summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/Checker/SimpleConstraintManager.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/Checker/SimpleConstraintManager.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/Checker/SimpleConstraintManager.cpp166
1 files changed, 120 insertions, 46 deletions
diff --git a/contrib/llvm/tools/clang/lib/Checker/SimpleConstraintManager.cpp b/contrib/llvm/tools/clang/lib/Checker/SimpleConstraintManager.cpp
index 8c423a9..321381b 100644
--- a/contrib/llvm/tools/clang/lib/Checker/SimpleConstraintManager.cpp
+++ b/contrib/llvm/tools/clang/lib/Checker/SimpleConstraintManager.cpp
@@ -35,12 +35,11 @@ bool SimpleConstraintManager::canReasonAbout(SVal X) const {
case BinaryOperator::Or:
case BinaryOperator::Xor:
return false;
- // We don't reason yet about arithmetic constraints on symbolic values.
+ // We don't reason yet about these arithmetic constraints on
+ // symbolic values.
case BinaryOperator::Mul:
case BinaryOperator::Div:
case BinaryOperator::Rem:
- case BinaryOperator::Add:
- case BinaryOperator::Sub:
case BinaryOperator::Shl:
case BinaryOperator::Shr:
return false;
@@ -90,12 +89,11 @@ const GRState *SimpleConstraintManager::AssumeAux(const GRState *state,
while (SubR) {
// FIXME: now we only find the first symbolic region.
if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(SubR)) {
+ const llvm::APSInt &zero = BasicVals.getZeroWithPtrWidth();
if (Assumption)
- return AssumeSymNE(state, SymR->getSymbol(),
- BasicVals.getZeroWithPtrWidth());
+ return AssumeSymNE(state, SymR->getSymbol(), zero, zero);
else
- return AssumeSymEQ(state, SymR->getSymbol(),
- BasicVals.getZeroWithPtrWidth());
+ return AssumeSymEQ(state, SymR->getSymbol(), zero, zero);
}
SubR = dyn_cast<SubRegion>(SubR->getSuperRegion());
}
@@ -121,11 +119,27 @@ const GRState *SimpleConstraintManager::Assume(const GRState *state,
return SU.ProcessAssume(state, cond, assumption);
}
+static BinaryOperator::Opcode NegateComparison(BinaryOperator::Opcode op) {
+ // FIXME: This should probably be part of BinaryOperator, since this isn't
+ // the only place it's used. (This code was copied from SimpleSValuator.cpp.)
+ switch (op) {
+ default:
+ assert(false && "Invalid opcode.");
+ case BinaryOperator::LT: return BinaryOperator::GE;
+ case BinaryOperator::GT: return BinaryOperator::LE;
+ case BinaryOperator::LE: return BinaryOperator::GT;
+ case BinaryOperator::GE: return BinaryOperator::LT;
+ case BinaryOperator::EQ: return BinaryOperator::NE;
+ case BinaryOperator::NE: return BinaryOperator::EQ;
+ }
+}
+
const GRState *SimpleConstraintManager::AssumeAux(const GRState *state,
NonLoc Cond,
bool Assumption) {
- // We cannot reason about SymIntExpr and SymSymExpr.
+ // We cannot reason about SymSymExprs,
+ // and can only reason about some SymIntExprs.
if (!canReasonAbout(Cond)) {
// Just return the current state indicating that the path is feasible.
// This may be an over-approximation of what is possible.
@@ -144,30 +158,35 @@ const GRState *SimpleConstraintManager::AssumeAux(const GRState *state,
SymbolRef sym = SV.getSymbol();
QualType T = SymMgr.getType(sym);
const llvm::APSInt &zero = BasicVals.getValue(0, T);
-
- return Assumption ? AssumeSymNE(state, sym, zero)
- : AssumeSymEQ(state, sym, zero);
+ if (Assumption)
+ return AssumeSymNE(state, sym, zero, zero);
+ else
+ return AssumeSymEQ(state, sym, zero, zero);
}
case nonloc::SymExprValKind: {
nonloc::SymExprVal V = cast<nonloc::SymExprVal>(Cond);
- if (const SymIntExpr *SE = dyn_cast<SymIntExpr>(V.getSymbolicExpression())){
- // FIXME: This is a hack. It silently converts the RHS integer to be
- // of the same type as on the left side. This should be removed once
- // we support truncation/extension of symbolic values.
- GRStateManager &StateMgr = state->getStateManager();
- ASTContext &Ctx = StateMgr.getContext();
- QualType LHSType = SE->getLHS()->getType(Ctx);
- BasicValueFactory &BasicVals = StateMgr.getBasicVals();
- const llvm::APSInt &RHS = BasicVals.Convert(LHSType, SE->getRHS());
- SymIntExpr SENew(SE->getLHS(), SE->getOpcode(), RHS, SE->getType(Ctx));
-
- return AssumeSymInt(state, Assumption, &SENew);
+
+ // For now, we only handle expressions whose RHS is an integer.
+ // All other expressions are assumed to be feasible.
+ const SymIntExpr *SE = dyn_cast<SymIntExpr>(V.getSymbolicExpression());
+ if (!SE)
+ return state;
+
+ BinaryOperator::Opcode op = SE->getOpcode();
+ // Implicitly compare non-comparison expressions to 0.
+ if (!BinaryOperator::isComparisonOp(op)) {
+ QualType T = SymMgr.getType(SE);
+ const llvm::APSInt &zero = BasicVals.getValue(0, T);
+ op = (Assumption ? BinaryOperator::NE : BinaryOperator::EQ);
+ return AssumeSymRel(state, SE, op, zero);
}
- // For all other symbolic expressions, over-approximate and consider
- // the constraint feasible.
