diff options
Diffstat (limited to 'contrib/llvm/tools/clang/lib/AST/MicrosoftMangle.cpp')
-rw-r--r-- | contrib/llvm/tools/clang/lib/AST/MicrosoftMangle.cpp | 2098 |
1 files changed, 2098 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/AST/MicrosoftMangle.cpp b/contrib/llvm/tools/clang/lib/AST/MicrosoftMangle.cpp new file mode 100644 index 0000000..5256501 --- /dev/null +++ b/contrib/llvm/tools/clang/lib/AST/MicrosoftMangle.cpp @@ -0,0 +1,2098 @@ +//===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This provides C++ name mangling targeting the Microsoft Visual C++ ABI. +// +//===----------------------------------------------------------------------===// + +#include "clang/AST/Mangle.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/Attr.h" +#include "clang/AST/CharUnits.h" +#include "clang/AST/CXXInheritance.h" +#include "clang/AST/Decl.h" +#include "clang/AST/DeclCXX.h" +#include "clang/AST/DeclObjC.h" +#include "clang/AST/DeclTemplate.h" +#include "clang/AST/ExprCXX.h" +#include "clang/Basic/ABI.h" +#include "clang/Basic/DiagnosticOptions.h" +#include "clang/Basic/TargetInfo.h" +#include "llvm/ADT/StringMap.h" + +using namespace clang; + +namespace { + +/// \brief Retrieve the declaration context that should be used when mangling +/// the given declaration. +static const DeclContext *getEffectiveDeclContext(const Decl *D) { + // The ABI assumes that lambda closure types that occur within + // default arguments live in the context of the function. However, due to + // the way in which Clang parses and creates function declarations, this is + // not the case: the lambda closure type ends up living in the context + // where the function itself resides, because the function declaration itself + // had not yet been created. Fix the context here. + if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) { + if (RD->isLambda()) + if (ParmVarDecl *ContextParam = + dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) + return ContextParam->getDeclContext(); + } + + // Perform the same check for block literals. + if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { + if (ParmVarDecl *ContextParam = + dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) + return ContextParam->getDeclContext(); + } + + const DeclContext *DC = D->getDeclContext(); + if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(DC)) + return getEffectiveDeclContext(CD); + + return DC; +} + +static const DeclContext *getEffectiveParentContext(const DeclContext *DC) { + return getEffectiveDeclContext(cast<Decl>(DC)); +} + +static const FunctionDecl *getStructor(const FunctionDecl *fn) { + if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate()) + return ftd->getTemplatedDecl(); + + return fn; +} + +/// MicrosoftCXXNameMangler - Manage the mangling of a single name for the +/// Microsoft Visual C++ ABI. +class MicrosoftCXXNameMangler { + MangleContext &Context; + raw_ostream &Out; + + /// The "structor" is the top-level declaration being mangled, if + /// that's not a template specialization; otherwise it's the pattern + /// for that specialization. + const NamedDecl *Structor; + unsigned StructorType; + + typedef llvm::StringMap<unsigned> BackRefMap; + BackRefMap NameBackReferences; + bool UseNameBackReferences; + + typedef llvm::DenseMap<void*, unsigned> ArgBackRefMap; + ArgBackRefMap TypeBackReferences; + + ASTContext &getASTContext() const { return Context.getASTContext(); } + + // FIXME: If we add support for __ptr32/64 qualifiers, then we should push + // this check into mangleQualifiers(). + const bool PointersAre64Bit; + +public: + enum QualifierMangleMode { QMM_Drop, QMM_Mangle, QMM_Escape, QMM_Result }; + + MicrosoftCXXNameMangler(MangleContext &C, raw_ostream &Out_) + : Context(C), Out(Out_), + Structor(0), StructorType(-1), + UseNameBackReferences(true), + PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) == + 64) { } + + MicrosoftCXXNameMangler(MangleContext &C, raw_ostream &Out_, + const CXXDestructorDecl *D, CXXDtorType Type) + : Context(C), Out(Out_), + Structor(getStructor(D)), StructorType(Type), + UseNameBackReferences(true), + PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) == + 64) { } + + raw_ostream &getStream() const { return Out; } + + void mangle(const NamedDecl *D, StringRef Prefix = "\01?"); + void mangleName(const NamedDecl *ND); + void mangleDeclaration(const NamedDecl *ND); + void mangleFunctionEncoding(const FunctionDecl *FD); + void mangleVariableEncoding(const VarDecl *VD); + void mangleNumber(int64_t Number); + void mangleType(QualType T, SourceRange Range, + QualifierMangleMode QMM = QMM_Mangle); + void mangleFunctionType(const FunctionType *T, const FunctionDecl *D = 0, + bool ForceInstMethod = false); + void manglePostfix(const DeclContext *DC, bool NoFunction = false); + +private: + void disableBackReferences() { UseNameBackReferences = false; } + void mangleUnqualifiedName(const NamedDecl *ND) { + mangleUnqualifiedName(ND, ND->getDeclName()); + } + void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name); + void mangleSourceName(StringRef Name); + void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc); + void mangleCXXDtorType(CXXDtorType T); + void mangleQualifiers(Qualifiers Quals, bool IsMember); + void manglePointerQualifiers(Qualifiers Quals); + + void mangleUnscopedTemplateName(const TemplateDecl *ND); + void mangleTemplateInstantiationName(const TemplateDecl *TD, + const TemplateArgumentList &TemplateArgs); + void mangleObjCMethodName(const ObjCMethodDecl *MD); + void mangleLocalName(const FunctionDecl *FD); + + void mangleArgumentType(QualType T, SourceRange Range); + + // Declare manglers for every type class. +#define ABSTRACT_TYPE(CLASS, PARENT) +#define NON_CANONICAL_TYPE(CLASS, PARENT) +#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \ + SourceRange Range); +#include "clang/AST/TypeNodes.def" +#undef ABSTRACT_TYPE +#undef NON_CANONICAL_TYPE +#undef TYPE + + void mangleType(const TagDecl *TD); + void mangleDecayedArrayType(const ArrayType *T); + void mangleArrayType(const ArrayType *T); + void mangleFunctionClass(const FunctionDecl *FD); + void mangleCallingConvention(const FunctionType *T); + void mangleIntegerLiteral(const llvm::APSInt &Number, bool IsBoolean); + void mangleExpression(const Expr *E); + void mangleThrowSpecification(const FunctionProtoType *T); + + void mangleTemplateArgs(const TemplateDecl *TD, + const TemplateArgumentList &TemplateArgs); + void mangleTemplateArg(const TemplateDecl *TD, const TemplateArgument &TA); +}; + +/// MicrosoftMangleContextImpl - Overrides the default MangleContext for the +/// Microsoft Visual C++ ABI. +class MicrosoftMangleContextImpl : public MicrosoftMangleContext { +public: + MicrosoftMangleContextImpl(ASTContext &Context, DiagnosticsEngine &Diags) + : MicrosoftMangleContext(Context, Diags) {} + virtual bool shouldMangleCXXName(const NamedDecl *D); + virtual void mangleCXXName(const NamedDecl *D, raw_ostream &Out); + virtual void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD, + uint64_t OffsetInVFTable, + raw_ostream &); + virtual void mangleThunk(const CXXMethodDecl *MD, + const ThunkInfo &Thunk, + raw_ostream &); + virtual void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type, + const ThisAdjustment &ThisAdjustment, + raw_ostream &); + virtual void mangleCXXVFTable(const CXXRecordDecl *Derived, + ArrayRef<const CXXRecordDecl *> BasePath, + raw_ostream &Out); + virtual void mangleCXXVBTable(const CXXRecordDecl *Derived, + ArrayRef<const CXXRecordDecl *> BasePath, + raw_ostream &Out); + virtual void mangleCXXRTTI(QualType T, raw_ostream &); + virtual void mangleCXXRTTIName(QualType T, raw_ostream &); + virtual void mangleTypeName(QualType T, raw_ostream &); + virtual void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type, + raw_ostream &); + virtual void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type, + raw_ostream &); + virtual void mangleReferenceTemporary(const VarDecl *, raw_ostream &); + virtual void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &Out); + virtual void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out); + virtual void mangleDynamicAtExitDestructor(const VarDecl *D, + raw_ostream &Out); + +private: + void mangleInitFiniStub(const VarDecl *D, raw_ostream &Out, char CharCode); +}; + +} + +bool MicrosoftMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) { + if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { + LanguageLinkage L = FD->getLanguageLinkage(); + // Overloadable functions need mangling. + if (FD->hasAttr<OverloadableAttr>()) + return true; + + // The ABI expects that we would never mangle "typical" user-defined entry + // points regardless of visibility or freestanding-ness. + // + // N.B. This is distinct from asking about "main". "main" has a lot of + // special rules associated with it in the standard while these + // user-defined entry points are outside of the purview of the standard. + // For