summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/Analysis/UninitializedValues.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/Analysis/UninitializedValues.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/UninitializedValues.cpp850
1 files changed, 850 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/Analysis/UninitializedValues.cpp b/contrib/llvm/tools/clang/lib/Analysis/UninitializedValues.cpp
new file mode 100644
index 0000000..730aa6b
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/UninitializedValues.cpp
@@ -0,0 +1,850 @@
+//==- UninitializedValues.cpp - Find Uninitialized Values -------*- C++ --*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements uninitialized values analysis for source-level CFGs.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/Decl.h"
+#include "clang/Analysis/Analyses/PostOrderCFGView.h"
+#include "clang/Analysis/Analyses/UninitializedValues.h"
+#include "clang/Analysis/AnalysisContext.h"
+#include "clang/Analysis/CFG.h"
+#include "clang/Analysis/DomainSpecific/ObjCNoReturn.h"
+#include "clang/Analysis/Visitors/CFGRecStmtDeclVisitor.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/PackedVector.h"
+#include "llvm/ADT/SmallBitVector.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/SaveAndRestore.h"
+#include <utility>
+
+using namespace clang;
+
+#define DEBUG_LOGGING 0
+
+static bool isTrackedVar(const VarDecl *vd, const DeclContext *dc) {
+ if (vd->isLocalVarDecl() && !vd->hasGlobalStorage() &&
+ !vd->isExceptionVariable() &&
+ vd->getDeclContext() == dc) {
+ QualType ty = vd->getType();
+ return ty->isScalarType() || ty->isVectorType();
+ }
+ return false;
+}
+
+//------------------------------------------------------------------------====//
+// DeclToIndex: a mapping from Decls we track to value indices.
+//====------------------------------------------------------------------------//
+
+namespace {
+class DeclToIndex {
+ llvm::DenseMap<const VarDecl *, unsigned> map;
+public:
+ DeclToIndex() {}
+
+ /// Compute the actual mapping from declarations to bits.
+ void computeMap(const DeclContext &dc);
+
+ /// Return the number of declarations in the map.
+ unsigned size() const { return map.size(); }
+
+ /// Returns the bit vector index for a given declaration.
+ Optional<unsigned> getValueIndex(const VarDecl *d) const;
+};
+}
+
+void DeclToIndex::computeMap(const DeclContext &dc) {
+ unsigned count = 0;
+ DeclContext::specific_decl_iterator<VarDecl> I(dc.decls_begin()),
+ E(dc.decls_end());
+ for ( ; I != E; ++I) {
+ const VarDecl *vd = *I;
+ if (isTrackedVar(vd, &dc))
+ map[vd] = count++;
+ }
+}
+
+Optional<unsigned> DeclToIndex::getValueIndex(const VarDecl *d) const {
+ llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I = map.find(d);
+ if (I == map.end())
+ return None;
+ return I->second;
+}
+
+//------------------------------------------------------------------------====//
+// CFGBlockValues: dataflow values for CFG blocks.
+//====------------------------------------------------------------------------//
+
+// These values are defined in such a way that a merge can be done using
+// a bitwise OR.
