summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/AST/ExprConstant.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/AST/ExprConstant.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/AST/ExprConstant.cpp9188
1 files changed, 9188 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/AST/ExprConstant.cpp b/contrib/llvm/tools/clang/lib/AST/ExprConstant.cpp
new file mode 100644
index 0000000..d1ec7ae
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/ExprConstant.cpp
@@ -0,0 +1,9188 @@
+//===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Expr constant evaluator.
+//
+// Constant expression evaluation produces four main results:
+//
+// * A success/failure flag indicating whether constant folding was successful.
+// This is the 'bool' return value used by most of the code in this file. A
+// 'false' return value indicates that constant folding has failed, and any
+// appropriate diagnostic has already been produced.
+//
+// * An evaluated result, valid only if constant folding has not failed.
+//
+// * A flag indicating if evaluation encountered (unevaluated) side-effects.
+// These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
+// where it is possible to determine the evaluated result regardless.
+//
+// * A set of notes indicating why the evaluation was not a constant expression
+// (under the C++11 / C++1y rules only, at the moment), or, if folding failed
+// too, why the expression could not be folded.
+//
+// If we are checking for a potential constant expression, failure to constant
+// fold a potential constant sub-expression will be indicated by a 'false'
+// return value (the expression could not be folded) and no diagnostic (the
+// expression is not necessarily non-constant).
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/APValue.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTDiagnostic.h"
+#include "clang/AST/CharUnits.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/Basic/Builtins.h"
+#include "clang/Basic/TargetInfo.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cstring>
+#include <functional>
+
+using namespace clang;
+using llvm::APSInt;
+using llvm::APFloat;
+
+static bool IsGlobalLValue(APValue::LValueBase B);
+
+namespace {
+ struct LValue;
+ struct CallStackFrame;
+ struct EvalInfo;
+
+ static QualType getType(APValue::LValueBase B) {
+ if (!B) return QualType();
+ if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>())
+ return D->getType();
+
+ const Expr *Base = B.get<const Expr*>();
+
+ // For a materialized temporary, the type of the temporary we materialized
+ // may not be the type of the expression.
+ if (const MaterializeTemporaryExpr *MTE =
+ dyn_cast<MaterializeTemporaryExpr>(Base)) {
+ SmallVector<const Expr *, 2> CommaLHSs;
+ SmallVector<SubobjectAdjustment, 2> Adjustments;
+ const Expr *Temp = MTE->GetTemporaryExpr();
+ const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHSs,
+ Adjustments);
+ // Keep any cv-qualifiers from the reference if we generated a temporary
+ // for it.
+ if (Inner != Temp)
+ return Inner->getType();
+ }
+
+ return Base->getType();
+ }
+
+ /// Get an LValue path entry, which is known to not be an array index, as a
+ /// field or base class.
+ static
+ APValue::BaseOrMemberType getAsBaseOrMember(APValue::LValuePathEntry E) {
+ APValue::BaseOrMemberType Value;
+ Value.setFromOpaqueValue(E.BaseOrMember);
+ return Value;
+ }
+
+ /// Get an LValue path entry, which is known to not be an array index, as a
+ /// field declaration.
+ static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
+ return dyn_cast<FieldDecl>(getAsBaseOrMember(E).getPointer());
+ }
+ /// Get an LValue path entry, which is known to not be an array index, as a
+ /// base class declaration.
+ static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
+ return dyn_cast<CXXRecordDecl>(getAsBaseOrMember(E).getPointer());
+ }
+ /// Determine whether this LValue path entry for a base class names a virtual
+ /// base class.
+ static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
+ return getAsBaseOrMember(E).getInt();
+ }
+
+ /// Find the path length and type of the most-derived subobject in the given
+ /// path, and find the size of the containing array, if any.
+ static
+ unsigned findMostDerivedSubobject(ASTContext &Ctx, QualType Base,
+ ArrayRef<APValue::LValuePathEntry> Path,
+ uint64_t &ArraySize, QualType &Type) {
+ unsigned MostDerivedLength = 0;
+ Type = Base;
+ for (unsigned I = 0, N = Path.size(); I != N; ++I) {
+ if (Type->isArrayType()) {
+ const ConstantArrayType *CAT =
+ cast<ConstantArrayType>(Ctx.getAsArrayType(Type));
+ Type = CAT->getElementType();
+ ArraySize = CAT->getSize().getZExtValue();
+ MostDerivedLength = I + 1;
+ } else if (Type->isAnyComplexType()) {
+ const ComplexType *CT = Type->castAs<ComplexType>();
+ Type = CT->getElementType();
+ ArraySize = 2;
+ MostDerivedLength = I + 1;
+ } else if (const FieldDecl *FD = getAsField(Path[I])) {
+ Type = FD->getType();
+ ArraySize = 0;
+ MostDerivedLength = I + 1;
+ } else {
+ // Path[I] describes a base class.
+ ArraySize = 0;
+ }
+ }
+ return MostDerivedLength;
+ }
+
+ // The order of this enum is important for diagnostics.
+ enum CheckSubobjectKind {
+ CSK_Base, CSK_Derived, CSK_Field, CSK_ArrayToPointer, CSK_ArrayIndex,
+ CSK_This, CSK_Real, CSK_Imag
+ };
+
+ /// A path from a glvalue to a subobject of that glvalue.
+ struct SubobjectDesignator {
+ /// True if the subobject was named in a manner not supported by C++11. Such
+ /// lvalues can still be folded, but they are not core constant expressions
+ /// and we cannot perform lvalue-to-rvalue conversions on them.
+ bool Invalid : 1;
+
+ /// Is this a pointer one past the end of an object?
+ bool IsOnePastTheEnd : 1;
+
+ /// The length of the path to the most-derived object of which this is a
+ /// subobject.
+ unsigned MostDerivedPathLength : 30;
+
+ /// The size of the array of which the most-derived object is an element, or
+ /// 0 if the most-derived object is not an array element.
+ uint64_t MostDerivedArraySize;
+
+ /// The type of the most derived object referred to by this address.
+ QualType MostDerivedType;
+
+ typedef APValue::LValuePathEntry PathEntry;
+
+ /// The entries on the path from the glvalue to the designated subobject.
+ SmallVector<PathEntry, 8> Entries;
+
+ SubobjectDesignator() : Invalid(true) {}
+
+ explicit SubobjectDesignator(QualType T)
+ : Invalid(false), IsOnePastTheEnd(false), MostDerivedPathLength(0),
+ MostDerivedArraySize(0), MostDerivedType(T) {}
+
+ SubobjectDesignator(ASTContext &Ctx, const APValue &V)
+ : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
+ MostDerivedPathLength(0), MostDerivedArraySize(0) {
+ if (!Invalid) {
+ IsOnePastTheEnd = V.isLValueOnePastTheEnd();
+ ArrayRef<PathEntry> VEntries = V.getLValuePath();
+ Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
+ if (V.getLValueBase())
+ MostDerivedPathLength =
+ findMostDerivedSubobject(Ctx, getType(V.getLValueBase()),
+ V.getLValuePath(), MostDerivedArraySize,
+ MostDerivedType);
+ }
+ }
+
+ void setInvalid() {
+ Invalid = true;
+ Entries.clear();
+ }
+
+ /// Determine whether this is a one-past-the-end pointer.
+ bool isOnePastTheEnd() const {
+ assert(!Invalid);
+ if (IsOnePastTheEnd)
+ return true;
+ if (MostDerivedArraySize &&
+ Entries[MostDerivedPathLength - 1].ArrayIndex == MostDerivedArraySize)
+ return true;
+ return false;
+ }
+
+ /// Check that this refers to a valid subobject.
+ bool isValidSubobject() const {
+ if (Invalid)
+ return false;
+ return !isOnePastTheEnd();
+ }
+ /// Check that this refers to a valid subobject, and if not, produce a
+ /// relevant diagnostic and set the designator as invalid.
+ bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
+
+ /// Update this designator to refer to the first element within this array.
+ void addArrayUnchecked(const ConstantArrayType *CAT) {
+ PathEntry Entry;
+ Entry.ArrayIndex = 0;
+ Entries.push_back(Entry);
+
+ // This is a most-derived object.
+ MostDerivedType = CAT->getElementType();
+ MostDerivedArraySize = CAT->getSize().getZExtValue();
+ MostDerivedPathLength = Entries.size();
+ }
+ /// Update this designator to refer to the given base or member of this
+ /// object.
+ void addDeclUnchecked(const Decl *D, bool Virtual = false) {
+ PathEntry Entry;
+ APValue::BaseOrMemberType Value(D, Virtual);
+ Entry.BaseOrMember = Value.getOpaqueValue();
+ Entries.push_back(Entry);
+
+ // If this isn't a base class, it's a new most-derived object.
+ if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
+ MostDerivedType = FD->getType();
+ MostDerivedArraySize = 0;
+ MostDerivedPathLength = Entries.size();
+ }
+ }
+ /// Update this designator to refer to the given complex component.
+ void addComplexUnchecked(QualType EltTy, bool Imag) {
+ PathEntry Entry;
+ Entry.ArrayIndex = Imag;
+ Entries.push_back(Entry);
+
+ // This is technically a most-derived object, though in practice this
+ // is unlikely to matter.
+ MostDerivedType = EltTy;
+ MostDerivedArraySize = 2;
+ MostDerivedPathLength = Entries.size();
+ }
+ void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, uint64_t N);
+ /// Add N to the address of this subobject.
+ void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
+ if (Invalid) return;
+ if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize) {
+ Entries.back().ArrayIndex += N;
+ if (Entries.back().ArrayIndex > MostDerivedArraySize) {
+ diagnosePointerArithmetic(Info, E, Entries.back().ArrayIndex);
+ setInvalid();
+ }
+ return;
+ }
+ // [expr.add]p4: For the purposes of these operators, a pointer to a
+ // nonarray object behaves the same as a pointer to the first element of
+ // an array of length one with the type of the object as its element type.
+ if (IsOnePastTheEnd && N == (uint64_t)-1)
+ IsOnePastTheEnd = false;
+ else if (!IsOnePastTheEnd && N == 1)
+ IsOnePastTheEnd = true;
+ else if (N != 0) {
+ diagnosePointerArithmetic(Info, E, uint64_t(IsOnePastTheEnd) + N);
+ setInvalid();
+ }
+ }
+ };
+
+ /// A stack frame in the constexpr call stack.
+ struct CallStackFrame {
+ EvalInfo &Info;
+
+ /// Parent - The caller of this stack frame.
+ CallStackFrame *Caller;
+
+ /// CallLoc - The location of the call expression for this call.
+ SourceLocation CallLoc;
+
+ /// Callee - The function which was called.
+ const FunctionDecl *Callee;
+
+ /// Index - The call index of this call.
+ unsigned Index;
+
+ /// This - The binding for the this pointer in this call, if any.
+ const LValue *This;
+
+ /// Arguments - Parameter bindings for this function call, indexed by
+ /// parameters' function scope indices.
+ APValue *Arguments;
+
+ // Note that we intentionally use std::map here so that references to
+ // values are stable.
+ typedef std::map<const void*, APValue> MapTy;
+ typedef MapTy::const_iterator temp_iterator;
+ /// Temporaries - Temporary lvalues materialized within this stack frame.
+ MapTy Temporaries;
+
+ CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
+ const FunctionDecl *Callee, const LValue *This,
+ APValue *Arguments);
+ ~CallStackFrame();
+
+ APValue *getTemporary(const void *Key) {
+ MapTy::iterator I = Temporaries.find(Key);
+ return I == Temporaries.end() ? nullptr : &I->second;
+ }
+ APValue &createTemporary(const void *Key, bool IsLifetimeExtended);
+ };
+
+ /// Temporarily override 'this'.
+ class ThisOverrideRAII {
+ public:
+ ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
+ : Frame(Frame), OldThis(Frame.This) {
+ if (Enable)
+ Frame.This = NewThis;
+ }
+ ~ThisOverrideRAII() {
+ Frame.This = OldThis;
+ }
+ private:
+ CallStackFrame &Frame;
+ const LValue *OldThis;
+ };
+
+ /// A partial diagnostic which we might know in advance that we are not going
+ /// to emit.
+ class OptionalDiagnostic {
+ PartialDiagnostic *Diag;
+
+ public:
+ explicit OptionalDiagnostic(PartialDiagnostic *Diag = nullptr)
+ : Diag(Diag) {}
+
+ template<typename T>
+ OptionalDiagnostic &operator<<(const T &v) {
+ if (Diag)
+ *Diag << v;
+ return *this;
+ }
+
+ OptionalDiagnostic &operator<<(const APSInt &I) {
+ if (Diag) {
+ SmallVector<char, 32> Buffer;
+ I.toString(Buffer);
+ *Diag << StringRef(Buffer.data(), Buffer.size());
+ }
+ return *this;
+ }
+
+ OptionalDiagnostic &operator<<(const APFloat &F) {
+ if (Diag) {
+ // FIXME: Force the precision of the source value down so we don't
+ // print digits which are usually useless (we don't really care here if
+ // we truncate a digit by accident in edge cases). Ideally,
+ // APFloat::toString would automatically print the shortest
+ // representation which rounds to the correct value, but it's a bit
+ // tricky to implement.
+ unsigned precision =
+ llvm::APFloat::semanticsPrecision(F.getSemantics());
+ precision = (precision * 59 + 195) / 196;
+ SmallVector<char, 32> Buffer;
+ F.toString(Buffer, precision);
+ *Diag << StringRef(Buffer.data(), Buffer.size());
+ }
+ return *this;
+ }
+ };
+
+ /// A cleanup, and a flag indicating whether it is lifetime-extended.
+ class Cleanup {
+ llvm::PointerIntPair<APValue*, 1, bool> Value;
+
+ public:
+ Cleanup(APValue *Val, bool IsLifetimeExtended)
+ : Value(Val, IsLifetimeExtended) {}
+
+ bool isLifetimeExtended() const { return Value.getInt(); }
+ void endLifetime() {
+ *Value.getPointer() = APValue();
+ }
+ };
+
+ /// EvalInfo - This is a private struct used by the evaluator to capture
+ /// information about a subexpression as it is folded. It retains information
+ /// about the AST context, but also maintains information about the folded
+ /// expression.
+ ///
+ /// If an expression could be evaluated, it is still possible it is not a C
+ /// "integer constant expression" or constant expression. If not, this struct
+ /// captures information about how and why not.
+ ///
+ /// One bit of information passed *into* the request for constant folding
+ /// indicates whether the subexpression is "evaluated" or not according to C
+ /// rules. For example, the RHS of (0 && foo()) is not evaluated. We can
+ /// evaluate the expression regardless of what the RHS is, but C only allows
+ /// certain things in certain situations.
+ struct EvalInfo {
+ ASTContext &Ctx;
+
+ /// EvalStatus - Contains information about the evaluation.
+ Expr::EvalStatus &EvalStatus;
+
+ /// CurrentCall - The top of the constexpr call stack.
+ CallStackFrame *CurrentCall;
+
+ /// CallStackDepth - The number of calls in the call stack right now.
+ unsigned CallStackDepth;
+
+ /// NextCallIndex - The next call index to assign.
+ unsigned NextCallIndex;
+
+ /// StepsLeft - The remaining number of evaluation steps we're permitted
+ /// to perform. This is essentially a limit for the number of statements
+ /// we will evaluate.
+ unsigned StepsLeft;
+
+ /// BottomFrame - The frame in which evaluation started. This must be
+ /// initialized after CurrentCall and CallStackDepth.
+ CallStackFrame BottomFrame;
+
+ /// A stack of values whose lifetimes end at the end of some surrounding
+ /// evaluation frame.
+ llvm::SmallVector<Cleanup, 16> CleanupStack;
+
+ /// EvaluatingDecl - This is the declaration whose initializer is being
+ /// evaluated, if any.
+ APValue::LValueBase EvaluatingDecl;
+
+ /// EvaluatingDeclValue - This is the value being constructed for the
+ /// declaration whose initializer is being evaluated, if any.
+ APValue *EvaluatingDeclValue;
+
+ /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
+ /// notes attached to it will also be stored, otherwise they will not be.
+ bool HasActiveDiagnostic;
+
+ enum EvaluationMode {
+ /// Evaluate as a constant expression. Stop if we find that the expression
+ /// is not a constant expression.
+ EM_ConstantExpression,
+
+ /// Evaluate as a potential constant expression. Keep going if we hit a
+ /// construct that we can't evaluate yet (because we don't yet know the
+ /// value of something) but stop if we hit something that could never be
+ /// a constant expression.
+ EM_PotentialConstantExpression,
+
+ /// Fold the expression to a constant. Stop if we hit a side-effect that
+ /// we can't model.
+ EM_ConstantFold,
+
+ /// Evaluate the expression looking for integer overflow and similar
+ /// issues. Don't worry about side-effects, and try to visit all
+ /// subexpressions.
+ EM_EvaluateForOverflow,
+
+ /// Evaluate in any way we know how. Don't worry about side-effects that
+ /// can't be modeled.
+ EM_IgnoreSideEffects,
+
+ /// Evaluate as a constant expression. Stop if we find that the expression
+ /// is not a constant expression. Some expressions can be retried in the
+ /// optimizer if we don't constant fold them here, but in an unevaluated
+ /// context we try to fold them immediately since the optimizer never
+ /// gets a chance to look at it.
+ EM_ConstantExpressionUnevaluated,
+
+ /// Evaluate as a potential constant expression. Keep going if we hit a
+ /// construct that we can't evaluate yet (because we don't yet know the
+ /// value of something) but stop if we hit something that could never be
+ /// a constant expression. Some expressions can be retried in the
+ /// optimizer if we don't constant fold them here, but in an unevaluated
+ /// context we try to fold them immediately since the optimizer never
+ /// gets a chance to look at it.
+ EM_PotentialConstantExpressionUnevaluated
+ } EvalMode;
+
+ /// Are we checking whether the expression is a potential constant
+ /// expression?
+ bool checkingPotentialConstantExpression() const {
+ return EvalMode == EM_PotentialConstantExpression ||
+ EvalMode == EM_PotentialConstantExpressionUnevaluated;
+ }
+
+ /// Are we checking an expression for overflow?
+ // FIXME: We should check for any kind of undefined or suspicious behavior
+ // in such constructs, not just overflow.
+ bool checkingForOverflow() { return EvalMode == EM_EvaluateForOverflow; }
+
+ EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
+ : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr),
+ CallStackDepth(0), NextCallIndex(1),
+ StepsLeft(getLangOpts().ConstexprStepLimit),
+ BottomFrame(*this, SourceLocation(), nullptr, nullptr, nullptr),
+ EvaluatingDecl((const ValueDecl *)nullptr),
+ EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
+ EvalMode(Mode) {}
+
+ void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value) {
+ EvaluatingDecl = Base;
+ EvaluatingDeclValue = &Value;
+ }
+
+ const LangOptions &getLangOpts() const { return Ctx.getLangOpts(); }
+
+ bool CheckCallLimit(SourceLocation Loc) {
+ // Don't perform any constexpr calls (other than the call we're checking)
+ // when checking a potential constant expression.
+ if (checkingPotentialConstantExpression() && CallStackDepth > 1)
+ return false;
+ if (NextCallIndex == 0) {
+ // NextCallIndex has wrapped around.
+ Diag(Loc, diag::note_constexpr_call_limit_exceeded);
+ return false;
+ }
+ if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
+ return true;
+ Diag(Loc, diag::note_constexpr_depth_limit_exceeded)
+ << getLangOpts().ConstexprCallDepth;
+ return false;
+ }
+
+ CallStackFrame *getCallFrame(unsigned CallIndex) {
+ assert(CallIndex && "no call index in getCallFrame");
+ // We will eventually hit BottomFrame, which has Index 1, so Frame can't
+ // be null in this loop.
+ CallStackFrame *Frame = CurrentCall;
+ while (Frame->Index > CallIndex)
+ Frame = Frame->Caller;
+ return (Frame->Index == CallIndex) ? Frame : nullptr;
+ }
+
+ bool nextStep(const Stmt *S) {
+ if (!StepsLeft) {
+ Diag(S->getLocStart(), diag::note_constexpr_step_limit_exceeded);
+ return false;
+ }
+ --StepsLeft;
+ return true;
+ }
+
+ private:
+ /// Add a diagnostic to the diagnostics list.
+ PartialDiagnostic &addDiag(SourceLocation Loc, diag::kind DiagId) {
+ PartialDiagnostic PD(DiagId, Ctx.getDiagAllocator());
+ EvalStatus.Diag->push_back(std::make_pair(Loc, PD));
+ return EvalStatus.Diag->back().second;
+ }
+
+ /// Add notes containing a call stack to the current point of evaluation.
+ void addCallStack(unsigned Limit);
+
+ public:
+ /// Diagnose that the evaluation cannot be folded.
+ OptionalDiagnostic Diag(SourceLocation Loc, diag::kind DiagId
+ = diag::note_invalid_subexpr_in_const_expr,
+ unsigned ExtraNotes = 0) {
+ if (EvalStatus.Diag) {
+ // If we have a prior diagnostic, it will be noting that the expression
+ // isn't a constant expression. This diagnostic is more important,
+ // unless we require this evaluation to produce a constant expression.
+ //
+ // FIXME: We might want to show both diagnostics to the user in
+ // EM_ConstantFold mode.
+ if (!EvalStatus.Diag->empty()) {
+ switch (EvalMode) {
+ case EM_ConstantFold:
+ case EM_IgnoreSideEffects:
+ case EM_EvaluateForOverflow:
+ if (!EvalStatus.HasSideEffects)
+ break;
+ // We've had side-effects; we want the diagnostic from them, not
+ // some later problem.
+ case EM_ConstantExpression:
+ case EM_PotentialConstantExpression:
+ case EM_ConstantExpressionUnevaluated:
+ case EM_PotentialConstantExpressionUnevaluated:
+ HasActiveDiagnostic = false;
+ return OptionalDiagnostic();
+ }
+ }
+
+ unsigned CallStackNotes = CallStackDepth - 1;
+ unsigned Limit = Ctx.getDiagnostics().getConstexprBacktraceLimit();
+ if (Limit)
+ CallStackNotes = std::min(CallStackNotes, Limit + 1);
+ if (checkingPotentialConstantExpression())
+ CallStackNotes = 0;
+
+ HasActiveDiagnostic = true;
+ EvalStatus.Diag->clear();
+ EvalStatus.Diag->reserve(1 + ExtraNotes + CallStackNotes);
+ addDiag(Loc, DiagId);
+ if (!checkingPotentialConstantExpression())
+ addCallStack(Limit);
+ return OptionalDiagnostic(&(*EvalStatus.Diag)[0].second);
+ }
+ HasActiveDiagnostic = false;
+ return OptionalDiagnostic();
+ }
+
+ OptionalDiagnostic Diag(const Expr *E, diag::kind DiagId
+ = diag::note_invalid_subexpr_in_const_expr,
+ unsigned ExtraNotes = 0) {
+ if (EvalStatus.Diag)
+ return Diag(E->getExprLoc(), DiagId, ExtraNotes);
+ HasActiveDiagnostic = false;
+ return OptionalDiagnostic();
+ }
+
+ /// Diagnose that the evaluation does not produce a C++11 core constant
+ /// expression.
+ ///
+ /// FIXME: Stop evaluating if we're in EM_ConstantExpression or
+ /// EM_PotentialConstantExpression mode and we produce one of these.
+ template<typename LocArg>
+ OptionalDiagnostic CCEDiag(LocArg Loc, diag::kind DiagId
+ = diag::note_invalid_subexpr_in_const_expr,
+ unsigned ExtraNotes = 0) {
+ // Don't override a previous diagnostic. Don't bother collecting
+ // diagnostics if we're evaluating for overflow.
+ if (!EvalStatus.Diag || !EvalStatus.Diag->empty()) {
+ HasActiveDiagnostic = false;
+ return OptionalDiagnostic();
+ }
+ return Diag(Loc, DiagId, ExtraNotes);
+ }
+
+ /// Add a note to a prior diagnostic.
+ OptionalDiagnostic Note(SourceLocation Loc, diag::kind DiagId) {
+ if (!HasActiveDiagnostic)
+ return OptionalDiagnostic();
+ return OptionalDiagnostic(&addDiag(Loc, DiagId));
+ }
+
+ /// Add a stack of notes to a prior diagnostic.
+ void addNotes(ArrayRef<PartialDiagnosticAt> Diags) {
+ if (HasActiveDiagnostic) {
+ EvalStatus.Diag->insert(EvalStatus.Diag->end(),
+ Diags.begin(), Diags.end());
+ }
+ }
+
+ /// Should we continue evaluation after encountering a side-effect that we
+ /// couldn't model?
+ bool keepEvaluatingAfterSideEffect() {
+ switch (EvalMode) {
+ case EM_PotentialConstantExpression:
+ case EM_PotentialConstantExpressionUnevaluated:
+ case EM_EvaluateForOverflow:
+ case EM_IgnoreSideEffects:
+ return true;
+
+ case EM_ConstantExpression:
+ case EM_ConstantExpressionUnevaluated:
+ case EM_ConstantFold:
+ return false;
+ }
+ llvm_unreachable("Missed EvalMode case");
+ }
+
+ /// Note that we have had a side-effect, and determine whether we should
+ /// keep evaluating.
