summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/Analysis/ThreadSafety.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/Analysis/ThreadSafety.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/ThreadSafety.cpp2406
1 files changed, 2406 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/Analysis/ThreadSafety.cpp b/contrib/llvm/tools/clang/lib/Analysis/ThreadSafety.cpp
new file mode 100644
index 0000000..b282a5b
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/ThreadSafety.cpp
@@ -0,0 +1,2406 @@
+//===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// A intra-procedural analysis for thread safety (e.g. deadlocks and race
+// conditions), based off of an annotation system.
+//
+// See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html
+// for more information.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/Attr.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/StmtCXX.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Analysis/Analyses/PostOrderCFGView.h"
+#include "clang/Analysis/Analyses/ThreadSafety.h"
+#include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
+#include "clang/Analysis/Analyses/ThreadSafetyLogical.h"
+#include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
+#include "clang/Analysis/Analyses/ThreadSafetyTraverse.h"
+#include "clang/Analysis/AnalysisContext.h"
+#include "clang/Analysis/CFG.h"
+#include "clang/Analysis/CFGStmtMap.h"
+#include "clang/Basic/OperatorKinds.h"
+#include "clang/Basic/SourceLocation.h"
+#include "clang/Basic/SourceManager.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/ADT/ImmutableMap.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <ostream>
+#include <sstream>
+#include <utility>
+#include <vector>
+using namespace clang;
+using namespace threadSafety;
+
+// Key method definition
+ThreadSafetyHandler::~ThreadSafetyHandler() {}
+
+namespace {
+class TILPrinter :
+ public til::PrettyPrinter<TILPrinter, llvm::raw_ostream> {};
+
+
+/// Issue a warning about an invalid lock expression
+static void warnInvalidLock(ThreadSafetyHandler &Handler,
+ const Expr *MutexExp, const NamedDecl *D,
+ const Expr *DeclExp, StringRef Kind) {
+ SourceLocation Loc;
+ if (DeclExp)
+ Loc = DeclExp->getExprLoc();
+
+ // FIXME: add a note about the attribute location in MutexExp or D
+ if (Loc.isValid())
+ Handler.handleInvalidLockExp(Kind, Loc);
+}
+
+/// \brief A set of CapabilityInfo objects, which are compiled from the
+/// requires attributes on a function.
+class CapExprSet : public SmallVector<CapabilityExpr, 4> {
+public:
+ /// \brief Push M onto list, but discard duplicates.
+ void push_back_nodup(const CapabilityExpr &CapE) {
+ iterator It = std::find_if(begin(), end(),
+ [=](const CapabilityExpr &CapE2) {
+ return CapE.equals(CapE2);
+ });
+ if (It == end())
+ push_back(CapE);
+ }
+};
+
+class FactManager;
+class FactSet;
+
+/// \brief This is a helper class that stores a fact that is known at a
+/// particular point in program execution. Currently, a fact is a capability,
+/// along with additional information, such as where it was acquired, whether
+/// it is exclusive or shared, etc.
+///
+/// FIXME: this analysis does not currently support either re-entrant
+/// locking or lock "upgrading" and "downgrading" between exclusive and
+/// shared.
+class FactEntry : public CapabilityExpr {
+private:
+ LockKind LKind; ///< exclusive or shared
+ SourceLocation AcquireLoc; ///< where it was acquired.
+ bool Asserted; ///< true if the lock was asserted
+ bool Declared; ///< true if the lock was declared
+
+public:
+ FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
+ bool Asrt, bool Declrd = false)
+ : CapabilityExpr(CE), LKind(LK), AcquireLoc(Loc), Asserted(Asrt),
+ Declared(Declrd) {}
+
+ virtual ~FactEntry() {}
+
+ LockKind kind() const { return LKind; }
+ SourceLocation loc() const { return AcquireLoc; }
+ bool asserted() const { return Asserted; }
+ bool declared() const { return Declared; }
+
+ void setDeclared(bool D) { Declared = D; }
+
+ virtual void
+ handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
+ SourceLocation JoinLoc, LockErrorKind LEK,
+ ThreadSafetyHandler &Handler) const = 0;
+ virtual void handleUnlock(FactSet &FSet, FactManager &FactMan,
+ const CapabilityExpr &Cp, SourceLocation UnlockLoc,
+ bool FullyRemove, ThreadSafetyHandler &Handler,
+ StringRef DiagKind) const = 0;
+
+ // Return true if LKind >= LK, where exclusive > shared
+ bool isAtLeast(LockKind LK) {
+ return (LKind == LK_Exclusive) || (LK == LK_Shared);
+ }
+};
+
+
+typedef unsigned short FactID;
+
+/// \brief FactManager manages the memory for all facts that are created during
+/// the analysis of a single routine.
+class FactManager {
+private:
+ std::vector<std::unique_ptr<FactEntry>> Facts;
+
+public:
+ FactID newFact(std::unique_ptr<FactEntry> Entry) {
+ Facts.push_back(std::move(Entry));
+ return static_cast<unsigned short>(Facts.size() - 1);
+ }
+
+ const FactEntry &operator[](FactID F) const { return *Facts[F]; }
+ FactEntry &operator[](FactID F) { return *Facts[F]; }
+};
+
+
+/// \brief A FactSet is the set of facts that are known to be true at a
+/// particular program point. FactSets must be small, because they are
+/// frequently copied, and are thus implemented as a set of indices into a
+/// table maintained by a FactManager. A typical FactSet only holds 1 or 2
+/// locks, so we can get away with doing a linear search for lookup. Note
+/// that a hashtable or map is inappropriate in this case, because lookups
+/// may involve partial pattern matches, rather than exact matches.
+class FactSet {
+private:
+ typedef SmallVector<FactID, 4> FactVec;
+
+ FactVec FactIDs;
+
+public:
+ typedef FactVec::iterator iterator;
+ typedef FactVec::const_iterator const_iterator;
+
+ iterator begin() { return FactIDs.begin(); }
+ const_iterator begin() const { return FactIDs.begin(); }
+
+ iterator end() { return FactIDs.end(); }
+ const_iterator end() const { return FactIDs.end(); }
+
+ bool isEmpty() const { return FactIDs.size() == 0; }
+
+ // Return true if the set contains only negative facts
+ bool isEmpty(FactManager &FactMan) const {
+ for (FactID FID : *this) {
+ if (!FactMan[FID].negative())
+ return false;
+ }
+ return true;
+ }
+
+ void addLockByID(FactID ID) { FactIDs.push_back(ID); }
+
+ FactID addLock(FactManager &FM, std::unique_ptr<FactEntry> Entry) {
+ FactID F = FM.newFact(std::move(Entry));
+ FactIDs.push_back(F);
+ return F;
+ }
+
+ bool removeLock(FactManager& FM, const CapabilityExpr &CapE) {
+ unsigned n = FactIDs.size();
+ if (n == 0)
+ return false;
+
+ for (unsigned i = 0; i < n-1; ++i) {
+ if (FM[FactIDs[i]].matches(CapE)) {
+ FactIDs[i] = FactIDs[n-1];
+ FactIDs.pop_back();
+ return true;
+ }
+ }
+ if (FM[FactIDs[n-1]].matches(CapE)) {
+ FactIDs.pop_back();
+ return true;
+ }
+ return false;
+ }
+
+ iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) {
+ return std::find_if(begin(), end(), [&](FactID ID) {
+ return FM[ID].matches(CapE);
+ });
+ }
+
+ FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const {
+ auto I = std::find_if(begin(), end(), [&](FactID ID) {
+ return FM[ID].matches(CapE);
+ });
+ return I != end() ? &FM[*I] : nullptr;
+ }
+
+ FactEntry *findLockUniv(FactManager &FM, const CapabilityExpr &CapE) const {
+ auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
+ return FM[ID].matchesUniv(CapE);
+ });
+ return I != end() ? &FM[*I] : nullptr;
+ }
+
+ FactEntry *findPartialMatch(FactManager &FM,
+ const CapabilityExpr &CapE) const {
+ auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
+ return FM[ID].partiallyMatches(CapE);
+ });
+ return I != end() ? &FM[*I] : nullptr;
+ }
+
+ bool containsMutexDecl(FactManager &FM, const ValueDecl* Vd) const {
+ auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
+ return FM[ID].valueDecl() == Vd;
+ });
+ return I != end();
+ }
+};
+
+class ThreadSafetyAnalyzer;
+} // namespace
+
+namespace clang {
+namespace threadSafety {
+class BeforeSet {
+private:
+ typedef SmallVector<const ValueDecl*, 4> BeforeVect;
+
+ struct BeforeInfo {
+ BeforeInfo() : Visited(0) {}
+ BeforeInfo(BeforeInfo &&O) : Vect(std::move(O.Vect)), Visited(O.Visited) {}
+
+ BeforeVect Vect;
+ int Visited;
+ };
+
+ typedef llvm::DenseMap<const ValueDecl *, std::unique_ptr<BeforeInfo>>
+ BeforeMap;
+ typedef llvm::DenseMap<const ValueDecl*, bool> CycleMap;
+
+public:
+ BeforeSet() { }
+
+ BeforeInfo* insertAttrExprs(const ValueDecl* Vd,
+ ThreadSafetyAnalyzer& Analyzer);
+
+ BeforeInfo *getBeforeInfoForDecl(const ValueDecl *Vd,
+ ThreadSafetyAnalyzer &Analyzer);
+
+ void checkBeforeAfter(const ValueDecl* Vd,
+ const FactSet& FSet,
+ ThreadSafetyAnalyzer& Analyzer,
+ SourceLocation Loc, StringRef CapKind);
+
+private:
+ BeforeMap BMap;
+ CycleMap CycMap;
+};
+} // end namespace threadSafety
+} // end namespace clang
+
+namespace {
+typedef llvm::ImmutableMap<const NamedDecl*, unsigned> LocalVarContext;
+class LocalVariableMap;
+
+/// A side (entry or exit) of a CFG node.
+enum CFGBlockSide { CBS_Entry, CBS_Exit };
+
+/// CFGBlockInfo is a struct which contains all the information that is
+/// maintained for each block in the CFG. See LocalVariableMap for more
+/// information about the contexts.
+struct CFGBlockInfo {
+ FactSet EntrySet; // Lockset held at entry to block
+ FactSet ExitSet; // Lockset held at exit from block
+ LocalVarContext EntryContext; // Context held at entry to block
+ LocalVarContext ExitContext; // Context held at exit from block
+ SourceLocation EntryLoc; // Location of first statement in block
+ SourceLocation ExitLoc; // Location of last statement in block.
+ unsigned EntryIndex; // Used to replay contexts later
+ bool Reachable; // Is this block reachable?
