summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/AST/MicrosoftMangle.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/AST/MicrosoftMangle.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/AST/MicrosoftMangle.cpp2098
1 files changed, 2098 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/AST/MicrosoftMangle.cpp b/contrib/llvm/tools/clang/lib/AST/MicrosoftMangle.cpp
new file mode 100644
index 0000000..5256501
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/MicrosoftMangle.cpp
@@ -0,0 +1,2098 @@
+//===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This provides C++ name mangling targeting the Microsoft Visual C++ ABI.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/Mangle.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/CharUnits.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/Basic/ABI.h"
+#include "clang/Basic/DiagnosticOptions.h"
+#include "clang/Basic/TargetInfo.h"
+#include "llvm/ADT/StringMap.h"
+
+using namespace clang;
+
+namespace {
+
+/// \brief Retrieve the declaration context that should be used when mangling
+/// the given declaration.
+static const DeclContext *getEffectiveDeclContext(const Decl *D) {
+ // The ABI assumes that lambda closure types that occur within
+ // default arguments live in the context of the function. However, due to
+ // the way in which Clang parses and creates function declarations, this is
+ // not the case: the lambda closure type ends up living in the context
+ // where the function itself resides, because the function declaration itself
+ // had not yet been created. Fix the context here.
+ if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
+ if (RD->isLambda())
+ if (ParmVarDecl *ContextParam =
+ dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
+ return ContextParam->getDeclContext();
+ }
+
+ // Perform the same check for block literals.
+ if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
+ if (ParmVarDecl *ContextParam =
+ dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
+ return ContextParam->getDeclContext();
+ }
+
+ const DeclContext *DC = D->getDeclContext();
+ if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(DC))
+ return getEffectiveDeclContext(CD);
+
+ return DC;
+}
+
+static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
+ return getEffectiveDeclContext(cast<Decl>(DC));
+}
+
+static const FunctionDecl *getStructor(const FunctionDecl *fn) {
+ if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
+ return ftd->getTemplatedDecl();
+
+ return fn;
+}
+
+/// MicrosoftCXXNameMangler - Manage the mangling of a single name for the
+/// Microsoft Visual C++ ABI.
+class MicrosoftCXXNameMangler {
+ MangleContext &Context;
+ raw_ostream &Out;
+
+ /// The "structor" is the top-level declaration being mangled, if
+ /// that's not a template specialization; otherwise it's the pattern
+ /// for that specialization.
+ const NamedDecl *Structor;
+ unsigned StructorType;
+
+ typedef llvm::StringMap<unsigned> BackRefMap;
+ BackRefMap NameBackReferences;
+ bool UseNameBackReferences;
+
+ typedef llvm::DenseMap<void*, unsigned> ArgBackRefMap;
+ ArgBackRefMap TypeBackReferences;
+
+ ASTContext &getASTContext() const { return Context.getASTContext(); }
+
+ // FIXME: If we add support for __ptr32/64 qualifiers, then we should push
+ // this check into mangleQualifiers().
+ const bool PointersAre64Bit;
+
+public:
+ enum QualifierMangleMode { QMM_Drop, QMM_Mangle, QMM_Escape, QMM_Result };
+
+ MicrosoftCXXNameMangler(MangleContext &C, raw_ostream &Out_)
+ : Context(C), Out(Out_),
+ Structor(0), StructorType(-1),
+ UseNameBackReferences(true),
+ PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
+ 64) { }
+
+ MicrosoftCXXNameMangler(MangleContext &C, raw_ostream &Out_,
+ const CXXDestructorDecl *D, CXXDtorType Type)
+ : Context(C), Out(Out_),
+ Structor(getStructor(D)), StructorType(Type),
+ UseNameBackReferences(true),
+ PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
+ 64) { }
+
+ raw_ostream &getStream() const { return Out; }
+
+ void mangle(const NamedDecl *D, StringRef Prefix = "\01?");
+ void mangleName(const NamedDecl *ND);
+ void mangleDeclaration(const NamedDecl *ND);
+ void mangleFunctionEncoding(const FunctionDecl *FD);
+ void mangleVariableEncoding(const VarDecl *VD);
+ void mangleNumber(int64_t Number);
+ void mangleType(QualType T, SourceRange Range,
+ QualifierMangleMode QMM = QMM_Mangle);
+ void mangleFunctionType(const FunctionType *T, const FunctionDecl *D = 0,
+ bool ForceInstMethod = false);
+ void manglePostfix(const DeclContext *DC, bool NoFunction = false);
+
+private:
+ void disableBackReferences() { UseNameBackReferences = false; }
+ void mangleUnqualifiedName(const NamedDecl *ND) {
+ mangleUnqualifiedName(ND, ND->getDeclName());
+ }
+ void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name);
+ void mangleSourceName(StringRef Name);
+ void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc);
+ void mangleCXXDtorType(CXXDtorType T);
+ void mangleQualifiers(Qualifiers Quals, bool IsMember);
+ void manglePointerQualifiers(Qualifiers Quals);
+
+ void mangleUnscopedTemplateName(const TemplateDecl *ND);
+ void mangleTemplateInstantiationName(const TemplateDecl *TD,
+ const TemplateArgumentList &TemplateArgs);
+ void mangleObjCMethodName(const ObjCMethodDecl *MD);
+ void mangleLocalName(const FunctionDecl *FD);
+
+ void mangleArgumentType(QualType T, SourceRange Range);
+
+ // Declare manglers for every type class.
+#define ABSTRACT_TYPE(CLASS, PARENT)
+#define NON_CANONICAL_TYPE(CLASS, PARENT)
+#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \
+ SourceRange Range);
+#include "clang/AST/TypeNodes.def"
+#undef ABSTRACT_TYPE
+#undef NON_CANONICAL_TYPE
+#undef TYPE
+
+ void mangleType(const TagDecl *TD);
+ void mangleDecayedArrayType(const ArrayType *T);
+ void mangleArrayType(const ArrayType *T);
+ void mangleFunctionClass(const FunctionDecl *FD);
+ void mangleCallingConvention(const FunctionType *T);
+ void mangleIntegerLiteral(const llvm::APSInt &Number, bool IsBoolean);
+ void mangleExpression(const Expr *E);
+ void mangleThrowSpecification(const FunctionProtoType *T);
+
+ void mangleTemplateArgs(const TemplateDecl *TD,
+ const TemplateArgumentList &TemplateArgs);
+ void mangleTemplateArg(const TemplateDecl *TD, const TemplateArgument &TA);
+};
+
+/// MicrosoftMangleContextImpl - Overrides the default MangleContext for the
+/// Microsoft Visual C++ ABI.
+class MicrosoftMangleContextImpl : public MicrosoftMangleContext {
+public:
+ MicrosoftMangleContextImpl(ASTContext &Context, DiagnosticsEngine &Diags)
+ : MicrosoftMangleContext(Context, Diags) {}
+ virtual bool shouldMangleCXXName(const NamedDecl *D);
+ virtual void mangleCXXName(const NamedDecl *D, raw_ostream &Out);
+ virtual void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
+ uint64_t OffsetInVFTable,
+ raw_ostream &);
+ virtual void mangleThunk(const CXXMethodDecl *MD,
+ const ThunkInfo &Thunk,
+ raw_ostream &);
+ virtual void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
+ const ThisAdjustment &ThisAdjustment,
+ raw_ostream &);
+ virtual void mangleCXXVFTable(const CXXRecordDecl *Derived,
+ ArrayRef<const CXXRecordDecl *> BasePath,
+ raw_ostream &Out);
+ virtual void mangleCXXVBTable(const CXXRecordDecl *Derived,
+ ArrayRef<const CXXRecordDecl *> BasePath,
+ raw_ostream &Out);
+ virtual void mangleCXXRTTI(QualType T, raw_ostream &);
+ virtual void mangleCXXRTTIName(QualType T, raw_ostream &);
+ virtual void mangleTypeName(QualType T, raw_ostream &);
+ virtual void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
+ raw_ostream &);
+ virtual void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
+ raw_ostream &);
+ virtual void mangleReferenceTemporary(const VarDecl *, raw_ostream &);
+ virtual void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &Out);
+ virtual void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out);
+ virtual void mangleDynamicAtExitDestructor(const VarDecl *D,
+ raw_ostream &Out);
+
+private:
+ void mangleInitFiniStub(const VarDecl *D, raw_ostream &Out, char CharCode);
+};
+
+}
+
+bool MicrosoftMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ LanguageLinkage L = FD->getLanguageLinkage();
+ // Overloadable functions need mangling.
+ if (FD->hasAttr<OverloadableAttr>())
+ return true;
+
+ // The ABI expects that we would never mangle "typical" user-defined entry
+ // points regardless of visibility or freestanding-ness.
+ //
+ // N.B. This is distinct from asking about "main". "main" has a lot of
+ // special rules associated with it in the standard while these
+ // user-defined entry points are outside of the purview of the standard.
+ // For example, there can be only one definition for "main" in a standards
+ // compliant program; however nothing forbids the existence of wmain and
+ // WinMain in the same translation unit.
+ if (FD->isMSVCRTEntryPoint())
+ return false;
+
+ // C++ functions and those whose names are not a simple identifier need
+ // mangling.
+ if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
+ return true;
+
+ // C functions are not mangled.
+ if (L == CLanguageLinkage)
+ return false;
+ }
+
+ // Otherwise, no mangling is done outside C++ mode.
+ if (!getASTContext().getLangOpts().CPlusPlus)
+ return false;
+
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
+ // C variables are not mangled.
+ if (VD->isExternC())
+ return false;
+
+ // Variables at global scope with non-internal linkage are not mangled.
+ const DeclContext *DC = getEffectiveDeclContext(D);
+ // Check for extern variable declared locally.