+enum Value { Unknown = 0x0, /* 00 */
+ Initialized = 0x1, /* 01 */
+ Uninitialized = 0x2, /* 10 */
+ MayUninitialized = 0x3 /* 11 */ };
+
+static bool isUninitialized(const Value v) {
+ return v >= Uninitialized;
+}
+static bool isAlwaysUninit(const Value v) {
+ return v == Uninitialized;
+}
+
+namespace {
+
+typedef llvm::PackedVector<Value, 2, llvm::SmallBitVector> ValueVector;
+
+class CFGBlockValues {
+ const CFG &cfg;
+ SmallVector<ValueVector, 8> vals;
+ ValueVector scratch;
+ DeclToIndex declToIndex;
+public:
+ CFGBlockValues(const CFG &cfg);
+
+ unsigned getNumEntries() const { return declToIndex.size(); }
+
+ void computeSetOfDeclarations(const DeclContext &dc);
+ ValueVector &getValueVector(const CFGBlock *block) {
+ return vals[block->getBlockID()];
+ }
+
+ void setAllScratchValues(Value V);
+ void mergeIntoScratch(ValueVector const &source, bool isFirst);
+ bool updateValueVectorWithScratch(const CFGBlock *block);
+
+ bool hasNoDeclarations() const {
+ return declToIndex.size() == 0;
+ }
+
+ void resetScratch();
+
+ ValueVector::reference operator[](const VarDecl *vd);
+
+ Value getValue(const CFGBlock *block, const CFGBlock *dstBlock,
+ const VarDecl *vd) {
+ const Optional<unsigned> &idx = declToIndex.getValueIndex(vd);
+ assert(idx.hasValue());
+ return getValueVector(block)[idx.getValue()];
+ }
+};
+} // end anonymous namespace
+
+CFGBlockValues::CFGBlockValues(const CFG &c) : cfg(c), vals(0) {}
+
+void CFGBlockValues::computeSetOfDeclarations(const DeclContext &dc) {
+ declToIndex.computeMap(dc);
+ unsigned decls = declToIndex.size();
+ scratch.resize(decls);
+ unsigned n = cfg.getNumBlockIDs();
+ if (!n)
+ return;
+ vals.resize(n);
+ for (unsigned i = 0; i < n; ++i)
+ vals[i].resize(decls);
+}
+
+#if DEBUG_LOGGING
+static void printVector(const CFGBlock *block, ValueVector &bv,
+ unsigned num) {
+ llvm::errs() << block->getBlockID() << " :";
+ for (unsigned i = 0; i < bv.size(); ++i) {
+ llvm::errs() << ' ' << bv[i];
+ }
+ llvm::errs() << " : " << num << '\n';
+}
+#endif
+
+void CFGBlockValues::setAllScratchValues(Value V) {
+ for (unsigned I = 0, E = scratch.size(); I != E; ++I)
+ scratch[I] = V;
+}
+
+void CFGBlockValues::mergeIntoScratch(ValueVector const &source,
+ bool isFirst) {
+ if (isFirst)
+ scratch = source;
+ else
+ scratch |= source;
+}
+
+bool CFGBlockValues::updateValueVectorWithScratch(const CFGBlock *block) {
+ ValueVector &dst = getValueVector(block);
+ bool changed = (dst != scratch);
+ if (changed)
+ dst = scratch;
+#if DEBUG_LOGGING
+ printVector(block, scratch, 0);
+#endif
+ return changed;
+}
+
+void CFGBlockValues::resetScratch() {
+ scratch.reset();
+}
+
+ValueVector::reference CFGBlockValues::operator[](const VarDecl *vd) {
+ const Optional<unsigned> &idx = declToIndex.getValueIndex(vd);
+ assert(idx.hasValue());
+ return scratch[idx.getValue()];
+}
+
+//------------------------------------------------------------------------====//
+// Worklist: worklist for dataflow analysis.
+//====------------------------------------------------------------------------//
+
+namespace {
+class DataflowWorklist {
+ PostOrderCFGView::iterator PO_I, PO_E;
+ SmallVector<const CFGBlock *, 20> worklist;
+ llvm::BitVector enqueuedBlocks;
+public:
+ DataflowWorklist(const CFG &cfg, PostOrderCFGView &view)
+ : PO_I(view.begin()), PO_E(view.end()),
+ enqueuedBlocks(cfg.getNumBlockIDs(), true) {
+ // Treat the first block as already analyzed.
+ if (PO_I != PO_E) {
+ assert(*PO_I == &cfg.getEntry());
+ enqueuedBlocks[(*PO_I)->getBlockID()] = false;
+ ++PO_I;
+ }
+ }
+
+ void enqueueSuccessors(const CFGBlock *block);
+ const CFGBlock *dequeue();
+};
+}
+
+void DataflowWorklist::enqueueSuccessors(const clang::CFGBlock *block) {
+ for (CFGBlock::const_succ_iterator I = block->succ_begin(),
+ E = block->succ_end(); I != E; ++I) {
+ const CFGBlock *Successor = *I;
+ if (!Successor || enqueuedBlocks[Successor->getBlockID()])
+ continue;
+ worklist.push_back(Successor);
+ enqueuedBlocks[Successor->getBlockID()] = true;
+ }
+}
+
+const CFGBlock *DataflowWorklist::dequeue() {
+ const CFGBlock *B = 0;
+
+ // First dequeue from the worklist. This can represent
+ // updates along backedges that we want propagated as quickly as possible.
