summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/CodeGen/CGBuiltin.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/CodeGen/CGBuiltin.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGBuiltin.cpp1170
1 files changed, 1170 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGBuiltin.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGBuiltin.cpp
new file mode 100644
index 0000000..dd505c2
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGBuiltin.cpp
@@ -0,0 +1,1170 @@
+//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code to emit Builtin calls as LLVM code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "TargetInfo.h"
+#include "CodeGenFunction.h"
+#include "CodeGenModule.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/AST/APValue.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Decl.h"
+#include "clang/Basic/TargetBuiltins.h"
+#include "llvm/Intrinsics.h"
+#include "llvm/Target/TargetData.h"
+using namespace clang;
+using namespace CodeGen;
+using namespace llvm;
+
+static void EmitMemoryBarrier(CodeGenFunction &CGF,
+ bool LoadLoad, bool LoadStore,
+ bool StoreLoad, bool StoreStore,
+ bool Device) {
+ Value *True = llvm::ConstantInt::getTrue(CGF.getLLVMContext());
+ Value *False = llvm::ConstantInt::getFalse(CGF.getLLVMContext());
+ Value *C[5] = { LoadLoad ? True : False,
+ LoadStore ? True : False,
+ StoreLoad ? True : False,
+ StoreStore ? True : False,
+ Device ? True : False };
+ CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(Intrinsic::memory_barrier),
+ C, C + 5);
+}
+
+// The atomic builtins are also full memory barriers. This is a utility for
+// wrapping a call to the builtins with memory barriers.
+static Value *EmitCallWithBarrier(CodeGenFunction &CGF, Value *Fn,
+ Value **ArgBegin, Value **ArgEnd) {
+ // FIXME: We need a target hook for whether this applies to device memory or
+ // not.
+ bool Device = true;
+
+ // Create barriers both before and after the call.
+ EmitMemoryBarrier(CGF, true, true, true, true, Device);
+ Value *Result = CGF.Builder.CreateCall(Fn, ArgBegin, ArgEnd);
+ EmitMemoryBarrier(CGF, true, true, true, true, Device);
+ return Result;
+}
+
+/// Utility to insert an atomic instruction based on Instrinsic::ID
+/// and the expression node.
+static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
+ Intrinsic::ID Id, const CallExpr *E) {
+ Value *Args[2] = { CGF.EmitScalarExpr(E->getArg(0)),
+ CGF.EmitScalarExpr(E->getArg(1)) };
+ const llvm::Type *ResType[2];
+ ResType[0] = CGF.ConvertType(E->getType());
+ ResType[1] = CGF.ConvertType(E->getArg(0)->getType());
+ Value *AtomF = CGF.CGM.getIntrinsic(Id, ResType, 2);
+ return RValue::get(EmitCallWithBarrier(CGF, AtomF, Args, Args + 2));
+}
+
+/// Utility to insert an atomic instruction based Instrinsic::ID and
+// the expression node, where the return value is the result of the
+// operation.
+static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
+ Intrinsic::ID Id, const CallExpr *E,
+ Instruction::BinaryOps Op) {
+ const llvm::Type *ResType[2];
+ ResType[0] = CGF.ConvertType(E->getType());
+ ResType[1] = CGF.ConvertType(E->getArg(0)->getType());
+ Value *AtomF = CGF.CGM.getIntrinsic(Id, ResType, 2);
+ Value *Args[2] = { CGF.EmitScalarExpr(E->getArg(0)),
+ CGF.EmitScalarExpr(E->getArg(1)) };
+ Value *Result = EmitCallWithBarrier(CGF, AtomF, Args, Args + 2);
+ return RValue::get(CGF.Builder.CreateBinOp(Op, Result, Args[1]));
+}
+
+static llvm::ConstantInt *getInt32(llvm::LLVMContext &Context, int32_t Value) {
+ return llvm::ConstantInt::get(llvm::Type::getInt32Ty(Context), Value);
+}
+
+
+/// EmitFAbs - Emit a call to fabs/fabsf/fabsl, depending on the type of ValTy,
+/// which must be a scalar floating point type.
+static Value *EmitFAbs(CodeGenFunction &CGF, Value *V, QualType ValTy) {
+ const BuiltinType *ValTyP = ValTy->getAs<BuiltinType>();
+ assert(ValTyP && "isn't scalar fp type!");
+
+ StringRef FnName;
+ switch (ValTyP->getKind()) {
+ default: assert(0 && "Isn't a scalar fp type!");
+ case BuiltinType::Float: FnName = "fabsf"; break;
+ case BuiltinType::Double: FnName = "fabs"; break;
+ case BuiltinType::LongDouble: FnName = "fabsl"; break;
+ }
+
+ // The prototype is something that takes and returns whatever V's type is.
+ std::vector<const llvm::Type*> Args;
+ Args.push_back(V->getType());
+ llvm::FunctionType *FT = llvm::FunctionType::get(V->getType(), Args, false);
+ llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(FT, FnName);
+
+ return CGF.Builder.CreateCall(Fn, V, "abs");
+}
+
+RValue CodeGenFunction::EmitBuiltinExpr(const FunctionDecl *FD,
+ unsigned BuiltinID, const CallExpr *E) {
+ // See if we can constant fold this builtin. If so, don't emit it at all.
+ Expr::EvalResult Result;
+ if (E->Evaluate(Result, CGM.getContext())) {
+ if (Result.Val.isInt())
+ return RValue::get(llvm::ConstantInt::get(VMContext,
+ Result.Val.getInt()));
+ else if (Result.Val.isFloat())
+ return RValue::get(ConstantFP::get(VMContext, Result.Val.getFloat()));
+ }
+
+ switch (BuiltinID) {
+ default: break; // Handle intrinsics and libm functions below.
+ case Builtin::BI__builtin___CFStringMakeConstantString:
+ case Builtin::BI__builtin___NSStringMakeConstantString:
+ return RValue::get(CGM.EmitConstantExpr(E, E->getType(), 0));
+ case Builtin::BI__builtin_stdarg_start:
+ case Builtin::BI__builtin_va_start:
+ case Builtin::BI__builtin_va_end: {
+ Value *ArgValue = EmitVAListRef(E->getArg(0));
+ const llvm::Type *DestType = llvm::Type::getInt8PtrTy(VMContext);
+ if (ArgValue->getType() != DestType)
+ ArgValue = Builder.CreateBitCast(ArgValue, DestType,
+ ArgValue->getName().data());
+
+ Intrinsic::ID inst = (BuiltinID == Builtin::BI__builtin_va_end) ?
