summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/Analysis/ThreadSafety.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/Analysis/ThreadSafety.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/ThreadSafety.cpp1641
1 files changed, 1121 insertions, 520 deletions
diff --git a/contrib/llvm/tools/clang/lib/Analysis/ThreadSafety.cpp b/contrib/llvm/tools/clang/lib/Analysis/ThreadSafety.cpp
index 2f7e794..5954682 100644
--- a/contrib/llvm/tools/clang/lib/Analysis/ThreadSafety.cpp
+++ b/contrib/llvm/tools/clang/lib/Analysis/ThreadSafety.cpp
@@ -26,6 +26,7 @@
#include "clang/AST/StmtVisitor.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/SourceLocation.h"
+#include "clang/Basic/OperatorKinds.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/ImmutableMap.h"
@@ -45,8 +46,15 @@ ThreadSafetyHandler::~ThreadSafetyHandler() {}
namespace {
-/// \brief A MutexID object uniquely identifies a particular mutex, and
-/// is built from an Expr* (i.e. calling a lock function).
+/// SExpr implements a simple expression language that is used to store,
+/// compare, and pretty-print C++ expressions. Unlike a clang Expr, a SExpr
+/// does not capture surface syntax, and it does not distinguish between
+/// C++ concepts, like pointers and references, that have no real semantic
+/// differences. This simplicity allows SExprs to be meaningfully compared,
+/// e.g.
+/// (x) = x
+/// (*this).foo = this->foo
+/// *&a = a
///
/// Thread-safety analysis works by comparing lock expressions. Within the
/// body of a function, an expression such as "x->foo->bar.mu" will resolve to
@@ -59,41 +67,194 @@ namespace {
///
/// The current implementation assumes, but does not verify, that multiple uses
/// of the same lock expression satisfies these criteria.
-///
-/// Clang introduces an additional wrinkle, which is that it is difficult to
-/// derive canonical expressions, or compare expressions directly for equality.
-/// Thus, we identify a mutex not by an Expr, but by the list of named
-/// declarations that are referenced by the Expr. In other words,
-/// x->foo->bar.mu will be a four element vector with the Decls for
-/// mu, bar, and foo, and x. The vector will uniquely identify the expression
-/// for all practical purposes. Null is used to denote 'this'.
-///
-/// Note we will need to perform substitution on "this" and function parameter
-/// names when constructing a lock expression.
-///
-/// For example:
-/// class C { Mutex Mu; void lock() EXCLUSIVE_LOCK_FUNCTION(this->Mu); };
-/// void myFunc(C *X) { ... X->lock() ... }
-/// The original expression for the mutex acquired by myFunc is "this->Mu", but
-/// "X" is substituted for "this" so we get X->Mu();
-///
-/// For another example:
-/// foo(MyList *L) EXCLUSIVE_LOCKS_REQUIRED(L->Mu) { ... }
-/// MyList *MyL;
-/// foo(MyL); // requires lock MyL->Mu to be held
-class MutexID {
- SmallVector<NamedDecl*, 2> DeclSeq;
-
- /// Build a Decl sequence representing the lock from the given expression.
+class SExpr {
+private:
+ enum ExprOp {
+ EOP_Nop, //< No-op
+ EOP_Wildcard, //< Matches anything.
+ EOP_This, //< This keyword.
+ EOP_NVar, //< Named variable.
+ EOP_LVar, //< Local variable.
+ EOP_Dot, //< Field access
+ EOP_Call, //< Function call
+ EOP_MCall, //< Method call
+ EOP_Index, //< Array index
+ EOP_Unary, //< Unary operation
+ EOP_Binary, //< Binary operation
+ EOP_Unknown //< Catchall for everything else
+ };
+
+
+ class SExprNode {
+ private:
+ unsigned char Op; //< Opcode of the root node
+ unsigned char Flags; //< Additional opcode-specific data
+ unsigned short Sz; //< Number of child nodes
+ const void* Data; //< Additional opcode-specific data
+
+ public:
+ SExprNode(ExprOp O, unsigned F, const void* D)
+ : Op(static_cast<unsigned char>(O)),
+ Flags(static_cast<unsigned char>(F)), Sz(1), Data(D)
+ { }
+
+ unsigned size() const { return Sz; }
+ void setSize(unsigned S) { Sz = S; }
+
+ ExprOp kind() const { return static_cast<ExprOp>(Op); }
+
+ const NamedDecl* getNamedDecl() const {
+ assert(Op == EOP_NVar || Op == EOP_LVar || Op == EOP_Dot);
+ return reinterpret_cast<const NamedDecl*>(Data);
+ }
+
+ const NamedDecl* getFunctionDecl() const {
+ assert(Op == EOP_Call || Op == EOP_MCall);
+ return reinterpret_cast<const NamedDecl*>(Data);
+ }
+
+ bool isArrow() const { return Op == EOP_Dot && Flags == 1; }
+ void setArrow(bool A) { Flags = A ? 1 : 0; }
+
+ unsigned arity() const {
+ switch (Op) {
+ case EOP_Nop: return 0;
+ case EOP_Wildcard: return 0;
+ case EOP_NVar: return 0;
+ case EOP_LVar: return 0;
+ case EOP_This: return 0;
+ case EOP_Dot: return 1;
+ case EOP_Call: return Flags+1; // First arg is function.
+ case EOP_MCall: return Flags+1; // First arg is implicit obj.
+ case EOP_Index: return 2;
+ case EOP_Unary: return 1;
+ case EOP_Binary: return 2;
+ case EOP_Unknown: return Flags;
+ }
+ return 0;
+ }
+
+ bool operator==(const SExprNode& Other) const {
+ // Ignore flags and size -- they don't matter.
+ return (Op == Other.Op &&
+ Data == Other.Data);
+ }
+
+ bool operator!=(const SExprNode& Other) const {
+ return !(*this == Other);
+ }
+
+ bool matches(const SExprNode& Other) const {
+ return (*this == Other) ||
+ (Op == EOP_Wildcard) ||
+ (Other.Op == EOP_Wildcard);
+ }
+ };
+
+
+ /// \brief Encapsulates the lexical context of a function call. The lexical
+ /// context includes the arguments to the call, including the implicit object
+ /// argument. When an attribute containing a mutex expression is attached to
+ /// a method, the expression may refer to formal parameters of the method.
+ /// Actual arguments must be substituted for formal parameters to derive
+ /// the appropriate mutex expression in the lexical context where the function
+ /// is called. PrevCtx holds the context in which the arguments themselves
+ /// should be evaluated; multiple calling contexts can be chained together
+ /// by the lock_returned attribute.
+ struct CallingContext {
+ const NamedDecl* AttrDecl; // The decl to which the attribute is attached.
+ Expr* SelfArg; // Implicit object argument -- e.g. 'this'
+ bool SelfArrow; // is Self referred to with -> or .?
+ unsigned NumArgs; // Number of funArgs
+ Expr** FunArgs; // Function arguments
+ CallingContext* PrevCtx; // The previous context; or 0 if none.
+
+ CallingContext(const NamedDecl *D = 0, Expr *S = 0,
+ unsigned N = 0, Expr **A = 0, CallingContext *P = 0)
+ : AttrDecl(D), SelfArg(S), SelfArrow(false),
+ NumArgs(N), FunArgs(A), PrevCtx(P)
+ { }
+ };
+
+ typedef SmallVector<SExprNode, 4> NodeVector;
+
+private:
+ // A SExpr is a list of SExprNodes in prefix order. The Size field allows
+ // the list to be traversed as a tree.
+ NodeVector NodeVec;
+
+private:
+ unsigned makeNop() {
+ NodeVec.push_back(SExprNode(EOP_Nop, 0, 0));
+ return NodeVec.size()-1;
+ }
+
+ unsigned makeWildcard() {
+ NodeVec.push_back(SExprNode(EOP_Wildcard, 0, 0));
+ return NodeVec.size()-1;
+ }
+
+ unsigned makeNamedVar(const NamedDecl *D) {
+ NodeVec.push_back(SExprNode(EOP_NVar, 0, D));
+ return NodeVec.size()-1;
+ }
+
+ unsigned makeLocalVar(const NamedDecl *D) {
+ NodeVec.push_back(SExprNode(EOP_LVar, 0, D));
+ return NodeVec.size()-1;
+ }
+
+ unsigned makeThis() {
+ NodeVec.push_back(SExprNode(EOP_This, 0, 0));
+ return NodeVec.size()-1;
+ }
+
+ unsigned makeDot(const NamedDecl *D, bool Arrow) {
+ NodeVec.push_back(SExprNode(EOP_Dot, Arrow ? 1 : 0, D));
+ return NodeVec.size()-1;
+ }
+
+ unsigned makeCall(unsigned NumArgs, const NamedDecl *D) {
+ NodeVec.push_back(SExprNode(EOP_Call, NumArgs, D));
+ return NodeVec.size()-1;
+ }
+
+ unsigned makeMCall(unsigned NumArgs, const NamedDecl *D) {
+ NodeVec.push_back(SExprNode(EOP_MCall, NumArgs, D));
+ return NodeVec.size()-1;
+ }
+
+ unsigned makeIndex() {
+ NodeVec.push_back(SExprNode(EOP_Index, 0, 0));
+ return NodeVec.size()-1;
+ }
+
+ unsigned makeUnary() {
+ NodeVec.push_back(SExprNode(EOP_Unary, 0, 0));
+ return NodeVec.size()-1;
+ }
+
+ unsigned makeBinary() {
+ NodeVec.push_back(SExprNode(EOP_Binary, 0, 0));
+ return NodeVec.size()-1;
+ }
+
+ unsigned makeUnknown(unsigned Arity) {
+ NodeVec.push_back(SExprNode(EOP_Unknown, Arity, 0));
+ return NodeVec.size()-1;
+ }
+
+ /// Build an SExpr from the given C++ expression.
/// Recursive function that terminates on DeclRefExpr.
- /// Note: this function merely creates a MutexID; it does not check to
+ /// Note: this function merely creates a SExpr; it does not check to
/// ensure that the original expression is a valid mutex expression.
- void buildMutexID(Expr *Exp, const NamedDecl *D, Expr *Parent,
- unsigned NumArgs, Expr **FunArgs) {
- if (!Exp) {
- DeclSeq.clear();
- return;
- }
+ ///
+ /// NDeref returns the number of Derefence and AddressOf operations
+ /// preceeding the Expr; this is used to decide whether to pretty-print
+ /// SExprs with . or ->.
+ unsigned buildSExpr(Expr *Exp, CallingContext* CallCtx, int* NDeref = 0) {
+ if (!Exp)
+ return 0;
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) {
NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
@@ -103,144 +264,246 @@ class MutexID {
cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl();
unsigned i = PV->getFunctionScopeIndex();
- if (FunArgs && FD == D->getCanonicalDecl()) {
+ if (CallCtx && CallCtx->FunArgs &&
+ FD == CallCtx->AttrDecl->getCanonicalDecl()) {
// Substitute call arguments for references to function parameters
- assert(i < NumArgs);
- buildMutexID(FunArgs[i], D, 0, 0, 0);
- return;
+ assert(i < CallCtx->NumArgs);
+ return buildSExpr(CallCtx->FunArgs[i], CallCtx->PrevCtx, NDeref);
}
// Map the param back to the param of the original function declaration.
- DeclSeq.push_back(FD->getParamDecl(i));
- return;
+ makeNamedVar(FD->getParamDecl(i));
+ return 1;
}
// Not a function parameter -- just store the reference.
