summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/CodeGen/CGExpr.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/CodeGen/CGExpr.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGExpr.cpp3348
1 files changed, 3348 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGExpr.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGExpr.cpp
new file mode 100644
index 0000000..cb990b2
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGExpr.cpp
@@ -0,0 +1,3348 @@
+//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code to emit Expr nodes as LLVM code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenFunction.h"
+#include "CGCXXABI.h"
+#include "CGCall.h"
+#include "CGDebugInfo.h"
+#include "CGObjCRuntime.h"
+#include "CGRecordLayout.h"
+#include "CodeGenModule.h"
+#include "TargetInfo.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/Frontend/CodeGenOptions.h"
+#include "llvm/ADT/Hashing.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/Support/ConvertUTF.h"
+
+using namespace clang;
+using namespace CodeGen;
+
+//===--------------------------------------------------------------------===//
+// Miscellaneous Helper Methods
+//===--------------------------------------------------------------------===//
+
+llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
+ unsigned addressSpace =
+ cast<llvm::PointerType>(value->getType())->getAddressSpace();
+
+ llvm::PointerType *destType = Int8PtrTy;
+ if (addressSpace)
+ destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
+
+ if (value->getType() == destType) return value;
+ return Builder.CreateBitCast(value, destType);
+}
+
+/// CreateTempAlloca - This creates a alloca and inserts it into the entry
+/// block.
+llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
+ const Twine &Name) {
+ if (!Builder.isNamePreserving())
+ return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
+ return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
+}
+
+void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
+ llvm::Value *Init) {
+ llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
+ llvm::BasicBlock *Block = AllocaInsertPt->getParent();
+ Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
+}
+
+llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
+ const Twine &Name) {
+ llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
+ // FIXME: Should we prefer the preferred type alignment here?
+ CharUnits Align = getContext().getTypeAlignInChars(Ty);
+ Alloc->setAlignment(Align.getQuantity());
+ return Alloc;
+}
+
+llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
+ const Twine &Name) {
+ llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
+ // FIXME: Should we prefer the preferred type alignment here?
+ CharUnits Align = getContext().getTypeAlignInChars(Ty);
+ Alloc->setAlignment(Align.getQuantity());
+ return Alloc;
+}
+
+/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
+/// expression and compare the result against zero, returning an Int1Ty value.
+llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
+ if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
+ llvm::Value *MemPtr = EmitScalarExpr(E);
+ return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
+ }
+
+ QualType BoolTy = getContext().BoolTy;
+ if (!E->getType()->isAnyComplexType())
+ return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
+
+ return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
+}
+
+/// EmitIgnoredExpr - Emit code to compute the specified expression,
+/// ignoring the result.
+void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
+ if (E->isRValue())
+ return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
+
+ // Just emit it as an l-value and drop the result.
+ EmitLValue(E);
+}
+
+/// EmitAnyExpr - Emit code to compute the specified expression which
+/// can have any type. The result is returned as an RValue struct.
+/// If this is an aggregate expression, AggSlot indicates where the
+/// result should be returned.
+RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
+ AggValueSlot aggSlot,
+ bool ignoreResult) {
+ switch (getEvaluationKind(E->getType())) {
+ case TEK_Scalar:
+ return RValue::get(EmitScalarExpr(E, ignoreResult));
+ case TEK_Complex:
+ return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
+ case TEK_Aggregate:
+ if (!ignoreResult && aggSlot.isIgnored())
+ aggSlot = CreateAggTemp(E->getType(), "agg-temp");
+ EmitAggExpr(E, aggSlot);
+ return aggSlot.asRValue();
+ }
+ llvm_unreachable("bad evaluation kind");
+}
+
+/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
+/// always be accessible even if no aggregate location is provided.
+RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
+ AggValueSlot AggSlot = AggValueSlot::ignored();
+
+ if (hasAggregateEvaluationKind(E->getType()))
+ AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
+ return EmitAnyExpr(E, AggSlot);
+}
+
+/// EmitAnyExprToMem - Evaluate an expression into a given memory
+/// location.
+void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
+ llvm::Value *Location,
+ Qualifiers Quals,
+ bool IsInit) {
+ // FIXME: This function should take an LValue as an argument.
+ switch (getEvaluationKind(E->getType())) {
+ case TEK_Complex:
+ EmitComplexExprIntoLValue(E,
+ MakeNaturalAlignAddrLValue(Location, E->getType()),
+ /*isInit*/ false);
+ return;
+
+ case TEK_Aggregate: {
+ CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
+ EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
+ AggValueSlot::IsDestructed_t(IsInit),
+ AggValueSlot::DoesNotNeedGCBarriers,
+ AggValueSlot::IsAliased_t(!IsInit)));
+ return;
+ }
+
+ case TEK_Scalar: {
+ RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
+ LValue LV = MakeAddrLValue(Location, E->getType());
+ EmitStoreThroughLValue(RV, LV);
+ return;
+ }
+ }
+ llvm_unreachable("bad evaluation kind");
+}
+
+static void
+pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
+ const Expr *E, llvm::Value *ReferenceTemporary) {
+ // Objective-C++ ARC:
+ // If we are binding a reference to a temporary that has ownership, we
+ // need to perform retain/release operations on the temporary.
+ //
+ // FIXME: This should be looking at E, not M.
+ if (CGF.getLangOpts().ObjCAutoRefCount &&
+ M->getType()->isObjCLifetimeType()) {
+ QualType ObjCARCReferenceLifetimeType = M->getType();
+ switch (Qualifiers::ObjCLifetime Lifetime =
+ ObjCARCReferenceLifetimeType.getObjCLifetime()) {
+ case Qualifiers::OCL_None:
+ case Qualifiers::OCL_ExplicitNone:
+ // Carry on to normal cleanup handling.
+ break;
+
+ case Qualifiers::OCL_Autoreleasing:
+ // Nothing to do; cleaned up by an autorelease pool.
+ return;
+
+ case Qualifiers::OCL_Strong:
+ case Qualifiers::OCL_Weak:
+ switch (StorageDuration Duration = M->getStorageDuration()) {
+ case SD_Static:
+ // Note: we intentionally do not register a cleanup to release
+ // the object on program termination.
+ return;
+
+ case SD_Thread:
+ // FIXME: We should probably register a cleanup in this case.
+ return;
+
+ case SD_Automatic:
+ case SD_FullExpression:
+ assert(!ObjCARCReferenceLifetimeType->isArrayType());
+ CodeGenFunction::Destroyer *Destroy;
+ CleanupKind CleanupKind;
+ if (Lifetime == Qualifiers::OCL_Strong) {
+ const ValueDecl *VD = M->getExtendingDecl();
+ bool Precise =
+ VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
+ CleanupKind = CGF.getARCCleanupKind();
+ Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
+ : &CodeGenFunction::destroyARCStrongImprecise;
+ } else {
+ // __weak objects always get EH cleanups; otherwise, exceptions
+ // could cause really nasty crashes instead of mere leaks.
+ CleanupKind = NormalAndEHCleanup;
+ Destroy = &CodeGenFunction::destroyARCWeak;
+ }
+ if (Duration == SD_FullExpression)
+ CGF.pushDestroy(CleanupKind, ReferenceTemporary,
+ ObjCARCReferenceLifetimeType, *Destroy,
+ CleanupKind & EHCleanup);
+ else
+ CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
+ ObjCARCReferenceLifetimeType,
+ *Destroy, CleanupKind & EHCleanup);
+ return;
+
+ case SD_Dynamic:
+ llvm_unreachable("temporary cannot have dynamic storage duration");
+ }
+ llvm_unreachable("unknown storage duration");
+ }
+ }
+
+ CXXDestructorDecl *ReferenceTemporaryDtor = 0;
+ if (const RecordType *RT =
+ E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
+ // Get the destructor for the reference temporary.
+ CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
+ if (!ClassDecl->hasTrivialDestructor())
+ ReferenceTemporaryDtor = ClassDecl->getDestructor();
+ }
+
+ if (!ReferenceTemporaryDtor)
+ return;
+
+ // Call the destructor for the temporary.
+ switch (M->getStorageDuration()) {
+ case SD_Static:
+ case SD_Thread: {
+ llvm::Constant *CleanupFn;
+ llvm::Constant *CleanupArg;
+ if (E->getType()->isArrayType()) {
+ CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
+ cast<llvm::Constant>(ReferenceTemporary), E->getType(),
+ CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
+ dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
+ CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
+ } else {
+ CleanupFn =
+ CGF.CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
+ CleanupArg = cast<llvm::Constant>(ReferenceTemporary);
+ }
+ CGF.CGM.getCXXABI().registerGlobalDtor(
+ CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
+ break;
+ }
+
+ case SD_FullExpression:
+ CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
+ CodeGenFunction::destroyCXXObject,
+ CGF.getLangOpts().Exceptions);
+ break;
+
+ case SD_Automatic:
+ CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
+ ReferenceTemporary, E->getType(),
+ CodeGenFunction::destroyCXXObject,
+ CGF.getLangOpts().Exceptions);
+ break;
+
+ case SD_Dynamic:
+ llvm_unreachable("temporary cannot have dynamic storage duration");
+ }
+}
+
+static llvm::Value *
+createReferenceTemporary(CodeGenFunction &CGF,
+ const MaterializeTemporaryExpr *M, const Expr *Inner) {
+ switch (M->getStorageDuration()) {
+ case SD_FullExpression:
+ case SD_Automatic:
+ return CGF.CreateMemTemp(Inner->getType(), "ref.tmp");
+
+ case SD_Thread:
+ case SD_Static:
+ return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
+
+ case SD_Dynamic:
+ llvm_unreachable("temporary can't have dynamic storage duration");
+ }
+ llvm_unreachable("unknown storage duration");
+}
+
+LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
+ const MaterializeTemporaryExpr *M) {
+ const Expr *E = M->GetTemporaryExpr();
+
+ if (getLangOpts().ObjCAutoRefCount &&
+ M->getType()->isObjCLifetimeType() &&
+ M->getType().getObjCLifetime() != Qualifiers::OCL_None &&
+ M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
+ // FIXME: Fold this into the general case below.
+ llvm::Value *Object = createReferenceTemporary(*this, M, E);
+ LValue RefTempDst = MakeAddrLValue(Object, M->getType());
+
+ if (llvm::GlobalVariable *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
+ // We should not have emitted the initializer for this temporary as a
+ // constant.
+ assert(!Var->hasInitializer());
+ Var->setInitializer(CGM.EmitNullConstant(E->getType()));
+ }
+
+ EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
+
+ pushTemporaryCleanup(*this, M, E, Object);
+ return RefTempDst;
+ }
+
+ SmallVector<const Expr *, 2> CommaLHSs;
+ SmallVector<SubobjectAdjustment, 2> Adjustments;
+ E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
+
+ for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
+ EmitIgnoredExpr(CommaLHSs[I]);
+
+ if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E)) {
+ if (opaque->getType()->isRecordType()) {
+ assert(Adjustments.empty());
+ return EmitOpaqueValueLValue(opaque);
+ }
+ }
+
+ // Create and initialize the reference temporary.
+ llvm::Value *Object = createReferenceTemporary(*this, M, E);
+ if (llvm::GlobalVariable *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
+ // If the temporary is a global and has a constant initializer, we may
+ // have already initialized it.
+ if (!Var->hasInitializer()) {
+ Var->setInitializer(CGM.EmitNullConstant(E->getType()));
+ EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
+ }
+ } else {
+ EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
+ }
+ pushTemporaryCleanup(*this, M, E, Object);
+
+ // Perform derived-to-base casts and/or field accesses, to get from the
+ // temporary object we created (and, potentially, for which we extended
+ // the lifetime) to the subobject we're binding the reference to.
+ for (unsigned I = Adjustments.size(); I != 0; --I) {
+ SubobjectAdjustment &Adjustment = Adjustments[I-1];
+ switch (Adjustment.Kind) {
+ case SubobjectAdjustment::DerivedToBaseAdjustment:
+ Object =
+ GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
+ Adjustment.DerivedToBase.BasePath->path_begin(),
+ Adjustment.DerivedToBase.BasePath->path_end(),
+ /*NullCheckValue=*/ false);
+ break;
+
+ case SubobjectAdjustment::FieldAdjustment: {
+ LValue LV = MakeAddrLValue(Object, E->getType());
+ LV = EmitLValueForField(LV, Adjustment.Field);
+ assert(LV.isSimple() &&
+ "materialized temporary field is not a simple lvalue");
+ Object = LV.getAddress();
+ break;
+ }
+
+ case SubobjectAdjustment::MemberPointerAdjustment: {
+ llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
+ Object = CGM.getCXXABI().EmitMemberDataPointerAddress(
+ *this, Object, Ptr, Adjustment.Ptr.MPT);
+ break;
+ }
+ }
+ }
+
+ return MakeAddrLValue(Object, M->getType());
+}
+
+RValue
+CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
+ // Emit the expression as an lvalue.
+ LValue LV = EmitLValue(E);
+ assert(LV.isSimple());
+ llvm::Value *Value = LV.getAddress();
+
+ if (SanitizePerformTypeCheck && !E->getType()->isFunctionType()) {
+ // C++11 [dcl.ref]p5 (as amended by core issue 453):
+ // If a glvalue to which a reference is directly bound designates neither
+ // an existing object or function of an appropriate type nor a region of
+ // storage of suitable size and alignment to contain an object of the
+ // reference's type, the behavior is undefined.
+ QualType Ty = E->getType();
+ EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
+ }
+
+ return RValue::get(Value);
+}
+
+
+/// getAccessedFieldNo - Given an encoded value and a result number, return the
+/// input field number being accessed.
+unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
+ const llvm::Constant *Elts) {
+ return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
+ ->getZExtValue();
+}
+
+/// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
+static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
+ llvm::Value *High) {
+ llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
+ llvm::Value *K47 = Builder.getInt64(47);
+ llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
+ llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
+ llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
+ llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
+ return Builder.CreateMul(B1, KMul);
+}
+
+void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
+ llvm::Value *Address,
+ QualType Ty, CharUnits Alignment) {
+ if (!SanitizePerformTypeCheck)
+ return;
+
+ // Don't check pointers outside the default address space. The null check
+ // isn't correct, the object-size check isn't supported by LLVM, and we can't
+ // communicate the addresses to the runtime handler for the vptr check.
+ if (Address->getType()->getPointerAddressSpace())
+ return;
+
+ llvm::Value *Cond = 0;
+ llvm::BasicBlock *Done = 0;
+
+ if (SanOpts->Null) {
+ // The glvalue must not be an empty glvalue.
+ Cond = Builder.CreateICmpNE(
+ Address, llvm::Constant::getNullValue(Address->getType()));
+
+ if (TCK == TCK_DowncastPointer) {
+ // When performing a pointer downcast, it's OK if the value is null.
+ // Skip the remaining checks in that case.
+ Done = createBasicBlock("null");
+ llvm::BasicBlock *Rest = createBasicBlock("not.null");
+ Builder.CreateCondBr(Cond, Rest, Done);
+ EmitBlock(Rest);
+ Cond = 0;
+ }
+ }
+
+ if (SanOpts->ObjectSize && !Ty->isIncompleteType()) {
+ uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
+
+ // The glvalue must refer to a large enough storage region.
+ // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
+ // to check this.
+ // FIXME: Get object address space
+ llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
+ llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
+ llvm::Value *Min = Builder.getFalse();
+ llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy);
+ llvm::Value *LargeEnough =
+ Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min),
+ llvm::ConstantInt::get(IntPtrTy, Size));
+ Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough;
+ }
+
+ uint64_t AlignVal = 0;
+
+ if (SanOpts->Alignment) {
+ AlignVal = Alignment.getQuantity();
+ if (!Ty->isIncompleteType() && !AlignVal)
+ AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
+
+ // The glvalue must be suitably aligned.
+ if (AlignVal) {
+ llvm::Value *Align =
+ Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
+ llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
+ llvm::Value *Aligned =
+ Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
+ Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned;
+ }
+ }
+
+ if (Cond) {
+ llvm::Constant *StaticData[] = {
+ EmitCheckSourceLocation(Loc),
+ EmitCheckTypeDescriptor(Ty),
+ llvm::ConstantInt::get(SizeTy, AlignVal),
+ llvm::ConstantInt::get(Int8Ty, TCK)
+ };
+ EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable);
+ }
+
+ // If possible, check that the vptr indicates that there is a subobject of
+ // type Ty at offset zero within this object.
+ //
+ // C++11 [basic.life]p5,6:
+ // [For storage which does not refer to an object within its lifetime]
+ // The program has undefined behavior if:
+ // -- the [pointer or glvalue] is used to access a non-static data member
+ // or call a non-static member function
+ CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
+ if (SanOpts->Vptr &&
+ (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
+ TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference) &&
+ RD && RD->hasDefinition() && RD->isDynamicClass()) {
+ // Compute a hash of the mangled name of the type.
+ //
+ // FIXME: This is not guaranteed to be deterministic! Move to a
+ // fingerprinting mechanism once LLVM provides one. For the time
+ // being the implementation happens to be deterministic.
+ SmallString<64> MangledName;
+ llvm::raw_svector_ostream Out(MangledName);
+ CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
+ Out);
+ llvm::hash_code TypeHash = hash_value(Out.str());
+
+ // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
+ llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
+ llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
+ llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy);
+ llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
+ llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
+
+ llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
+ Hash = Builder.CreateTrunc(Hash, IntPtrTy);
+
+ // Look the hash up in our cache.
+ const int CacheSize = 128;
+ llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
+ llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
+ "__ubsan_vptr_type_cache");
+ llvm::Value *Slot = Builder.CreateAnd(Hash,
+ llvm::ConstantInt::get(IntPtrTy,
+ CacheSize-1));
+ llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
+ llvm::Value *CacheVal =
+ Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices));
+
+ // If the hash isn't in the cache, call a runtime handler to perform the
+ // hard work of checking whether the vptr is for an object of the right
+ // type. This will either fill in the cache and return, or produce a
+ // diagnostic.
+ llvm::Constant *StaticData[] = {
+ EmitCheckSourceLocation(Loc),
+ EmitCheckTypeDescriptor(Ty),
+ CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
+ llvm::ConstantInt::get(Int8Ty, TCK)
+ };
+ llvm::Value *DynamicData[] = { Address, Hash };
+ EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash),
+ "dynamic_type_cache_miss", StaticData, DynamicData,
+ CRK_AlwaysRecoverable);
+ }
+
+ if (Done) {
+ Builder.CreateBr(Done);
+ EmitBlock(Done);
+ }
+}
+
+/// Determine whether this expression refers to a flexible array member in a
+/// struct. We disable array bounds checks for such members.
+static bool isFlexibleArrayMemberExpr(const Expr *E) {
+ // For compatibility with existing code, we treat arrays of length 0 or
+ // 1 as flexible array members.
+ const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
+ if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
+ if (CAT->getSize().ugt(1))
+ return false;
+ } else if (!isa<IncompleteArrayType>(AT))
+ return false;
+
+ E = E->IgnoreParens();
+
+ // A flexible array member must be the last member in the class.
+ if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
+ // FIXME: If the base type of the member expr is not FD->getParent(),
+ // this should not be treated as a flexible array member access.
+ if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
+ RecordDecl::field_iterator FI(
+ DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
+ return ++FI == FD->getParent()->field_end();
+ }
+ }
+
+ return false;
+}
+
+/// If Base is known to point to the start of an array, return the length of
+/// that array. Return 0 if the length cannot be determined.
+static llvm::Value *getArrayIndexingBound(
+ CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
+ // For the vector indexing extension, the bound is the number of elements.
+ if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
+ IndexedType = Base->getType();
+ return CGF.Builder.getInt32(VT->getNumElements());
+ }
+
+ Base = Base->IgnoreParens();
+
+ if (const CastExpr *CE = dyn_cast<CastExpr>(Base)) {
+ if (CE->getCastKind() == CK_ArrayToPointerDecay &&
+ !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
+ IndexedType = CE->getSubExpr()->getType();
+ const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
+ if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
+ return CGF.Builder.getInt(CAT->getSize());
+ else if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT))
+ return CGF.getVLASize(VAT).first;
+ }
+ }
+
+ return 0;
+}
+
+void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
+ llvm::Value *Index, QualType IndexType,
+ bool Accessed) {
+ assert(SanOpts->ArrayBounds &&
+ "should not be called unless adding bounds checks");
+
+ QualType IndexedType;
+ llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
+ if (!Bound)
+ return;
+
+ bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
+ llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
+ llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
+
+ llvm::Constant *StaticData[] = {
+ EmitCheckSourceLocation(E->getExprLoc()),
+ EmitCheckTypeDescriptor(IndexedType),
+ EmitCheckTypeDescriptor(IndexType)
+ };
+ llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
+ : Builder.CreateICmpULE(IndexVal, BoundVal);
+ EmitCheck(Check, "out_of_bounds", StaticData, Index, CRK_Recoverable);
+}
+
+
+CodeGenFunction::ComplexPairTy CodeGenFunction::
+EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
+ bool isInc, bool isPre) {
+ ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
+
+ llvm::Value *NextVal;
+ if (isa<llvm::IntegerType>(InVal.first->getType())) {
+ uint64_t AmountVal = isInc ? 1 : -1;
+ NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
+
+ // Add the inc/dec to the real part.
+ NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
+ } else {
+ QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
+ llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
+ if (!isInc)
+ FVal.changeSign();
+ NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
+
+ // Add the inc/dec to the real part.
+ NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
+ }
+
+ ComplexPairTy IncVal(NextVal, InVal.second);
+
+ // Store the updated result through the lvalue.
+ EmitStoreOfComplex(IncVal, LV, /*init*/ false);
+
+ // If this is a postinc, return the value read from memory, otherwise use the
+ // updated value.
+ return isPre ? IncVal : InVal;
+}
+
+
+//===----------------------------------------------------------------------===//
+// LValue Expression Emission
+//===----------------------------------------------------------------------===//
+
+RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
+ if (Ty->isVoidType())
+ return RValue::get(0);
+
+ switch (getEvaluationKind(Ty)) {
+ case TEK_Complex: {
+ llvm::Type *EltTy =
+ ConvertType(Ty->castAs<ComplexType>()->getElementType());
+ llvm::Value *U = llvm::UndefValue::get(EltTy);
+ return RValue::getComplex(std::make_pair(U, U));
+ }
+
+ // If this is a use of an undefined aggregate type, the aggregate must have an
+ // identifiable address. Just because the contents of the value are undefined
+ // doesn't mean that the address can't be taken and compared.
+ case TEK_Aggregate: {
+ llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
+ return RValue::getAggregate(DestPtr);
+ }
+
+ case TEK_Scalar:
+ return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
+ }
+ llvm_unreachable("bad evaluation kind");
+}
+
+RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
+ const char *Name) {
+ ErrorUnsupported(E, Name);
+ return GetUndefRValue(E->getType());
+}
+
+LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
+ const char *Name) {
+ ErrorUnsupported(E, Name);
+ llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
+ return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
+}
+
+LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
+ LValue LV;
+ if (SanOpts->ArrayBounds && isa<ArraySubscriptExpr>(E))
+ LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
+ else
+ LV = EmitLValue(E);
+ if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
+ EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(),
+ E->getType(), LV.getAlignment());
+ return LV;
+}
+
+/// EmitLValue - Emit code to compute a designator that specifies the location
+/// of the expression.
+///
+/// This can return one of two things: a simple address or a bitfield reference.
+/// In either case, the LLVM Value* in the LValue structure is guaranteed to be
+/// an LLVM pointer type.
+///
+/// If this returns a bitfield reference, nothing about the pointee type of the
+/// LLVM value is known: For example, it may not be a pointer to an integer.
+///
+/// If this returns a normal address, and if the lvalue's C type is fixed size,
+/// this method guarantees that the returned pointer type will point to an LLVM
+/// type of the same size of the lvalue's type. If the lvalue has a variable
+/// length type, this is not possible.
+///
+LValue CodeGenFunction::EmitLValue(const Expr *E) {
+ switch (E->getStmtClass()) {
+ default: return EmitUnsupportedLValue(E, "l-value expression");
+
+ case Expr::ObjCPropertyRefExprClass:
+ llvm_unreachable("cannot emit a property reference directly");
+
+ case Expr::ObjCSelectorExprClass:
+ return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
+ case Expr::ObjCIsaExprClass:
+ return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
+ case Expr::BinaryOperatorClass:
+ return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
+ case Expr::CompoundAssignOperatorClass:
+ if (!E->getType()->isAnyComplexType())
+ return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
+ return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
+ case Expr::CallExprClass:
+ case Expr::CXXMemberCallExprClass:
+ case Expr::CXXOperatorCallExprClass:
+ case Expr::UserDefinedLiteralClass:
+ return EmitCallExprLValue(cast<CallExpr>(E));
+ case Expr::VAArgExprClass:
+ return EmitVAArgExprLValue(cast<VAArgExpr>(E));
+ case Expr::DeclRefExprClass:
+ return EmitDeclRefLValue(cast<DeclRefExpr>(E));
+ case Expr::ParenExprClass:
+ return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
+ case Expr::GenericSelectionExprClass:
+ return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
+ case Expr::PredefinedExprClass:
+ return EmitPredefinedLValue(cast<PredefinedExpr>(E));
+ case Expr::StringLiteralClass:
+ return EmitStringLiteralLValue(cast<StringLiteral>(E));
+ case Expr::ObjCEncodeExprClass:
+ return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
+ case Expr::PseudoObjectExprClass:
+ return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
+ case Expr::InitListExprClass:
+ return EmitInitListLValue(cast<InitListExpr>(E));
+ case Expr::CXXTemporaryObjectExprClass:
+ case Expr::CXXConstructExprClass:
+ return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
+ case Expr::CXXBindTemporaryExprClass:
+ return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
+ case Expr::CXXUuidofExprClass:
+ return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
+ case Expr::LambdaExprClass:
+ return EmitLambdaLValue(cast<LambdaExpr>(E));
+
+ case Expr::ExprWithCleanupsClass: {
+ const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E);
+ enterFullExpression(cleanups);
+ RunCleanupsScope Scope(*this);
+ return EmitLValue(cleanups->getSubExpr());
+ }
+
+ case Expr::CXXDefaultArgExprClass:
+ return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
+ case Expr::CXXDefaultInitExprClass: {
+ CXXDefaultInitExprScope Scope(*this);
+ return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
+ }
+ case Expr::CXXTypeidExprClass:
+ return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
+
+ case Expr::ObjCMessageExprClass:
+ return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
+ case Expr::ObjCIvarRefExprClass:
+ return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
+ case Expr::StmtExprClass:
+ return EmitStmtExprLValue(cast<StmtExpr>(E));
+ case Expr::UnaryOperatorClass:
+ return EmitUnaryOpLValue(cast<UnaryOperator>(E));
+ case Expr::ArraySubscriptExprClass:
+ return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
+ case Expr::ExtVectorElementExprClass:
+ return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
+ case Expr::MemberExprClass:
+ return EmitMemberExpr(cast<MemberExpr>(E));
+ case Expr::CompoundLiteralExprClass:
+ return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
+ case Expr::ConditionalOperatorClass:
+ return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
+ case Expr::BinaryConditionalOperatorClass:
+ return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
+ case Expr::ChooseExprClass:
+ return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
+ case Expr::OpaqueValueExprClass:
+ return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
+ case Expr::SubstNonTypeTemplateParmExprClass:
+ return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
+ case Expr::ImplicitCastExprClass:
+ case Expr::CStyleCastExprClass:
+ case Expr::CXXFunctionalCastExprClass:
+ case Expr::CXXStaticCastExprClass:
+ case Expr::CXXDynamicCastExprClass:
+ case Expr::CXXReinterpretCastExprClass:
+ case Expr::CXXConstCastExprClass:
+ case Expr::ObjCBridgedCastExprClass:
+ return EmitCastLValue(cast<CastExpr>(E));
+
+ case Expr::MaterializeTemporaryExprClass:
+ return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
+ }
+}
+
+/// Given an object of the given canonical type, can we safely copy a
+/// value out of it based on its initializer?