+ Intrinsic::vaend : Intrinsic::vastart;
+ return RValue::get(Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue));
+ }
+ case Builtin::BI__builtin_va_copy: {
+ Value *DstPtr = EmitVAListRef(E->getArg(0));
+ Value *SrcPtr = EmitVAListRef(E->getArg(1));
+
+ const llvm::Type *Type = llvm::Type::getInt8PtrTy(VMContext);
+
+ DstPtr = Builder.CreateBitCast(DstPtr, Type);
+ SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
+ return RValue::get(Builder.CreateCall2(CGM.getIntrinsic(Intrinsic::vacopy),
+ DstPtr, SrcPtr));
+ }
+ case Builtin::BI__builtin_abs: {
+ Value *ArgValue = EmitScalarExpr(E->getArg(0));
+
+ Value *NegOp = Builder.CreateNeg(ArgValue, "neg");
+ Value *CmpResult =
+ Builder.CreateICmpSGE(ArgValue,
+ llvm::Constant::getNullValue(ArgValue->getType()),
+ "abscond");
+ Value *Result =
+ Builder.CreateSelect(CmpResult, ArgValue, NegOp, "abs");
+
+ return RValue::get(Result);
+ }
+ case Builtin::BI__builtin_ctz:
+ case Builtin::BI__builtin_ctzl:
+ case Builtin::BI__builtin_ctzll: {
+ Value *ArgValue = EmitScalarExpr(E->getArg(0));
+
+ const llvm::Type *ArgType = ArgValue->getType();
+ Value *F = CGM.getIntrinsic(Intrinsic::cttz, &ArgType, 1);
+
+ const llvm::Type *ResultType = ConvertType(E->getType());
+ Value *Result = Builder.CreateCall(F, ArgValue, "tmp");
+ if (Result->getType() != ResultType)
+ Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
+ "cast");
+ return RValue::get(Result);
+ }
+ case Builtin::BI__builtin_clz:
+ case Builtin::BI__builtin_clzl:
+ case Builtin::BI__builtin_clzll: {
+ Value *ArgValue = EmitScalarExpr(E->getArg(0));
+
+ const llvm::Type *ArgType = ArgValue->getType();
+ Value *F = CGM.getIntrinsic(Intrinsic::ctlz, &ArgType, 1);
+
+ const llvm::Type *ResultType = ConvertType(E->getType());
+ Value *Result = Builder.CreateCall(F, ArgValue, "tmp");
+ if (Result->getType() != ResultType)
+ Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
+ "cast");
+ return RValue::get(Result);
+ }
+ case Builtin::BI__builtin_ffs:
+ case Builtin::BI__builtin_ffsl:
+ case Builtin::BI__builtin_ffsll: {
+ // ffs(x) -> x ? cttz(x) + 1 : 0
+ Value *ArgValue = EmitScalarExpr(E->getArg(0));
+
+ const llvm::Type *ArgType = ArgValue->getType();
+ Value *F = CGM.getIntrinsic(Intrinsic::cttz, &ArgType, 1);
+
+ const llvm::Type *ResultType = ConvertType(E->getType());
+ Value *Tmp = Builder.CreateAdd(Builder.CreateCall(F, ArgValue, "tmp"),
+ llvm::ConstantInt::get(ArgType, 1), "tmp");
+ Value *Zero = llvm::Constant::getNullValue(ArgType);
+ Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
+ Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
+ if (Result->getType() != ResultType)
+ Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
+ "cast");
+ return RValue::get(Result);
+ }
+ case Builtin::BI__builtin_parity:
+ case Builtin::BI__builtin_parityl:
+ case Builtin::BI__builtin_parityll: {
+ // parity(x) -> ctpop(x) & 1
+ Value *ArgValue = EmitScalarExpr(E->getArg(0));
+
+ const llvm::Type *ArgType = ArgValue->getType();
+ Value *F = CGM.getIntrinsic(Intrinsic::ctpop, &ArgType, 1);
+
+ const llvm::Type *ResultType = ConvertType(E->getType());
+ Value *Tmp = Builder.CreateCall(F, ArgValue, "tmp");
+ Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1),
+ "tmp");
+ if (Result->getType() != ResultType)
+ Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
+ "cast");
+ return RValue::get(Result);
+ }
+ case Builtin::BI__builtin_popcount:
+ case Builtin::BI__builtin_popcountl:
+ case Builtin::BI__builtin_popcountll: {
+ Value *ArgValue = EmitScalarExpr(E->getArg(0));
+
+ const llvm::Type *ArgType = ArgValue->getType();
+ Value *F = CGM.getIntrinsic(Intrinsic::ctpop, &ArgType, 1);
+
+ const llvm::Type *ResultType = ConvertType(E->getType());
+ Value *Result = Builder.CreateCall(F, ArgValue, "tmp");
+ if (Result->getType() != ResultType)
+ Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
+ "cast");
+ return RValue::get(Result);
+ }
+ case Builtin::BI__builtin_expect:
+ // FIXME: pass expect through to LLVM
+ return RValue::get(EmitScalarExpr(E->getArg(0)));
+ case Builtin::BI__builtin_bswap32:
+ case Builtin::BI__builtin_bswap64: {
+ Value *ArgValue = EmitScalarExpr(E->getArg(0));
+ const llvm::Type *ArgType = ArgValue->getType();
+ Value *F = CGM.getIntrinsic(Intrinsic::bswap, &ArgType, 1);
+ return RValue::get(Builder.CreateCall(F, ArgValue, "tmp"));
+ }
+ case Builtin::BI__builtin_object_size: {
+ // We pass this builtin onto the optimizer so that it can
+ // figure out the object size in more complex cases.
+ const llvm::Type *ResType[] = {
+ ConvertType(E->getType())
+ };
+
+ // LLVM only supports 0 and 2, make sure that we pass along that
+ // as a boolean.
+ Value *Ty = EmitScalarExpr(E->getArg(1));
+ ConstantInt *CI = dyn_cast<ConstantInt>(Ty);
+ assert(CI);
+ uint64_t val = CI->getZExtValue();
+ CI = ConstantInt::get(llvm::Type::getInt1Ty(VMContext), (val & 0x2) >> 1);
+
+ Value *F = CGM.getIntrinsic(Intrinsic::objectsize, ResType, 1);
+ return RValue::get(Builder.CreateCall2(F,
+ EmitScalarExpr(E->getArg(0)),
+ CI));
+ }
+ case Builtin::BI__builtin_prefetch: {
+ Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
+ // FIXME: Technically these constants should of type 'int', yes?
+ RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
+ llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0);
+ Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
+ llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 3);
+ Value *F = CGM.getIntrinsic(Intrinsic::prefetch, 0, 0);
+ return RValue::get(Builder.CreateCall3(F, Address, RW, Locality));
+ }
+ case Builtin::BI__builtin_trap: {
+ Value *F = CGM.getIntrinsic(Intrinsic::trap, 0, 0);
+ return RValue::get(Builder.CreateCall(F));
+ }
+ case Builtin::BI__builtin_unreachable: {
+ if (CatchUndefined && HaveInsertPoint())
+ EmitBranch(getTrapBB());
+ Value *V = Builder.CreateUnreachable();
+ Builder.ClearInsertionPoint();
+ return RValue::get(V);
+ }
+
+ case Builtin::BI__builtin_powi:
+ case Builtin::BI__builtin_powif:
+ case Builtin::BI__builtin_powil: {
+ Value *Base = EmitScalarExpr(E->getArg(0));
+ Value *Exponent = EmitScalarExpr(E->getArg(1));
+ const llvm::Type *ArgType = Base->getType();
+ Value *F = CGM.getIntrinsic(Intrinsic::powi, &ArgType, 1);
+ return RValue::get(Builder.CreateCall2(F, Base, Exponent, "tmp"));
+ }
+
+ case Builtin::BI__builtin_isgreater:
+ case Builtin::BI__builtin_isgreaterequal:
+ case Builtin::BI__builtin_isless:
+ case Builtin::BI__builtin_islessequal:
+ case Builtin::BI__builtin_islessgreater:
+ case Builtin::BI__builtin_isunordered: {
+ // Ordered comparisons: we know the arguments to these are matching scalar
+ // floating point values.
+ Value *LHS = EmitScalarExpr(E->getArg(0));
+ Value *RHS = EmitScalarExpr(E->getArg(1));
+
+ switch (BuiltinID) {
+ default: assert(0 && "Unknown ordered comparison");
+ case Builtin::BI__builtin_isgreater:
+ LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
+ break;
+ case Builtin::BI__builtin_isgreaterequal:
+ LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
+ break;
+ case Builtin::BI__builtin_isless:
+ LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
+ break;
+ case Builtin::BI__builtin_islessequal:
+ LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
+ break;
+ case Builtin::BI__builtin_islessgreater:
+ LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
+ break;
+ case Builtin::BI__builtin_isunordered:
+ LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
+ break;
+ }
+ // ZExt bool to int type.
+ return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType()),
+ "tmp"));
+ }
+ case Builtin::BI__builtin_isnan: {
+ Value *V = EmitScalarExpr(E->getArg(0));
+ V = Builder.CreateFCmpUNO(V, V, "cmp");
+ return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()), "tmp"));
+ }
+
+ case Builtin::BI__builtin_isinf: {
+ // isinf(x) --> fabs(x) == infinity
+ Value *V = EmitScalarExpr(E->getArg(0));
+ V = EmitFAbs(*this, V, E->getArg(0)->getType());
+
+ V = Builder.CreateFCmpOEQ(V, ConstantFP::getInfinity(V->getType()),"isinf");
+ return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()), "tmp"));
+ }
+
+ // TODO: BI__builtin_isinf_sign
+ // isinf_sign(x) -> isinf(x) ? (signbit(x) ? -1 : 1) : 0
+
+ case Builtin::BI__builtin_isnormal: {
+ // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
+ Value *V = EmitScalarExpr(E->getArg(0));
+ Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
+
+ Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType());
+ Value *IsLessThanInf =
+ Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
+ APFloat Smallest = APFloat::getSmallestNormalized(
+ getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
+ Value *IsNormal =
+ Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
+ "isnormal");
+ V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
+ V = Builder.CreateAnd(V, IsNormal, "and");
+ return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
+ }
+
+ case Builtin::BI__builtin_isfinite: {
+ // isfinite(x) --> x == x && fabs(x) != infinity; }
+ Value *V = EmitScalarExpr(E->getArg(0));
+ Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
+
+ Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType());
+ Value *IsNotInf =
+ Builder.CreateFCmpUNE(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
+
+ V = Builder.CreateAnd(Eq, IsNotInf, "and");
+ return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
+ }
+
+ case Builtin::BIalloca:
+ case Builtin::BI__builtin_alloca: {
+ // FIXME: LLVM IR Should allow alloca with an i64 size!
+ Value *Size = EmitScalarExpr(E->getArg(0));
+ Size = Builder.CreateIntCast(Size, llvm::Type::getInt32Ty(VMContext), false, "tmp");
+ return RValue::get(Builder.CreateAlloca(llvm::Type::getInt8Ty(VMContext), Size, "tmp"));
+ }
+ case Builtin::BIbzero:
+ case Builtin::BI__builtin_bzero: {
+ Value *Address = EmitScalarExpr(E->getArg(0));
+ Value *SizeVal = EmitScalarExpr(E->getArg(1));
+ Builder.CreateCall5(CGM.getMemSetFn(Address->getType(), SizeVal->getType()),
+ Address,
+ llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext), 0),
+ SizeVal,
+ llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1),
+ llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext), 0));
+ return RValue::get(Address);
+ }
+ case Builtin::BImemcpy:
+ case Builtin::BI__builtin_memcpy: {
+ Value *Address = EmitScalarExpr(E->getArg(0));
+ Value *SrcAddr = EmitScalarExpr(E->getArg(1));
+ Value *SizeVal = EmitScalarExpr(E->getArg(2));
+ Builder.CreateCall5(CGM.getMemCpyFn(Address->getType(), SrcAddr->getType(),
+ SizeVal->getType()),
+ Address, SrcAddr, SizeVal,
+ llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1),
+ llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext), 0));
+ return RValue::get(Address);
+ }
+ case Builtin::BImemmove:
+ case Builtin::BI__builtin_memmove: {
+ Value *Address = EmitScalarExpr(E->getArg(0));
+ Value *SrcAddr = EmitScalarExpr(E->getArg(1));
+ Value *SizeVal = EmitScalarExpr(E->getArg(2));
+ Builder.CreateCall5(CGM.getMemMoveFn(Address->getType(), SrcAddr->getType(),
+ SizeVal->getType()),
+ Address, SrcAddr, SizeVal,
+ llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1),
+ llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext), 0));
+ return RValue::get(Address);
+ }
+ case Builtin::BImemset:
+ case Builtin::BI__builtin_memset: {
+ Value *Address = EmitScalarExpr(E->getArg(0));
+ Value *SizeVal = EmitScalarExpr(E->getArg(2));
+ Builder.CreateCall5(CGM.getMemSetFn(Address->getType(), SizeVal->getType()),
+ Address,
+ Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
+ llvm::Type::getInt8Ty(VMContext)),
+ SizeVal,
+ llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1),
+ llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext), 0));
+ return RValue::get(Address);
+ }
+ case Builtin::BI__builtin_dwarf_cfa: {
+ // The offset in bytes from the first argument to the CFA.