+ if (!worklist.empty()) {
+ B = worklist.back();
+ worklist.pop_back();
+ }
+ // Next dequeue from the initial reverse post order. This is the
+ // theoretical ideal in the presence of no back edges.
+ else if (PO_I != PO_E) {
+ B = *PO_I;
+ ++PO_I;
+ }
+ else {
+ return 0;
+ }
+
+ assert(enqueuedBlocks[B->getBlockID()] == true);
+ enqueuedBlocks[B->getBlockID()] = false;
+ return B;
+}
+
+//------------------------------------------------------------------------====//
+// Classification of DeclRefExprs as use or initialization.
+//====------------------------------------------------------------------------//
+
+namespace {
+class FindVarResult {
+ const VarDecl *vd;
+ const DeclRefExpr *dr;
+public:
+ FindVarResult(const VarDecl *vd, const DeclRefExpr *dr) : vd(vd), dr(dr) {}
+
+ const DeclRefExpr *getDeclRefExpr() const { return dr; }
+ const VarDecl *getDecl() const { return vd; }
+};
+
+static const Expr *stripCasts(ASTContext &C, const Expr *Ex) {
+ while (Ex) {
+ Ex = Ex->IgnoreParenNoopCasts(C);
+ if (const CastExpr *CE = dyn_cast<CastExpr>(Ex)) {
+ if (CE->getCastKind() == CK_LValueBitCast) {
+ Ex = CE->getSubExpr();
+ continue;
+ }
+ }
+ break;
+ }
+ return Ex;
+}
+
+/// If E is an expression comprising a reference to a single variable, find that
+/// variable.
+static FindVarResult findVar(const Expr *E, const DeclContext *DC) {
+ if (const DeclRefExpr *DRE =
+ dyn_cast<DeclRefExpr>(stripCasts(DC->getParentASTContext(), E)))
+ if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
+ if (isTrackedVar(VD, DC))
+ return FindVarResult(VD, DRE);
+ return FindVarResult(0, 0);
+}
+
+/// \brief Classify each DeclRefExpr as an initialization or a use. Any
+/// DeclRefExpr which isn't explicitly classified will be assumed to have
+/// escaped the analysis and will be treated as an initialization.
+class ClassifyRefs : public StmtVisitor<ClassifyRefs> {
+public:
+ enum Class {
+ Init,
+ Use,
+ SelfInit,
+ Ignore
+ };
+
+private:
+ const DeclContext *DC;
+ llvm::DenseMap<const DeclRefExpr*, Class> Classification;
+
+ bool isTrackedVar(const VarDecl *VD) const {
+ return ::isTrackedVar(VD, DC);
+ }
+
+ void classify(const Expr *E, Class C);
+
+public:
+ ClassifyRefs(AnalysisDeclContext &AC) : DC(cast<DeclContext>(AC.getDecl())) {}
+
+ void VisitDeclStmt(DeclStmt *DS);
+ void VisitUnaryOperator(UnaryOperator *UO);
+ void VisitBinaryOperator(BinaryOperator *BO);
+ void VisitCallExpr(CallExpr *CE);
+ void VisitCastExpr(CastExpr *CE);
+
+ void operator()(Stmt *S) { Visit(S); }
+
+ Class get(const DeclRefExpr *DRE) const {
+ llvm::DenseMap<const DeclRefExpr*, Class>::const_iterator I
+ = Classification.find(DRE);
+ if (I != Classification.end())
+ return I->second;
+
+ const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
+ if (!VD || !isTrackedVar(VD))
+ return Ignore;
+
+ return Init;
+ }
+};
+}
+
+static const DeclRefExpr *getSelfInitExpr(VarDecl *VD) {
+ if (Expr *Init = VD->getInit()) {
+ const DeclRefExpr *DRE
+ = dyn_cast<DeclRefExpr>(stripCasts(VD->getASTContext(), Init));
+ if (DRE && DRE->getDecl() == VD)
+ return DRE;
+ }
+ return 0;
+}
+
+void ClassifyRefs::classify(const Expr *E, Class C) {
+ // The result of a ?: could also be an lvalue.