+ bool noteSideEffect() {
+ EvalStatus.HasSideEffects = true;
+ return keepEvaluatingAfterSideEffect();
+ }
+
+ /// Should we continue evaluation as much as possible after encountering a
+ /// construct which can't be reduced to a value?
+ bool keepEvaluatingAfterFailure() {
+ if (!StepsLeft)
+ return false;
+
+ switch (EvalMode) {
+ case EM_PotentialConstantExpression:
+ case EM_PotentialConstantExpressionUnevaluated:
+ case EM_EvaluateForOverflow:
+ return true;
+
+ case EM_ConstantExpression:
+ case EM_ConstantExpressionUnevaluated:
+ case EM_ConstantFold:
+ case EM_IgnoreSideEffects:
+ return false;
+ }
+ llvm_unreachable("Missed EvalMode case");
+ }
+ };
+
+ /// Object used to treat all foldable expressions as constant expressions.
+ struct FoldConstant {
+ EvalInfo &Info;
+ bool Enabled;
+ bool HadNoPriorDiags;
+ EvalInfo::EvaluationMode OldMode;
+
+ explicit FoldConstant(EvalInfo &Info, bool Enabled)
+ : Info(Info),
+ Enabled(Enabled),
+ HadNoPriorDiags(Info.EvalStatus.Diag &&
+ Info.EvalStatus.Diag->empty() &&
+ !Info.EvalStatus.HasSideEffects),
+ OldMode(Info.EvalMode) {
+ if (Enabled &&
+ (Info.EvalMode == EvalInfo::EM_ConstantExpression ||
+ Info.EvalMode == EvalInfo::EM_ConstantExpressionUnevaluated))
+ Info.EvalMode = EvalInfo::EM_ConstantFold;
+ }
+ void keepDiagnostics() { Enabled = false; }
+ ~FoldConstant() {
+ if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
+ !Info.EvalStatus.HasSideEffects)
+ Info.EvalStatus.Diag->clear();
+ Info.EvalMode = OldMode;
+ }
+ };
+
+ /// RAII object used to suppress diagnostics and side-effects from a
+ /// speculative evaluation.
+ class SpeculativeEvaluationRAII {
+ EvalInfo &Info;
+ Expr::EvalStatus Old;
+
+ public:
+ SpeculativeEvaluationRAII(EvalInfo &Info,
+ SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr)
+ : Info(Info), Old(Info.EvalStatus) {
+ Info.EvalStatus.Diag = NewDiag;
+ // If we're speculatively evaluating, we may have skipped over some
+ // evaluations and missed out a side effect.
+ Info.EvalStatus.HasSideEffects = true;
+ }
+ ~SpeculativeEvaluationRAII() {
+ Info.EvalStatus = Old;
+ }
+ };
+
+ /// RAII object wrapping a full-expression or block scope, and handling
+ /// the ending of the lifetime of temporaries created within it.
+ template<bool IsFullExpression>
+ class ScopeRAII {
+ EvalInfo &Info;
+ unsigned OldStackSize;
+ public:
+ ScopeRAII(EvalInfo &Info)
+ : Info(Info), OldStackSize(Info.CleanupStack.size()) {}
+ ~ScopeRAII() {
+ // Body moved to a static method to encourage the compiler to inline away
+ // instances of this class.
+ cleanup(Info, OldStackSize);
+ }
+ private:
+ static void cleanup(EvalInfo &Info, unsigned OldStackSize) {
+ unsigned NewEnd = OldStackSize;
+ for (unsigned I = OldStackSize, N = Info.CleanupStack.size();
+ I != N; ++I) {
+ if (IsFullExpression && Info.CleanupStack[I].isLifetimeExtended()) {
+ // Full-expression cleanup of a lifetime-extended temporary: nothing
+ // to do, just move this cleanup to the right place in the stack.
+ std::swap(Info.CleanupStack[I], Info.CleanupStack[NewEnd]);
+ ++NewEnd;
+ } else {
+ // End the lifetime of the object.
+ Info.CleanupStack[I].endLifetime();
+ }
+ }
+ Info.CleanupStack.erase(Info.CleanupStack.begin() + NewEnd,
+ Info.CleanupStack.end());
+ }
+ };
+ typedef ScopeRAII<false> BlockScopeRAII;
+ typedef ScopeRAII<true> FullExpressionRAII;
+}
+
+bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
+ CheckSubobjectKind CSK) {
+ if (Invalid)
+ return false;
+ if (isOnePastTheEnd()) {
+ Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
+ << CSK;
+ setInvalid();
+ return false;
+ }
+ return true;
+}
+
+void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
+ const Expr *E, uint64_t N) {
+ if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize)
+ Info.CCEDiag(E, diag::note_constexpr_array_index)
+ << static_cast<int>(N) << /*array*/ 0
+ << static_cast<unsigned>(MostDerivedArraySize);
+ else
+ Info.CCEDiag(E, diag::note_constexpr_array_index)
+ << static_cast<int>(N) << /*non-array*/ 1;
+ setInvalid();
+}
+
+CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
+ const FunctionDecl *Callee, const LValue *This,
+ APValue *Arguments)
+ : Info(Info), Caller(Info.CurrentCall), CallLoc(CallLoc), Callee(Callee),
+ Index(Info.NextCallIndex++), This(This), Arguments(Arguments) {
+ Info.CurrentCall = this;
+ ++Info.CallStackDepth;
+}
+
+CallStackFrame::~CallStackFrame() {
+ assert(Info.CurrentCall == this && "calls retired out of order");
+ --Info.CallStackDepth;
+ Info.CurrentCall = Caller;
+}
+
+APValue &CallStackFrame::createTemporary(const void *Key,
+ bool IsLifetimeExtended) {
+ APValue &Result = Temporaries[Key];
+ assert(Result.isUninit() && "temporary created multiple times");
+ Info.CleanupStack.push_back(Cleanup(&Result, IsLifetimeExtended));
+ return Result;
+}
+
+static void describeCall(CallStackFrame *Frame, raw_ostream &Out);
+
+void EvalInfo::addCallStack(unsigned Limit) {
+ // Determine which calls to skip, if any.
+ unsigned ActiveCalls = CallStackDepth - 1;
+ unsigned SkipStart = ActiveCalls, SkipEnd = SkipStart;
+ if (Limit && Limit < ActiveCalls) {
+ SkipStart = Limit / 2 + Limit % 2;
+ SkipEnd = ActiveCalls - Limit / 2;
+ }
+
+ // Walk the call stack and add the diagnostics.
+ unsigned CallIdx = 0;
+ for (CallStackFrame *Frame = CurrentCall; Frame != &BottomFrame;
+ Frame = Frame->Caller, ++CallIdx) {
+ // Skip this call?
+ if (CallIdx >= SkipStart && CallIdx < SkipEnd) {
+ if (CallIdx == SkipStart) {
+ // Note that we're skipping calls.
+ addDiag(Frame->CallLoc, diag::note_constexpr_calls_suppressed)
+ << unsigned(ActiveCalls - Limit);
+ }
+ continue;
+ }
+
+ SmallVector<char, 128> Buffer;
+ llvm::raw_svector_ostream Out(Buffer);
+ describeCall(Frame, Out);
+ addDiag(Frame->CallLoc, diag::note_constexpr_call_here) << Out.str();
+ }
+}
+
+namespace {
+ struct ComplexValue {
+ private:
+ bool IsInt;
+
+ public:
+ APSInt IntReal, IntImag;
+ APFloat FloatReal, FloatImag;
+
+ ComplexValue() : FloatReal(APFloat::Bogus), FloatImag(APFloat::Bogus) {}
+
+ void makeComplexFloat() { IsInt = false; }
+ bool isComplexFloat() const { return !IsInt; }
+ APFloat &getComplexFloatReal() { return FloatReal; }
+ APFloat &getComplexFloatImag() { return FloatImag; }
+
+ void makeComplexInt() { IsInt = true; }
+ bool isComplexInt() const { return IsInt; }
+ APSInt &getComplexIntReal() { return IntReal; }
+ APSInt &getComplexIntImag() { return IntImag; }
+
+ void moveInto(APValue &v) const {
+ if (isComplexFloat())
+ v = APValue(FloatReal, FloatImag);
+ else
+ v = APValue(IntReal, IntImag);
+ }
+ void setFrom(const APValue &v) {
+ assert(v.isComplexFloat() || v.isComplexInt());
+ if (v.isComplexFloat()) {
+ makeComplexFloat();
+ FloatReal = v.getComplexFloatReal();
+ FloatImag = v.getComplexFloatImag();
+ } else {
+ makeComplexInt();
+ IntReal = v.getComplexIntReal();
+ IntImag = v.getComplexIntImag();
+ }
+ }
+ };
+
+ struct LValue {
+ APValue::LValueBase Base;
+ CharUnits Offset;
+ unsigned CallIndex;
+ SubobjectDesignator Designator;
+
+ const APValue::LValueBase getLValueBase() const { return Base; }
+ CharUnits &getLValueOffset() { return Offset; }
+ const CharUnits &getLValueOffset() const { return Offset; }
+ unsigned getLValueCallIndex() const { return CallIndex; }
+ SubobjectDesignator &getLValueDesignator() { return Designator; }
+ const SubobjectDesignator &getLValueDesignator() const { return Designator;}
+
+ void moveInto(APValue &V) const {
+ if (Designator.Invalid)
+ V = APValue(Base, Offset, APValue::NoLValuePath(), CallIndex);
+ else
+ V = APValue(Base, Offset, Designator.Entries,
+ Designator.IsOnePastTheEnd, CallIndex);
+ }
+ void setFrom(ASTContext &Ctx, const APValue &V) {
+ assert(V.isLValue());
+ Base = V.getLValueBase();
+ Offset = V.getLValueOffset();
+ CallIndex = V.getLValueCallIndex();
+ Designator = SubobjectDesignator(Ctx, V);
+ }
+
+ void set(APValue::LValueBase B, unsigned I = 0) {
+ Base = B;
+ Offset = CharUnits::Zero();
+ CallIndex = I;
+ Designator = SubobjectDesignator(getType(B));
+ }
+
+ // Check that this LValue is not based on a null pointer. If it is, produce
+ // a diagnostic and mark the designator as invalid.
+ bool checkNullPointer(EvalInfo &Info, const Expr *E,
+ CheckSubobjectKind CSK) {
+ if (Designator.Invalid)
+ return false;
+ if (!Base) {
+ Info.CCEDiag(E, diag::note_constexpr_null_subobject)
+ << CSK;
+ Designator.setInvalid();
+ return false;
+ }
+ return true;
+ }
+
+ // Check this LValue refers to an object. If not, set the designator to be
+ // invalid and emit a diagnostic.
+ bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
+ // Outside C++11, do not build a designator referring to a subobject of
+ // any object: we won't use such a designator for anything.
+ if (!Info.getLangOpts().CPlusPlus11)
+ Designator.setInvalid();
+ return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) &&
+ Designator.checkSubobject(Info, E, CSK);
+ }
+
+ void addDecl(EvalInfo &Info, const Expr *E,
+ const Decl *D, bool Virtual = false) {
+ if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
+ Designator.addDeclUnchecked(D, Virtual);
+ }
+ void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
+ if (checkSubobject(Info, E, CSK_ArrayToPointer))
+ Designator.addArrayUnchecked(CAT);
+ }
+ void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
+ if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
+ Designator.addComplexUnchecked(EltTy, Imag);
+ }
+ void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
+ if (N && checkNullPointer(Info, E, CSK_ArrayIndex))
+ Designator.adjustIndex(Info, E, N);
+ }
+ };
+
+ struct MemberPtr {
+ MemberPtr() {}
+ explicit MemberPtr(const ValueDecl *Decl) :
+ DeclAndIsDerivedMember(Decl, false), Path() {}
+
+ /// The member or (direct or indirect) field referred to by this member
+ /// pointer, or 0 if this is a null member pointer.
+ const ValueDecl *getDecl() const {
+ return DeclAndIsDerivedMember.getPointer();
+ }
+ /// Is this actually a member of some type derived from the relevant class?
+ bool isDerivedMember() const {
+ return DeclAndIsDerivedMember.getInt();
+ }
+ /// Get the class which the declaration actually lives in.
+ const CXXRecordDecl *getContainingRecord() const {
+ return cast<CXXRecordDecl>(
+ DeclAndIsDerivedMember.getPointer()->getDeclContext());
+ }
+
+ void moveInto(APValue &V) const {
+ V = APValue(getDecl(), isDerivedMember(), Path);
+ }
+ void setFrom(const APValue &V) {
+ assert(V.isMemberPointer());
+ DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
+ DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
+ Path.clear();
+ ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
+ Path.insert(Path.end(), P.begin(), P.end());
+ }
+
+ /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
+ /// whether the member is a member of some class derived from the class type
+ /// of the member pointer.
+ llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
+ /// Path - The path of base/derived classes from the member declaration's
+ /// class (exclusive) to the class type of the member pointer (inclusive).
+ SmallVector<const CXXRecordDecl*, 4> Path;
+
+ /// Perform a cast towards the class of the Decl (either up or down the
+ /// hierarchy).
+ bool castBack(const CXXRecordDecl *Class) {
+ assert(!Path.empty());
+ const CXXRecordDecl *Expected;
+ if (Path.size() >= 2)
+ Expected = Path[Path.size() - 2];
+ else
+ Expected = getContainingRecord();
+ if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
+ // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
+ // if B does not contain the original member and is not a base or
+ // derived class of the class containing the original member, the result
+ // of the cast is undefined.
+ // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
+ // (D::*). We consider that to be a language defect.
+ return false;
+ }
+ Path.pop_back();
+ return true;
+ }
+ /// Perform a base-to-derived member pointer cast.
+ bool castToDerived(const CXXRecordDecl *Derived) {
+ if (!getDecl())
+ return true;
+ if (!isDerivedMember()) {
+ Path.push_back(Derived);
+ return true;
+ }
+ if (!castBack(Derived))
+ return false;
+ if (Path.empty())
+ DeclAndIsDerivedMember.setInt(false);
+ return true;
+ }
+ /// Perform a derived-to-base member pointer cast.
+ bool castToBase(const CXXRecordDecl *Base) {
+ if (!getDecl())
+ return true;
+ if (Path.empty())
+ DeclAndIsDerivedMember.setInt(true);
+ if (isDerivedMember()) {
+ Path.push_back(Base);
+ return true;
+ }
+ return castBack(Base);
+ }
+ };
+
+ /// Compare two member pointers, which are assumed to be of the same type.
+ static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
+ if (!LHS.getDecl() || !RHS.getDecl())
+ return !LHS.getDecl() && !RHS.getDecl();
+ if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
+ return false;
+ return LHS.Path == RHS.Path;
+ }
+}
+
+static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
+static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
+ const LValue &This, const Expr *E,
+ bool AllowNonLiteralTypes = false);
+static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info);
+static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info);
+static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
+ EvalInfo &Info);
+static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
+static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
+static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
+ EvalInfo &Info);
+static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
+static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
+static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info);
+
+//===----------------------------------------------------------------------===//
+// Misc utilities
+//===----------------------------------------------------------------------===//
+
+/// Produce a string describing the given constexpr call.
+static void describeCall(CallStackFrame *Frame, raw_ostream &Out) {
+ unsigned ArgIndex = 0;
+ bool IsMemberCall = isa<CXXMethodDecl>(Frame->Callee) &&
+ !isa<CXXConstructorDecl>(Frame->Callee) &&
+ cast<CXXMethodDecl>(Frame->Callee)->isInstance();
+
+ if (!IsMemberCall)
+ Out << *Frame->Callee << '(';
+
+ if (Frame->This && IsMemberCall) {
+ APValue Val;
+ Frame->This->moveInto(Val);
+ Val.printPretty(Out, Frame->Info.Ctx,
+ Frame->This->Designator.MostDerivedType);
+ // FIXME: Add parens around Val if needed.
+ Out << "->" << *Frame->Callee << '(';
+ IsMemberCall = false;
+ }
+
+ for (FunctionDecl::param_const_iterator I = Frame->Callee->param_begin(),
+ E = Frame->Callee->param_end(); I != E; ++I, ++ArgIndex) {
+ if (ArgIndex > (unsigned)IsMemberCall)
+ Out << ", ";
+
+ const ParmVarDecl *Param = *I;
+ const APValue &Arg = Frame->Arguments[ArgIndex];
+ Arg.printPretty(Out, Frame->Info.Ctx, Param->getType());
+
+ if (ArgIndex == 0 && IsMemberCall)
+ Out << "->" << *Frame->Callee << '(';
+ }
+
+ Out << ')';
+}
+
+/// Evaluate an expression to see if it had side-effects, and discard its
+/// result.
+/// \return \c true if the caller should keep evaluating.
+static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
+ APValue Scratch;
+ if (!Evaluate(Scratch, Info, E))
+ // We don't need the value, but we might have skipped a side effect here.
+ return Info.noteSideEffect();
+ return true;
+}
+
+/// Sign- or zero-extend a value to 64 bits. If it's already 64 bits, just
+/// return its existing value.
+static int64_t getExtValue(const APSInt &Value) {
+ return Value.isSigned() ? Value.getSExtValue()
+ : static_cast<int64_t>(Value.getZExtValue());
+}
+
+/// Should this call expression be treated as a string literal?
+static bool IsStringLiteralCall(const CallExpr *E) {
+ unsigned Builtin = E->getBuiltinCallee();
+ return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
+ Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
+}
+
+static bool IsGlobalLValue(APValue::LValueBase B) {
+ // C++11 [expr.const]p3 An address constant expression is a prvalue core
+ // constant expression of pointer type that evaluates to...
+
+ // ... a null pointer value, or a prvalue core constant expression of type
+ // std::nullptr_t.
+ if (!B) return true;
+
+ if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
+ // ... the address of an object with static storage duration,
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D))
+ return VD->hasGlobalStorage();
+ // ... the address of a function,
+ return isa<FunctionDecl>(D);
+ }
+
+ const Expr *E = B.get<const Expr*>();
+ switch (E->getStmtClass()) {
+ default:
+ return false;
+ case Expr::CompoundLiteralExprClass: {
+ const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
+ return CLE->isFileScope() && CLE->isLValue();
+ }
+ case Expr::MaterializeTemporaryExprClass:
+ // A materialized temporary might have been lifetime-extended to static
+ // storage duration.
+ return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
+ // A string literal has static storage duration.
+ case Expr::StringLiteralClass:
+ case Expr::PredefinedExprClass:
+ case Expr::ObjCStringLiteralClass:
+ case Expr::ObjCEncodeExprClass:
+ case Expr::CXXTypeidExprClass:
+ case Expr::CXXUuidofExprClass:
+ return true;
+ case Expr::CallExprClass:
+ return IsStringLiteralCall(cast<CallExpr>(E));
+ // For GCC compatibility, &&label has static storage duration.
+ case Expr::AddrLabelExprClass:
+ return true;
+ // A Block literal expression may be used as the initialization value for
+ // Block variables at global or local static scope.
+ case Expr::BlockExprClass:
+ return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
+ case Expr::ImplicitValueInitExprClass:
+ // FIXME:
+ // We can never form an lvalue with an implicit value initialization as its
+ // base through expression evaluation, so these only appear in one case: the
+ // implicit variable declaration we invent when checking whether a constexpr
+ // constructor can produce a constant expression. We must assume that such
+ // an expression might be a global lvalue.
+ return true;
+ }
+}
+
+static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
+ assert(Base && "no location for a null lvalue");
+ const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
+ if (VD)
+ Info.Note(VD->getLocation(), diag::note_declared_at);
+ else
+ Info.Note(Base.get<const Expr*>()->getExprLoc(),
+ diag::note_constexpr_temporary_here);
+}
+
+/// Check that this reference or pointer core constant expression is a valid
+/// value for an address or reference constant expression. Return true if we
+/// can fold this expression, whether or not it's a constant expression.
+static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
+ QualType Type, const LValue &LVal) {
+ bool IsReferenceType = Type->isReferenceType();
+
+ APValue::LValueBase Base = LVal.getLValueBase();
+ const SubobjectDesignator &Designator = LVal.getLValueDesignator();
+
+ // Check that the object is a global. Note that the fake 'this' object we
+ // manufacture when checking potential constant expressions is conservatively
+ // assumed to be global here.
+ if (!IsGlobalLValue(Base)) {
+ if (Info.getLangOpts().CPlusPlus11) {
+ const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
+ Info.Diag(Loc, diag::note_constexpr_non_global, 1)
+ << IsReferenceType << !Designator.Entries.empty()
+ << !!VD << VD;
+ NoteLValueLocation(Info, Base);
+ } else {
+ Info.Diag(Loc);
+ }
+ // Don't allow references to temporaries to escape.
+ return false;
+ }
+ assert((Info.checkingPotentialConstantExpression() ||
+ LVal.getLValueCallIndex() == 0) &&
+ "have call index for global lvalue");
+
+ if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) {
+ if (const VarDecl *Var = dyn_cast<const VarDecl>(VD)) {
+ // Check if this is a thread-local variable.
+ if (Var->getTLSKind())
+ return false;
+
+ // A dllimport variable never acts like a constant.
+ if (Var->hasAttr<DLLImportAttr>())
+ return false;
+ }
+ if (const auto *FD = dyn_cast<const FunctionDecl>(VD)) {
+ // __declspec(dllimport) must be handled very carefully:
+ // We must never initialize an expression with the thunk in C++.
+ // Doing otherwise would allow the same id-expression to yield
+ // different addresses for the same function in different translation
+ // units. However, this means that we must dynamically initialize the
+ // expression with the contents of the import address table at runtime.
+ //
+ // The C language has no notion of ODR; furthermore, it has no notion of
+ // dynamic initialization. This means that we are permitted to
+ // perform initialization with the address of the thunk.
+ if (Info.getLangOpts().CPlusPlus && FD->hasAttr<DLLImportAttr>())
+ return false;
+ }
+ }
+
+ // Allow address constant expressions to be past-the-end pointers. This is
+ // an extension: the standard requires them to point to an object.
+ if (!IsReferenceType)
+ return true;
+
+ // A reference constant expression must refer to an object.
+ if (!Base) {
+ // FIXME: diagnostic
+ Info.CCEDiag(Loc);
+ return true;
+ }
+
+ // Does this refer one past the end of some object?
+ if (!Designator.Invalid && Designator.isOnePastTheEnd()) {
+ const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
+ Info.Diag(Loc, diag::note_constexpr_past_end, 1)
+ << !Designator.Entries.empty() << !!VD << VD;
+ NoteLValueLocation(Info, Base);
+ }
+
+ return true;
+}
+
+/// Check that this core constant expression is of literal type, and if not,
+/// produce an appropriate diagnostic.
+static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
+ const LValue *This = nullptr) {
+ if (!E->isRValue() || E->getType()->isLiteralType(Info.Ctx))
+ return true;
+
+ // C++1y: A constant initializer for an object o [...] may also invoke
+ // constexpr constructors for o and its subobjects even if those objects
+ // are of non-literal class types.
+ if (Info.getLangOpts().CPlusPlus14 && This &&
+ Info.EvaluatingDecl == This->getLValueBase())
+ return true;
+
+ // Prvalue constant expressions must be of literal types.
+ if (Info.getLangOpts().CPlusPlus11)
+ Info.Diag(E, diag::note_constexpr_nonliteral)
+ << E->getType();
+ else
+ Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
+ return false;
+}
+
+/// Check that this core constant expression value is a valid value for a
+/// constant expression. If not, report an appropriate diagnostic. Does not
+/// check that the expression is of literal type.
+static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
+ QualType Type, const APValue &Value) {
+ if (Value.isUninit()) {
+ Info.Diag(DiagLoc, diag::note_constexpr_uninitialized)
+ << true << Type;
+ return false;
+ }
+
+ // We allow _Atomic(T) to be initialized from anything that T can be
+ // initialized from.
+ if (const AtomicType *AT = Type->getAs<AtomicType>())
+ Type = AT->getValueType();
+
+ // Core issue 1454: For a literal constant expression of array or class type,
+ // each subobject of its value shall have been initialized by a constant
+ // expression.
+ if (Value.isArray()) {
+ QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
+ for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
+ if (!CheckConstantExpression(Info, DiagLoc, EltTy,
+ Value.getArrayInitializedElt(I)))
+ return false;
+ }
+ if (!Value.hasArrayFiller())
+ return true;
+ return CheckConstantExpression(Info, DiagLoc, EltTy,
+ Value.getArrayFiller());
+ }
+ if (Value.isUnion() && Value.getUnionField()) {
+ return CheckConstantExpression(Info, DiagLoc,
+ Value.getUnionField()->getType(),
+ Value.getUnionValue());
+ }
+ if (Value.isStruct()) {
+ RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
+ if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
+ unsigned BaseIndex = 0;
+ for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
+ End = CD->bases_end(); I != End; ++I, ++BaseIndex) {
+ if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
+ Value.getStructBase(BaseIndex)))
+ return false;
+ }
+ }
+ for (const auto *I : RD->fields()) {
+ if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
+ Value.getStructField(I->getFieldIndex())))
+ return false;
+ }
+ }
+
+ if (Value.isLValue()) {
+ LValue LVal;
+ LVal.setFrom(Info.Ctx, Value);
+ return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal);
+ }
+
+ // Everything else is fine.