+ //
+ // Why on earth is this in the frontend? Is there any reason at
+ // all that the backend can't reasonably determine this while
+ // lowering llvm.eh.dwarf.cfa()?
+ //
+ // TODO: If there's a satisfactory reason, add a target hook for
+ // this instead of hard-coding 0, which is correct for most targets.
+ int32_t Offset = 0;
+
+ Value *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa, 0, 0);
+ return RValue::get(Builder.CreateCall(F, getInt32(VMContext, Offset)));
+ }
+ case Builtin::BI__builtin_return_address: {
+ Value *Depth = EmitScalarExpr(E->getArg(0));
+ Depth = Builder.CreateIntCast(Depth,
+ llvm::Type::getInt32Ty(VMContext),
+ false, "tmp");
+ Value *F = CGM.getIntrinsic(Intrinsic::returnaddress, 0, 0);
+ return RValue::get(Builder.CreateCall(F, Depth));
+ }
+ case Builtin::BI__builtin_frame_address: {
+ Value *Depth = EmitScalarExpr(E->getArg(0));
+ Depth = Builder.CreateIntCast(Depth,
+ llvm::Type::getInt32Ty(VMContext),
+ false, "tmp");
+ Value *F = CGM.getIntrinsic(Intrinsic::frameaddress, 0, 0);
+ return RValue::get(Builder.CreateCall(F, Depth));
+ }
+ case Builtin::BI__builtin_extract_return_addr: {
+ Value *Address = EmitScalarExpr(E->getArg(0));
+ Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
+ return RValue::get(Result);
+ }
+ case Builtin::BI__builtin_frob_return_addr: {
+ Value *Address = EmitScalarExpr(E->getArg(0));
+ Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
+ return RValue::get(Result);
+ }
+ case Builtin::BI__builtin_dwarf_sp_column: {
+ const llvm::IntegerType *Ty
+ = cast<llvm::IntegerType>(ConvertType(E->getType()));
+ int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
+ if (Column == -1) {
+ CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
+ return RValue::get(llvm::UndefValue::get(Ty));
+ }
+ return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
+ }
+ case Builtin::BI__builtin_init_dwarf_reg_size_table: {
+ Value *Address = EmitScalarExpr(E->getArg(0));
+ if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
+ CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
+ return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
+ }
+ case Builtin::BI__builtin_eh_return: {
+ Value *Int = EmitScalarExpr(E->getArg(0));
+ Value *Ptr = EmitScalarExpr(E->getArg(1));
+
+ const llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
+ assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
+ "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
+ Value *F = CGM.getIntrinsic(IntTy->getBitWidth() == 32
+ ? Intrinsic::eh_return_i32
+ : Intrinsic::eh_return_i64,
+ 0, 0);
+ Builder.CreateCall2(F, Int, Ptr);
+ Value *V = Builder.CreateUnreachable();
+ Builder.ClearInsertionPoint();
+ return RValue::get(V);
+ }
+ case Builtin::BI__builtin_unwind_init: {
+ Value *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init, 0, 0);
+ return RValue::get(Builder.CreateCall(F));
+ }
+ case Builtin::BI__builtin_extend_pointer: {
+ // Extends a pointer to the size of an _Unwind_Word, which is
+ // uint64_t on all platforms. Generally this gets poked into a
+ // register and eventually used as an address, so if the
+ // addressing registers are wider than pointers and the platform
+ // doesn't implicitly ignore high-order bits when doing
+ // addressing, we need to make sure we zext / sext based on
+ // the platform's expectations.
+ //
+ // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
+
+ LLVMContext &C = CGM.getLLVMContext();
+
+ // Cast the pointer to intptr_t.
+ Value *Ptr = EmitScalarExpr(E->getArg(0));
+ const llvm::IntegerType *IntPtrTy = CGM.getTargetData().getIntPtrType(C);
+ Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
+
+ // If that's 64 bits, we're done.
+ if (IntPtrTy->getBitWidth() == 64)
+ return RValue::get(Result);
+
+ // Otherwise, ask the codegen data what to do.
+ const llvm::IntegerType *Int64Ty = llvm::IntegerType::get(C, 64);
+ if (getTargetHooks().extendPointerWithSExt())
+ return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
+ else
+ return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
+ }
+#if 0
+ // FIXME: Finish/enable when LLVM backend support stabilizes
+ case Builtin::BI__builtin_setjmp: {
+ Value *Buf = EmitScalarExpr(E->getArg(0));
+ // Store the frame pointer to the buffer
+ Value *FrameAddrF = CGM.getIntrinsic(Intrinsic::frameaddress, 0, 0);
+ Value *FrameAddr =
+ Builder.CreateCall(FrameAddrF,
+ Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)));
+ Builder.CreateStore(FrameAddr, Buf);
+ // Call the setjmp intrinsic
+ Value *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp, 0, 0);
+ const llvm::Type *DestType = llvm::Type::getInt8PtrTy(VMContext);
+ Buf = Builder.CreateBitCast(Buf, DestType);
+ return RValue::get(Builder.CreateCall(F, Buf));
+ }
+ case Builtin::BI__builtin_longjmp: {
+ Value *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp, 0, 0);
+ Value *Buf = EmitScalarExpr(E->getArg(0));
+ const llvm::Type *DestType = llvm::Type::getInt8PtrTy(VMContext);
+ Buf = Builder.CreateBitCast(Buf, DestType);
+ return RValue::get(Builder.CreateCall(F, Buf));
+ }
+#endif
+ case Builtin::BI__sync_fetch_and_add:
+ case Builtin::BI__sync_fetch_and_sub:
+ case Builtin::BI__sync_fetch_and_or:
+ case Builtin::BI__sync_fetch_and_and:
+ case Builtin::BI__sync_fetch_and_xor:
+ case Builtin::BI__sync_add_and_fetch:
+ case Builtin::BI__sync_sub_and_fetch:
+ case Builtin::BI__sync_and_and_fetch:
+ case Builtin::BI__sync_or_and_fetch:
+ case Builtin::BI__sync_xor_and_fetch:
+ case Builtin::BI__sync_val_compare_and_swap:
+ case Builtin::BI__sync_bool_compare_and_swap:
+ case Builtin::BI__sync_lock_test_and_set:
+ case Builtin::BI__sync_lock_release:
+ assert(0 && "Shouldn't make it through sema");
+ case Builtin::BI__sync_fetch_and_add_1:
+ case Builtin::BI__sync_fetch_and_add_2:
+ case Builtin::BI__sync_fetch_and_add_4:
+ case Builtin::BI__sync_fetch_and_add_8:
+ case Builtin::BI__sync_fetch_and_add_16:
+ return EmitBinaryAtomic(*this, Intrinsic::atomic_load_add, E);
+ case Builtin::BI__sync_fetch_and_sub_1:
+ case Builtin::BI__sync_fetch_and_sub_2:
+ case Builtin::BI__sync_fetch_and_sub_4:
+ case Builtin::BI__sync_fetch_and_sub_8:
+ case Builtin::BI__sync_fetch_and_sub_16:
+ return EmitBinaryAtomic(*this, Intrinsic::atomic_load_sub, E);
+ case Builtin::BI__sync_fetch_and_or_1:
+ case Builtin::BI__sync_fetch_and_or_2:
+ case Builtin::BI__sync_fetch_and_or_4:
+ case Builtin::BI__sync_fetch_and_or_8:
+ case Builtin::BI__sync_fetch_and_or_16:
+ return EmitBinaryAtomic(*this, Intrinsic::atomic_load_or, E);
+ case Builtin::BI__sync_fetch_and_and_1:
+ case Builtin::BI__sync_fetch_and_and_2:
+ case Builtin::BI__sync_fetch_and_and_4:
+ case Builtin::BI__sync_fetch_and_and_8:
+ case Builtin::BI__sync_fetch_and_and_16:
+ return EmitBinaryAtomic(*this, Intrinsic::atomic_load_and, E);
+ case Builtin::BI__sync_fetch_and_xor_1:
+ case Builtin::BI__sync_fetch_and_xor_2:
+ case Builtin::BI__sync_fetch_and_xor_4:
+ case Builtin::BI__sync_fetch_and_xor_8:
+ case Builtin::BI__sync_fetch_and_xor_16:
+ return EmitBinaryAtomic(*this, Intrinsic::atomic_load_xor, E);
+
+ // Clang extensions: not overloaded yet.