+
+ const FactSet &getSet(CFGBlockSide Side) const {
+ return Side == CBS_Entry ? EntrySet : ExitSet;
+ }
+ SourceLocation getLocation(CFGBlockSide Side) const {
+ return Side == CBS_Entry ? EntryLoc : ExitLoc;
+ }
+
+private:
+ CFGBlockInfo(LocalVarContext EmptyCtx)
+ : EntryContext(EmptyCtx), ExitContext(EmptyCtx), Reachable(false)
+ { }
+
+public:
+ static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M);
+};
+
+
+
+// A LocalVariableMap maintains a map from local variables to their currently
+// valid definitions. It provides SSA-like functionality when traversing the
+// CFG. Like SSA, each definition or assignment to a variable is assigned a
+// unique name (an integer), which acts as the SSA name for that definition.
+// The total set of names is shared among all CFG basic blocks.
+// Unlike SSA, we do not rewrite expressions to replace local variables declrefs
+// with their SSA-names. Instead, we compute a Context for each point in the
+// code, which maps local variables to the appropriate SSA-name. This map
+// changes with each assignment.
+//
+// The map is computed in a single pass over the CFG. Subsequent analyses can
+// then query the map to find the appropriate Context for a statement, and use
+// that Context to look up the definitions of variables.
+class LocalVariableMap {
+public:
+ typedef LocalVarContext Context;
+
+ /// A VarDefinition consists of an expression, representing the value of the
+ /// variable, along with the context in which that expression should be
+ /// interpreted. A reference VarDefinition does not itself contain this
+ /// information, but instead contains a pointer to a previous VarDefinition.
+ struct VarDefinition {
+ public:
+ friend class LocalVariableMap;
+
+ const NamedDecl *Dec; // The original declaration for this variable.
+ const Expr *Exp; // The expression for this variable, OR
+ unsigned Ref; // Reference to another VarDefinition
+ Context Ctx; // The map with which Exp should be interpreted.
+
+ bool isReference() { return !Exp; }
+
+ private:
+ // Create ordinary variable definition
+ VarDefinition(const NamedDecl *D, const Expr *E, Context C)
+ : Dec(D), Exp(E), Ref(0), Ctx(C)
+ { }
+
+ // Create reference to previous definition
+ VarDefinition(const NamedDecl *D, unsigned R, Context C)
+ : Dec(D), Exp(nullptr), Ref(R), Ctx(C)
+ { }
+ };
+
+private:
+ Context::Factory ContextFactory;
+ std::vector<VarDefinition> VarDefinitions;
+ std::vector<unsigned> CtxIndices;
+ std::vector<std::pair<Stmt*, Context> > SavedContexts;
+
+public:
+ LocalVariableMap() {
+ // index 0 is a placeholder for undefined variables (aka phi-nodes).
+ VarDefinitions.push_back(VarDefinition(nullptr, 0u, getEmptyContext()));
+ }
+
+ /// Look up a definition, within the given context.
+ const VarDefinition* lookup(const NamedDecl *D, Context Ctx) {
+ const unsigned *i = Ctx.lookup(D);
+ if (!i)
+ return nullptr;
+ assert(*i < VarDefinitions.size());
+ return &VarDefinitions[*i];
+ }
+
+ /// Look up the definition for D within the given context. Returns
+ /// NULL if the expression is not statically known. If successful, also
+ /// modifies Ctx to hold the context of the return Expr.
+ const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) {
+ const unsigned *P = Ctx.lookup(D);
+ if (!P)
+ return nullptr;
+
+ unsigned i = *P;
+ while (i > 0) {
+ if (VarDefinitions[i].Exp) {
+ Ctx = VarDefinitions[i].Ctx;
+ return VarDefinitions[i].Exp;
+ }
+ i = VarDefinitions[i].Ref;
+ }
+ return nullptr;
+ }
+
+ Context getEmptyContext() { return ContextFactory.getEmptyMap(); }
+
+ /// Return the next context after processing S. This function is used by
+ /// clients of the class to get the appropriate context when traversing the
+ /// CFG. It must be called for every assignment or DeclStmt.
+ Context getNextContext(unsigned &CtxIndex, Stmt *S, Context C) {
+ if (SavedContexts[CtxIndex+1].first == S) {
+ CtxIndex++;
+ Context Result = SavedContexts[CtxIndex].second;
+ return Result;
+ }
+ return C;
+ }
+
+ void dumpVarDefinitionName(unsigned i) {
+ if (i == 0) {
+ llvm::errs() << "Undefined";
+ return;
+ }
+ const NamedDecl *Dec = VarDefinitions[i].Dec;
+ if (!Dec) {
+ llvm::errs() << "<<NULL>>";
+ return;
+ }
+ Dec->printName(llvm::errs());
+ llvm::errs() << "." << i << " " << ((const void*) Dec);
+ }
+
+ /// Dumps an ASCII representation of the variable map to llvm::errs()
+ void dump() {
+ for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
+ const Expr *Exp = VarDefinitions[i].Exp;
+ unsigned Ref = VarDefinitions[i].Ref;
+
+ dumpVarDefinitionName(i);
+ llvm::errs() << " = ";
+ if (Exp) Exp->dump();
+ else {
+ dumpVarDefinitionName(Ref);
+ llvm::errs() << "\n";
+ }
+ }
+ }
+
+ /// Dumps an ASCII representation of a Context to llvm::errs()
+ void dumpContext(Context C) {
+ for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
+ const NamedDecl *D = I.getKey();
+ D->printName(llvm::errs());
+ const unsigned *i = C.lookup(D);
+ llvm::errs() << " -> ";
+ dumpVarDefinitionName(*i);
+ llvm::errs() << "\n";
+ }
+ }
+
+ /// Builds the variable map.
+ void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph,
+ std::vector<CFGBlockInfo> &BlockInfo);
+
+protected:
+ // Get the current context index
+ unsigned getContextIndex() { return SavedContexts.size()-1; }
+
+ // Save the current context for later replay
+ void saveContext(Stmt *S, Context C) {
+ SavedContexts.push_back(std::make_pair(S,C));
+ }
+
+ // Adds a new definition to the given context, and returns a new context.
+ // This method should be called when declaring a new variable.
+ Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) {
+ assert(!Ctx.contains(D));
+ unsigned newID = VarDefinitions.size();
+ Context NewCtx = ContextFactory.add(Ctx, D, newID);
+ VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
+ return NewCtx;
+ }
+
+ // Add a new reference to an existing definition.
+ Context addReference(const NamedDecl *D, unsigned i, Context Ctx) {
+ unsigned newID = VarDefinitions.size();
+ Context NewCtx = ContextFactory.add(Ctx, D, newID);
+ VarDefinitions.push_back(VarDefinition(D, i, Ctx));
+ return NewCtx;
+ }
+
+ // Updates a definition only if that definition is already in the map.
+ // This method should be called when assigning to an existing variable.
+ Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
+ if (Ctx.contains(D)) {
+ unsigned newID = VarDefinitions.size();
+ Context NewCtx = ContextFactory.remove(Ctx, D);
+ NewCtx = ContextFactory.add(NewCtx, D, newID);
+ VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
+ return NewCtx;
+ }
+ return Ctx;
+ }
+
+ // Removes a definition from the context, but keeps the variable name
+ // as a valid variable. The index 0 is a placeholder for cleared definitions.
+ Context clearDefinition(const NamedDecl *D, Context Ctx) {
+ Context NewCtx = Ctx;
+ if (NewCtx.contains(D)) {
+ NewCtx = ContextFactory.remove(NewCtx, D);
+ NewCtx = ContextFactory.add(NewCtx, D, 0);
+ }
+ return NewCtx;
+ }
+
+ // Remove a definition entirely frmo the context.
+ Context removeDefinition(const NamedDecl *D, Context Ctx) {
+ Context NewCtx = Ctx;
+ if (NewCtx.contains(D)) {
+ NewCtx = ContextFactory.remove(NewCtx, D);
+ }
+ return NewCtx;
+ }
+
+ Context intersectContexts(Context C1, Context C2);
+ Context createReferenceContext(Context C);
+ void intersectBackEdge(Context C1, Context C2);
+
+ friend class VarMapBuilder;
+};
+
+
+// This has to be defined after LocalVariableMap.
+CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) {
+ return CFGBlockInfo(M.getEmptyContext());
+}
+
+
+/// Visitor which builds a LocalVariableMap
+class VarMapBuilder : public StmtVisitor<VarMapBuilder> {
+public:
+ LocalVariableMap* VMap;
+ LocalVariableMap::Context Ctx;
+
+ VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C)
+ : VMap(VM), Ctx(C) {}
+
+ void VisitDeclStmt(DeclStmt *S);
+ void VisitBinaryOperator(BinaryOperator *BO);
+};
+
+
+// Add new local variables to the variable map
+void VarMapBuilder::VisitDeclStmt(DeclStmt *S) {
+ bool modifiedCtx = false;
+ DeclGroupRef DGrp = S->getDeclGroup();
+ for (const auto *D : DGrp) {
+ if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) {
+ const Expr *E = VD->getInit();
+
+ // Add local variables with trivial type to the variable map
+ QualType T = VD->getType();
+ if (T.isTrivialType(VD->getASTContext())) {
+ Ctx = VMap->addDefinition(VD, E, Ctx);
+ modifiedCtx = true;
+ }
+ }
+ }
+ if (modifiedCtx)
+ VMap->saveContext(S, Ctx);
+}
+
+// Update local variable definitions in variable map
+void VarMapBuilder::VisitBinaryOperator(BinaryOperator *BO) {
+ if (!BO->isAssignmentOp())
+ return;
+
+ Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
+
+ // Update the variable map and current context.
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHSExp)) {
+ ValueDecl *VDec = DRE->getDecl();
+ if (Ctx.lookup(VDec)) {
+ if (BO->getOpcode() == BO_Assign)
+ Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx);
+ else
+ // FIXME -- handle compound assignment operators
+ Ctx = VMap->clearDefinition(VDec, Ctx);
+ VMap->saveContext(BO, Ctx);
+ }
+ }
+}
+
+
+// Computes the intersection of two contexts. The intersection is the
+// set of variables which have the same definition in both contexts;
+// variables with different definitions are discarded.
+LocalVariableMap::Context
+LocalVariableMap::intersectContexts(Context C1, Context C2) {
+ Context Result = C1;
+ for (const auto &P : C1) {
+ const NamedDecl *Dec = P.first;
+ const unsigned *i2 = C2.lookup(Dec);
+ if (!i2) // variable doesn't exist on second path
+ Result = removeDefinition(Dec, Result);
+ else if (*i2 != P.second) // variable exists, but has different definition
+ Result = clearDefinition(Dec, Result);
+ }
+ return Result;
+}
+
+// For every variable in C, create a new variable that refers to the
+// definition in C. Return a new context that contains these new variables.
+// (We use this for a naive implementation of SSA on loop back-edges.)
+LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
+ Context Result = getEmptyContext();
+ for (const auto &P : C)
+ Result = addReference(P.first, P.second, Result);
+ return Result;
+}
+
+// This routine also takes the intersection of C1 and C2, but it does so by
+// altering the VarDefinitions. C1 must be the result of an earlier call to
+// createReferenceContext.
