diff options
Diffstat (limited to 'contrib/llvm/tools/clang/lib/Analysis/CloneDetection.cpp')
-rw-r--r-- | contrib/llvm/tools/clang/lib/Analysis/CloneDetection.cpp | 894 |
1 files changed, 894 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/Analysis/CloneDetection.cpp b/contrib/llvm/tools/clang/lib/Analysis/CloneDetection.cpp new file mode 100644 index 0000000..e761738 --- /dev/null +++ b/contrib/llvm/tools/clang/lib/Analysis/CloneDetection.cpp @@ -0,0 +1,894 @@ +//===--- CloneDetection.cpp - Finds code clones in an AST -------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +/// +/// This file implements classes for searching and anlyzing source code clones. +/// +//===----------------------------------------------------------------------===// + +#include "clang/Analysis/CloneDetection.h" + +#include "clang/AST/ASTContext.h" +#include "clang/AST/RecursiveASTVisitor.h" +#include "clang/AST/Stmt.h" +#include "clang/AST/StmtVisitor.h" +#include "clang/Lex/Lexer.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/Support/MD5.h" +#include "llvm/Support/raw_ostream.h" + +using namespace clang; + +StmtSequence::StmtSequence(const CompoundStmt *Stmt, ASTContext &Context, + unsigned StartIndex, unsigned EndIndex) + : S(Stmt), Context(&Context), StartIndex(StartIndex), EndIndex(EndIndex) { + assert(Stmt && "Stmt must not be a nullptr"); + assert(StartIndex < EndIndex && "Given array should not be empty"); + assert(EndIndex <= Stmt->size() && "Given array too big for this Stmt"); +} + +StmtSequence::StmtSequence(const Stmt *Stmt, ASTContext &Context) + : S(Stmt), Context(&Context), StartIndex(0), EndIndex(0) {} + +StmtSequence::StmtSequence() + : S(nullptr), Context(nullptr), StartIndex(0), EndIndex(0) {} + +bool StmtSequence::contains(const StmtSequence &Other) const { + // If both sequences reside in different translation units, they can never + // contain each other. + if (Context != Other.Context) + return false; + + const SourceManager &SM = Context->getSourceManager(); + + // Otherwise check if the start and end locations of the current sequence + // surround the other sequence. + bool StartIsInBounds = + SM.isBeforeInTranslationUnit(getStartLoc(), Other.getStartLoc()) || + getStartLoc() == Other.getStartLoc(); + if (!StartIsInBounds) + return false; + + bool EndIsInBounds = + SM.isBeforeInTranslationUnit(Other.getEndLoc(), getEndLoc()) || + Other.getEndLoc() == getEndLoc(); + return EndIsInBounds; +} + +StmtSequence::iterator StmtSequence::begin() const { + if (!holdsSequence()) { + return &S; + } + auto CS = cast<CompoundStmt>(S); + return CS->body_begin() + StartIndex; +} + +StmtSequence::iterator StmtSequence::end() const { + if (!holdsSequence()) { + return reinterpret_cast<StmtSequence::iterator>(&S) + 1; + } + auto CS = cast<CompoundStmt>(S); + return CS->body_begin() + EndIndex; +} + +SourceLocation StmtSequence::getStartLoc() const { + return front()->getLocStart(); +} + +SourceLocation StmtSequence::getEndLoc() const { return back()->getLocEnd(); } + +SourceRange StmtSequence::getSourceRange() const { + return SourceRange(getStartLoc(), getEndLoc()); +} + +namespace { + +/// \brief Analyzes the pattern of the referenced variables in a statement. +class VariablePattern { + + /// \brief Describes an occurence of a variable reference in a statement. + struct VariableOccurence { + /// The index of the associated VarDecl in the Variables vector. + size_t KindID; + /// The statement in the code where the variable was referenced. + const Stmt *Mention; + + VariableOccurence(size_t KindID, const Stmt *Mention) + : KindID(KindID), Mention(Mention) {} + }; + + /// All occurences of referenced variables in the order of appearance. + std::vector<VariableOccurence> Occurences; + /// List of referenced variables in the order of appearance. + /// Every item in this list is unique. + std::vector<const VarDecl *> Variables; + + /// \brief Adds a new variable referenced to this pattern. + /// \param VarDecl The declaration of the variable that is referenced. + /// \param Mention The SourceRange where this variable is referenced. + void addVariableOccurence(const VarDecl *VarDecl, const Stmt *Mention) { + // First check if we already reference