summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/CodeGen/CGCall.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/CodeGen/CGCall.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGCall.cpp1416
1 files changed, 1416 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGCall.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGCall.cpp
new file mode 100644
index 0000000..ae84b61
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGCall.cpp
@@ -0,0 +1,1416 @@
+//===----- CGCall.h - Encapsulate calling convention details ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// These classes wrap the information about a call or function
+// definition used to handle ABI compliancy.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGCall.h"
+#include "CGCXXABI.h"
+#include "ABIInfo.h"
+#include "CodeGenFunction.h"
+#include "CodeGenModule.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/Frontend/CodeGenOptions.h"
+#include "llvm/Attributes.h"
+#include "llvm/Support/CallSite.h"
+#include "llvm/Target/TargetData.h"
+using namespace clang;
+using namespace CodeGen;
+
+/***/
+
+static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
+ switch (CC) {
+ default: return llvm::CallingConv::C;
+ case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
+ case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
+ case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
+ // TODO: add support for CC_X86Pascal to llvm
+ }
+}
+
+/// Derives the 'this' type for codegen purposes, i.e. ignoring method
+/// qualification.
+/// FIXME: address space qualification?
+static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
+ QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
+ return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
+}
+
+/// Returns the canonical formal type of the given C++ method.
+static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
+ return MD->getType()->getCanonicalTypeUnqualified()
+ .getAs<FunctionProtoType>();
+}
+
+/// Returns the "extra-canonicalized" return type, which discards
+/// qualifiers on the return type. Codegen doesn't care about them,
+/// and it makes ABI code a little easier to be able to assume that
+/// all parameter and return types are top-level unqualified.
+static CanQualType GetReturnType(QualType RetTy) {
+ return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
+}
+
+const CGFunctionInfo &
+CodeGenTypes::getFunctionInfo(CanQual<FunctionNoProtoType> FTNP,
+ bool IsRecursive) {
+ return getFunctionInfo(FTNP->getResultType().getUnqualifiedType(),
+ llvm::SmallVector<CanQualType, 16>(),
+ FTNP->getExtInfo(), IsRecursive);
+}
+
+/// \param Args - contains any initial parameters besides those
+/// in the formal type
+static const CGFunctionInfo &getFunctionInfo(CodeGenTypes &CGT,
+ llvm::SmallVectorImpl<CanQualType> &ArgTys,
+ CanQual<FunctionProtoType> FTP,
+ bool IsRecursive = false) {
+ // FIXME: Kill copy.
+ for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
+ ArgTys.push_back(FTP->getArgType(i));
+ CanQualType ResTy = FTP->getResultType().getUnqualifiedType();
+ return CGT.getFunctionInfo(ResTy, ArgTys, FTP->getExtInfo(), IsRecursive);
+}
+
+const CGFunctionInfo &
+CodeGenTypes::getFunctionInfo(CanQual<FunctionProtoType> FTP,
+ bool IsRecursive) {
+ llvm::SmallVector<CanQualType, 16> ArgTys;
+ return ::getFunctionInfo(*this, ArgTys, FTP, IsRecursive);
+}
+
+static CallingConv getCallingConventionForDecl(const Decl *D) {
+ // Set the appropriate calling convention for the Function.
+ if (D->hasAttr<StdCallAttr>())
+ return CC_X86StdCall;
+
+ if (D->hasAttr<FastCallAttr>())
+ return CC_X86FastCall;
+
+ if (D->hasAttr<ThisCallAttr>())
+ return CC_X86ThisCall;
+
+ if (D->hasAttr<PascalAttr>())
+ return CC_X86Pascal;
+
+ return CC_C;
+}
+
+const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXRecordDecl *RD,
+ const FunctionProtoType *FTP) {
+ llvm::SmallVector<CanQualType, 16> ArgTys;
+
+ // Add the 'this' pointer.
+ ArgTys.push_back(GetThisType(Context, RD));
+
+ return ::getFunctionInfo(*this, ArgTys,
+ FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
+}
+
+const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXMethodDecl *MD) {
+ llvm::SmallVector<CanQualType, 16> ArgTys;
+
+ assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!");
+ assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
+
+ // Add the 'this' pointer unless this is a static method.
+ if (MD->isInstance())
+ ArgTys.push_back(GetThisType(Context, MD->getParent()));
+
+ return ::getFunctionInfo(*this, ArgTys, GetFormalType(MD));
+}
+
+const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXConstructorDecl *D,
+ CXXCtorType Type) {
+ llvm::SmallVector<CanQualType, 16> ArgTys;
+ ArgTys.push_back(GetThisType(Context, D->getParent()));
+ CanQualType ResTy = Context.VoidTy;
+
+ TheCXXABI.BuildConstructorSignature(D, Type, ResTy, ArgTys);
+
+ CanQual<FunctionProtoType> FTP = GetFormalType(D);
+
+ // Add the formal parameters.
+ for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
+ ArgTys.push_back(FTP->getArgType(i));
+
+ return getFunctionInfo(ResTy, ArgTys, FTP->getExtInfo());
+}
+
+const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXDestructorDecl *D,
+ CXXDtorType Type) {
+ llvm::SmallVector<CanQualType, 2> ArgTys;
+ ArgTys.push_back(GetThisType(Context, D->getParent()));
+ CanQualType ResTy = Context.VoidTy;
+
+ TheCXXABI.BuildDestructorSignature(D, Type, ResTy, ArgTys);
+
+ CanQual<FunctionProtoType> FTP = GetFormalType(D);
+ assert(FTP->getNumArgs() == 0 && "dtor with formal parameters");
+
+ return getFunctionInfo(ResTy, ArgTys, FTP->getExtInfo());
+}
+
+const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionDecl *FD) {
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
+ if (MD->isInstance())
+ return getFunctionInfo(MD);
+
+ CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
+ assert(isa<FunctionType>(FTy));
+ if (isa<FunctionNoProtoType>(FTy))
+ return getFunctionInfo(FTy.getAs<FunctionNoProtoType>());
+ assert(isa<FunctionProtoType>(FTy));
+ return getFunctionInfo(FTy.getAs<FunctionProtoType>());
+}
+
+const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const ObjCMethodDecl *MD) {
+ llvm::SmallVector<CanQualType, 16> ArgTys;
+ ArgTys.push_back(Context.getCanonicalParamType(MD->getSelfDecl()->getType()));
+ ArgTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
+ // FIXME: Kill copy?
