summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/Analysis
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/Analysis')
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/AnalysisContext.cpp377
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/CFG.cpp3407
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/CFGStmtMap.cpp91
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/CocoaConventions.cpp180
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/FormatString.cpp476
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/FormatStringParsing.h72
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/LiveVariables.cpp392
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/PrintfFormatString.cpp668
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/PseudoConstantAnalysis.cpp240
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/ReachableCode.cpp290
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/ScanfFormatString.cpp221
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/UninitializedValues.cpp317
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/UninitializedValuesV2.cpp610
13 files changed, 7341 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/Analysis/AnalysisContext.cpp b/contrib/llvm/tools/clang/lib/Analysis/AnalysisContext.cpp
new file mode 100644
index 0000000..5233d3b
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/AnalysisContext.cpp
@@ -0,0 +1,377 @@
+//== AnalysisContext.cpp - Analysis context for Path Sens analysis -*- C++ -*-//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines AnalysisContext, a class that manages the analysis context
+// data for path sensitive analysis.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/ParentMap.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Analysis/Analyses/LiveVariables.h"
+#include "clang/Analysis/Analyses/PseudoConstantAnalysis.h"
+#include "clang/Analysis/AnalysisContext.h"
+#include "clang/Analysis/CFG.h"
+#include "clang/Analysis/Support/BumpVector.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/Support/ErrorHandling.h"
+
+using namespace clang;
+
+void AnalysisContextManager::clear() {
+ for (ContextMap::iterator I = Contexts.begin(), E = Contexts.end(); I!=E; ++I)
+ delete I->second;
+ Contexts.clear();
+}
+
+Stmt *AnalysisContext::getBody() {
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
+ return FD->getBody();
+ else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
+ return MD->getBody();
+ else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
+ return BD->getBody();
+ else if (const FunctionTemplateDecl *FunTmpl
+ = dyn_cast_or_null<FunctionTemplateDecl>(D))
+ return FunTmpl->getTemplatedDecl()->getBody();
+
+ llvm_unreachable("unknown code decl");
+}
+
+const ImplicitParamDecl *AnalysisContext::getSelfDecl() const {
+ if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
+ return MD->getSelfDecl();
+
+ return NULL;
+}
+
+CFG *AnalysisContext::getCFG() {
+ if (UseUnoptimizedCFG)
+ return getUnoptimizedCFG();
+
+ if (!builtCFG) {
+ CFG::BuildOptions B;
+ B.AddEHEdges = AddEHEdges;
+ B.AddImplicitDtors = AddImplicitDtors;
+ B.AddInitializers = AddInitializers;
+ cfg = CFG::buildCFG(D, getBody(), &D->getASTContext(), B);
+ // Even when the cfg is not successfully built, we don't
+ // want to try building it again.
+ builtCFG = true;
+ }
+ return cfg;
+}
+
+CFG *AnalysisContext::getUnoptimizedCFG() {
+ if (!builtCompleteCFG) {
+ CFG::BuildOptions B;
+ B.PruneTriviallyFalseEdges = false;
+ B.AddEHEdges = AddEHEdges;
+ B.AddImplicitDtors = AddImplicitDtors;
+ B.AddInitializers = AddInitializers;
+ completeCFG = CFG::buildCFG(D, getBody(), &D->getASTContext(), B);
+ // Even when the cfg is not successfully built, we don't
+ // want to try building it again.
+ builtCompleteCFG = true;
+ }
+ return completeCFG;
+}
+
+void AnalysisContext::dumpCFG() {
+ getCFG()->dump(getASTContext().getLangOptions());
+}
+
+ParentMap &AnalysisContext::getParentMap() {
+ if (!PM)
+ PM = new ParentMap(getBody());
+ return *PM;
+}
+
+PseudoConstantAnalysis *AnalysisContext::getPseudoConstantAnalysis() {
+ if (!PCA)
+ PCA = new PseudoConstantAnalysis(getBody());
+ return PCA;
+}
+
+LiveVariables *AnalysisContext::getLiveVariables() {
+ if (!liveness) {
+ CFG *c = getCFG();
+ if (!c)
+ return 0;
+
+ liveness = new LiveVariables(*this);
+ liveness->runOnCFG(*c);
+ liveness->runOnAllBlocks(*c, 0, true);
+ }
+
+ return liveness;
+}
+
+LiveVariables *AnalysisContext::getRelaxedLiveVariables() {
+ if (!relaxedLiveness) {
+ CFG *c = getCFG();
+ if (!c)
+ return 0;
+
+ relaxedLiveness = new LiveVariables(*this, false);
+ relaxedLiveness->runOnCFG(*c);
+ relaxedLiveness->runOnAllBlocks(*c, 0, true);
+ }
+
+ return relaxedLiveness;
+}
+
+AnalysisContext *AnalysisContextManager::getContext(const Decl *D,
+ idx::TranslationUnit *TU) {
+ AnalysisContext *&AC = Contexts[D];
+ if (!AC)
+ AC = new AnalysisContext(D, TU, UseUnoptimizedCFG, false,
+ AddImplicitDtors, AddInitializers);
+
+ return AC;
+}
+
+//===----------------------------------------------------------------------===//
+// FoldingSet profiling.
+//===----------------------------------------------------------------------===//
+
+void LocationContext::ProfileCommon(llvm::FoldingSetNodeID &ID,
+ ContextKind ck,
+ AnalysisContext *ctx,
+ const LocationContext *parent,
+ const void* data) {
+ ID.AddInteger(ck);
+ ID.AddPointer(ctx);
+ ID.AddPointer(parent);
+ ID.AddPointer(data);
+}
+
+void StackFrameContext::Profile(llvm::FoldingSetNodeID &ID) {
+ Profile(ID, getAnalysisContext(), getParent(), CallSite, Block, Index);
+}
+
+void ScopeContext::Profile(llvm::FoldingSetNodeID &ID) {
+ Profile(ID, getAnalysisContext(), getParent(), Enter);
+}
+
+void BlockInvocationContext::Profile(llvm::FoldingSetNodeID &ID) {
+ Profile(ID, getAnalysisContext(), getParent(), BD);
+}
+
+//===----------------------------------------------------------------------===//
+// LocationContext creation.
+//===----------------------------------------------------------------------===//
+
+template <typename LOC, typename DATA>
+const LOC*
+LocationContextManager::getLocationContext(AnalysisContext *ctx,
+ const LocationContext *parent,
+ const DATA *d) {
+ llvm::FoldingSetNodeID ID;
+ LOC::Profile(ID, ctx, parent, d);
+ void *InsertPos;
+
+ LOC *L = cast_or_null<LOC>(Contexts.FindNodeOrInsertPos(ID, InsertPos));
+
+ if (!L) {
+ L = new LOC(ctx, parent, d);
+ Contexts.InsertNode(L, InsertPos);
+ }
+ return L;
+}
+
+const StackFrameContext*
+LocationContextManager::getStackFrame(AnalysisContext *ctx,
+ const LocationContext *parent,
+ const Stmt *s,
+ const CFGBlock *blk, unsigned idx) {
+ llvm::FoldingSetNodeID ID;
+ StackFrameContext::Profile(ID, ctx, parent, s, blk, idx);
+ void *InsertPos;
+ StackFrameContext *L =
+ cast_or_null<StackFrameContext>(Contexts.FindNodeOrInsertPos(ID, InsertPos));
+ if (!L) {
+ L = new StackFrameContext(ctx, parent, s, blk, idx);
+ Contexts.InsertNode(L, InsertPos);
+ }
+ return L;
+}
+
+const ScopeContext *
+LocationContextManager::getScope(AnalysisContext *ctx,
+ const LocationContext *parent,
+ const Stmt *s) {
+ return getLocationContext<ScopeContext, Stmt>(ctx, parent, s);
+}
+
+//===----------------------------------------------------------------------===//
+// LocationContext methods.
+//===----------------------------------------------------------------------===//
+
+const StackFrameContext *LocationContext::getCurrentStackFrame() const {
+ const LocationContext *LC = this;
+ while (LC) {
+ if (const StackFrameContext *SFC = dyn_cast<StackFrameContext>(LC))
+ return SFC;
+ LC = LC->getParent();
+ }
+ return NULL;
+}
+
+const StackFrameContext *
+LocationContext::getStackFrameForDeclContext(const DeclContext *DC) const {
+ const LocationContext *LC = this;
+ while (LC) {
+ if (const StackFrameContext *SFC = dyn_cast<StackFrameContext>(LC)) {
+ if (cast<DeclContext>(SFC->getDecl()) == DC)
+ return SFC;
+ }
+ LC = LC->getParent();
+ }
+ return NULL;
+}
+
+bool LocationContext::isParentOf(const LocationContext *LC) const {
+ do {
+ const LocationContext *Parent = LC->getParent();
+ if (Parent == this)
+ return true;
+ else
+ LC = Parent;
+ } while (LC);
+
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Lazily generated map to query the external variables referenced by a Block.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class FindBlockDeclRefExprsVals : public StmtVisitor<FindBlockDeclRefExprsVals>{
+ BumpVector<const VarDecl*> &BEVals;
+ BumpVectorContext &BC;
+ llvm::DenseMap<const VarDecl*, unsigned> Visited;
+ llvm::SmallSet<const DeclContext*, 4> IgnoredContexts;
+public:
+ FindBlockDeclRefExprsVals(BumpVector<const VarDecl*> &bevals,
+ BumpVectorContext &bc)
+ : BEVals(bevals), BC(bc) {}
+
+ bool IsTrackedDecl(const VarDecl *VD) {
+ const DeclContext *DC = VD->getDeclContext();
+ return IgnoredContexts.count(DC) == 0;
+ }
+
+ void VisitStmt(Stmt *S) {
+ for (Stmt::child_range I = S->children(); I; ++I)
+ if (Stmt *child = *I)
+ Visit(child);
+ }
+
+ void VisitDeclRefExpr(const DeclRefExpr *DR) {
+ // Non-local variables are also directly modified.
+ if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl()))
+ if (!VD->hasLocalStorage()) {
+ unsigned &flag = Visited[VD];
+ if (!flag) {
+ flag = 1;
+ BEVals.push_back(VD, BC);
+ }
+ }
+ }
+
+ void VisitBlockDeclRefExpr(BlockDeclRefExpr *DR) {
+ if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
+ unsigned &flag = Visited[VD];
+ if (!flag) {
+ flag = 1;
+ if (IsTrackedDecl(VD))
+ BEVals.push_back(VD, BC);
+ }
+ }
+ }
+
+ void VisitBlockExpr(BlockExpr *BR) {
+ // Blocks containing blocks can transitively capture more variables.
+ IgnoredContexts.insert(BR->getBlockDecl());
+ Visit(BR->getBlockDecl()->getBody());
+ }
+};
+} // end anonymous namespace
+
+typedef BumpVector<const VarDecl*> DeclVec;
+
+static DeclVec* LazyInitializeReferencedDecls(const BlockDecl *BD,
+ void *&Vec,
+ llvm::BumpPtrAllocator &A) {
+ if (Vec)
+ return (DeclVec*) Vec;
+
+ BumpVectorContext BC(A);
+ DeclVec *BV = (DeclVec*) A.Allocate<DeclVec>();
+ new (BV) DeclVec(BC, 10);
+
+ // Find the referenced variables.
+ FindBlockDeclRefExprsVals F(*BV, BC);
+ F.Visit(BD->getBody());
+
+ Vec = BV;
+ return BV;
+}
+
+std::pair<AnalysisContext::referenced_decls_iterator,
+ AnalysisContext::referenced_decls_iterator>
+AnalysisContext::getReferencedBlockVars(const BlockDecl *BD) {
+ if (!ReferencedBlockVars)
+ ReferencedBlockVars = new llvm::DenseMap<const BlockDecl*,void*>();
+
+ DeclVec *V = LazyInitializeReferencedDecls(BD, (*ReferencedBlockVars)[BD], A);
+ return std::make_pair(V->begin(), V->end());
+}
+
+//===----------------------------------------------------------------------===//
+// Cleanup.
+//===----------------------------------------------------------------------===//
+
+AnalysisContext::~AnalysisContext() {
+ delete cfg;
+ delete completeCFG;
+ delete liveness;
+ delete relaxedLiveness;
+ delete PM;
+ delete PCA;
+ delete ReferencedBlockVars;
+}
+
+AnalysisContextManager::~AnalysisContextManager() {
+ for (ContextMap::iterator I = Contexts.begin(), E = Contexts.end(); I!=E; ++I)
+ delete I->second;
+}
+
+LocationContext::~LocationContext() {}
+
+LocationContextManager::~LocationContextManager() {
+ clear();
+}
+
+void LocationContextManager::clear() {
+ for (llvm::FoldingSet<LocationContext>::iterator I = Contexts.begin(),
+ E = Contexts.end(); I != E; ) {
+ LocationContext *LC = &*I;
+ ++I;
+ delete LC;
+ }
+
+ Contexts.clear();
+}
+
diff --git a/contrib/llvm/tools/clang/lib/Analysis/CFG.cpp b/contrib/llvm/tools/clang/lib/Analysis/CFG.cpp
new file mode 100644
index 0000000..a0ec5fe
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/CFG.cpp
@@ -0,0 +1,3407 @@
+//===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the CFG and CFGBuilder classes for representing and
+// building Control-Flow Graphs (CFGs) from ASTs.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/Support/SaveAndRestore.h"
+#include "clang/Analysis/CFG.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/AST/PrettyPrinter.h"
+#include "llvm/Support/GraphWriter.h"
+#include "llvm/Support/Allocator.h"
+#include "llvm/Support/Format.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/OwningPtr.h"
+
+using namespace clang;
+
+namespace {
+
+static SourceLocation GetEndLoc(Decl* D) {
+ if (VarDecl* VD = dyn_cast<VarDecl>(D))
+ if (Expr* Ex = VD->getInit())
+ return Ex->getSourceRange().getEnd();
+ return D->getLocation();
+}
+
+/// The CFG builder uses a recursive algorithm to build the CFG. When
+/// we process an expression, sometimes we know that we must add the
+/// subexpressions as block-level expressions. For example:
+///
+/// exp1 || exp2
+///
+/// When processing the '||' expression, we know that exp1 and exp2
+/// need to be added as block-level expressions, even though they
+/// might not normally need to be. AddStmtChoice records this
+/// contextual information. If AddStmtChoice is 'NotAlwaysAdd', then
+/// the builder has an option not to add a subexpression as a
+/// block-level expression.
+///
+class AddStmtChoice {
+public:
+ enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
+
+ AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
+
+ bool alwaysAdd() const { return kind & AlwaysAdd; }
+
+ /// Return a copy of this object, except with the 'always-add' bit
+ /// set as specified.
+ AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
+ return AddStmtChoice(alwaysAdd ? Kind(kind | AlwaysAdd) :
+ Kind(kind & ~AlwaysAdd));
+ }
+
+private:
+ Kind kind;
+};
+
+/// LocalScope - Node in tree of local scopes created for C++ implicit
+/// destructor calls generation. It contains list of automatic variables
+/// declared in the scope and link to position in previous scope this scope
+/// began in.
+///
+/// The process of creating local scopes is as follows:
+/// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
+/// - Before processing statements in scope (e.g. CompoundStmt) create
+/// LocalScope object using CFGBuilder::ScopePos as link to previous scope
+/// and set CFGBuilder::ScopePos to the end of new scope,
+/// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
+/// at this VarDecl,
+/// - For every normal (without jump) end of scope add to CFGBlock destructors
+/// for objects in the current scope,
+/// - For every jump add to CFGBlock destructors for objects
+/// between CFGBuilder::ScopePos and local scope position saved for jump
+/// target. Thanks to C++ restrictions on goto jumps we can be sure that
+/// jump target position will be on the path to root from CFGBuilder::ScopePos
+/// (adding any variable that doesn't need constructor to be called to
+/// LocalScope can break this assumption),
+///
+class LocalScope {
+public:
+ typedef BumpVector<VarDecl*> AutomaticVarsTy;
+
+ /// const_iterator - Iterates local scope backwards and jumps to previous
+ /// scope on reaching the beginning of currently iterated scope.
+ class const_iterator {
+ const LocalScope* Scope;
+
+ /// VarIter is guaranteed to be greater then 0 for every valid iterator.
+ /// Invalid iterator (with null Scope) has VarIter equal to 0.
+ unsigned VarIter;
+
+ public:
+ /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
+ /// Incrementing invalid iterator is allowed and will result in invalid
+ /// iterator.
+ const_iterator()
+ : Scope(NULL), VarIter(0) {}
+
+ /// Create valid iterator. In case when S.Prev is an invalid iterator and
+ /// I is equal to 0, this will create invalid iterator.
+ const_iterator(const LocalScope& S, unsigned I)
+ : Scope(&S), VarIter(I) {
+ // Iterator to "end" of scope is not allowed. Handle it by going up
+ // in scopes tree possibly up to invalid iterator in the root.
+ if (VarIter == 0 && Scope)
+ *this = Scope->Prev;
+ }
+
+ VarDecl* const* operator->() const {
+ assert (Scope && "Dereferencing invalid iterator is not allowed");
+ assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
+ return &Scope->Vars[VarIter - 1];
+ }
+ VarDecl* operator*() const {
+ return *this->operator->();
+ }
+
+ const_iterator& operator++() {
+ if (!Scope)
+ return *this;
+
+ assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
+ --VarIter;
+ if (VarIter == 0)
+ *this = Scope->Prev;
+ return *this;
+ }
+ const_iterator operator++(int) {
+ const_iterator P = *this;
+ ++*this;
+ return P;
+ }
+
+ bool operator==(const const_iterator& rhs) const {
+ return Scope == rhs.Scope && VarIter == rhs.VarIter;
+ }
+ bool operator!=(const const_iterator& rhs) const {
+ return !(*this == rhs);
+ }
+
+ operator bool() const {
+ return *this != const_iterator();
+ }
+
+ int distance(const_iterator L);
+ };
+
+ friend class const_iterator;
+
+private:
+ BumpVectorContext ctx;
+
+ /// Automatic variables in order of declaration.
+ AutomaticVarsTy Vars;
+ /// Iterator to variable in previous scope that was declared just before
+ /// begin of this scope.
+ const_iterator Prev;
+
+public:
+ /// Constructs empty scope linked to previous scope in specified place.
+ LocalScope(BumpVectorContext &ctx, const_iterator P)
+ : ctx(ctx), Vars(ctx, 4), Prev(P) {}
+
+ /// Begin of scope in direction of CFG building (backwards).
+ const_iterator begin() const { return const_iterator(*this, Vars.size()); }
+
+ void addVar(VarDecl* VD) {
+ Vars.push_back(VD, ctx);
+ }
+};
+
+/// distance - Calculates distance from this to L. L must be reachable from this
+/// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
+/// number of scopes between this and L.
+int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
+ int D = 0;
+ const_iterator F = *this;
+ while (F.Scope != L.Scope) {
+ assert (F != const_iterator()
+ && "L iterator is not reachable from F iterator.");
+ D += F.VarIter;
+ F = F.Scope->Prev;
+ }
+ D += F.VarIter - L.VarIter;
+ return D;
+}
+
+/// BlockScopePosPair - Structure for specifying position in CFG during its
+/// build process. It consists of CFGBlock that specifies position in CFG graph
+/// and LocalScope::const_iterator that specifies position in LocalScope graph.
+struct BlockScopePosPair {
+ BlockScopePosPair() : block(0) {}
+ BlockScopePosPair(CFGBlock* b, LocalScope::const_iterator scopePos)
+ : block(b), scopePosition(scopePos) {}
+
+ CFGBlock *block;
+ LocalScope::const_iterator scopePosition;
+};
+
+/// CFGBuilder - This class implements CFG construction from an AST.
+/// The builder is stateful: an instance of the builder should be used to only
+/// construct a single CFG.
+///
+/// Example usage:
+///
+/// CFGBuilder builder;
+/// CFG* cfg = builder.BuildAST(stmt1);
+///
+/// CFG construction is done via a recursive walk of an AST. We actually parse
+/// the AST in reverse order so that the successor of a basic block is
+/// constructed prior to its predecessor. This allows us to nicely capture
+/// implicit fall-throughs without extra basic blocks.
+///
+class CFGBuilder {
+ typedef BlockScopePosPair JumpTarget;
+ typedef BlockScopePosPair JumpSource;
+
+ ASTContext *Context;
+ llvm::OwningPtr<CFG> cfg;
+
+ CFGBlock* Block;
+ CFGBlock* Succ;
+ JumpTarget ContinueJumpTarget;
+ JumpTarget BreakJumpTarget;
+ CFGBlock* SwitchTerminatedBlock;
+ CFGBlock* DefaultCaseBlock;
+ CFGBlock* TryTerminatedBlock;
+
+ // Current position in local scope.
+ LocalScope::const_iterator ScopePos;
+
+ // LabelMap records the mapping from Label expressions to their jump targets.
+ typedef llvm::DenseMap<LabelDecl*, JumpTarget> LabelMapTy;
+ LabelMapTy LabelMap;
+
+ // A list of blocks that end with a "goto" that must be backpatched to their
+ // resolved targets upon completion of CFG construction.
+ typedef std::vector<JumpSource> BackpatchBlocksTy;
+ BackpatchBlocksTy BackpatchBlocks;
+
+ // A list of labels whose address has been taken (for indirect gotos).
+ typedef llvm::SmallPtrSet<LabelDecl*, 5> LabelSetTy;
+ LabelSetTy AddressTakenLabels;
+
+ bool badCFG;
+ CFG::BuildOptions BuildOpts;
+
+public:
+ explicit CFGBuilder() : cfg(new CFG()), // crew a new CFG
+ Block(NULL), Succ(NULL),
+ SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL),
+ TryTerminatedBlock(NULL), badCFG(false) {}
+
+ // buildCFG - Used by external clients to construct the CFG.
+ CFG* buildCFG(const Decl *D, Stmt *Statement, ASTContext *C,
+ CFG::BuildOptions BO);
+
+private:
+ // Visitors to walk an AST and construct the CFG.
+ CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
+ CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
+ CFGBlock *VisitBlockExpr(BlockExpr* E, AddStmtChoice asc);
+ CFGBlock *VisitBreakStmt(BreakStmt *B);
+ CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
+ CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E,
+ AddStmtChoice asc);
+ CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
+ CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
+ CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
+ AddStmtChoice asc);
+ CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
+ CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
+ AddStmtChoice asc);
+ CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
+ AddStmtChoice asc);
+ CFGBlock *VisitCXXMemberCallExpr(CXXMemberCallExpr *C, AddStmtChoice asc);
+ CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
+ CFGBlock *VisitCaseStmt(CaseStmt *C);
+ CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
+ CFGBlock *VisitCompoundStmt(CompoundStmt *C);
+ CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
+ AddStmtChoice asc);
+ CFGBlock *VisitContinueStmt(ContinueStmt *C);
+ CFGBlock *VisitDeclStmt(DeclStmt *DS);
+ CFGBlock *VisitDeclSubExpr(DeclStmt* DS);
+ CFGBlock *VisitDefaultStmt(DefaultStmt *D);
+ CFGBlock *VisitDoStmt(DoStmt *D);
+ CFGBlock *VisitForStmt(ForStmt *F);
+ CFGBlock *VisitGotoStmt(GotoStmt* G);
+ CFGBlock *VisitIfStmt(IfStmt *I);
+ CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
+ CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
+ CFGBlock *VisitLabelStmt(LabelStmt *L);
+ CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
+ CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
+ CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
+ CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
+ CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
+ CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
+ CFGBlock *VisitReturnStmt(ReturnStmt* R);
+ CFGBlock *VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E, AddStmtChoice asc);
+ CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
+ CFGBlock *VisitSwitchStmt(SwitchStmt *S);
+ CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
+ CFGBlock *VisitWhileStmt(WhileStmt *W);
+
+ CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
+ CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
+ CFGBlock *VisitChildren(Stmt* S);
+
+ // Visitors to walk an AST and generate destructors of temporaries in
+ // full expression.
+ CFGBlock *VisitForTemporaryDtors(Stmt *E, bool BindToTemporary = false);
+ CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E);
+ CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E);
+ CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(CXXBindTemporaryExpr *E,
+ bool BindToTemporary);
+ CFGBlock *
+ VisitConditionalOperatorForTemporaryDtors(AbstractConditionalOperator *E,
+ bool BindToTemporary);
+
+ // NYS == Not Yet Supported
+ CFGBlock* NYS() {
+ badCFG = true;
+ return Block;
+ }
+
+ void autoCreateBlock() { if (!Block) Block = createBlock(); }
+ CFGBlock *createBlock(bool add_successor = true);
+
+ CFGBlock *addStmt(Stmt *S) {
+ return Visit(S, AddStmtChoice::AlwaysAdd);
+ }
+ CFGBlock *addInitializer(CXXCtorInitializer *I);
+ void addAutomaticObjDtors(LocalScope::const_iterator B,
+ LocalScope::const_iterator E, Stmt* S);
+ void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
+
+ // Local scopes creation.
+ LocalScope* createOrReuseLocalScope(LocalScope* Scope);
+
+ void addLocalScopeForStmt(Stmt* S);
+ LocalScope* addLocalScopeForDeclStmt(DeclStmt* DS, LocalScope* Scope = NULL);
+ LocalScope* addLocalScopeForVarDecl(VarDecl* VD, LocalScope* Scope = NULL);
+
+ void addLocalScopeAndDtors(Stmt* S);
+
+ // Interface to CFGBlock - adding CFGElements.
+ void appendStmt(CFGBlock *B, Stmt *S,
+ AddStmtChoice asc = AddStmtChoice::AlwaysAdd) {
+ B->appendStmt(S, cfg->getBumpVectorContext());
+ }
+ void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
+ B->appendInitializer(I, cfg->getBumpVectorContext());
+ }
+ void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
+ B->appendBaseDtor(BS, cfg->getBumpVectorContext());
+ }
+ void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
+ B->appendMemberDtor(FD, cfg->getBumpVectorContext());
+ }
+ void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
+ B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
+ }
+
+ void insertAutomaticObjDtors(CFGBlock* Blk, CFGBlock::iterator I,
+ LocalScope::const_iterator B, LocalScope::const_iterator E, Stmt* S);
+ void appendAutomaticObjDtors(CFGBlock* Blk, LocalScope::const_iterator B,
+ LocalScope::const_iterator E, Stmt* S);
+ void prependAutomaticObjDtorsWithTerminator(CFGBlock* Blk,
+ LocalScope::const_iterator B, LocalScope::const_iterator E);
+
+ void addSuccessor(CFGBlock *B, CFGBlock *S) {
+ B->addSuccessor(S, cfg->getBumpVectorContext());
+ }
+
+ /// TryResult - a class representing a variant over the values
+ /// 'true', 'false', or 'unknown'. This is returned by tryEvaluateBool,
+ /// and is used by the CFGBuilder to decide if a branch condition
+ /// can be decided up front during CFG construction.
+ class TryResult {
+ int X;
+ public:
+ TryResult(bool b) : X(b ? 1 : 0) {}
+ TryResult() : X(-1) {}
+
+ bool isTrue() const { return X == 1; }
+ bool isFalse() const { return X == 0; }
+ bool isKnown() const { return X >= 0; }
+ void negate() {
+ assert(isKnown());
+ X ^= 0x1;
+ }
+ };
+
+ /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
+ /// if we can evaluate to a known value, otherwise return -1.
+ TryResult tryEvaluateBool(Expr *S) {
+ if (!BuildOpts.PruneTriviallyFalseEdges)
+ return TryResult();
+
+ Expr::EvalResult Result;
+ if (!S->isTypeDependent() && !S->isValueDependent() &&
+ S->Evaluate(Result, *Context) && Result.Val.isInt())
+ return Result.Val.getInt().getBoolValue();
+
+ return TryResult();
+ }
+};
+
+// FIXME: Add support for dependent-sized array types in C++?
+// Does it even make sense to build a CFG for an uninstantiated template?
+static const VariableArrayType *FindVA(const Type *t) {
+ while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
+ if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
+ if (vat->getSizeExpr())
+ return vat;
+
+ t = vt->getElementType().getTypePtr();
+ }
+
+ return 0;
+}
+
+/// BuildCFG - Constructs a CFG from an AST (a Stmt*). The AST can represent an
+/// arbitrary statement. Examples include a single expression or a function
+/// body (compound statement). The ownership of the returned CFG is
+/// transferred to the caller. If CFG construction fails, this method returns
+/// NULL.
+CFG* CFGBuilder::buildCFG(const Decl *D, Stmt* Statement, ASTContext* C,
+ CFG::BuildOptions BO) {
+
+ Context = C;
+ assert(cfg.get());
+ if (!Statement)
+ return NULL;
+
+ BuildOpts = BO;
+
+ // Create an empty block that will serve as the exit block for the CFG. Since
+ // this is the first block added to the CFG, it will be implicitly registered
+ // as the exit block.
+ Succ = createBlock();
+ assert(Succ == &cfg->getExit());
+ Block = NULL; // the EXIT block is empty. Create all other blocks lazily.
+
+ if (BuildOpts.AddImplicitDtors)
+ if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
+ addImplicitDtorsForDestructor(DD);
+
+ // Visit the statements and create the CFG.
+ CFGBlock *B = addStmt(Statement);
+
+ if (badCFG)
+ return NULL;
+
+ // For C++ constructor add initializers to CFG.
+ if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
+ for (CXXConstructorDecl::init_const_reverse_iterator I = CD->init_rbegin(),
+ E = CD->init_rend(); I != E; ++I) {
+ B = addInitializer(*I);
+ if (badCFG)
+ return NULL;
+ }
+ }
+
+ if (B)
+ Succ = B;
+
+ // Backpatch the gotos whose label -> block mappings we didn't know when we
+ // encountered them.
+ for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
+ E = BackpatchBlocks.end(); I != E; ++I ) {
+
+ CFGBlock* B = I->block;
+ GotoStmt* G = cast<GotoStmt>(B->getTerminator());
+ LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
+
+ // If there is no target for the goto, then we are looking at an
+ // incomplete AST. Handle this by not registering a successor.
+ if (LI == LabelMap.end()) continue;
+
+ JumpTarget JT = LI->second;
+ prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
+ JT.scopePosition);
+ addSuccessor(B, JT.block);
+ }
+
+ // Add successors to the Indirect Goto Dispatch block (if we have one).
+ if (CFGBlock* B = cfg->getIndirectGotoBlock())
+ for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
+ E = AddressTakenLabels.end(); I != E; ++I ) {
+
+ // Lookup the target block.
+ LabelMapTy::iterator LI = LabelMap.find(*I);
+
+ // If there is no target block that contains label, then we are looking
+ // at an incomplete AST. Handle this by not registering a successor.
+ if (LI == LabelMap.end()) continue;
+
+ addSuccessor(B, LI->second.block);
+ }
+
+ // Create an empty entry block that has no predecessors.
+ cfg->setEntry(createBlock());
+
+ return cfg.take();
+}
+
+/// createBlock - Used to lazily create blocks that are connected
+/// to the current (global) succcessor.