+static bool isConstantEmittableObjectType(QualType type) {
+ assert(type.isCanonical());
+ assert(!type->isReferenceType());
+
+ // Must be const-qualified but non-volatile.
+ Qualifiers qs = type.getLocalQualifiers();
+ if (!qs.hasConst() || qs.hasVolatile()) return false;
+
+ // Otherwise, all object types satisfy this except C++ classes with
+ // mutable subobjects or non-trivial copy/destroy behavior.
+ if (const RecordType *RT = dyn_cast<RecordType>(type))
+ if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
+ if (RD->hasMutableFields() || !RD->isTrivial())
+ return false;
+
+ return true;
+}
+
+/// Can we constant-emit a load of a reference to a variable of the
+/// given type? This is different from predicates like
+/// Decl::isUsableInConstantExpressions because we do want it to apply
+/// in situations that don't necessarily satisfy the language's rules
+/// for this (e.g. C++'s ODR-use rules). For example, we want to able
+/// to do this with const float variables even if those variables
+/// aren't marked 'constexpr'.
+enum ConstantEmissionKind {
+ CEK_None,
+ CEK_AsReferenceOnly,
+ CEK_AsValueOrReference,
+ CEK_AsValueOnly
+};
+static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
+ type = type.getCanonicalType();
+ if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) {
+ if (isConstantEmittableObjectType(ref->getPointeeType()))
+ return CEK_AsValueOrReference;
+ return CEK_AsReferenceOnly;
+ }
+ if (isConstantEmittableObjectType(type))
+ return CEK_AsValueOnly;
+ return CEK_None;
+}
+
+/// Try to emit a reference to the given value without producing it as
+/// an l-value. This is actually more than an optimization: we can't
+/// produce an l-value for variables that we never actually captured
+/// in a block or lambda, which means const int variables or constexpr
+/// literals or similar.
+CodeGenFunction::ConstantEmission
+CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
+ ValueDecl *value = refExpr->getDecl();
+
+ // The value needs to be an enum constant or a constant variable.
+ ConstantEmissionKind CEK;
+ if (isa<ParmVarDecl>(value)) {
+ CEK = CEK_None;
+ } else if (VarDecl *var = dyn_cast<VarDecl>(value)) {
+ CEK = checkVarTypeForConstantEmission(var->getType());
+ } else if (isa<EnumConstantDecl>(value)) {
+ CEK = CEK_AsValueOnly;
+ } else {
+ CEK = CEK_None;
+ }
+ if (CEK == CEK_None) return ConstantEmission();
+
+ Expr::EvalResult result;
+ bool resultIsReference;
+ QualType resultType;
+
+ // It's best to evaluate all the way as an r-value if that's permitted.
+ if (CEK != CEK_AsReferenceOnly &&
+ refExpr->EvaluateAsRValue(result, getContext())) {
+ resultIsReference = false;
+ resultType = refExpr->getType();
+
+ // Otherwise, try to evaluate as an l-value.
+ } else if (CEK != CEK_AsValueOnly &&
+ refExpr->EvaluateAsLValue(result, getContext())) {
+ resultIsReference = true;
+ resultType = value->getType();
+
+ // Failure.
+ } else {
+ return ConstantEmission();
+ }
+
+ // In any case, if the initializer has side-effects, abandon ship.
+ if (result.HasSideEffects)
+ return ConstantEmission();
+
+ // Emit as a constant.
+ llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
+
+ // Make sure we emit a debug reference to the global variable.
+ // This should probably fire even for
+ if (isa<VarDecl>(value)) {
+ if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
+ EmitDeclRefExprDbgValue(refExpr, C);
+ } else {
+ assert(isa<EnumConstantDecl>(value));
+ EmitDeclRefExprDbgValue(refExpr, C);
+ }
+
+ // If we emitted a reference constant, we need to dereference that.
+ if (resultIsReference)
+ return ConstantEmission::forReference(C);
+
+ return ConstantEmission::forValue(C);
+}
+
+llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
+ SourceLocation Loc) {
+ return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
+ lvalue.getAlignment().getQuantity(),
+ lvalue.getType(), Loc, lvalue.getTBAAInfo(),
+ lvalue.getTBAABaseType(), lvalue.getTBAAOffset());
+}
+
+static bool hasBooleanRepresentation(QualType Ty) {
+ if (Ty->isBooleanType())
+ return true;
+
+ if (const EnumType *ET = Ty->getAs<EnumType>())
+ return ET->getDecl()->getIntegerType()->isBooleanType();
+
+ if (const AtomicType *AT = Ty->getAs<AtomicType>())
+ return hasBooleanRepresentation(AT->getValueType());
+
+ return false;
+}
+
+static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
+ llvm::APInt &Min, llvm::APInt &End,
+ bool StrictEnums) {
+ const EnumType *ET = Ty->getAs<EnumType>();
+ bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
+ ET && !ET->getDecl()->isFixed();
+ bool IsBool = hasBooleanRepresentation(Ty);
+ if (!IsBool && !IsRegularCPlusPlusEnum)
+ return false;
+
+ if (IsBool) {
+ Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
+ End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
+ } else {
+ const EnumDecl *ED = ET->getDecl();
+ llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
+ unsigned Bitwidth = LTy->getScalarSizeInBits();
+ unsigned NumNegativeBits = ED->getNumNegativeBits();
+ unsigned NumPositiveBits = ED->getNumPositiveBits();
+
+ if (NumNegativeBits) {
+ unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
+ assert(NumBits <= Bitwidth);
+ End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
+ Min = -End;
+ } else {
+ assert(NumPositiveBits <= Bitwidth);
+ End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
+ Min = llvm::APInt(Bitwidth, 0);
+ }
+ }
+ return true;
+}
+
+llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
+ llvm::APInt Min, End;
+ if (!getRangeForType(*this, Ty, Min, End,
+ CGM.getCodeGenOpts().StrictEnums))
+ return 0;
+
+ llvm::MDBuilder MDHelper(getLLVMContext());
+ return MDHelper.createRange(Min, End);
+}
+
+llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
+ unsigned Alignment, QualType Ty,
+ SourceLocation Loc,
+ llvm::MDNode *TBAAInfo,
+ QualType TBAABaseType,
+ uint64_t TBAAOffset) {
+ // For better performance, handle vector loads differently.
+ if (Ty->isVectorType()) {
+ llvm::Value *V;
+ const llvm::Type *EltTy =
+ cast<llvm::PointerType>(Addr->getType())->getElementType();
+
+ const llvm::VectorType *VTy = cast<llvm::VectorType>(EltTy);
+
+ // Handle vectors of size 3, like size 4 for better performance.
+ if (VTy->getNumElements() == 3) {
+
+ // Bitcast to vec4 type.
+ llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
+ 4);
+ llvm::PointerType *ptVec4Ty =
+ llvm::PointerType::get(vec4Ty,
+ (cast<llvm::PointerType>(
+ Addr->getType()))->getAddressSpace());
+ llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
+ "castToVec4");
+ // Now load value.
+ llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
+
+ // Shuffle vector to get vec3.
+ llvm::Constant *Mask[] = {
+ llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0),
+ llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1),
+ llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2)
+ };
+
+ llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
+ V = Builder.CreateShuffleVector(LoadVal,
+ llvm::UndefValue::get(vec4Ty),
+ MaskV, "extractVec");
+ return EmitFromMemory(V, Ty);
+ }
+ }
+
+ // Atomic operations have to be done on integral types.
+ if (Ty->isAtomicType()) {
+ LValue lvalue = LValue::MakeAddr(Addr, Ty,
+ CharUnits::fromQuantity(Alignment),
+ getContext(), TBAAInfo);
+ return EmitAtomicLoad(lvalue, Loc).getScalarVal();
+ }
+
+ llvm::LoadInst *Load = Builder.CreateLoad(Addr);
+ if (Volatile)
+ Load->setVolatile(true);
+ if (Alignment)
+ Load->setAlignment(Alignment);
+ if (TBAAInfo) {
+ llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
+ TBAAOffset);
+ if (TBAAPath)
+ CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/);
+ }
+
+ if ((SanOpts->Bool && hasBooleanRepresentation(Ty)) ||
+ (SanOpts->Enum && Ty->getAs<EnumType>())) {
+ llvm::APInt Min, End;
+ if (getRangeForType(*this, Ty, Min, End, true)) {
+ --End;
+ llvm::Value *Check;
+ if (!Min)
+ Check = Builder.CreateICmpULE(
+ Load, llvm::ConstantInt::get(getLLVMContext(), End));
+ else {
+ llvm::Value *Upper = Builder.CreateICmpSLE(
+ Load, llvm::ConstantInt::get(getLLVMContext(), End));
+ llvm::Value *Lower = Builder.CreateICmpSGE(
+ Load, llvm::ConstantInt::get(getLLVMContext(), Min));
+ Check = Builder.CreateAnd(Upper, Lower);
+ }
+ llvm::Constant *StaticArgs[] = {
+ EmitCheckSourceLocation(Loc),
+ EmitCheckTypeDescriptor(Ty)
+ };
+ EmitCheck(Check, "load_invalid_value", StaticArgs, EmitCheckValue(Load),
+ CRK_Recoverable);
+ }
+ } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
+ if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
+ Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
+
+ return EmitFromMemory(Load, Ty);
+}
+
+llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
+ // Bool has a different representation in memory than in registers.
+ if (hasBooleanRepresentation(Ty)) {
+ // This should really always be an i1, but sometimes it's already
+ // an i8, and it's awkward to track those cases down.
+ if (Value->getType()->isIntegerTy(1))
+ return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
+ assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
+ "wrong value rep of bool");
+ }
+
+ return Value;
+}
+
+llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
+ // Bool has a different representation in memory than in registers.
+ if (hasBooleanRepresentation(Ty)) {
+ assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
+ "wrong value rep of bool");
+ return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
+ }
+
+ return Value;
+}
+
+void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
+ bool Volatile, unsigned Alignment,
+ QualType Ty, llvm::MDNode *TBAAInfo,
+ bool isInit, QualType TBAABaseType,
+ uint64_t TBAAOffset) {
+
+ // Handle vectors differently to get better performance.
+ if (Ty->isVectorType()) {
+ llvm::Type *SrcTy = Value->getType();
+ llvm::VectorType *VecTy = cast<llvm::VectorType>(SrcTy);
+ // Handle vec3 special.
+ if (VecTy->getNumElements() == 3) {
+ llvm::LLVMContext &VMContext = getLLVMContext();
+
+ // Our source is a vec3, do a shuffle vector to make it a vec4.
+ SmallVector<llvm::Constant*, 4> Mask;
+ Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
+ 0));
+ Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
+ 1));
+ Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
+ 2));
+ Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
+
+ llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
+ Value = Builder.CreateShuffleVector(Value,
+ llvm::UndefValue::get(VecTy),
+ MaskV, "extractVec");
+ SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
+ }
+ llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType());
+ if (DstPtr->getElementType() != SrcTy) {
+ llvm::Type *MemTy =
+ llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
+ Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
+ }
+ }
+
+ Value = EmitToMemory(Value, Ty);
+
+ if (Ty->isAtomicType()) {
+ EmitAtomicStore(RValue::get(Value),
+ LValue::MakeAddr(Addr, Ty,
+ CharUnits::fromQuantity(Alignment),
+ getContext(), TBAAInfo),
+ isInit);
+ return;
+ }
+
+ llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
+ if (Alignment)
+ Store->setAlignment(Alignment);
+ if (TBAAInfo) {
+ llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
+ TBAAOffset);
+ if (TBAAPath)
+ CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/);
+ }
+}
+
+void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
+ bool isInit) {
+ EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
+ lvalue.getAlignment().getQuantity(), lvalue.getType(),
+ lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
+ lvalue.getTBAAOffset());
+}
+
+/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
+/// method emits the address of the lvalue, then loads the result as an rvalue,
+/// returning the rvalue.
+RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
+ if (LV.isObjCWeak()) {
+ // load of a __weak object.
+ llvm::Value *AddrWeakObj = LV.getAddress();
+ return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
+ AddrWeakObj));
+ }
+ if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
+ llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
+ Object = EmitObjCConsumeObject(LV.getType(), Object);
+ return RValue::get(Object);
+ }
+
+ if (LV.isSimple()) {
+ assert(!LV.getType()->isFunctionType());
+
+ // Everything needs a load.
+ return RValue::get(EmitLoadOfScalar(LV, Loc));
+ }
+
+ if (LV.isVectorElt()) {
+ llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
+ LV.isVolatileQualified());
+ Load->setAlignment(LV.getAlignment().getQuantity());
+ return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
+ "vecext"));
+ }
+
+ // If this is a reference to a subset of the elements of a vector, either
+ // shuffle the input or extract/insert them as appropriate.
