diff options
Diffstat (limited to 'contrib/llvm/tools/clang/lib/Analysis/ThreadSafety.cpp')
-rw-r--r-- | contrib/llvm/tools/clang/lib/Analysis/ThreadSafety.cpp | 2655 |
1 files changed, 2655 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/Analysis/ThreadSafety.cpp b/contrib/llvm/tools/clang/lib/Analysis/ThreadSafety.cpp new file mode 100644 index 0000000..6e0e173 --- /dev/null +++ b/contrib/llvm/tools/clang/lib/Analysis/ThreadSafety.cpp @@ -0,0 +1,2655 @@ +//===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// A intra-procedural analysis for thread safety (e.g. deadlocks and race +// conditions), based off of an annotation system. +// +// See http://clang.llvm.org/docs/LanguageExtensions.html#thread-safety-annotation-checking +// for more information. +// +//===----------------------------------------------------------------------===// + +#include "clang/Analysis/Analyses/ThreadSafety.h" +#include "clang/AST/Attr.h" +#include "clang/AST/DeclCXX.h" +#include "clang/AST/ExprCXX.h" +#include "clang/AST/StmtCXX.h" +#include "clang/AST/StmtVisitor.h" +#include "clang/Analysis/Analyses/PostOrderCFGView.h" +#include "clang/Analysis/AnalysisContext.h" +#include "clang/Analysis/CFG.h" +#include "clang/Analysis/CFGStmtMap.h" +#include "clang/Basic/OperatorKinds.h" +#include "clang/Basic/SourceLocation.h" +#include "clang/Basic/SourceManager.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/FoldingSet.h" +#include "llvm/ADT/ImmutableMap.h" +#include "llvm/ADT/PostOrderIterator.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <utility> +#include <vector> + +using namespace clang; +using namespace thread_safety; + +// Key method definition +ThreadSafetyHandler::~ThreadSafetyHandler() {} + +namespace { + +/// SExpr implements a simple expression language that is used to store, +/// compare, and pretty-print C++ expressions. Unlike a clang Expr, a SExpr +/// does not capture surface syntax, and it does not distinguish between +/// C++ concepts, like pointers and references, that have no real semantic +/// differences. This simplicity allows SExprs to be meaningfully compared, +/// e.g. +/// (x) = x +/// (*this).foo = this->foo +/// *&a = a +/// +/// Thread-safety analysis works by comparing lock expressions. Within the +/// body of a function, an expression such as "x->foo->bar.mu" will resolve to +/// a particular mutex object at run-time. Subsequent occurrences of the same +/// expression (where "same" means syntactic equality) will refer to the same +/// run-time object if three conditions hold: +/// (1) Local variables in the expression, such as "x" have not changed. +/// (2) Values on the heap that affect the expression have not changed. +/// (3) The expression involves only pure function calls. +/// +/// The current implementation assumes, but does not verify, that multiple uses +/// of the same lock expression satisfies these criteria. +class SExpr { +private: + enum ExprOp { + EOP_Nop, ///< No-op + EOP_Wildcard, ///< Matches anything. + EOP_Universal, ///< Universal lock. + EOP_This, ///< This keyword. + EOP_NVar, ///< Named variable. + EOP_LVar, ///< Local variable. + EOP_Dot, ///< Field access + EOP_Call, ///< Function call + EOP_MCall, ///< Method call + EOP_Index, ///< Array index + EOP_Unary, ///< Unary operation + EOP_Binary, ///< Binary operation + EOP_Unknown ///< Catchall for everything else + }; + + + class SExprNode { + private: + unsigned char Op; ///< Opcode of the root node + unsigned char Flags; ///< Additional opcode-specific data + unsigned short Sz; ///< Number of child nodes + const void* Data; ///< Additional opcode-specific data + + public: + SExprNode(ExprOp O, unsigned F, const void* D) + : Op(static_cast<unsigned char>(O)), + Flags(static_cast<unsigned char>(F)), Sz(1), Data(D) + { } + + unsigned size() const { return Sz; } + void setSize(unsigned S) { Sz = S; } + + ExprOp kind() const { return static_cast<ExprOp>(Op); } + + const NamedDecl* getNamedDecl() const { + assert(Op == EOP_NVar || Op == EOP_LVar || Op == EOP_Dot); + return reinterpret_cast<const NamedDecl*>(Data); + } + + const NamedDecl* getFunctionDecl() const { + assert(Op == EOP_Call || Op == EOP_MCall); + return reinterpret_cast<const NamedDecl*>(Data); + } + + bool isArrow() const { return Op == EOP_Dot && Flags == 1; } + void setArrow(bool A) { Flags = A ? 1 : 0; } + + unsigned arity() const { + switch (Op) { + case EOP_Nop: return 0; + case EOP_Wildcard: return 0; + case EOP_Universal: return 0; + case EOP_NVar: return 0; + case EOP_LVar: return 0; + case EOP_This: return 0; + case EOP_Dot: return 1; + case EOP_Call: return Flags+1; // First arg is function. + case EOP_MCall: return Flags+1; // First arg is implicit obj. + case EOP_Index: return 2; + case EOP_Unary: return 1; + case EOP_Binary: return 2; + case EOP_Unknown: return Flags; + } + return 0; + } + + bool operator==(const SExprNode& Other) const { + // Ignore flags and size -- they don't matter. + return (Op == Other.Op && + Data == Other.Data); + } + + bool operator!=(const SExprNode& Other) const { + return !(*this == Other); + } + + bool matches(const SExprNode& Other) const { + return (*this == Other) || + (Op == EOP_Wildcard) || + (Other.Op == EOP_Wildcard); + } + }; + + + /// \brief Encapsulates the lexical context of a function call. The lexical + /// context includes the arguments to the call, including the implicit object + /// argument. When an attribute containing a mutex expression is attached to + /// a method, the expression may refer to formal parameters of the method. + /// Actual arguments must be substituted for formal parameters to derive + /// the appropriate mutex expression in the lexical context where the function + /// is called. PrevCtx holds the context in which the arguments themselves + /// should be evaluated; multiple calling contexts can be chained together + /// by the lock_returned attribute. + struct CallingContext { + const NamedDecl* AttrDecl; // The decl to which the attribute is attached. + const Expr* SelfArg; // Implicit object argument -- e.g. 'this' + bool SelfArrow; // is Self referred to with -> or .? + unsigned NumArgs; // Number of funArgs + const Expr* const* FunArgs; // Function arguments + CallingContext* PrevCtx; // The previous context; or 0 if none. + + CallingContext(const NamedDecl *D = 0, const Expr *S = 0, + unsigned N = 0, const Expr* const *A = 0, + CallingContext *P = 0) + : AttrDecl(D), SelfArg(S), SelfArrow(false), + NumArgs(N), FunArgs(A), PrevCtx(P) + { } + }; + + typedef SmallVector<SExprNode, 4> NodeVector; + +private: + // A SExpr is a list of SExprNodes in prefix order. The Size field allows + // the list to be traversed as a tree. + NodeVector NodeVec; + +private: + unsigned makeNop() { + NodeVec.push_back(SExprNode(EOP_Nop, 0, 0)); + return NodeVec.size()-1; + } + + unsigned makeWildcard() { + NodeVec.push_back(SExprNode(EOP_Wildcard, 0, 0)); + return NodeVec.size()-1; + } + + unsigned makeUniversal() { + NodeVec.push_back(SExprNode(EOP_Universal, 0, 0)); + return NodeVec.size()-1; + } + + unsigned makeNamedVar(const NamedDecl *D) { + NodeVec.push_back(SExprNode(EOP_NVar, 0, D)); + return NodeVec.size()-1; + } + + unsigned makeLocalVar(const NamedDecl *D) { + NodeVec.push_back(SExprNode(EOP_LVar, 0, D)); + return NodeVec.size()-1; + } + + unsigned makeThis() { + NodeVec.push_back(SExprNode(EOP_This, 0, 0)); + return NodeVec.size()-1; + } + + unsigned makeDot(const NamedDecl *D, bool Arrow) { + NodeVec.push_back(SExprNode(EOP_Dot, Arrow ? 1 : 0, D)); + return NodeVec.size()-1; + } + + unsigned makeCall(unsigned NumArgs, const NamedDecl *D) { + NodeVec.push_back(SExprNode(EOP_Call, NumArgs, D)); + return NodeVec.size()-1; + } + + // Grab the very first declaration of virtual method D + const CXXMethodDecl* getFirstVirtualDecl(const CXXMethodDecl *D) { + while (true) { + D = D->getCanonicalDecl(); + CXXMethodDecl::method_iterator I = D->begin_overridden_methods(), + E = D->end_overridden_methods(); + if (I == E) + return D; // Method does not override anything + D = *I; // FIXME: this does not work with multiple inheritance. + } + return 0; + } + + unsigned makeMCall(unsigned NumArgs, const CXXMethodDecl *D) { + NodeVec.push_back(SExprNode(EOP_MCall, NumArgs, getFirstVirtualDecl(D))); + return NodeVec.size()-1; + } + + unsigned makeIndex() { + NodeVec.push_back(SExprNode(EOP_Index, 0, 0)); + return NodeVec.size()-1; + } + + unsigned makeUnary() { + NodeVec.push_back(SExprNode(EOP_Unary, 0, 0)); + return NodeVec.size()-1; + } + + unsigned makeBinary() { + NodeVec.push_back(SExprNode(EOP_Binary, 0, 0)); + return NodeVec.size()-1; + } + + unsigned makeUnknown(unsigned Arity) { + NodeVec.push_back(SExprNode(EOP_Unknown, Arity, 0)); + return NodeVec.size()-1; + } + + inline bool isCalleeArrow(const Expr *E) { + const MemberExpr *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts()); + return ME ? ME->isArrow() : false; + } + + /// Build an SExpr from the given C++ expression. + /// Recursive function that terminates on DeclRefExpr. + /// Note: this function merely creates a SExpr; it does not check to + /// ensure that the original expression is a valid mutex expression. + /// + /// NDeref returns the number of Derefence and AddressOf operations + /// preceeding the Expr; this is used to decide whether to pretty-print + /// SExprs with . or ->. + unsigned buildSExpr(const Expr *Exp, CallingContext* CallCtx, + int* NDeref = 0) { + if (!Exp) + return 0; + + if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) { + const NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl()); + const ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(ND); + if (PV) { + const FunctionDecl *FD = + cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl(); + unsigned i = PV->getFunctionScopeIndex(); + + if (CallCtx && CallCtx->FunArgs && + FD == CallCtx->AttrDecl->getCanonicalDecl()) { + // Substitute call arguments for references to function parameters + assert(i < CallCtx->NumArgs); + return buildSExpr(CallCtx->FunArgs[i], CallCtx->PrevCtx, NDeref); + } + // Map the param back to the param of the original function declaration. + makeNamedVar(FD->getParamDecl(i)); + return 1; + } + // Not a function parameter -- just store the reference. + makeNamedVar(ND); + return 1; + } else if (isa<CXXThisExpr>(Exp)) { + // Substitute parent for 'this' + if (CallCtx && CallCtx->SelfArg) { + if (!CallCtx->SelfArrow && NDeref) + // 'this' is a pointer, but self is not, so need to take address. + --(*NDeref); + return buildSExpr(CallCtx->SelfArg, CallCtx->PrevCtx, NDeref); + } + else { + makeThis(); + return 1; + } + } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) { + const NamedDecl *ND = ME->getMemberDecl(); + int ImplicitDeref = ME->isArrow() ? 