this variable + for (size_t KindIndex = 0; KindIndex < Variables.size(); ++KindIndex) { + if (Variables[KindIndex] == VarDecl) { + // If yes, add a new occurence that points to the existing entry in + // the Variables vector. + Occurences.emplace_back(KindIndex, Mention); + return; + } + } + // If this variable wasn't already referenced, add it to the list of + // referenced variables and add a occurence that points to this new entry. + Occurences.emplace_back(Variables.size(), Mention); + Variables.push_back(VarDecl); + } + + /// \brief Adds each referenced variable from the given statement. + void addVariables(const Stmt *S) { + // Sometimes we get a nullptr (such as from IfStmts which often have nullptr + // children). We skip such statements as they don't reference any + // variables. + if (!S) + return; + + // Check if S is a reference to a variable. If yes, add it to the pattern. + if (auto D = dyn_cast<DeclRefExpr>(S)) { + if (auto VD = dyn_cast<VarDecl>(D->getDecl()->getCanonicalDecl())) + addVariableOccurence(VD, D); + } + + // Recursively check all children of the given statement. + for (const Stmt *Child : S->children()) { + addVariables(Child); + } + } + +public: + /// \brief Creates an VariablePattern object with information about the given + /// StmtSequence. + VariablePattern(const StmtSequence &Sequence) { + for (const Stmt *S : Sequence) + addVariables(S); + } + + /// \brief Counts the differences between this pattern and the given one. + /// \param Other The given VariablePattern to compare with. + /// \param FirstMismatch Output parameter that will be filled with information + /// about the first difference between the two patterns. This parameter + /// can be a nullptr, in which case it will be ignored. + /// \return Returns the number of differences between the pattern this object + /// is following and the given VariablePattern. + /// + /// For example, the following statements all have the same pattern and this + /// function would return zero: + /// + /// if (a < b) return a; return b; + /// if (x < y) return x; return y; + /// if (u2 < u1) return u2; return u1; + /// + /// But the following statement has a different pattern (note the changed + /// variables in the return statements) and would have two differences when + /// compared with one of the statements above. + /// + /// if (a < b) return b; return a; + /// + /// This function should only be called if the related statements of the given + /// pattern and the statements of this objects are clones of each other. + unsigned countPatternDifferences( + const VariablePattern &Other, + CloneDetector::SuspiciousClonePair *FirstMismatch = nullptr) { + unsigned NumberOfDifferences = 0; + + assert(Other.Occurences.size() == Occurences.size()); + for (unsigned i = 0; i < Occurences.size(); ++i) { + auto ThisOccurence = Occurences[i]; + auto OtherOccurence = Other.Occurences[i]; + if (ThisOccurence.KindID == OtherOccurence.KindID) + continue; + + ++NumberOfDifferences; + + // If FirstMismatch is not a nullptr, we need to store information about + // the first difference between the two patterns. + if (FirstMismatch == nullptr) + continue; + + // Only proceed if we just found the first difference as we only store + // information about the first difference. + if (NumberOfDifferences != 1) + continue; + + const VarDecl *FirstSuggestion = nullptr; + // If there is a variable available in the list of referenced variables + // which wouldn't break the pattern if it is used in place of the + // current variable, we provide this variable as the suggested fix. + if (OtherOccurence.KindID < Variables.size()) + FirstSuggestion = Variables[OtherOccurence.KindID]; + + // Store information about the first clone. + FirstMismatch->FirstCloneInfo = + CloneDetector::SuspiciousClonePair::SuspiciousCloneInfo( + Variables[ThisOccurence.KindID], ThisOccurence.Mention, + FirstSuggestion); + + // Same as above but with the other clone. We do this for both clones as + // we don't know which clone is the one containing the unintended + // pattern error. + const VarDecl *SecondSuggestion = nullptr; + if (ThisOccurence.KindID < Other.Variables.size()) + SecondSuggestion = Other.Variables[ThisOccurence.KindID]; + + // Store