summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/CodeGen/CGCall.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/CodeGen/CGCall.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGCall.cpp482
1 files changed, 359 insertions, 123 deletions
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGCall.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGCall.cpp
index 73cee3c..3d1e143 100644
--- a/contrib/llvm/tools/clang/lib/CodeGen/CGCall.cpp
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGCall.cpp
@@ -13,26 +13,22 @@
//===----------------------------------------------------------------------===//
#include "CGCall.h"
+#include "ABIInfo.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
-#include "clang/CodeGen/CodeGenOptions.h"
+#include "clang/Frontend/CodeGenOptions.h"
#include "llvm/Attributes.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Target/TargetData.h"
-
-#include "ABIInfo.h"
-
using namespace clang;
using namespace CodeGen;
/***/
-// FIXME: Use iterator and sidestep silly type array creation.
-
static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
switch (CC) {
default: return llvm::CallingConv::C;
@@ -65,29 +61,31 @@ static CanQualType GetReturnType(QualType RetTy) {
}
const CGFunctionInfo &
-CodeGenTypes::getFunctionInfo(CanQual<FunctionNoProtoType> FTNP) {
+CodeGenTypes::getFunctionInfo(CanQual<FunctionNoProtoType> FTNP,
+ bool IsRecursive) {
return getFunctionInfo(FTNP->getResultType().getUnqualifiedType(),
llvm::SmallVector<CanQualType, 16>(),
- FTNP->getExtInfo());
+ FTNP->getExtInfo(), IsRecursive);
}
/// \param Args - contains any initial parameters besides those
/// in the formal type
static const CGFunctionInfo &getFunctionInfo(CodeGenTypes &CGT,
llvm::SmallVectorImpl<CanQualType> &ArgTys,
- CanQual<FunctionProtoType> FTP) {
+ CanQual<FunctionProtoType> FTP,
+ bool IsRecursive = false) {
// FIXME: Kill copy.
for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
ArgTys.push_back(FTP->getArgType(i));
CanQualType ResTy = FTP->getResultType().getUnqualifiedType();
- return CGT.getFunctionInfo(ResTy, ArgTys,
- FTP->getExtInfo());
+ return CGT.getFunctionInfo(ResTy, ArgTys, FTP->getExtInfo(), IsRecursive);
}
const CGFunctionInfo &
-CodeGenTypes::getFunctionInfo(CanQual<FunctionProtoType> FTP) {
+CodeGenTypes::getFunctionInfo(CanQual<FunctionProtoType> FTP,
+ bool IsRecursive) {
llvm::SmallVector<CanQualType, 16> ArgTys;
- return ::getFunctionInfo(*this, ArgTys, FTP);
+ return ::getFunctionInfo(*this, ArgTys, FTP, IsRecursive);
}
static CallingConv getCallingConventionForDecl(const Decl *D) {
@@ -220,7 +218,8 @@ const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy,
const CGFunctionInfo &CodeGenTypes::getFunctionInfo(CanQualType ResTy,
const llvm::SmallVectorImpl<CanQualType> &ArgTys,
- const FunctionType::ExtInfo &Info) {
+ const FunctionType::ExtInfo &Info,
+ bool IsRecursive) {
#ifndef NDEBUG
for (llvm::SmallVectorImpl<CanQualType>::const_iterator
I = ArgTys.begin(), E = ArgTys.end(); I != E; ++I)
@@ -240,35 +239,65 @@ const CGFunctionInfo &CodeGenTypes::getFunctionInfo(CanQualType ResTy,
return *FI;
// Construct the function info.
- FI = new CGFunctionInfo(CC, Info.getNoReturn(), Info.getRegParm(), ResTy, ArgTys);
+ FI = new CGFunctionInfo(CC, Info.getNoReturn(), Info.getRegParm(), ResTy,
+ ArgTys.data(), ArgTys.size());
FunctionInfos.InsertNode(FI, InsertPos);
+ // ABI lowering wants to know what our preferred type for the argument is in
+ // various situations, pass it in.