+ case Builtin::BI__sync_fetch_and_min:
+ return EmitBinaryAtomic(*this, Intrinsic::atomic_load_min, E);
+ case Builtin::BI__sync_fetch_and_max:
+ return EmitBinaryAtomic(*this, Intrinsic::atomic_load_max, E);
+ case Builtin::BI__sync_fetch_and_umin:
+ return EmitBinaryAtomic(*this, Intrinsic::atomic_load_umin, E);
+ case Builtin::BI__sync_fetch_and_umax:
+ return EmitBinaryAtomic(*this, Intrinsic::atomic_load_umax, E);
+
+ case Builtin::BI__sync_add_and_fetch_1:
+ case Builtin::BI__sync_add_and_fetch_2:
+ case Builtin::BI__sync_add_and_fetch_4:
+ case Builtin::BI__sync_add_and_fetch_8:
+ case Builtin::BI__sync_add_and_fetch_16:
+ return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_add, E,
+ llvm::Instruction::Add);
+ case Builtin::BI__sync_sub_and_fetch_1:
+ case Builtin::BI__sync_sub_and_fetch_2:
+ case Builtin::BI__sync_sub_and_fetch_4:
+ case Builtin::BI__sync_sub_and_fetch_8:
+ case Builtin::BI__sync_sub_and_fetch_16:
+ return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_sub, E,
+ llvm::Instruction::Sub);
+ case Builtin::BI__sync_and_and_fetch_1:
+ case Builtin::BI__sync_and_and_fetch_2:
+ case Builtin::BI__sync_and_and_fetch_4:
+ case Builtin::BI__sync_and_and_fetch_8:
+ case Builtin::BI__sync_and_and_fetch_16:
+ return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_and, E,
+ llvm::Instruction::And);
+ case Builtin::BI__sync_or_and_fetch_1:
+ case Builtin::BI__sync_or_and_fetch_2:
+ case Builtin::BI__sync_or_and_fetch_4:
+ case Builtin::BI__sync_or_and_fetch_8:
+ case Builtin::BI__sync_or_and_fetch_16:
+ return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_or, E,
+ llvm::Instruction::Or);
+ case Builtin::BI__sync_xor_and_fetch_1:
+ case Builtin::BI__sync_xor_and_fetch_2:
+ case Builtin::BI__sync_xor_and_fetch_4:
+ case Builtin::BI__sync_xor_and_fetch_8:
+ case Builtin::BI__sync_xor_and_fetch_16:
+ return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_xor, E,
+ llvm::Instruction::Xor);
+
+ case Builtin::BI__sync_val_compare_and_swap_1:
+ case Builtin::BI__sync_val_compare_and_swap_2:
+ case Builtin::BI__sync_val_compare_and_swap_4:
+ case Builtin::BI__sync_val_compare_and_swap_8:
+ case Builtin::BI__sync_val_compare_and_swap_16: {
+ const llvm::Type *ResType[2];
+ ResType[0]= ConvertType(E->getType());
+ ResType[1] = ConvertType(E->getArg(0)->getType());
+ Value *AtomF = CGM.getIntrinsic(Intrinsic::atomic_cmp_swap, ResType, 2);
+ Value *Args[3] = { EmitScalarExpr(E->getArg(0)),
+ EmitScalarExpr(E->getArg(1)),
+ EmitScalarExpr(E->getArg(2)) };
+ return RValue::get(EmitCallWithBarrier(*this, AtomF, Args, Args + 3));
+ }
+
+ case Builtin::BI__sync_bool_compare_and_swap_1:
+ case Builtin::BI__sync_bool_compare_and_swap_2:
+ case Builtin::BI__sync_bool_compare_and_swap_4:
+ case Builtin::BI__sync_bool_compare_and_swap_8:
+ case Builtin::BI__sync_bool_compare_and_swap_16: {
+ const llvm::Type *ResType[2];
+ ResType[0]= ConvertType(E->getArg(1)->getType());
+ ResType[1] = llvm::PointerType::getUnqual(ResType[0]);
+ Value *AtomF = CGM.getIntrinsic(Intrinsic::atomic_cmp_swap, ResType, 2);
+ Value *OldVal = EmitScalarExpr(E->getArg(1));
+ Value *Args[3] = { EmitScalarExpr(E->getArg(0)),
+ OldVal,
+ EmitScalarExpr(E->getArg(2)) };
+ Value *PrevVal = EmitCallWithBarrier(*this, AtomF, Args, Args + 3);
+ Value *Result = Builder.CreateICmpEQ(PrevVal, OldVal);
+ // zext bool to int.