+ if (LV.isExtVectorElt())
+ return EmitLoadOfExtVectorElementLValue(LV);
+
+ assert(LV.isBitField() && "Unknown LValue type!");
+ return EmitLoadOfBitfieldLValue(LV);
+}
+
+RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
+ const CGBitFieldInfo &Info = LV.getBitFieldInfo();
+
+ // Get the output type.
+ llvm::Type *ResLTy = ConvertType(LV.getType());
+
+ llvm::Value *Ptr = LV.getBitFieldAddr();
+ llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(),
+ "bf.load");
+ cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
+
+ if (Info.IsSigned) {
+ assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
+ unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
+ if (HighBits)
+ Val = Builder.CreateShl(Val, HighBits, "bf.shl");
+ if (Info.Offset + HighBits)
+ Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
+ } else {
+ if (Info.Offset)
+ Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
+ if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
+ Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
+ Info.Size),
+ "bf.clear");
+ }
+ Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
+
+ return RValue::get(Val);
+}
+
+// If this is a reference to a subset of the elements of a vector, create an
+// appropriate shufflevector.
+RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
+ llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
+ LV.isVolatileQualified());
+ Load->setAlignment(LV.getAlignment().getQuantity());
+ llvm::Value *Vec = Load;
+
+ const llvm::Constant *Elts = LV.getExtVectorElts();
+
+ // If the result of the expression is a non-vector type, we must be extracting
+ // a single element. Just codegen as an extractelement.
+ const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
+ if (!ExprVT) {
+ unsigned InIdx = getAccessedFieldNo(0, Elts);
+ llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
+ return RValue::get(Builder.CreateExtractElement(Vec, Elt));
+ }
+
+ // Always use shuffle vector to try to retain the original program structure
+ unsigned NumResultElts = ExprVT->getNumElements();
+
+ SmallVector<llvm::Constant*, 4> Mask;
+ for (unsigned i = 0; i != NumResultElts; ++i)
+ Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
+
+ llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
+ Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
+ MaskV);
+ return RValue::get(Vec);
+}
+
+
+
+/// EmitStoreThroughLValue - Store the specified rvalue into the specified
+/// lvalue, where both are guaranteed to the have the same type, and that type
+/// is 'Ty'.
+void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
+ bool isInit) {
+ if (!Dst.isSimple()) {
+ if (Dst.isVectorElt()) {
+ // Read/modify/write the vector, inserting the new element.
+ llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
+ Dst.isVolatileQualified());
+ Load->setAlignment(Dst.getAlignment().getQuantity());
+ llvm::Value *Vec = Load;
+ Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
+ Dst.getVectorIdx(), "vecins");
+ llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
+ Dst.isVolatileQualified());
+ Store->setAlignment(Dst.getAlignment().getQuantity());
+ return;
+ }
+
+ // If this is an update of extended vector elements, insert them as
+ // appropriate.
+ if (Dst.isExtVectorElt())
+ return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
+
+ assert(Dst.isBitField() && "Unknown LValue type");
+ return EmitStoreThroughBitfieldLValue(Src, Dst);
+ }
+
+ // There's special magic for assigning into an ARC-qualified l-value.
+ if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
+ switch (Lifetime) {
+ case Qualifiers::OCL_None:
+ llvm_unreachable("present but none");
+
+ case Qualifiers::OCL_ExplicitNone:
+ // nothing special
+ break;
+
+ case Qualifiers::OCL_Strong:
+ EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
+ return;
+
+ case Qualifiers::OCL_Weak:
+ EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
+ return;
+
+ case Qualifiers::OCL_Autoreleasing:
+ Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
+ Src.getScalarVal()));
+ // fall into the normal path
+ break;
+ }
+ }
+
+ if (Dst.isObjCWeak() && !Dst.isNonGC()) {
+ // load of a __weak object.
+ llvm::Value *LvalueDst = Dst.getAddress();
+ llvm::Value *src = Src.getScalarVal();
+ CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
+ return;
+ }
+
+ if (Dst.isObjCStrong() && !Dst.isNonGC()) {
+ // load of a __strong object.
+ llvm::Value *LvalueDst = Dst.getAddress();
+ llvm::Value *src = Src.getScalarVal();
+ if (Dst.isObjCIvar()) {
+ assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
+ llvm::Type *ResultType = ConvertType(getContext().LongTy);
+ llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
+ llvm::Value *dst = RHS;
+ RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
+ llvm::Value *LHS =
+ Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
+ llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
+ CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
+ BytesBetween);
+ } else if (Dst.isGlobalObjCRef()) {
+ CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
+ Dst.isThreadLocalRef());
+ }
+ else
+ CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
+ return;
+ }
+
+ assert(Src.isScalar() && "Can't emit an agg store with this method");
+ EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
+}
+
+void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
+ llvm::Value **Result) {
+ const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
+ llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
+ llvm::Value *Ptr = Dst.getBitFieldAddr();
+
+ // Get the source value, truncated to the width of the bit-field.
+ llvm::Value *SrcVal = Src.getScalarVal();
+
+ // Cast the source to the storage type and shift it into place.
+ SrcVal = Builder.CreateIntCast(SrcVal,
+ Ptr->getType()->getPointerElementType(),
+ /*IsSigned=*/false);
+ llvm::Value *MaskedVal = SrcVal;
+
+ // See if there are other bits in the bitfield's storage we'll need to load
+ // and mask together with source before storing.
+ if (Info.StorageSize != Info.Size) {
+ assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
+ llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
+ "bf.load");
+ cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
+
+ // Mask the source value as needed.
+ if (!hasBooleanRepresentation(Dst.getType()))
+ SrcVal = Builder.CreateAnd(SrcVal,
+ llvm::APInt::getLowBitsSet(Info.StorageSize,
+ Info.Size),
+ "bf.value");
+ MaskedVal = SrcVal;
+ if (Info.Offset)
+ SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
+
+ // Mask out the original value.
+ Val = Builder.CreateAnd(Val,
+ ~llvm::APInt::getBitsSet(Info.StorageSize,
+ Info.Offset,
+ Info.Offset + Info.Size),
+ "bf.clear");
+
+ // Or together the unchanged values and the source value.
+ SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
+ } else {
+ assert(Info.Offset == 0);
+ }
+
+ // Write the new value back out.
+ llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr,
+ Dst.isVolatileQualified());
+ Store->setAlignment(Info.StorageAlignment);
+
+ // Return the new value of the bit-field, if requested.
+ if (Result) {
+ llvm::Value *ResultVal = MaskedVal;
+
+ // Sign extend the value if needed.
+ if (Info.IsSigned) {
+ assert(Info.Size <= Info.StorageSize);
+ unsigned HighBits = Info.StorageSize - Info.Size;
+ if (HighBits) {
+ ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
+ ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
+ }
+ }
+
+ ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
+ "bf.result.cast");
+ *Result = EmitFromMemory(ResultVal, Dst.getType());
+ }
+}
+
+void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
+ LValue Dst) {
+ // This access turns into a read/modify/write of the vector. Load the input
+ // value now.
+ llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
+ Dst.isVolatileQualified());
+ Load->setAlignment(Dst.getAlignment().getQuantity());
+ llvm::Value *Vec = Load;
+ const llvm::Constant *Elts = Dst.getExtVectorElts();
+
+ llvm::Value *SrcVal = Src.getScalarVal();
+
+ if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
+ unsigned NumSrcElts = VTy->getNumElements();
+ unsigned NumDstElts =
+ cast<llvm::VectorType>(Vec->getType())->getNumElements();
+ if (NumDstElts == NumSrcElts) {
+ // Use shuffle vector is the src and destination are the same number of
+ // elements and restore the vector mask since it is on the side it will be
+ // stored.
+ SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
+ for (unsigned i = 0; i != NumSrcElts; ++i)
+ Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
+
+ llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
+ Vec = Builder.CreateShuffleVector(SrcVal,
+ llvm::UndefValue::get(Vec->getType()),
+ MaskV);
+ } else if (NumDstElts > NumSrcElts) {
+ // Extended the source vector to the same length and then shuffle it
+ // into the destination.
+ // FIXME: since we're shuffling with undef, can we just use the indices
+ // into that? This could be simpler.
+ SmallVector<llvm::Constant*, 4> ExtMask;
+ for (unsigned i = 0; i != NumSrcElts; ++i)
+ ExtMask.push_back(Builder.getInt32(i));
+ ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
+ llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
+ llvm::Value *ExtSrcVal =
+ Builder.CreateShuffleVector(SrcVal,
+ llvm::UndefValue::get(SrcVal->getType()),
+ ExtMaskV);
+ // build identity
+ SmallVector<llvm::Constant*, 4> Mask;
+ for (unsigned i = 0; i != NumDstElts; ++i)
+ Mask.push_back(Builder.getInt32(i));
+
+ // When the vector size is odd and .odd or .hi is used, the last element
+ // of the Elts constant array will be one past the size of the vector.
+ // Ignore the last element here, if it is greater than the mask size.
+ if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
+ NumSrcElts--;
+
+ // modify when what gets shuffled in
+ for (unsigned i = 0; i != NumSrcElts; ++i)
+ Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
+ llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
+ Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
+ } else {
+ // We should never shorten the vector
+ llvm_unreachable("unexpected shorten vector length");
+ }
+ } else {
+ // If the Src is a scalar (not a vector) it must be updating one element.
+ unsigned InIdx = getAccessedFieldNo(0, Elts);
+ llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
+ Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
+ }
+
+ llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
+ Dst.isVolatileQualified());
+ Store->setAlignment(Dst.getAlignment().getQuantity());
+}
+
+// setObjCGCLValueClass - sets class of he lvalue for the purpose of
+// generating write-barries API. It is currently a global, ivar,
+// or neither.
+static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
+ LValue &LV,
+ bool IsMemberAccess=false) {
+ if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
+ return;
+
+ if (isa<ObjCIvarRefExpr>(E)) {
+ QualType ExpTy = E->getType();
+ if (IsMemberAccess && ExpTy->isPointerType()) {
+ // If ivar is a structure pointer, assigning to field of
+ // this struct follows gcc's behavior and makes it a non-ivar
+ // writer-barrier conservatively.
+ ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
+ if (ExpTy->isRecordType()) {
+ LV.setObjCIvar(false);
+ return;
+ }
+ }
+ LV.setObjCIvar(true);
+ ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
+ LV.setBaseIvarExp(Exp->getBase());
+ LV.setObjCArray(E->getType()->isArrayType());
+ return;
+ }
+
+ if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
+ if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
+ if (VD->hasGlobalStorage()) {
+ LV.setGlobalObjCRef(true);
+ LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
+ }
+ }
+ LV.setObjCArray(E->getType()->isArrayType());
+ return;
+ }
+
+ if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
+ setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
+ return;
+ }
+
+ if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
+ setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
+ if (LV.isObjCIvar()) {
+ // If cast is to a structure pointer, follow gcc's behavior and make it
+ // a non-ivar write-barrier.
+ QualType ExpTy = E->getType();
+ if (ExpTy->isPointerType())
+ ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
+ if (ExpTy->isRecordType())
+ LV.setObjCIvar(false);
+ }
+ return;
+ }
+
+ if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
+ setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
+ return;
+ }
+
+ if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
+ setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
+ return;
+ }
+
+ if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
+ setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
+ return;
+ }
+
+ if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
+ setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
+ return;
+ }
+
+ if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
+ setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
+ if (LV.isObjCIvar() && !LV.isObjCArray())
+ // Using array syntax to assigning to what an ivar points to is not
+ // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
+ LV.setObjCIvar(false);
+ else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
+ // Using array syntax to assigning to what global points to is not
+ // same as assigning to the global itself. {id *G;} G[i] = 0;
+ LV.setGlobalObjCRef(false);
+ return;
+ }
+
+ if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
+ setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
+ // We don't know if member is an 'ivar', but this flag is looked at
+ // only in the context of LV.isObjCIvar().
+ LV.setObjCArray(E->getType()->isArrayType());
+ return;
+ }
+}
+
+static llvm::Value *
+EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
+ llvm::Value *V, llvm::Type *IRType,
+ StringRef Name = StringRef()) {
+ unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
+ return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
+}
+
+static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
+ const Expr *E, const VarDecl *VD) {
+ llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
+ llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
+ V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
+ CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
+ QualType T = E->getType();
+ LValue LV;
+ if (VD->getType()->isReferenceType()) {
+ llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
+ LI->setAlignment(Alignment.getQuantity());
+ V = LI;
+ LV = CGF.MakeNaturalAlignAddrLValue(V, T);
+ } else {
+ LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
+ }
+ setObjCGCLValueClass(CGF.getContext(), E, LV);
+ return LV;
+}
+
+static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
+ const Expr *E, const FunctionDecl *FD) {
+ llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
+ if (!FD->hasPrototype()) {
+ if (const FunctionProtoType *Proto =
+ FD->getType()->getAs<FunctionProtoType>()) {
+ // Ugly case: for a K&R-style definition, the type of the definition
+ // isn't the same as the type of a use. Correct for this with a
+ // bitcast.
+ QualType NoProtoType =
+ CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
+ NoProtoType = CGF.getContext().getPointerType(NoProtoType);
+ V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
+ }
+ }
+ CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
+ return CGF.MakeAddrLValue(V, E->getType(), Alignment);
+}
+
+static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
+ llvm::Value *ThisValue) {
+ QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
+ LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
+ return CGF.EmitLValueForField(LV, FD);
+}
+
+LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
+ const NamedDecl *ND = E->getDecl();
+ CharUnits Alignment = getContext().getDeclAlign(ND);
+ QualType T = E->getType();
+
+ // A DeclRefExpr for a reference initialized by a constant expression can
+ // appear without being odr-used. Directly emit the constant initializer.