1 : 0; + unsigned Root = makeDot(ND, false); + unsigned Sz = buildSExpr(ME->getBase(), CallCtx, &ImplicitDeref); + NodeVec[Root].setArrow(ImplicitDeref > 0); + NodeVec[Root].setSize(Sz + 1); + return Sz + 1; + } else if (const CXXMemberCallExpr *CMCE = dyn_cast<CXXMemberCallExpr>(Exp)) { + // When calling a function with a lock_returned attribute, replace + // the function call with the expression in lock_returned. + const CXXMethodDecl *MD = CMCE->getMethodDecl()->getMostRecentDecl(); + if (LockReturnedAttr* At = MD->getAttr<LockReturnedAttr>()) { + CallingContext LRCallCtx(CMCE->getMethodDecl()); + LRCallCtx.SelfArg = CMCE->getImplicitObjectArgument(); + LRCallCtx.SelfArrow = isCalleeArrow(CMCE->getCallee()); + LRCallCtx.NumArgs = CMCE->getNumArgs(); + LRCallCtx.FunArgs = CMCE->getArgs(); + LRCallCtx.PrevCtx = CallCtx; + return buildSExpr(At->getArg(), &LRCallCtx); + } + // Hack to treat smart pointers and iterators as pointers; + // ignore any method named get(). + if (CMCE->getMethodDecl()->getNameAsString() == "get" && + CMCE->getNumArgs() == 0) { + if (NDeref && isCalleeArrow(CMCE->getCallee())) + ++(*NDeref); + return buildSExpr(CMCE->getImplicitObjectArgument(), CallCtx, NDeref); + } + unsigned NumCallArgs = CMCE->getNumArgs(); + unsigned Root = makeMCall(NumCallArgs, CMCE->getMethodDecl()); + unsigned Sz = buildSExpr(CMCE->getImplicitObjectArgument(), CallCtx); + const Expr* const* CallArgs = CMCE->getArgs(); + for (unsigned i = 0; i < NumCallArgs; ++i) { + Sz += buildSExpr(CallArgs[i], CallCtx); + } + NodeVec[Root].setSize(Sz + 1); + return Sz + 1; + } else if (const CallExpr *CE = dyn_cast<CallExpr>(Exp)) { + const FunctionDecl *FD = CE->getDirectCallee()->getMostRecentDecl(); + if (LockReturnedAttr* At = FD->getAttr<LockReturnedAttr>()) { + CallingContext LRCallCtx(CE->getDirectCallee()); + LRCallCtx.NumArgs = CE->getNumArgs(); + LRCallCtx.FunArgs = CE->getArgs(); + LRCallCtx.PrevCtx = CallCtx; + return buildSExpr(At->getArg(), &LRCallCtx); + } + // Treat smart pointers and iterators as pointers; + // ignore the * and -> operators. + if (const CXXOperatorCallExpr *OE = dyn_cast<CXXOperatorCallExpr>(CE)) { + OverloadedOperatorKind k = OE->getOperator(); + if (k == OO_Star) { + if (NDeref) ++(*NDeref); + return buildSExpr(OE->getArg(0), CallCtx, NDeref); + } + else if (k == OO_Arrow) { + return buildSExpr(OE->getArg(0), CallCtx, NDeref); + } + } + unsigned NumCallArgs = CE->getNumArgs(); + unsigned Root = makeCall(NumCallArgs, 0); + unsigned Sz = buildSExpr(CE->getCallee(), CallCtx); + const Expr* const* CallArgs = CE->getArgs(); + for (unsigned i = 0; i < NumCallArgs; ++i) { + Sz += buildSExpr(CallArgs[i], CallCtx); + } + NodeVec[Root].setSize(Sz+1); + return Sz+1; + } else if (const BinaryOperator *BOE = dyn_cast<BinaryOperator>(Exp)) { + unsigned Root = makeBinary(); + unsigned Sz = buildSExpr(BOE->getLHS(), CallCtx); + Sz += buildSExpr(BOE->getRHS(), CallCtx); + NodeVec[Root].setSize(Sz); + return Sz; + } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(Exp)) { + // Ignore & and * operators -- they're no-ops. + // However, we try to figure out whether the expression is a pointer, + // so we can use . and -> appropriately in error messages. + if (UOE->getOpcode() == UO_Deref) { + if (NDeref) ++(*NDeref); + return buildSExpr(UOE->getSubExpr(), CallCtx, NDeref); + } + if (UOE->getOpcode() == UO_AddrOf) { + if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(UOE->getSubExpr())) { + if (DRE->getDecl()->isCXXInstanceMember()) { + // This is a pointer-to-member expression, e.g. &MyClass::mu_. + // We interpret this syntax specially, as a wildcard. + unsigned Root = makeDot(DRE->getDecl(), false); + makeWildcard(); + NodeVec[Root].setSize(2); + return 2; + } + } + if (NDeref) --(*NDeref); + return buildSExpr(UOE->getSubExpr(), CallCtx, NDeref); + } + unsigned Root = makeUnary(); + unsigned Sz = buildSExpr(UOE->getSubExpr(), CallCtx); + NodeVec[Root].setSize(Sz); + return Sz; + } else if (const ArraySubscriptExpr *ASE = + dyn_cast<ArraySubscriptExpr>(Exp)) { + unsigned Root = makeIndex(); + unsigned Sz = buildSExpr(ASE->getBase(), CallCtx); + Sz += buildSExpr(ASE->getIdx(), CallCtx); + NodeVec[Root].setSize(Sz); + return Sz; + } else if (const AbstractConditionalOperator *CE = + dyn_cast<AbstractConditionalOperator>(Exp)) { + unsigned Root = makeUnknown(3); + unsigned Sz = buildSExpr(CE->getCond(), CallCtx); + Sz += buildSExpr(CE->getTrueExpr(), CallCtx); + Sz += buildSExpr(CE->getFalseExpr(), CallCtx); + NodeVec[Root].setSize(Sz); + return Sz; + } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(Exp)) { + unsigned Root = makeUnknown(3); + unsigned Sz = buildSExpr(CE->getCond(), CallCtx); + Sz += buildSExpr(CE->getLHS(), CallCtx); + Sz += buildSExpr(CE->getRHS(), CallCtx); + NodeVec[Root].setSize(Sz); + return Sz; + } else if (const CastExpr *CE = dyn_cast<CastExpr>(Exp)) { + return buildSExpr(CE->getSubExpr(), CallCtx, NDeref); + } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Exp)) { + return buildSExpr(PE->getSubExpr(), CallCtx, NDeref); + } else if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Exp)) { + return buildSExpr(EWC->getSubExpr(), CallCtx, NDeref); + } else if (const CXXBindTemporaryExpr *E = dyn_cast<CXXBindTemporaryExpr>(Exp)) { + return buildSExpr(E->getSubExpr(), CallCtx, NDeref); + } else if (isa<CharacterLiteral>(Exp) || + isa<CXXNullPtrLiteralExpr>(Exp) || + isa<GNUNullExpr>(Exp) || + isa<CXXBoolLiteralExpr>(Exp) || + isa<FloatingLiteral>(Exp) || + isa<ImaginaryLiteral>(Exp) || + isa<IntegerLiteral>(Exp) || + isa<StringLiteral>(Exp) || + isa<ObjCStringLiteral>(Exp)) { + makeNop(); + return 1; // FIXME: Ignore literals for now + } else { + makeNop(); + return 1; // Ignore. FIXME: mark as invalid expression? + } + } + + /// \brief Construct a SExpr from an expression. + /// \param MutexExp The original mutex expression within an attribute + /// \param DeclExp An expression involving the Decl on which the attribute + /// occurs. + /// \param D The declaration to which the lock/unlock attribute is attached. + void buildSExprFromExpr(const Expr *MutexExp, const Expr *DeclExp, + const NamedDecl *D, VarDecl *SelfDecl = 0) { + CallingContext CallCtx(D); + + if (MutexExp) { + if (const StringLiteral* SLit = dyn_cast<StringLiteral>(MutexExp)) { + if (SLit->getString() == StringRef("*")) + // The "*" expr is a universal lock, which essentially turns off + // checks until it is removed from the lockset. + makeUniversal(); + else + // Ignore other string literals for now. + makeNop(); + return; + } + } + + // If we are processing a raw attribute expression, with no substitutions. + if (DeclExp == 0) { + buildSExpr(MutexExp, 0); + return; + } + + // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute + // for formal parameters when we call buildMutexID later. + if (const MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) { + CallCtx.SelfArg = ME->getBase(); + CallCtx.SelfArrow = ME->isArrow(); + } else if (const CXXMemberCallExpr *CE = + dyn_cast<CXXMemberCallExpr>(DeclExp)) { + CallCtx.SelfArg = CE->getImplicitObjectArgument(); + CallCtx.SelfArrow = isCalleeArrow(CE->getCallee()); + CallCtx.NumArgs = CE->getNumArgs(); + CallCtx.FunArgs = CE->getArgs(); + } else if (const CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) { + CallCtx.NumArgs = CE->getNumArgs(); + CallCtx.FunArgs = CE->getArgs(); + } else if (const CXXConstructExpr *CE = + dyn_cast<CXXConstructExpr>(DeclExp)) { + CallCtx.SelfArg = 0; // Will be set below + CallCtx.NumArgs = CE->getNumArgs(); + CallCtx.FunArgs = CE->getArgs(); + } else if (D && isa<CXXDestructorDecl>(D)) { + // There's no such thing as a "destructor call" in the AST. + CallCtx.SelfArg = DeclExp; + } + + // Hack to handle constructors, where self cannot be recovered from + // the expression. + if (SelfDecl && !CallCtx.SelfArg) { + DeclRefExpr SelfDRE(SelfDecl, false, SelfDecl->getType(), VK_LValue, + SelfDecl->getLocation()); + CallCtx.SelfArg = &SelfDRE; + + // If the attribute has no arguments, then assume the argument is "this". + if (MutexExp == 0) + buildSExpr(CallCtx.SelfArg, 0); + else // For most attributes. + buildSExpr(MutexExp, &CallCtx); + return; + } + + // If the attribute has no arguments, then assume the argument is "this". + if (MutexExp == 0) + buildSExpr(CallCtx.SelfArg, 0); + else // For most attributes. + buildSExpr(MutexExp, &CallCtx); + } + + /// \brief Get index of next sibling of node i. + unsigned getNextSibling(unsigned i) const { + return i + NodeVec[i].size(); + } + +public: + explicit SExpr(clang::Decl::EmptyShell e) { NodeVec.clear(); } + + /// \param MutexExp The original mutex expression within an attribute + /// \param DeclExp An expression involving the Decl on which the attribute + /// occurs. + /// \param D The declaration to which the lock/unlock attribute is attached. + /// Caller must check isValid() after construction. + SExpr(const Expr* MutexExp, const Expr *DeclExp, const NamedDecl* D, + VarDecl *SelfDecl=0) { + buildSExprFromExpr(MutexExp, DeclExp, D, SelfDecl); + } + + /// Return true if this is a valid decl sequence. + /// Caller must call this by hand after construction to handle errors. + bool isValid() const { + return !NodeVec.empty(); + } + + bool shouldIgnore() const { + // Nop is a mutex that we have decided to deliberately ignore. + assert(NodeVec.size() > 0 && "Invalid Mutex"); + return NodeVec[0].kind() == EOP_Nop; + } + + bool isUniversal() const { + assert(NodeVec.size() > 0 && "Invalid Mutex"); + return NodeVec[0].kind() == EOP_Universal; + } + + /// Issue a warning about an invalid lock expression + static void warnInvalidLock(ThreadSafetyHandler &Handler, + const Expr *MutexExp, + const Expr *DeclExp, const NamedDecl* D) { + SourceLocation Loc; + if (DeclExp) + Loc = DeclExp->getExprLoc(); + + // FIXME: add a note about the attribute location in MutexExp or D + if (Loc.isValid()) + Handler.handleInvalidLockExp(Loc); + } + + bool operator==(const SExpr &other) const { + return NodeVec == other.NodeVec; + } + + bool operator!=(const SExpr &other) const { + return !