- DeclSeq.push_back(ND);
- } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
- NamedDecl *ND = ME->getMemberDecl();
- DeclSeq.push_back(ND);
- buildMutexID(ME->getBase(), D, Parent, NumArgs, FunArgs);
+ makeNamedVar(ND);
+ return 1;
} else if (isa<CXXThisExpr>(Exp)) {
- if (Parent)
- buildMutexID(Parent, D, 0, 0, 0);
+ // Substitute parent for 'this'
+ if (CallCtx && CallCtx->SelfArg) {
+ if (!CallCtx->SelfArrow && NDeref)
+ // 'this' is a pointer, but self is not, so need to take address.
+ --(*NDeref);
+ return buildSExpr(CallCtx->SelfArg, CallCtx->PrevCtx, NDeref);
+ }
else {
- DeclSeq.push_back(0); // Use 0 to represent 'this'.
- return; // mutexID is still valid in this case
+ makeThis();
+ return 1;
}
+ } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
+ NamedDecl *ND = ME->getMemberDecl();
+ int ImplicitDeref = ME->isArrow() ? 1 : 0;
+ unsigned Root = makeDot(ND, false);
+ unsigned Sz = buildSExpr(ME->getBase(), CallCtx, &ImplicitDeref);
+ NodeVec[Root].setArrow(ImplicitDeref > 0);
+ NodeVec[Root].setSize(Sz + 1);
+ return Sz + 1;
} else if (CXXMemberCallExpr *CMCE = dyn_cast<CXXMemberCallExpr>(Exp)) {
- DeclSeq.push_back(CMCE->getMethodDecl()->getCanonicalDecl());
- buildMutexID(CMCE->getImplicitObjectArgument(),
- D, Parent, NumArgs, FunArgs);
+ // When calling a function with a lock_returned attribute, replace
+ // the function call with the expression in lock_returned.
+ if (LockReturnedAttr* At =
+ CMCE->getMethodDecl()->getAttr<LockReturnedAttr>()) {
+ CallingContext LRCallCtx(CMCE->getMethodDecl());
+ LRCallCtx.SelfArg = CMCE->getImplicitObjectArgument();
+ LRCallCtx.SelfArrow =
+ dyn_cast<MemberExpr>(CMCE->getCallee())->isArrow();
+ LRCallCtx.NumArgs = CMCE->getNumArgs();
+ LRCallCtx.FunArgs = CMCE->getArgs();
+ LRCallCtx.PrevCtx = CallCtx;
+ return buildSExpr(At->getArg(), &LRCallCtx);
+ }
+ // Hack to treat smart pointers and iterators as pointers;
+ // ignore any method named get().
+ if (CMCE->getMethodDecl()->getNameAsString() == "get" &&
+ CMCE->getNumArgs() == 0) {
+ if (NDeref && dyn_cast<MemberExpr>(CMCE->getCallee())->isArrow())
+ ++(*NDeref);
+ return buildSExpr(CMCE->getImplicitObjectArgument(), CallCtx, NDeref);
+ }
unsigned NumCallArgs = CMCE->getNumArgs();
+ unsigned Root =
+ makeMCall(NumCallArgs, CMCE->getMethodDecl()->getCanonicalDecl());
+ unsigned Sz = buildSExpr(CMCE->getImplicitObjectArgument(), CallCtx);
Expr** CallArgs = CMCE->getArgs();
for (unsigned i = 0; i < NumCallArgs; ++i) {
- buildMutexID(CallArgs[i], D, Parent, NumArgs, FunArgs);
+ Sz += buildSExpr(CallArgs[i], CallCtx);
}
+ NodeVec[Root].setSize(Sz + 1);
+ return Sz + 1;
} else if (CallExpr *CE = dyn_cast<CallExpr>(Exp)) {
- buildMutexID(CE->getCallee(), D, Parent, NumArgs, FunArgs);
+ if (LockReturnedAttr* At =
+ CE->getDirectCallee()->getAttr<LockReturnedAttr>()) {
+ CallingContext LRCallCtx(CE->getDirectCallee());
+ LRCallCtx.NumArgs = CE->getNumArgs();
+ LRCallCtx.FunArgs = CE->getArgs();
+ LRCallCtx.PrevCtx = CallCtx;
+ return buildSExpr(At->getArg(), &LRCallCtx);
+ }
+ // Treat smart pointers and iterators as pointers;
+ // ignore the * and -> operators.
+ if (CXXOperatorCallExpr *OE = dyn_cast<CXXOperatorCallExpr>(CE)) {
+ OverloadedOperatorKind k = OE->getOperator();
+ if (k == OO_Star) {
+ if (NDeref) ++(*NDeref);
+ return buildSExpr(OE->getArg(0), CallCtx, NDeref);
+ }
+ else if (k == OO_Arrow) {
+ return buildSExpr(OE->getArg(0), CallCtx, NDeref);
+ }
+ }
unsigned NumCallArgs = CE->getNumArgs();
+ unsigned Root = makeCall(NumCallArgs, 0);
+ unsigned Sz = buildSExpr(CE->getCallee(), CallCtx);
Expr** CallArgs = CE->getArgs();
for (unsigned i = 0; i < NumCallArgs; ++i) {
- buildMutexID(CallArgs[i], D, Parent, NumArgs, FunArgs);
+ Sz += buildSExpr(CallArgs[i], CallCtx);
}
+ NodeVec[Root].setSize(Sz+1);
+ return Sz+1;
} else if (BinaryOperator *BOE = dyn_cast<BinaryOperator>(Exp)) {
- buildMutexID(BOE->getLHS(), D, Parent, NumArgs, FunArgs);
- buildMutexID(BOE->getRHS(), D, Parent, NumArgs, FunArgs);
+ unsigned Root = makeBinary();
+ unsigned Sz = buildSExpr(BOE->getLHS(), CallCtx);
+ Sz += buildSExpr(BOE->getRHS(), CallCtx);
+ NodeVec[Root].setSize(Sz);
+ return Sz;
} else if (UnaryOperator *UOE = dyn_cast<UnaryOperator>(Exp)) {
- buildMutexID(UOE->getSubExpr(), D, Parent, NumArgs, FunArgs);
+ // Ignore & and * operators -- they're no-ops.
+ // However, we try to figure out whether the expression is a pointer,
+ // so we can use . and -> appropriately in error messages.
+ if (UOE->getOpcode() == UO_Deref) {
+ if (NDeref) ++(*NDeref);
+ return buildSExpr(UOE->getSubExpr(), CallCtx, NDeref);
+ }
+ if (UOE->getOpcode() == UO_AddrOf) {
+ if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(UOE->getSubExpr())) {
+ if (DRE->getDecl()->isCXXInstanceMember()) {
+ // This is a pointer-to-member expression, e.g. &MyClass::mu_.
+ // We interpret this syntax specially, as a wildcard.
+ unsigned Root = makeDot(DRE->getDecl(), false);
+ makeWildcard();
+ NodeVec[Root].setSize(2);
+ return 2;
+ }
+ }
+ if (NDeref) --(*NDeref);
+ return buildSExpr(UOE->getSubExpr(), CallCtx, NDeref);
+ }
+ unsigned Root = makeUnary();
+ unsigned Sz = buildSExpr(UOE->getSubExpr(), CallCtx);
+ NodeVec[Root].setSize(Sz);
+ return Sz;
} else if (ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Exp)) {
- buildMutexID(ASE->getBase(), D, Parent, NumArgs, FunArgs);
- buildMutexID(ASE->getIdx(), D, Parent, NumArgs, FunArgs);
+ unsigned Root = makeIndex();
+ unsigned Sz = buildSExpr(ASE->getBase(), CallCtx);
+ Sz += buildSExpr(ASE->getIdx(), CallCtx);
+ NodeVec[Root].setSize(Sz);
+ return Sz;
} else if (AbstractConditionalOperator *CE =
- dyn_cast<AbstractConditionalOperator>(Exp)) {
- buildMutexID(CE->getCond(), D, Parent, NumArgs, FunArgs);
- buildMutexID(CE->getTrueExpr(), D, Parent, NumArgs, FunArgs);
- buildMutexID(CE->getFalseExpr(), D, Parent, NumArgs, FunArgs);
+ dyn_cast<AbstractConditionalOperator>(Exp)) {
+ unsigned Root = makeUnknown(3);
+ unsigned Sz = buildSExpr(CE->getCond(), CallCtx);
+ Sz += buildSExpr(CE->getTrueExpr(), CallCtx);
+ Sz += buildSExpr(CE->getFalseExpr(), CallCtx);
+ NodeVec[Root].setSize(Sz);
+ return Sz;
} else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(Exp)) {
- buildMutexID(CE->getCond(), D, Parent, NumArgs, FunArgs);
- buildMutexID(CE->getLHS(), D, Parent, NumArgs, FunArgs);
- buildMutexID(CE->getRHS(), D, Parent, NumArgs, FunArgs);
+ unsigned Root = makeUnknown(3);
+ unsigned Sz = buildSExpr(CE->getCond(), CallCtx);
+ Sz += buildSExpr(CE->getLHS(), CallCtx);
+ Sz += buildSExpr(CE->getRHS(), CallCtx);
+ NodeVec[Root].setSize(Sz);
+ return Sz;
} else if (CastExpr *CE = dyn_cast<CastExpr>(Exp)) {
- buildMutexID(CE->getSubExpr(), D, Parent, NumArgs, FunArgs);
+ return buildSExpr(CE->getSubExpr(), CallCtx, NDeref);
} else if (ParenExpr *PE = dyn_cast<ParenExpr>(Exp)) {
- buildMutexID(PE->getSubExpr(), D, Parent, NumArgs, FunArgs);
+ return buildSExpr(PE->getSubExpr(), CallCtx, NDeref);
+ } else if (ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Exp)) {
+ return buildSExpr(EWC->getSubExpr(), CallCtx, NDeref);
+ } else if (CXXBindTemporaryExpr *E = dyn_cast<CXXBindTemporaryExpr>(Exp)) {
+ return buildSExpr(E->getSubExpr(), CallCtx, NDeref);
} else if (isa<CharacterLiteral>(Exp) ||
- isa<CXXNullPtrLiteralExpr>(Exp) ||
- isa<GNUNullExpr>(Exp) ||
- isa<CXXBoolLiteralExpr>(Exp) ||
- isa<FloatingLiteral>(Exp) ||
- isa<ImaginaryLiteral>(Exp) ||
- isa<IntegerLiteral>(Exp) ||
- isa<StringLiteral>(Exp) ||
- isa<ObjCStringLiteral>(Exp)) {
- return; // FIXME: Ignore literals for now
+ isa<CXXNullPtrLiteralExpr>(Exp) ||
+ isa<GNUNullExpr>(Exp) ||
+ isa<CXXBoolLiteralExpr>(Exp) ||
+ isa<FloatingLiteral>(Exp) ||
+ isa<ImaginaryLiteral>(Exp) ||
+ isa<IntegerLiteral>(Exp) ||
+ isa<StringLiteral>(Exp) ||
+ isa<ObjCStringLiteral>(Exp)) {
+ makeNop();
+ return 1; // FIXME: Ignore literals for now
} else {
- // Ignore. FIXME: mark as invalid expression?
+ makeNop();
+ return 1; // Ignore. FIXME: mark as invalid expression?
}
}
- /// \brief Construct a MutexID from an expression.
+ /// \brief Construct a SExpr from an expression.
/// \param MutexExp The original mutex expression within an attribute
/// \param DeclExp An expression involving the Decl on which the attribute
/// occurs.
