builder.CreateBitCast(V, Int8PtrTy);
+ V = Builder.CreateCall4(CGM.CreateRuntimeFunction(FTy, "__dynamic_cast"),
+ V, SrcArg, DestArg, hint);
+ V = Builder.CreateBitCast(V, LTy);
+
+ if (ThrowOnBad) {
+ BadCastBlock = createBasicBlock();
+ Builder.CreateCondBr(Builder.CreateIsNotNull(V), ContBlock, BadCastBlock);
+ EmitBlock(BadCastBlock);
+ /// Invoke __cxa_bad_cast
+ ResultType = llvm::Type::getVoidTy(getLLVMContext());
+ const llvm::FunctionType *FBadTy;
+ FBadTy = llvm::FunctionType::get(ResultType, false);
+ llvm::Value *F = CGM.CreateRuntimeFunction(FBadTy, "__cxa_bad_cast");
+ if (llvm::BasicBlock *InvokeDest = getInvokeDest()) {
+ llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
+ Builder.CreateInvoke(F, Cont, InvokeDest)->setDoesNotReturn();
+ EmitBlock(Cont);
+ } else {
+ // FIXME: Does this ever make sense?
+ Builder.CreateCall(F)->setDoesNotReturn();
+ }
+ Builder.CreateUnreachable();
+ }
+ }
+
+ if (CanBeZero) {
+ Builder.CreateBr(ContBlock);
+ EmitBlock(NullBlock);
+ Builder.CreateBr(ContBlock);
+ }
+ EmitBlock(ContBlock);
+ if (CanBeZero) {
+ llvm::PHINode *PHI = Builder.CreatePHI(LTy);
+ PHI->reserveOperandSpace(2);
+ PHI->addIncoming(V, NonZeroBlock);
+ PHI->addIncoming(llvm::Constant::getNullValue(LTy), NullBlock);
+ V = PHI;
+ }
+
+ return V;
+}
OpenPOWER on IntegriCloud