+ for (ObjCMethodDecl::param_iterator i = MD->param_begin(),
+ e = MD->param_end(); i != e; ++i) {
+ ArgTys.push_back(Context.getCanonicalParamType((*i)->getType()));
+ }
+ return getFunctionInfo(GetReturnType(MD->getResultType()),
+ ArgTys,
+ FunctionType::ExtInfo(
+ /*NoReturn*/ false,
+ /*RegParm*/ 0,
+ getCallingConventionForDecl(MD)));
+}
+
+const CGFunctionInfo &CodeGenTypes::getFunctionInfo(GlobalDecl GD) {
+ // FIXME: Do we need to handle ObjCMethodDecl?
+ const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
+
+ if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
+ return getFunctionInfo(CD, GD.getCtorType());
+
+ if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
+ return getFunctionInfo(DD, GD.getDtorType());
+
+ return getFunctionInfo(FD);
+}
+
+const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy,
+ const CallArgList &Args,
+ const FunctionType::ExtInfo &Info) {
+ // FIXME: Kill copy.
+ llvm::SmallVector<CanQualType, 16> ArgTys;
+ for (CallArgList::const_iterator i = Args.begin(), e = Args.end();
+ i != e; ++i)
+ ArgTys.push_back(Context.getCanonicalParamType(i->second));
+ return getFunctionInfo(GetReturnType(ResTy), ArgTys, Info);
+}
+
+const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy,
+ const FunctionArgList &Args,
+ const FunctionType::ExtInfo &Info) {
+ // FIXME: Kill copy.
+ llvm::SmallVector<CanQualType, 16> ArgTys;
+ for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
+ i != e; ++i)
+ ArgTys.push_back(Context.getCanonicalParamType(i->second));
+ return getFunctionInfo(GetReturnType(ResTy), ArgTys, Info);
+}
+
+const CGFunctionInfo &CodeGenTypes::getFunctionInfo(CanQualType ResTy,
+ const llvm::SmallVectorImpl<CanQualType> &ArgTys,
+ const FunctionType::ExtInfo &Info,
+ bool IsRecursive) {
+#ifndef NDEBUG
+ for (llvm::SmallVectorImpl<CanQualType>::const_iterator
+ I = ArgTys.begin(), E = ArgTys.end(); I != E; ++I)
+ assert(I->isCanonicalAsParam());
+#endif
+
+ unsigned CC = ClangCallConvToLLVMCallConv(Info.getCC());
+
+ // Lookup or create unique function info.
+ llvm::FoldingSetNodeID ID;
+ CGFunctionInfo::Profile(ID, Info, ResTy,
+ ArgTys.begin(), ArgTys.end());
+
+ void *InsertPos = 0;
+ CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, InsertPos);
+ if (FI)
+ return *FI;
+
+ // Construct the function info.
+ FI = new CGFunctionInfo(CC, Info.getNoReturn(), Info.getRegParm(), ResTy,
+ ArgTys.data(), ArgTys.size());
+ FunctionInfos.InsertNode(FI, InsertPos);
+
+ // Compute ABI information.
+ getABIInfo().computeInfo(*FI);
+
+ // Loop over all of the computed argument and return value info. If any of
+ // them are direct or extend without a specified coerce type, specify the
+ // default now.
+ ABIArgInfo &RetInfo = FI->getReturnInfo();
+ if (RetInfo.canHaveCoerceToType() && RetInfo.getCoerceToType() == 0)
+ RetInfo.setCoerceToType(ConvertTypeRecursive(FI->getReturnType()));
+
+ for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end();
+ I != E; ++I)
+ if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0)
+ I->info.setCoerceToType(ConvertTypeRecursive(I->type));
+
+ // If this is a top-level call and ConvertTypeRecursive hit unresolved pointer
+ // types, resolve them now. These pointers may point to this function, which
+ // we *just* filled in the FunctionInfo for.
+ if (!IsRecursive && !PointersToResolve.empty())
+ HandleLateResolvedPointers();
+
+ return *FI;
+}
+
+CGFunctionInfo::CGFunctionInfo(unsigned _CallingConvention,
+ bool _NoReturn, unsigned _RegParm,
+ CanQualType ResTy,
+ const CanQualType *ArgTys,
+ unsigned NumArgTys)
+ : CallingConvention(_CallingConvention),
+ EffectiveCallingConvention(_CallingConvention),
+ NoReturn(_NoReturn), RegParm(_RegParm)
+{
+ NumArgs = NumArgTys;
+
+ // FIXME: Coallocate with the CGFunctionInfo object.
+ Args = new ArgInfo[1 + NumArgTys];
+ Args[0].type = ResTy;
+ for (unsigned i = 0; i != NumArgTys; ++i)
+ Args[1 + i].type = ArgTys[i];
+}
+
+/***/
+
+void CodeGenTypes::GetExpandedTypes(QualType Ty,
+ std::vector<const llvm::Type*> &ArgTys,
+ bool IsRecursive) {
+ const RecordType *RT = Ty->getAsStructureType();
+ assert(RT && "Can only expand structure types.");
+ const RecordDecl *RD = RT->getDecl();
+ assert(!RD->hasFlexibleArrayMember() &&
+ "Cannot expand structure with flexible array.");
+
+ for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
+ i != e; ++i) {
+ const FieldDecl *FD = *i;
+ assert(!FD->isBitField() &&
+ "Cannot expand structure with bit-field members.");
+
+ QualType FT = FD->getType();
+ if (CodeGenFunction::hasAggregateLLVMType(FT))
+ GetExpandedTypes(FT, ArgTys, IsRecursive);
+ else
+ ArgTys.push_back(ConvertType(FT, IsRecursive));
+ }
+}
+
+llvm::Function::arg_iterator
+CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
+ llvm::Function::arg_iterator AI) {
+ const RecordType *RT = Ty->getAsStructureType();
+ assert(RT && "Can only expand structure types.");
+
+ RecordDecl *RD = RT->getDecl();
+ assert(LV.isSimple() &&
+ "Unexpected non-simple lvalue during struct expansion.");
+ llvm::Value *Addr = LV.getAddress();
+ for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
+ i != e; ++i) {
+ FieldDecl *FD = *i;
+ QualType FT = FD->getType();
+
+ // FIXME: What are the right qualifiers here?