+void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
+ for (const auto &P : C1) {
+ unsigned i1 = P.second;
+ VarDefinition *VDef = &VarDefinitions[i1];
+ assert(VDef->isReference());
+
+ const unsigned *i2 = C2.lookup(P.first);
+ if (!i2 || (*i2 != i1))
+ VDef->Ref = 0; // Mark this variable as undefined
+ }
+}
+
+
+// Traverse the CFG in topological order, so all predecessors of a block
+// (excluding back-edges) are visited before the block itself. At
+// each point in the code, we calculate a Context, which holds the set of
+// variable definitions which are visible at that point in execution.
+// Visible variables are mapped to their definitions using an array that
+// contains all definitions.
+//
+// At join points in the CFG, the set is computed as the intersection of
+// the incoming sets along each edge, E.g.
+//
+// { Context | VarDefinitions }
+// int x = 0; { x -> x1 | x1 = 0 }
+// int y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 }
+// if (b) x = 1; { x -> x2, y -> y1 | x2 = 1, y1 = 0, ... }
+// else x = 2; { x -> x3, y -> y1 | x3 = 2, x2 = 1, ... }
+// ... { y -> y1 (x is unknown) | x3 = 2, x2 = 1, ... }
+//
+// This is essentially a simpler and more naive version of the standard SSA
+// algorithm. Those definitions that remain in the intersection are from blocks
+// that strictly dominate the current block. We do not bother to insert proper
+// phi nodes, because they are not used in our analysis; instead, wherever
+// a phi node would be required, we simply remove that definition from the
+// context (E.g. x above).
+//
+// The initial traversal does not capture back-edges, so those need to be
+// handled on a separate pass. Whenever the first pass encounters an
+// incoming back edge, it duplicates the context, creating new definitions
+// that refer back to the originals. (These correspond to places where SSA
+// might have to insert a phi node.) On the second pass, these definitions are
+// set to NULL if the variable has changed on the back-edge (i.e. a phi
+// node was actually required.) E.g.
+//
+// { Context | VarDefinitions }
+// int x = 0, y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 }
+// while (b) { x -> x2, y -> y1 | [1st:] x2=x1; [2nd:] x2=NULL; }
+// x = x+1; { x -> x3, y -> y1 | x3 = x2 + 1, ... }
+// ... { y -> y1 | x3 = 2, x2 = 1, ... }
+//
+void LocalVariableMap::traverseCFG(CFG *CFGraph,
+ const PostOrderCFGView *SortedGraph,
+ std::vector<CFGBlockInfo> &BlockInfo) {
+ PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
+
+ CtxIndices.resize(CFGraph->getNumBlockIDs());
+
+ for (const auto *CurrBlock : *SortedGraph) {
+ int CurrBlockID = CurrBlock->getBlockID();
+ CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
+
+ VisitedBlocks.insert(CurrBlock);
+
+ // Calculate the entry context for the current block
+ bool HasBackEdges = false;
+ bool CtxInit = true;
+ for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
+ PE = CurrBlock->pred_end(); PI != PE; ++PI) {
+ // if *PI -> CurrBlock is a back edge, so skip it
+ if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) {
+ HasBackEdges = true;
+ continue;
+ }
+
+ int PrevBlockID = (*PI)->getBlockID();
+ CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
+
+ if (CtxInit) {
+ CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext;
+ CtxInit = false;
+ }
+ else {
+ CurrBlockInfo->EntryContext =
+ intersectContexts(CurrBlockInfo->EntryContext,
+ PrevBlockInfo->ExitContext);
+ }
+ }
+
+ // Duplicate the context if we have back-edges, so we can call
+ // intersectBackEdges later.
+ if (HasBackEdges)
+ CurrBlockInfo->EntryContext =
+ createReferenceContext(CurrBlockInfo->EntryContext);
+
+ // Create a starting context index for the current block
+ saveContext(nullptr, CurrBlockInfo->EntryContext);
+ CurrBlockInfo->EntryIndex = getContextIndex();
+
+ // Visit all the statements in the basic block.
+ VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext);
+ for (CFGBlock::const_iterator BI = CurrBlock->begin(),
+ BE = CurrBlock->end(); BI != BE; ++BI) {
+ switch (BI->getKind()) {
+ case CFGElement::Statement: {
+ CFGStmt CS = BI->castAs<CFGStmt>();
+ VMapBuilder.Visit(const_cast<Stmt*>(CS.getStmt()));
+ break;
+ }
+ default:
+ break;
+ }
+ }
+ CurrBlockInfo->ExitContext = VMapBuilder.Ctx;
+
+ // Mark variables on back edges as "unknown" if they've been changed.
+ for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
+ SE = CurrBlock->succ_end(); SI != SE; ++SI) {
+ // if CurrBlock -> *SI is *not* a back edge
+ if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
+ continue;
+
+ CFGBlock *FirstLoopBlock = *SI;
+ Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext;
+ Context LoopEnd = CurrBlockInfo->ExitContext;
+ intersectBackEdge(LoopBegin, LoopEnd);
+ }
+ }
+
+ // Put an extra entry at the end of the indexed context array
+ unsigned exitID = CFGraph->getExit().getBlockID();
+ saveContext(nullptr, BlockInfo[exitID].ExitContext);
+}
+
+/// Find the appropriate source locations to use when producing diagnostics for
+/// each block in the CFG.
+static void findBlockLocations(CFG *CFGraph,
+ const PostOrderCFGView *SortedGraph,
+ std::vector<CFGBlockInfo> &BlockInfo) {
+ for (const auto *CurrBlock : *SortedGraph) {
+ CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()];
+
+ // Find the source location of the last statement in the block, if the
+ // block is not empty.
+ if (const Stmt *S = CurrBlock->getTerminator()) {
+ CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getLocStart();
+ } else {
+ for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(),
+ BE = CurrBlock->rend(); BI != BE; ++BI) {
+ // FIXME: Handle other CFGElement kinds.
+ if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) {
+ CurrBlockInfo->ExitLoc = CS->getStmt()->getLocStart();
+ break;
+ }
+ }
+ }
+
+ if (CurrBlockInfo->ExitLoc.isValid()) {
+ // This block contains at least one statement. Find the source location
+ // of the first statement in the block.
+ for (CFGBlock::const_iterator BI = CurrBlock->begin(),
+ BE = CurrBlock->end(); BI != BE; ++BI) {
+ // FIXME: Handle other CFGElement kinds.
+ if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) {
+ CurrBlockInfo->EntryLoc = CS->getStmt()->getLocStart();
+ break;
+ }
+ }
+ } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() &&
+ CurrBlock != &CFGraph->getExit()) {
+ // The block is empty, and has a single predecessor. Use its exit
+ // location.
+ CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
+ BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc;
+ }
+ }
+}
+
+class LockableFactEntry : public FactEntry {
+private:
+ bool Managed; ///< managed by ScopedLockable object
+
+public:
+ LockableFactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
+ bool Mng = false, bool Asrt = false)
+ : FactEntry(CE, LK, Loc, Asrt), Managed(Mng) {}
+
+ void
+ handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
+ SourceLocation JoinLoc, LockErrorKind LEK,
+ ThreadSafetyHandler &Handler) const override {
+ if (!Managed && !asserted() && !negative() && !isUniversal()) {
+ Handler.handleMutexHeldEndOfScope("mutex", toString(), loc(), JoinLoc,
+ LEK);
+ }
+ }
+
+ void handleUnlock(FactSet &FSet, FactManager &FactMan,
+ const CapabilityExpr &Cp, SourceLocation UnlockLoc,
+ bool FullyRemove, ThreadSafetyHandler &Handler,
+ StringRef DiagKind) const override {
+ FSet.removeLock(FactMan, Cp);
+ if (!Cp.negative()) {
+ FSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>(
+ !Cp, LK_Exclusive, UnlockLoc));
+ }
+ }
+};
+
+class ScopedLockableFactEntry : public FactEntry {
+private:
+ SmallVector<const til::SExpr *, 4> UnderlyingMutexes;
+
+public:
+ ScopedLockableFactEntry(const CapabilityExpr &CE, SourceLocation Loc,
+ const CapExprSet &Excl, const CapExprSet &Shrd)
+ : FactEntry(CE, LK_Exclusive, Loc, false) {
+ for (const auto &M : Excl)
+ UnderlyingMutexes.push_back(M.sexpr());
+ for (const auto &M : Shrd)
+ UnderlyingMutexes.push_back(M.sexpr());
+ }
+
+ void
+ handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
+ SourceLocation JoinLoc, LockErrorKind LEK,
+ ThreadSafetyHandler &Handler) const override {
+ for (const til::SExpr *UnderlyingMutex : UnderlyingMutexes) {
+ if (FSet.findLock(FactMan, CapabilityExpr(UnderlyingMutex, false))) {
+ // If this scoped lock manages another mutex, and if the underlying
+ // mutex is still held, then warn about the underlying mutex.
+ Handler.handleMutexHeldEndOfScope(
+ "mutex", sx::toString(UnderlyingMutex), loc(), JoinLoc, LEK);
+ }
+ }
+ }
+
+ void handleUnlock(FactSet &FSet, FactManager &FactMan,
+ const CapabilityExpr &Cp, SourceLocation UnlockLoc,
+ bool FullyRemove, ThreadSafetyHandler &Handler,
+ StringRef DiagKind) const override {
+ assert(!Cp.negative() && "Managing object cannot be negative.");
+ for (const til::SExpr *UnderlyingMutex : UnderlyingMutexes) {
+ CapabilityExpr UnderCp(UnderlyingMutex, false);
+ auto UnderEntry = llvm::make_unique<LockableFactEntry>(
+ !UnderCp, LK_Exclusive, UnlockLoc);
+
+ if (FullyRemove) {
+ // We're destroying the managing object.
+ // Remove the underlying mutex if it exists; but don't warn.
+ if (FSet.findLock(FactMan, UnderCp)) {
+ FSet.removeLock(FactMan, UnderCp);
+ FSet.addLock(FactMan, std::move(UnderEntry));
+ }
+ } else {
+ // We're releasing the underlying mutex, but not destroying the
+ // managing object. Warn on dual release.
+ if (!FSet.findLock(FactMan, UnderCp)) {
+ Handler.handleUnmatchedUnlock(DiagKind, UnderCp.toString(),
+ UnlockLoc);
+ }
+ FSet.removeLock(FactMan, UnderCp);
+ FSet.addLock(FactMan, std::move(UnderEntry));
+ }
+ }
+ if (FullyRemove)
+ FSet.removeLock(FactMan, Cp);
+ }
+};
+
+/// \brief Class which implements the core thread safety analysis routines.