+CFGBlock* CFGBuilder::createBlock(bool add_successor) {
+ CFGBlock* B = cfg->createBlock();
+ if (add_successor && Succ)
+ addSuccessor(B, Succ);
+ return B;
+}
+
+/// addInitializer - Add C++ base or member initializer element to CFG.
+CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
+ if (!BuildOpts.AddInitializers)
+ return Block;
+
+ bool IsReference = false;
+ bool HasTemporaries = false;
+
+ // Destructors of temporaries in initialization expression should be called
+ // after initialization finishes.
+ Expr *Init = I->getInit();
+ if (Init) {
+ if (FieldDecl *FD = I->getAnyMember())
+ IsReference = FD->getType()->isReferenceType();
+ HasTemporaries = isa<ExprWithCleanups>(Init);
+
+ if (BuildOpts.AddImplicitDtors && HasTemporaries) {
+ // Generate destructors for temporaries in initialization expression.
+ VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
+ IsReference);
+ }
+ }
+
+ autoCreateBlock();
+ appendInitializer(Block, I);
+
+ if (Init) {
+ if (HasTemporaries) {
+ // For expression with temporaries go directly to subexpression to omit
+ // generating destructors for the second time.
+ return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
+ }
+ return Visit(Init);
+ }
+
+ return Block;
+}
+
+/// addAutomaticObjDtors - Add to current block automatic objects destructors
+/// for objects in range of local scope positions. Use S as trigger statement
+/// for destructors.
+void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
+ LocalScope::const_iterator E, Stmt* S) {
+ if (!BuildOpts.AddImplicitDtors)
+ return;
+
+ if (B == E)
+ return;
+
+ autoCreateBlock();
+ appendAutomaticObjDtors(Block, B, E, S);
+}
+
+/// addImplicitDtorsForDestructor - Add implicit destructors generated for
+/// base and member objects in destructor.
+void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
+ assert (BuildOpts.AddImplicitDtors
+ && "Can be called only when dtors should be added");
+ const CXXRecordDecl *RD = DD->getParent();
+
+ // At the end destroy virtual base objects.
+ for (CXXRecordDecl::base_class_const_iterator VI = RD->vbases_begin(),
+ VE = RD->vbases_end(); VI != VE; ++VI) {
+ const CXXRecordDecl *CD = VI->getType()->getAsCXXRecordDecl();
+ if (!CD->hasTrivialDestructor()) {
+ autoCreateBlock();
+ appendBaseDtor(Block, VI);
+ }
+ }
+
+ // Before virtual bases destroy direct base objects.
+ for (CXXRecordDecl::base_class_const_iterator BI = RD->bases_begin(),
+ BE = RD->bases_end(); BI != BE; ++BI) {
+ if (!BI->isVirtual()) {
+ const CXXRecordDecl *CD = BI->getType()->getAsCXXRecordDecl();
+ if (!CD->hasTrivialDestructor()) {
+ autoCreateBlock();
+ appendBaseDtor(Block, BI);
+ }
+ }
+ }
+
+ // First destroy member objects.
+ for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
+ FE = RD->field_end(); FI != FE; ++FI) {
+ // Check for constant size array. Set type to array element type.
+ QualType QT = FI->getType();
+ if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
+ if (AT->getSize() == 0)
+ continue;
+ QT = AT->getElementType();
+ }
+
+ if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
+ if (!CD->hasTrivialDestructor()) {
+ autoCreateBlock();
+ appendMemberDtor(Block, *FI);
+ }
+ }
+}
+
+/// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
+/// way return valid LocalScope object.
+LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
+ if (!Scope) {
+ llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
+ Scope = alloc.Allocate<LocalScope>();
+ BumpVectorContext ctx(alloc);
+ new (Scope) LocalScope(ctx, ScopePos);
+ }
+ return Scope;
+}
+
+/// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
+/// that should create implicit scope (e.g. if/else substatements).
+void CFGBuilder::addLocalScopeForStmt(Stmt* S) {
+ if (!BuildOpts.AddImplicitDtors)
+ return;
+
+ LocalScope *Scope = 0;
+
+ // For compound statement we will be creating explicit scope.
+ if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
+ for (CompoundStmt::body_iterator BI = CS->body_begin(), BE = CS->body_end()
+ ; BI != BE; ++BI) {
+ Stmt *SI = *BI;
+ if (LabelStmt *LS = dyn_cast<LabelStmt>(SI))
+ SI = LS->getSubStmt();
+ if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
+ Scope = addLocalScopeForDeclStmt(DS, Scope);
+ }
+ return;
+ }
+
+ // For any other statement scope will be implicit and as such will be
+ // interesting only for DeclStmt.
+ if (LabelStmt *LS = dyn_cast<LabelStmt>(S))
+ S = LS->getSubStmt();
+ if (DeclStmt *DS = dyn_cast<DeclStmt>(S))
+ addLocalScopeForDeclStmt(DS);
+}
+
+/// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
+/// reuse Scope if not NULL.
+LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt* DS,
+ LocalScope* Scope) {
+ if (!BuildOpts.AddImplicitDtors)
+ return Scope;
+
+ for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end()
+ ; DI != DE; ++DI) {
+ if (VarDecl* VD = dyn_cast<VarDecl>(*DI))
+ Scope = addLocalScopeForVarDecl(VD, Scope);
+ }
+ return Scope;
+}
+
+/// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
+/// create add scope for automatic objects and temporary objects bound to
+/// const reference. Will reuse Scope if not NULL.
+LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl* VD,
+ LocalScope* Scope) {
+ if (!BuildOpts.AddImplicitDtors)
+ return Scope;
+
+ // Check if variable is local.
+ switch (VD->getStorageClass()) {
+ case SC_None:
+ case SC_Auto:
+ case SC_Register:
+ break;
+ default: return Scope;
+ }
+
+ // Check for const references bound to temporary. Set type to pointee.
+ QualType QT = VD->getType();
+ if (const ReferenceType* RT = QT.getTypePtr()->getAs<ReferenceType>()) {
+ QT = RT->getPointeeType();
+ if (!QT.isConstQualified())
+ return Scope;
+ if (!VD->getInit() || !VD->getInit()->Classify(*Context).isRValue())
+ return Scope;
+ }
+
+ // Check for constant size array. Set type to array element type.
+ if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
+ if (AT->getSize() == 0)
+ return Scope;
+ QT = AT->getElementType();
+ }
+
+ // Check if type is a C++ class with non-trivial destructor.
+ if (const CXXRecordDecl* CD = QT->getAsCXXRecordDecl())
+ if (!CD->hasTrivialDestructor()) {
+ // Add the variable to scope
+ Scope = createOrReuseLocalScope(Scope);
+ Scope->addVar(VD);
+ ScopePos = Scope->begin();
+ }
+ return Scope;
+}
+
+/// addLocalScopeAndDtors - For given statement add local scope for it and
+/// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
+void CFGBuilder::addLocalScopeAndDtors(Stmt* S) {
+ if (!BuildOpts.AddImplicitDtors)
+ return;
+
+ LocalScope::const_iterator scopeBeginPos = ScopePos;
+ addLocalScopeForStmt(S);
+ addAutomaticObjDtors(ScopePos, scopeBeginPos, S);
+}
+
+/// insertAutomaticObjDtors - Insert destructor CFGElements for variables with
+/// automatic storage duration to CFGBlock's elements vector. Insertion will be
+/// performed in place specified with iterator.
+void CFGBuilder::insertAutomaticObjDtors(CFGBlock* Blk, CFGBlock::iterator I,
+ LocalScope::const_iterator B, LocalScope::const_iterator E, Stmt* S) {
+ BumpVectorContext& C = cfg->getBumpVectorContext();
+ I = Blk->beginAutomaticObjDtorsInsert(I, B.distance(E), C);
+ while (B != E)
+ I = Blk->insertAutomaticObjDtor(I, *B++, S);
+}
+
+/// appendAutomaticObjDtors - Append destructor CFGElements for variables with
+/// automatic storage duration to CFGBlock's elements vector. Elements will be
+/// appended to physical end of the vector which happens to be logical
+/// beginning.
+void CFGBuilder::appendAutomaticObjDtors(CFGBlock* Blk,
+ LocalScope::const_iterator B, LocalScope::const_iterator E, Stmt* S) {
+ insertAutomaticObjDtors(Blk, Blk->begin(), B, E, S);
+}
+
+/// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
+/// variables with automatic storage duration to CFGBlock's elements vector.
+/// Elements will be prepended to physical beginning of the vector which
+/// happens to be logical end. Use blocks terminator as statement that specifies
+/// destructors call site.
+void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock* Blk,
+ LocalScope::const_iterator B, LocalScope::const_iterator E) {
+ insertAutomaticObjDtors(Blk, Blk->end(), B, E, Blk->getTerminator());
+}
+
+/// Visit - Walk the subtree of a statement and add extra
+/// blocks for ternary operators, &&, and ||. We also process "," and
+/// DeclStmts (which may contain nested control-flow).
+CFGBlock* CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
+tryAgain:
+ if (!S) {
+ badCFG = true;
+ return 0;
+ }
+ switch (S->getStmtClass()) {
+ default:
+ return VisitStmt(S, asc);
+
+ case Stmt::AddrLabelExprClass:
+ return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
+
+ case Stmt::BinaryConditionalOperatorClass:
+ return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
+
+ case Stmt::BinaryOperatorClass:
+ return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
+
+ case Stmt::BlockExprClass:
+ return VisitBlockExpr(cast<BlockExpr>(S), asc);
+
+ case Stmt::BreakStmtClass:
+ return VisitBreakStmt(cast<BreakStmt>(S));
+
+ case Stmt::CallExprClass:
+ case Stmt::CXXOperatorCallExprClass:
+ return VisitCallExpr(cast<CallExpr>(S), asc);
+
+ case Stmt::CaseStmtClass:
+ return VisitCaseStmt(cast<CaseStmt>(S));
+
+ case Stmt::ChooseExprClass:
+ return VisitChooseExpr(cast<ChooseExpr>(S), asc);
+
+ case Stmt::CompoundStmtClass:
+ return VisitCompoundStmt(cast<CompoundStmt>(S));
+
+ case Stmt::ConditionalOperatorClass:
+ return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
+
+ case Stmt::ContinueStmtClass:
+ return VisitContinueStmt(cast<ContinueStmt>(S));
+
+ case Stmt::CXXCatchStmtClass:
+ return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
+
+ case Stmt::ExprWithCleanupsClass:
+ return VisitExprWithCleanups(cast<ExprWithCleanups>(S), asc);
+
+ case Stmt::CXXBindTemporaryExprClass:
+ return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
+
+ case Stmt::CXXConstructExprClass:
+ return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
+
+ case Stmt::CXXFunctionalCastExprClass:
+ return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
+
+ case Stmt::CXXTemporaryObjectExprClass:
+ return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
+
+ case Stmt::CXXMemberCallExprClass:
+ return VisitCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), asc);
+
+ case Stmt::CXXThrowExprClass:
+ return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
+
+ case Stmt::CXXTryStmtClass:
+ return VisitCXXTryStmt(cast<CXXTryStmt>(S));
+
+ case Stmt::DeclStmtClass:
+ return VisitDeclStmt(cast<DeclStmt>(S));
+
+ case Stmt::DefaultStmtClass:
+ return VisitDefaultStmt(cast<DefaultStmt>(S));
+
+ case Stmt::DoStmtClass:
+ return VisitDoStmt(cast<DoStmt>(S));
+
+ case Stmt::ForStmtClass:
+ return VisitForStmt(cast<ForStmt>(S));
+
+ case Stmt::GotoStmtClass:
+ return VisitGotoStmt(cast<GotoStmt>(S));
+
+ case Stmt::IfStmtClass:
+ return VisitIfStmt(cast<IfStmt>(S));
+
+ case Stmt::ImplicitCastExprClass:
+ return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
+
+ case Stmt::IndirectGotoStmtClass:
+ return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
+
+ case Stmt::LabelStmtClass:
+ return VisitLabelStmt(cast<LabelStmt>(S));
+
+ case Stmt::MemberExprClass:
+ return VisitMemberExpr(cast<MemberExpr>(S), asc);
+
+ case Stmt::ObjCAtCatchStmtClass:
+ return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
+
+ case Stmt::ObjCAtSynchronizedStmtClass:
+ return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
+
+ case Stmt::ObjCAtThrowStmtClass:
+ return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
+
+ case Stmt::ObjCAtTryStmtClass:
+ return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
+
+ case Stmt::ObjCForCollectionStmtClass:
+ return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
+
+ case Stmt::ParenExprClass:
+ S = cast<ParenExpr>(S)->getSubExpr();
+ goto tryAgain;
+
+ case Stmt::NullStmtClass:
+ return Block;
+
+ case Stmt::ReturnStmtClass:
+ return VisitReturnStmt(cast<ReturnStmt>(S));
+
+ case Stmt::SizeOfAlignOfExprClass:
+ return VisitSizeOfAlignOfExpr(cast<SizeOfAlignOfExpr>(S), asc);
+
+ case Stmt::StmtExprClass:
+ return VisitStmtExpr(cast<StmtExpr>(S), asc);
+
+ case Stmt::SwitchStmtClass:
+ return VisitSwitchStmt(cast<SwitchStmt>(S));
+
+ case Stmt::UnaryOperatorClass:
+ return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
+
+ case Stmt::WhileStmtClass:
+ return VisitWhileStmt(cast<WhileStmt>(S));
+ }
+}
+
+CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
+ if (asc.alwaysAdd()) {
+ autoCreateBlock();
+ appendStmt(Block, S, asc);
+ }
+
+ return VisitChildren(S);
+}
+
+/// VisitChildren - Visit the children of a Stmt.
+CFGBlock *CFGBuilder::VisitChildren(Stmt* Terminator) {
+ CFGBlock *B = Block;
+ for (Stmt::child_range I = Terminator->children(); I; ++I) {
+ if (*I) B = Visit(*I);
+ }
+ return B;
+}
+
+CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
+ AddStmtChoice asc) {
+ AddressTakenLabels.insert(A->getLabel());
+
+ if (asc.alwaysAdd()) {
+ autoCreateBlock();
+ appendStmt(Block, A, asc);
+ }
+
+ return Block;
+}
+
+CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U,
+ AddStmtChoice asc) {
+ if (asc.alwaysAdd()) {
+ autoCreateBlock();
+ appendStmt(Block, U, asc);
+ }
+
+ return Visit(U->getSubExpr(), AddStmtChoice());
+}
+
+CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
+ AddStmtChoice asc) {
+ if (B->isLogicalOp()) { // && or ||
+ CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
+ appendStmt(ConfluenceBlock, B, asc);
+
+ if (badCFG)
+ return 0;
+
+ // create the block evaluating the LHS
+ CFGBlock* LHSBlock = createBlock(false);
+ LHSBlock->setTerminator(B);
+
+ // create the block evaluating the RHS
+ Succ = ConfluenceBlock;
+ Block = NULL;
+ CFGBlock* RHSBlock = addStmt(B->getRHS());
+
+ if (RHSBlock) {
+ if (badCFG)
+ return 0;
+ } else {
+ // Create an empty block for cases where the RHS doesn't require
+ // any explicit statements in the CFG.
+ RHSBlock = createBlock();
+ }
+
+ // See if this is a known constant.
+ TryResult KnownVal = tryEvaluateBool(B->getLHS());
+ if (KnownVal.isKnown() && (B->getOpcode() == BO_LOr))
+ KnownVal.negate();
+
+ // Now link the LHSBlock with RHSBlock.
+ if (B->getOpcode() == BO_LOr) {
+ addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
+ addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
+ } else {
+ assert(B->getOpcode() == BO_LAnd);
+ addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
+ addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
+ }
+
+ // Generate the blocks for evaluating the LHS.
+ Block = LHSBlock;
+ return addStmt(B->getLHS());
+ }
+
+ if (B->getOpcode() == BO_Comma) { // ,
+ autoCreateBlock();
+ appendStmt(Block, B, asc);
+ addStmt(B->getRHS());
+ return addStmt(B->getLHS());
+ }
+
+ if (B->isAssignmentOp()) {
+ if (asc.alwaysAdd()) {
+ autoCreateBlock();
+ appendStmt(Block, B, asc);
+ }
+ Visit(B->getLHS());
+ return Visit(B->getRHS());
+ }
+
+ if (asc.alwaysAdd()) {
+ autoCreateBlock();
+ appendStmt(Block, B, asc);
+ }
+
+ CFGBlock *RBlock = Visit(B->getRHS());
+ CFGBlock *LBlock = Visit(B->getLHS());
+ // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
+ // containing a DoStmt, and the LHS doesn't create a new block, then we should
+ // return RBlock. Otherwise we'll incorrectly return NULL.
+ return (LBlock ? LBlock : RBlock);
+}
+
+CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr *E, AddStmtChoice asc) {
+ if (asc.alwaysAdd()) {
+ autoCreateBlock();
+ appendStmt(Block, E, asc);
+ }
+ return Block;
+}
+
+CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
+ // "break" is a control-flow statement. Thus we stop processing the current
+ // block.
+ if (badCFG)
+ return 0;
+
+ // Now create a new block that ends with the break statement.
+ Block = createBlock(false);
+ Block->setTerminator(B);
+
+ // If there is no target for the break, then we are looking at an incomplete
+ // AST. This means that the CFG cannot be constructed.
+ if (BreakJumpTarget.block) {
+ addAutomaticObjDtors(ScopePos, BreakJumpTarget.scopePosition, B);
+ addSuccessor(Block, BreakJumpTarget.block);
+ } else
+ badCFG = true;
+
+
+ return Block;
+}
+
+static bool CanThrow(Expr *E) {
+ QualType Ty = E->getType();
+ if (Ty->isFunctionPointerType())
+ Ty = Ty->getAs<PointerType>()->getPointeeType();
+ else if (Ty->isBlockPointerType())
+ Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
+
+ const FunctionType *FT = Ty->getAs<FunctionType>();
+ if (FT) {
+ if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
+ if (Proto->hasEmptyExceptionSpec())
+ return false;
+ }
+ return true;
+}
+
+CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
+ // If this is a call to a no-return function, this stops the block here.
+ bool NoReturn = false;
+ if (getFunctionExtInfo(*C->getCallee()->getType()).getNoReturn()) {
+ NoReturn = true;
+ }
+
+ bool AddEHEdge = false;
+
+ // Languages without exceptions are assumed to not throw.
+ if (Context->getLangOptions().areExceptionsEnabled()) {
+ if (BuildOpts.AddEHEdges)
+ AddEHEdge = true;
+ }
+
+ if (FunctionDecl *FD = C->getDirectCallee()) {
+ if (FD->hasAttr<NoReturnAttr>())
+ NoReturn = true;
+ if (FD->hasAttr<NoThrowAttr>())
+ AddEHEdge = false;
+ }
+
+ if (!CanThrow(C->getCallee()))
+ AddEHEdge = false;
+
+ if (!NoReturn && !AddEHEdge)
+ return VisitStmt(C, asc.withAlwaysAdd(true));
+
+ if (Block) {
+ Succ = Block;
+ if (badCFG)
+ return 0;
+ }
+
+ Block = createBlock(!NoReturn);
+ appendStmt(Block, C, asc);
+
+ if (NoReturn) {
+ // Wire this to the exit block directly.
+ addSuccessor(Block, &cfg->getExit());
+ }
+ if (AddEHEdge) {
+ // Add exceptional edges.
+ if (TryTerminatedBlock)
+ addSuccessor(Block, TryTerminatedBlock);
+ else
+ addSuccessor(Block, &cfg->getExit());
+ }
+
+ return VisitChildren(C);
+}
+
+CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
+ AddStmtChoice asc) {
+ CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
+ appendStmt(ConfluenceBlock, C, asc);
+ if (badCFG)
+ return 0;
+
+ AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
+ Succ = ConfluenceBlock;
+ Block = NULL;
+ CFGBlock* LHSBlock = Visit(C->getLHS(), alwaysAdd);
+ if (badCFG)
+ return 0;
+
+ Succ = ConfluenceBlock;
+ Block = NULL;
+ CFGBlock* RHSBlock = Visit(C->getRHS(), alwaysAdd);
+ if (badCFG)
+ return 0;
+
+ Block = createBlock(false);
+ // See if this is a known constant.
+ const TryResult& KnownVal = tryEvaluateBool(C->getCond());
+ addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
+ addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
+ Block->setTerminator(C);
+ return addStmt(C->getCond());
+}
+
+
+CFGBlock* CFGBuilder::VisitCompoundStmt(CompoundStmt* C) {
+ addLocalScopeAndDtors(C);
+ CFGBlock* LastBlock = Block;
+
+ for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
+ I != E; ++I ) {
+ // If we hit a segment of code just containing ';' (NullStmts), we can
+ // get a null block back. In such cases, just use the LastBlock
+ if (CFGBlock *newBlock = addStmt(*I))
+ LastBlock = newBlock;
+
+ if (badCFG)
+ return NULL;
+ }
+
+ return LastBlock;
+}
+
+CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
+ AddStmtChoice asc) {
+ const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
+ const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : NULL);
+
+ // Create the confluence block that will "merge" the results of the ternary
+ // expression.
+ CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
+ appendStmt(ConfluenceBlock, C, asc);
+ if (badCFG)
+ return 0;
+
+ AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
+
+ // Create a block for the LHS expression if there is an LHS expression. A
+ // GCC extension allows LHS to be NULL, causing the condition to be the
+ // value that is returned instead.
+ // e.g: x ?: y is shorthand for: x ? x : y;
+ Succ = ConfluenceBlock;
+ Block = NULL;
+ CFGBlock* LHSBlock = 0;
+ const Expr *trueExpr = C->getTrueExpr();
+ if (trueExpr != opaqueValue) {
+ LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
+ if (badCFG)
+ return 0;
+ Block = NULL;
+ }
+
+ // Create the block for the RHS expression.
+ Succ = ConfluenceBlock;
+ CFGBlock* RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
+ if (badCFG)
+ return 0;
+
+ // Create the block that will contain the condition.
+ Block = createBlock(false);
+
+ // See if this is a known constant.
+ const TryResult& KnownVal = tryEvaluateBool(C->getCond());
+ if (LHSBlock)
+ addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
+ addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
+ Block->setTerminator(C);
+ Expr *condExpr = C->getCond();
+
+ CFGBlock *result = 0;
+
+ // Run the condition expression if it's not trivially expressed in
+ // terms of the opaque value (or if there is no opaque value).
+ if (condExpr != opaqueValue) result = addStmt(condExpr);
+
+ // Before that, run the common subexpression if there was one.
+ // At least one of this or the above will be run.
+ if (opaqueValue) result = addStmt(BCO->getCommon());
+
+ return result;
+}
+
+CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
+ if (DS->isSingleDecl())
+ return VisitDeclSubExpr(DS);
+
+ CFGBlock *B = 0;
+
+ // FIXME: Add a reverse iterator for DeclStmt to avoid this extra copy.
+ typedef llvm::SmallVector<Decl*,10> BufTy;
+ BufTy Buf(DS->decl_begin(), DS->decl_end());
+
+ for (BufTy::reverse_iterator I = Buf.rbegin(), E = Buf.rend(); I != E; ++I) {
+ // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
+ unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
+ ? 8 : llvm::AlignOf<DeclStmt>::Alignment;
+
+ // Allocate the DeclStmt using the BumpPtrAllocator. It will get
+ // automatically freed with the CFG.
+ DeclGroupRef DG(*I);
+ Decl *D = *I;
+ void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
+ DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
+
+ // Append the fake DeclStmt to block.
+ B = VisitDeclSubExpr(DSNew);
+ }
+
+ return B;
+}
+
+/// VisitDeclSubExpr - Utility method to add block-level expressions for
+/// DeclStmts and initializers in them.
+CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt* DS) {
+ assert(DS->isSingleDecl() && "Can handle single declarations only.");
+
+ VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
+
+ if (!VD) {
+ autoCreateBlock();
+ appendStmt(Block, DS);
+ return Block;
+ }
+
+ bool IsReference = false;
+ bool HasTemporaries = false;
+
+ // Destructors of temporaries in initialization expression should be called
+ // after initialization finishes.
+ Expr *Init = VD->getInit();
+ if (Init) {
+ IsReference = VD->getType()->isReferenceType();
+ HasTemporaries = isa<ExprWithCleanups>(Init);
+
+ if (BuildOpts.AddImplicitDtors && HasTemporaries) {
+ // Generate destructors for temporaries in initialization expression.
+ VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
+ IsReference);
+ }
+ }
+
+ autoCreateBlock();
+ appendStmt(Block, DS);
+
+ if (Init) {
+ if (HasTemporaries)
+ // For expression with temporaries go directly to subexpression to omit
+ // generating destructors for the second time.
+ Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
+ else
+ Visit(Init);
+ }
+
+ // If the type of VD is a VLA, then we must process its size expressions.
+ for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
+ VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
+ Block = addStmt(VA->getSizeExpr());
+
+ // Remove variable from local scope.
+ if (ScopePos && VD == *ScopePos)
+ ++ScopePos;
+
+ return Block;
+}
+
+CFGBlock* CFGBuilder::VisitIfStmt(IfStmt* I) {
+ // We may see an if statement in the middle of a basic block, or it may be the
+ // first statement we are processing. In either case, we create a new basic
+ // block. First, we create the blocks for the then...else statements, and
+ // then we create the block containing the if statement. If we were in the
+ // middle of a block, we stop processing that block. That block is then the
+ // implicit successor for the "then" and "else" clauses.
+
+ // Save local scope position because in case of condition variable ScopePos
+ // won't be restored when traversing AST.
+ SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
+
+ // Create local scope for possible condition variable.
+ // Store scope position. Add implicit destructor.
+ if (VarDecl* VD = I->getConditionVariable()) {
+ LocalScope::const_iterator BeginScopePos = ScopePos;
+ addLocalScopeForVarDecl(VD);
+ addAutomaticObjDtors(ScopePos, BeginScopePos, I);
+ }
+
+ // The block we were proccessing is now finished. Make it the successor
+ // block.
+ if (Block) {
+ Succ = Block;
+ if (badCFG)
+ return 0;
+ }
+
+ // Process the false branch.
+ CFGBlock* ElseBlock = Succ;
+
+ if (Stmt* Else = I->getElse()) {
+ SaveAndRestore<CFGBlock*> sv(Succ);
+
+ // NULL out Block so that the recursive call to Visit will
+ // create a new basic block.
+ Block = NULL;
+
+ // If branch is not a compound statement create implicit scope
+ // and add destructors.
+ if (!isa<CompoundStmt>(Else))
+ addLocalScopeAndDtors(Else);
+
+ ElseBlock = addStmt(Else);
+
+ if (!ElseBlock) // Can occur when the Else body has all NullStmts.
+ ElseBlock = sv.get();
+ else if (Block) {
+ if (badCFG)
+ return 0;
+ }
+ }
+
+ // Process the true branch.
+ CFGBlock* ThenBlock;
+ {
+ Stmt* Then = I->getThen();
+ assert(Then);
+ SaveAndRestore<CFGBlock*> sv(Succ);
+ Block = NULL;
+
+ // If branch is not a compound statement create implicit scope
+ // and add destructors.
+ if (!isa<CompoundStmt>(Then))
+ addLocalScopeAndDtors(Then);
+
+ ThenBlock = addStmt(Then);
+
+ if (!ThenBlock) {
+ // We can reach here if the "then" body has all NullStmts.
+ // Create an empty block so we can distinguish between true and false
+ // branches in path-sensitive analyses.
+ ThenBlock = createBlock(false);
+ addSuccessor(ThenBlock, sv.get());
+ } else if (Block) {
+ if (badCFG)
+ return 0;
+ }
+ }
+
+ // Now create a new block containing the if statement.
+ Block = createBlock(false);
+
+ // Set the terminator of the new block to the If statement.
+ Block->setTerminator(I);
+
+ // See if this is a known constant.
+ const TryResult &KnownVal = tryEvaluateBool(I->getCond());
+
+ // Now add the successors.
+ addSuccessor(Block, KnownVal.isFalse() ? NULL : ThenBlock);
+ addSuccessor(Block, KnownVal.isTrue()? NULL : ElseBlock);
+
+ // Add the condition as the last statement in the new block. This may create
+ // new blocks as the condition may contain control-flow. Any newly created
+ // blocks will be pointed to be "Block".
+ Block = addStmt(I->getCond());
+
+ // Finally, if the IfStmt contains a condition variable, add both the IfStmt
+ // and the condition variable initialization to the CFG.
+ if (VarDecl *VD = I->getConditionVariable()) {
+ if (Expr *Init = VD->getInit()) {
+ autoCreateBlock();
+ appendStmt(Block, I, AddStmtChoice::AlwaysAdd);
+ addStmt(Init);
+ }
+ }
+
+ return Block;
+}
+
+
+CFGBlock* CFGBuilder::VisitReturnStmt(ReturnStmt* R) {
+ // If we were in the middle of a block we stop processing that block.
+ //
+ // NOTE: If a "return" appears in the middle of a block, this means that the
+ // code afterwards is DEAD (unreachable). We still keep a basic block
+ // for that code; a simple "mark-and-sweep" from the entry block will be
+ // able to report such dead blocks.
+
+ // Create the new block.
+ Block = createBlock(false);
+
+ // The Exit block is the only successor.
+ addAutomaticObjDtors(ScopePos, LocalScope::const_iterator(), R);
+ addSuccessor(Block, &cfg->getExit());
+
+ // Add the return statement to the block. This may create new blocks if R
+ // contains control-flow (short-circuit operations).
+ return VisitStmt(R, AddStmtChoice::AlwaysAdd);
+}
+
+CFGBlock* CFGBuilder::VisitLabelStmt(LabelStmt *L) {
+ // Get the block of the labeled statement. Add it to our map.
+ addStmt(L->getSubStmt());
+ CFGBlock *LabelBlock = Block;
+
+ if (!LabelBlock) // This can happen when the body is empty, i.e.
+ LabelBlock = createBlock(); // scopes that only contains NullStmts.
+
+ assert(LabelMap.find(L->getDecl()) == LabelMap.end() &&
+ "label already in map");
+ LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);
+
+ // Labels partition blocks, so this is the end of the basic block we were
+ // processing (L is the block's label). Because this is label (and we have
+ // already processed the substatement) there is no extra control-flow to worry
+ // about.
+ LabelBlock->setLabel(L);
+ if (badCFG)
+ return 0;
+
+ // We set Block to NULL to allow lazy creation of a new block (if necessary);
+ Block = NULL;
+
+ // This block is now the implicit successor of other blocks.
+ Succ = LabelBlock;
+
+ return LabelBlock;
+}
+
+CFGBlock* CFGBuilder::VisitGotoStmt(GotoStmt* G) {
+ // Goto is a control-flow statement. Thus we stop processing the current
+ // block and create a new one.
+
+ Block = createBlock(false);
+ Block->setTerminator(G);
+
+ // If we already know the mapping to the label block add the successor now.