- return state;
+ // From here on out, op is the real comparison we'll be testing.
+ if (!Assumption)
+ op = NegateComparison(op);
+
+ return AssumeSymRel(state, SE->getLHS(), op, SE->getRHS());
}
case nonloc::ConcreteIntKind: {
@@ -182,43 +201,98 @@ const GRState *SimpleConstraintManager::AssumeAux(const GRState *state,
} // end switch
}
-const GRState *SimpleConstraintManager::AssumeSymInt(const GRState *state,
- bool Assumption,
- const SymIntExpr *SE) {
+const GRState *SimpleConstraintManager::AssumeSymRel(const GRState *state,
+ const SymExpr *LHS,
+ BinaryOperator::Opcode op,
+ const llvm::APSInt& Int) {
+ assert(BinaryOperator::isComparisonOp(op) &&
+ "Non-comparison ops should be rewritten as comparisons to zero.");
+
+ // We only handle simple comparisons of the form "$sym == constant"
+ // or "($sym+constant1) == constant2".
+ // The adjustment is "constant1" in the above expression. It's used to
+ // "slide" the solution range around for modular arithmetic. For example,
+ // x < 4 has the solution [0, 3]. x+2 < 4 has the solution [0-2, 3-2], which
+ // in modular arithmetic is [0, 1] U [UINT_MAX-1, UINT_MAX]. It's up to
+ // the subclasses of SimpleConstraintManager to handle the adjustment.
+ llvm::APSInt Adjustment;
+
+ // First check if the LHS is a simple symbol reference.
+ SymbolRef Sym = dyn_cast<SymbolData>(LHS);
+ if (Sym) {
+ Adjustment = 0;
+ } else {
+ // Next, see if it's a "($sym+constant1)" expression.
+ const SymIntExpr *SE = dyn_cast<SymIntExpr>(LHS);
+
+ // We don't handle "($sym1+$sym2)".
+ // Give up and assume the constraint is feasible.
+ if (!SE)
+ return state;
+
+ // We don't handle "(<expr>+constant1)".
+ // Give up and assume the constraint is feasible.
+ Sym = dyn_cast<SymbolData>(SE->getLHS());
+ if (!Sym)
+ return state;
+
+ // Get the constant out of the expression "($sym+constant1)".
+ switch (SE->getOpcode()) {
+ case BinaryOperator::Add:
+ Adjustment = SE->getRHS();
+ break;
+ case BinaryOperator::Sub:
+ Adjustment = -SE->getRHS();
+ break;
+ default:
+ // We don't handle non-additive operators.
+ // Give up and assume the constraint is feasible.
+ return state;
+ }
+ }
+
+ // FIXME: This next section is a hack. It silently converts the integers to
+ // be of the same type as the symbol, which is not always correct. Really the
+ // comparisons should be performed using the Int's type, then mapped back to
+ // the symbol's range of values.
+ GRStateManager &StateMgr = state->getStateManager();
+ ASTContext &Ctx = StateMgr.getContext();
+
+ QualType T = Sym->getType(Ctx);
+ assert(T->isIntegerType() || Loc::IsLocType(T));
+ unsigned bitwidth = Ctx.getTypeSize(T);
+ bool isSymUnsigned = T->isUnsignedIntegerType() || Loc::IsLocType(T);
+ // Convert the adjustment.
+ Adjustment.setIsUnsigned(isSymUnsigned);
+ Adjustment.extOrTrunc(bitwidth);
- // Here we assume that LHS is a symbol. This is consistent with the
- // rest of the constraint manager logic.
- SymbolRef Sym = cast<SymbolData>(SE->getLHS());
- const llvm::APSInt &Int = SE->getRHS();
+ // Convert the right-hand side integer.
+ llvm::APSInt ConvertedInt(Int, isSymUnsigned);
+ ConvertedInt.extOrTrunc(bitwidth);
- switch (SE->getOpcode()) {
+ switch (op) {
default:
// No logic yet for other operators. Assume the constraint is feasible.
return state;
case BinaryOperator::EQ:
- return Assumption ? AssumeSymEQ(state, Sym, Int)
- : AssumeSymNE(state, Sym, Int);
+ return AssumeSymEQ(state, Sym, ConvertedInt, Adjustment);
case BinaryOperator::NE:
- return Assumption ? AssumeSymNE(state, Sym, Int)
- : AssumeSymEQ(state, Sym, Int);
+ return AssumeSymNE(state, Sym, ConvertedInt, Adjustment);
+
case BinaryOperator::GT:
- return Assumption ? AssumeSymGT(state, Sym, Int)
- : AssumeSymLE(state, Sym, Int);
+ return AssumeSymGT(state, Sym, ConvertedInt, Adjustment);
case BinaryOperator::GE:
- return Assumption ? AssumeSymGE(state, Sym, Int)
- : AssumeSymLT(state, Sym, Int);
+ return AssumeSymGE(state, Sym, ConvertedInt, Adjustment);
case BinaryOperator::LT:
- return Assumption ? AssumeSymLT(state, Sym, Int)
- : AssumeSymGE(state, Sym, Int);
+ return AssumeSymLT(state, Sym, ConvertedInt, Adjustment);
case BinaryOperator::LE:
- return Assumption ? AssumeSymLE(state, Sym, Int)
- : AssumeSymGT(state, Sym, Int);
+ return AssumeSymLE(state, Sym, ConvertedInt, Adjustment);
} // end switch
}
OpenPOWER on IntegriCloud