+ if (DC->isFunctionOrMethod() && D->hasLinkage())
+ while (!DC->isNamespace() && !DC->isTranslationUnit())
+ DC = getEffectiveParentContext(DC);
+
+ if (DC->isTranslationUnit() && D->getFormalLinkage() == InternalLinkage &&
+ !isa<VarTemplateSpecializationDecl>(D))
+ return false;
+ }
+
+ return true;
+}
+
+void MicrosoftCXXNameMangler::mangle(const NamedDecl *D,
+ StringRef Prefix) {
+ // MSVC doesn't mangle C++ names the same way it mangles extern "C" names.
+ // Therefore it's really important that we don't decorate the
+ // name with leading underscores or leading/trailing at signs. So, by
+ // default, we emit an asm marker at the start so we get the name right.
+ // Callers can override this with a custom prefix.
+
+ // <mangled-name> ::= ? <name> <type-encoding>
+ Out << Prefix;
+ mangleName(D);
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
+ mangleFunctionEncoding(FD);
+ else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
+ mangleVariableEncoding(VD);
+ else {
+ // TODO: Fields? Can MSVC even mangle them?
+ // Issue a diagnostic for now.
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this declaration yet");
+ Diags.Report(D->getLocation(), DiagID)
+ << D->getSourceRange();
+ }
+}
+
+void MicrosoftCXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
+ // <type-encoding> ::= <function-class> <function-type>
+
+ // Since MSVC operates on the type as written and not the canonical type, it
+ // actually matters which decl we have here. MSVC appears to choose the
+ // first, since it is most likely to be the declaration in a header file.
+ FD = FD->getFirstDecl();
+
+ // We should never ever see a FunctionNoProtoType at this point.
+ // We don't even know how to mangle their types anyway :).
+ const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>();
+
+ // extern "C" functions can hold entities that must be mangled.
+ // As it stands, these functions still need to get expressed in the full
+ // external name. They have their class and type omitted, replaced with '9'.
+ if (Context.shouldMangleDeclName(FD)) {
+ // First, the function class.
+ mangleFunctionClass(FD);
+
+ mangleFunctionType(FT, FD);
+ } else
+ Out << '9';
+}
+
+void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) {
+ // <type-encoding> ::= <storage-class> <variable-type>
+ // <storage-class> ::= 0 # private static member
+ // ::= 1 # protected static member
+ // ::= 2 # public static member
+ // ::= 3 # global
+ // ::= 4 # static local
+
+ // The first character in the encoding (after the name) is the storage class.
+ if (VD->isStaticDataMember()) {
+ // If it's a static member, it also encodes the access level.
+ switch (VD->getAccess()) {
+ default:
+ case AS_private: Out << '0'; break;
+ case AS_protected: Out << '1'; break;
+ case AS_public: Out << '2'; break;
+ }
+ }
+ else if (!VD->isStaticLocal())
+ Out << '3';
+ else
+ Out << '4';
+ // Now mangle the type.
+ // <variable-type> ::= <type> <cvr-qualifiers>
+ // ::= <type> <pointee-cvr-qualifiers> # pointers, references
+ // Pointers and references are odd. The type of 'int * const foo;' gets
+ // mangled as 'QAHA' instead of 'PAHB', for example.
+ TypeLoc TL = VD->getTypeSourceInfo()->getTypeLoc();
+ QualType Ty = TL.getType();
+ if (Ty->isPointerType() || Ty->isReferenceType() ||
+ Ty->isMemberPointerType()) {
+ mangleType(Ty, TL.getSourceRange(), QMM_Drop);
+ if (PointersAre64Bit)
+ Out << 'E';
+ if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()) {
+ mangleQualifiers(MPT->getPointeeType().getQualifiers(), true);
+ // Member pointers are suffixed with a back reference to the member
+ // pointer's class name.
+ mangleName(MPT->getClass()->getAsCXXRecordDecl());
+ } else
+ mangleQualifiers(Ty->getPointeeType().getQualifiers(), false);
+ } else if (const ArrayType *AT = getASTContext().getAsArrayType(Ty)) {
+ // Global arrays are funny, too.
+ mangleDecayedArrayType(AT);
+ if (AT->getElementType()->isArrayType())
+ Out << 'A';
+ else
+ mangleQualifiers(Ty.getQualifiers(), false);
+ } else {
+ mangleType(Ty, TL.getSourceRange(), QMM_Drop);
+ mangleQualifiers(Ty.getLocalQualifiers(), false);
+ }
+}
+
+void MicrosoftCXXNameMangler::mangleName(const NamedDecl *ND) {
+ // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
+ const DeclContext *DC = ND->getDeclContext();
+
+ // Always start with the unqualified name.
+ mangleUnqualifiedName(ND);
+
+ // If this is an extern variable declared locally, the relevant DeclContext
+ // is that of the containing namespace, or the translation unit.
+ if (isa<FunctionDecl>(DC) && ND->hasLinkage())
+ while (!DC->isNamespace() && !DC->isTranslationUnit())
+ DC = DC->getParent();
+
+ manglePostfix(DC);
+
+ // Terminate the whole name with an '@'.
+ Out << '@';
+}
+
+void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) {
+ // <non-negative integer> ::= A@ # when Number == 0
+ // ::= <decimal digit> # when 1 <= Number <= 10
+ // ::= <hex digit>+ @ # when Number >= 10
+ //
+ // <number> ::= [?] <non-negative integer>
+
+ uint64_t Value = static_cast<uint64_t>(Number);
+ if (Number < 0) {
+ Value = -Value;
+ Out << '?';
+ }
+
+ if (Value == 0)
+ Out << "A@";
+ else if (Value >= 1 && Value <= 10)
+ Out << (Value - 1);
+ else {
+ // Numbers that are not encoded as decimal digits are represented as nibbles
+ // in the range of ASCII characters 'A' to 'P'.
+ // The number 0x123450 would be encoded as 'BCDEFA'
+ char EncodedNumberBuffer[sizeof(uint64_t) * 2];
+ llvm::MutableArrayRef<char> BufferRef(EncodedNumberBuffer);
+ llvm::MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
+ for (; Value != 0; Value >>= 4)
+ *I++ = 'A' + (Value & 0xf);
+ Out.write(I.base(), I - BufferRef.rbegin());
+ Out << '@';
+ }
+}
+
+static const TemplateDecl *
+isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
+ // Check if we have a function template.
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
+ if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
+ TemplateArgs = FD->getTemplateSpecializationArgs();
+ return TD;
+ }
+ }
+
+ // Check if we have a class template.
+ if (const ClassTemplateSpecializationDecl *Spec =
+ dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
+ TemplateArgs = &Spec->getTemplateArgs();
+ return Spec->getSpecializedTemplate();
+ }
+
+ return 0;
+}
+
+void
+MicrosoftCXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
+ DeclarationName Name) {
+ // <unqualified-name> ::= <operator-name>
+ // ::= <ctor-dtor-name>
+ // ::= <source-name>
+ // ::= <template-name>
+
+ // Check if we have a template.
+ const TemplateArgumentList *TemplateArgs = 0;
+ if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
+ // Function templates aren't considered for name back referencing. This
+ // makes sense since function templates aren't likely to occur multiple
+ // times in a symbol.
+ // FIXME: Test alias template mangling with MSVC 2013.
+ if (!isa<ClassTemplateDecl>(TD)) {
+ mangleTemplateInstantiationName(TD, *TemplateArgs);
+ return;
+ }
+
+ // We have a class template.
+ // Here comes the tricky thing: if we need to mangle something like
+ // void foo(A::X<Y>, B::X<Y>),
+ // the X<Y> part is aliased. However, if you need to mangle
+ // void foo(A::X<A::Y>, A::X<B::Y>),
+ // the A::X<> part is not aliased.
+ // That said, from the mangler's perspective we have a structure like this:
+ // namespace[s] -> type[ -> template-parameters]
+ // but from the Clang perspective we have
+ // type [ -> template-parameters]
+ // \-> namespace[s]
+ // What we do is we create a new mangler, mangle the same type (without
+ // a namespace suffix) using the extra mangler with back references
+ // disabled (to avoid infinite recursion) and then use the mangled type
+ // name as a key to check the mangling of different types for aliasing.
+
+ std::string BackReferenceKey;
+ BackRefMap::iterator Found;
+ if (UseNameBackReferences) {
+ llvm::raw_string_ostream Stream(BackReferenceKey);
+ MicrosoftCXXNameMangler Extra(Context, Stream);
+ Extra.disableBackReferences();
+ Extra.mangleUnqualifiedName(ND, Name);
+ Stream.flush();
+
+ Found = NameBackReferences.find(BackReferenceKey);
+ }
+ if (!UseNameBackReferences || Found == NameBackReferences.end()) {
+ mangleTemplateInstantiationName(TD, *TemplateArgs);
+ if (UseNameBackReferences && NameBackReferences.size() < 10) {
+ size_t Size = NameBackReferences.size();
+ NameBackReferences[BackReferenceKey] = Size;
+ }
+ } else {
+ Out << Found->second;
+ }
+ return;
+ }
+
+ switch (Name.getNameKind()) {
+ case DeclarationName::Identifier: {
+ if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
+ mangleSourceName(II->getName());
+ break;
+ }
+
+ // Otherwise, an anonymous entity. We must have a declaration.
+ assert(ND && "mangling empty name without declaration");
+
+ if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
+ if (NS->isAnonymousNamespace()) {
+ Out << "?A@";
+ break;
+ }
+ }
+
+ // We must have an anonymous struct.
