diff options
Diffstat (limited to 'contrib/llvm/tools/clang/lib/Checker/GRExprEngine.cpp')
-rw-r--r-- | contrib/llvm/tools/clang/lib/Checker/GRExprEngine.cpp | 3481 |
1 files changed, 3481 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/Checker/GRExprEngine.cpp b/contrib/llvm/tools/clang/lib/Checker/GRExprEngine.cpp new file mode 100644 index 0000000..2417658 --- /dev/null +++ b/contrib/llvm/tools/clang/lib/Checker/GRExprEngine.cpp @@ -0,0 +1,3481 @@ +//=-- GRExprEngine.cpp - Path-Sensitive Expression-Level Dataflow ---*- C++ -*-= +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines a meta-engine for path-sensitive dataflow analysis that +// is built on GREngine, but provides the boilerplate to execute transfer +// functions and build the ExplodedGraph at the expression level. +// +//===----------------------------------------------------------------------===// +#include "GRExprEngineInternalChecks.h" +#include "clang/Checker/BugReporter/BugType.h" +#include "clang/Checker/PathSensitive/AnalysisManager.h" +#include "clang/Checker/PathSensitive/GRExprEngine.h" +#include "clang/Checker/PathSensitive/GRExprEngineBuilders.h" +#include "clang/Checker/PathSensitive/Checker.h" +#include "clang/AST/CharUnits.h" +#include "clang/AST/ParentMap.h" +#include "clang/AST/StmtObjC.h" +#include "clang/AST/DeclCXX.h" +#include "clang/Basic/Builtins.h" +#include "clang/Basic/SourceManager.h" +#include "clang/Basic/SourceManager.h" +#include "clang/Basic/PrettyStackTrace.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/ADT/ImmutableList.h" + +#ifndef NDEBUG +#include "llvm/Support/GraphWriter.h" +#endif + +using namespace clang; +using llvm::dyn_cast; +using llvm::dyn_cast_or_null; +using llvm::cast; +using llvm::APSInt; + +namespace { + // Trait class for recording returned expression in the state. + struct ReturnExpr { + static int TagInt; + typedef const Stmt *data_type; + }; + int ReturnExpr::TagInt; +} + +//===----------------------------------------------------------------------===// +// Utility functions. +//===----------------------------------------------------------------------===// + +static inline Selector GetNullarySelector(const char* name, ASTContext& Ctx) { + IdentifierInfo* II = &Ctx.Idents.get(name); + return Ctx.Selectors.getSelector(0, &II); +} + + +static QualType GetCalleeReturnType(const CallExpr *CE) { + const Expr *Callee = CE->getCallee(); + QualType T = Callee->getType(); + if (const PointerType *PT = T->getAs<PointerType>()) { + const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>(); + T = FT->getResultType(); + } + else { + const BlockPointerType *BT = T->getAs<BlockPointerType>(); + T = BT->getPointeeType()->getAs<FunctionType>()->getResultType(); + } + return T; +} + +static bool CalleeReturnsReference(const CallExpr *CE) { + return (bool) GetCalleeReturnType(CE)->getAs<ReferenceType>(); +} + +static bool ReceiverReturnsReference(const ObjCMessageExpr *ME) { + const ObjCMethodDecl *MD = ME->getMethodDecl(); + if (!MD) + return false; + return MD->getResultType()->getAs<ReferenceType>(); +} + +#ifndef NDEBUG +static bool ReceiverReturnsReferenceOrRecord(const ObjCMessageExpr *ME) { + const ObjCMethodDecl *MD = ME->getMethodDecl(); + if (!MD) + return false; + QualType T = MD->getResultType(); + return T->getAs<RecordType>() || T->getAs<ReferenceType>(); +} + +static bool CalleeReturnsReferenceOrRecord(const CallExpr *CE) { + QualType T = GetCalleeReturnType(CE); + return T->getAs<ReferenceType>() || T->getAs<RecordType>(); +} +#endif + +//===----------------------------------------------------------------------===// +// Batch auditor. DEPRECATED. +//===----------------------------------------------------------------------===// + +namespace { + +class MappedBatchAuditor : public GRSimpleAPICheck { + typedef llvm::ImmutableList<GRSimpleAPICheck*> Checks; + typedef llvm::DenseMap<void*,Checks> MapTy; + + MapTy M; + Checks::Factory F; + Checks AllStmts; + +public: + MappedBatchAuditor(llvm::BumpPtrAllocator& Alloc) : + F(Alloc), AllStmts(F.GetEmptyList()) {} + + virtual ~MappedBatchAuditor() { + llvm::DenseSet<GRSimpleAPICheck*> AlreadyVisited; + + for (MapTy::iterator MI = M.begin(), ME = M.end(); MI != ME; ++MI) + for (Checks::iterator I=MI->second.begin(), E=MI->second.end(); I!=E;++I){ + + GRSimpleAPICheck* check = *I; + + if (AlreadyVisited.count(check)) + continue; + + AlreadyVisited.insert(check); + delete check; + } + } + + void AddCheck(GRSimpleAPICheck *A, Stmt::StmtClass C) { + assert (A && "Check cannot be null."); + void* key = reinterpret_cast<void*>((uintptr_t) C); + MapTy::iterator I = M.find(key); + M[key] = F.Concat(A, I == M.end() ? F.GetEmptyList() : I->second); + } + + void AddCheck(GRSimpleAPICheck *A) { + assert (A && "Check cannot be null."); + AllStmts = F.Concat(A, AllStmts); + } + + virtual bool Audit(ExplodedNode* N, GRStateManager& VMgr) { + // First handle the auditors that accept all statements. + bool isSink = false; + for (Checks::iterator I = AllStmts.begin(), E = AllStmts.end(); I!=E; ++I) + isSink |= (*I)->Audit(N, VMgr); + + // Next handle the auditors that accept only specific statements. + const Stmt* S = cast<PostStmt>(N->getLocation()).getStmt(); + void* key = reinterpret_cast<void*>((uintptr_t) S->getStmtClass()); + MapTy::iterator MI = M.find(key); + if (MI != M.end()) { + for (Checks::iterator I=MI->second.begin(), E=MI->second.end(); I!=E; ++I) + isSink |= (*I)->Audit(N, VMgr); + } + + return isSink; + } +}; + +} // end anonymous namespace + +//===----------------------------------------------------------------------===// +// Checker worklist routines. +//===----------------------------------------------------------------------===// + +void GRExprEngine::CheckerVisit(Stmt *S, ExplodedNodeSet &Dst, + ExplodedNodeSet &Src, bool isPrevisit) { + + if (Checkers.empty()) { + Dst.insert(Src); + return; + } + + ExplodedNodeSet Tmp; + ExplodedNodeSet *PrevSet = &Src; + + for (CheckersOrdered::iterator I=Checkers.begin(),E=Checkers.end(); I!=E;++I){ + ExplodedNodeSet *CurrSet = 0; + if (I+1 == E) + CurrSet = &Dst; + else { + CurrSet = (PrevSet == &Tmp) ? &Src : &Tmp; + CurrSet->clear(); + } + void *tag = I->first; + Checker *checker = I->second; + + for (ExplodedNodeSet::iterator NI = PrevSet->begin(), NE = PrevSet->end(); + NI != NE; ++NI) + checker->GR_Visit(*CurrSet, *Builder, *this, S, *NI, tag, isPrevisit); + PrevSet = CurrSet; + } + + // Don't autotransition. The CheckerContext objects should do this + // automatically. +} + +void GRExprEngine::CheckerEvalNilReceiver(const ObjCMessageExpr *ME, + ExplodedNodeSet &Dst, + const GRState *state, + ExplodedNode *Pred) { + bool Evaluated = false; + ExplodedNodeSet DstTmp; + + for (CheckersOrdered::iterator I=Checkers.begin(),E=Checkers.end();I!=E;++I) { + void *tag = I->first; + Checker *checker = I->second; + + if (checker->GR_EvalNilReceiver(DstTmp, *Builder, *this, ME, Pred, state, + tag)) { + Evaluated = true; + break; + } else + // The checker didn't evaluate the expr. Restore the Dst. + DstTmp.clear(); + } + + if (Evaluated) + Dst.insert(DstTmp); + else + Dst.insert(Pred); +} + +// CheckerEvalCall returns true if one of the checkers processed the node. +// This may return void when all call evaluation logic goes to some checker +// in the future. +bool GRExprEngine::CheckerEvalCall(const CallExpr *CE, + ExplodedNodeSet &Dst, + ExplodedNode *Pred) { + bool Evaluated = false; + ExplodedNodeSet DstTmp; + + for (CheckersOrdered::iterator I=Checkers.begin(),E=Checkers.end();I!=E;++I) { + void *tag = I->first; + Checker *checker = I->second; + + if (checker->GR_EvalCallExpr(DstTmp, *Builder, *this, CE, Pred, tag)) { + Evaluated = true; + break; + } else + // The checker didn't evaluate the expr. Restore the DstTmp set. + DstTmp.clear(); + } + + if (Evaluated) + Dst.insert(DstTmp); + else + Dst.insert(Pred); + + return Evaluated; +} + +// FIXME: This is largely copy-paste from CheckerVisit(). Need to +// unify. +void GRExprEngine::CheckerVisitBind(const Stmt *AssignE, const Stmt *StoreE, + ExplodedNodeSet &Dst, + ExplodedNodeSet &Src, + SVal location, SVal val, bool isPrevisit) { + + if (Checkers.empty()) { + Dst.insert(Src); + return; + } + + ExplodedNodeSet Tmp; + ExplodedNodeSet *PrevSet = &Src; + + for (CheckersOrdered::iterator I=Checkers.begin(),E=Checkers.end(); I!=E; ++I) + { + ExplodedNodeSet *CurrSet = 0; + if (I+1 == E) + CurrSet = &Dst; + else { + CurrSet = (PrevSet == &Tmp) ? &Src : &Tmp; + CurrSet->clear(); + } + + void *tag = I->first; + Checker *checker = I->second; + + for (ExplodedNodeSet::iterator NI = PrevSet->begin(), NE = PrevSet->end(); + NI != NE; ++NI) + checker->GR_VisitBind(*CurrSet, *Builder, *this, AssignE, StoreE, + *NI, tag, location, val, isPrevisit); + + // Update which NodeSet is the current one. + PrevSet = CurrSet; + } + + // Don't autotransition. The CheckerContext objects should do this + // automatically. +} +//===----------------------------------------------------------------------===// +// Engine construction and deletion. +//===----------------------------------------------------------------------===// + +static void RegisterInternalChecks(GRExprEngine &Eng) { + // Register internal "built-in" BugTypes with the BugReporter. These BugTypes + // are different than what probably many checks will do since they don't + // create BugReports on-the-fly but instead wait until GRExprEngine finishes + // analyzing a function. Generation of BugReport objects is done via a call + // to 'FlushReports' from BugReporter. + // The following checks do not need to have their associated BugTypes + // explicitly registered with the BugReporter. If they issue any BugReports, + // their associated BugType will get registered with the BugReporter + // automatically. Note that the check itself is owned by the GRExprEngine + // object. + RegisterAdjustedReturnValueChecker(Eng); + RegisterAttrNonNullChecker(Eng); + RegisterCallAndMessageChecker(Eng); + RegisterDereferenceChecker(Eng); + RegisterVLASizeChecker(Eng); + RegisterDivZeroChecker(Eng); + RegisterReturnStackAddressChecker(Eng); + RegisterReturnUndefChecker(Eng); + RegisterUndefinedArraySubscriptChecker(Eng); + RegisterUndefinedAssignmentChecker(Eng); + RegisterUndefBranchChecker(Eng); + RegisterUndefCapturedBlockVarChecker(Eng); + RegisterUndefResultChecker(Eng); + + // This is not a checker yet. + RegisterNoReturnFunctionChecker(Eng); + RegisterBuiltinFunctionChecker(Eng); + RegisterOSAtomicChecker(Eng); + RegisterUnixAPIChecker(Eng); + RegisterMacOSXAPIChecker(Eng); +} + +GRExprEngine::GRExprEngine(AnalysisManager &mgr, GRTransferFuncs *tf) + : AMgr(mgr), + CoreEngine(mgr.getASTContext(), *this), + G(CoreEngine.getGraph()), + Builder(NULL), + StateMgr(G.getContext(), mgr.getStoreManagerCreator(), + mgr.getConstraintManagerCreator(), G.getAllocator(), + *this), + SymMgr(StateMgr.getSymbolManager()), + ValMgr(StateMgr.getValueManager()), + SVator(ValMgr.getSValuator()), + CurrentStmt(NULL), + NSExceptionII(NULL), NSExceptionInstanceRaiseSelectors(NULL), + RaiseSel(GetNullarySelector("raise", G.getContext())), + BR(mgr, *this), TF(tf) { + // Register internal checks. + RegisterInternalChecks(*this); + + // FIXME: Eventually remove the TF object entirely. + TF->RegisterChecks(*this); + TF->RegisterPrinters(getStateManager().Printers); +} + +GRExprEngine::~GRExprEngine() { + BR.FlushReports(); + delete [] NSExceptionInstanceRaiseSelectors; + for (CheckersOrdered::iterator I=Checkers.begin(), E=Checkers.end(); I!=E;++I) + delete I->second; +} + +//===----------------------------------------------------------------------===// +// Utility methods. +//===----------------------------------------------------------------------===// + +void GRExprEngine::AddCheck(GRSimpleAPICheck* A, Stmt::StmtClass C) { + if (!BatchAuditor) + BatchAuditor.reset(new MappedBatchAuditor(getGraph().getAllocator())); + + ((MappedBatchAuditor*) BatchAuditor.get())->AddCheck(A, C); +} + +void GRExprEngine::AddCheck(GRSimpleAPICheck *A) { + if (!BatchAuditor) + BatchAuditor.reset(new MappedBatchAuditor(getGraph().getAllocator())); + + ((MappedBatchAuditor*) BatchAuditor.get())->AddCheck(A); +} + +const GRState* GRExprEngine::getInitialState(const LocationContext *InitLoc) { + const GRState *state = StateMgr.getInitialState(InitLoc); + + // Preconditions. + + // FIXME: It would be nice if we had a more general mechanism to add + // such preconditions. Some day. + do { + const Decl *D = InitLoc->getDecl(); + if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { + // Precondition: the first argument of 'main' is an integer guaranteed + // to be > 0. + const IdentifierInfo *II = FD->getIdentifier(); + if (!II || !