+ LValue LV = EmitLValueForField(Addr, FD, 0);
+ if (CodeGenFunction::hasAggregateLLVMType(FT)) {
+ AI = ExpandTypeFromArgs(FT, LV, AI);
+ } else {
+ EmitStoreThroughLValue(RValue::get(AI), LV, FT);
+ ++AI;
+ }
+ }
+
+ return AI;
+}
+
+void
+CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
+ llvm::SmallVector<llvm::Value*, 16> &Args) {
+ const RecordType *RT = Ty->getAsStructureType();
+ assert(RT && "Can only expand structure types.");
+
+ RecordDecl *RD = RT->getDecl();
+ assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
+ llvm::Value *Addr = RV.getAggregateAddr();
+ for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
+ i != e; ++i) {
+ FieldDecl *FD = *i;
+ QualType FT = FD->getType();
+
+ // FIXME: What are the right qualifiers here?
+ LValue LV = EmitLValueForField(Addr, FD, 0);
+ if (CodeGenFunction::hasAggregateLLVMType(FT)) {
+ ExpandTypeToArgs(FT, RValue::getAggregate(LV.getAddress()), Args);
+ } else {
+ RValue RV = EmitLoadOfLValue(LV, FT);
+ assert(RV.isScalar() &&
+ "Unexpected non-scalar rvalue during struct expansion.");
+ Args.push_back(RV.getScalarVal());
+ }
+ }
+}
+
+/// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
+/// accessing some number of bytes out of it, try to gep into the struct to get
+/// at its inner goodness. Dive as deep as possible without entering an element
+/// with an in-memory size smaller than DstSize.
+static llvm::Value *
+EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
+ const llvm::StructType *SrcSTy,
+ uint64_t DstSize, CodeGenFunction &CGF) {
+ // We can't dive into a zero-element struct.
+ if (SrcSTy->getNumElements() == 0) return SrcPtr;
+
+ const llvm::Type *FirstElt = SrcSTy->getElementType(0);
+
+ // If the first elt is at least as large as what we're looking for, or if the
+ // first element is the same size as the whole struct, we can enter it.
+ uint64_t FirstEltSize =
+ CGF.CGM.getTargetData().getTypeAllocSize(FirstElt);
+ if (FirstEltSize < DstSize &&
+ FirstEltSize < CGF.CGM.getTargetData().getTypeAllocSize(SrcSTy))
+ return SrcPtr;
+
+ // GEP into the first element.
+ SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive");
+
+ // If the first element is a struct, recurse.
+ const llvm::Type *SrcTy =
+ cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
+ if (const llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
+ return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
+
+ return SrcPtr;
+}
+
+/// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
+/// are either integers or pointers. This does a truncation of the value if it
+/// is too large or a zero extension if it is too small.
+static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
+ const llvm::Type *Ty,
+ CodeGenFunction &CGF) {
+ if (Val->getType() == Ty)
+ return Val;
+
+ if (isa<llvm::PointerType>(Val->getType())) {
+ // If this is Pointer->Pointer avoid conversion to and from int.
+ if (isa<llvm::PointerType>(Ty))
+ return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
+
+ // Convert the pointer to an integer so we can play with its width.
+ Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
+ }
+
+ const llvm::Type *DestIntTy = Ty;
+ if (isa<llvm::PointerType>(DestIntTy))
+ DestIntTy = CGF.IntPtrTy;
+
+ if (Val->getType() != DestIntTy)
+ Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
+
+ if (isa<llvm::PointerType>(Ty))
+ Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
+ return Val;
+}
+
+
+
+/// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
+/// a pointer to an object of type \arg Ty.
+///
+/// This safely handles the case when the src type is smaller than the
+/// destination type; in this situation the values of bits which not
+/// present in the src are undefined.
+static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
+ const llvm::Type *Ty,
+ CodeGenFunction &CGF) {
+ const llvm::Type *SrcTy =
+ cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
+
+ // If SrcTy and Ty are the same, just do a load.
+ if (SrcTy == Ty)
+ return CGF.Builder.CreateLoad(SrcPtr);
+
+ uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(Ty);
+
+ if (const llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
+ SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
+ SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
+ }
+
+ uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
+
+ // If the source and destination are integer or pointer types, just do an
+ // extension or truncation to the desired type.
+ if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
+ (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
+ llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
+ return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
+ }
+
+ // If load is legal, just bitcast the src pointer.
+ if (SrcSize >= DstSize) {
+ // Generally SrcSize is never greater than DstSize, since this means we are
+ // losing bits. However, this can happen in cases where the structure has
+ // additional padding, for example due to a user specified alignment.
+ //
+ // FIXME: Assert that we aren't truncating non-padding bits when have access
+ // to that information.
+ llvm::Value *Casted =
+ CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
+ llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
+ // FIXME: Use better alignment / avoid requiring aligned load.
+ Load->setAlignment(1);
+ return Load;
+ }
+
+ // Otherwise do coercion through memory. This is stupid, but
+ // simple.
+ llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
+ llvm::Value *Casted =
+ CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(SrcTy));
+ llvm::StoreInst *Store =
+ CGF.Builder.CreateStore(CGF.Builder.CreateLoad(SrcPtr), Casted);
+ // FIXME: Use better alignment / avoid requiring aligned store.
+ Store->setAlignment(1);
+ return CGF.Builder.CreateLoad(Tmp);
+}
+
+/// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
+/// where the source and destination may have different types.
+///
+/// This safely handles the case when the src type is larger than the
+/// destination type; the upper bits of the src will be lost.
+static void CreateCoercedStore(llvm::Value *Src,
+ llvm::Value *DstPtr,
+ bool DstIsVolatile,
+ CodeGenFunction &CGF) {
+ const llvm::Type *SrcTy = Src->getType();
+ const llvm::Type *DstTy =
+ cast<llvm::PointerType>(DstPtr->getType())->getElementType();
+ if (SrcTy == DstTy) {
+ CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
+ return;
+ }
+
+ uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
+
+ if (const llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
+ DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
+ DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
+ }
+
+ // If the source and destination are integer or pointer types, just do an
+ // extension or truncation to the desired type.
+ if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
+ (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
+ Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
+ CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
+ return;
+ }
+
+ uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(DstTy);
+
+ // If store is legal, just bitcast the src pointer.
+ if (SrcSize <= DstSize) {
+ llvm::Value *Casted =
+ CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
+ // FIXME: Use better alignment / avoid requiring aligned store.