+ const TagDecl *TD = cast<TagDecl>(ND);
+ if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
+ assert(TD->getDeclContext() == D->getDeclContext() &&
+ "Typedef should not be in another decl context!");
+ assert(D->getDeclName().getAsIdentifierInfo() &&
+ "Typedef was not named!");
+ mangleSourceName(D->getDeclName().getAsIdentifierInfo()->getName());
+ break;
+ }
+
+ if (TD->hasDeclaratorForAnonDecl()) {
+ // Anonymous types with no tag or typedef get the name of their
+ // declarator mangled in.
+ llvm::SmallString<64> Name("<unnamed-type-");
+ Name += TD->getDeclaratorForAnonDecl()->getName();
+ Name += ">";
+ mangleSourceName(Name.str());
+ } else {
+ // Anonymous types with no tag, no typedef, or declarator get
+ // '<unnamed-tag>'.
+ mangleSourceName("<unnamed-tag>");
+ }
+ break;
+ }
+
+ case DeclarationName::ObjCZeroArgSelector:
+ case DeclarationName::ObjCOneArgSelector:
+ case DeclarationName::ObjCMultiArgSelector:
+ llvm_unreachable("Can't mangle Objective-C selector names here!");
+
+ case DeclarationName::CXXConstructorName:
+ if (ND == Structor) {
+ assert(StructorType == Ctor_Complete &&
+ "Should never be asked to mangle a ctor other than complete");
+ }
+ Out << "?0";
+ break;
+
+ case DeclarationName::CXXDestructorName:
+ if (ND == Structor)
+ // If the named decl is the C++ destructor we're mangling,
+ // use the type we were given.
+ mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
+ else
+ // Otherwise, use the base destructor name. This is relevant if a
+ // class with a destructor is declared within a destructor.
+ mangleCXXDtorType(Dtor_Base);
+ break;
+
+ case DeclarationName::CXXConversionFunctionName:
+ // <operator-name> ::= ?B # (cast)
+ // The target type is encoded as the return type.
+ Out << "?B";
+ break;
+
+ case DeclarationName::CXXOperatorName:
+ mangleOperatorName(Name.getCXXOverloadedOperator(), ND->getLocation());
+ break;
+
+ case DeclarationName::CXXLiteralOperatorName: {
+ // FIXME: Was this added in VS2010? Does MS even know how to mangle this?
+ DiagnosticsEngine Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this literal operator yet");
+ Diags.Report(ND->getLocation(), DiagID);
+ break;
+ }
+
+ case DeclarationName::CXXUsingDirective:
+ llvm_unreachable("Can't mangle a using directive name!");
+ }
+}
+
+void MicrosoftCXXNameMangler::manglePostfix(const DeclContext *DC,
+ bool NoFunction) {
+ // <postfix> ::= <unqualified-name> [<postfix>]
+ // ::= <substitution> [<postfix>]
+
+ if (!DC) return;
+
+ while (isa<LinkageSpecDecl>(DC))
+ DC = DC->getParent();
+
+ if (DC->isTranslationUnit())
+ return;
+
+ if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
+ DiagnosticsEngine Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle a local inside this block yet");
+ Diags.Report(BD->getLocation(), DiagID);
+
+ // FIXME: This is completely, utterly, wrong; see ItaniumMangle
+ // for how this should be done.
+ Out << "__block_invoke" << Context.getBlockId(BD, false);
+ Out << '@';
+ return manglePostfix(DC->getParent(), NoFunction);
+ } else if (isa<CapturedDecl>(DC)) {
+ // Skip CapturedDecl context.
+ manglePostfix(DC->getParent(), NoFunction);
+ return;
+ }
+
+ if (NoFunction && (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)))
+ return;
+ else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC))
+ mangleObjCMethodName(Method);
+ else if (const FunctionDecl *Func = dyn_cast<FunctionDecl>(DC))
+ mangleLocalName(Func);
+ else {
+ mangleUnqualifiedName(cast<NamedDecl>(DC));
+ manglePostfix(DC->getParent(), NoFunction);
+ }
+}
+
+void MicrosoftCXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
+ // Microsoft uses the names on the case labels for these dtor variants. Clang
+ // uses the Itanium terminology internally. Everything in this ABI delegates
+ // towards the base dtor.
+ switch (T) {
+ // <operator-name> ::= ?1 # destructor
+ case Dtor_Base: Out << "?1"; return;
+ // <operator-name> ::= ?_D # vbase destructor
+ case Dtor_Complete: Out << "?_D"; return;
+ // <operator-name> ::= ?_G # scalar deleting destructor
+ case Dtor_Deleting: Out << "?_G"; return;
+ // <operator-name> ::= ?_E # vector deleting destructor
+ // FIXME: Add a vector deleting dtor type. It goes in the vtable, so we need
+ // it.
+ }
+ llvm_unreachable("Unsupported dtor type?");
+}
+
+void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO,
+ SourceLocation Loc) {
+ switch (OO) {
+ // ?0 # constructor
+ // ?1 # destructor
+ // <operator-name> ::= ?2 # new
+ case OO_New: Out << "?2"; break;
+ // <operator-name> ::= ?3 # delete
+ case OO_Delete: Out << "?3"; break;
+ // <operator-name> ::= ?4 # =
+ case OO_Equal: Out << "?4"; break;
+ // <operator-name> ::= ?5 # >>
+ case OO_GreaterGreater: Out << "?5"; break;
+ // <operator-name> ::= ?6 # <<
+ case OO_LessLess: Out << "?6"; break;
+ // <operator-name> ::= ?7 # !
+ case OO_Exclaim: Out << "?7"; break;
+ // <operator-name> ::= ?8 # ==
+ case OO_EqualEqual: Out << "?8"; break;
+ // <operator-name> ::= ?9 # !=
+ case OO_ExclaimEqual: Out << "?9"; break;
+ // <operator-name> ::= ?A # []
+ case OO_Subscript: Out << "?A"; break;
+ // ?B # conversion
+ // <operator-name> ::= ?C # ->
+ case OO_Arrow: Out << "?C"; break;
+ // <operator-name> ::= ?D # *
+ case OO_Star: Out << "?D"; break;
+ // <operator-name> ::= ?E # ++
+ case OO_PlusPlus: Out << "?E"; break;
+ // <operator-name> ::= ?F # --
+ case OO_MinusMinus: Out << "?F"; break;
+ // <operator-name> ::= ?G # -
+ case OO_Minus: Out << "?G"; break;
+ // <operator-name> ::= ?H # +
+ case OO_Plus: Out << "?H"; break;
+ // <operator-name> ::= ?I # &
+ case OO_Amp: Out << "?I"; break;
+ // <operator-name> ::= ?J # ->*
+ case OO_ArrowStar: Out << "?J"; break;
+ // <operator-name> ::= ?K # /
+ case OO_Slash: Out << "?K"; break;
+ // <operator-name> ::= ?L # %
+ case OO_Percent: Out << "?L"; break;
+ // <operator-name> ::= ?M # <
+ case OO_Less: Out << "?M"; break;
+ // <operator-name> ::= ?N # <=
+ case OO_LessEqual: Out << "?N"; break;
+ // <operator-name> ::= ?O # >
+ case OO_Greater: Out << "?O"; break;
+ // <operator-name> ::= ?P # >=
+ case OO_GreaterEqual: Out << "?P"; break;
+ // <operator-name> ::= ?Q # ,
+ case OO_Comma: Out << "?Q"; break;
+ // <operator-name> ::= ?R # ()
+ case OO_Call: Out << "?R"; break;
+ // <operator-name> ::= ?S # ~
+ case OO_Tilde: Out << "?S"; break;
+ // <operator-name> ::= ?T # ^
+ case OO_Caret: Out << "?T"; break;
+ // <operator-name> ::= ?U # |
+ case OO_Pipe: Out << "?U"; break;
+ // <operator-name> ::= ?V # &&
+ case OO_AmpAmp: Out << "?V"; break;
+ // <operator-name> ::= ?W # ||
+ case OO_PipePipe: Out << "?W"; break;
+ // <operator-name> ::= ?X # *=
+ case OO_StarEqual: Out << "?X"; break;
+ // <operator-name> ::= ?Y # +=
+ case OO_PlusEqual: Out << "?Y"; break;
+ // <operator-name> ::= ?Z # -=
+ case OO_MinusEqual: Out << "?Z"; break;
+ // <operator-name> ::= ?_0 # /=
+ case OO_SlashEqual: Out << "?_0"; break;
+ // <operator-name> ::= ?_1 # %=
+ case OO_PercentEqual: Out << "?_1"; break;
+ // <operator-name> ::= ?_2 # >>=
+ case OO_GreaterGreaterEqual: Out << "?_2"; break;
+ // <operator-name> ::= ?_3 # <<=
+ case OO_LessLessEqual: Out << "?_3"; break;
+ // <operator-name> ::= ?_4 # &=
+ case OO_AmpEqual: Out << "?_4"; break;
+ // <operator-name> ::= ?_5 # |=
+ case OO_PipeEqual: Out << "?_5"; break;
+ // <operator-name> ::= ?_6 # ^=
+ case OO_CaretEqual: Out << "?_6"; break;
+ // ?_7 # vftable
+ // ?_8 # vbtable
+ // ?_9 # vcall
+ // ?_A # typeof
+ // ?_B # local static guard
+ // ?_C # string
+ // ?_D # vbase destructor
+ // ?_E # vector deleting destructor
+ // ?_F # default constructor closure
+ // ?_G # scalar deleting destructor
+ // ?_H # vector constructor iterator
+ // ?_I # vector destructor iterator
+ // ?_J # vector vbase constructor iterator
+ // ?_K # virtual displacement map
+ // ?_L # eh vector constructor iterator
+ // ?_M # eh vector destructor iterator
+ // ?_N # eh vector vbase constructor iterator
+ // ?_O # copy constructor closure
+ // ?_P<name> # udt returning <name>
+ // ?_Q # <unknown>
+ // ?_R0 # RTTI Type Descriptor
+ // ?_R1 # RTTI Base Class Descriptor at (a,b,c,d)
+ // ?_R2 # RTTI Base Class Array
+ // ?_R3 # RTTI Class Hierarchy Descriptor
+ // ?_R4 # RTTI Complete Object Locator
+ // ?_S # local vftable
+ // ?_T # local vftable constructor closure
+ // <operator-name> ::= ?_U # new[]
+ case OO_Array_New: Out << "?_U"; break;
+ // <operator-name> ::= ?_V # delete[]
+ case OO_Array_Delete: Out << "?_V"; break;
+
+ case OO_Conditional: {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this conditional operator yet");
+ Diags.Report(Loc, DiagID);
+ break;
+ }
+
+ case OO_None:
+ case NUM_OVERLOADED_OPERATORS:
+ llvm_unreachable("Not an overloaded operator");
+ }
+}
+
+void MicrosoftCXXNameMangler::mangleSourceName(StringRef Name) {
+ // <source name> ::= <identifier> @
+ BackRefMap::iterator Found;
+ if (UseNameBackReferences)
+ Found = NameBackReferences.find(Name);
+ if (!UseNameBackReferences || Found == NameBackReferences.end()) {
+ Out << Name << '@';
+ if (UseNameBackReferences && NameBackReferences.size() < 10) {
+ size_t Size = NameBackReferences.size();
+ NameBackReferences[Name] = Size;
+ }
+ } else {
+ Out << Found->second;
+ }
+}
+
+void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
+ Context.mangleObjCMethodName(MD, Out);
+}
+
+// Find out how many function decls live above this one and return an integer
+// suitable for use as the number in a numbered anonymous scope.