(II->getName() == "main" && FD->getNumParams() > 0)) + break; + + const ParmVarDecl *PD = FD->getParamDecl(0); + QualType T = PD->getType(); + if (!T->isIntegerType()) + break; + + const MemRegion *R = state->getRegion(PD, InitLoc); + if (!R) + break; + + SVal V = state->getSVal(loc::MemRegionVal(R)); + SVal Constraint_untested = EvalBinOp(state, BinaryOperator::GT, V, + ValMgr.makeZeroVal(T), + getContext().IntTy); + + DefinedOrUnknownSVal *Constraint = + dyn_cast<DefinedOrUnknownSVal>(&Constraint_untested); + + if (!Constraint) + break; + + if (const GRState *newState = state->Assume(*Constraint, true)) + state = newState; + + break; + } + + if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) { + // Precondition: 'self' is always non-null upon entry to an Objective-C + // method. + const ImplicitParamDecl *SelfD = MD->getSelfDecl(); + const MemRegion *R = state->getRegion(SelfD, InitLoc); + SVal V = state->getSVal(loc::MemRegionVal(R)); + + if (const Loc *LV = dyn_cast<Loc>(&V)) { + // Assume that the pointer value in 'self' is non-null. + state = state->Assume(*LV, true); + assert(state && "'self' cannot be null"); + } + } + } while (0); + + return state; +} + +//===----------------------------------------------------------------------===// +// Top-level transfer function logic (Dispatcher). +//===----------------------------------------------------------------------===// + +/// EvalAssume - Called by ConstraintManager. Used to call checker-specific +/// logic for handling assumptions on symbolic values. +const GRState *GRExprEngine::ProcessAssume(const GRState *state, SVal cond, + bool assumption) { + for (CheckersOrdered::iterator I = Checkers.begin(), E = Checkers.end(); + I != E; ++I) { + + if (!state) + return NULL; + + state = I->second->EvalAssume(state, cond, assumption); + } + + if (!state) + return NULL; + + return TF->EvalAssume(state, cond, assumption); +} + +void GRExprEngine::ProcessStmt(CFGElement CE, GRStmtNodeBuilder& builder) { + CurrentStmt = CE.getStmt(); + PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), + CurrentStmt->getLocStart(), + "Error evaluating statement"); + + Builder = &builder; + EntryNode = builder.getBasePredecessor(); + + // Set up our simple checks. + if (BatchAuditor) + Builder->setAuditor(BatchAuditor.get()); + + // Create the cleaned state. + const ExplodedNode *BasePred = Builder->getBasePredecessor(); + + SymbolReaper SymReaper(BasePred->getLocationContext(), SymMgr); + + CleanedState = AMgr.shouldPurgeDead() + ? StateMgr.RemoveDeadBindings(EntryNode->getState(), CurrentStmt, + BasePred->getLocationContext()->getCurrentStackFrame(), + SymReaper) + : EntryNode->getState(); + + // Process any special transfer function for dead symbols. + ExplodedNodeSet Tmp; + + if (!SymReaper.hasDeadSymbols()) + Tmp.Add(EntryNode); + else { + SaveAndRestore<bool> OldSink(Builder->BuildSinks); + SaveOr OldHasGen(Builder->HasGeneratedNode); + + SaveAndRestore<bool> OldPurgeDeadSymbols(Builder->PurgingDeadSymbols); + Builder->PurgingDeadSymbols = true; + + // FIXME: This should soon be removed. + ExplodedNodeSet Tmp2; + getTF().EvalDeadSymbols(Tmp2, *this, *Builder, EntryNode, CurrentStmt, + CleanedState, SymReaper); + + if (Checkers.empty()) + Tmp.insert(Tmp2); + else { + ExplodedNodeSet Tmp3; + ExplodedNodeSet *SrcSet = &Tmp2; + for (CheckersOrdered::iterator I = Checkers.begin(), E = Checkers.end(); + I != E; ++I) { + ExplodedNodeSet *DstSet = 0; + if (I+1 == E) + DstSet = &Tmp; + else { + DstSet = (SrcSet == &Tmp2) ? &Tmp3 : &Tmp2; + DstSet->clear(); + } + + void *tag = I->first; + Checker *checker = I->second; + for (ExplodedNodeSet::iterator NI = SrcSet->begin(), NE = SrcSet->end(); + NI != NE; ++NI) + checker->GR_EvalDeadSymbols(*DstSet, *Builder, *this, CurrentStmt, + *NI, SymReaper, tag); + SrcSet = DstSet; + } + } + + if (!Builder->BuildSinks && !Builder->HasGeneratedNode) + Tmp.Add(EntryNode); + } + + bool HasAutoGenerated = false; + + for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { + + ExplodedNodeSet Dst; + + // Set the cleaned state. + Builder->SetCleanedState(*I == EntryNode ? CleanedState : GetState(*I)); + + // Visit the statement. + if (CE.asLValue()) + VisitLValue(cast<Expr>(CurrentStmt), *I, Dst); + else + Visit(CurrentStmt, *I, Dst); + + // Do we need to auto-generate a node? We only need to do this to generate + // a node with a "cleaned" state; GRCoreEngine will actually handle + // auto-transitions for other cases. + if (Dst.size() == 1 && *Dst.begin() == EntryNode + && !Builder->HasGeneratedNode && !HasAutoGenerated) { + HasAutoGenerated = true; + builder.generateNode(CurrentStmt, GetState(EntryNode), *I); + } + } + + // NULL out these variables to cleanup. + CleanedState = NULL; + EntryNode = NULL; + + CurrentStmt = 0; + + Builder = NULL; +} + +void GRExprEngine::Visit(Stmt* S, ExplodedNode* Pred, ExplodedNodeSet& Dst) { + PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), + S->getLocStart(), + "Error evaluating statement"); + + // FIXME: add metadata to the CFG so that we can disable + // this check when we KNOW that there is no block-level subexpression. + // The motivation is that this check requires a hashtable lookup. + + if (S != CurrentStmt && Pred->getLocationContext()->getCFG()->isBlkExpr(S)) { + Dst.Add(Pred); + return; + } + + switch (S->getStmtClass()) { + // C++ stuff we don't support yet. + case Stmt::CXXBindReferenceExprClass: + case Stmt::CXXBindTemporaryExprClass: + case Stmt::CXXCatchStmtClass: + case Stmt::CXXConstructExprClass: + case Stmt::CXXDefaultArgExprClass: + case Stmt::CXXDependentScopeMemberExprClass: + case Stmt::CXXExprWithTemporariesClass: + case Stmt::CXXNullPtrLiteralExprClass: + case Stmt::CXXPseudoDestructorExprClass: + case Stmt::CXXTemporaryObjectExprClass: + case Stmt::CXXThrowExprClass: + case Stmt::CXXTryStmtClass: + case Stmt::CXXTypeidExprClass: + case Stmt::CXXUnresolvedConstructExprClass: + case Stmt::CXXZeroInitValueExprClass: + case Stmt::DependentScopeDeclRefExprClass: + case Stmt::UnaryTypeTraitExprClass: + case Stmt::UnresolvedLookupExprClass: + case Stmt::UnresolvedMemberExprClass: + { + SaveAndRestore<bool> OldSink(Builder->BuildSinks); + Builder->BuildSinks = true; + MakeNode(Dst, S, Pred, GetState(Pred)); + break; + } + + // Cases that should never be evaluated simply because they shouldn't + // appear in the CFG. + case Stmt::BreakStmtClass: + case Stmt::CaseStmtClass: + case Stmt::CompoundStmtClass: + case Stmt::ContinueStmtClass: + case Stmt::DefaultStmtClass: + case Stmt::DoStmtClass: + case Stmt::GotoStmtClass: + case Stmt::IndirectGotoStmtClass: + case Stmt::LabelStmtClass: + case Stmt::NoStmtClass: + case Stmt::NullStmtClass: + case Stmt::SwitchCaseClass: + llvm_unreachable("Stmt should not be in analyzer evaluation loop"); + break; + + // Cases not handled yet; but will handle some day. + case Stmt::DesignatedInitExprClass: + case Stmt::ExtVectorElementExprClass: + case Stmt::GNUNullExprClass: + case Stmt::ImaginaryLiteralClass: + case Stmt::ImplicitValueInitExprClass: + case Stmt::ObjCAtCatchStmtClass: + case Stmt::ObjCAtFinallyStmtClass: + case Stmt::ObjCAtSynchronizedStmtClass: + case Stmt::ObjCAtTryStmtClass: + case Stmt::ObjCEncodeExprClass: + case Stmt::ObjCImplicitSetterGetterRefExprClass: + case Stmt::ObjCIsaExprClass: + case Stmt::ObjCPropertyRefExprClass: + case Stmt::ObjCProtocolExprClass: + case Stmt::ObjCSelectorExprClass: + case Stmt::ObjCStringLiteralClass: + case Stmt::ObjCSuperExprClass: + case Stmt::ParenListExprClass: + case Stmt::PredefinedExprClass: + case Stmt::ShuffleVectorExprClass: + case Stmt::TypesCompatibleExprClass: + case Stmt::VAArgExprClass: + // Fall through. + + // Cases we intentionally don't evaluate, since they don't need + // to be explicitly evaluated. + case Stmt::AddrLabelExprClass: + case Stmt::IntegerLiteralClass: + case Stmt::CharacterLiteralClass: + case Stmt::CXXBoolLiteralExprClass: + case Stmt::FloatingLiteralClass: + Dst.Add(Pred); // No-op. Simply propagate the current state unchanged. + break; + + case Stmt::ArraySubscriptExprClass: + VisitArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Pred, Dst, false); + break; + + case Stmt::AsmStmtClass: + VisitAsmStmt(cast<AsmStmt>(S), Pred, Dst); + break; + + case Stmt::BlockDeclRefExprClass: + VisitBlockDeclRefExpr(cast<BlockDeclRefExpr>(S), Pred, Dst, false); + break; + + case Stmt::BlockExprClass: + VisitBlockExpr(cast<BlockExpr>(S), Pred, Dst); + break; + + case Stmt::BinaryOperatorClass: { + BinaryOperator* B = cast<BinaryOperator>(S); + + if (B->isLogicalOp()) { + VisitLogicalExpr(B, Pred, Dst); + break; + } + else if (B->getOpcode() == BinaryOperator::Comma) { + const GRState* state = GetState(Pred); + MakeNode(Dst, B, Pred, state->BindExpr(B, state->getSVal(B->getRHS()))); + break; + } + + if (AMgr.shouldEagerlyAssume() && + (B->isRelationalOp() || B->isEqualityOp())) { + ExplodedNodeSet Tmp; + VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Tmp, false); + EvalEagerlyAssume(Dst, Tmp, cast<Expr>(S)); + } + else + VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst, false); + + break; + } + + case Stmt::CallExprClass: + case Stmt::CXXOperatorCallExprClass: { + CallExpr* C = cast<CallExpr>(S); + VisitCall(C, Pred, C->arg_begin(), C->arg_end(), Dst, false); + break; + } + + case Stmt::CXXMemberCallExprClass: { + CXXMemberCallExpr *MCE = cast<CXXMemberCallExpr>(S); + VisitCXXMemberCallExpr(MCE, Pred, Dst); + break; + } + + case Stmt::CXXNewExprClass: { + CXXNewExpr *NE = cast<CXXNewExpr>(S); + VisitCXXNewExpr(NE, Pred, Dst); + break; + } + + case Stmt::CXXDeleteExprClass: { + CXXDeleteExpr *CDE = cast<CXXDeleteExpr>(S); + VisitCXXDeleteExpr(CDE, Pred, Dst); + break; + } + // FIXME: ChooseExpr is really a constant. We need to fix + // the CFG do not model them as explicit control-flow. + + case Stmt::ChooseExprClass: { // __builtin_choose_expr + ChooseExpr* C = cast<ChooseExpr>(S); + VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst); + break; + } + + case Stmt::CompoundAssignOperatorClass: + VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst, false); + break; + + case Stmt::CompoundLiteralExprClass: + VisitCompoundLiteralExpr(cast<CompoundLiteralExpr>(S), Pred, Dst, false); + break; + + case Stmt::ConditionalOperatorClass: { // '?' operator + ConditionalOperator* C = cast<ConditionalOperator>(S); + VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst); + break; + } + + case Stmt::CXXThisExprClass: + VisitCXXThisExpr(cast<CXXThisExpr>(S), Pred, Dst); + break; + + case Stmt::DeclRefExprClass: + VisitDeclRefExpr(cast<DeclRefExpr>(S), Pred, Dst, false); + break; + + case Stmt::DeclStmtClass: + VisitDeclStmt(cast<DeclStmt>(S), Pred, Dst); + break; + + case Stmt::ForStmtClass: + // This case isn't for branch processing, but for handling the + // initialization of a condition variable. + VisitCondInit(cast<ForStmt>(S)->getConditionVariable(), S, Pred, Dst); + break; + + case Stmt::ImplicitCastExprClass: + case Stmt::CStyleCastExprClass: + case Stmt::CXXStaticCastExprClass: + case Stmt::CXXDynamicCastExprClass: + case Stmt::CXXReinterpretCastExprClass: + case Stmt::CXXConstCastExprClass: + case Stmt::CXXFunctionalCastExprClass: { + CastExpr* C = cast<CastExpr>(S); + VisitCast(C, C->getSubExpr(), Pred, Dst, false); + break; + } + + case Stmt::IfStmtClass: + // This case isn't for branch processing, but for handling the + // initialization of a condition variable. + VisitCondInit(cast<IfStmt>(S)->getConditionVariable(), S, Pred, Dst); + break; + + case Stmt::InitListExprClass: + VisitInitListExpr(cast<InitListExpr>(S), Pred, Dst); + break; + + case Stmt::MemberExprClass: + VisitMemberExpr(cast<MemberExpr>(S), Pred, Dst, false); + break; + + case Stmt::ObjCIvarRefExprClass: + VisitObjCIvarRefExpr(cast<ObjCIvarRefExpr>(S), Pred, Dst, false); + break; + + case Stmt::ObjCForCollectionStmtClass: + VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S), Pred, Dst); + break; + + case Stmt::ObjCMessageExprClass: + VisitObjCMessageExpr(cast<ObjCMessageExpr>(S), Pred, Dst, false); + break; + + case Stmt::ObjCAtThrowStmtClass: { + // FIXME: This is not complete. We basically treat @throw as + // an abort. + SaveAndRestore<bool> OldSink(Builder->BuildSinks); + Builder->BuildSinks = true; + MakeNode(Dst, S, Pred, GetState(Pred)); + break; + } + + case Stmt::ParenExprClass: + Visit(cast<ParenExpr>(S)->getSubExpr()->IgnoreParens(), Pred, Dst); + break; + + case Stmt::ReturnStmtClass: + VisitReturnStmt(cast<ReturnStmt>(S), Pred, Dst); + break; + + case Stmt::OffsetOfExprClass: + VisitOffsetOfExpr(cast<OffsetOfExpr>(S), Pred, Dst); + break; + + case Stmt::SizeOfAlignOfExprClass: + VisitSizeOfAlignOfExpr(cast<SizeOfAlignOfExpr>(S), Pred, Dst); + break; + + case Stmt::StmtExprClass: { + StmtExpr* SE = cast<StmtExpr>(S); + + if (SE->getSubStmt()->body_empty()) { + // Empty statement expression. + assert(SE->getType() == getContext().VoidTy + && "Empty statement expression must have void type."); + Dst.Add(Pred); + break; + } + + if (Expr* LastExpr = dyn_cast<Expr>(*SE->getSubStmt()->body_rbegin())) { + const GRState* state = GetState(Pred); + MakeNode(Dst, SE, Pred, state->BindExpr(SE, state->getSVal(LastExpr))); + } + else + Dst.Add(Pred); + + break; + } + + case Stmt::StringLiteralClass: + VisitLValue(cast<StringLiteral>(S), Pred, Dst); + break; + + case Stmt::SwitchStmtClass: + // This case isn't for branch processing, but for handling the + // initialization of a condition variable. + VisitCondInit(cast<SwitchStmt>(S)->getConditionVariable(), S, Pred, Dst); + break; + + case Stmt::UnaryOperatorClass: { + UnaryOperator *U = cast<UnaryOperator>(S); + if (AMgr.shouldEagerlyAssume()&&(U->getOpcode() == UnaryOperator::LNot)) { + ExplodedNodeSet Tmp; + VisitUnaryOperator(U, Pred, Tmp, false); + EvalEagerlyAssume(Dst, Tmp, U); + } + else + VisitUnaryOperator(U, Pred, Dst, false); + break; + } + + case Stmt::WhileStmtClass: + // This case isn't for branch processing, but for handling the + // initialization of a condition variable. + VisitCondInit(cast<WhileStmt>(S)->getConditionVariable(), S, Pred, Dst); + break; + } +} + +void GRExprEngine::VisitLValue(Expr* Ex, ExplodedNode* Pred, + ExplodedNodeSet& Dst) { + + PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), + Ex->getLocStart(), + "Error evaluating statement"); + + + Ex = Ex->IgnoreParens(); + + if (Ex != CurrentStmt && Pred->getLocationContext()->getCFG()->isBlkExpr(Ex)){ + Dst.Add(Pred); + return; + } + + switch (Ex->getStmtClass()) { + // C++ stuff we don't support yet. + case Stmt::CXXExprWithTemporariesClass: + case Stmt::CXXMemberCallExprClass: + case Stmt::CXXZeroInitValueExprClass: { + SaveAndRestore<bool> OldSink(Builder->BuildSinks); + Builder->BuildSinks = true; + MakeNode(Dst, Ex, Pred, GetState(Pred)); + break; + } + + case Stmt::ArraySubscriptExprClass: + VisitArraySubscriptExpr(cast<ArraySubscriptExpr>(Ex), Pred, Dst, true); + return; + + case Stmt::BinaryOperatorClass: + case Stmt::CompoundAssignOperatorClass: + VisitBinaryOperator(cast<BinaryOperator>(Ex), Pred, Dst, true); + return; + + case Stmt::BlockDeclRefExprClass: + VisitBlockDeclRefExpr(cast<BlockDeclRefExpr>(Ex), Pred, Dst, true); + return; + + case Stmt::CallExprClass: + case Stmt::CXXOperatorCallExprClass: { + CallExpr *C = cast<CallExpr>(Ex); + assert(CalleeReturnsReferenceOrRecord(C)); + VisitCall(C, Pred, C->arg_begin(), C->arg_end(), Dst, true); + break; + } + + case Stmt::CompoundLiteralExprClass: + VisitCompoundLiteralExpr(cast<CompoundLiteralExpr>(Ex), Pred, Dst, true); + return; + + case Stmt::DeclRefExprClass: + VisitDeclRefExpr(cast<DeclRefExpr>(Ex), Pred, Dst, true); + return; + + case Stmt::ImplicitCastExprClass: + case Stmt::CStyleCastExprClass: { + CastExpr *C = cast<CastExpr>(Ex); + QualType T = Ex->getType(); + VisitCast(C, C->getSubExpr(), Pred, Dst, true); + break; + } + + case Stmt::MemberExprClass: + VisitMemberExpr(cast<MemberExpr>(Ex), Pred, Dst, true); + return; + + case Stmt::ObjCIvarRefExprClass: + VisitObjCIvarRefExpr(cast<ObjCIvarRefExpr>(Ex), Pred, Dst, true); + return; + + case Stmt::ObjCMessageExprClass: { + ObjCMessageExpr *ME = cast<ObjCMessageExpr>(Ex); + assert(ReceiverReturnsReferenceOrRecord(ME)); + VisitObjCMessageExpr(ME, Pred, Dst, true); + return; + } + + case Stmt::ObjCIsaExprClass: + // FIXME: Do something more intelligent with 'x->isa = ...'. + // For now, just ignore the assignment. + return; + + case Stmt::ObjCPropertyRefExprClass: + case Stmt::ObjCImplicitSetterGetterRefExprClass: + // FIXME: Property assignments are lvalues, but not really "locations". + // e.g.: self.x = something; + // Here the "self.x" really can translate to a method call (setter) when + // the assignment is made. Moreover, the entire assignment expression + // evaluate to whatever "something" is, not calling the "getter" for + // the property (which would make sense since it can have side effects). + // We'll probably treat this as a location, but not one that we can + // take the address of. Perhaps we need a new SVal class for cases + // like thsis? + // Note that we have a similar problem for bitfields, since they don't + // have "locations" in the sense that we can take their address. + Dst.Add(Pred); + return; + + case Stmt::StringLiteralClass: { + const GRState* state = GetState(Pred); + SVal V = state->getLValue(cast<StringLiteral>(Ex)); + MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, V)); + return; + } + + case Stmt::UnaryOperatorClass: + VisitUnaryOperator(cast<UnaryOperator>(Ex), Pred, Dst, true); + return; + + // In C++, binding an rvalue to a reference requires to create an object. + case Stmt::CXXBoolLiteralExprClass: + case Stmt::IntegerLiteralClass: + CreateCXXTemporaryObject(Ex, Pred, Dst); + return; + + default: + // Arbitrary subexpressions can return aggregate temporaries that + // can be used in a lvalue context. We need to enhance our support + // of such temporaries in both the environment and the store, so right + // now we just do a regular visit. + assert ((Ex->getType()->isAggregateType()) && + "Other kinds of expressions with non-aggregate/union types do" + " not have lvalues."); + + Visit(Ex, Pred, Dst); + } +} + +//===----------------------------------------------------------------------===// +// Block entrance. (Update counters). +//===----------------------------------------------------------------------===// + +bool GRExprEngine::ProcessBlockEntrance(CFGBlock* B, const ExplodedNode *Pred, + GRBlockCounter BC) { + return BC.getNumVisited(Pred->getLocationContext()->getCurrentStackFrame(), + B->getBlockID()) < AMgr.getMaxLoop(); +} + +//===----------------------------------------------------------------------===// +// Generic node creation. +//===----------------------------------------------------------------------===// + +ExplodedNode* GRExprEngine::MakeNode(ExplodedNodeSet& Dst, Stmt* S, + ExplodedNode* Pred, const GRState* St, + ProgramPoint::Kind K, const void *tag) { + assert (Builder && "GRStmtNodeBuilder not present."); + SaveAndRestore<const void*> OldTag(Builder->Tag); + Builder->Tag = tag; + return Builder->MakeNode(Dst, S, Pred, St, K); +} + +//===----------------------------------------------------------------------===// +// Branch processing. +//===----------------------------------------------------------------------===// + +const GRState* GRExprEngine::MarkBranch(const GRState* state, + Stmt* Terminator, + bool branchTaken) { + + switch (Terminator->getStmtClass()) { + default: + return state; + + case Stmt::BinaryOperatorClass: { // '&&' and '||' + + BinaryOperator* B = cast<BinaryOperator>(Terminator); + BinaryOperator::Opcode Op = B->getOpcode(); + + assert (Op == BinaryOperator::LAnd || Op == BinaryOperator::LOr); + + // For &&, if we take the true branch, then the value of the whole + // expression is that of the RHS expression. + // + // For ||, if we take the false branch, then the value of the whole + // expression is that of the RHS expression. + + Expr* Ex = (Op == BinaryOperator::LAnd && branchTaken) || + (Op == BinaryOperator::LOr && !branchTaken) + ? B->getRHS() : B->getLHS(); + + return state->BindExpr(B, UndefinedVal(Ex)); + } + + case Stmt::ConditionalOperatorClass: { // ?: + + ConditionalOperator* C = cast<ConditionalOperator>(Terminator); + + // For ?, if branchTaken == true then the value is either the LHS or + // the condition itself. (GNU extension). + + Expr* Ex; + + if (branchTaken) + Ex = C->getLHS() ? C->getLHS() : C->getCond(); + else + Ex = C->getRHS(); + + return state->BindExpr(C, UndefinedVal(Ex)); + } + + case Stmt::ChooseExprClass: { // ?: + + ChooseExpr* C = cast<ChooseExpr>(Terminator); + + Expr* Ex = branchTaken ? C->getLHS() : C->getRHS(); + return state->BindExpr(C, UndefinedVal(Ex)); + } + } +} + +/// RecoverCastedSymbol - A helper function for ProcessBranch that is used +/// to try to recover some path-sensitivity for casts of symbolic +/// integers that promote their values (which are currently not tracked well). +/// This function returns the SVal bound to Condition->IgnoreCasts if all the +// cast(s) did was sign-extend the original value. +static SVal RecoverCastedSymbol(GRStateManager& StateMgr, const GRState* state, + Stmt* Condition, ASTContext& Ctx) { + + Expr *Ex = dyn_cast<Expr>(Condition); + if (!Ex) + return UnknownVal(); + + uint64_t bits = 0; + bool bitsInit = false; + + while (CastExpr *CE = dyn_cast<CastExpr>(Ex)) { + QualType T = CE->getType(); + + if (!T->isIntegerType()) + return UnknownVal(); + + uint64_t newBits = Ctx.getTypeSize(T); + if (!bitsInit || newBits < bits) { + bitsInit = true; + bits = newBits; + } + + Ex = CE->getSubExpr(); + } + + // We reached a non-cast. Is it a symbolic value? + QualType T = Ex->getType(); + + if (!bitsInit || !T->isIntegerType() || Ctx.getTypeSize(T) > bits) + return UnknownVal(); + + return state->getSVal(Ex); +} + +void GRExprEngine::ProcessBranch(Stmt* Condition, Stmt* Term, + GRBranchNodeBuilder& builder) { + + // Check for NULL conditions; e.g. "for(;;)" + if (!Condition) { + builder.markInfeasible(false); + return; + } + + PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), + Condition->getLocStart(), + "Error evaluating branch"); + + for (CheckersOrdered::iterator I=Checkers.begin(),E=Checkers.end();I!=E;++I) { + void *tag = I->first; + Checker *checker = I->second; + checker->VisitBranchCondition(builder, *this, Condition, tag); + } + + // If the branch condition is undefined, return; + if (!builder.isFeasible(true) && !builder.isFeasible(false)) + return; + + const GRState* PrevState = builder.getState(); + SVal X = PrevState->getSVal(Condition); + + if (X.isUnknown()) { + // Give it a chance to recover from unknown. + if (const Expr *Ex = dyn_cast<Expr>(Condition)) { + if (Ex->getType()->isIntegerType()) { + // Try to recover some path-sensitivity. Right now casts of symbolic + // integers that promote their values are currently not tracked well. + // If 'Condition' is such an expression, try and recover the + // underlying value and use that instead. + SVal recovered = RecoverCastedSymbol(getStateManager(), + builder.getState(), Condition, + getContext()); + + if (!recovered.isUnknown()) { + X = recovered; + } + } + } + // If the condition is still unknown, give up. + if (X.isUnknown()) { + builder.generateNode(MarkBranch(PrevState, Term, true), true); + builder.generateNode(MarkBranch(PrevState, Term, false), false); + return; + } + } + + DefinedSVal V = cast<DefinedSVal>(X); + + // Process the true branch. + if (builder.isFeasible(true)) { + if (const GRState *state = PrevState->Assume(V, true)) + builder.generateNode(MarkBranch(state, Term, true), true); + else + builder.markInfeasible(true); + } + + // Process the false branch. + if (builder.isFeasible(false)) { + if (const GRState *state = PrevState->Assume(V, false)) + builder.generateNode(MarkBranch(state, Term, false), false); + else + builder.markInfeasible(false); + } +} + +/// ProcessIndirectGoto - Called by GRCoreEngine. Used to generate successor +/// nodes by processing the 'effects' of a computed goto jump. +void GRExprEngine::ProcessIndirectGoto(GRIndirectGotoNodeBuilder& builder) { + + const GRState *state = builder.getState(); + SVal V = state->getSVal(builder.getTarget()); + + // Three possibilities: + // + // (1) We know the computed label. + // (2) The label is NULL (or some other constant), or Undefined. + // (3) We have no clue about the label. Dispatch to all targets. + // + + typedef GRIndirectGotoNodeBuilder::iterator iterator; + + if (isa<loc::GotoLabel>(V)) { + LabelStmt* L = cast<loc::GotoLabel>(V).getLabel(); + + for (iterator I=builder.begin(), E=builder.end(); I != E; ++I) { + if (I.getLabel() == L) { + builder.generateNode(I, state); + return; + } + } + + assert (false && "No block with label."); + return; + } + + if (isa<loc::ConcreteInt>(V) || isa<UndefinedVal>(V)) { + // Dispatch to the first target and mark it as a sink. + //ExplodedNode* N = builder.generateNode(builder.begin(), state, true); + // FIXME: add checker visit. + // UndefBranches.insert(N); + return; + } + + // This is really a catch-all. We don't support symbolics yet. + // FIXME: Implement dispatch for symbolic pointers. + + for (iterator I=builder.begin(), E=builder.end(); I != E; ++I) + builder.generateNode(I, state); +} + + +void GRExprEngine::VisitGuardedExpr(Expr* Ex, Expr* L, Expr* R, + ExplodedNode* Pred, ExplodedNodeSet& Dst) { + + assert(Ex == CurrentStmt && + Pred->getLocationContext()->getCFG()->isBlkExpr(Ex)); + + const GRState* state = GetState(Pred); + SVal X = state->getSVal(Ex); + + assert (X.isUndef()); + + Expr *SE = (Expr*) cast<UndefinedVal>(X).getData(); + assert(SE); + X = state->getSVal(SE); + + // Make sure that we invalidate the previous binding. + MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, X, true)); +} + +/// ProcessEndPath - Called by GRCoreEngine. Used to generate end-of-path +/// nodes when the control reaches the end of a function. +void GRExprEngine::ProcessEndPath(GREndPathNodeBuilder& builder) { + getTF().EvalEndPath(*this, builder); + StateMgr.EndPath(builder.getState()); + for (CheckersOrdered::iterator I=Checkers.begin(),E=Checkers.end(); I!