+ E = E->IgnoreParens();
+ if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
+ const Expr *TrueExpr = CO->getTrueExpr();
+ if (!isa<OpaqueValueExpr>(TrueExpr))
+ classify(TrueExpr, C);
+ classify(CO->getFalseExpr(), C);
+ return;
+ }
+
+ FindVarResult Var = findVar(E, DC);
+ if (const DeclRefExpr *DRE = Var.getDeclRefExpr())
+ Classification[DRE] = std::max(Classification[DRE], C);
+}
+
+void ClassifyRefs::VisitDeclStmt(DeclStmt *DS) {
+ for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end();
+ DI != DE; ++DI) {
+ VarDecl *VD = dyn_cast<VarDecl>(*DI);
+ if (VD && isTrackedVar(VD))
+ if (const DeclRefExpr *DRE = getSelfInitExpr(VD))
+ Classification[DRE] = SelfInit;
+ }
+}
+
+void ClassifyRefs::VisitBinaryOperator(BinaryOperator *BO) {
+ // Ignore the evaluation of a DeclRefExpr on the LHS of an assignment. If this
+ // is not a compound-assignment, we will treat it as initializing the variable
+ // when TransferFunctions visits it. A compound-assignment does not affect
+ // whether a variable is uninitialized, and there's no point counting it as a
+ // use.
+ if (BO->isCompoundAssignmentOp())
+ classify(BO->getLHS(), Use);
+ else if (BO->getOpcode() == BO_Assign)
+ classify(BO->getLHS(), Ignore);
+}
+
+void ClassifyRefs::VisitUnaryOperator(UnaryOperator *UO) {
+ // Increment and decrement are uses despite there being no lvalue-to-rvalue
+ // conversion.
+ if (UO->isIncrementDecrementOp())
+ classify(UO->getSubExpr(), Use);
+}
+
+void ClassifyRefs::VisitCallExpr(CallExpr *CE) {
+ // If a value is passed by const reference to a function, we should not assume
+ // that it is initialized by the call, and we conservatively do not assume
+ // that it is used.
+ for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end();
+ I != E; ++I)
+ if ((*I)->getType().isConstQualified() && (*I)->isGLValue())
+ classify(*I, Ignore);
+}
+
+void ClassifyRefs::VisitCastExpr(CastExpr *CE) {
+ if (CE->getCastKind() == CK_LValueToRValue)
+ classify(CE->getSubExpr(), Use);
+ else if (CStyleCastExpr *CSE = dyn_cast<CStyleCastExpr>(CE)) {
+ if (CSE->getType()->isVoidType()) {
+ // Squelch any detected load of an uninitialized value if
+ // we cast it to void.
+ // e.g. (void) x;
+ classify(CSE->getSubExpr(), Ignore);
+ }
+ }
+}
+
+//------------------------------------------------------------------------====//
+// Transfer function for uninitialized values analysis.