(*this == other); + } + + bool matches(const SExpr &Other, unsigned i = 0, unsigned j = 0) const { + if (NodeVec[i].matches(Other.NodeVec[j])) { + unsigned ni = NodeVec[i].arity(); + unsigned nj = Other.NodeVec[j].arity(); + unsigned n = (ni < nj) ? ni : nj; + bool Result = true; + unsigned ci = i+1; // first child of i + unsigned cj = j+1; // first child of j + for (unsigned k = 0; k < n; + ++k, ci=getNextSibling(ci), cj = Other.getNextSibling(cj)) { + Result = Result && matches(Other, ci, cj); + } + return Result; + } + return false; + } + + // A partial match between a.mu and b.mu returns true a and b have the same + // type (and thus mu refers to the same mutex declaration), regardless of + // whether a and b are different objects or not. + bool partiallyMatches(const SExpr &Other) const { + if (NodeVec[0].kind() == EOP_Dot) + return NodeVec[0].matches(Other.NodeVec[0]); + return false; + } + + /// \brief Pretty print a lock expression for use in error messages. + std::string toString(unsigned i = 0) const { + assert(isValid()); + if (i >= NodeVec.size()) + return ""; + + const SExprNode* N = &NodeVec[i]; + switch (N->kind()) { + case EOP_Nop: + return "_"; + case EOP_Wildcard: + return "(?)"; + case EOP_Universal: + return "*"; + case EOP_This: + return "this"; + case EOP_NVar: + case EOP_LVar: { + return N->getNamedDecl()->getNameAsString(); + } + case EOP_Dot: { + if (NodeVec[i+1].kind() == EOP_Wildcard) { + std::string S = "&"; + S += N->getNamedDecl()->getQualifiedNameAsString(); + return S; + } + std::string FieldName = N->getNamedDecl()->getNameAsString(); + if (NodeVec[i+1].kind() == EOP_This) + return FieldName; + + std::string S = toString(i+1); + if (N->isArrow()) + return S + "->" + FieldName; + else + return S + "." + FieldName; + } + case EOP_Call: { + std::string S = toString(i+1) + "("; + unsigned NumArgs = N->arity()-1; + unsigned ci = getNextSibling(i+1); + for (unsigned k=0; k<NumArgs; ++k, ci = getNextSibling(ci)) { + S += toString(ci); + if (k+1 < NumArgs) S += ","; + } + S += ")"; + return S; + } + case EOP_MCall: { + std::string S = ""; + if (NodeVec[i+1].kind() != EOP_This) + S = toString(i+1) + "."; + if (const NamedDecl *D = N->getFunctionDecl()) + S += D->getNameAsString() + "("; + else + S += "#("; + unsigned NumArgs = N->arity()-1; + unsigned ci = getNextSibling(i+1); + for (unsigned k=0; k<NumArgs; ++k, ci = getNextSibling(ci)) { + S += toString(ci); + if (k+1 < NumArgs) S += ","; + } + S += ")"; + return S; + } + case EOP_Index: { + std::string S1 = toString(i+1); + std::string S2 = toString(i+1 + NodeVec[i+1].size()); + return S1 + "[" + S2 + "]"; + } + case EOP_Unary: { + std::string S = toString(i+1); + return "#" + S; + } + case EOP_Binary: { + std::string S1 = toString(i+1); + std::string S2 = toString(i+1 + NodeVec[i+1].size()); + return "(" + S1 + "#" + S2 + ")"; + } + case EOP_Unknown: { + unsigned NumChildren = N->arity(); + if (NumChildren == 0) + return "(...)"; + std::string S = "("; + unsigned ci = i+1; + for (unsigned j = 0; j < NumChildren; ++j, ci = getNextSibling(ci)) { + S += toString(ci); + if (j+1 < NumChildren) S += "#"; + } + S += ")"; + return S; + } + } + return ""; + } +}; + + + +/// \brief A short list of SExprs +class MutexIDList : public SmallVector<SExpr, 3> { +public: + /// \brief Return true if the list contains the specified SExpr + /// Performs a linear search, because these lists are almost always very small. + bool contains(const SExpr& M) { + for (iterator I=begin(),E=end(); I != E; ++I) + if ((*I) == M) return true; + return false; + } + + /// \brief Push M onto list, bud discard duplicates + void push_back_nodup(const SExpr& M) { + if (!contains(M)) push_back(M); + } +}; + + + +/// \brief This is a helper class that stores info about the most recent +/// accquire of a Lock. +/// +/// The main body of the analysis maps MutexIDs to LockDatas. +struct LockData { + SourceLocation AcquireLoc; + + /// \brief LKind stores whether a lock is held shared or exclusively. + /// Note that this analysis does not currently support either re-entrant + /// locking or lock "upgrading" and "downgrading" between exclusive and + /// shared. + /// + /// FIXME: add support for re-entrant locking and lock up/downgrading + LockKind LKind; + bool Asserted; // for asserted locks + bool Managed; // for ScopedLockable objects + SExpr UnderlyingMutex; // for ScopedLockable objects + + LockData(SourceLocation AcquireLoc, LockKind LKind, bool M=false, + bool Asrt=false) + : AcquireLoc(AcquireLoc), LKind(LKind), Asserted(Asrt), Managed(M), + UnderlyingMutex(Decl::EmptyShell()) + {} + + LockData(SourceLocation AcquireLoc, LockKind LKind, const SExpr &Mu) + : AcquireLoc(AcquireLoc), LKind(LKind), Asserted(false), Managed(false), + UnderlyingMutex(Mu) + {} + + bool operator==(const LockData &other) const { + return AcquireLoc == other.AcquireLoc && LKind == other.LKind; + } + + bool operator!=(const LockData &other) const { + return !(*this == other); + } + + void Profile(llvm::FoldingSetNodeID &ID) const { + ID.AddInteger(AcquireLoc.getRawEncoding()); + ID.AddInteger(LKind); + } + + bool isAtLeast(LockKind LK) { + return (LK == LK_Shared) || (LKind == LK_Exclusive); + } +}; + + +/// \brief A FactEntry stores a single fact that is known at a particular point +/// in the program execution. Currently, this is information regarding a lock +/// that is held at that point. +struct FactEntry { + SExpr MutID; + LockData LDat; + + FactEntry(const SExpr& M, const LockData& L) + : MutID(M), LDat(L) + { } +}; + + +typedef unsigned short FactID; + +/// \brief FactManager manages the memory for all facts that are created during +/// the analysis of a single routine. +class FactManager { +private: + std::vector<FactEntry> Facts; + +public: + FactID newLock(const SExpr& M, const LockData& L) { + Facts.push_back(FactEntry(M,L)); + return static_cast<unsigned short>(Facts.size() - 1); + } + + const FactEntry& operator[](FactID F) const { return Facts[F]; } + FactEntry& operator[](FactID F) { return Facts[F]; } +}; + + +/// \brief A FactSet is the set of facts that are known to be true at a +/// particular program point. FactSets must be small, because they are +/// frequently copied, and are thus implemented as a set of indices into a +/// table maintained by a FactManager. A typical FactSet only holds 1 or 2 +/// locks, so we can get away with doing a linear search for lookup. Note +/// that a hashtable or map is inappropriate in this case, because lookups +/// may involve partial pattern matches, rather than exact matches. +class FactSet { +private: + typedef SmallVector<FactID, 4> FactVec; + + FactVec FactIDs; + +public: + typedef FactVec::iterator iterator; + typedef FactVec::const_iterator const_iterator; + + iterator begin() { return FactIDs.begin(); } + const_iterator begin() const { return FactIDs.begin(); } + + iterator end() { return FactIDs.end(); } + const_iterator end() const { return FactIDs.end(); } + + bool isEmpty() const { return FactIDs.size() == 0; } + + FactID addLock(FactManager& FM, const SExpr& M, const LockData& L) { + FactID F = FM.newLock(M, L); + FactIDs.push_back(F); + return F; + } + + bool removeLock(FactManager& FM, const SExpr& M) { + unsigned n = FactIDs.size(); + if (n == 0) + return false; + + for (unsigned i = 0; i < n-1; ++i) { + if (FM[FactIDs[i]].MutID.matches(M)) { + FactIDs[i] = FactIDs[n-1]; + FactIDs.pop_back(); + return true; + } + } + if (FM[FactIDs[n-1]].MutID.matches(M)) { + FactIDs.pop_back(); + return true; + } + return false; + } + + // Returns an iterator + iterator findLockIter(FactManager &FM, const SExpr &M) { + for (iterator I = begin(), E = end(); I != E; ++I) { + const SExpr &Exp = FM[*I].MutID; + if (Exp.matches(M)) + return I; + } + return end(); + } + + LockData* findLock(FactManager &FM, const SExpr &M) const { + for (const_iterator I = begin(), E = end(); I != E; ++I) { + const SExpr &Exp = FM[*I].MutID; + if (Exp.matches(M)) + return &FM[*I].LDat; + } + return 0; + } + + LockData* findLockUniv(FactManager &FM, const SExpr &M) const { + for (const_iterator I = begin(), E = end(); I != E; ++I) { + const SExpr &Exp = FM[*I].MutID; + if (Exp.matches(M) || Exp.isUniversal()) + return &FM[*I].LDat; + } + return 0; + } + + FactEntry* findPartialMatch(FactManager &FM, const SExpr &M) const { + for (const_iterator I=begin(), E=end(); I != E; ++I) { + const SExpr& Exp = FM[*I].MutID; + if (Exp.partiallyMatches(M)) return &FM[*I]; + } + return 0; + } +}; + + + +/// A Lockset maps each SExpr (defined above) to information about how it has +/// been locked. +typedef llvm::ImmutableMap<SExpr, LockData> Lockset; +typedef llvm::ImmutableMap<const NamedDecl*, unsigned> LocalVarContext; + +class LocalVariableMap; + +/// A side (entry or exit) of a CFG node. +enum CFGBlockSide { CBS_Entry, CBS_Exit }; + +/// CFGBlockInfo is a struct which contains all the information that is +/// maintained for each block in the CFG. See LocalVariableMap for more +/// information about the contexts. +struct CFGBlockInfo { + FactSet EntrySet; // Lockset held at entry to block + FactSet ExitSet; // Lockset held at exit from block + LocalVarContext EntryContext; // Context held at entry to block + LocalVarContext ExitContext; // Context held at exit from block + SourceLocation EntryLoc; // Location of first statement in block + SourceLocation ExitLoc; // Location of last statement in block. + unsigned EntryIndex; // Used to replay contexts later + bool Reachable; // Is this block reachable? + + const FactSet &getSet(CFGBlockSide Side) const { + return Side == CBS_Entry ? EntrySet : ExitSet; + } + SourceLocation getLocation(CFGBlockSide Side) const { + return Side == CBS_Entry ? EntryLoc : ExitLoc; + } + +private: + CFGBlockInfo(LocalVarContext EmptyCtx) + : EntryContext(EmptyCtx), ExitContext(EmptyCtx), Reachable(false) + { } + +public: + static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M); +}; + + + +// A LocalVariableMap maintains a map from local variables to their currently +// valid definitions. It provides SSA-like functionality when traversing the +// CFG. Like SSA, each definition or assignment to a variable is assigned a +// unique name (an integer), which acts as the SSA name for that definition. +// The total set of names is shared among all CFG basic blocks. +// Unlike SSA, we do not rewrite expressions to replace local variables declrefs +// with their SSA-names. Instead, we compute a Context for each point in the +// code, which maps local variables to the appropriate SSA-name. This map +// changes with each assignment. +// +// The map is computed in a single pass over the CFG. Subsequent analyses can +// then query the map to find the appropriate Context for a statement, and use +// that Context to look up the definitions of variables. +class LocalVariableMap { +public: + typedef LocalVarContext Context; + + /// A VarDefinition consists of an expression, representing the value of the + /// variable, along with the context in which that expression should be + /// interpreted. A reference VarDefinition does not itself contain this + /// information, but instead contains a pointer to a previous VarDefinition. + struct VarDefinition { + public: + friend class LocalVariableMap; + + const NamedDecl *Dec; // The original declaration for this variable. + const Expr *Exp; // The expression for this variable, OR + unsigned Ref; // Reference to another VarDefinition + Context Ctx; // The map with which Exp should be interpreted. + + bool isReference() { return !Exp; } + + private: + // Create ordinary variable definition + VarDefinition(const NamedDecl *D, const Expr *E, Context C) + : Dec(D), Exp(E), Ref(0), Ctx(C) + { } + + // Create reference to previous definition + VarDefinition(const NamedDecl *D, unsigned R, Context C) + : Dec(D), Exp(0), Ref(R), Ctx(C) + { } + }; + +private: + Context::Factory ContextFactory; + std::vector<VarDefinition> VarDefinitions; + std::vector<unsigned> CtxIndices; + std::vector<std::pair<Stmt*, Context> > SavedContexts; + +public: + LocalVariableMap() { + // index 0 is a placeholder for undefined variables (aka phi-nodes). + VarDefinitions.push_back(VarDefinition(0, 0u, getEmptyContext())); + } + + /// Look