+class ThreadSafetyAnalyzer {
+ friend class BuildLockset;
+ friend class threadSafety::BeforeSet;
+
+ llvm::BumpPtrAllocator Bpa;
+ threadSafety::til::MemRegionRef Arena;
+ threadSafety::SExprBuilder SxBuilder;
+
+ ThreadSafetyHandler &Handler;
+ const CXXMethodDecl *CurrentMethod;
+ LocalVariableMap LocalVarMap;
+ FactManager FactMan;
+ std::vector<CFGBlockInfo> BlockInfo;
+
+ BeforeSet* GlobalBeforeSet;
+
+public:
+ ThreadSafetyAnalyzer(ThreadSafetyHandler &H, BeforeSet* Bset)
+ : Arena(&Bpa), SxBuilder(Arena), Handler(H), GlobalBeforeSet(Bset) {}
+
+ bool inCurrentScope(const CapabilityExpr &CapE);
+
+ void addLock(FactSet &FSet, std::unique_ptr<FactEntry> Entry,
+ StringRef DiagKind, bool ReqAttr = false);
+ void removeLock(FactSet &FSet, const CapabilityExpr &CapE,
+ SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind,
+ StringRef DiagKind);
+
+ template <typename AttrType>
+ void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, Expr *Exp,
+ const NamedDecl *D, VarDecl *SelfDecl = nullptr);
+
+ template <class AttrType>
+ void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, Expr *Exp,
+ const NamedDecl *D,
+ const CFGBlock *PredBlock, const CFGBlock *CurrBlock,
+ Expr *BrE, bool Neg);
+
+ const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C,
+ bool &Negate);
+
+ void getEdgeLockset(FactSet &Result, const FactSet &ExitSet,
+ const CFGBlock* PredBlock,
+ const CFGBlock *CurrBlock);
+
+ void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
+ SourceLocation JoinLoc,
+ LockErrorKind LEK1, LockErrorKind LEK2,
+ bool Modify=true);
+
+ void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
+ SourceLocation JoinLoc, LockErrorKind LEK1,
+ bool Modify=true) {
+ intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1, Modify);
+ }
+
+ void runAnalysis(AnalysisDeclContext &AC);
+};
+} // namespace
+
+/// Process acquired_before and acquired_after attributes on Vd.
+BeforeSet::BeforeInfo* BeforeSet::insertAttrExprs(const ValueDecl* Vd,
+ ThreadSafetyAnalyzer& Analyzer) {
+ // Create a new entry for Vd.
+ BeforeInfo *Info = nullptr;
+ {
+ // Keep InfoPtr in its own scope in case BMap is modified later and the
+ // reference becomes invalid.
+ std::unique_ptr<BeforeInfo> &InfoPtr = BMap[Vd];
+ if (!InfoPtr)
+ InfoPtr.reset(new BeforeInfo());
+ Info = InfoPtr.get();
+ }
+
+ for (Attr* At : Vd->attrs()) {
+ switch (At->getKind()) {
+ case attr::AcquiredBefore: {
+ auto *A = cast<AcquiredBeforeAttr>(At);
+
+ // Read exprs from the attribute, and add them to BeforeVect.
+ for (const auto *Arg : A->args()) {
+ CapabilityExpr Cp =
+ Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
+ if (const ValueDecl *Cpvd = Cp.valueDecl()) {
+ Info->Vect.push_back(Cpvd);
+ auto It = BMap.find(Cpvd);
+ if (It == BMap.end())
+ insertAttrExprs(Cpvd, Analyzer);
+ }
+ }
+ break;
+ }
+ case attr::AcquiredAfter: {
+ auto *A = cast<AcquiredAfterAttr>(At);
+
+ // Read exprs from the attribute, and add them to BeforeVect.
+ for (const auto *Arg : A->args()) {
+ CapabilityExpr Cp =
+ Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
+ if (const ValueDecl *ArgVd = Cp.valueDecl()) {
+ // Get entry for mutex listed in attribute
+ BeforeInfo *ArgInfo = getBeforeInfoForDecl(ArgVd, Analyzer);
+ ArgInfo->Vect.push_back(Vd);
+ }
+ }
+ break;
+ }
+ default:
+ break;
+ }
+ }
+
+ return Info;
+}
+
+BeforeSet::BeforeInfo *
+BeforeSet::getBeforeInfoForDecl(const ValueDecl *Vd,
+ ThreadSafetyAnalyzer &Analyzer) {
+ auto It = BMap.find(Vd);
+ BeforeInfo *Info = nullptr;
+ if (It == BMap.end())
+ Info = insertAttrExprs(Vd, Analyzer);
+ else
+ Info = It->second.get();
+ assert(Info && "BMap contained nullptr?");
+ return Info;
+}
+
+/// Return true if any mutexes in FSet are in the acquired_before set of Vd.
+void BeforeSet::checkBeforeAfter(const ValueDecl* StartVd,
+ const FactSet& FSet,
+ ThreadSafetyAnalyzer& Analyzer,
+ SourceLocation Loc, StringRef CapKind) {
+ SmallVector<BeforeInfo*, 8> InfoVect;
+
+ // Do a depth-first traversal of Vd.
+ // Return true if there are cycles.
+ std::function<bool (const ValueDecl*)> traverse = [&](const ValueDecl* Vd) {
+ if (!Vd)
+ return false;
+
+ BeforeSet::BeforeInfo *Info = getBeforeInfoForDecl(Vd, Analyzer);
+
+ if (Info->Visited == 1)
+ return true;
+
+ if (Info->Visited == 2)
+ return false;
+
+ if (Info->Vect.empty())
+ return false;
+
+ InfoVect.push_back(Info);
+ Info->Visited = 1;
+ for (auto *Vdb : Info->Vect) {
+ // Exclude mutexes in our immediate before set.
+ if (FSet.containsMutexDecl(Analyzer.FactMan, Vdb)) {
+ StringRef L1 = StartVd->getName();
+ StringRef L2 = Vdb->getName();
+ Analyzer.Handler.handleLockAcquiredBefore(CapKind, L1, L2, Loc);
+ }
+ // Transitively search other before sets, and warn on cycles.
+ if (traverse(Vdb)) {
+ if (CycMap.find(Vd) == CycMap.end()) {
+ CycMap.insert(std::make_pair(Vd, true));
+ StringRef L1 = Vd->getName();
+ Analyzer.Handler.handleBeforeAfterCycle(L1, Vd->getLocation());
+ }
+ }
+ }
+ Info->Visited = 2;
+ return false;
+ };
+
+ traverse(StartVd);
+
+ for (auto* Info : InfoVect)
+ Info->Visited = 0;
+}
+
+
+
+/// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs.
+static const ValueDecl *getValueDecl(const Expr *Exp) {
+ if (const auto *CE = dyn_cast<ImplicitCastExpr>(Exp))
+ return getValueDecl(CE->getSubExpr());
+
+ if (const auto *DR = dyn_cast<DeclRefExpr>(Exp))
+ return DR->getDecl();
+
+ if (const auto *ME = dyn_cast<MemberExpr>(Exp))
+ return ME->getMemberDecl();
+
+ return nullptr;
+}
+
+namespace {
+template <typename Ty>
+class has_arg_iterator_range {
+ typedef char yes[1];
+ typedef char no[2];
+
+ template <typename Inner>
+ static yes& test(Inner *I, decltype(I->args()) * = nullptr);
+
+ template <typename>
+ static no& test(...);
+
+public:
+ static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
+};
+} // namespace
+
+static StringRef ClassifyDiagnostic(const CapabilityAttr *A) {
+ return A->getName();
+}
+
+static StringRef ClassifyDiagnostic(QualType VDT) {
+ // We need to look at the declaration of the type of the value to determine
+ // which it is. The type should either be a record or a typedef, or a pointer
+ // or reference thereof.
+ if (const auto *RT = VDT->getAs<RecordType>()) {
+ if (const auto *RD = RT->getDecl())
+ if (const auto *CA = RD->getAttr<CapabilityAttr>())
+ return ClassifyDiagnostic(CA);
+ } else if (const auto *TT = VDT->getAs<TypedefType>()) {
+ if (const auto *TD = TT->getDecl())
+ if (const auto *CA = TD->getAttr<CapabilityAttr>())
+ return ClassifyDiagnostic(CA);
+ } else if (VDT->isPointerType() || VDT->isReferenceType())
+ return ClassifyDiagnostic(VDT->getPointeeType());
+
+ return "mutex";
+}
+
+static StringRef ClassifyDiagnostic(const ValueDecl *VD) {
+ assert(VD && "No ValueDecl passed");
+
+ // The ValueDecl is the declaration of a mutex or role (hopefully).
+ return ClassifyDiagnostic(VD->getType());
+}
+
+template <typename AttrTy>
+static typename std::enable_if<!has_arg_iterator_range<AttrTy>::value,
+ StringRef>::type
+ClassifyDiagnostic(const AttrTy *A) {
+ if (const ValueDecl *VD = getValueDecl(A->getArg()))
+ return ClassifyDiagnostic(VD);
+ return "mutex";
+}
+
+template <typename AttrTy>
+static typename std::enable_if<has_arg_iterator_range<AttrTy>::value,
+ StringRef>::type
+ClassifyDiagnostic(const AttrTy *A) {
+ for (const auto *Arg : A->args()) {
+ if (const ValueDecl *VD = getValueDecl(Arg))
+ return ClassifyDiagnostic(VD);
+ }
+ return "mutex";
+}
+
+
+inline bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) {
+ if (!CurrentMethod)
+ return false;
+ if (auto *P = dyn_cast_or_null<til::Project>(CapE.sexpr())) {
+ auto *VD = P->clangDecl();
+ if (VD)
+ return VD->getDeclContext() == CurrentMethod->getDeclContext();
+ }
+ return false;
+}
+
+
+/// \brief Add a new lock to the lockset, warning if the lock is already there.
+/// \param ReqAttr -- true if this is part of an initial Requires attribute.
+void ThreadSafetyAnalyzer::addLock(FactSet &FSet,
+ std::unique_ptr<FactEntry> Entry,
+ StringRef DiagKind, bool ReqAttr) {
+ if (Entry->shouldIgnore())
+ return;
+
+ if (!ReqAttr && !Entry->negative()) {
+ // look for the negative capability, and remove it from the fact set.
+ CapabilityExpr NegC = !*Entry;
+ FactEntry *Nen = FSet.findLock(FactMan, NegC);
+ if (Nen) {
+ FSet.removeLock(FactMan, NegC);
+ }
+ else {
+ if (inCurrentScope(*Entry) && !Entry->asserted())
+ Handler.handleNegativeNotHeld(DiagKind, Entry->toString(),
+ NegC.toString(), Entry->loc());
+ }
+ }
+
+ // Check before/after constraints
+ if (Handler.issueBetaWarnings() &&
+ !Entry->asserted() && !Entry->declared()) {
+ GlobalBeforeSet->checkBeforeAfter(Entry->valueDecl(), FSet, *this,
+ Entry->loc(), DiagKind);
+ }
+
+ // FIXME: Don't always warn when we have support for reentrant locks.
+ if (FSet.findLock(FactMan, *Entry)) {
+ if (!Entry->asserted())
+ Handler.handleDoubleLock(DiagKind, Entry->toString(), Entry->loc());
+ } else {
+ FSet.addLock(FactMan, std::move(Entry));
+ }
+}
+
+
+/// \brief Remove a lock from the lockset, warning if the lock is not there.