+ llvm::SmallVector<const llvm::Type *, 8> PreferredArgTypes;
+ for (llvm::SmallVectorImpl<CanQualType>::const_iterator
+ I = ArgTys.begin(), E = ArgTys.end(); I != E; ++I) {
+ // If this is being called from the guts of the ConvertType loop, make sure
+ // to call ConvertTypeRecursive so we don't get into issues with cyclic
+ // pointer type structures.
+ PreferredArgTypes.push_back(ConvertTypeRecursive(*I));
+ }
+
// Compute ABI information.
- getABIInfo().computeInfo(*FI, getContext(), TheModule.getContext());
-
+ getABIInfo().computeInfo(*FI, getContext(), TheModule.getContext(),
+ PreferredArgTypes.data(), PreferredArgTypes.size());
+
+ // If this is a top-level call and ConvertTypeRecursive hit unresolved pointer
+ // types, resolve them now. These pointers may point to this function, which
+ // we *just* filled in the FunctionInfo for.
+ if (!IsRecursive && !PointersToResolve.empty()) {
+ // Use PATypeHolder's so that our preferred types don't dangle under
+ // refinement.
+ llvm::SmallVector<llvm::PATypeHolder, 8> Handles(PreferredArgTypes.begin(),
+ PreferredArgTypes.end());
+ HandleLateResolvedPointers();
+ PreferredArgTypes.clear();
+ PreferredArgTypes.append(Handles.begin(), Handles.end());
+ }
+
+
return *FI;
}
CGFunctionInfo::CGFunctionInfo(unsigned _CallingConvention,
- bool _NoReturn,
- unsigned _RegParm,
+ bool _NoReturn, unsigned _RegParm,
CanQualType ResTy,
- const llvm::SmallVectorImpl<CanQualType> &ArgTys)
+ const CanQualType *ArgTys,
+ unsigned NumArgTys)
: CallingConvention(_CallingConvention),
EffectiveCallingConvention(_CallingConvention),
NoReturn(_NoReturn), RegParm(_RegParm)
{
- NumArgs = ArgTys.size();
- Args = new ArgInfo[1 + NumArgs];
+ NumArgs = NumArgTys;
+
+ // FIXME: Coallocate with the CGFunctionInfo object.
+ Args = new ArgInfo[1 + NumArgTys];
Args[0].type = ResTy;
- for (unsigned i = 0; i < NumArgs; ++i)
+ for (unsigned i = 0; i != NumArgTys; ++i)
Args[1 + i].type = ArgTys[i];
}
/***/
void CodeGenTypes::GetExpandedTypes(QualType Ty,
- std::vector<const llvm::Type*> &ArgTys) {
+ std::vector<const llvm::Type*> &ArgTys,
+ bool IsRecursive) {
const RecordType *RT = Ty->getAsStructureType();
assert(RT && "Can only expand structure types.");
const RecordDecl *RD = RT->getDecl();
@@ -283,9 +312,9 @@ void CodeGenTypes::GetExpandedTypes(QualType Ty,
QualType FT = FD->getType();
if (CodeGenFunction::hasAggregateLLVMType(FT)) {
- GetExpandedTypes(FT, ArgTys);
+ GetExpandedTypes(FT, ArgTys, IsRecursive);
} else {
- ArgTys.push_back(ConvertType(FT));
+ ArgTys.push_back(ConvertType(FT, IsRecursive));
}
}
}
@@ -345,6 +374,71 @@ CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
}
}
+/// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
+/// accessing some number of bytes out of it, try to gep into the struct to get
+/// at its inner goodness. Dive as deep as possible without entering an element
+/// with an in-memory size smaller than DstSize.
+static llvm::Value *
+EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
+ const llvm::StructType *SrcSTy,
+ uint64_t DstSize, CodeGenFunction &CGF) {
+ // We can't dive into a zero-element struct.
+ if (SrcSTy->getNumElements() == 0) return SrcPtr;
+
+ const llvm::Type *FirstElt = SrcSTy->getElementType(0);
+
+ // If the first elt is at least as large as what we're looking for, or if the
+ // first element is the same size as the whole struct, we can enter it.