up a definition, within the given context. + const VarDefinition* lookup(const NamedDecl *D, Context Ctx) { + const unsigned *i = Ctx.lookup(D); + if (!i) + return 0; + assert(*i < VarDefinitions.size()); + return &VarDefinitions[*i]; + } + + /// Look up the definition for D within the given context. Returns + /// NULL if the expression is not statically known. If successful, also + /// modifies Ctx to hold the context of the return Expr. + const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) { + const unsigned *P = Ctx.lookup(D); + if (!P) + return 0; + + unsigned i = *P; + while (i > 0) { + if (VarDefinitions[i].Exp) { + Ctx = VarDefinitions[i].Ctx; + return VarDefinitions[i].Exp; + } + i = VarDefinitions[i].Ref; + } + return 0; + } + + Context getEmptyContext() { return ContextFactory.getEmptyMap(); } + + /// Return the next context after processing S. This function is used by + /// clients of the class to get the appropriate context when traversing the + /// CFG. It must be called for every assignment or DeclStmt. + Context getNextContext(unsigned &CtxIndex, Stmt *S, Context C) { + if (SavedContexts[CtxIndex+1].first == S) { + CtxIndex++; + Context Result = SavedContexts[CtxIndex].second; + return Result; + } + return C; + } + + void dumpVarDefinitionName(unsigned i) { + if (i == 0) { + llvm::errs() << "Undefined"; + return; + } + const NamedDecl *Dec = VarDefinitions[i].Dec; + if (!Dec) { + llvm::errs() << "<<NULL>>"; + return; + } + Dec->printName(llvm::errs()); + llvm::errs() << "." << i << " " << ((const void*) Dec); + } + + /// Dumps an ASCII representation of the variable map to llvm::errs() + void dump() { + for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) { + const Expr *Exp = VarDefinitions[i].Exp; + unsigned Ref = VarDefinitions[i].Ref; + + dumpVarDefinitionName(i); + llvm::errs() << " = "; + if (Exp) Exp->dump(); + else { + dumpVarDefinitionName(Ref); + llvm::errs() << "\n"; + } + } + } + + /// Dumps an ASCII representation of a Context to llvm::errs() + void dumpContext(Context C) { + for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) { + const NamedDecl *D = I.getKey(); + D->printName(llvm::errs()); + const unsigned *i = C.lookup(D); + llvm::errs() << " -> "; + dumpVarDefinitionName(*i); + llvm::errs() << "\n"; + } + } + + /// Builds the variable map. + void traverseCFG(CFG *CFGraph, PostOrderCFGView *SortedGraph, + std::vector<CFGBlockInfo> &BlockInfo); + +protected: + // Get the current context index + unsigned getContextIndex() { return SavedContexts.size()-1; } + + // Save the current context for later replay + void saveContext(Stmt *S, Context C) { + SavedContexts.push_back(std::make_pair(S,C)); + } + + // Adds a new definition to the given context, and returns a new context. + // This method should be called when declaring a new variable. + Context addDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) { + assert(!Ctx.contains(D)); + unsigned newID = VarDefinitions.size(); + Context NewCtx = ContextFactory.add(Ctx, D, newID); + VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); + return NewCtx; + } + + // Add a new reference to an existing definition. + Context addReference(const NamedDecl *D, unsigned i, Context Ctx) { + unsigned newID = VarDefinitions.size(); + Context NewCtx = ContextFactory.add(Ctx, D, newID); + VarDefinitions.push_back(VarDefinition(D, i, Ctx)); + return NewCtx; + } + + // Updates a definition only if that definition is already in the map. + // This method should be called when assigning to an existing variable. + Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) { + if (Ctx.contains(D)) { + unsigned newID = VarDefinitions.size(); + Context NewCtx = ContextFactory.remove(Ctx, D); + NewCtx = ContextFactory.add(NewCtx, D, newID); + VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); + return NewCtx; + } + return Ctx; + } + + // Removes a definition from the context, but keeps the variable name + // as a valid variable. The index 0 is a placeholder for cleared definitions. + Context clearDefinition(const NamedDecl *D, Context Ctx) { + Context NewCtx = Ctx; + if (NewCtx.contains(D)) { + NewCtx = ContextFactory.remove(NewCtx, D); + NewCtx = ContextFactory.add(NewCtx, D, 0); + } + return NewCtx; + } + + // Remove a definition entirely frmo the context. + Context removeDefinition(const NamedDecl *D, Context Ctx) { + Context NewCtx = Ctx; + if (NewCtx.contains(D)) { + NewCtx = ContextFactory.remove(NewCtx, D); + } + return NewCtx; + } + + Context intersectContexts(Context C1, Context C2); + Context createReferenceContext(Context C); + void intersectBackEdge(Context C1, Context C2); + + friend class VarMapBuilder; +}; + + +// This has to be defined after LocalVariableMap. +CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) { + return CFGBlockInfo(M.getEmptyContext()); +} + + +/// Visitor which builds a LocalVariableMap +class VarMapBuilder : public StmtVisitor<VarMapBuilder> { +public: + LocalVariableMap* VMap; + LocalVariableMap::Context Ctx; + + VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C) + : VMap(VM), Ctx(C) {} + + void VisitDeclStmt(DeclStmt *S); + void VisitBinaryOperator(BinaryOperator *BO); +}; + + +// Add new local variables to the variable map +void VarMapBuilder::VisitDeclStmt(DeclStmt *S) { + bool modifiedCtx = false; + DeclGroupRef DGrp = S->getDeclGroup(); + for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) { + if (VarDecl *VD = dyn_cast_or_null<VarDecl>(*I)) { + Expr *E = VD->getInit(); + + // Add local variables with trivial type to the variable map + QualType T = VD->getType(); + if (T.isTrivialType(VD->getASTContext())) { + Ctx = VMap->addDefinition(VD, E, Ctx); + modifiedCtx = true; + } + } + } + if (modifiedCtx) + VMap->saveContext(S, Ctx); +} + +// Update local variable definitions in variable map +void VarMapBuilder::VisitBinaryOperator(BinaryOperator *BO) { + if (!BO->isAssignmentOp()) + return; + + Expr *LHSExp = BO->getLHS()->IgnoreParenCasts(); + + // Update the variable map and current context. + if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHSExp)) { + ValueDecl *VDec = DRE->getDecl(); + if (Ctx.lookup(VDec)) { + if (BO->getOpcode() == BO_Assign) + Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx); + else + // FIXME -- handle compound assignment operators + Ctx = VMap->clearDefinition(VDec, Ctx); + VMap->saveContext(BO, Ctx); + } + } +} + + +// Computes the intersection of two contexts. The intersection is the +// set of variables which have the same definition in both contexts; +// variables with different definitions are discarded. +LocalVariableMap::Context +LocalVariableMap::intersectContexts(Context C1, Context C2) { + Context Result = C1; + for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) { + const NamedDecl *Dec = I.getKey(); + unsigned i1 = I.getData(); + const unsigned *i2 = C2.lookup(Dec); + if (!i2) // variable doesn't exist on second path + Result = removeDefinition(Dec, Result); + else if (*i2 != i1) // variable exists, but has different definition + Result = clearDefinition(Dec, Result); + } + return Result; +} + +// For every variable in C, create a new variable that refers to the +// definition in C. Return a new context that contains these new variables. +// (We use this for a naive implementation of SSA on loop back-edges.) +LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) { + Context Result = getEmptyContext(); + for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) { + const NamedDecl *Dec = I.getKey(); + unsigned i = I.getData(); + Result = addReference(Dec, i, Result); + } + return Result; +} + +// This routine also takes the intersection of C1 and C2, but it does so by +// altering the VarDefinitions. C1 must be the result of an earlier call to +// createReferenceContext. +void LocalVariableMap::intersectBackEdge(Context C1, Context C2) { + for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) { + const NamedDecl *Dec = I.getKey(); + unsigned i1 = I.getData(); + VarDefinition *VDef = &VarDefinitions[i1]; + assert(VDef->isReference()); + + const unsigned *i2 = C2.lookup(Dec); + if (!i2 || (*i2 != i1)) + VDef->Ref = 0; // Mark this variable as undefined + } +} + + +// Traverse the CFG in topological order, so all predecessors of a block +// (excluding back-edges) are visited before the block itself. At +// each point in the code, we calculate a Context, which holds the set of +// variable definitions which are visible at that point in execution. +// Visible variables are mapped to their definitions using an array that +// contains all definitions. +// +// At join points in the CFG, the set is computed as the intersection of +// the incoming sets along each edge, E.g. +// +// { Context | VarDefinitions } +// int x = 0; { x -> x1 | x1 = 0 } +// int y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } +// if (b) x = 1; { x -> x2, y -> y1 | x2 = 1, y1 = 0, ... } +// else x = 2; { x -> x3, y -> y1 | x3 = 2, x2 = 1, ... } +// ... { y -> y1 (x is unknown) | x3 = 2, x2 = 1, ... } +// +// This is essentially a simpler and more naive version of the standard SSA +// algorithm. Those definitions that remain in the intersection are from blocks +// that strictly dominate the current block. We do not bother to insert proper +// phi nodes, because they are not used in our analysis; instead, wherever +// a phi node would be required, we simply remove that definition from the +// context (E.g. x above). +// +// The initial traversal does not capture back-edges, so those need to be +// handled on a separate pass. Whenever the first pass encounters an +// incoming back edge, it duplicates the context, creating new definitions +// that refer back to the originals. (These correspond to places where SSA +// might have to insert a phi node.) On the second pass, these definitions are +// set to NULL if the variable has changed on the back-edge (i.e. a phi +// node was actually required.) E.g. +// +// { Context | VarDefinitions } +// int x = 0, y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } +// while (b) { x -> x2, y -> y1 | [1st:] x2=x1; [2nd:] x2=NULL; } +// x = x+1; { x -> x3, y -> y1 | x3 = x2 + 1, ... } +// ... { y -> y1 | x3 = 2, x2 = 1, ... } +// +void LocalVariableMap::traverseCFG(CFG *CFGraph, + PostOrderCFGView *SortedGraph, + std::vector<CFGBlockInfo> &BlockInfo) { + PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); + + CtxIndices.resize(CFGraph->getNumBlockIDs()); + + for (PostOrderCFGView::iterator I = SortedGraph->begin(), + E = SortedGraph->end(); I!