summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/CodeGen/CGExprAgg.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/CodeGen/CGExprAgg.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGExprAgg.cpp944
1 files changed, 944 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGExprAgg.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGExprAgg.cpp
new file mode 100644
index 0000000..f992dc7
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGExprAgg.cpp
@@ -0,0 +1,944 @@
+//===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code to emit Aggregate Expr nodes as LLVM code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenFunction.h"
+#include "CodeGenModule.h"
+#include "CGObjCRuntime.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/StmtVisitor.h"
+#include "llvm/Constants.h"
+#include "llvm/Function.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/Intrinsics.h"
+using namespace clang;
+using namespace CodeGen;
+
+//===----------------------------------------------------------------------===//
+// Aggregate Expression Emitter
+//===----------------------------------------------------------------------===//
+
+namespace {
+class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
+ CodeGenFunction &CGF;
+ CGBuilderTy &Builder;
+ AggValueSlot Dest;
+ bool IgnoreResult;
+
+ ReturnValueSlot getReturnValueSlot() const {
+ // If the destination slot requires garbage collection, we can't
+ // use the real return value slot, because we have to use the GC
+ // API.
+ if (Dest.requiresGCollection()) return ReturnValueSlot();
+
+ return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
+ }
+
+ AggValueSlot EnsureSlot(QualType T) {
+ if (!Dest.isIgnored()) return Dest;
+ return CGF.CreateAggTemp(T, "agg.tmp.ensured");
+ }
+
+public:
+ AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest,
+ bool ignore)
+ : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
+ IgnoreResult(ignore) {
+ }
+
+ //===--------------------------------------------------------------------===//
+ // Utilities
+ //===--------------------------------------------------------------------===//
+
+ /// EmitAggLoadOfLValue - Given an expression with aggregate type that
+ /// represents a value lvalue, this method emits the address of the lvalue,
+ /// then loads the result into DestPtr.
+ void EmitAggLoadOfLValue(const Expr *E);
+
+ /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
+ void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
+ void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false);
+
+ void EmitGCMove(const Expr *E, RValue Src);
+
+ bool TypeRequiresGCollection(QualType T);
+
+ //===--------------------------------------------------------------------===//
+ // Visitor Methods
+ //===--------------------------------------------------------------------===//
+
+ void VisitStmt(Stmt *S) {
+ CGF.ErrorUnsupported(S, "aggregate expression");
+ }
+ void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
+ void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
+
+ // l-values.
+ void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
+ void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
+ void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
+ void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
+ void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
+ EmitAggLoadOfLValue(E);
+ }
+ void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
+ EmitAggLoadOfLValue(E);
+ }
+ void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
+ EmitAggLoadOfLValue(E);
+ }
+ void VisitPredefinedExpr(const PredefinedExpr *E) {
+ EmitAggLoadOfLValue(E);
+ }
+
+ // Operators.
+ void VisitCastExpr(CastExpr *E);
+ void VisitCallExpr(const CallExpr *E);
+ void VisitStmtExpr(const StmtExpr *E);
+ void VisitBinaryOperator(const BinaryOperator *BO);
+ void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
+ void VisitBinAssign(const BinaryOperator *E);
+ void VisitBinComma(const BinaryOperator *E);
+
+ void VisitObjCMessageExpr(ObjCMessageExpr *E);
+ void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
+ EmitAggLoadOfLValue(E);
+ }
+ void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E);
+
+ void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
+ void VisitChooseExpr(const ChooseExpr *CE);
+ void VisitInitListExpr(InitListExpr *E);
+ void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
+ void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
+ Visit(DAE->getExpr());
+ }
+ void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
+ void VisitCXXConstructExpr(const CXXConstructExpr *E);
+ void VisitExprWithCleanups(ExprWithCleanups *E);
+ void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
+ void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
+
+ void VisitOpaqueValueExpr(OpaqueValueExpr *E);
+
+ void VisitVAArgExpr(VAArgExpr *E);
+
+ void EmitInitializationToLValue(Expr *E, LValue Address, QualType T);
+ void EmitNullInitializationToLValue(LValue Address, QualType T);
+ // case Expr::ChooseExprClass:
+ void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
+};
+} // end anonymous namespace.