+ return true;
+}
+
+static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
+ return LVal.Base.dyn_cast<const ValueDecl*>();
+}
+
+static bool IsLiteralLValue(const LValue &Value) {
+ if (Value.CallIndex)
+ return false;
+ const Expr *E = Value.Base.dyn_cast<const Expr*>();
+ return E && !isa<MaterializeTemporaryExpr>(E);
+}
+
+static bool IsWeakLValue(const LValue &Value) {
+ const ValueDecl *Decl = GetLValueBaseDecl(Value);
+ return Decl && Decl->isWeak();
+}
+
+static bool isZeroSized(const LValue &Value) {
+ const ValueDecl *Decl = GetLValueBaseDecl(Value);
+ if (Decl && isa<VarDecl>(Decl)) {
+ QualType Ty = Decl->getType();
+ if (Ty->isArrayType())
+ return Ty->isIncompleteType() ||
+ Decl->getASTContext().getTypeSize(Ty) == 0;
+ }
+ return false;
+}
+
+static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
+ // A null base expression indicates a null pointer. These are always
+ // evaluatable, and they are false unless the offset is zero.
+ if (!Value.getLValueBase()) {
+ Result = !Value.getLValueOffset().isZero();
+ return true;
+ }
+
+ // We have a non-null base. These are generally known to be true, but if it's
+ // a weak declaration it can be null at runtime.
+ Result = true;
+ const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
+ return !Decl || !Decl->isWeak();
+}
+
+static bool HandleConversionToBool(const APValue &Val, bool &Result) {
+ switch (Val.getKind()) {
+ case APValue::Uninitialized:
+ return false;
+ case APValue::Int:
+ Result = Val.getInt().getBoolValue();
+ return true;
+ case APValue::Float:
+ Result = !Val.getFloat().isZero();
+ return true;
+ case APValue::ComplexInt:
+ Result = Val.getComplexIntReal().getBoolValue() ||
+ Val.getComplexIntImag().getBoolValue();
+ return true;
+ case APValue::ComplexFloat:
+ Result = !Val.getComplexFloatReal().isZero() ||
+ !Val.getComplexFloatImag().isZero();
+ return true;
+ case APValue::LValue:
+ return EvalPointerValueAsBool(Val, Result);
+ case APValue::MemberPointer:
+ Result = Val.getMemberPointerDecl();
+ return true;
+ case APValue::Vector:
+ case APValue::Array:
+ case APValue::Struct:
+ case APValue::Union:
+ case APValue::AddrLabelDiff:
+ return false;
+ }
+
+ llvm_unreachable("unknown APValue kind");
+}
+
+static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
+ EvalInfo &Info) {
+ assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
+ APValue Val;
+ if (!Evaluate(Val, Info, E))
+ return false;
+ return HandleConversionToBool(Val, Result);
+}
+
+template<typename T>
+static void HandleOverflow(EvalInfo &Info, const Expr *E,
+ const T &SrcValue, QualType DestType) {
+ Info.CCEDiag(E, diag::note_constexpr_overflow)
+ << SrcValue << DestType;
+}
+
+static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
+ QualType SrcType, const APFloat &Value,
+ QualType DestType, APSInt &Result) {
+ unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
+ // Determine whether we are converting to unsigned or signed.
+ bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
+
+ Result = APSInt(DestWidth, !DestSigned);
+ bool ignored;
+ if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
+ & APFloat::opInvalidOp)
+ HandleOverflow(Info, E, Value, DestType);
+ return true;
+}
+
+static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
+ QualType SrcType, QualType DestType,
+ APFloat &Result) {
+ APFloat Value = Result;
+ bool ignored;
+ if (Result.convert(Info.Ctx.getFloatTypeSemantics(DestType),
+ APFloat::rmNearestTiesToEven, &ignored)
+ & APFloat::opOverflow)
+ HandleOverflow(Info, E, Value, DestType);
+ return true;
+}
+
+static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
+ QualType DestType, QualType SrcType,
+ APSInt &Value) {
+ unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
+ APSInt Result = Value;
+ // Figure out if this is a truncate, extend or noop cast.
+ // If the input is signed, do a sign extend, noop, or truncate.
+ Result = Result.extOrTrunc(DestWidth);
+ Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
+ return Result;
+}
+
+static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
+ QualType SrcType, const APSInt &Value,
+ QualType DestType, APFloat &Result) {
+ Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
+ if (Result.convertFromAPInt(Value, Value.isSigned(),
+ APFloat::rmNearestTiesToEven)
+ & APFloat::opOverflow)
+ HandleOverflow(Info, E, Value, DestType);
+ return true;
+}
+
+static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
+ APValue &Value, const FieldDecl *FD) {
+ assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
+
+ if (!Value.isInt()) {
+ // Trying to store a pointer-cast-to-integer into a bitfield.
+ // FIXME: In this case, we should provide the diagnostic for casting
+ // a pointer to an integer.
+ assert(Value.isLValue() && "integral value neither int nor lvalue?");
+ Info.Diag(E);
+ return false;
+ }
+
+ APSInt &Int = Value.getInt();
+ unsigned OldBitWidth = Int.getBitWidth();
+ unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
+ if (NewBitWidth < OldBitWidth)
+ Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
+ return true;
+}
+
+static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
+ llvm::APInt &Res) {
+ APValue SVal;
+ if (!Evaluate(SVal, Info, E))
+ return false;
+ if (SVal.isInt()) {
+ Res = SVal.getInt();
+ return true;
+ }
+ if (SVal.isFloat()) {
+ Res = SVal.getFloat().bitcastToAPInt();
+ return true;
+ }
+ if (SVal.isVector()) {
+ QualType VecTy = E->getType();
+ unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
+ QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
+ unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
+ bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
+ Res = llvm::APInt::getNullValue(VecSize);
+ for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
+ APValue &Elt = SVal.getVectorElt(i);
+ llvm::APInt EltAsInt;
+ if (Elt.isInt()) {
+ EltAsInt = Elt.getInt();
+ } else if (Elt.isFloat()) {
+ EltAsInt = Elt.getFloat().bitcastToAPInt();
+ } else {
+ // Don't try to handle vectors of anything other than int or float
+ // (not sure if it's possible to hit this case).
+ Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
+ return false;
+ }
+ unsigned BaseEltSize = EltAsInt.getBitWidth();
+ if (BigEndian)
+ Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
+ else
+ Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
+ }
+ return true;
+ }
+ // Give up if the input isn't an int, float, or vector. For example, we
+ // reject "(v4i16)(intptr_t)&a".
+ Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
+ return false;
+}
+
+/// Perform the given integer operation, which is known to need at most BitWidth
+/// bits, and check for overflow in the original type (if that type was not an
+/// unsigned type).
+template<typename Operation>
+static APSInt CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
+ const APSInt &LHS, const APSInt &RHS,
+ unsigned BitWidth, Operation Op) {
+ if (LHS.isUnsigned())
+ return Op(LHS, RHS);
+
+ APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
+ APSInt Result = Value.trunc(LHS.getBitWidth());
+ if (Result.extend(BitWidth) != Value) {
+ if (Info.checkingForOverflow())
+ Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
+ diag::warn_integer_constant_overflow)
+ << Result.toString(10) << E->getType();
+ else
+ HandleOverflow(Info, E, Value, E->getType());
+ }
+ return Result;
+}
+
+/// Perform the given binary integer operation.
+static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS,
+ BinaryOperatorKind Opcode, APSInt RHS,
+ APSInt &Result) {
+ switch (Opcode) {
+ default:
+ Info.Diag(E);
+ return false;
+ case BO_Mul:
+ Result = CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
+ std::multiplies<APSInt>());
+ return true;
+ case BO_Add:
+ Result = CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
+ std::plus<APSInt>());
+ return true;
+ case BO_Sub:
+ Result = CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
+ std::minus<APSInt>());
+ return true;
+ case BO_And: Result = LHS & RHS; return true;
+ case BO_Xor: Result = LHS ^ RHS; return true;
+ case BO_Or: Result = LHS | RHS; return true;
+ case BO_Div:
+ case BO_Rem:
+ if (RHS == 0) {
+ Info.Diag(E, diag::note_expr_divide_by_zero);
+ return false;
+ }
+ // Check for overflow case: INT_MIN / -1 or INT_MIN % -1.
+ if (RHS.isNegative() && RHS.isAllOnesValue() &&
+ LHS.isSigned() && LHS.isMinSignedValue())
+ HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1), E->getType());
+ Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
+ return true;
+ case BO_Shl: {
+ if (Info.getLangOpts().OpenCL)
+ // OpenCL 6.3j: shift values are effectively % word size of LHS.
+ RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
+ static_cast<uint64_t>(LHS.getBitWidth() - 1)),
+ RHS.isUnsigned());
+ else if (RHS.isSigned() && RHS.isNegative()) {
+ // During constant-folding, a negative shift is an opposite shift. Such
+ // a shift is not a constant expression.
+ Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
+ RHS = -RHS;
+ goto shift_right;
+ }
+ shift_left:
+ // C++11 [expr.shift]p1: Shift width must be less than the bit width of
+ // the shifted type.
+ unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
+ if (SA != RHS) {
+ Info.CCEDiag(E, diag::note_constexpr_large_shift)
+ << RHS << E->getType() << LHS.getBitWidth();
+ } else if (LHS.isSigned()) {
+ // C++11 [expr.shift]p2: A signed left shift must have a non-negative
+ // operand, and must not overflow the corresponding unsigned type.
+ if (LHS.isNegative())
+ Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
+ else if (LHS.countLeadingZeros() < SA)
+ Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
+ }
+ Result = LHS << SA;
+ return true;
+ }
+ case BO_Shr: {
+ if (Info.getLangOpts().OpenCL)
+ // OpenCL 6.3j: shift values are effectively % word size of LHS.
+ RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
+ static_cast<uint64_t>(LHS.getBitWidth() - 1)),
+ RHS.isUnsigned());
+ else if (RHS.isSigned() && RHS.isNegative()) {
+ // During constant-folding, a negative shift is an opposite shift. Such a
+ // shift is not a constant expression.
+ Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
+ RHS = -RHS;
+ goto shift_left;
+ }
+ shift_right:
+ // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
+ // shifted type.
+ unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
+ if (SA != RHS)
+ Info.CCEDiag(E, diag::note_constexpr_large_shift)
+ << RHS << E->getType() << LHS.getBitWidth();
+ Result = LHS >> SA;
+ return true;
+ }
+
+ case BO_LT: Result = LHS < RHS; return true;
+ case BO_GT: Result = LHS > RHS; return true;
+ case BO_LE: Result = LHS <= RHS; return true;
+ case BO_GE: Result = LHS >= RHS; return true;
+ case BO_EQ: Result = LHS == RHS; return true;
+ case BO_NE: Result = LHS != RHS; return true;
+ }
+}
+
+/// Perform the given binary floating-point operation, in-place, on LHS.
+static bool handleFloatFloatBinOp(EvalInfo &Info, const Expr *E,
+ APFloat &LHS, BinaryOperatorKind Opcode,
+ const APFloat &RHS) {
+ switch (Opcode) {
+ default:
+ Info.Diag(E);
+ return false;
+ case BO_Mul:
+ LHS.multiply(RHS, APFloat::rmNearestTiesToEven);
+ break;
+ case BO_Add:
+ LHS.add(RHS, APFloat::rmNearestTiesToEven);
+ break;
+ case BO_Sub:
+ LHS.subtract(RHS, APFloat::rmNearestTiesToEven);
+ break;
+ case BO_Div:
+ LHS.divide(RHS, APFloat::rmNearestTiesToEven);
+ break;
+ }
+
+ if (LHS.isInfinity() || LHS.isNaN())
+ Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
+ return true;
+}
+
+/// Cast an lvalue referring to a base subobject to a derived class, by
+/// truncating the lvalue's path to the given length.
+static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
+ const RecordDecl *TruncatedType,
+ unsigned TruncatedElements) {
+ SubobjectDesignator &D = Result.Designator;
+
+ // Check we actually point to a derived class object.
+ if (TruncatedElements == D.Entries.size())
+ return true;
+ assert(TruncatedElements >= D.MostDerivedPathLength &&
+ "not casting to a derived class");
+ if (!Result.checkSubobject(Info, E, CSK_Derived))
+ return false;
+
+ // Truncate the path to the subobject, and remove any derived-to-base offsets.
+ const RecordDecl *RD = TruncatedType;
+ for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
+ if (RD->isInvalidDecl()) return false;
+ const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
+ const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
+ if (isVirtualBaseClass(D.Entries[I]))
+ Result.Offset -= Layout.getVBaseClassOffset(Base);
+ else
+ Result.Offset -= Layout.getBaseClassOffset(Base);
+ RD = Base;
+ }
+ D.Entries.resize(TruncatedElements);
+ return true;
+}
+
+static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
+ const CXXRecordDecl *Derived,
+ const CXXRecordDecl *Base,
+ const ASTRecordLayout *RL = nullptr) {
+ if (!RL) {
+ if (Derived->isInvalidDecl()) return false;
+ RL = &Info.Ctx.getASTRecordLayout(Derived);
+ }
+
+ Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
+ Obj.addDecl(Info, E, Base, /*Virtual*/ false);
+ return true;
+}
+
+static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
+ const CXXRecordDecl *DerivedDecl,
+ const CXXBaseSpecifier *Base) {
+ const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
+
+ if (!Base->isVirtual())
+ return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
+
+ SubobjectDesignator &D = Obj.Designator;
+ if (D.Invalid)
+ return false;
+
+ // Extract most-derived object and corresponding type.
+ DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
+ if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
+ return false;
+
+ // Find the virtual base class.
+ if (DerivedDecl->isInvalidDecl()) return false;
+ const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
+ Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
+ Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
+ return true;
+}
+
+static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
+ QualType Type, LValue &Result) {
+ for (CastExpr::path_const_iterator PathI = E->path_begin(),
+ PathE = E->path_end();
+ PathI != PathE; ++PathI) {
+ if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
+ *PathI))
+ return false;
+ Type = (*PathI)->getType();
+ }
+ return true;
+}
+
+/// Update LVal to refer to the given field, which must be a member of the type
+/// currently described by LVal.
+static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
+ const FieldDecl *FD,
+ const ASTRecordLayout *RL = nullptr) {
+ if (!RL) {
+ if (FD->getParent()->isInvalidDecl()) return false;
+ RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
+ }
+
+ unsigned I = FD->getFieldIndex();
+ LVal.Offset += Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I));
+ LVal.addDecl(Info, E, FD);
+ return true;
+}
+
+/// Update LVal to refer to the given indirect field.
+static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
+ LValue &LVal,
+ const IndirectFieldDecl *IFD) {
+ for (const auto *C : IFD->chain())
+ if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C)))
+ return false;
+ return true;
+}
+
+/// Get the size of the given type in char units.
+static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
+ QualType Type, CharUnits &Size) {
+ // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
+ // extension.
+ if (Type->isVoidType() || Type->isFunctionType()) {
+ Size = CharUnits::One();
+ return true;
+ }
+
+ if (!Type->isConstantSizeType()) {
+ // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
+ // FIXME: Better diagnostic.
+ Info.Diag(Loc);
+ return false;
+ }
+
+ Size = Info.Ctx.getTypeSizeInChars(Type);
+ return true;
+}
+
+/// Update a pointer value to model pointer arithmetic.
+/// \param Info - Information about the ongoing evaluation.
+/// \param E - The expression being evaluated, for diagnostic purposes.
+/// \param LVal - The pointer value to be updated.
+/// \param EltTy - The pointee type represented by LVal.
+/// \param Adjustment - The adjustment, in objects of type EltTy, to add.
+static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
+ LValue &LVal, QualType EltTy,
+ int64_t Adjustment) {
+ CharUnits SizeOfPointee;
+ if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
+ return false;
+
+ // Compute the new offset in the appropriate width.
+ LVal.Offset += Adjustment * SizeOfPointee;
+ LVal.adjustIndex(Info, E, Adjustment);
+ return true;
+}
+
+/// Update an lvalue to refer to a component of a complex number.
+/// \param Info - Information about the ongoing evaluation.
+/// \param LVal - The lvalue to be updated.
+/// \param EltTy - The complex number's component type.
+/// \param Imag - False for the real component, true for the imaginary.
+static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
+ LValue &LVal, QualType EltTy,
+ bool Imag) {
+ if (Imag) {
+ CharUnits SizeOfComponent;
+ if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
+ return false;
+ LVal.Offset += SizeOfComponent;
+ }
+ LVal.addComplex(Info, E, EltTy, Imag);
+ return true;
+}
+
+/// Try to evaluate the initializer for a variable declaration.
+///
+/// \param Info Information about the ongoing evaluation.
+/// \param E An expression to be used when printing diagnostics.
+/// \param VD The variable whose initializer should be obtained.
+/// \param Frame The frame in which the variable was created. Must be null
+/// if this variable is not local to the evaluation.
+/// \param Result Filled in with a pointer to the value of the variable.
+static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
+ const VarDecl *VD, CallStackFrame *Frame,
+ APValue *&Result) {
+ // If this is a parameter to an active constexpr function call, perform
+ // argument substitution.
+ if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
+ // Assume arguments of a potential constant expression are unknown
+ // constant expressions.
+ if (Info.checkingPotentialConstantExpression())
+ return false;
+ if (!Frame || !Frame->Arguments) {
+ Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
+ return false;
+ }
+ Result = &Frame->Arguments[PVD->getFunctionScopeIndex()];
+ return true;
+ }
+
+ // If this is a local variable, dig out its value.
+ if (Frame) {
+ Result = Frame->getTemporary(VD);
+ assert(Result && "missing value for local variable");
+ return true;
+ }
+
+ // Dig out the initializer, and use the declaration which it's attached to.
+ const Expr *Init = VD->getAnyInitializer(VD);
+ if (!Init || Init->isValueDependent()) {
+ // If we're checking a potential constant expression, the variable could be
+ // initialized later.
+ if (!Info.checkingPotentialConstantExpression())
+ Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
+ return false;
+ }
+
+ // If we're currently evaluating the initializer of this declaration, use that
+ // in-flight value.
+ if (Info.EvaluatingDecl.dyn_cast<const ValueDecl*>() == VD) {
+ Result = Info.EvaluatingDeclValue;
+ return true;
+ }
+
+ // Never evaluate the initializer of a weak variable. We can't be sure that
+ // this is the definition which will be used.
+ if (VD->isWeak()) {
+ Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
+ return false;
+ }
+
+ // Check that we can fold the initializer. In C++, we will have already done
+ // this in the cases where it matters for conformance.
+ SmallVector<PartialDiagnosticAt, 8> Notes;
+ if (!VD->evaluateValue(Notes)) {
+ Info.Diag(E, diag::note_constexpr_var_init_non_constant,
+ Notes.size() + 1) << VD;
+ Info.Note(VD->getLocation(), diag::note_declared_at);
+ Info.addNotes(Notes);
+ return false;
+ } else if (!VD->checkInitIsICE()) {
+ Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant,
+ Notes.size() + 1) << VD;
+ Info.Note(VD->getLocation(), diag::note_declared_at);
+ Info.addNotes(Notes);
+ }
+
+ Result = VD->getEvaluatedValue();
+ return true;
+}
+
+static bool IsConstNonVolatile(QualType T) {
+ Qualifiers Quals = T.getQualifiers();
+ return Quals.hasConst() && !Quals.hasVolatile();
+}
+
+/// Get the base index of the given base class within an APValue representing
+/// the given derived class.
+static unsigned getBaseIndex(const CXXRecordDecl *Derived,
+ const CXXRecordDecl *Base) {
+ Base = Base->getCanonicalDecl();
+ unsigned Index = 0;
+ for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
+ E = Derived->bases_end(); I != E; ++I, ++Index) {
+ if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
+ return Index;
+ }
+
+ llvm_unreachable("base class missing from derived class's bases list");
+}
+
+/// Extract the value of a character from a string literal.
+static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
+ uint64_t Index) {
+ // FIXME: Support ObjCEncodeExpr, MakeStringConstant
+ if (auto PE = dyn_cast<PredefinedExpr>(Lit))
+ Lit = PE->getFunctionName();
+ const StringLiteral *S = cast<StringLiteral>(Lit);
+ const ConstantArrayType *CAT =
+ Info.Ctx.getAsConstantArrayType(S->getType());
+ assert(CAT && "string literal isn't an array");
+ QualType CharType = CAT->getElementType();
+ assert(CharType->isIntegerType() && "unexpected character type");
+
+ APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
+ CharType->isUnsignedIntegerType());
+ if (Index < S->getLength())
+ Value = S->getCodeUnit(Index);
+ return Value;
+}
+
+// Expand a string literal into an array of characters.
+static void expandStringLiteral(EvalInfo &Info, const Expr *Lit,
+ APValue &Result) {
+ const StringLiteral *S = cast<StringLiteral>(Lit);
+ const ConstantArrayType *CAT =
+ Info.Ctx.getAsConstantArrayType(S->getType());
+ assert(CAT && "string literal isn't an array");
+ QualType CharType = CAT->getElementType();
+ assert(CharType->isIntegerType() && "unexpected character type");
+
+ unsigned Elts = CAT->getSize().getZExtValue();
+ Result = APValue(APValue::UninitArray(),
+ std::min(S->getLength(), Elts), Elts);
+ APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
+ CharType->isUnsignedIntegerType());
+ if (Result.hasArrayFiller())
+ Result.getArrayFiller() = APValue(Value);
+ for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
+ Value = S->getCodeUnit(I);
+ Result.getArrayInitializedElt(I) = APValue(Value);
+ }
+}
+
+// Expand an array so that it has more than Index filled elements.
+static void expandArray(APValue &Array, unsigned Index) {
+ unsigned Size = Array.getArraySize();
+ assert(Index < Size);
+
+ // Always at least double the number of elements for which we store a value.
+ unsigned OldElts = Array.getArrayInitializedElts();
+ unsigned NewElts = std::max(Index+1, OldElts * 2);
+ NewElts = std::min(Size, std::max(NewElts, 8u));
+
+ // Copy the data across.
+ APValue NewValue(APValue::UninitArray(), NewElts, Size);
+ for (unsigned I = 0; I != OldElts; ++I)
+ NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
+ for (unsigned I = OldElts; I != NewElts; ++I)
+ NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
+ if (NewValue.hasArrayFiller())
+ NewValue.getArrayFiller() = Array.getArrayFiller();
+ Array.swap(NewValue);
+}
+
+/// Determine whether a type would actually be read by an lvalue-to-rvalue
+/// conversion. If it's of class type, we may assume that the copy operation
+/// is trivial. Note that this is never true for a union type with fields
+/// (because the copy always "reads" the active member) and always true for
+/// a non-class type.
+static bool isReadByLvalueToRvalueConversion(QualType T) {
+ CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
+ if (!RD || (RD->isUnion() && !RD->field_empty()))
+ return true;
+ if (RD->isEmpty())
+ return false;
+
+ for (auto *Field : RD->fields())
+ if (isReadByLvalueToRvalueConversion(Field->getType()))
+ return true;
+
+ for (auto &BaseSpec : RD->bases())
+ if (isReadByLvalueToRvalueConversion(BaseSpec.getType()))
+ return true;
+
+ return false;
+}
+
+/// Diagnose an attempt to read from any unreadable field within the specified
+/// type, which might be a class type.
+static bool diagnoseUnreadableFields(EvalInfo &Info, const Expr *E,
+ QualType T) {
+ CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
+ if (!RD)
+ return false;
+
+ if (!RD->hasMutableFields())
+ return false;
+
+ for (auto *Field : RD->fields()) {
+ // If we're actually going to read this field in some way, then it can't
+ // be mutable. If we're in a union, then assigning to a mutable field
+ // (even an empty one) can change the active member, so that's not OK.
+ // FIXME: Add core issue number for the union case.
+ if (Field->isMutable() &&
+ (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) {
+ Info.Diag(E, diag::note_constexpr_ltor_mutable, 1) << Field;
+ Info.Note(Field->getLocation(), diag::note_declared_at);
+ return true;
+ }
+
+ if (diagnoseUnreadableFields(Info, E, Field->getType()))
+ return true;
+ }
+
+ for (auto &BaseSpec : RD->bases())
+ if (diagnoseUnreadableFields(Info, E, BaseSpec.getType()))
+ return true;
+
+ // All mutable fields were empty, and thus not actually read.
+ return false;
+}
+
+/// Kinds of access we can perform on an object, for diagnostics.
+enum AccessKinds {
+ AK_Read,
+ AK_Assign,
+ AK_Increment,
+ AK_Decrement
+};
+
+/// A handle to a complete object (an object that is not a subobject of
+/// another object).
+struct CompleteObject {
+ /// The value of the complete object.
+ APValue *Value;
+ /// The type of the complete object.
+ QualType Type;
+
+ CompleteObject() : Value(nullptr) {}
+ CompleteObject(APValue *Value, QualType Type)
+ : Value(Value), Type(Type) {
+ assert(Value && "missing value for complete object");
+ }
+
+ explicit operator bool() const { return Value; }
+};
+
+/// Find the designated sub-object of an rvalue.
+template<typename SubobjectHandler>
+typename SubobjectHandler::result_type
+findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
+ const SubobjectDesignator &Sub, SubobjectHandler &handler) {
+ if (Sub.Invalid)
+ // A diagnostic will have already been produced.
