diff options
Diffstat (limited to 'contrib/llvm/tools/clang/lib/Analysis/ThreadSafetyCommon.cpp')
-rw-r--r-- | contrib/llvm/tools/clang/lib/Analysis/ThreadSafetyCommon.cpp | 977 |
1 files changed, 977 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/Analysis/ThreadSafetyCommon.cpp b/contrib/llvm/tools/clang/lib/Analysis/ThreadSafetyCommon.cpp new file mode 100644 index 0000000..d4b1ce2 --- /dev/null +++ b/contrib/llvm/tools/clang/lib/Analysis/ThreadSafetyCommon.cpp @@ -0,0 +1,977 @@ +//===- ThreadSafetyCommon.cpp ----------------------------------*- C++ --*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// Implementation of the interfaces declared in ThreadSafetyCommon.h +// +//===----------------------------------------------------------------------===// + +#include "clang/Analysis/Analyses/ThreadSafetyCommon.h" +#include "clang/AST/Attr.h" +#include "clang/AST/DeclCXX.h" +#include "clang/AST/DeclObjC.h" +#include "clang/AST/ExprCXX.h" +#include "clang/AST/StmtCXX.h" +#include "clang/Analysis/Analyses/PostOrderCFGView.h" +#include "clang/Analysis/Analyses/ThreadSafetyTIL.h" +#include "clang/Analysis/Analyses/ThreadSafetyTraverse.h" +#include "clang/Analysis/AnalysisContext.h" +#include "clang/Analysis/CFG.h" +#include "clang/Basic/OperatorKinds.h" +#include "clang/Basic/SourceLocation.h" +#include "clang/Basic/SourceManager.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringRef.h" +#include <algorithm> +#include <climits> +#include <vector> +using namespace clang; +using namespace threadSafety; + +// From ThreadSafetyUtil.h +std::string threadSafety::getSourceLiteralString(const clang::Expr *CE) { + switch (CE->getStmtClass()) { + case Stmt::IntegerLiteralClass: + return cast<IntegerLiteral>(CE)->getValue().toString(10, true); + case Stmt::StringLiteralClass: { + std::string ret("\""); + ret += cast<StringLiteral>(CE)->getString(); + ret += "\""; + return ret; + } + case Stmt::CharacterLiteralClass: + case Stmt::CXXNullPtrLiteralExprClass: + case Stmt::GNUNullExprClass: + case Stmt::CXXBoolLiteralExprClass: + case Stmt::FloatingLiteralClass: + case Stmt::ImaginaryLiteralClass: + case Stmt::ObjCStringLiteralClass: + default: + return "#lit"; + } +} + +// Return true if E is a variable that points to an incomplete Phi node. +static bool isIncompletePhi(const til::SExpr *E) { + if (const auto *Ph = dyn_cast<til::Phi>(E)) + return Ph->status() == til::Phi::PH_Incomplete; + return false; +} + +typedef SExprBuilder::CallingContext CallingContext; + + +til::SExpr *SExprBuilder::lookupStmt(const Stmt *S) { + auto It = SMap.find(S); + if (It != SMap.end()) + return It->second; + return nullptr; +} + + +til::SCFG *SExprBuilder::buildCFG(CFGWalker &Walker) { + Walker.walk(*this); + return Scfg; +} + +static bool isCalleeArrow(const Expr *E) { + const MemberExpr *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts()); + return ME ? ME->isArrow() : false; +} + + +/// \brief Translate a clang expression in an attribute to a til::SExpr. +/// Constructs the context from D, DeclExp, and SelfDecl. +/// +/// \param AttrExp The expression to translate. +/// \param D The declaration to which the attribute is attached. +/// \param DeclExp An expression involving the Decl to which the attribute +/// is attached. E.g. the call to a function. +CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp, + const NamedDecl *D, + const Expr *DeclExp, + VarDecl *SelfDecl) { + // If we are processing a raw attribute expression, with no substitutions. + if (!DeclExp) + return translateAttrExpr(AttrExp, nullptr); + + CallingContext Ctx(nullptr, D); + + // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute + // for formal parameters when we call buildMutexID later. + if (const MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) { + Ctx.SelfArg = ME->getBase(); + Ctx.SelfArrow = ME->isArrow(); + } else if (const CXXMemberCallExpr *CE = + dyn_cast<CXXMemberCallExpr>(DeclExp)) { + Ctx.SelfArg = CE->getImplicitObjectArgument(); + Ctx.SelfArrow = isCalleeArrow(CE->getCallee()); + Ctx.NumArgs = CE->getNumArgs(); + Ctx.FunArgs = CE->getArgs(); + } else if (const CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) { + Ctx.NumArgs = CE->getNumArgs(); + Ctx.FunArgs = CE->getArgs(); + } else if (const CXXConstructExpr *CE = + dyn_cast<CXXConstructExpr>(DeclExp)) { + Ctx.SelfArg = nullptr; // Will be set below + Ctx.NumArgs = CE->getNumArgs(); + Ctx.FunArgs = CE->getArgs(); + } else if (D && isa<CXXDestructorDecl>(D)) { + // There's no such thing as a "destructor call" in the AST. + Ctx.SelfArg = DeclExp; + } + + // Hack to handle constructors, where self cannot be recovered from + // the expression. + if (SelfDecl && !Ctx.SelfArg) { + DeclRefExpr SelfDRE(SelfDecl, false, SelfDecl->getType(), VK_LValue, + SelfDecl->getLocation()); + Ctx.SelfArg = &SelfDRE; + + // If the attribute has no arguments, then assume the argument is "this". + if (!AttrExp) + return translateAttrExpr(Ctx.SelfArg, nullptr); + else // For most attributes. + return translateAttrExpr(AttrExp, &Ctx); + } + + // If the attribute has no arguments, then assume the argument is "this". + if (!AttrExp) + return translateAttrExpr(Ctx.SelfArg, nullptr); + else // For most attributes. + return translateAttrExpr(AttrExp, &Ctx); +} + + +/// \brief Translate a clang expression in an attribute to a til::SExpr. +// This assumes a CallingContext has already been created. +CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp, + CallingContext *Ctx) { + if (!AttrExp) + return CapabilityExpr(nullptr, false); + + if (auto* SLit = dyn_cast<StringLiteral>(AttrExp)) { + if (SLit->getString() == StringRef("*")) + // The "*" expr is a universal lock, which essentially turns off + // checks until it is removed from the lockset. + return CapabilityExpr(new (Arena) til::Wildcard(), false); + else + // Ignore other string literals for now. + return CapabilityExpr(nullptr, false); + } + + bool Neg = false; + if (auto *OE = dyn_cast<CXXOperatorCallExpr>(AttrExp)) { + if (OE->getOperator() == OO_Exclaim) { + Neg = true; + AttrExp = OE->getArg(0); + } + } + else if (auto *UO = dyn_cast<UnaryOperator>(AttrExp)) { + if (UO->getOpcode() == UO_LNot) { + Neg = true; + AttrExp = UO->getSubExpr(); + } + } + + til::SExpr *E = translate(AttrExp, Ctx); + + // Trap mutex expressions like nullptr, or 0. + // Any literal value is nonsense. + if (!E || isa<til::Literal>(E)) + return CapabilityExpr(nullptr, false); + + // Hack to deal with smart pointers -- strip off top-level pointer casts. + if (auto *CE = dyn_cast_or_null<til::Cast>(E)) { + if (CE->castOpcode() == til::CAST_objToPtr) + return CapabilityExpr(CE->expr(), Neg); + } + return CapabilityExpr(E, Neg); +} + + + +// Translate a clang statement or expression to a TIL expression. +// Also performs substitution of variables; Ctx provides the context. +// Dispatches on the type of S. +til::SExpr *SExprBuilder::translate(const Stmt *S, CallingContext *Ctx) { + if (!S) + return nullptr; + + // Check if S has already been translated and cached. + // This handles the lookup of SSA names for DeclRefExprs here. + if (til::SExpr *E = lookupStmt(S)) + return E; + + switch (S->getStmtClass()) { + case Stmt::DeclRefExprClass: + return translateDeclRefExpr(cast<DeclRefExpr>(S), Ctx); + case Stmt::CXXThisExprClass: + return translateCXXThisExpr(cast<CXXThisExpr>(S), Ctx); + case Stmt::MemberExprClass: + return translateMemberExpr(cast<MemberExpr>(S), Ctx); + case Stmt::CallExprClass: + return translateCallExpr(cast<CallExpr>(S), Ctx); + case Stmt::CXXMemberCallExprClass: + return translateCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), Ctx); + case Stmt::CXXOperatorCallExprClass: + return translateCXXOperatorCallExpr(cast<CXXOperatorCallExpr>(S), Ctx); + case Stmt::UnaryOperatorClass: + return translateUnaryOperator(cast<UnaryOperator>(S), Ctx); + case Stmt::BinaryOperatorClass: + case Stmt::CompoundAssignOperatorClass: + return translateBinaryOperator(cast<BinaryOperator>(S), Ctx); + + case Stmt::ArraySubscriptExprClass: + return translateArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Ctx); + case Stmt::ConditionalOperatorClass: + return translateAbstractConditionalOperator( + cast<ConditionalOperator>(S), Ctx); + case Stmt::BinaryConditionalOperatorClass: + return translateAbstractConditionalOperator( + cast<BinaryConditionalOperator>(S), Ctx); + + // We treat these as no-ops + case Stmt::ParenExprClass: + return translate(cast<ParenExpr>(S)->getSubExpr(), Ctx); + case Stmt::ExprWithCleanupsClass: + return translate(cast<ExprWithCleanups>(S)->getSubExpr(), Ctx); + case Stmt::CXXBindTemporaryExprClass: + return translate(cast<CXXBindTemporaryExpr>(S)->getSubExpr(), Ctx); + + // Collect all literals + case Stmt::CharacterLiteralClass: + case Stmt::CXXNullPtrLiteralExprClass: + case Stmt::GNUNullExprClass: + case Stmt::CXXBoolLiteralExprClass: + case Stmt::FloatingLiteralClass: + case Stmt::ImaginaryLiteralClass: + case Stmt::IntegerLiteralClass: + case Stmt::StringLiteralClass: + case Stmt::ObjCStringLiteralClass: + return new (Arena) til::Literal(cast<Expr>(S)); + + case Stmt::DeclStmtClass: + return translateDeclStmt(cast<DeclStmt>(S), Ctx); + default: + break; + } + if (const CastExpr *CE = dyn_cast<CastExpr>(S)) + return translateCastExpr(CE, Ctx); + + return new (Arena) til::Undefined(S); +} + + + +til::SExpr *SExprBuilder::translateDeclRefExpr(const DeclRefExpr *DRE, + CallingContext *Ctx) { + const ValueDecl *VD = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl()); + + // Function parameters require substitution and/or renaming. + if (const ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(VD)) { + const FunctionDecl *FD = + cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl(); + unsigned I = PV->getFunctionScopeIndex(); + + if (Ctx && Ctx->FunArgs && FD == Ctx->AttrDecl->getCanonicalDecl()) { + // Substitute call arguments for references to function parameters + assert(I < Ctx->NumArgs); + return translate(Ctx->FunArgs[I], Ctx->Prev); + } + // Map the param back to the param of the original function declaration + // for consistent comparisons. + VD = FD->getParamDecl(I); + } + + // For non-local variables, treat it as a referenced to a named object. + return new (Arena) til::LiteralPtr(VD); +} + + +til::SExpr *SExprBuilder::translateCXXThisExpr(const CXXThisExpr *TE, + CallingContext *Ctx) { + // Substitute for 'this' + if (Ctx && Ctx->SelfArg) + return translate(Ctx->SelfArg, Ctx->Prev); + assert(SelfVar && "We have no variable for 'this'!"); + return SelfVar; +} + +static const ValueDecl *getValueDeclFromSExpr(const til::SExpr *E) { + if (auto *V = dyn_cast<til::Variable>(E)) + return V->clangDecl(); + if (auto *Ph = dyn_cast<til::Phi>(E)) + return Ph->clangDecl(); + if (auto *P = dyn_cast<til::Project>(E)) + return P->clangDecl(); + if (auto *L = dyn_cast<til::LiteralPtr>(E)) + return L->clangDecl(); + return 0; +} + +static bool hasCppPointerType(const til::SExpr *E) { + auto *VD = getValueDeclFromSExpr(E); + if (VD && VD->getType()->isPointerType()) + return true; + if (auto *C = dyn_cast<til::Cast>(E)) + return C->castOpcode() == til::CAST_objToPtr; + + return false; +} + +// Grab the very first declaration of virtual method D +static const CXXMethodDecl *getFirstVirtualDecl(const CXXMethodDecl *D) { + while (true) { + D = D->getCanonicalDecl(); + CXXMethodDecl::method_iterator I = D->begin_overridden_methods(), + E = D->end_overridden_methods(); + if (I == E) + return D; // Method does not override anything + D = *I; // FIXME: this does not work with multiple inheritance. + } + return nullptr; +} + +til::SExpr *SExprBuilder::translateMemberExpr(const MemberExpr *ME, + CallingContext *Ctx) { + til::SExpr *BE = translate(ME->getBase(), Ctx); + til::SExpr *E = new (Arena) til::SApply(BE); + + const ValueDecl *D = ME->getMemberDecl(); + if (auto *VD = dyn_cast<CXXMethodDecl>(D)) + D = getFirstVirtualDecl(VD); + + til::Project *P = new (Arena) til::Project(E, D); + if (hasCppPointerType(BE)) + P->setArrow(true); + return P; +} + + +til::SExpr *SExprBuilder::translateCallExpr(const CallExpr *CE, + CallingContext *Ctx, + const Expr *SelfE) { + if (CapabilityExprMode) { + // Handle LOCK_RETURNED + const FunctionDecl *FD = CE->getDirectCallee()->getMostRecentDecl(); + if (LockReturnedAttr* At = FD->getAttr<LockReturnedAttr>()) { + CallingContext LRCallCtx(Ctx); + LRCallCtx.AttrDecl = CE->getDirectCallee(); + LRCallCtx.SelfArg = SelfE; + LRCallCtx.NumArgs = CE->getNumArgs(); + LRCallCtx.FunArgs = CE->getArgs(); + return const_cast<til::SExpr*>( + translateAttrExpr(At->getArg(), &LRCallCtx).sexpr()); + } + } + + til::SExpr *E = translate(CE->getCallee(), Ctx); + for (const auto *Arg : CE->arguments()) { + til::SExpr *A = translate(Arg, Ctx); + E = new (Arena) til::Apply(E, A); + } + return new (Arena) til::Call(E, CE); +} + + +til::SExpr *SExprBuilder::translateCXXMemberCallExpr( + const CXXMemberCallExpr *ME, CallingContext *Ctx) { + if (CapabilityExprMode) { + // Ignore calls to get() on smart pointers. + if (ME->getMethodDecl()->getNameAsString() == "get" && + ME->getNumArgs() == 0) { + auto *E = translate(ME->getImplicitObjectArgument(), Ctx); + return new (Arena) til::Cast(til::CAST_objToPtr, E); + // return E; + } + } + return translateCallExpr(cast<CallExpr>(ME), Ctx, + ME->getImplicitObjectArgument()); +} + + +til::SExpr *SExprBuilder::translateCXXOperatorCallExpr( + const CXXOperatorCallExpr *OCE, CallingContext *Ctx) { + if (CapabilityExprMode) { + // Ignore operator * and operator -> on smart pointers. + OverloadedOperatorKind k = OCE->getOperator(); + if (k == OO_Star || k == OO_Arrow) { + auto *E = translate(OCE->getArg(0), Ctx); + return new (Arena) til::Cast(til::CAST_objToPtr, E); + // return E; + } + } + return translateCallExpr(cast<CallExpr>(OCE), Ctx); +} + + +til::SExpr *SExprBuilder::translateUnaryOperator(const UnaryOperator *UO, + CallingContext *Ctx) { + switch (UO->getOpcode()) { + case UO_PostInc: + case UO_PostDec: + case UO_PreInc: + case UO_PreDec: + return new (Arena) til::Undefined(UO); + + case UO_AddrOf: { + if (CapabilityExprMode) { + // interpret &Graph::mu_ as an existential. + if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr())) { + if (DRE->getDecl()->isCXXInstanceMember()) { + // This is a pointer-to-member expression, e.g. &MyClass::mu_. + // We interpret this syntax specially, as a wildcard. + auto *W = new (Arena) til::Wildcard(); + return new (Arena) til::Project(W, DRE->getDecl()); + } + } + } + // otherwise, & is a no-op + return translate(UO->getSubExpr(), Ctx); + } + + // We treat these as no-ops + case UO_Deref: + case UO_Plus: + return translate(UO->getSubExpr(), Ctx); + + case UO_Minus: + return new (Arena) + til::UnaryOp(til::UOP_Minus, translate(UO->getSubExpr(), Ctx)); + case UO_Not: + return new (Arena) + til::UnaryOp(til::UOP_BitNot, translate(UO->getSubExpr(), Ctx)); + case UO_LNot: + return new (Arena) + til::UnaryOp(til::UOP_LogicNot, translate(UO->getSubExpr(), Ctx)); + + // Currently unsupported + case UO_Real: + case UO_Imag: + case UO_Extension: + return new (Arena) til::Undefined(UO); + } + return new (Arena) til::Undefined(UO); +} + + +til::SExpr *SExprBuilder::translateBinOp(til::TIL_BinaryOpcode Op, + const BinaryOperator *BO, + CallingContext *Ctx, bool Reverse) { + til::SExpr *E0 = translate(BO->getLHS(), Ctx); + til::SExpr *E1 = translate(BO->getRHS(), Ctx); + if (Reverse) + return new (Arena) til::BinaryOp(Op, E1, E0); + else + return new (Arena) til::BinaryOp(Op, E0, E1); +} + + +til::SExpr *SExprBuilder::translateBinAssign(til::TIL_BinaryOpcode Op, + const BinaryOperator *BO, + CallingContext *Ctx, + bool Assign) { + const Expr *LHS = BO->getLHS(); + const Expr *RHS = BO->getRHS(); + til::SExpr *E0 = translate(LHS, Ctx); + til::SExpr *E1 = translate(RHS, Ctx); + + const ValueDecl *VD = nullptr; + til::SExpr *CV = nullptr; + if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHS)) { + VD = DRE->getDecl(); + CV = lookupVarDecl(VD); + } + + if (!Assign) { + til::SExpr *Arg = CV ? CV : new (Arena) til::Load(E0); + E1 = new (Arena) til::BinaryOp(Op, Arg, E1); + E1 = addStatement(E1, nullptr, VD); + } + if (VD && CV) + return updateVarDecl(VD, E1); + return new (Arena) til::Store(E0, E1); +} + + +til::SExpr *SExprBuilder::translateBinaryOperator(const BinaryOperator *BO, + CallingContext *Ctx) { + switch (BO->getOpcode()) { + case BO_PtrMemD: + case BO_PtrMemI: + return new (Arena) til::Undefined(BO); + + case BO_Mul: return translateBinOp(til::BOP_Mul, BO, Ctx); + case BO_Div: return translateBinOp(til::BOP_Div, BO, Ctx); + case BO_Rem: return translateBinOp(til::BOP_Rem, BO, Ctx); + case BO_Add: return translateBinOp(til::BOP_Add, BO, Ctx); + case BO_Sub: return translateBinOp(til::BOP_Sub, BO, Ctx); + case BO_Shl: return translateBinOp(til::BOP_Shl, BO, Ctx); + case BO_Shr: return translateBinOp(til::BOP_Shr, BO, Ctx); + case BO_LT: return translateBinOp(til::BOP_Lt, BO, Ctx); + case BO_GT: return translateBinOp(til::BOP_Lt, BO, Ctx, true); + case BO_LE: return translateBinOp(til::BOP_Leq, BO, Ctx); + case BO_GE: return translateBinOp(til::BOP_Leq, BO, Ctx, true); + case BO_EQ: return translateBinOp(til::BOP_Eq, BO, Ctx); + case BO_NE: return translateBinOp(til::BOP_Neq, BO, Ctx); + case BO_And: return translateBinOp(til::BOP_BitAnd, BO, Ctx); + case BO_Xor: return translateBinOp(til::BOP_BitXor, BO, Ctx); + case BO_Or: return translateBinOp(til::BOP_BitOr, BO, Ctx); + case BO_LAnd: return translateBinOp(til::BOP_LogicAnd, BO, Ctx); + case BO_LOr: return translateBinOp(til::BOP_LogicOr, BO, Ctx); + + case BO_Assign: return translateBinAssign(til::BOP_Eq, BO, Ctx, true); + case BO_MulAssign: return translateBinAssign(til::BOP_Mul, BO, Ctx); + case BO_DivAssign: return translateBinAssign(til::BOP_Div, BO, Ctx); + case BO_RemAssign: return translateBinAssign(til::BOP_Rem, BO, Ctx); + case BO_AddAssign: return translateBinAssign(til::BOP_Add, BO, Ctx); + case BO_SubAssign: return translateBinAssign(til::BOP_Sub, BO, Ctx); + case BO_ShlAssign: return translateBinAssign(til::BOP_Shl, BO, Ctx); + case BO_ShrAssign: return translateBinAssign(til::BOP_Shr, BO, Ctx); + case BO_AndAssign: return translateBinAssign(til::BOP_BitAnd, BO, Ctx); + case BO_XorAssign: return translateBinAssign(til::BOP_BitXor, BO, Ctx); + case BO_OrAssign: return translateBinAssign(til::BOP_BitOr, BO, Ctx); + + case BO_Comma: + // The clang CFG should have already processed both sides. + return translate(BO->getRHS(), Ctx); + } + return new (Arena) til::Undefined(BO); +} + + +til::SExpr *SExprBuilder::translateCastExpr(const CastExpr *CE, + CallingContext *Ctx) { + clang::CastKind K = CE->getCastKind(); + switch (K) { + case CK_LValueToRValue: { + if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) { + til::SExpr *E0 = lookupVarDecl(DRE->getDecl()); + if (E0) + return E0; + } + til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); + return E0; + // FIXME!! -- get Load working properly + // return new (Arena) til::Load(E0); + } + case CK_NoOp: + case CK_DerivedToBase: + case CK_UncheckedDerivedToBase: + case CK_ArrayToPointerDecay: + case CK_FunctionToPointerDecay: { + til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); + return E0; + } + default: { + // FIXME: handle different kinds of casts. + til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); + if (CapabilityExprMode) + return E0; + return new (Arena) til::Cast(til::CAST_none, E0); + } + } +} + + +til::SExpr * +SExprBuilder::translateArraySubscriptExpr(const ArraySubscriptExpr *E, + CallingContext *Ctx) { + til::SExpr *E0 = translate(E->getBase(), Ctx); + til::SExpr *E1 = translate(E->getIdx(), Ctx); + return new (Arena) til::ArrayIndex(E0, E1); +} + + +til::SExpr * +SExprBuilder::translateAbstractConditionalOperator( + const AbstractConditionalOperator *CO, CallingContext *Ctx) { + auto *C = translate(CO->getCond(), Ctx); + auto *T = translate(CO->getTrueExpr(), Ctx); + auto *E = translate(CO->getFalseExpr(), Ctx); + return new (Arena) til::IfThenElse(C, T, E); +} + + +til::SExpr * +SExprBuilder::translateDeclStmt(const DeclStmt *S, CallingContext *Ctx) { + DeclGroupRef DGrp = S->getDeclGroup(); + for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) { + if (VarDecl *VD = dyn_cast_or_null<VarDecl>(*I)) { + Expr *E = VD->getInit(); + til::SExpr* SE = translate(E, Ctx); + + // Add local variables with trivial type to the variable map + QualType T = VD->getType(); + if (T.isTrivialType(VD->getASTContext())) { + return addVarDecl(VD, SE); + } + else { + // TODO: add alloca + } + } + } + return nullptr; +} + + + +// If (E) is non-trivial, then add it to the current basic block, and +// update the statement map so that S refers to E. Returns a new variable +// that refers to E. +// If E is trivial returns E. +til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S, + const ValueDecl *VD) { + if (!E || !CurrentBB || E->block() || til::ThreadSafetyTIL::isTrivial(E)) + return E; + if (VD) + E = new (Arena) til::Variable(E, VD); + CurrentInstructions.push_back(E); + if (S) + insertStmt(S, E); + return E; +} + + +// Returns the current value of VD, if known, and nullptr otherwise. +til::SExpr *SExprBuilder::lookupVarDecl(const ValueDecl *VD) { + auto It = LVarIdxMap.find(VD); + if (It != LVarIdxMap.end()) { + assert(CurrentLVarMap[It->second].first == VD); + return CurrentLVarMap[It->second].second; + } + return nullptr; +} + + +// if E is a til::Variable, update its clangDecl. +static void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD) { + if (!E) + return; + if (til::Variable *V = dyn_cast<til::Variable>(E)) { + if (!V->clangDecl()) + V->setClangDecl(VD); + } +} + +// Adds a new variable declaration. +til::SExpr *SExprBuilder::addVarDecl(const ValueDecl *VD, til::SExpr *E) { + maybeUpdateVD(E, VD); + LVarIdxMap.insert(std::make_pair(VD, CurrentLVarMap.size())); + CurrentLVarMap.makeWritable(); + CurrentLVarMap.push_back(std::make_pair(VD, E)); + return E; +} + + +// Updates a current variable declaration. (E.g. by assignment) +til::SExpr *SExprBuilder::updateVarDecl(const ValueDecl *VD, til::SExpr *E) { + maybeUpdateVD(E, VD); + auto It = LVarIdxMap.find(VD); + if (It == LVarIdxMap.end()) { + til::SExpr *Ptr = new (Arena) til::LiteralPtr(VD); + til::SExpr *St = new (Arena) til::Store(Ptr, E); + return St; + } + CurrentLVarMap.makeWritable(); + CurrentLVarMap.elem(It->second).second = E; + return E; +} + + +// Make a Phi node in the current block for the i^th variable in CurrentVarMap. +// If E != null, sets Phi[CurrentBlockInfo->ArgIndex] = E. +// If E == null, this is a backedge and will be set later. +void SExprBuilder::makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E) { + unsigned ArgIndex = CurrentBlockInfo->ProcessedPredecessors; + assert(ArgIndex > 0 && ArgIndex < NPreds); + + til::SExpr *CurrE = CurrentLVarMap[i].second; + if (CurrE->block() == CurrentBB) { + // We already have a Phi node in the current block, + // so just add the new variable to the Phi node. + til::Phi *Ph = dyn_cast<til::Phi>(CurrE); + assert(Ph && "Expecting Phi node."); + if (E) + Ph->values()[ArgIndex] = E; + return; + } + + // Make a new phi node: phi(..., E) + // All phi args up to the current index are set to the current value. + til::Phi *Ph = new (Arena) til::Phi(Arena, NPreds); + Ph->values().setValues(NPreds, nullptr); + for (unsigned PIdx = 0; PIdx < ArgIndex; ++PIdx) + Ph->values()[PIdx] = CurrE; + if (E) + Ph->values()[ArgIndex] = E; + Ph->setClangDecl(CurrentLVarMap[i].first); + // If E is from a back-edge, or either E or CurrE are incomplete, then + // mark this node as incomplete; we may need to remove it later. + if (!E || isIncompletePhi(E) || isIncompletePhi(CurrE)) { + Ph->setStatus(til::Phi::PH_Incomplete); + } + + // Add Phi node