+// TODO: Memoize.
+static unsigned getLocalNestingLevel(const FunctionDecl *FD) {
+ const DeclContext *DC = FD->getParent();
+ int level = 1;
+
+ while (DC && !DC->isTranslationUnit()) {
+ if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) level++;
+ DC = DC->getParent();
+ }
+
+ return 2*level;
+}
+
+void MicrosoftCXXNameMangler::mangleLocalName(const FunctionDecl *FD) {
+ // <nested-name> ::= <numbered-anonymous-scope> ? <mangled-name>
+ // <numbered-anonymous-scope> ::= ? <number>
+ // Even though the name is rendered in reverse order (e.g.
+ // A::B::C is rendered as C@B@A), VC numbers the scopes from outermost to
+ // innermost. So a method bar in class C local to function foo gets mangled
+ // as something like:
+ // ?bar@C@?1??foo@@YAXXZ@QAEXXZ
+ // This is more apparent when you have a type nested inside a method of a
+ // type nested inside a function. A method baz in class D local to method
+ // bar of class C local to function foo gets mangled as:
+ // ?baz@D@?3??bar@C@?1??foo@@YAXXZ@QAEXXZ@QAEXXZ
+ // This scheme is general enough to support GCC-style nested
+ // functions. You could have a method baz of class C inside a function bar
+ // inside a function foo, like so:
+ // ?baz@C@?3??bar@?1??foo@@YAXXZ@YAXXZ@QAEXXZ
+ unsigned NestLevel = getLocalNestingLevel(FD);
+ Out << '?';
+ mangleNumber(NestLevel);
+ Out << '?';
+ mangle(FD, "?");
+}
+
+void MicrosoftCXXNameMangler::mangleTemplateInstantiationName(
+ const TemplateDecl *TD,
+ const TemplateArgumentList &TemplateArgs) {
+ // <template-name> ::= <unscoped-template-name> <template-args>
+ // ::= <substitution>
+ // Always start with the unqualified name.
+
+ // Templates have their own context for back references.
+ ArgBackRefMap OuterArgsContext;
+ BackRefMap OuterTemplateContext;
+ NameBackReferences.swap(OuterTemplateContext);
+ TypeBackReferences.swap(OuterArgsContext);
+
+ mangleUnscopedTemplateName(TD);
+ mangleTemplateArgs(TD, TemplateArgs);
+
+ // Restore the previous back reference contexts.
+ NameBackReferences.swap(OuterTemplateContext);
+ TypeBackReferences.swap(OuterArgsContext);
+}
+
+void
+MicrosoftCXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *TD) {
+ // <unscoped-template-name> ::= ?$ <unqualified-name>
+ Out << "?$";
+ mangleUnqualifiedName(TD);
+}
+
+void
+MicrosoftCXXNameMangler::mangleIntegerLiteral(const llvm::APSInt &Value,
+ bool IsBoolean) {
+ // <integer-literal> ::= $0 <number>
+ Out << "$0";
+ // Make sure booleans are encoded as 0/1.
+ if (IsBoolean && Value.getBoolValue())
+ mangleNumber(1);
+ else
+ mangleNumber(Value.getSExtValue());
+}
+
+void
+MicrosoftCXXNameMangler::mangleExpression(const Expr *E) {
+ // See if this is a constant expression.
+ llvm::APSInt Value;
+ if (E->isIntegerConstantExpr(Value, Context.getASTContext())) {
+ mangleIntegerLiteral(Value, E->getType()->isBooleanType());
+ return;
+ }
+
+ const CXXUuidofExpr *UE = 0;
+ if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
+ if (UO->getOpcode() == UO_AddrOf)
+ UE = dyn_cast<CXXUuidofExpr>(UO->getSubExpr());
+ } else
+ UE = dyn_cast<CXXUuidofExpr>(E);
+
+ if (UE) {
+ // This CXXUuidofExpr is mangled as-if it were actually a VarDecl from
+ // const __s_GUID _GUID_{lower case UUID with underscores}
+ StringRef Uuid = UE->getUuidAsStringRef(Context.getASTContext());
+ std::string Name = "_GUID_" + Uuid.lower();
+ std::replace(Name.begin(), Name.end(), '-', '_');
+
+ // If we had to peek through an address-of operator, treat this like we are
+ // dealing with a pointer type. Otherwise, treat it like a const reference.
+ //
+ // N.B. This matches up with the handling of TemplateArgument::Declaration
+ // in mangleTemplateArg
+ if (UE == E)
+ Out << "$E?";
+ else
+ Out << "$1?";
+ Out << Name << "@@3U__s_GUID@@B";
+ return;
+ }
+
+ // As bad as this diagnostic is, it's better than crashing.
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot yet mangle expression type %0");
+ Diags.Report(E->getExprLoc(), DiagID)
+ << E->getStmtClassName() << E->getSourceRange();
+}
+
+void
+MicrosoftCXXNameMangler::mangleTemplateArgs(const TemplateDecl *TD,
+ const TemplateArgumentList &TemplateArgs) {
+ // <template-args> ::= {<type> | <integer-literal>}+ @
+ unsigned NumTemplateArgs = TemplateArgs.size();
+ for (unsigned i = 0; i < NumTemplateArgs; ++i) {
+ const TemplateArgument &TA = TemplateArgs[i];
+ mangleTemplateArg(TD, TA);
+ }
+ Out << '@';
+}
+
+void MicrosoftCXXNameMangler::mangleTemplateArg(const TemplateDecl *TD,
+ const TemplateArgument &TA) {
+ switch (TA.getKind()) {
+ case TemplateArgument::Null:
+ llvm_unreachable("Can't mangle null template arguments!");
+ case TemplateArgument::TemplateExpansion:
+ llvm_unreachable("Can't mangle template expansion arguments!");
+ case TemplateArgument::Type: {
+ QualType T = TA.getAsType();
+ mangleType(T, SourceRange(), QMM_Escape);
+ break;
+ }
+ case TemplateArgument::Declaration: {
+ const NamedDecl *ND = cast<NamedDecl>(TA.getAsDecl());
+ mangle(ND, TA.isDeclForReferenceParam() ? "$E?" : "$1?");
+ break;
+ }
+ case TemplateArgument::Integral:
+ mangleIntegerLiteral(TA.getAsIntegral(),
+ TA.getIntegralType()->isBooleanType());
+ break;
+ case TemplateArgument::NullPtr:
+ Out << "$0A@";
+ break;
+ case TemplateArgument::Expression:
+ mangleExpression(TA.getAsExpr());
+ break;
+ case TemplateArgument::Pack:
+ // Unlike Itanium, there is no character code to indicate an argument pack.
+ for (TemplateArgument::pack_iterator I = TA.pack_begin(), E = TA.pack_end();
+ I != E; ++I)
+ mangleTemplateArg(TD, *I);
+ break;
+ case TemplateArgument::Template:
+ mangleType(cast<TagDecl>(
+ TA.getAsTemplate().getAsTemplateDecl()->getTemplatedDecl()));
+ break;
+ }
+}
+
+void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals,
+ bool IsMember) {
+ // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers>
+ // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only);
+ // 'I' means __restrict (32/64-bit).
+ // Note that the MSVC __restrict keyword isn't the same as the C99 restrict
+ // keyword!