+ uint64_t FirstEltSize =
+ CGF.CGM.getTargetData().getTypeAllocSize(FirstElt);
+ if (FirstEltSize < DstSize &&
+ FirstEltSize < CGF.CGM.getTargetData().getTypeAllocSize(SrcSTy))
+ return SrcPtr;
+
+ // GEP into the first element.
+ SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive");
+
+ // If the first element is a struct, recurse.
+ const llvm::Type *SrcTy =
+ cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
+ if (const llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
+ return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
+
+ return SrcPtr;
+}
+
+/// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
+/// are either integers or pointers. This does a truncation of the value if it
+/// is too large or a zero extension if it is too small.
+static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
+ const llvm::Type *Ty,
+ CodeGenFunction &CGF) {
+ if (Val->getType() == Ty)
+ return Val;
+
+ if (isa<llvm::PointerType>(Val->getType())) {
+ // If this is Pointer->Pointer avoid conversion to and from int.
+ if (isa<llvm::PointerType>(Ty))
+ return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
+
+ // Convert the pointer to an integer so we can play with its width.
+ Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
+ }
+
+ const llvm::Type *DestIntTy = Ty;
+ if (isa<llvm::PointerType>(DestIntTy))
+ DestIntTy = CGF.IntPtrTy;
+
+ if (Val->getType() != DestIntTy)
+ Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
+
+ if (isa<llvm::PointerType>(Ty))
+ Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
+ return Val;
+}
+
+
+
/// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
/// a pointer to an object of type \arg Ty.
///
@@ -356,9 +450,28 @@ static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
CodeGenFunction &CGF) {
const llvm::Type *SrcTy =
cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
- uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
+
+ // If SrcTy and Ty are the same, just do a load.
+ if (SrcTy == Ty)
+ return CGF.Builder.CreateLoad(SrcPtr);
+
uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(Ty);
+
+ if (const llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
+ SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
+ SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
+ }
+
+ uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
+ // If the source and destination are integer or pointer types, just do an
+ // extension or truncation to the desired type.
+ if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
+ (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
+ llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
+ return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
+ }
+
// If load is legal, just bitcast the src pointer.
if (SrcSize >= DstSize) {
// Generally SrcSize is never greater than DstSize, since this means we are
@@ -373,18 +486,18 @@ static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
// FIXME: Use better alignment / avoid requiring aligned load.
Load->setAlignment(1);
return Load;
- } else {
- // Otherwise do coercion through memory. This is stupid, but
- // simple.
- llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
- llvm::Value *Casted =
- CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(SrcTy));
- llvm::StoreInst *Store =
- CGF.Builder.CreateStore(CGF.Builder.CreateLoad(SrcPtr), Casted);
- // FIXME: Use better alignment / avoid requiring aligned store.
- Store->setAlignment(1);
- return CGF.Builder.CreateLoad(Tmp);
}
+
+ // Otherwise do coercion through memory. This is stupid, but
+ // simple.
+ llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
+ llvm::Value *Casted =
+ CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(SrcTy));
+ llvm::StoreInst *Store =
+ CGF.Builder.CreateStore(CGF.Builder.CreateLoad(SrcPtr), Casted);
+ // FIXME: Use better alignment / avoid requiring aligned store.
+ Store->setAlignment(1);
+ return CGF.Builder.CreateLoad(Tmp);
}
/// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
@@ -399,8 +512,27 @@ static void CreateCoercedStore(llvm::Value *Src,
const llvm::Type *SrcTy = Src->getType();
const llvm::Type *DstTy =
cast<llvm::PointerType>(DstPtr->getType())->getElementType();
-
+ if (SrcTy == DstTy) {
+ CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
+ return;
+ }
+
uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
+
+ if (const llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
+ DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
+ DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
+ }
+
+ // If the source and destination are integer or pointer types, just do an
+ // extension or truncation to the desired type.
+ if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
+ (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
+ Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
+ CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
+ return;
+ }
+
uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(DstTy);
// If store is legal, just bitcast the src pointer.