example, there can be only one definition for "main" in a standards + // compliant program; however nothing forbids the existence of wmain and + // WinMain in the same translation unit. + if (FD->isMSVCRTEntryPoint()) + return false; + + // C++ functions and those whose names are not a simple identifier need + // mangling. + if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage) + return true; + + // C functions are not mangled. + if (L == CLanguageLinkage) + return false; + } + + // Otherwise, no mangling is done outside C++ mode. + if (!getASTContext().getLangOpts().CPlusPlus) + return false; + + if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { + // C variables are not mangled. + if (VD->isExternC()) + return false; + + // Variables at global scope with non-internal linkage are not mangled. + const DeclContext *DC = getEffectiveDeclContext(D); + // Check for extern variable declared locally. + if (DC->isFunctionOrMethod() && D->hasLinkage()) + while (!DC->isNamespace() && !DC->isTranslationUnit()) + DC = getEffectiveParentContext(DC); + + if (DC->isTranslationUnit() && D->getFormalLinkage() == InternalLinkage && + !isa<VarTemplateSpecializationDecl>(D)) + return false; + } + + return true; +} + +void MicrosoftCXXNameMangler::mangle(const NamedDecl *D, + StringRef Prefix) { + // MSVC doesn't mangle C++ names the same way it mangles extern "C" names. + // Therefore it's really important that we don't decorate the + // name with leading underscores or leading/trailing at signs. So, by + // default, we emit an asm marker at the start so we get the name right. + // Callers can override this with a custom prefix. + + // <mangled-name> ::= ? <name> <type-encoding> + Out << Prefix; + mangleName(D); + if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) + mangleFunctionEncoding(FD); + else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) + mangleVariableEncoding(VD); + else { + // TODO: Fields? Can MSVC even mangle them? + // Issue a diagnostic for now. + DiagnosticsEngine &Diags = Context.getDiags(); + unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, + "cannot mangle this declaration yet"); + Diags.Report(D->getLocation(), DiagID) + << D->getSourceRange(); + } +} + +void MicrosoftCXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) { + // <type-encoding> ::= <function-class> <function-type> + + // Since MSVC operates on the type as written and not the canonical type, it + // actually matters which decl we have here. MSVC appears to choose the + // first, since it is most likely to be the declaration in a header file. + FD = FD->getFirstDecl(); + + // We should never ever see a FunctionNoProtoType at this point. + // We don't even know how to mangle their types anyway :). + const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>(); + + // extern "C" functions can hold entities that must be mangled. + // As it stands, these functions still need to get expressed in the full + // external name. They have their class and type omitted, replaced with '9'. + if (Context.shouldMangleDeclName(FD)) { + // First, the function class. + mangleFunctionClass(FD); + + mangleFunctionType(FT, FD); + } else + Out << '9'; +} + +void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) { + // <type-encoding> ::= <storage-class> <variable-type> + // <storage-class> ::= 0 # private static member + // ::= 1 # protected static member + // ::= 2 # public static member + // ::= 3 # global + // ::= 4 # static local + + // The first character in the encoding (after the name) is the storage class. + if (VD->isStaticDataMember()) { + // If it's a static member, it also encodes the access level. + switch (VD->getAccess()) { + default: + case AS_private: Out << '0'; break; + case AS_protected: Out << '1'; break; + case AS_public: Out << '2'; break; + } + } + else if (!VD->isStaticLocal()) + Out << '3'; + else + Out << '4'; + // Now mangle the type. + // <variable-type> ::= <type> <cvr-qualifiers> + // ::= <type> <pointee-cvr-qualifiers> # pointers, references + // Pointers and references are odd. The type of 'int * const foo;' gets + // mangled as 'QAHA' instead of 'PAHB', for example. + TypeLoc TL = VD->getTypeSourceInfo()->getTypeLoc(); + QualType Ty = TL.getType(); + if (Ty->isPointerType() || Ty->isReferenceType() || + Ty->isMemberPointerType()) { + mangleType(Ty, TL.getSourceRange(), QMM_Drop); + if (PointersAre64Bit) + Out << 'E'; + if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()) { + mangleQualifiers(MPT->getPointeeType().getQualifiers(), true); + // Member pointers are suffixed with a back reference to the member + // pointer's class name. + mangleName(MPT->getClass()->getAsCXXRecordDecl()); + } else + mangleQualifiers(Ty->getPointeeType().getQualifiers(), false); + } else if (const ArrayType *AT = getASTContext().getAsArrayType(Ty)) { + // Global arrays are funny, too. + mangleDecayedArrayType(AT); + if (AT->getElementType()->isArrayType()) + Out << 'A'; + else + mangleQualifiers(Ty.getQualifiers(), false); + } else { + mangleType(Ty, TL.getSourceRange(), QMM_Drop); + mangleQualifiers(Ty.getLocalQualifiers(), false); + } +} + +void MicrosoftCXXNameMangler::mangleName(const NamedDecl *ND) { + // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @ + const DeclContext *DC = ND->getDeclContext(); + + // Always start with the unqualified name. + mangleUnqualifiedName(ND); + + // If this is an extern variable declared locally, the relevant DeclContext + // is that of the containing namespace, or the translation unit. + if (isa<FunctionDecl>(DC) && ND->hasLinkage()) + while (!DC->isNamespace() && !DC->isTranslationUnit()) + DC = DC->getParent(); + + manglePostfix(DC); + + // Terminate the whole name with an '@'. + Out << '@'; +} + +void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) { + // <non-negative integer> ::= A@ # when Number == 0 + // ::= <decimal digit> # when 1 <= Number <= 10 + // ::= <hex digit>+ @ # when Number >= 10 + // + // <number> ::= [?] <non-negative integer> + + uint64_t Value = static_cast<uint64_t>(Number); + if (Number < 0) { + Value = -Value; + Out << '?'; + } + + if (Value == 0) + Out << "A@"; + else if (Value >= 1 && Value <= 10) + Out << (Value - 1); + else { + // Numbers that are not encoded as decimal digits are represented as nibbles + // in the range of ASCII characters 'A' to 'P'. + // The number 0x123450 would be encoded as 'BCDEFA' + char EncodedNumberBuffer[sizeof(uint64_t) * 2]; + llvm::MutableArrayRef<char> BufferRef(EncodedNumberBuffer); + llvm::MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin(); + for (; Value != 0; Value >>= 4) + *I++ = 'A' + (Value & 0xf); + Out.write(I.base(), I - BufferRef.rbegin()); + Out << '@'; + } +} + +static const TemplateDecl * +isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) { + // Check if we have a function template. + if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){ + if (const TemplateDecl *TD = FD->getPrimaryTemplate()) { + TemplateArgs = FD->getTemplateSpecializationArgs(); + return TD; + } + } + + // Check if we have a class template. + if (const ClassTemplateSpecializationDecl *Spec = + dyn_cast<ClassTemplateSpecializationDecl>(ND)) { + TemplateArgs = &Spec->getTemplateArgs(); + return Spec->getSpecializedTemplate(); + } + + return 0; +} + +void +MicrosoftCXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND, + DeclarationName Name) { + // <unqualified-name> ::= <operator-name> + // ::= <ctor-dtor-name> + // ::= <source-name> + // ::= <template-name> + + // Check if we have a template. + const TemplateArgumentList *TemplateArgs = 0; + if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) { + // Function templates aren't considered for name back referencing. This + // makes sense since function templates aren't likely to occur multiple + // times in a symbol. + // FIXME: Test alias template mangling with MSVC 2013. + if (!isa<ClassTemplateDecl>(TD)) { + mangleTemplateInstantiationName(TD, *TemplateArgs); + return; + } + + // We have a class template. + // Here comes the tricky thing: if we need to mangle something like + // void foo(A::X<Y>, B::X<Y>), + // the X<Y> part is aliased. However, if you need to mangle + // void foo(A::X<A::Y>, A::X<B::Y>), + // the A::X<> part is not aliased. + // That said, from the mangler's perspective we have a structure like this: + // namespace[s] -> type[ -> template-parameters] + // but from the Clang perspective we have + // type [ -> template-parameters] + // \-> namespace[s] + // What we do is we create a new mangler, mangle the same type (without + // a namespace suffix) using the extra mangler with back references + // disabled (to avoid infinite recursion) and then use the mangled type + // name as a key to check the mangling of different types for aliasing. + + std::string BackReferenceKey; + BackRefMap::iterator Found; + if (UseNameBackReferences) { + llvm::raw_string_ostream Stream(BackReferenceKey); + MicrosoftCXXNameMangler