= E; ++I) { + const CFGBlock *CurrBlock = *I; + int CurrBlockID = CurrBlock->getBlockID(); + CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; + + VisitedBlocks.insert(CurrBlock); + + // Calculate the entry context for the current block + bool HasBackEdges = false; + bool CtxInit = true; + for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), + PE = CurrBlock->pred_end(); PI != PE; ++PI) { + // if *PI -> CurrBlock is a back edge, so skip it + if (*PI == 0 || !VisitedBlocks.alreadySet(*PI)) { + HasBackEdges = true; + continue; + } + + int PrevBlockID = (*PI)->getBlockID(); + CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; + + if (CtxInit) { + CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext; + CtxInit = false; + } + else { + CurrBlockInfo->EntryContext = + intersectContexts(CurrBlockInfo->EntryContext, + PrevBlockInfo->ExitContext); + } + } + + // Duplicate the context if we have back-edges, so we can call + // intersectBackEdges later. + if (HasBackEdges) + CurrBlockInfo->EntryContext = + createReferenceContext(CurrBlockInfo->EntryContext); + + // Create a starting context index for the current block + saveContext(0, CurrBlockInfo->EntryContext); + CurrBlockInfo->EntryIndex = getContextIndex(); + + // Visit all the statements in the basic block. + VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext); + for (CFGBlock::const_iterator BI = CurrBlock->begin(), + BE = CurrBlock->end(); BI != BE; ++BI) { + switch (BI->getKind()) { + case CFGElement::Statement: { + CFGStmt CS = BI->castAs<CFGStmt>(); + VMapBuilder.Visit(const_cast<Stmt*>(CS.getStmt())); + break; + } + default: + break; + } + } + CurrBlockInfo->ExitContext = VMapBuilder.Ctx; + + // Mark variables on back edges as "unknown" if they've been changed. + for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), + SE = CurrBlock->succ_end(); SI != SE; ++SI) { + // if CurrBlock -> *SI is *not* a back edge + if (*SI == 0 || !VisitedBlocks.alreadySet(*SI)) + continue; + + CFGBlock *FirstLoopBlock = *SI; + Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext; + Context LoopEnd = CurrBlockInfo->ExitContext; + intersectBackEdge(LoopBegin, LoopEnd); + } + } + + // Put an extra entry at the end of the indexed context array + unsigned exitID = CFGraph->getExit().getBlockID(); + saveContext(0, BlockInfo[exitID].ExitContext); +} + +/// Find the appropriate source locations to use when producing diagnostics for +/// each block in the CFG. +static void findBlockLocations(CFG *CFGraph, + PostOrderCFGView *SortedGraph, + std::vector<CFGBlockInfo> &BlockInfo) { + for (PostOrderCFGView::iterator I = SortedGraph->begin(), + E = SortedGraph->end(); I!= E; ++I) { + const CFGBlock *CurrBlock = *I; + CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()]; + + // Find the source location of the last statement in the block, if the + // block is not empty. + if (const Stmt *S = CurrBlock->getTerminator()) { + CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getLocStart(); + } else { + for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(), + BE = CurrBlock->rend(); BI != BE; ++BI) { + // FIXME: Handle other CFGElement kinds. + if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) { + CurrBlockInfo->ExitLoc = CS->getStmt()->getLocStart(); + break; + } + } + } + + if (!CurrBlockInfo->ExitLoc.isInvalid()) { + // This block contains at least one statement. Find the source location + // of the first statement in the block. + for (CFGBlock::const_iterator BI = CurrBlock->begin(), + BE = CurrBlock->end(); BI != BE; ++BI) { + // FIXME: Handle other CFGElement kinds. + if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) { + CurrBlockInfo->EntryLoc = CS->getStmt()->getLocStart(); + break; + } + } + } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() && + CurrBlock != &CFGraph->getExit()) { + // The block is empty, and has a single predecessor. Use its exit + // location. + CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = + BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc; + } + } +} + +/// \brief Class which implements the core thread safety analysis routines. +class ThreadSafetyAnalyzer { + friend class BuildLockset; + + ThreadSafetyHandler &Handler; + LocalVariableMap LocalVarMap; + FactManager FactMan; + std::vector<CFGBlockInfo> BlockInfo; + +public: + ThreadSafetyAnalyzer(ThreadSafetyHandler &H) : Handler(H) {} + + void addLock(FactSet &FSet, const SExpr &Mutex, const LockData &LDat); + void removeLock(FactSet &FSet, const SExpr &Mutex, + SourceLocation UnlockLoc, bool FullyRemove=false); + + template <typename AttrType> + void getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, Expr *Exp, + const NamedDecl *D, VarDecl *SelfDecl=0); + + template <class AttrType> + void getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, Expr *Exp, + const NamedDecl *D, + const CFGBlock *PredBlock, const CFGBlock *CurrBlock, + Expr *BrE, bool Neg); + + const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C, + bool &Negate); + + void getEdgeLockset(FactSet &Result, const FactSet &ExitSet, + const CFGBlock* PredBlock, + const CFGBlock *CurrBlock); + + void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2, + SourceLocation JoinLoc, + LockErrorKind LEK1, LockErrorKind LEK2, + bool Modify=true); + + void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2, + SourceLocation JoinLoc, LockErrorKind LEK1, + bool Modify=true) { + intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1, Modify); + } + + void runAnalysis(AnalysisDeclContext &AC); +}; + + +/// \brief Add a new lock to the lockset, warning if the lock is already there. +/// \param Mutex -- the Mutex expression for the lock +/// \param LDat -- the LockData for the lock +void ThreadSafetyAnalyzer::addLock(FactSet &FSet, const SExpr &Mutex, + const LockData &LDat) { + // FIXME: deal with acquired before/after annotations. + // FIXME: Don't always warn when we have support for reentrant locks. + if (Mutex.shouldIgnore()) + return; + + if (FSet.findLock(FactMan, Mutex)) { + if (!LDat.Asserted) + Handler.handleDoubleLock(Mutex.toString(), LDat.AcquireLoc); + } else { + FSet.addLock(FactMan, Mutex, LDat); + } +} + + +/// \brief Remove a lock from the lockset, warning if the lock is not there. +/// \param Mutex The lock expression corresponding to the lock to be removed +/// \param UnlockLoc The source location of the unlock (only used in error msg) +void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, + const SExpr &Mutex, + SourceLocation UnlockLoc, + bool FullyRemove) { + if (Mutex.shouldIgnore()) + return; + + const LockData *LDat = FSet.findLock(FactMan, Mutex); + if (!LDat) { + Handler.handleUnmatchedUnlock(Mutex.toString(), UnlockLoc); + return; + } + + if (LDat->UnderlyingMutex.isValid()) { + // This is scoped lockable object, which manages the real mutex. + if (FullyRemove) { + // We're destroying the managing object. + // Remove the underlying mutex if it exists; but don't warn. + if (FSet.findLock(FactMan, LDat->UnderlyingMutex)) + FSet.removeLock(FactMan, LDat->UnderlyingMutex); + } else { + // We're releasing the underlying mutex, but not destroying the + // managing object. Warn on dual release. + if (!FSet.findLock(FactMan, LDat->UnderlyingMutex)) { + Handler.handleUnmatchedUnlock(LDat->UnderlyingMutex.toString(), + UnlockLoc); + } + FSet.removeLock(FactMan, LDat->UnderlyingMutex); + return; + } + } + FSet.removeLock(FactMan, Mutex); +} + + +/// \brief Extract the list of mutexIDs from the attribute on an expression, +/// and push them onto Mtxs, discarding any duplicates. +template <typename AttrType> +void ThreadSafetyAnalyzer::getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, + Expr *Exp, const NamedDecl *D, + VarDecl *SelfDecl) { + typedef typename AttrType::args_iterator iterator_type; + + if (Attr->args_size() == 0) { + // The mutex held is the "this" object. + SExpr Mu(0, Exp, D, SelfDecl); + if (!Mu.isValid()) + SExpr::warnInvalidLock(Handler, 0, Exp, D); + else + Mtxs.push_back_nodup(Mu); + return; + } + + for (iterator_type I=Attr->args_begin(), E=Attr->args_end(); I != E; ++I) { + SExpr Mu(*I, Exp, D, SelfDecl); + if (!Mu.isValid()) + SExpr::warnInvalidLock(Handler, *I, Exp, D); + else + Mtxs.push_back_nodup(Mu); + } +} + + +/// \brief Extract the list of mutexIDs from a trylock attribute. If the +/// trylock applies to the given edge, then push them onto Mtxs, discarding +/// any duplicates. +template <class AttrType> +void ThreadSafetyAnalyzer::getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, + Expr *Exp, const NamedDecl *D, + const CFGBlock *PredBlock, + const CFGBlock *CurrBlock, + Expr *BrE, bool Neg) { + // Find out which branch has the lock + bool branch = 0; + if (CXXBoolLiteralExpr *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE)) { + branch = BLE->getValue(); + } + else if (IntegerLiteral *ILE = dyn_cast_or_null<IntegerLiteral>(BrE)) { + branch = ILE->getValue().getBoolValue(); + } + int branchnum = branch ? 0 : 1; + if (Neg) branchnum = !branchnum; + + // If we've taken the trylock branch, then add the lock + int i = 0; + for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(), + SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) { + if (*SI == CurrBlock && i == branchnum) { + getMutexIDs(Mtxs, Attr, Exp, D); + } + } +} + + +bool getStaticBooleanValue(Expr* E, bool& TCond) { + if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) { + TCond = false; + return true; + } else if (CXXBoolLiteralExpr *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) { + TCond = BLE->getValue(); + return true; + } else if (IntegerLiteral *ILE = dyn_cast<IntegerLiteral>(E)) { + TCond = ILE->getValue().getBoolValue(); + return true; + } else if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) { + return getStaticBooleanValue(CE->getSubExpr(), TCond); + } + return false; +} + + +// If Cond can be traced back to a function call, return the call expression. +// The negate variable should be called with false, and will be set to true +// if the function call is negated, e.g. if (!mu.tryLock(...)) +const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond, + LocalVarContext C, + bool &Negate) { + if (!Cond) + return 0; + + if (const CallExpr *CallExp = dyn_cast<CallExpr>(Cond)) { + return CallExp; + } + else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) { + return getTrylockCallExpr(PE->getSubExpr(), C, Negate); + } + else if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Cond)) { + return getTrylockCallExpr(CE->getSubExpr(), C, Negate); + } + else if (const ExprWithCleanups* EWC = dyn_cast<ExprWithCleanups>(Cond)) { + return getTrylockCallExpr(EWC->getSubExpr(), C, Negate); + } + else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Cond)) { + const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C); + return getTrylockCallExpr(E, C, Negate); + } + else if (const UnaryOperator *UOP = dyn_cast<UnaryOperator>(Cond)) { + if (UOP->getOpcode() == UO_LNot) { + Negate = !Negate; + return getTrylockCallExpr(UOP->getSubExpr(), C, Negate); + } + return 0; + } + else if (const BinaryOperator *BOP = dyn_cast<BinaryOperator>(Cond)) { + if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) { + if (BOP->getOpcode() == BO_NE) + Negate = !Negate; + + bool TCond = false; + if (getStaticBooleanValue(BOP->getRHS(), TCond)) { + if (!TCond) Negate = !Negate; + return getTrylockCallExpr(BOP->getLHS(), C, Negate); + } + TCond = false; + if (getStaticBooleanValue(BOP->getLHS(), TCond)) { + if (!TCond) Negate = !Negate; + return getTrylockCallExpr(BOP->getRHS(), C, Negate); + } + return 0; + } + if (BOP->getOpcode() == BO_LAnd) { + // LHS must have been evaluated in a different block. + return getTrylockCallExpr(BOP->getRHS(), C, Negate); + } + if (BOP->getOpcode() == BO_LOr) { + return getTrylockCallExpr(BOP->getRHS(), C, Negate); + } + return 0; + } + return 0; +} + + +/// \brief Find the lockset that holds on the edge between PredBlock +/// and CurrBlock. The edge set is the exit set of PredBlock (passed +/// as the ExitSet parameter) plus any trylocks, which are conditionally held. +void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result, + const FactSet &ExitSet, + const CFGBlock *PredBlock, + const CFGBlock *CurrBlock) { + Result = ExitSet; + + const Stmt *Cond = PredBlock->getTerminatorCondition(); + if (!Cond) + return; + + bool Negate = false; + const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()]; + const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext; + + CallExpr *Exp = + const_cast<CallExpr*>(getTrylockCallExpr(Cond, LVarCtx, Negate)); + if (!Exp) + return; + + NamedDecl *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); + if(!FunDecl || !FunDecl->hasAttrs()) + return; + + MutexIDList ExclusiveLocksToAdd; + MutexIDList SharedLocksToAdd; + + // If the condition is a call to a Trylock function, then grab the attributes + AttrVec &ArgAttrs = FunDecl->getAttrs(); + for (unsigned i = 0; i < ArgAttrs.size(); ++i) { + Attr *Attr = ArgAttrs[i]; + switch (Attr->getKind()) { + case attr::ExclusiveTrylockFunction: { + ExclusiveTrylockFunctionAttr *A = + cast<ExclusiveTrylockFunctionAttr>(Attr); + getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl, + PredBlock, CurrBlock, A->getSuccessValue(), Negate); + break; + } + case attr::SharedTrylockFunction: { + SharedTrylockFunctionAttr *A = + cast<SharedTrylockFunctionAttr>(Attr); + getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl, + PredBlock, CurrBlock, A->getSuccessValue(), Negate); + break; + } + default: + break; + } + } + + // Add and remove locks. + SourceLocation Loc = Exp->getExprLoc(); + for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) { + addLock(Result, ExclusiveLocksToAdd[i], + LockData(Loc, LK_Exclusive)); + } + for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) { + addLock(Result, SharedLocksToAdd[i], + LockData(Loc, LK_Shared)); + } +} + + +/// \brief We use this class to visit different types of expressions in +/// CFGBlocks, and build up the lockset. +/// An expression may cause us to add or remove locks from the lockset, or else +/// output error messages related to missing locks. +/// FIXME: In future, we may be able to not inherit from a visitor. +class BuildLockset : public StmtVisitor<BuildLockset> { + friend class ThreadSafetyAnalyzer; + + ThreadSafetyAnalyzer *Analyzer; + FactSet FSet; + LocalVariableMap::Context LVarCtx; + unsigned CtxIndex; + + // Helper functions + const ValueDecl *getValueDecl(const Expr *Exp); + + void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK, + Expr *MutexExp, ProtectedOperationKind POK); + void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp); + + void checkAccess(const Expr *Exp, AccessKind AK); + void checkPtAccess(const Expr *Exp, AccessKind AK); + + void handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD = 0); + +public: + BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info) + : StmtVisitor<BuildLockset>(), + Analyzer(Anlzr), + FSet(Info.EntrySet), + LVarCtx(Info.EntryContext), + CtxIndex(Info.EntryIndex) + {} + + void VisitUnaryOperator(UnaryOperator *UO); + void VisitBinaryOperator(BinaryOperator *BO); + void VisitCastExpr(CastExpr *CE); + void VisitCallExpr(CallExpr *Exp); + void VisitCXXConstructExpr(CXXConstructExpr *Exp); + void VisitDeclStmt(DeclStmt *S); +}; + + +/// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs +const ValueDecl *BuildLockset::getValueDecl(const Expr *Exp) { + if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Exp)) + return getValueDecl(CE->getSubExpr()); + + if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Exp)) + return DR->getDecl(); + + if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) + return ME->getMemberDecl(); + + return 0; +} + +/// \brief Warn if the LSet does not contain a lock sufficient to protect access +/// of at least the passed in AccessKind. +void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, + AccessKind AK, Expr *MutexExp, + ProtectedOperationKind POK) { + LockKind LK = getLockKindFromAccessKind(AK); + + SExpr Mutex(MutexExp, Exp, D); + if (!Mutex.isValid()) { + SExpr::warnInvalidLock(Analyzer->Handler, MutexExp, Exp, D); + return; + } else if (Mutex.shouldIgnore()) { + return; + } + + LockData* LDat = FSet.findLockUniv(Analyzer->FactMan, Mutex); + bool NoError = true; + if (!LDat) { + // No exact match found. Look for a partial match. + FactEntry* FEntry = FSet.findPartialMatch(Analyzer->FactMan, Mutex); + if (FEntry) { + // Warn that there's no precise match. + LDat = &FEntry->LDat; + std::string PartMatchStr = FEntry->MutID.toString(); + StringRef PartMatchName(PartMatchStr); + Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK, + Exp->getExprLoc(), &PartMatchName); + } else { + // Warn that there's no match at all. + Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK, + Exp->getExprLoc()); + } + NoError = false; + } + // Make sure the mutex we found is the right kind. + if (NoError && LDat && !LDat->isAtLeast(LK)) + Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK, + Exp->getExprLoc()); +} + +/// \brief Warn if the LSet contains the given lock. +void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr* Exp, + Expr *MutexExp) { + SExpr Mutex(MutexExp, Exp, D); + if (!Mutex.isValid()) { + SExpr::warnInvalidLock(Analyzer->Handler, MutexExp, Exp, D); + return; + } + + LockData* LDat = FSet.findLock(Analyzer->FactMan, Mutex); + if (LDat) { + std::string DeclName = D->getNameAsString(); + StringRef DeclNameSR (DeclName); + Analyzer->Handler.handleFunExcludesLock(DeclNameSR, Mutex.toString(), + Exp->getExprLoc()); + } +} + + +/// \brief Checks guarded_by and pt_guarded_by attributes. +/// Whenever we identify an access (read or write) to a DeclRefExpr that is +/// marked with guarded_by, we must ensure the appropriate mutexes are held. +/// Similarly, we check if the access is to an expression that dereferences +/// a pointer marked with pt_guarded_by. +void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK) { + Exp = Exp->IgnoreParenCasts(); + + if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp)) { + // For dereferences + if (UO->getOpcode() == clang::UO_Deref) + checkPtAccess(UO->getSubExpr(), AK); + return; + } + + if (const ArraySubscriptExpr *AE = dyn_cast<ArraySubscriptExpr>(Exp)) { + if (Analyzer->Handler.issueBetaWarnings()) { + checkPtAccess(AE->getLHS(), AK); + return; + } + } + + if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) { + if (ME->isArrow()) + checkPtAccess(ME->getBase(), AK); + else + checkAccess(ME->getBase(), AK); + } + + const ValueDecl *D = getValueDecl(Exp); + if (!D || !D->hasAttrs()) + return; + + if (D->getAttr<GuardedVarAttr>() && FSet.isEmpty()) + Analyzer->Handler.handleNoMutexHeld(D, POK_VarAccess, AK, + Exp->getExprLoc()); + + const AttrVec &ArgAttrs = D->getAttrs(); + for (unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i) + if (GuardedByAttr *GBAttr = dyn_cast<GuardedByAttr>(ArgAttrs[i])) + warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarAccess); +} + +/// \brief Checks pt_guarded_by and pt_guarded_var attributes. +void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK) { + if (Analyzer->Handler.issueBetaWarnings()) { + while (true) { + if (const ParenExpr *PE = dyn_cast<ParenExpr>(Exp)) { + Exp = PE->getSubExpr(); + continue; + } + if (const CastExpr *CE = dyn_cast<CastExpr>(Exp)) { + if (CE->getCastKind() == CK_ArrayToPointerDecay) { + // If it's an actual array, and not a pointer, then it's elements + // are protected by GUARDED_BY, not PT_GUARDED_BY; + checkAccess(CE->getSubExpr(), AK); + return; + } + Exp = CE->getSubExpr(); + continue; + } + break; + } + } + else + Exp = Exp->IgnoreParenCasts(); + + const ValueDecl *D = getValueDecl(Exp); + if (!D || !D->hasAttrs()) + return; + + if (D->getAttr<PtGuardedVarAttr>() && FSet.isEmpty()) + Analyzer->Handler.handleNoMutexHeld(D, POK_VarDereference, AK, + Exp->getExprLoc()); + + const AttrVec &ArgAttrs = D->getAttrs(); + for (unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i) + if (PtGuardedByAttr *GBAttr = dyn_cast<PtGuardedByAttr>(ArgAttrs[i])) + warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarDereference); +} + + +/// \brief Process a function call, method call, constructor call, +/// or destructor call. This involves looking at the attributes on the +/// corresponding function/method/constructor/destructor, issuing warnings, +/// and updating the locksets accordingly. +/// +/// FIXME: For classes annotated with one of the guarded annotations, we need +/// to treat const method calls as reads and non-const method calls as writes, +/// and check that the appropriate locks are held. Non-const method calls with +/// the same signature as const method calls can be also treated as reads. +/// +void BuildLockset::handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD) { + SourceLocation Loc = Exp->getExprLoc(); + const AttrVec &ArgAttrs = D->getAttrs(); + MutexIDList ExclusiveLocksToAdd; + MutexIDList SharedLocksToAdd; + MutexIDList LocksToRemove; + + for(unsigned i = 0; i < ArgAttrs.size(); ++i) { + Attr *At = const_cast<Attr*>(ArgAttrs[i]); + switch (At->getKind()) { + // When we encounter an exclusive lock function, we need to add the lock + // to our lockset with kind exclusive. + case attr::ExclusiveLockFunction: { + ExclusiveLockFunctionAttr *A = cast<ExclusiveLockFunctionAttr>(At); + Analyzer->getMutexIDs(ExclusiveLocksToAdd, A, Exp, D, VD); + break; + } + + // When we encounter a shared lock function, we need to add the lock + // to our lockset with kind shared. + case attr::SharedLockFunction: { + SharedLockFunctionAttr *A = cast<SharedLockFunctionAttr>(At); + Analyzer->getMutexIDs(SharedLocksToAdd, A, Exp, D, VD); + break; + } + + // An assert will add a lock to the lockset, but will not generate + // a warning if it is already there, and will not generate a warning + // if it is not removed. + case attr::AssertExclusiveLock: { + AssertExclusiveLockAttr *A = cast<AssertExclusiveLockAttr>(At); + + MutexIDList AssertLocks; + Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD); + for (unsigned i=0,n=AssertLocks.size(); i<n; ++i) { + Analyzer->addLock(FSet, AssertLocks[i], + LockData(Loc, LK_Exclusive, false, true)); + } + break; + } + case attr::AssertSharedLock: { + AssertSharedLockAttr *A = cast<AssertSharedLockAttr>(At); + + MutexIDList AssertLocks; + Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD); + for (unsigned