@@ -432,10 +564,28 @@ static void CreateCoercedStore(llvm::Value *Src,
/***/
-bool CodeGenModule::ReturnTypeUsesSret(const CGFunctionInfo &FI) {
+bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
return FI.getReturnInfo().isIndirect();
}
+bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
+ if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
+ switch (BT->getKind()) {
+ default:
+ return false;
+ case BuiltinType::Float:
+ return getContext().Target.useObjCFPRetForRealType(TargetInfo::Float);
+ case BuiltinType::Double:
+ return getContext().Target.useObjCFPRetForRealType(TargetInfo::Double);
+ case BuiltinType::LongDouble:
+ return getContext().Target.useObjCFPRetForRealType(
+ TargetInfo::LongDouble);
+ }
+ }
+
+ return false;
+}
+
const llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
const CGFunctionInfo &FI = getFunctionInfo(GD);
@@ -445,11 +595,12 @@ const llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
cast<FunctionDecl>(GD.getDecl())->getType()->getAs<FunctionProtoType>())
Variadic = FPT->isVariadic();
- return GetFunctionType(FI, Variadic);
+ return GetFunctionType(FI, Variadic, false);
}
const llvm::FunctionType *
-CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI, bool IsVariadic) {
+CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI, bool IsVariadic,
+ bool IsRecursive) {
std::vector<const llvm::Type*> ArgTys;
const llvm::Type *ResultType = 0;
@@ -462,13 +613,13 @@ CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI, bool IsVariadic) {
case ABIArgInfo::Extend:
case ABIArgInfo::Direct:
- ResultType = ConvertType(RetTy);
+ ResultType = ConvertType(RetTy, IsRecursive);
break;
case ABIArgInfo::Indirect: {
assert(!RetAI.getIndirectAlign() && "Align unused on indirect return.");
ResultType = llvm::Type::getVoidTy(getLLVMContext());
- const llvm::Type *STy = ConvertType(RetTy);
+ const llvm::Type *STy = ConvertType(RetTy, IsRecursive);
ArgTys.push_back(llvm::PointerType::get(STy, RetTy.getAddressSpace()));
break;
}
@@ -490,24 +641,34 @@ CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI, bool IsVariadic) {
case ABIArgInfo::Ignore:
break;
- case ABIArgInfo::Coerce:
- ArgTys.push_back(AI.getCoerceToType());
+ case ABIArgInfo::Coerce: {
+ // If the coerce-to type is a first class aggregate, flatten it. Either
+ // way is semantically identical, but fast-isel and the optimizer
+ // generally likes scalar values better than FCAs.
+ const llvm::Type *ArgTy = AI.getCoerceToType();
+ if (const llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgTy)) {
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
+ ArgTys.push_back(STy->getElementType(i));
+ } else {
+ ArgTys.push_back(ArgTy);
+ }
break;
+ }
case ABIArgInfo::Indirect: {
// indirect arguments are always on the stack, which is addr space #0.
- const llvm::Type *LTy = ConvertTypeForMem(it->type);
+ const llvm::Type *LTy = ConvertTypeForMem(it->type, IsRecursive);
ArgTys.push_back(llvm::PointerType::getUnqual(LTy));
break;
}
case ABIArgInfo::Extend:
case ABIArgInfo::Direct:
- ArgTys.push_back(ConvertType(it->type));
+ ArgTys.push_back(ConvertType(it->type, IsRecursive));
break;
case ABIArgInfo::Expand:
- GetExpandedTypes(it->type, ArgTys);
+ GetExpandedTypes(it->type, ArgTys, IsRecursive);
break;
}
}
@@ -515,28 +676,12 @@ CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI, bool IsVariadic) {
return llvm::FunctionType::get(ResultType, ArgTys, IsVariadic);
}
-static bool HasIncompleteReturnTypeOrArgumentTypes(const FunctionProtoType *T) {
- if (const TagType *TT = T->getResultType()->getAs<TagType>()) {
- if (!TT->getDecl()->isDefinition())
- return true;
- }
-
- for (unsigned i = 0, e = T->getNumArgs(); i != e; ++i) {
- if (const TagType *TT = T->getArgType(i)->getAs<TagType>()) {
- if (!TT->getDecl()->isDefinition())
- return true;
- }
- }
-
- return false;
-}
-
const llvm::Type *
CodeGenTypes::GetFunctionTypeForVTable(const CXXMethodDecl *MD) {