Extra(Context, Stream); + Extra.disableBackReferences(); + Extra.mangleUnqualifiedName(ND, Name); + Stream.flush(); + + Found = NameBackReferences.find(BackReferenceKey); + } + if (!UseNameBackReferences || Found == NameBackReferences.end()) { + mangleTemplateInstantiationName(TD, *TemplateArgs); + if (UseNameBackReferences && NameBackReferences.size() < 10) { + size_t Size = NameBackReferences.size(); + NameBackReferences[BackReferenceKey] = Size; + } + } else { + Out << Found->second; + } + return; + } + + switch (Name.getNameKind()) { + case DeclarationName::Identifier: { + if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) { + mangleSourceName(II->getName()); + break; + } + + // Otherwise, an anonymous entity. We must have a declaration. + assert(ND && "mangling empty name without declaration"); + + if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { + if (NS->isAnonymousNamespace()) { + Out << "?A@"; + break; + } + } + + // We must have an anonymous struct. + const TagDecl *TD = cast<TagDecl>(ND); + if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) { + assert(TD->getDeclContext() == D->getDeclContext() && + "Typedef should not be in another decl context!"); + assert(D->getDeclName().getAsIdentifierInfo() && + "Typedef was not named!"); + mangleSourceName(D->getDeclName().getAsIdentifierInfo()->getName()); + break; + } + + if (TD->hasDeclaratorForAnonDecl()) { + // Anonymous types with no tag or typedef get the name of their + // declarator mangled in. + llvm::SmallString<64> Name("<unnamed-type-"); + Name += TD->getDeclaratorForAnonDecl()->getName(); + Name += ">"; + mangleSourceName(Name.str()); + } else { + // Anonymous types with no tag, no typedef, or declarator get + // '<unnamed-tag>'. + mangleSourceName("<unnamed-tag>"); + } + break; + } + + case DeclarationName::ObjCZeroArgSelector: + case DeclarationName::ObjCOneArgSelector: + case DeclarationName::ObjCMultiArgSelector: + llvm_unreachable("Can't mangle Objective-C selector names here!"); + + case DeclarationName::CXXConstructorName: + if (ND == Structor) { + assert(StructorType == Ctor_Complete && + "Should never be asked to mangle a ctor other than complete"); + } + Out << "?0"; + break; + + case DeclarationName::CXXDestructorName: + if (ND == Structor) + // If the named decl is the C++ destructor we're mangling, + // use the type we were given. + mangleCXXDtorType(static_cast<CXXDtorType>(StructorType)); + else + // Otherwise, use the base destructor name. This is relevant if a + // class with a destructor is declared within a destructor. + mangleCXXDtorType(Dtor_Base); + break; + + case DeclarationName::CXXConversionFunctionName: + // <operator-name> ::= ?B # (cast) + // The target type is encoded as the return type. + Out << "?B"; + break; + + case DeclarationName::CXXOperatorName: + mangleOperatorName(Name.getCXXOverloadedOperator(), ND->getLocation()); + break; + + case DeclarationName::CXXLiteralOperatorName: { + // FIXME: Was this added in VS2010? Does MS even know how to mangle this? + DiagnosticsEngine Diags = Context.getDiags(); + unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, + "cannot mangle this literal operator yet"); + Diags.Report(ND->getLocation(), DiagID); + break; + } + + case DeclarationName::CXXUsingDirective: + llvm_unreachable("Can't mangle a using directive name!"); + } +} + +void MicrosoftCXXNameMangler::manglePostfix(const DeclContext *DC, + bool NoFunction) { + // <postfix> ::= <unqualified-name> [<postfix>] + // ::= <substitution> [<postfix>] + + if (!DC) return; + + while (isa<LinkageSpecDecl>(DC)) + DC = DC->getParent(); + + if (DC->isTranslationUnit()) + return; + + if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) { + DiagnosticsEngine Diags = Context.getDiags(); + unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, + "cannot mangle a local inside this block yet"); + Diags.Report(BD->getLocation(), DiagID); + + // FIXME: This is completely, utterly, wrong; see ItaniumMangle + // for how this should be done. + Out << "__block_invoke" << Context.getBlockId(BD, false); + Out << '@'; + return manglePostfix(DC->getParent(), NoFunction); + } else if (isa<CapturedDecl>(DC)) { + // Skip CapturedDecl context. + manglePostfix(DC->getParent(), NoFunction); + return; + } + + if (NoFunction && (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC))) + return; + else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC)) + mangleObjCMethodName(Method); + else if (const FunctionDecl *Func = dyn_cast<FunctionDecl>(DC)) + mangleLocalName(Func); + else { + mangleUnqualifiedName(cast<NamedDecl>(DC)); + manglePostfix(DC->getParent(), NoFunction); + } +} + +void MicrosoftCXXNameMangler::mangleCXXDtorType(CXXDtorType T) { + // Microsoft uses the names on the case labels for these dtor variants. Clang + // uses the Itanium terminology internally. Everything in this ABI delegates + // towards the base dtor. + switch (T) { + // <operator-name> ::= ?1 # destructor + case Dtor_Base: Out << "?1"; return; + // <operator-name> ::= ?_D # vbase destructor + case Dtor_Complete: Out << "?_D"; return; + // <operator-name> ::= ?_G # scalar deleting destructor + case Dtor_Deleting: Out << "?_G"; return; + // <operator-name> ::= ?_E # vector deleting destructor + // FIXME: Add a vector deleting dtor type. It goes in the vtable, so we need + // it. + } + llvm_unreachable("Unsupported dtor type?"); +} + +void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, + SourceLocation Loc) { + switch (OO) { + // ?0 # constructor + // ?1 # destructor + // <operator-name> ::= ?2 # new + case OO_New: Out << "?2"; break; + // <operator-name> ::= ?3 # delete + case OO_Delete: Out << "?3"; break; + // <operator-name> ::= ?4 # = + case OO_Equal: Out << "?4"; break; + // <operator-name> ::= ?5 # >> + case OO_GreaterGreater: Out << "?5"; break; + // <operator-name> ::= ?6 # << + case OO_LessLess: Out << "?6"; break; + // <operator-name> ::= ?7 # ! + case OO_Exclaim: Out << "?7"; break; + // <operator-name> ::= ?8 # == + case OO_EqualEqual: Out << "?8"; break; + // <operator-name> ::= ?9 # != + case OO_ExclaimEqual: Out << "?9"; break; + // <operator-name> ::= ?A # [] + case OO_Subscript: Out << "?A"; break; + // ?B # conversion + // <operator-name> ::= ?C # -> + case OO_Arrow: Out << "?C"; break; + // <operator-name> ::= ?D # * + case OO_Star: Out << "?D"; break; + // <operator-name> ::= ?E # ++ + case OO_PlusPlus: Out << "?E"; break; + // <operator-name> ::= ?F # -- + case OO_MinusMinus: Out << "?F"; break; + // <operator-name> ::= ?G # - + case OO_Minus: Out << "?G"; break; + // <operator-name> ::= ?H # + + case OO_Plus: Out << "?H"; break; + // <operator-name> ::= ?I # & + case OO_Amp: Out << "?I"; break; + // <operator-name> ::= ?J # ->* + case OO_ArrowStar: Out << "?J"; break; + // <operator-name> ::= ?K # / + case OO_Slash: Out << "?K"; break; + // <operator-name> ::= ?L # % + case OO_Percent: Out << "?L"; break; + // <operator-name> ::= ?M # < + case OO_Less: Out << "?M"; break; + // <operator-name> ::= ?N # <= + case OO_LessEqual: Out << "?N"; break; + // <operator-name> ::= ?O # > + case OO_Greater: Out << "?O"; break; + // <operator-name> ::= ?P # >= + case OO_GreaterEqual: Out << "?P"; break; + // <operator-name> ::= ?Q # , + case OO_Comma: Out << "?Q"; break; + // <operator-name> ::= ?R # () + case OO_Call: Out << "?R"; break; + // <operator-name> ::= ?S # ~ + case OO_Tilde: Out << "?S"; break; + // <operator-name> ::= ?T # ^ + case OO_Caret: Out << "?T"; break; + // <operator-name> ::= ?U # | + case OO_Pipe: Out << "?U"; break; + // <operator-name> ::= ?V # && + case OO_AmpAmp: Out << "?V"; break; + // <operator-name> ::= ?W # || + case OO_PipePipe: Out << "?W"; break; + // <operator-name> ::= ?X # *= + case OO_StarEqual: Out << "?X"; break; + // <operator-name> ::= ?Y # += + case OO_PlusEqual: Out << "?Y"; break; + // <operator-name> ::= ?Z # -= + case OO_MinusEqual: Out << "?Z"; break; + // <operator-name> ::= ?_0 # /= + case OO_SlashEqual: Out << "?_0"; break; + // <operator-name> ::= ?_1 # %= + case OO_PercentEqual: Out << "?_1"; break; + // <operator-name> ::= ?_2 # >>= + case OO_GreaterGreaterEqual: Out << "?_2"; break; + // <operator-name> ::= ?_3 # <<= + case OO_LessLessEqual: Out << "?_3"; break; + // <operator-name> ::= ?_4 # &= + case OO_AmpEqual: Out << "?_4"; break; + // <operator-name> ::= ?_5 # |= + case OO_PipeEqual: Out << "?_5"; break; + // <operator-name> ::= ?_6 # ^= + case OO_CaretEqual: Out << "?_6"; break; + // ?_7 # vftable + // ?_8 # vbtable + // ?_9 # vcall + // ?_A # typeof + // ?_B # local static guard + // ?_C # string + // ?_D # vbase destructor + // ?_E # vector deleting destructor + // ?_F # default constructor closure + // ?_G # scalar deleting destructor + // ?_H # vector constructor iterator + // ?_I # vector destructor iterator + // ?_J # vector vbase constructor iterator + // ?_K # virtual displacement map + // ?_L # eh vector constructor iterator + // ?_M # eh vector destructor iterator + // ?