+ LabelMapTy::iterator I = LabelMap.find(G->getLabel());
+
+ if (I == LabelMap.end())
+ // We will need to backpatch this block later.
+ BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
+ else {
+ JumpTarget JT = I->second;
+ addAutomaticObjDtors(ScopePos, JT.scopePosition, G);
+ addSuccessor(Block, JT.block);
+ }
+
+ return Block;
+}
+
+CFGBlock* CFGBuilder::VisitForStmt(ForStmt* F) {
+ CFGBlock* LoopSuccessor = NULL;
+
+ // Save local scope position because in case of condition variable ScopePos
+ // won't be restored when traversing AST.
+ SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
+
+ // Create local scope for init statement and possible condition variable.
+ // Add destructor for init statement and condition variable.
+ // Store scope position for continue statement.
+ if (Stmt* Init = F->getInit())
+ addLocalScopeForStmt(Init);
+ LocalScope::const_iterator LoopBeginScopePos = ScopePos;
+
+ if (VarDecl* VD = F->getConditionVariable())
+ addLocalScopeForVarDecl(VD);
+ LocalScope::const_iterator ContinueScopePos = ScopePos;
+
+ addAutomaticObjDtors(ScopePos, save_scope_pos.get(), F);
+
+ // "for" is a control-flow statement. Thus we stop processing the current
+ // block.
+ if (Block) {
+ if (badCFG)
+ return 0;
+ LoopSuccessor = Block;
+ } else
+ LoopSuccessor = Succ;
+
+ // Save the current value for the break targets.
+ // All breaks should go to the code following the loop.
+ SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
+ BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
+
+ // Because of short-circuit evaluation, the condition of the loop can span
+ // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that
+ // evaluate the condition.
+ CFGBlock* ExitConditionBlock = createBlock(false);
+ CFGBlock* EntryConditionBlock = ExitConditionBlock;
+
+ // Set the terminator for the "exit" condition block.
+ ExitConditionBlock->setTerminator(F);
+
+ // Now add the actual condition to the condition block. Because the condition
+ // itself may contain control-flow, new blocks may be created.
+ if (Stmt* C = F->getCond()) {
+ Block = ExitConditionBlock;
+ EntryConditionBlock = addStmt(C);
+ if (badCFG)
+ return 0;
+ assert(Block == EntryConditionBlock ||
+ (Block == 0 && EntryConditionBlock == Succ));
+
+ // If this block contains a condition variable, add both the condition
+ // variable and initializer to the CFG.
+ if (VarDecl *VD = F->getConditionVariable()) {
+ if (Expr *Init = VD->getInit()) {
+ autoCreateBlock();
+ appendStmt(Block, F, AddStmtChoice::AlwaysAdd);
+ EntryConditionBlock = addStmt(Init);
+ assert(Block == EntryConditionBlock);
+ }
+ }
+
+ if (Block) {
+ if (badCFG)
+ return 0;
+ }
+ }
+
+ // The condition block is the implicit successor for the loop body as well as
+ // any code above the loop.
+ Succ = EntryConditionBlock;
+
+ // See if this is a known constant.
+ TryResult KnownVal(true);
+
+ if (F->getCond())
+ KnownVal = tryEvaluateBool(F->getCond());
+
+ // Now create the loop body.
+ {
+ assert(F->getBody());
+
+ // Save the current values for Block, Succ, and continue targets.
+ SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
+ SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
+
+ // Create a new block to contain the (bottom) of the loop body.
+ Block = NULL;
+
+ // Loop body should end with destructor of Condition variable (if any).
+ addAutomaticObjDtors(ScopePos, LoopBeginScopePos, F);
+
+ if (Stmt* I = F->getInc()) {
+ // Generate increment code in its own basic block. This is the target of
+ // continue statements.
+ Succ = addStmt(I);
+ } else {
+ // No increment code. Create a special, empty, block that is used as the
+ // target block for "looping back" to the start of the loop.
+ assert(Succ == EntryConditionBlock);
+ Succ = Block ? Block : createBlock();
+ }
+
+ // Finish up the increment (or empty) block if it hasn't been already.
+ if (Block) {
+ assert(Block == Succ);
+ if (badCFG)
+ return 0;
+ Block = 0;
+ }
+
+ ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
+
+ // The starting block for the loop increment is the block that should
+ // represent the 'loop target' for looping back to the start of the loop.
+ ContinueJumpTarget.block->setLoopTarget(F);
+
+ // If body is not a compound statement create implicit scope
+ // and add destructors.
+ if (!isa<CompoundStmt>(F->getBody()))
+ addLocalScopeAndDtors(F->getBody());
+
+ // Now populate the body block, and in the process create new blocks as we
+ // walk the body of the loop.
+ CFGBlock* BodyBlock = addStmt(F->getBody());
+
+ if (!BodyBlock)
+ BodyBlock = ContinueJumpTarget.block;//can happen for "for (...;...;...);"
+ else if (badCFG)
+ return 0;
+
+ // This new body block is a successor to our "exit" condition block.
+ addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
+ }
+
+ // Link up the condition block with the code that follows the loop. (the
+ // false branch).
+ addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
+
+ // If the loop contains initialization, create a new block for those
+ // statements. This block can also contain statements that precede the loop.
+ if (Stmt* I = F->getInit()) {
+ Block = createBlock();
+ return addStmt(I);
+ }
+
+ // There is no loop initialization. We are thus basically a while loop.
+ // NULL out Block to force lazy block construction.
+ Block = NULL;
+ Succ = EntryConditionBlock;
+ return EntryConditionBlock;
+}
+
+CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
+ if (asc.alwaysAdd()) {
+ autoCreateBlock();
+ appendStmt(Block, M, asc);
+ }
+ return Visit(M->getBase());
+}
+
+CFGBlock* CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt* S) {
+ // Objective-C fast enumeration 'for' statements:
+ // http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
+ //
+ // for ( Type newVariable in collection_expression ) { statements }
+ //
+ // becomes:
+ //
+ // prologue:
+ // 1. collection_expression
+ // T. jump to loop_entry
+ // loop_entry:
+ // 1. side-effects of element expression
+ // 1. ObjCForCollectionStmt [performs binding to newVariable]
+ // T. ObjCForCollectionStmt TB, FB [jumps to TB if newVariable != nil]
+ // TB:
+ // statements
+ // T. jump to loop_entry
+ // FB:
+ // what comes after
+ //
+ // and
+ //
+ // Type existingItem;
+ // for ( existingItem in expression ) { statements }
+ //
+ // becomes:
+ //
+ // the same with newVariable replaced with existingItem; the binding works
+ // the same except that for one ObjCForCollectionStmt::getElement() returns
+ // a DeclStmt and the other returns a DeclRefExpr.
+ //
+
+ CFGBlock* LoopSuccessor = 0;
+
+ if (Block) {
+ if (badCFG)
+ return 0;
+ LoopSuccessor = Block;
+ Block = 0;
+ } else
+ LoopSuccessor = Succ;
+
+ // Build the condition blocks.
+ CFGBlock* ExitConditionBlock = createBlock(false);
+ CFGBlock* EntryConditionBlock = ExitConditionBlock;
+
+ // Set the terminator for the "exit" condition block.
+ ExitConditionBlock->setTerminator(S);
+
+ // The last statement in the block should be the ObjCForCollectionStmt, which
+ // performs the actual binding to 'element' and determines if there are any
+ // more items in the collection.
+ appendStmt(ExitConditionBlock, S);
+ Block = ExitConditionBlock;
+
+ // Walk the 'element' expression to see if there are any side-effects. We
+ // generate new blocks as necesary. We DON'T add the statement by default to
+ // the CFG unless it contains control-flow.
+ EntryConditionBlock = Visit(S->getElement(), AddStmtChoice::NotAlwaysAdd);
+ if (Block) {
+ if (badCFG)
+ return 0;
+ Block = 0;
+ }
+
+ // The condition block is the implicit successor for the loop body as well as
+ // any code above the loop.
+ Succ = EntryConditionBlock;
+
+ // Now create the true branch.
+ {
+ // Save the current values for Succ, continue and break targets.
+ SaveAndRestore<CFGBlock*> save_Succ(Succ);
+ SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
+ save_break(BreakJumpTarget);
+
+ BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
+ ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
+
+ CFGBlock* BodyBlock = addStmt(S->getBody());
+
+ if (!BodyBlock)
+ BodyBlock = EntryConditionBlock; // can happen for "for (X in Y) ;"
+ else if (Block) {
+ if (badCFG)
+ return 0;
+ }
+
+ // This new body block is a successor to our "exit" condition block.
+ addSuccessor(ExitConditionBlock, BodyBlock);
+ }
+
+ // Link up the condition block with the code that follows the loop.
+ // (the false branch).
+ addSuccessor(ExitConditionBlock, LoopSuccessor);
+
+ // Now create a prologue block to contain the collection expression.
+ Block = createBlock();
+ return addStmt(S->getCollection());
+}
+
+CFGBlock* CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt* S) {
+ // FIXME: Add locking 'primitives' to CFG for @synchronized.
+
+ // Inline the body.
+ CFGBlock *SyncBlock = addStmt(S->getSynchBody());
+
+ // The sync body starts its own basic block. This makes it a little easier
+ // for diagnostic clients.
+ if (SyncBlock) {
+ if (badCFG)
+ return 0;
+
+ Block = 0;
+ Succ = SyncBlock;
+ }
+
+ // Add the @synchronized to the CFG.
+ autoCreateBlock();
+ appendStmt(Block, S, AddStmtChoice::AlwaysAdd);
+
+ // Inline the sync expression.
+ return addStmt(S->getSynchExpr());
+}
+
+CFGBlock* CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt* S) {
+ // FIXME
+ return NYS();
+}
+
+CFGBlock* CFGBuilder::VisitWhileStmt(WhileStmt* W) {
+ CFGBlock* LoopSuccessor = NULL;
+
+ // Save local scope position because in case of condition variable ScopePos
+ // won't be restored when traversing AST.
+ SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
+
+ // Create local scope for possible condition variable.
+ // Store scope position for continue statement.
+ LocalScope::const_iterator LoopBeginScopePos = ScopePos;
+ if (VarDecl* VD = W->getConditionVariable()) {
+ addLocalScopeForVarDecl(VD);
+ addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
+ }
+
+ // "while" is a control-flow statement. Thus we stop processing the current
+ // block.
+ if (Block) {
+ if (badCFG)
+ return 0;
+ LoopSuccessor = Block;
+ } else
+ LoopSuccessor = Succ;
+
+ // Because of short-circuit evaluation, the condition of the loop can span
+ // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that
+ // evaluate the condition.
+ CFGBlock* ExitConditionBlock = createBlock(false);
+ CFGBlock* EntryConditionBlock = ExitConditionBlock;
+
+ // Set the terminator for the "exit" condition block.
+ ExitConditionBlock->setTerminator(W);
+
+ // Now add the actual condition to the condition block. Because the condition
+ // itself may contain control-flow, new blocks may be created. Thus we update
+ // "Succ" after adding the condition.
+ if (Stmt* C = W->getCond()) {
+ Block = ExitConditionBlock;
+ EntryConditionBlock = addStmt(C);
+ // The condition might finish the current 'Block'.
+ Block = EntryConditionBlock;
+
+ // If this block contains a condition variable, add both the condition
+ // variable and initializer to the CFG.
+ if (VarDecl *VD = W->getConditionVariable()) {
+ if (Expr *Init = VD->getInit()) {
+ autoCreateBlock();
+ appendStmt(Block, W, AddStmtChoice::AlwaysAdd);
+ EntryConditionBlock = addStmt(Init);
+ assert(Block == EntryConditionBlock);
+ }
+ }
+
+ if (Block) {
+ if (badCFG)
+ return 0;
+ }
+ }
+
+ // The condition block is the implicit successor for the loop body as well as
+ // any code above the loop.
+ Succ = EntryConditionBlock;
+
+ // See if this is a known constant.
+ const TryResult& KnownVal = tryEvaluateBool(W->getCond());
+
+ // Process the loop body.
+ {
+ assert(W->getBody());
+
+ // Save the current values for Block, Succ, and continue and break targets
+ SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
+ SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
+ save_break(BreakJumpTarget);
+
+ // Create an empty block to represent the transition block for looping back
+ // to the head of the loop.
+ Block = 0;
+ assert(Succ == EntryConditionBlock);
+ Succ = createBlock();
+ Succ->setLoopTarget(W);
+ ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
+
+ // All breaks should go to the code following the loop.
+ BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
+
+ // NULL out Block to force lazy instantiation of blocks for the body.
+ Block = NULL;
+
+ // Loop body should end with destructor of Condition variable (if any).
+ addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
+
+ // If body is not a compound statement create implicit scope
+ // and add destructors.
+ if (!isa<CompoundStmt>(W->getBody()))
+ addLocalScopeAndDtors(W->getBody());
+
+ // Create the body. The returned block is the entry to the loop body.
+ CFGBlock* BodyBlock = addStmt(W->getBody());
+
+ if (!BodyBlock)
+ BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
+ else if (Block) {
+ if (badCFG)
+ return 0;
+ }
+
+ // Add the loop body entry as a successor to the condition.
+ addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
+ }
+
+ // Link up the condition block with the code that follows the loop. (the
+ // false branch).
+ addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
+
+ // There can be no more statements in the condition block since we loop back
+ // to this block. NULL out Block to force lazy creation of another block.
+ Block = NULL;
+
+ // Return the condition block, which is the dominating block for the loop.
+ Succ = EntryConditionBlock;
+ return EntryConditionBlock;
+}
+
+
+CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt* S) {
+ // FIXME: For now we pretend that @catch and the code it contains does not
+ // exit.
+ return Block;
+}
+
+CFGBlock* CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt* S) {
+ // FIXME: This isn't complete. We basically treat @throw like a return
+ // statement.
+
+ // If we were in the middle of a block we stop processing that block.
+ if (badCFG)
+ return 0;
+
+ // Create the new block.
+ Block = createBlock(false);
+
+ // The Exit block is the only successor.
+ addSuccessor(Block, &cfg->getExit());
+
+ // Add the statement to the block. This may create new blocks if S contains
+ // control-flow (short-circuit operations).
+ return VisitStmt(S, AddStmtChoice::AlwaysAdd);
+}
+
+CFGBlock* CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr* T) {
+ // If we were in the middle of a block we stop processing that block.
+ if (badCFG)
+ return 0;
+
+ // Create the new block.
+ Block = createBlock(false);
+
+ if (TryTerminatedBlock)
+ // The current try statement is the only successor.
+ addSuccessor(Block, TryTerminatedBlock);
+ else
+ // otherwise the Exit block is the only successor.
+ addSuccessor(Block, &cfg->getExit());
+
+ // Add the statement to the block. This may create new blocks if S contains
+ // control-flow (short-circuit operations).
+ return VisitStmt(T, AddStmtChoice::AlwaysAdd);
+}
+
+CFGBlock *CFGBuilder::VisitDoStmt(DoStmt* D) {
+ CFGBlock* LoopSuccessor = NULL;
+
+ // "do...while" is a control-flow statement. Thus we stop processing the
+ // current block.
+ if (Block) {
+ if (badCFG)
+ return 0;
+ LoopSuccessor = Block;
+ } else
+ LoopSuccessor = Succ;
+
+ // Because of short-circuit evaluation, the condition of the loop can span
+ // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that
+ // evaluate the condition.
+ CFGBlock* ExitConditionBlock = createBlock(false);
+ CFGBlock* EntryConditionBlock = ExitConditionBlock;
+
+ // Set the terminator for the "exit" condition block.
+ ExitConditionBlock->setTerminator(D);
+
+ // Now add the actual condition to the condition block. Because the condition
+ // itself may contain control-flow, new blocks may be created.
+ if (Stmt* C = D->getCond()) {
+ Block = ExitConditionBlock;
+ EntryConditionBlock = addStmt(C);
+ if (Block) {
+ if (badCFG)
+ return 0;
+ }
+ }
+
+ // The condition block is the implicit successor for the loop body.
+ Succ = EntryConditionBlock;
+
+ // See if this is a known constant.
+ const TryResult &KnownVal = tryEvaluateBool(D->getCond());
+
+ // Process the loop body.
+ CFGBlock* BodyBlock = NULL;
+ {
+ assert(D->getBody());
+
+ // Save the current values for Block, Succ, and continue and break targets
+ SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
+ SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
+ save_break(BreakJumpTarget);
+
+ // All continues within this loop should go to the condition block
+ ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
+
+ // All breaks should go to the code following the loop.
+ BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
+
+ // NULL out Block to force lazy instantiation of blocks for the body.
+ Block = NULL;
+
+ // If body is not a compound statement create implicit scope
+ // and add destructors.
+ if (!isa<CompoundStmt>(D->getBody()))
+ addLocalScopeAndDtors(D->getBody());
+
+ // Create the body. The returned block is the entry to the loop body.
+ BodyBlock = addStmt(D->getBody());
+
+ if (!BodyBlock)
+ BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
+ else if (Block) {
+ if (badCFG)
+ return 0;
+ }
+
+ if (!KnownVal.isFalse()) {
+ // Add an intermediate block between the BodyBlock and the
+ // ExitConditionBlock to represent the "loop back" transition. Create an
+ // empty block to represent the transition block for looping back to the
+ // head of the loop.
+ // FIXME: Can we do this more efficiently without adding another block?
+ Block = NULL;
+ Succ = BodyBlock;
+ CFGBlock *LoopBackBlock = createBlock();
+ LoopBackBlock->setLoopTarget(D);
+
+ // Add the loop body entry as a successor to the condition.
+ addSuccessor(ExitConditionBlock, LoopBackBlock);
+ }
+ else
+ addSuccessor(ExitConditionBlock, NULL);
+ }
+
+ // Link up the condition block with the code that follows the loop.
+ // (the false branch).
+ addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
+
+ // There can be no more statements in the body block(s) since we loop back to
+ // the body. NULL out Block to force lazy creation of another block.
+ Block = NULL;
+
+ // Return the loop body, which is the dominating block for the loop.
+ Succ = BodyBlock;
+ return BodyBlock;
+}
+
+CFGBlock* CFGBuilder::VisitContinueStmt(ContinueStmt* C) {
+ // "continue" is a control-flow statement. Thus we stop processing the
+ // current block.
+ if (badCFG)
+ return 0;
+
+ // Now create a new block that ends with the continue statement.
+ Block = createBlock(false);
+ Block->setTerminator(C);
+
+ // If there is no target for the continue, then we are looking at an
+ // incomplete AST. This means the CFG cannot be constructed.
+ if (ContinueJumpTarget.block) {
+ addAutomaticObjDtors(ScopePos, ContinueJumpTarget.scopePosition, C);
+ addSuccessor(Block, ContinueJumpTarget.block);
+ } else
+ badCFG = true;
+
+ return Block;
+}
+
+CFGBlock *CFGBuilder::VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E,
+ AddStmtChoice asc) {
+
+ if (asc.alwaysAdd()) {
+ autoCreateBlock();
+ appendStmt(Block, E);
+ }
+
+ // VLA types have expressions that must be evaluated.
+ if (E->isArgumentType()) {
+ for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
+ VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
+ addStmt(VA->getSizeExpr());
+ }
+
+ return Block;
+}
+
+/// VisitStmtExpr - Utility method to handle (nested) statement
+/// expressions (a GCC extension).
+CFGBlock* CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
+ if (asc.alwaysAdd()) {
+ autoCreateBlock();
+ appendStmt(Block, SE);
+ }
+ return VisitCompoundStmt(SE->getSubStmt());
+}
+
+CFGBlock* CFGBuilder::VisitSwitchStmt(SwitchStmt* Terminator) {
+ // "switch" is a control-flow statement. Thus we stop processing the current
+ // block.
+ CFGBlock* SwitchSuccessor = NULL;
+
+ // Save local scope position because in case of condition variable ScopePos
+ // won't be restored when traversing AST.
+ SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
+
+ // Create local scope for possible condition variable.
+ // Store scope position. Add implicit destructor.
+ if (VarDecl* VD = Terminator->getConditionVariable()) {
+ LocalScope::const_iterator SwitchBeginScopePos = ScopePos;
+ addLocalScopeForVarDecl(VD);
+ addAutomaticObjDtors(ScopePos, SwitchBeginScopePos, Terminator);
+ }
+
+ if (Block) {
+ if (badCFG)
+ return 0;
+ SwitchSuccessor = Block;
+ } else SwitchSuccessor = Succ;
+
+ // Save the current "switch" context.
+ SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
+ save_default(DefaultCaseBlock);
+ SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
+
+ // Set the "default" case to be the block after the switch statement. If the
+ // switch statement contains a "default:", this value will be overwritten with
+ // the block for that code.
+ DefaultCaseBlock = SwitchSuccessor;
+
+ // Create a new block that will contain the switch statement.
+ SwitchTerminatedBlock = createBlock(false);
+
+ // Now process the switch body. The code after the switch is the implicit
+ // successor.
+ Succ = SwitchSuccessor;
+ BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
+
+ // When visiting the body, the case statements should automatically get linked
+ // up to the switch. We also don't keep a pointer to the body, since all
+ // control-flow from the switch goes to case/default statements.
+ assert(Terminator->getBody() && "switch must contain a non-NULL body");
+ Block = NULL;
+
+ // If body is not a compound statement create implicit scope
+ // and add destructors.
+ if (!isa<CompoundStmt>(Terminator->getBody()))
+ addLocalScopeAndDtors(Terminator->getBody());
+
+ addStmt(Terminator->getBody());
+ if (Block) {
+ if (badCFG)
+ return 0;
+ }
+
+ // If we have no "default:" case, the default transition is to the code
+ // following the switch body.
+ addSuccessor(SwitchTerminatedBlock, DefaultCaseBlock);
+
+ // Add the terminator and condition in the switch block.
+ SwitchTerminatedBlock->setTerminator(Terminator);
+ assert(Terminator->getCond() && "switch condition must be non-NULL");
+ Block = SwitchTerminatedBlock;
+ Block = addStmt(Terminator->getCond());
+
+ // Finally, if the SwitchStmt contains a condition variable, add both the
+ // SwitchStmt and the condition variable initialization to the CFG.
+ if (VarDecl *VD = Terminator->getConditionVariable()) {
+ if (Expr *Init = VD->getInit()) {
+ autoCreateBlock();
+ appendStmt(Block, Terminator, AddStmtChoice::AlwaysAdd);
+ addStmt(Init);
+ }
+ }
+
+ return Block;
+}
+
+CFGBlock* CFGBuilder::VisitCaseStmt(CaseStmt* CS) {
+ // CaseStmts are essentially labels, so they are the first statement in a
+ // block.
+ CFGBlock *TopBlock = 0, *LastBlock = 0;
+
+ if (Stmt *Sub = CS->getSubStmt()) {
+ // For deeply nested chains of CaseStmts, instead of doing a recursion
+ // (which can blow out the stack), manually unroll and create blocks
+ // along the way.
+ while (isa<CaseStmt>(Sub)) {
+ CFGBlock *currentBlock = createBlock(false);
+ currentBlock->setLabel(CS);
+
+ if (TopBlock)
+ addSuccessor(LastBlock, currentBlock);
+ else
+ TopBlock = currentBlock;
+
+ addSuccessor(SwitchTerminatedBlock, currentBlock);
+ LastBlock = currentBlock;
+
+ CS = cast<CaseStmt>(Sub);
+ Sub = CS->getSubStmt();
+ }
+
+ addStmt(Sub);
+ }
+
+ CFGBlock* CaseBlock = Block;
+ if (!CaseBlock)
+ CaseBlock = createBlock();
+
+ // Cases statements partition blocks, so this is the top of the basic block we
+ // were processing (the "case XXX:" is the label).
+ CaseBlock->setLabel(CS);
+
+ if (badCFG)
+ return 0;
+
+ // Add this block to the list of successors for the block with the switch
+ // statement.
+ assert(SwitchTerminatedBlock);
+ addSuccessor(SwitchTerminatedBlock, CaseBlock);
+
+ // We set Block to NULL to allow lazy creation of a new block (if necessary)
+ Block = NULL;
+
+ if (TopBlock) {
+ addSuccessor(LastBlock, CaseBlock);
+ Succ = TopBlock;
+ } else {
+ // This block is now the implicit successor of other blocks.
+ Succ = CaseBlock;
+ }
+
+ return Succ;
+}
+
+CFGBlock* CFGBuilder::VisitDefaultStmt(DefaultStmt* Terminator) {
+ if (Terminator->getSubStmt())
+ addStmt(Terminator->getSubStmt());
+
+ DefaultCaseBlock = Block;
+
+ if (!DefaultCaseBlock)
+ DefaultCaseBlock = createBlock();
+
+ // Default statements partition blocks, so this is the top of the basic block
+ // we were processing (the "default:" is the label).
+ DefaultCaseBlock->setLabel(Terminator);
+
+ if (badCFG)
+ return 0;
+
+ // Unlike case statements, we don't add the default block to the successors
+ // for the switch statement immediately. This is done when we finish
+ // processing the switch statement. This allows for the default case
+ // (including a fall-through to the code after the switch statement) to always
+ // be the last successor of a switch-terminated block.
+
+ // We set Block to NULL to allow lazy creation of a new block (if necessary)
+ Block = NULL;
+
+ // This block is now the implicit successor of other blocks.
+ Succ = DefaultCaseBlock;
+
+ return DefaultCaseBlock;
+}
+
+CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
+ // "try"/"catch" is a control-flow statement. Thus we stop processing the
+ // current block.
+ CFGBlock* TrySuccessor = NULL;
+
+ if (Block) {
+ if (badCFG)
+ return 0;
+ TrySuccessor = Block;
+ } else TrySuccessor = Succ;
+
+ CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
+
+ // Create a new block that will contain the try statement.
+ CFGBlock *NewTryTerminatedBlock = createBlock(false);
+ // Add the terminator in the try block.
+ NewTryTerminatedBlock->setTerminator(Terminator);
+
+ bool HasCatchAll = false;
+ for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
+ // The code after the try is the implicit successor.
+ Succ = TrySuccessor;
+ CXXCatchStmt *CS = Terminator->getHandler(h);
+ if (CS->getExceptionDecl() == 0) {
+ HasCatchAll = true;
+ }
+ Block = NULL;
+ CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
+ if (CatchBlock == 0)
+ return 0;
+ // Add this block to the list of successors for the block with the try
+ // statement.
+ addSuccessor(NewTryTerminatedBlock, CatchBlock);
+ }
+ if (!HasCatchAll) {
+ if (PrevTryTerminatedBlock)
+ addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
+ else
+ addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
+ }
+
+ // The code after the try is the implicit successor.
+ Succ = TrySuccessor;
+
+ // Save the current "try" context.
+ SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock);
+ TryTerminatedBlock = NewTryTerminatedBlock;
+
+ assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
+ Block = NULL;
+ Block = addStmt(Terminator->getTryBlock());
+ return Block;
+}
+
+CFGBlock* CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt* CS) {
+ // CXXCatchStmt are treated like labels, so they are the first statement in a
+ // block.
+
+ // Save local scope position because in case of exception variable ScopePos
+ // won't be restored when traversing AST.
+ SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
+
+ // Create local scope for possible exception variable.
+ // Store scope position. Add implicit destructor.
+ if (VarDecl* VD = CS->getExceptionDecl()) {
+ LocalScope::const_iterator BeginScopePos = ScopePos;
+ addLocalScopeForVarDecl(VD);
+ addAutomaticObjDtors(ScopePos, BeginScopePos, CS);
+ }
+
+ if (CS->getHandlerBlock())
+ addStmt(CS->getHandlerBlock());
+
+ CFGBlock* CatchBlock = Block;
+ if (!CatchBlock)
+ CatchBlock = createBlock();
+
+ CatchBlock->setLabel(CS);
+
+ if (badCFG)
+ return 0;
+
+ // We set Block to NULL to allow lazy creation of a new block (if necessary)
+ Block = NULL;
+
+ return CatchBlock;
+}
+
+CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
+ AddStmtChoice asc) {
+ if (BuildOpts.AddImplicitDtors) {
+ // If adding implicit destructors visit the full expression for adding
+ // destructors of temporaries.
+ VisitForTemporaryDtors(E->getSubExpr());
+
+ // Full expression has to be added as CFGStmt so it will be sequenced
+ // before destructors of it's temporaries.
+ asc = asc.withAlwaysAdd(true);
+ }
+ return Visit(E->getSubExpr(), asc);
+}
+
+CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
+ AddStmtChoice asc) {
+ if (asc.alwaysAdd()) {
+ autoCreateBlock();
+ appendStmt(Block, E, asc);
+
+ // We do not want to propagate the AlwaysAdd property.
+ asc = asc.withAlwaysAdd(false);
+ }
+ return Visit(E->getSubExpr(), asc);
+}
+
+CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
+ AddStmtChoice asc) {
+ autoCreateBlock();
+ if (!C->isElidable())
+ appendStmt(Block, C, asc.withAlwaysAdd(true));
+
+ return VisitChildren(C);
+}
+
+CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
+ AddStmtChoice asc) {
+ if (asc.alwaysAdd()) {
+ autoCreateBlock();
+ appendStmt(Block, E, asc);
+ // We do not want to propagate the AlwaysAdd property.
+ asc = asc.withAlwaysAdd(false);
+ }
+ return Visit(E->getSubExpr(), asc);
+}
+
+CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
+ AddStmtChoice asc) {
+ autoCreateBlock();
+ appendStmt(Block, C, asc.withAlwaysAdd(true));
+ return VisitChildren(C);
+}
+
+CFGBlock *CFGBuilder::VisitCXXMemberCallExpr(CXXMemberCallExpr *C,
+ AddStmtChoice asc) {
+ autoCreateBlock();
+ appendStmt(Block, C, asc.withAlwaysAdd(true));
+ return VisitChildren(C);
+}
+
+CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
+ AddStmtChoice asc) {
+ if (asc.alwaysAdd()) {
+ autoCreateBlock();
+ appendStmt(Block, E, asc);
+ }
+ return Visit(E->getSubExpr(), AddStmtChoice());
+}
+
+CFGBlock* CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt* I) {
+ // Lazily create the indirect-goto dispatch block if there isn't one already.
+ CFGBlock* IBlock = cfg->getIndirectGotoBlock();
+
+ if (!IBlock) {
+ IBlock = createBlock(false);
+ cfg->setIndirectGotoBlock(IBlock);
+ }
+
+ // IndirectGoto is a control-flow statement. Thus we stop processing the
+ // current block and create a new one.