+ if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
+ const Expr *Init = VD->getAnyInitializer(VD);
+ if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
+ VD->isUsableInConstantExpressions(getContext()) &&
+ VD->checkInitIsICE()) {
+ llvm::Constant *Val =
+ CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
+ assert(Val && "failed to emit reference constant expression");
+ // FIXME: Eventually we will want to emit vector element references.
+ return MakeAddrLValue(Val, T, Alignment);
+ }
+ }
+
+ // FIXME: We should be able to assert this for FunctionDecls as well!
+ // FIXME: We should be able to assert this for all DeclRefExprs, not just
+ // those with a valid source location.
+ assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
+ !E->getLocation().isValid()) &&
+ "Should not use decl without marking it used!");
+
+ if (ND->hasAttr<WeakRefAttr>()) {
+ const ValueDecl *VD = cast<ValueDecl>(ND);
+ llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
+ return MakeAddrLValue(Aliasee, T, Alignment);
+ }
+
+ if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
+ // Check if this is a global variable.
+ if (VD->hasLinkage() || VD->isStaticDataMember()) {
+ // If it's thread_local, emit a call to its wrapper function instead.
+ if (VD->getTLSKind() == VarDecl::TLS_Dynamic)
+ return CGM.getCXXABI().EmitThreadLocalDeclRefExpr(*this, E);
+ return EmitGlobalVarDeclLValue(*this, E, VD);
+ }
+
+ bool isBlockVariable = VD->hasAttr<BlocksAttr>();
+
+ llvm::Value *V = LocalDeclMap.lookup(VD);
+ if (!V && VD->isStaticLocal())
+ V = CGM.getStaticLocalDeclAddress(VD);
+
+ // Use special handling for lambdas.
+ if (!V) {
+ if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) {
+ return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
+ } else if (CapturedStmtInfo) {
+ if (const FieldDecl *FD = CapturedStmtInfo->lookup(VD))
+ return EmitCapturedFieldLValue(*this, FD,
+ CapturedStmtInfo->getContextValue());
+ }
+
+ assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal());
+ return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable),
+ T, Alignment);
+ }
+
+ assert(V && "DeclRefExpr not entered in LocalDeclMap?");
+
+ if (isBlockVariable)
+ V = BuildBlockByrefAddress(V, VD);
+
+ LValue LV;
+ if (VD->getType()->isReferenceType()) {
+ llvm::LoadInst *LI = Builder.CreateLoad(V);
+ LI->setAlignment(Alignment.getQuantity());
+ V = LI;
+ LV = MakeNaturalAlignAddrLValue(V, T);
+ } else {
+ LV = MakeAddrLValue(V, T, Alignment);
+ }
+
+ bool isLocalStorage = VD->hasLocalStorage();
+
+ bool NonGCable = isLocalStorage &&
+ !VD->getType()->isReferenceType() &&
+ !isBlockVariable;
+ if (NonGCable) {
+ LV.getQuals().removeObjCGCAttr();
+ LV.setNonGC(true);
+ }
+
+ bool isImpreciseLifetime =
+ (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
+ if (isImpreciseLifetime)
+ LV.setARCPreciseLifetime(ARCImpreciseLifetime);
+ setObjCGCLValueClass(getContext(), E, LV);
+ return LV;
+ }
+
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
+ return EmitFunctionDeclLValue(*this, E, FD);
+
+ llvm_unreachable("Unhandled DeclRefExpr");
+}
+
+LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
+ // __extension__ doesn't affect lvalue-ness.
+ if (E->getOpcode() == UO_Extension)
+ return EmitLValue(E->getSubExpr());
+
+ QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
+ switch (E->getOpcode()) {
+ default: llvm_unreachable("Unknown unary operator lvalue!");
+ case UO_Deref: {
+ QualType T = E->getSubExpr()->getType()->getPointeeType();
+ assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
+
+ LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
+ LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
+
+ // We should not generate __weak write barrier on indirect reference
+ // of a pointer to object; as in void foo (__weak id *param); *param = 0;
+ // But, we continue to generate __strong write barrier on indirect write
+ // into a pointer to object.
+ if (getLangOpts().ObjC1 &&
+ getLangOpts().getGC() != LangOptions::NonGC &&
+ LV.isObjCWeak())
+ LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
+ return LV;
+ }
+ case UO_Real:
+ case UO_Imag: {
+ LValue LV = EmitLValue(E->getSubExpr());
+ assert(LV.isSimple() && "real/imag on non-ordinary l-value");
+ llvm::Value *Addr = LV.getAddress();
+
+ // __real is valid on scalars. This is a faster way of testing that.
+ // __imag can only produce an rvalue on scalars.
+ if (E->getOpcode() == UO_Real &&
+ !cast<llvm::PointerType>(Addr->getType())
+ ->getElementType()->isStructTy()) {
+ assert(E->getSubExpr()->getType()->isArithmeticType());
+ return LV;
+ }
+
+ assert(E->getSubExpr()->getType()->isAnyComplexType());
+
+ unsigned Idx = E->getOpcode() == UO_Imag;
+ return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
+ Idx, "idx"),
+ ExprTy);
+ }
+ case UO_PreInc:
+ case UO_PreDec: {
+ LValue LV = EmitLValue(E->getSubExpr());
+ bool isInc = E->getOpcode() == UO_PreInc;
+
+ if (E->getType()->isAnyComplexType())
+ EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
+ else
+ EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
+ return LV;
+ }
+ }
+}
+
+LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
+ return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
+ E->getType());
+}
+
+LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
+ return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
+ E->getType());
+}
+
+static llvm::Constant*
+GetAddrOfConstantWideString(StringRef Str,
+ const char *GlobalName,
+ ASTContext &Context,
+ QualType Ty, SourceLocation Loc,
+ CodeGenModule &CGM) {
+
+ StringLiteral *SL = StringLiteral::Create(Context,
+ Str,
+ StringLiteral::Wide,
+ /*Pascal = */false,
+ Ty, Loc);
+ llvm::Constant *C = CGM.GetConstantArrayFromStringLiteral(SL);
+ llvm::GlobalVariable *GV =
+ new llvm::GlobalVariable(CGM.getModule(), C->getType(),
+ !CGM.getLangOpts().WritableStrings,
+ llvm::GlobalValue::PrivateLinkage,
+ C, GlobalName);
+ const unsigned WideAlignment =
+ Context.getTypeAlignInChars(Ty).getQuantity();
+ GV->setAlignment(WideAlignment);
+ return GV;
+}
+
+static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
+ SmallString<32>& Target) {
+ Target.resize(CharByteWidth * (Source.size() + 1));
+ char *ResultPtr = &Target[0];
+ const UTF8 *ErrorPtr;
+ bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
+ (void)success;
+ assert(success);
+ Target.resize(ResultPtr - &Target[0]);
+}
+
+LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
+ switch (E->getIdentType()) {
+ default:
+ return EmitUnsupportedLValue(E, "predefined expression");
+
+ case PredefinedExpr::Func:
+ case PredefinedExpr::Function:
+ case PredefinedExpr::LFunction:
+ case PredefinedExpr::FuncDName:
+ case PredefinedExpr::PrettyFunction: {
+ PredefinedExpr::IdentType IdentType = E->getIdentType();
+ std::string GlobalVarName;
+
+ switch (IdentType) {
+ default: llvm_unreachable("Invalid type");
+ case PredefinedExpr::Func:
+ GlobalVarName = "__func__.";
+ break;
+ case PredefinedExpr::Function:
+ GlobalVarName = "__FUNCTION__.";
+ break;
+ case PredefinedExpr::FuncDName:
+ GlobalVarName = "__FUNCDNAME__.";
+ break;
+ case PredefinedExpr::LFunction:
+ GlobalVarName = "L__FUNCTION__.";
+ break;
+ case PredefinedExpr::PrettyFunction:
+ GlobalVarName = "__PRETTY_FUNCTION__.";
+ break;
+ }
+
+ StringRef FnName = CurFn->getName();
+ if (FnName.startswith("\01"))
+ FnName = FnName.substr(1);
+ GlobalVarName += FnName;
+
+ // If this is outside of a function use the top level decl.
+ const Decl *CurDecl = CurCodeDecl;
+ if (CurDecl == 0 || isa<VarDecl>(CurDecl))
+ CurDecl = getContext().getTranslationUnitDecl();
+
+ const Type *ElemType = E->getType()->getArrayElementTypeNoTypeQual();
+ std::string FunctionName;
+ if (isa<BlockDecl>(CurDecl)) {
+ // Blocks use the mangled function name.
+ // FIXME: ComputeName should handle blocks.
+ FunctionName = FnName.str();
+ } else if (isa<CapturedDecl>(CurDecl)) {
+ // For a captured statement, the function name is its enclosing
+ // function name not the one compiler generated.
+ FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl);
+ } else {
+ FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl);
+ assert(cast<ConstantArrayType>(E->getType())->getSize() - 1 ==
+ FunctionName.size() &&
+ "Computed __func__ length differs from type!");
+ }
+
+ llvm::Constant *C;
+ if (ElemType->isWideCharType()) {
+ SmallString<32> RawChars;
+ ConvertUTF8ToWideString(
+ getContext().getTypeSizeInChars(ElemType).getQuantity(),
+ FunctionName, RawChars);
+ C = GetAddrOfConstantWideString(RawChars,
+ GlobalVarName.c_str(),
+ getContext(),
+ E->getType(),
+ E->getLocation(),
+ CGM);
+ } else {
+ C = CGM.GetAddrOfConstantCString(FunctionName,
+ GlobalVarName.c_str(),
+ 1);
+ }
+ return MakeAddrLValue(C, E->getType());
+ }
+ }
+}
+
+/// Emit a type description suitable for use by a runtime sanitizer library. The
+/// format of a type descriptor is
+///
+/// \code
+/// { i16 TypeKind, i16 TypeInfo }
+/// \endcode
+///
+/// followed by an array of i8 containing the type name. TypeKind is 0 for an
+/// integer, 1 for a floating point value, and -1 for anything else.
+llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
+ // Only emit each type's descriptor once.
+ if (llvm::Constant *C = CGM.getTypeDescriptor(T))
+ return C;
+
+ uint16_t TypeKind = -1;
+ uint16_t TypeInfo = 0;
+
+ if (T->isIntegerType()) {
+ TypeKind = 0;
+ TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
+ (T->isSignedIntegerType() ? 1 : 0);
+ } else if (T->isFloatingType()) {
+ TypeKind = 1;
+ TypeInfo = getContext().getTypeSize(T);
+ }
+
+ // Format the type name as if for a diagnostic, including quotes and
+ // optionally an 'aka'.
+ SmallString<32> Buffer;
+ CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
+ (intptr_t)T.getAsOpaquePtr(),
+ 0, 0, 0, 0, 0, 0, Buffer,
+ ArrayRef<intptr_t>());
+
+ llvm::Constant *Components[] = {
+ Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
+ llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
+ };
+ llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
+
+ llvm::GlobalVariable *GV =
+ new llvm::GlobalVariable(CGM.getModule(), Descriptor->getType(),
+ /*isConstant=*/true,
+ llvm::GlobalVariable::PrivateLinkage,
+ Descriptor);
+ GV->setUnnamedAddr(true);
+
+ // Remember the descriptor for this type.
+ CGM.setTypeDescriptor(T, GV);
+
+ return GV;
+}
+
+llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
+ llvm::Type *TargetTy = IntPtrTy;
+
+ // Floating-point types which fit into intptr_t are bitcast to integers
+ // and then passed directly (after zero-extension, if necessary).
+ if (V->getType()->isFloatingPointTy()) {
+ unsigned Bits = V->getType()->getPrimitiveSizeInBits();
+ if (Bits <= TargetTy->getIntegerBitWidth())
+ V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
+ Bits));
+ }
+
+ // Integers which fit in intptr_t are zero-extended and passed directly.
+ if (V->getType()->isIntegerTy() &&
+ V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
+ return Builder.CreateZExt(V, TargetTy);
+
+ // Pointers are passed directly, everything else is passed by address.
+ if (!V->getType()->isPointerTy()) {
+ llvm::Value *Ptr = CreateTempAlloca(V->getType());
+ Builder.CreateStore(V, Ptr);
+ V = Ptr;
+ }
+ return Builder.CreatePtrToInt(V, TargetTy);
+}
+
+/// \brief Emit a representation of a SourceLocation for passing to a handler
+/// in a sanitizer runtime library. The format for this data is:
+/// \code
+/// struct SourceLocation {
+/// const char *Filename;
+/// int32_t Line, Column;
+/// };
+/// \endcode
+/// For an invalid SourceLocation, the Filename pointer is null.
+llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
+ PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
+
+ llvm::Constant *Data[] = {
+ PLoc.isValid() ? CGM.GetAddrOfConstantCString(PLoc.getFilename(), ".src")
+ : llvm::Constant::getNullValue(Int8PtrTy),
+ Builder.getInt32(PLoc.isValid() ? PLoc.getLine() : 0),
+ Builder.getInt32(PLoc.isValid() ? PLoc.getColumn() : 0)
+ };
+
+ return llvm::ConstantStruct::getAnon(Data);
+}
+
+void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName,
+ ArrayRef<llvm::Constant *> StaticArgs,
+ ArrayRef<llvm::Value *> DynamicArgs,
+ CheckRecoverableKind RecoverKind) {
+ assert(SanOpts != &SanitizerOptions::Disabled);
+
+ if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) {
+ assert (RecoverKind != CRK_AlwaysRecoverable &&
+ "Runtime call required for AlwaysRecoverable kind!");
+ return EmitTrapCheck(Checked);
+ }
+
+ llvm::BasicBlock *Cont = createBasicBlock("cont");
+
+ llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName);
+
+ llvm::Instruction *Branch = Builder.CreateCondBr(Checked, Cont, Handler);
+
+ // Give hint that we very much don't expect to execute the handler
+ // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
+ llvm::MDBuilder MDHelper(getLLVMContext());
+ llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
+ Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
+
+ EmitBlock(Handler);
+
+ llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
+ llvm::GlobalValue *InfoPtr =
+ new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
+ llvm::GlobalVariable::PrivateLinkage, Info);
+ InfoPtr->setUnnamedAddr(true);
+
+ SmallVector<llvm::Value *, 4> Args;
+ SmallVector<llvm::Type *, 4> ArgTypes;
+ Args.reserve(DynamicArgs.size() + 1);
+ ArgTypes.reserve(DynamicArgs.size() + 1);
+
+ // Handler functions take an i8* pointing to the (handler-specific) static
+ // information block, followed by a sequence of intptr_t arguments
+ // representing operand values.
+ Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
+ ArgTypes.push_back(Int8PtrTy);
+ for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
+ Args.push_back(EmitCheckValue(DynamicArgs[i]));
+ ArgTypes.push_back(IntPtrTy);
+ }
+
+ bool Recover = (RecoverKind == CRK_AlwaysRecoverable) ||
+ ((RecoverKind == CRK_Recoverable) &&
+ CGM.getCodeGenOpts().SanitizeRecover);
+
+ llvm::FunctionType *FnType =
+ llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
+ llvm::AttrBuilder B;
+ if (!Recover) {
+ B.addAttribute(llvm::Attribute::NoReturn)
+ .addAttribute(llvm::Attribute::NoUnwind);
+ }
+ B.addAttribute(llvm::Attribute::UWTable);
+
+ // Checks that have two variants use a suffix to differentiate them
+ bool NeedsAbortSuffix = (RecoverKind != CRK_Unrecoverable) &&
+ !CGM.getCodeGenOpts().SanitizeRecover;
+ std::string FunctionName = ("__ubsan_handle_" + CheckName +
+ (NeedsAbortSuffix? "_abort" : "")).str();
+ llvm::Value *Fn =
+ CGM.CreateRuntimeFunction(FnType, FunctionName,
+ llvm::AttributeSet::get(getLLVMContext(),
+ llvm::AttributeSet::FunctionIndex,
+ B));
+ llvm::CallInst *HandlerCall = EmitNounwindRuntimeCall(Fn, Args);
+ if (Recover) {
+ Builder.CreateBr(Cont);
+ } else {
+ HandlerCall->setDoesNotReturn();
+ Builder.CreateUnreachable();
+ }
+
+ EmitBlock(Cont);
+}
+
+void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
+ llvm::BasicBlock *Cont = createBasicBlock("cont");
+
+ // If we're optimizing, collapse all calls to trap down to just one per
+ // function to save on code size.
+ if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
+ TrapBB = createBasicBlock("trap");
+ Builder.CreateCondBr(Checked, Cont, TrapBB);
+ EmitBlock(TrapBB);
+ llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
+ llvm::CallInst *TrapCall = Builder.CreateCall(F);
+ TrapCall->setDoesNotReturn();
+ TrapCall->setDoesNotThrow();
+ Builder.CreateUnreachable();
+ } else {
+ Builder.CreateCondBr(Checked, Cont, TrapBB);
+ }
+
+ EmitBlock(Cont);
+}
+
+/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
+/// array to pointer, return the array subexpression.
+static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
+ // If this isn't just an array->pointer decay, bail out.
+ const CastExpr *CE = dyn_cast<CastExpr>(E);
+ if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
+ return 0;
+
+ // If this is a decay from variable width array, bail out.
+ const Expr *SubExpr = CE->getSubExpr();
+ if (SubExpr->getType()->isVariableArrayType())
+ return 0;
+
+ return SubExpr;
+}
+
+LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
+ bool Accessed) {
+ // The index must always be an integer, which is not an aggregate. Emit it.
+ llvm::Value *Idx = EmitScalarExpr(E->getIdx());
+ QualType IdxTy = E->getIdx()->getType();
+ bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
+
+ if (SanOpts->ArrayBounds)
+ EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
+
+ // If the base is a vector type, then we are forming a vector element lvalue
+ // with this subscript.
+ if (E->getBase()->getType()->isVectorType()) {
+ // Emit the vector as an lvalue to get its address.
+ LValue LHS = EmitLValue(E->getBase());
+ assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
+ Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
+ return LValue::MakeVectorElt(LHS.getAddress(), Idx,
+ E->getBase()->getType(), LHS.getAlignment());
+ }
+
+ // Extend or truncate the index type to 32 or 64-bits.
+ if (Idx->getType() != IntPtrTy)
+ Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
+
+ // We know that the pointer points to a type of the correct size, unless the
+ // size is a VLA or Objective-C interface.
+ llvm::Value *Address = 0;
+ CharUnits ArrayAlignment;
+ if (const VariableArrayType *vla =
+ getContext().getAsVariableArrayType(E->getType())) {
+ // The base must be a pointer, which is not an aggregate. Emit
+ // it. It needs to be emitted first in case it's what captures
+ // the VLA bounds.
+ Address = EmitScalarExpr(E->getBase());
+
+ // The element count here is the total number of non-VLA elements.
+ llvm::Value *numElements = getVLASize(vla).first;
+
+ // Effectively, the multiply by the VLA size is part of the GEP.
+ // GEP indexes are signed, and scaling an index isn't permitted to
+ // signed-overflow, so we use the same semantics for our explicit
+ // multiply. We suppress this if overflow is not undefined behavior.
+ if (getLangOpts().isSignedOverflowDefined()) {
+ Idx = Builder.CreateMul(Idx, numElements);
+ Address = Builder.CreateGEP(Address, Idx, "arrayidx");
+ } else {
+ Idx = Builder.CreateNSWMul(Idx, numElements);
+ Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
+ }
+ } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
+ // Indexing over an interface, as in "NSString *P; P[4];"
+ llvm::Value *InterfaceSize =
+ llvm::ConstantInt::get(Idx->getType(),
+ getContext().getTypeSizeInChars(OIT).getQuantity());
+
+ Idx = Builder.CreateMul(Idx, InterfaceSize);
+
+ // The base must be a pointer, which is not an aggregate. Emit it.
+ llvm::Value *Base = EmitScalarExpr(E->getBase());
+ Address = EmitCastToVoidPtr(Base);
+ Address = Builder.CreateGEP(Address, Idx, "arrayidx");
+ Address = Builder.CreateBitCast(Address, Base->getType());
+ } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
+ // If this is A[i] where A is an array, the frontend will have decayed the
+ // base to be a ArrayToPointerDecay implicit cast. While correct, it is
+ // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
+ // "gep x, i" here. Emit one "gep A, 0, i".
+ assert(Array->getType()->isArrayType() &&
+ "Array to pointer decay must have array source type!");
+ LValue ArrayLV;
+ // For simple multidimensional array indexing, set the 'accessed' flag for
+ // better bounds-checking of the base expression.
+ if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Array))
+ ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
+ else
+ ArrayLV = EmitLValue(Array);
+ llvm::Value *ArrayPtr = ArrayLV.getAddress();
+ llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
+ llvm::Value *Args[] = { Zero, Idx };
+
+ // Propagate the alignment from the array itself to the result.
+ ArrayAlignment = ArrayLV.getAlignment();
+
+ if (getLangOpts().isSignedOverflowDefined())
+ Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
+ else
+ Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
+ } else {
+ // The base must be a pointer, which is not an aggregate. Emit it.
+ llvm::Value *Base = EmitScalarExpr(E->getBase());
+ if (getLangOpts().isSignedOverflowDefined())
+ Address = Builder.CreateGEP(Base, Idx, "arrayidx");
+ else
+ Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
+ }
+
+ QualType T = E->getBase()->getType()->getPointeeType();
+ assert(!T.isNull() &&
+ "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
+
+
+ // Limit the alignment to that of the result type.
+ LValue LV;
+ if (!ArrayAlignment.isZero()) {
+ CharUnits Align = getContext().getTypeAlignInChars(T);
+ ArrayAlignment = std::min(Align, ArrayAlignment);
+ LV = MakeAddrLValue(Address, T, ArrayAlignment);
+ } else {
+ LV = MakeNaturalAlignAddrLValue(Address, T);
+ }
+
+ LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
+
+ if (getLangOpts().ObjC1 &&
+ getLangOpts().getGC() != LangOptions::NonGC) {
+ LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
+ setObjCGCLValueClass(getContext(), E, LV);
+ }
+ return LV;
+}
+
+static
+llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
+ SmallVectorImpl<unsigned> &Elts) {
+ SmallVector<llvm::Constant*, 4> CElts;
+ for (unsigned i = 0, e = Elts.size(); i != e; ++i)
+ CElts.push_back(Builder.getInt32(Elts[i]));
+
+ return llvm::ConstantVector::get(CElts);
+}
+
+LValue CodeGenFunction::
+EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
+ // Emit the base vector as an l-value.
+ LValue Base;
+
+ // ExtVectorElementExpr's base can either be a vector or pointer to vector.
+ if (E->isArrow()) {
+ // If it is a pointer to a vector, emit the address and form an lvalue with
+ // it.
+ llvm::Value *Ptr = EmitScalarExpr(E->getBase());
+ const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
+ Base = MakeAddrLValue(Ptr, PT->getPointeeType());
+ Base.getQuals().removeObjCGCAttr();
+ } else if (E->getBase()->isGLValue()) {
+ // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
+ // emit the base as an lvalue.
+ assert(E->getBase()->getType()->isVectorType());
+ Base = EmitLValue(E->getBase());
+ } else {
+ // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
+ assert(E->getBase()->getType()->isVectorType() &&
+ "Result must be a vector");
+ llvm::Value *Vec = EmitScalarExpr(E->getBase());
+
+ // Store the vector to memory (because LValue wants an address).
+ llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
+ Builder.CreateStore(Vec, VecMem);
+ Base = MakeAddrLValue(VecMem, E->getBase()->getType());
+ }
+
+ QualType type =
+ E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
+
+ // Encode the element access list into a vector of unsigned indices.
+ SmallVector<unsigned, 4> Indices;
+ E->getEncodedElementAccess(Indices);
+
+ if (Base.isSimple()) {
+ llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
+ return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
+ Base.getAlignment());
+ }
+ assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
+
+ llvm::Constant *BaseElts = Base.getExtVectorElts();
+ SmallVector<llvm::Constant *, 4> CElts;
+
+ for (unsigned i = 0, e = Indices.size(); i != e; ++i)
+ CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
+ llvm::Constant *CV = llvm::ConstantVector::get(CElts);
+ return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
+ Base.getAlignment());
+}
+
+LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
+ Expr *BaseExpr = E->getBase();
+
+ // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
+ LValue BaseLV;
+ if (E->isArrow()) {
+ llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
+ QualType PtrTy = BaseExpr->getType()->getPointeeType();
+ EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy);
+ BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
+ } else
+ BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
+
+ NamedDecl *ND = E->getMemberDecl();
+ if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
+ LValue LV = EmitLValueForField(BaseLV, Field);
+ setObjCGCLValueClass(getContext(), E, LV);
+ return LV;
+ }
+
+ if (VarDecl *VD = dyn_cast<VarDecl>(ND))
+ return EmitGlobalVarDeclLValue(*this, E, VD);
+
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
+ return EmitFunctionDeclLValue(*this, E, FD);
+
+ llvm_unreachable("Unhandled member declaration!");
+}
+
+/// Given that we are currently emitting a lambda, emit an l-value for
+/// one of its members.
+LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
+ assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
+ assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
+ QualType LambdaTagType =
+ getContext().getTagDeclType(Field->getParent());
+ LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
+ return EmitLValueForField(LambdaLV, Field);
+}
+
+LValue CodeGenFunction::EmitLValueForField(LValue base,
+ const FieldDecl *field) {
+ if (field->isBitField()) {
+ const CGRecordLayout &RL =
+ CGM.getTypes().getCGRecordLayout(field->getParent());
+ const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
+ llvm::Value *Addr = base.getAddress();
+ unsigned Idx = RL.getLLVMFieldNo(field);
+ if (Idx != 0)
+ // For structs, we GEP to the field that the record layout suggests.
+ Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
+ // Get the access type.
+ llvm::Type *PtrTy = llvm::Type::getIntNPtrTy(
+ getLLVMContext(), Info.StorageSize,
+ CGM.getContext().getTargetAddressSpace(base.getType()));
+ if (Addr->getType() != PtrTy)
+ Addr = Builder.CreateBitCast(Addr, PtrTy);
+
+ QualType fieldType =
+ field->getType().withCVRQualifiers(base.getVRQualifiers());
+ return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment());
+ }
+
+ const RecordDecl *rec = field->getParent();
+ QualType type = field->getType();
+ CharUnits alignment = getContext().getDeclAlign(field);
+
+ // FIXME: It should be impossible to have an LValue without alignment for a
+ // complete type.
+ if (!base.getAlignment().isZero())
+ alignment = std::min(alignment, base.getAlignment());
+
+ bool mayAlias = rec->hasAttr<MayAliasAttr>();
+
+ llvm::Value *addr = base.getAddress();
+ unsigned cvr = base.getVRQualifiers();
+ bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
+ if (rec->isUnion()) {
+ // For unions, there is no pointer adjustment.
+ assert(!type->isReferenceType() && "union has reference member");
+ // TODO: handle path-aware TBAA for union.
+ TBAAPath = false;
+ } else {
+ // For structs, we GEP to the field that the record layout suggests.
+ unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
+ addr = Builder.CreateStructGEP(addr, idx, field->getName());
+
+ // If this is a reference field, load the reference right now.