+ return RValue::get(Builder.CreateZExt(Result, ConvertType(E->getType())));
+ }
+
+ case Builtin::BI__sync_lock_test_and_set_1:
+ case Builtin::BI__sync_lock_test_and_set_2:
+ case Builtin::BI__sync_lock_test_and_set_4:
+ case Builtin::BI__sync_lock_test_and_set_8:
+ case Builtin::BI__sync_lock_test_and_set_16:
+ return EmitBinaryAtomic(*this, Intrinsic::atomic_swap, E);
+
+ case Builtin::BI__sync_lock_release_1:
+ case Builtin::BI__sync_lock_release_2:
+ case Builtin::BI__sync_lock_release_4:
+ case Builtin::BI__sync_lock_release_8:
+ case Builtin::BI__sync_lock_release_16: {
+ Value *Ptr = EmitScalarExpr(E->getArg(0));
+ const llvm::Type *ElTy =
+ cast<llvm::PointerType>(Ptr->getType())->getElementType();
+ llvm::StoreInst *Store =
+ Builder.CreateStore(llvm::Constant::getNullValue(ElTy), Ptr);
+ Store->setVolatile(true);
+ return RValue::get(0);
+ }
+
+ case Builtin::BI__sync_synchronize: {
+ // We assume like gcc appears to, that this only applies to cached memory.
+ EmitMemoryBarrier(*this, true, true, true, true, false);
+ return RValue::get(0);
+ }
+
+ case Builtin::BI__builtin_llvm_memory_barrier: {
+ Value *C[5] = {
+ EmitScalarExpr(E->getArg(0)),
+ EmitScalarExpr(E->getArg(1)),
+ EmitScalarExpr(E->getArg(2)),
+ EmitScalarExpr(E->getArg(3)),
+ EmitScalarExpr(E->getArg(4))
+ };
+ Builder.CreateCall(CGM.getIntrinsic(Intrinsic::memory_barrier), C, C + 5);
+ return RValue::get(0);
+ }
+
+ // Library functions with special handling.
+ case Builtin::BIsqrt:
+ case Builtin::BIsqrtf:
+ case Builtin::BIsqrtl: {
+ // TODO: there is currently no set of optimizer flags
+ // sufficient for us to rewrite sqrt to @llvm.sqrt.
+ // -fmath-errno=0 is not good enough; we need finiteness.
+ // We could probably precondition the call with an ult
+ // against 0, but is that worth the complexity?
+ break;
+ }
+
+ case Builtin::BIpow:
+ case Builtin::BIpowf:
+ case Builtin::BIpowl: {
+ // Rewrite sqrt to intrinsic if allowed.
+ if (!FD->hasAttr<ConstAttr>())
+ break;
+ Value *Base = EmitScalarExpr(E->getArg(0));
+ Value *Exponent = EmitScalarExpr(E->getArg(1));
+ const llvm::Type *ArgType = Base->getType();
+ Value *F = CGM.getIntrinsic(Intrinsic::pow, &ArgType, 1);
+ return RValue::get(Builder.CreateCall2(F, Base, Exponent, "tmp"));
+ }
+
+ case Builtin::BI__builtin_signbit:
+ case Builtin::BI__builtin_signbitf:
+ case Builtin::BI__builtin_signbitl: {
+ LLVMContext &C = CGM.getLLVMContext();
+
+ Value *Arg = EmitScalarExpr(E->getArg(0));
+ const llvm::Type *ArgTy = Arg->getType();
+ if (ArgTy->isPPC_FP128Ty())
+ break; // FIXME: I'm not sure what the right implementation is here.
+ int ArgWidth = ArgTy->getPrimitiveSizeInBits();
+ const llvm::Type *ArgIntTy = llvm::IntegerType::get(C, ArgWidth);
+ Value *BCArg = Builder.CreateBitCast(Arg, ArgIntTy);
+ Value *ZeroCmp = llvm::Constant::getNullValue(ArgIntTy);
+ Value *Result = Builder.CreateICmpSLT(BCArg, ZeroCmp);
+ return RValue::get(Builder.CreateZExt(Result, ConvertType(E->getType())));
+ }
+ }
+
+ // If this is an alias for a libm function (e.g. __builtin_sin) turn it into
+ // that function.
+ if (getContext().BuiltinInfo.isLibFunction(BuiltinID) ||
+ getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
+ return EmitCall(E->getCallee()->getType(),
+ CGM.getBuiltinLibFunction(FD, BuiltinID),
+ ReturnValueSlot(),
+ E->arg_begin(), E->arg_end());
+
+ // See if we have a target specific intrinsic.
+ const char *Name = getContext().BuiltinInfo.GetName(BuiltinID);
+ Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
+ if (const char *Prefix =
+ llvm::Triple::getArchTypePrefix(Target.getTriple().getArch()))
+ IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix, Name);
+
+ if (IntrinsicID != Intrinsic::not_intrinsic) {
+ SmallVector<Value*, 16> Args;
+
+ Function *F = CGM.getIntrinsic(IntrinsicID);
+ const llvm::FunctionType *FTy = F->getFunctionType();
+
+ for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
+ Value *ArgValue = EmitScalarExpr(E->getArg(i));
+
+ // If the intrinsic arg type is different from the builtin arg type
+ // we need to do a bit cast.
+ const llvm::Type *PTy = FTy->getParamType(i);
+ if (PTy != ArgValue->getType()) {
+ assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
+ "Must be able to losslessly bit cast to param");
+ ArgValue = Builder.CreateBitCast(ArgValue, PTy);
+ }
+
+ Args.push_back(ArgValue);
+ }
+
+ Value *V = Builder.CreateCall(F, Args.data(), Args.data() + Args.size());
+ QualType BuiltinRetType = E->getType();
+
+ const llvm::Type *RetTy = llvm::Type::getVoidTy(VMContext);
+ if (!BuiltinRetType->isVoidType()) RetTy = ConvertType(BuiltinRetType);
+
+ if (RetTy != V->getType()) {
+ assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
+ "Must be able to losslessly bit cast result type");
+ V = Builder.CreateBitCast(V, RetTy);
+ }
+
+ return RValue::get(V);
+ }
+
+ // See if we have a target specific builtin that needs to be lowered.
+ if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E))
+ return RValue::get(V);
+
+ ErrorUnsupported(E, "builtin function");
+
+ // Unknown builtin, for now just dump it out and return undef.