/// \param D The declaration to which the lock/unlock attribute is attached.
- void buildMutexIDFromExp(Expr *MutexExp, Expr *DeclExp, const NamedDecl *D) {
- Expr *Parent = 0;
- unsigned NumArgs = 0;
- Expr **FunArgs = 0;
+ void buildSExprFromExpr(Expr *MutexExp, Expr *DeclExp, const NamedDecl *D) {
+ CallingContext CallCtx(D);
// If we are processing a raw attribute expression, with no substitutions.
if (DeclExp == 0) {
- buildMutexID(MutexExp, D, 0, 0, 0);
+ buildSExpr(MutexExp, 0);
return;
}
- // Examine DeclExp to find Parent and FunArgs, which are used to substitute
+ // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
// for formal parameters when we call buildMutexID later.
if (MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) {
- Parent = ME->getBase();
+ CallCtx.SelfArg = ME->getBase();
+ CallCtx.SelfArrow = ME->isArrow();
} else if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(DeclExp)) {
- Parent = CE->getImplicitObjectArgument();
- NumArgs = CE->getNumArgs();
- FunArgs = CE->getArgs();
+ CallCtx.SelfArg = CE->getImplicitObjectArgument();
+ CallCtx.SelfArrow = dyn_cast<MemberExpr>(CE->getCallee())->isArrow();
+ CallCtx.NumArgs = CE->getNumArgs();
+ CallCtx.FunArgs = CE->getArgs();
} else if (CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) {
- NumArgs = CE->getNumArgs();
- FunArgs = CE->getArgs();
+ CallCtx.NumArgs = CE->getNumArgs();
+ CallCtx.FunArgs = CE->getArgs();
} else if (CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(DeclExp)) {
- Parent = 0; // FIXME -- get the parent from DeclStmt
- NumArgs = CE->getNumArgs();
- FunArgs = CE->getArgs();
+ CallCtx.SelfArg = 0; // FIXME -- get the parent from DeclStmt
+ CallCtx.NumArgs = CE->getNumArgs();
+ CallCtx.FunArgs = CE->getArgs();
} else if (D && isa<CXXDestructorDecl>(D)) {
// There's no such thing as a "destructor call" in the AST.
- Parent = DeclExp;
+ CallCtx.SelfArg = DeclExp;
}
// If the attribute has no arguments, then assume the argument is "this".
if (MutexExp == 0) {
- buildMutexID(Parent, D, 0, 0, 0);
+ buildSExpr(CallCtx.SelfArg, 0);
return;
}
- buildMutexID(MutexExp, D, Parent, NumArgs, FunArgs);
+ // For most attributes.
+ buildSExpr(MutexExp, &CallCtx);
}
-public:
- explicit MutexID(clang::Decl::EmptyShell e) {
- DeclSeq.clear();
+ /// \brief Get index of next sibling of node i.
+ unsigned getNextSibling(unsigned i) const {
+ return i + NodeVec[i].size();
}
+public:
+ explicit SExpr(clang::Decl::EmptyShell e) { NodeVec.clear(); }
+
/// \param MutexExp The original mutex expression within an attribute
/// \param DeclExp An expression involving the Decl on which the attribute
/// occurs.
/// \param D The declaration to which the lock/unlock attribute is attached.
/// Caller must check isValid() after construction.
- MutexID(Expr* MutexExp, Expr *DeclExp, const NamedDecl* D) {
- buildMutexIDFromExp(MutexExp, DeclExp, D);
+ SExpr(Expr* MutexExp, Expr *DeclExp, const NamedDecl* D) {
+ buildSExprFromExpr(MutexExp, DeclExp, D);
}
/// Return true if this is a valid decl sequence.
/// Caller must call this by hand after construction to handle errors.
bool isValid() const {
- return !DeclSeq.empty();
+ return !NodeVec.empty();
}
/// Issue a warning about an invalid lock expression
@@ -255,44 +518,144 @@ public:
Handler.handleInvalidLockExp(Loc);
}
- bool operator==(const MutexID &other) const {
- return DeclSeq == other.DeclSeq;
+ bool operator==(const SExpr &other) const {
+ return NodeVec == other.NodeVec;
}
- bool operator!=(const MutexID &other) const {
+ bool operator!=(const SExpr &other) const {
return !(*this == other);
}
- // SmallVector overloads Operator< to do lexicographic ordering. Note that
- // we use pointer equality (and <) to compare NamedDecls. This means the order
- // of MutexIDs in a lockset is nondeterministic. In order to output
- // diagnostics in a deterministic ordering, we must order all diagnostics to
- // output by SourceLocation when iterating through this lockset.
- bool operator<(const MutexID &other) const {
- return DeclSeq < other.DeclSeq;
+ bool matches(const SExpr &Other, unsigned i = 0, unsigned j = 0) const {
+ if (NodeVec[i].matches(Other.NodeVec[j])) {
+ unsigned n = NodeVec[i].arity();
+ bool Result = true;
+ unsigned ci = i+1; // first child of i
+ unsigned cj = j+1; // first child of j
+ for (unsigned k = 0; k < n;
+ ++k, ci=getNextSibling(ci), cj = Other.getNextSibling(cj)) {
+ Result = Result && matches(Other, ci, cj);
+ }
+ return Result;
+ }
+ return false;
}
- /// \brief Returns the name of the first Decl in the list for a given MutexID;
- /// e.g. the lock expression foo.bar() has name "bar".
- /// The caret will point unambiguously to the lock expression, so using this
- /// name in diagnostics is a way to get simple, and consistent, mutex names.
- /// We do not want to output the entire expression text for security reasons.
- std::string getName() const {
+ /// \brief Pretty print a lock expression for use in error messages.
+ std::string toString(unsigned i = 0) const {
assert(isValid());
- if (!DeclSeq.front())
- return "this"; // Use 0 to represent 'this'.
- return DeclSeq.front()->getNameAsString();
+ if (i >= NodeVec.size())
+ return "";
+
+ const SExprNode* N = &NodeVec[i];
+ switch (N->kind()) {
+ case EOP_Nop:
+ return "_";
+ case EOP_Wildcard:
+ return "(?)";
+ case EOP_This:
+ return "this";
+ case EOP_NVar:
+ case EOP_LVar: {
+ return N->getNamedDecl()->getNameAsString();
+ }
+ case EOP_Dot: {
+ if (NodeVec[i+1].kind() == EOP_Wildcard) {
+ std::string S = "&";
+ S += N->getNamedDecl()->getQualifiedNameAsString();
+ return S;
+ }
+ std::string FieldName = N->getNamedDecl()->getNameAsString();
+ if (NodeVec[i+1].kind() == EOP_This)
+ return FieldName;
+
+ std::string S = toString(i+1);
+ if (N->isArrow())
+ return S + "->" + FieldName;
+ else
+ return S + "." + FieldName;
+ }
+ case EOP_Call: {
+ std::string S = toString(i+1) + "(";
+ unsigned NumArgs = N->arity()-1;
+ unsigned ci = getNextSibling(i+1);
+ for (unsigned k=0; k<NumArgs; ++k, ci = getNextSibling(ci)) {
+ S += toString(ci);
+ if (k+1 < NumArgs) S += ",";
+ }
+ S += ")";
+ return S;
+ }
+ case EOP_MCall: {
+ std::string S = "";
+ if (NodeVec[i+1].kind() != EOP_This)
+ S = toString(i+1) + ".";
+ if (const NamedDecl *D = N->getFunctionDecl())
+ S += D->getNameAsString() + "(";
+ else
+ S += "#(";
+ unsigned NumArgs = N->arity()-1;
+ unsigned ci = getNextSibling(i+1);
+ for (unsigned k=0; k<NumArgs; ++k, ci = getNextSibling(ci)) {
+ S += toString(ci);
+ if (k+1 < NumArgs) S += ",";
+ }
+ S += ")";
+ return S;
+ }
+ case EOP_Index: {
+ std::string S1 = toString(i+1);
+ std::string S2 = toString(i+1 + NodeVec[i+1].size());
+ return S1 + "[" + S2 + "]";
+ }
+ case EOP_Unary: {
+ std::string S = toString(i+1);
+ return "#" + S;
+ }
+ case EOP_Binary: {
+ std::string S1 = toString(i+1);
+ std::string S2 = toString(i+1 + NodeVec[i+1].size());
+ return "(" + S1 + "#" + S2 + ")";
+ }
+ case EOP_Unknown: {
+ unsigned NumChildren = N->arity();
+ if (NumChildren == 0)
+ return "(...)";
+ std::string S = "(";
+ unsigned ci = i+1;
+ for (unsigned j = 0; j < NumChildren; ++j, ci = getNextSibling(ci)) {
+ S += toString(ci);
+ if (j+1 < NumChildren) S += "#";
+ }
+ S += ")";
+ return S;
+ }
+ }
+ return "";
}
+};
- void Profile(llvm::FoldingSetNodeID &ID) const {
- for (SmallVectorImpl<NamedDecl*>::const_iterator I = DeclSeq.begin(),
- E = DeclSeq.end(); I != E; ++I) {
- ID.AddPointer(*I);
- }
+
+
+/// \brief A short list of SExprs
+class MutexIDList : public SmallVector<SExpr, 3> {
+public:
+ /// \brief Return true if the list contains the specified SExpr
+ /// Performs a linear search, because these lists are almost always very small.
+ bool contains(const SExpr& M) {
+ for (iterator I=begin(),E=end(); I != E; ++I)
+ if ((*I) == M) return true;
+ return false;
+ }
+
+ /// \brief Push M onto list, bud discard duplicates
+ void push_back_nodup(const SExpr& M) {
+ if (!contains(M)) push_back(M);
}
};
+
/// \brief This is a helper class that stores info about the most recent
/// accquire of a Lock.
///
@@ -307,14 +670,18 @@ struct LockData {
///
/// FIXME: add support for re-entrant locking and lock up/downgrading
LockKind LKind;
- MutexID UnderlyingMutex; // for ScopedLockable objects
+ bool Managed; // for ScopedLockable objects
+ SExpr UnderlyingMutex; // for ScopedLockable objects
- LockData(SourceLocation AcquireLoc, LockKind LKind)
- : AcquireLoc(AcquireLoc), LKind(LKind), UnderlyingMutex(Decl::EmptyShell())
+ LockData(SourceLocation AcquireLoc, LockKind LKind, bool M = false)
+ : AcquireLoc(AcquireLoc), LKind(LKind), Managed(M),
+ UnderlyingMutex(Decl::EmptyShell())
{}
- LockData(SourceLocation AcquireLoc, LockKind LKind, const MutexID &Mu)
- : AcquireLoc(AcquireLoc), LKind(LKind), UnderlyingMutex(Mu) {}
+ LockData(SourceLocation AcquireLoc, LockKind LKind, const SExpr &Mu)
+ : AcquireLoc(AcquireLoc), LKind(LKind), Managed(false),
+ UnderlyingMutex(Mu)
+ {}
bool operator==(const LockData &other) const {
return AcquireLoc == other.AcquireLoc && LKind == other.LKind;
@@ -331,10 +698,102 @@ struct LockData {
};
-/// A Lockset maps each MutexID (defined above) to information about how it has
+/// \brief A FactEntry stores a single fact that is known at a particular point
+/// in the program execution. Currently, this is information regarding a lock
+/// that is held at that point.
+struct FactEntry {
+ SExpr MutID;
+ LockData LDat;
+
+ FactEntry(const SExpr& M, const LockData& L)
+ : MutID(M), LDat(L)
+ { }
+};
+
+
+typedef unsigned short FactID;
+
+/// \brief FactManager manages the memory for all facts that are created during
+/// the analysis of a single routine.