+ if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
+ llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
+ if (cvr & Qualifiers::Volatile) load->setVolatile(true);
+ load->setAlignment(alignment.getQuantity());
+
+ // Loading the reference will disable path-aware TBAA.
+ TBAAPath = false;
+ if (CGM.shouldUseTBAA()) {
+ llvm::MDNode *tbaa;
+ if (mayAlias)
+ tbaa = CGM.getTBAAInfo(getContext().CharTy);
+ else
+ tbaa = CGM.getTBAAInfo(type);
+ if (tbaa)
+ CGM.DecorateInstruction(load, tbaa);
+ }
+
+ addr = load;
+ mayAlias = false;
+ type = refType->getPointeeType();
+ if (type->isIncompleteType())
+ alignment = CharUnits();
+ else
+ alignment = getContext().getTypeAlignInChars(type);
+ cvr = 0; // qualifiers don't recursively apply to referencee
+ }
+ }
+
+ // Make sure that the address is pointing to the right type. This is critical
+ // for both unions and structs. A union needs a bitcast, a struct element
+ // will need a bitcast if the LLVM type laid out doesn't match the desired
+ // type.
+ addr = EmitBitCastOfLValueToProperType(*this, addr,
+ CGM.getTypes().ConvertTypeForMem(type),
+ field->getName());
+
+ if (field->hasAttr<AnnotateAttr>())
+ addr = EmitFieldAnnotations(field, addr);
+
+ LValue LV = MakeAddrLValue(addr, type, alignment);
+ LV.getQuals().addCVRQualifiers(cvr);
+ if (TBAAPath) {
+ const ASTRecordLayout &Layout =
+ getContext().getASTRecordLayout(field->getParent());
+ // Set the base type to be the base type of the base LValue and
+ // update offset to be relative to the base type.
+ LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
+ LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
+ Layout.getFieldOffset(field->getFieldIndex()) /
+ getContext().getCharWidth());
+ }
+
+ // __weak attribute on a field is ignored.
+ if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
+ LV.getQuals().removeObjCGCAttr();
+
+ // Fields of may_alias structs act like 'char' for TBAA purposes.
+ // FIXME: this should get propagated down through anonymous structs
+ // and unions.
+ if (mayAlias && LV.getTBAAInfo())
+ LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
+
+ return LV;
+}
+
+LValue
+CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
+ const FieldDecl *Field) {
+ QualType FieldType = Field->getType();
+
+ if (!FieldType->isReferenceType())
+ return EmitLValueForField(Base, Field);
+
+ const CGRecordLayout &RL =
+ CGM.getTypes().getCGRecordLayout(Field->getParent());
+ unsigned idx = RL.getLLVMFieldNo(Field);
+ llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
+ assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
+
+ // Make sure that the address is pointing to the right type. This is critical
+ // for both unions and structs. A union needs a bitcast, a struct element
+ // will need a bitcast if the LLVM type laid out doesn't match the desired
+ // type.
+ llvm::Type *llvmType = ConvertTypeForMem(FieldType);
+ V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
+
+ CharUnits Alignment = getContext().getDeclAlign(Field);
+
+ // FIXME: It should be impossible to have an LValue without alignment for a
+ // complete type.
+ if (!Base.getAlignment().isZero())
+ Alignment = std::min(Alignment, Base.getAlignment());
+
+ return MakeAddrLValue(V, FieldType, Alignment);
+}
+
+LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
+ if (E->isFileScope()) {
+ llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
+ return MakeAddrLValue(GlobalPtr, E->getType());
+ }
+ if (E->getType()->isVariablyModifiedType())
+ // make sure to emit the VLA size.
+ EmitVariablyModifiedType(E->getType());
+
+ llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
+ const Expr *InitExpr = E->getInitializer();
+ LValue Result = MakeAddrLValue(DeclPtr, E->getType());
+
+ EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
+ /*Init*/ true);
+
+ return Result;
+}
+
+LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
+ if (!E->isGLValue())
+ // Initializing an aggregate temporary in C++11: T{...}.
+ return EmitAggExprToLValue(E);
+
+ // An lvalue initializer list must be initializing a reference.
+ assert(E->getNumInits() == 1 && "reference init with multiple values");
+ return EmitLValue(E->getInit(0));
+}
+
+LValue CodeGenFunction::
+EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
+ if (!expr->isGLValue()) {
+ // ?: here should be an aggregate.
+ assert(hasAggregateEvaluationKind(expr->getType()) &&
+ "Unexpected conditional operator!");
+ return EmitAggExprToLValue(expr);
+ }
+
+ OpaqueValueMapping binding(*this, expr);
+
+ const Expr *condExpr = expr->getCond();
+ bool CondExprBool;
+ if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
+ const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
+ if (!CondExprBool) std::swap(live, dead);
+
+ if (!ContainsLabel(dead))
+ return EmitLValue(live);
+ }
+
+ llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
+ llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
+ llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
+
+ ConditionalEvaluation eval(*this);
+ EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
+
+ // Any temporaries created here are conditional.
+ EmitBlock(lhsBlock);
+ eval.begin(*this);
+ LValue lhs = EmitLValue(expr->getTrueExpr());
+ eval.end(*this);
+
+ if (!lhs.isSimple())
+ return EmitUnsupportedLValue(expr, "conditional operator");
+
+ lhsBlock = Builder.GetInsertBlock();
+ Builder.CreateBr(contBlock);
+
+ // Any temporaries created here are conditional.
+ EmitBlock(rhsBlock);
+ eval.begin(*this);
+ LValue rhs = EmitLValue(expr->getFalseExpr());
+ eval.end(*this);
+ if (!rhs.isSimple())
+ return EmitUnsupportedLValue(expr, "conditional operator");
+ rhsBlock = Builder.GetInsertBlock();
+
+ EmitBlock(contBlock);
+
+ llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
+ "cond-lvalue");
+ phi->addIncoming(lhs.getAddress(), lhsBlock);
+ phi->addIncoming(rhs.getAddress(), rhsBlock);
+ return MakeAddrLValue(phi, expr->getType());
+}
+
+/// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
+/// type. If the cast is to a reference, we can have the usual lvalue result,
+/// otherwise if a cast is needed by the code generator in an lvalue context,
+/// then it must mean that we need the address of an aggregate in order to
+/// access one of its members. This can happen for all the reasons that casts
+/// are permitted with aggregate result, including noop aggregate casts, and
+/// cast from scalar to union.
+LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
+ switch (E->getCastKind()) {
+ case CK_ToVoid:
+ case CK_BitCast:
+ case CK_ArrayToPointerDecay:
+ case CK_FunctionToPointerDecay:
+ case CK_NullToMemberPointer:
+ case CK_NullToPointer:
+ case CK_IntegralToPointer:
+ case CK_PointerToIntegral:
+ case CK_PointerToBoolean:
+ case CK_VectorSplat:
+ case CK_IntegralCast:
+ case CK_IntegralToBoolean:
+ case CK_IntegralToFloating:
+ case CK_FloatingToIntegral:
+ case CK_FloatingToBoolean:
+ case CK_FloatingCast:
+ case CK_FloatingRealToComplex:
+ case CK_FloatingComplexToReal:
+ case CK_FloatingComplexToBoolean:
+ case CK_FloatingComplexCast:
+ case CK_FloatingComplexToIntegralComplex:
+ case CK_IntegralRealToComplex:
+ case CK_IntegralComplexToReal:
+ case CK_IntegralComplexToBoolean:
+ case CK_IntegralComplexCast:
+ case CK_IntegralComplexToFloatingComplex:
+ case CK_DerivedToBaseMemberPointer:
+ case CK_BaseToDerivedMemberPointer:
+ case CK_MemberPointerToBoolean:
+ case CK_ReinterpretMemberPointer:
+ case CK_AnyPointerToBlockPointerCast:
+ case CK_ARCProduceObject:
+ case CK_ARCConsumeObject:
+ case CK_ARCReclaimReturnedObject:
+ case CK_ARCExtendBlockObject:
+ case CK_CopyAndAutoreleaseBlockObject:
+ return EmitUnsupportedLValue(E, "unexpected cast lvalue");
+
+ case CK_Dependent:
+ llvm_unreachable("dependent cast kind in IR gen!");
+
+ case CK_BuiltinFnToFnPtr:
+ llvm_unreachable("builtin functions are handled elsewhere");
+
+ // These are never l-values; just use the aggregate emission code.
+ case CK_NonAtomicToAtomic:
+ case CK_AtomicToNonAtomic:
+ return EmitAggExprToLValue(E);
+
+ case CK_Dynamic: {
+ LValue LV = EmitLValue(E->getSubExpr());
+ llvm::Value *V = LV.getAddress();
+ const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
+ return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
+ }
+
+ case CK_ConstructorConversion:
+ case CK_UserDefinedConversion:
+ case CK_CPointerToObjCPointerCast:
+ case CK_BlockPointerToObjCPointerCast:
+ case CK_NoOp:
+ case CK_LValueToRValue:
+ return EmitLValue(E->getSubExpr());
+
+ case CK_UncheckedDerivedToBase:
+ case CK_DerivedToBase: {
+ const RecordType *DerivedClassTy =
+ E->getSubExpr()->getType()->getAs<RecordType>();
+ CXXRecordDecl *DerivedClassDecl =
+ cast<CXXRecordDecl>(DerivedClassTy->getDecl());
+
+ LValue LV = EmitLValue(E->getSubExpr());
+ llvm::Value *This = LV.getAddress();
+
+ // Perform the derived-to-base conversion
+ llvm::Value *Base =
+ GetAddressOfBaseClass(This, DerivedClassDecl,
+ E->path_begin(), E->path_end(),
+ /*NullCheckValue=*/false);
+
+ return MakeAddrLValue(Base, E->getType());
+ }
+ case CK_ToUnion:
+ return EmitAggExprToLValue(E);
+ case CK_BaseToDerived: {
+ const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
+ CXXRecordDecl *DerivedClassDecl =
+ cast<CXXRecordDecl>(DerivedClassTy->getDecl());
+
+ LValue LV = EmitLValue(E->getSubExpr());
+
+ // Perform the base-to-derived conversion
+ llvm::Value *Derived =
+ GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
+ E->path_begin(), E->path_end(),
+ /*NullCheckValue=*/false);
+
+ // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
+ // performed and the object is not of the derived type.
+ if (SanitizePerformTypeCheck)
+ EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
+ Derived, E->getType());
+
+ return MakeAddrLValue(Derived, E->getType());
+ }
+ case CK_LValueBitCast: {
+ // This must be a reinterpret_cast (or c-style equivalent).
+ const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
+
+ LValue LV = EmitLValue(E->getSubExpr());
+ llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
+ ConvertType(CE->getTypeAsWritten()));
+ return MakeAddrLValue(V, E->getType());
+ }
+ case CK_ObjCObjectLValueCast: {
+ LValue LV = EmitLValue(E->getSubExpr());
+ QualType ToType = getContext().getLValueReferenceType(E->getType());
+ llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
+ ConvertType(ToType));
+ return MakeAddrLValue(V, E->getType());
+ }
+ case CK_ZeroToOCLEvent:
+ llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
+ }
+
+ llvm_unreachable("Unhandled lvalue cast kind?");
+}
+
+LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
+ assert(OpaqueValueMappingData::shouldBindAsLValue(e));
+ return getOpaqueLValueMapping(e);
+}
+
+RValue CodeGenFunction::EmitRValueForField(LValue LV,
+ const FieldDecl *FD,
+ SourceLocation Loc) {
+ QualType FT = FD->getType();
+ LValue FieldLV = EmitLValueForField(LV, FD);
+ switch (getEvaluationKind(FT)) {
+ case TEK_Complex:
+ return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
+ case TEK_Aggregate:
+ return FieldLV.asAggregateRValue();
+ case TEK_Scalar:
+ return EmitLoadOfLValue(FieldLV, Loc);
+ }
+ llvm_unreachable("bad evaluation kind");
+}
+
+//===--------------------------------------------------------------------===//
+// Expression Emission
+//===--------------------------------------------------------------------===//
+
+RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
+ ReturnValueSlot ReturnValue) {
+ if (CGDebugInfo *DI = getDebugInfo()) {
+ SourceLocation Loc = E->getLocStart();
+ // Force column info to be generated so we can differentiate
+ // multiple call sites on the same line in the debug info.
+ const FunctionDecl* Callee = E->getDirectCallee();
+ bool ForceColumnInfo = Callee && Callee->isInlineSpecified();
+ DI->EmitLocation(Builder, Loc, ForceColumnInfo);
+ }
+
+ // Builtins never have block type.
+ if (E->getCallee()->getType()->isBlockPointerType())
+ return EmitBlockCallExpr(E, ReturnValue);
+
+ if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
+ return EmitCXXMemberCallExpr(CE, ReturnValue);
+
+ if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E))
+ return EmitCUDAKernelCallExpr(CE, ReturnValue);
+
+ const Decl *TargetDecl = E->getCalleeDecl();
+ if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
+ if (unsigned builtinID = FD->getBuiltinID())
+ return EmitBuiltinExpr(FD, builtinID, E);
+ }
+
+ if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
+ if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
+ return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
+
+ if (const CXXPseudoDestructorExpr *PseudoDtor
+ = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
+ QualType DestroyedType = PseudoDtor->getDestroyedType();
+ if (getLangOpts().ObjCAutoRefCount &&
+ DestroyedType->isObjCLifetimeType() &&
+ (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
+ DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
+ // Automatic Reference Counting:
+ // If the pseudo-expression names a retainable object with weak or
+ // strong lifetime, the object shall be released.