+//====------------------------------------------------------------------------//
+
+namespace {
+class TransferFunctions : public StmtVisitor<TransferFunctions> {
+ CFGBlockValues &vals;
+ const CFG &cfg;
+ const CFGBlock *block;
+ AnalysisDeclContext &ac;
+ const ClassifyRefs &classification;
+ ObjCNoReturn objCNoRet;
+ UninitVariablesHandler &handler;
+
+public:
+ TransferFunctions(CFGBlockValues &vals, const CFG &cfg,
+ const CFGBlock *block, AnalysisDeclContext &ac,
+ const ClassifyRefs &classification,
+ UninitVariablesHandler &handler)
+ : vals(vals), cfg(cfg), block(block), ac(ac),
+ classification(classification), objCNoRet(ac.getASTContext()),
+ handler(handler) {}
+
+ void reportUse(const Expr *ex, const VarDecl *vd);
+
+ void VisitBinaryOperator(BinaryOperator *bo);
+ void VisitBlockExpr(BlockExpr *be);
+ void VisitCallExpr(CallExpr *ce);
+ void VisitDeclRefExpr(DeclRefExpr *dr);
+ void VisitDeclStmt(DeclStmt *ds);
+ void VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS);
+ void VisitObjCMessageExpr(ObjCMessageExpr *ME);
+
+ bool isTrackedVar(const VarDecl *vd) {
+ return ::isTrackedVar(vd, cast<DeclContext>(ac.getDecl()));
+ }
+
+ FindVarResult findVar(const Expr *ex) {
+ return ::findVar(ex, cast<DeclContext>(ac.getDecl()));
+ }
+
+ UninitUse getUninitUse(const Expr *ex, const VarDecl *vd, Value v) {
+ UninitUse Use(ex, isAlwaysUninit(v));
+
+ assert(isUninitialized(v));
+ if (Use.getKind() == UninitUse::Always)
+ return Use;
+
+ // If an edge which leads unconditionally to this use did not initialize
+ // the variable, we can say something stronger than 'may be uninitialized':
+ // we can say 'either it's used uninitialized or you have dead code'.
+ //
+ // We track the number of successors of a node which have been visited, and
+ // visit a node once we have visited all of its successors. Only edges where
+ // the variable might still be uninitialized are followed. Since a variable
+ // can't transfer from being initialized to being uninitialized, this will
+ // trace out the subgraph which inevitably leads to the use and does not
+ // initialize the variable. We do not want to skip past loops, since their
+ // non-termination might be correlated with the initialization condition.
+ //
+ // For example:
+ //
+ // void f(bool a, bool b) {
+ // block1: int n;
+ // if (a) {
+ // block2: if (b)
+ // block3: n = 1;
+ // block4: } else if (b) {
+ // block5: while (!a) {
+ // block6: do_work(&a);
+ // n = 2;
+ // }
+ // }
+ // block7: if (a)
+ // block8: g();
+ // block9: return n;
+ // }
+ //
+ // Starting from the maybe-uninitialized use in block 9:
+ // * Block 7 is not visited because we have only visited one of its two
+ // successors.
+ // * Block 8 is visited because we've visited its only successor.
+ // From block 8:
+ // * Block 7 is visited because we've now visited both of its successors.
+ // From block 7:
+ // * Blocks 1, 2, 4, 5, and 6 are not visited because we didn't visit all
+ // of their successors (we didn't visit 4, 3, 5, 6, and 5, respectively).
+ // * Block 3 is not visited because it initializes 'n'.
+ // Now the algorithm terminates, having visited blocks 7 and 8, and having
+ // found the frontier is blocks 2, 4, and 5.
+ //
+ // 'n' is definitely uninitialized for two edges into block 7 (from blocks 2
+ // and 4), so we report that any time either of those edges is taken (in
+ // each case when 'b == false'), 'n' is used uninitialized.
+ SmallVector<const CFGBlock*, 32> Queue;
+ SmallVector<unsigned, 32> SuccsVisited(cfg.getNumBlockIDs(), 0);
+ Queue.push_back(block);
+ // Specify that we've already visited all successors of the starting block.
+ // This has the dual purpose of ensuring we never add it to the queue, and
+ // of marking it as not being a candidate element of the frontier.
+ SuccsVisited[block->getBlockID()] = block->succ_size();
+ while (!Queue.empty()) {
+ const CFGBlock *B = Queue.back();
+ Queue.pop_back();
+ for (CFGBlock::const_pred_iterator I = B->pred_begin(), E = B->pred_end();
+ I != E; ++I) {
+ const CFGBlock *Pred = *I;
+ if (vals.getValue(Pred, B, vd) == Initialized)
+ // This block initializes the variable.
+ continue;
+
+ unsigned &SV = SuccsVisited[Pred->getBlockID()];
+ if (!SV) {
+ // When visiting the first successor of a block, mark all NULL
+ // successors as having been visited.
+ for (CFGBlock::const_succ_iterator SI = Pred->succ_begin(),
+ SE = Pred->succ_end();
+ SI != SE; ++SI)
+ if (!*SI)
+ ++SV;
+ }
+
+ if (++SV == Pred->succ_size())
+ // All paths from this block lead to the use and don't initialize the
+ // variable.