+ CGF.Builder.CreateStore(Src, Casted, DstIsVolatile)->setAlignment(1);
+ } else {
+ // Otherwise do coercion through memory. This is stupid, but
+ // simple.
+
+ // Generally SrcSize is never greater than DstSize, since this means we are
+ // losing bits. However, this can happen in cases where the structure has
+ // additional padding, for example due to a user specified alignment.
+ //
+ // FIXME: Assert that we aren't truncating non-padding bits when have access
+ // to that information.
+ llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
+ CGF.Builder.CreateStore(Src, Tmp);
+ llvm::Value *Casted =
+ CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(DstTy));
+ llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
+ // FIXME: Use better alignment / avoid requiring aligned load.
+ Load->setAlignment(1);
+ CGF.Builder.CreateStore(Load, DstPtr, DstIsVolatile);
+ }
+}
+
+/***/
+
+bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
+ return FI.getReturnInfo().isIndirect();
+}
+
+bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
+ if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
+ switch (BT->getKind()) {
+ default:
+ return false;
+ case BuiltinType::Float:
+ return getContext().Target.useObjCFPRetForRealType(TargetInfo::Float);
+ case BuiltinType::Double:
+ return getContext().Target.useObjCFPRetForRealType(TargetInfo::Double);
+ case BuiltinType::LongDouble:
+ return getContext().Target.useObjCFPRetForRealType(
+ TargetInfo::LongDouble);
+ }
+ }
+
+ return false;
+}
+
+const llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
+ const CGFunctionInfo &FI = getFunctionInfo(GD);
+
+ // For definition purposes, don't consider a K&R function variadic.
+ bool Variadic = false;
+ if (const FunctionProtoType *FPT =
+ cast<FunctionDecl>(GD.getDecl())->getType()->getAs<FunctionProtoType>())
+ Variadic = FPT->isVariadic();
+
+ return GetFunctionType(FI, Variadic, false);
+}
+
+const llvm::FunctionType *
+CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI, bool IsVariadic,
+ bool IsRecursive) {
+ std::vector<const llvm::Type*> ArgTys;
+
+ const llvm::Type *ResultType = 0;
+
+ QualType RetTy = FI.getReturnType();
+ const ABIArgInfo &RetAI = FI.getReturnInfo();
+ switch (RetAI.getKind()) {
+ case ABIArgInfo::Expand:
+ assert(0 && "Invalid ABI kind for return argument");
+
+ case ABIArgInfo::Extend:
+ case ABIArgInfo::Direct:
+ ResultType = RetAI.getCoerceToType();
+ break;
+
+ case ABIArgInfo::Indirect: {
+ assert(!RetAI.getIndirectAlign() && "Align unused on indirect return.");
+ ResultType = llvm::Type::getVoidTy(getLLVMContext());
+ const llvm::Type *STy = ConvertType(RetTy, IsRecursive);
+ ArgTys.push_back(llvm::PointerType::get(STy, RetTy.getAddressSpace()));
+ break;
+ }
+
+ case ABIArgInfo::Ignore:
+ ResultType = llvm::Type::getVoidTy(getLLVMContext());
+ break;
+ }
+
+ for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
+ ie = FI.arg_end(); it != ie; ++it) {
+ const ABIArgInfo &AI = it->info;
+
+ switch (AI.getKind()) {
+ case ABIArgInfo::Ignore:
+ break;
+
+ case ABIArgInfo::Indirect: {
+ // indirect arguments are always on the stack, which is addr space #0.
+ const llvm::Type *LTy = ConvertTypeForMem(it->type, IsRecursive);
+ ArgTys.push_back(llvm::PointerType::getUnqual(LTy));
+ break;
+ }
+
+ case ABIArgInfo::Extend:
+ case ABIArgInfo::Direct: {
+ // If the coerce-to type is a first class aggregate, flatten it. Either
+ // way is semantically identical, but fast-isel and the optimizer
+ // generally likes scalar values better than FCAs.
+ const llvm::Type *ArgTy = AI.getCoerceToType();
+ if (const llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgTy)) {
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
+ ArgTys.push_back(STy->getElementType(i));
+ } else {
+ ArgTys.push_back(ArgTy);
+ }
+ break;
+ }
+
+ case ABIArgInfo::Expand:
+ GetExpandedTypes(it->type, ArgTys, IsRecursive);
+ break;
+ }
+ }
+
+ return llvm::FunctionType::get(ResultType, ArgTys, IsVariadic);
+}
+
+const llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
+ const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
+
+ if (!VerifyFuncTypeComplete(FPT)) {
+ const CGFunctionInfo *Info;
+ if (isa<CXXDestructorDecl>(MD))
+ Info = &getFunctionInfo(cast<CXXDestructorDecl>(MD), GD.getDtorType());
+ else
+ Info = &getFunctionInfo(MD);
+ return GetFunctionType(*Info, FPT->isVariadic(), false);
+ }
+
+ return llvm::OpaqueType::get(getLLVMContext());
+}
+
+void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
+ const Decl *TargetDecl,
+ AttributeListType &PAL,
+ unsigned &CallingConv) {
+ unsigned FuncAttrs = 0;
+ unsigned RetAttrs = 0;
+
+ CallingConv = FI.getEffectiveCallingConvention();
+
+ if (FI.isNoReturn())
+ FuncAttrs |= llvm::Attribute::NoReturn;
+
+ // FIXME: handle sseregparm someday...
