diff options
Diffstat (limited to 'contrib/llvm/tools/clang/lib/CodeGen/CGBuiltin.cpp')
-rw-r--r-- | contrib/llvm/tools/clang/lib/CodeGen/CGBuiltin.cpp | 1170 |
1 files changed, 1170 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGBuiltin.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGBuiltin.cpp new file mode 100644 index 0000000..dd505c2 --- /dev/null +++ b/contrib/llvm/tools/clang/lib/CodeGen/CGBuiltin.cpp @@ -0,0 +1,1170 @@ +//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This contains code to emit Builtin calls as LLVM code. +// +//===----------------------------------------------------------------------===// + +#include "TargetInfo.h" +#include "CodeGenFunction.h" +#include "CodeGenModule.h" +#include "clang/Basic/TargetInfo.h" +#include "clang/AST/APValue.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/Decl.h" +#include "clang/Basic/TargetBuiltins.h" +#include "llvm/Intrinsics.h" +#include "llvm/Target/TargetData.h" +using namespace clang; +using namespace CodeGen; +using namespace llvm; + +static void EmitMemoryBarrier(CodeGenFunction &CGF, + bool LoadLoad, bool LoadStore, + bool StoreLoad, bool StoreStore, + bool Device) { + Value *True = llvm::ConstantInt::getTrue(CGF.getLLVMContext()); + Value *False = llvm::ConstantInt::getFalse(CGF.getLLVMContext()); + Value *C[5] = { LoadLoad ? True : False, + LoadStore ? True : False, + StoreLoad ? True : False, + StoreStore ? True : False, + Device ? True : False }; + CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(Intrinsic::memory_barrier), + C, C + 5); +} + +// The atomic builtins are also full memory barriers. This is a utility for +// wrapping a call to the builtins with memory barriers. +static Value *EmitCallWithBarrier(CodeGenFunction &CGF, Value *Fn, + Value **ArgBegin, Value **ArgEnd) { + // FIXME: We need a target hook for whether this applies to device memory or + // not. + bool Device = true; + + // Create barriers both before and after the call. + EmitMemoryBarrier(CGF, true, true, true, true, Device); + Value *Result = CGF.Builder.CreateCall(Fn, ArgBegin, ArgEnd); + EmitMemoryBarrier(CGF, true, true, true, true, Device); + return Result; +} + +/// Utility to insert an atomic instruction based on Instrinsic::ID +/// and the expression node. +static RValue EmitBinaryAtomic(CodeGenFunction &CGF, + Intrinsic::ID Id, const CallExpr *E) { + Value *Args[2] = { CGF.EmitScalarExpr(E->getArg(0)), + CGF.EmitScalarExpr(E->getArg(1)) }; + const llvm::Type *ResType[2]; + ResType[0] = CGF.ConvertType(E->getType()); + ResType[1] = CGF.ConvertType(E->getArg(0)->getType()); + Value *AtomF = CGF.CGM.getIntrinsic(Id, ResType, 2); + return RValue::get(EmitCallWithBarrier(CGF, AtomF, Args, Args + 2)); +} + +/// Utility to insert an atomic instruction based Instrinsic::ID and +// the expression node, where the return value is the result of the +// operation. +static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF, + Intrinsic::ID Id, const CallExpr *E, + Instruction::BinaryOps Op) { + const llvm::Type *ResType[2]; + ResType[0] = CGF.ConvertType(E->getType()); + ResType[1] = CGF.ConvertType(E->getArg(0)->getType()); + Value *AtomF = CGF.CGM.getIntrinsic(Id, ResType, 2); + Value *Args[2] = { CGF.EmitScalarExpr(E->getArg(0)), + CGF.EmitScalarExpr(E->getArg(1)) }; + Value *Result = EmitCallWithBarrier(CGF, AtomF, Args, Args + 2); + return RValue::get(CGF.Builder.CreateBinOp(Op, Result, Args[1])); +} + +static llvm::ConstantInt *getInt32(llvm::LLVMContext &Context, int32_t Value) { + return llvm::ConstantInt::get(llvm::Type::getInt32Ty(Context), Value); +} + + +/// EmitFAbs - Emit a call to fabs/fabsf/fabsl, depending on the type of ValTy, +/// which must be a scalar floating point type. +static Value *EmitFAbs(CodeGenFunction &CGF, Value *V, QualType ValTy) { + const BuiltinType *ValTyP = ValTy->getAs<BuiltinType>(); + assert(ValTyP && "isn't scalar fp type!"); + + StringRef FnName; + switch (ValTyP->getKind()) { + default: assert(0 && "Isn't a scalar fp type!"); + case BuiltinType::Float: FnName = "fabsf"; break; + case BuiltinType::Double: FnName = "fabs"; break; + case BuiltinType::LongDouble: FnName = "fabsl"; break; + } + + // The prototype is something that takes and returns whatever V's type is. + std::vector<const llvm::Type*> Args; + Args.push_back(V->getType()); + llvm::FunctionType *FT = llvm::FunctionType::get(V->getType(), Args, false); + llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(FT, FnName); + + return CGF.Builder.CreateCall(Fn, V, "abs"); +} + +RValue CodeGenFunction::EmitBuiltinExpr(const FunctionDecl *FD, + unsigned BuiltinID, const CallExpr *E) { + // See if we can constant fold this builtin. If so, don't emit it at all. + Expr::EvalResult Result; + if (E->Evaluate(Result, CGM.getContext())) { + if (Result.Val.isInt()) + return RValue::get(llvm::ConstantInt::get(VMContext, + Result.Val.getInt())); + else if (Result.Val.isFloat()) + return RValue::get(ConstantFP::get(VMContext, Result.Val.getFloat())); + } + + switch (BuiltinID) { + default: break; // Handle intrinsics and libm functions below. + case Builtin::BI__builtin___CFStringMakeConstantString: + case Builtin::BI__builtin___NSStringMakeConstantString: + return RValue::get(CGM.EmitConstantExpr(E, E->getType(), 0)); + case Builtin::BI__builtin_stdarg_start: + case Builtin::BI__builtin_va_start: + case Builtin::BI__builtin_va_end: { + Value *ArgValue = EmitVAListRef(E->getArg(0)); + const llvm::Type *DestType = llvm::Type::getInt8PtrTy(VMContext); + if (ArgValue->getType() != DestType) + ArgValue = Builder.CreateBitCast(ArgValue, DestType, + ArgValue->getName().data()); + + Intrinsic::ID inst = (BuiltinID == Builtin::BI__builtin_va_end) ? + Intrinsic::vaend : Intrinsic::vastart; + return RValue::get(Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue)); + } + case Builtin::BI__builtin_va_copy: { + Value *DstPtr = EmitVAListRef(E->getArg(0)); + Value *SrcPtr = EmitVAListRef(E->getArg(1)); + + const llvm::Type *Type = llvm::Type::getInt8PtrTy(VMContext); + + DstPtr = Builder.CreateBitCast(DstPtr, Type); + SrcPtr = Builder.CreateBitCast(SrcPtr, Type); + return RValue::get(Builder.CreateCall2(CGM.getIntrinsic(Intrinsic::vacopy), + DstPtr, SrcPtr)); + } + case Builtin::BI__builtin_abs: { + Value *ArgValue = EmitScalarExpr(E->getArg(0)); + + Value *NegOp = Builder.CreateNeg(ArgValue, "neg"); + Value *CmpResult = + Builder.CreateICmpSGE(ArgValue, + llvm::Constant::getNullValue(ArgValue->getType()), + "abscond"); + Value *Result = + Builder.CreateSelect(CmpResult, ArgValue, NegOp, "abs"); + + return RValue::get(Result); + } + case Builtin::BI__builtin_ctz: + case Builtin::BI__builtin_ctzl: + case Builtin::BI__builtin_ctzll: { + Value *ArgValue = EmitScalarExpr(E->getArg(0)); + + const llvm::Type *ArgType = ArgValue->getType(); + Value *F = CGM.getIntrinsic(Intrinsic::cttz, &ArgType, 1); + + const llvm::Type *ResultType = ConvertType(E->getType()); + Value *Result = Builder.CreateCall(F, ArgValue, "tmp"); + if (Result->getType() != ResultType) + Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, + "cast"); + return RValue::get(Result); + } + case Builtin::BI__builtin_clz: + case Builtin::BI__builtin_clzl: + case Builtin::BI__builtin_clzll: { + Value *ArgValue = EmitScalarExpr(E->getArg(0)); + + const llvm::Type *ArgType = ArgValue->getType(); + Value *F = CGM.getIntrinsic(Intrinsic::ctlz, &ArgType, 1); + + const llvm::Type *ResultType = ConvertType(E->getType()); + Value *Result = Builder.CreateCall(F, ArgValue, "tmp"); + if (Result->getType() != ResultType) + Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, + "cast"); + return RValue::get(Result); + } + case Builtin::BI__builtin_ffs: + case Builtin::BI__builtin_ffsl: + case Builtin::BI__builtin_ffsll: { + // ffs(x) -> x ? cttz(x) + 1 : 0 + Value *ArgValue = EmitScalarExpr(E->getArg(0)); + + const llvm::Type *ArgType = ArgValue->getType(); + Value *F = CGM.getIntrinsic(Intrinsic::cttz, &ArgType, 1); + + const llvm::Type *ResultType = ConvertType(E->getType()); + Value *Tmp = Builder.CreateAdd(Builder.CreateCall(F, ArgValue, "tmp"), + llvm::ConstantInt::get(ArgType, 1), "tmp"); + Value *Zero = llvm::Constant::getNullValue(ArgType); + Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero"); + Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs"); + if (Result->getType() != ResultType) + Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, + "cast"); + return RValue::get(Result); + } + case Builtin::BI__builtin_parity: + case Builtin::BI__builtin_parityl: + case Builtin::BI__builtin_parityll: { + // parity(x) -> ctpop(x) & 1 + Value *ArgValue = EmitScalarExpr(E->getArg(0)); + + const llvm::Type *ArgType = ArgValue->getType(); + Value *F = CGM.getIntrinsic(Intrinsic::ctpop, &ArgType, 1); + + const llvm::Type *ResultType = ConvertType(E->getType()); + Value *Tmp = Builder.CreateCall(F, ArgValue, "tmp"); + Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1), + "tmp"); + if (Result->getType() != ResultType) + Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, + "cast"); + return RValue::get(Result); + } + case Builtin::BI__builtin_popcount: + case Builtin::BI__builtin_popcountl: + case Builtin::BI__builtin_popcountll: { + Value *ArgValue = EmitScalarExpr(E->getArg(0)); + + const llvm::Type *ArgType = ArgValue->getType(); + Value *F = CGM.getIntrinsic(Intrinsic::ctpop, &ArgType, 1); + + const llvm::Type *ResultType = ConvertType(E->getType()); + Value *Result = Builder.CreateCall(F, ArgValue, "tmp"); + if (Result->getType() != ResultType) + Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, + "cast"); + return RValue::get(Result); + } + case Builtin::BI__builtin_expect: + // FIXME: pass expect through to LLVM + return RValue::get(EmitScalarExpr(E->getArg(0))); + case Builtin::BI__builtin_bswap32: + case Builtin::BI__builtin_bswap64: { + Value *ArgValue = EmitScalarExpr(E->getArg(0)); + const llvm::Type *ArgType = ArgValue->getType(); + Value *F = CGM.getIntrinsic(Intrinsic::bswap, &ArgType, 1); + return RValue::get(Builder.CreateCall(F, ArgValue, "tmp")); + } + case Builtin::BI__builtin_object_size: { + // We pass this builtin onto the optimizer so that it can + // figure out the object size in more complex cases. + const llvm::Type *ResType[] = { + ConvertType(E->getType()) + }; + + // LLVM only supports 0 and 2, make sure that we pass along that + // as a boolean. + Value *Ty = EmitScalarExpr(E->getArg(1)); + ConstantInt *CI = dyn_cast<ConstantInt>(Ty); + assert(CI); + uint64_t val = CI->getZExtValue(); + CI = ConstantInt::get(llvm::Type::getInt1Ty(VMContext), (val & 0x2) >> 1); + + Value *F = CGM.getIntrinsic(Intrinsic::objectsize, ResType, 1); + return RValue::get(Builder.CreateCall2(F, + EmitScalarExpr(E->getArg(0)), + CI)); + } + case Builtin::BI__builtin_prefetch: { + Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0)); + // FIXME: Technically these constants should of type 'int', yes? + RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) : + llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0); + Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : + llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 3); + Value *F = CGM.getIntrinsic(Intrinsic::prefetch, 0, 0); + return RValue::get(Builder.CreateCall3(F, Address, RW, Locality)); + } + case Builtin::BI__builtin_trap: { + Value *F = CGM.getIntrinsic(Intrinsic::trap, 0, 0); + return RValue::get(Builder.CreateCall(F)); + } + case Builtin::BI__builtin_unreachable: { + if (CatchUndefined && HaveInsertPoint()) + EmitBranch(getTrapBB()); + Value *V = Builder.CreateUnreachable(); + Builder.ClearInsertionPoint(); + return RValue::get(V); + } + + case Builtin::BI__builtin_powi: + case Builtin::BI__builtin_powif: + case Builtin::BI__builtin_powil: { + Value *Base = EmitScalarExpr(E->getArg(0)); + Value *Exponent = EmitScalarExpr(E->getArg(1)); + const llvm::Type *ArgType = Base->getType(); + Value *F = CGM.getIntrinsic(Intrinsic::powi, &ArgType, 1); + return RValue::get(Builder.CreateCall2(F, Base, Exponent, "tmp")); + } + + case Builtin::BI__builtin_isgreater: + case Builtin::BI__builtin_isgreaterequal: + case Builtin::BI__builtin_isless: + case Builtin::BI__builtin_islessequal: + case Builtin::BI__builtin_islessgreater: + case Builtin::BI__builtin_isunordered: { + // Ordered comparisons: we know the arguments to these are matching scalar + // floating point values. + Value *LHS = EmitScalarExpr(E->getArg(0)); + Value *RHS = EmitScalarExpr(E->getArg(1)); + + switch (BuiltinID) { + default: assert(0 && "Unknown ordered comparison"); + case Builtin::BI__builtin_isgreater: + LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp"); + break; + case Builtin::BI__builtin_isgreaterequal: + LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp"); + break; + case Builtin::BI__builtin_isless: + LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp"); + break; + case Builtin::BI__builtin_islessequal: + LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp"); + break; + case Builtin::BI__builtin_islessgreater: + LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp"); + break; + case Builtin::BI__builtin_isunordered: + LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp"); + break; + } + // ZExt bool to int type. + return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType()), + "tmp")); + } + case Builtin::BI__builtin_isnan: { + Value *V = EmitScalarExpr(E->getArg(0)); + V = Builder.CreateFCmpUNO(V, V, "cmp"); + return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()), "tmp")); + } + + case Builtin::BI__builtin_isinf: { + // isinf(x) --> fabs(x) == infinity + Value *V = EmitScalarExpr(E->getArg(0)); + V = EmitFAbs(*this, V, E->getArg(0)->getType()); + + V = Builder.CreateFCmpOEQ(V, ConstantFP::getInfinity(V->getType()),"isinf"); + return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()), "tmp")); + } + + // TODO: BI__builtin_isinf_sign + // isinf_sign(x) -> isinf(x) ? (signbit(x) ? -1 : 1) : 0 + + case Builtin::BI__builtin_isnormal: { + // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min + Value *V = EmitScalarExpr(E->getArg(0)); + Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq"); + + Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType()); + Value *IsLessThanInf = + Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf"); + APFloat Smallest = APFloat::getSmallestNormalized( + getContext().getFloatTypeSemantics(E->getArg(0)->getType())); + Value *IsNormal = + Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest), + "isnormal"); + V = Builder.CreateAnd(Eq, IsLessThanInf, "and"); + V = Builder.CreateAnd(V, IsNormal, "and"); + return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); + } + + case Builtin::BI__builtin_isfinite: { + // isfinite(x) --> x == x && fabs(x) != infinity; } + Value *V = EmitScalarExpr(E->getArg(0)); + Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq"); + + Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType()); + Value *IsNotInf = + Builder.CreateFCmpUNE(Abs, ConstantFP::getInfinity(V->getType()),"isinf"); + + V = Builder.CreateAnd(Eq, IsNotInf, "and"); + return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); + } + + case Builtin::BIalloca: + case Builtin::BI__builtin_alloca: { + // FIXME: LLVM IR Should allow alloca with an i64 size! + Value *Size = EmitScalarExpr(E->getArg(0)); + Size = Builder.CreateIntCast(Size, llvm::Type::getInt32Ty(VMContext), false, "tmp"); + return RValue::get(Builder.CreateAlloca(llvm::Type::getInt8Ty(VMContext), Size, "tmp")); + } + case Builtin::BIbzero: + case Builtin::BI__builtin_bzero: { + Value *Address = EmitScalarExpr(E->getArg(0)); + Value *SizeVal = EmitScalarExpr(E->getArg(1)); + Builder.CreateCall5(CGM.getMemSetFn(Address->getType(), SizeVal->getType()), + Address, + llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext), 0), + SizeVal, + llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1), + llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext), 0)); + return RValue::get(Address); + } + case Builtin::BImemcpy: + case Builtin::BI__builtin_memcpy: { + Value *Address = EmitScalarExpr(E->getArg(0)); + Value *SrcAddr = EmitScalarExpr(E->getArg(1)); + Value *SizeVal = EmitScalarExpr(E->getArg(2)); + Builder.CreateCall5(CGM.getMemCpyFn(Address->getType(), SrcAddr->getType(), + SizeVal->getType()), + Address, SrcAddr, SizeVal, + llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1), + llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext), 0)); + return RValue::get(Address); + } + case Builtin::BImemmove: + case Builtin::BI__builtin_memmove: { + Value *Address = EmitScalarExpr(E->getArg(0)); + Value *SrcAddr = EmitScalarExpr(E->getArg(1)); + Value *SizeVal = EmitScalarExpr(E->getArg(2)); + Builder.CreateCall5(CGM.getMemMoveFn(Address->getType(), SrcAddr->getType(), + SizeVal->getType()), + Address, SrcAddr, SizeVal, + llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1), + llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext), 0)); + return RValue::get(Address); + } + case Builtin::BImemset: + case Builtin::BI__builtin_memset: { + Value *Address = EmitScalarExpr(E->getArg(0)); + Value *SizeVal = EmitScalarExpr(E->getArg(2)); + Builder.CreateCall5(CGM.getMemSetFn(Address->getType(), SizeVal->getType()), + Address, + Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), + llvm::Type::getInt8Ty(VMContext)), + SizeVal, + llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1), + llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext), 0)); + return RValue::get(Address); + } + case Builtin::BI__builtin_dwarf_cfa: { + // The offset in bytes from the first argument to the CFA. + // + // Why on earth is this in the frontend? Is there any reason at + // all that the backend can't reasonably determine this while + // lowering llvm.eh.dwarf.cfa()? + // + // TODO: If there's a satisfactory reason, add a target hook for + // this instead of hard-coding 0, which is correct for most targets. + int32_t Offset = 0; + + Value *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa, 0, 0); + return RValue::get(Builder.CreateCall(F, getInt32(VMContext, Offset))); + } + case Builtin::BI__builtin_return_address: { + Value *Depth = EmitScalarExpr(E->getArg(0)); + Depth = Builder.CreateIntCast(Depth, + llvm::Type::getInt32Ty(VMContext), + false, "tmp"); + Value *F = CGM.getIntrinsic(Intrinsic::returnaddress, 0, 0); + return RValue::get(Builder.CreateCall(F, Depth)); + } + case Builtin::BI__builtin_frame_address: { + Value *Depth = EmitScalarExpr(E->getArg(0)); + Depth = Builder.CreateIntCast(Depth, + llvm::Type::getInt32Ty(VMContext), + false, "tmp"); + Value *F = CGM.getIntrinsic(Intrinsic::frameaddress, 0, 0); + return RValue::get(Builder.CreateCall(F, Depth)); + } + case Builtin::BI__builtin_extract_return_addr: { + Value *Address = EmitScalarExpr(E->getArg(0)); + Value *Result = getTargetHooks().decodeReturnAddress(*this, Address); + return RValue::get(Result); + } + case Builtin::BI__builtin_frob_return_addr: { + Value *Address = EmitScalarExpr(E->getArg(0)); + Value *Result = getTargetHooks().encodeReturnAddress(*this, Address); + return RValue::get(Result); + } + case Builtin::BI__builtin_dwarf_sp_column: { + const llvm::IntegerType *Ty + = cast<llvm::IntegerType>(ConvertType(E->getType())); + int Column = getTargetHooks().getDwarfEHStackPointer(CGM); + if (Column == -1) { + CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column"); + return RValue::get(llvm::UndefValue::get(Ty)); + } + return RValue::get(llvm::ConstantInt::get(Ty, Column, true)); + } + case Builtin::BI__builtin_init_dwarf_reg_size_table: { + Value *Address = EmitScalarExpr(E->getArg(0)); + if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address)) + CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table"); + return RValue::get(llvm::UndefValue::get(ConvertType(E->getType()))); + } + case Builtin::BI__builtin_eh_return: { + Value *Int = EmitScalarExpr(E->getArg(0)); + Value *Ptr = EmitScalarExpr(E->getArg(1)); + + const llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType()); + assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) && + "LLVM's __builtin_eh_return only supports 32- and 64-bit variants"); + Value *F = CGM.getIntrinsic(IntTy->getBitWidth() == 32 + ? Intrinsic::eh_return_i32 + : Intrinsic::eh_return_i64, + 0, 0); + Builder.CreateCall2(F, Int, Ptr); + Value *V = Builder.CreateUnreachable(); + Builder.ClearInsertionPoint(); + return RValue::get(V); + } + case Builtin::BI__builtin_unwind_init: { + Value *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init, 0, 0); + return RValue::get(Builder.CreateCall(F)); + } + case Builtin::BI__builtin_extend_pointer: { + // Extends a pointer to the size of an _Unwind_Word, which is + // uint64_t on all platforms. Generally this gets poked into a + // register and eventually used as an address, so if the + // addressing registers are wider than pointers and the platform + // doesn't implicitly ignore high-order bits when doing + // addressing, we need to make sure we zext / sext based on + // the platform's expectations. + // + // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html + + LLVMContext &C = CGM.getLLVMContext(); + + // Cast the pointer to intptr_t. + Value *Ptr = EmitScalarExpr(E->getArg(0)); + const llvm::IntegerType *IntPtrTy = CGM.getTargetData().getIntPtrType(C); + Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast"); + + // If that's 64 bits, we're done. + if (IntPtrTy->getBitWidth() == 64) + return RValue::get(Result); + + // Otherwise, ask the codegen data what to do. + const llvm::IntegerType *Int64Ty = llvm::IntegerType::get(C, 64); + if (getTargetHooks().extendPointerWithSExt()) + return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext")); + else + return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext")); + } +#if 0 + // FIXME: Finish/enable when LLVM backend support stabilizes + case Builtin::BI__builtin_setjmp: { + Value *Buf = EmitScalarExpr(E->getArg(0)); + // Store the frame pointer to the buffer + Value *FrameAddrF = CGM.getIntrinsic(Intrinsic::frameaddress, 0, 0); + Value *FrameAddr = + Builder.CreateCall(FrameAddrF, + Constant::getNullValue(llvm::Type::getInt32Ty(VMContext))); + Builder.CreateStore(FrameAddr, Buf); + // Call