+class FactManager {
+private:
+ std::vector<FactEntry> Facts;
+
+public:
+ FactID newLock(const SExpr& M, const LockData& L) {
+ Facts.push_back(FactEntry(M,L));
+ return static_cast<unsigned short>(Facts.size() - 1);
+ }
+
+ const FactEntry& operator[](FactID F) const { return Facts[F]; }
+ FactEntry& operator[](FactID F) { return Facts[F]; }
+};
+
+
+/// \brief A FactSet is the set of facts that are known to be true at a
+/// particular program point. FactSets must be small, because they are
+/// frequently copied, and are thus implemented as a set of indices into a
+/// table maintained by a FactManager. A typical FactSet only holds 1 or 2
+/// locks, so we can get away with doing a linear search for lookup. Note
+/// that a hashtable or map is inappropriate in this case, because lookups
+/// may involve partial pattern matches, rather than exact matches.
+class FactSet {
+private:
+ typedef SmallVector<FactID, 4> FactVec;
+
+ FactVec FactIDs;
+
+public:
+ typedef FactVec::iterator iterator;
+ typedef FactVec::const_iterator const_iterator;
+
+ iterator begin() { return FactIDs.begin(); }
+ const_iterator begin() const { return FactIDs.begin(); }
+
+ iterator end() { return FactIDs.end(); }
+ const_iterator end() const { return FactIDs.end(); }
+
+ bool isEmpty() const { return FactIDs.size() == 0; }
+
+ FactID addLock(FactManager& FM, const SExpr& M, const LockData& L) {
+ FactID F = FM.newLock(M, L);
+ FactIDs.push_back(F);
+ return F;
+ }
+
+ bool removeLock(FactManager& FM, const SExpr& M) {
+ unsigned n = FactIDs.size();
+ if (n == 0)
+ return false;
+
+ for (unsigned i = 0; i < n-1; ++i) {
+ if (FM[FactIDs[i]].MutID.matches(M)) {
+ FactIDs[i] = FactIDs[n-1];
+ FactIDs.pop_back();
+ return true;
+ }
+ }
+ if (FM[FactIDs[n-1]].MutID.matches(M)) {
+ FactIDs.pop_back();
+ return true;
+ }
+ return false;
+ }
+
+ LockData* findLock(FactManager& FM, const SExpr& M) const {
+ for (const_iterator I=begin(), E=end(); I != E; ++I) {
+ if (FM[*I].MutID.matches(M)) return &FM[*I].LDat;
+ }
+ return 0;
+ }
+};
+
+
+
+/// A Lockset maps each SExpr (defined above) to information about how it has
/// been locked.
-typedef llvm::ImmutableMap<MutexID, LockData> Lockset;
-typedef llvm::ImmutableMap<NamedDecl*, unsigned> LocalVarContext;
+typedef llvm::ImmutableMap<SExpr, LockData> Lockset;
+typedef llvm::ImmutableMap<const NamedDecl*, unsigned> LocalVarContext;
class LocalVariableMap;
@@ -345,15 +804,15 @@ enum CFGBlockSide { CBS_Entry, CBS_Exit };
/// maintained for each block in the CFG. See LocalVariableMap for more
/// information about the contexts.
struct CFGBlockInfo {
- Lockset EntrySet; // Lockset held at entry to block
- Lockset ExitSet; // Lockset held at exit from block
+ FactSet EntrySet; // Lockset held at entry to block
+ FactSet ExitSet; // Lockset held at exit from block
LocalVarContext EntryContext; // Context held at entry to block
LocalVarContext ExitContext; // Context held at exit from block
SourceLocation EntryLoc; // Location of first statement in block
SourceLocation ExitLoc; // Location of last statement in block.
unsigned EntryIndex; // Used to replay contexts later
- const Lockset &getSet(CFGBlockSide Side) const {
+ const FactSet &getSet(CFGBlockSide Side) const {
return Side == CBS_Entry ? EntrySet : ExitSet;
}
SourceLocation getLocation(CFGBlockSide Side) const {
@@ -361,14 +820,12 @@ struct CFGBlockInfo {
}
private:
- CFGBlockInfo(Lockset EmptySet, LocalVarContext EmptyCtx)
- : EntrySet(EmptySet), ExitSet(EmptySet),
- EntryContext(EmptyCtx), ExitContext(EmptyCtx)
+ CFGBlockInfo(LocalVarContext EmptyCtx)
+ : EntryContext(EmptyCtx), ExitContext(EmptyCtx)
{ }
public:
- static CFGBlockInfo getEmptyBlockInfo(Lockset::Factory &F,
- LocalVariableMap &M);
+ static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M);
};
@@ -398,21 +855,21 @@ public:
public:
friend class LocalVariableMap;
- NamedDecl *Dec; // The original declaration for this variable.
- Expr *Exp; // The expression for this variable, OR
- unsigned Ref; // Reference to another VarDefinition
- Context Ctx; // The map with which Exp should be interpreted.
+ const NamedDecl *Dec; // The original declaration for this variable.
+ const Expr *Exp; // The expression for this variable, OR
+ unsigned Ref; // Reference to another VarDefinition
+ Context Ctx; // The map with which Exp should be interpreted.
bool isReference() { return !Exp; }
private:
// Create ordinary variable definition
- VarDefinition(NamedDecl *D, Expr *E, Context C)
+ VarDefinition(const NamedDecl *D, const Expr *E, Context C)
: Dec(D), Exp(E), Ref(0), Ctx(C)
{ }
// Create reference to previous definition
- VarDefinition(NamedDecl *D, unsigned R, Context C)
+ VarDefinition(const NamedDecl *D, unsigned R, Context C)
: Dec(D), Exp(0), Ref(R), Ctx(C)
{ }
};
@@ -430,7 +887,7 @@ public:
}
/// Look up a definition, within the given context.
- const VarDefinition* lookup(NamedDecl *D, Context Ctx) {
+ const VarDefinition* lookup(const NamedDecl *D, Context Ctx) {
const unsigned *i = Ctx.lookup(D);
if (!i)
return 0;
@@ -441,7 +898,7 @@ public:
/// Look up the definition for D within the given context. Returns
/// NULL if the expression is not statically known. If successful, also
/// modifies Ctx to hold the context of the return Expr.
- Expr* lookupExpr(NamedDecl *D, Context &Ctx) {
+ const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) {
const unsigned *P = Ctx.lookup(D);
if (!P)
return 0;
@@ -476,7 +933,7 @@ public:
llvm::errs() << "Undefined";
return;
}
- NamedDecl *Dec = VarDefinitions[i].Dec;
+ const NamedDecl *Dec = VarDefinitions[i].Dec;
if (!Dec) {
llvm::errs() << "<<NULL>>";
return;
@@ -488,7 +945,7 @@ public:
/// Dumps an ASCII representation of the variable map to llvm::errs()
void dump() {
for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
- Expr *Exp = VarDefinitions[i].Exp;
+ const Expr *Exp = VarDefinitions[i].Exp;
unsigned Ref = VarDefinitions[i].Ref;
dumpVarDefinitionName(i);
@@ -504,7 +961,7 @@ public:
/// Dumps an ASCII representation of a Context to llvm::errs()
void dumpContext(Context C) {
for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
- NamedDecl *D = I.getKey();
+ const NamedDecl *D = I.getKey();
D->printName(llvm::errs());
const unsigned *i = C.lookup(D);
llvm::errs() << " -> ";
@@ -528,7 +985,7 @@ protected:
// Adds a new definition to the given context, and returns a new context.
// This method should be called when declaring a new variable.
- Context addDefinition(NamedDecl *D, Expr *Exp, Context Ctx) {
+ Context addDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
assert(!Ctx.contains(D));
unsigned newID = VarDefinitions.size();
Context NewCtx = ContextFactory.add(Ctx, D, newID);
@@ -537,7 +994,7 @@ protected:
}
// Add a new reference to an existing definition.
- Context addReference(NamedDecl *D, unsigned i, Context Ctx) {
+ Context addReference(const NamedDecl *D, unsigned i, Context Ctx) {
unsigned newID = VarDefinitions.size();
Context NewCtx = ContextFactory.add(Ctx, D, newID);
VarDefinitions.push_back(VarDefinition(D, i, Ctx));
@@ -546,7 +1003,7 @@ protected:
// Updates a definition only if that definition is already in the map.
// This method should be called when assigning to an existing variable.
- Context updateDefinition(NamedDecl *D, Expr *Exp, Context Ctx) {
+ Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
if (Ctx.contains(D)) {
unsigned newID = VarDefinitions.size();
Context NewCtx = ContextFactory.remove(Ctx, D);
@@ -559,7 +1016,7 @@ protected:
// Removes a definition from the context, but keeps the variable name
// as a valid variable. The index 0 is a placeholder for cleared definitions.
- Context clearDefinition(NamedDecl *D, Context Ctx) {
+ Context clearDefinition(const NamedDecl *D, Context Ctx) {
Context NewCtx = Ctx;
if (NewCtx.contains(D)) {
NewCtx = ContextFactory.remove(NewCtx, D);
@@ -569,7 +1026,7 @@ protected:
}
// Remove a definition entirely frmo the context.
- Context removeDefinition(NamedDecl *D, Context Ctx) {
+ Context removeDefinition(const NamedDecl *D, Context Ctx) {
Context NewCtx = Ctx;
if (NewCtx.contains(D)) {
NewCtx = ContextFactory.remove(NewCtx, D);
@@ -586,9 +1043,8 @@ protected:
// This has to be defined after LocalVariableMap.
-CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(Lockset::Factory &F,
- LocalVariableMap &M) {
- return CFGBlockInfo(F.getEmptyMap(), M.getEmptyContext());
+CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) {
+ return CFGBlockInfo(M.getEmptyContext());
}
@@ -655,7 +1111,7 @@ LocalVariableMap::Context
LocalVariableMap::intersectContexts(Context C1, Context C2) {
Context Result = C1;
for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) {
- NamedDecl *Dec = I.getKey();
+ const NamedDecl *Dec = I.getKey();
unsigned i1 = I.getData();
const unsigned *i2 = C2.lookup(Dec);
if (!i2) // variable doesn't exist on second path
@@ -672,7 +1128,7 @@ LocalVariableMap::intersectContexts(Context C1, Context C2) {
LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
Context Result = getEmptyContext();
for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
- NamedDecl *Dec = I.getKey();
+ const NamedDecl *Dec = I.getKey();
unsigned i = I.getData();
Result = addReference(Dec, i, Result);
}
@@ -684,7 +1140,7 @@ LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
// createReferenceContext.
void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) {
- NamedDecl *Dec = I.getKey();
+ const NamedDecl *Dec = I.getKey();
unsigned i1 = I.getData();
VarDefinition *VDef = &VarDefinitions[i1];
assert(VDef->isReference());
@@ -725,7 +1181,7 @@ void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
// incoming back edge, it duplicates the context, creating new definitions
// that refer back to the originals. (These correspond to places where SSA
// might have to insert a phi node.) On the second pass, these definitions are
-// set to NULL if the the variable has changed on the back-edge (i.e. a phi
+// set to NULL if the variable has changed on the back-edge (i.e. a phi
// node was actually required.) E.g.