+ return handler.failed();
+ if (Sub.isOnePastTheEnd()) {
+ if (Info.getLangOpts().CPlusPlus11)
+ Info.Diag(E, diag::note_constexpr_access_past_end)
+ << handler.AccessKind;
+ else
+ Info.Diag(E);
+ return handler.failed();
+ }
+
+ APValue *O = Obj.Value;
+ QualType ObjType = Obj.Type;
+ const FieldDecl *LastField = nullptr;
+
+ // Walk the designator's path to find the subobject.
+ for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
+ if (O->isUninit()) {
+ if (!Info.checkingPotentialConstantExpression())
+ Info.Diag(E, diag::note_constexpr_access_uninit) << handler.AccessKind;
+ return handler.failed();
+ }
+
+ if (I == N) {
+ // If we are reading an object of class type, there may still be more
+ // things we need to check: if there are any mutable subobjects, we
+ // cannot perform this read. (This only happens when performing a trivial
+ // copy or assignment.)
+ if (ObjType->isRecordType() && handler.AccessKind == AK_Read &&
+ diagnoseUnreadableFields(Info, E, ObjType))
+ return handler.failed();
+
+ if (!handler.found(*O, ObjType))
+ return false;
+
+ // If we modified a bit-field, truncate it to the right width.
+ if (handler.AccessKind != AK_Read &&
+ LastField && LastField->isBitField() &&
+ !truncateBitfieldValue(Info, E, *O, LastField))
+ return false;
+
+ return true;
+ }
+
+ LastField = nullptr;
+ if (ObjType->isArrayType()) {
+ // Next subobject is an array element.
+ const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
+ assert(CAT && "vla in literal type?");
+ uint64_t Index = Sub.Entries[I].ArrayIndex;
+ if (CAT->getSize().ule(Index)) {
+ // Note, it should not be possible to form a pointer with a valid
+ // designator which points more than one past the end of the array.
+ if (Info.getLangOpts().CPlusPlus11)
+ Info.Diag(E, diag::note_constexpr_access_past_end)
+ << handler.AccessKind;
+ else
+ Info.Diag(E);
+ return handler.failed();
+ }
+
+ ObjType = CAT->getElementType();
+
+ // An array object is represented as either an Array APValue or as an
+ // LValue which refers to a string literal.
+ if (O->isLValue()) {
+ assert(I == N - 1 && "extracting subobject of character?");
+ assert(!O->hasLValuePath() || O->getLValuePath().empty());
+ if (handler.AccessKind != AK_Read)
+ expandStringLiteral(Info, O->getLValueBase().get<const Expr *>(),
+ *O);
+ else
+ return handler.foundString(*O, ObjType, Index);
+ }
+
+ if (O->getArrayInitializedElts() > Index)
+ O = &O->getArrayInitializedElt(Index);
+ else if (handler.AccessKind != AK_Read) {
+ expandArray(*O, Index);
+ O = &O->getArrayInitializedElt(Index);
+ } else
+ O = &O->getArrayFiller();
+ } else if (ObjType->isAnyComplexType()) {
+ // Next subobject is a complex number.
+ uint64_t Index = Sub.Entries[I].ArrayIndex;
+ if (Index > 1) {
+ if (Info.getLangOpts().CPlusPlus11)
+ Info.Diag(E, diag::note_constexpr_access_past_end)
+ << handler.AccessKind;
+ else
+ Info.Diag(E);
+ return handler.failed();
+ }
+
+ bool WasConstQualified = ObjType.isConstQualified();
+ ObjType = ObjType->castAs<ComplexType>()->getElementType();
+ if (WasConstQualified)
+ ObjType.addConst();
+
+ assert(I == N - 1 && "extracting subobject of scalar?");
+ if (O->isComplexInt()) {
+ return handler.found(Index ? O->getComplexIntImag()
+ : O->getComplexIntReal(), ObjType);
+ } else {
+ assert(O->isComplexFloat());
+ return handler.found(Index ? O->getComplexFloatImag()
+ : O->getComplexFloatReal(), ObjType);
+ }
+ } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
+ if (Field->isMutable() && handler.AccessKind == AK_Read) {
+ Info.Diag(E, diag::note_constexpr_ltor_mutable, 1)
+ << Field;
+ Info.Note(Field->getLocation(), diag::note_declared_at);
+ return handler.failed();
+ }
+
+ // Next subobject is a class, struct or union field.
+ RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
+ if (RD->isUnion()) {
+ const FieldDecl *UnionField = O->getUnionField();
+ if (!UnionField ||
+ UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
+ Info.Diag(E, diag::note_constexpr_access_inactive_union_member)
+ << handler.AccessKind << Field << !UnionField << UnionField;
+ return handler.failed();
+ }
+ O = &O->getUnionValue();
+ } else
+ O = &O->getStructField(Field->getFieldIndex());
+
+ bool WasConstQualified = ObjType.isConstQualified();
+ ObjType = Field->getType();
+ if (WasConstQualified && !Field->isMutable())
+ ObjType.addConst();
+
+ if (ObjType.isVolatileQualified()) {
+ if (Info.getLangOpts().CPlusPlus) {
+ // FIXME: Include a description of the path to the volatile subobject.
+ Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
+ << handler.AccessKind << 2 << Field;
+ Info.Note(Field->getLocation(), diag::note_declared_at);
+ } else {
+ Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
+ }
+ return handler.failed();
+ }
+
+ LastField = Field;
+ } else {
+ // Next subobject is a base class.
+ const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
+ const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
+ O = &O->getStructBase(getBaseIndex(Derived, Base));
+
+ bool WasConstQualified = ObjType.isConstQualified();
+ ObjType = Info.Ctx.getRecordType(Base);
+ if (WasConstQualified)
+ ObjType.addConst();
+ }
+ }
+}
+
+namespace {
+struct ExtractSubobjectHandler {
+ EvalInfo &Info;
+ APValue &Result;
+
+ static const AccessKinds AccessKind = AK_Read;
+
+ typedef bool result_type;
+ bool failed() { return false; }
+ bool found(APValue &Subobj, QualType SubobjType) {
+ Result = Subobj;
+ return true;
+ }
+ bool found(APSInt &Value, QualType SubobjType) {
+ Result = APValue(Value);
+ return true;
+ }
+ bool found(APFloat &Value, QualType SubobjType) {
+ Result = APValue(Value);
+ return true;
+ }
+ bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
+ Result = APValue(extractStringLiteralCharacter(
+ Info, Subobj.getLValueBase().get<const Expr *>(), Character));
+ return true;
+ }
+};
+} // end anonymous namespace
+
+const AccessKinds ExtractSubobjectHandler::AccessKind;
+
+/// Extract the designated sub-object of an rvalue.
+static bool extractSubobject(EvalInfo &Info, const Expr *E,
+ const CompleteObject &Obj,
+ const SubobjectDesignator &Sub,
+ APValue &Result) {
+ ExtractSubobjectHandler Handler = { Info, Result };
+ return findSubobject(Info, E, Obj, Sub, Handler);
+}
+
+namespace {
+struct ModifySubobjectHandler {
+ EvalInfo &Info;
+ APValue &NewVal;
+ const Expr *E;
+
+ typedef bool result_type;
+ static const AccessKinds AccessKind = AK_Assign;
+
+ bool checkConst(QualType QT) {
+ // Assigning to a const object has undefined behavior.
+ if (QT.isConstQualified()) {
+ Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
+ return false;
+ }
+ return true;
+ }
+
+ bool failed() { return false; }
+ bool found(APValue &Subobj, QualType SubobjType) {
+ if (!checkConst(SubobjType))
+ return false;
+ // We've been given ownership of NewVal, so just swap it in.
+ Subobj.swap(NewVal);
+ return true;
+ }
+ bool found(APSInt &Value, QualType SubobjType) {
+ if (!checkConst(SubobjType))
+ return false;
+ if (!NewVal.isInt()) {
+ // Maybe trying to write a cast pointer value into a complex?
+ Info.Diag(E);
+ return false;
+ }
+ Value = NewVal.getInt();
+ return true;
+ }
+ bool found(APFloat &Value, QualType SubobjType) {
+ if (!checkConst(SubobjType))
+ return false;
+ Value = NewVal.getFloat();
+ return true;
+ }
+ bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
+ llvm_unreachable("shouldn't encounter string elements with ExpandArrays");
+ }
+};
+} // end anonymous namespace
+
+const AccessKinds ModifySubobjectHandler::AccessKind;
+
+/// Update the designated sub-object of an rvalue to the given value.
+static bool modifySubobject(EvalInfo &Info, const Expr *E,
+ const CompleteObject &Obj,
+ const SubobjectDesignator &Sub,
+ APValue &NewVal) {
+ ModifySubobjectHandler Handler = { Info, NewVal, E };
+ return findSubobject(Info, E, Obj, Sub, Handler);
+}
+
+/// Find the position where two subobject designators diverge, or equivalently
+/// the length of the common initial subsequence.
+static unsigned FindDesignatorMismatch(QualType ObjType,
+ const SubobjectDesignator &A,
+ const SubobjectDesignator &B,
+ bool &WasArrayIndex) {
+ unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
+ for (/**/; I != N; ++I) {
+ if (!ObjType.isNull() &&
+ (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
+ // Next subobject is an array element.
+ if (A.Entries[I].ArrayIndex != B.Entries[I].ArrayIndex) {
+ WasArrayIndex = true;
+ return I;
+ }
+ if (ObjType->isAnyComplexType())
+ ObjType = ObjType->castAs<ComplexType>()->getElementType();
+ else
+ ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
+ } else {
+ if (A.Entries[I].BaseOrMember != B.Entries[I].BaseOrMember) {
+ WasArrayIndex = false;
+ return I;
+ }
+ if (const FieldDecl *FD = getAsField(A.Entries[I]))
+ // Next subobject is a field.
+ ObjType = FD->getType();
+ else
+ // Next subobject is a base class.
+ ObjType = QualType();
+ }
+ }
+ WasArrayIndex = false;
+ return I;
+}
+
+/// Determine whether the given subobject designators refer to elements of the
+/// same array object.
+static bool AreElementsOfSameArray(QualType ObjType,
+ const SubobjectDesignator &A,
+ const SubobjectDesignator &B) {
+ if (A.Entries.size() != B.Entries.size())
+ return false;
+
+ bool IsArray = A.MostDerivedArraySize != 0;
+ if (IsArray && A.MostDerivedPathLength != A.Entries.size())
+ // A is a subobject of the array element.
+ return false;
+
+ // If A (and B) designates an array element, the last entry will be the array
+ // index. That doesn't have to match. Otherwise, we're in the 'implicit array
+ // of length 1' case, and the entire path must match.
+ bool WasArrayIndex;
+ unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
+ return CommonLength >= A.Entries.size() - IsArray;
+}
+
+/// Find the complete object to which an LValue refers.
+static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E,
+ AccessKinds AK, const LValue &LVal,
+ QualType LValType) {
+ if (!LVal.Base) {
+ Info.Diag(E, diag::note_constexpr_access_null) << AK;
+ return CompleteObject();
+ }
+
+ CallStackFrame *Frame = nullptr;
+ if (LVal.CallIndex) {
+ Frame = Info.getCallFrame(LVal.CallIndex);
+ if (!Frame) {
+ Info.Diag(E, diag::note_constexpr_lifetime_ended, 1)
+ << AK << LVal.Base.is<const ValueDecl*>();
+ NoteLValueLocation(Info, LVal.Base);
+ return CompleteObject();
+ }
+ }
+
+ // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
+ // is not a constant expression (even if the object is non-volatile). We also
+ // apply this rule to C++98, in order to conform to the expected 'volatile'
+ // semantics.
+ if (LValType.isVolatileQualified()) {
+ if (Info.getLangOpts().CPlusPlus)
+ Info.Diag(E, diag::note_constexpr_access_volatile_type)
+ << AK << LValType;
+ else
+ Info.Diag(E);
+ return CompleteObject();
+ }
+
+ // Compute value storage location and type of base object.
+ APValue *BaseVal = nullptr;
+ QualType BaseType = getType(LVal.Base);
+
+ if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) {
+ // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
+ // In C++11, constexpr, non-volatile variables initialized with constant
+ // expressions are constant expressions too. Inside constexpr functions,
+ // parameters are constant expressions even if they're non-const.
+ // In C++1y, objects local to a constant expression (those with a Frame) are
+ // both readable and writable inside constant expressions.
+ // In C, such things can also be folded, although they are not ICEs.
+ const VarDecl *VD = dyn_cast<VarDecl>(D);
+ if (VD) {
+ if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
+ VD = VDef;
+ }
+ if (!VD || VD->isInvalidDecl()) {
+ Info.Diag(E);
+ return CompleteObject();
+ }
+
+ // Accesses of volatile-qualified objects are not allowed.
+ if (BaseType.isVolatileQualified()) {
+ if (Info.getLangOpts().CPlusPlus) {
+ Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
+ << AK << 1 << VD;
+ Info.Note(VD->getLocation(), diag::note_declared_at);
+ } else {
+ Info.Diag(E);
+ }
+ return CompleteObject();
+ }
+
+ // Unless we're looking at a local variable or argument in a constexpr call,
+ // the variable we're reading must be const.
+ if (!Frame) {
+ if (Info.getLangOpts().CPlusPlus14 &&
+ VD == Info.EvaluatingDecl.dyn_cast<const ValueDecl *>()) {
+ // OK, we can read and modify an object if we're in the process of
+ // evaluating its initializer, because its lifetime began in this
+ // evaluation.
+ } else if (AK != AK_Read) {
+ // All the remaining cases only permit reading.
+ Info.Diag(E, diag::note_constexpr_modify_global);
+ return CompleteObject();
+ } else if (VD->isConstexpr()) {
+ // OK, we can read this variable.
+ } else if (BaseType->isIntegralOrEnumerationType()) {
+ if (!BaseType.isConstQualified()) {
+ if (Info.getLangOpts().CPlusPlus) {
+ Info.Diag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
+ Info.Note(VD->getLocation(), diag::note_declared_at);
+ } else {
+ Info.Diag(E);
+ }
+ return CompleteObject();
+ }
+ } else if (BaseType->isFloatingType() && BaseType.isConstQualified()) {
+ // We support folding of const floating-point types, in order to make
+ // static const data members of such types (supported as an extension)
+ // more useful.
+ if (Info.getLangOpts().CPlusPlus11) {
+ Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
+ Info.Note(VD->getLocation(), diag::note_declared_at);
+ } else {
+ Info.CCEDiag(E);
+ }
+ } else {
+ // FIXME: Allow folding of values of any literal type in all languages.
+ if (Info.getLangOpts().CPlusPlus11) {
+ Info.Diag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
+ Info.Note(VD->getLocation(), diag::note_declared_at);
+ } else {
+ Info.Diag(E);
+ }
+ return CompleteObject();
+ }
+ }
+
+ if (!evaluateVarDeclInit(Info, E, VD, Frame, BaseVal))
+ return CompleteObject();
+ } else {
+ const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
+
+ if (!Frame) {
+ if (const MaterializeTemporaryExpr *MTE =
+ dyn_cast<MaterializeTemporaryExpr>(Base)) {
+ assert(MTE->getStorageDuration() == SD_Static &&
+ "should have a frame for a non-global materialized temporary");
+
+ // Per C++1y [expr.const]p2:
+ // an lvalue-to-rvalue conversion [is not allowed unless it applies to]
+ // - a [...] glvalue of integral or enumeration type that refers to
+ // a non-volatile const object [...]
+ // [...]
+ // - a [...] glvalue of literal type that refers to a non-volatile
+ // object whose lifetime began within the evaluation of e.
+ //
+ // C++11 misses the 'began within the evaluation of e' check and
+ // instead allows all temporaries, including things like:
+ // int &&r = 1;
+ // int x = ++r;
+ // constexpr int k = r;
+ // Therefore we use the C++1y rules in C++11 too.
+ const ValueDecl *VD = Info.EvaluatingDecl.dyn_cast<const ValueDecl*>();
+ const ValueDecl *ED = MTE->getExtendingDecl();
+ if (!(BaseType.isConstQualified() &&
+ BaseType->isIntegralOrEnumerationType()) &&
+ !(VD && VD->getCanonicalDecl() == ED->getCanonicalDecl())) {
+ Info.Diag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
+ Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
+ return CompleteObject();
+ }
+
+ BaseVal = Info.Ctx.getMaterializedTemporaryValue(MTE, false);
+ assert(BaseVal && "got reference to unevaluated temporary");
+ } else {
+ Info.Diag(E);
+ return CompleteObject();
+ }
+ } else {
+ BaseVal = Frame->getTemporary(Base);
+ assert(BaseVal && "missing value for temporary");
+ }
+
+ // Volatile temporary objects cannot be accessed in constant expressions.
+ if (BaseType.isVolatileQualified()) {
+ if (Info.getLangOpts().CPlusPlus) {
+ Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
+ << AK << 0;
+ Info.Note(Base->getExprLoc(), diag::note_constexpr_temporary_here);
+ } else {
+ Info.Diag(E);
+ }
+ return CompleteObject();
+ }
+ }
+
+ // During the construction of an object, it is not yet 'const'.
+ // FIXME: We don't set up EvaluatingDecl for local variables or temporaries,
+ // and this doesn't do quite the right thing for const subobjects of the
+ // object under construction.
+ if (LVal.getLValueBase() == Info.EvaluatingDecl) {
+ BaseType = Info.Ctx.getCanonicalType(BaseType);
+ BaseType.removeLocalConst();
+ }
+
+ // In C++1y, we can't safely access any mutable state when we might be
+ // evaluating after an unmodeled side effect or an evaluation failure.
+ //
+ // FIXME: Not all local state is mutable. Allow local constant subobjects
+ // to be read here (but take care with 'mutable' fields).
+ if (Frame && Info.getLangOpts().CPlusPlus14 &&
+ (Info.EvalStatus.HasSideEffects || Info.keepEvaluatingAfterFailure()))
+ return CompleteObject();
+
+ return CompleteObject(BaseVal, BaseType);
+}
+
+/// \brief Perform an lvalue-to-rvalue conversion on the given glvalue. This
+/// can also be used for 'lvalue-to-lvalue' conversions for looking up the
+/// glvalue referred to by an entity of reference type.
+///
+/// \param Info - Information about the ongoing evaluation.
+/// \param Conv - The expression for which we are performing the conversion.
+/// Used for diagnostics.
+/// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
+/// case of a non-class type).
+/// \param LVal - The glvalue on which we are attempting to perform this action.
+/// \param RVal - The produced value will be placed here.
+static bool handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv,
+ QualType Type,
+ const LValue &LVal, APValue &RVal) {
+ if (LVal.Designator.Invalid)
+ return false;
+
+ // Check for special cases where there is no existing APValue to look at.
+ const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
+ if (!LVal.Designator.Invalid && Base && !LVal.CallIndex &&
+ !Type.isVolatileQualified()) {
+ if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
+ // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
+ // initializer until now for such expressions. Such an expression can't be
+ // an ICE in C, so this only matters for fold.
+ assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
+ if (Type.isVolatileQualified()) {
+ Info.Diag(Conv);
+ return false;
+ }
+ APValue Lit;
+ if (!Evaluate(Lit, Info, CLE->getInitializer()))
+ return false;
+ CompleteObject LitObj(&Lit, Base->getType());
+ return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal);
+ } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) {
+ // We represent a string literal array as an lvalue pointing at the
+ // corresponding expression, rather than building an array of chars.
+ // FIXME: Support ObjCEncodeExpr, MakeStringConstant
+ APValue Str(Base, CharUnits::Zero(), APValue::NoLValuePath(), 0);
+ CompleteObject StrObj(&Str, Base->getType());
+ return extractSubobject(Info, Conv, StrObj, LVal.Designator, RVal);
+ }
+ }
+
+ CompleteObject Obj = findCompleteObject(Info, Conv, AK_Read, LVal, Type);
+ return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal);
+}
+
+/// Perform an assignment of Val to LVal. Takes ownership of Val.
+static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
+ QualType LValType, APValue &Val) {
+ if (LVal.Designator.Invalid)
+ return false;
+
+ if (!Info.getLangOpts().CPlusPlus14) {
+ Info.Diag(E);
+ return false;
+ }
+
+ CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
+ return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
+}
+
+static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
+ return T->isSignedIntegerType() &&
+ Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
+}
+
+namespace {
+struct CompoundAssignSubobjectHandler {
+ EvalInfo &Info;
+ const Expr *E;
+ QualType PromotedLHSType;
+ BinaryOperatorKind Opcode;
+ const APValue &RHS;
+
+ static const AccessKinds AccessKind = AK_Assign;
+
+ typedef bool result_type;
+
+ bool checkConst(QualType QT) {
+ // Assigning to a const object has undefined behavior.
+ if (QT.isConstQualified()) {
+ Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
+ return false;
+ }
+ return true;
+ }
+
+ bool failed() { return false; }
+ bool found(APValue &Subobj, QualType SubobjType) {
+ switch (Subobj.getKind()) {
+ case APValue::Int:
+ return found(Subobj.getInt(), SubobjType);
+ case APValue::Float:
+ return found(Subobj.getFloat(), SubobjType);
+ case APValue::ComplexInt:
+ case APValue::ComplexFloat:
+ // FIXME: Implement complex compound assignment.
+ Info.Diag(E);
+ return false;
+ case APValue::LValue:
+ return foundPointer(Subobj, SubobjType);
+ default:
+ // FIXME: can this happen?
+ Info.Diag(E);
+ return false;
+ }
+ }
+ bool found(APSInt &Value, QualType SubobjType) {
+ if (!checkConst(SubobjType))
+ return false;
+
+ if (!SubobjType->isIntegerType() || !RHS.isInt()) {
+ // We don't support compound assignment on integer-cast-to-pointer
+ // values.
+ Info.Diag(E);
+ return false;
+ }
+
+ APSInt LHS = HandleIntToIntCast(Info, E, PromotedLHSType,
+ SubobjType, Value);
+ if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
+ return false;
+ Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
+ return true;
+ }
+ bool found(APFloat &Value, QualType SubobjType) {
+ return checkConst(SubobjType) &&
+ HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
+ Value) &&
+ handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
+ HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
+ }
+ bool foundPointer(APValue &Subobj, QualType SubobjType) {
+ if (!checkConst(SubobjType))
+ return false;
+
+ QualType PointeeType;
+ if (const PointerType *PT = SubobjType->getAs<PointerType>())
+ PointeeType = PT->getPointeeType();
+
+ if (PointeeType.isNull() || !RHS.isInt() ||
+ (Opcode != BO_Add && Opcode != BO_Sub)) {
+ Info.Diag(E);
+ return false;
+ }
+
+ int64_t Offset = getExtValue(RHS.getInt());
+ if (Opcode == BO_Sub)
+ Offset = -Offset;
+
+ LValue LVal;
+ LVal.setFrom(Info.Ctx, Subobj);
+ if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
+ return false;
+ LVal.moveInto(Subobj);
+ return true;
+ }
+ bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
+ llvm_unreachable("shouldn't encounter string elements here");
+ }
+};
+} // end anonymous namespace
+
+const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
+
+/// Perform a compound assignment of LVal <op>= RVal.
+static bool handleCompoundAssignment(
+ EvalInfo &Info, const Expr *E,
+ const LValue &LVal, QualType LValType, QualType PromotedLValType,
+ BinaryOperatorKind Opcode, const APValue &RVal) {
+ if (LVal.Designator.Invalid)
+ return false;
+
+ if (!Info.getLangOpts().CPlusPlus14) {
+ Info.Diag(E);
+ return false;
+ }
+
+ CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
+ CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
+ RVal };
+ return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
+}
+
+namespace {
+struct IncDecSubobjectHandler {
+ EvalInfo &Info;
+ const Expr *E;
+ AccessKinds AccessKind;
+ APValue *Old;
+
+ typedef bool result_type;
+
+ bool checkConst(QualType QT) {
+ // Assigning to a const object has undefined behavior.
+ if (QT.isConstQualified()) {
+ Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
+ return false;
+ }
+ return true;
+ }
+
+ bool failed() { return false; }
+ bool found(APValue &Subobj, QualType SubobjType) {
+ // Stash the old value. Also clear Old, so we don't clobber it later
+ // if we're post-incrementing a complex.
+ if (Old) {
+ *Old = Subobj;
+ Old = nullptr;
+ }
+
+ switch (Subobj.getKind()) {
+ case APValue::Int:
+ return found(Subobj.getInt(), SubobjType);
+ case APValue::Float:
+ return found(Subobj.getFloat(), SubobjType);
+ case APValue::ComplexInt:
+ return found(Subobj.getComplexIntReal(),
+ SubobjType->castAs<ComplexType>()->getElementType()
+ .withCVRQualifiers(SubobjType.getCVRQualifiers()));
+ case APValue::ComplexFloat:
+ return found(Subobj.getComplexFloatReal(),
+ SubobjType->castAs<ComplexType>()->getElementType()
+ .withCVRQualifiers(SubobjType.getCVRQualifiers()));
+ case APValue::LValue:
+ return foundPointer(Subobj, SubobjType);
+ default:
+ // FIXME: can this happen?
+ Info.Diag(E);
+ return false;
+ }
+ }
+ bool found(APSInt &Value, QualType SubobjType) {
+ if (!checkConst(SubobjType))
+ return false;
+
+ if (!SubobjType->isIntegerType()) {
+ // We don't support increment / decrement on integer-cast-to-pointer
+ // values.