+ // <base-cvr-qualifiers> ::= A # near
+ // ::= B # near const
+ // ::= C # near volatile
+ // ::= D # near const volatile
+ // ::= E # far (16-bit)
+ // ::= F # far const (16-bit)
+ // ::= G # far volatile (16-bit)
+ // ::= H # far const volatile (16-bit)
+ // ::= I # huge (16-bit)
+ // ::= J # huge const (16-bit)
+ // ::= K # huge volatile (16-bit)
+ // ::= L # huge const volatile (16-bit)
+ // ::= M <basis> # based
+ // ::= N <basis> # based const
+ // ::= O <basis> # based volatile
+ // ::= P <basis> # based const volatile
+ // ::= Q # near member
+ // ::= R # near const member
+ // ::= S # near volatile member
+ // ::= T # near const volatile member
+ // ::= U # far member (16-bit)
+ // ::= V # far const member (16-bit)
+ // ::= W # far volatile member (16-bit)
+ // ::= X # far const volatile member (16-bit)
+ // ::= Y # huge member (16-bit)
+ // ::= Z # huge const member (16-bit)
+ // ::= 0 # huge volatile member (16-bit)
+ // ::= 1 # huge const volatile member (16-bit)
+ // ::= 2 <basis> # based member
+ // ::= 3 <basis> # based const member
+ // ::= 4 <basis> # based volatile member
+ // ::= 5 <basis> # based const volatile member
+ // ::= 6 # near function (pointers only)
+ // ::= 7 # far function (pointers only)
+ // ::= 8 # near method (pointers only)
+ // ::= 9 # far method (pointers only)
+ // ::= _A <basis> # based function (pointers only)
+ // ::= _B <basis> # based function (far?) (pointers only)
+ // ::= _C <basis> # based method (pointers only)
+ // ::= _D <basis> # based method (far?) (pointers only)
+ // ::= _E # block (Clang)
+ // <basis> ::= 0 # __based(void)
+ // ::= 1 # __based(segment)?
+ // ::= 2 <name> # __based(name)
+ // ::= 3 # ?
+ // ::= 4 # ?
+ // ::= 5 # not really based
+ bool HasConst = Quals.hasConst(),
+ HasVolatile = Quals.hasVolatile();
+
+ if (!IsMember) {
+ if (HasConst && HasVolatile) {
+ Out << 'D';
+ } else if (HasVolatile) {
+ Out << 'C';
+ } else if (HasConst) {
+ Out << 'B';
+ } else {
+ Out << 'A';
+ }
+ } else {
+ if (HasConst && HasVolatile) {
+ Out << 'T';
+ } else if (HasVolatile) {
+ Out << 'S';
+ } else if (HasConst) {
+ Out << 'R';
+ } else {
+ Out << 'Q';
+ }
+ }
+
+ // FIXME: For now, just drop all extension qualifiers on the floor.
+}
+
+void MicrosoftCXXNameMangler::manglePointerQualifiers(Qualifiers Quals) {
+ // <pointer-cvr-qualifiers> ::= P # no qualifiers
+ // ::= Q # const
+ // ::= R # volatile
+ // ::= S # const volatile
+ bool HasConst = Quals.hasConst(),
+ HasVolatile = Quals.hasVolatile();
+ if (HasConst && HasVolatile) {
+ Out << 'S';
+ } else if (HasVolatile) {
+ Out << 'R';
+ } else if (HasConst) {
+ Out << 'Q';
+ } else {
+ Out << 'P';
+ }
+}
+
+void MicrosoftCXXNameMangler::mangleArgumentType(QualType T,
+ SourceRange Range) {
+ // MSVC will backreference two canonically equivalent types that have slightly
+ // different manglings when mangled alone.
+
+ // Decayed types do not match up with non-decayed versions of the same type.
+ //
+ // e.g.
+ // void (*x)(void) will not form a backreference with void x(void)
+ void *TypePtr;
+ if (const DecayedType *DT = T->getAs<DecayedType>()) {
+ TypePtr = DT->getOriginalType().getCanonicalType().getAsOpaquePtr();
+ // If the original parameter was textually written as an array,
+ // instead treat the decayed parameter like it's const.
+ //
+ // e.g.
+ // int [] -> int * const
+ if (DT->getOriginalType()->isArrayType())
+ T = T.withConst();
+ } else
+ TypePtr = T.getCanonicalType().getAsOpaquePtr();
+
+ ArgBackRefMap::iterator Found = TypeBackReferences.find(TypePtr);
+
+ if (Found == TypeBackReferences.end()) {
+ size_t OutSizeBefore = Out.GetNumBytesInBuffer();
+
+ mangleType(T, Range, QMM_Drop);
+
+ // See if it's worth creating a back reference.
+ // Only types longer than 1 character are considered
+ // and only 10 back references slots are available:
+ bool LongerThanOneChar = (Out.GetNumBytesInBuffer() - OutSizeBefore > 1);
+ if (LongerThanOneChar && TypeBackReferences.size() < 10) {
+ size_t Size = TypeBackReferences.size();
+ TypeBackReferences[TypePtr] = Size;
+ }
+ } else {
+ Out << Found->second;
+ }
+}
+
+void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range,
+ QualifierMangleMode QMM) {
+ // Don't use the canonical types. MSVC includes things like 'const' on
+ // pointer arguments to function pointers that canonicalization strips away.
+ T = T.getDesugaredType(getASTContext());
+ Qualifiers Quals = T.getLocalQualifiers();
+ if (const ArrayType *AT = getASTContext().getAsArrayType(T)) {
+ // If there were any Quals, getAsArrayType() pushed them onto the array
+ // element type.
+ if (QMM == QMM_Mangle)
+ Out << 'A';
+ else if (QMM == QMM_Escape || QMM == QMM_Result)
+ Out << "$$B";
+ mangleArrayType(AT);
+ return;
+ }
+
+ bool IsPointer = T->isAnyPointerType() || T->isMemberPointerType() ||
+ T->isBlockPointerType();
+
+ switch (QMM) {
+ case QMM_Drop:
+ break;
+ case QMM_Mangle:
+ if (const FunctionType *FT = dyn_cast<FunctionType>(T)) {
+ Out << '6';
+ mangleFunctionType(FT);
+ return;
+ }
+ mangleQualifiers(Quals, false);
+ break;
+ case QMM_Escape:
+ if (!IsPointer && Quals) {
+ Out << "$$C";
+ mangleQualifiers(Quals, false);
+ }
+ break;
+ case QMM_Result:
+ if ((!IsPointer && Quals) || isa<TagType>(T)) {
+ Out << '?';
+ mangleQualifiers(Quals, false);
+ }
+ break;
+ }
+
+ // We have to mangle these now, while we still have enough information.
+ if (IsPointer)
+ manglePointerQualifiers(Quals);
+ const Type *ty = T.getTypePtr();
+
+ switch (ty->getTypeClass()) {
+#define ABSTRACT_TYPE(CLASS, PARENT)
+#define NON_CANONICAL_TYPE(CLASS, PARENT) \
+ case Type::CLASS: \
+ llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
+ return;
+#define TYPE(CLASS, PARENT) \
+ case Type::CLASS: \
+ mangleType(cast<CLASS##Type>(ty), Range); \
+ break;
+#include "clang/AST/TypeNodes.def"
+#undef ABSTRACT_TYPE
+#undef NON_CANONICAL_TYPE
+#undef TYPE
+ }
+}
+
+void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T,
+ SourceRange Range) {
+ // <type> ::= <builtin-type>
+ // <builtin-type> ::= X # void
+ // ::= C # signed char
+ // ::= D # char
+ // ::= E # unsigned char
+ // ::= F # short
+ // ::= G # unsigned short (or wchar_t if it's not a builtin)
+ // ::= H # int
+ // ::= I # unsigned int
+ // ::= J # long
+ // ::= K # unsigned long
+ // L # <none>
+ // ::= M # float
+ // ::= N # double
+ // ::= O # long double (__float80 is mangled differently)
+ // ::= _J # long long, __int64
+ // ::= _K # unsigned long long, __int64
+ // ::= _L # __int128
+ // ::= _M # unsigned __int128
+ // ::= _N # bool
+ // _O # <array in parameter>
+ // ::= _T # __float80 (Intel)
+ // ::= _W # wchar_t
+ // ::= _Z # __float80 (Digital Mars)
+ switch (T->getKind()) {
+ case BuiltinType::Void: Out << 'X'; break;
+ case BuiltinType::SChar: Out << 'C'; break;
+ case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'D'; break;
+ case BuiltinType::UChar: Out << 'E'; break;
+ case BuiltinType::Short: Out << 'F'; break;
+ case BuiltinType::UShort: Out << 'G'; break;
+ case BuiltinType::Int: Out << 'H'; break;
+ case BuiltinType::UInt: Out << 'I'; break;
+ case BuiltinType::Long: Out << 'J'; break;
+ case BuiltinType::ULong: Out << 'K'; break;
+ case BuiltinType::Float: Out << 'M'; break;
+ case BuiltinType::Double: Out << 'N'; break;
+ // TODO: Determine size and mangle accordingly
+ case BuiltinType::LongDouble: Out << 'O'; break;
+ case BuiltinType::LongLong: Out << "_J"; break;
+ case BuiltinType::ULongLong: Out << "_K"; break;
+ case BuiltinType::Int128: Out << "_L"; break;
+ case BuiltinType::UInt128: Out << "_M"; break;
+ case BuiltinType::Bool: Out << "_N"; break;
+ case BuiltinType::WChar_S:
+ case BuiltinType::WChar_U: Out << "_W"; break;
+
+#define BUILTIN_TYPE(Id, SingletonId)
+#define PLACEHOLDER_TYPE(Id, SingletonId) \
+ case BuiltinType::Id:
+#include "clang/AST/BuiltinTypes.def"
+ case BuiltinType::Dependent:
+ llvm_unreachable("placeholder types shouldn't get to name mangling");
+
+ case BuiltinType::ObjCId: Out << "PAUobjc_object@@"; break;
+ case BuiltinType::ObjCClass: Out << "PAUobjc_class@@"; break;
+ case BuiltinType::ObjCSel: Out << "PAUobjc_selector@@"; break;
+
+ case BuiltinType::OCLImage1d: Out << "PAUocl_image1d@@"; break;
+ case BuiltinType::OCLImage1dArray: Out << "PAUocl_image1darray@@"; break;
+ case BuiltinType::OCLImage1dBuffer: Out << "PAUocl_image1dbuffer@@"; break;
+ case BuiltinType::OCLImage2d: Out << "PAUocl_image2d@@"; break;
+ case BuiltinType::OCLImage2dArray: Out << "PAUocl_image2darray@@"; break;
+ case BuiltinType::OCLImage3d: Out << "PAUocl_image3d@@"; break;
+ case BuiltinType::OCLSampler: Out << "PAUocl_sampler@@"; break;
+ case BuiltinType::OCLEvent: Out << "PAUocl_event@@"; break;
+
+ case BuiltinType::NullPtr: Out << "$$T"; break;
+
+ case BuiltinType::Char16:
+ case BuiltinType::Char32:
+ case BuiltinType::Half: {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this built-in %0 type yet");
+ Diags.Report(Range.getBegin(), DiagID)
+ << T->getName(Context.getASTContext().getPrintingPolicy())
+ << Range;
+ break;
+ }
+ }
+}
+
+// <type> ::= <function-type>
+void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T,
+ SourceRange) {
+ // Structors only appear in decls, so at this point we know it's not a
+ // structor type.