//
// { Context | VarDefinitions }
@@ -869,24 +1325,294 @@ static void findBlockLocations(CFG *CFGraph,
class ThreadSafetyAnalyzer {
friend class BuildLockset;
- ThreadSafetyHandler &Handler;
- Lockset::Factory LocksetFactory;
- LocalVariableMap LocalVarMap;
+ ThreadSafetyHandler &Handler;
+ LocalVariableMap LocalVarMap;
+ FactManager FactMan;
+ std::vector<CFGBlockInfo> BlockInfo;
public:
ThreadSafetyAnalyzer(ThreadSafetyHandler &H) : Handler(H) {}
- Lockset intersectAndWarn(const CFGBlockInfo &Block1, CFGBlockSide Side1,
- const CFGBlockInfo &Block2, CFGBlockSide Side2,
- LockErrorKind LEK);
+ void addLock(FactSet &FSet, const SExpr &Mutex, const LockData &LDat);
+ void removeLock(FactSet &FSet, const SExpr &Mutex,
+ SourceLocation UnlockLoc, bool FullyRemove=false);
+
+ template <typename AttrType>
+ void getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, Expr *Exp,
+ const NamedDecl *D);
- Lockset addLock(Lockset &LSet, Expr *MutexExp, const NamedDecl *D,
- LockKind LK, SourceLocation Loc);
+ template <class AttrType>
+ void getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, Expr *Exp,
+ const NamedDecl *D,
+ const CFGBlock *PredBlock, const CFGBlock *CurrBlock,
+ Expr *BrE, bool Neg);
+
+ const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C,
+ bool &Negate);
+
+ void getEdgeLockset(FactSet &Result, const FactSet &ExitSet,
+ const CFGBlock* PredBlock,
+ const CFGBlock *CurrBlock);
+
+ void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
+ SourceLocation JoinLoc,
+ LockErrorKind LEK1, LockErrorKind LEK2,
+ bool Modify=true);
+
+ void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
+ SourceLocation JoinLoc, LockErrorKind LEK1,
+ bool Modify=true) {
+ intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1, Modify);
+ }
void runAnalysis(AnalysisDeclContext &AC);
};
+/// \brief Add a new lock to the lockset, warning if the lock is already there.
+/// \param Mutex -- the Mutex expression for the lock
+/// \param LDat -- the LockData for the lock
+void ThreadSafetyAnalyzer::addLock(FactSet &FSet, const SExpr &Mutex,
+ const LockData &LDat) {
+ // FIXME: deal with acquired before/after annotations.
+ // FIXME: Don't always warn when we have support for reentrant locks.
+ if (FSet.findLock(FactMan, Mutex)) {
+ Handler.handleDoubleLock(Mutex.toString(), LDat.AcquireLoc);
+ } else {
+ FSet.addLock(FactMan, Mutex, LDat);
+ }
+}
+
+
+/// \brief Remove a lock from the lockset, warning if the lock is not there.
+/// \param LockExp The lock expression corresponding to the lock to be removed
+/// \param UnlockLoc The source location of the unlock (only used in error msg)
+void ThreadSafetyAnalyzer::removeLock(FactSet &FSet,
+ const SExpr &Mutex,
+ SourceLocation UnlockLoc,
+ bool FullyRemove) {
+ const LockData *LDat = FSet.findLock(FactMan, Mutex);
+ if (!LDat) {
+ Handler.handleUnmatchedUnlock(Mutex.toString(), UnlockLoc);
+ return;
+ }
+
+ if (LDat->UnderlyingMutex.isValid()) {
+ // This is scoped lockable object, which manages the real mutex.
+ if (FullyRemove) {
+ // We're destroying the managing object.
+ // Remove the underlying mutex if it exists; but don't warn.
+ if (FSet.findLock(FactMan, LDat->UnderlyingMutex))
+ FSet.removeLock(FactMan, LDat->UnderlyingMutex);
+ } else {
+ // We're releasing the underlying mutex, but not destroying the
+ // managing object. Warn on dual release.
+ if (!FSet.findLock(FactMan, LDat->UnderlyingMutex)) {
+ Handler.handleUnmatchedUnlock(LDat->UnderlyingMutex.toString(),
+ UnlockLoc);
+ }
+ FSet.removeLock(FactMan, LDat->UnderlyingMutex);
+ return;
+ }
+ }
+ FSet.removeLock(FactMan, Mutex);
+}
+
+
+/// \brief Extract the list of mutexIDs from the attribute on an expression,
+/// and push them onto Mtxs, discarding any duplicates.
+template <typename AttrType>
+void ThreadSafetyAnalyzer::getMutexIDs(MutexIDList &Mtxs, AttrType *Attr,
+ Expr *Exp, const NamedDecl *D) {
+ typedef typename AttrType::args_iterator iterator_type;
+
+ if (Attr->args_size() == 0) {
+ // The mutex held is the "this" object.
+ SExpr Mu(0, Exp, D);
+ if (!Mu.isValid())
+ SExpr::warnInvalidLock(Handler, 0, Exp, D);
+ else
+ Mtxs.push_back_nodup(Mu);
+ return;
+ }
+
+ for (iterator_type I=Attr->args_begin(), E=Attr->args_end(); I != E; ++I) {
+ SExpr Mu(*I, Exp, D);
+ if (!Mu.isValid())
+ SExpr::warnInvalidLock(Handler, *I, Exp, D);
+ else
+ Mtxs.push_back_nodup(Mu);
+ }
+}
+
+
+/// \brief Extract the list of mutexIDs from a trylock attribute. If the
+/// trylock applies to the given edge, then push them onto Mtxs, discarding
+/// any duplicates.
+template <class AttrType>
+void ThreadSafetyAnalyzer::getMutexIDs(MutexIDList &Mtxs, AttrType *Attr,
+ Expr *Exp, const NamedDecl *D,
+ const CFGBlock *PredBlock,
+ const CFGBlock *CurrBlock,
+ Expr *BrE, bool Neg) {
+ // Find out which branch has the lock
+ bool branch = 0;
+ if (CXXBoolLiteralExpr *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE)) {
+ branch = BLE->getValue();
+ }
+ else if (IntegerLiteral *ILE = dyn_cast_or_null<IntegerLiteral>(BrE)) {
+ branch = ILE->getValue().getBoolValue();
+ }
+ int branchnum = branch ? 0 : 1;
+ if (Neg) branchnum = !branchnum;
+
+ // If we've taken the trylock branch, then add the lock
+ int i = 0;
+ for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
+ SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
+ if (*SI == CurrBlock && i == branchnum) {
+ getMutexIDs(Mtxs, Attr, Exp, D);
+ }
+ }
+}
+
+
+bool getStaticBooleanValue(Expr* E, bool& TCond) {
+ if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) {
+ TCond = false;
+ return true;
+ } else if (CXXBoolLiteralExpr *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) {
+ TCond = BLE->getValue();
+ return true;
+ } else if (IntegerLiteral *ILE = dyn_cast<IntegerLiteral>(E)) {
+ TCond = ILE->getValue().getBoolValue();
+ return true;
+ } else if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
+ return getStaticBooleanValue(CE->getSubExpr(), TCond);
+ }
+ return false;
+}
+
+
+// If Cond can be traced back to a function call, return the call expression.
+// The negate variable should be called with false, and will be set to true
+// if the function call is negated, e.g. if (!mu.tryLock(...))
+const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond,
+ LocalVarContext C,
+ bool &Negate) {
+ if (!Cond)
+ return 0;
+
+ if (const CallExpr *CallExp = dyn_cast<CallExpr>(Cond)) {
+ return CallExp;
+ }
+ else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) {
+ return getTrylockCallExpr(PE->getSubExpr(), C, Negate);
+ }
+ else if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Cond)) {
+ return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
+ }
+ else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Cond)) {
+ const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
+ return getTrylockCallExpr(E, C, Negate);
+ }
+ else if (const UnaryOperator *UOP = dyn_cast<UnaryOperator>(Cond)) {
+ if (UOP->getOpcode() == UO_LNot) {
+ Negate = !Negate;
+ return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
+ }
+ return 0;
+ }
+ else if (const BinaryOperator *BOP = dyn_cast<BinaryOperator>(Cond)) {
+ if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) {
+ if (BOP->getOpcode() == BO_NE)
+ Negate = !Negate;
+
+ bool TCond = false;
+ if (getStaticBooleanValue(BOP->getRHS(), TCond)) {
+ if (!TCond) Negate = !Negate;
+ return getTrylockCallExpr(BOP->getLHS(), C, Negate);
+ }
+ else if (getStaticBooleanValue(BOP->getLHS(), TCond)) {
+ if (!TCond) Negate = !Negate;
+ return getTrylockCallExpr(BOP->getRHS(), C, Negate);
+ }
+ return 0;
+ }
+ return 0;
+ }
+ // FIXME -- handle && and || as well.
+ return 0;
+}
+
+
+/// \brief Find the lockset that holds on the edge between PredBlock
+/// and CurrBlock. The edge set is the exit set of PredBlock (passed
+/// as the ExitSet parameter) plus any trylocks, which are conditionally held.
+void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result,
+ const FactSet &ExitSet,
+ const CFGBlock *PredBlock,
+ const CFGBlock *CurrBlock) {
+ Result = ExitSet;
+
+ if (!PredBlock->getTerminatorCondition())
+ return;
+
+ bool Negate = false;
+ const Stmt *Cond = PredBlock->getTerminatorCondition();
+ const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()];
+ const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext;
+
+ CallExpr *Exp =
+ const_cast<CallExpr*>(getTrylockCallExpr(Cond, LVarCtx, Negate));
+ if (!Exp)
+ return;
+
+ NamedDecl *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
+ if(!FunDecl || !FunDecl->hasAttrs())
+ return;
+
+
+ MutexIDList ExclusiveLocksToAdd;
+ MutexIDList SharedLocksToAdd;
+
+ // If the condition is a call to a Trylock function, then grab the attributes
+ AttrVec &ArgAttrs = FunDecl->getAttrs();
+ for (unsigned i = 0; i < ArgAttrs.size(); ++i) {
+ Attr *Attr = ArgAttrs[i];
+ switch (Attr->getKind()) {
+ case attr::ExclusiveTrylockFunction: {
+ ExclusiveTrylockFunctionAttr *A =
+ cast<ExclusiveTrylockFunctionAttr>(Attr);
+ getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl,
+ PredBlock, CurrBlock, A->getSuccessValue(), Negate);
+ break;
+ }
+ case attr::SharedTrylockFunction: {
+ SharedTrylockFunctionAttr *A =
+ cast<SharedTrylockFunctionAttr>(Attr);
+ getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl,
+ PredBlock, CurrBlock, A->getSuccessValue(), Negate);
+ break;
+ }
+ default:
+ break;
+ }
+ }
+
+ // Add and remove locks.
+ SourceLocation Loc = Exp->getExprLoc();
+ for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
+ addLock(Result, ExclusiveLocksToAdd[i],
+ LockData(Loc, LK_Exclusive));
+ }
+ for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
+ addLock(Result, SharedLocksToAdd[i],
+ LockData(Loc, LK_Shared));
+ }
+}
+
+
/// \brief We use this class to visit different types of expressions in
/// CFGBlocks, and build up the lockset.