+/// \param UnlockLoc The source location of the unlock (only used in error msg)
+void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp,
+ SourceLocation UnlockLoc,
+ bool FullyRemove, LockKind ReceivedKind,
+ StringRef DiagKind) {
+ if (Cp.shouldIgnore())
+ return;
+
+ const FactEntry *LDat = FSet.findLock(FactMan, Cp);
+ if (!LDat) {
+ Handler.handleUnmatchedUnlock(DiagKind, Cp.toString(), UnlockLoc);
+ return;
+ }
+
+ // Generic lock removal doesn't care about lock kind mismatches, but
+ // otherwise diagnose when the lock kinds are mismatched.
+ if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) {
+ Handler.handleIncorrectUnlockKind(DiagKind, Cp.toString(),
+ LDat->kind(), ReceivedKind, UnlockLoc);
+ }
+
+ LDat->handleUnlock(FSet, FactMan, Cp, UnlockLoc, FullyRemove, Handler,
+ DiagKind);
+}
+
+
+/// \brief Extract the list of mutexIDs from the attribute on an expression,
+/// and push them onto Mtxs, discarding any duplicates.
+template <typename AttrType>
+void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
+ Expr *Exp, const NamedDecl *D,
+ VarDecl *SelfDecl) {
+ if (Attr->args_size() == 0) {
+ // The mutex held is the "this" object.
+ CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, SelfDecl);
+ if (Cp.isInvalid()) {
+ warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr));
+ return;
+ }
+ //else
+ if (!Cp.shouldIgnore())
+ Mtxs.push_back_nodup(Cp);
+ return;
+ }
+
+ for (const auto *Arg : Attr->args()) {
+ CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, SelfDecl);
+ if (Cp.isInvalid()) {
+ warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr));
+ continue;
+ }
+ //else
+ if (!Cp.shouldIgnore())
+ Mtxs.push_back_nodup(Cp);
+ }
+}
+
+
+/// \brief Extract the list of mutexIDs from a trylock attribute. If the
+/// trylock applies to the given edge, then push them onto Mtxs, discarding
+/// any duplicates.
+template <class AttrType>
+void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
+ Expr *Exp, const NamedDecl *D,
+ const CFGBlock *PredBlock,
+ const CFGBlock *CurrBlock,
+ Expr *BrE, bool Neg) {
+ // Find out which branch has the lock
+ bool branch = false;
+ if (CXXBoolLiteralExpr *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE))
+ branch = BLE->getValue();
+ else if (IntegerLiteral *ILE = dyn_cast_or_null<IntegerLiteral>(BrE))
+ branch = ILE->getValue().getBoolValue();
+
+ int branchnum = branch ? 0 : 1;
+ if (Neg)
+ branchnum = !branchnum;
+
+ // If we've taken the trylock branch, then add the lock
+ int i = 0;
+ for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
+ SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
+ if (*SI == CurrBlock && i == branchnum)
+ getMutexIDs(Mtxs, Attr, Exp, D);
+ }
+}
+
+static bool getStaticBooleanValue(Expr *E, bool &TCond) {
+ if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) {
+ TCond = false;
+ return true;
+ } else if (CXXBoolLiteralExpr *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) {
+ TCond = BLE->getValue();
+ return true;
+ } else if (IntegerLiteral *ILE = dyn_cast<IntegerLiteral>(E)) {
+ TCond = ILE->getValue().getBoolValue();
+ return true;
+ } else if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
+ return getStaticBooleanValue(CE->getSubExpr(), TCond);
+ }
+ return false;
+}
+
+
+// If Cond can be traced back to a function call, return the call expression.
+// The negate variable should be called with false, and will be set to true
+// if the function call is negated, e.g. if (!mu.tryLock(...))
+const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond,
+ LocalVarContext C,
+ bool &Negate) {
+ if (!Cond)
+ return nullptr;
+
+ if (const CallExpr *CallExp = dyn_cast<CallExpr>(Cond)) {
+ return CallExp;
+ }
+ else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) {
+ return getTrylockCallExpr(PE->getSubExpr(), C, Negate);
+ }
+ else if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Cond)) {
+ return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
+ }
+ else if (const ExprWithCleanups* EWC = dyn_cast<ExprWithCleanups>(Cond)) {
+ return getTrylockCallExpr(EWC->getSubExpr(), C, Negate);
+ }
+ else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Cond)) {
+ const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
+ return getTrylockCallExpr(E, C, Negate);
+ }
+ else if (const UnaryOperator *UOP = dyn_cast<UnaryOperator>(Cond)) {
+ if (UOP->getOpcode() == UO_LNot) {
+ Negate = !Negate;
+ return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
+ }
+ return nullptr;
+ }
+ else if (const BinaryOperator *BOP = dyn_cast<BinaryOperator>(Cond)) {
+ if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) {
+ if (BOP->getOpcode() == BO_NE)
+ Negate = !Negate;
+
+ bool TCond = false;
+ if (getStaticBooleanValue(BOP->getRHS(), TCond)) {
+ if (!TCond) Negate = !Negate;
+ return getTrylockCallExpr(BOP->getLHS(), C, Negate);
+ }
+ TCond = false;
+ if (getStaticBooleanValue(BOP->getLHS(), TCond)) {
+ if (!TCond) Negate = !Negate;
+ return getTrylockCallExpr(BOP->getRHS(), C, Negate);
+ }
+ return nullptr;
+ }
+ if (BOP->getOpcode() == BO_LAnd) {
+ // LHS must have been evaluated in a different block.
+ return getTrylockCallExpr(BOP->getRHS(), C, Negate);
+ }
+ if (BOP->getOpcode() == BO_LOr) {
+ return getTrylockCallExpr(BOP->getRHS(), C, Negate);
+ }
+ return nullptr;
+ }
+ return nullptr;
+}
+
+
+/// \brief Find the lockset that holds on the edge between PredBlock
+/// and CurrBlock. The edge set is the exit set of PredBlock (passed
+/// as the ExitSet parameter) plus any trylocks, which are conditionally held.
+void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result,
+ const FactSet &ExitSet,
+ const CFGBlock *PredBlock,
+ const CFGBlock *CurrBlock) {
+ Result = ExitSet;
+
+ const Stmt *Cond = PredBlock->getTerminatorCondition();
+ if (!Cond)
+ return;
+
+ bool Negate = false;
+ const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()];
+ const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext;
+ StringRef CapDiagKind = "mutex";
+
+ CallExpr *Exp =
+ const_cast<CallExpr*>(getTrylockCallExpr(Cond, LVarCtx, Negate));
+ if (!Exp)
+ return;
+
+ NamedDecl *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
+ if(!FunDecl || !FunDecl->hasAttrs())
+ return;
+
+ CapExprSet ExclusiveLocksToAdd;
+ CapExprSet SharedLocksToAdd;
+
+ // If the condition is a call to a Trylock function, then grab the attributes
+ for (auto *Attr : FunDecl->attrs()) {
+ switch (Attr->getKind()) {
+ case attr::ExclusiveTrylockFunction: {
+ ExclusiveTrylockFunctionAttr *A =
+ cast<ExclusiveTrylockFunctionAttr>(Attr);
+ getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl,
+ PredBlock, CurrBlock, A->getSuccessValue(), Negate);
+ CapDiagKind = ClassifyDiagnostic(A);
+ break;
+ }
+ case attr::SharedTrylockFunction: {
+ SharedTrylockFunctionAttr *A =
+ cast<SharedTrylockFunctionAttr>(Attr);
+ getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl,
+ PredBlock, CurrBlock, A->getSuccessValue(), Negate);
+ CapDiagKind = ClassifyDiagnostic(A);
+ break;
+ }
+ default:
+ break;
+ }
+ }
+
+ // Add and remove locks.
+ SourceLocation Loc = Exp->getExprLoc();
+ for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd)
+ addLock(Result, llvm::make_unique<LockableFactEntry>(ExclusiveLockToAdd,
+ LK_Exclusive, Loc),
+ CapDiagKind);
+ for (const auto &SharedLockToAdd : SharedLocksToAdd)
+ addLock(Result, llvm::make_unique<LockableFactEntry>(SharedLockToAdd,
+ LK_Shared, Loc),
+ CapDiagKind);
+}
+
+namespace {
+/// \brief We use this class to visit different types of expressions in
+/// CFGBlocks, and build up the lockset.
+/// An expression may cause us to add or remove locks from the lockset, or else
+/// output error messages related to missing locks.
+/// FIXME: In future, we may be able to not inherit from a visitor.
+class BuildLockset : public StmtVisitor<BuildLockset> {
+ friend class ThreadSafetyAnalyzer;
+
+ ThreadSafetyAnalyzer *Analyzer;
+ FactSet FSet;
+ LocalVariableMap::Context LVarCtx;
+ unsigned CtxIndex;
+
+ // helper functions
+ void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK,
+ Expr *MutexExp, ProtectedOperationKind POK,
+ StringRef DiagKind, SourceLocation Loc);
+ void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp,
+ StringRef DiagKind);
+
+ void checkAccess(const Expr *Exp, AccessKind AK,
+ ProtectedOperationKind POK = POK_VarAccess);
+ void checkPtAccess(const Expr *Exp, AccessKind AK,
+ ProtectedOperationKind POK = POK_VarAccess);
+
+ void handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD = nullptr);
+
+public:
+ BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info)
+ : StmtVisitor<BuildLockset>(),
+ Analyzer(Anlzr),
+ FSet(Info.EntrySet),
+ LVarCtx(Info.EntryContext),
+ CtxIndex(Info.EntryIndex)
+ {}
+
+ void VisitUnaryOperator(UnaryOperator *UO);
+ void VisitBinaryOperator(BinaryOperator *BO);
+ void VisitCastExpr(CastExpr *CE);
+ void VisitCallExpr(CallExpr *Exp);
+ void VisitCXXConstructExpr(CXXConstructExpr *Exp);
+ void VisitDeclStmt(DeclStmt *S);
+};
+} // namespace
+
+/// \brief Warn if the LSet does not contain a lock sufficient to protect access
+/// of at least the passed in AccessKind.
+void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp,
+ AccessKind AK, Expr *MutexExp,
+ ProtectedOperationKind POK,
+ StringRef DiagKind, SourceLocation Loc) {
+ LockKind LK = getLockKindFromAccessKind(AK);
+
+ CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp);
+ if (Cp.isInvalid()) {
+ warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind);
+ return;
+ } else if (Cp.shouldIgnore()) {
+ return;
+ }
+
+ if (Cp.negative()) {
+ // Negative capabilities act like locks excluded
+ FactEntry *LDat = FSet.findLock(Analyzer->FactMan, !Cp);
+ if (LDat) {
+ Analyzer->Handler.handleFunExcludesLock(
+ DiagKind, D->getNameAsString(), (!Cp).toString(), Loc);
+ return;
+ }
+
+ // If this does not refer to a negative capability in the same class,
+ // then stop here.
+ if (!Analyzer->inCurrentScope(Cp))
+ return;
+
+ // Otherwise the negative requirement must be propagated to the caller.