+ if (TargetDecl) {
+ if (TargetDecl->hasAttr<NoThrowAttr>())
+ FuncAttrs |= llvm::Attribute::NoUnwind;
+ else if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
+ const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
+ if (FPT && FPT->hasEmptyExceptionSpec())
+ FuncAttrs |= llvm::Attribute::NoUnwind;
+ }
+
+ if (TargetDecl->hasAttr<NoReturnAttr>())
+ FuncAttrs |= llvm::Attribute::NoReturn;
+ if (TargetDecl->hasAttr<ConstAttr>())
+ FuncAttrs |= llvm::Attribute::ReadNone;
+ else if (TargetDecl->hasAttr<PureAttr>())
+ FuncAttrs |= llvm::Attribute::ReadOnly;
+ if (TargetDecl->hasAttr<MallocAttr>())
+ RetAttrs |= llvm::Attribute::NoAlias;
+ }
+
+ if (CodeGenOpts.OptimizeSize)
+ FuncAttrs |= llvm::Attribute::OptimizeForSize;
+ if (CodeGenOpts.DisableRedZone)
+ FuncAttrs |= llvm::Attribute::NoRedZone;
+ if (CodeGenOpts.NoImplicitFloat)
+ FuncAttrs |= llvm::Attribute::NoImplicitFloat;
+
+ QualType RetTy = FI.getReturnType();
+ unsigned Index = 1;
+ const ABIArgInfo &RetAI = FI.getReturnInfo();
+ switch (RetAI.getKind()) {
+ case ABIArgInfo::Extend:
+ if (RetTy->hasSignedIntegerRepresentation())
+ RetAttrs |= llvm::Attribute::SExt;
+ else if (RetTy->hasUnsignedIntegerRepresentation())
+ RetAttrs |= llvm::Attribute::ZExt;
+ break;
+ case ABIArgInfo::Direct:
+ case ABIArgInfo::Ignore:
+ break;
+
+ case ABIArgInfo::Indirect:
+ PAL.push_back(llvm::AttributeWithIndex::get(Index,
+ llvm::Attribute::StructRet));
+ ++Index;
+ // sret disables readnone and readonly
+ FuncAttrs &= ~(llvm::Attribute::ReadOnly |
+ llvm::Attribute::ReadNone);
+ break;
+
+ case ABIArgInfo::Expand:
+ assert(0 && "Invalid ABI kind for return argument");
+ }
+
+ if (RetAttrs)
+ PAL.push_back(llvm::AttributeWithIndex::get(0, RetAttrs));
+
+ // FIXME: RegParm should be reduced in case of global register variable.
+ signed RegParm = FI.getRegParm();
+ if (!RegParm)
+ RegParm = CodeGenOpts.NumRegisterParameters;
+
+ unsigned PointerWidth = getContext().Target.getPointerWidth(0);
+ for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
+ ie = FI.arg_end(); it != ie; ++it) {
+ QualType ParamType = it->type;
+ const ABIArgInfo &AI = it->info;
+ unsigned Attributes = 0;
+
+ // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
+ // have the corresponding parameter variable. It doesn't make
+ // sense to do it here because parameters are so messed up.
+ switch (AI.getKind()) {
+ case ABIArgInfo::Extend:
+ if (ParamType->isSignedIntegerType())
+ Attributes |= llvm::Attribute::SExt;
+ else if (ParamType->isUnsignedIntegerType())
+ Attributes |= llvm::Attribute::ZExt;
+ // FALL THROUGH
+ case ABIArgInfo::Direct:
+ if (RegParm > 0 &&
+ (ParamType->isIntegerType() || ParamType->isPointerType())) {
+ RegParm -=
+ (Context.getTypeSize(ParamType) + PointerWidth - 1) / PointerWidth;
+ if (RegParm >= 0)
+ Attributes |= llvm::Attribute::InReg;
+ }
+ // FIXME: handle sseregparm someday...
+
+ if (const llvm::StructType *STy =
+ dyn_cast<llvm::StructType>(AI.getCoerceToType()))
+ Index += STy->getNumElements()-1; // 1 will be added below.
+ break;
+
+ case ABIArgInfo::Indirect:
+ if (AI.getIndirectByVal())
+ Attributes |= llvm::Attribute::ByVal;
+
+ Attributes |=
+ llvm::Attribute::constructAlignmentFromInt(AI.getIndirectAlign());
+ // byval disables readnone and readonly.
+ FuncAttrs &= ~(llvm::Attribute::ReadOnly |
+ llvm::Attribute::ReadNone);
+ break;
+
+ case ABIArgInfo::Ignore:
+ // Skip increment, no matching LLVM parameter.
+ continue;
+
+ case ABIArgInfo::Expand: {
+ std::vector<const llvm::Type*> Tys;
+ // FIXME: This is rather inefficient. Do we ever actually need to do
+ // anything here? The result should be just reconstructed on the other
+ // side, so extension should be a non-issue.
+ getTypes().GetExpandedTypes(ParamType, Tys, false);
+ Index += Tys.size();
+ continue;
+ }
+ }
+
+ if (Attributes)
+ PAL.push_back(llvm::AttributeWithIndex::get(Index, Attributes));
+ ++Index;
+ }
+ if (FuncAttrs)
+ PAL.push_back(llvm::AttributeWithIndex::get(~0, FuncAttrs));
+}
+
+void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
+ llvm::Function *Fn,
+ const FunctionArgList &Args) {
+ // If this is an implicit-return-zero function, go ahead and
+ // initialize the return value. TODO: it might be nice to have
+ // a more general mechanism for this that didn't require synthesized
+ // return statements.
+ if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
+ if (FD->hasImplicitReturnZero()) {
+ QualType RetTy = FD->getResultType().getUnqualifiedType();
+ const llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
+ llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
+ Builder.CreateStore(Zero, ReturnValue);
+ }
+ }
+
+ // FIXME: We no longer need the types from FunctionArgList; lift up and
+ // simplify.
+
+ // Emit allocs for param decls. Give the LLVM Argument nodes names.
+ llvm::Function::arg_iterator AI = Fn->arg_begin();
+
+ // Name the struct return argument.
+ if (CGM.ReturnTypeUsesSRet(FI)) {
+ AI->setName("agg.result");
+ ++AI;
+ }
+
+ assert(FI.arg_size() == Args.size() &&
+ "Mismatch between function signature & arguments.");
+ CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
+ for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
+ i != e; ++i, ++info_it) {
+ const VarDecl *Arg = i->first;
+ QualType Ty = info_it->type;
+ const ABIArgInfo &ArgI = info_it->info;
+
+ switch (ArgI.getKind()) {
+ case ABIArgInfo::Indirect: {
+ llvm::Value *V = AI;
+
+ if (hasAggregateLLVMType(Ty)) {
+ // Aggregates and complex variables are accessed by reference. All we
+ // need to do is realign the value, if requested
+ if (ArgI.getIndirectRealign()) {
+ llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
+
+ // Copy from the incoming argument pointer to the temporary with the
+ // appropriate alignment.
+ //
+ // FIXME: We should have a common utility for generating an aggregate
+ // copy.
+ const llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
+ CharUnits Size = getContext().getTypeSizeInChars(Ty);
+ Builder.CreateMemCpy(Builder.CreateBitCast(AlignedTemp, I8PtrTy),
+ Builder.CreateBitCast(V, I8PtrTy),
+ llvm::ConstantInt::get(IntPtrTy,
+ Size.getQuantity()),
+ ArgI.getIndirectAlign(),
+ false);
+ V = AlignedTemp;
+ }
+ } else {
+ // Load scalar value from indirect argument.
+ CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
+ V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty);
+ if (!getContext().typesAreCompatible(Ty, Arg->getType())) {
+ // This must be a promotion, for something like
+ // "void a(x) short x; {..."
+ V = EmitScalarConversion(V, Ty, Arg->getType());
+ }
+ }
+ EmitParmDecl(*Arg, V);
+ break;
+ }
+
+ case ABIArgInfo::Extend:
+ case ABIArgInfo::Direct: {
+ // If we have the trivial case, handle it with no muss and fuss.
+ if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
+ ArgI.getCoerceToType() == ConvertType(Ty) &&
+ ArgI.getDirectOffset() == 0) {
+ assert(AI != Fn->arg_end() && "Argument mismatch!");
+ llvm::Value *V = AI;
+
+ if (Arg->getType().isRestrictQualified())
+ AI->addAttr(llvm::Attribute::NoAlias);
+
+ if (!getContext().typesAreCompatible(Ty, Arg->getType())) {
+ // This must be a promotion, for something like
+ // "void a(x) short x; {..."
+ V = EmitScalarConversion(V, Ty, Arg->getType());
+ }
+ EmitParmDecl(*Arg, V);
+ break;
+ }
+
+ llvm::AllocaInst *Alloca = CreateMemTemp(Ty, "coerce");
+
+ // The alignment we need to use is the max of the requested alignment for
+ // the argument plus the alignment required by our access code below.
+ unsigned AlignmentToUse =
+ CGM.getTargetData().getABITypeAlignment(ArgI.getCoerceToType());
+ AlignmentToUse = std::max(AlignmentToUse,
+ (unsigned)getContext().getDeclAlign(Arg).getQuantity());
+
+ Alloca->setAlignment(AlignmentToUse);
+ llvm::Value *V = Alloca;
+ llvm::Value *Ptr = V; // Pointer to store into.
+
+ // If the value is offset in memory, apply the offset now.
+ if (unsigned Offs = ArgI.getDirectOffset()) {
+ Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
+ Ptr = Builder.CreateConstGEP1_32(Ptr, Offs);
+ Ptr = Builder.CreateBitCast(Ptr,
+ llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
+ }
+
+ // If the coerce-to type is a first class aggregate, we flatten it and
+ // pass the elements. Either way is semantically identical, but fast-isel
+ // and the optimizer generally likes scalar values better than FCAs.
+ if (const llvm::StructType *STy =
+ dyn_cast<llvm::StructType>(ArgI.getCoerceToType())) {
+ Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
+
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+ assert(AI != Fn->arg_end() && "Argument mismatch!");
+ AI->setName(Arg->getName() + ".coerce" + llvm::Twine(i));
+ llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i);
+ Builder.CreateStore(AI++, EltPtr);
+ }
+ } else {
+ // Simple case, just do a coerced store of the argument into the alloca.
+ assert(AI != Fn->arg_end() && "Argument mismatch!");
+ AI->setName(Arg->getName() + ".coerce");
+ CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this);
+ }
+
+
+ // Match to what EmitParmDecl is expecting for this type.
+ if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
+ V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty);
+ if (!getContext().typesAreCompatible(Ty, Arg->getType())) {
+ // This must be a promotion, for something like
+ // "void a(x) short x; {..."
+ V = EmitScalarConversion(V, Ty, Arg->getType());
+ }
+ }
+ EmitParmDecl(*Arg, V);
+ continue; // Skip ++AI increment, already done.
+ }
+
+ case ABIArgInfo::Expand: {
+ // If this structure was expanded into multiple arguments then
+ // we need to create a temporary and reconstruct it from the
+ // arguments.
+ llvm::Value *Temp = CreateMemTemp(Ty, Arg->getName() + ".addr");
+ llvm::Function::arg_iterator End =
+ ExpandTypeFromArgs(Ty, MakeAddrLValue(Temp, Ty), AI);
+ EmitParmDecl(*Arg, Temp);
+
+ // Name the arguments used in expansion and increment AI.
+ unsigned Index = 0;
+ for (; AI != End; ++AI, ++Index)
+ AI->setName(Arg->getName() + "." + llvm::Twine(Index));
+ continue;
+ }
+
+ case ABIArgInfo::Ignore:
+ // Initialize the local variable appropriately.
+ if (hasAggregateLLVMType(Ty))
+ EmitParmDecl(*Arg, CreateMemTemp(Ty));
+ else
+ EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())));
+
+ // Skip increment, no matching LLVM parameter.
+ continue;
+ }
+
+ ++AI;
+ }
+ assert(AI == Fn->arg_end() && "Argument mismatch!");
+}
+
+void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI) {
+ // Functions with no result always return void.
+ if (ReturnValue == 0) {
+ Builder.CreateRetVoid();
+ return;
+ }
+
+ llvm::DebugLoc RetDbgLoc;
+ llvm::Value *RV = 0;
+ QualType RetTy = FI.getReturnType();
+ const ABIArgInfo &RetAI = FI.getReturnInfo();
+
+ switch (RetAI.getKind()) {
+ case ABIArgInfo::Indirect: {
+ unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
+ if (RetTy->isAnyComplexType()) {
+ ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false);
+ StoreComplexToAddr(RT, CurFn->arg_begin(), false);
+ } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
+ // Do nothing; aggregrates get evaluated directly into the destination.
+ } else {
+ EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(),
+ false, Alignment, RetTy);
+ }
+ break;
+ }
+
+ case ABIArgInfo::Extend:
+ case ABIArgInfo::Direct:
+ if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
+ RetAI.getDirectOffset() == 0) {
+ // The internal return value temp always will have pointer-to-return-type
+ // type, just do a load.
+
+ // If the instruction right before the insertion point is a store to the
+ // return value, we can elide the load, zap the store, and usually zap the
+ // alloca.
+ llvm::BasicBlock *InsertBB = Builder.GetInsertBlock();
+ llvm::StoreInst *SI = 0;
+ if (InsertBB->empty() ||
+ !(SI = dyn_cast<llvm::StoreInst>(&InsertBB->back())) ||
+ SI->getPointerOperand() != ReturnValue || SI->isVolatile()) {
+ RV = Builder.CreateLoad(ReturnValue);
+ } else {
+ // Get the stored value and nuke the now-dead store.