+
+//===----------------------------------------------------------------------===//
+// Utilities
+//===----------------------------------------------------------------------===//
+
+/// EmitAggLoadOfLValue - Given an expression with aggregate type that
+/// represents a value lvalue, this method emits the address of the lvalue,
+/// then loads the result into DestPtr.
+void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
+ LValue LV = CGF.EmitLValue(E);
+ EmitFinalDestCopy(E, LV);
+}
+
+/// \brief True if the given aggregate type requires special GC API calls.
+bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
+ // Only record types have members that might require garbage collection.
+ const RecordType *RecordTy = T->getAs<RecordType>();
+ if (!RecordTy) return false;
+
+ // Don't mess with non-trivial C++ types.
+ RecordDecl *Record = RecordTy->getDecl();
+ if (isa<CXXRecordDecl>(Record) &&
+ (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() ||
+ !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
+ return false;
+
+ // Check whether the type has an object member.
+ return Record->hasObjectMember();
+}
+
+/// \brief Perform the final move to DestPtr if RequiresGCollection is set.
+///
+/// The idea is that you do something like this:
+/// RValue Result = EmitSomething(..., getReturnValueSlot());
+/// EmitGCMove(E, Result);
+/// If GC doesn't interfere, this will cause the result to be emitted
+/// directly into the return value slot. If GC does interfere, a final
+/// move will be performed.
+void AggExprEmitter::EmitGCMove(const Expr *E, RValue Src) {
+ if (Dest.requiresGCollection()) {
+ std::pair<uint64_t, unsigned> TypeInfo =
+ CGF.getContext().getTypeInfo(E->getType());
+ unsigned long size = TypeInfo.first/8;
+ const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
+ llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
+ CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, Dest.getAddr(),
+ Src.getAggregateAddr(),
+ SizeVal);
+ }
+}
+
+/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
+void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) {
+ assert(Src.isAggregate() && "value must be aggregate value!");
+
+ // If Dest is ignored, then we're evaluating an aggregate expression
+ // in a context (like an expression statement) that doesn't care
+ // about the result. C says that an lvalue-to-rvalue conversion is
+ // performed in these cases; C++ says that it is not. In either
+ // case, we don't actually need to do anything unless the value is
+ // volatile.
+ if (Dest.isIgnored()) {
+ if (!Src.isVolatileQualified() ||
+ CGF.CGM.getLangOptions().CPlusPlus ||
+ (IgnoreResult && Ignore))
+ return;
+
+ // If the source is volatile, we must read from it; to do that, we need
+ // some place to put it.
+ Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp");
+ }
+
+ if (Dest.requiresGCollection()) {
+ std::pair<uint64_t, unsigned> TypeInfo =
+ CGF.getContext().getTypeInfo(E->getType());
+ unsigned long size = TypeInfo.first/8;
+ const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
+ llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
+ CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
+ Dest.getAddr(),
+ Src.getAggregateAddr(),
+ SizeVal);
+ return;
+ }
+ // If the result of the assignment is used, copy the LHS there also.
+ // FIXME: Pass VolatileDest as well. I think we also need to merge volatile
+ // from the source as well, as we can't eliminate it if either operand
+ // is volatile, unless copy has volatile for both source and destination..
+ CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(),
+ Dest.isVolatile()|Src.isVolatileQualified());
+}
+
+/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
+void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
+ assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
+
+ EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(),
+ Src.isVolatileQualified()),
+ Ignore);
+}
+
+//===----------------------------------------------------------------------===//
+// Visitor Methods
+//===----------------------------------------------------------------------===//
+
+void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
+ EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e));
+}
+
+void AggExprEmitter::VisitCastExpr(CastExpr *E) {
+ if (Dest.isIgnored() && E->getCastKind() != CK_Dynamic) {
+ Visit(E->getSubExpr());
+ return;
+ }
+
+ switch (E->getCastKind()) {
+ case CK_Dynamic: {
+ assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
+ LValue LV = CGF.EmitCheckedLValue(E->getSubExpr());
+ // FIXME: Do we also need to handle property references here?
+ if (LV.isSimple())
+ CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
+ else
+ CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
+
+ if (!Dest.isIgnored())
+ CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
+ break;
+ }
+
+ case CK_ToUnion: {
+ // GCC union extension
+ QualType Ty = E->getSubExpr()->getType();
+ QualType PtrTy = CGF.getContext().getPointerType(Ty);
+ llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
+ CGF.ConvertType(PtrTy));
+ EmitInitializationToLValue(E->getSubExpr(), CGF.MakeAddrLValue(CastPtr, Ty),
+ Ty);
+ break;
+ }
+
+ case CK_DerivedToBase:
+ case CK_BaseToDerived:
+ case CK_UncheckedDerivedToBase: {
+ assert(0 && "cannot perform hierarchy conversion in EmitAggExpr: "
+ "should have been unpacked before we got here");
+ break;
+ }
+
+ case CK_GetObjCProperty: {
+ LValue LV = CGF.EmitLValue(E->getSubExpr());
+ assert(LV.isPropertyRef());
+ RValue RV = CGF.EmitLoadOfPropertyRefLValue(LV, getReturnValueSlot());
+ EmitGCMove(E, RV);
+ break;
+ }
+
+ case CK_LValueToRValue: // hope for downstream optimization
+ case CK_NoOp:
+ case CK_UserDefinedConversion:
+ case CK_ConstructorConversion:
+ assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
+ E->getType()) &&
+ "Implicit cast types must be compatible");
+ Visit(E->getSubExpr());
+ break;
+
+ case CK_LValueBitCast:
+ llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
+ break;
+
+ case CK_Dependent:
+ case CK_BitCast:
+ case CK_ArrayToPointerDecay:
+ case CK_FunctionToPointerDecay:
+ case CK_NullToPointer:
+ case CK_NullToMemberPointer:
+ case CK_BaseToDerivedMemberPointer:
+ case CK_DerivedToBaseMemberPointer:
+ case CK_MemberPointerToBoolean:
+ case CK_IntegralToPointer:
+ case CK_PointerToIntegral:
+ case CK_PointerToBoolean:
+ case CK_ToVoid:
+ case CK_VectorSplat:
+ case CK_IntegralCast:
+ case CK_IntegralToBoolean:
+ case CK_IntegralToFloating:
+ case CK_FloatingToIntegral:
+ case CK_FloatingToBoolean:
+ case CK_FloatingCast:
+ case CK_AnyPointerToObjCPointerCast:
+ case CK_AnyPointerToBlockPointerCast:
+ case CK_ObjCObjectLValueCast:
+ case CK_FloatingRealToComplex:
+ case CK_FloatingComplexToReal:
+ case CK_FloatingComplexToBoolean:
+ case CK_FloatingComplexCast:
+ case CK_FloatingComplexToIntegralComplex:
+ case CK_IntegralRealToComplex:
+ case CK_IntegralComplexToReal:
+ case CK_IntegralComplexToBoolean:
+ case CK_IntegralComplexCast:
+ case CK_IntegralComplexToFloatingComplex:
+ llvm_unreachable("cast kind invalid for aggregate types");
+ }
+}
+
+void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
+ if (E->getCallReturnType()->isReferenceType()) {
+ EmitAggLoadOfLValue(E);
+ return;
+ }
+
+ RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
+ EmitGCMove(E, RV);
+}
+
+void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
+ RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
+ EmitGCMove(E, RV);
+}
+
+void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
+ llvm_unreachable("direct property access not surrounded by "
+ "lvalue-to-rvalue cast");
+}
+
+void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
+ CGF.EmitIgnoredExpr(E->getLHS());
+ Visit(E->getRHS());
+}
+
+void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
+ CodeGenFunction::StmtExprEvaluation eval(CGF);
+ CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
+}
+
+void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
+ if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
+ VisitPointerToDataMemberBinaryOperator(E);
+ else
+ CGF.ErrorUnsupported(E, "aggregate binary expression");
+}
+
+void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
+ const BinaryOperator *E) {
+ LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
+ EmitFinalDestCopy(E, LV);
+}
+
+void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
+ // For an assignment to work, the value on the right has
+ // to be compatible with the value on the left.
+ assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
+ E->getRHS()->getType())
+ && "Invalid assignment");
+
+ // FIXME: __block variables need the RHS evaluated first!
+ LValue LHS = CGF.EmitLValue(E->getLHS());
+
+ // We have to special case property setters, otherwise we must have
+ // a simple lvalue (no aggregates inside vectors, bitfields).
+ if (LHS.isPropertyRef()) {
+ AggValueSlot Slot = EnsureSlot(E->getRHS()->getType());
+ CGF.EmitAggExpr(E->getRHS(), Slot);
+ CGF.EmitStoreThroughPropertyRefLValue(Slot.asRValue(), LHS);
+ } else {
+ bool GCollection = false;
+ if (CGF.getContext().getLangOptions().getGCMode())
+ GCollection = TypeRequiresGCollection(E->getLHS()->getType());
+
+ // Codegen the RHS so that it stores directly into the LHS.
+ AggValueSlot LHSSlot = AggValueSlot::forLValue(LHS, true,
+ GCollection);
+ CGF.EmitAggExpr(E->getRHS(), LHSSlot, false);
+ EmitFinalDestCopy(E, LHS, true);
+ }
+}
+
+void AggExprEmitter::
+VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
+ llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
+ llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
+ llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
+
+ // Bind the common expression if necessary.
+ CodeGenFunction::OpaqueValueMapping binding(CGF, E);
+
+ CodeGenFunction::ConditionalEvaluation eval(CGF);
+ CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
+
+ // Save whether the destination's lifetime is externally managed.
+ bool DestLifetimeManaged = Dest.isLifetimeExternallyManaged();
+
+ eval.begin(CGF);
+ CGF.EmitBlock(LHSBlock);
+ Visit(E->getTrueExpr());
+ eval.end(CGF);
+
+ assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
+ CGF.Builder.CreateBr(ContBlock);
+
+ // If the result of an agg expression is unused, then the emission
+ // of the LHS might need to create a destination slot. That's fine
+ // with us, and we can safely emit the RHS into the same slot, but
+ // we shouldn't claim that its lifetime is externally managed.
+ Dest.setLifetimeExternallyManaged(DestLifetimeManaged);
+
+ eval.begin(CGF);
+ CGF.EmitBlock(RHSBlock);
+ Visit(E->getFalseExpr());
+ eval.end(CGF);
+
+ CGF.EmitBlock(ContBlock);
+}
+
+void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
+ Visit(CE->getChosenSubExpr(CGF.getContext()));
+}
+
+void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
+ llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
+ llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
+
+ if (!ArgPtr) {
+ CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
+ return;
+ }
+
+ EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType()));
+}
+
+void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
+ // Ensure that we have a slot, but if we already do, remember
+ // whether its lifetime was externally managed.
+ bool WasManaged = Dest.isLifetimeExternallyManaged();
+ Dest = EnsureSlot(E->getType());
+ Dest.setLifetimeExternallyManaged();
+
+ Visit(E->getSubExpr());
+
+ // Set up the temporary's destructor if its lifetime wasn't already
+ // being managed.