_N # eh vector vbase constructor iterator + // ?_O # copy constructor closure + // ?_P<name> # udt returning <name> + // ?_Q # <unknown> + // ?_R0 # RTTI Type Descriptor + // ?_R1 # RTTI Base Class Descriptor at (a,b,c,d) + // ?_R2 # RTTI Base Class Array + // ?_R3 # RTTI Class Hierarchy Descriptor + // ?_R4 # RTTI Complete Object Locator + // ?_S # local vftable + // ?_T # local vftable constructor closure + // <operator-name> ::= ?_U # new[] + case OO_Array_New: Out << "?_U"; break; + // <operator-name> ::= ?_V # delete[] + case OO_Array_Delete: Out << "?_V"; break; + + case OO_Conditional: { + DiagnosticsEngine &Diags = Context.getDiags(); + unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, + "cannot mangle this conditional operator yet"); + Diags.Report(Loc, DiagID); + break; + } + + case OO_None: + case NUM_OVERLOADED_OPERATORS: + llvm_unreachable("Not an overloaded operator"); + } +} + +void MicrosoftCXXNameMangler::mangleSourceName(StringRef Name) { + // <source name> ::= <identifier> @ + BackRefMap::iterator Found; + if (UseNameBackReferences) + Found = NameBackReferences.find(Name); + if (!UseNameBackReferences || Found == NameBackReferences.end()) { + Out << Name << '@'; + if (UseNameBackReferences && NameBackReferences.size() < 10) { + size_t Size = NameBackReferences.size(); + NameBackReferences[Name] = Size; + } + } else { + Out << Found->second; + } +} + +void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) { + Context.mangleObjCMethodName(MD, Out); +} + +// Find out how many function decls live above this one and return an integer +// suitable for use as the number in a numbered anonymous scope. +// TODO: Memoize. +static unsigned getLocalNestingLevel(const FunctionDecl *FD) { + const DeclContext *DC = FD->getParent(); + int level = 1; + + while (DC && !DC->isTranslationUnit()) { + if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) level++; + DC = DC->getParent(); + } + + return 2*level; +} + +void MicrosoftCXXNameMangler::mangleLocalName(const FunctionDecl *FD) { + // <nested-name> ::= <numbered-anonymous-scope> ? <mangled-name> + // <numbered-anonymous-scope> ::= ? <number> + // Even though the name is rendered in reverse order (e.g. + // A::B::C is rendered as C@B@A), VC numbers the scopes from outermost to + // innermost. So a method bar in class C local to function foo gets mangled + // as something like: + // ?bar@C@?1??foo@@YAXXZ@QAEXXZ + // This is more apparent when you have a type nested inside a method of a + // type nested inside a function. A method baz in class D local to method + // bar of class C local to function foo gets mangled as: + // ?baz@D@?3??bar@C@?1??foo@@YAXXZ@QAEXXZ@QAEXXZ + // This scheme is general enough to support GCC-style nested + // functions. You could have a method baz of class C inside a function bar + // inside a function foo, like so: + // ?baz@C@?3??bar@?1??foo@@YAXXZ@YAXXZ@QAEXXZ + unsigned NestLevel = getLocalNestingLevel(FD); + Out << '?'; + mangleNumber(NestLevel); + Out << '?'; + mangle(FD, "?"); +} + +void MicrosoftCXXNameMangler::mangleTemplateInstantiationName( + const TemplateDecl *TD, + const TemplateArgumentList &TemplateArgs) { + // <template-name> ::= <unscoped-template-name> <template-args> + // ::= <substitution> + // Always start with the unqualified name. + + // Templates have their own context for back references. + ArgBackRefMap OuterArgsContext; + BackRefMap OuterTemplateContext; + NameBackReferences.swap(OuterTemplateContext); + TypeBackReferences.swap(OuterArgsContext); + + mangleUnscopedTemplateName(TD); + mangleTemplateArgs(TD, TemplateArgs); + + // Restore the previous back reference contexts. + NameBackReferences.swap(OuterTemplateContext); + TypeBackReferences.swap(OuterArgsContext); +} + +void +MicrosoftCXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *TD) { + // <unscoped-template-name> ::= ?$ <unqualified-name> + Out << "?$"; + mangleUnqualifiedName(TD); +} + +void +MicrosoftCXXNameMangler::mangleIntegerLiteral(const llvm::APSInt &Value, + bool IsBoolean) { + // <integer-literal> ::= $0 <number> + Out << "$0"; + // Make sure booleans are encoded as 0/1. + if (IsBoolean && Value.getBoolValue()) + mangleNumber(1); + else + mangleNumber(Value.getSExtValue()); +} + +void +MicrosoftCXXNameMangler::mangleExpression(const Expr *E) { + // See if this is a constant expression. + llvm::APSInt Value; + if (E->isIntegerConstantExpr(Value, Context.getASTContext())) { + mangleIntegerLiteral(Value, E->getType()->isBooleanType()); + return; + } + + const CXXUuidofExpr *UE = 0; + if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { + if (UO->getOpcode() == UO_AddrOf) + UE = dyn_cast<CXXUuidofExpr>(UO->getSubExpr()); + } else + UE = dyn_cast<CXXUuidofExpr>(E); + + if (UE) { + // This CXXUuidofExpr is mangled as-if it were actually a VarDecl from + // const __s_GUID _GUID_{lower case UUID with underscores} + StringRef Uuid = UE->getUuidAsStringRef(Context.getASTContext()); + std::string Name = "_GUID_" + Uuid.lower(); + std::replace(Name.begin(), Name.end(), '-', '_'); + + // If we had to peek through an address-of operator, treat this like we are + // dealing with a pointer type. Otherwise, treat it like a const reference. + // + // N.B. This matches up with the handling of TemplateArgument::Declaration + // in mangleTemplateArg + if (UE == E) + Out << "$E?"; + else + Out << "$1?"; + Out << Name << "@@3U__s_GUID@@B"; + return; + } + + // As bad as this diagnostic is, it's better than crashing. + DiagnosticsEngine &Diags = Context.getDiags(); + unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, + "cannot yet mangle expression type %0"); + Diags.Report(E->getExprLoc(), DiagID) + << E->getStmtClassName() << E->getSourceRange(); +} + +void +MicrosoftCXXNameMangler::mangleTemplateArgs(const TemplateDecl *TD, + const TemplateArgumentList &TemplateArgs) { + // <template-args> ::= {<type> | <integer-literal>}+ @ + unsigned NumTemplateArgs = TemplateArgs.size(); + for (unsigned i = 0; i < NumTemplateArgs; ++i) { + const TemplateArgument &TA = TemplateArgs[i]; + mangleTemplateArg(TD, TA); + } + Out << '@'; +} + +void MicrosoftCXXNameMangler::mangleTemplateArg(const TemplateDecl *TD, + const TemplateArgument &TA) { + switch (TA.getKind()) { + case TemplateArgument::Null: + llvm_unreachable("Can't mangle null template arguments!"); + case TemplateArgument::TemplateExpansion: + llvm_unreachable("Can't mangle template expansion arguments!"); + case TemplateArgument::Type: { + QualType T = TA.getAsType(); + mangleType(T, SourceRange(), QMM_Escape); + break; + } + case TemplateArgument::Declaration: { + const NamedDecl *ND = cast<NamedDecl>(TA.getAsDecl()); + mangle(ND, TA.isDeclForReferenceParam() ? "$E?" : "$1?"); + break; + } + case TemplateArgument::Integral: + mangleIntegerLiteral(TA.getAsIntegral(), + TA.getIntegralType()->isBooleanType()); + break; + case TemplateArgument::NullPtr: + Out << "$0A@"; + break; + case TemplateArgument::Expression: + mangleExpression(TA.getAsExpr()); + break; + case TemplateArgument::Pack: + // Unlike Itanium, there is no character code to indicate an argument pack. + for (TemplateArgument::pack_iterator I = TA.pack_begin(), E = TA.pack_end(); + I != E; ++I) + mangleTemplateArg(TD, *I); + break; + case TemplateArgument::Template: + mangleType(cast<TagDecl>( + TA.getAsTemplate().getAsTemplateDecl()->getTemplatedDecl())); + break; + } +} + +void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals, + bool IsMember) { + // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers> + // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only); + // 'I' means __restrict (32/64-bit). + // Note that the MSVC __restrict keyword isn't the same as the C99 restrict + // keyword! + // <base-cvr-qualifiers> ::= A # near + // ::= B # near const + // ::= C # near volatile + // ::= D # near const volatile + // ::= E # far (16-bit) + // ::= F # far const (16-bit) + // ::= G # far volatile (16-bit) + // ::= H # far const volatile (16-bit) + // ::= I # huge (16-bit) + // ::= J # huge const (16-bit) + // ::= K # huge volatile (16-bit) + // ::= L # huge const volatile (16-bit) + // ::= M <basis> # based + // ::= N <basis> # based const + // ::= O <basis> # based volatile + // ::= P <basis> # based const volatile + // ::= Q # near member + // ::= R # near const member + // ::= S # near volatile member + // ::= T # near const volatile member + // ::= U # far member (16-bit) + // ::= V # far const member (16-bit) + // ::= W # far volatile member (16-bit) + // ::= X # far const volatile member (16-bit) + // ::= Y # huge member (16-bit) + // ::= Z # huge const member (16-bit) + // ::= 0 # huge volatile member (16-bit) + // ::= 1 # huge const volatile member (16-bit) + // ::= 2 <basis> # based member + // ::= 3 <basis> # based const member + // ::= 4 <basis> # based volatile member + // ::= 5 <basis> # based const volatile member + // ::= 6 # near function (pointers only) + // ::= 7 # far function (pointers only) + // ::= 8 # near method (pointers only) + // ::= 9 # far method (pointers only) + // ::= _A <basis> # based function (pointers only) + // ::= _B <basis> # based function (far?) (pointers only) + // ::= _C <basis> # based method (pointers only) + // ::= _D <basis> # based method (far?) (pointers only) + // ::= _E # block (Clang) + // <basis> ::= 0 # __based(void) + // ::= 1 # __based(segment)? + // ::= 2 <name> # __based(name) + // ::= 3 # ? + // ::= 4 # ? + // ::= 5 # not really based + bool HasConst = Quals.hasConst(), + HasVolatile = Quals.hasVolatile(); + + if (!IsMember) { + if (HasConst && HasVolatile) { + Out << 'D'; + } else if (HasVolatile) { + Out << 'C'; + } else if (HasConst) { + Out << 'B'; + } else { + Out << 'A'; + } + } else { + if (HasConst && HasVolatile) { + Out << 'T'; + } else if (HasVolatile) { + Out << 'S'; + } else if (HasConst) { + Out << 'R'; + } else { + Out << 'Q'; + } + } + + // FIXME: For now, just drop all extension qualifiers on the floor. +} + +void MicrosoftCXXNameMangler::manglePointerQualifiers(Qualifiers Quals) { + // <pointer-cvr-qualifiers> ::= P # no qualifiers + // ::= Q # const + // ::= R # volatile + // ::= S # const volatile + bool HasConst = Quals.hasConst(), + HasVolatile = Quals.hasVolatile(); + if (HasConst && HasVolatile) { + Out << 'S'; + } else if (HasVolatile) { + Out << 'R'; + } else if (HasConst) { + Out << 'Q'; + } else { + Out << 'P'; + } +} + +void MicrosoftCXXNameMangler::mangleArgumentType(QualType T, + SourceRange Range) { + // MSVC will backreference two canonically equivalent types that have slightly + // different manglings when mangled alone. + + // Decayed types do not match up with non-decayed versions of the same type. + // + // e.g. + // void (*x)(void) will not form a backreference with void x(void) + void *TypePtr; + if (const DecayedType *DT = T->getAs<DecayedType>()) { + TypePtr = DT->getOriginalType().getCanonicalType().getAsOpaquePtr(); + // If the original parameter was textually written as an array, + // instead treat the decayed parameter like it's const. + // + // e.g. + // int [] -> int * const + if (DT->getOriginalType()->isArrayType()) + T = T.withConst(); + } else + TypePtr = T.getCanonicalType().getAsOpaquePtr(); + + ArgBackRefMap::iterator Found = TypeBackReferences.find(TypePtr); + + if (Found == TypeBackReferences.end()) { + size_t OutSizeBefore = Out.GetNumBytesInBuffer(); + + mangleType(T, Range, QMM_Drop); + + // See if it's worth creating a back reference. + // Only types longer than 1 character are considered + // and only 10 back references slots are available: + bool LongerThanOneChar = (Out.GetNumBytesInBuffer() - OutSizeBefore > 1); + if (LongerThanOneChar && TypeBackReferences.size() < 10) { + size_t Size = TypeBackReferences.size(); + TypeBackReferences[TypePtr] = Size; + } + } else { + Out << Found->second; + } +} + +void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range, + QualifierMangleMode QMM) { + // Don't use the canonical types. MSVC includes things like 'const' on + // pointer arguments to function pointers that canonicalization strips away. + T = T.getDesugaredType(getASTContext()); + Qualifiers Quals = T.getLocalQualifiers(); + if (const ArrayType *AT = getASTContext().getAsArrayType(T)) { + // If there were any Quals, getAsArrayType() pushed them onto the array + // element type. + if (QMM == QMM_Mangle) + Out << 'A'; + else if (QMM == QMM_Escape || QMM == QMM_Result) + Out << "$$B"; + mangleArrayType(AT); + return; + } + + bool IsPointer = T->isAnyPointerType() || T->isMemberPointerType() || + T->isBlockPointerType(); + + switch (QMM) { + case QMM_Drop: + break; + case QMM_Mangle: + if (const FunctionType *FT = dyn_cast<FunctionType>(T)) { + Out << '6'; + mangleFunctionType(FT); + return; + } + mangleQualifiers(Quals, false); + break; + case QMM_Escape: + if (!IsPointer && Quals) { + Out << "$$C"; + mangleQualifiers(Quals, false); + } + break; + case QMM_Result: + if ((!IsPointer && Quals) || isa<TagType>(T)) { + Out << '?'; + mangleQualifiers(Quals, false); + } + break; + } + + // We have to mangle these now, while we still have enough information. + if (IsPointer) + manglePointerQualifiers(Quals); + const Type *ty = T.getTypePtr(); + + switch (ty->getTypeClass()) { +#define ABSTRACT_TYPE(CLASS, PARENT) +#define NON_CANONICAL_TYPE(CLASS, PARENT) \ + case Type::CLASS: \ + llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \ + return; +#define TYPE(CLASS, PARENT) \ + case Type::CLASS: \ + mangleType(cast<CLASS##Type>(ty), Range); \ + break; +#include "clang/AST/TypeNodes.def" +#undef ABSTRACT_TYPE +#undef NON_CANONICAL_TYPE +#undef TYPE + } +} + +void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T, + SourceRange Range) { + // <type> ::= <builtin-type> + // <builtin-type> ::= X # void + // ::= C # signed char + // ::= D # char + // ::= E # unsigned char + // ::= F # short + // ::= G # unsigned short (or wchar_t if it's not a builtin) + // ::= H # int + // ::= I # unsigned int + // ::= J # long + // ::= K # unsigned long + // L # <none> + // ::= M # float + // ::= N # double + // ::= O # long double (__float80 is mangled differently) + // ::= _J # long long, __int64 + // ::= _K # unsigned long long, __int64 + // ::= _L # __int128 + // ::= _M # unsigned __int128 + // ::= _N # bool + // _O # <array in parameter> + // ::= _T # __float80 (Intel) + // ::= _W # wchar_t + // ::= _Z # __float80 (Digital Mars) + switch (T->getKind()) { + case BuiltinType::Void: Out << 'X'; break; + case BuiltinType::SChar: Out << 'C'; break; + case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'D'; break; + case BuiltinType::UChar: Out << 'E'; break; + case BuiltinType::Short: Out << 'F'; break; + case BuiltinType::UShort: Out << 'G'; break; + case BuiltinType::Int: Out << 'H'; break; + case BuiltinType::UInt: Out << 'I'; break; + case BuiltinType::Long: Out << 'J'; break; + case BuiltinType::ULong: Out << 'K'; break; + case BuiltinType::Float: Out << 'M'; break; + case BuiltinType::Double: Out << 'N'; break; + // TODO: Determine size and mangle accordingly + case BuiltinType::LongDouble: Out << 'O'; break; + case BuiltinType::LongLong: Out << "_J"; break; + case BuiltinType::ULongLong: Out << "_K"; break; + case BuiltinType::Int128: Out << "_L"; break; + case BuiltinType::UInt128: Out << "_M"; break; + case BuiltinType::Bool: Out << "_N"; break; + case BuiltinType::WChar_S: + case BuiltinType::WChar_U: Out << "_W"; break; + +#define BUILTIN_TYPE(Id, SingletonId) +#define PLACEHOLDER_TYPE(Id, SingletonId) \ + case BuiltinType::Id: +#include "clang/AST/BuiltinTypes.def" + case BuiltinType::Dependent: + llvm_unreachable("placeholder types shouldn't get to name mangling"); + + case BuiltinType::ObjCId: Out << "PAUobjc_object@@"; break; + case BuiltinType::ObjCClass: Out << "PAUobjc_class@@"; break; + case BuiltinType::ObjCSel: Out << "PAUobjc_selector@@"; break; + + case BuiltinType::OCLImage1d: Out << "PAUocl_image1d@@"; break; + case BuiltinType::OCLImage1dArray: Out << "PAUocl_image1darray@@"; break; + case BuiltinType::OCLImage1dBuffer: Out << "PAUocl_image1dbuffer@@"; break; + case BuiltinType::OCLImage2d: Out << "PAUocl_image2d@@"; break; + case BuiltinType::OCLImage2dArray: Out << "PAUocl_image2darray@@"; break; + case BuiltinType::OCLImage3d: Out << "PAUocl_image3d@@"; break; + case BuiltinType::OCLSampler: Out << "PAUocl_sampler@@"; break; + case BuiltinType::OCLEvent: Out << "PAUocl_event@@"; break; + + case BuiltinType::NullPtr: Out << "$$T"; break; + + case BuiltinType::Char16: + case BuiltinType::Char32: + case BuiltinType::Half: { + DiagnosticsEngine &Diags = Context.getDiags(); + unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, + "cannot mangle this built-in %0 type yet"); + Diags.Report(Range.getBegin(), DiagID) + << T->getName(Context.getASTContext().getPrintingPolicy()) + << Range; + break; + } + } +} + +// <type> ::= <function-type> +void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T, + SourceRange) { + // Structors only appear in decls, so at this point we know it's not a + // structor type. + // FIXME: This may not be lambda-friendly. + Out << "$$A6"; + mangleFunctionType(T); +} +void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T, + SourceRange) { + llvm_unreachable("Can't mangle K&R function prototypes"); +} + +void MicrosoftCXXNameMangler::mangleFunctionType(const FunctionType *T, + const FunctionDecl *D, + bool ForceInstMethod) { + // <function-type> ::= <this-cvr-qualifiers> <calling-convention> + // <return-type> <argument-list> <throw-spec> + const FunctionProtoType *Proto = cast<FunctionProtoType>(T); + + SourceRange Range; + if (D) Range = D->getSourceRange(); + + bool IsStructor = false, IsInstMethod = ForceInstMethod; + if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(D)) { + if (MD->isInstance()) + IsInstMethod = true; + if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) + IsStructor = true; + } + + // If this is a C++ instance method, mangle the CVR qualifiers for the + // this pointer. + if (IsInstMethod) { + if (PointersAre64Bit) + Out << 'E'; + mangleQualifiers(Qualifiers::fromCVRMask(Proto->getTypeQuals()), false); + } + + mangleCallingConvention(T); + + // <return-type> ::= <type> + // ::= @ # structors (they have no declared return type) + if (IsStructor) { + if (isa<CXXDestructorDecl>(D) && D == Structor && + StructorType == Dtor_Deleting) { + // The scalar deleting destructor takes an extra int argument. + // However, the FunctionType generated has 0 arguments. + // FIXME: This is a temporary hack. + // Maybe should fix the FunctionType creation instead? + Out << (PointersAre64Bit ? "PEAXI@Z" : "PAXI@Z"); + return; + } + Out << '@'; + } else { + QualType ResultType = Proto->getResultType(); + if (ResultType->isVoidType()) + ResultType = ResultType.getUnqualifiedType(); + mangleType(ResultType, Range, QMM_Result); + } + + // <argument-list> ::= X # void + // ::= <type>+ @ + // ::= <type>* Z # varargs + if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) { + Out << 'X'; + } else { + // Happens for function pointer type arguments for example. + for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(), + ArgEnd = Proto->arg_type_end(); + Arg != ArgEnd; ++Arg) + mangleArgumentType(*Arg, Range); + // <builtin-type> ::= Z # ellipsis + if (Proto->isVariadic()) + Out << 'Z'; + else + Out << '@'; + } + + mangleThrowSpecification(Proto); +} + +void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) { + // <function-class> ::= <member-function> E? # E designates a 64-bit 'this' + // # pointer. in 64-bit mode *all* + // # 'this' pointers are 64-bit. + // ::= <global-function> + // <member-function> ::= A # private: near + // ::= B # private: far + // ::= C # private: static near + // ::= D # private: static far + // ::= E # private: virtual near + // ::= F # private: virtual far + // ::= I # protected: near + // ::= J # protected: far + // ::= K # protected: static near + // ::= L # protected: static far + // ::= M # protected: virtual near + // ::= N # protected: virtual far + // ::= Q # public: near + // ::= R # public: far + // ::= S # public: static near + // ::= T # public: static far + // ::= U # public: virtual near + // ::= V # public: virtual far + // <global-function> ::= Y # global near + // ::= Z # global far + if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { + switch (MD->getAccess()) { + case AS_none: + llvm_unreachable("Unsupported access specifier"); + case AS_private: + if (MD->isStatic()) + Out << 'C'; + else if (MD->isVirtual()) + Out << 'E'; + else + Out << 'A'; + break; + case AS_protected: + if (MD->isStatic()) + Out << 'K'; + else if (MD->isVirtual()) + Out << 'M'; + else + Out << 'I'; + break; + case AS_public: + if (MD->isStatic()) + Out << 'S'; + else if (MD->isVirtual()) + Out << 'U'; + else + Out << 'Q'; + } + } else + Out << 'Y'; +} +void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T) { + // <calling-convention> ::= A # __cdecl + // ::= B # __export __cdecl + // ::= C # __pascal + // ::= D # __export __pascal + // ::= E # __thiscall + // ::= F # __export __thiscall + // ::= G # __stdcall + // ::= H # __export __stdcall + // ::= I # __fastcall + // ::= J # __export __fastcall + // The 'export' calling conventions are from a bygone era + // (*cough*Win16*cough*) when functions were declared for export with + // that keyword. (It didn't actually export them, it just made them so + // that they could be in a DLL and somebody from another module could call + // them.) + CallingConv CC = T->getCallConv(); + switch (CC) { + default: + llvm_unreachable("Unsupported CC for mangling"); + case CC_X86_64Win64: + case CC_X86_64SysV: + case CC_C: Out << 'A'; break; + case CC_X86Pascal: Out << 'C'; break; + case CC_X86ThisCall: Out << 'E'; break; + case CC_X86StdCall: Out << 'G'; break; + case CC_X86FastCall: Out << 'I'; break; + } +} +void MicrosoftCXXNameMangler::mangleThrowSpecification( + const FunctionProtoType *FT) { + // <throw-spec> ::= Z # throw(...) (default) + // ::= @ # throw() or __declspec/__attribute__((nothrow)) + // ::= <type>+ + // NOTE: Since the Microsoft compiler ignores throw specifications, they are + // all actually mangled as 'Z'. (They're ignored because their associated + // functionality isn't implemented, and probably never will be.) + Out << 'Z'; +} + +void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T, + SourceRange Range) { + // Probably should be mangled as a template instantiation; need to see what + // VC does first. + DiagnosticsEngine &Diags = Context.getDiags(); + unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, + "cannot mangle this unresolved dependent type yet"); + Diags.Report(Range.getBegin(), DiagID) + << Range; +} + +// <type> ::= <union-type> | <struct-type> | <class-type> | <enum-type> +// <union-type> ::= T <name> +// <struct-type> ::= U <name> +// <class-type> ::= V <name> +// <enum-type> ::= W <size> <name> +void MicrosoftCXXNameMangler::mangleType(const EnumType *T, SourceRange) { + mangleType(cast<TagType>(T)->getDecl()); +} +void MicrosoftCXXNameMangler::mangleType(const RecordType *T, SourceRange) { + mangleType(cast<TagType>(T)->getDecl()); +} +void MicrosoftCXXNameMangler::mangleType(const TagDecl *TD) { + switch (TD->getTagKind()) { + case TTK_Union: + Out << 'T'; + break; + case TTK_Struct: + case TTK_Interface: + Out << 'U'; + break; + case TTK_Class: + Out << 'V'; + break; + case TTK_Enum: + Out << 'W'; + Out << getASTContext().getTypeSizeInChars( + cast<EnumDecl>(TD)->getIntegerType()).getQuantity(); + break; + } + mangleName(TD); +} + +// <type> ::= <array-type> +// <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers> +// [Y <dimension-count> <dimension>+] +// <element-type> # as global, E is never required +// It's supposed to be the other way around, but for some strange reason, it +// isn't. Today this behavior is retained for the sole purpose of backwards +// compatibility. +void MicrosoftCXXNameMangler::mangleDecayedArrayType(const ArrayType *T) { + // This isn't a recursive mangling, so now we have to do it all in this + // one call. + manglePointerQualifiers(T->getElementType().getQualifiers()); + mangleType(T->getElementType(), SourceRange()); +} +void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T, + SourceRange) { + llvm_unreachable("Should have been special cased"); +} +void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T, + SourceRange) { + llvm_unreachable("Should have been special cased"); +} +void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T, + SourceRange) { + llvm_unreachable("Should have been special cased"); +} +void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T, + SourceRange) { + llvm_unreachable("Should have been special cased"); +} +void MicrosoftCXXNameMangler::mangleArrayType(const ArrayType *T) { + QualType ElementTy(T, 0); + SmallVector<llvm::APInt, 3> Dimensions; + for (;;) { + if (const ConstantArrayType *CAT = + getASTContext().getAsConstantArrayType(ElementTy)) { + Dimensions.push_back(CAT->getSize()); + ElementTy = CAT->getElementType(); + } else if (ElementTy->isVariableArrayType()) { + const VariableArrayType *VAT = + getASTContext().getAsVariableArrayType(ElementTy); + DiagnosticsEngine &Diags = Context.getDiags(); + unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, + "cannot mangle this variable-length array yet"); + Diags.Report(VAT->getSizeExpr()->getExprLoc(), DiagID) + << VAT->getBracketsRange(); + return; + } else if (ElementTy->isDependentSizedArrayType()) { + // The dependent expression has to be folded into a constant (TODO). + const DependentSizedArrayType *DSAT = + getASTContext().getAsDependentSizedArrayType(ElementTy); + DiagnosticsEngine &Diags = Context.getDiags(); + unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, + "cannot mangle this dependent-length array yet"); + Diags.Report(DSAT->getSizeExpr()->getExprLoc(), DiagID) + << DSAT->getBracketsRange(); + return; + } else if (const IncompleteArrayType *IAT = + getASTContext().getAsIncompleteArrayType(ElementTy)) { + Dimensions.push_back(llvm::APInt(32, 0)); + ElementTy = IAT->getElementType(); + } + else break; + } + Out << 'Y'; + // <dimension-count> ::= <number> # number of extra dimensions + mangleNumber(Dimensions.size()); + for (unsigned Dim = 0; Dim < Dimensions.size(); ++Dim) + mangleNumber(Dimensions[Dim].getLimitedValue()); + mangleType(ElementTy, SourceRange(), QMM_Escape); +} + +// <type> ::= <pointer-to-member-type> +// <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers> +// <class name> <type> +void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T, + SourceRange Range) { + QualType PointeeType = T->getPointeeType(); + if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) { + Out << '8'; + mangleName(T->getClass()->castAs<RecordType>()->getDecl()); + mangleFunctionType(FPT, 0, true); + } else { + if (PointersAre64Bit && !T->getPointeeType()->isFunctionType()) + Out << 'E'; + mangleQualifiers(PointeeType.getQualifiers(), true); + mangleName(T->getClass()->castAs<RecordType>()->getDecl()); + mangleType(PointeeType, Range, QMM_Drop); + } +} + +void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T, + SourceRange Range) { + DiagnosticsEngine &Diags = Context.getDiags(); + unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, + "cannot mangle this template type parameter type yet"); + Diags.Report(Range.getBegin(), DiagID) + << Range; +} + +void MicrosoftCXXNameMangler::mangleType( + const SubstTemplateTypeParmPackType *T, + SourceRange Range) { + DiagnosticsEngine &Diags = Context.getDiags(); + unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, + "cannot mangle this substituted parameter pack yet"); + Diags.Report(Range.getBegin(), DiagID) + << Range; +} + +// <type> ::= <pointer-type> +// <pointer-type> ::= E? <pointer-cvr-qualifiers> <cvr-qualifiers> <type> +// # the E is required for 64-bit non static pointers +void MicrosoftCXXNameMangler::mangleType(const PointerType *T, + SourceRange Range) { + QualType PointeeTy = T->getPointeeType(); + if (PointersAre64Bit && !T->getPointeeType()->isFunctionType()) + Out << 'E'; + mangleType(PointeeTy, Range); +} +void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T, + SourceRange Range) { + // Object pointers never have qualifiers. + Out << 'A'; + if (PointersAre64Bit && !T->getPointeeType()->isFunctionType()) + Out << 'E'; + mangleType(T->getPointeeType(), Range); +} + +// <type> ::= <reference-type> +// <reference-type> ::= A E? <cvr-qualifiers> <type> +// # the E is required for 64-bit non static lvalue references +void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T, + SourceRange Range) { + Out << 'A'; + if (PointersAre64Bit && !T->getPointeeType()->isFunctionType()) + Out << 'E'; + mangleType(T->getPointeeType(), Range); +} + +// <type> ::= <r-value-reference-type> +// <r-value-reference-type> ::= $$Q E? <cvr-qualifiers> <type> +// # the E is required for 64-bit non static rvalue references +void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T, + SourceRange Range) { + Out << "$$Q"; + if (PointersAre64Bit && !T->getPointeeType()->isFunctionType()) + Out << 'E'; + mangleType(T->getPointeeType(), Range); +} + +void MicrosoftCXXNameMangler::mangleType(const ComplexType *T, + SourceRange Range) { + DiagnosticsEngine &Diags = Context.getDiags(); + unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, + "cannot mangle this complex number type yet"); + Diags.Report(Range.getBegin(), DiagID) + << Range; +} + +void MicrosoftCXXNameMangler::mangleType(const VectorType *T, + SourceRange Range) { + const BuiltinType *ET = T->getElementType()->getAs<BuiltinType>(); + assert(ET && "vectors with non-builtin elements are unsupported"); + uint64_t Width = getASTContext().getTypeSize(T); + // Pattern match exactly the typedefs in our intrinsic headers. Anything that + // doesn't match the Intel types uses a custom mangling below. + bool IntelVector = true; + if (Width == 64 && ET->getKind() == BuiltinType::LongLong) { + Out << "T__m64"; + } else if (Width == 128 || Width == 256) { + if (ET->getKind() == BuiltinType::Float) + Out << "T__m" << Width; + else if (ET->getKind() == BuiltinType::LongLong) + Out << "T__m" << Width << 'i'; + else if (ET->getKind() == BuiltinType::Double) + Out << "U__m" << Width << 'd'; + else + IntelVector = false; + } else { + IntelVector = false; + } + + if (!IntelVector) { + // The MS ABI doesn't have a special mangling for vector types, so we define + // our own mangling to handle uses of __vector_size__ on user-specified + // types, and for extensions like __v4sf. + Out << "T__clang_vec" << T->getNumElements() << '_'; + mangleType(ET, Range); + } + + Out << "@@"; +} + +void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T, + SourceRange Range) { + DiagnosticsEngine &Diags = Context.getDiags(); + unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, + "cannot mangle this extended vector type yet"); + Diags.Report(Range.getBegin(), DiagID) + << Range; +} +void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T, + SourceRange Range) { + DiagnosticsEngine &Diags = Context.getDiags(); + unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, + "cannot mangle this dependent-sized extended vector type yet"); + Diags.Report(Range.getBegin(), DiagID) + << Range; +} + +void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T, + SourceRange) { + // ObjC interfaces have structs underlying them. + Out << 'U'; + mangleName(T->getDecl()); +} + +void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T, + SourceRange Range) { + // We don't allow overloading by different protocol qualification, + // so mangling them isn't necessary. + mangleType(T->getBaseType(), Range); +} + +void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T, + SourceRange Range) { + Out << "_E"; + + QualType pointee = T->getPointeeType(); + mangleFunctionType(pointee->castAs<FunctionProtoType>()); +} + +void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *, + SourceRange) { + llvm_unreachable("Cannot mangle injected class name type."); +} + +void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T, + SourceRange Range) { + DiagnosticsEngine &Diags = Context.getDiags(); + unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, + "cannot mangle this template specialization type yet"); + Diags.Report(Range.getBegin(), DiagID) + << Range; +} + +void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T, + SourceRange Range) { + DiagnosticsEngine &Diags = Context.getDiags(); + unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, + "cannot mangle this dependent name type yet"); + Diags.Report(Range.getBegin(), DiagID) + << Range; +} + +void MicrosoftCXXNameMangler::mangleType( + const DependentTemplateSpecializationType *T, + SourceRange Range) { + DiagnosticsEngine &Diags = Context.getDiags(); + unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, + "cannot mangle this dependent template specialization type yet"); + Diags.Report(Range.getBegin(), DiagID) + << Range; +} + +void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T, + SourceRange Range) { + DiagnosticsEngine &Diags = Context.getDiags(); + unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, + "cannot mangle this pack expansion yet"); + Diags.Report(Range.getBegin(), DiagID) + << Range; +} + +void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T, + SourceRange Range) { + DiagnosticsEngine &Diags = Context.getDiags(); + unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, + "cannot mangle this typeof(type) yet"); + Diags.Report(Range.getBegin(), DiagID) + << Range; +} + +void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T, + SourceRange Range) { + DiagnosticsEngine &Diags = Context.getDiags(); + unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, + "cannot mangle this typeof(expression) yet"); + Diags.Report(Range.getBegin(), DiagID) + << Range; +} + +void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T, + SourceRange Range) { + DiagnosticsEngine &Diags = Context.getDiags(); + unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, + "cannot mangle this decltype() yet"); + Diags.Report(Range.getBegin(), DiagID) + << Range; +} + +void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T, + SourceRange Range) { + DiagnosticsEngine &Diags = Context.getDiags(); + unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, + "cannot mangle this unary transform type yet"); + Diags.Report(Range.getBegin(), DiagID) + << Range; +} + +void MicrosoftCXXNameMangler::mangleType(const AutoType *T, SourceRange Range) { + DiagnosticsEngine &Diags = Context.getDiags(); + unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, + "cannot mangle this 'auto' type yet"); + Diags.Report(Range.getBegin(), DiagID) + << Range; +} + +void MicrosoftCXXNameMangler::mangleType(const AtomicType *T, + SourceRange Range) { + DiagnosticsEngine &Diags = Context.getDiags(); + unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, + "cannot mangle this C11 atomic type yet"); + Diags.Report(Range.getBegin(), DiagID) + << Range; +} + +void MicrosoftMangleContextImpl::mangleCXXName(const NamedDecl *D, + raw_ostream &Out) { + assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) && + "Invalid mangleName() call, argument is not a variable or function!"); + assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) && + "Invalid mangleName() call on 'structor decl!"); + + PrettyStackTraceDecl CrashInfo(D, SourceLocation(), + getASTContext().getSourceManager(), + "Mangling declaration"); + + MicrosoftCXXNameMangler Mangler(*this, Out); + return Mangler.mangle(D); +} + +// <this-adjustment> ::= <no-adjustment> | <static-adjustment> | +// <virtual-adjustment> +// <no-adjustment> ::= A # private near +// ::= B # private far +// ::= I # protected near +// ::= J # protected far +// ::= Q # public near +// ::= R # public far +// <static-adjustment> ::= G <static-offset> # private near +// ::= H <static-offset> # private far +// ::= O <static-offset> # protected near +// ::= P <static-offset> # protected far +// ::= W <static-offset> # public near +// ::= X <static-offset> # public far +// <virtual-adjustment> ::= $0 <virtual-shift> <static-offset> # private near +// ::= $1 <virtual-shift> <static-offset> # private far +// ::= $2 <virtual-shift> <static-offset> # protected near +// ::= $3 <virtual-shift> <static-offset> # protected far +// ::= $4 <virtual-shift> <static-offset> # public near +// ::= $5 <virtual-shift> <static-offset> # public far +// <virtual-shift> ::= <vtordisp-shift> | <vtordispex-shift> +// <vtordisp-shift> ::= <offset-to-vtordisp> +// <vtordispex-shift> ::= <offset-to-vbptr> <vbase-offset-offset> +// <offset-to-vtordisp> +static void mangleThunkThisAdjustment(const CXXMethodDecl *MD, + const ThisAdjustment &Adjustment, + MicrosoftCXXNameMangler &Mangler, + raw_ostream &Out) { + if (!Adjustment.Virtual.isEmpty()) { + Out << '$'; + char AccessSpec; + switch (MD->getAccess()) { + case AS_none: + llvm_unreachable("Unsupported access specifier"); + case AS_private: + AccessSpec = '0'; + break; + case AS_protected: + AccessSpec = '2'; + break; + case AS_public: + AccessSpec = '4'; + } + if (Adjustment.Virtual.Microsoft.VBPtrOffset) { + Out << 'R' << AccessSpec; + Mangler.mangleNumber( + static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBPtrOffset)); + Mangler.mangleNumber( + static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBOffsetOffset)); + Mangler.mangleNumber( + static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset)); + Mangler.mangleNumber(static_cast<uint32_t>(Adjustment.NonVirtual)); + } else { + Out << AccessSpec; + Mangler.mangleNumber( + static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset)); + Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual)); + } + } else if (Adjustment.NonVirtual != 0) { + switch (MD->getAccess()) { + case AS_none: + llvm_unreachable("Unsupported access specifier"); + case AS_private: + Out << 'G'; + break; + case AS_protected: + Out << 'O'; + break; + case AS_public: + Out << 'W'; + } + Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual)); + } else { + switch (MD->getAccess()) { + case AS_none: + llvm_unreachable("Unsupported access specifier"); + case AS_private: + Out << 'A'; + break; + case AS_protected: + Out << 'I'; + break; + case AS_public: + Out << 'Q'; + } + } +} + +void MicrosoftMangleContextImpl::mangleVirtualMemPtrThunk( + const CXXMethodDecl *MD, uint64_t OffsetInVFTable, raw_ostream &Out) { + bool Is64Bit = getASTContext().getTargetInfo().getPointerWidth(0) == 64; + + MicrosoftCXXNameMangler Mangler(*this, Out); + Mangler.getStream() << "\01??_9"; + Mangler.mangleName(MD->getParent()); + Mangler.getStream() << "$B"; + Mangler.mangleNumber(OffsetInVFTable); + Mangler.getStream() << "A"; + Mangler.getStream() << (Is64Bit ? "A" : "E"); +} + +void MicrosoftMangleContextImpl::mangleThunk(const CXXMethodDecl *MD, + const ThunkInfo &Thunk, + raw_ostream &Out) { + MicrosoftCXXNameMangler Mangler(*this, Out); + Out << "\01?"; + Mangler.mangleName(MD); + mangleThunkThisAdjustment(MD, Thunk.This, Mangler, Out); + if (!Thunk.Return.isEmpty()) + assert(Thunk.Method != 0 && "Thunk info should hold the overridee decl"); + + const CXXMethodDecl *DeclForFPT = Thunk.Method ? Thunk.Method : MD; + Mangler.mangleFunctionType( + DeclForFPT->getType()->castAs<FunctionProtoType>(), MD); +} + +void MicrosoftMangleContextImpl::mangleCXXDtorThunk( + const CXXDestructorDecl *DD, CXXDtorType Type, + const ThisAdjustment &Adjustment, raw_ostream &Out) { + // FIXME: Actually, the dtor thunk should be emitted for vector deleting + // dtors rather than scalar deleting dtors. Just use the vector deleting dtor + // mangling manually until we support both deleting dtor types. + assert(Type == Dtor_Deleting); + MicrosoftCXXNameMangler Mangler(*this, Out, DD, Type); + Out << "\01??_E"; + Mangler.mangleName(DD->getParent()); + mangleThunkThisAdjustment(DD, Adjustment, Mangler, Out); + Mangler.mangleFunctionType(DD->getType()->castAs<FunctionProtoType>(), DD); +} + +void MicrosoftMangleContextImpl::mangleCXXVFTable( + const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath, + raw_ostream &Out) { + // <mangled-name> ::= ?_7 <class-name> <storage-class> + // <cvr-qualifiers> [<name>] @ + // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class> + // is always '6' for vftables. + MicrosoftCXXNameMangler Mangler(*this, Out); + Mangler.getStream() << "\01??_7"; + Mangler.mangleName(Derived); + Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const. + for (ArrayRef<const CXXRecordDecl *>::iterator I = BasePath.begin(), + E = BasePath.end(); + I != E; ++I) { + Mangler.mangleName(*I); + } + Mangler.getStream() << '@'; +} + +void MicrosoftMangleContextImpl::mangleCXXVBTable( + const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath, + raw_ostream &Out) { + // <mangled-name> ::= ?_8 <class-name> <storage-class> + // <cvr-qualifiers> [<name>] @ + // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class> + // is always '7' for vbtables. + MicrosoftCXXNameMangler Mangler(*this, Out); + Mangler.getStream() << "\01??_8"; + Mangler.mangleName(Derived); + Mangler.getStream() << "7B"; // '7' for vbtable, 'B' for const. + for (ArrayRef<const CXXRecordDecl *>::iterator I = BasePath.begin(), + E = BasePath.end(); + I != E; ++I) { + Mangler.mangleName(*I); + } + Mangler.getStream() << '@'; +} + +void MicrosoftMangleContextImpl::mangleCXXRTTI(QualType T, raw_ostream &) { + // FIXME: Give a location... + unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, + "cannot mangle RTTI descriptors for type %0 yet"); + getDiags().Report(DiagID) + << T.getBaseTypeIdentifier(); +} + +void MicrosoftMangleContextImpl::mangleCXXRTTIName(QualType T, raw_ostream &) { + // FIXME: Give a location... + unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, + "cannot mangle the name of type %0 into RTTI descriptors yet"); + getDiags().Report(DiagID) + << T.getBaseTypeIdentifier(); +} + +void MicrosoftMangleContextImpl::mangleTypeName(QualType T, raw_ostream &Out) { + // This is just a made up unique string for the purposes of tbaa. undname + // does *not* know how to demangle it. + MicrosoftCXXNameMangler Mangler(*this, Out); + Mangler.getStream() << '?'; + Mangler.mangleType(T, SourceRange()); +} + +void MicrosoftMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D, + CXXCtorType Type, + raw_ostream &Out) { + MicrosoftCXXNameMangler mangler(*this, Out); + mangler.mangle(D); +} + +void MicrosoftMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D, + CXXDtorType Type, + raw_ostream &Out) { + MicrosoftCXXNameMangler mangler(*this, Out, D, Type); + mangler.mangle(D); +} + +void MicrosoftMangleContextImpl::mangleReferenceTemporary(const VarDecl *VD, + raw_ostream &) { + unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, + "cannot mangle this reference temporary yet"); + getDiags().Report(VD->getLocation(), DiagID); +} + +void MicrosoftMangleContextImpl::mangleStaticGuardVariable(const VarDecl *VD, + raw_ostream &Out) { + // <guard-name> ::= ?_B <postfix> @51 + // ::= ?$S <guard-num> @ <postfix> @4IA + + // The first mangling is what MSVC uses to guard static locals in inline + // functions. It uses a different mangling in external functions to support + // guarding more than 32 variables. MSVC rejects inline functions with more + // than 32 static locals. We don't fully implement the second mangling + // because those guards are not externally visible, and instead use LLVM's + // default renaming when creating a new guard variable. + MicrosoftCXXNameMangler Mangler(*this, Out); + + bool Visible = VD->isExternallyVisible(); + // <operator-name> ::= ?_B # local static guard + Mangler.getStream() << (Visible ? "\01??_B" : "\01?$S1@"); + Mangler.manglePostfix(VD->getDeclContext()); + Mangler.getStream() << (Visible ? "@51" : "@4IA"); +} + +void MicrosoftMangleContextImpl::mangleInitFiniStub(const VarDecl *D, + raw_ostream &Out, + char CharCode) { + MicrosoftCXXNameMangler Mangler(*this, Out); + Mangler.getStream() << "\01??__" << CharCode; + Mangler.mangleName(D); + // This is the function class mangling. These stubs are global, non-variadic, + // cdecl functions that return void and take no args. + Mangler.getStream() << "YAXXZ"; +} + +void MicrosoftMangleContextImpl::mangleDynamicInitializer(const VarDecl *D, + raw_ostream &Out) { + // <initializer-name> ::= ?__E <name> YAXXZ + mangleInitFiniStub(D, Out, 'E'); +} + +void +MicrosoftMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D, + raw_ostream &Out) { + // <destructor-name> ::= ?__F <name> YAXXZ + mangleInitFiniStub(D, Out, 'F'); +} + +MicrosoftMangleContext * +MicrosoftMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) { + return new MicrosoftMangleContextImpl(Context, Diags); +} |