+ if (badCFG)
+ return 0;
+
+ Block = createBlock(false);
+ Block->setTerminator(I);
+ addSuccessor(Block, IBlock);
+ return addStmt(I->getTarget());
+}
+
+CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool BindToTemporary) {
+tryAgain:
+ if (!E) {
+ badCFG = true;
+ return NULL;
+ }
+ switch (E->getStmtClass()) {
+ default:
+ return VisitChildrenForTemporaryDtors(E);
+
+ case Stmt::BinaryOperatorClass:
+ return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E));
+
+ case Stmt::CXXBindTemporaryExprClass:
+ return VisitCXXBindTemporaryExprForTemporaryDtors(
+ cast<CXXBindTemporaryExpr>(E), BindToTemporary);
+
+ case Stmt::BinaryConditionalOperatorClass:
+ case Stmt::ConditionalOperatorClass:
+ return VisitConditionalOperatorForTemporaryDtors(
+ cast<AbstractConditionalOperator>(E), BindToTemporary);
+
+ case Stmt::ImplicitCastExprClass:
+ // For implicit cast we want BindToTemporary to be passed further.
+ E = cast<CastExpr>(E)->getSubExpr();
+ goto tryAgain;
+
+ case Stmt::ParenExprClass:
+ E = cast<ParenExpr>(E)->getSubExpr();
+ goto tryAgain;
+ }
+}
+
+CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E) {
+ // When visiting children for destructors we want to visit them in reverse
+ // order. Because there's no reverse iterator for children must to reverse
+ // them in helper vector.
+ typedef llvm::SmallVector<Stmt *, 4> ChildrenVect;
+ ChildrenVect ChildrenRev;
+ for (Stmt::child_range I = E->children(); I; ++I) {
+ if (*I) ChildrenRev.push_back(*I);
+ }
+
+ CFGBlock *B = Block;
+ for (ChildrenVect::reverse_iterator I = ChildrenRev.rbegin(),
+ L = ChildrenRev.rend(); I != L; ++I) {
+ if (CFGBlock *R = VisitForTemporaryDtors(*I))
+ B = R;
+ }
+ return B;
+}
+
+CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E) {
+ if (E->isLogicalOp()) {
+ // Destructors for temporaries in LHS expression should be called after
+ // those for RHS expression. Even if this will unnecessarily create a block,
+ // this block will be used at least by the full expression.
+ autoCreateBlock();
+ CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getLHS());
+ if (badCFG)
+ return NULL;
+
+ Succ = ConfluenceBlock;
+ Block = NULL;
+ CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
+
+ if (RHSBlock) {
+ if (badCFG)
+ return NULL;
+
+ // If RHS expression did produce destructors we need to connect created
+ // blocks to CFG in same manner as for binary operator itself.
+ CFGBlock *LHSBlock = createBlock(false);
+ LHSBlock->setTerminator(CFGTerminator(E, true));
+
+ // For binary operator LHS block is before RHS in list of predecessors
+ // of ConfluenceBlock.
+ std::reverse(ConfluenceBlock->pred_begin(),
+ ConfluenceBlock->pred_end());
+
+ // See if this is a known constant.
+ TryResult KnownVal = tryEvaluateBool(E->getLHS());
+ if (KnownVal.isKnown() && (E->getOpcode() == BO_LOr))
+ KnownVal.negate();
+
+ // Link LHSBlock with RHSBlock exactly the same way as for binary operator
+ // itself.
+ if (E->getOpcode() == BO_LOr) {
+ addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
+ addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
+ } else {
+ assert (E->getOpcode() == BO_LAnd);
+ addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
+ addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
+ }
+
+ Block = LHSBlock;
+ return LHSBlock;
+ }
+
+ Block = ConfluenceBlock;
+ return ConfluenceBlock;
+ }
+
+ if (E->isAssignmentOp()) {
+ // For assignment operator (=) LHS expression is visited
+ // before RHS expression. For destructors visit them in reverse order.
+ CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
+ CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
+ return LHSBlock ? LHSBlock : RHSBlock;
+ }
+
+ // For any other binary operator RHS expression is visited before
+ // LHS expression (order of children). For destructors visit them in reverse
+ // order.
+ CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
+ CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
+ return RHSBlock ? RHSBlock : LHSBlock;
+}
+
+CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
+ CXXBindTemporaryExpr *E, bool BindToTemporary) {
+ // First add destructors for temporaries in subexpression.
+ CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr());
+ if (!BindToTemporary) {
+ // If lifetime of temporary is not prolonged (by assigning to constant
+ // reference) add destructor for it.
+ autoCreateBlock();
+ appendTemporaryDtor(Block, E);
+ B = Block;
+ }
+ return B;
+}
+
+CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
+ AbstractConditionalOperator *E, bool BindToTemporary) {
+ // First add destructors for condition expression. Even if this will
+ // unnecessarily create a block, this block will be used at least by the full
+ // expression.
+ autoCreateBlock();
+ CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getCond());
+ if (badCFG)
+ return NULL;
+ if (BinaryConditionalOperator *BCO
+ = dyn_cast<BinaryConditionalOperator>(E)) {
+ ConfluenceBlock = VisitForTemporaryDtors(BCO->getCommon());
+ if (badCFG)
+ return NULL;
+ }
+
+ // Try to add block with destructors for LHS expression.
+ CFGBlock *LHSBlock = NULL;
+ Succ = ConfluenceBlock;
+ Block = NULL;
+ LHSBlock = VisitForTemporaryDtors(E->getTrueExpr(), BindToTemporary);
+ if (badCFG)
+ return NULL;
+
+ // Try to add block with destructors for RHS expression;
+ Succ = ConfluenceBlock;
+ Block = NULL;
+ CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getFalseExpr(),
+ BindToTemporary);
+ if (badCFG)
+ return NULL;
+
+ if (!RHSBlock && !LHSBlock) {
+ // If neither LHS nor RHS expression had temporaries to destroy don't create
+ // more blocks.
+ Block = ConfluenceBlock;
+ return Block;
+ }
+
+ Block = createBlock(false);
+ Block->setTerminator(CFGTerminator(E, true));
+
+ // See if this is a known constant.
+ const TryResult &KnownVal = tryEvaluateBool(E->getCond());
+
+ if (LHSBlock) {
+ addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
+ } else if (KnownVal.isFalse()) {
+ addSuccessor(Block, NULL);
+ } else {
+ addSuccessor(Block, ConfluenceBlock);
+ std::reverse(ConfluenceBlock->pred_begin(), ConfluenceBlock->pred_end());
+ }
+
+ if (!RHSBlock)
+ RHSBlock = ConfluenceBlock;
+ addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
+
+ return Block;
+}
+
+} // end anonymous namespace
+
+/// createBlock - Constructs and adds a new CFGBlock to the CFG. The block has
+/// no successors or predecessors. If this is the first block created in the
+/// CFG, it is automatically set to be the Entry and Exit of the CFG.
+CFGBlock* CFG::createBlock() {
+ bool first_block = begin() == end();
+
+ // Create the block.
+ CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
+ new (Mem) CFGBlock(NumBlockIDs++, BlkBVC);
+ Blocks.push_back(Mem, BlkBVC);
+
+ // If this is the first block, set it as the Entry and Exit.
+ if (first_block)
+ Entry = Exit = &back();
+
+ // Return the block.
+ return &back();
+}
+
+/// buildCFG - Constructs a CFG from an AST. Ownership of the returned
+/// CFG is returned to the caller.
+CFG* CFG::buildCFG(const Decl *D, Stmt* Statement, ASTContext *C,
+ BuildOptions BO) {
+ CFGBuilder Builder;
+ return Builder.buildCFG(D, Statement, C, BO);
+}
+
+//===----------------------------------------------------------------------===//
+// CFG: Queries for BlkExprs.
+//===----------------------------------------------------------------------===//
+
+namespace {
+ typedef llvm::DenseMap<const Stmt*,unsigned> BlkExprMapTy;
+}
+
+static void FindSubExprAssignments(Stmt *S,
+ llvm::SmallPtrSet<Expr*,50>& Set) {
+ if (!S)
+ return;
+
+ for (Stmt::child_range I = S->children(); I; ++I) {
+ Stmt *child = *I;
+ if (!child)
+ continue;
+
+ if (BinaryOperator* B = dyn_cast<BinaryOperator>(child))
+ if (B->isAssignmentOp()) Set.insert(B);
+
+ FindSubExprAssignments(child, Set);
+ }
+}
+
+static BlkExprMapTy* PopulateBlkExprMap(CFG& cfg) {
+ BlkExprMapTy* M = new BlkExprMapTy();
+
+ // Look for assignments that are used as subexpressions. These are the only
+ // assignments that we want to *possibly* register as a block-level
+ // expression. Basically, if an assignment occurs both in a subexpression and
+ // at the block-level, it is a block-level expression.
+ llvm::SmallPtrSet<Expr*,50> SubExprAssignments;
+
+ for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I)
+ for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI)
+ if (CFGStmt S = BI->getAs<CFGStmt>())
+ FindSubExprAssignments(S, SubExprAssignments);
+
+ for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I) {
+
+ // Iterate over the statements again on identify the Expr* and Stmt* at the
+ // block-level that are block-level expressions.
+
+ for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI) {
+ CFGStmt CS = BI->getAs<CFGStmt>();
+ if (!CS.isValid())
+ continue;
+ if (Expr* Exp = dyn_cast<Expr>(CS.getStmt())) {
+
+ if (BinaryOperator* B = dyn_cast<BinaryOperator>(Exp)) {
+ // Assignment expressions that are not nested within another
+ // expression are really "statements" whose value is never used by
+ // another expression.
+ if (B->isAssignmentOp() && !SubExprAssignments.count(Exp))
+ continue;
+ } else if (const StmtExpr* Terminator = dyn_cast<StmtExpr>(Exp)) {
+ // Special handling for statement expressions. The last statement in
+ // the statement expression is also a block-level expr.
+ const CompoundStmt* C = Terminator->getSubStmt();
+ if (!C->body_empty()) {
+ unsigned x = M->size();
+ (*M)[C->body_back()] = x;
+ }
+ }
+
+ unsigned x = M->size();
+ (*M)[Exp] = x;
+ }
+ }
+
+ // Look at terminators. The condition is a block-level expression.
+
+ Stmt* S = (*I)->getTerminatorCondition();
+
+ if (S && M->find(S) == M->end()) {
+ unsigned x = M->size();
+ (*M)[S] = x;
+ }
+ }
+
+ return M;
+}
+
+CFG::BlkExprNumTy CFG::getBlkExprNum(const Stmt* S) {
+ assert(S != NULL);
+ if (!BlkExprMap) { BlkExprMap = (void*) PopulateBlkExprMap(*this); }
+
+ BlkExprMapTy* M = reinterpret_cast<BlkExprMapTy*>(BlkExprMap);
+ BlkExprMapTy::iterator I = M->find(S);
+ return (I == M->end()) ? CFG::BlkExprNumTy() : CFG::BlkExprNumTy(I->second);
+}
+
+unsigned CFG::getNumBlkExprs() {
+ if (const BlkExprMapTy* M = reinterpret_cast<const BlkExprMapTy*>(BlkExprMap))
+ return M->size();
+
+ // We assume callers interested in the number of BlkExprs will want
+ // the map constructed if it doesn't already exist.
+ BlkExprMap = (void*) PopulateBlkExprMap(*this);
+ return reinterpret_cast<BlkExprMapTy*>(BlkExprMap)->size();
+}
+
+//===----------------------------------------------------------------------===//
+// Filtered walking of the CFG.
+//===----------------------------------------------------------------------===//
+
+bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
+ const CFGBlock *From, const CFGBlock *To) {
+
+ if (F.IgnoreDefaultsWithCoveredEnums) {
+ // If the 'To' has no label or is labeled but the label isn't a
+ // CaseStmt then filter this edge.
+ if (const SwitchStmt *S =
+ dyn_cast_or_null<SwitchStmt>(From->getTerminator().getStmt())) {
+ if (S->isAllEnumCasesCovered()) {
+ const Stmt *L = To->getLabel();
+ if (!L || !isa<CaseStmt>(L))
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Cleanup: CFG dstor.
+//===----------------------------------------------------------------------===//
+
+CFG::~CFG() {
+ delete reinterpret_cast<const BlkExprMapTy*>(BlkExprMap);
+}
+
+//===----------------------------------------------------------------------===//
+// CFG pretty printing
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class StmtPrinterHelper : public PrinterHelper {
+ typedef llvm::DenseMap<Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
+ typedef llvm::DenseMap<Decl*,std::pair<unsigned,unsigned> > DeclMapTy;
+ StmtMapTy StmtMap;
+ DeclMapTy DeclMap;
+ signed currentBlock;
+ unsigned currentStmt;
+ const LangOptions &LangOpts;
+public:
+
+ StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
+ : currentBlock(0), currentStmt(0), LangOpts(LO) {
+ for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
+ unsigned j = 1;
+ for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
+ BI != BEnd; ++BI, ++j ) {
+ if (CFGStmt SE = BI->getAs<CFGStmt>()) {
+ std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
+ StmtMap[SE] = P;
+
+ if (DeclStmt* DS = dyn_cast<DeclStmt>(SE.getStmt())) {
+ DeclMap[DS->getSingleDecl()] = P;
+
+ } else if (IfStmt* IS = dyn_cast<IfStmt>(SE.getStmt())) {
+ if (VarDecl* VD = IS->getConditionVariable())
+ DeclMap[VD] = P;
+
+ } else if (ForStmt* FS = dyn_cast<ForStmt>(SE.getStmt())) {
+ if (VarDecl* VD = FS->getConditionVariable())
+ DeclMap[VD] = P;
+
+ } else if (WhileStmt* WS = dyn_cast<WhileStmt>(SE.getStmt())) {
+ if (VarDecl* VD = WS->getConditionVariable())
+ DeclMap[VD] = P;
+
+ } else if (SwitchStmt* SS = dyn_cast<SwitchStmt>(SE.getStmt())) {
+ if (VarDecl* VD = SS->getConditionVariable())
+ DeclMap[VD] = P;
+
+ } else if (CXXCatchStmt* CS = dyn_cast<CXXCatchStmt>(SE.getStmt())) {
+ if (VarDecl* VD = CS->getExceptionDecl())
+ DeclMap[VD] = P;
+ }
+ }
+ }
+ }
+ }
+
+ virtual ~StmtPrinterHelper() {}
+
+ const LangOptions &getLangOpts() const { return LangOpts; }
+ void setBlockID(signed i) { currentBlock = i; }
+ void setStmtID(unsigned i) { currentStmt = i; }
+
+ virtual bool handledStmt(Stmt* S, llvm::raw_ostream& OS) {
+ StmtMapTy::iterator I = StmtMap.find(S);
+
+ if (I == StmtMap.end())
+ return false;
+
+ if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
+ && I->second.second == currentStmt) {
+ return false;
+ }
+
+ OS << "[B" << I->second.first << "." << I->second.second << "]";
+ return true;
+ }
+
+ bool handleDecl(Decl* D, llvm::raw_ostream& OS) {
+ DeclMapTy::iterator I = DeclMap.find(D);
+
+ if (I == DeclMap.end())
+ return false;
+
+ if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
+ && I->second.second == currentStmt) {
+ return false;
+ }
+
+ OS << "[B" << I->second.first << "." << I->second.second << "]";
+ return true;
+ }
+};
+} // end anonymous namespace
+
+
+namespace {
+class CFGBlockTerminatorPrint
+ : public StmtVisitor<CFGBlockTerminatorPrint,void> {
+
+ llvm::raw_ostream& OS;
+ StmtPrinterHelper* Helper;
+ PrintingPolicy Policy;
+public:
+ CFGBlockTerminatorPrint(llvm::raw_ostream& os, StmtPrinterHelper* helper,
+ const PrintingPolicy &Policy)
+ : OS(os), Helper(helper), Policy(Policy) {}
+
+ void VisitIfStmt(IfStmt* I) {
+ OS << "if ";
+ I->getCond()->printPretty(OS,Helper,Policy);
+ }
+
+ // Default case.
+ void VisitStmt(Stmt* Terminator) {
+ Terminator->printPretty(OS, Helper, Policy);
+ }
+
+ void VisitForStmt(ForStmt* F) {
+ OS << "for (" ;
+ if (F->getInit())
+ OS << "...";
+ OS << "; ";
+ if (Stmt* C = F->getCond())
+ C->printPretty(OS, Helper, Policy);
+ OS << "; ";
+ if (F->getInc())
+ OS << "...";
+ OS << ")";
+ }
+
+ void VisitWhileStmt(WhileStmt* W) {
+ OS << "while " ;
+ if (Stmt* C = W->getCond())
+ C->printPretty(OS, Helper, Policy);
+ }
+
+ void VisitDoStmt(DoStmt* D) {
+ OS << "do ... while ";
+ if (Stmt* C = D->getCond())
+ C->printPretty(OS, Helper, Policy);
+ }
+
+ void VisitSwitchStmt(SwitchStmt* Terminator) {
+ OS << "switch ";
+ Terminator->getCond()->printPretty(OS, Helper, Policy);
+ }
+
+ void VisitCXXTryStmt(CXXTryStmt* CS) {
+ OS << "try ...";
+ }
+
+ void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
+ C->getCond()->printPretty(OS, Helper, Policy);
+ OS << " ? ... : ...";
+ }
+
+ void VisitChooseExpr(ChooseExpr* C) {
+ OS << "__builtin_choose_expr( ";
+ C->getCond()->printPretty(OS, Helper, Policy);
+ OS << " )";
+ }
+
+ void VisitIndirectGotoStmt(IndirectGotoStmt* I) {
+ OS << "goto *";
+ I->getTarget()->printPretty(OS, Helper, Policy);
+ }
+
+ void VisitBinaryOperator(BinaryOperator* B) {
+ if (!B->isLogicalOp()) {
+ VisitExpr(B);
+ return;
+ }
+
+ B->getLHS()->printPretty(OS, Helper, Policy);
+
+ switch (B->getOpcode()) {
+ case BO_LOr:
+ OS << " || ...";
+ return;
+ case BO_LAnd:
+ OS << " && ...";
+ return;
+ default:
+ assert(false && "Invalid logical operator.");
+ }
+ }
+
+ void VisitExpr(Expr* E) {
+ E->printPretty(OS, Helper, Policy);
+ }
+};
+} // end anonymous namespace
+
+static void print_elem(llvm::raw_ostream &OS, StmtPrinterHelper* Helper,
+ const CFGElement &E) {
+ if (CFGStmt CS = E.getAs<CFGStmt>()) {
+ Stmt *S = CS;
+
+ if (Helper) {
+
+ // special printing for statement-expressions.
+ if (StmtExpr* SE = dyn_cast<StmtExpr>(S)) {
+ CompoundStmt* Sub = SE->getSubStmt();
+
+ if (Sub->children()) {
+ OS << "({ ... ; ";
+ Helper->handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
+ OS << " })\n";
+ return;
+ }
+ }
+ // special printing for comma expressions.
+ if (BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
+ if (B->getOpcode() == BO_Comma) {
+ OS << "... , ";
+ Helper->handledStmt(B->getRHS(),OS);
+ OS << '\n';
+ return;
+ }
+ }
+ }
+ S->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
+
+ if (isa<CXXOperatorCallExpr>(S)) {
+ OS << " (OperatorCall)";
+ } else if (isa<CXXBindTemporaryExpr>(S)) {
+ OS << " (BindTemporary)";
+ }
+
+ // Expressions need a newline.
+ if (isa<Expr>(S))
+ OS << '\n';
+
+ } else if (CFGInitializer IE = E.getAs<CFGInitializer>()) {
+ CXXCtorInitializer* I = IE;
+ if (I->isBaseInitializer())
+ OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
+ else OS << I->getAnyMember()->getName();
+
+ OS << "(";
+ if (Expr* IE = I->getInit())
+ IE->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
+ OS << ")";
+
+ if (I->isBaseInitializer())
+ OS << " (Base initializer)\n";
+ else OS << " (Member initializer)\n";
+
+ } else if (CFGAutomaticObjDtor DE = E.getAs<CFGAutomaticObjDtor>()){
+ VarDecl* VD = DE.getVarDecl();
+ Helper->handleDecl(VD, OS);
+
+ const Type* T = VD->getType().getTypePtr();
+ if (const ReferenceType* RT = T->getAs<ReferenceType>())
+ T = RT->getPointeeType().getTypePtr();
+ else if (const Type *ET = T->getArrayElementTypeNoTypeQual())
+ T = ET;
+
+ OS << ".~" << T->getAsCXXRecordDecl()->getName().str() << "()";
+ OS << " (Implicit destructor)\n";
+
+ } else if (CFGBaseDtor BE = E.getAs<CFGBaseDtor>()) {
+ const CXXBaseSpecifier *BS = BE.getBaseSpecifier();
+ OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
+ OS << " (Base object destructor)\n";
+
+ } else if (CFGMemberDtor ME = E.getAs<CFGMemberDtor>()) {
+ FieldDecl *FD = ME.getFieldDecl();
+
+ const Type *T = FD->getType().getTypePtr();
+ if (const Type *ET = T->getArrayElementTypeNoTypeQual())
+ T = ET;
+
+ OS << "this->" << FD->getName();
+ OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
+ OS << " (Member object destructor)\n";
+
+ } else if (CFGTemporaryDtor TE = E.getAs<CFGTemporaryDtor>()) {
+ CXXBindTemporaryExpr *BT = TE.getBindTemporaryExpr();
+ OS << "~" << BT->getType()->getAsCXXRecordDecl()->getName() << "()";
+ OS << " (Temporary object destructor)\n";
+ }
+}
+
+static void print_block(llvm::raw_ostream& OS, const CFG* cfg,
+ const CFGBlock& B,
+ StmtPrinterHelper* Helper, bool print_edges) {
+
+ if (Helper) Helper->setBlockID(B.getBlockID());
+
+ // Print the header.
+ OS << "\n [ B" << B.getBlockID();
+
+ if (&B == &cfg->getEntry())
+ OS << " (ENTRY) ]\n";
+ else if (&B == &cfg->getExit())
+ OS << " (EXIT) ]\n";
+ else if (&B == cfg->getIndirectGotoBlock())
+ OS << " (INDIRECT GOTO DISPATCH) ]\n";
+ else
+ OS << " ]\n";
+
+ // Print the label of this block.
+ if (Stmt* Label = const_cast<Stmt*>(B.getLabel())) {
+
+ if (print_edges)
+ OS << " ";
+
+ if (LabelStmt* L = dyn_cast<LabelStmt>(Label))
+ OS << L->getName();
+ else if (CaseStmt* C = dyn_cast<CaseStmt>(Label)) {
+ OS << "case ";
+ C->getLHS()->printPretty(OS, Helper,
+ PrintingPolicy(Helper->getLangOpts()));
+ if (C->getRHS()) {
+ OS << " ... ";
+ C->getRHS()->printPretty(OS, Helper,
+ PrintingPolicy(Helper->getLangOpts()));
+ }
+ } else if (isa<DefaultStmt>(Label))
+ OS << "default";
+ else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
+ OS << "catch (";
+ if (CS->getExceptionDecl())
+ CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper->getLangOpts()),
+ 0);
+ else
+ OS << "...";
+ OS << ")";
+
+ } else
+ assert(false && "Invalid label statement in CFGBlock.");
+
+ OS << ":\n";
+ }
+
+ // Iterate through the statements in the block and print them.
+ unsigned j = 1;
+
+ for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
+ I != E ; ++I, ++j ) {
+
+ // Print the statement # in the basic block and the statement itself.
+ if (print_edges)
+ OS << " ";
+
+ OS << llvm::format("%3d", j) << ": ";
+
+ if (Helper)
+ Helper->setStmtID(j);
+
+ print_elem(OS,Helper,*I);
+ }
+
+ // Print the terminator of this block.
+ if (B.getTerminator()) {
+ if (print_edges)
+ OS << " ";
+
+ OS << " T: ";
+
+ if (Helper) Helper->setBlockID(-1);
+
+ CFGBlockTerminatorPrint TPrinter(OS, Helper,
+ PrintingPolicy(Helper->getLangOpts()));
+ TPrinter.Visit(const_cast<Stmt*>(B.getTerminator().getStmt()));
+ OS << '\n';
+ }
+
+ if (print_edges) {
+ // Print the predecessors of this block.
+ OS << " Predecessors (" << B.pred_size() << "):";
+ unsigned i = 0;
+
+ for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
+ I != E; ++I, ++i) {
+
+ if (i == 8 || (i-8) == 0)
+ OS << "\n ";
+
+ OS << " B" << (*I)->getBlockID();
+ }
+
+ OS << '\n';
+
+ // Print the successors of this block.
+ OS << " Successors (" << B.succ_size() << "):";
+ i = 0;
+
+ for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
+ I != E; ++I, ++i) {
+
+ if (i == 8 || (i-8) % 10 == 0)
+ OS << "\n ";
+
+ if (*I)
+ OS << " B" << (*I)->getBlockID();
+ else
+ OS << " NULL";
+ }
+
+ OS << '\n';
+ }
+}
+
+
+/// dump - A simple pretty printer of a CFG that outputs to stderr.
+void CFG::dump(const LangOptions &LO) const { print(llvm::errs(), LO); }
+
+/// print - A simple pretty printer of a CFG that outputs to an ostream.
+void CFG::print(llvm::raw_ostream &OS, const LangOptions &LO) const {
+ StmtPrinterHelper Helper(this, LO);
+
+ // Print the entry block.
+ print_block(OS, this, getEntry(), &Helper, true);
+
+ // Iterate through the CFGBlocks and print them one by one.
+ for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
+ // Skip the entry block, because we already printed it.
+ if (&(**I) == &getEntry() || &(**I) == &getExit())
+ continue;
+
+ print_block(OS, this, **I, &Helper, true);
+ }
+
+ // Print the exit block.
+ print_block(OS, this, getExit(), &Helper, true);
+ OS.flush();
+}
+
+/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
+void CFGBlock::dump(const CFG* cfg, const LangOptions &LO) const {
+ print(llvm::errs(), cfg, LO);
+}
+
+/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
+/// Generally this will only be called from CFG::print.
+void CFGBlock::print(llvm::raw_ostream& OS, const CFG* cfg,
+ const LangOptions &LO) const {
+ StmtPrinterHelper Helper(cfg, LO);
+ print_block(OS, cfg, *this, &Helper, true);
+}
+
+/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
+void CFGBlock::printTerminator(llvm::raw_ostream &OS,
+ const LangOptions &LO) const {
+ CFGBlockTerminatorPrint TPrinter(OS, NULL, PrintingPolicy(LO));
+ TPrinter.Visit(const_cast<Stmt*>(getTerminator().getStmt()));
+}
+
+Stmt* CFGBlock::getTerminatorCondition() {
+ Stmt *Terminator = this->Terminator;
+ if (!Terminator)
+ return NULL;
+
+ Expr* E = NULL;
+
+ switch (Terminator->getStmtClass()) {
+ default:
+ break;
+
+ case Stmt::ForStmtClass:
+ E = cast<ForStmt>(Terminator)->getCond();
+ break;
+
+ case Stmt::WhileStmtClass:
+ E = cast<WhileStmt>(Terminator)->getCond();
+ break;
+
+ case Stmt::DoStmtClass:
+ E = cast<DoStmt>(Terminator)->getCond();
+ break;
+
+ case Stmt::IfStmtClass:
+ E = cast<IfStmt>(Terminator)->getCond();
+ break;
+
+ case Stmt::ChooseExprClass:
+ E = cast<ChooseExpr>(Terminator)->getCond();
+ break;
+
+ case Stmt::IndirectGotoStmtClass:
+ E = cast<IndirectGotoStmt>(Terminator)->getTarget();
+ break;
+
+ case Stmt::SwitchStmtClass:
+ E = cast<SwitchStmt>(Terminator)->getCond();
+ break;
+
+ case Stmt::BinaryConditionalOperatorClass:
+ E = cast<BinaryConditionalOperator>(Terminator)->getCond();
+ break;
+
+ case Stmt::ConditionalOperatorClass:
+ E = cast<ConditionalOperator>(Terminator)->getCond();
+ break;
+
+ case Stmt::BinaryOperatorClass: // '&&' and '||'
+ E = cast<BinaryOperator>(Terminator)->getLHS();
+ break;
+
+ case Stmt::ObjCForCollectionStmtClass:
+ return Terminator;
+ }
+
+ return E ? E->IgnoreParens() : NULL;
+}
+
+bool CFGBlock::hasBinaryBranchTerminator() const {
+ const Stmt *Terminator = this->Terminator;
+ if (!Terminator)
+ return false;
+
+ Expr* E = NULL;
+
+ switch (Terminator->getStmtClass()) {
+ default:
+ return false;
+
+ case Stmt::ForStmtClass:
+ case Stmt::WhileStmtClass:
+ case Stmt::DoStmtClass:
+ case Stmt::IfStmtClass:
+ case Stmt::ChooseExprClass:
+ case Stmt::BinaryConditionalOperatorClass:
+ case Stmt::ConditionalOperatorClass:
+ case Stmt::BinaryOperatorClass:
+ return true;
+ }
+
+ return E ? E->IgnoreParens() : NULL;
+}
+
+
+//===----------------------------------------------------------------------===//
+// CFG Graphviz Visualization
+//===----------------------------------------------------------------------===//
+
+
+#ifndef NDEBUG
+static StmtPrinterHelper* GraphHelper;
+#endif
+
+void CFG::viewCFG(const LangOptions &LO) const {
+#ifndef NDEBUG
+ StmtPrinterHelper H(this, LO);
+ GraphHelper = &H;
+ llvm::ViewGraph(this,"CFG");
+ GraphHelper = NULL;
+#endif
+}
+
+namespace llvm {
+template<>
+struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
+
+ DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
+
+ static std::string getNodeLabel(const CFGBlock* Node, const CFG* Graph) {
+
+#ifndef NDEBUG
+ std::string OutSStr;
+ llvm::raw_string_ostream Out(OutSStr);
+ print_block(Out,Graph, *Node, GraphHelper, false);
+ std::string& OutStr = Out.str();
+
+ if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
+
+ // Process string output to make it nicer...
+ for (unsigned i = 0; i != OutStr.length(); ++i)
+ if (OutStr[i] == '\n') { // Left justify
+ OutStr[i] = '\\';
+ OutStr.insert(OutStr.begin()+i+1, 'l');
+ }
+
+ return OutStr;
+#else
+ return "";
+#endif
+ }
+};
+} // end namespace llvm
diff --git a/contrib/llvm/tools/clang/lib/Analysis/CFGStmtMap.cpp b/contrib/llvm/tools/clang/lib/Analysis/CFGStmtMap.cpp
new file mode 100644
index 0000000..3a030f9
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/CFGStmtMap.cpp
@@ -0,0 +1,91 @@
+//===--- CFGStmtMap.h - Map from Stmt* to CFGBlock* -----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the CFGStmtMap class, which defines a mapping from
+// Stmt* to CFGBlock*
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/DenseMap.h"
+#include "clang/AST/ParentMap.h"
+#include "clang/Analysis/CFG.h"
+#include "clang/Analysis/CFGStmtMap.h"
+
+using namespace clang;
+
+typedef llvm::DenseMap<Stmt*,CFGBlock*> SMap;
+static SMap *AsMap(void *m) { return (SMap*) m; }
+
+CFGStmtMap::~CFGStmtMap() { delete AsMap(M); }
+
+CFGBlock *CFGStmtMap::getBlock(Stmt *S) {
+ SMap *SM = AsMap(M);
+ Stmt *X = S;
+
+ // If 'S' isn't in the map, walk the ParentMap to see if one of its ancestors
+ // is in the map.