+ if (hasAggregateLLVMType(E->getType()))
+ return RValue::getAggregate(CreateMemTemp(E->getType()));
+ return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
+}
+
+Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
+ const CallExpr *E) {
+ switch (Target.getTriple().getArch()) {
+ case llvm::Triple::arm:
+ case llvm::Triple::thumb:
+ return EmitARMBuiltinExpr(BuiltinID, E);
+ case llvm::Triple::x86:
+ case llvm::Triple::x86_64:
+ return EmitX86BuiltinExpr(BuiltinID, E);
+ case llvm::Triple::ppc:
+ case llvm::Triple::ppc64:
+ return EmitPPCBuiltinExpr(BuiltinID, E);
+ default:
+ return 0;
+ }
+}
+
+Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
+ const CallExpr *E) {
+ switch (BuiltinID) {
+ default: return 0;
+
+ case ARM::BI__builtin_thread_pointer: {
+ Value *AtomF = CGM.getIntrinsic(Intrinsic::arm_thread_pointer, 0, 0);
+ return Builder.CreateCall(AtomF);
+ }
+ }
+}
+
+Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
+ const CallExpr *E) {
+
+ llvm::SmallVector<Value*, 4> Ops;
+
+ for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
+ Ops.push_back(EmitScalarExpr(E->getArg(i)));
+
+ switch (BuiltinID) {
+ default: return 0;
+ case X86::BI__builtin_ia32_pslldi128:
+ case X86::BI__builtin_ia32_psllqi128:
+ case X86::BI__builtin_ia32_psllwi128:
+ case X86::BI__builtin_ia32_psradi128:
+ case X86::BI__builtin_ia32_psrawi128:
+ case X86::BI__builtin_ia32_psrldi128:
+ case X86::BI__builtin_ia32_psrlqi128:
+ case X86::BI__builtin_ia32_psrlwi128: {
+ Ops[1] = Builder.CreateZExt(Ops[1], llvm::Type::getInt64Ty(VMContext), "zext");
+ const llvm::Type *Ty = llvm::VectorType::get(llvm::Type::getInt64Ty(VMContext), 2);
+ llvm::Value *Zero = llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0);
+ Ops[1] = Builder.CreateInsertElement(llvm::UndefValue::get(Ty),
+ Ops[1], Zero, "insert");
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ops[0]->getType(), "bitcast");
+ const char *name = 0;
+ Intrinsic::ID ID = Intrinsic::not_intrinsic;
+
+ switch (BuiltinID) {
+ default: assert(0 && "Unsupported shift intrinsic!");
+ case X86::BI__builtin_ia32_pslldi128:
+ name = "pslldi";
+ ID = Intrinsic::x86_sse2_psll_d;
+ break;
+ case X86::BI__builtin_ia32_psllqi128:
+ name = "psllqi";
+ ID = Intrinsic::x86_sse2_psll_q;
+ break;
+ case X86::BI__builtin_ia32_psllwi128:
+ name = "psllwi";
+ ID = Intrinsic::x86_sse2_psll_w;
+ break;
+ case X86::BI__builtin_ia32_psradi128:
+ name = "psradi";
+ ID = Intrinsic::x86_sse2_psra_d;
+ break;
+ case X86::BI__builtin_ia32_psrawi128:
+ name = "psrawi";
+ ID = Intrinsic::x86_sse2_psra_w;
+ break;
+ case X86::BI__builtin_ia32_psrldi128:
+ name = "psrldi";
+ ID = Intrinsic::x86_sse2_psrl_d;
+ break;
+ case X86::BI__builtin_ia32_psrlqi128:
+ name = "psrlqi";
+ ID = Intrinsic::x86_sse2_psrl_q;
+ break;
+ case X86::BI__builtin_ia32_psrlwi128:
+ name = "psrlwi";
+ ID = Intrinsic::x86_sse2_psrl_w;
+ break;
+ }
+ llvm::Function *F = CGM.getIntrinsic(ID);
+ return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), name);
+ }
+ case X86::BI__builtin_ia32_pslldi:
+ case X86::BI__builtin_ia32_psllqi:
+ case X86::BI__builtin_ia32_psllwi:
+ case X86::BI__builtin_ia32_psradi:
+ case X86::BI__builtin_ia32_psrawi:
+ case X86::BI__builtin_ia32_psrldi:
+ case X86::BI__builtin_ia32_psrlqi:
+ case X86::BI__builtin_ia32_psrlwi: {
+ Ops[1] = Builder.CreateZExt(Ops[1], llvm::Type::getInt64Ty(VMContext), "zext");
+ const llvm::Type *Ty = llvm::VectorType::get(llvm::Type::getInt64Ty(VMContext), 1);
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty, "bitcast");
+ const char *name = 0;
+ Intrinsic::ID ID = Intrinsic::not_intrinsic;
+
+ switch (BuiltinID) {
+ default: assert(0 && "Unsupported shift intrinsic!");
+ case X86::BI__builtin_ia32_pslldi:
+ name = "pslldi";
+ ID = Intrinsic::x86_mmx_psll_d;
+ break;
+ case X86::BI__builtin_ia32_psllqi:
+ name = "psllqi";
+ ID = Intrinsic::x86_mmx_psll_q;
+ break;
+ case X86::BI__builtin_ia32_psllwi:
+ name = "psllwi";
+ ID = Intrinsic::x86_mmx_psll_w;
+ break;
+ case X86::BI__builtin_ia32_psradi:
+ name = "psradi";
+ ID = Intrinsic::x86_mmx_psra_d;
+ break;
+ case X86::BI__builtin_ia32_psrawi:
+ name = "psrawi";
+ ID = Intrinsic::x86_mmx_psra_w;
+ break;
+ case X86::BI__builtin_ia32_psrldi:
+ name = "psrldi";
+ ID = Intrinsic::x86_mmx_psrl_d;
+ break;
+ case X86::BI__builtin_ia32_psrlqi:
+ name = "psrlqi";
+ ID = Intrinsic::x86_mmx_psrl_q;
+ break;
+ case X86::BI__builtin_ia32_psrlwi:
+ name = "psrlwi";
+ ID = Intrinsic::x86_mmx_psrl_w;
+ break;
+ }
+ llvm::Function *F = CGM.getIntrinsic(ID);
+ return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), name);
+ }
+ case X86::BI__builtin_ia32_cmpps: {
+ llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse_cmp_ps);
+ return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), "cmpps");
+ }
+ case X86::BI__builtin_ia32_cmpss: {
+ llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse_cmp_ss);
+ return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), "cmpss");
+ }
+ case X86::BI__builtin_ia32_ldmxcsr: {
+ const llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(VMContext);
+ Value *One = llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1);
+ Value *Tmp = Builder.CreateAlloca(llvm::Type::getInt32Ty(VMContext), One, "tmp");
+ Builder.CreateStore(Ops[0], Tmp);
+ return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
+ Builder.CreateBitCast(Tmp, PtrTy));
+ }
+ case X86::BI__builtin_ia32_stmxcsr: {
+ const llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(VMContext);
+ Value *One = llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1);
+ Value *Tmp = Builder.CreateAlloca(llvm::Type::getInt32Ty(VMContext), One, "tmp");
+ One = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
+ Builder.CreateBitCast(Tmp, PtrTy));
+ return Builder.CreateLoad(Tmp, "stmxcsr");
+ }
+ case X86::BI__builtin_ia32_cmppd: {
+ llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_cmp_pd);
+ return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), "cmppd");
+ }
+ case X86::BI__builtin_ia32_cmpsd: {
+ llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_cmp_sd);
+ return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), "cmpsd");
+ }
+ case X86::BI__builtin_ia32_storehps:
+ case X86::BI__builtin_ia32_storelps: {
+ const llvm::Type *EltTy = llvm::Type::getInt64Ty(VMContext);
+ llvm::Type *PtrTy = llvm::PointerType::getUnqual(EltTy);
+ llvm::Type *VecTy = llvm::VectorType::get(EltTy, 2);
+
+ // cast val v2i64
+ Ops[1] = Builder.CreateBitCast(Ops[1], VecTy, "cast");
+
+ // extract (0, 1)
+ unsigned Index = BuiltinID == X86::BI__builtin_ia32_storelps ? 0 : 1;
+ llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), Index);
+ Ops[1] = Builder.CreateExtractElement(Ops[1], Idx, "extract");
+
+ // cast pointer to i64 & store
+ Ops[0] = Builder.CreateBitCast(Ops[0], PtrTy);
+ return Builder.CreateStore(Ops[1], Ops[0]);
+ }
+ case X86::BI__builtin_ia32_palignr: {
+ unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
+
+ // If palignr is shifting the pair of input vectors less than 9 bytes,
+ // emit a shuffle instruction.