=E;++I){ + void *tag = I->first; + Checker *checker = I->second; + checker->EvalEndPath(builder, tag, *this); + } +} + +/// ProcessSwitch - Called by GRCoreEngine. Used to generate successor +/// nodes by processing the 'effects' of a switch statement. +void GRExprEngine::ProcessSwitch(GRSwitchNodeBuilder& builder) { + typedef GRSwitchNodeBuilder::iterator iterator; + const GRState* state = builder.getState(); + Expr* CondE = builder.getCondition(); + SVal CondV_untested = state->getSVal(CondE); + + if (CondV_untested.isUndef()) { + //ExplodedNode* N = builder.generateDefaultCaseNode(state, true); + // FIXME: add checker + //UndefBranches.insert(N); + + return; + } + DefinedOrUnknownSVal CondV = cast<DefinedOrUnknownSVal>(CondV_untested); + + const GRState *DefaultSt = state; + bool defaultIsFeasible = false; + + for (iterator I = builder.begin(), EI = builder.end(); I != EI; ++I) { + CaseStmt* Case = cast<CaseStmt>(I.getCase()); + + // Evaluate the LHS of the case value. + Expr::EvalResult V1; + bool b = Case->getLHS()->Evaluate(V1, getContext()); + + // Sanity checks. These go away in Release builds. + assert(b && V1.Val.isInt() && !V1.HasSideEffects + && "Case condition must evaluate to an integer constant."); + b = b; // silence unused variable warning + assert(V1.Val.getInt().getBitWidth() == + getContext().getTypeSize(CondE->getType())); + + // Get the RHS of the case, if it exists. + Expr::EvalResult V2; + + if (Expr* E = Case->getRHS()) { + b = E->Evaluate(V2, getContext()); + assert(b && V2.Val.isInt() && !V2.HasSideEffects + && "Case condition must evaluate to an integer constant."); + b = b; // silence unused variable warning + } + else + V2 = V1; + + // FIXME: Eventually we should replace the logic below with a range + // comparison, rather than concretize the values within the range. + // This should be easy once we have "ranges" for NonLVals. + + do { + nonloc::ConcreteInt CaseVal(getBasicVals().getValue(V1.Val.getInt())); + DefinedOrUnknownSVal Res = SVator.EvalEQ(DefaultSt ? DefaultSt : state, + CondV, CaseVal); + + // Now "assume" that the case matches. + if (const GRState* stateNew = state->Assume(Res, true)) { + builder.generateCaseStmtNode(I, stateNew); + + // If CondV evaluates to a constant, then we know that this + // is the *only* case that we can take, so stop evaluating the + // others. + if (isa<nonloc::ConcreteInt>(CondV)) + return; + } + + // Now "assume" that the case doesn't match. Add this state + // to the default state (if it is feasible). + if (DefaultSt) { + if (const GRState *stateNew = DefaultSt->Assume(Res, false)) { + defaultIsFeasible = true; + DefaultSt = stateNew; + } + else { + defaultIsFeasible = false; + DefaultSt = NULL; + } + } + + // Concretize the next value in the range. + if (V1.Val.getInt() == V2.Val.getInt()) + break; + + ++V1.Val.getInt(); + assert (V1.Val.getInt() <= V2.Val.getInt()); + + } while (true); + } + + // If we reach here, than we know that the default branch is + // possible. + if (defaultIsFeasible) builder.generateDefaultCaseNode(DefaultSt); +} + +void GRExprEngine::ProcessCallEnter(GRCallEnterNodeBuilder &B) { + const FunctionDecl *FD = B.getCallee(); + const StackFrameContext *LocCtx = AMgr.getStackFrame(FD, + B.getLocationContext(), + B.getCallExpr(), + B.getBlock(), + B.getIndex()); + + const GRState *state = B.getState(); + state = getStoreManager().EnterStackFrame(state, LocCtx); + + B.GenerateNode(state, LocCtx); +} + +void GRExprEngine::ProcessCallExit(GRCallExitNodeBuilder &B) { + const GRState *state = B.getState(); + const ExplodedNode *Pred = B.getPredecessor(); + const StackFrameContext *LocCtx = + cast<StackFrameContext>(Pred->getLocationContext()); + const Stmt *CE = LocCtx->getCallSite(); + + // If the callee returns an expression, bind its value to CallExpr. + const Stmt *ReturnedExpr = state->get<ReturnExpr>(); + if (ReturnedExpr) { + SVal RetVal = state->getSVal(ReturnedExpr); + state = state->BindExpr(CE, RetVal); + // Clear the return expr GDM. + state = state->remove<ReturnExpr>(); + } + + // Bind the constructed object value to CXXConstructExpr. + if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(CE)) { + const CXXThisRegion *ThisR = getCXXThisRegion(CCE->getConstructor(),LocCtx); + // We might not have 'this' region in the binding if we didn't inline + // the ctor call. + SVal ThisV = state->getSVal(ThisR); + loc::MemRegionVal *V = dyn_cast<loc::MemRegionVal>(&ThisV); + if (V) { + SVal ObjVal = state->getSVal(V->getRegion()); + assert(isa<nonloc::LazyCompoundVal>(ObjVal)); + state = state->BindExpr(CCE, ObjVal); + } + } + + B.GenerateNode(state); +} + +//===----------------------------------------------------------------------===// +// Transfer functions: logical operations ('&&', '||'). +//===----------------------------------------------------------------------===// + +void GRExprEngine::VisitLogicalExpr(BinaryOperator* B, ExplodedNode* Pred, + ExplodedNodeSet& Dst) { + + assert(B->getOpcode() == BinaryOperator::LAnd || + B->getOpcode() == BinaryOperator::LOr); + + assert(B==CurrentStmt && Pred->getLocationContext()->getCFG()->isBlkExpr(B)); + + const GRState* state = GetState(Pred); + SVal X = state->getSVal(B); + assert(X.isUndef()); + + const Expr *Ex = (const Expr*) cast<UndefinedVal>(X).getData(); + assert(Ex); + + if (Ex == B->getRHS()) { + X = state->getSVal(Ex); + + // Handle undefined values. + if (X.isUndef()) { + MakeNode(Dst, B, Pred, state->BindExpr(B, X)); + return; + } + + DefinedOrUnknownSVal XD = cast<DefinedOrUnknownSVal>(X); + + // We took the RHS. Because the value of the '&&' or '||' expression must + // evaluate to 0 or 1, we must assume the value of the RHS evaluates to 0 + // or 1. Alternatively, we could take a lazy approach, and calculate this + // value later when necessary. We don't have the machinery in place for + // this right now, and since most logical expressions are used for branches, + // the payoff is not likely to be large. Instead, we do eager evaluation. + if (const GRState *newState = state->Assume(XD, true)) + MakeNode(Dst, B, Pred, + newState->BindExpr(B, ValMgr.makeIntVal(1U, B->getType()))); + + if (const GRState *newState = state->Assume(XD, false)) + MakeNode(Dst, B, Pred, + newState->BindExpr(B, ValMgr.makeIntVal(0U, B->getType()))); + } + else { + // We took the LHS expression. Depending on whether we are '&&' or + // '||' we know what the value of the expression is via properties of + // the short-circuiting. + X = ValMgr.makeIntVal(B->getOpcode() == BinaryOperator::LAnd ? 0U : 1U, + B->getType()); + MakeNode(Dst, B, Pred, state->BindExpr(B, X)); + } +} + +//===----------------------------------------------------------------------===// +// Transfer functions: Loads and stores. +//===----------------------------------------------------------------------===// + +void GRExprEngine::VisitBlockExpr(BlockExpr *BE, ExplodedNode *Pred, + ExplodedNodeSet &Dst) { + + ExplodedNodeSet Tmp; + + CanQualType T = getContext().getCanonicalType(BE->getType()); + SVal V = ValMgr.getBlockPointer(BE->getBlockDecl(), T, + Pred->getLocationContext()); + + MakeNode(Tmp, BE, Pred, GetState(Pred)->BindExpr(BE, V), + ProgramPoint::PostLValueKind); + + // Post-visit the BlockExpr. + CheckerVisit(BE, Dst, Tmp, false); +} + +void GRExprEngine::VisitDeclRefExpr(DeclRefExpr *Ex, ExplodedNode *Pred, + ExplodedNodeSet &Dst, bool asLValue) { + VisitCommonDeclRefExpr(Ex, Ex->getDecl(), Pred, Dst, asLValue); +} + +void GRExprEngine::VisitBlockDeclRefExpr(BlockDeclRefExpr *Ex, + ExplodedNode *Pred, + ExplodedNodeSet &Dst, bool asLValue) { + VisitCommonDeclRefExpr(Ex, Ex->getDecl(), Pred, Dst, asLValue); +} + +void GRExprEngine::VisitCommonDeclRefExpr(Expr *Ex, const NamedDecl *D, + ExplodedNode *Pred, + ExplodedNodeSet &Dst, bool asLValue) { + + const GRState *state = GetState(Pred); + + if (const VarDecl* VD = dyn_cast<VarDecl>(D)) { + + SVal V = state->getLValue(VD, Pred->getLocationContext()); + + if (asLValue) { + // For references, the 'lvalue' is the pointer address stored in the + // reference region. + if (VD->getType()->isReferenceType()) { + if (const MemRegion *R = V.getAsRegion()) + V = state->getSVal(R); + else + V = UnknownVal(); + } + + MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, V), + ProgramPoint::PostLValueKind); + } + else + EvalLoad(Dst, Ex, Pred, state, V); + + return; + } else if (const EnumConstantDecl* ED = dyn_cast<EnumConstantDecl>(D)) { + assert(!asLValue && "EnumConstantDecl does not have lvalue."); + + SVal V = ValMgr.makeIntVal(ED->getInitVal()); + MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, V)); + return; + + } else if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(D)) { + // This code is valid regardless of the value of 'isLValue'. + SVal V = ValMgr.getFunctionPointer(FD); + MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, V), + ProgramPoint::PostLValueKind); + return; + } + + assert (false && + "ValueDecl support for this ValueDecl not implemented."); +} + +/// VisitArraySubscriptExpr - Transfer function for array accesses +void GRExprEngine::VisitArraySubscriptExpr(ArraySubscriptExpr* A, + ExplodedNode* Pred, + ExplodedNodeSet& Dst, bool asLValue){ + + Expr* Base = A->getBase()->IgnoreParens(); + Expr* Idx = A->getIdx()->IgnoreParens(); + ExplodedNodeSet Tmp; + + if (Base->getType()->isVectorType()) { + // For vector types get its lvalue. + // FIXME: This may not be correct. Is the rvalue of a vector its location? + // In fact, I think this is just a hack. We need to get the right + // semantics. + VisitLValue(Base, Pred, Tmp); + } + else + Visit(Base, Pred, Tmp); // Get Base's rvalue, which should be an LocVal. + + for (ExplodedNodeSet::iterator I1=Tmp.begin(), E1=Tmp.end(); I1!=E1; ++I1) { + ExplodedNodeSet Tmp2; + Visit(Idx, *I1, Tmp2); // Evaluate the index. + + ExplodedNodeSet Tmp3; + CheckerVisit(A, Tmp3, Tmp2, true); + + for (ExplodedNodeSet::iterator I2=Tmp3.begin(),E2=Tmp3.end();I2!=E2; ++I2) { + const GRState* state = GetState(*I2); + SVal V = state->getLValue(A->getType(), state->getSVal(Idx), + state->getSVal(Base)); + + if (asLValue) + MakeNode(Dst, A, *I2, state->BindExpr(A, V), + ProgramPoint::PostLValueKind); + else + EvalLoad(Dst, A, *I2, state, V); + } + } +} + +/// VisitMemberExpr - Transfer function for member expressions. +void GRExprEngine::VisitMemberExpr(MemberExpr* M, ExplodedNode* Pred, + ExplodedNodeSet& Dst, bool asLValue) { + + Expr* Base = M->getBase()->IgnoreParens(); + ExplodedNodeSet Tmp; + + if (M->isArrow()) + Visit(Base, Pred, Tmp); // p->f = ... or ... = p->f + else + VisitLValue(Base, Pred, Tmp); // x.f = ... or ... = x.f + + FieldDecl *Field = dyn_cast<FieldDecl>(M->getMemberDecl()); + if (!Field) // FIXME: skipping member expressions for non-fields + return; + + for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E; ++I) { + const GRState* state = GetState(*I); + // FIXME: Should we insert some assumption logic in here to determine + // if "Base" is a valid piece of memory? Before we put this assumption + // later when using FieldOffset lvals (which we no longer have). + SVal L = state->getLValue(Field, state->getSVal(Base)); + + if (asLValue) + MakeNode(Dst, M, *I, state->BindExpr(M, L), ProgramPoint::PostLValueKind); + else + EvalLoad(Dst, M, *I, state, L); + } +} + +/// EvalBind - Handle the semantics of binding a value to a specific location. +/// This method is used by EvalStore and (soon) VisitDeclStmt, and others. +void GRExprEngine::EvalBind(ExplodedNodeSet& Dst, Stmt *AssignE, + Stmt* StoreE, ExplodedNode* Pred, + const GRState* state, SVal location, SVal Val, + bool atDeclInit) { + + + // Do a previsit of the bind. + ExplodedNodeSet CheckedSet, Src; + Src.Add(Pred); + CheckerVisitBind(AssignE, StoreE, CheckedSet, Src, location, Val, true); + + for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end(); + I!=E; ++I) { + + if (Pred != *I) + state = GetState(*I); + + const GRState* newState = 0; + + if (atDeclInit) { + const VarRegion *VR = + cast<VarRegion>(cast<loc::MemRegionVal>(location).getRegion()); + + newState = state->bindDecl(VR, Val); + } + else { + if (location.isUnknown()) { + // We know that the new state will be the same as the old state since + // the location of the binding is "unknown". Consequently, there + // is no reason to just create a new node. + newState = state; + } + else { + // We are binding to a value other than 'unknown'. Perform the binding + // using the StoreManager. + newState = state->bindLoc(cast<Loc>(location), Val); + } + } + + // The next thing to do is check if the GRTransferFuncs object wants to + // update the state based on the new binding. If the GRTransferFunc object + // doesn't do anything, just auto-propagate the current state. + GRStmtNodeBuilderRef BuilderRef(Dst, *Builder, *this, *I, newState, StoreE, + newState != state); + + getTF().EvalBind(BuilderRef, location, Val); + } +} + +/// EvalStore - Handle the semantics of a store via an assignment. +/// @param Dst The node set to store generated state nodes +/// @param Ex The expression representing the location of the store +/// @param state The current simulation state +/// @param location The location to store the value +/// @param Val The value to be stored +void GRExprEngine::EvalStore(ExplodedNodeSet& Dst, Expr *AssignE, + Expr* StoreE, + ExplodedNode* Pred, + const GRState* state, SVal location, SVal Val, + const void *tag) { + + assert(Builder && "GRStmtNodeBuilder must be defined."); + + // Evaluate the location (checks for bad dereferences). + ExplodedNodeSet Tmp; + EvalLocation(Tmp, StoreE, Pred, state, location, tag, false); + + if (Tmp.empty()) + return; + + assert(!location.isUndef()); + + SaveAndRestore<ProgramPoint::Kind> OldSPointKind(Builder->PointKind, + ProgramPoint::PostStoreKind); + SaveAndRestore<const void*> OldTag(Builder->Tag, tag); + + // Proceed with the store. + for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) + EvalBind(Dst, AssignE, StoreE, *NI, GetState(*NI), location, Val); +} + +void GRExprEngine::EvalLoad(ExplodedNodeSet& Dst, Expr *Ex, ExplodedNode* Pred, + const GRState* state, SVal location, + const void *tag, QualType LoadTy) { + + // Are we loading from a region? This actually results in two loads; one + // to fetch the address of the referenced value and one to fetch the + // referenced value. + if (const TypedRegion *TR = + dyn_cast_or_null<TypedRegion>(location.getAsRegion())) { + + QualType ValTy = TR->getValueType(getContext()); + if (const ReferenceType *RT = ValTy->getAs<ReferenceType>()) { + static int loadReferenceTag = 0; + ExplodedNodeSet Tmp; + EvalLoadCommon(Tmp, Ex, Pred, state, location, &loadReferenceTag, + getContext().getPointerType(RT->getPointeeType())); + + // Perform the load from the referenced value. + for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end() ; I!