to current block, and update CurrentLVarMap[i] + CurrentArguments.push_back(Ph); + if (Ph->status() == til::Phi::PH_Incomplete) + IncompleteArgs.push_back(Ph); + + CurrentLVarMap.makeWritable(); + CurrentLVarMap.elem(i).second = Ph; +} + + +// Merge values from Map into the current variable map. +// This will construct Phi nodes in the current basic block as necessary. +void SExprBuilder::mergeEntryMap(LVarDefinitionMap Map) { + assert(CurrentBlockInfo && "Not processing a block!"); + + if (!CurrentLVarMap.valid()) { + // Steal Map, using copy-on-write. + CurrentLVarMap = std::move(Map); + return; + } + if (CurrentLVarMap.sameAs(Map)) + return; // Easy merge: maps from different predecessors are unchanged. + + unsigned NPreds = CurrentBB->numPredecessors(); + unsigned ESz = CurrentLVarMap.size(); + unsigned MSz = Map.size(); + unsigned Sz = std::min(ESz, MSz); + + for (unsigned i=0; i<Sz; ++i) { + if (CurrentLVarMap[i].first != Map[i].first) { + // We've reached the end of variables in common. + CurrentLVarMap.makeWritable(); + CurrentLVarMap.downsize(i); + break; + } + if (CurrentLVarMap[i].second != Map[i].second) + makePhiNodeVar(i, NPreds, Map[i].second); + } + if (ESz > MSz) { + CurrentLVarMap.makeWritable(); + CurrentLVarMap.downsize(Map.size()); + } +} + + +// Merge a back edge into the current variable map. +// This will create phi nodes for all variables in the variable map. +void SExprBuilder::mergeEntryMapBackEdge() { + // We don't have definitions for variables on the backedge, because we + // haven't gotten that far in the CFG. Thus, when encountering a back edge, + // we conservatively create Phi nodes for all variables. Unnecessary Phi + // nodes will be marked as incomplete, and stripped out at the end. + // + // An Phi node is unnecessary if it only refers to itself and one other + // variable, e.g. x = Phi(y, y, x) can be reduced to x = y. + + assert(CurrentBlockInfo && "Not processing a block!"); + + if (CurrentBlockInfo->HasBackEdges) + return; + CurrentBlockInfo->HasBackEdges = true; + + CurrentLVarMap.makeWritable(); + unsigned Sz = CurrentLVarMap.size(); + unsigned NPreds = CurrentBB->numPredecessors(); + + for (unsigned i=0; i < Sz; ++i) { + makePhiNodeVar(i, NPreds, nullptr); + } +} + + +// Update the phi nodes that were initially created for a back edge +// once the variable definitions have been computed. +// I.e., merge the current variable map into the phi nodes for Blk. +void SExprBuilder::mergePhiNodesBackEdge(const CFGBlock *Blk) { + til::BasicBlock *BB = lookupBlock(Blk); + unsigned ArgIndex = BBInfo[Blk->getBlockID()].ProcessedPredecessors; + assert(ArgIndex > 0 && ArgIndex < BB->numPredecessors()); + + for (til::SExpr *PE : BB->arguments()) { + til::Phi *Ph = dyn_cast_or_null<til::Phi>(PE); + assert(Ph && "Expecting Phi Node."); + assert(Ph->values()[ArgIndex] == nullptr && "Wrong index for back edge."); + + til::SExpr *E = lookupVarDecl(Ph->clangDecl()); + assert(E && "Couldn't find local variable for Phi node."); + Ph->values()[ArgIndex] = E; + } +} + +void SExprBuilder::enterCFG(CFG *Cfg, const NamedDecl *D, + const CFGBlock *First) { + // Perform initial setup operations. + unsigned NBlocks = Cfg->getNumBlockIDs(); + Scfg = new (Arena) til::SCFG(Arena, NBlocks); + + // allocate all basic blocks immediately, to handle forward references. + BBInfo.resize(NBlocks); + BlockMap.resize(NBlocks, nullptr); + // create map from clang blockID to til::BasicBlocks + for (auto *B : *Cfg) { + auto *BB = new (Arena) til::BasicBlock(Arena); + BB->reserveInstructions(B->size()); + BlockMap[B->getBlockID()] = BB; + } + + CurrentBB = lookupBlock(&Cfg->getEntry()); + auto Parms = isa<ObjCMethodDecl>(D) ? cast<ObjCMethodDecl>(D)->parameters() + : cast<FunctionDecl>(D)->parameters(); + for (auto *Pm : Parms) { + QualType T = Pm->getType(); + if (!T.isTrivialType(Pm->getASTContext())) + continue; + + // Add parameters to local variable map. + // FIXME: right now we emulate params