+ RetDbgLoc = SI->getDebugLoc();
+ RV = SI->getValueOperand();
+ SI->eraseFromParent();
+
+ // If that was the only use of the return value, nuke it as well now.
+ if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
+ cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
+ ReturnValue = 0;
+ }
+ }
+ } else {
+ llvm::Value *V = ReturnValue;
+ // If the value is offset in memory, apply the offset now.
+ if (unsigned Offs = RetAI.getDirectOffset()) {
+ V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
+ V = Builder.CreateConstGEP1_32(V, Offs);
+ V = Builder.CreateBitCast(V,
+ llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
+ }
+
+ RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
+ }
+ break;
+
+ case ABIArgInfo::Ignore:
+ break;
+
+ case ABIArgInfo::Expand:
+ assert(0 && "Invalid ABI kind for return argument");
+ }
+
+ llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid();
+ if (!RetDbgLoc.isUnknown())
+ Ret->setDebugLoc(RetDbgLoc);
+}
+
+RValue CodeGenFunction::EmitDelegateCallArg(const VarDecl *Param) {
+ // StartFunction converted the ABI-lowered parameter(s) into a
+ // local alloca. We need to turn that into an r-value suitable
+ // for EmitCall.
+ llvm::Value *Local = GetAddrOfLocalVar(Param);
+
+ QualType ArgType = Param->getType();
+
+ // For the most part, we just need to load the alloca, except:
+ // 1) aggregate r-values are actually pointers to temporaries, and
+ // 2) references to aggregates are pointers directly to the aggregate.
+ // I don't know why references to non-aggregates are different here.
+ if (const ReferenceType *RefType = ArgType->getAs<ReferenceType>()) {
+ if (hasAggregateLLVMType(RefType->getPointeeType()))
+ return RValue::getAggregate(Local);
+
+ // Locals which are references to scalars are represented
+ // with allocas holding the pointer.
+ return RValue::get(Builder.CreateLoad(Local));
+ }
+
+ if (ArgType->isAnyComplexType())
+ return RValue::getComplex(LoadComplexFromAddr(Local, /*volatile*/ false));
+
+ if (hasAggregateLLVMType(ArgType))
+ return RValue::getAggregate(Local);
+
+ unsigned Alignment = getContext().getDeclAlign(Param).getQuantity();
+ return RValue::get(EmitLoadOfScalar(Local, false, Alignment, ArgType));
+}
+
+RValue CodeGenFunction::EmitCallArg(const Expr *E, QualType ArgType) {
+ if (ArgType->isReferenceType())
+ return EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
+
+ return EmitAnyExprToTemp(E);
+}
+
+/// Emits a call or invoke instruction to the given function, depending
+/// on the current state of the EH stack.
+llvm::CallSite
+CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
+ llvm::Value * const *ArgBegin,
+ llvm::Value * const *ArgEnd,
+ const llvm::Twine &Name) {
+ llvm::BasicBlock *InvokeDest = getInvokeDest();
+ if (!InvokeDest)
+ return Builder.CreateCall(Callee, ArgBegin, ArgEnd, Name);
+
+ llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
+ llvm::InvokeInst *Invoke = Builder.CreateInvoke(Callee, ContBB, InvokeDest,
+ ArgBegin, ArgEnd, Name);
+ EmitBlock(ContBB);
+ return Invoke;
+}
+
+RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
+ llvm::Value *Callee,
+ ReturnValueSlot ReturnValue,
+ const CallArgList &CallArgs,
+ const Decl *TargetDecl,
+ llvm::Instruction **callOrInvoke) {
+ // FIXME: We no longer need the types from CallArgs; lift up and simplify.
+ llvm::SmallVector<llvm::Value*, 16> Args;
+
+ // Handle struct-return functions by passing a pointer to the
+ // location that we would like to return into.
+ QualType RetTy = CallInfo.getReturnType();
+ const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
+
+
+ // If the call returns a temporary with struct return, create a temporary
+ // alloca to hold the result, unless one is given to us.
+ if (CGM.ReturnTypeUsesSRet(CallInfo)) {
+ llvm::Value *Value = ReturnValue.getValue();
+ if (!Value)
+ Value = CreateMemTemp(RetTy);
+ Args.push_back(Value);
+ }
+
+ assert(CallInfo.arg_size() == CallArgs.size() &&
+ "Mismatch between function signature & arguments.");
+ CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
+ for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
+ I != E; ++I, ++info_it) {
+ const ABIArgInfo &ArgInfo = info_it->info;
+ RValue RV = I->first;
+
+ unsigned Alignment =
+ getContext().getTypeAlignInChars(I->second).getQuantity();
+ switch (ArgInfo.getKind()) {
+ case ABIArgInfo::Indirect: {
+ if (RV.isScalar() || RV.isComplex()) {
+ // Make a temporary alloca to pass the argument.
+ Args.push_back(CreateMemTemp(I->second));
+ if (RV.isScalar())
+ EmitStoreOfScalar(RV.getScalarVal(), Args.back(), false,
+ Alignment, I->second);
+ else
+ StoreComplexToAddr(RV.getComplexVal(), Args.back(), false);
+ } else {
+ Args.push_back(RV.getAggregateAddr());
+ }
+ break;
+ }
+
+ case ABIArgInfo::Ignore:
+ break;
+
+ case ABIArgInfo::Extend:
+ case ABIArgInfo::Direct: {
+ if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
+ ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
+ ArgInfo.getDirectOffset() == 0) {
+ if (RV.isScalar())
+ Args.push_back(RV.getScalarVal());
+ else
+ Args.push_back(Builder.CreateLoad(RV.getAggregateAddr()));
+ break;
+ }
+
+ // FIXME: Avoid the conversion through memory if possible.
+ llvm::Value *SrcPtr;
+ if (RV.isScalar()) {
+ SrcPtr = CreateMemTemp(I->second, "coerce");
+ EmitStoreOfScalar(RV.getScalarVal(), SrcPtr, false, Alignment,
+ I->second);
+ } else if (RV.isComplex()) {
+ SrcPtr = CreateMemTemp(I->second, "coerce");
+ StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false);
+ } else
+ SrcPtr = RV.getAggregateAddr();
+
+ // If the value is offset in memory, apply the offset now.