information about the second clone. + FirstMismatch->SecondCloneInfo = + CloneDetector::SuspiciousClonePair::SuspiciousCloneInfo( + Other.Variables[OtherOccurence.KindID], OtherOccurence.Mention, + SecondSuggestion); + + // SuspiciousClonePair guarantees that the first clone always has a + // suggested variable associated with it. As we know that one of the two + // clones in the pair always has suggestion, we swap the two clones + // in case the first clone has no suggested variable which means that + // the second clone has a suggested variable and should be first. + if (!FirstMismatch->FirstCloneInfo.Suggestion) + std::swap(FirstMismatch->FirstCloneInfo, + FirstMismatch->SecondCloneInfo); + + // This ensures that we always have at least one suggestion in a pair. + assert(FirstMismatch->FirstCloneInfo.Suggestion); + } + + return NumberOfDifferences; + } +}; +} + +/// \brief Prints the macro name that contains the given SourceLocation into +/// the given raw_string_ostream. +static void printMacroName(llvm::raw_string_ostream &MacroStack, + ASTContext &Context, SourceLocation Loc) { + MacroStack << Lexer::getImmediateMacroName(Loc, Context.getSourceManager(), + Context.getLangOpts()); + + // Add an empty space at the end as a padding to prevent + // that macro names concatenate to the names of other macros. + MacroStack << " "; +} + +/// \brief Returns a string that represents all macro expansions that +/// expanded into the given SourceLocation. +/// +/// If 'getMacroStack(A) == getMacroStack(B)' is true, then the SourceLocations +/// A and B are expanded from the same macros in the same order. +static std::string getMacroStack(SourceLocation Loc, ASTContext &Context) { + std::string MacroStack; + llvm::raw_string_ostream MacroStackStream(MacroStack); + SourceManager &SM = Context.getSourceManager(); + + // Iterate over all macros that expanded into the given SourceLocation. + while (Loc.isMacroID()) { + // Add the macro name to the stream. + printMacroName(MacroStackStream, Context, Loc); + Loc = SM.getImmediateMacroCallerLoc(Loc); + } + MacroStackStream.flush(); + return MacroStack; +} + +namespace { +/// \brief Collects the data of a single Stmt. +/// +/// This class defines what a code clone is: If it collects for two statements +/// the same data, then those two statements are considered to be clones of each +/// other. +/// +/// All collected data is forwarded to the given data consumer of the type T. +/// The data consumer class needs to provide a member method with the signature: +/// update(StringRef Str) +template <typename T> +class StmtDataCollector : public ConstStmtVisitor<StmtDataCollector<T>> { + + ASTContext &Context; + /// \brief The data sink to which all data is forwarded. + T &DataConsumer; + +public: + /// \brief Collects data of the given Stmt. + /// \param S The given statement. + /// \param Context The ASTContext of S. + /// \param DataConsumer The data sink to which all data is forwarded. + StmtDataCollector(const Stmt *S, ASTContext &Context, T &DataConsumer) + : Context(Context), DataConsumer(DataConsumer) { + this->Visit(S); + } + + // Below are utility methods for appending different data to the vector. + + void addData(CloneDetector::DataPiece Integer) { + DataConsumer.update( + StringRef(reinterpret_cast<char *>(&Integer), sizeof(Integer))); + } + + void addData(llvm::StringRef Str) { DataConsumer.update(Str); } + + void addData(const QualType &QT) { addData(QT.getAsString()); } + +// The functions below collect the class specific data of each Stmt subclass. + +// Utility macro for defining a visit method for a given class. This method +// calls back to the ConstStmtVisitor to visit all parent classes. +#define DEF_ADD_DATA(CLASS, CODE) \ + void Visit##CLASS(const CLASS *S) { \ + CODE; \ + ConstStmtVisitor<StmtDataCollector>::Visit##CLASS(S); \ + } + + DEF_ADD_DATA(Stmt, { + addData(S->getStmtClass()); + // This ensures that macro generated code isn't identical to macro-generated + // code. + addData(getMacroStack(S->getLocStart(), Context)); + addData(getMacroStack(S->getLocEnd(), Context)); + }) + DEF_ADD_DATA(Expr, { addData(S->getType()); }) + + //--- Builtin functionality ----------------------------------------------// + DEF_ADD_DATA(ArrayTypeTraitExpr, { addData(S->getTrait()); }) + DEF_ADD_DATA(ExpressionTraitExpr, { addData(S->getTrait()); }) + DEF_ADD_DATA(PredefinedExpr, { addData(S->getIdentType()); }) + DEF_ADD_DATA(TypeTraitExpr, { + addData(S->getTrait()); + for (unsigned i = 0; i < S->getNumArgs(); ++i) + addData(S->getArg(i)->getType()); + }) + + //--- Calls --------------------------------------------------------------// + DEF_ADD_DATA(CallExpr, { + // Function pointers don't have a callee and we just skip hashing it. + if (const FunctionDecl *D = S->getDirectCallee()) { + // If the function is a template specialization, we also need to handle + // the template arguments as they are not included in the qualified name. + if (auto Args = D->getTemplateSpecializationArgs()) { + std::string ArgString; + + // Print all template arguments into ArgString + llvm::raw_string_ostream OS(ArgString); + for (unsigned i = 0; i < Args->size(); ++i) { + Args->get(i).print(Context.getLangOpts(), OS); + // Add a padding character so that 'foo<X, XX>()' != 'foo<XX, X>()'. + OS << '\n'; + } + OS.flush(); + + addData(ArgString); + } + addData(D->getQualifiedNameAsString()); + } + }) + + //--- Exceptions ---------------------------------------------------------// + DEF_ADD_DATA(CXXCatchStmt, { addData(S->getCaughtType()); }) + + //--- C++ OOP Stmts ------------------------------------------------------// + DEF_ADD_DATA(CXXDeleteExpr, { + addData(S->isArrayFormAsWritten()); + addData(S->isGlobalDelete()); + }) + + //--- Casts --------------------------------------------------------------// + DEF_ADD_DATA(ObjCBridgedCastExpr, { addData(S->getBridgeKind()); }) + + //--- Miscellaneous Exprs ------------------------------------------------// + DEF_ADD_DATA(BinaryOperator, { addData(S->getOpcode()); }) + DEF_ADD_DATA(UnaryOperator, { addData(S->getOpcode()); }) + + //--- Control flow -------------------------------------------------------// + DEF_ADD_DATA(GotoStmt, { addData(S->getLabel()->getName()); }) + DEF_ADD_DATA(IndirectGotoStmt, { + if (S->getConstantTarget()) + addData(S->getConstantTarget()->getName()); + }) + DEF_ADD_DATA(LabelStmt, { addData(S->getDecl()->getName()); }) + DEF_ADD_DATA(MSDependentExistsStmt, { addData(S->isIfExists()); }) + DEF_ADD_DATA(AddrLabelExpr, { addData(S->getLabel()->getName()); }) + + //--- Objective-C --------------------------------------------------------// + DEF_ADD_DATA(ObjCIndirectCopyRestoreExpr, { addData(S->shouldCopy()); }) + DEF_ADD_DATA(ObjCPropertyRefExpr, { + addData(S->isSuperReceiver()); + addData(S->isImplicitProperty()); + }) + DEF_ADD_DATA(ObjCAtCatchStmt, { addData(S->hasEllipsis()); }) + + //--- Miscellaneous Stmts ------------------------------------------------// + DEF_ADD_DATA(CXXFoldExpr, { + addData(S->isRightFold()); + addData(S->getOperator()); + }) + DEF_ADD_DATA(GenericSelectionExpr, { + for (unsigned i = 0; i < S->getNumAssocs(); ++i) { + addData(S->getAssocType(i)); + } + }) + DEF_ADD_DATA(LambdaExpr, { + for (const LambdaCapture &C : S->captures()) { + addData(C.isPackExpansion()); + addData(C.getCaptureKind()); + if (C.capturesVariable()) + addData(C.getCapturedVar()->getType()); + } + addData(S->isGenericLambda()); + addData(S->isMutable()); + }) + DEF_ADD_DATA(DeclStmt, { + auto numDecls = std::distance(S->decl_begin(), S->decl_end()); + addData(static_cast<CloneDetector::DataPiece>(numDecls)); + for (const Decl *D : S->decls()) { + if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { + addData(VD->getType()); + } + } + }) + DEF_ADD_DATA(AsmStmt, { + addData(S->isSimple()); + addData(S->isVolatile()); + addData(S->generateAsmString(Context)); + for (unsigned i = 0; i < S->getNumInputs(); ++i) { + addData(S->getInputConstraint(i)); + } + for (unsigned i = 0; i < S->getNumOutputs(); ++i) { + addData(S->getOutputConstraint(i)); + } + for (unsigned i = 0; i < S->getNumClobbers(); ++i) { + addData(S->getClobber(i)); + } + }) + DEF_ADD_DATA(AttributedStmt, { + for (const Attr *A : S->getAttrs()) { + addData(std::string(A->getSpelling())); + } + }) +}; +} // end anonymous namespace + +namespace { +/// Generates CloneSignatures for a set of statements and stores