+ if (!WasManaged)
+ CGF.EmitCXXTemporary(E->getTemporary(), Dest.getAddr());
+}
+
+void
+AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
+ AggValueSlot Slot = EnsureSlot(E->getType());
+ CGF.EmitCXXConstructExpr(E, Slot);
+}
+
+void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
+ CGF.EmitExprWithCleanups(E, Dest);
+}
+
+void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
+ QualType T = E->getType();
+ AggValueSlot Slot = EnsureSlot(T);
+ EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T);
+}
+
+void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
+ QualType T = E->getType();
+ AggValueSlot Slot = EnsureSlot(T);
+ EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T);
+}
+
+/// isSimpleZero - If emitting this value will obviously just cause a store of
+/// zero to memory, return true. This can return false if uncertain, so it just
+/// handles simple cases.
+static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
+ // (0)
+ if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
+ return isSimpleZero(PE->getSubExpr(), CGF);
+ // 0
+ if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
+ return IL->getValue() == 0;
+ // +0.0
+ if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
+ return FL->getValue().isPosZero();
+ // int()
+ if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
+ CGF.getTypes().isZeroInitializable(E->getType()))
+ return true;
+ // (int*)0 - Null pointer expressions.
+ if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
+ return ICE->getCastKind() == CK_NullToPointer;
+ // '\0'
+ if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
+ return CL->getValue() == 0;
+
+ // Otherwise, hard case: conservatively return false.
+ return false;
+}
+
+
+void
+AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV, QualType T) {
+ // FIXME: Ignore result?
+ // FIXME: Are initializers affected by volatile?
+ if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
+ // Storing "i32 0" to a zero'd memory location is a noop.
+ } else if (isa<ImplicitValueInitExpr>(E)) {
+ EmitNullInitializationToLValue(LV, T);
+ } else if (T->isReferenceType()) {
+ RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
+ CGF.EmitStoreThroughLValue(RV, LV, T);
+ } else if (T->isAnyComplexType()) {
+ CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
+ } else if (CGF.hasAggregateLLVMType(T)) {
+ CGF.EmitAggExpr(E, AggValueSlot::forAddr(LV.getAddress(), false, true,
+ false, Dest.isZeroed()));
+ } else {
+ CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV, T);
+ }
+}
+
+void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) {
+ // If the destination slot is already zeroed out before the aggregate is
+ // copied into it, we don't have to emit any zeros here.
+ if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(T))
+ return;
+
+ if (!CGF.hasAggregateLLVMType(T)) {
+ // For non-aggregates, we can store zero
+ llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T));
+ CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T);
+ } else {
+ // There's a potential optimization opportunity in combining
+ // memsets; that would be easy for arrays, but relatively
+ // difficult for structures with the current code.
+ CGF.EmitNullInitialization(LV.getAddress(), T);
+ }
+}
+
+void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
+#if 0
+ // FIXME: Assess perf here? Figure out what cases are worth optimizing here
+ // (Length of globals? Chunks of zeroed-out space?).
+ //
+ // If we can, prefer a copy from a global; this is a lot less code for long
+ // globals, and it's easier for the current optimizers to analyze.
+ if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
+ llvm::GlobalVariable* GV =
+ new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
+ llvm::GlobalValue::InternalLinkage, C, "");
+ EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType()));
+ return;
+ }
+#endif
+ if (E->hadArrayRangeDesignator())
+ CGF.ErrorUnsupported(E, "GNU array range designator extension");
+
+ llvm::Value *DestPtr = Dest.getAddr();
+
+ // Handle initialization of an array.