+ while (X) {
+ SMap::iterator I = SM->find(X);
+ if (I != SM->end()) {
+ CFGBlock *B = I->second;
+ // Memoize this lookup.
+ if (X != S)
+ (*SM)[X] = B;
+ return B;
+ }
+
+ X = PM->getParentIgnoreParens(X);
+ }
+
+ return 0;
+}
+
+static void Accumulate(SMap &SM, CFGBlock *B) {
+ // First walk the block-level expressions.
+ for (CFGBlock::iterator I = B->begin(), E = B->end(); I != E; ++I) {
+ const CFGElement &CE = *I;
+ CFGStmt CS = CE.getAs<CFGStmt>();
+ if (!CS.isValid())
+ continue;
+
+ CFGBlock *&Entry = SM[CS];
+ // If 'Entry' is already initialized (e.g., a terminator was already),
+ // skip.
+ if (Entry)
+ continue;
+
+ Entry = B;
+
+ }
+
+ // Look at the label of the block.
+ if (Stmt *Label = B->getLabel())
+ SM[Label] = B;
+
+ // Finally, look at the terminator. If the terminator was already added
+ // because it is a block-level expression in another block, overwrite
+ // that mapping.
+ if (Stmt *Term = B->getTerminator())
+ SM[Term] = B;
+}
+
+CFGStmtMap *CFGStmtMap::Build(CFG *C, ParentMap *PM) {
+ if (!C || !PM)
+ return 0;
+
+ SMap *SM = new SMap();
+
+ // Walk all blocks, accumulating the block-level expressions, labels,
+ // and terminators.
+ for (CFG::iterator I = C->begin(), E = C->end(); I != E; ++I)
+ Accumulate(*SM, *I);
+
+ return new CFGStmtMap(PM, SM);
+}
+
diff --git a/contrib/llvm/tools/clang/lib/Analysis/CocoaConventions.cpp b/contrib/llvm/tools/clang/lib/Analysis/CocoaConventions.cpp
new file mode 100644
index 0000000..22b6c1a
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/CocoaConventions.cpp
@@ -0,0 +1,180 @@
+//===- CocoaConventions.h - Special handling of Cocoa conventions -*- C++ -*--//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/DomainSpecific/CocoaConventions.h"
+#include "clang/AST/Type.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclObjC.h"
+#include "llvm/ADT/StringExtras.h"
+
+using namespace clang;
+using namespace ento;
+
+using llvm::StringRef;
+
+// The "fundamental rule" for naming conventions of methods:
+// (url broken into two lines)
+// http://developer.apple.com/documentation/Cocoa/Conceptual/
+// MemoryMgmt/Tasks/MemoryManagementRules.html
+//
+// "You take ownership of an object if you create it using a method whose name
+// begins with "alloc" or "new" or contains "copy" (for example, alloc,
+// newObject, or mutableCopy), or if you send it a retain message. You are
+// responsible for relinquishing ownership of objects you own using release
+// or autorelease. Any other time you receive an object, you must
+// not release it."
+//
+
+static bool isWordEnd(char ch, char prev, char next) {
+ return ch == '\0'
+ || (islower(prev) && isupper(ch)) // xxxC
+ || (isupper(prev) && isupper(ch) && islower(next)) // XXCreate
+ || !isalpha(ch);
+}
+
+static const char* parseWord(const char* s) {
+ char ch = *s, prev = '\0';
+ assert(ch != '\0');
+ char next = *(s+1);
+ while (!isWordEnd(ch, prev, next)) {
+ prev = ch;
+ ch = next;
+ next = *((++s)+1);
+ }
+ return s;
+}
+
+cocoa::NamingConvention cocoa::deriveNamingConvention(Selector S,
+ bool ignorePrefix) {
+ IdentifierInfo *II = S.getIdentifierInfoForSlot(0);
+
+ if (!II)
+ return NoConvention;
+
+ const char *s = II->getNameStart();
+
+ const char *orig = s;
+ // A method/function name may contain a prefix. We don't know it is there,
+ // however, until we encounter the first '_'.
+ while (*s != '\0') {
+ // Skip '_', numbers, ':', etc.
+ if (*s == '_' || !isalpha(*s)) {
+ ++s;
+ continue;
+ }
+ break;
+ }
+
+ if (!ignorePrefix && s != orig)
+ return NoConvention;
+
+ // Parse the first word, and look for specific keywords.
+ const char *wordEnd = parseWord(s);
+ assert(wordEnd > s);
+ unsigned len = wordEnd - s;
+
+ switch (len) {
+ default:
+ return NoConvention;
+ case 3:
+ // Methods starting with 'new' follow the create rule.
+ return (memcmp(s, "new", 3) == 0) ? CreateRule : NoConvention;
+ case 4:
+ // Methods starting with 'copy' follow the create rule.
+ if (memcmp(s, "copy", 4) == 0)
+ return CreateRule;
+ // Methods starting with 'init' follow the init rule.
+ if (memcmp(s, "init", 4) == 0)
+ return InitRule;
+ return NoConvention;
+ case 5:
+ return (memcmp(s, "alloc", 5) == 0) ? CreateRule : NoConvention;
+ case 7:
+ // Methods starting with 'mutableCopy' follow the create rule.
+ if (memcmp(s, "mutable", 7) == 0) {
+ // Look at the next word to see if it is "Copy".
+ s = wordEnd;
+ if (*s != '\0') {
+ wordEnd = parseWord(s);
+ len = wordEnd - s;
+ if (len == 4 && memcmp(s, "Copy", 4) == 0)
+ return CreateRule;
+ }
+ }
+ return NoConvention;
+ }
+}
+
+bool cocoa::isRefType(QualType RetTy, llvm::StringRef Prefix,
+ llvm::StringRef Name) {
+ // Recursively walk the typedef stack, allowing typedefs of reference types.
+ while (const TypedefType *TD = dyn_cast<TypedefType>(RetTy.getTypePtr())) {
+ llvm::StringRef TDName = TD->getDecl()->getIdentifier()->getName();
+ if (TDName.startswith(Prefix) && TDName.endswith("Ref"))
+ return true;
+
+ RetTy = TD->getDecl()->getUnderlyingType();
+ }
+
+ if (Name.empty())
+ return false;
+
+ // Is the type void*?
+ const PointerType* PT = RetTy->getAs<PointerType>();
+ if (!(PT->getPointeeType().getUnqualifiedType()->isVoidType()))
+ return false;
+
+ // Does the name start with the prefix?
+ return Name.startswith(Prefix);
+}
+
+bool cocoa::isCFObjectRef(QualType T) {
+ return isRefType(T, "CF") || // Core Foundation.
+ isRefType(T, "CG") || // Core Graphics.
+ isRefType(T, "DADisk") || // Disk Arbitration API.
+ isRefType(T, "DADissenter") ||
+ isRefType(T, "DASessionRef");
+}
+
+
+bool cocoa::isCocoaObjectRef(QualType Ty) {
+ if (!Ty->isObjCObjectPointerType())
+ return false;
+
+ const ObjCObjectPointerType *PT = Ty->getAs<ObjCObjectPointerType>();
+
+ // Can be true for objects with the 'NSObject' attribute.
+ if (!PT)
+ return true;
+
+ // We assume that id<..>, id, Class, and Class<..> all represent tracked
+ // objects.
+ if (PT->isObjCIdType() || PT->isObjCQualifiedIdType() ||
+ PT->isObjCClassType() || PT->isObjCQualifiedClassType())
+ return true;
+
+ // Does the interface subclass NSObject?
+ // FIXME: We can memoize here if this gets too expensive.
+ const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
+
+ // Assume that anything declared with a forward declaration and no
+ // @interface subclasses NSObject.
+ if (ID->isForwardDecl())
+ return true;
+
+ for ( ; ID ; ID = ID->getSuperClass())
+ if (ID->getIdentifier()->getName() == "NSObject")
+ return true;
+
+ return false;
+}
diff --git a/contrib/llvm/tools/clang/lib/Analysis/FormatString.cpp b/contrib/llvm/tools/clang/lib/Analysis/FormatString.cpp
new file mode 100644
index 0000000..a6d6108
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/FormatString.cpp
@@ -0,0 +1,476 @@
+// FormatString.cpp - Common stuff for handling printf/scanf formats -*- C++ -*-
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Shared details for processing format strings of printf and scanf
+// (and friends).
+//
+//===----------------------------------------------------------------------===//
+
+#include "FormatStringParsing.h"
+
+using clang::analyze_format_string::ArgTypeResult;
+using clang::analyze_format_string::FormatStringHandler;
+using clang::analyze_format_string::FormatSpecifier;
+using clang::analyze_format_string::LengthModifier;
+using clang::analyze_format_string::OptionalAmount;
+using clang::analyze_format_string::PositionContext;
+using clang::analyze_format_string::ConversionSpecifier;
+using namespace clang;
+
+// Key function to FormatStringHandler.
+FormatStringHandler::~FormatStringHandler() {}
+
+//===----------------------------------------------------------------------===//
+// Functions for parsing format strings components in both printf and
+// scanf format strings.
+//===----------------------------------------------------------------------===//
+
+OptionalAmount
+clang::analyze_format_string::ParseAmount(const char *&Beg, const char *E) {
+ const char *I = Beg;
+ UpdateOnReturn <const char*> UpdateBeg(Beg, I);
+
+ unsigned accumulator = 0;
+ bool hasDigits = false;
+
+ for ( ; I != E; ++I) {
+ char c = *I;
+ if (c >= '0' && c <= '9') {
+ hasDigits = true;
+ accumulator = (accumulator * 10) + (c - '0');
+ continue;
+ }
+
+ if (hasDigits)
+ return OptionalAmount(OptionalAmount::Constant, accumulator, Beg, I - Beg,
+ false);
+
+ break;
+ }
+
+ return OptionalAmount();
+}
+
+OptionalAmount
+clang::analyze_format_string::ParseNonPositionAmount(const char *&Beg,
+ const char *E,
+ unsigned &argIndex) {
+ if (*Beg == '*') {
+ ++Beg;
+ return OptionalAmount(OptionalAmount::Arg, argIndex++, Beg, 0, false);
+ }
+
+ return ParseAmount(Beg, E);
+}
+
+OptionalAmount
+clang::analyze_format_string::ParsePositionAmount(FormatStringHandler &H,
+ const char *Start,
+ const char *&Beg,
+ const char *E,
+ PositionContext p) {
+ if (*Beg == '*') {
+ const char *I = Beg + 1;
+ const OptionalAmount &Amt = ParseAmount(I, E);
+
+ if (Amt.getHowSpecified() == OptionalAmount::NotSpecified) {
+ H.HandleInvalidPosition(Beg, I - Beg, p);
+ return OptionalAmount(false);
+ }
+
+ if (I == E) {
+ // No more characters left?
+ H.HandleIncompleteSpecifier(Start, E - Start);
+ return OptionalAmount(false);
+ }
+
+ assert(Amt.getHowSpecified() == OptionalAmount::Constant);
+
+ if (*I == '$') {
+ // Handle positional arguments
+
+ // Special case: '*0$', since this is an easy mistake.
+ if (Amt.getConstantAmount() == 0) {
+ H.HandleZeroPosition(Beg, I - Beg + 1);
+ return OptionalAmount(false);
+ }
+
+ const char *Tmp = Beg;
+ Beg = ++I;
+
+ return OptionalAmount(OptionalAmount::Arg, Amt.getConstantAmount() - 1,
+ Tmp, 0, true);
+ }
+
+ H.HandleInvalidPosition(Beg, I - Beg, p);
+ return OptionalAmount(false);
+ }
+
+ return ParseAmount(Beg, E);
+}
+
+
+bool
+clang::analyze_format_string::ParseFieldWidth(FormatStringHandler &H,
+ FormatSpecifier &CS,
+ const char *Start,
+ const char *&Beg, const char *E,
+ unsigned *argIndex) {
+ // FIXME: Support negative field widths.
+ if (argIndex) {
+ CS.setFieldWidth(ParseNonPositionAmount(Beg, E, *argIndex));
+ }
+ else {
+ const OptionalAmount Amt =
+ ParsePositionAmount(H, Start, Beg, E,
+ analyze_format_string::FieldWidthPos);
+
+ if (Amt.isInvalid())
+ return true;
+ CS.setFieldWidth(Amt);
+ }
+ return false;
+}
+
+bool
+clang::analyze_format_string::ParseArgPosition(FormatStringHandler &H,
+ FormatSpecifier &FS,
+ const char *Start,
+ const char *&Beg,
+ const char *E) {
+ const char *I = Beg;
+
+ const OptionalAmount &Amt = ParseAmount(I, E);
+
+ if (I == E) {
+ // No more characters left?
+ H.HandleIncompleteSpecifier(Start, E - Start);
+ return true;
+ }
+
+ if (Amt.getHowSpecified() == OptionalAmount::Constant && *(I++) == '$') {
+ // Special case: '%0$', since this is an easy mistake.
+ if (Amt.getConstantAmount() == 0) {
+ H.HandleZeroPosition(Start, I - Start);
+ return true;
+ }
+
+ FS.setArgIndex(Amt.getConstantAmount() - 1);
+ FS.setUsesPositionalArg();
+ // Update the caller's pointer if we decided to consume
+ // these characters.
+ Beg = I;
+ return false;
+ }
+
+ return false;
+}
+
+bool
+clang::analyze_format_string::ParseLengthModifier(FormatSpecifier &FS,
+ const char *&I,
+ const char *E) {
+ LengthModifier::Kind lmKind = LengthModifier::None;
+ const char *lmPosition = I;
+ switch (*I) {
+ default:
+ return false;
+ case 'h':
+ ++I;
+ lmKind = (I != E && *I == 'h') ?
+ ++I, LengthModifier::AsChar : LengthModifier::AsShort;
+ break;
+ case 'l':
+ ++I;
+ lmKind = (I != E && *I == 'l') ?
+ ++I, LengthModifier::AsLongLong : LengthModifier::AsLong;
+ break;
+ case 'j': lmKind = LengthModifier::AsIntMax; ++I; break;
+ case 'z': lmKind = LengthModifier::AsSizeT; ++I; break;
+ case 't': lmKind = LengthModifier::AsPtrDiff; ++I; break;
+ case 'L': lmKind = LengthModifier::AsLongDouble; ++I; break;
+ case 'q': lmKind = LengthModifier::AsLongLong; ++I; break;
+ }
+ LengthModifier lm(lmPosition, lmKind);
+ FS.setLengthModifier(lm);
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// Methods on ArgTypeResult.
+//===----------------------------------------------------------------------===//
+
+bool ArgTypeResult::matchesType(ASTContext &C, QualType argTy) const {
+ switch (K) {
+ case InvalidTy:
+ assert(false && "ArgTypeResult must be valid");
+ return true;
+
+ case UnknownTy:
+ return true;
+
+ case SpecificTy: {
+ argTy = C.getCanonicalType(argTy).getUnqualifiedType();
+ if (T == argTy)
+ return true;
+ if (const BuiltinType *BT = argTy->getAs<BuiltinType>())
+ switch (BT->getKind()) {
+ default:
+ break;
+ case BuiltinType::Char_S:
+ case BuiltinType::SChar:
+ return T == C.UnsignedCharTy;
+ case BuiltinType::Char_U:
+ case BuiltinType::UChar:
+ return T == C.SignedCharTy;
+ case BuiltinType::Short:
+ return T == C.UnsignedShortTy;
+ case BuiltinType::UShort:
+ return T == C.ShortTy;
+ case BuiltinType::Int:
+ return T == C.UnsignedIntTy;
+ case BuiltinType::UInt:
+ return T == C.IntTy;
+ case BuiltinType::Long:
+ return T == C.UnsignedLongTy;
+ case BuiltinType::ULong:
+ return T == C.LongTy;
+ case BuiltinType::LongLong:
+ return T == C.UnsignedLongLongTy;
+ case BuiltinType::ULongLong:
+ return T == C.LongLongTy;
+ }
+ return false;
+ }
+
+ case CStrTy: {
+ const PointerType *PT = argTy->getAs<PointerType>();
+ if (!PT)
+ return false;
+ QualType pointeeTy = PT->getPointeeType();
+ if (const BuiltinType *BT = pointeeTy->getAs<BuiltinType>())
+ switch (BT->getKind()) {
+ case BuiltinType::Void:
+ case BuiltinType::Char_U:
+ case BuiltinType::UChar:
+ case BuiltinType::Char_S:
+ case BuiltinType::SChar:
+ return true;
+ default:
+ break;
+ }
+
+ return false;
+ }
+
+ case WCStrTy: {
+ const PointerType *PT = argTy->getAs<PointerType>();
+ if (!PT)
+ return false;
+ QualType pointeeTy =
+ C.getCanonicalType(PT->getPointeeType()).getUnqualifiedType();
+ return pointeeTy == C.getWCharType();
+ }
+
+ case WIntTy: {
+ // Instead of doing a lookup for the definition of 'wint_t' (which
+ // is defined by the system headers) instead see if wchar_t and
+ // the argument type promote to the same type.
+ QualType PromoWChar =
+ C.getWCharType()->isPromotableIntegerType()
+ ? C.getPromotedIntegerType(C.getWCharType()) : C.getWCharType();
+ QualType PromoArg =
+ argTy->isPromotableIntegerType()
+ ? C.getPromotedIntegerType(argTy) : argTy;
+
+ PromoWChar = C.getCanonicalType(PromoWChar).getUnqualifiedType();
+ PromoArg = C.getCanonicalType(PromoArg).getUnqualifiedType();
+
+ return PromoWChar == PromoArg;
+ }
+
+ case CPointerTy:
+ return argTy->isPointerType() || argTy->isObjCObjectPointerType() ||
+ argTy->isNullPtrType();
+
+ case ObjCPointerTy:
+ return argTy->getAs<ObjCObjectPointerType>() != NULL;
+ }
+
+ // FIXME: Should be unreachable, but Clang is currently emitting
+ // a warning.
+ return false;
+}
+
+QualType ArgTypeResult::getRepresentativeType(ASTContext &C) const {
+ switch (K) {
+ case InvalidTy:
+ assert(false && "No representative type for Invalid ArgTypeResult");
+ // Fall-through.
+ case UnknownTy:
+ return QualType();
+ case SpecificTy:
+ return T;
+ case CStrTy:
+ return C.getPointerType(C.CharTy);
+ case WCStrTy:
+ return C.getPointerType(C.getWCharType());
+ case ObjCPointerTy:
+ return C.ObjCBuiltinIdTy;
+ case CPointerTy:
+ return C.VoidPtrTy;
+ case WIntTy: {
+ QualType WC = C.getWCharType();
+ return WC->isPromotableIntegerType() ? C.getPromotedIntegerType(WC) : WC;
+ }
+ }
+
+ // FIXME: Should be unreachable, but Clang is currently emitting
+ // a warning.
+ return QualType();
+}
+
+//===----------------------------------------------------------------------===//
+// Methods on OptionalAmount.
+//===----------------------------------------------------------------------===//
+
+ArgTypeResult
+analyze_format_string::OptionalAmount::getArgType(ASTContext &Ctx) const {
+ return Ctx.IntTy;
+}
+
+//===----------------------------------------------------------------------===//
+// Methods on LengthModifier.
+//===----------------------------------------------------------------------===//
+
+const char *
+analyze_format_string::LengthModifier::toString() const {
+ switch (kind) {
+ case AsChar:
+ return "hh";
+ case AsShort:
+ return "h";
+ case AsLong: // or AsWideChar
+ return "l";
+ case AsLongLong:
+ return "ll";
+ case AsIntMax:
+ return "j";
+ case AsSizeT:
+ return "z";
+ case AsPtrDiff:
+ return "t";
+ case AsLongDouble:
+ return "L";
+ case None:
+ return "";
+ }
+ return NULL;
+}
+
+//===----------------------------------------------------------------------===//
+// Methods on OptionalAmount.
+//===----------------------------------------------------------------------===//
+
+void OptionalAmount::toString(llvm::raw_ostream &os) const {
+ switch (hs) {
+ case Invalid:
+ case NotSpecified:
+ return;
+ case Arg:
+ if (UsesDotPrefix)
+ os << ".";
+ if (usesPositionalArg())
+ os << "*" << getPositionalArgIndex() << "$";
+ else
+ os << "*";
+ break;
+ case Constant:
+ if (UsesDotPrefix)
+ os << ".";
+ os << amt;
+ break;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Methods on ConversionSpecifier.
+//===----------------------------------------------------------------------===//
+
+bool FormatSpecifier::hasValidLengthModifier() const {
+ switch (LM.getKind()) {
+ case LengthModifier::None:
+ return true;
+
+ // Handle most integer flags
+ case LengthModifier::AsChar:
+ case LengthModifier::AsShort:
+ case LengthModifier::AsLongLong:
+ case LengthModifier::AsIntMax:
+ case LengthModifier::AsSizeT:
+ case LengthModifier::AsPtrDiff:
+ switch (CS.getKind()) {
+ case ConversionSpecifier::dArg:
+ case ConversionSpecifier::iArg:
+ case ConversionSpecifier::oArg:
+ case ConversionSpecifier::uArg:
+ case ConversionSpecifier::xArg:
+ case ConversionSpecifier::XArg:
+ case ConversionSpecifier::nArg:
+ case ConversionSpecifier::rArg:
+ return true;
+ default:
+ return false;
+ }
+
+ // Handle 'l' flag
+ case LengthModifier::AsLong:
+ switch (CS.getKind()) {
+ case ConversionSpecifier::dArg:
+ case ConversionSpecifier::iArg:
+ case ConversionSpecifier::oArg:
+ case ConversionSpecifier::uArg:
+ case ConversionSpecifier::xArg:
+ case ConversionSpecifier::XArg:
+ case ConversionSpecifier::aArg:
+ case ConversionSpecifier::AArg:
+ case ConversionSpecifier::fArg:
+ case ConversionSpecifier::FArg:
+ case ConversionSpecifier::eArg:
+ case ConversionSpecifier::EArg:
+ case ConversionSpecifier::gArg:
+ case ConversionSpecifier::GArg:
+ case ConversionSpecifier::nArg:
+ case ConversionSpecifier::cArg:
+ case ConversionSpecifier::sArg:
+ case ConversionSpecifier::rArg:
+ return true;
+ default:
+ return false;
+ }
+
+ case LengthModifier::AsLongDouble:
+ switch (CS.getKind()) {
+ case ConversionSpecifier::aArg:
+ case ConversionSpecifier::AArg:
+ case ConversionSpecifier::fArg:
+ case ConversionSpecifier::FArg:
+ case ConversionSpecifier::eArg:
+ case ConversionSpecifier::EArg:
+ case ConversionSpecifier::gArg:
+ case ConversionSpecifier::GArg:
+ return true;
+ default:
+ return false;
+ }
+ }
+ return false;
+}
+
+
diff --git a/contrib/llvm/tools/clang/lib/Analysis/FormatStringParsing.h b/contrib/llvm/tools/clang/lib/Analysis/FormatStringParsing.h
new file mode 100644
index 0000000..607e99c
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/FormatStringParsing.h
@@ -0,0 +1,72 @@
+#ifndef LLVM_CLANG_FORMAT_PARSING_H
+#define LLVM_CLANG_FORMAT_PARSING_H
+
+#include "clang/Analysis/Analyses/FormatString.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Type.h"
+#include "llvm/Support/raw_ostream.h"
+
+namespace clang {
+
+template <typename T>
+class UpdateOnReturn {
+ T &ValueToUpdate;
+ const T &ValueToCopy;
+public:
+ UpdateOnReturn(T &valueToUpdate, const T &valueToCopy)
+ : ValueToUpdate(valueToUpdate), ValueToCopy(valueToCopy) {}
+
+ ~UpdateOnReturn() {
+ ValueToUpdate = ValueToCopy;
+ }
+};
+
+namespace analyze_format_string {
+
+OptionalAmount ParseAmount(const char *&Beg, const char *E);
+OptionalAmount ParseNonPositionAmount(const char *&Beg, const char *E,
+ unsigned &argIndex);
+
+OptionalAmount ParsePositionAmount(FormatStringHandler &H,
+ const char *Start, const char *&Beg,
+ const char *E, PositionContext p);
+
+bool ParseFieldWidth(FormatStringHandler &H,
+ FormatSpecifier &CS,
+ const char *Start, const char *&Beg, const char *E,
+ unsigned *argIndex);
+
+bool ParseArgPosition(FormatStringHandler &H,
+ FormatSpecifier &CS, const char *Start,
+ const char *&Beg, const char *E);
+
+/// Returns true if a LengthModifier was parsed and installed in the
+/// FormatSpecifier& argument, and false otherwise.
+bool ParseLengthModifier(FormatSpecifier &FS, const char *&Beg, const char *E);
+
+template <typename T> class SpecifierResult {
+ T FS;
+ const char *Start;
+ bool Stop;
+public:
+ SpecifierResult(bool stop = false)
+ : Start(0), Stop(stop) {}
+ SpecifierResult(const char *start,
+ const T &fs)
+ : FS(fs), Start(start), Stop(false) {}
+
+ const char *getStart() const { return Start; }
+ bool shouldStop() const { return Stop; }
+ bool hasValue() const { return Start != 0; }
+ const T &getValue() const {
+ assert(hasValue());
+ return FS;
+ }
+ const T &getValue() { return FS; }
+};
+
+} // end analyze_format_string namespace
+} // end clang namespace
+
+#endif
+
diff --git a/contrib/llvm/tools/clang/lib/Analysis/LiveVariables.cpp b/contrib/llvm/tools/clang/lib/Analysis/LiveVariables.cpp
new file mode 100644
index 0000000..303dc0f
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/LiveVariables.cpp
@@ -0,0 +1,392 @@
+//=- LiveVariables.cpp - Live Variable Analysis for Source CFGs -*- C++ --*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements Live Variables analysis for source-level CFGs.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/Analyses/LiveVariables.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Expr.h"
+#include "clang/Analysis/CFG.h"
+#include "clang/Analysis/Visitors/CFGRecStmtDeclVisitor.h"
+#include "clang/Analysis/FlowSensitive/DataflowSolver.h"
+#include "clang/Analysis/Support/SaveAndRestore.h"
+#include "clang/Analysis/AnalysisContext.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// Useful constants.
+//===----------------------------------------------------------------------===//
+
+static const bool Alive = true;
+static const bool Dead = false;
+
+//===----------------------------------------------------------------------===//
+// Dataflow initialization logic.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class RegisterDecls
+ : public CFGRecStmtDeclVisitor<RegisterDecls> {
+
+ LiveVariables::AnalysisDataTy& AD;
+
+ typedef llvm::SmallVector<VarDecl*, 20> AlwaysLiveTy;
+ AlwaysLiveTy AlwaysLive;
+
+
+public:
+ RegisterDecls(LiveVariables::AnalysisDataTy& ad) : AD(ad) {}
+
+ ~RegisterDecls() {
+
+ AD.AlwaysLive.resetValues(AD);
+
+ for (AlwaysLiveTy::iterator I = AlwaysLive.begin(), E = AlwaysLive.end();
+ I != E; ++ I)
+ AD.AlwaysLive(*I, AD) = Alive;
+ }
+
+ void VisitImplicitParamDecl(ImplicitParamDecl* IPD) {
+ // Register the VarDecl for tracking.
+ AD.Register(IPD);
+ }
+
+ void VisitVarDecl(VarDecl* VD) {
+ // Register the VarDecl for tracking.
+ AD.Register(VD);
+
+ // Does the variable have global storage? If so, it is always live.
+ if (VD->hasGlobalStorage())
+ AlwaysLive.push_back(VD);
+ }
+
+ CFG& getCFG() { return AD.getCFG(); }
+};
+} // end anonymous namespace
+
+LiveVariables::LiveVariables(AnalysisContext &AC, bool killAtAssign) {
+ // Register all referenced VarDecls.
+ CFG &cfg = *AC.getCFG();
+ getAnalysisData().setCFG(cfg);
+ getAnalysisData().setContext(AC.getASTContext());
+ getAnalysisData().AC = &AC;
+ getAnalysisData().killAtAssign = killAtAssign;
+
+ RegisterDecls R(getAnalysisData());
+ cfg.VisitBlockStmts(R);
+
+ // Register all parameters even if they didn't occur in the function body.
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(AC.getDecl()))
+ for (FunctionDecl::param_const_iterator PI = FD->param_begin(),
+ PE = FD->param_end(); PI != PE; ++PI)
+ getAnalysisData().Register(*PI);
+}
+
+//===----------------------------------------------------------------------===//
+// Transfer functions.
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class TransferFuncs : public CFGRecStmtVisitor<TransferFuncs>{
+ LiveVariables::AnalysisDataTy& AD;
+ LiveVariables::ValTy LiveState;
+ const CFGBlock *currentBlock;
+public:
+ TransferFuncs(LiveVariables::AnalysisDataTy& ad) : AD(ad), currentBlock(0) {}
+
+ LiveVariables::ValTy& getVal() { return LiveState; }
+ CFG& getCFG() { return AD.getCFG(); }
+
+ void VisitDeclRefExpr(DeclRefExpr* DR);
+ void VisitBinaryOperator(BinaryOperator* B);
+ void VisitBlockExpr(BlockExpr *B);
+ void VisitAssign(BinaryOperator* B);
+ void VisitDeclStmt(DeclStmt* DS);
+ void BlockStmt_VisitObjCForCollectionStmt(ObjCForCollectionStmt* S);
+ void VisitUnaryOperator(UnaryOperator* U);
+ void Visit(Stmt *S);
+ void VisitTerminator(CFGBlock* B);
+
+ /// VisitConditionVariableInit - Handle the initialization of condition
+ /// variables at branches. Valid statements include IfStmt, ForStmt,
+ /// WhileStmt, and SwitchStmt.
+ void VisitConditionVariableInit(Stmt *S);
+
+ void SetTopValue(LiveVariables::ValTy& V) {
+ V = AD.AlwaysLive;
+ }
+
+ void setCurrentBlock(const CFGBlock *block) {
+ currentBlock = block;
+ }
+};
+
+void TransferFuncs::Visit(Stmt *S) {
+
+ if (S == getCurrentBlkStmt()) {
+
+ if (AD.Observer)
+ AD.Observer->ObserveStmt(S, currentBlock, AD, LiveState);
+
+ if (getCFG().isBlkExpr(S))
+ LiveState(S, AD) = Dead;
+
+ StmtVisitor<TransferFuncs,void>::Visit(S);
+ }
+ else if (!getCFG().isBlkExpr(S)) {
+
+ if (AD.Observer)
+ AD.Observer->ObserveStmt(S, currentBlock, AD, LiveState);
+
+ StmtVisitor<TransferFuncs,void>::Visit(S);
+
+ }
+ else {
+ // For block-level expressions, mark that they are live.