i=0,n=AssertLocks.size(); i<n; ++i) { + Analyzer->addLock(FSet, AssertLocks[i], + LockData(Loc, LK_Shared, false, true)); + } + break; + } + + // When we encounter an unlock function, we need to remove unlocked + // mutexes from the lockset, and flag a warning if they are not there. + case attr::UnlockFunction: { + UnlockFunctionAttr *A = cast<UnlockFunctionAttr>(At); + Analyzer->getMutexIDs(LocksToRemove, A, Exp, D, VD); + break; + } + + case attr::ExclusiveLocksRequired: { + ExclusiveLocksRequiredAttr *A = cast<ExclusiveLocksRequiredAttr>(At); + + for (ExclusiveLocksRequiredAttr::args_iterator + I = A->args_begin(), E = A->args_end(); I != E; ++I) + warnIfMutexNotHeld(D, Exp, AK_Written, *I, POK_FunctionCall); + break; + } + + case attr::SharedLocksRequired: { + SharedLocksRequiredAttr *A = cast<SharedLocksRequiredAttr>(At); + + for (SharedLocksRequiredAttr::args_iterator I = A->args_begin(), + E = A->args_end(); I != E; ++I) + warnIfMutexNotHeld(D, Exp, AK_Read, *I, POK_FunctionCall); + break; + } + + case attr::LocksExcluded: { + LocksExcludedAttr *A = cast<LocksExcludedAttr>(At); + + for (LocksExcludedAttr::args_iterator I = A->args_begin(), + E = A->args_end(); I != E; ++I) { + warnIfMutexHeld(D, Exp, *I); + } + break; + } + + // Ignore other (non thread-safety) attributes + default: + break; + } + } + + // Figure out if we're calling the constructor of scoped lockable class + bool isScopedVar = false; + if (VD) { + if (const CXXConstructorDecl *CD = dyn_cast<const CXXConstructorDecl>(D)) { + const CXXRecordDecl* PD = CD->getParent(); + if (PD && PD->getAttr<ScopedLockableAttr>()) + isScopedVar = true; + } + } + + // Add locks. + for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) { + Analyzer->addLock(FSet, ExclusiveLocksToAdd[i], + LockData(Loc, LK_Exclusive, isScopedVar)); + } + for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) { + Analyzer->addLock(FSet, SharedLocksToAdd[i], + LockData(Loc, LK_Shared, isScopedVar)); + } + + // Add the managing object as a dummy mutex, mapped to the underlying mutex. + // FIXME -- this doesn't work if we acquire multiple locks. + if (isScopedVar) { + SourceLocation MLoc = VD->getLocation(); + DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, VD->getLocation()); + SExpr SMutex(&DRE, 0, 0); + + for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) { + Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Exclusive, + ExclusiveLocksToAdd[i])); + } + for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) { + Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Shared, + SharedLocksToAdd[i])); + } + } + + // Remove locks. + // FIXME -- should only fully remove if the attribute refers to 'this'. + bool Dtor = isa<CXXDestructorDecl>(D); + for (unsigned i=0,n=LocksToRemove.size(); i<n; ++i) { + Analyzer->removeLock(FSet, LocksToRemove[i], Loc, Dtor); + } +} + + +/// \brief For unary operations which read and write a variable, we need to +/// check whether we hold any required mutexes. Reads are checked in +/// VisitCastExpr. +void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) { + switch (UO->getOpcode()) { + case clang::UO_PostDec: + case clang::UO_PostInc: + case clang::UO_PreDec: + case clang::UO_PreInc: { + checkAccess(UO->getSubExpr(), AK_Written); + break; + } + default: + break; + } +} + +/// For binary operations which assign to a variable (writes), we need to check +/// whether we hold any required mutexes. +/// FIXME: Deal with non-primitive types. +void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) { + if (!BO->isAssignmentOp()) + return; + + // adjust the context + LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx); + + checkAccess(BO->getLHS(), AK_Written); +} + + +/// Whenever we do an LValue to Rvalue cast, we are reading a variable and +/// need to ensure we hold any required mutexes. +/// FIXME: Deal with non-primitive types. +void BuildLockset::VisitCastExpr(CastExpr *CE) { + if (CE->getCastKind() != CK_LValueToRValue) + return; + checkAccess(CE->getSubExpr(), AK_Read); +} + + +void BuildLockset::VisitCallExpr(CallExpr *Exp) { + if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Exp)) { + MemberExpr *ME = dyn_cast<MemberExpr>(CE->getCallee()); + // ME can be null when calling a method pointer + CXXMethodDecl *MD = CE->getMethodDecl(); + + if (ME && MD) { + if (ME->isArrow()) { + if (MD->isConst()) { + checkPtAccess(CE->getImplicitObjectArgument(), AK_Read); + } else { // FIXME -- should be AK_Written + checkPtAccess(CE->getImplicitObjectArgument(), AK_Read); + } + } else { + if (MD->isConst()) + checkAccess(CE->getImplicitObjectArgument(), AK_Read); + else // FIXME -- should be AK_Written + checkAccess(CE->getImplicitObjectArgument(), AK_Read); + } + } + } else if (CXXOperatorCallExpr *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) { + switch (OE->getOperator()) { + case OO_Equal: { + const Expr *Target = OE->getArg(0); + const Expr *Source = OE->getArg(1); + checkAccess(Target, AK_Written); + checkAccess(Source, AK_Read); + break; + } + case OO_Star: + case OO_Arrow: + case OO_Subscript: { + if (Analyzer->Handler.issueBetaWarnings()) { + const Expr *Obj = OE->getArg(0); + checkAccess(Obj, AK_Read); + checkPtAccess(Obj, AK_Read); + } + break; + } + default: { + const Expr *Obj = OE->getArg(0); + checkAccess(Obj, AK_Read); + break; + } + } + } + NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); + if(!D || !D->hasAttrs()) + return; + handleCall(Exp, D); +} + +void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) { + const CXXConstructorDecl *D = Exp->getConstructor(); + if (D && D->isCopyConstructor()) { + const Expr* Source = Exp->getArg(0); + checkAccess(Source, AK_Read); + } + // FIXME -- only handles constructors in DeclStmt below. +} + +void BuildLockset::VisitDeclStmt(DeclStmt *S) { + // adjust the context + LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx); + + DeclGroupRef DGrp = S->getDeclGroup(); + for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) { + Decl *D = *I; + if (VarDecl *VD = dyn_cast_or_null<VarDecl>(D)) { + Expr *E = VD->getInit(); + // handle constructors that involve temporaries + if (ExprWithCleanups *EWC = dyn_cast_or_null<ExprWithCleanups>(E)) + E = EWC->getSubExpr(); + + if (CXXConstructExpr *CE = dyn_cast_or_null<CXXConstructExpr>(E)) { + NamedDecl *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor()); + if (!CtorD || !CtorD->hasAttrs()) + return; + handleCall(CE, CtorD, VD); + } + } + } +} + + + +/// \brief Compute the intersection of two locksets and issue warnings for any +/// locks in the symmetric difference. +/// +/// This function is used at a merge point in the CFG when comparing the lockset +/// of each branch being merged. For example, given the following sequence: +/// A; if () then B; else C; D; we need to check that the lockset after B and C +/// are the same. In the event of a difference, we use the intersection of these +/// two locksets at the start of D. +/// +/// \param FSet1 The first lockset. +/// \param FSet2 The second lockset. +/// \param JoinLoc The location of the join point for error reporting +/// \param LEK1 The error message to report if a mutex is missing from LSet1 +/// \param LEK2 The error message to report if a mutex is missing from Lset2 +void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1, + const FactSet &FSet2, + SourceLocation JoinLoc, + LockErrorKind LEK1, + LockErrorKind LEK2, + bool Modify) { + FactSet FSet1Orig = FSet1; + + // Find locks in FSet2 that conflict or are not in FSet1, and warn. + for (FactSet::const_iterator I = FSet2.begin(), E = FSet2.end(); + I != E; ++I) { + const SExpr &FSet2Mutex = FactMan[*I].MutID; + const LockData &LDat2 = FactMan[*I].LDat; + FactSet::iterator I1 = FSet1.findLockIter(FactMan, FSet2Mutex); + + if (I1 != FSet1.end()) { + const LockData* LDat1 = &FactMan[*I1].LDat; + if (LDat1->LKind != LDat2.LKind) { + Handler.handleExclusiveAndShared(FSet2Mutex.toString(), + LDat2.AcquireLoc, + LDat1->AcquireLoc); + if (Modify && LDat1->LKind != LK_Exclusive) { + // Take the exclusive lock, which is the one in FSet2. + *I1 = *I; + } + } + else if (LDat1->Asserted && !LDat2.Asserted) { + // The non-asserted lock in FSet2 is the one we want to track. + *I1 = *I; + } + } else { + if (LDat2.UnderlyingMutex.isValid()) { + if (FSet2.findLock(FactMan, LDat2.UnderlyingMutex)) { + // If this is a scoped lock that manages another mutex, and if the + // underlying mutex is still held, then warn about the underlying + // mutex. + Handler.handleMutexHeldEndOfScope(LDat2.UnderlyingMutex.toString(), + LDat2.AcquireLoc, + JoinLoc, LEK1); + } + } + else if (!LDat2.Managed && !FSet2Mutex.isUniversal() && !LDat2.Asserted) + Handler.handleMutexHeldEndOfScope(FSet2Mutex.toString(), + LDat2.AcquireLoc, + JoinLoc, LEK1); + } + } + + // Find locks in FSet1 that are not in FSet2, and remove them. + for (FactSet::const_iterator I = FSet1Orig.begin(), E = FSet1Orig.end(); + I != E; ++I) { + const SExpr &FSet1Mutex = FactMan[*I].MutID; + const LockData &LDat1 = FactMan[*I].LDat; + + if (!FSet2.findLock(FactMan, FSet1Mutex)) { + if (LDat1.UnderlyingMutex.isValid()) { + if (FSet1Orig.findLock(FactMan, LDat1.UnderlyingMutex)) { + // If this is a scoped lock that manages another mutex, and if the + // underlying mutex is still held, then warn about the underlying + // mutex. + Handler.handleMutexHeldEndOfScope(LDat1.UnderlyingMutex.toString(), + LDat1.AcquireLoc, + JoinLoc, LEK1); + } + } + else if (!LDat1.Managed && !FSet1Mutex.isUniversal() && !LDat1.Asserted) + Handler.handleMutexHeldEndOfScope(FSet1Mutex.toString(), + LDat1.AcquireLoc, + JoinLoc, LEK2); + if (Modify) + FSet1.removeLock(FactMan, FSet1Mutex); + } + } +} + + +// Return true if block B never continues to its successors. +inline bool neverReturns(const CFGBlock* B) { + if (B->hasNoReturnElement()) + return true; + if (B->empty()) + return false; + + CFGElement Last = B->back(); + if (Optional<CFGStmt> S = Last.getAs<CFGStmt>()) { + if (isa<CXXThrowExpr>(S->getStmt())) + return true; + } + return false; +} + + +/// \brief Check a function's CFG for thread-safety violations. +/// +/// We traverse the blocks in the CFG, compute the set of mutexes that are held +/// at the end of each block, and issue warnings for thread safety violations. +/// Each block in the CFG is traversed exactly once. +void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) { + CFG *CFGraph = AC.getCFG(); + if (!CFGraph) return; + const NamedDecl *D = dyn_cast_or_null<NamedDecl>(AC.getDecl()); + + // AC.dumpCFG(true); + + if (!D) + return; // Ignore anonymous functions for now. + if (D->getAttr<NoThreadSafetyAnalysisAttr>()) + return; + // FIXME: Do something a bit more intelligent inside constructor and + // destructor code. Constructors and destructors must assume unique access + // to 'this', so checks on member variable access is disabled, but we should + // still enable checks on other objects. + if (isa<CXXConstructorDecl>(D)) + return; // Don't check inside constructors. + if (isa<CXXDestructorDecl>(D)) + return; // Don't