+ // FIXME: This may not be lambda-friendly.
+ Out << "$$A6";
+ mangleFunctionType(T);
+}
+void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T,
+ SourceRange) {
+ llvm_unreachable("Can't mangle K&R function prototypes");
+}
+
+void MicrosoftCXXNameMangler::mangleFunctionType(const FunctionType *T,
+ const FunctionDecl *D,
+ bool ForceInstMethod) {
+ // <function-type> ::= <this-cvr-qualifiers> <calling-convention>
+ // <return-type> <argument-list> <throw-spec>
+ const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
+
+ SourceRange Range;
+ if (D) Range = D->getSourceRange();
+
+ bool IsStructor = false, IsInstMethod = ForceInstMethod;
+ if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(D)) {
+ if (MD->isInstance())
+ IsInstMethod = true;
+ if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))
+ IsStructor = true;
+ }
+
+ // If this is a C++ instance method, mangle the CVR qualifiers for the
+ // this pointer.
+ if (IsInstMethod) {
+ if (PointersAre64Bit)
+ Out << 'E';
+ mangleQualifiers(Qualifiers::fromCVRMask(Proto->getTypeQuals()), false);
+ }
+
+ mangleCallingConvention(T);
+
+ // <return-type> ::= <type>
+ // ::= @ # structors (they have no declared return type)
+ if (IsStructor) {
+ if (isa<CXXDestructorDecl>(D) && D == Structor &&
+ StructorType == Dtor_Deleting) {
+ // The scalar deleting destructor takes an extra int argument.
+ // However, the FunctionType generated has 0 arguments.
+ // FIXME: This is a temporary hack.
+ // Maybe should fix the FunctionType creation instead?
+ Out << (PointersAre64Bit ? "PEAXI@Z" : "PAXI@Z");
+ return;
+ }
+ Out << '@';
+ } else {
+ QualType ResultType = Proto->getResultType();
+ if (ResultType->isVoidType())
+ ResultType = ResultType.getUnqualifiedType();
+ mangleType(ResultType, Range, QMM_Result);
+ }
+
+ // <argument-list> ::= X # void
+ // ::= <type>+ @
+ // ::= <type>* Z # varargs
+ if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
+ Out << 'X';
+ } else {
+ // Happens for function pointer type arguments for example.
+ for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
+ ArgEnd = Proto->arg_type_end();
+ Arg != ArgEnd; ++Arg)
+ mangleArgumentType(*Arg, Range);
+ // <builtin-type> ::= Z # ellipsis
+ if (Proto->isVariadic())
+ Out << 'Z';
+ else
+ Out << '@';
+ }
+
+ mangleThrowSpecification(Proto);
+}
+
+void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) {
+ // <function-class> ::= <member-function> E? # E designates a 64-bit 'this'
+ // # pointer. in 64-bit mode *all*
+ // # 'this' pointers are 64-bit.
+ // ::= <global-function>
+ // <member-function> ::= A # private: near
+ // ::= B # private: far
+ // ::= C # private: static near
+ // ::= D # private: static far
+ // ::= E # private: virtual near
+ // ::= F # private: virtual far
+ // ::= I # protected: near
+ // ::= J # protected: far
+ // ::= K # protected: static near
+ // ::= L # protected: static far
+ // ::= M # protected: virtual near
+ // ::= N # protected: virtual far
+ // ::= Q # public: near
+ // ::= R # public: far
+ // ::= S # public: static near
+ // ::= T # public: static far
+ // ::= U # public: virtual near
+ // ::= V # public: virtual far
+ // <global-function> ::= Y # global near
+ // ::= Z # global far
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
+ switch (MD->getAccess()) {
+ case AS_none:
+ llvm_unreachable("Unsupported access specifier");
+ case AS_private:
+ if (MD->isStatic())
+ Out << 'C';
+ else if (MD->isVirtual())
+ Out << 'E';
+ else
+ Out << 'A';
+ break;
+ case AS_protected:
+ if (MD->isStatic())
+ Out << 'K';
+ else if (MD->isVirtual())
+ Out << 'M';
+ else
+ Out << 'I';
+ break;
+ case AS_public:
+ if (MD->isStatic())
+ Out << 'S';
+ else if (MD->isVirtual())
+ Out << 'U';
+ else
+ Out << 'Q';
+ }
+ } else
+ Out << 'Y';
+}
+void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T) {
+ // <calling-convention> ::= A # __cdecl
+ // ::= B # __export __cdecl
+ // ::= C # __pascal
+ // ::= D # __export __pascal
+ // ::= E # __thiscall
+ // ::= F # __export __thiscall
+ // ::= G # __stdcall
+ // ::= H # __export __stdcall
+ // ::= I # __fastcall
+ // ::= J # __export __fastcall
+ // The 'export' calling conventions are from a bygone era
+ // (*cough*Win16*cough*) when functions were declared for export with
+ // that keyword. (It didn't actually export them, it just made them so
+ // that they could be in a DLL and somebody from another module could call
+ // them.)
+ CallingConv CC = T->getCallConv();
+ switch (CC) {
+ default:
+ llvm_unreachable("Unsupported CC for mangling");
+ case CC_X86_64Win64:
+ case CC_X86_64SysV:
+ case CC_C: Out << 'A'; break;
+ case CC_X86Pascal: Out << 'C'; break;
+ case CC_X86ThisCall: Out << 'E'; break;
+ case CC_X86StdCall: Out << 'G'; break;
+ case CC_X86FastCall: Out << 'I'; break;
+ }
+}
+void MicrosoftCXXNameMangler::mangleThrowSpecification(
+ const FunctionProtoType *FT) {
+ // <throw-spec> ::= Z # throw(...) (default)
+ // ::= @ # throw() or __declspec/__attribute__((nothrow))
+ // ::= <type>+
+ // NOTE: Since the Microsoft compiler ignores throw specifications, they are
+ // all actually mangled as 'Z'. (They're ignored because their associated
+ // functionality isn't implemented, and probably never will be.)
+ Out << 'Z';
+}
+
+void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T,
+ SourceRange Range) {
+ // Probably should be mangled as a template instantiation; need to see what
+ // VC does first.
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this unresolved dependent type yet");
+ Diags.Report(Range.getBegin(), DiagID)
+ << Range;
+}
+
+// <type> ::= <union-type> | <struct-type> | <class-type> | <enum-type>
+// <union-type> ::= T <name>
+// <struct-type> ::= U <name>
+// <class-type> ::= V <name>
+// <enum-type> ::= W <size> <name>
+void MicrosoftCXXNameMangler::mangleType(const EnumType *T, SourceRange) {
+ mangleType(cast<TagType>(T)->getDecl());
+}
+void MicrosoftCXXNameMangler::mangleType(const RecordType *T, SourceRange) {
+ mangleType(cast<TagType>(T)->getDecl());
+}
+void MicrosoftCXXNameMangler::mangleType(const TagDecl *TD) {
+ switch (TD->getTagKind()) {
+ case TTK_Union:
+ Out << 'T';
+ break;
+ case TTK_Struct:
+ case TTK_Interface:
+ Out << 'U';
+ break;
+ case TTK_Class:
+ Out << 'V';
+ break;
+ case TTK_Enum:
+ Out << 'W';
+ Out << getASTContext().getTypeSizeInChars(
+ cast<EnumDecl>(TD)->getIntegerType()).getQuantity();
+ break;
+ }
+ mangleName(TD);
+}
+
+// <type> ::= <array-type>
+// <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
+// [Y <dimension-count> <dimension>+]
+// <element-type> # as global, E is never required
+// It's supposed to be the other way around, but for some strange reason, it
+// isn't. Today this behavior is retained for the sole purpose of backwards
+// compatibility.
+void MicrosoftCXXNameMangler::mangleDecayedArrayType(const ArrayType *T) {
+ // This isn't a recursive mangling, so now we have to do it all in this
+ // one call.
+ manglePointerQualifiers(T->getElementType().getQualifiers());
+ mangleType(T->getElementType(), SourceRange());
+}
+void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T,
+ SourceRange) {
+ llvm_unreachable("Should have been special cased");
+}
+void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T,
+ SourceRange) {
+ llvm_unreachable("Should have been special cased");
+}
+void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T,
+ SourceRange) {
+ llvm_unreachable("Should have been special cased");
+}
+void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T,
+ SourceRange) {
+ llvm_unreachable("Should have been special cased");
+}
+void MicrosoftCXXNameMangler::mangleArrayType(const ArrayType *T) {
+ QualType ElementTy(T, 0);
+ SmallVector<llvm::APInt, 3> Dimensions;
+ for (;;) {
+ if (const ConstantArrayType *CAT =
+ getASTContext().getAsConstantArrayType(ElementTy)) {
+ Dimensions.push_back(CAT->getSize());
+ ElementTy = CAT->getElementType();
+ } else if (ElementTy->isVariableArrayType()) {
+ const VariableArrayType *VAT =
+ getASTContext().getAsVariableArrayType(ElementTy);
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this variable-length array yet");
+ Diags.Report(VAT->getSizeExpr()->getExprLoc(), DiagID)
+ << VAT->getBracketsRange();
+ return;
+ } else if (ElementTy->isDependentSizedArrayType()) {
+ // The dependent expression has to be folded into a constant (TODO).