+ LiveState(S,AD) = Alive;
+ }
+}
+
+void TransferFuncs::VisitConditionVariableInit(Stmt *S) {
+ assert(!getCFG().isBlkExpr(S));
+ CFGRecStmtVisitor<TransferFuncs>::VisitConditionVariableInit(S);
+}
+
+void TransferFuncs::VisitTerminator(CFGBlock* B) {
+
+ const Stmt* E = B->getTerminatorCondition();
+
+ if (!E)
+ return;
+
+ assert (getCFG().isBlkExpr(E));
+ LiveState(E, AD) = Alive;
+}
+
+void TransferFuncs::VisitDeclRefExpr(DeclRefExpr* DR) {
+ if (VarDecl* V = dyn_cast<VarDecl>(DR->getDecl()))
+ LiveState(V, AD) = Alive;
+}
+
+void TransferFuncs::VisitBlockExpr(BlockExpr *BE) {
+ AnalysisContext::referenced_decls_iterator I, E;
+ llvm::tie(I, E) = AD.AC->getReferencedBlockVars(BE->getBlockDecl());
+ for ( ; I != E ; ++I) {
+ DeclBitVector_Types::Idx i = AD.getIdx(*I);
+ if (i.isValid())
+ LiveState.getBit(i) = Alive;
+ }
+}
+
+void TransferFuncs::VisitBinaryOperator(BinaryOperator* B) {
+ if (B->isAssignmentOp()) VisitAssign(B);
+ else VisitStmt(B);
+}
+
+void
+TransferFuncs::BlockStmt_VisitObjCForCollectionStmt(ObjCForCollectionStmt* S) {
+
+ // This is a block-level expression. Its value is 'dead' before this point.
+ LiveState(S, AD) = Dead;
+
+ // This represents a 'use' of the collection.
+ Visit(S->getCollection());
+
+ // This represents a 'kill' for the variable.
+ Stmt* Element = S->getElement();
+ DeclRefExpr* DR = 0;
+ VarDecl* VD = 0;
+
+ if (DeclStmt* DS = dyn_cast<DeclStmt>(Element))
+ VD = cast<VarDecl>(DS->getSingleDecl());
+ else {
+ Expr* ElemExpr = cast<Expr>(Element)->IgnoreParens();
+ if ((DR = dyn_cast<DeclRefExpr>(ElemExpr)))
+ VD = cast<VarDecl>(DR->getDecl());
+ else {
+ Visit(ElemExpr);
+ return;
+ }
+ }
+
+ if (VD) {
+ LiveState(VD, AD) = Dead;
+ if (AD.Observer && DR) { AD.Observer->ObserverKill(DR); }
+ }
+}
+
+
+void TransferFuncs::VisitUnaryOperator(UnaryOperator* U) {
+ Expr *E = U->getSubExpr();
+
+ switch (U->getOpcode()) {
+ case UO_PostInc:
+ case UO_PostDec:
+ case UO_PreInc:
+ case UO_PreDec:
+ // Walk through the subexpressions, blasting through ParenExprs
+ // until we either find a DeclRefExpr or some non-DeclRefExpr
+ // expression.
+ if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(E->IgnoreParens()))
+ if (VarDecl* VD = dyn_cast<VarDecl>(DR->getDecl())) {
+ // Treat the --/++ operator as a kill.
+ if (AD.Observer) { AD.Observer->ObserverKill(DR); }
+ LiveState(VD, AD) = Alive;
+ return VisitDeclRefExpr(DR);
+ }
+
+ // Fall-through.
+
+ default:
+ return Visit(E);
+ }
+}
+
+void TransferFuncs::VisitAssign(BinaryOperator* B) {
+ Expr* LHS = B->getLHS();
+
+ // Assigning to a variable?
+ if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(LHS->IgnoreParens())) {
+ // Assignments to references don't kill the ref's address
+ if (DR->getDecl()->getType()->isReferenceType()) {
+ VisitDeclRefExpr(DR);
+ } else {
+ if (AD.killAtAssign) {
+ // Update liveness inforamtion.
+ unsigned bit = AD.getIdx(DR->getDecl());
+ LiveState.getDeclBit(bit) = Dead | AD.AlwaysLive.getDeclBit(bit);
+
+ if (AD.Observer) { AD.Observer->ObserverKill(DR); }
+ }
+ // Handle things like +=, etc., which also generate "uses"
+ // of a variable. Do this just by visiting the subexpression.
+ if (B->getOpcode() != BO_Assign)
+ VisitDeclRefExpr(DR);
+ }
+ }
+ else // Not assigning to a variable. Process LHS as usual.
+ Visit(LHS);
+
+ Visit(B->getRHS());
+}
+
+void TransferFuncs::VisitDeclStmt(DeclStmt* DS) {
+ // Declarations effectively "kill" a variable since they cannot
+ // possibly be live before they are declared.
+ for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE = DS->decl_end();
+ DI != DE; ++DI)
+ if (VarDecl* VD = dyn_cast<VarDecl>(*DI)) {
+ // Update liveness information by killing the VarDecl.
+ unsigned bit = AD.getIdx(VD);
+ LiveState.getDeclBit(bit) = Dead | AD.AlwaysLive.getDeclBit(bit);
+
+ // The initializer is evaluated after the variable comes into scope, but
+ // before the DeclStmt (which binds the value to the variable).
+ // Since this is a reverse dataflow analysis, we must evaluate the
+ // transfer function for this expression after the DeclStmt. If the
+ // initializer references the variable (which is bad) then we extend
+ // its liveness.
+ if (Expr* Init = VD->getInit())
+ Visit(Init);
+
+ if (const VariableArrayType* VT =
+ AD.getContext().getAsVariableArrayType(VD->getType())) {
+ StmtIterator I(const_cast<VariableArrayType*>(VT));
+ StmtIterator E;
+ for (; I != E; ++I) Visit(*I);
+ }
+ }
+}
+
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// Merge operator: if something is live on any successor block, it is live
+// in the current block (a set union).
+//===----------------------------------------------------------------------===//
+
+namespace {
+ typedef StmtDeclBitVector_Types::Union Merge;
+ typedef DataflowSolver<LiveVariables, TransferFuncs, Merge> Solver;
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// External interface to run Liveness analysis.
+//===----------------------------------------------------------------------===//
+
+void LiveVariables::runOnCFG(CFG& cfg) {
+ Solver S(*this);
+ S.runOnCFG(cfg);
+}
+
+void LiveVariables::runOnAllBlocks(const CFG& cfg,
+ LiveVariables::ObserverTy* Obs,
+ bool recordStmtValues) {
+ Solver S(*this);
+ SaveAndRestore<LiveVariables::ObserverTy*> SRObs(getAnalysisData().Observer,
+ Obs);
+ S.runOnAllBlocks(cfg, recordStmtValues);
+}
+
+//===----------------------------------------------------------------------===//
+// liveness queries
+//
+
+bool LiveVariables::isLive(const CFGBlock* B, const VarDecl* D) const {
+ DeclBitVector_Types::Idx i = getAnalysisData().getIdx(D);
+ return i.isValid() ? getBlockData(B).getBit(i) : false;
+}
+
+bool LiveVariables::isLive(const ValTy& Live, const VarDecl* D) const {
+ DeclBitVector_Types::Idx i = getAnalysisData().getIdx(D);
+ return i.isValid() ? Live.getBit(i) : false;
+}
+
+bool LiveVariables::isLive(const Stmt* Loc, const Stmt* StmtVal) const {
+ return getStmtData(Loc)(StmtVal,getAnalysisData());
+}
+
+bool LiveVariables::isLive(const Stmt* Loc, const VarDecl* D) const {
+ return getStmtData(Loc)(D,getAnalysisData());
+}
+
+//===----------------------------------------------------------------------===//
+// printing liveness state for debugging
+//
+
+void LiveVariables::dumpLiveness(const ValTy& V, const SourceManager& SM) const {
+ const AnalysisDataTy& AD = getAnalysisData();
+
+ for (AnalysisDataTy::decl_iterator I = AD.begin_decl(),
+ E = AD.end_decl(); I!=E; ++I)
+ if (V.getDeclBit(I->second)) {
+ llvm::errs() << " " << I->first->getIdentifier()->getName() << " <";
+ I->first->getLocation().dump(SM);
+ llvm::errs() << ">\n";
+ }
+}
+
+void LiveVariables::dumpBlockLiveness(const SourceManager& M) const {
+ for (BlockDataMapTy::const_iterator I = getBlockDataMap().begin(),
+ E = getBlockDataMap().end(); I!=E; ++I) {
+ llvm::errs() << "\n[ B" << I->first->getBlockID()
+ << " (live variables at block exit) ]\n";
+ dumpLiveness(I->second,M);
+ }
+
+ llvm::errs() << "\n";
+}
diff --git a/contrib/llvm/tools/clang/lib/Analysis/PrintfFormatString.cpp b/contrib/llvm/tools/clang/lib/Analysis/PrintfFormatString.cpp
new file mode 100644
index 0000000..ef5c0fb
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/PrintfFormatString.cpp
@@ -0,0 +1,668 @@
+//== PrintfFormatString.cpp - Analysis of printf format strings --*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Handling of format string in printf and friends. The structure of format
+// strings for fprintf() are described in C99 7.19.6.1.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/Analyses/FormatString.h"
+#include "FormatStringParsing.h"
+
+using clang::analyze_format_string::ArgTypeResult;
+using clang::analyze_format_string::FormatStringHandler;
+using clang::analyze_format_string::LengthModifier;
+using clang::analyze_format_string::OptionalAmount;
+using clang::analyze_format_string::ConversionSpecifier;
+using clang::analyze_printf::PrintfSpecifier;
+
+using namespace clang;
+
+typedef clang::analyze_format_string::SpecifierResult<PrintfSpecifier>
+ PrintfSpecifierResult;
+
+//===----------------------------------------------------------------------===//
+// Methods for parsing format strings.
+//===----------------------------------------------------------------------===//
+
+using analyze_format_string::ParseNonPositionAmount;
+
+static bool ParsePrecision(FormatStringHandler &H, PrintfSpecifier &FS,
+ const char *Start, const char *&Beg, const char *E,
+ unsigned *argIndex) {
+ if (argIndex) {
+ FS.setPrecision(ParseNonPositionAmount(Beg, E, *argIndex));
+ }
+ else {
+ const OptionalAmount Amt = ParsePositionAmount(H, Start, Beg, E,
+ analyze_format_string::PrecisionPos);
+ if (Amt.isInvalid())
+ return true;
+ FS.setPrecision(Amt);
+ }
+ return false;
+}
+
+static PrintfSpecifierResult ParsePrintfSpecifier(FormatStringHandler &H,
+ const char *&Beg,
+ const char *E,
+ unsigned &argIndex,
+ bool FormatExtensions) {
+
+ using namespace clang::analyze_format_string;
+ using namespace clang::analyze_printf;
+
+ const char *I = Beg;
+ const char *Start = 0;
+ UpdateOnReturn <const char*> UpdateBeg(Beg, I);
+
+ // Look for a '%' character that indicates the start of a format specifier.
+ for ( ; I != E ; ++I) {
+ char c = *I;
+ if (c == '\0') {
+ // Detect spurious null characters, which are likely errors.
+ H.HandleNullChar(I);
+ return true;
+ }
+ if (c == '%') {
+ Start = I++; // Record the start of the format specifier.
+ break;
+ }
+ }
+
+ // No format specifier found?
+ if (!Start)
+ return false;
+
+ if (I == E) {
+ // No more characters left?
+ H.HandleIncompleteSpecifier(Start, E - Start);
+ return true;
+ }
+
+ PrintfSpecifier FS;
+ if (ParseArgPosition(H, FS, Start, I, E))
+ return true;
+
+ if (I == E) {
+ // No more characters left?
+ H.HandleIncompleteSpecifier(Start, E - Start);
+ return true;
+ }
+
+ // Look for flags (if any).
+ bool hasMore = true;
+ for ( ; I != E; ++I) {
+ switch (*I) {
+ default: hasMore = false; break;
+ case '\'':
+ // FIXME: POSIX specific. Always accept?
+ FS.setHasThousandsGrouping(I);
+ break;
+ case '-': FS.setIsLeftJustified(I); break;
+ case '+': FS.setHasPlusPrefix(I); break;
+ case ' ': FS.setHasSpacePrefix(I); break;
+ case '#': FS.setHasAlternativeForm(I); break;
+ case '0': FS.setHasLeadingZeros(I); break;
+ }
+ if (!hasMore)
+ break;
+ }
+
+ if (I == E) {
+ // No more characters left?
+ H.HandleIncompleteSpecifier(Start, E - Start);
+ return true;
+ }
+
+ // Look for the field width (if any).
+ if (ParseFieldWidth(H, FS, Start, I, E,
+ FS.usesPositionalArg() ? 0 : &argIndex))
+ return true;
+
+ if (I == E) {
+ // No more characters left?
+ H.HandleIncompleteSpecifier(Start, E - Start);
+ return true;
+ }
+
+ // Look for the precision (if any).
+ if (*I == '.') {
+ ++I;
+ if (I == E) {
+ H.HandleIncompleteSpecifier(Start, E - Start);
+ return true;
+ }
+
+ if (ParsePrecision(H, FS, Start, I, E,
+ FS.usesPositionalArg() ? 0 : &argIndex))
+ return true;
+
+ if (I == E) {
+ // No more characters left?
+ H.HandleIncompleteSpecifier(Start, E - Start);
+ return true;
+ }
+ }
+
+ // Look for the length modifier.
+ if (ParseLengthModifier(FS, I, E) && I == E) {
+ // No more characters left?
+ H.HandleIncompleteSpecifier(Start, E - Start);
+ return true;
+ }
+
+ if (*I == '\0') {
+ // Detect spurious null characters, which are likely errors.
+ H.HandleNullChar(I);
+ return true;
+ }
+
+ // Finally, look for the conversion specifier.
+ const char *conversionPosition = I++;
+ ConversionSpecifier::Kind k = ConversionSpecifier::InvalidSpecifier;
+ switch (*conversionPosition) {
+ default:
+ break;
+ // C99: 7.19.6.1 (section 8).
+ case '%': k = ConversionSpecifier::PercentArg; break;
+ case 'A': k = ConversionSpecifier::AArg; break;
+ case 'E': k = ConversionSpecifier::EArg; break;
+ case 'F': k = ConversionSpecifier::FArg; break;
+ case 'G': k = ConversionSpecifier::GArg; break;
+ case 'X': k = ConversionSpecifier::XArg; break;
+ case 'a': k = ConversionSpecifier::aArg; break;
+ case 'c': k = ConversionSpecifier::cArg; break;
+ case 'd': k = ConversionSpecifier::dArg; break;
+ case 'e': k = ConversionSpecifier::eArg; break;
+ case 'f': k = ConversionSpecifier::fArg; break;
+ case 'g': k = ConversionSpecifier::gArg; break;
+ case 'i': k = ConversionSpecifier::iArg; break;
+ case 'n': k = ConversionSpecifier::nArg; break;
+ case 'o': k = ConversionSpecifier::oArg; break;
+ case 'p': k = ConversionSpecifier::pArg; break;
+ case 's': k = ConversionSpecifier::sArg; break;
+ case 'u': k = ConversionSpecifier::uArg; break;
+ case 'x': k = ConversionSpecifier::xArg; break;
+ // POSIX specific.
+ case 'C': k = ConversionSpecifier::CArg; break;
+ case 'S': k = ConversionSpecifier::SArg; break;
+ // Objective-C.
+ case '@': k = ConversionSpecifier::ObjCObjArg; break;
+ // Glibc specific.
+ case 'm': k = ConversionSpecifier::PrintErrno; break;
+ // FreeBSD format extensions
+ case 'b': if (FormatExtensions) k = ConversionSpecifier::bArg; break; /* check for int and then char * */
+ case 'r': if (FormatExtensions) k = ConversionSpecifier::rArg; break;
+ case 'y': if (FormatExtensions) k = ConversionSpecifier::iArg; break;
+ case 'D': if (FormatExtensions) k = ConversionSpecifier::DArg; break; /* check for u_char * pointer and a char * string */
+ }
+ PrintfConversionSpecifier CS(conversionPosition, k);
+ FS.setConversionSpecifier(CS);
+ if (CS.consumesDataArgument() && !FS.usesPositionalArg())
+ FS.setArgIndex(argIndex++);
+ // FreeBSD extension
+ if (k == ConversionSpecifier::bArg || k == ConversionSpecifier::DArg)
+ argIndex++;
+
+ if (k == ConversionSpecifier::InvalidSpecifier) {
+ // Assume the conversion takes one argument.
+ return !H.HandleInvalidPrintfConversionSpecifier(FS, Start, I - Start);
+ }
+ return PrintfSpecifierResult(Start, FS);
+}
+
+bool clang::analyze_format_string::ParsePrintfString(FormatStringHandler &H,
+ const char *I,
+ const char *E,
+ bool FormatExtensions) {
+
+ unsigned argIndex = 0;
+
+ // Keep looking for a format specifier until we have exhausted the string.
+ while (I != E) {
+ const PrintfSpecifierResult &FSR = ParsePrintfSpecifier(H, I, E, argIndex,
+ FormatExtensions);
+ // Did a fail-stop error of any kind occur when parsing the specifier?
+ // If so, don't do any more processing.
+ if (FSR.shouldStop())
+ return true;;
+ // Did we exhaust the string or encounter an error that
+ // we can recover from?
+ if (!FSR.hasValue())
+ continue;
+ // We have a format specifier. Pass it to the callback.
+ if (!H.HandlePrintfSpecifier(FSR.getValue(), FSR.getStart(),
+ I - FSR.getStart()))
+ return true;
+ }
+ assert(I == E && "Format string not exhausted");
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Methods on ConversionSpecifier.
+//===----------------------------------------------------------------------===//
+const char *ConversionSpecifier::toString() const {
+ switch (kind) {
+ case dArg: return "d";
+ case iArg: return "i";
+ case oArg: return "o";
+ case uArg: return "u";
+ case xArg: return "x";
+ case XArg: return "X";
+ case fArg: return "f";
+ case FArg: return "F";
+ case eArg: return "e";
+ case EArg: return "E";
+ case gArg: return "g";
+ case GArg: return "G";
+ case aArg: return "a";
+ case AArg: return "A";
+ case cArg: return "c";
+ case sArg: return "s";
+ case pArg: return "p";
+ case nArg: return "n";
+ case PercentArg: return "%";
+ case ScanListArg: return "[";
+ case InvalidSpecifier: return NULL;
+
+ // MacOS X unicode extensions.
+ case CArg: return "C";
+ case SArg: return "S";
+
+ // Objective-C specific specifiers.
+ case ObjCObjArg: return "@";
+
+ // FreeBSD specific specifiers.
+ case bArg: return "b";
+ case DArg: return "D";
+ case rArg: return "r";
+
+ // GlibC specific specifiers.
+ case PrintErrno: return "m";
+ }
+ return NULL;
+}
+
+//===----------------------------------------------------------------------===//
+// Methods on PrintfSpecifier.
+//===----------------------------------------------------------------------===//
+
+ArgTypeResult PrintfSpecifier::getArgType(ASTContext &Ctx) const {
+ const PrintfConversionSpecifier &CS = getConversionSpecifier();
+
+ if (!CS.consumesDataArgument())
+ return ArgTypeResult::Invalid();
+
+ if (CS.getKind() == ConversionSpecifier::cArg)
+ switch (LM.getKind()) {
+ case LengthModifier::None: return Ctx.IntTy;
+ case LengthModifier::AsLong: return ArgTypeResult::WIntTy;
+ default:
+ return ArgTypeResult::Invalid();
+ }
+
+ if (CS.isIntArg())
+ switch (LM.getKind()) {
+ case LengthModifier::AsLongDouble:
+ return ArgTypeResult::Invalid();
+ case LengthModifier::None: return Ctx.IntTy;
+ case LengthModifier::AsChar: return Ctx.SignedCharTy;
+ case LengthModifier::AsShort: return Ctx.ShortTy;
+ case LengthModifier::AsLong: return Ctx.LongTy;
+ case LengthModifier::AsLongLong: return Ctx.LongLongTy;
+ case LengthModifier::AsIntMax:
+ // FIXME: Return unknown for now.
+ return ArgTypeResult();
+ case LengthModifier::AsSizeT: return Ctx.getSizeType();
+ case LengthModifier::AsPtrDiff: return Ctx.getPointerDiffType();
+ }
+
+ if (CS.isUIntArg())
+ switch (LM.getKind()) {
+ case LengthModifier::AsLongDouble:
+ return ArgTypeResult::Invalid();
+ case LengthModifier::None: return Ctx.UnsignedIntTy;
+ case LengthModifier::AsChar: return Ctx.UnsignedCharTy;
+ case LengthModifier::AsShort: return Ctx.UnsignedShortTy;
+ case LengthModifier::AsLong: return Ctx.UnsignedLongTy;
+ case LengthModifier::AsLongLong: return Ctx.UnsignedLongLongTy;
+ case LengthModifier::AsIntMax:
+ // FIXME: Return unknown for now.
+ return ArgTypeResult();
+ case LengthModifier::AsSizeT:
+ // FIXME: How to get the corresponding unsigned
+ // version of size_t?
+ return ArgTypeResult();
+ case LengthModifier::AsPtrDiff:
+ // FIXME: How to get the corresponding unsigned
+ // version of ptrdiff_t?
+ return ArgTypeResult();
+ }
+
+ if (CS.isDoubleArg()) {
+ if (LM.getKind() == LengthModifier::AsLongDouble)
+ return Ctx.LongDoubleTy;
+ return Ctx.DoubleTy;
+ }
+
+ switch (CS.getKind()) {
+ case ConversionSpecifier::sArg:
+ return ArgTypeResult(LM.getKind() == LengthModifier::AsWideChar ?
+ ArgTypeResult::WCStrTy : ArgTypeResult::CStrTy);
+ case ConversionSpecifier::SArg:
+ // FIXME: This appears to be Mac OS X specific.
+ return ArgTypeResult::WCStrTy;
+ case ConversionSpecifier::CArg:
+ return Ctx.WCharTy;
+ case ConversionSpecifier::pArg:
+ return ArgTypeResult::CPointerTy;
+ default:
+ break;
+ }
+
+ // FIXME: Handle other cases.
+ return ArgTypeResult();
+}
+
+bool PrintfSpecifier::fixType(QualType QT) {
+ // Handle strings first (char *, wchar_t *)
+ if (QT->isPointerType() && (QT->getPointeeType()->isAnyCharacterType())) {
+ CS.setKind(ConversionSpecifier::sArg);
+
+ // Disable irrelevant flags
+ HasAlternativeForm = 0;
+ HasLeadingZeroes = 0;
+
+ // Set the long length modifier for wide characters
+ if (QT->getPointeeType()->isWideCharType())
+ LM.setKind(LengthModifier::AsWideChar);
+
+ return true;
+ }
+
+ // We can only work with builtin types.
+ if (!QT->isBuiltinType())
+ return false;
+
+ // Everything else should be a base type
+ const BuiltinType *BT = QT->getAs<BuiltinType>();
+
+ // Set length modifier
+ switch (BT->getKind()) {
+ default:
+ // The rest of the conversions are either optional or for non-builtin types
+ LM.setKind(LengthModifier::None);
+ break;
+
+ case BuiltinType::Char_U:
+ case BuiltinType::UChar:
+ case BuiltinType::Char_S:
+ case BuiltinType::SChar:
+ LM.setKind(LengthModifier::AsChar);
+ break;
+
+ case BuiltinType::Short:
+ case BuiltinType::UShort:
+ LM.setKind(LengthModifier::AsShort);
+ break;
+
+ case BuiltinType::WChar_S:
+ case BuiltinType::WChar_U:
+ case BuiltinType::Long:
+ case BuiltinType::ULong:
+ LM.setKind(LengthModifier::AsLong);
+ break;
+
+ case BuiltinType::LongLong:
+ case BuiltinType::ULongLong:
+ LM.setKind(LengthModifier::AsLongLong);
+ break;
+
+ case BuiltinType::LongDouble:
+ LM.setKind(LengthModifier::AsLongDouble);
+ break;
+ }
+
+ // Set conversion specifier and disable any flags which do not apply to it.
+ // Let typedefs to char fall through to int, as %c is silly for uint8_t.
+ if (isa<TypedefType>(QT) && QT->isAnyCharacterType()) {
+ CS.setKind(ConversionSpecifier::cArg);
+ LM.setKind(LengthModifier::None);
+ Precision.setHowSpecified(OptionalAmount::NotSpecified);
+ HasAlternativeForm = 0;
+ HasLeadingZeroes = 0;
+ HasPlusPrefix = 0;
+ }
+ // Test for Floating type first as LongDouble can pass isUnsignedIntegerType
+ else if (QT->isRealFloatingType()) {
+ CS.setKind(ConversionSpecifier::fArg);
+ }
+ else if (QT->isPointerType()) {
+ CS.setKind(ConversionSpecifier::pArg);
+ Precision.setHowSpecified(OptionalAmount::NotSpecified);
+ HasAlternativeForm = 0;
+ HasLeadingZeroes = 0;
+ HasPlusPrefix = 0;
+ }
+ else if (QT->isSignedIntegerType()) {
+ CS.setKind(ConversionSpecifier::dArg);
+ HasAlternativeForm = 0;
+ }
+ else if (QT->isUnsignedIntegerType()) {
+ CS.setKind(ConversionSpecifier::uArg);
+ HasAlternativeForm = 0;
+ HasPlusPrefix = 0;
+ }
+ else {
+ return false;
+ }
+
+ return true;
+}
+
+void PrintfSpecifier::toString(llvm::raw_ostream &os) const {
+ // Whilst some features have no defined order, we are using the order
+ // appearing in the C99 standard (ISO/IEC 9899:1999 (E) 7.19.6.1)
+ os << "%";
+
+ // Positional args
+ if (usesPositionalArg()) {
+ os << getPositionalArgIndex() << "$";
+ }
+
+ // Conversion flags
+ if (IsLeftJustified) os << "-";
+ if (HasPlusPrefix) os << "+";
+ if (HasSpacePrefix) os << " ";
+ if (HasAlternativeForm) os << "#";
+ if (HasLeadingZeroes) os << "0";
+
+ // Minimum field width
+ FieldWidth.toString(os);
+ // Precision
+ Precision.toString(os);
+ // Length modifier
+ os << LM.toString();
+ // Conversion specifier
+ os << CS.toString();
+}
+
+bool PrintfSpecifier::hasValidPlusPrefix() const {
+ if (!HasPlusPrefix)
+ return true;
+
+ // The plus prefix only makes sense for signed conversions
+ switch (CS.getKind()) {
+ case ConversionSpecifier::dArg:
+ case ConversionSpecifier::iArg:
+ case ConversionSpecifier::fArg:
+ case ConversionSpecifier::FArg:
+ case ConversionSpecifier::eArg:
+ case ConversionSpecifier::EArg:
+ case ConversionSpecifier::gArg:
+ case ConversionSpecifier::GArg:
+ case ConversionSpecifier::aArg:
+ case ConversionSpecifier::AArg:
+ case ConversionSpecifier::rArg:
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+bool PrintfSpecifier::hasValidAlternativeForm() const {
+ if (!HasAlternativeForm)
+ return true;
+
+ // Alternate form flag only valid with the oxXaAeEfFgG conversions
+ switch (CS.getKind()) {
+ case ConversionSpecifier::oArg:
+ case ConversionSpecifier::xArg:
+ case ConversionSpecifier::XArg:
+ case ConversionSpecifier::aArg:
+ case ConversionSpecifier::AArg:
+ case ConversionSpecifier::eArg:
+ case ConversionSpecifier::EArg:
+ case ConversionSpecifier::fArg:
+ case ConversionSpecifier::FArg:
+ case ConversionSpecifier::gArg:
+ case ConversionSpecifier::GArg:
+ case ConversionSpecifier::rArg:
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+bool PrintfSpecifier::hasValidLeadingZeros() const {
+ if (!HasLeadingZeroes)
+ return true;
+
+ // Leading zeroes flag only valid with the diouxXaAeEfFgG conversions
+ switch (CS.getKind()) {
+ case ConversionSpecifier::dArg:
+ case ConversionSpecifier::iArg:
+ case ConversionSpecifier::oArg:
+ case ConversionSpecifier::uArg:
+ case ConversionSpecifier::xArg:
+ case ConversionSpecifier::XArg:
+ case ConversionSpecifier::aArg:
+ case ConversionSpecifier::AArg:
+ case ConversionSpecifier::eArg:
+ case ConversionSpecifier::EArg:
+ case ConversionSpecifier::fArg:
+ case ConversionSpecifier::FArg:
+ case ConversionSpecifier::gArg:
+ case ConversionSpecifier::GArg:
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+bool PrintfSpecifier::hasValidSpacePrefix() const {
+ if (!HasSpacePrefix)
+ return true;
+
+ // The space prefix only makes sense for signed conversions
+ switch (CS.getKind()) {
+ case ConversionSpecifier::dArg:
+ case ConversionSpecifier::iArg:
+ case ConversionSpecifier::fArg:
+ case ConversionSpecifier::FArg:
+ case ConversionSpecifier::eArg:
+ case ConversionSpecifier::EArg:
+ case ConversionSpecifier::gArg:
+ case ConversionSpecifier::GArg:
+ case ConversionSpecifier::aArg:
+ case ConversionSpecifier::AArg:
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+bool PrintfSpecifier::hasValidLeftJustified() const {
+ if (!IsLeftJustified)
+ return true;
+
+ // The left justified flag is valid for all conversions except n
+ switch (CS.getKind()) {
+ case ConversionSpecifier::nArg:
+ return false;
+
+ default:
+ return true;
+ }
+}
+
+bool PrintfSpecifier::hasValidThousandsGroupingPrefix() const {
+ if (!HasThousandsGrouping)
+ return true;
+
+ switch (CS.getKind()) {
+ case ConversionSpecifier::dArg:
+ case ConversionSpecifier::iArg:
+ case ConversionSpecifier::uArg:
+ case ConversionSpecifier::fArg:
+ case ConversionSpecifier::FArg:
+ case ConversionSpecifier::gArg:
+ case ConversionSpecifier::GArg:
+ return true;
+ default:
+ return false;
+ }
+}
+
+bool PrintfSpecifier::hasValidPrecision() const {
+ if (Precision.getHowSpecified() == OptionalAmount::NotSpecified)
+ return true;
+
+ // Precision is only valid with the diouxXaAeEfFgGs conversions
+ switch (CS.getKind()) {
+ case ConversionSpecifier::dArg:
+ case ConversionSpecifier::iArg:
+ case ConversionSpecifier::oArg:
+ case ConversionSpecifier::uArg:
+ case ConversionSpecifier::xArg:
+ case ConversionSpecifier::XArg:
+ case ConversionSpecifier::aArg:
+ case ConversionSpecifier::AArg:
+ case ConversionSpecifier::eArg:
+ case ConversionSpecifier::EArg:
+ case ConversionSpecifier::fArg:
+ case ConversionSpecifier::FArg:
+ case ConversionSpecifier::gArg:
+ case ConversionSpecifier::GArg:
+ case ConversionSpecifier::sArg:
+ return true;
+
+ default:
+ return false;
+ }
+}
+bool PrintfSpecifier::hasValidFieldWidth() const {
+ if (FieldWidth.getHowSpecified() == OptionalAmount::NotSpecified)
+ return true;
+
+ // The field width is valid for all conversions except n
+ switch (CS.getKind()) {
+ case ConversionSpecifier::nArg:
+ return false;
+
+ default:
+ return true;
+ }
+}
diff --git a/contrib/llvm/tools/clang/lib/Analysis/PseudoConstantAnalysis.cpp b/contrib/llvm/tools/clang/lib/Analysis/PseudoConstantAnalysis.cpp
new file mode 100644
index 0000000..ff96eb4
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/PseudoConstantAnalysis.cpp
@@ -0,0 +1,240 @@
+//== PseudoConstantAnalysis.cpp - Find Pseudoconstants in the AST-*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file tracks the usage of variables in a Decl body to see if they are
+// never written to, implying that they constant. This is useful in static
+// analysis to see if a developer might have intended a variable to be const.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/Analyses/PseudoConstantAnalysis.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/Stmt.h"
+#include <deque>
+
+using namespace clang;
+
+// The number of ValueDecls we want to keep track of by default (per-function)
+#define VARDECL_SET_SIZE 256
+typedef llvm::SmallPtrSet<const VarDecl*, VARDECL_SET_SIZE> VarDeclSet;
+
+PseudoConstantAnalysis::PseudoConstantAnalysis(const Stmt *DeclBody) :
+ DeclBody(DeclBody), Analyzed(false) {
+ NonConstantsImpl = new VarDeclSet;
+ UsedVarsImpl = new VarDeclSet;
+}
+
+PseudoConstantAnalysis::~PseudoConstantAnalysis() {
+ delete (VarDeclSet*)NonConstantsImpl;
+ delete (VarDeclSet*)UsedVarsImpl;
+}
+
+// Returns true if the given ValueDecl is never written to in the given DeclBody
+bool PseudoConstantAnalysis::isPseudoConstant(const VarDecl *VD) {
+ // Only local and static variables can be pseudoconstants
+ if (!VD->hasLocalStorage() && !VD->isStaticLocal())
+ return false;
+
+ if (!Analyzed) {
+ RunAnalysis();
+ Analyzed = true;
+ }
+
+ VarDeclSet *NonConstants = (VarDeclSet*)NonConstantsImpl;
+
+ return !NonConstants->count(VD);
+}
+
+// Returns true if the variable was used (self assignments don't count)
+bool PseudoConstantAnalysis::wasReferenced(const VarDecl *VD) {
+ if (!Analyzed) {
+ RunAnalysis();
+ Analyzed = true;
+ }
+
+ VarDeclSet *UsedVars = (VarDeclSet*)UsedVarsImpl;
+
+ return UsedVars->count(VD);
+}
+
+// Returns a Decl from a (Block)DeclRefExpr (if any)
+const Decl *PseudoConstantAnalysis::getDecl(const Expr *E) {
+ if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E))
+ return DR->getDecl();
+ else if (const BlockDeclRefExpr *BDR = dyn_cast<BlockDeclRefExpr>(E))
+ return BDR->getDecl();
+ else
+ return 0;
+}
+
+void PseudoConstantAnalysis::RunAnalysis() {
+ std::deque<const Stmt *> WorkList;
+ VarDeclSet *NonConstants = (VarDeclSet*)NonConstantsImpl;
+ VarDeclSet *UsedVars = (VarDeclSet*)UsedVarsImpl;
+
+ // Start with the top level statement of the function
+ WorkList.push_back(DeclBody);
+
+ while (!WorkList.empty()) {
+ const Stmt* Head = WorkList.front();
+ WorkList.pop_front();
+
+ if (const Expr *Ex = dyn_cast<Expr>(Head))
+ Head = Ex->IgnoreParenCasts();
+
+ switch (Head->getStmtClass()) {
+ // Case 1: Assignment operators modifying VarDecls
+ case Stmt::BinaryOperatorClass: {
+ const BinaryOperator *BO = cast<BinaryOperator>(Head);
+ // Look for a Decl on the LHS
+ const Decl *LHSDecl = getDecl(BO->getLHS()->IgnoreParenCasts());
+ if (!LHSDecl)
+ break;
+
+ // We found a binary operator with a DeclRefExpr on the LHS. We now check
+ // for any of the assignment operators, implying that this Decl is being
+ // written to.