the results in +/// a CloneDetector object. +class CloneSignatureGenerator { + + CloneDetector &CD; + ASTContext &Context; + + /// \brief Generates CloneSignatures for all statements in the given statement + /// tree and stores them in the CloneDetector. + /// + /// \param S The root of the given statement tree. + /// \param ParentMacroStack A string representing the macros that generated + /// the parent statement or an empty string if no + /// macros generated the parent statement. + /// See getMacroStack() for generating such a string. + /// \return The CloneSignature of the root statement. + CloneDetector::CloneSignature + generateSignatures(const Stmt *S, const std::string &ParentMacroStack) { + // Create an empty signature that will be filled in this method. + CloneDetector::CloneSignature Signature; + + llvm::MD5 Hash; + + // Collect all relevant data from S and hash it. + StmtDataCollector<llvm::MD5>(S, Context, Hash); + + // Look up what macros expanded into the current statement. + std::string StartMacroStack = getMacroStack(S->getLocStart(), Context); + std::string EndMacroStack = getMacroStack(S->getLocEnd(), Context); + + // First, check if ParentMacroStack is not empty which means we are currently + // dealing with a parent statement which was expanded from a macro. + // If this parent statement was expanded from the same macros as this + // statement, we reduce the initial complexity of this statement to zero. + // This causes that a group of statements that were generated by a single + // macro expansion will only increase the total complexity by one. + // Note: This is not the final complexity of this statement as we still + // add the complexity of the child statements to the complexity value. + if (!ParentMacroStack.empty() && (StartMacroStack == ParentMacroStack && + EndMacroStack == ParentMacroStack)) { + Signature.Complexity = 0; + } + + // Storage for the signatures of the direct child statements. This is only + // needed if the current statement is a CompoundStmt. + std::vector<CloneDetector::CloneSignature> ChildSignatures; + const CompoundStmt *CS = dyn_cast<const CompoundStmt>(S); + + // The signature of a statement includes the signatures of its children. + // Therefore we create the signatures for every child and add them to the + // current signature. + for (const Stmt *Child : S->children()) { + // Some statements like 'if' can have nullptr children that we will skip. + if (!Child) + continue; + + // Recursive call to create the signature of the child statement. This + // will also create and store all clone groups in this child statement. + // We pass only the StartMacroStack along to keep things simple. + auto ChildSignature = generateSignatures(Child, StartMacroStack); + + // Add the collected data to the signature of the current statement. + Signature.Complexity += ChildSignature.Complexity; + Hash.update(StringRef(reinterpret_cast<char *>(&ChildSignature.Hash), + sizeof(ChildSignature.Hash))); + + // If the current statement is a CompoundStatement, we need to store the + // signature for the generation of the sub-sequences. + if (CS) + ChildSignatures.push_back(ChildSignature); + } + + // If the current statement is a CompoundStmt, we also need to create the + // clone groups from the sub-sequences inside the children. + if (CS) + handleSubSequences(CS, ChildSignatures); + + // Create the final hash code for the current signature. + llvm::MD5::MD5Result HashResult; + Hash.final(HashResult); + + // Copy as much of the generated hash code to the signature's hash code. + std::memcpy(&Signature.Hash, &HashResult, + std::min(sizeof(Signature.Hash), sizeof(HashResult))); + + // Save the signature for the current statement in the CloneDetector object. + CD.add(StmtSequence(S, Context), Signature); + + return Signature; + } + + /// \brief Adds all possible sub-sequences in the child array of the given + /// CompoundStmt to the CloneDetector. + /// \param CS The given CompoundStmt. + /// \param ChildSignatures A list of calculated signatures for each child in + /// the given CompoundStmt. + void handleSubSequences( + const CompoundStmt *CS, + const std::vector<CloneDetector::CloneSignature> &ChildSignatures) { + + // FIXME: This function has quadratic runtime right now. Check if skipping + // this function for too long CompoundStmts is an option. + + // The length of the sub-sequence. We don't need to handle sequences with + // the length 1 as they are already handled in CollectData(). + for (unsigned Length = 2; Length <= CS->size(); ++Length) { + // The start index in the body of the CompoundStmt. We increase the + // position until the end of the sub-sequence reaches the end of the + // CompoundStmt body. + for (unsigned Pos = 0; Pos <= CS->size() - Length; ++Pos) { + // Create an empty signature and add the signatures of all selected + // child statements to it. + CloneDetector::CloneSignature SubSignature; + llvm::MD5 SubHash; + + for (unsigned i = Pos; i < Pos + Length; ++i) { + SubSignature.Complexity += ChildSignatures[i].Complexity; + size_t ChildHash = ChildSignatures[i].Hash; + + SubHash.update(StringRef(reinterpret_cast<char *>(&ChildHash), + sizeof(ChildHash))); + } + + // Create the final hash code for the current signature. + llvm::MD5::MD5Result HashResult; + SubHash.final(HashResult); + + // Copy as much of the generated hash code to the signature's hash code. + std::memcpy(&SubSignature.Hash, &HashResult, + std::min(sizeof(SubSignature.Hash), sizeof(HashResult))); + + // Save the signature together with the information about what children + // sequence we selected. + CD.add(StmtSequence(CS, Context, Pos, Pos + Length), SubSignature); + } + } + } + +public: + explicit CloneSignatureGenerator(CloneDetector &CD, ASTContext &Context) + : CD(CD), Context(Context) {} + + /// \brief Generates signatures for all statements in the given function body. + void consumeCodeBody(const Stmt *S) { generateSignatures(S, ""); } +}; +} // end anonymous namespace + +void CloneDetector::analyzeCodeBody(const Decl *D) { + assert(D); + assert(D->hasBody()); + CloneSignatureGenerator Generator(*this, D->getASTContext()); + Generator.consumeCodeBody(D->getBody()); +} + +void CloneDetector::add(const StmtSequence &S, + const CloneSignature &Signature) { + Sequences.push_back(std::make_pair(Signature, S)); +} + +namespace { +/// \brief Returns true if and only if \p Stmt contains at least one other +/// sequence in the \p Group. +bool containsAnyInGroup(StmtSequence &Stmt, CloneDetector::CloneGroup &Group) { + for (StmtSequence &GroupStmt : Group.Sequences) { + if (Stmt.contains(GroupStmt)) + return true; + } + return false; +} + +/// \brief Returns true if and only if all sequences in \p OtherGroup are +/// contained by a sequence in \p Group. +bool containsGroup(CloneDetector::CloneGroup &Group, + CloneDetector::CloneGroup &OtherGroup) { + // We have less sequences in the current group than we have in the other, + // so we will never fulfill the requirement for returning true. This is only + // possible because we know that a sequence in Group can contain at most + // one sequence in OtherGroup. + if (Group.Sequences.size() < OtherGroup.Sequences.size()) + return false; + + for (StmtSequence &Stmt : Group.Sequences) { + if (!containsAnyInGroup(Stmt, OtherGroup)) + return false; + } + return true; +} +} // end anonymous namespace + +namespace { +/// \brief Wrapper around FoldingSetNodeID that it can be used as the template +/// argument of the StmtDataCollector. +class FoldingSetNodeIDWrapper { + + llvm::FoldingSetNodeID &FS; + +public: + FoldingSetNodeIDWrapper(llvm::FoldingSetNodeID &FS) : FS(FS) {} + + void update(StringRef Str) { FS.AddString(Str); } +}; +} // end anonymous namespace + +/// \brief Writes the relevant data from all statements and child statements +/// in the given StmtSequence into the given FoldingSetNodeID. +static void CollectStmtSequenceData(const StmtSequence &Sequence, + FoldingSetNodeIDWrapper &OutputData) { + for (const Stmt *S : Sequence) { + StmtDataCollector<FoldingSetNodeIDWrapper>(S, Sequence.getASTContext(), + OutputData); + + for (const Stmt *Child : S->children()) { + if (!Child) + continue; + + CollectStmtSequenceData(StmtSequence(Child, Sequence.getASTContext()), + OutputData); + } + } +} + +/// \brief Returns true if both sequences are clones of each other. +static bool areSequencesClones(const StmtSequence &LHS, + const