+ const DependentSizedArrayType *DSAT =
+ getASTContext().getAsDependentSizedArrayType(ElementTy);
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this dependent-length array yet");
+ Diags.Report(DSAT->getSizeExpr()->getExprLoc(), DiagID)
+ << DSAT->getBracketsRange();
+ return;
+ } else if (const IncompleteArrayType *IAT =
+ getASTContext().getAsIncompleteArrayType(ElementTy)) {
+ Dimensions.push_back(llvm::APInt(32, 0));
+ ElementTy = IAT->getElementType();
+ }
+ else break;
+ }
+ Out << 'Y';
+ // <dimension-count> ::= <number> # number of extra dimensions
+ mangleNumber(Dimensions.size());
+ for (unsigned Dim = 0; Dim < Dimensions.size(); ++Dim)
+ mangleNumber(Dimensions[Dim].getLimitedValue());
+ mangleType(ElementTy, SourceRange(), QMM_Escape);
+}
+
+// <type> ::= <pointer-to-member-type>
+// <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
+// <class name> <type>
+void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T,
+ SourceRange Range) {
+ QualType PointeeType = T->getPointeeType();
+ if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) {
+ Out << '8';
+ mangleName(T->getClass()->castAs<RecordType>()->getDecl());
+ mangleFunctionType(FPT, 0, true);
+ } else {
+ if (PointersAre64Bit && !T->getPointeeType()->isFunctionType())
+ Out << 'E';
+ mangleQualifiers(PointeeType.getQualifiers(), true);
+ mangleName(T->getClass()->castAs<RecordType>()->getDecl());
+ mangleType(PointeeType, Range, QMM_Drop);
+ }
+}
+
+void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T,
+ SourceRange Range) {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this template type parameter type yet");
+ Diags.Report(Range.getBegin(), DiagID)
+ << Range;
+}
+
+void MicrosoftCXXNameMangler::mangleType(
+ const SubstTemplateTypeParmPackType *T,
+ SourceRange Range) {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this substituted parameter pack yet");
+ Diags.Report(Range.getBegin(), DiagID)
+ << Range;
+}
+
+// <type> ::= <pointer-type>
+// <pointer-type> ::= E? <pointer-cvr-qualifiers> <cvr-qualifiers> <type>
+// # the E is required for 64-bit non static pointers
+void MicrosoftCXXNameMangler::mangleType(const PointerType *T,
+ SourceRange Range) {
+ QualType PointeeTy = T->getPointeeType();
+ if (PointersAre64Bit && !T->getPointeeType()->isFunctionType())
+ Out << 'E';
+ mangleType(PointeeTy, Range);
+}
+void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T,
+ SourceRange Range) {
+ // Object pointers never have qualifiers.
+ Out << 'A';
+ if (PointersAre64Bit && !T->getPointeeType()->isFunctionType())
+ Out << 'E';
+ mangleType(T->getPointeeType(), Range);
+}
+
+// <type> ::= <reference-type>
+// <reference-type> ::= A E? <cvr-qualifiers> <type>
+// # the E is required for 64-bit non static lvalue references
+void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T,
+ SourceRange Range) {
+ Out << 'A';
+ if (PointersAre64Bit && !T->getPointeeType()->isFunctionType())
+ Out << 'E';
+ mangleType(T->getPointeeType(), Range);
+}
+
+// <type> ::= <r-value-reference-type>
+// <r-value-reference-type> ::= $$Q E? <cvr-qualifiers> <type>
+// # the E is required for 64-bit non static rvalue references
+void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T,
+ SourceRange Range) {
+ Out << "$$Q";
+ if (PointersAre64Bit && !T->getPointeeType()->isFunctionType())
+ Out << 'E';
+ mangleType(T->getPointeeType(), Range);
+}
+
+void MicrosoftCXXNameMangler::mangleType(const ComplexType *T,
+ SourceRange Range) {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this complex number type yet");
+ Diags.Report(Range.getBegin(), DiagID)
+ << Range;
+}
+
+void MicrosoftCXXNameMangler::mangleType(const VectorType *T,
+ SourceRange Range) {
+ const BuiltinType *ET = T->getElementType()->getAs<BuiltinType>();
+ assert(ET && "vectors with non-builtin elements are unsupported");
+ uint64_t Width = getASTContext().getTypeSize(T);
+ // Pattern match exactly the typedefs in our intrinsic headers. Anything that
+ // doesn't match the Intel types uses a custom mangling below.
+ bool IntelVector = true;
+ if (Width == 64 && ET->getKind() == BuiltinType::LongLong) {
+ Out << "T__m64";
+ } else if (Width == 128 || Width == 256) {
+ if (ET->getKind() == BuiltinType::Float)
+ Out << "T__m" << Width;
+ else if (ET->getKind() == BuiltinType::LongLong)
+ Out << "T__m" << Width << 'i';
+ else if (ET->getKind() == BuiltinType::Double)
+ Out << "U__m" << Width << 'd';
+ else
+ IntelVector = false;
+ } else {
+ IntelVector = false;
+ }
+
+ if (!IntelVector) {
+ // The MS ABI doesn't have a special mangling for vector types, so we define
+ // our own mangling to handle uses of __vector_size__ on user-specified
+ // types, and for extensions like __v4sf.
+ Out << "T__clang_vec" << T->getNumElements() << '_';
+ mangleType(ET, Range);
+ }
+
+ Out << "@@";
+}
+
+void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T,
+ SourceRange Range) {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this extended vector type yet");
+ Diags.Report(Range.getBegin(), DiagID)
+ << Range;
+}
+void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T,
+ SourceRange Range) {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this dependent-sized extended vector type yet");
+ Diags.Report(Range.getBegin(), DiagID)
+ << Range;
+}
+
+void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T,
+ SourceRange) {
+ // ObjC interfaces have structs underlying them.
+ Out << 'U';
+ mangleName(T->getDecl());
+}
+
+void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T,
+ SourceRange Range) {
+ // We don't allow overloading by different protocol qualification,
+ // so mangling them isn't necessary.
+ mangleType(T->getBaseType(), Range);
+}
+
+void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T,
+ SourceRange Range) {
+ Out << "_E";
+
+ QualType pointee = T->getPointeeType();
+ mangleFunctionType(pointee->castAs<FunctionProtoType>());
+}
+
+void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *,
+ SourceRange) {
+ llvm_unreachable("Cannot mangle injected class name type.");
+}
+
+void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T,
+ SourceRange Range) {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this template specialization type yet");
+ Diags.Report(Range.getBegin(), DiagID)
+ << Range;
+}
+
+void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T,
+ SourceRange Range) {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this dependent name type yet");
+ Diags.Report(Range.getBegin(), DiagID)
+ << Range;
+}
+
+void MicrosoftCXXNameMangler::mangleType(
+ const DependentTemplateSpecializationType *T,
+ SourceRange Range) {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this dependent template specialization type yet");
+ Diags.Report(Range.getBegin(), DiagID)
+ << Range;
+}
+
+void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T,
+ SourceRange Range) {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this pack expansion yet");
+ Diags.Report(Range.getBegin(), DiagID)
+ << Range;
+}
+
+void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T,
+ SourceRange Range) {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this typeof(type) yet");
+ Diags.Report(Range.getBegin(), DiagID)
+ << Range;
+}
+
+void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T,
+ SourceRange Range) {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this typeof(expression) yet");
+ Diags.Report(Range.getBegin(), DiagID)
+ << Range;
+}
+
+void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T,
+ SourceRange Range) {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this decltype() yet");
+ Diags.Report(Range.getBegin(), DiagID)
+ << Range;
+}
+
+void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T,
+ SourceRange Range) {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this unary transform type yet");
+ Diags.Report(Range.getBegin(), DiagID)
+ << Range;
+}
+
+void MicrosoftCXXNameMangler::mangleType(const AutoType *T, SourceRange Range) {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this 'auto' type yet");
+ Diags.Report(Range.getBegin(), DiagID)
+ << Range;
+}
+
+void MicrosoftCXXNameMangler::mangleType(const AtomicType *T,
+ SourceRange Range) {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this C11 atomic type yet");
+ Diags.Report(Range.getBegin(), DiagID)
+ << Range;
+}
+
+void MicrosoftMangleContextImpl::mangleCXXName(const NamedDecl *D,
+ raw_ostream &Out) {
+ assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
+ "Invalid mangleName() call, argument is not a variable or function!");
+ assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
+ "Invalid mangleName() call on 'structor decl!");
+
+ PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
+ getASTContext().getSourceManager(),
+ "Mangling declaration");
+
+ MicrosoftCXXNameMangler Mangler(*this, Out);
+ return Mangler.mangle(D);
+}
+
+// <this-adjustment> ::= <no-adjustment> | <static-adjustment> |
+// <virtual-adjustment>