+ switch (BO->getOpcode()) {
+ // Self-assignments don't count as use of a variable
+ case BO_Assign: {
+ // Look for a DeclRef on the RHS
+ const Decl *RHSDecl = getDecl(BO->getRHS()->IgnoreParenCasts());
+
+ // If the Decls match, we have self-assignment
+ if (LHSDecl == RHSDecl)
+ // Do not visit the children
+ continue;
+
+ }
+ case BO_AddAssign:
+ case BO_SubAssign:
+ case BO_MulAssign:
+ case BO_DivAssign:
+ case BO_AndAssign:
+ case BO_OrAssign:
+ case BO_XorAssign:
+ case BO_ShlAssign:
+ case BO_ShrAssign: {
+ const VarDecl *VD = dyn_cast<VarDecl>(LHSDecl);
+ // The DeclRefExpr is being assigned to - mark it as non-constant
+ if (VD)
+ NonConstants->insert(VD);
+ break;
+ }
+
+ default:
+ break;
+ }
+ break;
+ }
+
+ // Case 2: Pre/post increment/decrement and address of
+ case Stmt::UnaryOperatorClass: {
+ const UnaryOperator *UO = cast<UnaryOperator>(Head);
+
+ // Look for a DeclRef in the subexpression
+ const Decl *D = getDecl(UO->getSubExpr()->IgnoreParenCasts());
+ if (!D)
+ break;
+
+ // We found a unary operator with a DeclRef as a subexpression. We now
+ // check for any of the increment/decrement operators, as well as
+ // addressOf.
+ switch (UO->getOpcode()) {
+ case UO_PostDec:
+ case UO_PostInc:
+ case UO_PreDec:
+ case UO_PreInc:
+ // The DeclRef is being changed - mark it as non-constant
+ case UO_AddrOf: {
+ // If we are taking the address of the DeclRefExpr, assume it is
+ // non-constant.
+ const VarDecl *VD = dyn_cast<VarDecl>(D);
+ if (VD)
+ NonConstants->insert(VD);
+ break;
+ }
+
+ default:
+ break;
+ }
+ break;
+ }
+
+ // Case 3: Reference Declarations
+ case Stmt::DeclStmtClass: {
+ const DeclStmt *DS = cast<DeclStmt>(Head);
+ // Iterate over each decl and see if any of them contain reference decls
+ for (DeclStmt::const_decl_iterator I = DS->decl_begin(),
+ E = DS->decl_end(); I != E; ++I) {
+ // We only care about VarDecls
+ const VarDecl *VD = dyn_cast<VarDecl>(*I);
+ if (!VD)
+ continue;
+
+ // We found a VarDecl; make sure it is a reference type
+ if (!VD->getType().getTypePtr()->isReferenceType())
+ continue;
+
+ // Try to find a Decl in the initializer
+ const Decl *D = getDecl(VD->getInit()->IgnoreParenCasts());
+ if (!D)
+ break;
+
+ // If the reference is to another var, add the var to the non-constant
+ // list
+ if (const VarDecl *RefVD = dyn_cast<VarDecl>(D)) {
+ NonConstants->insert(RefVD);
+ continue;
+ }
+ }
+ break;
+ }
+
+ // Case 4: Block variable references
+ case Stmt::BlockDeclRefExprClass: {
+ const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(Head);
+ if (const VarDecl *VD = dyn_cast<VarDecl>(BDR->getDecl())) {
+ // Add the Decl to the used list
+ UsedVars->insert(VD);
+ continue;
+ }
+ break;
+ }
+
+ // Case 5: Variable references
+ case Stmt::DeclRefExprClass: {
+ const DeclRefExpr *DR = cast<DeclRefExpr>(Head);
+ if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
+ // Add the Decl to the used list
+ UsedVars->insert(VD);
+ continue;
+ }
+ break;
+ }
+
+ // Case 6: Block expressions
+ case Stmt::BlockExprClass: {
+ const BlockExpr *B = cast<BlockExpr>(Head);
+ // Add the body of the block to the list
+ WorkList.push_back(B->getBody());
+ continue;
+ }
+
+ default:
+ break;
+ } // switch (head->getStmtClass())
+
+ // Add all substatements to the worklist
+ for (Stmt::const_child_range I = Head->children(); I; ++I)
+ if (*I)
+ WorkList.push_back(*I);
+ } // while (!WorkList.empty())
+}
diff --git a/contrib/llvm/tools/clang/lib/Analysis/ReachableCode.cpp b/contrib/llvm/tools/clang/lib/Analysis/ReachableCode.cpp
new file mode 100644
index 0000000..7afa586
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/ReachableCode.cpp
@@ -0,0 +1,290 @@
+//=- ReachableCodePathInsensitive.cpp ---------------------------*- C++ --*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements a flow-sensitive, path-insensitive analysis of
+// determining reachable blocks within a CFG.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/SmallVector.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/StmtCXX.h"
+#include "clang/Analysis/Analyses/ReachableCode.h"
+#include "clang/Analysis/CFG.h"
+#include "clang/Analysis/AnalysisContext.h"
+#include "clang/Basic/SourceManager.h"
+
+using namespace clang;
+
+static SourceLocation GetUnreachableLoc(const CFGBlock &b, SourceRange &R1,
+ SourceRange &R2) {
+ const Stmt *S = 0;
+ unsigned sn = 0;
+ R1 = R2 = SourceRange();
+
+ if (sn < b.size()) {
+ CFGStmt CS = b[sn].getAs<CFGStmt>();
+ if (!CS)
+ return SourceLocation();
+
+ S = CS.getStmt();
+ } else if (b.getTerminator())
+ S = b.getTerminator();
+ else
+ return SourceLocation();
+
+ if (const Expr *Ex = dyn_cast<Expr>(S))
+ S = Ex->IgnoreParenImpCasts();
+
+ switch (S->getStmtClass()) {
+ case Expr::BinaryOperatorClass: {
+ const BinaryOperator *BO = cast<BinaryOperator>(S);
+ if (BO->getOpcode() == BO_Comma) {
+ if (sn+1 < b.size())
+ return b[sn+1].getAs<CFGStmt>().getStmt()->getLocStart();
+ const CFGBlock *n = &b;
+ while (1) {
+ if (n->getTerminator())
+ return n->getTerminator()->getLocStart();
+ if (n->succ_size() != 1)
+ return SourceLocation();
+ n = n[0].succ_begin()[0];
+ if (n->pred_size() != 1)
+ return SourceLocation();
+ if (!n->empty())
+ return n[0][0].getAs<CFGStmt>().getStmt()->getLocStart();
+ }
+ }
+ R1 = BO->getLHS()->getSourceRange();
+ R2 = BO->getRHS()->getSourceRange();
+ return BO->getOperatorLoc();
+ }
+ case Expr::UnaryOperatorClass: {
+ const UnaryOperator *UO = cast<UnaryOperator>(S);
+ R1 = UO->getSubExpr()->getSourceRange();
+ return UO->getOperatorLoc();
+ }
+ case Expr::CompoundAssignOperatorClass: {
+ const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(S);
+ R1 = CAO->getLHS()->getSourceRange();
+ R2 = CAO->getRHS()->getSourceRange();
+ return CAO->getOperatorLoc();
+ }
+ case Expr::BinaryConditionalOperatorClass:
+ case Expr::ConditionalOperatorClass: {
+ const AbstractConditionalOperator *CO =
+ cast<AbstractConditionalOperator>(S);
+ return CO->getQuestionLoc();
+ }
+ case Expr::MemberExprClass: {
+ const MemberExpr *ME = cast<MemberExpr>(S);
+ R1 = ME->getSourceRange();
+ return ME->getMemberLoc();
+ }
+ case Expr::ArraySubscriptExprClass: {
+ const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(S);
+ R1 = ASE->getLHS()->getSourceRange();
+ R2 = ASE->getRHS()->getSourceRange();
+ return ASE->getRBracketLoc();
+ }
+ case Expr::CStyleCastExprClass: {
+ const CStyleCastExpr *CSC = cast<CStyleCastExpr>(S);
+ R1 = CSC->getSubExpr()->getSourceRange();
+ return CSC->getLParenLoc();
+ }
+ case Expr::CXXFunctionalCastExprClass: {
+ const CXXFunctionalCastExpr *CE = cast <CXXFunctionalCastExpr>(S);
+ R1 = CE->getSubExpr()->getSourceRange();
+ return CE->getTypeBeginLoc();
+ }
+ case Stmt::CXXTryStmtClass: {
+ return cast<CXXTryStmt>(S)->getHandler(0)->getCatchLoc();
+ }
+ default: ;
+ }
+ R1 = S->getSourceRange();
+ return S->getLocStart();
+}
+
+static SourceLocation MarkLiveTop(const CFGBlock *Start,
+ llvm::BitVector &reachable,
+ SourceManager &SM) {
+
+ // Prep work worklist.
+ llvm::SmallVector<const CFGBlock*, 32> WL;
+ WL.push_back(Start);
+
+ SourceRange R1, R2;
+ SourceLocation top = GetUnreachableLoc(*Start, R1, R2);
+
+ bool FromMainFile = false;
+ bool FromSystemHeader = false;
+ bool TopValid = false;
+
+ if (top.isValid()) {
+ FromMainFile = SM.isFromMainFile(top);
+ FromSystemHeader = SM.isInSystemHeader(top);
+ TopValid = true;
+ }
+
+ // Solve
+ CFGBlock::FilterOptions FO;
+ FO.IgnoreDefaultsWithCoveredEnums = 1;
+
+ while (!WL.empty()) {
+ const CFGBlock *item = WL.back();
+ WL.pop_back();
+
+ SourceLocation c = GetUnreachableLoc(*item, R1, R2);
+ if (c.isValid()
+ && (!TopValid
+ || (SM.isFromMainFile(c) && !FromMainFile)
+ || (FromSystemHeader && !SM.isInSystemHeader(c))
+ || SM.isBeforeInTranslationUnit(c, top))) {
+ top = c;
+ FromMainFile = SM.isFromMainFile(top);
+ FromSystemHeader = SM.isInSystemHeader(top);
+ }
+
+ reachable.set(item->getBlockID());
+ for (CFGBlock::filtered_succ_iterator I =
+ item->filtered_succ_start_end(FO); I.hasMore(); ++I)
+ if (const CFGBlock *B = *I) {
+ unsigned blockID = B->getBlockID();
+ if (!reachable[blockID]) {
+ reachable.set(blockID);
+ WL.push_back(B);
+ }
+ }
+ }
+
+ return top;
+}
+
+static int LineCmp(const void *p1, const void *p2) {
+ SourceLocation *Line1 = (SourceLocation *)p1;
+ SourceLocation *Line2 = (SourceLocation *)p2;
+ return !(*Line1 < *Line2);
+}
+
+namespace {
+struct ErrLoc {
+ SourceLocation Loc;
+ SourceRange R1;
+ SourceRange R2;
+ ErrLoc(SourceLocation l, SourceRange r1, SourceRange r2)
+ : Loc(l), R1(r1), R2(r2) { }
+};
+}
+namespace clang { namespace reachable_code {
+
+/// ScanReachableFromBlock - Mark all blocks reachable from Start.
+/// Returns the total number of blocks that were marked reachable.
+unsigned ScanReachableFromBlock(const CFGBlock &Start,
+ llvm::BitVector &Reachable) {
+ unsigned count = 0;
+ llvm::SmallVector<const CFGBlock*, 32> WL;
+
+ // Prep work queue
+ Reachable.set(Start.getBlockID());
+ ++count;
+ WL.push_back(&Start);
+
+ // Find the reachable blocks from 'Start'.
+ CFGBlock::FilterOptions FO;
+ FO.IgnoreDefaultsWithCoveredEnums = 1;
+
+ while (!WL.empty()) {
+ const CFGBlock *item = WL.back();
+ WL.pop_back();
+
+ // Look at the successors and mark then reachable.
+ for (CFGBlock::filtered_succ_iterator I= item->filtered_succ_start_end(FO);
+ I.hasMore(); ++I)
+ if (const CFGBlock *B = *I) {
+ unsigned blockID = B->getBlockID();
+ if (!Reachable[blockID]) {
+ Reachable.set(blockID);
+ ++count;
+ WL.push_back(B);
+ }
+ }
+ }
+ return count;
+}
+
+void FindUnreachableCode(AnalysisContext &AC, Callback &CB) {
+ CFG *cfg = AC.getCFG();
+ if (!cfg)
+ return;
+
+ // Scan for reachable blocks.
+ llvm::BitVector reachable(cfg->getNumBlockIDs());
+ unsigned numReachable = ScanReachableFromBlock(cfg->getEntry(), reachable);
+
+ // If there are no unreachable blocks, we're done.
+ if (numReachable == cfg->getNumBlockIDs())
+ return;
+
+ SourceRange R1, R2;
+
+ llvm::SmallVector<ErrLoc, 24> lines;
+ bool AddEHEdges = AC.getAddEHEdges();
+
+ // First, give warnings for blocks with no predecessors, as they
+ // can't be part of a loop.
+ for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
+ CFGBlock &b = **I;
+ if (!reachable[b.getBlockID()]) {
+ if (b.pred_empty()) {
+ if (!AddEHEdges
+ && dyn_cast_or_null<CXXTryStmt>(b.getTerminator().getStmt())) {
+ // When not adding EH edges from calls, catch clauses
+ // can otherwise seem dead. Avoid noting them as dead.
+ numReachable += ScanReachableFromBlock(b, reachable);
+ continue;
+ }
+ SourceLocation c = GetUnreachableLoc(b, R1, R2);
+ if (!c.isValid()) {
+ // Blocks without a location can't produce a warning, so don't mark
+ // reachable blocks from here as live.
+ reachable.set(b.getBlockID());
+ ++numReachable;
+ continue;
+ }
+ lines.push_back(ErrLoc(c, R1, R2));
+ // Avoid excessive errors by marking everything reachable from here
+ numReachable += ScanReachableFromBlock(b, reachable);
+ }
+ }
+ }
+
+ if (numReachable < cfg->getNumBlockIDs()) {
+ // And then give warnings for the tops of loops.
+ for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
+ CFGBlock &b = **I;
+ if (!reachable[b.getBlockID()])
+ // Avoid excessive errors by marking everything reachable from here
+ lines.push_back(ErrLoc(MarkLiveTop(&b, reachable,
+ AC.getASTContext().getSourceManager()),
+ SourceRange(), SourceRange()));
+ }
+ }
+
+ llvm::array_pod_sort(lines.begin(), lines.end(), LineCmp);
+
+ for (llvm::SmallVectorImpl<ErrLoc>::iterator I=lines.begin(), E=lines.end();
+ I != E; ++I)
+ if (I->Loc.isValid())
+ CB.HandleUnreachable(I->Loc, I->R1, I->R2);
+}
+
+}} // end namespace clang::reachable_code
diff --git a/contrib/llvm/tools/clang/lib/Analysis/ScanfFormatString.cpp b/contrib/llvm/tools/clang/lib/Analysis/ScanfFormatString.cpp
new file mode 100644
index 0000000..6a8673a
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/ScanfFormatString.cpp
@@ -0,0 +1,221 @@
+//= ScanfFormatString.cpp - Analysis of printf format strings --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Handling of format string in scanf and friends. The structure of format
+// strings for fscanf() are described in C99 7.19.6.2.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/Analyses/FormatString.h"
+#include "FormatStringParsing.h"
+
+using clang::analyze_format_string::ArgTypeResult;
+using clang::analyze_format_string::FormatStringHandler;
+using clang::analyze_format_string::LengthModifier;
+using clang::analyze_format_string::OptionalAmount;
+using clang::analyze_format_string::ConversionSpecifier;
+using clang::analyze_scanf::ScanfConversionSpecifier;
+using clang::analyze_scanf::ScanfSpecifier;
+using clang::UpdateOnReturn;
+
+typedef clang::analyze_format_string::SpecifierResult<ScanfSpecifier>
+ ScanfSpecifierResult;
+
+static bool ParseScanList(FormatStringHandler &H,
+ ScanfConversionSpecifier &CS,
+ const char *&Beg, const char *E) {
+ const char *I = Beg;
+ const char *start = I - 1;
+ UpdateOnReturn <const char*> UpdateBeg(Beg, I);
+
+ // No more characters?
+ if (I == E) {
+ H.HandleIncompleteScanList(start, I);
+ return true;
+ }
+
+ // Special case: ']' is the first character.
+ if (*I == ']') {
+ if (++I == E) {
+ H.HandleIncompleteScanList(start, I - 1);
+ return true;
+ }
+ }
+
+ // Look for a ']' character which denotes the end of the scan list.
+ while (*I != ']') {
+ if (++I == E) {
+ H.HandleIncompleteScanList(start, I - 1);
+ return true;
+ }
+ }
+
+ CS.setEndScanList(I);
+ return false;
+}
+
+// FIXME: Much of this is copy-paste from ParsePrintfSpecifier.
+// We can possibly refactor.
+static ScanfSpecifierResult ParseScanfSpecifier(FormatStringHandler &H,
+ const char *&Beg,
+ const char *E,
+ unsigned &argIndex) {
+
+ using namespace clang::analyze_scanf;
+ const char *I = Beg;
+ const char *Start = 0;
+ UpdateOnReturn <const char*> UpdateBeg(Beg, I);
+
+ // Look for a '%' character that indicates the start of a format specifier.
+ for ( ; I != E ; ++I) {
+ char c = *I;
+ if (c == '\0') {
+ // Detect spurious null characters, which are likely errors.
+ H.HandleNullChar(I);
+ return true;
+ }
+ if (c == '%') {
+ Start = I++; // Record the start of the format specifier.
+ break;
+ }
+ }
+
+ // No format specifier found?
+ if (!Start)
+ return false;
+
+ if (I == E) {
+ // No more characters left?
+ H.HandleIncompleteSpecifier(Start, E - Start);
+ return true;
+ }
+
+ ScanfSpecifier FS;
+ if (ParseArgPosition(H, FS, Start, I, E))
+ return true;
+
+ if (I == E) {
+ // No more characters left?
+ H.HandleIncompleteSpecifier(Start, E - Start);
+ return true;
+ }
+
+ // Look for '*' flag if it is present.
+ if (*I == '*') {
+ FS.setSuppressAssignment(I);
+ if (++I == E) {
+ H.HandleIncompleteSpecifier(Start, E - Start);
+ return true;
+ }
+ }
+
+ // Look for the field width (if any). Unlike printf, this is either
+ // a fixed integer or isn't present.
+ const OptionalAmount &Amt = clang::analyze_format_string::ParseAmount(I, E);
+ if (Amt.getHowSpecified() != OptionalAmount::NotSpecified) {
+ assert(Amt.getHowSpecified() == OptionalAmount::Constant);
+ FS.setFieldWidth(Amt);
+
+ if (I == E) {
+ // No more characters left?
+ H.HandleIncompleteSpecifier(Start, E - Start);
+ return true;
+ }
+ }
+
+ // Look for the length modifier.
+ if (ParseLengthModifier(FS, I, E) && I == E) {
+ // No more characters left?
+ H.HandleIncompleteSpecifier(Start, E - Start);
+ return true;
+ }
+
+ // Detect spurious null characters, which are likely errors.
+ if (*I == '\0') {
+ H.HandleNullChar(I);
+ return true;
+ }
+
+ // Finally, look for the conversion specifier.
+ const char *conversionPosition = I++;
+ ScanfConversionSpecifier::Kind k = ScanfConversionSpecifier::InvalidSpecifier;
+ switch (*conversionPosition) {
+ default:
+ break;
+ case '%': k = ConversionSpecifier::PercentArg; break;
+ case 'A': k = ConversionSpecifier::AArg; break;
+ case 'E': k = ConversionSpecifier::EArg; break;
+ case 'F': k = ConversionSpecifier::FArg; break;
+ case 'G': k = ConversionSpecifier::GArg; break;
+ case 'X': k = ConversionSpecifier::XArg; break;
+ case 'a': k = ConversionSpecifier::aArg; break;
+ case 'd': k = ConversionSpecifier::dArg; break;
+ case 'e': k = ConversionSpecifier::eArg; break;
+ case 'f': k = ConversionSpecifier::fArg; break;
+ case 'g': k = ConversionSpecifier::gArg; break;
+ case 'i': k = ConversionSpecifier::iArg; break;
+ case 'n': k = ConversionSpecifier::nArg; break;
+ case 'c': k = ConversionSpecifier::cArg; break;
+ case 'C': k = ConversionSpecifier::CArg; break;
+ case 'S': k = ConversionSpecifier::SArg; break;
+ case '[': k = ConversionSpecifier::ScanListArg; break;
+ case 'u': k = ConversionSpecifier::uArg; break;
+ case 'x': k = ConversionSpecifier::xArg; break;
+ case 'o': k = ConversionSpecifier::oArg; break;
+ case 's': k = ConversionSpecifier::sArg; break;
+ case 'p': k = ConversionSpecifier::pArg; break;
+ }
+ ScanfConversionSpecifier CS(conversionPosition, k);
+ if (k == ScanfConversionSpecifier::ScanListArg) {
+ if (!ParseScanList(H, CS, I, E))
+ return true;
+ }
+ FS.setConversionSpecifier(CS);
+ if (CS.consumesDataArgument() && !FS.getSuppressAssignment()
+ && !FS.usesPositionalArg())
+ FS.setArgIndex(argIndex++);
+
+ // FIXME: '%' and '*' doesn't make sense. Issue a warning.
+ // FIXME: 'ConsumedSoFar' and '*' doesn't make sense.
+
+ if (k == ScanfConversionSpecifier::InvalidSpecifier) {
+ // Assume the conversion takes one argument.
+ return !H.HandleInvalidScanfConversionSpecifier(FS, Beg, I - Beg);
+ }
+ return ScanfSpecifierResult(Start, FS);
+}
+
+bool clang::analyze_format_string::ParseScanfString(FormatStringHandler &H,
+ const char *I,
+ const char *E) {
+
+ unsigned argIndex = 0;
+
+ // Keep looking for a format specifier until we have exhausted the string.
+ while (I != E) {
+ const ScanfSpecifierResult &FSR = ParseScanfSpecifier(H, I, E, argIndex);
+ // Did a fail-stop error of any kind occur when parsing the specifier?
+ // If so, don't do any more processing.
+ if (FSR.shouldStop())
+ return true;;
+ // Did we exhaust the string or encounter an error that
+ // we can recover from?
+ if (!FSR.hasValue())
+ continue;
+ // We have a format specifier. Pass it to the callback.
+ if (!H.HandleScanfSpecifier(FSR.getValue(), FSR.getStart(),
+ I - FSR.getStart())) {
+ return true;
+ }
+ }
+ assert(I == E && "Format string not exhausted");
+ return false;
+}
+
+
diff --git a/contrib/llvm/tools/clang/lib/Analysis/UninitializedValues.cpp b/contrib/llvm/tools/clang/lib/Analysis/UninitializedValues.cpp
new file mode 100644
index 0000000..c08cbed
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/UninitializedValues.cpp
@@ -0,0 +1,317 @@
+//==- UninitializedValues.cpp - Find Uninitialized Values -------*- C++ --*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements Uninitialized Values analysis for source-level CFGs.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/Analyses/UninitializedValues.h"
+#include "clang/Analysis/Visitors/CFGRecStmtDeclVisitor.h"
+#include "clang/Analysis/AnalysisDiagnostic.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/Analysis/FlowSensitive/DataflowSolver.h"
+
+#include "llvm/ADT/SmallPtrSet.h"
+
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// Dataflow initialization logic.
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class RegisterDecls
+ : public CFGRecStmtDeclVisitor<RegisterDecls> {
+
+ UninitializedValues::AnalysisDataTy& AD;
+public:
+ RegisterDecls(UninitializedValues::AnalysisDataTy& ad) : AD(ad) {}
+
+ void VisitVarDecl(VarDecl* VD) { AD.Register(VD); }
+ CFG& getCFG() { return AD.getCFG(); }
+};
+
+} // end anonymous namespace
+
+void UninitializedValues::InitializeValues(const CFG& cfg) {
+ RegisterDecls R(getAnalysisData());
+ cfg.VisitBlockStmts(R);
+}
+
+//===----------------------------------------------------------------------===//
+// Transfer functions.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class TransferFuncs
+ : public CFGStmtVisitor<TransferFuncs,bool> {
+
+ UninitializedValues::ValTy V;
+ UninitializedValues::AnalysisDataTy& AD;
+public:
+ TransferFuncs(UninitializedValues::AnalysisDataTy& ad) : AD(ad) {}
+
+ UninitializedValues::ValTy& getVal() { return V; }
+ CFG& getCFG() { return AD.getCFG(); }
+
+ void SetTopValue(UninitializedValues::ValTy& X) {
+ X.setDeclValues(AD);
+ X.resetBlkExprValues(AD);
+ }
+
+ bool VisitDeclRefExpr(DeclRefExpr* DR);
+ bool VisitBinaryOperator(BinaryOperator* B);
+ bool VisitUnaryOperator(UnaryOperator* U);
+ bool VisitStmt(Stmt* S);
+ bool VisitCallExpr(CallExpr* C);
+ bool VisitDeclStmt(DeclStmt* D);
+ bool VisitAbstractConditionalOperator(AbstractConditionalOperator* C);
+ bool BlockStmt_VisitObjCForCollectionStmt(ObjCForCollectionStmt* S);
+
+ bool Visit(Stmt *S);
+ bool BlockStmt_VisitExpr(Expr* E);
+
+ void VisitTerminator(CFGBlock* B) { }
+
+ void setCurrentBlock(const CFGBlock *block) {}
+};
+
+static const bool Initialized = false;
+static const bool Uninitialized = true;
+
+bool TransferFuncs::VisitDeclRefExpr(DeclRefExpr* DR) {
+
+ if (VarDecl* VD = dyn_cast<VarDecl>(DR->getDecl()))
+ if (VD->isLocalVarDecl()) {
+
+ if (AD.Observer)
+ AD.Observer->ObserveDeclRefExpr(V, AD, DR, VD);
+
+ // Pseudo-hack to prevent cascade of warnings. If an accessed variable
+ // is uninitialized, then we are already going to flag a warning for
+ // this variable, which a "source" of uninitialized values.
+ // We can otherwise do a full "taint" of uninitialized values. The
+ // client has both options by toggling AD.FullUninitTaint.