=E; ++I) { + state = GetState(*I); + location = state->getSVal(Ex); + EvalLoadCommon(Dst, Ex, *I, state, location, tag, LoadTy); + } + return; + } + } + + EvalLoadCommon(Dst, Ex, Pred, state, location, tag, LoadTy); +} + +void GRExprEngine::EvalLoadCommon(ExplodedNodeSet& Dst, Expr *Ex, + ExplodedNode* Pred, + const GRState* state, SVal location, + const void *tag, QualType LoadTy) { + + // Evaluate the location (checks for bad dereferences). + ExplodedNodeSet Tmp; + EvalLocation(Tmp, Ex, Pred, state, location, tag, true); + + if (Tmp.empty()) + return; + + assert(!location.isUndef()); + + SaveAndRestore<ProgramPoint::Kind> OldSPointKind(Builder->PointKind); + SaveAndRestore<const void*> OldTag(Builder->Tag); + + // Proceed with the load. + for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) { + state = GetState(*NI); + if (location.isUnknown()) { + // This is important. We must nuke the old binding. + MakeNode(Dst, Ex, *NI, state->BindExpr(Ex, UnknownVal()), + ProgramPoint::PostLoadKind, tag); + } + else { + SVal V = state->getSVal(cast<Loc>(location), LoadTy.isNull() ? + Ex->getType() : LoadTy); + MakeNode(Dst, Ex, *NI, state->BindExpr(Ex, V), ProgramPoint::PostLoadKind, + tag); + } + } +} + +void GRExprEngine::EvalLocation(ExplodedNodeSet &Dst, Stmt *S, + ExplodedNode* Pred, + const GRState* state, SVal location, + const void *tag, bool isLoad) { + // Early checks for performance reason. + if (location.isUnknown() || Checkers.empty()) { + Dst.Add(Pred); + return; + } + + ExplodedNodeSet Src, Tmp; + Src.Add(Pred); + ExplodedNodeSet *PrevSet = &Src; + + for (CheckersOrdered::iterator I=Checkers.begin(),E=Checkers.end(); I!=E; ++I) + { + ExplodedNodeSet *CurrSet = 0; + if (I+1 == E) + CurrSet = &Dst; + else { + CurrSet = (PrevSet == &Tmp) ? &Src : &Tmp; + CurrSet->clear(); + } + + void *tag = I->first; + Checker *checker = I->second; + + for (ExplodedNodeSet::iterator NI = PrevSet->begin(), NE = PrevSet->end(); + NI != NE; ++NI) { + // Use the 'state' argument only when the predecessor node is the + // same as Pred. This allows us to catch updates to the state. + checker->GR_VisitLocation(*CurrSet, *Builder, *this, S, *NI, + *NI == Pred ? state : GetState(*NI), + location, tag, isLoad); + } + + // Update which NodeSet is the current one. + PrevSet = CurrSet; + } +} + +bool GRExprEngine::InlineCall(ExplodedNodeSet &Dst, const CallExpr *CE, + ExplodedNode *Pred) { + const GRState *state = GetState(Pred); + const Expr *Callee = CE->getCallee(); + SVal L = state->getSVal(Callee); + + const FunctionDecl *FD = L.getAsFunctionDecl(); + if (!FD) + return false; + + if (!FD->getBody(FD)) + return false; + + // Now we have the definition of the callee, create a CallEnter node. + CallEnter Loc(CE, FD, Pred->getLocationContext()); + + ExplodedNode *N = Builder->generateNode(Loc, state, Pred); + if (N) + Dst.Add(N); + return true; +} + +void GRExprEngine::VisitCall(CallExpr* CE, ExplodedNode* Pred, + CallExpr::arg_iterator AI, + CallExpr::arg_iterator AE, + ExplodedNodeSet& Dst, bool asLValue) { + + // Determine the type of function we're calling (if available). + const FunctionProtoType *Proto = NULL; + QualType FnType = CE->getCallee()->IgnoreParens()->getType(); + if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) + Proto = FnTypePtr->getPointeeType()->getAs<FunctionProtoType>(); + + // Create a worklist to process the arguments. + llvm::SmallVector<CallExprWLItem, 20> WorkList; + WorkList.reserve(AE - AI); + WorkList.push_back(CallExprWLItem(AI, Pred)); + + ExplodedNodeSet ArgsEvaluated; + + while (!WorkList.empty()) { + CallExprWLItem Item = WorkList.back(); + WorkList.pop_back(); + + if (Item.I == AE) { + ArgsEvaluated.insert(Item.N); + continue; + } + + // Evaluate the argument. + ExplodedNodeSet Tmp; + const unsigned ParamIdx = Item.I - AI; + + bool VisitAsLvalue = false; + if (Proto && ParamIdx < Proto->getNumArgs()) + VisitAsLvalue = Proto->getArgType(ParamIdx)->isReferenceType(); + + if (VisitAsLvalue) + VisitLValue(*Item.I, Item.N, Tmp); + else + Visit(*Item.I, Item.N, Tmp); + + // Enqueue evaluating the next argument on the worklist. + ++(Item.I); + + for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) + WorkList.push_back(CallExprWLItem(Item.I, *NI)); + } + + // Now process the call itself. + ExplodedNodeSet DstTmp; + Expr* Callee = CE->getCallee()->IgnoreParens(); + + for (ExplodedNodeSet::iterator NI=ArgsEvaluated.begin(), + NE=ArgsEvaluated.end(); NI != NE; ++NI) { + // Evaluate the callee. + ExplodedNodeSet DstTmp2; + Visit(Callee, *NI, DstTmp2); + // Perform the previsit of the CallExpr, storing the results in DstTmp. + CheckerVisit(CE, DstTmp, DstTmp2, true); + } + + // Finally, evaluate the function call. We try each of the checkers + // to see if the can evaluate the function call. + ExplodedNodeSet DstTmp3; + + + for (ExplodedNodeSet::iterator DI = DstTmp.begin(), DE = DstTmp.end(); + DI != DE; ++DI) { + + const GRState* state = GetState(*DI); + SVal L = state->getSVal(Callee); + + // FIXME: Add support for symbolic function calls (calls involving + // function pointer values that are symbolic). + SaveAndRestore<bool> OldSink(Builder->BuildSinks); + ExplodedNodeSet DstChecker; + + // If the callee is processed by a checker, skip the rest logic. + if (CheckerEvalCall(CE, DstChecker, *DI)) + DstTmp3.insert(DstChecker); + else if (AMgr.shouldInlineCall() && InlineCall(Dst, CE, *DI)) { + // Callee is inlined. We shouldn't do post call checking. + return; + } + else { + for (ExplodedNodeSet::iterator DI_Checker = DstChecker.begin(), + DE_Checker = DstChecker.end(); + DI_Checker != DE_Checker; ++DI_Checker) { + + // Dispatch to the plug-in transfer function. + unsigned OldSize = DstTmp3.size(); + SaveOr OldHasGen(Builder->HasGeneratedNode); + Pred = *DI_Checker; + + // Dispatch to transfer function logic to handle the call itself. + // FIXME: Allow us to chain together transfer functions. + assert(Builder && "GRStmtNodeBuilder must be defined."); + getTF().EvalCall(DstTmp3, *this, *Builder, CE, L, Pred); + + // Handle the case where no nodes where generated. Auto-generate that + // contains the updated state if we aren't generating sinks. + if (!Builder->BuildSinks && DstTmp3.size() == OldSize && + !Builder->HasGeneratedNode) + MakeNode(DstTmp3, CE, Pred, state); + } + } + } + + // Finally, perform the post-condition check of the CallExpr and store + // the created nodes in 'Dst'. + + if (!(!asLValue && CalleeReturnsReference(CE))) { + CheckerVisit(CE, Dst, DstTmp3, false); + return; + } + + // Handle the case where the called function returns a reference but + // we expect an rvalue. For such cases, convert the reference to + // an rvalue. + // FIXME: This conversion doesn't actually happen unless the result + // of CallExpr is consumed by another expression. + ExplodedNodeSet DstTmp4; + CheckerVisit(CE, DstTmp4, DstTmp3, false); + QualType LoadTy = CE->getType(); + + static int *ConvertToRvalueTag = 0; + for (ExplodedNodeSet::iterator NI = DstTmp4.begin(), NE = DstTmp4.end(); + NI!=NE; ++NI) { + const GRState *state = GetState(*NI); + EvalLoad(Dst, CE, *NI, state, state->getSVal(CE), + &ConvertToRvalueTag, LoadTy); + } +} + +//===----------------------------------------------------------------------===// +// Transfer function: Objective-C ivar references. +//===----------------------------------------------------------------------===// + +static std::pair<const void*,const void*> EagerlyAssumeTag + = std::pair<const void*,const void*>(&EagerlyAssumeTag,static_cast<void*>(0)); + +void GRExprEngine::EvalEagerlyAssume(ExplodedNodeSet &Dst, ExplodedNodeSet &Src, + Expr *Ex) { + for (ExplodedNodeSet::iterator I=Src.begin(), E=Src.end(); I!=E; ++I) { + ExplodedNode *Pred = *I; + + // Test if the previous node was as the same expression. This can happen + // when the expression fails to evaluate to anything meaningful and + // (as an optimization) we don't generate a node. + ProgramPoint P = Pred->getLocation(); + if (!isa<PostStmt>(P) || cast<PostStmt>(P).getStmt() != Ex) { + Dst.Add(Pred); + continue; + } + + const GRState* state = GetState(Pred); + SVal V = state->getSVal(Ex); + if (nonloc::SymExprVal *SEV = dyn_cast<nonloc::SymExprVal>(&V)) { + // First assume that the condition is true. + if (const GRState *stateTrue = state->Assume(*SEV, true)) { + stateTrue = stateTrue->BindExpr(Ex, + ValMgr.makeIntVal(1U, Ex->getType())); + Dst.Add(Builder->generateNode(PostStmtCustom(Ex, + &EagerlyAssumeTag, Pred->getLocationContext()), + stateTrue, Pred)); + } + + // Next, assume that the condition is false. + if (const GRState *stateFalse = state->Assume(*SEV, false)) { + stateFalse = stateFalse->BindExpr(Ex, + ValMgr.makeIntVal(0U, Ex->getType())); + Dst.Add(Builder->generateNode(PostStmtCustom(Ex, &EagerlyAssumeTag, + Pred->getLocationContext()), + stateFalse, Pred)); + } + } + else + Dst.Add(Pred); + } +} + +//===----------------------------------------------------------------------===// +// Transfer function: Objective-C ivar references. +//===----------------------------------------------------------------------===// + +void GRExprEngine::VisitObjCIvarRefExpr(ObjCIvarRefExpr* Ex, ExplodedNode* Pred, + ExplodedNodeSet& Dst, bool asLValue) { + + Expr* Base = cast<Expr>(Ex->getBase()); + ExplodedNodeSet Tmp; + Visit(Base, Pred, Tmp); + + for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { + const GRState* state = GetState(*I); + SVal BaseVal = state->getSVal(Base); + SVal location = state->getLValue(Ex->getDecl(), BaseVal); + + if (asLValue) + MakeNode(Dst, Ex, *I, state->BindExpr(Ex, location)); + else + EvalLoad(Dst, Ex, *I, state, location); + } +} + +//===----------------------------------------------------------------------===// +// Transfer function: Objective-C fast enumeration 'for' statements. +//===----------------------------------------------------------------------===// + +void GRExprEngine::VisitObjCForCollectionStmt(ObjCForCollectionStmt* S, + ExplodedNode* Pred, ExplodedNodeSet& Dst) { + + // ObjCForCollectionStmts are processed in two places. This method + // handles the case where an ObjCForCollectionStmt* occurs as one of the + // statements within a basic block. This transfer function does two things: + // + // (1) binds the next container value to 'element'. This creates a new + // node in the ExplodedGraph. + // + // (2) binds the value 0/1 to the ObjCForCollectionStmt* itself, indicating + // whether or not the container has any more elements. This value + // will be tested in ProcessBranch. We need to explicitly bind + // this value because a container can contain nil elements. + // + // FIXME: Eventually this logic should actually do dispatches to + // 'countByEnumeratingWithState:objects:count:' (NSFastEnumeration). + // This will require simulating a temporary NSFastEnumerationState, either + // through an SVal or through the use of MemRegions. This value can + // be affixed to the ObjCForCollectionStmt* instead of 0/1; when the loop + // terminates we reclaim the temporary (it goes out of scope) and we + // we can test if the SVal is 0 or if the MemRegion is null (depending + // on what approach we take). + // + // For now: simulate (1) by assigning either a symbol or nil if the + // container is empty. Thus this transfer function will by default + // result in state splitting. + + Stmt* elem = S->getElement(); + SVal ElementV; + + if (DeclStmt* DS = dyn_cast<DeclStmt>(elem)) { + VarDecl* ElemD = cast<VarDecl>(DS->getSingleDecl()); + assert (ElemD->getInit() == 0); + ElementV = GetState(Pred)->getLValue(ElemD, Pred->getLocationContext()); + VisitObjCForCollectionStmtAux(S, Pred, Dst, ElementV); + return; + } + + ExplodedNodeSet Tmp; + VisitLValue(cast<Expr>(elem), Pred, Tmp); + + for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I!