+ if (E->getType()->isArrayType()) {
+ const llvm::PointerType *APType =
+ cast<llvm::PointerType>(DestPtr->getType());
+ const llvm::ArrayType *AType =
+ cast<llvm::ArrayType>(APType->getElementType());
+
+ uint64_t NumInitElements = E->getNumInits();
+
+ if (E->getNumInits() > 0) {
+ QualType T1 = E->getType();
+ QualType T2 = E->getInit(0)->getType();
+ if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
+ EmitAggLoadOfLValue(E->getInit(0));
+ return;
+ }
+ }
+
+ uint64_t NumArrayElements = AType->getNumElements();
+ QualType ElementType = CGF.getContext().getCanonicalType(E->getType());
+ ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType();
+
+ // FIXME: were we intentionally ignoring address spaces and GC attributes?
+
+ for (uint64_t i = 0; i != NumArrayElements; ++i) {
+ // If we're done emitting initializers and the destination is known-zeroed
+ // then we're done.
+ if (i == NumInitElements &&
+ Dest.isZeroed() &&
+ CGF.getTypes().isZeroInitializable(ElementType))
+ break;
+
+ llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
+ LValue LV = CGF.MakeAddrLValue(NextVal, ElementType);
+
+ if (i < NumInitElements)
+ EmitInitializationToLValue(E->getInit(i), LV, ElementType);
+ else
+ EmitNullInitializationToLValue(LV, ElementType);
+
+ // If the GEP didn't get used because of a dead zero init or something
+ // else, clean it up for -O0 builds and general tidiness.
+ if (llvm::GetElementPtrInst *GEP =
+ dyn_cast<llvm::GetElementPtrInst>(NextVal))
+ if (GEP->use_empty())
+ GEP->eraseFromParent();
+ }
+ return;
+ }
+
+ assert(E->getType()->isRecordType() && "Only support structs/unions here!");
+
+ // Do struct initialization; this code just sets each individual member
+ // to the approprate value. This makes bitfield support automatic;
+ // the disadvantage is that the generated code is more difficult for
+ // the optimizer, especially with bitfields.
+ unsigned NumInitElements = E->getNumInits();
+ RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
+
+ if (E->getType()->isUnionType()) {
+ // Only initialize one field of a union. The field itself is
+ // specified by the initializer list.
+ if (!E->getInitializedFieldInUnion()) {
+ // Empty union; we have nothing to do.
+
+#ifndef NDEBUG
+ // Make sure that it's really an empty and not a failure of
+ // semantic analysis.
+ for (RecordDecl::field_iterator Field = SD->field_begin(),
+ FieldEnd = SD->field_end();
+ Field != FieldEnd; ++Field)
+ assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
+#endif
+ return;
+ }
+
+ // FIXME: volatility
+ FieldDecl *Field = E->getInitializedFieldInUnion();
+
+ LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0);
+ if (NumInitElements) {
+ // Store the initializer into the field
+ EmitInitializationToLValue(E->getInit(0), FieldLoc, Field->getType());
+ } else {
+ // Default-initialize to null.
+ EmitNullInitializationToLValue(FieldLoc, Field->getType());
+ }
+
+ return;
+ }
+
+ // Here we iterate over the fields; this makes it simpler to both
+ // default-initialize fields and skip over unnamed fields.
+ unsigned CurInitVal = 0;
+ for (RecordDecl::field_iterator Field = SD->field_begin(),
+ FieldEnd = SD->field_end();
+ Field != FieldEnd; ++Field) {
+ // We're done once we hit the flexible array member
+ if (Field->getType()->isIncompleteArrayType())
+ break;
+
+ if (Field->isUnnamedBitfield())
+ continue;
+
+ // Don't emit GEP before a noop store of zero.
+ if (CurInitVal == NumInitElements && Dest.isZeroed() &&
+ CGF.getTypes().isZeroInitializable(E->getType()))
+ break;
+
+ // FIXME: volatility
+ LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, *Field, 0);
+ // We never generate write-barries for initialized fields.
+ FieldLoc.setNonGC(true);
+
+ if (CurInitVal < NumInitElements) {
+ // Store the initializer into the field.
+ EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc,
+ Field->getType());
+ } else {
+ // We're out of initalizers; default-initialize to null
+ EmitNullInitializationToLValue(FieldLoc, Field->getType());
+ }
+
+ // If the GEP didn't get used because of a dead zero init or something
+ // else, clean it up for -O0 builds and general tidiness.
+ if (FieldLoc.isSimple())
+ if (llvm::GetElementPtrInst *GEP =
+ dyn_cast<llvm::GetElementPtrInst>(FieldLoc.getAddress()))
+ if (GEP->use_empty())
+ GEP->eraseFromParent();
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Entry Points into this File
+//===----------------------------------------------------------------------===//
+
+/// GetNumNonZeroBytesInInit - Get an approximate count of the number of
+/// non-zero bytes that will be stored when outputting the initializer for the
+/// specified initializer expression.
+static uint64_t GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
+ if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
+ return GetNumNonZeroBytesInInit(PE->getSubExpr(), CGF);
+
+ // 0 and 0.0 won't require any non-zero stores!
+ if (isSimpleZero(E, CGF)) return 0;
+
+ // If this is an initlist expr, sum up the size of sizes of the (present)
+ // elements. If this is something weird, assume the whole thing is non-zero.
+ const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
+ if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType()))
+ return CGF.getContext().getTypeSize(E->getType())/8;
+
+ // InitListExprs for structs have to be handled carefully. If there are
+ // reference members, we need to consider the size of the reference, not the
+ // referencee. InitListExprs for unions and arrays can't have references.
+ if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
+ if (!RT->isUnionType()) {
+ RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
+ uint64_t NumNonZeroBytes = 0;
+
+ unsigned ILEElement = 0;
+ for (RecordDecl::field_iterator Field = SD->field_begin(),
+ FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) {
+ // We're done once we hit the flexible array member or run out of
+ // InitListExpr elements.
+ if (Field->getType()->isIncompleteArrayType() ||
+ ILEElement == ILE->getNumInits())
+ break;
+ if (Field->isUnnamedBitfield())
+ continue;
+
+ const Expr *E = ILE->getInit(ILEElement++);
+
+ // Reference values are always non-null and have the width of a pointer.
+ if (Field->getType()->isReferenceType())
+ NumNonZeroBytes += CGF.getContext().Target.getPointerWidth(0);
+ else
+ NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
+ }
+
+ return NumNonZeroBytes;
+ }
+ }
+
+
+ uint64_t NumNonZeroBytes = 0;
+ for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
+ NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
+ return NumNonZeroBytes;
+}
+
+/// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
+/// zeros in it, emit a memset and avoid storing the individual zeros.
+///
+static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
+ CodeGenFunction &CGF) {
+ // If the slot is already known to be zeroed, nothing to do. Don't mess with
+ // volatile stores.
+ if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return;
+
+ // If the type is 16-bytes or smaller, prefer individual stores over memset.
+ std::pair<uint64_t, unsigned> TypeInfo =
+ CGF.getContext().getTypeInfo(E->getType());
+ if (TypeInfo.first/8 <= 16)
+ return;
+
+ // Check to see if over 3/4 of the initializer are known to be zero. If so,
+ // we prefer to emit memset + individual stores for the rest.
+ uint64_t NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
+ if (NumNonZeroBytes*4 > TypeInfo.first/8)
+ return;
+
+ // Okay, it seems like a good idea to use an initial memset, emit the call.
+ llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first/8);
+ unsigned Align = TypeInfo.second/8;
+
+ llvm::Value *Loc = Slot.getAddr();
+ const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
+
+ Loc = CGF.Builder.CreateBitCast(Loc, BP);
+ CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, Align, false);
+
+ // Tell the AggExprEmitter that the slot is known zero.
+ Slot.setZeroed();
+}
+
+
+
+
+/// EmitAggExpr - Emit the computation of the specified expression of aggregate
+/// type. The result is computed into DestPtr. Note that if DestPtr is null,
+/// the value of the aggregate expression is not needed. If VolatileDest is
+/// true, DestPtr cannot be 0.