const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
- if (!HasIncompleteReturnTypeOrArgumentTypes(FPT))
- return GetFunctionType(getFunctionInfo(MD), FPT->isVariadic());
+ if (!VerifyFuncTypeComplete(FPT))
+ return GetFunctionType(getFunctionInfo(MD), FPT->isVariadic(), false);
return llvm::OpaqueType::get(getLLVMContext());
}
@@ -557,6 +702,12 @@ void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
if (TargetDecl) {
if (TargetDecl->hasAttr<NoThrowAttr>())
FuncAttrs |= llvm::Attribute::NoUnwind;
+ else if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
+ const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
+ if (FPT && FPT->hasEmptyExceptionSpec())
+ FuncAttrs |= llvm::Attribute::NoUnwind;
+ }
+
if (TargetDecl->hasAttr<NoReturnAttr>())
FuncAttrs |= llvm::Attribute::NoReturn;
if (TargetDecl->hasAttr<ConstAttr>())
@@ -626,7 +777,12 @@ void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
switch (AI.getKind()) {
case ABIArgInfo::Coerce:
- break;
+ if (const llvm::StructType *STy =
+ dyn_cast<llvm::StructType>(AI.getCoerceToType()))
+ Index += STy->getNumElements();
+ else
+ ++Index;
+ continue; // Skip index increment.
case ABIArgInfo::Indirect:
if (AI.getIndirectByVal())
@@ -666,7 +822,7 @@ void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
// FIXME: This is rather inefficient. Do we ever actually need to do
// anything here? The result should be just reconstructed on the other
// side, so extension should be a non-issue.
- getTypes().GetExpandedTypes(ParamType, Tys);
+ getTypes().GetExpandedTypes(ParamType, Tys, false);
Index += Tys.size();
continue;
}
@@ -687,7 +843,7 @@ void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
// initialize the return value. TODO: it might be nice to have
// a more general mechanism for this that didn't require synthesized
// return statements.
- if (const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
+ if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
if (FD->hasImplicitReturnZero()) {
QualType RetTy = FD->getResultType().getUnqualifiedType();
const llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
@@ -703,7 +859,7 @@ void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
llvm::Function::arg_iterator AI = Fn->arg_begin();
// Name the struct return argument.
- if (CGM.ReturnTypeUsesSret(FI)) {
+ if (CGM.ReturnTypeUsesSRet(FI)) {
AI->setName("agg.result");
++AI;
}
@@ -719,7 +875,7 @@ void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
switch (ArgI.getKind()) {
case ABIArgInfo::Indirect: {
- llvm::Value* V = AI;
+ llvm::Value *V = AI;
if (hasAggregateLLVMType(Ty)) {
// Do nothing, aggregates and complex variables are accessed by
// reference.
@@ -739,7 +895,7 @@ void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
case ABIArgInfo::Extend:
case ABIArgInfo::Direct: {
assert(AI != Fn->arg_end() && "Argument mismatch!");
- llvm::Value* V = AI;
+ llvm::Value *V = AI;
if (hasAggregateLLVMType(Ty)) {
// Create a temporary alloca to hold the argument; the rest of
// codegen expects to access aggregates & complex values by
@@ -789,12 +945,35 @@ void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
continue;
case ABIArgInfo::Coerce: {
- assert(AI != Fn->arg_end() && "Argument mismatch!");
// FIXME: This is very wasteful; EmitParmDecl is just going to drop the
// result in a new alloca anyway, so we could just store into that
// directly if we broke the abstraction down more.
- llvm::Value *V = CreateMemTemp(Ty, "coerce");
- CreateCoercedStore(AI, V, /*DestIsVolatile=*/false, *this);
+ llvm::AllocaInst *Alloca = CreateMemTemp(Ty, "coerce");
+ Alloca->setAlignment(getContext().getDeclAlign(Arg).getQuantity());
+ llvm::Value *V = Alloca;
+
+ // If the coerce-to type is a first class aggregate, we flatten it and
+ // pass the elements. Either way is semantically identical, but fast-isel
+ // and the optimizer generally likes scalar values better than FCAs.