+ LDat = FSet.findLock(Analyzer->FactMan, Cp);
+ if (!LDat) {
+ Analyzer->Handler.handleMutexNotHeld("", D, POK, Cp.toString(),
+ LK_Shared, Loc);
+ }
+ return;
+ }
+
+ FactEntry* LDat = FSet.findLockUniv(Analyzer->FactMan, Cp);
+ bool NoError = true;
+ if (!LDat) {
+ // No exact match found. Look for a partial match.
+ LDat = FSet.findPartialMatch(Analyzer->FactMan, Cp);
+ if (LDat) {
+ // Warn that there's no precise match.
+ std::string PartMatchStr = LDat->toString();
+ StringRef PartMatchName(PartMatchStr);
+ Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
+ LK, Loc, &PartMatchName);
+ } else {
+ // Warn that there's no match at all.
+ Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
+ LK, Loc);
+ }
+ NoError = false;
+ }
+ // Make sure the mutex we found is the right kind.
+ if (NoError && LDat && !LDat->isAtLeast(LK)) {
+ Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
+ LK, Loc);
+ }
+}
+
+/// \brief Warn if the LSet contains the given lock.
+void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr *Exp,
+ Expr *MutexExp, StringRef DiagKind) {
+ CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp);
+ if (Cp.isInvalid()) {
+ warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind);
+ return;
+ } else if (Cp.shouldIgnore()) {
+ return;
+ }
+
+ FactEntry* LDat = FSet.findLock(Analyzer->FactMan, Cp);
+ if (LDat) {
+ Analyzer->Handler.handleFunExcludesLock(
+ DiagKind, D->getNameAsString(), Cp.toString(), Exp->getExprLoc());
+ }
+}
+
+/// \brief Checks guarded_by and pt_guarded_by attributes.
+/// Whenever we identify an access (read or write) to a DeclRefExpr that is
+/// marked with guarded_by, we must ensure the appropriate mutexes are held.
+/// Similarly, we check if the access is to an expression that dereferences
+/// a pointer marked with pt_guarded_by.
+void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK,
+ ProtectedOperationKind POK) {
+ Exp = Exp->IgnoreParenCasts();
+
+ SourceLocation Loc = Exp->getExprLoc();
+
+ // Local variables of reference type cannot be re-assigned;
+ // map them to their initializer.
+ while (const auto *DRE = dyn_cast<DeclRefExpr>(Exp)) {
+ const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()->getCanonicalDecl());
+ if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) {
+ if (const auto *E = VD->getInit()) {
+ Exp = E;
+ continue;
+ }
+ }
+ break;
+ }
+
+ if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp)) {
+ // For dereferences
+ if (UO->getOpcode() == clang::UO_Deref)
+ checkPtAccess(UO->getSubExpr(), AK, POK);
+ return;
+ }
+
+ if (const ArraySubscriptExpr *AE = dyn_cast<ArraySubscriptExpr>(Exp)) {
+ checkPtAccess(AE->getLHS(), AK, POK);
+ return;
+ }
+
+ if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
+ if (ME->isArrow())
+ checkPtAccess(ME->getBase(), AK, POK);
+ else
+ checkAccess(ME->getBase(), AK, POK);
+ }
+
+ const ValueDecl *D = getValueDecl(Exp);
+ if (!D || !D->hasAttrs())
+ return;
+
+ if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) {
+ Analyzer->Handler.handleNoMutexHeld("mutex", D, POK, AK, Loc);
+ }
+
+ for (const auto *I : D->specific_attrs<GuardedByAttr>())
+ warnIfMutexNotHeld(D, Exp, AK, I->getArg(), POK,
+ ClassifyDiagnostic(I), Loc);
+}
+
+
+/// \brief Checks pt_guarded_by and pt_guarded_var attributes.
+/// POK is the same operationKind that was passed to checkAccess.
+void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK,
+ ProtectedOperationKind POK) {
+ while (true) {
+ if (const ParenExpr *PE = dyn_cast<ParenExpr>(Exp)) {
+ Exp = PE->getSubExpr();
+ continue;
+ }
+ if (const CastExpr *CE = dyn_cast<CastExpr>(Exp)) {
+ if (CE->getCastKind() == CK_ArrayToPointerDecay) {
+ // If it's an actual array, and not a pointer, then it's elements
+ // are protected by GUARDED_BY, not PT_GUARDED_BY;
+ checkAccess(CE->getSubExpr(), AK, POK);
+ return;
+ }
+ Exp = CE->getSubExpr();
+ continue;
+ }
+ break;
+ }
+
+ // Pass by reference warnings are under a different flag.
+ ProtectedOperationKind PtPOK = POK_VarDereference;
+ if (POK == POK_PassByRef) PtPOK = POK_PtPassByRef;
+
+ const ValueDecl *D = getValueDecl(Exp);
+ if (!D || !D->hasAttrs())
+ return;
+
+ if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan))
+ Analyzer->Handler.handleNoMutexHeld("mutex", D, PtPOK, AK,
+ Exp->getExprLoc());
+
+ for (auto const *I : D->specific_attrs<PtGuardedByAttr>())
+ warnIfMutexNotHeld(D, Exp, AK, I->getArg(), PtPOK,
+ ClassifyDiagnostic(I), Exp->getExprLoc());
+}
+
+/// \brief Process a function call, method call, constructor call,
+/// or destructor call. This involves looking at the attributes on the
+/// corresponding function/method/constructor/destructor, issuing warnings,
+/// and updating the locksets accordingly.
+///
+/// FIXME: For classes annotated with one of the guarded annotations, we need
+/// to treat const method calls as reads and non-const method calls as writes,
+/// and check that the appropriate locks are held. Non-const method calls with
+/// the same signature as const method calls can be also treated as reads.
+///
+void BuildLockset::handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD) {
+ SourceLocation Loc = Exp->getExprLoc();
+ CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd;
+ CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove;
+ CapExprSet ScopedExclusiveReqs, ScopedSharedReqs;
+ StringRef CapDiagKind = "mutex";
+
+ // Figure out if we're calling the constructor of scoped lockable class
+ bool isScopedVar = false;
+ if (VD) {
+ if (const CXXConstructorDecl *CD = dyn_cast<const CXXConstructorDecl>(D)) {
+ const CXXRecordDecl* PD = CD->getParent();
+ if (PD && PD->hasAttr<ScopedLockableAttr>())
+ isScopedVar = true;
+ }
+ }
+
+ for(Attr *Atconst : D->attrs()) {
+ Attr* At = const_cast<Attr*>(Atconst);
+ switch (At->getKind()) {
+ // When we encounter a lock function, we need to add the lock to our
+ // lockset.
+ case attr::AcquireCapability: {
+ auto *A = cast<AcquireCapabilityAttr>(At);
+ Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd
+ : ExclusiveLocksToAdd,
+ A, Exp, D, VD);
+
+ CapDiagKind = ClassifyDiagnostic(A);
+ break;
+ }
+
+ // An assert will add a lock to the lockset, but will not generate
+ // a warning if it is already there, and will not generate a warning
+ // if it is not removed.
+ case attr::AssertExclusiveLock: {
+ AssertExclusiveLockAttr *A = cast<AssertExclusiveLockAttr>(At);
+
+ CapExprSet AssertLocks;
+ Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
+ for (const auto &AssertLock : AssertLocks)
+ Analyzer->addLock(FSet,
+ llvm::make_unique<LockableFactEntry>(
+ AssertLock, LK_Exclusive, Loc, false, true),
+ ClassifyDiagnostic(A));
+ break;
+ }
+ case attr::AssertSharedLock: {
+ AssertSharedLockAttr *A = cast<AssertSharedLockAttr>(At);
+
+ CapExprSet AssertLocks;
+ Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
+ for (const auto &AssertLock : AssertLocks)
+ Analyzer->addLock(FSet, llvm::make_unique<LockableFactEntry>(
+ AssertLock, LK_Shared, Loc, false, true),
+ ClassifyDiagnostic(A));
+ break;
+ }
+
+ // When we encounter an unlock function, we need to remove unlocked
+ // mutexes from the lockset, and flag a warning if they are not there.
+ case attr::ReleaseCapability: {
+ auto *A = cast<ReleaseCapabilityAttr>(At);
+ if (A->isGeneric())
+ Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, VD);
+ else if (A->isShared())
+ Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, VD);
+ else
+ Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, VD);
+
+ CapDiagKind = ClassifyDiagnostic(A);
+ break;
+ }
+
+ case attr::RequiresCapability: {
+ RequiresCapabilityAttr *A = cast<RequiresCapabilityAttr>(At);
+ for (auto *Arg : A->args()) {
+ warnIfMutexNotHeld(D, Exp, A->isShared() ? AK_Read : AK_Written, Arg,
+ POK_FunctionCall, ClassifyDiagnostic(A),
+ Exp->getExprLoc());
+ // use for adopting a lock
+ if (isScopedVar) {
+ Analyzer->getMutexIDs(A->isShared() ? ScopedSharedReqs
+ : ScopedExclusiveReqs,
+ A, Exp, D, VD);
+ }
+ }
+ break;
+ }
+
+ case attr::LocksExcluded: {
+ LocksExcludedAttr *A = cast<LocksExcludedAttr>(At);
+ for (auto *Arg : A->args())
+ warnIfMutexHeld(D, Exp, Arg, ClassifyDiagnostic(A));
+ break;
+ }
+
+ // Ignore attributes unrelated to thread-safety
+ default:
+ break;
+ }
+ }
+
+ // Add locks.
+ for (const auto &M : ExclusiveLocksToAdd)
+ Analyzer->addLock(FSet, llvm::make_unique<LockableFactEntry>(
+ M, LK_Exclusive, Loc, isScopedVar),
+ CapDiagKind);
+ for (const auto &M : SharedLocksToAdd)
+ Analyzer->addLock(FSet, llvm::make_unique<LockableFactEntry>(
+ M, LK_Shared, Loc, isScopedVar),
+ CapDiagKind);
+
+ if (isScopedVar) {
+ // Add the managing object as a dummy mutex, mapped to the underlying mutex.
+ SourceLocation MLoc = VD->getLocation();
+ DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, VD->getLocation());
+ // FIXME: does this store a pointer to DRE?
+ CapabilityExpr Scp = Analyzer->SxBuilder.translateAttrExpr(&DRE, nullptr);
+
+ std::copy(ScopedExclusiveReqs.begin(), ScopedExclusiveReqs.end(),
+ std::back_inserter(ExclusiveLocksToAdd));
+ std::copy(ScopedSharedReqs.begin(), ScopedSharedReqs.end(),
+ std::back_inserter(SharedLocksToAdd));
+ Analyzer->addLock(FSet,
+ llvm::make_unique<ScopedLockableFactEntry>(
+ Scp, MLoc, ExclusiveLocksToAdd, SharedLocksToAdd),
+ CapDiagKind);
+ }
+
+ // Remove locks.
+ // FIXME -- should only fully remove if the attribute refers to 'this'.