+ Expr *BaseExpr = PseudoDtor->getBase();
+ llvm::Value *BaseValue = NULL;
+ Qualifiers BaseQuals;
+
+ // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
+ if (PseudoDtor->isArrow()) {
+ BaseValue = EmitScalarExpr(BaseExpr);
+ const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
+ BaseQuals = PTy->getPointeeType().getQualifiers();
+ } else {
+ LValue BaseLV = EmitLValue(BaseExpr);
+ BaseValue = BaseLV.getAddress();
+ QualType BaseTy = BaseExpr->getType();
+ BaseQuals = BaseTy.getQualifiers();
+ }
+
+ switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
+ case Qualifiers::OCL_None:
+ case Qualifiers::OCL_ExplicitNone:
+ case Qualifiers::OCL_Autoreleasing:
+ break;
+
+ case Qualifiers::OCL_Strong:
+ EmitARCRelease(Builder.CreateLoad(BaseValue,
+ PseudoDtor->getDestroyedType().isVolatileQualified()),
+ ARCPreciseLifetime);
+ break;
+
+ case Qualifiers::OCL_Weak:
+ EmitARCDestroyWeak(BaseValue);
+ break;
+ }
+ } else {
+ // C++ [expr.pseudo]p1:
+ // The result shall only be used as the operand for the function call
+ // operator (), and the result of such a call has type void. The only
+ // effect is the evaluation of the postfix-expression before the dot or
+ // arrow.
+ EmitScalarExpr(E->getCallee());
+ }
+
+ return RValue::get(0);
+ }
+
+ llvm::Value *Callee = EmitScalarExpr(E->getCallee());
+ return EmitCall(E->getCallee()->getType(), Callee, E->getLocStart(),
+ ReturnValue, E->arg_begin(), E->arg_end(), TargetDecl);
+}
+
+LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
+ // Comma expressions just emit their LHS then their RHS as an l-value.
+ if (E->getOpcode() == BO_Comma) {
+ EmitIgnoredExpr(E->getLHS());
+ EnsureInsertPoint();
+ return EmitLValue(E->getRHS());
+ }
+
+ if (E->getOpcode() == BO_PtrMemD ||
+ E->getOpcode() == BO_PtrMemI)
+ return EmitPointerToDataMemberBinaryExpr(E);
+
+ assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
+
+ // Note that in all of these cases, __block variables need the RHS
+ // evaluated first just in case the variable gets moved by the RHS.
+
+ switch (getEvaluationKind(E->getType())) {
+ case TEK_Scalar: {
+ switch (E->getLHS()->getType().getObjCLifetime()) {
+ case Qualifiers::OCL_Strong:
+ return EmitARCStoreStrong(E, /*ignored*/ false).first;
+
+ case Qualifiers::OCL_Autoreleasing:
+ return EmitARCStoreAutoreleasing(E).first;
+
+ // No reason to do any of these differently.
+ case Qualifiers::OCL_None:
+ case Qualifiers::OCL_ExplicitNone:
+ case Qualifiers::OCL_Weak:
+ break;
+ }
+
+ RValue RV = EmitAnyExpr(E->getRHS());
+ LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
+ EmitStoreThroughLValue(RV, LV);
+ return LV;
+ }
+
+ case TEK_Complex:
+ return EmitComplexAssignmentLValue(E);
+
+ case TEK_Aggregate:
+ return EmitAggExprToLValue(E);
+ }
+ llvm_unreachable("bad evaluation kind");
+}
+
+LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
+ RValue RV = EmitCallExpr(E);
+
+ if (!RV.isScalar())
+ return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
+
+ assert(E->getCallReturnType()->isReferenceType() &&
+ "Can't have a scalar return unless the return type is a "
+ "reference type!");
+
+ return MakeAddrLValue(RV.getScalarVal(), E->getType());
+}
+
+LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
+ // FIXME: This shouldn't require another copy.
+ return EmitAggExprToLValue(E);
+}
+
+LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
+ assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
+ && "binding l-value to type which needs a temporary");
+ AggValueSlot Slot = CreateAggTemp(E->getType());
+ EmitCXXConstructExpr(E, Slot);
+ return MakeAddrLValue(Slot.getAddr(), E->getType());
+}
+
+LValue
+CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
+ return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
+}
+
+llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
+ return Builder.CreateBitCast(CGM.GetAddrOfUuidDescriptor(E),
+ ConvertType(E->getType())->getPointerTo());
+}
+
+LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
+ return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType());
+}
+
+LValue
+CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
+ AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
+ Slot.setExternallyDestructed();
+ EmitAggExpr(E->getSubExpr(), Slot);
+ EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
+ return MakeAddrLValue(Slot.getAddr(), E->getType());
+}
+
+LValue
+CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
+ AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
+ EmitLambdaExpr(E, Slot);
+ return MakeAddrLValue(Slot.getAddr(), E->getType());
+}
+
+LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
+ RValue RV = EmitObjCMessageExpr(E);
+
+ if (!RV.isScalar())
+ return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
+
+ assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
+ "Can't have a scalar return unless the return type is a "
+ "reference type!");
+
+ return MakeAddrLValue(RV.getScalarVal(), E->getType());
+}
+
+LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
+ llvm::Value *V =
+ CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true);
+ return MakeAddrLValue(V, E->getType());
+}
+
+llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
+ const ObjCIvarDecl *Ivar) {
+ return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
+}
+
+LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
+ llvm::Value *BaseValue,
+ const ObjCIvarDecl *Ivar,
+ unsigned CVRQualifiers) {
+ return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
+ Ivar, CVRQualifiers);
+}
+
+LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
+ // FIXME: A lot of the code below could be shared with EmitMemberExpr.
+ llvm::Value *BaseValue = 0;
+ const Expr *BaseExpr = E->getBase();
+ Qualifiers BaseQuals;
+ QualType ObjectTy;
+ if (E->isArrow()) {
+ BaseValue = EmitScalarExpr(BaseExpr);
+ ObjectTy = BaseExpr->getType()->getPointeeType();
+ BaseQuals = ObjectTy.getQualifiers();
+ } else {
+ LValue BaseLV = EmitLValue(BaseExpr);
+ // FIXME: this isn't right for bitfields.
+ BaseValue = BaseLV.getAddress();
+ ObjectTy = BaseExpr->getType();
+ BaseQuals = ObjectTy.getQualifiers();
+ }
+
+ LValue LV =
+ EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
+ BaseQuals.getCVRQualifiers());
+ setObjCGCLValueClass(getContext(), E, LV);
+ return LV;
+}
+
+LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
+ // Can only get l-value for message expression returning aggregate type
+ RValue RV = EmitAnyExprToTemp(E);
+ return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
+}
+
+RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
+ SourceLocation CallLoc,
+ ReturnValueSlot ReturnValue,
+ CallExpr::const_arg_iterator ArgBeg,
+ CallExpr::const_arg_iterator ArgEnd,
+ const Decl *TargetDecl) {
+ // Get the actual function type. The callee type will always be a pointer to
+ // function type or a block pointer type.
+ assert(CalleeType->isFunctionPointerType() &&
+ "Call must have function pointer type!");
+
+ CalleeType = getContext().getCanonicalType(CalleeType);
+
+ const FunctionType *FnType
+ = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
+
+ // Force column info to differentiate multiple inlined call sites on
+ // the same line, analoguous to EmitCallExpr.
+ bool ForceColumnInfo = false;
+ if (const FunctionDecl* FD = dyn_cast_or_null<const FunctionDecl>(TargetDecl))
+ ForceColumnInfo = FD->isInlineSpecified();
+
+ if (getLangOpts().CPlusPlus && SanOpts->Function &&
+ (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
+ if (llvm::Constant *PrefixSig =
+ CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
+ llvm::Constant *FTRTTIConst =
+ CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
+ llvm::Type *PrefixStructTyElems[] = {
+ PrefixSig->getType(),
+ FTRTTIConst->getType()
+ };
+ llvm::StructType *PrefixStructTy = llvm::StructType::get(
+ CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
+
+ llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
+ Callee, llvm::PointerType::getUnqual(PrefixStructTy));
+ llvm::Value *CalleeSigPtr =
+ Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 0);
+ llvm::Value *CalleeSig = Builder.CreateLoad(CalleeSigPtr);
+ llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
+
+ llvm::BasicBlock *Cont = createBasicBlock("cont");
+ llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
+ Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
+
+ EmitBlock(TypeCheck);
+ llvm::Value *CalleeRTTIPtr =
+ Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 1);
+ llvm::Value *CalleeRTTI = Builder.CreateLoad(CalleeRTTIPtr);
+ llvm::Value *CalleeRTTIMatch =
+ Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
+ llvm::Constant *StaticData[] = {
+ EmitCheckSourceLocation(CallLoc),
+ EmitCheckTypeDescriptor(CalleeType)
+ };
+ EmitCheck(CalleeRTTIMatch,
+ "function_type_mismatch",
+ StaticData,
+ Callee,
+ CRK_Recoverable);
+
+ Builder.CreateBr(Cont);
+ EmitBlock(Cont);
+ }
+ }
+
+ CallArgList Args;
+ EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd,
+ ForceColumnInfo);
+
+ const CGFunctionInfo &FnInfo =
+ CGM.getTypes().arrangeFreeFunctionCall(Args, FnType);
+
+ // C99 6.5.2.2p6:
+ // If the expression that denotes the called function has a type
+ // that does not include a prototype, [the default argument
+ // promotions are performed]. If the number of arguments does not
+ // equal the number of parameters, the behavior is undefined. If
+ // the function is defined with a type that includes a prototype,
+ // and either the prototype ends with an ellipsis (, ...) or the
+ // types of the arguments after promotion are not compatible with
+ // the types of the parameters, the behavior is undefined. If the
+ // function is defined with a type that does not include a
+ // prototype, and the types of the arguments after promotion are
+ // not compatible with those of the parameters after promotion,
+ // the behavior is undefined [except in some trivial cases].
+ // That is, in the general case, we should assume that a call
+ // through an unprototyped function type works like a *non-variadic*
+ // call. The way we make this work is to cast to the exact type
+ // of the promoted arguments.
+ if (isa<FunctionNoProtoType>(FnType)) {
+ llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
+ CalleeTy = CalleeTy->getPointerTo();
+ Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
+ }
+
+ return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
+}
+
+LValue CodeGenFunction::
+EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
+ llvm::Value *BaseV;
+ if (E->getOpcode() == BO_PtrMemI)
+ BaseV = EmitScalarExpr(E->getLHS());
+ else
+ BaseV = EmitLValue(E->getLHS()).getAddress();
+
+ llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
+
+ const MemberPointerType *MPT
+ = E->getRHS()->getType()->getAs<MemberPointerType>();
+
+ llvm::Value *AddV =
+ CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
+
+ return MakeAddrLValue(AddV, MPT->getPointeeType());
+}
+
+/// Given the address of a temporary variable, produce an r-value of
+/// its type.
+RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr,
+ QualType type,
+ SourceLocation loc) {
+ LValue lvalue = MakeNaturalAlignAddrLValue(addr, type);
+ switch (getEvaluationKind(type)) {
+ case TEK_Complex:
+ return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
+ case TEK_Aggregate:
+ return lvalue.asAggregateRValue();
+ case TEK_Scalar:
+ return RValue::get(EmitLoadOfScalar(lvalue, loc));
+ }
+ llvm_unreachable("bad evaluation kind");
+}
+
+void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
+ assert(Val->getType()->isFPOrFPVectorTy());
+ if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
+ return;
+
+ llvm::MDBuilder MDHelper(getLLVMContext());
+ llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
+
+ cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
+}
+
+namespace {
+ struct LValueOrRValue {
+ LValue LV;
+ RValue RV;
+ };
+}
+
+static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
+ const PseudoObjectExpr *E,
+ bool forLValue,
+ AggValueSlot slot) {
+ SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
+
+ // Find the result expression, if any.
+ const Expr *resultExpr = E->getResultExpr();
+ LValueOrRValue result;
+
+ for (PseudoObjectExpr::const_semantics_iterator
+ i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
+ const Expr *semantic = *i;
+
+ // If this semantic expression is an opaque value, bind it
+ // to the result of its source expression.
+ if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
+
+ // If this is the result expression, we may need to evaluate
+ // directly into the slot.
+ typedef CodeGenFunction::OpaqueValueMappingData OVMA;
+ OVMA opaqueData;
+ if (ov == resultExpr && ov->isRValue() && !forLValue &&
+ CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
+ CGF.EmitAggExpr(ov->getSourceExpr(), slot);
+
+ LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
+ opaqueData = OVMA::bind(CGF, ov, LV);
+ result.RV = slot.asRValue();
+
+ // Otherwise, emit as normal.
+ } else {
+ opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
+
+ // If this is the result, also evaluate the result now.
+ if (ov == resultExpr) {
+ if (forLValue)
+ result.LV = CGF.EmitLValue(ov);
+ else
+ result.RV = CGF.EmitAnyExpr(ov, slot);
+ }
+ }
+
+ opaques.push_back(opaqueData);
+
+ // Otherwise, if the expression is the result, evaluate it
+ // and remember the result.
+ } else if (semantic == resultExpr) {
+ if (forLValue)
+ result.LV = CGF.EmitLValue(semantic);
+ else
+ result.RV = CGF.EmitAnyExpr(semantic, slot);
+
+ // Otherwise, evaluate the expression in an ignored context.
+ } else {
+ CGF.EmitIgnoredExpr(semantic);
+ }
+ }
+
+ // Unbind all the opaques now.
+ for (unsigned i = 0, e = opaques.size(); i != e; ++i)
+ opaques[i].unbind(CGF);
+
+ return result;
+}
+
+RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
+ AggValueSlot slot) {
+ return emitPseudoObjectExpr(*this, E, false, slot).RV;
+}
+
+LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
+ return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
+}
OpenPOWER on IntegriCloud