+ Info.Diag(E);
+ return false;
+ }
+
+ if (Old) *Old = APValue(Value);
+
+ // bool arithmetic promotes to int, and the conversion back to bool
+ // doesn't reduce mod 2^n, so special-case it.
+ if (SubobjType->isBooleanType()) {
+ if (AccessKind == AK_Increment)
+ Value = 1;
+ else
+ Value = !Value;
+ return true;
+ }
+
+ bool WasNegative = Value.isNegative();
+ if (AccessKind == AK_Increment) {
+ ++Value;
+
+ if (!WasNegative && Value.isNegative() &&
+ isOverflowingIntegerType(Info.Ctx, SubobjType)) {
+ APSInt ActualValue(Value, /*IsUnsigned*/true);
+ HandleOverflow(Info, E, ActualValue, SubobjType);
+ }
+ } else {
+ --Value;
+
+ if (WasNegative && !Value.isNegative() &&
+ isOverflowingIntegerType(Info.Ctx, SubobjType)) {
+ unsigned BitWidth = Value.getBitWidth();
+ APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
+ ActualValue.setBit(BitWidth);
+ HandleOverflow(Info, E, ActualValue, SubobjType);
+ }
+ }
+ return true;
+ }
+ bool found(APFloat &Value, QualType SubobjType) {
+ if (!checkConst(SubobjType))
+ return false;
+
+ if (Old) *Old = APValue(Value);
+
+ APFloat One(Value.getSemantics(), 1);
+ if (AccessKind == AK_Increment)
+ Value.add(One, APFloat::rmNearestTiesToEven);
+ else
+ Value.subtract(One, APFloat::rmNearestTiesToEven);
+ return true;
+ }
+ bool foundPointer(APValue &Subobj, QualType SubobjType) {
+ if (!checkConst(SubobjType))
+ return false;
+
+ QualType PointeeType;
+ if (const PointerType *PT = SubobjType->getAs<PointerType>())
+ PointeeType = PT->getPointeeType();
+ else {
+ Info.Diag(E);
+ return false;
+ }
+
+ LValue LVal;
+ LVal.setFrom(Info.Ctx, Subobj);
+ if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
+ AccessKind == AK_Increment ? 1 : -1))
+ return false;
+ LVal.moveInto(Subobj);
+ return true;
+ }
+ bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
+ llvm_unreachable("shouldn't encounter string elements here");
+ }
+};
+} // end anonymous namespace
+
+/// Perform an increment or decrement on LVal.
+static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
+ QualType LValType, bool IsIncrement, APValue *Old) {
+ if (LVal.Designator.Invalid)
+ return false;
+
+ if (!Info.getLangOpts().CPlusPlus14) {
+ Info.Diag(E);
+ return false;
+ }
+
+ AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
+ CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
+ IncDecSubobjectHandler Handler = { Info, E, AK, Old };
+ return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
+}
+
+/// Build an lvalue for the object argument of a member function call.
+static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
+ LValue &This) {
+ if (Object->getType()->isPointerType())
+ return EvaluatePointer(Object, This, Info);
+
+ if (Object->isGLValue())
+ return EvaluateLValue(Object, This, Info);
+
+ if (Object->getType()->isLiteralType(Info.Ctx))
+ return EvaluateTemporary(Object, This, Info);
+
+ Info.Diag(Object, diag::note_constexpr_nonliteral) << Object->getType();
+ return false;
+}
+
+/// HandleMemberPointerAccess - Evaluate a member access operation and build an
+/// lvalue referring to the result.
+///
+/// \param Info - Information about the ongoing evaluation.
+/// \param LV - An lvalue referring to the base of the member pointer.
+/// \param RHS - The member pointer expression.
+/// \param IncludeMember - Specifies whether the member itself is included in
+/// the resulting LValue subobject designator. This is not possible when
+/// creating a bound member function.
+/// \return The field or method declaration to which the member pointer refers,
+/// or 0 if evaluation fails.
+static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
+ QualType LVType,
+ LValue &LV,
+ const Expr *RHS,
+ bool IncludeMember = true) {
+ MemberPtr MemPtr;
+ if (!EvaluateMemberPointer(RHS, MemPtr, Info))
+ return nullptr;
+
+ // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
+ // member value, the behavior is undefined.
+ if (!MemPtr.getDecl()) {
+ // FIXME: Specific diagnostic.
+ Info.Diag(RHS);
+ return nullptr;
+ }
+
+ if (MemPtr.isDerivedMember()) {
+ // This is a member of some derived class. Truncate LV appropriately.
+ // The end of the derived-to-base path for the base object must match the
+ // derived-to-base path for the member pointer.
+ if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
+ LV.Designator.Entries.size()) {
+ Info.Diag(RHS);
+ return nullptr;
+ }
+ unsigned PathLengthToMember =
+ LV.Designator.Entries.size() - MemPtr.Path.size();
+ for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
+ const CXXRecordDecl *LVDecl = getAsBaseClass(
+ LV.Designator.Entries[PathLengthToMember + I]);
+ const CXXRecordDecl *MPDecl = MemPtr.Path[I];
+ if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
+ Info.Diag(RHS);
+ return nullptr;
+ }
+ }
+
+ // Truncate the lvalue to the appropriate derived class.
+ if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
+ PathLengthToMember))
+ return nullptr;
+ } else if (!MemPtr.Path.empty()) {
+ // Extend the LValue path with the member pointer's path.
+ LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
+ MemPtr.Path.size() + IncludeMember);
+
+ // Walk down to the appropriate base class.
+ if (const PointerType *PT = LVType->getAs<PointerType>())
+ LVType = PT->getPointeeType();
+ const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
+ assert(RD && "member pointer access on non-class-type expression");
+ // The first class in the path is that of the lvalue.
+ for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
+ const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
+ if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
+ return nullptr;
+ RD = Base;
+ }
+ // Finally cast to the class containing the member.
+ if (!HandleLValueDirectBase(Info, RHS, LV, RD,
+ MemPtr.getContainingRecord()))
+ return nullptr;
+ }
+
+ // Add the member. Note that we cannot build bound member functions here.
+ if (IncludeMember) {
+ if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
+ if (!HandleLValueMember(Info, RHS, LV, FD))
+ return nullptr;
+ } else if (const IndirectFieldDecl *IFD =
+ dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
+ if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
+ return nullptr;
+ } else {
+ llvm_unreachable("can't construct reference to bound member function");
+ }
+ }
+
+ return MemPtr.getDecl();
+}
+
+static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
+ const BinaryOperator *BO,
+ LValue &LV,
+ bool IncludeMember = true) {
+ assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
+
+ if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
+ if (Info.keepEvaluatingAfterFailure()) {
+ MemberPtr MemPtr;
+ EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
+ }
+ return nullptr;
+ }
+
+ return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
+ BO->getRHS(), IncludeMember);
+}
+
+/// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
+/// the provided lvalue, which currently refers to the base object.
+static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
+ LValue &Result) {
+ SubobjectDesignator &D = Result.Designator;
+ if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
+ return false;
+
+ QualType TargetQT = E->getType();
+ if (const PointerType *PT = TargetQT->getAs<PointerType>())
+ TargetQT = PT->getPointeeType();
+
+ // Check this cast lands within the final derived-to-base subobject path.
+ if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
+ Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
+ << D.MostDerivedType << TargetQT;
+ return false;
+ }
+
+ // Check the type of the final cast. We don't need to check the path,
+ // since a cast can only be formed if the path is unique.
+ unsigned NewEntriesSize = D.Entries.size() - E->path_size();
+ const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
+ const CXXRecordDecl *FinalType;
+ if (NewEntriesSize == D.MostDerivedPathLength)
+ FinalType = D.MostDerivedType->getAsCXXRecordDecl();
+ else
+ FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
+ if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
+ Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
+ << D.MostDerivedType << TargetQT;
+ return false;
+ }
+
+ // Truncate the lvalue to the appropriate derived class.
+ return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
+}
+
+namespace {
+enum EvalStmtResult {
+ /// Evaluation failed.
+ ESR_Failed,
+ /// Hit a 'return' statement.
+ ESR_Returned,
+ /// Evaluation succeeded.
+ ESR_Succeeded,
+ /// Hit a 'continue' statement.
+ ESR_Continue,
+ /// Hit a 'break' statement.
+ ESR_Break,
+ /// Still scanning for 'case' or 'default' statement.
+ ESR_CaseNotFound
+};
+}
+
+static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
+ // We don't need to evaluate the initializer for a static local.
+ if (!VD->hasLocalStorage())
+ return true;
+
+ LValue Result;
+ Result.set(VD, Info.CurrentCall->Index);
+ APValue &Val = Info.CurrentCall->createTemporary(VD, true);
+
+ const Expr *InitE = VD->getInit();
+ if (!InitE) {
+ Info.Diag(D->getLocStart(), diag::note_constexpr_uninitialized)
+ << false << VD->getType();
+ Val = APValue();
+ return false;
+ }
+
+ if (InitE->isValueDependent())
+ return false;
+
+ if (!EvaluateInPlace(Val, Info, Result, InitE)) {
+ // Wipe out any partially-computed value, to allow tracking that this
+ // evaluation failed.
+ Val = APValue();
+ return false;
+ }
+ }
+
+ return true;
+}
+
+/// Evaluate a condition (either a variable declaration or an expression).
+static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
+ const Expr *Cond, bool &Result) {
+ FullExpressionRAII Scope(Info);
+ if (CondDecl && !EvaluateDecl(Info, CondDecl))
+ return false;
+ return EvaluateAsBooleanCondition(Cond, Result, Info);
+}
+
+static EvalStmtResult EvaluateStmt(APValue &Result, EvalInfo &Info,
+ const Stmt *S,
+ const SwitchCase *SC = nullptr);
+
+/// Evaluate the body of a loop, and translate the result as appropriate.
+static EvalStmtResult EvaluateLoopBody(APValue &Result, EvalInfo &Info,
+ const Stmt *Body,
+ const SwitchCase *Case = nullptr) {
+ BlockScopeRAII Scope(Info);
+ switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case)) {
+ case ESR_Break:
+ return ESR_Succeeded;
+ case ESR_Succeeded:
+ case ESR_Continue:
+ return ESR_Continue;
+ case ESR_Failed:
+ case ESR_Returned:
+ case ESR_CaseNotFound:
+ return ESR;
+ }
+ llvm_unreachable("Invalid EvalStmtResult!");
+}
+
+/// Evaluate a switch statement.
+static EvalStmtResult EvaluateSwitch(APValue &Result, EvalInfo &Info,
+ const SwitchStmt *SS) {
+ BlockScopeRAII Scope(Info);
+
+ // Evaluate the switch condition.
+ APSInt Value;
+ {
+ FullExpressionRAII Scope(Info);
+ if (SS->getConditionVariable() &&
+ !EvaluateDecl(Info, SS->getConditionVariable()))
+ return ESR_Failed;
+ if (!EvaluateInteger(SS->getCond(), Value, Info))
+ return ESR_Failed;
+ }
+
+ // Find the switch case corresponding to the value of the condition.
+ // FIXME: Cache this lookup.
+ const SwitchCase *Found = nullptr;
+ for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
+ SC = SC->getNextSwitchCase()) {
+ if (isa<DefaultStmt>(SC)) {
+ Found = SC;
+ continue;
+ }
+
+ const CaseStmt *CS = cast<CaseStmt>(SC);
+ APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
+ APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
+ : LHS;
+ if (LHS <= Value && Value <= RHS) {
+ Found = SC;
+ break;
+ }
+ }
+
+ if (!Found)
+ return ESR_Succeeded;
+
+ // Search the switch body for the switch case and evaluate it from there.
+ switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found)) {
+ case ESR_Break:
+ return ESR_Succeeded;
+ case ESR_Succeeded:
+ case ESR_Continue:
+ case ESR_Failed:
+ case ESR_Returned:
+ return ESR;
+ case ESR_CaseNotFound:
+ // This can only happen if the switch case is nested within a statement
+ // expression. We have no intention of supporting that.
+ Info.Diag(Found->getLocStart(), diag::note_constexpr_stmt_expr_unsupported);
+ return ESR_Failed;
+ }
+ llvm_unreachable("Invalid EvalStmtResult!");
+}
+
+// Evaluate a statement.
+static EvalStmtResult EvaluateStmt(APValue &Result, EvalInfo &Info,
+ const Stmt *S, const SwitchCase *Case) {
+ if (!Info.nextStep(S))
+ return ESR_Failed;
+
+ // If we're hunting down a 'case' or 'default' label, recurse through
+ // substatements until we hit the label.
+ if (Case) {
+ // FIXME: We don't start the lifetime of objects whose initialization we
+ // jump over. However, such objects must be of class type with a trivial
+ // default constructor that initialize all subobjects, so must be empty,
+ // so this almost never matters.
+ switch (S->getStmtClass()) {
+ case Stmt::CompoundStmtClass:
+ // FIXME: Precompute which substatement of a compound statement we
+ // would jump to, and go straight there rather than performing a
+ // linear scan each time.
+ case Stmt::LabelStmtClass:
+ case Stmt::AttributedStmtClass:
+ case Stmt::DoStmtClass:
+ break;
+
+ case Stmt::CaseStmtClass:
+ case Stmt::DefaultStmtClass:
+ if (Case == S)
+ Case = nullptr;
+ break;
+
+ case Stmt::IfStmtClass: {
+ // FIXME: Precompute which side of an 'if' we would jump to, and go
+ // straight there rather than scanning both sides.
+ const IfStmt *IS = cast<IfStmt>(S);
+
+ // Wrap the evaluation in a block scope, in case it's a DeclStmt
+ // preceded by our switch label.
+ BlockScopeRAII Scope(Info);
+
+ EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
+ if (ESR != ESR_CaseNotFound || !IS->getElse())
+ return ESR;
+ return EvaluateStmt(Result, Info, IS->getElse(), Case);
+ }
+
+ case Stmt::WhileStmtClass: {
+ EvalStmtResult ESR =
+ EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
+ if (ESR != ESR_Continue)
+ return ESR;
+ break;
+ }
+
+ case Stmt::ForStmtClass: {
+ const ForStmt *FS = cast<ForStmt>(S);
+ EvalStmtResult ESR =
+ EvaluateLoopBody(Result, Info, FS->getBody(), Case);
+ if (ESR != ESR_Continue)
+ return ESR;
+ if (FS->getInc()) {
+ FullExpressionRAII IncScope(Info);
+ if (!EvaluateIgnoredValue(Info, FS->getInc()))
+ return ESR_Failed;
+ }
+ break;
+ }
+
+ case Stmt::DeclStmtClass:
+ // FIXME: If the variable has initialization that can't be jumped over,
+ // bail out of any immediately-surrounding compound-statement too.
+ default:
+ return ESR_CaseNotFound;
+ }
+ }
+
+ switch (S->getStmtClass()) {
+ default:
+ if (const Expr *E = dyn_cast<Expr>(S)) {
+ // Don't bother evaluating beyond an expression-statement which couldn't
+ // be evaluated.
+ FullExpressionRAII Scope(Info);
+ if (!EvaluateIgnoredValue(Info, E))
+ return ESR_Failed;
+ return ESR_Succeeded;
+ }
+
+ Info.Diag(S->getLocStart());
+ return ESR_Failed;
+
+ case Stmt::NullStmtClass:
+ return ESR_Succeeded;
+
+ case Stmt::DeclStmtClass: {
+ const DeclStmt *DS = cast<DeclStmt>(S);
+ for (const auto *DclIt : DS->decls()) {
+ // Each declaration initialization is its own full-expression.
+ // FIXME: This isn't quite right; if we're performing aggregate
+ // initialization, each braced subexpression is its own full-expression.
+ FullExpressionRAII Scope(Info);
+ if (!EvaluateDecl(Info, DclIt) && !Info.keepEvaluatingAfterFailure())
+ return ESR_Failed;
+ }
+ return ESR_Succeeded;
+ }
+
+ case Stmt::ReturnStmtClass: {
+ const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
+ FullExpressionRAII Scope(Info);
+ if (RetExpr && !Evaluate(Result, Info, RetExpr))
+ return ESR_Failed;
+ return ESR_Returned;
+ }
+
+ case Stmt::CompoundStmtClass: {
+ BlockScopeRAII Scope(Info);
+
+ const CompoundStmt *CS = cast<CompoundStmt>(S);
+ for (const auto *BI : CS->body()) {
+ EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case);
+ if (ESR == ESR_Succeeded)
+ Case = nullptr;
+ else if (ESR != ESR_CaseNotFound)
+ return ESR;
+ }
+ return Case ? ESR_CaseNotFound : ESR_Succeeded;
+ }
+
+ case Stmt::IfStmtClass: {
+ const IfStmt *IS = cast<IfStmt>(S);
+
+ // Evaluate the condition, as either a var decl or as an expression.
+ BlockScopeRAII Scope(Info);
+ bool Cond;
+ if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), Cond))
+ return ESR_Failed;
+
+ if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
+ EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
+ if (ESR != ESR_Succeeded)
+ return ESR;
+ }
+ return ESR_Succeeded;
+ }
+
+ case Stmt::WhileStmtClass: {
+ const WhileStmt *WS = cast<WhileStmt>(S);
+ while (true) {
+ BlockScopeRAII Scope(Info);
+ bool Continue;
+ if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
+ Continue))
+ return ESR_Failed;
+ if (!Continue)
+ break;
+
+ EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
+ if (ESR != ESR_Continue)
+ return ESR;
+ }
+ return ESR_Succeeded;
+ }
+
+ case Stmt::DoStmtClass: {
+ const DoStmt *DS = cast<DoStmt>(S);
+ bool Continue;
+ do {
+ EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
+ if (ESR != ESR_Continue)
+ return ESR;
+ Case = nullptr;
+
+ FullExpressionRAII CondScope(Info);
+ if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info))
+ return ESR_Failed;
+ } while (Continue);
+ return ESR_Succeeded;
+ }
+
+ case Stmt::ForStmtClass: {
+ const ForStmt *FS = cast<ForStmt>(S);
+ BlockScopeRAII Scope(Info);
+ if (FS->getInit()) {
+ EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
+ if (ESR != ESR_Succeeded)
+ return ESR;
+ }
+ while (true) {
+ BlockScopeRAII Scope(Info);
+ bool Continue = true;
+ if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
+ FS->getCond(), Continue))
+ return ESR_Failed;
+ if (!Continue)
+ break;
+
+ EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
+ if (ESR != ESR_Continue)
+ return ESR;
+
+ if (FS->getInc()) {
+ FullExpressionRAII IncScope(Info);
+ if (!EvaluateIgnoredValue(Info, FS->getInc()))
+ return ESR_Failed;
+ }
+ }
+ return ESR_Succeeded;
+ }
+
+ case Stmt::CXXForRangeStmtClass: {
+ const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
+ BlockScopeRAII Scope(Info);
+
+ // Initialize the __range variable.
+ EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
+ if (ESR != ESR_Succeeded)
+ return ESR;
+
+ // Create the __begin and __end iterators.
+ ESR = EvaluateStmt(Result, Info, FS->getBeginEndStmt());
+ if (ESR != ESR_Succeeded)
+ return ESR;
+
+ while (true) {
+ // Condition: __begin != __end.
+ {
+ bool Continue = true;
+ FullExpressionRAII CondExpr(Info);
+ if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
+ return ESR_Failed;
+ if (!Continue)
+ break;
+ }
+
+ // User's variable declaration, initialized by *__begin.
+ BlockScopeRAII InnerScope(Info);
+ ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
+ if (ESR != ESR_Succeeded)
+ return ESR;
+
+ // Loop body.
+ ESR = EvaluateLoopBody(Result, Info, FS->getBody());
+ if (ESR != ESR_Continue)
+ return ESR;
+
+ // Increment: ++__begin
+ if (!EvaluateIgnoredValue(Info, FS->getInc()))
+ return ESR_Failed;
+ }
+
+ return ESR_Succeeded;
+ }
+
+ case Stmt::SwitchStmtClass:
+ return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
+
+ case Stmt::ContinueStmtClass:
+ return ESR_Continue;
+
+ case Stmt::BreakStmtClass:
+ return ESR_Break;
+
+ case Stmt::LabelStmtClass:
+ return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
+
+ case Stmt::AttributedStmtClass:
+ // As a general principle, C++11 attributes can be ignored without
+ // any semantic impact.
+ return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
+ Case);
+
+ case Stmt::CaseStmtClass:
+ case Stmt::DefaultStmtClass:
+ return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
+ }
+}
+
+/// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
+/// default constructor. If so, we'll fold it whether or not it's marked as
+/// constexpr. If it is marked as constexpr, we will never implicitly define it,
+/// so we need special handling.
+static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
+ const CXXConstructorDecl *CD,
+ bool IsValueInitialization) {
+ if (!CD->isTrivial() || !CD->isDefaultConstructor())
+ return false;
+
+ // Value-initialization does not call a trivial default constructor, so such a
+ // call is a core constant expression whether or not the constructor is
+ // constexpr.
+ if (!CD->isConstexpr() && !IsValueInitialization) {
+ if (Info.getLangOpts().CPlusPlus11) {
+ // FIXME: If DiagDecl is an implicitly-declared special member function,
+ // we should be much more explicit about why it's not constexpr.
+ Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
+ << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
+ Info.Note(CD->getLocation(), diag::note_declared_at);
+ } else {
+ Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
+ }
+ }
+ return true;
+}
+
+/// CheckConstexprFunction - Check that a function can be called in a constant
+/// expression.
+static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
+ const FunctionDecl *Declaration,
+ const FunctionDecl *Definition) {
+ // Potential constant expressions can contain calls to declared, but not yet
+ // defined, constexpr functions.
+ if (Info.checkingPotentialConstantExpression() && !Definition &&
+ Declaration->isConstexpr())
+ return false;
+
+ // Bail out with no diagnostic if the function declaration itself is invalid.
+ // We will have produced a relevant diagnostic while parsing it.
+ if (Declaration->isInvalidDecl())
+ return false;
+
+ // Can we evaluate this function call?
+ if (Definition && Definition->isConstexpr() && !Definition->isInvalidDecl())
+ return true;
+
+ if (Info.getLangOpts().CPlusPlus11) {
+ const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
+ // FIXME: If DiagDecl is an implicitly-declared special member function, we
+ // should be much more explicit about why it's not constexpr.
+ Info.Diag(CallLoc, diag::note_constexpr_invalid_function, 1)
+ << DiagDecl->isConstexpr() << isa<CXXConstructorDecl>(DiagDecl)
+ << DiagDecl;
+ Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
+ } else {
+ Info.Diag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
+ }
+ return false;
+}
+
+/// Determine if a class has any fields that might need to be copied by a
+/// trivial copy or move operation.
+static bool hasFields(const CXXRecordDecl *RD) {
+ if (!RD || RD->isEmpty())
+ return false;
+ for (auto *FD : RD->fields()) {
+ if (FD->isUnnamedBitfield())
+ continue;
+ return true;
+ }
+ for (auto &Base : RD->bases())
+ if (hasFields(Base.getType()->getAsCXXRecordDecl()))
+ return true;
+ return false;
+}
+
+namespace {
+typedef SmallVector<APValue, 8> ArgVector;
+}
+
+/// EvaluateArgs - Evaluate the arguments to a function call.
+static bool EvaluateArgs(ArrayRef<const Expr*> Args, ArgVector &ArgValues,
+ EvalInfo &Info) {
+ bool Success = true;
+ for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
+ I != E; ++I) {
+ if (!Evaluate(ArgValues[I - Args.begin()], Info, *I)) {
+ // If we're checking for a potential constant expression, evaluate all
+ // initializers even if some of them fail.
+ if (!Info.keepEvaluatingAfterFailure())
+ return false;
+ Success = false;
+ }
+ }
+ return Success;
+}
+
+/// Evaluate a function call.
+static bool HandleFunctionCall(SourceLocation CallLoc,
+ const FunctionDecl *Callee, const LValue *This,
+ ArrayRef<const Expr*> Args, const Stmt *Body,
+ EvalInfo &Info, APValue &Result) {
+ ArgVector ArgValues(Args.size());
+ if (!EvaluateArgs(Args, ArgValues, Info))
+ return false;
+
+ if (!Info.CheckCallLimit(CallLoc))
+ return false;
+
+ CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data());
+
+ // For a trivial copy or move assignment, perform an APValue copy. This is
+ // essential for unions, where the operations performed by the assignment
+ // operator cannot be represented as statements.
+ //
+ // Skip this for non-union classes with no fields; in that case, the defaulted
+ // copy/move does not actually read the object.
+ const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
+ if (MD && MD->isDefaulted() &&
+ (MD->getParent()->isUnion() ||
+ (MD->isTrivial() && hasFields(MD->getParent())))) {
+ assert(This &&
+ (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
+ LValue RHS;
+ RHS.setFrom(Info.Ctx, ArgValues[0]);
+ APValue RHSValue;
+ if (!handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
+ RHS, RHSValue))
+ return false;
+ if (!handleAssignment(Info, Args[0], *This, MD->getThisType(Info.Ctx),
+ RHSValue))
+ return false;
+ This->moveInto(Result);
+ return true;
+ }
+
+ EvalStmtResult ESR = EvaluateStmt(Result, Info, Body);
+ if (ESR == ESR_Succeeded) {
+ if (Callee->getReturnType()->isVoidType())
+ return true;
+ Info.Diag(Callee->getLocEnd(), diag::note_constexpr_no_return);
+ }
+ return ESR == ESR_Returned;
+}
+
+/// Evaluate a constructor call.