=E; ++I) { + const GRState* state = GetState(*I); + VisitObjCForCollectionStmtAux(S, *I, Dst, state->getSVal(elem)); + } +} + +void GRExprEngine::VisitObjCForCollectionStmtAux(ObjCForCollectionStmt* S, + ExplodedNode* Pred, ExplodedNodeSet& Dst, + SVal ElementV) { + + // Check if the location we are writing back to is a null pointer. + Stmt* elem = S->getElement(); + ExplodedNodeSet Tmp; + EvalLocation(Tmp, elem, Pred, GetState(Pred), ElementV, NULL, false); + + if (Tmp.empty()) + return; + + for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) { + Pred = *NI; + const GRState *state = GetState(Pred); + + // Handle the case where the container still has elements. + SVal TrueV = ValMgr.makeTruthVal(1); + const GRState *hasElems = state->BindExpr(S, TrueV); + + // Handle the case where the container has no elements. + SVal FalseV = ValMgr.makeTruthVal(0); + const GRState *noElems = state->BindExpr(S, FalseV); + + if (loc::MemRegionVal* MV = dyn_cast<loc::MemRegionVal>(&ElementV)) + if (const TypedRegion* R = dyn_cast<TypedRegion>(MV->getRegion())) { + // FIXME: The proper thing to do is to really iterate over the + // container. We will do this with dispatch logic to the store. + // For now, just 'conjure' up a symbolic value. + QualType T = R->getValueType(getContext()); + assert(Loc::IsLocType(T)); + unsigned Count = Builder->getCurrentBlockCount(); + SymbolRef Sym = SymMgr.getConjuredSymbol(elem, T, Count); + SVal V = ValMgr.makeLoc(Sym); + hasElems = hasElems->bindLoc(ElementV, V); + + // Bind the location to 'nil' on the false branch. + SVal nilV = ValMgr.makeIntVal(0, T); + noElems = noElems->bindLoc(ElementV, nilV); + } + + // Create the new nodes. + MakeNode(Dst, S, Pred, hasElems); + MakeNode(Dst, S, Pred, noElems); + } +} + +//===----------------------------------------------------------------------===// +// Transfer function: Objective-C message expressions. +//===----------------------------------------------------------------------===// + +namespace { +class ObjCMsgWLItem { +public: + ObjCMessageExpr::arg_iterator I; + ExplodedNode *N; + + ObjCMsgWLItem(const ObjCMessageExpr::arg_iterator &i, ExplodedNode *n) + : I(i), N(n) {} +}; +} // end anonymous namespace + +void GRExprEngine::VisitObjCMessageExpr(ObjCMessageExpr* ME, ExplodedNode* Pred, + ExplodedNodeSet& Dst, bool asLValue){ + + // Create a worklist to process both the arguments. + llvm::SmallVector<ObjCMsgWLItem, 20> WL; + + // But first evaluate the receiver (if any). + ObjCMessageExpr::arg_iterator AI = ME->arg_begin(), AE = ME->arg_end(); + if (Expr *Receiver = ME->getInstanceReceiver()) { + ExplodedNodeSet Tmp; + Visit(Receiver, Pred, Tmp); + + if (Tmp.empty()) + return; + + for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) + WL.push_back(ObjCMsgWLItem(AI, *I)); + } + else + WL.push_back(ObjCMsgWLItem(AI, Pred)); + + // Evaluate the arguments. + ExplodedNodeSet ArgsEvaluated; + while (!WL.empty()) { + ObjCMsgWLItem Item = WL.back(); + WL.pop_back(); + + if (Item.I == AE) { + ArgsEvaluated.insert(Item.N); + continue; + } + + // Evaluate the subexpression. + ExplodedNodeSet Tmp; + + // FIXME: [Objective-C++] handle arguments that are references + Visit(*Item.I, Item.N, Tmp); + + // Enqueue evaluating the next argument on the worklist. + ++(Item.I); + for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) + WL.push_back(ObjCMsgWLItem(Item.I, *NI)); + } + + // Now that the arguments are processed, handle the previsits checks. + ExplodedNodeSet DstPrevisit; + CheckerVisit(ME, DstPrevisit, ArgsEvaluated, true); + + // Proceed with evaluate the message expression. + ExplodedNodeSet DstEval; + + for (ExplodedNodeSet::iterator DI = DstPrevisit.begin(), + DE = DstPrevisit.end(); DI != DE; ++DI) { + + Pred = *DI; + bool RaisesException = false; + unsigned OldSize = DstEval.size(); + SaveAndRestore<bool> OldSink(Builder->BuildSinks); + SaveOr OldHasGen(Builder->HasGeneratedNode); + + if (const Expr *Receiver = ME->getInstanceReceiver()) { + const GRState *state = GetState(Pred); + + // Bifurcate the state into nil and non-nil ones. + DefinedOrUnknownSVal receiverVal = + cast<DefinedOrUnknownSVal>(state->getSVal(Receiver)); + + const GRState *notNilState, *nilState; + llvm::tie(notNilState, nilState) = state->Assume(receiverVal); + + // There are three cases: can be nil or non-nil, must be nil, must be + // non-nil. We handle must be nil, and merge the rest two into non-nil. + if (nilState && !notNilState) { + CheckerEvalNilReceiver(ME, DstEval, nilState, Pred); + continue; + } + + // Check if the "raise" message was sent. + assert(notNilState); + if (ME->getSelector() == RaiseSel) + RaisesException = true; + + // Check if we raise an exception. For now treat these as sinks. + // Eventually we will want to handle exceptions properly. + if (RaisesException) + Builder->BuildSinks = true; + + // Dispatch to plug-in transfer function. + EvalObjCMessageExpr(DstEval, ME, Pred, notNilState); + } + else if (ObjCInterfaceDecl *Iface = ME->getReceiverInterface()) { + IdentifierInfo* ClsName = Iface->getIdentifier(); + Selector S = ME->getSelector(); + + // Check for special instance methods. + if (!NSExceptionII) { + ASTContext& Ctx = getContext(); + NSExceptionII = &Ctx.Idents.get("NSException"); + } + + if (ClsName == NSExceptionII) { + enum { NUM_RAISE_SELECTORS = 2 }; + + // Lazily create a cache of the selectors. + if (!NSExceptionInstanceRaiseSelectors) { + ASTContext& Ctx = getContext(); + NSExceptionInstanceRaiseSelectors = + new Selector[NUM_RAISE_SELECTORS]; + llvm::SmallVector<IdentifierInfo*, NUM_RAISE_SELECTORS> II; + unsigned idx = 0; + + // raise:format: + II.push_back(&Ctx.Idents.get("raise")); + II.push_back(&Ctx.Idents.get("format")); + NSExceptionInstanceRaiseSelectors[idx++] = + Ctx.Selectors.getSelector(II.size(), &II[0]); + + // raise:format::arguments: + II.push_back(&Ctx.Idents.get("arguments")); + NSExceptionInstanceRaiseSelectors[idx++] = + Ctx.Selectors.getSelector(II.size(), &II[0]); + } + + for (unsigned i = 0; i < NUM_RAISE_SELECTORS; ++i) + if (S == NSExceptionInstanceRaiseSelectors[i]) { + RaisesException = true; + break; + } + } + + // Check if we raise an exception. For now treat these as sinks. + // Eventually we will want to handle exceptions properly. + if (RaisesException) + Builder->BuildSinks = true; + + // Dispatch to plug-in transfer function. + EvalObjCMessageExpr(DstEval, ME, Pred, Builder->GetState(Pred)); + } + + // Handle the case where no nodes where generated. Auto-generate that + // contains the updated state if we aren't generating sinks. + if (!Builder->BuildSinks && DstEval.size() == OldSize && + !Builder->HasGeneratedNode) + MakeNode(DstEval, ME, Pred, GetState(Pred)); + } + + // Finally, perform the post-condition check of the ObjCMessageExpr and store + // the created nodes in 'Dst'. + if (!(!asLValue && ReceiverReturnsReference(ME))) { + CheckerVisit(ME, Dst, DstEval, false); + return; + } + + // Handle the case where the message expression returns a reference but + // we expect an rvalue. For such cases, convert the reference to + // an rvalue. + // FIXME: This conversion doesn't actually happen unless the result + // of ObjCMessageExpr is consumed by another expression. + ExplodedNodeSet DstRValueConvert; + CheckerVisit(ME, DstRValueConvert, DstEval, false); + QualType LoadTy = ME->getType(); + + static int *ConvertToRvalueTag = 0; + for (ExplodedNodeSet::iterator NI = DstRValueConvert.begin(), + NE = DstRValueConvert.end(); NI != NE; ++NI) { + const GRState *state = GetState(*NI); + EvalLoad(Dst, ME, *NI, state, state->getSVal(ME), + &ConvertToRvalueTag, LoadTy); + } +} + +//===----------------------------------------------------------------------===// +// Transfer functions: Miscellaneous statements. +//===----------------------------------------------------------------------===// + +void GRExprEngine::VisitCast(CastExpr *CastE, Expr *Ex, ExplodedNode *Pred, + ExplodedNodeSet &Dst, bool asLValue) { + ExplodedNodeSet S1; + QualType T = CastE->getType(); + QualType ExTy = Ex->getType(); + + if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE)) + T = ExCast->getTypeAsWritten(); + + if (ExTy->isArrayType() || ExTy->isFunctionType() || T->isReferenceType() || + asLValue) + VisitLValue(Ex, Pred, S1); + else + Visit(Ex, Pred, S1); + + ExplodedNodeSet S2; + CheckerVisit(CastE, S2, S1, true); + + // If we are evaluating the cast in an lvalue context, we implicitly want + // the cast to evaluate to a location. + if (asLValue) { + ASTContext &Ctx = getContext(); + T = Ctx.getPointerType(Ctx.getCanonicalType(T)); + ExTy = Ctx.getPointerType(Ctx.getCanonicalType(ExTy)); + } + + switch (CastE->getCastKind()) { + case CastExpr::CK_ToVoid: + assert(!asLValue); + for (ExplodedNodeSet::iterator I = S2.begin(), E = S2.end(); I != E; ++I) + Dst.Add(*I); + return; + + case CastExpr::CK_NoOp: + case CastExpr::CK_FunctionToPointerDecay: + for (ExplodedNodeSet::iterator I = S2.begin(), E = S2.end(); I != E; ++I) { + // Copy the SVal of Ex to CastE. + ExplodedNode *N = *I; + const GRState *state = GetState(N); + SVal V = state->getSVal(Ex); + state = state->BindExpr(CastE, V); + MakeNode(Dst, CastE, N, state); + } + return; + + case CastExpr::CK_Unknown: + case CastExpr::CK_ArrayToPointerDecay: + case CastExpr::CK_BitCast: + case CastExpr::CK_IntegralCast: + case CastExpr::CK_IntegralToPointer: + case CastExpr::CK_PointerToIntegral: + case CastExpr::CK_IntegralToFloating: + case CastExpr::CK_FloatingToIntegral: + case CastExpr::CK_FloatingCast: + case CastExpr::CK_AnyPointerToObjCPointerCast: + case CastExpr::CK_AnyPointerToBlockPointerCast: + case CastExpr::CK_DerivedToBase: + case CastExpr::CK_UncheckedDerivedToBase: + // Delegate to SValuator to process. + for (ExplodedNodeSet::iterator I = S2.begin(), E = S2.end(); I != E; ++I) { + ExplodedNode* N = *I; + const GRState* state = GetState(N); + SVal V = state->getSVal(Ex); + V = SVator.EvalCast(V, T, ExTy); + state = state->BindExpr(CastE, V); + MakeNode(Dst, CastE, N, state); + } + return; + + default: + llvm::errs() << "Cast kind " << CastE->getCastKind() << " not handled.\n"; + assert(0); + } +} + +void GRExprEngine::VisitCompoundLiteralExpr(CompoundLiteralExpr* CL, + ExplodedNode* Pred, + ExplodedNodeSet& Dst, + bool asLValue) { + InitListExpr* ILE = cast<InitListExpr>(CL->getInitializer()->IgnoreParens()); + ExplodedNodeSet Tmp; + Visit(ILE, Pred, Tmp); + + for (ExplodedNodeSet::iterator I = Tmp.begin(), EI = Tmp.end(); I!=EI; ++I) { + const GRState* state = GetState(*I); + SVal ILV = state->getSVal(ILE); + const LocationContext *LC = (*I)->getLocationContext(); + state = state->bindCompoundLiteral(CL, LC, ILV); + + if (asLValue) { + MakeNode(Dst, CL, *I, state->BindExpr(CL, state->getLValue(CL, LC))); + } + else + MakeNode(Dst, CL, *I, state->BindExpr(CL, ILV)); + } +} + +void GRExprEngine::VisitDeclStmt(DeclStmt *DS, ExplodedNode *Pred, + ExplodedNodeSet& Dst) { + + // The CFG has one DeclStmt per Decl. + Decl* D = *DS->decl_begin(); + + if (!D || !isa<VarDecl>(D)) + return; + + const VarDecl* VD = dyn_cast<VarDecl>(D); + Expr* InitEx = const_cast<Expr*>(VD->getInit()); + + // FIXME: static variables may have an initializer, but the second + // time a function is called those values may not be current. + ExplodedNodeSet Tmp; + + if (InitEx) { + QualType InitTy = InitEx->getType(); + if (getContext().getLangOptions().CPlusPlus && InitTy->isRecordType()) { + // Delegate expressions of C++ record type evaluation to AggExprVisitor. + VisitAggExpr(InitEx, GetState(Pred)->getLValue(VD, + Pred->getLocationContext()), Pred, Dst); + return; + } else if (VD->getType()->isReferenceType()) + VisitLValue(InitEx, Pred, Tmp); + else + Visit(InitEx, Pred, Tmp); + } + else + Tmp.Add(Pred); + + ExplodedNodeSet Tmp2; + CheckerVisit(DS, Tmp2, Tmp, true); + + for (ExplodedNodeSet::iterator I=Tmp2.begin(), E=Tmp2.end(); I!=E; ++I) { + ExplodedNode *N = *I; + const GRState *state = GetState(N); + + // Decls without InitExpr are not initialized explicitly. + const LocationContext *LC = N->getLocationContext(); + + if (InitEx) { + SVal InitVal = state->getSVal(InitEx); + + // Recover some path-sensitivity if a scalar value evaluated to + // UnknownVal. + if ((InitVal.isUnknown() || + !getConstraintManager().canReasonAbout(InitVal)) && + !VD->getType()->isReferenceType()) { + InitVal = ValMgr.getConjuredSymbolVal(NULL, InitEx, + Builder->getCurrentBlockCount()); + } + + EvalBind(Dst, DS, DS, *I, state, + loc::MemRegionVal(state->getRegion(VD, LC)), InitVal, true); + } + else { + state = state->bindDeclWithNoInit(state->getRegion(VD, LC)); + MakeNode(Dst, DS, *I, state); + } + } +} + +void GRExprEngine::VisitCondInit(VarDecl *VD, Stmt *S, + ExplodedNode *Pred, ExplodedNodeSet& Dst) { + + Expr* InitEx = VD->getInit(); + ExplodedNodeSet Tmp; + Visit(InitEx, Pred, Tmp); + + for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { + ExplodedNode *N = *I; + const GRState *state = GetState(N); + + const LocationContext *LC = N->getLocationContext(); + SVal InitVal = state->getSVal(InitEx); + + // Recover some path-sensitivity if a scalar value evaluated to + // UnknownVal. + if (InitVal.isUnknown() || + !getConstraintManager().canReasonAbout(InitVal)) { + InitVal = ValMgr.getConjuredSymbolVal(NULL, InitEx, + Builder->getCurrentBlockCount()); + } + + EvalBind(Dst, S, S, N, state, + loc::MemRegionVal(state->getRegion(VD, LC)), InitVal, true); + } +} + +namespace { + // This class is used by VisitInitListExpr as an item in a worklist + // for processing the values contained in an InitListExpr. +class InitListWLItem { +public: + llvm::ImmutableList<SVal> Vals; + ExplodedNode* N; + InitListExpr::reverse_iterator Itr; + + InitListWLItem(ExplodedNode* n, llvm::ImmutableList<SVal> vals, + InitListExpr::reverse_iterator itr) + : Vals(vals), N(n), Itr(itr) {} +}; +} + + +void GRExprEngine::VisitInitListExpr(InitListExpr* E, ExplodedNode* Pred, + ExplodedNodeSet& Dst) { + + const GRState* state = GetState(Pred); + QualType T = getContext().getCanonicalType(E->getType()); + unsigned NumInitElements = E->getNumInits(); + + if (T->isArrayType() || T->isRecordType() || T->isVectorType()) { + llvm::ImmutableList<SVal> StartVals = getBasicVals().getEmptySValList(); + + // Handle base case where the initializer has no elements. + // e.g: static int* myArray[] = {}; + if (NumInitElements == 0) { + SVal V = ValMgr.makeCompoundVal(T, StartVals); + MakeNode(Dst, E, Pred, state->BindExpr(E, V)); + return; + } + + // Create a worklist to process the initializers. + llvm::SmallVector<InitListWLItem, 10> WorkList; + WorkList.reserve(NumInitElements); + WorkList.push_back(InitListWLItem(Pred, StartVals, E->rbegin())); + InitListExpr::reverse_iterator ItrEnd = E->rend(); + assert(!