check inside destructors. + + BlockInfo.resize(CFGraph->getNumBlockIDs(), + CFGBlockInfo::getEmptyBlockInfo(LocalVarMap)); + + // We need to explore the CFG via a "topological" ordering. + // That way, we will be guaranteed to have information about required + // predecessor locksets when exploring a new block. + PostOrderCFGView *SortedGraph = AC.getAnalysis<PostOrderCFGView>(); + PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); + + // Mark entry block as reachable + BlockInfo[CFGraph->getEntry().getBlockID()].Reachable = true; + + // Compute SSA names for local variables + LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo); + + // Fill in source locations for all CFGBlocks. + findBlockLocations(CFGraph, SortedGraph, BlockInfo); + + MutexIDList ExclusiveLocksAcquired; + MutexIDList SharedLocksAcquired; + MutexIDList LocksReleased; + + // Add locks from exclusive_locks_required and shared_locks_required + // to initial lockset. Also turn off checking for lock and unlock functions. + // FIXME: is there a more intelligent way to check lock/unlock functions? + if (!SortedGraph->empty() && D->hasAttrs()) { + const CFGBlock *FirstBlock = *SortedGraph->begin(); + FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet; + const AttrVec &ArgAttrs = D->getAttrs(); + + MutexIDList ExclusiveLocksToAdd; + MutexIDList SharedLocksToAdd; + + SourceLocation Loc = D->getLocation(); + for (unsigned i = 0; i < ArgAttrs.size(); ++i) { + Attr *Attr = ArgAttrs[i]; + Loc = Attr->getLocation(); + if (ExclusiveLocksRequiredAttr *A + = dyn_cast<ExclusiveLocksRequiredAttr>(Attr)) { + getMutexIDs(ExclusiveLocksToAdd, A, (Expr*) 0, D); + } else if (SharedLocksRequiredAttr *A + = dyn_cast<SharedLocksRequiredAttr>(Attr)) { + getMutexIDs(SharedLocksToAdd, A, (Expr*) 0, D); + } else if (UnlockFunctionAttr *A = dyn_cast<UnlockFunctionAttr>(Attr)) { + // UNLOCK_FUNCTION() is used to hide the underlying lock implementation. + // We must ignore such methods. + if (A->args_size() == 0) + return; + // FIXME -- deal with exclusive vs. shared unlock functions? + getMutexIDs(ExclusiveLocksToAdd, A, (Expr*) 0, D); + getMutexIDs(LocksReleased, A, (Expr*) 0, D); + } else if (ExclusiveLockFunctionAttr *A + = dyn_cast<ExclusiveLockFunctionAttr>(Attr)) { + if (A->args_size() == 0) + return; + getMutexIDs(ExclusiveLocksAcquired, A, (Expr*) 0, D); + } else if (SharedLockFunctionAttr *A + = dyn_cast<SharedLockFunctionAttr>(Attr)) { + if (A->args_size() == 0) + return; + getMutexIDs(SharedLocksAcquired, A, (Expr*) 0, D); + } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) { + // Don't try to check trylock functions for now + return; + } else if (isa<SharedTrylockFunctionAttr>(Attr)) { + // Don't try to check trylock functions for now + return; + } + } + + // FIXME -- Loc can be wrong here. + for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) { + addLock(InitialLockset, ExclusiveLocksToAdd[i], + LockData(Loc, LK_Exclusive)); + } + for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) { + addLock(InitialLockset, SharedLocksToAdd[i], + LockData(Loc, LK_Shared)); + } + } + + for (PostOrderCFGView::iterator I = SortedGraph->begin(), + E = SortedGraph->end(); I!= E; ++I) { + const CFGBlock *CurrBlock = *I; + int CurrBlockID = CurrBlock->getBlockID(); + CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; + + // Use the default initial lockset in case there are no predecessors. + VisitedBlocks.insert(CurrBlock); + + // Iterate through the predecessor blocks and warn if the lockset for all + // predecessors is not the same. We take the entry lockset of the current + // block to be the intersection of all previous locksets. + // FIXME: By keeping the intersection, we may output more errors in future + // for a lock which is not in the intersection, but was in the union. We + // may want to also keep the union in future. As an example, let's say + // the intersection contains Mutex L, and the union contains L and M. + // Later we unlock M. At this point, we would output an error because we + // never locked M; although the real error is probably that we forgot to + // lock M on all code paths. Conversely, let's say that later we lock M. + // In this case, we should compare against the intersection instead of the + // union because the real error is probably that we forgot to unlock M on + // all code paths. + bool LocksetInitialized = false; + SmallVector<CFGBlock *, 8> SpecialBlocks; + for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), + PE = CurrBlock->pred_end(); PI != PE; ++PI) { + + // if *PI -> CurrBlock is a back edge + if (*PI == 0 || !VisitedBlocks.alreadySet(*PI)) + continue; + + int PrevBlockID = (*PI)->getBlockID(); + CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; + + // Ignore edges from blocks that can't return. + if (neverReturns(*PI) || !PrevBlockInfo->Reachable) + continue; + + // Okay, we can reach this block from the entry. + CurrBlockInfo->Reachable = true; + + // If the previous block ended in a 'continue' or 'break' statement, then + // a difference in locksets is probably due to a bug in that block, rather + // than in some other predecessor. In that case, keep the other + // predecessor's lockset. + if (const Stmt *Terminator = (*PI)->getTerminator()) { + if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) { + SpecialBlocks.push_back(*PI); + continue; + } + } + + FactSet PrevLockset; + getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock); + + if (!LocksetInitialized) { + CurrBlockInfo->EntrySet = PrevLockset; + LocksetInitialized = true; + } else { + intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset, + CurrBlockInfo->EntryLoc, + LEK_LockedSomePredecessors); + } + } + + // Skip rest of block if it's not reachable. + if (!CurrBlockInfo->Reachable) + continue; + + // Process continue and break blocks. Assume that the lockset for the + // resulting block is unaffected by any discrepancies in them. + for (unsigned SpecialI = 0, SpecialN = SpecialBlocks.size(); + SpecialI < SpecialN; ++SpecialI) { + CFGBlock *PrevBlock = SpecialBlocks[SpecialI]; + int PrevBlockID = PrevBlock->getBlockID(); + CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; + + if (!LocksetInitialized) { + CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet; + LocksetInitialized = true; + } else { + // Determine whether this edge is a loop terminator for diagnostic + // purposes. FIXME: A 'break' statement might be a loop terminator, but + // it might also be part of a switch. Also, a subsequent destructor + // might add to the lockset, in which case the real issue might be a + // double lock on the other path. + const Stmt *Terminator = PrevBlock->getTerminator(); + bool IsLoop = Terminator && isa<ContinueStmt>(Terminator); + + FactSet PrevLockset; + getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, + PrevBlock, CurrBlock); + + // Do not update EntrySet. + intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset, + PrevBlockInfo->ExitLoc, + IsLoop ? LEK_LockedSomeLoopIterations + : LEK_LockedSomePredecessors, + false); + } + } + + BuildLockset LocksetBuilder(this, *CurrBlockInfo); + + // Visit all the statements in the basic block. + for (CFGBlock::const_iterator BI = CurrBlock->begin(), + BE = CurrBlock->end(); BI != BE; ++BI) { + switch (BI->getKind()) { + case CFGElement::Statement: { + CFGStmt CS = BI->castAs<CFGStmt>(); + LocksetBuilder.Visit(const_cast<Stmt*>(CS.getStmt())); + break; + } + // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now. + case CFGElement::AutomaticObjectDtor: { + CFGAutomaticObjDtor AD = BI->castAs<CFGAutomaticObjDtor>(); + CXXDestructorDecl *DD = const_cast<CXXDestructorDecl *>( + AD.getDestructorDecl(AC.getASTContext())); + if (!DD->hasAttrs()) + break; + + // Create a dummy expression, + VarDecl *VD = const_cast<VarDecl*>(AD.getVarDecl()); + DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, + AD.getTriggerStmt()->getLocEnd()); + LocksetBuilder.handleCall(&DRE, DD); + break; + } + default: + break; + } + } + CurrBlockInfo->ExitSet = LocksetBuilder.FSet; + + // For every back edge from CurrBlock (the end of the loop) to another block + // (FirstLoopBlock) we need to check that the Lockset of Block is equal to + // the one held at the beginning of FirstLoopBlock. We can look up the + // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map. + for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), + SE = CurrBlock->succ_end(); SI != SE; ++SI) { + + // if CurrBlock -> *SI is *not* a back edge + if (*SI == 0 || !VisitedBlocks.alreadySet(*SI)) + continue; + + CFGBlock *FirstLoopBlock = *SI; + CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()]; + CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID]; + intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet, + PreLoop->EntryLoc, + LEK_LockedSomeLoopIterations, + false); + } + } + + CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()]; + CFGBlockInfo *Final = &BlockInfo[CFGraph->getExit().getBlockID()]; + + // Skip the final check if the exit block is unreachable. + if (!Final->Reachable) + return; + + // By default, we expect all locks held on entry to be held on exit. + FactSet ExpectedExitSet = Initial->EntrySet; + + // Adjust the expected exit set by adding or removing locks, as declared + // by *-LOCK_FUNCTION and UNLOCK_FUNCTION. The intersect below will then + // issue the appropriate warning. + // FIXME: the location here is not quite right. + for (unsigned i=0,n=ExclusiveLocksAcquired.size(); i<n; ++i) { + ExpectedExitSet.addLock(FactMan, ExclusiveLocksAcquired[i], + LockData(D->getLocation(), LK_Exclusive)); + } + for (unsigned i=0,n=SharedLocksAcquired.size(); i<n; ++i) { + ExpectedExitSet.addLock(FactMan, SharedLocksAcquired[i], + LockData(D->getLocation(), LK_Shared)); + } + for (unsigned i=0,n=LocksReleased.size(); i<n; ++i) { + ExpectedExitSet.removeLock(FactMan, LocksReleased[i]); + } + + // FIXME: Should we call this function for all blocks which exit the function? + intersectAndWarn(ExpectedExitSet, Final->ExitSet, + Final->ExitLoc, + LEK_LockedAtEndOfFunction, + LEK_NotLockedAtEndOfFunction, + false); +} + +} // end anonymous namespace + + +namespace clang { +namespace thread_safety { + +/// \brief Check a function's CFG for thread-safety violations. +/// +/// We traverse the blocks in the CFG, compute the set of mutexes that are held +/// at the end of each block, and issue warnings for thread safety violations. +/// Each block in the CFG is traversed exactly once. +void runThreadSafetyAnalysis(AnalysisDeclContext &AC, + ThreadSafetyHandler &Handler) { + ThreadSafetyAnalyzer Analyzer(Handler); + Analyzer.runAnalysis(AC); +} + +/// \brief Helper function that returns a LockKind required for the given level +/// of access. +LockKind getLockKindFromAccessKind(AccessKind AK) { + switch (AK) { + case AK_Read : + return LK_Shared; + case AK_Written : + return LK_Exclusive; + } + llvm_unreachable("Unknown AccessKind"); +} + +}} // end namespace clang::thread_safety |