+ if (const llvm::StructType *STy =
+ dyn_cast<llvm::StructType>(ArgI.getCoerceToType())) {
+ llvm::Value *Ptr = V;
+ Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
+
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+ assert(AI != Fn->arg_end() && "Argument mismatch!");
+ AI->setName(Arg->getName() + ".coerce" + llvm::Twine(i));
+ llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i);
+ Builder.CreateStore(AI++, EltPtr);
+ }
+ } else {
+ // Simple case, just do a coerced store of the argument into the alloca.
+ assert(AI != Fn->arg_end() && "Argument mismatch!");
+ AI->setName(Arg->getName() + ".coerce");
+ CreateCoercedStore(AI++, V, /*DestIsVolatile=*/false, *this);
+ }
+
+
// Match to what EmitParmDecl is expecting for this type.
if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
V = EmitLoadOfScalar(V, false, Ty);
@@ -805,7 +984,7 @@ void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
}
}
EmitParmDecl(*Arg, V);
- break;
+ continue; // Skip ++AI increment, already done.
}
}
@@ -814,52 +993,73 @@ void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
assert(AI == Fn->arg_end() && "Argument mismatch!");
}
-void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
- llvm::Value *ReturnValue) {
- llvm::Value *RV = 0;
-
+void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI) {
// Functions with no result always return void.
- if (ReturnValue) {
- QualType RetTy = FI.getReturnType();
- const ABIArgInfo &RetAI = FI.getReturnInfo();
-
- switch (RetAI.getKind()) {
- case ABIArgInfo::Indirect:
- if (RetTy->isAnyComplexType()) {
- ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false);
- StoreComplexToAddr(RT, CurFn->arg_begin(), false);
- } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
- // Do nothing; aggregrates get evaluated directly into the destination.
- } else {
- EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(),
- false, RetTy);
- }
- break;
-
- case ABIArgInfo::Extend:
- case ABIArgInfo::Direct:
- // The internal return value temp always will have
- // pointer-to-return-type type.
- RV = Builder.CreateLoad(ReturnValue);
- break;
+ if (ReturnValue == 0) {
+ Builder.CreateRetVoid();
+ return;
+ }
- case ABIArgInfo::Ignore:
- break;
+ llvm::MDNode *RetDbgInfo = 0;
+ llvm::Value *RV = 0;
+ QualType RetTy = FI.getReturnType();
+ const ABIArgInfo &RetAI = FI.getReturnInfo();
- case ABIArgInfo::Coerce:
- RV = CreateCoercedLoad(ReturnValue, RetAI.getCoerceToType(), *this);
- break;
+ switch (RetAI.getKind()) {
+ case ABIArgInfo::Indirect:
+ if (RetTy->isAnyComplexType()) {
+ ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false);
+ StoreComplexToAddr(RT, CurFn->arg_begin(), false);
+ } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
+ // Do nothing; aggregrates get evaluated directly into the destination.
+ } else {
+ EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(),
+ false, RetTy);
+ }
+ break;
- case ABIArgInfo::Expand:
- assert(0 && "Invalid ABI kind for return argument");
+ case ABIArgInfo::Extend:
+ case ABIArgInfo::Direct: {
+ // The internal return value temp always will have pointer-to-return-type
+ // type, just do a load.
+
+ // If the instruction right before the insertion point is a store to the
+ // return value, we can elide the load, zap the store, and usually zap the
+ // alloca.
+ llvm::BasicBlock *InsertBB = Builder.GetInsertBlock();
+ llvm::StoreInst *SI = 0;
+ if (InsertBB->empty() ||
+ !(SI = dyn_cast<llvm::StoreInst>(&InsertBB->back())) ||
+ SI->getPointerOperand() != ReturnValue || SI->isVolatile()) {
+ RV = Builder.CreateLoad(ReturnValue);
+ } else {
+ // Get the stored value and nuke the now-dead store.
+ RetDbgInfo = SI->getDbgMetadata();
+ RV = SI->getValueOperand();
+ SI->eraseFromParent();
+
+ // If that was the only use of the return value, nuke it as well now.