+static bool HandleConstructorCall(SourceLocation CallLoc, const LValue &This,
+ ArrayRef<const Expr*> Args,
+ const CXXConstructorDecl *Definition,
+ EvalInfo &Info, APValue &Result) {
+ ArgVector ArgValues(Args.size());
+ if (!EvaluateArgs(Args, ArgValues, Info))
+ return false;
+
+ if (!Info.CheckCallLimit(CallLoc))
+ return false;
+
+ const CXXRecordDecl *RD = Definition->getParent();
+ if (RD->getNumVBases()) {
+ Info.Diag(CallLoc, diag::note_constexpr_virtual_base) << RD;
+ return false;
+ }
+
+ CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues.data());
+
+ // If it's a delegating constructor, just delegate.
+ if (Definition->isDelegatingConstructor()) {
+ CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
+ {
+ FullExpressionRAII InitScope(Info);
+ if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()))
+ return false;
+ }
+ return EvaluateStmt(Result, Info, Definition->getBody()) != ESR_Failed;
+ }
+
+ // For a trivial copy or move constructor, perform an APValue copy. This is
+ // essential for unions (or classes with anonymous union members), where the
+ // operations performed by the constructor cannot be represented by
+ // ctor-initializers.
+ //
+ // Skip this for empty non-union classes; we should not perform an
+ // lvalue-to-rvalue conversion on them because their copy constructor does not
+ // actually read them.
+ if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() &&
+ (Definition->getParent()->isUnion() ||
+ (Definition->isTrivial() && hasFields(Definition->getParent())))) {
+ LValue RHS;
+ RHS.setFrom(Info.Ctx, ArgValues[0]);
+ return handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
+ RHS, Result);
+ }
+
+ // Reserve space for the struct members.
+ if (!RD->isUnion() && Result.isUninit())
+ Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
+ std::distance(RD->field_begin(), RD->field_end()));
+
+ if (RD->isInvalidDecl()) return false;
+ const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
+
+ // A scope for temporaries lifetime-extended by reference members.
+ BlockScopeRAII LifetimeExtendedScope(Info);
+
+ bool Success = true;
+ unsigned BasesSeen = 0;
+#ifndef NDEBUG
+ CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
+#endif
+ for (const auto *I : Definition->inits()) {
+ LValue Subobject = This;
+ APValue *Value = &Result;
+
+ // Determine the subobject to initialize.
+ FieldDecl *FD = nullptr;
+ if (I->isBaseInitializer()) {
+ QualType BaseType(I->getBaseClass(), 0);
+#ifndef NDEBUG
+ // Non-virtual base classes are initialized in the order in the class
+ // definition. We have already checked for virtual base classes.
+ assert(!BaseIt->isVirtual() && "virtual base for literal type");
+ assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
+ "base class initializers not in expected order");
+ ++BaseIt;
+#endif
+ if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD,
+ BaseType->getAsCXXRecordDecl(), &Layout))
+ return false;
+ Value = &Result.getStructBase(BasesSeen++);
+ } else if ((FD = I->getMember())) {
+ if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout))
+ return false;
+ if (RD->isUnion()) {
+ Result = APValue(FD);
+ Value = &Result.getUnionValue();
+ } else {
+ Value = &Result.getStructField(FD->getFieldIndex());
+ }
+ } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) {
+ // Walk the indirect field decl's chain to find the object to initialize,
+ // and make sure we've initialized every step along it.
+ for (auto *C : IFD->chain()) {
+ FD = cast<FieldDecl>(C);
+ CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
+ // Switch the union field if it differs. This happens if we had
+ // preceding zero-initialization, and we're now initializing a union
+ // subobject other than the first.
+ // FIXME: In this case, the values of the other subobjects are
+ // specified, since zero-initialization sets all padding bits to zero.
+ if (Value->isUninit() ||
+ (Value->isUnion() && Value->getUnionField() != FD)) {
+ if (CD->isUnion())
+ *Value = APValue(FD);
+ else
+ *Value = APValue(APValue::UninitStruct(), CD->getNumBases(),
+ std::distance(CD->field_begin(), CD->field_end()));
+ }
+ if (!HandleLValueMember(Info, I->getInit(), Subobject, FD))
+ return false;
+ if (CD->isUnion())
+ Value = &Value->getUnionValue();
+ else
+ Value = &Value->getStructField(FD->getFieldIndex());
+ }
+ } else {
+ llvm_unreachable("unknown base initializer kind");
+ }
+
+ FullExpressionRAII InitScope(Info);
+ if (!EvaluateInPlace(*Value, Info, Subobject, I->getInit()) ||
+ (FD && FD->isBitField() && !truncateBitfieldValue(Info, I->getInit(),
+ *Value, FD))) {
+ // If we're checking for a potential constant expression, evaluate all
+ // initializers even if some of them fail.
+ if (!Info.keepEvaluatingAfterFailure())
+ return false;
+ Success = false;
+ }
+ }
+
+ return Success &&
+ EvaluateStmt(Result, Info, Definition->getBody()) != ESR_Failed;
+}
+
+//===----------------------------------------------------------------------===//
+// Generic Evaluation
+//===----------------------------------------------------------------------===//
+namespace {
+
+template <class Derived>
+class ExprEvaluatorBase
+ : public ConstStmtVisitor<Derived, bool> {
+private:
+ bool DerivedSuccess(const APValue &V, const Expr *E) {
+ return static_cast<Derived*>(this)->Success(V, E);
+ }
+ bool DerivedZeroInitialization(const Expr *E) {
+ return static_cast<Derived*>(this)->ZeroInitialization(E);
+ }
+
+ // Check whether a conditional operator with a non-constant condition is a
+ // potential constant expression. If neither arm is a potential constant
+ // expression, then the conditional operator is not either.
+ template<typename ConditionalOperator>
+ void CheckPotentialConstantConditional(const ConditionalOperator *E) {
+ assert(Info.checkingPotentialConstantExpression());
+
+ // Speculatively evaluate both arms.
+ {
+ SmallVector<PartialDiagnosticAt, 8> Diag;
+ SpeculativeEvaluationRAII Speculate(Info, &Diag);
+
+ StmtVisitorTy::Visit(E->getFalseExpr());
+ if (Diag.empty())
+ return;
+
+ Diag.clear();
+ StmtVisitorTy::Visit(E->getTrueExpr());
+ if (Diag.empty())
+ return;
+ }
+
+ Error(E, diag::note_constexpr_conditional_never_const);
+ }
+
+
+ template<typename ConditionalOperator>
+ bool HandleConditionalOperator(const ConditionalOperator *E) {
+ bool BoolResult;
+ if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
+ if (Info.checkingPotentialConstantExpression())
+ CheckPotentialConstantConditional(E);
+ return false;
+ }
+
+ Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
+ return StmtVisitorTy::Visit(EvalExpr);
+ }
+
+protected:
+ EvalInfo &Info;
+ typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy;
+ typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
+
+ OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
+ return Info.CCEDiag(E, D);
+ }
+
+ bool ZeroInitialization(const Expr *E) { return Error(E); }
+
+public:
+ ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
+
+ EvalInfo &getEvalInfo() { return Info; }
+
+ /// Report an evaluation error. This should only be called when an error is
+ /// first discovered. When propagating an error, just return false.
+ bool Error(const Expr *E, diag::kind D) {
+ Info.Diag(E, D);
+ return false;
+ }
+ bool Error(const Expr *E) {
+ return Error(E, diag::note_invalid_subexpr_in_const_expr);
+ }
+
+ bool VisitStmt(const Stmt *) {
+ llvm_unreachable("Expression evaluator should not be called on stmts");
+ }
+ bool VisitExpr(const Expr *E) {
+ return Error(E);
+ }
+
+ bool VisitParenExpr(const ParenExpr *E)
+ { return StmtVisitorTy::Visit(E->getSubExpr()); }
+ bool VisitUnaryExtension(const UnaryOperator *E)
+ { return StmtVisitorTy::Visit(E->getSubExpr()); }
+ bool VisitUnaryPlus(const UnaryOperator *E)
+ { return StmtVisitorTy::Visit(E->getSubExpr()); }
+ bool VisitChooseExpr(const ChooseExpr *E)
+ { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
+ bool VisitGenericSelectionExpr(const GenericSelectionExpr *E)
+ { return StmtVisitorTy::Visit(E->getResultExpr()); }
+ bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
+ { return StmtVisitorTy::Visit(E->getReplacement()); }
+ bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E)
+ { return StmtVisitorTy::Visit(E->getExpr()); }
+ bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
+ // The initializer may not have been parsed yet, or might be erroneous.
+ if (!E->getExpr())
+ return Error(E);
+ return StmtVisitorTy::Visit(E->getExpr());
+ }
+ // We cannot create any objects for which cleanups are required, so there is
+ // nothing to do here; all cleanups must come from unevaluated subexpressions.
+ bool VisitExprWithCleanups(const ExprWithCleanups *E)
+ { return StmtVisitorTy::Visit(E->getSubExpr()); }
+
+ bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
+ CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
+ return static_cast<Derived*>(this)->VisitCastExpr(E);
+ }
+ bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
+ CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
+ return static_cast<Derived*>(this)->VisitCastExpr(E);
+ }
+
+ bool VisitBinaryOperator(const BinaryOperator *E) {
+ switch (E->getOpcode()) {
+ default:
+ return Error(E);
+
+ case BO_Comma:
+ VisitIgnoredValue(E->getLHS());
+ return StmtVisitorTy::Visit(E->getRHS());
+
+ case BO_PtrMemD:
+ case BO_PtrMemI: {
+ LValue Obj;
+ if (!HandleMemberPointerAccess(Info, E, Obj))
+ return false;
+ APValue Result;
+ if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
+ return false;
+ return DerivedSuccess(Result, E);
+ }
+ }
+ }
+
+ bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
+ // Evaluate and cache the common expression. We treat it as a temporary,
+ // even though it's not quite the same thing.
+ if (!Evaluate(Info.CurrentCall->createTemporary(E->getOpaqueValue(), false),
+ Info, E->getCommon()))
+ return false;
+
+ return HandleConditionalOperator(E);
+ }
+
+ bool VisitConditionalOperator(const ConditionalOperator *E) {
+ bool IsBcpCall = false;
+ // If the condition (ignoring parens) is a __builtin_constant_p call,
+ // the result is a constant expression if it can be folded without
+ // side-effects. This is an important GNU extension. See GCC PR38377
+ // for discussion.
+ if (const CallExpr *CallCE =
+ dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
+ if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
+ IsBcpCall = true;
+
+ // Always assume __builtin_constant_p(...) ? ... : ... is a potential
+ // constant expression; we can't check whether it's potentially foldable.
+ if (Info.checkingPotentialConstantExpression() && IsBcpCall)
+ return false;
+
+ FoldConstant Fold(Info, IsBcpCall);
+ if (!HandleConditionalOperator(E)) {
+ Fold.keepDiagnostics();
+ return false;
+ }
+
+ return true;
+ }
+
+ bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
+ if (APValue *Value = Info.CurrentCall->getTemporary(E))
+ return DerivedSuccess(*Value, E);
+
+ const Expr *Source = E->getSourceExpr();
+ if (!Source)
+ return Error(E);
+ if (Source == E) { // sanity checking.
+ assert(0 && "OpaqueValueExpr recursively refers to itself");
+ return Error(E);
+ }
+ return StmtVisitorTy::Visit(Source);
+ }
+
+ bool VisitCallExpr(const CallExpr *E) {
+ const Expr *Callee = E->getCallee()->IgnoreParens();
+ QualType CalleeType = Callee->getType();
+
+ const FunctionDecl *FD = nullptr;
+ LValue *This = nullptr, ThisVal;
+ auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
+ bool HasQualifier = false;
+
+ // Extract function decl and 'this' pointer from the callee.
+ if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
+ const ValueDecl *Member = nullptr;
+ if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
+ // Explicit bound member calls, such as x.f() or p->g();
+ if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
+ return false;
+ Member = ME->getMemberDecl();
+ This = &ThisVal;
+ HasQualifier = ME->hasQualifier();
+ } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
+ // Indirect bound member calls ('.*' or '->*').
+ Member = HandleMemberPointerAccess(Info, BE, ThisVal, false);
+ if (!Member) return false;
+ This = &ThisVal;
+ } else
+ return Error(Callee);
+
+ FD = dyn_cast<FunctionDecl>(Member);
+ if (!FD)
+ return Error(Callee);
+ } else if (CalleeType->isFunctionPointerType()) {
+ LValue Call;
+ if (!EvaluatePointer(Callee, Call, Info))
+ return false;
+
+ if (!Call.getLValueOffset().isZero())
+ return Error(Callee);
+ FD = dyn_cast_or_null<FunctionDecl>(
+ Call.getLValueBase().dyn_cast<const ValueDecl*>());
+ if (!FD)
+ return Error(Callee);
+
+ // Overloaded operator calls to member functions are represented as normal
+ // calls with '*this' as the first argument.
+ const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
+ if (MD && !MD->isStatic()) {
+ // FIXME: When selecting an implicit conversion for an overloaded
+ // operator delete, we sometimes try to evaluate calls to conversion
+ // operators without a 'this' parameter!
+ if (Args.empty())
+ return Error(E);
+
+ if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
+ return false;
+ This = &ThisVal;
+ Args = Args.slice(1);
+ }
+
+ // Don't call function pointers which have been cast to some other type.
+ if (!Info.Ctx.hasSameType(CalleeType->getPointeeType(), FD->getType()))
+ return Error(E);
+ } else
+ return Error(E);
+
+ if (This && !This->checkSubobject(Info, E, CSK_This))
+ return false;
+
+ // DR1358 allows virtual constexpr functions in some cases. Don't allow
+ // calls to such functions in constant expressions.
+ if (This && !HasQualifier &&
+ isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isVirtual())
+ return Error(E, diag::note_constexpr_virtual_call);
+
+ const FunctionDecl *Definition = nullptr;
+ Stmt *Body = FD->getBody(Definition);
+ APValue Result;
+
+ if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition) ||
+ !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body,
+ Info, Result))
+ return false;
+
+ return DerivedSuccess(Result, E);
+ }
+
+ bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
+ return StmtVisitorTy::Visit(E->getInitializer());
+ }
+ bool VisitInitListExpr(const InitListExpr *E) {
+ if (E->getNumInits() == 0)
+ return DerivedZeroInitialization(E);
+ if (E->getNumInits() == 1)
+ return StmtVisitorTy::Visit(E->getInit(0));
+ return Error(E);
+ }
+ bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
+ return DerivedZeroInitialization(E);
+ }
+ bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
+ return DerivedZeroInitialization(E);
+ }
+ bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
+ return DerivedZeroInitialization(E);
+ }
+
+ /// A member expression where the object is a prvalue is itself a prvalue.
+ bool VisitMemberExpr(const MemberExpr *E) {
+ assert(!E->isArrow() && "missing call to bound member function?");
+
+ APValue Val;
+ if (!Evaluate(Val, Info, E->getBase()))
+ return false;
+
+ QualType BaseTy = E->getBase()->getType();
+
+ const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
+ if (!FD) return Error(E);
+ assert(!FD->getType()->isReferenceType() && "prvalue reference?");
+ assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
+ FD->getParent()->getCanonicalDecl() && "record / field mismatch");
+
+ CompleteObject Obj(&Val, BaseTy);
+ SubobjectDesignator Designator(BaseTy);
+ Designator.addDeclUnchecked(FD);
+
+ APValue Result;
+ return extractSubobject(Info, E, Obj, Designator, Result) &&
+ DerivedSuccess(Result, E);
+ }
+
+ bool VisitCastExpr(const CastExpr *E) {
+ switch (E->getCastKind()) {
+ default:
+ break;
+
+ case CK_AtomicToNonAtomic: {
+ APValue AtomicVal;
+ if (!EvaluateAtomic(E->getSubExpr(), AtomicVal, Info))
+ return false;
+ return DerivedSuccess(AtomicVal, E);
+ }
+
+ case CK_NoOp:
+ case CK_UserDefinedConversion:
+ return StmtVisitorTy::Visit(E->getSubExpr());
+
+ case CK_LValueToRValue: {
+ LValue LVal;
+ if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
+ return false;
+ APValue RVal;
+ // Note, we use the subexpression's type in order to retain cv-qualifiers.
+ if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
+ LVal, RVal))
+ return false;
+ return DerivedSuccess(RVal, E);
+ }
+ }
+
+ return Error(E);
+ }
+
+ bool VisitUnaryPostInc(const UnaryOperator *UO) {
+ return VisitUnaryPostIncDec(UO);
+ }
+ bool VisitUnaryPostDec(const UnaryOperator *UO) {
+ return VisitUnaryPostIncDec(UO);
+ }
+ bool VisitUnaryPostIncDec(const UnaryOperator *UO) {
+ if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
+ return Error(UO);
+
+ LValue LVal;
+ if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
+ return false;
+ APValue RVal;
+ if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
+ UO->isIncrementOp(), &RVal))
+ return false;
+ return DerivedSuccess(RVal, UO);
+ }
+
+ bool VisitStmtExpr(const StmtExpr *E) {
+ // We will have checked the full-expressions inside the statement expression
+ // when they were completed, and don't need to check them again now.
+ if (Info.checkingForOverflow())
+ return Error(E);
+
+ BlockScopeRAII Scope(Info);
+ const CompoundStmt *CS = E->getSubStmt();
+ for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
+ BE = CS->body_end();
+ /**/; ++BI) {
+ if (BI + 1 == BE) {
+ const Expr *FinalExpr = dyn_cast<Expr>(*BI);
+ if (!FinalExpr) {
+ Info.Diag((*BI)->getLocStart(),
+ diag::note_constexpr_stmt_expr_unsupported);
+ return false;
+ }
+ return this->Visit(FinalExpr);
+ }
+
+ APValue ReturnValue;
+ EvalStmtResult ESR = EvaluateStmt(ReturnValue, Info, *BI);
+ if (ESR != ESR_Succeeded) {
+ // FIXME: If the statement-expression terminated due to 'return',
+ // 'break', or 'continue', it would be nice to propagate that to
+ // the outer statement evaluation rather than bailing out.
+ if (ESR != ESR_Failed)
+ Info.Diag((*BI)->getLocStart(),
+ diag::note_constexpr_stmt_expr_unsupported);
+ return false;
+ }
+ }
+ }
+
+ /// Visit a value which is evaluated, but whose value is ignored.
+ void VisitIgnoredValue(const Expr *E) {
+ EvaluateIgnoredValue(Info, E);
+ }
+};
+
+}
+
+//===----------------------------------------------------------------------===//
+// Common base class for lvalue and temporary evaluation.
+//===----------------------------------------------------------------------===//
+namespace {
+template<class Derived>
+class LValueExprEvaluatorBase
+ : public ExprEvaluatorBase<Derived> {
+protected:
+ LValue &Result;
+ typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
+ typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy;
+
+ bool Success(APValue::LValueBase B) {
+ Result.set(B);
+ return true;
+ }
+
+public:
+ LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result) :
+ ExprEvaluatorBaseTy(Info), Result(Result) {}
+
+ bool Success(const APValue &V, const Expr *E) {
+ Result.setFrom(this->Info.Ctx, V);
+ return true;
+ }
+
+ bool VisitMemberExpr(const MemberExpr *E) {
+ // Handle non-static data members.
+ QualType BaseTy;
+ if (E->isArrow()) {
+ if (!EvaluatePointer(E->getBase(), Result, this->Info))
+ return false;
+ BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
+ } else if (E->getBase()->isRValue()) {
+ assert(E->getBase()->getType()->isRecordType());
+ if (!EvaluateTemporary(E->getBase(), Result, this->Info))
+ return false;
+ BaseTy = E->getBase()->getType();
+ } else {
+ if (!this->Visit(E->getBase()))
+ return false;
+ BaseTy = E->getBase()->getType();
+ }
+
+ const ValueDecl *MD = E->getMemberDecl();
+ if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
+ assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() ==
+ FD->getParent()->getCanonicalDecl() && "record / field mismatch");
+ (void)BaseTy;
+ if (!HandleLValueMember(this->Info, E, Result, FD))
+ return false;
+ } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
+ if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
+ return false;
+ } else
+ return this->Error(E);
+
+ if (MD->getType()->isReferenceType()) {
+ APValue RefValue;
+ if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
+ RefValue))
+ return false;
+ return Success(RefValue, E);
+ }
+ return true;
+ }
+
+ bool VisitBinaryOperator(const BinaryOperator *E) {
+ switch (E->getOpcode()) {
+ default:
+ return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
+
+ case BO_PtrMemD:
+ case BO_PtrMemI:
+ return HandleMemberPointerAccess(this->Info, E, Result);
+ }
+ }
+
+ bool VisitCastExpr(const CastExpr *E) {
+ switch (E->getCastKind()) {
+ default:
+ return ExprEvaluatorBaseTy::VisitCastExpr(E);
+
+ case CK_DerivedToBase:
+ case CK_UncheckedDerivedToBase:
+ if (!this->Visit(E->getSubExpr()))
+ return false;
+
+ // Now figure out the necessary offset to add to the base LV to get from
+ // the derived class to the base class.
+ return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
+ Result);
+ }
+ }
+};
+}
+
+//===----------------------------------------------------------------------===//
+// LValue Evaluation
+//
+// This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
+// function designators (in C), decl references to void objects (in C), and
+// temporaries (if building with -Wno-address-of-temporary).
+//
+// LValue evaluation produces values comprising a base expression of one of the
+// following types:
+// - Declarations
+// * VarDecl
+// * FunctionDecl
+// - Literals
+// * CompoundLiteralExpr in C
+// * StringLiteral
+// * CXXTypeidExpr
+// * PredefinedExpr
+// * ObjCStringLiteralExpr
+// * ObjCEncodeExpr
+// * AddrLabelExpr
+// * BlockExpr
+// * CallExpr for a MakeStringConstant builtin
+// - Locals and temporaries
+// * MaterializeTemporaryExpr
+// * Any Expr, with a CallIndex indicating the function in which the temporary
+// was evaluated, for cases where the MaterializeTemporaryExpr is missing
+// from the AST (FIXME).
+// * A MaterializeTemporaryExpr that has static storage duration, with no
+// CallIndex, for a lifetime-extended temporary.
+// plus an offset in bytes.
+//===----------------------------------------------------------------------===//
+namespace {
+class LValueExprEvaluator
+ : public LValueExprEvaluatorBase<LValueExprEvaluator> {
+public:
+ LValueExprEvaluator(EvalInfo &Info, LValue &Result) :
+ LValueExprEvaluatorBaseTy(Info, Result) {}
+
+ bool VisitVarDecl(const Expr *E, const VarDecl *VD);
+ bool VisitUnaryPreIncDec(const UnaryOperator *UO);
+
+ bool VisitDeclRefExpr(const DeclRefExpr *E);
+ bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
+ bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
+ bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
+ bool VisitMemberExpr(const MemberExpr *E);
+ bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
+ bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
+ bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
+ bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
+ bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
+ bool VisitUnaryDeref(const UnaryOperator *E);
+ bool VisitUnaryReal(const UnaryOperator *E);
+ bool VisitUnaryImag(const UnaryOperator *E);
+ bool VisitUnaryPreInc(const UnaryOperator *UO) {
+ return VisitUnaryPreIncDec(UO);
+ }
+ bool VisitUnaryPreDec(const UnaryOperator *UO) {
+ return VisitUnaryPreIncDec(UO);
+ }
+ bool VisitBinAssign(const BinaryOperator *BO);
+ bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
+
+ bool VisitCastExpr(const CastExpr *E) {
+ switch (E->getCastKind()) {
+ default:
+ return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
+
+ case CK_LValueBitCast:
+ this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
+ if (!Visit(E->getSubExpr()))
+ return false;
+ Result.Designator.setInvalid();
+ return true;
+
+ case CK_BaseToDerived:
+ if (!Visit(E->getSubExpr()))
+ return false;
+ return HandleBaseToDerivedCast(Info, E, Result);
+ }
+ }
+};
+} // end anonymous namespace
+
+/// Evaluate an expression as an lvalue. This can be legitimately called on
+/// expressions which are not glvalues, in two cases:
+/// * function designators in C, and
+/// * "extern void" objects
+static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info) {
+ assert(E->isGLValue() || E->getType()->isFunctionType() ||
+ E->getType()->isVoidType());
+ return LValueExprEvaluator(Info, Result).Visit(E);
+}
+
+bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl()))
+ return Success(FD);
+ if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
+ return VisitVarDecl(E, VD);
+ return Error(E);
+}
+
+bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
+ CallStackFrame *Frame = nullptr;
+ if (VD->hasLocalStorage() && Info.CurrentCall->Index > 1)
+ Frame = Info.CurrentCall;
+
+ if (!VD->getType()->isReferenceType()) {
+ if (Frame) {
+ Result.set(VD, Frame->Index);
+ return true;
+ }
+ return Success(VD);
+ }
+
+ APValue *V;
+ if (!evaluateVarDeclInit(Info, E, VD, Frame, V))
+ return false;
+ if (V->isUninit()) {
+ if (!Info.checkingPotentialConstantExpression())
+ Info.Diag(E, diag::note_constexpr_use_uninit_reference);
+ return false;
+ }
+ return Success(*V, E);
+}
+
+bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
+ const MaterializeTemporaryExpr *E) {
+ // Walk through the expression to find the materialized temporary itself.