StmtSequence &RHS) { + // We collect the data from all statements in the sequence as we did before + // when generating a hash value for each sequence. But this time we don't + // hash the collected data and compare the whole data set instead. This + // prevents any false-positives due to hash code collisions. + llvm::FoldingSetNodeID DataLHS, DataRHS; + FoldingSetNodeIDWrapper LHSWrapper(DataLHS); + FoldingSetNodeIDWrapper RHSWrapper(DataRHS); + + CollectStmtSequenceData(LHS, LHSWrapper); + CollectStmtSequenceData(RHS, RHSWrapper); + + return DataLHS == DataRHS; +} + +/// \brief Finds all actual clone groups in a single group of presumed clones. +/// \param Result Output parameter to which all found groups are added. +/// \param Group A group of presumed clones. The clones are allowed to have a +/// different variable pattern and may not be actual clones of each +/// other. +/// \param CheckVariablePattern If true, every clone in a group that was added +/// to the output follows the same variable pattern as the other +/// clones in its group. +static void createCloneGroups(std::vector<CloneDetector::CloneGroup> &Result, + const CloneDetector::CloneGroup &Group, + bool CheckVariablePattern) { + // We remove the Sequences one by one, so a list is more appropriate. + std::list<StmtSequence> UnassignedSequences(Group.Sequences.begin(), + Group.Sequences.end()); + + // Search for clones as long as there could be clones in UnassignedSequences. + while (UnassignedSequences.size() > 1) { + + // Pick the first Sequence as a protoype for a new clone group. + StmtSequence Prototype = UnassignedSequences.front(); + UnassignedSequences.pop_front(); + + CloneDetector::CloneGroup FilteredGroup(Prototype, Group.Signature); + + // Analyze the variable pattern of the prototype. Every other StmtSequence + // needs to have the same pattern to get into the new clone group. + VariablePattern PrototypeFeatures(Prototype); + + // Search all remaining StmtSequences for an identical variable pattern + // and assign them to our new clone group. + auto I = UnassignedSequences.begin(), E = UnassignedSequences.end(); + while (I != E) { + // If the sequence doesn't fit to the prototype, we have encountered + // an unintended hash code collision and we skip it. + if (!areSequencesClones(Prototype, *I)) { + ++I; + continue; + } + + // If we weren't asked to check for a matching variable pattern in clone + // groups we can add the sequence now to the new clone group. + // If we were asked to check for matching variable pattern, we first have + // to check that there are no differences between the two patterns and + // only proceed if they match. + if (!CheckVariablePattern || + VariablePattern(*I).countPatternDifferences(PrototypeFeatures) == 0) { + FilteredGroup.Sequences.push_back(*I); + I = UnassignedSequences.erase(I); + continue; + } + + // We didn't found a matching variable pattern, so we continue with the + // next sequence. + ++I; + } + + // Add a valid clone group to the list of found clone groups. + if (!FilteredGroup.isValid()) + continue; + + Result.push_back(FilteredGroup); + } +} + +void CloneDetector::findClones(std::vector<CloneGroup> &Result, + unsigned MinGroupComplexity, + bool CheckPatterns) { + // A shortcut (and necessary for the for-loop later in this function). + if (Sequences.empty()) + return; + + // We need to search for groups of StmtSequences with the same hash code to + // create our initial clone groups. By sorting all known StmtSequences by + // their hash value we make sure that StmtSequences with the same hash code + // are grouped together in the Sequences vector. + // Note: We stable sort here because the StmtSequences are added in the order + // in which they appear in the source file. We want to preserve that order + // because we also want to report them in that order in the CloneChecker. + std::stable_sort(Sequences.begin(), Sequences.end(), + [](std::pair<CloneSignature, StmtSequence> LHS, + std::pair<CloneSignature, StmtSequence> RHS) { + return LHS.first.Hash < RHS.first.Hash; + }); + + std::vector<CloneGroup> CloneGroups; + + // Check for each CloneSignature if its successor has the same hash value. + // We don't check the last