+// <no-adjustment> ::= A # private near
+// ::= B # private far
+// ::= I # protected near
+// ::= J # protected far
+// ::= Q # public near
+// ::= R # public far
+// <static-adjustment> ::= G <static-offset> # private near
+// ::= H <static-offset> # private far
+// ::= O <static-offset> # protected near
+// ::= P <static-offset> # protected far
+// ::= W <static-offset> # public near
+// ::= X <static-offset> # public far
+// <virtual-adjustment> ::= $0 <virtual-shift> <static-offset> # private near
+// ::= $1 <virtual-shift> <static-offset> # private far
+// ::= $2 <virtual-shift> <static-offset> # protected near
+// ::= $3 <virtual-shift> <static-offset> # protected far
+// ::= $4 <virtual-shift> <static-offset> # public near
+// ::= $5 <virtual-shift> <static-offset> # public far
+// <virtual-shift> ::= <vtordisp-shift> | <vtordispex-shift>
+// <vtordisp-shift> ::= <offset-to-vtordisp>
+// <vtordispex-shift> ::= <offset-to-vbptr> <vbase-offset-offset>
+// <offset-to-vtordisp>
+static void mangleThunkThisAdjustment(const CXXMethodDecl *MD,
+ const ThisAdjustment &Adjustment,
+ MicrosoftCXXNameMangler &Mangler,
+ raw_ostream &Out) {
+ if (!Adjustment.Virtual.isEmpty()) {
+ Out << '$';
+ char AccessSpec;
+ switch (MD->getAccess()) {
+ case AS_none:
+ llvm_unreachable("Unsupported access specifier");
+ case AS_private:
+ AccessSpec = '0';
+ break;
+ case AS_protected:
+ AccessSpec = '2';
+ break;
+ case AS_public:
+ AccessSpec = '4';
+ }
+ if (Adjustment.Virtual.Microsoft.VBPtrOffset) {
+ Out << 'R' << AccessSpec;
+ Mangler.mangleNumber(
+ static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBPtrOffset));
+ Mangler.mangleNumber(
+ static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBOffsetOffset));
+ Mangler.mangleNumber(
+ static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
+ Mangler.mangleNumber(static_cast<uint32_t>(Adjustment.NonVirtual));
+ } else {
+ Out << AccessSpec;
+ Mangler.mangleNumber(
+ static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
+ Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
+ }
+ } else if (Adjustment.NonVirtual != 0) {
+ switch (MD->getAccess()) {
+ case AS_none:
+ llvm_unreachable("Unsupported access specifier");
+ case AS_private:
+ Out << 'G';
+ break;
+ case AS_protected:
+ Out << 'O';
+ break;
+ case AS_public:
+ Out << 'W';
+ }
+ Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
+ } else {
+ switch (MD->getAccess()) {
+ case AS_none:
+ llvm_unreachable("Unsupported access specifier");
+ case AS_private:
+ Out << 'A';
+ break;
+ case AS_protected:
+ Out << 'I';
+ break;
+ case AS_public:
+ Out << 'Q';
+ }
+ }
+}
+
+void MicrosoftMangleContextImpl::mangleVirtualMemPtrThunk(
+ const CXXMethodDecl *MD, uint64_t OffsetInVFTable, raw_ostream &Out) {
+ bool Is64Bit = getASTContext().getTargetInfo().getPointerWidth(0) == 64;
+
+ MicrosoftCXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "\01??_9";
+ Mangler.mangleName(MD->getParent());
+ Mangler.getStream() << "$B";
+ Mangler.mangleNumber(OffsetInVFTable);
+ Mangler.getStream() << "A";
+ Mangler.getStream() << (Is64Bit ? "A" : "E");
+}
+
+void MicrosoftMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
+ const ThunkInfo &Thunk,
+ raw_ostream &Out) {
+ MicrosoftCXXNameMangler Mangler(*this, Out);
+ Out << "\01?";
+ Mangler.mangleName(MD);
+ mangleThunkThisAdjustment(MD, Thunk.This, Mangler, Out);
+ if (!Thunk.Return.isEmpty())
+ assert(Thunk.Method != 0 && "Thunk info should hold the overridee decl");
+
+ const CXXMethodDecl *DeclForFPT = Thunk.Method ? Thunk.Method : MD;
+ Mangler.mangleFunctionType(
+ DeclForFPT->getType()->castAs<FunctionProtoType>(), MD);
+}
+
+void MicrosoftMangleContextImpl::mangleCXXDtorThunk(
+ const CXXDestructorDecl *DD, CXXDtorType Type,
+ const ThisAdjustment &Adjustment, raw_ostream &Out) {
+ // FIXME: Actually, the dtor thunk should be emitted for vector deleting
+ // dtors rather than scalar deleting dtors. Just use the vector deleting dtor
+ // mangling manually until we support both deleting dtor types.
+ assert(Type == Dtor_Deleting);
+ MicrosoftCXXNameMangler Mangler(*this, Out, DD, Type);
+ Out << "\01??_E";
+ Mangler.mangleName(DD->getParent());
+ mangleThunkThisAdjustment(DD, Adjustment, Mangler, Out);
+ Mangler.mangleFunctionType(DD->getType()->castAs<FunctionProtoType>(), DD);
+}
+
+void MicrosoftMangleContextImpl::mangleCXXVFTable(
+ const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
+ raw_ostream &Out) {
+ // <mangled-name> ::= ?_7 <class-name> <storage-class>
+ // <cvr-qualifiers> [<name>] @
+ // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
+ // is always '6' for vftables.
+ MicrosoftCXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "\01??_7";
+ Mangler.mangleName(Derived);
+ Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const.
+ for (ArrayRef<const CXXRecordDecl *>::iterator I = BasePath.begin(),
+ E = BasePath.end();
+ I != E; ++I) {
+ Mangler.mangleName(*I);
+ }
+ Mangler.getStream() << '@';
+}
+
+void MicrosoftMangleContextImpl::mangleCXXVBTable(
+ const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
+ raw_ostream &Out) {
+ // <mangled-name> ::= ?_8 <class-name> <storage-class>
+ // <cvr-qualifiers> [<name>] @
+ // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
+ // is always '7' for vbtables.
+ MicrosoftCXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "\01??_8";
+ Mangler.mangleName(Derived);
+ Mangler.getStream() << "7B"; // '7' for vbtable, 'B' for const.
+ for (ArrayRef<const CXXRecordDecl *>::iterator I = BasePath.begin(),
+ E = BasePath.end();
+ I != E; ++I) {
+ Mangler.mangleName(*I);
+ }
+ Mangler.getStream() << '@';
+}
+
+void MicrosoftMangleContextImpl::mangleCXXRTTI(QualType T, raw_ostream &) {
+ // FIXME: Give a location...
+ unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle RTTI descriptors for type %0 yet");
+ getDiags().Report(DiagID)
+ << T.getBaseTypeIdentifier();
+}
+
+void MicrosoftMangleContextImpl::mangleCXXRTTIName(QualType T, raw_ostream &) {
+ // FIXME: Give a location...
+ unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle the name of type %0 into RTTI descriptors yet");
+ getDiags().Report(DiagID)
+ << T.getBaseTypeIdentifier();
+}
+
+void MicrosoftMangleContextImpl::mangleTypeName(QualType T, raw_ostream &Out) {
+ // This is just a made up unique string for the purposes of tbaa. undname
+ // does *not* know how to demangle it.
+ MicrosoftCXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << '?';
+ Mangler.mangleType(T, SourceRange());
+}
+
+void MicrosoftMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
+ CXXCtorType Type,
+ raw_ostream &Out) {
+ MicrosoftCXXNameMangler mangler(*this, Out);
+ mangler.mangle(D);
+}
+
+void MicrosoftMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
+ CXXDtorType Type,
+ raw_ostream &Out) {
+ MicrosoftCXXNameMangler mangler(*this, Out, D, Type);
+ mangler.mangle(D);
+}
+
+void MicrosoftMangleContextImpl::mangleReferenceTemporary(const VarDecl *VD,
+ raw_ostream &) {
+ unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this reference temporary yet");
+ getDiags().Report(VD->getLocation(), DiagID);
+}
+
+void MicrosoftMangleContextImpl::mangleStaticGuardVariable(const VarDecl *VD,
+ raw_ostream &Out) {
+ // <guard-name> ::= ?_B <postfix> @51
+ // ::= ?$S <guard-num> @ <postfix> @4IA
+
+ // The first mangling is what MSVC uses to guard static locals in inline
+ // functions. It uses a different mangling in external functions to support
+ // guarding more than 32 variables. MSVC rejects inline functions with more
+ // than 32 static locals. We don't fully implement the second mangling
+ // because those guards are not externally visible, and instead use LLVM's
+ // default renaming when creating a new guard variable.
+ MicrosoftCXXNameMangler Mangler(*this, Out);
+
+ bool Visible = VD->isExternallyVisible();
+ // <operator-name> ::= ?_B # local static guard
+ Mangler.getStream() << (Visible ? "\01??_B" : "\01?$S1@");
+ Mangler.manglePostfix(VD->getDeclContext());
+ Mangler.getStream() << (Visible ? "@51" : "@4IA");
+}
+
+void MicrosoftMangleContextImpl::mangleInitFiniStub(const VarDecl *D,
+ raw_ostream &Out,
+ char CharCode) {
+ MicrosoftCXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "\01??__" << CharCode;
+ Mangler.mangleName(D);
+ // This is the function class mangling. These stubs are global, non-variadic,
+ // cdecl functions that return void and take no args.
+ Mangler.getStream() << "YAXXZ";
+}
+
+void MicrosoftMangleContextImpl::mangleDynamicInitializer(const VarDecl *D,
+ raw_ostream &Out) {
+ // <initializer-name> ::= ?__E <name> YAXXZ
+ mangleInitFiniStub(D, Out, 'E');
+}
+
+void
+MicrosoftMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
+ raw_ostream &Out) {
+ // <destructor-name> ::= ?__F <name> YAXXZ
+ mangleInitFiniStub(D, Out, 'F');
+}
+
+MicrosoftMangleContext *
+MicrosoftMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
+ return new MicrosoftMangleContextImpl(Context, Diags);
+}
OpenPOWER on IntegriCloud