+ Queue.push_back(Pred);
+ }
+ }
+
+ // Scan the frontier, looking for blocks where the variable was
+ // uninitialized.
+ for (CFG::const_iterator BI = cfg.begin(), BE = cfg.end(); BI != BE; ++BI) {
+ const CFGBlock *Block = *BI;
+ unsigned BlockID = Block->getBlockID();
+ const Stmt *Term = Block->getTerminator();
+ if (SuccsVisited[BlockID] && SuccsVisited[BlockID] < Block->succ_size() &&
+ Term) {
+ // This block inevitably leads to the use. If we have an edge from here
+ // to a post-dominator block, and the variable is uninitialized on that
+ // edge, we have found a bug.
+ for (CFGBlock::const_succ_iterator I = Block->succ_begin(),
+ E = Block->succ_end(); I != E; ++I) {
+ const CFGBlock *Succ = *I;
+ if (Succ && SuccsVisited[Succ->getBlockID()] >= Succ->succ_size() &&
+ vals.getValue(Block, Succ, vd) == Uninitialized) {
+ // Switch cases are a special case: report the label to the caller
+ // as the 'terminator', not the switch statement itself. Suppress
+ // situations where no label matched: we can't be sure that's
+ // possible.
+ if (isa<SwitchStmt>(Term)) {
+ const Stmt *Label = Succ->getLabel();
+ if (!Label || !isa<SwitchCase>(Label))
+ // Might not be possible.
+ continue;
+ UninitUse::Branch Branch;
+ Branch.Terminator = Label;
+ Branch.Output = 0; // Ignored.
+ Use.addUninitBranch(Branch);
+ } else {
+ UninitUse::Branch Branch;
+ Branch.Terminator = Term;
+ Branch.Output = I - Block->succ_begin();
+ Use.addUninitBranch(Branch);
+ }
+ }
+ }
+ }
+ }
+
+ return Use;
+ }
+};
+}
+
+void TransferFunctions::reportUse(const Expr *ex, const VarDecl *vd) {
+ Value v = vals[vd];
+ if (isUninitialized(v))
+ handler.handleUseOfUninitVariable(vd, getUninitUse(ex, vd, v));
+}
+
+void TransferFunctions::VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS) {
+ // This represents an initialization of the 'element' value.
+ if (DeclStmt *DS = dyn_cast<DeclStmt>(FS->getElement())) {
+ const VarDecl *VD = cast<VarDecl>(DS->getSingleDecl());
+ if (isTrackedVar(VD))
+ vals[VD] = Initialized;
+ }
+}
+
+void TransferFunctions::VisitBlockExpr(BlockExpr *be) {
+ const BlockDecl *bd = be->getBlockDecl();
+ for (BlockDecl::capture_const_iterator i = bd->capture_begin(),
+ e = bd->capture_end() ; i != e; ++i) {
+ const VarDecl *vd = i->getVariable();
+ if (!isTrackedVar(vd))
+ continue;
+ if (i->isByRef()) {
+ vals[vd] = Initialized;
+ continue;
+ }
+ reportUse(be, vd);
+ }
+}
+
+void TransferFunctions::VisitCallExpr(CallExpr *ce) {
+ if (Decl *Callee = ce->getCalleeDecl()) {
+ if (Callee->hasAttr<ReturnsTwiceAttr>()) {
+ // After a call to a function like setjmp or vfork, any variable which is
+ // initialized anywhere within this function may now be initialized. For
+ // now, just assume such a call initializes all variables. FIXME: Only
+ // mark variables as initialized if they have an initializer which is
+ // reachable from here.
+ vals.setAllScratchValues(Initialized);
+ }
+ else if (Callee->hasAttr<AnalyzerNoReturnAttr>()) {
+ // Functions labeled like "analyzer_noreturn" are often used to denote
+ // "panic" functions that in special debug situations can still return,
+ // but for the most part should not be treated as returning. This is a
+ // useful annotation borrowed from the static analyzer that is useful for
+ // suppressing branch-specific false positives when we call one of these
+ // functions but keep pretending the path continues (when in reality the
+ // user doesn't care).