CloneSignature as it has no successor. + // Note: The 'size - 1' in the condition is safe because we check for an empty + // Sequences vector at the beginning of this function. + for (unsigned i = 0; i < Sequences.size() - 1; ++i) { + const auto Current = Sequences[i]; + const auto Next = Sequences[i + 1]; + + if (Current.first.Hash != Next.first.Hash) + continue; + + // It's likely that we just found an sequence of CloneSignatures that + // represent a CloneGroup, so we create a new group and start checking and + // adding the CloneSignatures in this sequence. + CloneGroup Group; + Group.Signature = Current.first; + + for (; i < Sequences.size(); ++i) { + const auto &Signature = Sequences[i]; + + // A different hash value means we have reached the end of the sequence. + if (Current.first.Hash != Signature.first.Hash) { + // The current Signature could be the start of a new CloneGroup. So we + // decrement i so that we visit it again in the outer loop. + // Note: i can never be 0 at this point because we are just comparing + // the hash of the Current CloneSignature with itself in the 'if' above. + assert(i != 0); + --i; + break; + } + + // Skip CloneSignatures that won't pass the complexity requirement. + if (Signature.first.Complexity < MinGroupComplexity) + continue; + + Group.Sequences.push_back(Signature.second); + } + + // There is a chance that we haven't found more than two fitting + // CloneSignature because not enough CloneSignatures passed the complexity + // requirement. As a CloneGroup with less than two members makes no sense, + // we ignore this CloneGroup and won't add it to the result. + if (!Group.isValid()) + continue; + + CloneGroups.push_back(Group); + } + + // Add every valid clone group that fulfills the complexity requirement. + for (const CloneGroup &Group : CloneGroups) { + createCloneGroups(Result, Group, CheckPatterns); + } + + std::vector<unsigned> IndexesToRemove; + + // Compare every group in the result with the rest. If one groups contains + // another group, we only need to return the bigger group. + // Note: This doesn't scale well, so if possible avoid calling any heavy + // function from this loop to minimize the performance impact. + for (unsigned i = 0; i < Result.size(); ++i) { + for (unsigned j = 0; j < Result.size(); ++j) { + // Don't compare a group with itself. + if (i == j) + continue; + + if (containsGroup(Result[j], Result[i])) { + IndexesToRemove.push_back(i); + break; + } + } + } + + // Erasing a list of indexes from the vector should be done with decreasing + // indexes. As IndexesToRemove is constructed with increasing values, we just + // reverse iterate over it to get the desired order. + for (auto I = IndexesToRemove.rbegin(); I != IndexesToRemove.rend(); ++I) { + Result.erase(Result.begin() + *I); + } +} + +void CloneDetector::findSuspiciousClones( + std::vector<CloneDetector::SuspiciousClonePair> &Result, + unsigned MinGroupComplexity) { + std::vector<CloneGroup> Clones; + // Reuse the normal search for clones but specify that the clone groups don't + // need to have a common referenced variable pattern so that we can manually + // search for the kind of pattern errors this function is supposed to find. + findClones(Clones, MinGroupComplexity, false); + + for (const CloneGroup &Group : Clones) { + for (unsigned i = 0; i < Group.Sequences.size(); ++i) { + VariablePattern PatternA(Group.Sequences[i]); + + for (unsigned j = i + 1; j < Group.Sequences.size(); ++j) { + VariablePattern PatternB(Group.Sequences[j]); + + CloneDetector::SuspiciousClonePair ClonePair; + // For now, we only report clones which break the variable pattern just + // once because multiple differences in a pattern are an indicator that + // those differences are maybe intended (e.g. because it's actually + // a different algorithm). + // TODO: In very big clones even multiple variables can be unintended, + // so replacing this number with a percentage could better handle such + // cases. On the other hand it could increase the false-positive rate + // for all clones if the percentage is too high. + if (PatternA.countPatternDifferences(PatternB, &ClonePair) == 1) { + Result.push_back(ClonePair); + break; + } + } + } + } +} |