+
+ if (AD.FullUninitTaint)
+ return V(VD,AD);
+ }
+
+ return Initialized;
+}
+
+static VarDecl* FindBlockVarDecl(Expr* E) {
+
+ // Blast through casts and parentheses to find any DeclRefExprs that
+ // refer to a block VarDecl.
+
+ if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
+ if (VarDecl* VD = dyn_cast<VarDecl>(DR->getDecl()))
+ if (VD->isLocalVarDecl()) return VD;
+
+ return NULL;
+}
+
+bool TransferFuncs::VisitBinaryOperator(BinaryOperator* B) {
+
+ if (VarDecl* VD = FindBlockVarDecl(B->getLHS()))
+ if (B->isAssignmentOp()) {
+ if (B->getOpcode() == BO_Assign)
+ return V(VD,AD) = Visit(B->getRHS());
+ else // Handle +=, -=, *=, etc. We do want '&', not '&&'.
+ return V(VD,AD) = Visit(B->getLHS()) & Visit(B->getRHS());
+ }
+
+ return VisitStmt(B);
+}
+
+bool TransferFuncs::VisitDeclStmt(DeclStmt* S) {
+ for (DeclStmt::decl_iterator I=S->decl_begin(), E=S->decl_end(); I!=E; ++I) {
+ VarDecl *VD = dyn_cast<VarDecl>(*I);
+ if (VD && VD->isLocalVarDecl()) {
+ if (Stmt* I = VD->getInit()) {
+ // Visit the subexpression to check for uses of uninitialized values,
+ // even if we don't propagate that value.
+ bool isSubExprUninit = Visit(I);
+ V(VD,AD) = AD.FullUninitTaint ? isSubExprUninit : Initialized;
+ }
+ else {
+ // Special case for declarations of array types. For things like:
+ //
+ // char x[10];
+ //
+ // we should treat "x" as being initialized, because the variable
+ // "x" really refers to the memory block. Clearly x[1] is
+ // uninitialized, but expressions like "(char *) x" really do refer to
+ // an initialized value. This simple dataflow analysis does not reason
+ // about the contents of arrays, although it could be potentially
+ // extended to do so if the array were of constant size.
+ if (VD->getType()->isArrayType())
+ V(VD,AD) = Initialized;
+ else
+ V(VD,AD) = Uninitialized;
+ }
+ }
+ }
+ return Uninitialized; // Value is never consumed.
+}
+
+bool TransferFuncs::VisitCallExpr(CallExpr* C) {
+ VisitChildren(C);
+ return Initialized;
+}
+
+bool TransferFuncs::VisitUnaryOperator(UnaryOperator* U) {
+ switch (U->getOpcode()) {
+ case UO_AddrOf: {
+ VarDecl* VD = FindBlockVarDecl(U->getSubExpr());
+ if (VD && VD->isLocalVarDecl())
+ return V(VD,AD) = Initialized;
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ return Visit(U->getSubExpr());
+}
+
+bool
+TransferFuncs::BlockStmt_VisitObjCForCollectionStmt(ObjCForCollectionStmt* S) {
+ // This represents a use of the 'collection'
+ bool x = Visit(S->getCollection());
+
+ if (x == Uninitialized)
+ return Uninitialized;
+
+ // This represents an initialization of the 'element' value.
+ Stmt* Element = S->getElement();
+ VarDecl* VD = 0;
+
+ if (DeclStmt* DS = dyn_cast<DeclStmt>(Element))
+ VD = cast<VarDecl>(DS->getSingleDecl());
+ else {
+ Expr* ElemExpr = cast<Expr>(Element)->IgnoreParens();
+
+ // Initialize the value of the reference variable.
+ if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(ElemExpr))
+ VD = cast<VarDecl>(DR->getDecl());
+ else
+ return Visit(ElemExpr);
+ }
+
+ V(VD,AD) = Initialized;
+ return Initialized;
+}
+
+
+bool TransferFuncs::
+VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
+ Visit(C->getCond());
+
+ bool rhsResult = Visit(C->getFalseExpr());
+ // Handle the GNU extension for missing LHS.
+ if (isa<ConditionalOperator>(C))
+ return Visit(C->getTrueExpr()) & rhsResult; // Yes: we want &, not &&.
+ else
+ return rhsResult;
+}
+
+bool TransferFuncs::VisitStmt(Stmt* S) {
+ bool x = Initialized;
+
+ // We don't stop at the first subexpression that is Uninitialized because
+ // evaluating some subexpressions may result in propogating "Uninitialized"
+ // or "Initialized" to variables referenced in the other subexpressions.
+ for (Stmt::child_range I = S->children(); I; ++I)
+ if (*I && Visit(*I) == Uninitialized) x = Uninitialized;
+
+ return x;
+}
+
+bool TransferFuncs::Visit(Stmt *S) {
+ if (AD.isTracked(static_cast<Expr*>(S))) return V(static_cast<Expr*>(S),AD);
+ else return static_cast<CFGStmtVisitor<TransferFuncs,bool>*>(this)->Visit(S);
+}
+
+bool TransferFuncs::BlockStmt_VisitExpr(Expr* E) {
+ bool x = static_cast<CFGStmtVisitor<TransferFuncs,bool>*>(this)->Visit(E);
+ if (AD.isTracked(E)) V(E,AD) = x;
+ return x;
+}
+
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// Merge operator.
+//
+// In our transfer functions we take the approach that any
+// combination of uninitialized values, e.g.
+// Uninitialized + ___ = Uninitialized.
+//
+// Merges take the same approach, preferring soundness. At a confluence point,
+// if any predecessor has a variable marked uninitialized, the value is
+// uninitialized at the confluence point.
+//===----------------------------------------------------------------------===//
+
+namespace {
+ typedef StmtDeclBitVector_Types::Union Merge;
+ typedef DataflowSolver<UninitializedValues,TransferFuncs,Merge> Solver;
+}
+
+//===----------------------------------------------------------------------===//
+// Uninitialized values checker. Scan an AST and flag variable uses
+//===----------------------------------------------------------------------===//
+
+UninitializedValues_ValueTypes::ObserverTy::~ObserverTy() {}
+
+namespace {
+class UninitializedValuesChecker
+ : public UninitializedValues::ObserverTy {
+
+ ASTContext &Ctx;
+ Diagnostic &Diags;
+ llvm::SmallPtrSet<VarDecl*,10> AlreadyWarned;
+
+public:
+ UninitializedValuesChecker(ASTContext &ctx, Diagnostic &diags)
+ : Ctx(ctx), Diags(diags) {}
+
+ virtual void ObserveDeclRefExpr(UninitializedValues::ValTy& V,
+ UninitializedValues::AnalysisDataTy& AD,
+ DeclRefExpr* DR, VarDecl* VD) {
+
+ assert ( AD.isTracked(VD) && "Unknown VarDecl.");
+
+ if (V(VD,AD) == Uninitialized)
+ if (AlreadyWarned.insert(VD))
+ Diags.Report(Ctx.getFullLoc(DR->getSourceRange().getBegin()),
+ diag::warn_uninit_val);
+ }
+};
+} // end anonymous namespace
+
+namespace clang {
+void CheckUninitializedValues(CFG& cfg, ASTContext &Ctx, Diagnostic &Diags,
+ bool FullUninitTaint) {
+
+ // Compute the uninitialized values information.
+ UninitializedValues U(cfg);
+ U.getAnalysisData().FullUninitTaint = FullUninitTaint;
+ Solver S(U);
+ S.runOnCFG(cfg);
+
+ // Scan for DeclRefExprs that use uninitialized values.
+ UninitializedValuesChecker Observer(Ctx,Diags);
+ U.getAnalysisData().Observer = &Observer;
+ S.runOnAllBlocks(cfg);
+}
+} // end namespace clang
diff --git a/contrib/llvm/tools/clang/lib/Analysis/UninitializedValuesV2.cpp b/contrib/llvm/tools/clang/lib/Analysis/UninitializedValuesV2.cpp
new file mode 100644
index 0000000..75eccbf
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/UninitializedValuesV2.cpp
@@ -0,0 +1,610 @@
+//==- UninitializedValuesV2.cpp - Find Uninitialized Values -----*- C++ --*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements uninitialized values analysis for source-level CFGs.
+//
+//===----------------------------------------------------------------------===//
+
+#include <utility>
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/DenseMap.h"
+#include "clang/AST/Decl.h"
+#include "clang/Analysis/CFG.h"
+#include "clang/Analysis/AnalysisContext.h"
+#include "clang/Analysis/Visitors/CFGRecStmtDeclVisitor.h"
+#include "clang/Analysis/Analyses/UninitializedValuesV2.h"
+#include "clang/Analysis/Support/SaveAndRestore.h"
+
+using namespace clang;
+
+static bool isTrackedVar(const VarDecl *vd, const DeclContext *dc) {
+ return vd->isLocalVarDecl() && !vd->hasGlobalStorage() &&
+ vd->getType()->isScalarType() &&
+ vd->getDeclContext() == dc;
+}
+
+//------------------------------------------------------------------------====//
+// DeclToBit: a mapping from Decls we track to bitvector indices.
+//====------------------------------------------------------------------------//
+
+namespace {
+class DeclToBit {
+ llvm::DenseMap<const VarDecl *, unsigned> map;
+public:
+ DeclToBit() {}
+
+ /// Compute the actual mapping from declarations to bits.
+ void computeMap(const DeclContext &dc);
+
+ /// Return the number of declarations in the map.
+ unsigned size() const { return map.size(); }
+
+ /// Returns the bit vector index for a given declaration.
+ llvm::Optional<unsigned> getBitVectorIndex(const VarDecl *d);
+};
+}
+
+void DeclToBit::computeMap(const DeclContext &dc) {
+ unsigned count = 0;
+ DeclContext::specific_decl_iterator<VarDecl> I(dc.decls_begin()),
+ E(dc.decls_end());
+ for ( ; I != E; ++I) {
+ const VarDecl *vd = *I;
+ if (isTrackedVar(vd, &dc))
+ map[vd] = count++;
+ }
+}
+
+llvm::Optional<unsigned> DeclToBit::getBitVectorIndex(const VarDecl *d) {
+ llvm::DenseMap<const VarDecl *, unsigned>::iterator I = map.find(d);
+ if (I == map.end())
+ return llvm::Optional<unsigned>();
+ return I->second;
+}
+
+//------------------------------------------------------------------------====//
+// CFGBlockValues: dataflow values for CFG blocks.
+//====------------------------------------------------------------------------//
+
+typedef std::pair<llvm::BitVector *, llvm::BitVector *> BVPair;
+
+namespace {
+class CFGBlockValues {
+ const CFG &cfg;
+ BVPair *vals;
+ llvm::BitVector scratch;
+ DeclToBit declToBit;
+
+ llvm::BitVector &lazyCreate(llvm::BitVector *&bv);
+public:
+ CFGBlockValues(const CFG &cfg);
+ ~CFGBlockValues();
+
+ void computeSetOfDeclarations(const DeclContext &dc);
+ llvm::BitVector &getBitVector(const CFGBlock *block,
+ const CFGBlock *dstBlock);
+
+ BVPair &getBitVectors(const CFGBlock *block, bool shouldLazyCreate);
+
+ void mergeIntoScratch(llvm::BitVector const &source, bool isFirst);
+ bool updateBitVectorWithScratch(const CFGBlock *block);
+ bool updateBitVectors(const CFGBlock *block, const BVPair &newVals);
+
+ bool hasNoDeclarations() const {
+ return declToBit.size() == 0;
+ }
+
+ void resetScratch();
+ llvm::BitVector &getScratch() { return scratch; }
+
+ llvm::BitVector::reference operator[](const VarDecl *vd);
+};
+}
+
+CFGBlockValues::CFGBlockValues(const CFG &c) : cfg(c), vals(0) {
+ unsigned n = cfg.getNumBlockIDs();
+ if (!n)
+ return;
+ vals = new std::pair<llvm::BitVector*, llvm::BitVector*>[n];
+ memset(vals, 0, sizeof(*vals) * n);
+}
+
+CFGBlockValues::~CFGBlockValues() {
+ unsigned n = cfg.getNumBlockIDs();
+ if (n == 0)
+ return;
+ for (unsigned i = 0; i < n; ++i) {
+ delete vals[i].first;
+ delete vals[i].second;
+ }
+ delete [] vals;
+}
+
+void CFGBlockValues::computeSetOfDeclarations(const DeclContext &dc) {
+ declToBit.computeMap(dc);
+ scratch.resize(declToBit.size());
+}
+
+llvm::BitVector &CFGBlockValues::lazyCreate(llvm::BitVector *&bv) {
+ if (!bv)
+ bv = new llvm::BitVector(declToBit.size());
+ return *bv;
+}
+
+/// This function pattern matches for a '&&' or '||' that appears at
+/// the beginning of a CFGBlock that also (1) has a terminator and
+/// (2) has no other elements. If such an expression is found, it is returned.
+static BinaryOperator *getLogicalOperatorInChain(const CFGBlock *block) {
+ if (block->empty())
+ return 0;
+
+ CFGStmt cstmt = block->front().getAs<CFGStmt>();
+ BinaryOperator *b = llvm::dyn_cast_or_null<BinaryOperator>(cstmt.getStmt());
+
+ if (!b || !b->isLogicalOp())
+ return 0;
+
+ if (block->pred_size() == 2 &&
+ ((block->succ_size() == 2 && block->getTerminatorCondition() == b) ||
+ block->size() == 1))
+ return b;
+
+ return 0;
+}
+
+llvm::BitVector &CFGBlockValues::getBitVector(const CFGBlock *block,
+ const CFGBlock *dstBlock) {
+ unsigned idx = block->getBlockID();
+ if (dstBlock && getLogicalOperatorInChain(block)) {
+ if (*block->succ_begin() == dstBlock)
+ return lazyCreate(vals[idx].first);
+ assert(*(block->succ_begin()+1) == dstBlock);
+ return lazyCreate(vals[idx].second);
+ }
+
+ assert(vals[idx].second == 0);
+ return lazyCreate(vals[idx].first);
+}
+
+BVPair &CFGBlockValues::getBitVectors(const clang::CFGBlock *block,
+ bool shouldLazyCreate) {
+ unsigned idx = block->getBlockID();
+ lazyCreate(vals[idx].first);
+ if (shouldLazyCreate)
+ lazyCreate(vals[idx].second);
+ return vals[idx];
+}
+
+void CFGBlockValues::mergeIntoScratch(llvm::BitVector const &source,
+ bool isFirst) {
+ if (isFirst)
+ scratch = source;
+ else
+ scratch |= source;
+}
+#if 0
+static void printVector(const CFGBlock *block, llvm::BitVector &bv,
+ unsigned num) {
+
+ llvm::errs() << block->getBlockID() << " :";
+ for (unsigned i = 0; i < bv.size(); ++i) {
+ llvm::errs() << ' ' << bv[i];
+ }
+ llvm::errs() << " : " << num << '\n';
+}
+#endif
+
+bool CFGBlockValues::updateBitVectorWithScratch(const CFGBlock *block) {
+ llvm::BitVector &dst = getBitVector(block, 0);
+ bool changed = (dst != scratch);
+ if (changed)
+ dst = scratch;
+#if 0
+ printVector(block, scratch, 0);
+#endif
+ return changed;
+}
+
+bool CFGBlockValues::updateBitVectors(const CFGBlock *block,
+ const BVPair &newVals) {
+ BVPair &vals = getBitVectors(block, true);
+ bool changed = *newVals.first != *vals.first ||
+ *newVals.second != *vals.second;
+ *vals.first = *newVals.first;
+ *vals.second = *newVals.second;
+#if 0
+ printVector(block, *vals.first, 1);
+ printVector(block, *vals.second, 2);
+#endif
+ return changed;
+}
+
+void CFGBlockValues::resetScratch() {
+ scratch.reset();
+}
+
+llvm::BitVector::reference CFGBlockValues::operator[](const VarDecl *vd) {
+ const llvm::Optional<unsigned> &idx = declToBit.getBitVectorIndex(vd);
+ assert(idx.hasValue());
+ return scratch[idx.getValue()];
+}
+
+//------------------------------------------------------------------------====//
+// Worklist: worklist for dataflow analysis.
+//====------------------------------------------------------------------------//
+
+namespace {
+class DataflowWorklist {
+ llvm::SmallVector<const CFGBlock *, 20> worklist;
+ llvm::BitVector enqueuedBlocks;
+public:
+ DataflowWorklist(const CFG &cfg) : enqueuedBlocks(cfg.getNumBlockIDs()) {}
+
+ void enqueue(const CFGBlock *block);
+ void enqueueSuccessors(const CFGBlock *block);
+ const CFGBlock *dequeue();
+
+};
+}
+
+void DataflowWorklist::enqueue(const CFGBlock *block) {
+ if (!block)
+ return;
+ unsigned idx = block->getBlockID();
+ if (enqueuedBlocks[idx])
+ return;
+ worklist.push_back(block);
+ enqueuedBlocks[idx] = true;
+}
+
+void DataflowWorklist::enqueueSuccessors(const clang::CFGBlock *block) {
+ for (CFGBlock::const_succ_iterator I = block->succ_begin(),
+ E = block->succ_end(); I != E; ++I) {
+ enqueue(*I);
+ }
+}
+
+const CFGBlock *DataflowWorklist::dequeue() {
+ if (worklist.empty())
+ return 0;
+ const CFGBlock *b = worklist.back();
+ worklist.pop_back();
+ enqueuedBlocks[b->getBlockID()] = false;
+ return b;
+}
+
+//------------------------------------------------------------------------====//
+// Transfer function for uninitialized values analysis.
+//====------------------------------------------------------------------------//
+
+static const bool Initialized = false;
+static const bool Uninitialized = true;
+
+namespace {
+class FindVarResult {
+ const VarDecl *vd;
+ const DeclRefExpr *dr;
+public:
+ FindVarResult(VarDecl *vd, DeclRefExpr *dr) : vd(vd), dr(dr) {}
+
+ const DeclRefExpr *getDeclRefExpr() const { return dr; }
+ const VarDecl *getDecl() const { return vd; }
+};
+
+class TransferFunctions : public CFGRecStmtVisitor<TransferFunctions> {
+ CFGBlockValues &vals;
+ const CFG &cfg;
+ AnalysisContext &ac;
+ UninitVariablesHandler *handler;
+ const DeclRefExpr *currentDR;
+ const Expr *currentVoidCast;
+ const bool flagBlockUses;
+public:
+ TransferFunctions(CFGBlockValues &vals, const CFG &cfg,
+ AnalysisContext &ac,
+ UninitVariablesHandler *handler,
+ bool flagBlockUses)
+ : vals(vals), cfg(cfg), ac(ac), handler(handler), currentDR(0),
+ currentVoidCast(0), flagBlockUses(flagBlockUses) {}
+
+ const CFG &getCFG() { return cfg; }
+ void reportUninit(const DeclRefExpr *ex, const VarDecl *vd);
+
+ void VisitBlockExpr(BlockExpr *be);
+ void VisitDeclStmt(DeclStmt *ds);
+ void VisitDeclRefExpr(DeclRefExpr *dr);
+ void VisitUnaryOperator(UnaryOperator *uo);
+ void VisitBinaryOperator(BinaryOperator *bo);
+ void VisitCastExpr(CastExpr *ce);
+ void VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *se);
+ void BlockStmt_VisitObjCForCollectionStmt(ObjCForCollectionStmt *fs);
+
+ bool isTrackedVar(const VarDecl *vd) {
+ return ::isTrackedVar(vd, cast<DeclContext>(ac.getDecl()));
+ }
+
+ FindVarResult findBlockVarDecl(Expr *ex);
+};
+}
+
+void TransferFunctions::reportUninit(const DeclRefExpr *ex,
+ const VarDecl *vd) {
+ if (handler) handler->handleUseOfUninitVariable(ex, vd);
+}
+
+FindVarResult TransferFunctions::findBlockVarDecl(Expr* ex) {
+ if (DeclRefExpr* dr = dyn_cast<DeclRefExpr>(ex->IgnoreParenCasts()))
+ if (VarDecl *vd = dyn_cast<VarDecl>(dr->getDecl()))
+ if (isTrackedVar(vd))
+ return FindVarResult(vd, dr);
+ return FindVarResult(0, 0);
+}
+
+void TransferFunctions::BlockStmt_VisitObjCForCollectionStmt(
+ ObjCForCollectionStmt *fs) {
+
+ Visit(fs->getCollection());
+
+ // This represents an initialization of the 'element' value.
+ Stmt *element = fs->getElement();
+ const VarDecl* vd = 0;
+
+ if (DeclStmt* ds = dyn_cast<DeclStmt>(element)) {
+ vd = cast<VarDecl>(ds->getSingleDecl());
+ if (!isTrackedVar(vd))
+ vd = 0;
+ }
+ else {
+ // Initialize the value of the reference variable.
+ const FindVarResult &res = findBlockVarDecl(cast<Expr>(element));
+ vd = res.getDecl();
+ if (!vd) {
+ Visit(element);
+ return;
+ }
+ }
+
+ if (vd)
+ vals[vd] = Initialized;
+}
+
+void TransferFunctions::VisitBlockExpr(BlockExpr *be) {
+ if (!flagBlockUses || !handler)
+ return;
+ AnalysisContext::referenced_decls_iterator i, e;
+ llvm::tie(i, e) = ac.getReferencedBlockVars(be->getBlockDecl());
+ for ( ; i != e; ++i) {
+ const VarDecl *vd = *i;
+ if (vd->getAttr<BlocksAttr>() || !vd->hasLocalStorage() ||
+ !isTrackedVar(vd))
+ continue;
+ if (vals[vd] == Uninitialized)
+ handler->handleUseOfUninitVariable(be, vd);
+ }
+}
+
+void TransferFunctions::VisitDeclStmt(DeclStmt *ds) {
+ for (DeclStmt::decl_iterator DI = ds->decl_begin(), DE = ds->decl_end();
+ DI != DE; ++DI) {
+ if (VarDecl *vd = dyn_cast<VarDecl>(*DI)) {
+ if (isTrackedVar(vd)) {
+ vals[vd] = Uninitialized;
+ if (Stmt *init = vd->getInit()) {
+ Visit(init);
+ vals[vd] = Initialized;
+ }
+ }
+ else if (Stmt *init = vd->getInit()) {
+ Visit(init);
+ }
+ }
+ }
+}
+
+void TransferFunctions::VisitDeclRefExpr(DeclRefExpr *dr) {
+ // We assume that DeclRefExprs wrapped in an lvalue-to-rvalue cast
+ // cannot be block-level expressions. Therefore, we determine if
+ // a DeclRefExpr is involved in a "load" by comparing it to the current
+ // DeclRefExpr found when analyzing the last lvalue-to-rvalue CastExpr.
+ // If a DeclRefExpr is not involved in a load, we are essentially computing
+ // its address, either for assignment to a reference or via the '&' operator.
+ // In such cases, treat the variable as being initialized, since this
+ // analysis isn't powerful enough to do alias tracking.
+ if (dr != currentDR)
+ if (const VarDecl *vd = dyn_cast<VarDecl>(dr->getDecl()))
+ if (isTrackedVar(vd))
+ vals[vd] = Initialized;
+}
+
+void TransferFunctions::VisitBinaryOperator(clang::BinaryOperator *bo) {
+ if (bo->isAssignmentOp()) {
+ const FindVarResult &res = findBlockVarDecl(bo->getLHS());
+ if (const VarDecl* vd = res.getDecl()) {
+ // We assume that DeclRefExprs wrapped in a BinaryOperator "assignment"
+ // cannot be block-level expressions. Therefore, we determine if
+ // a DeclRefExpr is involved in a "load" by comparing it to the current
+ // DeclRefExpr found when analyzing the last lvalue-to-rvalue CastExpr.
+ SaveAndRestore<const DeclRefExpr*> lastDR(currentDR,
+ res.getDeclRefExpr());
+ Visit(bo->getRHS());
+ Visit(bo->getLHS());
+
+ llvm::BitVector::reference bit = vals[vd];
+ if (bit == Uninitialized) {
+ if (bo->getOpcode() != BO_Assign)
+ reportUninit(res.getDeclRefExpr(), vd);
+ bit = Initialized;
+ }
+ return;
+ }
+ }
+ Visit(bo->getRHS());
+ Visit(bo->getLHS());
+}
+
+void TransferFunctions::VisitUnaryOperator(clang::UnaryOperator *uo) {
+ switch (uo->getOpcode()) {
+ case clang::UO_PostDec:
+ case clang::UO_PostInc:
+ case clang::UO_PreDec:
+ case clang::UO_PreInc: {
+ const FindVarResult &res = findBlockVarDecl(uo->getSubExpr());
+ if (const VarDecl *vd = res.getDecl()) {
+ // We assume that DeclRefExprs wrapped in a unary operator ++/--
+ // cannot be block-level expressions. Therefore, we determine if
+ // a DeclRefExpr is involved in a "load" by comparing it to the current
+ // DeclRefExpr found when analyzing the last lvalue-to-rvalue CastExpr.
+ SaveAndRestore<const DeclRefExpr*> lastDR(currentDR,
+ res.getDeclRefExpr());
+ Visit(uo->getSubExpr());
+
+ llvm::BitVector::reference bit = vals[vd];
+ if (bit == Uninitialized) {
+ reportUninit(res.getDeclRefExpr(), vd);
+ bit = Initialized;
+ }
+ return;
+ }
+ break;
+ }
+ default:
+ break;
+ }
+ Visit(uo->getSubExpr());
+}
+
+void TransferFunctions::VisitCastExpr(clang::CastExpr *ce) {
+ if (ce->getCastKind() == CK_LValueToRValue) {
+ const FindVarResult &res = findBlockVarDecl(ce->getSubExpr());
+ if (const VarDecl *vd = res.getDecl()) {
+ // We assume that DeclRefExprs wrapped in an lvalue-to-rvalue cast
+ // cannot be block-level expressions. Therefore, we determine if
+ // a DeclRefExpr is involved in a "load" by comparing it to the current
+ // DeclRefExpr found when analyzing the last lvalue-to-rvalue CastExpr.
+ // Here we update 'currentDR' to be the one associated with this
+ // lvalue-to-rvalue cast. Then, when we analyze the DeclRefExpr, we
+ // will know that we are not computing its lvalue for other purposes
+ // than to perform a load.
+ SaveAndRestore<const DeclRefExpr*> lastDR(currentDR,
+ res.getDeclRefExpr());
+ Visit(ce->getSubExpr());
+ if (currentVoidCast != ce && vals[vd] == Uninitialized) {
+ reportUninit(res.getDeclRefExpr(), vd);
+ // Don't cascade warnings.
+ vals[vd] = Initialized;
+ }
+ return;
+ }
+ }
+ else if (CStyleCastExpr *cse = dyn_cast<CStyleCastExpr>(ce)) {
+ if (cse->getType()->isVoidType()) {
+ // e.g. (void) x;
+ SaveAndRestore<const Expr *>
+ lastVoidCast(currentVoidCast, cse->getSubExpr()->IgnoreParens());
+ Visit(cse->getSubExpr());
+ return;
+ }
+ }
+ Visit(ce->getSubExpr());
+}
+
+void TransferFunctions::VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *se) {
+ if (se->isSizeOf()) {
+ if (se->getType()->isConstantSizeType())
+ return;
+ // Handle VLAs.
+ Visit(se->getArgumentExpr());
+ }
+}
+
+//------------------------------------------------------------------------====//
+// High-level "driver" logic for uninitialized values analysis.
+//====------------------------------------------------------------------------//
+
+static bool runOnBlock(const CFGBlock *block, const CFG &cfg,
+ AnalysisContext &ac, CFGBlockValues &vals,
+ UninitVariablesHandler *handler = 0,
+ bool flagBlockUses = false) {
+
+ if (const BinaryOperator *b = getLogicalOperatorInChain(block)) {
+ CFGBlock::const_pred_iterator itr = block->pred_begin();
+ BVPair vA = vals.getBitVectors(*itr, false);
+ ++itr;
+ BVPair vB = vals.getBitVectors(*itr, false);
+
+ BVPair valsAB;
+
+ if (b->getOpcode() == BO_LAnd) {
+ // Merge the 'F' bits from the first and second.
+ vals.mergeIntoScratch(*(vA.second ? vA.second : vA.first), true);
+ vals.mergeIntoScratch(*(vB.second ? vB.second : vB.first), false);
+ valsAB.first = vA.first;
+ valsAB.second = &vals.getScratch();
+ }
+ else {
+ // Merge the 'T' bits from the first and second.
+ assert(b->getOpcode() == BO_LOr);
+ vals.mergeIntoScratch(*vA.first, true);
+ vals.mergeIntoScratch(*vB.first, false);
+ valsAB.first = &vals.getScratch();
+ valsAB.second = vA.second ? vA.second : vA.first;
+ }
+ return vals.updateBitVectors(block, valsAB);
+ }
+
+ // Default behavior: merge in values of predecessor blocks.
+ vals.resetScratch();
+ bool isFirst = true;
+ for (CFGBlock::const_pred_iterator I = block->pred_begin(),
+ E = block->pred_end(); I != E; ++I) {
+ vals.mergeIntoScratch(vals.getBitVector(*I, block), isFirst);
+ isFirst = false;
+ }
+ // Apply the transfer function.
+ TransferFunctions tf(vals, cfg, ac, handler, flagBlockUses);
+ for (CFGBlock::const_iterator I = block->begin(), E = block->end();
+ I != E; ++I) {
+ if (const CFGStmt *cs = dyn_cast<CFGStmt>(&*I)) {
+ tf.BlockStmt_Visit(cs->getStmt());
+ }
+ }
+ return vals.updateBitVectorWithScratch(block);
+}
+
+void clang::runUninitializedVariablesAnalysis(const DeclContext &dc,
+ const CFG &cfg,
+ AnalysisContext &ac,
+ UninitVariablesHandler &handler) {
+ CFGBlockValues vals(cfg);
+ vals.computeSetOfDeclarations(dc);
+ if (vals.hasNoDeclarations())
+ return;
+ DataflowWorklist worklist(cfg);
+ llvm::BitVector previouslyVisited(cfg.getNumBlockIDs());
+
+ worklist.enqueueSuccessors(&cfg.getEntry());
+
+ while (const CFGBlock *block = worklist.dequeue()) {
+ // Did the block change?
+ bool changed = runOnBlock(block, cfg, ac, vals);
+ if (changed || !previouslyVisited[block->getBlockID()])
+ worklist.enqueueSuccessors(block);
+ previouslyVisited[block->getBlockID()] = true;
+ }
+
+ // Run through the blocks one more time, and report uninitialized variabes.
+ for (CFG::const_iterator BI = cfg.begin(), BE = cfg.end(); BI != BE; ++BI) {
+ runOnBlock(*BI, cfg, ac, vals, &handler, /* flagBlockUses */ true);
+ }
+}
+
+UninitVariablesHandler::~UninitVariablesHandler() {}
+
OpenPOWER on IntegriCloud