+ if (shiftVal <= 8) {
+ const llvm::Type *IntTy = llvm::Type::getInt32Ty(VMContext);
+
+ llvm::SmallVector<llvm::Constant*, 8> Indices;
+ for (unsigned i = 0; i != 8; ++i)
+ Indices.push_back(llvm::ConstantInt::get(IntTy, shiftVal + i));
+
+ Value* SV = llvm::ConstantVector::get(Indices.begin(), Indices.size());
+ return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
+ }
+
+ // If palignr is shifting the pair of input vectors more than 8 but less
+ // than 16 bytes, emit a logical right shift of the destination.
+ if (shiftVal < 16) {
+ // MMX has these as 1 x i64 vectors for some odd optimization reasons.
+ const llvm::Type *EltTy = llvm::Type::getInt64Ty(VMContext);
+ const llvm::Type *VecTy = llvm::VectorType::get(EltTy, 1);
+
+ Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
+ Ops[1] = llvm::ConstantInt::get(VecTy, (shiftVal-8) * 8);
+
+ // create i32 constant
+ llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_mmx_psrl_q);
+ return Builder.CreateCall(F, &Ops[0], &Ops[0] + 2, "palignr");
+ }
+
+ // If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
+ return llvm::Constant::getNullValue(ConvertType(E->getType()));
+ }
+ case X86::BI__builtin_ia32_palignr128: {
+ unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
+
+ // If palignr is shifting the pair of input vectors less than 17 bytes,
+ // emit a shuffle instruction.
+ if (shiftVal <= 16) {
+ const llvm::Type *IntTy = llvm::Type::getInt32Ty(VMContext);
+
+ llvm::SmallVector<llvm::Constant*, 16> Indices;
+ for (unsigned i = 0; i != 16; ++i)
+ Indices.push_back(llvm::ConstantInt::get(IntTy, shiftVal + i));
+
+ Value* SV = llvm::ConstantVector::get(Indices.begin(), Indices.size());
+ return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
+ }
+
+ // If palignr is shifting the pair of input vectors more than 16 but less
+ // than 32 bytes, emit a logical right shift of the destination.
+ if (shiftVal < 32) {
+ const llvm::Type *EltTy = llvm::Type::getInt64Ty(VMContext);
+ const llvm::Type *VecTy = llvm::VectorType::get(EltTy, 2);
+ const llvm::Type *IntTy = llvm::Type::getInt32Ty(VMContext);
+
+ Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
+ Ops[1] = llvm::ConstantInt::get(IntTy, (shiftVal-16) * 8);
+
+ // create i32 constant
+ llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_psrl_dq);
+ return Builder.CreateCall(F, &Ops[0], &Ops[0] + 2, "palignr");
+ }
+
+ // If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
+ return llvm::Constant::getNullValue(ConvertType(E->getType()));
+ }
+ }
+}
+
+Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
+ const CallExpr *E) {
+ llvm::SmallVector<Value*, 4> Ops;
+
+ for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
+ Ops.push_back(EmitScalarExpr(E->getArg(i)));
+
+ Intrinsic::ID ID = Intrinsic::not_intrinsic;
+
+ switch (BuiltinID) {
+ default: return 0;
+
+ // vec_st
+ case PPC::BI__builtin_altivec_stvx:
+ case PPC::BI__builtin_altivec_stvxl:
+ case PPC::BI__builtin_altivec_stvebx:
+ case PPC::BI__builtin_altivec_stvehx:
+ case PPC::BI__builtin_altivec_stvewx:
+ {
+ Ops[2] = Builder.CreateBitCast(Ops[2], llvm::Type::getInt8PtrTy(VMContext));
+ Ops[1] = !isa<Constant>(Ops[1]) || !cast<Constant>(Ops[1])->isNullValue()
+ ? Builder.CreateGEP(Ops[2], Ops[1], "tmp") : Ops[2];
+ Ops.pop_back();
+
+ switch (BuiltinID) {
+ default: assert(0 && "Unsupported vavg intrinsic!");
+ case PPC::BI__builtin_altivec_stvx:
+ ID = Intrinsic::ppc_altivec_stvx;
+ break;
+ case PPC::BI__builtin_altivec_stvxl:
+ ID = Intrinsic::ppc_altivec_stvxl;
+ break;
+ case PPC::BI__builtin_altivec_stvebx:
+ ID = Intrinsic::ppc_altivec_stvebx;
+ break;
+ case PPC::BI__builtin_altivec_stvehx:
+ ID = Intrinsic::ppc_altivec_stvehx;
+ break;
+ case PPC::BI__builtin_altivec_stvewx:
+ ID = Intrinsic::ppc_altivec_stvewx;
+ break;
+ }
+ llvm::Function *F = CGM.getIntrinsic(ID);
+ return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), "");
+ }
+ }
+ return 0;
+}
OpenPOWER on IntegriCloud