+///
+/// \param IsInitializer - true if this evaluation is initializing an
+/// object whose lifetime is already being managed.
+//
+// FIXME: Take Qualifiers object.
+void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot,
+ bool IgnoreResult) {
+ assert(E && hasAggregateLLVMType(E->getType()) &&
+ "Invalid aggregate expression to emit");
+ assert((Slot.getAddr() != 0 || Slot.isIgnored()) &&
+ "slot has bits but no address");
+
+ // Optimize the slot if possible.
+ CheckAggExprForMemSetUse(Slot, E, *this);
+
+ AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E));
+}
+
+LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
+ assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!");
+ llvm::Value *Temp = CreateMemTemp(E->getType());
+ LValue LV = MakeAddrLValue(Temp, E->getType());
+ EmitAggExpr(E, AggValueSlot::forAddr(Temp, LV.isVolatileQualified(), false));
+ return LV;
+}
+
+void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
+ llvm::Value *SrcPtr, QualType Ty,
+ bool isVolatile) {
+ assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
+
+ if (getContext().getLangOptions().CPlusPlus) {
+ if (const RecordType *RT = Ty->getAs<RecordType>()) {
+ CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
+ assert((Record->hasTrivialCopyConstructor() ||
+ Record->hasTrivialCopyAssignment()) &&
+ "Trying to aggregate-copy a type without a trivial copy "
+ "constructor or assignment operator");
+ // Ignore empty classes in C++.
+ if (Record->isEmpty())
+ return;
+ }
+ }
+
+ // Aggregate assignment turns into llvm.memcpy. This is almost valid per
+ // C99 6.5.16.1p3, which states "If the value being stored in an object is
+ // read from another object that overlaps in anyway the storage of the first
+ // object, then the overlap shall be exact and the two objects shall have
+ // qualified or unqualified versions of a compatible type."
+ //
+ // memcpy is not defined if the source and destination pointers are exactly
+ // equal, but other compilers do this optimization, and almost every memcpy
+ // implementation handles this case safely. If there is a libc that does not
+ // safely handle this, we can add a target hook.
+
+ // Get size and alignment info for this aggregate.
+ std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
+
+ // FIXME: Handle variable sized types.
+
+ // FIXME: If we have a volatile struct, the optimizer can remove what might
+ // appear to be `extra' memory ops:
+ //
+ // volatile struct { int i; } a, b;
+ //
+ // int main() {
+ // a = b;
+ // a = b;
+ // }
+ //
+ // we need to use a different call here. We use isVolatile to indicate when
+ // either the source or the destination is volatile.
+
+ const llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
+ const llvm::Type *DBP =
+ llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace());
+ DestPtr = Builder.CreateBitCast(DestPtr, DBP, "tmp");
+
+ const llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
+ const llvm::Type *SBP =
+ llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace());
+ SrcPtr = Builder.CreateBitCast(SrcPtr, SBP, "tmp");
+
+ if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
+ RecordDecl *Record = RecordTy->getDecl();
+ if (Record->hasObjectMember()) {
+ unsigned long size = TypeInfo.first/8;
+ const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
+ llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
+ CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
+ SizeVal);
+ return;
+ }
+ } else if (getContext().getAsArrayType(Ty)) {
+ QualType BaseType = getContext().getBaseElementType(Ty);
+ if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
+ if (RecordTy->getDecl()->hasObjectMember()) {
+ unsigned long size = TypeInfo.first/8;
+ const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
+ llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
+ CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
+ SizeVal);
+ return;
+ }
+ }
+ }
+
+ Builder.CreateMemCpy(DestPtr, SrcPtr,
+ llvm::ConstantInt::get(IntPtrTy, TypeInfo.first/8),
+ TypeInfo.second/8, isVolatile);
+}
OpenPOWER on IntegriCloud