+ bool Dtor = isa<CXXDestructorDecl>(D);
+ for (const auto &M : ExclusiveLocksToRemove)
+ Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Exclusive, CapDiagKind);
+ for (const auto &M : SharedLocksToRemove)
+ Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Shared, CapDiagKind);
+ for (const auto &M : GenericLocksToRemove)
+ Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Generic, CapDiagKind);
+}
+
+
+/// \brief For unary operations which read and write a variable, we need to
+/// check whether we hold any required mutexes. Reads are checked in
+/// VisitCastExpr.
+void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) {
+ switch (UO->getOpcode()) {
+ case clang::UO_PostDec:
+ case clang::UO_PostInc:
+ case clang::UO_PreDec:
+ case clang::UO_PreInc: {
+ checkAccess(UO->getSubExpr(), AK_Written);
+ break;
+ }
+ default:
+ break;
+ }
+}
+
+/// For binary operations which assign to a variable (writes), we need to check
+/// whether we hold any required mutexes.
+/// FIXME: Deal with non-primitive types.
+void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
+ if (!BO->isAssignmentOp())
+ return;
+
+ // adjust the context
+ LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);
+
+ checkAccess(BO->getLHS(), AK_Written);
+}
+
+
+/// Whenever we do an LValue to Rvalue cast, we are reading a variable and
+/// need to ensure we hold any required mutexes.
+/// FIXME: Deal with non-primitive types.
+void BuildLockset::VisitCastExpr(CastExpr *CE) {
+ if (CE->getCastKind() != CK_LValueToRValue)
+ return;
+ checkAccess(CE->getSubExpr(), AK_Read);
+}
+
+
+void BuildLockset::VisitCallExpr(CallExpr *Exp) {
+ bool ExamineArgs = true;
+ bool OperatorFun = false;
+
+ if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Exp)) {
+ MemberExpr *ME = dyn_cast<MemberExpr>(CE->getCallee());
+ // ME can be null when calling a method pointer
+ CXXMethodDecl *MD = CE->getMethodDecl();
+
+ if (ME && MD) {
+ if (ME->isArrow()) {
+ if (MD->isConst()) {
+ checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
+ } else { // FIXME -- should be AK_Written
+ checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
+ }
+ } else {
+ if (MD->isConst())
+ checkAccess(CE->getImplicitObjectArgument(), AK_Read);
+ else // FIXME -- should be AK_Written
+ checkAccess(CE->getImplicitObjectArgument(), AK_Read);
+ }
+ }
+ } else if (CXXOperatorCallExpr *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) {
+ OperatorFun = true;
+
+ auto OEop = OE->getOperator();
+ switch (OEop) {
+ case OO_Equal: {
+ ExamineArgs = false;
+ const Expr *Target = OE->getArg(0);
+ const Expr *Source = OE->getArg(1);
+ checkAccess(Target, AK_Written);
+ checkAccess(Source, AK_Read);
+ break;
+ }
+ case OO_Star:
+ case OO_Arrow:
+ case OO_Subscript: {
+ const Expr *Obj = OE->getArg(0);
+ checkAccess(Obj, AK_Read);
+ if (!(OEop == OO_Star && OE->getNumArgs() > 1)) {
+ // Grrr. operator* can be multiplication...
+ checkPtAccess(Obj, AK_Read);
+ }
+ break;
+ }
+ default: {
+ // TODO: get rid of this, and rely on pass-by-ref instead.
+ const Expr *Obj = OE->getArg(0);
+ checkAccess(Obj, AK_Read);
+ break;
+ }
+ }
+ }
+
+ if (ExamineArgs) {
+ if (FunctionDecl *FD = Exp->getDirectCallee()) {
+
+ // NO_THREAD_SAFETY_ANALYSIS does double duty here. Normally it
+ // only turns off checking within the body of a function, but we also
+ // use it to turn off checking in arguments to the function. This
+ // could result in some false negatives, but the alternative is to
+ // create yet another attribute.
+ //
+ if (!FD->hasAttr<NoThreadSafetyAnalysisAttr>()) {
+ unsigned Fn = FD->getNumParams();
+ unsigned Cn = Exp->getNumArgs();
+ unsigned Skip = 0;
+
+ unsigned i = 0;
+ if (OperatorFun) {
+ if (isa<CXXMethodDecl>(FD)) {
+ // First arg in operator call is implicit self argument,
+ // and doesn't appear in the FunctionDecl.
+ Skip = 1;
+ Cn--;
+ } else {
+ // Ignore the first argument of operators; it's been checked above.
+ i = 1;
+ }
+ }
+ // Ignore default arguments
+ unsigned n = (Fn < Cn) ? Fn : Cn;
+
+ for (; i < n; ++i) {
+ ParmVarDecl* Pvd = FD->getParamDecl(i);
+ Expr* Arg = Exp->getArg(i+Skip);
+ QualType Qt = Pvd->getType();
+ if (Qt->isReferenceType())
+ checkAccess(Arg, AK_Read, POK_PassByRef);
+ }
+ }
+ }
+ }
+
+ NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
+ if(!D || !D->hasAttrs())
+ return;
+ handleCall(Exp, D);
+}
+
+void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) {
+ const CXXConstructorDecl *D = Exp->getConstructor();
+ if (D && D->isCopyConstructor()) {
+ const Expr* Source = Exp->getArg(0);
+ checkAccess(Source, AK_Read);
+ }
+ // FIXME -- only handles constructors in DeclStmt below.
+}
+
+void BuildLockset::VisitDeclStmt(DeclStmt *S) {
+ // adjust the context
+ LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);
+
+ for (auto *D : S->getDeclGroup()) {
+ if (VarDecl *VD = dyn_cast_or_null<VarDecl>(D)) {
+ Expr *E = VD->getInit();
+ // handle constructors that involve temporaries
+ if (ExprWithCleanups *EWC = dyn_cast_or_null<ExprWithCleanups>(E))
+ E = EWC->getSubExpr();
+
+ if (CXXConstructExpr *CE = dyn_cast_or_null<CXXConstructExpr>(E)) {
+ NamedDecl *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor());
+ if (!CtorD || !CtorD->hasAttrs())
+ return;
+ handleCall(CE, CtorD, VD);
+ }
+ }
+ }
+}
+
+
+
+/// \brief Compute the intersection of two locksets and issue warnings for any
+/// locks in the symmetric difference.
+///
+/// This function is used at a merge point in the CFG when comparing the lockset
+/// of each branch being merged. For example, given the following sequence:
+/// A; if () then B; else C; D; we need to check that the lockset after B and C
+/// are the same. In the event of a difference, we use the intersection of these
+/// two locksets at the start of D.
+///
+/// \param FSet1 The first lockset.
+/// \param FSet2 The second lockset.
+/// \param JoinLoc The location of the join point for error reporting
+/// \param LEK1 The error message to report if a mutex is missing from LSet1
+/// \param LEK2 The error message to report if a mutex is missing from Lset2
+void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1,
+ const FactSet &FSet2,
+ SourceLocation JoinLoc,
+ LockErrorKind LEK1,
+ LockErrorKind LEK2,
+ bool Modify) {
+ FactSet FSet1Orig = FSet1;
+
+ // Find locks in FSet2 that conflict or are not in FSet1, and warn.
+ for (const auto &Fact : FSet2) {
+ const FactEntry *LDat1 = nullptr;
+ const FactEntry *LDat2 = &FactMan[Fact];
+ FactSet::iterator Iter1 = FSet1.findLockIter(FactMan, *LDat2);
+ if (Iter1 != FSet1.end()) LDat1 = &FactMan[*Iter1];
+
+ if (LDat1) {
+ if (LDat1->kind() != LDat2->kind()) {
+ Handler.handleExclusiveAndShared("mutex", LDat2->toString(),
+ LDat2->loc(), LDat1->loc());
+ if (Modify && LDat1->kind() != LK_Exclusive) {
+ // Take the exclusive lock, which is the one in FSet2.
+ *Iter1 = Fact;
+ }
+ }
+ else if (Modify && LDat1->asserted() && !LDat2->asserted()) {
+ // The non-asserted lock in FSet2 is the one we want to track.
+ *Iter1 = Fact;
+ }
+ } else {
+ LDat2->handleRemovalFromIntersection(FSet2, FactMan, JoinLoc, LEK1,
+ Handler);
+ }
+ }
+
+ // Find locks in FSet1 that are not in FSet2, and remove them.
+ for (const auto &Fact : FSet1Orig) {
+ const FactEntry *LDat1 = &FactMan[Fact];
+ const FactEntry *LDat2 = FSet2.findLock(FactMan, *LDat1);
+
+ if (!LDat2) {
+ LDat1->handleRemovalFromIntersection(FSet1Orig, FactMan, JoinLoc, LEK2,
+ Handler);
+ if (Modify)
+ FSet1.removeLock(FactMan, *LDat1);
+ }
+ }
+}
+
+
+// Return true if block B never continues to its successors.
+static bool neverReturns(const CFGBlock *B) {
+ if (B->hasNoReturnElement())
+ return true;
+ if (B->empty())
+ return false;
+
+ CFGElement Last = B->back();
+ if (Optional<CFGStmt> S = Last.getAs<CFGStmt>()) {
+ if (isa<CXXThrowExpr>(S->getStmt()))
+ return true;
+ }
+ return false;
+}
+
+
+/// \brief Check a function's CFG for thread-safety violations.
+///
+/// We traverse the blocks in the CFG, compute the set of mutexes that are held
+/// at the end of each block, and issue warnings for thread safety violations.
+/// Each block in the CFG is traversed exactly once.
+void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
+ // TODO: this whole function needs be rewritten as a visitor for CFGWalker.
+ // For now, we just use the walker to set things up.
+ threadSafety::CFGWalker walker;
+ if (!walker.init(AC))
+ return;
+
+ // AC.dumpCFG(true);
+ // threadSafety::printSCFG(walker);
+
+ CFG *CFGraph = walker.getGraph();
+ const NamedDecl *D = walker.getDecl();
+ const FunctionDecl *CurrentFunction = dyn_cast<FunctionDecl>(D);
+ CurrentMethod = dyn_cast<CXXMethodDecl>(D);
+
+ if (D->hasAttr<NoThreadSafetyAnalysisAttr>())
+ return;
+
+ // FIXME: Do something a bit more intelligent inside constructor and
+ // destructor code. Constructors and destructors must assume unique access
+ // to 'this', so checks on member variable access is disabled, but we should
+ // still enable checks on other objects.
+ if (isa<CXXConstructorDecl>(D))
+ return; // Don't check inside constructors.
+ if (isa<CXXDestructorDecl>(D))
+ return; // Don't check inside destructors.
+
+ Handler.enterFunction(CurrentFunction);
+
+ BlockInfo.resize(CFGraph->getNumBlockIDs(),
+ CFGBlockInfo::getEmptyBlockInfo(LocalVarMap));
+
+ // We need to explore the CFG via a "topological" ordering.
+ // That way, we will be guaranteed to have information about required
+ // predecessor locksets when exploring a new block.