+ SmallVector<const Expr *, 2> CommaLHSs;
+ SmallVector<SubobjectAdjustment, 2> Adjustments;
+ const Expr *Inner = E->GetTemporaryExpr()->
+ skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
+
+ // If we passed any comma operators, evaluate their LHSs.
+ for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
+ if (!EvaluateIgnoredValue(Info, CommaLHSs[I]))
+ return false;
+
+ // A materialized temporary with static storage duration can appear within the
+ // result of a constant expression evaluation, so we need to preserve its
+ // value for use outside this evaluation.
+ APValue *Value;
+ if (E->getStorageDuration() == SD_Static) {
+ Value = Info.Ctx.getMaterializedTemporaryValue(E, true);
+ *Value = APValue();
+ Result.set(E);
+ } else {
+ Value = &Info.CurrentCall->
+ createTemporary(E, E->getStorageDuration() == SD_Automatic);
+ Result.set(E, Info.CurrentCall->Index);
+ }
+
+ QualType Type = Inner->getType();
+
+ // Materialize the temporary itself.
+ if (!EvaluateInPlace(*Value, Info, Result, Inner) ||
+ (E->getStorageDuration() == SD_Static &&
+ !CheckConstantExpression(Info, E->getExprLoc(), Type, *Value))) {
+ *Value = APValue();
+ return false;
+ }
+
+ // Adjust our lvalue to refer to the desired subobject.
+ for (unsigned I = Adjustments.size(); I != 0; /**/) {
+ --I;
+ switch (Adjustments[I].Kind) {
+ case SubobjectAdjustment::DerivedToBaseAdjustment:
+ if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
+ Type, Result))
+ return false;
+ Type = Adjustments[I].DerivedToBase.BasePath->getType();
+ break;
+
+ case SubobjectAdjustment::FieldAdjustment:
+ if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
+ return false;
+ Type = Adjustments[I].Field->getType();
+ break;
+
+ case SubobjectAdjustment::MemberPointerAdjustment:
+ if (!HandleMemberPointerAccess(this->Info, Type, Result,
+ Adjustments[I].Ptr.RHS))
+ return false;
+ Type = Adjustments[I].Ptr.MPT->getPointeeType();
+ break;
+ }
+ }
+
+ return true;
+}
+
+bool
+LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
+ assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
+ // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
+ // only see this when folding in C, so there's no standard to follow here.
+ return Success(E);
+}
+
+bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
+ if (!E->isPotentiallyEvaluated())
+ return Success(E);
+
+ Info.Diag(E, diag::note_constexpr_typeid_polymorphic)
+ << E->getExprOperand()->getType()
+ << E->getExprOperand()->getSourceRange();
+ return false;
+}
+
+bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
+ return Success(E);
+}
+
+bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
+ // Handle static data members.
+ if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
+ VisitIgnoredValue(E->getBase());
+ return VisitVarDecl(E, VD);
+ }
+
+ // Handle static member functions.
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
+ if (MD->isStatic()) {
+ VisitIgnoredValue(E->getBase());
+ return Success(MD);
+ }
+ }
+
+ // Handle non-static data members.
+ return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
+}
+
+bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
+ // FIXME: Deal with vectors as array subscript bases.
+ if (E->getBase()->getType()->isVectorType())
+ return Error(E);
+
+ if (!EvaluatePointer(E->getBase(), Result, Info))
+ return false;
+
+ APSInt Index;
+ if (!EvaluateInteger(E->getIdx(), Index, Info))
+ return false;
+
+ return HandleLValueArrayAdjustment(Info, E, Result, E->getType(),
+ getExtValue(Index));
+}
+
+bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
+ return EvaluatePointer(E->getSubExpr(), Result, Info);
+}
+
+bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
+ if (!Visit(E->getSubExpr()))
+ return false;
+ // __real is a no-op on scalar lvalues.
+ if (E->getSubExpr()->getType()->isAnyComplexType())
+ HandleLValueComplexElement(Info, E, Result, E->getType(), false);
+ return true;
+}
+
+bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
+ assert(E->getSubExpr()->getType()->isAnyComplexType() &&
+ "lvalue __imag__ on scalar?");
+ if (!Visit(E->getSubExpr()))
+ return false;
+ HandleLValueComplexElement(Info, E, Result, E->getType(), true);
+ return true;
+}
+
+bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
+ if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
+ return Error(UO);
+
+ if (!this->Visit(UO->getSubExpr()))
+ return false;
+
+ return handleIncDec(
+ this->Info, UO, Result, UO->getSubExpr()->getType(),
+ UO->isIncrementOp(), nullptr);
+}
+
+bool LValueExprEvaluator::VisitCompoundAssignOperator(
+ const CompoundAssignOperator *CAO) {
+ if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
+ return Error(CAO);
+
+ APValue RHS;
+
+ // The overall lvalue result is the result of evaluating the LHS.
+ if (!this->Visit(CAO->getLHS())) {
+ if (Info.keepEvaluatingAfterFailure())
+ Evaluate(RHS, this->Info, CAO->getRHS());
+ return false;
+ }
+
+ if (!Evaluate(RHS, this->Info, CAO->getRHS()))
+ return false;
+
+ return handleCompoundAssignment(
+ this->Info, CAO,
+ Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
+ CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
+}
+
+bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
+ if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
+ return Error(E);
+
+ APValue NewVal;
+
+ if (!this->Visit(E->getLHS())) {
+ if (Info.keepEvaluatingAfterFailure())
+ Evaluate(NewVal, this->Info, E->getRHS());
+ return false;
+ }
+
+ if (!Evaluate(NewVal, this->Info, E->getRHS()))
+ return false;
+
+ return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
+ NewVal);
+}
+
+//===----------------------------------------------------------------------===//
+// Pointer Evaluation
+//===----------------------------------------------------------------------===//
+
+namespace {
+class PointerExprEvaluator
+ : public ExprEvaluatorBase<PointerExprEvaluator> {
+ LValue &Result;
+
+ bool Success(const Expr *E) {
+ Result.set(E);
+ return true;
+ }
+public:
+
+ PointerExprEvaluator(EvalInfo &info, LValue &Result)
+ : ExprEvaluatorBaseTy(info), Result(Result) {}
+
+ bool Success(const APValue &V, const Expr *E) {
+ Result.setFrom(Info.Ctx, V);
+ return true;
+ }
+ bool ZeroInitialization(const Expr *E) {
+ return Success((Expr*)nullptr);
+ }
+
+ bool VisitBinaryOperator(const BinaryOperator *E);
+ bool VisitCastExpr(const CastExpr* E);
+ bool VisitUnaryAddrOf(const UnaryOperator *E);
+ bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
+ { return Success(E); }
+ bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E)
+ { return Success(E); }
+ bool VisitAddrLabelExpr(const AddrLabelExpr *E)
+ { return Success(E); }
+ bool VisitCallExpr(const CallExpr *E);
+ bool VisitBlockExpr(const BlockExpr *E) {
+ if (!E->getBlockDecl()->hasCaptures())
+ return Success(E);
+ return Error(E);
+ }
+ bool VisitCXXThisExpr(const CXXThisExpr *E) {
+ // Can't look at 'this' when checking a potential constant expression.
+ if (Info.checkingPotentialConstantExpression())
+ return false;
+ if (!Info.CurrentCall->This) {
+ if (Info.getLangOpts().CPlusPlus11)
+ Info.Diag(E, diag::note_constexpr_this) << E->isImplicit();
+ else
+ Info.Diag(E);
+ return false;
+ }
+ Result = *Info.CurrentCall->This;
+ return true;
+ }
+
+ // FIXME: Missing: @protocol, @selector
+};
+} // end anonymous namespace
+
+static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info) {
+ assert(E->isRValue() && E->getType()->hasPointerRepresentation());
+ return PointerExprEvaluator(Info, Result).Visit(E);
+}
+
+bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
+ if (E->getOpcode() != BO_Add &&
+ E->getOpcode() != BO_Sub)
+ return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
+
+ const Expr *PExp = E->getLHS();
+ const Expr *IExp = E->getRHS();
+ if (IExp->getType()->isPointerType())
+ std::swap(PExp, IExp);
+
+ bool EvalPtrOK = EvaluatePointer(PExp, Result, Info);
+ if (!EvalPtrOK && !Info.keepEvaluatingAfterFailure())
+ return false;
+
+ llvm::APSInt Offset;
+ if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
+ return false;
+
+ int64_t AdditionalOffset = getExtValue(Offset);
+ if (E->getOpcode() == BO_Sub)
+ AdditionalOffset = -AdditionalOffset;
+
+ QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
+ return HandleLValueArrayAdjustment(Info, E, Result, Pointee,
+ AdditionalOffset);
+}
+
+bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
+ return EvaluateLValue(E->getSubExpr(), Result, Info);
+}
+
+bool PointerExprEvaluator::VisitCastExpr(const CastExpr* E) {
+ const Expr* SubExpr = E->getSubExpr();
+
+ switch (E->getCastKind()) {
+ default:
+ break;
+
+ case CK_BitCast:
+ case CK_CPointerToObjCPointerCast:
+ case CK_BlockPointerToObjCPointerCast:
+ case CK_AnyPointerToBlockPointerCast:
+ case CK_AddressSpaceConversion:
+ if (!Visit(SubExpr))
+ return false;
+ // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
+ // permitted in constant expressions in C++11. Bitcasts from cv void* are
+ // also static_casts, but we disallow them as a resolution to DR1312.
+ if (!E->getType()->isVoidPointerType()) {
+ Result.Designator.setInvalid();
+ if (SubExpr->getType()->isVoidPointerType())
+ CCEDiag(E, diag::note_constexpr_invalid_cast)
+ << 3 << SubExpr->getType();
+ else
+ CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
+ }
+ return true;
+
+ case CK_DerivedToBase:
+ case CK_UncheckedDerivedToBase:
+ if (!EvaluatePointer(E->getSubExpr(), Result, Info))
+ return false;
+ if (!Result.Base && Result.Offset.isZero())
+ return true;
+
+ // Now figure out the necessary offset to add to the base LV to get from
+ // the derived class to the base class.
+ return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
+ castAs<PointerType>()->getPointeeType(),
+ Result);
+
+ case CK_BaseToDerived:
+ if (!Visit(E->getSubExpr()))
+ return false;
+ if (!Result.Base && Result.Offset.isZero())
+ return true;
+ return HandleBaseToDerivedCast(Info, E, Result);
+
+ case CK_NullToPointer:
+ VisitIgnoredValue(E->getSubExpr());
+ return ZeroInitialization(E);
+
+ case CK_IntegralToPointer: {
+ CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
+
+ APValue Value;
+ if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
+ break;
+
+ if (Value.isInt()) {
+ unsigned Size = Info.Ctx.getTypeSize(E->getType());
+ uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
+ Result.Base = (Expr*)nullptr;
+ Result.Offset = CharUnits::fromQuantity(N);
+ Result.CallIndex = 0;
+ Result.Designator.setInvalid();
+ return true;
+ } else {
+ // Cast is of an lvalue, no need to change value.
+ Result.setFrom(Info.Ctx, Value);
+ return true;
+ }
+ }
+ case CK_ArrayToPointerDecay:
+ if (SubExpr->isGLValue()) {
+ if (!EvaluateLValue(SubExpr, Result, Info))
+ return false;
+ } else {
+ Result.set(SubExpr, Info.CurrentCall->Index);
+ if (!EvaluateInPlace(Info.CurrentCall->createTemporary(SubExpr, false),
+ Info, Result, SubExpr))
+ return false;
+ }
+ // The result is a pointer to the first element of the array.
+ if (const ConstantArrayType *CAT
+ = Info.Ctx.getAsConstantArrayType(SubExpr->getType()))
+ Result.addArray(Info, E, CAT);
+ else
+ Result.Designator.setInvalid();
+ return true;
+
+ case CK_FunctionToPointerDecay:
+ return EvaluateLValue(SubExpr, Result, Info);
+ }
+
+ return ExprEvaluatorBaseTy::VisitCastExpr(E);
+}
+
+static CharUnits GetAlignOfType(EvalInfo &Info, QualType T) {
+ // C++ [expr.alignof]p3:
+ // When alignof is applied to a reference type, the result is the
+ // alignment of the referenced type.
+ if (const ReferenceType *Ref = T->getAs<ReferenceType>())
+ T = Ref->getPointeeType();
+
+ // __alignof is defined to return the preferred alignment.
+ return Info.Ctx.toCharUnitsFromBits(
+ Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
+}
+
+static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E) {
+ E = E->IgnoreParens();
+
+ // The kinds of expressions that we have special-case logic here for
+ // should be kept up to date with the special checks for those
+ // expressions in Sema.
+
+ // alignof decl is always accepted, even if it doesn't make sense: we default
+ // to 1 in those cases.
+ if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
+ return Info.Ctx.getDeclAlign(DRE->getDecl(),
+ /*RefAsPointee*/true);
+
+ if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
+ return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
+ /*RefAsPointee*/true);
+
+ return GetAlignOfType(Info, E->getType());
+}
+
+bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
+ if (IsStringLiteralCall(E))
+ return Success(E);
+
+ switch (E->getBuiltinCallee()) {
+ case Builtin::BI__builtin_addressof:
+ return EvaluateLValue(E->getArg(0), Result, Info);
+ case Builtin::BI__builtin_assume_aligned: {
+ // We need to be very careful here because: if the pointer does not have the
+ // asserted alignment, then the behavior is undefined, and undefined
+ // behavior is non-constant.
+ if (!EvaluatePointer(E->getArg(0), Result, Info))
+ return false;
+
+ LValue OffsetResult(Result);
+ APSInt Alignment;
+ if (!EvaluateInteger(E->getArg(1), Alignment, Info))
+ return false;
+ CharUnits Align = CharUnits::fromQuantity(getExtValue(Alignment));
+
+ if (E->getNumArgs() > 2) {
+ APSInt Offset;
+ if (!EvaluateInteger(E->getArg(2), Offset, Info))
+ return false;
+
+ int64_t AdditionalOffset = -getExtValue(Offset);
+ OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset);
+ }
+
+ // If there is a base object, then it must have the correct alignment.
+ if (OffsetResult.Base) {
+ CharUnits BaseAlignment;
+ if (const ValueDecl *VD =
+ OffsetResult.Base.dyn_cast<const ValueDecl*>()) {
+ BaseAlignment = Info.Ctx.getDeclAlign(VD);
+ } else {
+ BaseAlignment =
+ GetAlignOfExpr(Info, OffsetResult.Base.get<const Expr*>());
+ }
+
+ if (BaseAlignment < Align) {
+ Result.Designator.setInvalid();
+ // FIXME: Quantities here cast to integers because the plural modifier
+ // does not work on APSInts yet.
+ CCEDiag(E->getArg(0),
+ diag::note_constexpr_baa_insufficient_alignment) << 0
+ << (int) BaseAlignment.getQuantity()
+ << (unsigned) getExtValue(Alignment);
+ return false;
+ }
+ }
+
+ // The offset must also have the correct alignment.
+ if (OffsetResult.Offset.RoundUpToAlignment(Align) != OffsetResult.Offset) {
+ Result.Designator.setInvalid();
+ APSInt Offset(64, false);
+ Offset = OffsetResult.Offset.getQuantity();
+
+ if (OffsetResult.Base)
+ CCEDiag(E->getArg(0),
+ diag::note_constexpr_baa_insufficient_alignment) << 1
+ << (int) getExtValue(Offset) << (unsigned) getExtValue(Alignment);
+ else
+ CCEDiag(E->getArg(0),
+ diag::note_constexpr_baa_value_insufficient_alignment)
+ << Offset << (unsigned) getExtValue(Alignment);
+
+ return false;
+ }
+
+ return true;
+ }
+ default:
+ return ExprEvaluatorBaseTy::VisitCallExpr(E);
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Member Pointer Evaluation
+//===----------------------------------------------------------------------===//
+
+namespace {
+class MemberPointerExprEvaluator
+ : public ExprEvaluatorBase<MemberPointerExprEvaluator> {
+ MemberPtr &Result;
+
+ bool Success(const ValueDecl *D) {
+ Result = MemberPtr(D);
+ return true;
+ }
+public:
+
+ MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
+ : ExprEvaluatorBaseTy(Info), Result(Result) {}
+
+ bool Success(const APValue &V, const Expr *E) {
+ Result.setFrom(V);
+ return true;
+ }
+ bool ZeroInitialization(const Expr *E) {
+ return Success((const ValueDecl*)nullptr);
+ }
+
+ bool VisitCastExpr(const CastExpr *E);
+ bool VisitUnaryAddrOf(const UnaryOperator *E);
+};
+} // end anonymous namespace
+
+static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
+ EvalInfo &Info) {
+ assert(E->isRValue() && E->getType()->isMemberPointerType());
+ return MemberPointerExprEvaluator(Info, Result).Visit(E);
+}
+
+bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
+ switch (E->getCastKind()) {
+ default:
+ return ExprEvaluatorBaseTy::VisitCastExpr(E);
+
+ case CK_NullToMemberPointer:
+ VisitIgnoredValue(E->getSubExpr());
+ return ZeroInitialization(E);
+
+ case CK_BaseToDerivedMemberPointer: {
+ if (!Visit(E->getSubExpr()))
+ return false;
+ if (E->path_empty())
+ return true;
+ // Base-to-derived member pointer casts store the path in derived-to-base
+ // order, so iterate backwards. The CXXBaseSpecifier also provides us with
+ // the wrong end of the derived->base arc, so stagger the path by one class.
+ typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
+ for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
+ PathI != PathE; ++PathI) {
+ assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
+ const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
+ if (!Result.castToDerived(Derived))
+ return Error(E);
+ }
+ const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
+ if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
+ return Error(E);
+ return true;
+ }
+
+ case CK_DerivedToBaseMemberPointer:
+ if (!Visit(E->getSubExpr()))
+ return false;
+ for (CastExpr::path_const_iterator PathI = E->path_begin(),
+ PathE = E->path_end(); PathI != PathE; ++PathI) {
+ assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
+ const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
+ if (!Result.castToBase(Base))
+ return Error(E);
+ }
+ return true;
+ }
+}
+
+bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
+ // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
+ // member can be formed.
+ return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
+}
+
+//===----------------------------------------------------------------------===//
+// Record Evaluation
+//===----------------------------------------------------------------------===//
+
+namespace {
+ class RecordExprEvaluator
+ : public ExprEvaluatorBase<RecordExprEvaluator> {
+ const LValue &This;
+ APValue &Result;
+ public:
+
+ RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
+ : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
+
+ bool Success(const APValue &V, const Expr *E) {
+ Result = V;
+ return true;
+ }
+ bool ZeroInitialization(const Expr *E);
+
+ bool VisitCastExpr(const CastExpr *E);
+ bool VisitInitListExpr(const InitListExpr *E);
+ bool VisitCXXConstructExpr(const CXXConstructExpr *E);
+ bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
+ };
+}
+
+/// Perform zero-initialization on an object of non-union class type.
+/// C++11 [dcl.init]p5:
+/// To zero-initialize an object or reference of type T means:
+/// [...]
+/// -- if T is a (possibly cv-qualified) non-union class type,
+/// each non-static data member and each base-class subobject is
+/// zero-initialized
+static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
+ const RecordDecl *RD,
+ const LValue &This, APValue &Result) {
+ assert(!RD->isUnion() && "Expected non-union class type");
+ const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
+ Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
+ std::distance(RD->field_begin(), RD->field_end()));
+
+ if (RD->isInvalidDecl()) return false;
+ const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
+
+ if (CD) {
+ unsigned Index = 0;
+ for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
+ End = CD->bases_end(); I != End; ++I, ++Index) {
+ const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
+ LValue Subobject = This;
+ if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
+ return false;
+ if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
+ Result.getStructBase(Index)))
+ return false;
+ }
+ }
+
+ for (const auto *I : RD->fields()) {
+ // -- if T is a reference type, no initialization is performed.
+ if (I->getType()->isReferenceType())
+ continue;
+
+ LValue Subobject = This;
+ if (!HandleLValueMember(Info, E, Subobject, I, &Layout))
+ return false;
+
+ ImplicitValueInitExpr VIE(I->getType());
+ if (!EvaluateInPlace(
+ Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
+ return false;
+ }
+
+ return true;
+}
+
+bool RecordExprEvaluator::ZeroInitialization(const Expr *E) {
+ const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
+ if (RD->isInvalidDecl()) return false;
+ if (RD->isUnion()) {
+ // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
+ // object's first non-static named data member is zero-initialized
+ RecordDecl::field_iterator I = RD->field_begin();
+ if (I == RD->field_end()) {
+ Result = APValue((const FieldDecl*)nullptr);
+ return true;
+ }
+
+ LValue Subobject = This;
+ if (!HandleLValueMember(Info, E, Subobject, *I))
+ return false;
+ Result = APValue(*I);
+ ImplicitValueInitExpr VIE(I->getType());
+ return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
+ }
+
+ if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
+ Info.Diag(E, diag::note_constexpr_virtual_base) << RD;
+ return false;
+ }
+
+ return HandleClassZeroInitialization(Info, E, RD, This, Result);
+}
+
+bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
+ switch (E->getCastKind()) {
+ default:
+ return ExprEvaluatorBaseTy::VisitCastExpr(E);
+
+ case CK_ConstructorConversion:
+ return Visit(E->getSubExpr());
+
+ case CK_DerivedToBase:
+ case CK_UncheckedDerivedToBase: {
+ APValue DerivedObject;
+ if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
+ return false;
+ if (!DerivedObject.isStruct())
+ return Error(E->getSubExpr());
+
+ // Derived-to-base rvalue conversion: just slice off the derived part.
+ APValue *Value = &DerivedObject;
+ const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
+ for (CastExpr::path_const_iterator PathI = E->path_begin(),
+ PathE = E->path_end(); PathI != PathE; ++PathI) {
+ assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
+ const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
+ Value = &Value->getStructBase(getBaseIndex(RD, Base));
+ RD = Base;
+ }
+ Result = *Value;
+ return true;
+ }
+ }
+}
+
+bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
+ const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
+ if (RD->isInvalidDecl()) return false;
+ const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
+
+ if (RD->isUnion()) {
+ const FieldDecl *Field = E->getInitializedFieldInUnion();
+ Result = APValue(Field);
+ if (!Field)
+ return true;
+
+ // If the initializer list for a union does not contain any elements, the
+ // first element of the union is value-initialized.
+ // FIXME: The element should be initialized from an initializer list.
+ // Is this difference ever observable for initializer lists which
+ // we don't build?
+ ImplicitValueInitExpr VIE(Field->getType());
+ const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
+
+ LValue Subobject = This;
+ if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
+ return false;
+
+ // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
+ ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
+ isa<CXXDefaultInitExpr>(InitExpr));
+
+ return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr);
+ }
+
+ assert((!isa<CXXRecordDecl>(RD) || !cast<CXXRecordDecl>(RD)->getNumBases()) &&
+ "initializer list for class with base classes");
+ Result = APValue(APValue::UninitStruct(), 0,
+ std::distance(RD->field_begin(), RD->field_end()));
+ unsigned ElementNo = 0;
+ bool Success = true;
+ for (const auto *Field : RD->fields()) {
+ // Anonymous bit-fields are not considered members of the class for
+ // purposes of aggregate initialization.
+ if (Field->isUnnamedBitfield())
+ continue;
+
+ LValue Subobject = This;
+
+ bool HaveInit = ElementNo < E->getNumInits();
+
+ // FIXME: Diagnostics here should point to the end of the initializer
+ // list, not the start.
+ if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
+ Subobject, Field, &Layout))
+ return false;
+
+ // Perform an implicit value-initialization for members beyond the end of
+ // the initializer list.
+ ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
+ const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE;
+
+ // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
+ ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
+ isa<CXXDefaultInitExpr>(Init));
+
+ APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
+ if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
+ (Field->isBitField() && !truncateBitfieldValue(Info, Init,
+ FieldVal, Field))) {
+ if (!Info.keepEvaluatingAfterFailure())
+ return false;
+ Success = false;
+ }
+ }
+
+ return Success;
+}
+
+bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
+ const CXXConstructorDecl *FD = E->getConstructor();
+ if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
+
+ bool ZeroInit = E->requiresZeroInitialization();
+ if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
+ // If we've already performed zero-initialization, we're already done.
+ if (!Result.isUninit())
+ return true;
+
+ // We can get here in two different ways:
+ // 1) We're performing value-initialization, and should zero-initialize
+ // the object, or
+ // 2) We're performing default-initialization of an object with a trivial
+ // constexpr default constructor, in which case we should start the
+ // lifetimes of all the base subobjects (there can be no data member
+ // subobjects in this case) per [basic.life]p1.
+ // Either way, ZeroInitialization is appropriate.