(E->rbegin() == E->rend())); + + // Process the worklist until it is empty. + while (!WorkList.empty()) { + InitListWLItem X = WorkList.back(); + WorkList.pop_back(); + + ExplodedNodeSet Tmp; + Visit(*X.Itr, X.N, Tmp); + + InitListExpr::reverse_iterator NewItr = X.Itr + 1; + + for (ExplodedNodeSet::iterator NI=Tmp.begin(),NE=Tmp.end();NI!=NE;++NI) { + // Get the last initializer value. + state = GetState(*NI); + SVal InitV = state->getSVal(cast<Expr>(*X.Itr)); + + // Construct the new list of values by prepending the new value to + // the already constructed list. + llvm::ImmutableList<SVal> NewVals = + getBasicVals().consVals(InitV, X.Vals); + + if (NewItr == ItrEnd) { + // Now we have a list holding all init values. Make CompoundValData. + SVal V = ValMgr.makeCompoundVal(T, NewVals); + + // Make final state and node. + MakeNode(Dst, E, *NI, state->BindExpr(E, V)); + } + else { + // Still some initializer values to go. Push them onto the worklist. + WorkList.push_back(InitListWLItem(*NI, NewVals, NewItr)); + } + } + } + + return; + } + + if (Loc::IsLocType(T) || T->isIntegerType()) { + assert (E->getNumInits() == 1); + ExplodedNodeSet Tmp; + Expr* Init = E->getInit(0); + Visit(Init, Pred, Tmp); + for (ExplodedNodeSet::iterator I=Tmp.begin(), EI=Tmp.end(); I != EI; ++I) { + state = GetState(*I); + MakeNode(Dst, E, *I, state->BindExpr(E, state->getSVal(Init))); + } + return; + } + + assert(0 && "unprocessed InitListExpr type"); +} + +/// VisitSizeOfAlignOfExpr - Transfer function for sizeof(type). +void GRExprEngine::VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr* Ex, + ExplodedNode* Pred, + ExplodedNodeSet& Dst) { + QualType T = Ex->getTypeOfArgument(); + CharUnits amt; + + if (Ex->isSizeOf()) { + if (T == getContext().VoidTy) { + // sizeof(void) == 1 byte. + amt = CharUnits::One(); + } + else if (!T.getTypePtr()->isConstantSizeType()) { + // FIXME: Add support for VLAs. + Dst.Add(Pred); + return; + } + else if (T->getAs<ObjCObjectType>()) { + // Some code tries to take the sizeof an ObjCObjectType, relying that + // the compiler has laid out its representation. Just report Unknown + // for these. + Dst.Add(Pred); + return; + } + else { + // All other cases. + amt = getContext().getTypeSizeInChars(T); + } + } + else // Get alignment of the type. + amt = getContext().getTypeAlignInChars(T); + + MakeNode(Dst, Ex, Pred, + GetState(Pred)->BindExpr(Ex, + ValMgr.makeIntVal(amt.getQuantity(), Ex->getType()))); +} + +void GRExprEngine::VisitOffsetOfExpr(OffsetOfExpr* OOE, ExplodedNode* Pred, + ExplodedNodeSet& Dst) { + Expr::EvalResult Res; + if (OOE->Evaluate(Res, getContext()) && Res.Val.isInt()) { + const APSInt &IV = Res.Val.getInt(); + assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType())); + assert(OOE->getType()->isIntegerType()); + assert(IV.isSigned() == OOE->getType()->isSignedIntegerType()); + SVal X = ValMgr.makeIntVal(IV); + MakeNode(Dst, OOE, Pred, GetState(Pred)->BindExpr(OOE, X)); + return; + } + // FIXME: Handle the case where __builtin_offsetof is not a constant. + Dst.Add(Pred); +} + +void GRExprEngine::VisitUnaryOperator(UnaryOperator* U, ExplodedNode* Pred, + ExplodedNodeSet& Dst, bool asLValue) { + + switch (U->getOpcode()) { + + default: + break; + + case UnaryOperator::Deref: { + + Expr* Ex = U->getSubExpr()->IgnoreParens(); + ExplodedNodeSet Tmp; + Visit(Ex, Pred, Tmp); + + for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { + + const GRState* state = GetState(*I); + SVal location = state->getSVal(Ex); + + if (asLValue) + MakeNode(Dst, U, *I, state->BindExpr(U, location), + ProgramPoint::PostLValueKind); + else + EvalLoad(Dst, U, *I, state, location); + } + + return; + } + + case UnaryOperator::Real: { + + Expr* Ex = U->getSubExpr()->IgnoreParens(); + ExplodedNodeSet Tmp; + Visit(Ex, Pred, Tmp); + + for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { + + // FIXME: We don't have complex SValues yet. + if (Ex->getType()->isAnyComplexType()) { + // Just report "Unknown." + Dst.Add(*I); + continue; + } + + // For all other types, UnaryOperator::Real is an identity operation. + assert (U->getType() == Ex->getType()); + const GRState* state = GetState(*I); + MakeNode(Dst, U, *I, state->BindExpr(U, state->getSVal(Ex))); + } + + return; + } + + case UnaryOperator::Imag: { + + Expr* Ex = U->getSubExpr()->IgnoreParens(); + ExplodedNodeSet Tmp; + Visit(Ex, Pred, Tmp); + + for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { + // FIXME: We don't have complex SValues yet. + if (Ex->getType()->isAnyComplexType()) { + // Just report "Unknown." + Dst.Add(*I); + continue; + } + + // For all other types, UnaryOperator::Float returns 0. + assert (Ex->getType()->isIntegerType()); + const GRState* state = GetState(*I); + SVal X = ValMgr.makeZeroVal(Ex->getType()); + MakeNode(Dst, U, *I, state->BindExpr(U, X)); + } + + return; + } + + case UnaryOperator::OffsetOf: { + Expr::EvalResult Res; + if (U->Evaluate(Res, getContext()) && Res.Val.isInt()) { + const APSInt &IV = Res.Val.getInt(); + assert(IV.getBitWidth() == getContext().getTypeSize(U->getType())); + assert(U->getType()->isIntegerType()); + assert(IV.isSigned() == U->getType()->isSignedIntegerType()); + SVal X = ValMgr.makeIntVal(IV); + MakeNode(Dst, U, Pred, GetState(Pred)->BindExpr(U, X)); + return; + } + // FIXME: Handle the case where __builtin_offsetof is not a constant. + Dst.Add(Pred); + return; + } + + case UnaryOperator::Plus: assert (!asLValue); // FALL-THROUGH. + case UnaryOperator::Extension: { + + // Unary "+" is a no-op, similar to a parentheses. We still have places + // where it may be a block-level expression, so we need to + // generate an extra node that just propagates the value of the + // subexpression. + + Expr* Ex = U->getSubExpr()->IgnoreParens(); + ExplodedNodeSet Tmp; + Visit(Ex, Pred, Tmp); + + for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { + const GRState* state = GetState(*I); + MakeNode(Dst, U, *I, state->BindExpr(U, state->getSVal(Ex))); + } + + return; + } + + case UnaryOperator::AddrOf: { + + assert(!asLValue); + Expr* Ex = U->getSubExpr()->IgnoreParens(); + ExplodedNodeSet Tmp; + VisitLValue(Ex, Pred, Tmp); + + for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { + const GRState* state = GetState(*I); + SVal V = state->getSVal(Ex); + state = state->BindExpr(U, V); + MakeNode(Dst, U, *I, state); + } + + return; + } + + case UnaryOperator::LNot: + case UnaryOperator::Minus: + case UnaryOperator::Not: { + + assert (!asLValue); + Expr* Ex = U->getSubExpr()->IgnoreParens(); + ExplodedNodeSet Tmp; + Visit(Ex, Pred, Tmp); + + for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { + const GRState* state = GetState(*I); + + // Get the value of the subexpression. + SVal V = state->getSVal(Ex); + + if (V.isUnknownOrUndef()) { + MakeNode(Dst, U, *I, state->BindExpr(U, V)); + continue; + } + +// QualType DstT = getContext().getCanonicalType(U->getType()); +// QualType SrcT = getContext().getCanonicalType(Ex->getType()); +// +// if (DstT != SrcT) // Perform promotions. +// V = EvalCast(V, DstT); +// +// if (V.isUnknownOrUndef()) { +// MakeNode(Dst, U, *I, BindExpr(St, U, V)); +// continue; +// } + + switch (U->getOpcode()) { + default: + assert(false && "Invalid Opcode."); + break; + + case UnaryOperator::Not: + // FIXME: Do we need to handle promotions? + state = state->BindExpr(U, EvalComplement(cast<NonLoc>(V))); + break; + + case UnaryOperator::Minus: + // FIXME: Do we need to handle promotions? + state = state->BindExpr(U, EvalMinus(cast<NonLoc>(V))); + break; + + case UnaryOperator::LNot: + + // C99 6.5.3.3: "The expression !E is equivalent to (0==E)." + // + // Note: technically we do "E == 0", but this is the same in the + // transfer functions as "0 == E". + SVal Result; + + if (isa<Loc>(V)) { + Loc X = ValMgr.makeNull(); + Result = EvalBinOp(state, BinaryOperator::EQ, cast<Loc>(V), X, + U->getType()); + } + else { + nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType())); + Result = EvalBinOp(state, BinaryOperator::EQ, cast<NonLoc>(V), X, + U->getType()); + } + + state = state->BindExpr(U, Result); + + break; + } + + MakeNode(Dst, U, *I, state); + } + + return; + } + } + + // Handle ++ and -- (both pre- and post-increment). + + assert (U->isIncrementDecrementOp()); + ExplodedNodeSet Tmp; + Expr* Ex = U->getSubExpr()->IgnoreParens(); + VisitLValue(Ex, Pred, Tmp); + + for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I!=E; ++I) { + + const GRState* state = GetState(*I); + SVal V1 = state->getSVal(Ex); + + // Perform a load. + ExplodedNodeSet Tmp2; + EvalLoad(Tmp2, Ex, *I, state, V1); + + for (ExplodedNodeSet::iterator I2=Tmp2.begin(), E2=Tmp2.end();I2!=E2;++I2) { + + state = GetState(*I2); + SVal V2_untested = state->getSVal(Ex); + + // Propagate unknown and undefined values. + if (V2_untested.isUnknownOrUndef()) { + MakeNode(Dst, U, *I2, state->BindExpr(U, V2_untested)); + continue; + } + DefinedSVal V2 = cast<DefinedSVal>(V2_untested); + + // Handle all other values. + BinaryOperator::Opcode Op = U->isIncrementOp() ? BinaryOperator::Add + : BinaryOperator::Sub; + + // If the UnaryOperator has non-location type, use its type to create the + // constant value. If the UnaryOperator has location type, create the + // constant with int type and pointer width. + SVal RHS; + + if (U->getType()->isAnyPointerType()) + RHS = ValMgr.makeIntValWithPtrWidth(1, false); + else + RHS = ValMgr.makeIntVal(1, U->getType()); + + SVal Result = EvalBinOp(state, Op, V2, RHS, U->getType()); + + // Conjure a new symbol if necessary to recover precision. + if (Result.isUnknown() || !getConstraintManager().canReasonAbout(Result)){ + DefinedOrUnknownSVal SymVal = + ValMgr.getConjuredSymbolVal(NULL, Ex, + Builder->getCurrentBlockCount()); + Result = SymVal; + + // If the value is a location, ++/-- should always preserve + // non-nullness. Check if the original value was non-null, and if so + // propagate that constraint. + if (Loc::IsLocType(U->getType())) { + DefinedOrUnknownSVal Constraint = + SVator.EvalEQ(state, V2, ValMgr.makeZeroVal(U->getType())); + + if (!state->Assume(Constraint, true)) { + // It isn't feasible for the original value to be null. + // Propagate this constraint. + Constraint = SVator.EvalEQ(state, SymVal, + ValMgr.makeZeroVal(U->getType())); + + + state = state->Assume(Constraint, false); + assert(state); + } + } + } + + state = state->BindExpr(U, U->isPostfix() ? V2 : Result); + + // Perform the store. + EvalStore(Dst, NULL, U, *I2, state, V1, Result); + } + } +} + +void GRExprEngine::VisitAsmStmt(AsmStmt* A, ExplodedNode* Pred, + ExplodedNodeSet& Dst) { + VisitAsmStmtHelperOutputs(A, A->begin_outputs(), A->end_outputs(), Pred, Dst); +} + +void GRExprEngine::VisitAsmStmtHelperOutputs(AsmStmt* A, + AsmStmt::outputs_iterator I, + AsmStmt::outputs_iterator E, + ExplodedNode* Pred, ExplodedNodeSet& Dst) { + if (I == E) { + VisitAsmStmtHelperInputs(A, A->begin_inputs(), A->end_inputs(), Pred, Dst); + return; + } + + ExplodedNodeSet Tmp; + VisitLValue(*I, Pred, Tmp); + + ++I; + + for (ExplodedNodeSet::iterator NI = Tmp.begin(), NE = Tmp.end();NI != NE;++NI) + VisitAsmStmtHelperOutputs(A, I, E, *NI, Dst); +} + +void GRExprEngine::VisitAsmStmtHelperInputs(AsmStmt* A, + AsmStmt::inputs_iterator I, + AsmStmt::inputs_iterator E, + ExplodedNode* Pred, + ExplodedNodeSet& Dst) { + if (I == E) { + + // We have processed both the inputs and the outputs. All of the outputs + // should evaluate to Locs. Nuke all of their values. + + // FIXME: Some day in the future it would be nice to allow a "plug-in" + // which interprets the inline asm and stores proper results in the + // outputs. + + const GRState* state = GetState(Pred); + + for (AsmStmt::outputs_iterator OI = A->begin_outputs(), + OE = A->end_outputs(); OI != OE; ++OI) { + + SVal X = state->getSVal(*OI); + assert (!isa<NonLoc>(X)); // Should be an Lval, or unknown, undef. + + if (isa<Loc>(X)) + state = state->bindLoc(cast<Loc>(X), UnknownVal()); + } + + MakeNode(Dst, A, Pred, state); + return; + } + + ExplodedNodeSet Tmp; + Visit(*I, Pred, Tmp); + + ++I; + + for (ExplodedNodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI!=NE; ++NI) + VisitAsmStmtHelperInputs(A, I, E, *NI, Dst); +} + +void GRExprEngine::VisitReturnStmt(ReturnStmt *RS, ExplodedNode *Pred, + ExplodedNodeSet &Dst) { + ExplodedNodeSet Src; + if (Expr *RetE = RS->getRetValue()) { + // Record the returned expression in the state. It will be used in + // ProcessCallExit to bind the return value to the call expr. + { + static int Tag = 0; + SaveAndRestore<const void *> OldTag(Builder->Tag, &Tag); + const GRState *state = GetState(Pred); + state = state->set<ReturnExpr>(RetE); + Pred = Builder->generateNode(RetE, state, Pred); + } + // We may get a NULL Pred because we generated a cached node. + if (Pred) + Visit(RetE, Pred, Src); + } + else { + Src.Add(Pred); + } + + ExplodedNodeSet CheckedSet; + CheckerVisit(RS, CheckedSet, Src, true); + + for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end(); + I != E; ++I) { + + assert(Builder && "GRStmtNodeBuilder must be defined."); + + Pred = *I; + unsigned size = Dst.size(); + + SaveAndRestore<bool> OldSink(Builder->BuildSinks); + SaveOr OldHasGen(Builder->HasGeneratedNode); + + getTF().EvalReturn(Dst, *this, *Builder, RS, Pred); + + // Handle the case where no nodes where generated. + if (!Builder->BuildSinks && Dst.size() == size && + !Builder->HasGeneratedNode) + MakeNode(Dst, RS, Pred, GetState(Pred)); + } +} + +//===----------------------------------------------------------------------===// +// Transfer functions: Binary operators. +//===----------------------------------------------------------------------===// + +void GRExprEngine::VisitBinaryOperator(BinaryOperator* B, + ExplodedNode* Pred, + ExplodedNodeSet& Dst, bool asLValue) { + + ExplodedNodeSet Tmp1; + Expr* LHS = B->getLHS()->IgnoreParens(); + Expr* RHS = B->getRHS()->IgnoreParens(); + + // FIXME: Add proper support for ObjCImplicitSetterGetterRefExpr. + if (isa<ObjCImplicitSetterGetterRefExpr>(LHS)) { + Visit(RHS, Pred, Dst); + return; + } + + if (B->isAssignmentOp()) + VisitLValue(LHS, Pred, Tmp1); + else + Visit(LHS, Pred, Tmp1); + + ExplodedNodeSet Tmp3; + + for (ExplodedNodeSet::iterator I1=Tmp1.begin(), E1=Tmp1.end(); I1!=E1; ++I1) { + SVal LeftV = GetState(*I1)->getSVal(LHS); + ExplodedNodeSet Tmp2; + Visit(RHS, *I1, Tmp2); + + ExplodedNodeSet CheckedSet; + CheckerVisit(B, CheckedSet, Tmp2, true); + + // With both the LHS and RHS evaluated, process the operation itself. + + for (ExplodedNodeSet::iterator I2=CheckedSet.begin(), E2=CheckedSet.end(); + I2 != E2; ++I2) { + + const GRState *state = GetState(*I2); + const GRState *OldSt = state; + SVal RightV = state->getSVal(RHS); + + BinaryOperator::Opcode Op = B->getOpcode(); + + if (Op == BinaryOperator::Assign) { + // EXPERIMENTAL: "Conjured" symbols. + // FIXME: Handle structs. + QualType T = RHS->getType(); + + if ((RightV.isUnknown()||!getConstraintManager().canReasonAbout(RightV)) + && (Loc::IsLocType(T) || (T->isScalarType()&&T->isIntegerType()))) { + unsigned Count = Builder->getCurrentBlockCount(); + RightV = ValMgr.getConjuredSymbolVal(NULL, B->getRHS(), Count); + } + + SVal ExprVal = asLValue ? LeftV : RightV; + + // Simulate the effects of a "store": bind the value of the RHS + // to the L-Value represented by the LHS. + EvalStore(Tmp3, B, LHS, *I2, state->BindExpr(B, ExprVal), LeftV,RightV); + continue; + } + + if (!B->isAssignmentOp()) { + // Process non-assignments except commas or short-circuited + // logical expressions (LAnd and LOr). + SVal Result = EvalBinOp(state, Op, LeftV, RightV, B->getType()); + + if (Result.isUnknown()) { + if (OldSt != state) { + // Generate a new node if we have already created a new state. + MakeNode(Tmp3, B, *I2, state); + } + else + Tmp3.Add(*I2); + + continue; + } + + state = state->BindExpr(B, Result); + + MakeNode(Tmp3, B, *I2, state); + continue; + } + + assert (B->isCompoundAssignmentOp()); + + switch (Op) { + default: + assert(0 && "Invalid opcode for compound assignment."); + case BinaryOperator::MulAssign: Op = BinaryOperator::Mul; break; + case BinaryOperator::DivAssign: Op = BinaryOperator::Div; break; + case BinaryOperator::RemAssign: Op = BinaryOperator::Rem; break; + case BinaryOperator::AddAssign: Op = BinaryOperator::Add; break; + case BinaryOperator::SubAssign: Op = BinaryOperator::Sub; break; + case BinaryOperator::ShlAssign: Op = BinaryOperator::Shl; break; + case BinaryOperator::ShrAssign: Op = BinaryOperator::Shr; break; + case BinaryOperator::AndAssign: Op = BinaryOperator::And; break; + case BinaryOperator::XorAssign: Op = BinaryOperator::Xor; break; + case BinaryOperator::OrAssign: Op = BinaryOperator::Or; break; + } + + // Perform a load (the LHS). This performs the checks for + // null dereferences, and so on. + ExplodedNodeSet Tmp4; + SVal location = state->getSVal(LHS); + EvalLoad(Tmp4, LHS, *I2, state, location); + + for (ExplodedNodeSet::iterator I4=Tmp4.begin(), E4=Tmp4.end(); I4!=E4; + ++I4) { + state = GetState(*I4); + SVal V = state->getSVal(LHS); + + // Get the computation type. + QualType CTy = + cast<CompoundAssignOperator>(B)->getComputationResultType(); + CTy = getContext().getCanonicalType(CTy); + + QualType CLHSTy = + cast<CompoundAssignOperator>(B)->getComputationLHSType(); + CLHSTy = getContext().getCanonicalType(CLHSTy); + + QualType LTy = getContext().getCanonicalType(LHS->getType()); + QualType RTy = getContext().getCanonicalType(RHS->getType()); + + // Promote LHS. + V = SVator.EvalCast(V, CLHSTy, LTy); + + // Compute the result of the operation. + SVal Result = SVator.EvalCast(EvalBinOp(state, Op, V, RightV, CTy), + B->getType(), CTy); + + // EXPERIMENTAL: "Conjured" symbols. + // FIXME: Handle structs. + + SVal LHSVal; + + if ((Result.isUnknown() || + !getConstraintManager().canReasonAbout(Result)) + && (Loc::IsLocType(CTy) + || (CTy->isScalarType() && CTy->isIntegerType()))) { + + unsigned Count = Builder->getCurrentBlockCount(); + + // The symbolic value is actually for the type of the left-hand side + // expression, not the computation type, as this is the value the + // LValue on the LHS will bind to. + LHSVal = ValMgr.getConjuredSymbolVal(NULL, B->getRHS(), LTy, Count); + + // However, we need to convert the symbol to the computation type. + Result = SVator.EvalCast(LHSVal, CTy, LTy); + } + else { + // The left-hand side may bind to a different value then the + // computation type. + LHSVal = SVator.EvalCast(Result, LTy, CTy); + } + + EvalStore(Tmp3, B, LHS, *I4, state->BindExpr(B, Result), + location, LHSVal); + } + } + } + + CheckerVisit(B, Dst, Tmp3, false); +} + +//===----------------------------------------------------------------------===// +// Checker registration/lookup. +//===----------------------------------------------------------------------===// + +Checker *GRExprEngine::lookupChecker(void *tag) const { + CheckerMap::const_iterator I = CheckerM.find(tag); + return (I == CheckerM.end()) ? NULL : Checkers[I->second].second; +} + +//===----------------------------------------------------------------------===// +// Visualization. +//===----------------------------------------------------------------------===// + +#ifndef NDEBUG +static GRExprEngine* GraphPrintCheckerState; +static SourceManager* GraphPrintSourceManager; + +namespace llvm { +template<> +struct DOTGraphTraits<ExplodedNode*> : + public DefaultDOTGraphTraits { + + DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} + + // FIXME: Since we do not cache error nodes in GRExprEngine now, this does not + // work. + static std::string getNodeAttributes(const ExplodedNode* N, void*) { + +#if 0 + // FIXME: Replace with a general scheme to tell if the node is + // an error node. + if (GraphPrintCheckerState->isImplicitNullDeref(N) || + GraphPrintCheckerState->isExplicitNullDeref(N) || + GraphPrintCheckerState->isUndefDeref(N) || + GraphPrintCheckerState->isUndefStore(N) || + GraphPrintCheckerState->isUndefControlFlow(N) || + GraphPrintCheckerState->isUndefResult(N) || + GraphPrintCheckerState->isBadCall(N) || + GraphPrintCheckerState->isUndefArg(N)) + return "color=\"red\",style=\"filled\""; + + if (GraphPrintCheckerState->isNoReturnCall(N)) + return "color=\"blue\",style=\"filled\""; +#endif + return ""; + } + + static std::string getNodeLabel(const ExplodedNode* N, void*){ + + std::string sbuf; + llvm::raw_string_ostream Out(sbuf); + + // Program Location. + ProgramPoint Loc = N->getLocation(); + + switch (Loc.getKind()) { + case ProgramPoint::BlockEntranceKind: + Out << "Block Entrance: B" + << cast<BlockEntrance>(Loc).getBlock()->getBlockID(); + break; + + case ProgramPoint::BlockExitKind: + assert (false); + break; + + case ProgramPoint::CallEnterKind: + Out << "CallEnter"; + break; + + case ProgramPoint::CallExitKind: + Out << "CallExit"; + break; + + default: { + if (StmtPoint *L = dyn_cast<StmtPoint>(&Loc)) { + const Stmt* S = L->getStmt(); + SourceLocation SLoc = S->getLocStart(); + + Out << S->getStmtClassName() << ' ' << (void*) S << ' '; + LangOptions LO; // FIXME. + S->printPretty(Out, 0, PrintingPolicy(LO)); + + if (SLoc.isFileID()) { + Out << "\\lline=" + << GraphPrintSourceManager->getInstantiationLineNumber(SLoc) + << " col=" + << GraphPrintSourceManager->getInstantiationColumnNumber(SLoc) + << "\\l"; + } + + if (isa<PreStmt>(Loc)) + Out << "\\lPreStmt\\l;"; + else if (isa<PostLoad>(Loc)) + Out << "\\lPostLoad\\l;"; + else if (isa<PostStore>(Loc)) + Out << "\\lPostStore\\l"; + else if (isa<PostLValue>(Loc)) + Out << "\\lPostLValue\\l"; + +#if 0 + // FIXME: Replace with a general scheme to determine + // the name of the check. + if (GraphPrintCheckerState->isImplicitNullDeref(N)) + Out << "\\|Implicit-Null Dereference.\\l"; + else if (GraphPrintCheckerState->isExplicitNullDeref(N)) + Out << "\\|Explicit-Null Dereference.\\l"; + else if (GraphPrintCheckerState->isUndefDeref(N)) + Out << "\\|Dereference of undefialied value.\\l"; + else if (GraphPrintCheckerState->isUndefStore(N)) + Out << "\\|Store to Undefined Loc."; + else if (GraphPrintCheckerState->isUndefResult(N)) + Out << "\\|Result of operation is undefined."; + else if (GraphPrintCheckerState->isNoReturnCall(N)) + Out << "\\|Call to function marked \"noreturn\"."; + else if (GraphPrintCheckerState->isBadCall(N)) + Out << "\\|Call to NULL/Undefined."; + else if (GraphPrintCheckerState->isUndefArg(N)) + Out << "\\|Argument in call is undefined"; +#endif + + break; + } + + const BlockEdge& E = cast<BlockEdge>(Loc); + Out << "Edge: (B" << E.getSrc()->getBlockID() << ", B" + << E.getDst()->getBlockID() << ')'; + + if (Stmt* T = E.getSrc()->getTerminator()) { + + SourceLocation SLoc = T->getLocStart(); + + Out << "\\|Terminator: "; + LangOptions LO; // FIXME. + E.getSrc()->printTerminator(Out, LO); + + if (SLoc.isFileID()) { + Out << "\\lline=" + << GraphPrintSourceManager->getInstantiationLineNumber(SLoc) + << " col=" + << GraphPrintSourceManager->getInstantiationColumnNumber(SLoc); + } + + if (isa<SwitchStmt>(T)) { + Stmt* Label = E.getDst()->getLabel(); + + if (Label) { + if (CaseStmt* C = dyn_cast<CaseStmt>(Label)) { + Out << "\\lcase "; + LangOptions LO; // FIXME. + C->getLHS()->printPretty(Out, 0, PrintingPolicy(LO)); + + if (Stmt* RHS = C->getRHS()) { + Out << " .. "; + RHS->printPretty(Out, 0, PrintingPolicy(LO)); + } + + Out << ":"; + } + else { + assert (isa<DefaultStmt>(Label)); + Out << "\\ldefault:"; + } + } + else + Out << "\\l(implicit) default:"; + } + else if (isa<IndirectGotoStmt>(T)) { + // FIXME + } + else { + Out << "\\lCondition: "; + if (*E.getSrc()->succ_begin() == E.getDst()) + Out << "true"; + else + Out << "false"; + } + + Out << "\\l"; + } + +#if 0 + // FIXME: Replace with a general scheme to determine + // the name of the check. + if (GraphPrintCheckerState->isUndefControlFlow(N)) { + Out << "\\|Control-flow based on\\lUndefined value.\\l"; + } +#endif + } + } + + Out << "\\|StateID: " << (void*) N->getState() << "\\|"; + + const GRState *state = N->getState(); + state->printDOT(Out, *N->getLocationContext()->getCFG()); + + Out << "\\l"; + return Out.str(); + } +}; +} // end llvm namespace +#endif + +#ifndef NDEBUG +template <typename ITERATOR> +ExplodedNode* GetGraphNode(ITERATOR I) { return *I; } + +template <> ExplodedNode* +GetGraphNode<llvm::DenseMap<ExplodedNode*, Expr*>::iterator> + (llvm::DenseMap<ExplodedNode*, Expr*>::iterator I) { + return I->first; +} +#endif + +void GRExprEngine::ViewGraph(bool trim) { +#ifndef NDEBUG + if (trim) { + std::vector<ExplodedNode*> Src; + + // Flush any outstanding reports to make sure we cover all the nodes. + // This does not cause them to get displayed. + for (BugReporter::iterator I=BR.begin(), E=BR.end(); I!=E; ++I) + const_cast<BugType*>(*I)->FlushReports(BR); + + // Iterate through the reports and get their nodes. + for (BugReporter::iterator I=BR.begin(), E=BR.end(); I!=E; ++I) { + for (BugType::const_iterator I2=(*I)->begin(), E2=(*I)->end(); + I2!=E2; ++I2) { + const BugReportEquivClass& EQ = *I2; + const BugReport &R = **EQ.begin(); + ExplodedNode *N = const_cast<ExplodedNode*>(R.getEndNode()); + if (N) Src.push_back(N); + } + } + + ViewGraph(&Src[0], &Src[0]+Src.size()); + } + else { + GraphPrintCheckerState = this; + GraphPrintSourceManager = &getContext().getSourceManager(); + + llvm::ViewGraph(*G.roots_begin(), "GRExprEngine"); + + GraphPrintCheckerState = NULL; + GraphPrintSourceManager = NULL; + } +#endif +} + +void GRExprEngine::ViewGraph(ExplodedNode** Beg, ExplodedNode** End) { +#ifndef NDEBUG + GraphPrintCheckerState = this; + GraphPrintSourceManager = &getContext().getSourceManager(); + + std::auto_ptr<ExplodedGraph> TrimmedG(G.Trim(Beg, End).first); + + if (!TrimmedG.get()) + llvm::errs() << "warning: Trimmed ExplodedGraph is empty.\n"; + else + llvm::ViewGraph(*TrimmedG->roots_begin(), "TrimmedGRExprEngine"); + + GraphPrintCheckerState = NULL; + GraphPrintSourceManager = NULL; +#endif +} |