+ vals.setAllScratchValues(Unknown);
+ }
+ }
+}
+
+void TransferFunctions::VisitDeclRefExpr(DeclRefExpr *dr) {
+ switch (classification.get(dr)) {
+ case ClassifyRefs::Ignore:
+ break;
+ case ClassifyRefs::Use:
+ reportUse(dr, cast<VarDecl>(dr->getDecl()));
+ break;
+ case ClassifyRefs::Init:
+ vals[cast<VarDecl>(dr->getDecl())] = Initialized;
+ break;
+ case ClassifyRefs::SelfInit:
+ handler.handleSelfInit(cast<VarDecl>(dr->getDecl()));
+ break;
+ }
+}
+
+void TransferFunctions::VisitBinaryOperator(BinaryOperator *BO) {
+ if (BO->getOpcode() == BO_Assign) {
+ FindVarResult Var = findVar(BO->getLHS());
+ if (const VarDecl *VD = Var.getDecl())
+ vals[VD] = Initialized;
+ }
+}
+
+void TransferFunctions::VisitDeclStmt(DeclStmt *DS) {
+ for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end();
+ DI != DE; ++DI) {
+ VarDecl *VD = dyn_cast<VarDecl>(*DI);
+ if (VD && isTrackedVar(VD)) {
+ if (getSelfInitExpr(VD)) {
+ // If the initializer consists solely of a reference to itself, we
+ // explicitly mark the variable as uninitialized. This allows code
+ // like the following:
+ //
+ // int x = x;
+ //
+ // to deliberately leave a variable uninitialized. Different analysis
+ // clients can detect this pattern and adjust their reporting
+ // appropriately, but we need to continue to analyze subsequent uses
+ // of the variable.
+ vals[VD] = Uninitialized;
+ } else if (VD->getInit()) {
+ // Treat the new variable as initialized.
+ vals[VD] = Initialized;
+ } else {
+ // No initializer: the variable is now uninitialized. This matters
+ // for cases like:
+ // while (...) {
+ // int n;
+ // use(n);
+ // n = 0;
+ // }
+ // FIXME: Mark the variable as uninitialized whenever its scope is
+ // left, since its scope could be re-entered by a jump over the
+ // declaration.
+ vals[VD] = Uninitialized;
+ }
+ }
+ }
+}
+
+void TransferFunctions::VisitObjCMessageExpr(ObjCMessageExpr *ME) {
+ // If the Objective-C message expression is an implicit no-return that
+ // is not modeled in the CFG, set the tracked dataflow values to Unknown.
+ if (objCNoRet.isImplicitNoReturn(ME)) {
+ vals.setAllScratchValues(Unknown);
+ }
+}
+
+//------------------------------------------------------------------------====//
+// High-level "driver" logic for uninitialized values analysis.
+//====------------------------------------------------------------------------//
+
+static bool runOnBlock(const CFGBlock *block, const CFG &cfg,
+ AnalysisDeclContext &ac, CFGBlockValues &vals,
+ const ClassifyRefs &classification,
+ llvm::BitVector &wasAnalyzed,
+ UninitVariablesHandler &handler) {
+ wasAnalyzed[block->getBlockID()] = true;
+ vals.resetScratch();
+ // Merge in values of predecessor blocks.
+ bool isFirst = true;
+ for (CFGBlock::const_pred_iterator I = block->pred_begin(),
+ E = block->pred_end(); I != E; ++I) {
+ const CFGBlock *pred = *I;
+ if (wasAnalyzed[pred->getBlockID()]) {
+ vals.mergeIntoScratch(vals.getValueVector(pred), isFirst);
+ isFirst = false;
+ }
+ }
+ // Apply the transfer function.
+ TransferFunctions tf(vals, cfg, block, ac, classification, handler);
+ for (CFGBlock::const_iterator I = block->begin(), E = block->end();
+ I != E; ++I) {
+ if (Optional<CFGStmt> cs = I->getAs<CFGStmt>())
+ tf.Visit(const_cast<Stmt*>(cs->getStmt()));
+ }
+ return vals.updateValueVectorWithScratch(block);
+}
+
+/// PruneBlocksHandler is a special UninitVariablesHandler that is used
+/// to detect when a CFGBlock has any *potential* use of an uninitialized
+/// variable. It is mainly used to prune out work during the final
+/// reporting pass.