+ const PostOrderCFGView *SortedGraph = walker.getSortedGraph();
+ PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
+
+ // Mark entry block as reachable
+ BlockInfo[CFGraph->getEntry().getBlockID()].Reachable = true;
+
+ // Compute SSA names for local variables
+ LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo);
+
+ // Fill in source locations for all CFGBlocks.
+ findBlockLocations(CFGraph, SortedGraph, BlockInfo);
+
+ CapExprSet ExclusiveLocksAcquired;
+ CapExprSet SharedLocksAcquired;
+ CapExprSet LocksReleased;
+
+ // Add locks from exclusive_locks_required and shared_locks_required
+ // to initial lockset. Also turn off checking for lock and unlock functions.
+ // FIXME: is there a more intelligent way to check lock/unlock functions?
+ if (!SortedGraph->empty() && D->hasAttrs()) {
+ const CFGBlock *FirstBlock = *SortedGraph->begin();
+ FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet;
+
+ CapExprSet ExclusiveLocksToAdd;
+ CapExprSet SharedLocksToAdd;
+ StringRef CapDiagKind = "mutex";
+
+ SourceLocation Loc = D->getLocation();
+ for (const auto *Attr : D->attrs()) {
+ Loc = Attr->getLocation();
+ if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) {
+ getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
+ nullptr, D);
+ CapDiagKind = ClassifyDiagnostic(A);
+ } else if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) {
+ // UNLOCK_FUNCTION() is used to hide the underlying lock implementation.
+ // We must ignore such methods.
+ if (A->args_size() == 0)
+ return;
+ // FIXME -- deal with exclusive vs. shared unlock functions?
+ getMutexIDs(ExclusiveLocksToAdd, A, nullptr, D);
+ getMutexIDs(LocksReleased, A, nullptr, D);
+ CapDiagKind = ClassifyDiagnostic(A);
+ } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) {
+ if (A->args_size() == 0)
+ return;
+ getMutexIDs(A->isShared() ? SharedLocksAcquired
+ : ExclusiveLocksAcquired,
+ A, nullptr, D);
+ CapDiagKind = ClassifyDiagnostic(A);
+ } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) {
+ // Don't try to check trylock functions for now
+ return;
+ } else if (isa<SharedTrylockFunctionAttr>(Attr)) {
+ // Don't try to check trylock functions for now
+ return;
+ }
+ }
+
+ // FIXME -- Loc can be wrong here.
+ for (const auto &Mu : ExclusiveLocksToAdd) {
+ auto Entry = llvm::make_unique<LockableFactEntry>(Mu, LK_Exclusive, Loc);
+ Entry->setDeclared(true);
+ addLock(InitialLockset, std::move(Entry), CapDiagKind, true);
+ }
+ for (const auto &Mu : SharedLocksToAdd) {
+ auto Entry = llvm::make_unique<LockableFactEntry>(Mu, LK_Shared, Loc);
+ Entry->setDeclared(true);
+ addLock(InitialLockset, std::move(Entry), CapDiagKind, true);
+ }
+ }
+
+ for (const auto *CurrBlock : *SortedGraph) {
+ int CurrBlockID = CurrBlock->getBlockID();
+ CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
+
+ // Use the default initial lockset in case there are no predecessors.
+ VisitedBlocks.insert(CurrBlock);
+
+ // Iterate through the predecessor blocks and warn if the lockset for all
+ // predecessors is not the same. We take the entry lockset of the current
+ // block to be the intersection of all previous locksets.
+ // FIXME: By keeping the intersection, we may output more errors in future
+ // for a lock which is not in the intersection, but was in the union. We
+ // may want to also keep the union in future. As an example, let's say
+ // the intersection contains Mutex L, and the union contains L and M.
+ // Later we unlock M. At this point, we would output an error because we
+ // never locked M; although the real error is probably that we forgot to
+ // lock M on all code paths. Conversely, let's say that later we lock M.
+ // In this case, we should compare against the intersection instead of the
+ // union because the real error is probably that we forgot to unlock M on
+ // all code paths.
+ bool LocksetInitialized = false;
+ SmallVector<CFGBlock *, 8> SpecialBlocks;
+ for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
+ PE = CurrBlock->pred_end(); PI != PE; ++PI) {
+
+ // if *PI -> CurrBlock is a back edge
+ if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI))
+ continue;
+
+ int PrevBlockID = (*PI)->getBlockID();
+ CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
+
+ // Ignore edges from blocks that can't return.
+ if (neverReturns(*PI) || !PrevBlockInfo->Reachable)
+ continue;
+
+ // Okay, we can reach this block from the entry.
+ CurrBlockInfo->Reachable = true;
+
+ // If the previous block ended in a 'continue' or 'break' statement, then
+ // a difference in locksets is probably due to a bug in that block, rather
+ // than in some other predecessor. In that case, keep the other
+ // predecessor's lockset.
+ if (const Stmt *Terminator = (*PI)->getTerminator()) {
+ if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) {
+ SpecialBlocks.push_back(*PI);
+ continue;
+ }
+ }
+
+ FactSet PrevLockset;
+ getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock);
+
+ if (!LocksetInitialized) {
+ CurrBlockInfo->EntrySet = PrevLockset;
+ LocksetInitialized = true;
+ } else {
+ intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
+ CurrBlockInfo->EntryLoc,
+ LEK_LockedSomePredecessors);
+ }
+ }
+
+ // Skip rest of block if it's not reachable.
+ if (!CurrBlockInfo->Reachable)
+ continue;
+
+ // Process continue and break blocks. Assume that the lockset for the
+ // resulting block is unaffected by any discrepancies in them.
+ for (const auto *PrevBlock : SpecialBlocks) {
+ int PrevBlockID = PrevBlock->getBlockID();
+ CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
+
+ if (!LocksetInitialized) {
+ CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet;
+ LocksetInitialized = true;
+ } else {
+ // Determine whether this edge is a loop terminator for diagnostic
+ // purposes. FIXME: A 'break' statement might be a loop terminator, but
+ // it might also be part of a switch. Also, a subsequent destructor
+ // might add to the lockset, in which case the real issue might be a
+ // double lock on the other path.
+ const Stmt *Terminator = PrevBlock->getTerminator();
+ bool IsLoop = Terminator && isa<ContinueStmt>(Terminator);
+
+ FactSet PrevLockset;
+ getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet,
+ PrevBlock, CurrBlock);
+
+ // Do not update EntrySet.
+ intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
+ PrevBlockInfo->ExitLoc,
+ IsLoop ? LEK_LockedSomeLoopIterations
+ : LEK_LockedSomePredecessors,
+ false);
+ }
+ }
+
+ BuildLockset LocksetBuilder(this, *CurrBlockInfo);
+
+ // Visit all the statements in the basic block.
+ for (CFGBlock::const_iterator BI = CurrBlock->begin(),
+ BE = CurrBlock->end(); BI != BE; ++BI) {
+ switch (BI->getKind()) {
+ case CFGElement::Statement: {
+ CFGStmt CS = BI->castAs<CFGStmt>();
+ LocksetBuilder.Visit(const_cast<Stmt*>(CS.getStmt()));
+ break;
+ }
+ // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now.
+ case CFGElement::AutomaticObjectDtor: {
+ CFGAutomaticObjDtor AD = BI->castAs<CFGAutomaticObjDtor>();
+ CXXDestructorDecl *DD = const_cast<CXXDestructorDecl *>(
+ AD.getDestructorDecl(AC.getASTContext()));
+ if (!DD->hasAttrs())
+ break;
+
+ // Create a dummy expression,
+ VarDecl *VD = const_cast<VarDecl*>(AD.getVarDecl());
+ DeclRefExpr DRE(VD, false, VD->getType().getNonReferenceType(),
+ VK_LValue, AD.getTriggerStmt()->getLocEnd());
+ LocksetBuilder.handleCall(&DRE, DD);
+ break;
+ }
+ default:
+ break;
+ }
+ }
+ CurrBlockInfo->ExitSet = LocksetBuilder.FSet;
+
+ // For every back edge from CurrBlock (the end of the loop) to another block
+ // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
+ // the one held at the beginning of FirstLoopBlock. We can look up the
+ // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
+ for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
+ SE = CurrBlock->succ_end(); SI != SE; ++SI) {
+
+ // if CurrBlock -> *SI is *not* a back edge
+ if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
+ continue;
+
+ CFGBlock *FirstLoopBlock = *SI;
+ CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()];
+ CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID];
+ intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet,
+ PreLoop->EntryLoc,
+ LEK_LockedSomeLoopIterations,
+ false);
+ }
+ }
+
+ CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()];
+ CFGBlockInfo *Final = &BlockInfo[CFGraph->getExit().getBlockID()];
+
+ // Skip the final check if the exit block is unreachable.
+ if (!Final->Reachable)
+ return;
+
+ // By default, we expect all locks held on entry to be held on exit.
+ FactSet ExpectedExitSet = Initial->EntrySet;
+
+ // Adjust the expected exit set by adding or removing locks, as declared
+ // by *-LOCK_FUNCTION and UNLOCK_FUNCTION. The intersect below will then
+ // issue the appropriate warning.
+ // FIXME: the location here is not quite right.
+ for (const auto &Lock : ExclusiveLocksAcquired)
+ ExpectedExitSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>(
+ Lock, LK_Exclusive, D->getLocation()));
+ for (const auto &Lock : SharedLocksAcquired)
+ ExpectedExitSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>(
+ Lock, LK_Shared, D->getLocation()));
+ for (const auto &Lock : LocksReleased)
+ ExpectedExitSet.removeLock(FactMan, Lock);
+
+ // FIXME: Should we call this function for all blocks which exit the function?
+ intersectAndWarn(ExpectedExitSet, Final->ExitSet,
+ Final->ExitLoc,
+ LEK_LockedAtEndOfFunction,
+ LEK_NotLockedAtEndOfFunction,
+ false);
+
+ Handler.leaveFunction(CurrentFunction);
+}
+
+
+/// \brief Check a function's CFG for thread-safety violations.
+///
+/// We traverse the blocks in the CFG, compute the set of mutexes that are held
+/// at the end of each block, and issue warnings for thread safety violations.
+/// Each block in the CFG is traversed exactly once.
+void threadSafety::runThreadSafetyAnalysis(AnalysisDeclContext &AC,
+ ThreadSafetyHandler &Handler,
+ BeforeSet **BSet) {
+ if (!*BSet)
+ *BSet = new BeforeSet;
+ ThreadSafetyAnalyzer Analyzer(Handler, *BSet);
+ Analyzer.runAnalysis(AC);
+}
+
+void threadSafety::threadSafetyCleanup(BeforeSet *Cache) { delete Cache; }
+
+/// \brief Helper function that returns a LockKind required for the given level
+/// of access.
+LockKind threadSafety::getLockKindFromAccessKind(AccessKind AK) {
+ switch (AK) {
+ case AK_Read :
+ return LK_Shared;
+ case AK_Written :
+ return LK_Exclusive;
+ }
+ llvm_unreachable("Unknown AccessKind");
+}
OpenPOWER on IntegriCloud