/// An expression may cause us to add or remove locks from the lockset, or else
@@ -895,50 +1621,31 @@ public:
class BuildLockset : public StmtVisitor<BuildLockset> {
friend class ThreadSafetyAnalyzer;
- ThreadSafetyHandler &Handler;
- Lockset::Factory &LocksetFactory;
- LocalVariableMap &LocalVarMap;
-
- Lockset LSet;
+ ThreadSafetyAnalyzer *Analyzer;
+ FactSet FSet;
LocalVariableMap::Context LVarCtx;
unsigned CtxIndex;
// Helper functions
- void addLock(const MutexID &Mutex, const LockData &LDat);
- void removeLock(const MutexID &Mutex, SourceLocation UnlockLoc);
+ const ValueDecl *getValueDecl(Expr *Exp);
- template <class AttrType>
- void addLocksToSet(LockKind LK, AttrType *Attr,
- Expr *Exp, NamedDecl *D, VarDecl *VD = 0);
- void removeLocksFromSet(UnlockFunctionAttr *Attr,
- Expr *Exp, NamedDecl* FunDecl);
+ void warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp, AccessKind AK,
+ Expr *MutexExp, ProtectedOperationKind POK);
- const ValueDecl *getValueDecl(Expr *Exp);
- void warnIfMutexNotHeld (const NamedDecl *D, Expr *Exp, AccessKind AK,
- Expr *MutexExp, ProtectedOperationKind POK);
void checkAccess(Expr *Exp, AccessKind AK);
void checkDereference(Expr *Exp, AccessKind AK);
- void handleCall(Expr *Exp, NamedDecl *D, VarDecl *VD = 0);
-
- template <class AttrType>
- void addTrylock(LockKind LK, AttrType *Attr, Expr *Exp, NamedDecl *FunDecl,
- const CFGBlock* PredBlock, const CFGBlock *CurrBlock,
- Expr *BrE, bool Neg);
- CallExpr* getTrylockCallExpr(Stmt *Cond, LocalVariableMap::Context C,
- bool &Negate);
- void handleTrylock(Stmt *Cond, const CFGBlock* PredBlock,
- const CFGBlock *CurrBlock);
+ void handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD = 0);
/// \brief Returns true if the lockset contains a lock, regardless of whether
/// the lock is held exclusively or shared.
- bool locksetContains(const MutexID &Lock) const {
- return LSet.lookup(Lock);
+ bool locksetContains(const SExpr &Mu) const {
+ return FSet.findLock(Analyzer->FactMan, Mu);
}
/// \brief Returns true if the lockset contains a lock with the passed in
/// locktype.
- bool locksetContains(const MutexID &Lock, LockKind KindRequested) const {
- const LockData *LockHeld = LSet.lookup(Lock);
+ bool locksetContains(const SExpr &Mu, LockKind KindRequested) const {
+ const LockData *LockHeld = FSet.findLock(Analyzer->FactMan, Mu);
return (LockHeld && KindRequested == LockHeld->LKind);
}
@@ -946,7 +1653,7 @@ class BuildLockset : public StmtVisitor<BuildLockset> {
/// passed in locktype. So for example, if we pass in LK_Shared, this function
/// returns true if the lock is held LK_Shared or LK_Exclusive. If we pass in
/// LK_Exclusive, this function returns true if the lock is held LK_Exclusive.
- bool locksetContainsAtLeast(const MutexID &Lock,
+ bool locksetContainsAtLeast(const SExpr &Lock,
LockKind KindRequested) const {
switch (KindRequested) {
case LK_Shared:
@@ -958,12 +1665,10 @@ class BuildLockset : public StmtVisitor<BuildLockset> {
}
public:
- BuildLockset(ThreadSafetyAnalyzer *analyzer, CFGBlockInfo &Info)
+ BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info)
: StmtVisitor<BuildLockset>(),
- Handler(analyzer->Handler),
- LocksetFactory(analyzer->LocksetFactory),
- LocalVarMap(analyzer->LocalVarMap),
- LSet(Info.EntrySet),
+ Analyzer(Anlzr),
+ FSet(Info.EntrySet),
LVarCtx(Info.EntryContext),
CtxIndex(Info.EntryIndex)
{}
@@ -976,104 +1681,6 @@ public:
void VisitDeclStmt(DeclStmt *S);
};
-/// \brief Add a new lock to the lockset, warning if the lock is already there.
-/// \param Mutex -- the Mutex expression for the lock
-/// \param LDat -- the LockData for the lock
-void BuildLockset::addLock(const MutexID &Mutex, const LockData& LDat) {
- // FIXME: deal with acquired before/after annotations.
- // FIXME: Don't always warn when we have support for reentrant locks.
- if (locksetContains(Mutex))
- Handler.handleDoubleLock(Mutex.getName(), LDat.AcquireLoc);
- else
- LSet = LocksetFactory.add(LSet, Mutex, LDat);
-}
-
-/// \brief Remove a lock from the lockset, warning if the lock is not there.
-/// \param LockExp The lock expression corresponding to the lock to be removed
-/// \param UnlockLoc The source location of the unlock (only used in error msg)
-void BuildLockset::removeLock(const MutexID &Mutex, SourceLocation UnlockLoc) {
- const LockData *LDat = LSet.lookup(Mutex);
- if (!LDat)
- Handler.handleUnmatchedUnlock(Mutex.getName(), UnlockLoc);
- else {
- // For scoped-lockable vars, remove the mutex associated with this var.
- if (LDat->UnderlyingMutex.isValid())
- removeLock(LDat->UnderlyingMutex, UnlockLoc);
- LSet = LocksetFactory.remove(LSet, Mutex);
- }
-}
-
-/// \brief This function, parameterized by an attribute type, is used to add a
-/// set of locks specified as attribute arguments to the lockset.
-template <typename AttrType>
-void BuildLockset::addLocksToSet(LockKind LK, AttrType *Attr,
- Expr *Exp, NamedDecl* FunDecl, VarDecl *VD) {
- typedef typename AttrType::args_iterator iterator_type;
-
- SourceLocation ExpLocation = Exp->getExprLoc();
-
- // Figure out if we're calling the constructor of scoped lockable class
- bool isScopedVar = false;
- if (VD) {
- if (CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FunDecl)) {
- CXXRecordDecl* PD = CD->getParent();
- if (PD && PD->getAttr<ScopedLockableAttr>())
- isScopedVar = true;
- }
- }
-
- if (Attr->args_size() == 0) {
- // The mutex held is the "this" object.
- MutexID Mutex(0, Exp, FunDecl);
- if (!Mutex.isValid())
- MutexID::warnInvalidLock(Handler, 0, Exp, FunDecl);
- else
- addLock(Mutex, LockData(ExpLocation, LK));
- return;
- }
-
- for (iterator_type I=Attr->args_begin(), E=Attr->args_end(); I != E; ++I) {
- MutexID Mutex(*I, Exp, FunDecl);
- if (!Mutex.isValid())
- MutexID::warnInvalidLock(Handler, *I, Exp, FunDecl);
- else {
- addLock(Mutex, LockData(ExpLocation, LK));
- if (isScopedVar) {
- // For scoped lockable vars, map this var to its underlying mutex.
- DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, VD->getLocation());
- MutexID SMutex(&DRE, 0, 0);
- addLock(SMutex, LockData(VD->getLocation(), LK, Mutex));
- }
- }
- }
-}
-
-/// \brief This function removes a set of locks specified as attribute
-/// arguments from the lockset.
-void BuildLockset::removeLocksFromSet(UnlockFunctionAttr *Attr,
- Expr *Exp, NamedDecl* FunDecl) {
- SourceLocation ExpLocation;
- if (Exp) ExpLocation = Exp->getExprLoc();
-
- if (Attr->args_size() == 0) {
- // The mutex held is the "this" object.
- MutexID Mu(0, Exp, FunDecl);
- if (!Mu.isValid())
- MutexID::warnInvalidLock(Handler, 0, Exp, FunDecl);
- else
- removeLock(Mu, ExpLocation);
- return;
- }
-
- for (UnlockFunctionAttr::args_iterator I = Attr->args_begin(),
- E = Attr->args_end(); I != E; ++I) {
- MutexID Mutex(*I, Exp, FunDecl);
- if (!Mutex.isValid())
- MutexID::warnInvalidLock(Handler, *I, Exp, FunDecl);
- else
- removeLock(Mutex, ExpLocation);
- }
-}
/// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs
const ValueDecl *BuildLockset::getValueDecl(Expr *Exp) {
@@ -1093,11 +1700,12 @@ void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp,
ProtectedOperationKind POK) {
LockKind LK = getLockKindFromAccessKind(AK);
- MutexID Mutex(MutexExp, Exp, D);
+ SExpr Mutex(MutexExp, Exp, D);
if (!Mutex.isValid())
- MutexID::warnInvalidLock(Handler, MutexExp, Exp, D);
+ SExpr::warnInvalidLock(Analyzer->Handler, MutexExp, Exp, D);
else if (!locksetContainsAtLeast(Mutex, LK))
- Handler.handleMutexNotHeld(D, POK, Mutex.getName(), LK, Exp->getExprLoc());
+ Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK,
+ Exp->getExprLoc());
}
/// \brief This method identifies variable dereferences and checks pt_guarded_by
@@ -1116,8 +1724,9 @@ void BuildLockset::checkDereference(Expr *Exp, AccessKind AK) {
if(!D || !D->hasAttrs())
return;
- if (D->getAttr<PtGuardedVarAttr>() && LSet.isEmpty())
- Handler.handleNoMutexHeld(D, POK_VarDereference, AK, Exp->getExprLoc());
+ if (D->getAttr<PtGuardedVarAttr>() && FSet.isEmpty())
+ Analyzer->Handler.handleNoMutexHeld(D, POK_VarDereference, AK,
+ Exp->getExprLoc());
const AttrVec &ArgAttrs = D->getAttrs();
for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
@@ -1134,8 +1743,9 @@ void BuildLockset::checkAccess(Expr *Exp, AccessKind AK) {
if(!D || !D->hasAttrs())
return;
- if (D->getAttr<GuardedVarAttr>() && LSet.isEmpty())
- Handler.handleNoMutexHeld(D, POK_VarAccess, AK, Exp->getExprLoc());
+ if (D->getAttr<GuardedVarAttr>() && FSet.isEmpty())
+ Analyzer->Handler.handleNoMutexHeld(D, POK_VarAccess, AK,
+ Exp->getExprLoc());
const AttrVec &ArgAttrs = D->getAttrs();
for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
@@ -1153,68 +1763,68 @@ void BuildLockset::checkAccess(Expr *Exp, AccessKind AK) {
/// and check that the appropriate locks are held. Non-const method calls with
/// the same signature as const method calls can be also treated as reads.
///
-/// FIXME: We need to also visit CallExprs to catch/check global functions.