+namespace {
+struct PruneBlocksHandler : public UninitVariablesHandler {
+ PruneBlocksHandler(unsigned numBlocks)
+ : hadUse(numBlocks, false), hadAnyUse(false),
+ currentBlock(0) {}
+
+ virtual ~PruneBlocksHandler() {}
+
+ /// Records if a CFGBlock had a potential use of an uninitialized variable.
+ llvm::BitVector hadUse;
+
+ /// Records if any CFGBlock had a potential use of an uninitialized variable.
+ bool hadAnyUse;
+
+ /// The current block to scribble use information.
+ unsigned currentBlock;
+
+ virtual void handleUseOfUninitVariable(const VarDecl *vd,
+ const UninitUse &use) {
+ hadUse[currentBlock] = true;
+ hadAnyUse = true;
+ }
+
+ /// Called when the uninitialized variable analysis detects the
+ /// idiom 'int x = x'. All other uses of 'x' within the initializer
+ /// are handled by handleUseOfUninitVariable.
+ virtual void handleSelfInit(const VarDecl *vd) {
+ hadUse[currentBlock] = true;
+ hadAnyUse = true;
+ }
+};
+}
+
+void clang::runUninitializedVariablesAnalysis(
+ const DeclContext &dc,
+ const CFG &cfg,
+ AnalysisDeclContext &ac,
+ UninitVariablesHandler &handler,
+ UninitVariablesAnalysisStats &stats) {
+ CFGBlockValues vals(cfg);
+ vals.computeSetOfDeclarations(dc);
+ if (vals.hasNoDeclarations())
+ return;
+
+ stats.NumVariablesAnalyzed = vals.getNumEntries();
+
+ // Precompute which expressions are uses and which are initializations.
+ ClassifyRefs classification(ac);
+ cfg.VisitBlockStmts(classification);
+
+ // Mark all variables uninitialized at the entry.
+ const CFGBlock &entry = cfg.getEntry();
+ ValueVector &vec = vals.getValueVector(&entry);
+ const unsigned n = vals.getNumEntries();
+ for (unsigned j = 0; j < n ; ++j) {
+ vec[j] = Uninitialized;
+ }
+
+ // Proceed with the workist.
+ DataflowWorklist worklist(cfg, *ac.getAnalysis<PostOrderCFGView>());
+ llvm::BitVector previouslyVisited(cfg.getNumBlockIDs());
+ worklist.enqueueSuccessors(&cfg.getEntry());
+ llvm::BitVector wasAnalyzed(cfg.getNumBlockIDs(), false);
+ wasAnalyzed[cfg.getEntry().getBlockID()] = true;
+ PruneBlocksHandler PBH(cfg.getNumBlockIDs());
+
+ while (const CFGBlock *block = worklist.dequeue()) {
+ PBH.currentBlock = block->getBlockID();
+
+ // Did the block change?
+ bool changed = runOnBlock(block, cfg, ac, vals,
+ classification, wasAnalyzed, PBH);
+ ++stats.NumBlockVisits;
+ if (changed || !previouslyVisited[block->getBlockID()])
+ worklist.enqueueSuccessors(block);
+ previouslyVisited[block->getBlockID()] = true;
+ }
+
+ if (!PBH.hadAnyUse)
+ return;
+
+ // Run through the blocks one more time, and report uninitialized variables.
+ for (CFG::const_iterator BI = cfg.begin(), BE = cfg.end(); BI != BE; ++BI) {
+ const CFGBlock *block = *BI;
+ if (PBH.hadUse[block->getBlockID()]) {
+ runOnBlock(block, cfg, ac, vals, classification, wasAnalyzed, handler);
+ ++stats.NumBlockVisits;
+ }
+ }
+}
+
+UninitVariablesHandler::~UninitVariablesHandler() {}
OpenPOWER on IntegriCloud