+ if (unsigned Offs = ArgInfo.getDirectOffset()) {
+ SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
+ SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs);
+ SrcPtr = Builder.CreateBitCast(SrcPtr,
+ llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
+
+ }
+
+ // If the coerce-to type is a first class aggregate, we flatten it and
+ // pass the elements. Either way is semantically identical, but fast-isel
+ // and the optimizer generally likes scalar values better than FCAs.
+ if (const llvm::StructType *STy =
+ dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) {
+ SrcPtr = Builder.CreateBitCast(SrcPtr,
+ llvm::PointerType::getUnqual(STy));
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+ llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i);
+ llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
+ // We don't know what we're loading from.
+ LI->setAlignment(1);
+ Args.push_back(LI);
+ }
+ } else {
+ // In the simple case, just pass the coerced loaded value.
+ Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
+ *this));
+ }
+
+ break;
+ }
+
+ case ABIArgInfo::Expand:
+ ExpandTypeToArgs(I->second, RV, Args);
+ break;
+ }
+ }
+
+ // If the callee is a bitcast of a function to a varargs pointer to function
+ // type, check to see if we can remove the bitcast. This handles some cases
+ // with unprototyped functions.
+ if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
+ if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
+ const llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
+ const llvm::FunctionType *CurFT =
+ cast<llvm::FunctionType>(CurPT->getElementType());
+ const llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
+
+ if (CE->getOpcode() == llvm::Instruction::BitCast &&
+ ActualFT->getReturnType() == CurFT->getReturnType() &&
+ ActualFT->getNumParams() == CurFT->getNumParams() &&
+ ActualFT->getNumParams() == Args.size()) {
+ bool ArgsMatch = true;
+ for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
+ if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
+ ArgsMatch = false;
+ break;
+ }
+
+ // Strip the cast if we can get away with it. This is a nice cleanup,
+ // but also allows us to inline the function at -O0 if it is marked
+ // always_inline.
+ if (ArgsMatch)
+ Callee = CalleeF;
+ }
+ }
+
+
+ unsigned CallingConv;
+ CodeGen::AttributeListType AttributeList;
+ CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, CallingConv);
+ llvm::AttrListPtr Attrs = llvm::AttrListPtr::get(AttributeList.begin(),
+ AttributeList.end());
+
+ llvm::BasicBlock *InvokeDest = 0;
+ if (!(Attrs.getFnAttributes() & llvm::Attribute::NoUnwind))
+ InvokeDest = getInvokeDest();
+
+ llvm::CallSite CS;
+ if (!InvokeDest) {
+ CS = Builder.CreateCall(Callee, Args.data(), Args.data()+Args.size());
+ } else {
+ llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
+ CS = Builder.CreateInvoke(Callee, Cont, InvokeDest,
+ Args.data(), Args.data()+Args.size());
+ EmitBlock(Cont);
+ }
+ if (callOrInvoke)
+ *callOrInvoke = CS.getInstruction();
+
+ CS.setAttributes(Attrs);
+ CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
+
+ // If the call doesn't return, finish the basic block and clear the
+ // insertion point; this allows the rest of IRgen to discard
+ // unreachable code.
+ if (CS.doesNotReturn()) {
+ Builder.CreateUnreachable();
+ Builder.ClearInsertionPoint();
+
+ // FIXME: For now, emit a dummy basic block because expr emitters in
+ // generally are not ready to handle emitting expressions at unreachable
+ // points.
+ EnsureInsertPoint();
+
+ // Return a reasonable RValue.
+ return GetUndefRValue(RetTy);
+ }
+
+ llvm::Instruction *CI = CS.getInstruction();
+ if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
+ CI->setName("call");
+
+ switch (RetAI.getKind()) {
+ case ABIArgInfo::Indirect: {
+ unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
+ if (RetTy->isAnyComplexType())
+ return RValue::getComplex(LoadComplexFromAddr(Args[0], false));
+ if (CodeGenFunction::hasAggregateLLVMType(RetTy))
+ return RValue::getAggregate(Args[0]);
+ return RValue::get(EmitLoadOfScalar(Args[0], false, Alignment, RetTy));
+ }
+
+ case ABIArgInfo::Ignore:
+ // If we are ignoring an argument that had a result, make sure to
+ // construct the appropriate return value for our caller.
+ return GetUndefRValue(RetTy);
+
+ case ABIArgInfo::Extend:
+ case ABIArgInfo::Direct: {
+ if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
+ RetAI.getDirectOffset() == 0) {
+ if (RetTy->isAnyComplexType()) {
+ llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
+ llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
+ return RValue::getComplex(std::make_pair(Real, Imag));
+ }
+ if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
+ llvm::Value *DestPtr = ReturnValue.getValue();
+ bool DestIsVolatile = ReturnValue.isVolatile();
+
+ if (!DestPtr) {
+ DestPtr = CreateMemTemp(RetTy, "agg.tmp");
+ DestIsVolatile = false;
+ }
+ Builder.CreateStore(CI, DestPtr, DestIsVolatile);
+ return RValue::getAggregate(DestPtr);
+ }
+ return RValue::get(CI);
+ }
+
+ llvm::Value *DestPtr = ReturnValue.getValue();
+ bool DestIsVolatile = ReturnValue.isVolatile();
+
+ if (!DestPtr) {
+ DestPtr = CreateMemTemp(RetTy, "coerce");
+ DestIsVolatile = false;
+ }
+
+ // If the value is offset in memory, apply the offset now.
+ llvm::Value *StorePtr = DestPtr;
+ if (unsigned Offs = RetAI.getDirectOffset()) {
+ StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
+ StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs);
+ StorePtr = Builder.CreateBitCast(StorePtr,
+ llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
+ }
+ CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
+
+ unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
+ if (RetTy->isAnyComplexType())
+ return RValue::getComplex(LoadComplexFromAddr(DestPtr, false));
+ if (CodeGenFunction::hasAggregateLLVMType(RetTy))
+ return RValue::getAggregate(DestPtr);
+ return RValue::get(EmitLoadOfScalar(DestPtr, false, Alignment, RetTy));
+ }
+
+ case ABIArgInfo::Expand:
+ assert(0 && "Invalid ABI kind for return argument");
+ }
+
+ assert(0 && "Unhandled ABIArgInfo::Kind");
+ return RValue::get(0);
+}
+
+/* VarArg handling */
+
+llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
+ return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
+}
OpenPOWER on IntegriCloud