with loads; that should be fixed. + til::SExpr *Lp = new (Arena) til::LiteralPtr(Pm); + til::SExpr *Ld = new (Arena) til::Load(Lp); + til::SExpr *V = addStatement(Ld, nullptr, Pm); + addVarDecl(Pm, V); + } +} + + +void SExprBuilder::enterCFGBlock(const CFGBlock *B) { + // Intialize TIL basic block and add it to the CFG. + CurrentBB = lookupBlock(B); + CurrentBB->reservePredecessors(B->pred_size()); + Scfg->add(CurrentBB); + + CurrentBlockInfo = &BBInfo[B->getBlockID()]; + + // CurrentLVarMap is moved to ExitMap on block exit. + // FIXME: the entry block will hold function parameters. + // assert(!CurrentLVarMap.valid() && "CurrentLVarMap already initialized."); +} + + +void SExprBuilder::handlePredecessor(const CFGBlock *Pred) { + // Compute CurrentLVarMap on entry from ExitMaps of predecessors + + CurrentBB->addPredecessor(BlockMap[Pred->getBlockID()]); + BlockInfo *PredInfo = &BBInfo[Pred->getBlockID()]; + assert(PredInfo->UnprocessedSuccessors > 0); + + if (--PredInfo->UnprocessedSuccessors == 0) + mergeEntryMap(std::move(PredInfo->ExitMap)); + else + mergeEntryMap(PredInfo->ExitMap.clone()); + + ++CurrentBlockInfo->ProcessedPredecessors; +} + + +void SExprBuilder::handlePredecessorBackEdge(const CFGBlock *Pred) { + mergeEntryMapBackEdge(); +} + + +void SExprBuilder::enterCFGBlockBody(const CFGBlock *B) { + // The merge*() methods have created arguments. + // Push those arguments onto the basic block. + CurrentBB->arguments().reserve( + static_cast<unsigned>(CurrentArguments.size()), Arena); + for (auto *A : CurrentArguments) + CurrentBB->addArgument(A); +} + + +void SExprBuilder::handleStatement(const Stmt *S) { + til::SExpr *E = translate(S, nullptr); + addStatement(E, S); +} + + +void SExprBuilder::handleDestructorCall(const VarDecl *VD, + const CXXDestructorDecl *DD) { + til::SExpr *Sf = new (Arena) til::LiteralPtr(VD); + til::SExpr *Dr = new (Arena) til::LiteralPtr(DD); + til::SExpr *Ap = new (Arena) til::Apply(Dr, Sf); + til::SExpr *E = new (Arena) til::Call(Ap); + addStatement(E, nullptr); +} + + + +void SExprBuilder::exitCFGBlockBody(const CFGBlock *B) { + CurrentBB->instructions().reserve( + static_cast<unsigned>(CurrentInstructions.size()), Arena); + for (auto *V : CurrentInstructions) + CurrentBB->addInstruction(V); + + // Create an appropriate terminator + unsigned N = B->succ_size(); + auto It = B->succ_begin(); + if (N == 1) { + til::BasicBlock *BB = *It ? lookupBlock(*It) : nullptr; + // TODO: set index + unsigned Idx = BB ? BB->findPredecessorIndex(CurrentBB) : 0; + auto *Tm = new (Arena) til::Goto(BB, Idx); + CurrentBB->setTerminator(Tm); + } + else if (N == 2) { + til::SExpr *C = translate(B->getTerminatorCondition(true), nullptr); + til::BasicBlock *BB1 = *It ? lookupBlock(*It) : nullptr; + ++It; + til::BasicBlock *BB2 = *It ? lookupBlock(*It) : nullptr; + // FIXME: make sure these arent' critical edges. + auto *Tm = new (Arena) til::Branch(C, BB1, BB2); + CurrentBB->setTerminator(Tm); + } +} + + +void SExprBuilder::handleSuccessor(const CFGBlock *Succ) { + ++CurrentBlockInfo->UnprocessedSuccessors; +} + + +void SExprBuilder::handleSuccessorBackEdge(const CFGBlock *Succ) { + mergePhiNodesBackEdge(Succ); + ++BBInfo[Succ->getBlockID()].ProcessedPredecessors; +} + + +void SExprBuilder::exitCFGBlock(const CFGBlock *B) { + CurrentArguments.clear(); + CurrentInstructions.clear(); + CurrentBlockInfo->ExitMap = std::move(CurrentLVarMap); + CurrentBB = nullptr; + CurrentBlockInfo = nullptr; +} + + +void SExprBuilder::exitCFG(const CFGBlock *Last) { + for (auto *Ph : IncompleteArgs) { + if (Ph->status() == til::Phi::PH_Incomplete) + simplifyIncompleteArg(Ph); + } + + CurrentArguments.clear(); + CurrentInstructions.clear(); + IncompleteArgs.clear(); +} + + +/* +void printSCFG(CFGWalker &Walker) { + llvm::BumpPtrAllocator Bpa; + til::MemRegionRef Arena(&Bpa); + SExprBuilder SxBuilder(Arena); + til::SCFG *Scfg = SxBuilder.buildCFG(Walker); + TILPrinter::print(Scfg, llvm::errs()); +} +*/ |