the setjmp intrinsic + Value *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp, 0, 0); + const llvm::Type *DestType = llvm::Type::getInt8PtrTy(VMContext); + Buf = Builder.CreateBitCast(Buf, DestType); + return RValue::get(Builder.CreateCall(F, Buf)); + } + case Builtin::BI__builtin_longjmp: { + Value *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp, 0, 0); + Value *Buf = EmitScalarExpr(E->getArg(0)); + const llvm::Type *DestType = llvm::Type::getInt8PtrTy(VMContext); + Buf = Builder.CreateBitCast(Buf, DestType); + return RValue::get(Builder.CreateCall(F, Buf)); + } +#endif + case Builtin::BI__sync_fetch_and_add: + case Builtin::BI__sync_fetch_and_sub: + case Builtin::BI__sync_fetch_and_or: + case Builtin::BI__sync_fetch_and_and: + case Builtin::BI__sync_fetch_and_xor: + case Builtin::BI__sync_add_and_fetch: + case Builtin::BI__sync_sub_and_fetch: + case Builtin::BI__sync_and_and_fetch: + case Builtin::BI__sync_or_and_fetch: + case Builtin::BI__sync_xor_and_fetch: + case Builtin::BI__sync_val_compare_and_swap: + case Builtin::BI__sync_bool_compare_and_swap: + case Builtin::BI__sync_lock_test_and_set: + case Builtin::BI__sync_lock_release: + assert(0 && "Shouldn't make it through sema"); + case Builtin::BI__sync_fetch_and_add_1: + case Builtin::BI__sync_fetch_and_add_2: + case Builtin::BI__sync_fetch_and_add_4: + case Builtin::BI__sync_fetch_and_add_8: + case Builtin::BI__sync_fetch_and_add_16: + return EmitBinaryAtomic(*this, Intrinsic::atomic_load_add, E); + case Builtin::BI__sync_fetch_and_sub_1: + case Builtin::BI__sync_fetch_and_sub_2: + case Builtin::BI__sync_fetch_and_sub_4: + case Builtin::BI__sync_fetch_and_sub_8: + case Builtin::BI__sync_fetch_and_sub_16: + return EmitBinaryAtomic(*this, Intrinsic::atomic_load_sub, E); + case Builtin::BI__sync_fetch_and_or_1: + case Builtin::BI__sync_fetch_and_or_2: + case Builtin::BI__sync_fetch_and_or_4: + case Builtin::BI__sync_fetch_and_or_8: + case Builtin::BI__sync_fetch_and_or_16: + return EmitBinaryAtomic(*this, Intrinsic::atomic_load_or, E); + case Builtin::BI__sync_fetch_and_and_1: + case Builtin::BI__sync_fetch_and_and_2: + case Builtin::BI__sync_fetch_and_and_4: + case Builtin::BI__sync_fetch_and_and_8: + case Builtin::BI__sync_fetch_and_and_16: + return EmitBinaryAtomic(*this, Intrinsic::atomic_load_and, E); + case Builtin::BI__sync_fetch_and_xor_1: + case Builtin::BI__sync_fetch_and_xor_2: + case Builtin::BI__sync_fetch_and_xor_4: + case Builtin::BI__sync_fetch_and_xor_8: + case Builtin::BI__sync_fetch_and_xor_16: + return EmitBinaryAtomic(*this, Intrinsic::atomic_load_xor, E); + + // Clang extensions: not overloaded yet. + case Builtin::BI__sync_fetch_and_min: + return EmitBinaryAtomic(*this, Intrinsic::atomic_load_min, E); + case Builtin::BI__sync_fetch_and_max: + return EmitBinaryAtomic(*this, Intrinsic::atomic_load_max, E); + case Builtin::BI__sync_fetch_and_umin: + return EmitBinaryAtomic(*this, Intrinsic::atomic_load_umin, E); + case Builtin::BI__sync_fetch_and_umax: + return EmitBinaryAtomic(*this, Intrinsic::atomic_load_umax, E); + + case Builtin::BI__sync_add_and_fetch_1: + case Builtin::BI__sync_add_and_fetch_2: + case Builtin::BI__sync_add_and_fetch_4: + case Builtin::BI__sync_add_and_fetch_8: + case Builtin::BI__sync_add_and_fetch_16: + return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_add, E, + llvm::Instruction::Add); + case Builtin::BI__sync_sub_and_fetch_1: + case Builtin::BI__sync_sub_and_fetch_2: + case Builtin::BI__sync_sub_and_fetch_4: + case Builtin::BI__sync_sub_and_fetch_8: + case Builtin::BI__sync_sub_and_fetch_16: + return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_sub, E, + llvm::Instruction::Sub); + case Builtin::BI__sync_and_and_fetch_1: + case Builtin::BI__sync_and_and_fetch_2: + case Builtin::BI__sync_and_and_fetch_4: + case Builtin::BI__sync_and_and_fetch_8: + case Builtin::BI__sync_and_and_fetch_16: + return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_and, E, + llvm::Instruction::And); + case Builtin::BI__sync_or_and_fetch_1: + case Builtin::BI__sync_or_and_fetch_2: + case Builtin::BI__sync_or_and_fetch_4: + case Builtin::BI__sync_or_and_fetch_8: + case Builtin::BI__sync_or_and_fetch_16: + return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_or, E, + llvm::Instruction::Or); + case Builtin::BI__sync_xor_and_fetch_1: + case Builtin::BI__sync_xor_and_fetch_2: + case Builtin::BI__sync_xor_and_fetch_4: + case Builtin::BI__sync_xor_and_fetch_8: + case Builtin::BI__sync_xor_and_fetch_16: + return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_xor, E, + llvm::Instruction::Xor); + + case Builtin::BI__sync_val_compare_and_swap_1: + case Builtin::BI__sync_val_compare_and_swap_2: + case Builtin::BI__sync_val_compare_and_swap_4: + case Builtin::BI__sync_val_compare_and_swap_8: + case Builtin::BI__sync_val_compare_and_swap_16: { + const llvm::Type *ResType[2]; + ResType[0]= ConvertType(E->getType()); + ResType[1] = ConvertType(E->getArg(0)->getType()); + Value *AtomF = CGM.getIntrinsic(Intrinsic::atomic_cmp_swap, ResType, 2); + Value *Args[3] = { EmitScalarExpr(E->getArg(0)), + EmitScalarExpr(E->getArg(1)), + EmitScalarExpr(E->getArg(2)) }; + return RValue::get(EmitCallWithBarrier(*this, AtomF, Args, Args + 3)); + } + + case Builtin::BI__sync_bool_compare_and_swap_1: + case Builtin::BI__sync_bool_compare_and_swap_2: + case Builtin::BI__sync_bool_compare_and_swap_4: + case Builtin::BI__sync_bool_compare_and_swap_8: + case Builtin::BI__sync_bool_compare_and_swap_16: { + const llvm::Type *ResType[2]; + ResType[0]= ConvertType(E->getArg(1)->getType()); + ResType[1] = llvm::PointerType::getUnqual(ResType[0]); + Value *AtomF = CGM.getIntrinsic(Intrinsic::atomic_cmp_swap, ResType, 2); + Value *OldVal = EmitScalarExpr(E->getArg(1)); + Value *Args[3] = { EmitScalarExpr(E->getArg(0)), + OldVal, + EmitScalarExpr(E->getArg(2)) }; + Value *PrevVal = EmitCallWithBarrier(*this, AtomF, Args, Args + 3); + Value *Result = Builder.CreateICmpEQ(PrevVal, OldVal); + // zext bool to int. + return RValue::get(Builder.CreateZExt(Result, ConvertType(E->getType()))); + } + + case Builtin::BI__sync_lock_test_and_set_1: + case Builtin::BI__sync_lock_test_and_set_2: + case Builtin::BI__sync_lock_test_and_set_4: + case Builtin::BI__sync_lock_test_and_set_8: + case Builtin::BI__sync_lock_test_and_set_16: + return EmitBinaryAtomic(*this, Intrinsic::atomic_swap, E); + + case Builtin::BI__sync_lock_release_1: + case Builtin::BI__sync_lock_release_2: + case Builtin::BI__sync_lock_release_4: + case Builtin::BI__sync_lock_release_8: + case Builtin::BI__sync_lock_release_16: { + Value *Ptr = EmitScalarExpr(E->getArg(0)); + const llvm::Type *ElTy = + cast<llvm::PointerType>(Ptr->getType())->getElementType(); + llvm::StoreInst *Store = + Builder.CreateStore(llvm::Constant::getNullValue(ElTy), Ptr); + Store->setVolatile(true); + return RValue::get(0); + } + + case Builtin::BI__sync_synchronize: { + // We assume like gcc appears to, that this only applies to cached memory. + EmitMemoryBarrier(*this, true, true, true, true, false); + return RValue::get(0); + } + + case Builtin::BI__builtin_llvm_memory_barrier: { + Value *C[5] = { + EmitScalarExpr(E->getArg(0)), + EmitScalarExpr(E->getArg(1)), + EmitScalarExpr(E->getArg(2)), + EmitScalarExpr(E->getArg(3)), + EmitScalarExpr(E->getArg(4)) + }; + Builder.CreateCall(CGM.getIntrinsic(Intrinsic::memory_barrier), C, C + 5); + return RValue::get(0); + } + + // Library functions with special handling. + case Builtin::BIsqrt: + case Builtin::BIsqrtf: + case Builtin::BIsqrtl: { + // TODO: there is currently no set of optimizer flags + // sufficient for us to rewrite sqrt to @llvm.sqrt. + // -fmath-errno=0 is not good enough; we need finiteness. + // We could probably precondition the call with an ult + // against 0, but is that worth the complexity? + break; + } + + case Builtin::BIpow: + case Builtin::BIpowf: + case Builtin::BIpowl: { + // Rewrite sqrt to intrinsic if allowed. + if (!FD->hasAttr<ConstAttr>()) + break; + Value *Base = EmitScalarExpr(E->getArg(0)); + Value *Exponent = EmitScalarExpr(E->getArg(1)); + const llvm::Type *ArgType = Base->getType(); + Value *F = CGM.getIntrinsic(Intrinsic::pow, &ArgType, 1); + return RValue::get(Builder.CreateCall2(F, Base, Exponent, "tmp")); + } + + case Builtin::BI__builtin_signbit: + case Builtin::BI__builtin_signbitf: + case Builtin::BI__builtin_signbitl: { + LLVMContext &C = CGM.getLLVMContext(); + + Value *Arg = EmitScalarExpr(E->getArg(0)); + const llvm::Type *ArgTy = Arg->getType(); + if (ArgTy->isPPC_FP128Ty()) + break; // FIXME: I'm not sure what the right implementation is here. + int ArgWidth = ArgTy->getPrimitiveSizeInBits(); + const llvm::Type *ArgIntTy = llvm::IntegerType::get(C, ArgWidth); + Value *BCArg = Builder.CreateBitCast(Arg, ArgIntTy); + Value *ZeroCmp = llvm::Constant::getNullValue(ArgIntTy); + Value *Result = Builder.CreateICmpSLT(BCArg, ZeroCmp); + return RValue::get(Builder.CreateZExt(Result, ConvertType(E->getType()))); + } + } + + // If this is an alias for a libm function (e.g. __builtin_sin) turn it into + // that function. + if (getContext().BuiltinInfo.isLibFunction(BuiltinID) || + getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID)) + return EmitCall(E->getCallee()->getType(), + CGM.getBuiltinLibFunction(FD, BuiltinID), + ReturnValueSlot(), + E->arg_begin(), E->arg_end()); + + // See if we have a target specific intrinsic. + const char *Name = getContext().BuiltinInfo.GetName(BuiltinID); + Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic; + if (const char *Prefix = + llvm::Triple::getArchTypePrefix(Target.getTriple().getArch())) + IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix, Name); + + if (IntrinsicID != Intrinsic::not_intrinsic) { + SmallVector<Value*, 16> Args; + + Function *F = CGM.getIntrinsic(IntrinsicID); + const llvm::FunctionType *FTy = F->getFunctionType(); + + for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) { + Value *ArgValue = EmitScalarExpr(E->getArg(i)); + + // If the intrinsic arg type is different from the builtin arg type + // we need to do a bit cast. + const llvm::Type *PTy = FTy->getParamType(i); + if (PTy != ArgValue->getType()) { + assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) && + "Must be able to losslessly bit cast to param"); + ArgValue = Builder.CreateBitCast(ArgValue, PTy); + } + + Args.push_back(ArgValue); + } + + Value *V = Builder.CreateCall(F, Args.data(), Args.data() + Args.size()); + QualType BuiltinRetType = E->getType(); + + const llvm::Type *RetTy = llvm::Type::getVoidTy(VMContext); + if (!BuiltinRetType->isVoidType()) RetTy = ConvertType(BuiltinRetType); + + if (RetTy != V->getType()) { + assert(V->getType()->canLosslesslyBitCastTo(RetTy) && + "Must be able to losslessly bit cast result type"); + V = Builder.CreateBitCast(V, RetTy); + } + + return RValue::get(V); + } + + // See if we have a target specific builtin that needs to be lowered. + if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E)) + return RValue::get(V); + + ErrorUnsupported(E, "builtin function"); + + // Unknown builtin, for now just dump it