-///
-/// FIXME: Do not flag an error for member variables accessed in constructors/
-/// destructors
-void BuildLockset::handleCall(Expr *Exp, NamedDecl *D, VarDecl *VD) {
- AttrVec &ArgAttrs = D->getAttrs();
+void BuildLockset::handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD) {
+ const AttrVec &ArgAttrs = D->getAttrs();
+ MutexIDList ExclusiveLocksToAdd;
+ MutexIDList SharedLocksToAdd;
+ MutexIDList LocksToRemove;
+
for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
- Attr *Attr = ArgAttrs[i];
- switch (Attr->getKind()) {
+ Attr *At = const_cast<Attr*>(ArgAttrs[i]);
+ switch (At->getKind()) {
// When we encounter an exclusive lock function, we need to add the lock
// to our lockset with kind exclusive.
case attr::ExclusiveLockFunction: {
- ExclusiveLockFunctionAttr *A = cast<ExclusiveLockFunctionAttr>(Attr);
- addLocksToSet(LK_Exclusive, A, Exp, D, VD);
+ ExclusiveLockFunctionAttr *A = cast<ExclusiveLockFunctionAttr>(At);
+ Analyzer->getMutexIDs(ExclusiveLocksToAdd, A, Exp, D);
break;
}
// When we encounter a shared lock function, we need to add the lock
// to our lockset with kind shared.
case attr::SharedLockFunction: {
- SharedLockFunctionAttr *A = cast<SharedLockFunctionAttr>(Attr);
- addLocksToSet(LK_Shared, A, Exp, D, VD);
+ SharedLockFunctionAttr *A = cast<SharedLockFunctionAttr>(At);
+ Analyzer->getMutexIDs(SharedLocksToAdd, A, Exp, D);
break;
}
// When we encounter an unlock function, we need to remove unlocked
// mutexes from the lockset, and flag a warning if they are not there.
case attr::UnlockFunction: {
- UnlockFunctionAttr *UFAttr = cast<UnlockFunctionAttr>(Attr);
- removeLocksFromSet(UFAttr, Exp, D);
+ UnlockFunctionAttr *A = cast<UnlockFunctionAttr>(At);
+ Analyzer->getMutexIDs(LocksToRemove, A, Exp, D);
break;
}
case attr::ExclusiveLocksRequired: {
- ExclusiveLocksRequiredAttr *ELRAttr =
- cast<ExclusiveLocksRequiredAttr>(Attr);
+ ExclusiveLocksRequiredAttr *A = cast<ExclusiveLocksRequiredAttr>(At);
for (ExclusiveLocksRequiredAttr::args_iterator
- I = ELRAttr->args_begin(), E = ELRAttr->args_end(); I != E; ++I)
+ I = A->args_begin(), E = A->args_end(); I != E; ++I)
warnIfMutexNotHeld(D, Exp, AK_Written, *I, POK_FunctionCall);
break;
}
case attr::SharedLocksRequired: {
- SharedLocksRequiredAttr *SLRAttr = cast<SharedLocksRequiredAttr>(Attr);
+ SharedLocksRequiredAttr *A = cast<SharedLocksRequiredAttr>(At);
- for (SharedLocksRequiredAttr::args_iterator I = SLRAttr->args_begin(),
- E = SLRAttr->args_end(); I != E; ++I)
+ for (SharedLocksRequiredAttr::args_iterator I = A->args_begin(),
+ E = A->args_end(); I != E; ++I)
warnIfMutexNotHeld(D, Exp, AK_Read, *I, POK_FunctionCall);
break;
}
case attr::LocksExcluded: {
- LocksExcludedAttr *LEAttr = cast<LocksExcludedAttr>(Attr);
- for (LocksExcludedAttr::args_iterator I = LEAttr->args_begin(),
- E = LEAttr->args_end(); I != E; ++I) {
- MutexID Mutex(*I, Exp, D);
+ LocksExcludedAttr *A = cast<LocksExcludedAttr>(At);
+ for (LocksExcludedAttr::args_iterator I = A->args_begin(),
+ E = A->args_end(); I != E; ++I) {
+ SExpr Mutex(*I, Exp, D);
if (!Mutex.isValid())
- MutexID::warnInvalidLock(Handler, *I, Exp, D);
+ SExpr::warnInvalidLock(Analyzer->Handler, *I, Exp, D);
else if (locksetContains(Mutex))
- Handler.handleFunExcludesLock(D->getName(), Mutex.getName(),
- Exp->getExprLoc());
+ Analyzer->Handler.handleFunExcludesLock(D->getName(),
+ Mutex.toString(),
+ Exp->getExprLoc());
}
break;
}
@@ -1224,102 +1834,50 @@ void BuildLockset::handleCall(Expr *Exp, NamedDecl *D, VarDecl *VD) {
break;
}
}
-}
-
-
-/// \brief Add lock to set, if the current block is in the taken branch of a
-/// trylock.
-template <class AttrType>
-void BuildLockset::addTrylock(LockKind LK, AttrType *Attr, Expr *Exp,
- NamedDecl *FunDecl, const CFGBlock *PredBlock,
- const CFGBlock *CurrBlock, Expr *BrE, bool Neg) {
- // Find out which branch has the lock
- bool branch = 0;
- if (CXXBoolLiteralExpr *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE)) {
- branch = BLE->getValue();
- }
- else if (IntegerLiteral *ILE = dyn_cast_or_null<IntegerLiteral>(BrE)) {
- branch = ILE->getValue().getBoolValue();
- }
- int branchnum = branch ? 0 : 1;
- if (Neg) branchnum = !branchnum;
- // If we've taken the trylock branch, then add the lock
- int i = 0;
- for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
- SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
- if (*SI == CurrBlock && i == branchnum) {
- addLocksToSet(LK, Attr, Exp, FunDecl, 0);
+ // Figure out if we're calling the constructor of scoped lockable class
+ bool isScopedVar = false;
+ if (VD) {
+ if (const CXXConstructorDecl *CD = dyn_cast<const CXXConstructorDecl>(D)) {
+ const CXXRecordDecl* PD = CD->getParent();
+ if (PD && PD->getAttr<ScopedLockableAttr>())
+ isScopedVar = true;
}
}
-}
-
-// If Cond can be traced back to a function call, return the call expression.
-// The negate variable should be called with false, and will be set to true
-// if the function call is negated, e.g. if (!mu.tryLock(...))
-CallExpr* BuildLockset::getTrylockCallExpr(Stmt *Cond,
- LocalVariableMap::Context C,
- bool &Negate) {
- if (!Cond)
- return 0;
-
- if (CallExpr *CallExp = dyn_cast<CallExpr>(Cond)) {
- return CallExp;
- }
- else if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Cond)) {
- return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
+ // Add locks.
+ SourceLocation Loc = Exp->getExprLoc();
+ for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
+ Analyzer->addLock(FSet, ExclusiveLocksToAdd[i],
+ LockData(Loc, LK_Exclusive, isScopedVar));
}
- else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Cond)) {
- Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
- return getTrylockCallExpr(E, C, Negate);
- }
- else if (UnaryOperator *UOP = dyn_cast<UnaryOperator>(Cond)) {
- if (UOP->getOpcode() == UO_LNot) {
- Negate = !Negate;
- return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
- }
+ for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
+ Analyzer->addLock(FSet, SharedLocksToAdd[i],
+ LockData(Loc, LK_Shared, isScopedVar));
}
- // FIXME -- handle && and || as well.
- return NULL;
-}
-
-
-/// \brief Process a conditional branch from a previous block to the current
-/// block, looking for trylock calls.
-void BuildLockset::handleTrylock(Stmt *Cond, const CFGBlock *PredBlock,
- const CFGBlock *CurrBlock) {
- bool Negate = false;
- CallExpr *Exp = getTrylockCallExpr(Cond, LVarCtx, Negate);
- if (!Exp)
- return;
- NamedDecl *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
- if(!FunDecl || !FunDecl->hasAttrs())
- return;
+ // Add the managing object as a dummy mutex, mapped to the underlying mutex.
+ // FIXME -- this doesn't work if we acquire multiple locks.
+ if (isScopedVar) {
+ SourceLocation MLoc = VD->getLocation();
+ DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, VD->getLocation());
+ SExpr SMutex(&DRE, 0, 0);
- // If the condition is a call to a Trylock function, then grab the attributes
- AttrVec &ArgAttrs = FunDecl->getAttrs();
- for (unsigned i = 0; i < ArgAttrs.size(); ++i) {
- Attr *Attr = ArgAttrs[i];
- switch (Attr->getKind()) {
- case attr::ExclusiveTrylockFunction: {
- ExclusiveTrylockFunctionAttr *A =
- cast<ExclusiveTrylockFunctionAttr>(Attr);
- addTrylock(LK_Exclusive, A, Exp, FunDecl, PredBlock, CurrBlock,
- A->getSuccessValue(), Negate);
- break;
- }
- case attr::SharedTrylockFunction: {
- SharedTrylockFunctionAttr *A =
- cast<SharedTrylockFunctionAttr>(Attr);
- addTrylock(LK_Shared, A, Exp, FunDecl, PredBlock, CurrBlock,
- A->getSuccessValue(), Negate);
- break;
- }
- default:
- break;
+ for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
+ Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Exclusive,
+ ExclusiveLocksToAdd[i]));
}
+ for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
+ Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Shared,
+ SharedLocksToAdd[i]));
+ }
+ }
+
+ // Remove locks.
+ // FIXME -- should only fully remove if the attribute refers to 'this'.
+ bool Dtor = isa<CXXDestructorDecl>(D);
+ for (unsigned i=0,n=LocksToRemove.size(); i<n; ++i) {
+ Analyzer->removeLock(FSet, LocksToRemove[i], Loc, Dtor);
}
}
@@ -1351,7 +1909,7 @@ void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
return;
// adjust the context
- LVarCtx = LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);
+ LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);
Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
checkAccess(LHSExp, AK_Written);
@@ -1383,13 +1941,17 @@ void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) {
void BuildLockset::VisitDeclStmt(DeclStmt *S) {
// adjust the context
- LVarCtx = LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);
+ LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);
DeclGroupRef DGrp = S->getDeclGroup();
for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
Decl *D = *I;
if (VarDecl *VD = dyn_cast_or_null<VarDecl>(D)) {
Expr *E = VD->getInit();
+ // handle constructors that involve temporaries
+ if (ExprWithCleanups *EWC = dyn_cast_or_null<ExprWithCleanups>(E))
+ E = EWC->getSubExpr();
+
if (CXXConstructExpr *CE = dyn_cast_or_null<CXXConstructExpr>(E)) {
NamedDecl *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor());
if (!CtorD || !CtorD->hasAttrs())
@@ -1401,6 +1963,7 @@ void BuildLockset::VisitDeclStmt(DeclStmt *S) {
}
+
/// \brief Compute the intersection of two locksets and issue warnings for any
/// locks in the symmetric difference.
///
@@ -1409,58 +1972,80 @@ void BuildLockset::VisitDeclStmt(DeclStmt *S) {
/// A; if () then B; else C; D; we need to check that the lockset after B and C
/// are the same. In the event of a difference, we use the intersection of these
/// two locksets at the start of D.
-Lockset ThreadSafetyAnalyzer::intersectAndWarn(const CFGBlockInfo &Block1,
- CFGBlockSide Side1,
- const CFGBlockInfo &Block2,
- CFGBlockSide Side2,
- LockErrorKind LEK) {
- Lockset LSet1 = Block1.getSet(Side1);
- Lockset LSet2 = Block2.getSet(Side2);
-
- Lockset Intersection = LSet1;
- for (Lockset::iterator I = LSet2.begin(), E = LSet2.end(); I != E; ++I) {
- const MutexID &LSet2Mutex = I.getKey();
- const LockData &LSet2LockData = I.getData();
- if (const LockData *LD = LSet1.lookup(LSet2Mutex)) {
- if (LD->LKind != LSet2LockData.LKind) {
- Handler.handleExclusiveAndShared(LSet2Mutex.getName(),
- LSet2LockData.AcquireLoc,
- LD->AcquireLoc);
- if (LD->LKind != LK_Exclusive)
- Intersection = LocksetFactory.add(Intersection, LSet2Mutex,
- LSet2LockData);
+///
+/// \param LSet1 The first lockset.
+/// \param LSet2 The second lockset.