+ if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
+ cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
+ ReturnValue = 0;
+ }
}
+ break;
}
+ case ABIArgInfo::Ignore:
+ break;
- if (RV) {
- Builder.CreateRet(RV);
- } else {
- Builder.CreateRetVoid();
+ case ABIArgInfo::Coerce:
+ RV = CreateCoercedLoad(ReturnValue, RetAI.getCoerceToType(), *this);
+ break;
+
+ case ABIArgInfo::Expand:
+ assert(0 && "Invalid ABI kind for return argument");
}
+
+ llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid();
+ if (RetDbgInfo)
+ Ret->setDbgMetadata(RetDbgInfo);
}
RValue CodeGenFunction::EmitDelegateCallArg(const VarDecl *Param) {
@@ -894,11 +1094,29 @@ RValue CodeGenFunction::EmitDelegateCallArg(const VarDecl *Param) {
RValue CodeGenFunction::EmitCallArg(const Expr *E, QualType ArgType) {
if (ArgType->isReferenceType())
- return EmitReferenceBindingToExpr(E);
+ return EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
return EmitAnyExprToTemp(E);
}
+/// Emits a call or invoke instruction to the given function, depending
+/// on the current state of the EH stack.
+llvm::CallSite
+CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
+ llvm::Value * const *ArgBegin,
+ llvm::Value * const *ArgEnd,
+ const llvm::Twine &Name) {
+ llvm::BasicBlock *InvokeDest = getInvokeDest();
+ if (!InvokeDest)
+ return Builder.CreateCall(Callee, ArgBegin, ArgEnd, Name);
+
+ llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
+ llvm::InvokeInst *Invoke = Builder.CreateInvoke(Callee, ContBB, InvokeDest,
+ ArgBegin, ArgEnd, Name);
+ EmitBlock(ContBB);
+ return Invoke;
+}
+
RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
llvm::Value *Callee,
ReturnValueSlot ReturnValue,
@@ -916,7 +1134,7 @@ RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
// If the call returns a temporary with struct return, create a temporary
// alloca to hold the result, unless one is given to us.
- if (CGM.ReturnTypeUsesSret(CallInfo)) {
+ if (CGM.ReturnTypeUsesSRet(CallInfo)) {
llvm::Value *Value = ReturnValue.getValue();
if (!Value)
Value = CreateMemTemp(RetTy);
@@ -973,8 +1191,24 @@ RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false);
} else
SrcPtr = RV.getAggregateAddr();
- Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
- *this));
+
+ // If the coerce-to type is a first class aggregate, we flatten it and
+ // pass the elements. Either way is semantically identical, but fast-isel
+ // and the optimizer generally likes scalar values better than FCAs.
+ if (const llvm::StructType *STy =
+ dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) {
+ SrcPtr = Builder.CreateBitCast(SrcPtr,
+ llvm::PointerType::getUnqual(STy));
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+ llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i);
+ Args.push_back(Builder.CreateLoad(EltPtr));
+ }
+ } else {
+ // In the simple case, just pass the coerced loaded value.
+ Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
+ *this));
+ }
+
break;
}
@@ -1014,15 +1248,18 @@ RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
}
- llvm::BasicBlock *InvokeDest = getInvokeDest();
unsigned CallingConv;
CodeGen::AttributeListType AttributeList;
CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, CallingConv);
llvm::AttrListPtr Attrs = llvm::AttrListPtr::get(AttributeList.begin(),
AttributeList.end());
+ llvm::BasicBlock *InvokeDest = 0;
+ if (!(Attrs.getFnAttributes() & llvm::Attribute::NoUnwind))
+ InvokeDest = getInvokeDest();
+
llvm::CallSite CS;
- if (!InvokeDest || (Attrs.getFnAttributes() & llvm::Attribute::NoUnwind)) {
+ if (!InvokeDest) {
CS = Builder.CreateCall(Callee, Args.data(), Args.data()+Args.size());
} else {
llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
@@ -1030,9 +1267,8 @@ RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
Args.data(), Args.data()+Args.size());
EmitBlock(Cont);
}
- if (callOrInvoke) {
+ if (callOrInvoke)
*callOrInvoke = CS.getInstruction();
- }
CS.setAttributes(Attrs);
CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
OpenPOWER on IntegriCloud