out and return undef. + if (hasAggregateLLVMType(E->getType())) + return RValue::getAggregate(CreateMemTemp(E->getType())); + return RValue::get(llvm::UndefValue::get(ConvertType(E->getType()))); +} + +Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID, + const CallExpr *E) { + switch (Target.getTriple().getArch()) { + case llvm::Triple::arm: + case llvm::Triple::thumb: + return EmitARMBuiltinExpr(BuiltinID, E); + case llvm::Triple::x86: + case llvm::Triple::x86_64: + return EmitX86BuiltinExpr(BuiltinID, E); + case llvm::Triple::ppc: + case llvm::Triple::ppc64: + return EmitPPCBuiltinExpr(BuiltinID, E); + default: + return 0; + } +} + +Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID, + const CallExpr *E) { + switch (BuiltinID) { + default: return 0; + + case ARM::BI__builtin_thread_pointer: { + Value *AtomF = CGM.getIntrinsic(Intrinsic::arm_thread_pointer, 0, 0); + return Builder.CreateCall(AtomF); + } + } +} + +Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID, + const CallExpr *E) { + + llvm::SmallVector<Value*, 4> Ops; + + for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) + Ops.push_back(EmitScalarExpr(E->getArg(i))); + + switch (BuiltinID) { + default: return 0; + case X86::BI__builtin_ia32_pslldi128: + case X86::BI__builtin_ia32_psllqi128: + case X86::BI__builtin_ia32_psllwi128: + case X86::BI__builtin_ia32_psradi128: + case X86::BI__builtin_ia32_psrawi128: + case X86::BI__builtin_ia32_psrldi128: + case X86::BI__builtin_ia32_psrlqi128: + case X86::BI__builtin_ia32_psrlwi128: { + Ops[1] = Builder.CreateZExt(Ops[1], llvm::Type::getInt64Ty(VMContext), "zext"); + const llvm::Type *Ty = llvm::VectorType::get(llvm::Type::getInt64Ty(VMContext), 2); + llvm::Value *Zero = llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0); + Ops[1] = Builder.CreateInsertElement(llvm::UndefValue::get(Ty), + Ops[1], Zero, "insert"); + Ops[1] = Builder.CreateBitCast(Ops[1], Ops[0]->getType(), "bitcast"); + const char *name = 0; + Intrinsic::ID ID = Intrinsic::not_intrinsic; + + switch (BuiltinID) { + default: assert(0 && "Unsupported shift intrinsic!"); + case X86::BI__builtin_ia32_pslldi128: + name = "pslldi"; + ID = Intrinsic::x86_sse2_psll_d; + break; + case X86::BI__builtin_ia32_psllqi128: + name = "psllqi"; + ID = Intrinsic::x86_sse2_psll_q; + break; + case X86::BI__builtin_ia32_psllwi128: + name = "psllwi"; + ID = Intrinsic::x86_sse2_psll_w; + break; + case X86::BI__builtin_ia32_psradi128: + name = "psradi"; + ID = Intrinsic::x86_sse2_psra_d; + break; + case X86::BI__builtin_ia32_psrawi128: + name = "psrawi"; + ID = Intrinsic::x86_sse2_psra_w; + break; + case X86::BI__builtin_ia32_psrldi128: + name = "psrldi"; + ID = Intrinsic::x86_sse2_psrl_d; + break; + case X86::BI__builtin_ia32_psrlqi128: + name = "psrlqi"; + ID = Intrinsic::x86_sse2_psrl_q; + break; + case X86::BI__builtin_ia32_psrlwi128: + name = "psrlwi"; + ID = Intrinsic::x86_sse2_psrl_w; + break; + } + llvm::Function *F = CGM.getIntrinsic(ID); + return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), name); + } + case X86::BI__builtin_ia32_pslldi: + case X86::BI__builtin_ia32_psllqi: + case X86::BI__builtin_ia32_psllwi: + case X86::BI__builtin_ia32_psradi: + case X86::BI__builtin_ia32_psrawi: + case X86::BI__builtin_ia32_psrldi: + case X86::BI__builtin_ia32_psrlqi: + case X86::BI__builtin_ia32_psrlwi: { + Ops[1] = Builder.CreateZExt(Ops[1], llvm::Type::getInt64Ty(VMContext), "zext"); + const llvm::Type *Ty = llvm::VectorType::get(llvm::Type::getInt64Ty(VMContext), 1); + Ops[1] = Builder.CreateBitCast(Ops[1], Ty, "bitcast"); + const char *name = 0; + Intrinsic::ID ID = Intrinsic::not_intrinsic; + + switch (BuiltinID) { + default: assert(0 && "Unsupported shift intrinsic!"); + case X86::BI__builtin_ia32_pslldi: + name = "pslldi"; + ID = Intrinsic::x86_mmx_psll_d; + break; + case X86::BI__builtin_ia32_psllqi: + name = "psllqi"; + ID = Intrinsic::x86_mmx_psll_q; + break; + case X86::BI__builtin_ia32_psllwi: + name = "psllwi"; + ID = Intrinsic::x86_mmx_psll_w; + break; + case X86::BI__builtin_ia32_psradi: + name = "psradi"; + ID = Intrinsic::x86_mmx_psra_d; + break; + case X86::BI__builtin_ia32_psrawi: + name = "psrawi"; + ID = Intrinsic::x86_mmx_psra_w; + break; + case X86::BI__builtin_ia32_psrldi: + name = "psrldi"; + ID = Intrinsic::x86_mmx_psrl_d; + break; + case X86::BI__builtin_ia32_psrlqi: + name = "psrlqi"; + ID = Intrinsic::x86_mmx_psrl_q; + break; + case X86::BI__builtin_ia32_psrlwi: + name = "psrlwi"; + ID = Intrinsic::x86_mmx_psrl_w; + break; + } + llvm::Function *F = CGM.getIntrinsic(ID); + return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), name); + } + case X86::BI__builtin_ia32_cmpps: { + llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse_cmp_ps); + return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), "cmpps"); + } + case X86::BI__builtin_ia32_cmpss: { + llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse_cmp_ss); + return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), "cmpss"); + } + case X86::BI__builtin_ia32_ldmxcsr: { + const llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(VMContext); + Value *One = llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1); + Value *Tmp = Builder.CreateAlloca(llvm::Type::getInt32Ty(VMContext), One, "tmp"); + Builder.CreateStore(Ops[0], Tmp); + return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr), + Builder.CreateBitCast(Tmp, PtrTy)); + } + case X86::BI__builtin_ia32_stmxcsr: { + const llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(VMContext); + Value *One = llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1); + Value *Tmp = Builder.CreateAlloca(llvm::Type::getInt32Ty(VMContext), One, "tmp"); + One = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr), + Builder.CreateBitCast(Tmp, PtrTy)); + return Builder.CreateLoad(Tmp, "stmxcsr"); + } + case X86::BI__builtin_ia32_cmppd: { + llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_cmp_pd); + return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), "cmppd"); + } + case X86::BI__builtin_ia32_cmpsd: { + llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_cmp_sd); + return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), "cmpsd"); + } + case X86::BI__builtin_ia32_storehps: + case X86::BI__builtin_ia32_storelps: { + const llvm::Type *EltTy = llvm::Type::getInt64Ty(VMContext); + llvm::Type *PtrTy = llvm::PointerType::getUnqual(EltTy); + llvm::Type *VecTy = llvm::VectorType::get(EltTy, 2); + + // cast val v2i64 + Ops[1] = Builder.CreateBitCast(Ops[1], VecTy, "cast"); + + // extract (0, 1) + unsigned Index = BuiltinID == X86::BI__builtin_ia32_storelps ? 0 : 1; + llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), Index); + Ops[1] = Builder.CreateExtractElement(Ops[1], Idx, "extract"); + + // cast pointer to i64 & store + Ops[0] = Builder.CreateBitCast(Ops[0], PtrTy); + return Builder.CreateStore(Ops[1], Ops[0]); + } + case X86::BI__builtin_ia32_palignr: { + unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue(); + + // If palignr is shifting the pair of input vectors less than 9 bytes, + // emit a shuffle instruction. + if (shiftVal <= 8) { + const llvm::Type *IntTy = llvm::Type::getInt32Ty(VMContext); + + llvm::SmallVector<llvm::Constant*, 8> Indices; + for (unsigned i = 0; i != 8; ++i) + Indices.push_back(llvm::ConstantInt::get(IntTy, shiftVal + i)); + + Value* SV = llvm::ConstantVector::get(Indices.begin(), Indices.size()); + return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr"); + } + + // If palignr is shifting the pair of input vectors more than 8 but less + // than 16 bytes, emit a logical right shift of the destination. + if (shiftVal < 16) { + // MMX has these as 1 x i64 vectors for some odd optimization reasons. + const llvm::Type *EltTy = llvm::Type::getInt64Ty(VMContext); + const llvm::Type *VecTy = llvm::VectorType::get(EltTy, 1); + + Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast"); + Ops[1] = llvm::ConstantInt::get(VecTy, (shiftVal-8) * 8); + + // create i32 constant + llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_mmx_psrl_q); + return Builder.CreateCall(F, &Ops[0], &Ops[0] + 2, "palignr"); + } + + // If palignr is shifting the pair of vectors more than 32 bytes, emit zero. + return llvm::Constant::getNullValue(ConvertType(E->getType())); + } + case X86::BI__builtin_ia32_palignr128: { + unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue(); + + // If palignr is shifting the pair of input vectors less than 17 bytes, + // emit a shuffle instruction. + if (shiftVal <= 16) { + const llvm::Type *IntTy = llvm::Type::getInt32Ty(VMContext); + + llvm::SmallVector<llvm::Constant*, 16> Indices; + for (unsigned i = 0; i != 16; ++i) + Indices.push_back(llvm::ConstantInt::get(IntTy, shiftVal + i)); + + Value* SV = llvm::ConstantVector::get(Indices.begin(), Indices.size()); + return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr"); + } + + // If palignr is shifting the pair of input vectors more than 16 but less + // than 32 bytes, emit a logical right shift of the destination. + if (shiftVal < 32) { + const llvm::Type *EltTy = llvm::Type::getInt64Ty(VMContext); + const llvm::Type *VecTy = llvm::VectorType::get(EltTy, 2); + const llvm::Type *IntTy = llvm::Type::getInt32Ty(VMContext); + + Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast"); + Ops[1] = llvm::ConstantInt::get(IntTy, (shiftVal-16) * 8); + + // create i32 constant + llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_psrl_dq); + return Builder.CreateCall(F, &Ops[0], &Ops[0] + 2, "palignr"); + } + + // If palignr is shifting the pair of vectors more than 32 bytes, emit zero. + return llvm::Constant::getNullValue(ConvertType(E->getType())); + } + } +} + +Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID, + const CallExpr *E) { + llvm::SmallVector<Value*, 4> Ops; + + for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) + Ops.push_back(EmitScalarExpr(E->getArg(i))); + + Intrinsic::ID ID = Intrinsic::not_intrinsic; + + switch (BuiltinID) { + default: return 0; + + // vec_st + case PPC::BI__builtin_altivec_stvx: + case PPC::BI__builtin_altivec_stvxl: + case PPC::BI__builtin_altivec_stvebx: + case PPC::BI__builtin_altivec_stvehx: + case PPC::BI__builtin_altivec_stvewx: + { + Ops[2] = Builder.CreateBitCast(Ops[2], llvm::Type::getInt8PtrTy(VMContext)); + Ops[1] = !isa<Constant>(Ops[1]) || !cast<Constant>(Ops[1])->isNullValue() + ? Builder.CreateGEP(Ops[2], Ops[1], "tmp") : Ops[2]; + Ops.pop_back(); + + switch (BuiltinID) { + default: assert(0 && "Unsupported vavg intrinsic!"); + case PPC::BI__builtin_altivec_stvx: + ID = Intrinsic::ppc_altivec_stvx; + break; + case PPC::BI__builtin_altivec_stvxl: + ID = Intrinsic::ppc_altivec_stvxl; + break; + case PPC::BI__builtin_altivec_stvebx: + ID = Intrinsic::ppc_altivec_stvebx; + break; + case PPC::BI__builtin_altivec_stvehx: + ID = Intrinsic::ppc_altivec_stvehx; + break; + case PPC::BI__builtin_altivec_stvewx: + ID = Intrinsic::ppc_altivec_stvewx; + break; + } + llvm::Function *F = CGM.getIntrinsic(ID); + return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), ""); + } + } + return 0; +} |