+/// \param JoinLoc The location of the join point for error reporting
+/// \param LEK1 The error message to report if a mutex is missing from LSet1
+/// \param LEK2 The error message to report if a mutex is missing from Lset2
+void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1,
+ const FactSet &FSet2,
+ SourceLocation JoinLoc,
+ LockErrorKind LEK1,
+ LockErrorKind LEK2,
+ bool Modify) {
+ FactSet FSet1Orig = FSet1;
+
+ for (FactSet::const_iterator I = FSet2.begin(), E = FSet2.end();
+ I != E; ++I) {
+ const SExpr &FSet2Mutex = FactMan[*I].MutID;
+ const LockData &LDat2 = FactMan[*I].LDat;
+
+ if (const LockData *LDat1 = FSet1.findLock(FactMan, FSet2Mutex)) {
+ if (LDat1->LKind != LDat2.LKind) {
+ Handler.handleExclusiveAndShared(FSet2Mutex.toString(),
+ LDat2.AcquireLoc,
+ LDat1->AcquireLoc);
+ if (Modify && LDat1->LKind != LK_Exclusive) {
+ FSet1.removeLock(FactMan, FSet2Mutex);
+ FSet1.addLock(FactMan, FSet2Mutex, LDat2);
+ }
}
} else {
- Handler.handleMutexHeldEndOfScope(LSet2Mutex.getName(),
- LSet2LockData.AcquireLoc,
- Block1.getLocation(Side1), LEK);
+ if (LDat2.UnderlyingMutex.isValid()) {
+ if (FSet2.findLock(FactMan, LDat2.UnderlyingMutex)) {
+ // If this is a scoped lock that manages another mutex, and if the
+ // underlying mutex is still held, then warn about the underlying
+ // mutex.
+ Handler.handleMutexHeldEndOfScope(LDat2.UnderlyingMutex.toString(),
+ LDat2.AcquireLoc,
+ JoinLoc, LEK1);
+ }
+ }
+ else if (!LDat2.Managed)
+ Handler.handleMutexHeldEndOfScope(FSet2Mutex.toString(),
+ LDat2.AcquireLoc,
+ JoinLoc, LEK1);
}
}
- for (Lockset::iterator I = LSet1.begin(), E = LSet1.end(); I != E; ++I) {
- if (!LSet2.contains(I.getKey())) {
- const MutexID &Mutex = I.getKey();
- const LockData &MissingLock = I.getData();
- Handler.handleMutexHeldEndOfScope(Mutex.getName(),
- MissingLock.AcquireLoc,
- Block2.getLocation(Side2), LEK);
- Intersection = LocksetFactory.remove(Intersection, Mutex);
+ for (FactSet::const_iterator I = FSet1.begin(), E = FSet1.end();
+ I != E; ++I) {
+ const SExpr &FSet1Mutex = FactMan[*I].MutID;
+ const LockData &LDat1 = FactMan[*I].LDat;
+
+ if (!FSet2.findLock(FactMan, FSet1Mutex)) {
+ if (LDat1.UnderlyingMutex.isValid()) {
+ if (FSet1Orig.findLock(FactMan, LDat1.UnderlyingMutex)) {
+ // If this is a scoped lock that manages another mutex, and if the
+ // underlying mutex is still held, then warn about the underlying
+ // mutex.
+ Handler.handleMutexHeldEndOfScope(LDat1.UnderlyingMutex.toString(),
+ LDat1.AcquireLoc,
+ JoinLoc, LEK1);
+ }
+ }
+ else if (!LDat1.Managed)
+ Handler.handleMutexHeldEndOfScope(FSet1Mutex.toString(),
+ LDat1.AcquireLoc,
+ JoinLoc, LEK2);
+ if (Modify)
+ FSet1.removeLock(FactMan, FSet1Mutex);
}
}
- return Intersection;
}
-Lockset ThreadSafetyAnalyzer::addLock(Lockset &LSet, Expr *MutexExp,
- const NamedDecl *D,
- LockKind LK, SourceLocation Loc) {
- MutexID Mutex(MutexExp, 0, D);
- if (!Mutex.isValid()) {
- MutexID::warnInvalidLock(Handler, MutexExp, 0, D);
- return LSet;
- }
- LockData NewLock(Loc, LK);
- return LocksetFactory.add(LSet, Mutex, NewLock);
-}
+
/// \brief Check a function's CFG for thread-safety violations.
///
@@ -1472,6 +2057,8 @@ void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
if (!CFGraph) return;
const NamedDecl *D = dyn_cast_or_null<NamedDecl>(AC.getDecl());
+ // AC.dumpCFG(true);
+
if (!D)
return; // Ignore anonymous functions for now.
if (D->getAttr<NoThreadSafetyAnalysisAttr>())
@@ -1485,8 +2072,8 @@ void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
if (isa<CXXDestructorDecl>(D))
return; // Don't check inside destructors.
- std::vector<CFGBlockInfo> BlockInfo(CFGraph->getNumBlockIDs(),
- CFGBlockInfo::getEmptyBlockInfo(LocksetFactory, LocalVarMap));
+ BlockInfo.resize(CFGraph->getNumBlockIDs(),
+ CFGBlockInfo::getEmptyBlockInfo(LocalVarMap));
// We need to explore the CFG via a "topological" ordering.
// That way, we will be guaranteed to have information about required
@@ -1505,27 +2092,22 @@ void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
// FIXME: is there a more intelligent way to check lock/unlock functions?
if (!SortedGraph->empty() && D->hasAttrs()) {
const CFGBlock *FirstBlock = *SortedGraph->begin();
- Lockset &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet;
+ FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet;
const AttrVec &ArgAttrs = D->getAttrs();
+
+ MutexIDList ExclusiveLocksToAdd;
+ MutexIDList SharedLocksToAdd;
+
+ SourceLocation Loc = D->getLocation();
for (unsigned i = 0; i < ArgAttrs.size(); ++i) {
Attr *Attr = ArgAttrs[i];
- SourceLocation AttrLoc = Attr->getLocation();
- if (SharedLocksRequiredAttr *SLRAttr
- = dyn_cast<SharedLocksRequiredAttr>(Attr)) {
- for (SharedLocksRequiredAttr::args_iterator
- SLRIter = SLRAttr->args_begin(),
- SLREnd = SLRAttr->args_end(); SLRIter != SLREnd; ++SLRIter)
- InitialLockset = addLock(InitialLockset,
- *SLRIter, D, LK_Shared,
- AttrLoc);
- } else if (ExclusiveLocksRequiredAttr *ELRAttr
- = dyn_cast<ExclusiveLocksRequiredAttr>(Attr)) {
- for (ExclusiveLocksRequiredAttr::args_iterator
- ELRIter = ELRAttr->args_begin(),
- ELREnd = ELRAttr->args_end(); ELRIter != ELREnd; ++ELRIter)
- InitialLockset = addLock(InitialLockset,
- *ELRIter, D, LK_Exclusive,
- AttrLoc);
+ Loc = Attr->getLocation();
+ if (ExclusiveLocksRequiredAttr *A
+ = dyn_cast<ExclusiveLocksRequiredAttr>(Attr)) {
+ getMutexIDs(ExclusiveLocksToAdd, A, (Expr*) 0, D);
+ } else if (SharedLocksRequiredAttr *A
+ = dyn_cast<SharedLocksRequiredAttr>(Attr)) {
+ getMutexIDs(SharedLocksToAdd, A, (Expr*) 0, D);
} else if (isa<UnlockFunctionAttr>(Attr)) {
// Don't try to check unlock functions for now
return;
@@ -1535,8 +2117,24 @@ void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
} else if (isa<SharedLockFunctionAttr>(Attr)) {
// Don't try to check lock functions for now
return;
+ } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) {
+ // Don't try to check trylock functions for now
+ return;
+ } else if (isa<SharedTrylockFunctionAttr>(Attr)) {
+ // Don't try to check trylock functions for now
+ return;
}
}
+
+ // FIXME -- Loc can be wrong here.
+ for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
+ addLock(InitialLockset, ExclusiveLocksToAdd[i],
+ LockData(Loc, LK_Exclusive));
+ }
+ for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
+ addLock(InitialLockset, SharedLocksToAdd[i],
+ LockData(Loc, LK_Shared));
+ }
}
for (PostOrderCFGView::iterator I = SortedGraph->begin(),
@@ -1587,15 +2185,16 @@ void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
int PrevBlockID = (*PI)->getBlockID();
CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
+ FactSet PrevLockset;
+ getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock);
if (!LocksetInitialized) {
- CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet;
+ CurrBlockInfo->EntrySet = PrevLockset;
LocksetInitialized = true;
} else {
- CurrBlockInfo->EntrySet =
- intersectAndWarn(*CurrBlockInfo, CBS_Entry,
- *PrevBlockInfo, CBS_Exit,
- LEK_LockedSomePredecessors);
+ intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
+ CurrBlockInfo->EntryLoc,
+ LEK_LockedSomePredecessors);
}
}
@@ -1619,23 +2218,20 @@ void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
const Stmt *Terminator = PrevBlock->getTerminator();
bool IsLoop = Terminator && isa<ContinueStmt>(Terminator);
+ FactSet PrevLockset;
+ getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet,
+ PrevBlock, CurrBlock);
+
// Do not update EntrySet.
- intersectAndWarn(*CurrBlockInfo, CBS_Entry, *PrevBlockInfo, CBS_Exit,
+ intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
+ PrevBlockInfo->ExitLoc,
IsLoop ? LEK_LockedSomeLoopIterations
- : LEK_LockedSomePredecessors);
+ : LEK_LockedSomePredecessors,
+ false);
}
}
BuildLockset LocksetBuilder(this, *CurrBlockInfo);
- CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
- PE = CurrBlock->pred_end();
- if (PI != PE) {
- // If the predecessor ended in a branch, then process any trylocks.
- // FIXME -- check to make sure there's only one predecessor.
- if (Stmt *TCE = (*PI)->getTerminatorCondition()) {
- LocksetBuilder.handleTrylock(TCE, *PI, CurrBlock);
- }
- }
// Visit all the statements in the basic block.
for (CFGBlock::const_iterator BI = CurrBlock->begin(),
@@ -1665,7 +2261,7 @@ void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
break;
}
}
- CurrBlockInfo->ExitSet = LocksetBuilder.LSet;
+ CurrBlockInfo->ExitSet = LocksetBuilder.FSet;
// For every back edge from CurrBlock (the end of the loop) to another block
// (FirstLoopBlock) we need to check that the Lockset of Block is equal to
@@ -1679,19 +2275,24 @@ void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
continue;
CFGBlock *FirstLoopBlock = *SI;
- CFGBlockInfo &PreLoop = BlockInfo[FirstLoopBlock->getBlockID()];
- CFGBlockInfo &LoopEnd = BlockInfo[CurrBlockID];
- intersectAndWarn(LoopEnd, CBS_Exit, PreLoop, CBS_Entry,
- LEK_LockedSomeLoopIterations);
+ CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()];
+ CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID];
+ intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet,
+ PreLoop->EntryLoc,
+ LEK_LockedSomeLoopIterations,
+ false);
}
}
- CFGBlockInfo &Initial = BlockInfo[CFGraph->getEntry().getBlockID()];
- CFGBlockInfo &Final = BlockInfo[CFGraph->getExit().getBlockID()];
+ CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()];
+ CFGBlockInfo *Final = &BlockInfo[CFGraph->getExit().getBlockID()];
// FIXME: Should we call this function for all blocks which exit the function?
- intersectAndWarn(Initial, CBS_Entry, Final, CBS_Exit,
- LEK_LockedAtEndOfFunction);
+ intersectAndWarn(Initial->EntrySet, Final->ExitSet,
+ Final->ExitLoc,
+ LEK_LockedAtEndOfFunction,
+ LEK_NotLockedAtEndOfFunction,
+ false);
}
} // end anonymous namespace
OpenPOWER on IntegriCloud