+ return ZeroInitialization(E);
+ }
+
+ const FunctionDecl *Definition = nullptr;
+ FD->getBody(Definition);
+
+ if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
+ return false;
+
+ // Avoid materializing a temporary for an elidable copy/move constructor.
+ if (E->isElidable() && !ZeroInit)
+ if (const MaterializeTemporaryExpr *ME
+ = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
+ return Visit(ME->GetTemporaryExpr());
+
+ if (ZeroInit && !ZeroInitialization(E))
+ return false;
+
+ auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
+ return HandleConstructorCall(E->getExprLoc(), This, Args,
+ cast<CXXConstructorDecl>(Definition), Info,
+ Result);
+}
+
+bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
+ const CXXStdInitializerListExpr *E) {
+ const ConstantArrayType *ArrayType =
+ Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
+
+ LValue Array;
+ if (!EvaluateLValue(E->getSubExpr(), Array, Info))
+ return false;
+
+ // Get a pointer to the first element of the array.
+ Array.addArray(Info, E, ArrayType);
+
+ // FIXME: Perform the checks on the field types in SemaInit.
+ RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
+ RecordDecl::field_iterator Field = Record->field_begin();
+ if (Field == Record->field_end())
+ return Error(E);
+
+ // Start pointer.
+ if (!Field->getType()->isPointerType() ||
+ !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
+ ArrayType->getElementType()))
+ return Error(E);
+
+ // FIXME: What if the initializer_list type has base classes, etc?
+ Result = APValue(APValue::UninitStruct(), 0, 2);
+ Array.moveInto(Result.getStructField(0));
+
+ if (++Field == Record->field_end())
+ return Error(E);
+
+ if (Field->getType()->isPointerType() &&
+ Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
+ ArrayType->getElementType())) {
+ // End pointer.
+ if (!HandleLValueArrayAdjustment(Info, E, Array,
+ ArrayType->getElementType(),
+ ArrayType->getSize().getZExtValue()))
+ return false;
+ Array.moveInto(Result.getStructField(1));
+ } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
+ // Length.
+ Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
+ else
+ return Error(E);
+
+ if (++Field != Record->field_end())
+ return Error(E);
+
+ return true;
+}
+
+static bool EvaluateRecord(const Expr *E, const LValue &This,
+ APValue &Result, EvalInfo &Info) {
+ assert(E->isRValue() && E->getType()->isRecordType() &&
+ "can't evaluate expression as a record rvalue");
+ return RecordExprEvaluator(Info, This, Result).Visit(E);
+}
+
+//===----------------------------------------------------------------------===//
+// Temporary Evaluation
+//
+// Temporaries are represented in the AST as rvalues, but generally behave like
+// lvalues. The full-object of which the temporary is a subobject is implicitly
+// materialized so that a reference can bind to it.
+//===----------------------------------------------------------------------===//
+namespace {
+class TemporaryExprEvaluator
+ : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
+public:
+ TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
+ LValueExprEvaluatorBaseTy(Info, Result) {}
+
+ /// Visit an expression which constructs the value of this temporary.
+ bool VisitConstructExpr(const Expr *E) {
+ Result.set(E, Info.CurrentCall->Index);
+ return EvaluateInPlace(Info.CurrentCall->createTemporary(E, false),
+ Info, Result, E);
+ }
+
+ bool VisitCastExpr(const CastExpr *E) {
+ switch (E->getCastKind()) {
+ default:
+ return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
+
+ case CK_ConstructorConversion:
+ return VisitConstructExpr(E->getSubExpr());
+ }
+ }
+ bool VisitInitListExpr(const InitListExpr *E) {
+ return VisitConstructExpr(E);
+ }
+ bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
+ return VisitConstructExpr(E);
+ }
+ bool VisitCallExpr(const CallExpr *E) {
+ return VisitConstructExpr(E);
+ }
+ bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) {
+ return VisitConstructExpr(E);
+ }
+};
+} // end anonymous namespace
+
+/// Evaluate an expression of record type as a temporary.
+static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
+ assert(E->isRValue() && E->getType()->isRecordType());
+ return TemporaryExprEvaluator(Info, Result).Visit(E);
+}
+
+//===----------------------------------------------------------------------===//
+// Vector Evaluation
+//===----------------------------------------------------------------------===//
+
+namespace {
+ class VectorExprEvaluator
+ : public ExprEvaluatorBase<VectorExprEvaluator> {
+ APValue &Result;
+ public:
+
+ VectorExprEvaluator(EvalInfo &info, APValue &Result)
+ : ExprEvaluatorBaseTy(info), Result(Result) {}
+
+ bool Success(const ArrayRef<APValue> &V, const Expr *E) {
+ assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
+ // FIXME: remove this APValue copy.
+ Result = APValue(V.data(), V.size());
+ return true;
+ }
+ bool Success(const APValue &V, const Expr *E) {
+ assert(V.isVector());
+ Result = V;
+ return true;
+ }
+ bool ZeroInitialization(const Expr *E);
+
+ bool VisitUnaryReal(const UnaryOperator *E)
+ { return Visit(E->getSubExpr()); }
+ bool VisitCastExpr(const CastExpr* E);
+ bool VisitInitListExpr(const InitListExpr *E);
+ bool VisitUnaryImag(const UnaryOperator *E);
+ // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
+ // binary comparisons, binary and/or/xor,
+ // shufflevector, ExtVectorElementExpr
+ };
+} // end anonymous namespace
+
+static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
+ assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
+ return VectorExprEvaluator(Info, Result).Visit(E);
+}
+
+bool VectorExprEvaluator::VisitCastExpr(const CastExpr* E) {
+ const VectorType *VTy = E->getType()->castAs<VectorType>();
+ unsigned NElts = VTy->getNumElements();
+
+ const Expr *SE = E->getSubExpr();
+ QualType SETy = SE->getType();
+
+ switch (E->getCastKind()) {
+ case CK_VectorSplat: {
+ APValue Val = APValue();
+ if (SETy->isIntegerType()) {
+ APSInt IntResult;
+ if (!EvaluateInteger(SE, IntResult, Info))
+ return false;
+ Val = APValue(IntResult);
+ } else if (SETy->isRealFloatingType()) {
+ APFloat F(0.0);
+ if (!EvaluateFloat(SE, F, Info))
+ return false;
+ Val = APValue(F);
+ } else {
+ return Error(E);
+ }
+
+ // Splat and create vector APValue.
+ SmallVector<APValue, 4> Elts(NElts, Val);
+ return Success(Elts, E);
+ }
+ case CK_BitCast: {
+ // Evaluate the operand into an APInt we can extract from.
+ llvm::APInt SValInt;
+ if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
+ return false;
+ // Extract the elements
+ QualType EltTy = VTy->getElementType();
+ unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
+ bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
+ SmallVector<APValue, 4> Elts;
+ if (EltTy->isRealFloatingType()) {
+ const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
+ unsigned FloatEltSize = EltSize;
+ if (&Sem == &APFloat::x87DoubleExtended)
+ FloatEltSize = 80;
+ for (unsigned i = 0; i < NElts; i++) {
+ llvm::APInt Elt;
+ if (BigEndian)
+ Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
+ else
+ Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
+ Elts.push_back(APValue(APFloat(Sem, Elt)));
+ }
+ } else if (EltTy->isIntegerType()) {
+ for (unsigned i = 0; i < NElts; i++) {
+ llvm::APInt Elt;
+ if (BigEndian)
+ Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
+ else
+ Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
+ Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType())));
+ }
+ } else {
+ return Error(E);
+ }
+ return Success(Elts, E);
+ }
+ default:
+ return ExprEvaluatorBaseTy::VisitCastExpr(E);
+ }
+}
+
+bool
+VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
+ const VectorType *VT = E->getType()->castAs<VectorType>();
+ unsigned NumInits = E->getNumInits();
+ unsigned NumElements = VT->getNumElements();
+
+ QualType EltTy = VT->getElementType();
+ SmallVector<APValue, 4> Elements;
+
+ // The number of initializers can be less than the number of
+ // vector elements. For OpenCL, this can be due to nested vector
+ // initialization. For GCC compatibility, missing trailing elements
+ // should be initialized with zeroes.
+ unsigned CountInits = 0, CountElts = 0;
+ while (CountElts < NumElements) {
+ // Handle nested vector initialization.
+ if (CountInits < NumInits
+ && E->getInit(CountInits)->getType()->isVectorType()) {
+ APValue v;
+ if (!EvaluateVector(E->getInit(CountInits), v, Info))
+ return Error(E);
+ unsigned vlen = v.getVectorLength();
+ for (unsigned j = 0; j < vlen; j++)
+ Elements.push_back(v.getVectorElt(j));
+ CountElts += vlen;
+ } else if (EltTy->isIntegerType()) {
+ llvm::APSInt sInt(32);
+ if (CountInits < NumInits) {
+ if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
+ return false;
+ } else // trailing integer zero.
+ sInt = Info.Ctx.MakeIntValue(0, EltTy);
+ Elements.push_back(APValue(sInt));
+ CountElts++;
+ } else {
+ llvm::APFloat f(0.0);
+ if (CountInits < NumInits) {
+ if (!EvaluateFloat(E->getInit(CountInits), f, Info))
+ return false;
+ } else // trailing float zero.
+ f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
+ Elements.push_back(APValue(f));
+ CountElts++;
+ }
+ CountInits++;
+ }
+ return Success(Elements, E);
+}
+
+bool
+VectorExprEvaluator::ZeroInitialization(const Expr *E) {
+ const VectorType *VT = E->getType()->getAs<VectorType>();
+ QualType EltTy = VT->getElementType();
+ APValue ZeroElement;
+ if (EltTy->isIntegerType())
+ ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
+ else
+ ZeroElement =
+ APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
+
+ SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
+ return Success(Elements, E);
+}
+
+bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
+ VisitIgnoredValue(E->getSubExpr());
+ return ZeroInitialization(E);
+}
+
+//===----------------------------------------------------------------------===//
+// Array Evaluation
+//===----------------------------------------------------------------------===//
+
+namespace {
+ class ArrayExprEvaluator
+ : public ExprEvaluatorBase<ArrayExprEvaluator> {
+ const LValue &This;
+ APValue &Result;
+ public:
+
+ ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
+ : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
+
+ bool Success(const APValue &V, const Expr *E) {
+ assert((V.isArray() || V.isLValue()) &&
+ "expected array or string literal");
+ Result = V;
+ return true;
+ }
+
+ bool ZeroInitialization(const Expr *E) {
+ const ConstantArrayType *CAT =
+ Info.Ctx.getAsConstantArrayType(E->getType());
+ if (!CAT)
+ return Error(E);
+
+ Result = APValue(APValue::UninitArray(), 0,
+ CAT->getSize().getZExtValue());
+ if (!Result.hasArrayFiller()) return true;
+
+ // Zero-initialize all elements.
+ LValue Subobject = This;
+ Subobject.addArray(Info, E, CAT);
+ ImplicitValueInitExpr VIE(CAT->getElementType());
+ return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
+ }
+
+ bool VisitInitListExpr(const InitListExpr *E);
+ bool VisitCXXConstructExpr(const CXXConstructExpr *E);
+ bool VisitCXXConstructExpr(const CXXConstructExpr *E,
+ const LValue &Subobject,
+ APValue *Value, QualType Type);
+ };
+} // end anonymous namespace
+
+static bool EvaluateArray(const Expr *E, const LValue &This,
+ APValue &Result, EvalInfo &Info) {
+ assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue");
+ return ArrayExprEvaluator(Info, This, Result).Visit(E);
+}
+
+bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
+ const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(E->getType());
+ if (!CAT)
+ return Error(E);
+
+ // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
+ // an appropriately-typed string literal enclosed in braces.
+ if (E->isStringLiteralInit()) {
+ LValue LV;
+ if (!EvaluateLValue(E->getInit(0), LV, Info))
+ return false;
+ APValue Val;
+ LV.moveInto(Val);
+ return Success(Val, E);
+ }
+
+ bool Success = true;
+
+ assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
+ "zero-initialized array shouldn't have any initialized elts");
+ APValue Filler;
+ if (Result.isArray() && Result.hasArrayFiller())
+ Filler = Result.getArrayFiller();
+
+ unsigned NumEltsToInit = E->getNumInits();
+ unsigned NumElts = CAT->getSize().getZExtValue();
+ const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : nullptr;
+
+ // If the initializer might depend on the array index, run it for each
+ // array element. For now, just whitelist non-class value-initialization.
+ if (NumEltsToInit != NumElts && !isa<ImplicitValueInitExpr>(FillerExpr))
+ NumEltsToInit = NumElts;
+
+ Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
+
+ // If the array was previously zero-initialized, preserve the
+ // zero-initialized values.
+ if (!Filler.isUninit()) {
+ for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
+ Result.getArrayInitializedElt(I) = Filler;
+ if (Result.hasArrayFiller())
+ Result.getArrayFiller() = Filler;
+ }
+
+ LValue Subobject = This;
+ Subobject.addArray(Info, E, CAT);
+ for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
+ const Expr *Init =
+ Index < E->getNumInits() ? E->getInit(Index) : FillerExpr;
+ if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
+ Info, Subobject, Init) ||
+ !HandleLValueArrayAdjustment(Info, Init, Subobject,
+ CAT->getElementType(), 1)) {
+ if (!Info.keepEvaluatingAfterFailure())
+ return false;
+ Success = false;
+ }
+ }
+
+ if (!Result.hasArrayFiller())
+ return Success;
+
+ // If we get here, we have a trivial filler, which we can just evaluate
+ // once and splat over the rest of the array elements.
+ assert(FillerExpr && "no array filler for incomplete init list");
+ return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
+ FillerExpr) && Success;
+}
+
+bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
+ return VisitCXXConstructExpr(E, This, &Result, E->getType());
+}
+
+bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
+ const LValue &Subobject,
+ APValue *Value,
+ QualType Type) {
+ bool HadZeroInit = !Value->isUninit();
+
+ if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
+ unsigned N = CAT->getSize().getZExtValue();
+
+ // Preserve the array filler if we had prior zero-initialization.
+ APValue Filler =
+ HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
+ : APValue();
+
+ *Value = APValue(APValue::UninitArray(), N, N);
+
+ if (HadZeroInit)
+ for (unsigned I = 0; I != N; ++I)
+ Value->getArrayInitializedElt(I) = Filler;
+
+ // Initialize the elements.
+ LValue ArrayElt = Subobject;
+ ArrayElt.addArray(Info, E, CAT);
+ for (unsigned I = 0; I != N; ++I)
+ if (!VisitCXXConstructExpr(E, ArrayElt, &Value->getArrayInitializedElt(I),
+ CAT->getElementType()) ||
+ !HandleLValueArrayAdjustment(Info, E, ArrayElt,
+ CAT->getElementType(), 1))
+ return false;
+
+ return true;
+ }
+
+ if (!Type->isRecordType())
+ return Error(E);
+
+ const CXXConstructorDecl *FD = E->getConstructor();
+
+ bool ZeroInit = E->requiresZeroInitialization();
+ if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
+ if (HadZeroInit)
+ return true;
+
+ // See RecordExprEvaluator::VisitCXXConstructExpr for explanation.
+ ImplicitValueInitExpr VIE(Type);
+ return EvaluateInPlace(*Value, Info, Subobject, &VIE);
+ }
+
+ const FunctionDecl *Definition = nullptr;
+ FD->getBody(Definition);
+
+ if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
+ return false;
+
+ if (ZeroInit && !HadZeroInit) {
+ ImplicitValueInitExpr VIE(Type);
+ if (!EvaluateInPlace(*Value, Info, Subobject, &VIE))
+ return false;
+ }
+
+ auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
+ return HandleConstructorCall(E->getExprLoc(), Subobject, Args,
+ cast<CXXConstructorDecl>(Definition),
+ Info, *Value);
+}
+
+//===----------------------------------------------------------------------===//
+// Integer Evaluation
+//
+// As a GNU extension, we support casting pointers to sufficiently-wide integer
+// types and back in constant folding. Integer values are thus represented
+// either as an integer-valued APValue, or as an lvalue-valued APValue.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class IntExprEvaluator
+ : public ExprEvaluatorBase<IntExprEvaluator> {
+ APValue &Result;
+public:
+ IntExprEvaluator(EvalInfo &info, APValue &result)
+ : ExprEvaluatorBaseTy(info), Result(result) {}
+
+ bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
+ assert(E->getType()->isIntegralOrEnumerationType() &&
+ "Invalid evaluation result.");
+ assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
+ "Invalid evaluation result.");
+ assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
+ "Invalid evaluation result.");
+ Result = APValue(SI);
+ return true;
+ }
+ bool Success(const llvm::APSInt &SI, const Expr *E) {
+ return Success(SI, E, Result);
+ }
+
+ bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
+ assert(E->getType()->isIntegralOrEnumerationType() &&
+ "Invalid evaluation result.");
+ assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
+ "Invalid evaluation result.");
+ Result = APValue(APSInt(I));
+ Result.getInt().setIsUnsigned(
+ E->getType()->isUnsignedIntegerOrEnumerationType());
+ return true;
+ }
+ bool Success(const llvm::APInt &I, const Expr *E) {
+ return Success(I, E, Result);
+ }
+
+ bool Success(uint64_t Value, const Expr *E, APValue &Result) {
+ assert(E->getType()->isIntegralOrEnumerationType() &&
+ "Invalid evaluation result.");
+ Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
+ return true;
+ }
+ bool Success(uint64_t Value, const Expr *E) {
+ return Success(Value, E, Result);
+ }
+
+ bool Success(CharUnits Size, const Expr *E) {
+ return Success(Size.getQuantity(), E);
+ }
+
+ bool Success(const APValue &V, const Expr *E) {
+ if (V.isLValue() || V.isAddrLabelDiff()) {
+ Result = V;
+ return true;
+ }
+ return Success(V.getInt(), E);
+ }
+
+ bool ZeroInitialization(const Expr *E) { return Success(0, E); }
+
+ //===--------------------------------------------------------------------===//
+ // Visitor Methods
+ //===--------------------------------------------------------------------===//
+
+ bool VisitIntegerLiteral(const IntegerLiteral *E) {
+ return Success(E->getValue(), E);
+ }
+ bool VisitCharacterLiteral(const CharacterLiteral *E) {
+ return Success(E->getValue(), E);
+ }
+
+ bool CheckReferencedDecl(const Expr *E, const Decl *D);
+ bool VisitDeclRefExpr(const DeclRefExpr *E) {
+ if (CheckReferencedDecl(E, E->getDecl()))
+ return true;
+
+ return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
+ }
+ bool VisitMemberExpr(const MemberExpr *E) {
+ if (CheckReferencedDecl(E, E->getMemberDecl())) {
+ VisitIgnoredValue(E->getBase());
+ return true;
+ }
+
+ return ExprEvaluatorBaseTy::VisitMemberExpr(E);
+ }
+
+ bool VisitCallExpr(const CallExpr *E);
+ bool VisitBinaryOperator(const BinaryOperator *E);
+ bool VisitOffsetOfExpr(const OffsetOfExpr *E);
+ bool VisitUnaryOperator(const UnaryOperator *E);
+
+ bool VisitCastExpr(const CastExpr* E);
+ bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
+
+ bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
+ return Success(E->getValue(), E);
+ }
+
+ bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
+ return Success(E->getValue(), E);
+ }
+
+ // Note, GNU defines __null as an integer, not a pointer.
+ bool VisitGNUNullExpr(const GNUNullExpr *E) {
+ return ZeroInitialization(E);
+ }
+
+ bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
+ return Success(E->getValue(), E);
+ }
+
+ bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
+ return Success(E->getValue(), E);
+ }
+
+ bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
+ return Success(E->getValue(), E);
+ }
+
+ bool VisitUnaryReal(const UnaryOperator *E);
+ bool VisitUnaryImag(const UnaryOperator *E);
+
+ bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
+ bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
+
+private:
+ static QualType GetObjectType(APValue::LValueBase B);
+ bool TryEvaluateBuiltinObjectSize(const CallExpr *E);
+ // FIXME: Missing: array subscript of vector, member of vector
+};
+} // end anonymous namespace
+
+/// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
+/// produce either the integer value or a pointer.
+///
+/// GCC has a heinous extension which folds casts between pointer types and
+/// pointer-sized integral types. We support this by allowing the evaluation of
+/// an integer rvalue to produce a pointer (represented as an lvalue) instead.
+/// Some simple arithmetic on such values is supported (they are treated much
+/// like char*).
+static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
+ EvalInfo &Info) {
+ assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
+ return IntExprEvaluator(Info, Result).Visit(E);
+}
+
+static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
+ APValue Val;
+ if (!EvaluateIntegerOrLValue(E, Val, Info))
+ return false;
+ if (!Val.isInt()) {
+ // FIXME: It would be better to produce the diagnostic for casting
+ // a pointer to an integer.
+ Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
+ return false;
+ }
+ Result = Val.getInt();
+ return true;
+}
+
+/// Check whether the given declaration can be directly converted to an integral
+/// rvalue. If not, no diagnostic is produced; there are other things we can
+/// try.
+bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
+ // Enums are integer constant exprs.
+ if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
+ // Check for signedness/width mismatches between E type and ECD value.
+ bool SameSign = (ECD->getInitVal().isSigned()
+ == E->getType()->isSignedIntegerOrEnumerationType());
+ bool SameWidth = (ECD->getInitVal().getBitWidth()
+ == Info.Ctx.getIntWidth(E->getType()));
+ if (SameSign && SameWidth)
+ return Success(ECD->getInitVal(), E);
+ else {
+ // Get rid of mismatch (otherwise Success assertions will fail)
+ // by computing a new value matching the type of E.
+ llvm::APSInt Val = ECD->getInitVal();
+ if (!SameSign)
+ Val.setIsSigned(!ECD->getInitVal().isSigned());
+ if (!SameWidth)
+ Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
+ return Success(Val, E);
+ }
+ }
+ return false;
+}
+
+/// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
+/// as GCC.
+static int EvaluateBuiltinClassifyType(const CallExpr *E) {
+ // The following enum mimics the values returned by GCC.
+ // FIXME: Does GCC differ between lvalue and rvalue references here?
+ enum gcc_type_class {
+ no_type_class = -1,
+ void_type_class, integer_type_class, char_type_class,
+ enumeral_type_class, boolean_type_class,
+ pointer_type_class, reference_type_class, offset_type_class,
+ real_type_class, complex_type_class,
+ function_type_class, method_type_class,
+ record_type_class, union_type_class,
+ array_type_class, string_type_class,
+ lang_type_class
+ };
+
+ // If no argument was supplied, default to "no_type_class". This isn't
+ // ideal, however it is what gcc does.
+ if (E->getNumArgs() == 0)
+ return no_type_class;
+
+ QualType ArgTy = E->getArg(0)->getType();
+ if (ArgTy->isVoidType())
+ return void_type_class;
+ else if (ArgTy->isEnumeralType())
+ return enumeral_type_class;
+ else if (ArgTy->isBooleanType())
+ return boolean_type_class;
+ else if (ArgTy->isCharType())
+ return string_type_class; // gcc doesn't appear to use char_type_class
+ else if (ArgTy->isIntegerType())
+ return integer_type_class;
+ else if (ArgTy->isPointerType())
+ return pointer_type_class;
+ else if (ArgTy->isReferenceType())
+ return reference_type_class;
+ else if (ArgTy->isRealType())
+ return real_type_class;
+ else if (ArgTy->isComplexType())
+ return complex_type_class;
+ else if (ArgTy->isFunctionType())
+ return function_type_class;
+ else if (ArgTy->isStructureOrClassType())
+ return record_type_class;
+ else if (ArgTy->isUnionType())
+ return union_type_class;
+ else if (ArgTy->isArrayType())
+ return array_type_class;
+ else if (ArgTy->isUnionType())
+ return union_type_class;
+ else // FIXME: offset_type_class, method_type_class, & lang_type_class?
+ llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
+}
+
+/// EvaluateBuiltinConstantPForLValue - Determine the result of
+/// __builtin_constant_p when applied to the given lvalue.
+///
+/// An lvalue is only "constant" if it is a pointer or reference to the first
+/// character of a string literal.
+template<typename LValue>
+static bool EvaluateBuiltinConstantPForLValue(const LValue &LV) {
+ const Expr *E = LV.getLValueBase().template dyn_cast<const Expr*>();
+ return E && isa<StringLiteral>(E) && LV.getLValueOffset().isZero();
+}
+
+/// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
+/// GCC as we can manage.
+static bool EvaluateBuiltinConstantP(ASTContext &Ctx, const Expr *Arg) {
+ QualType ArgType = Arg->getType();
+
+ // __builtin_constant_p always has one operand. The rules which gcc follows
+ // are not precisely documented, but are as follows:
+ //
+ // - If the operand is of integral, floating, complex or enumeration type,
+ // and can be folded to a known value of that type, it returns 1.
+ // - If the operand and can be folded to a pointer to the first character
+ // of a string literal (or such a pointer cast to an integral type), it
+ // returns 1.
+ //
+ // Otherwise, it returns 0.
+ //
+ // FIXME: GCC also intends to return 1 for literals of aggregate types, but
+ // its support for this does not currently work.
+ if (ArgType->isIntegralOrEnumerationType()) {
+ Expr::EvalResult Result;
+ if (!Arg->EvaluateAsRValue(Result, Ctx) || Result.HasSideEffects)
+ return false;
+
+ APValue &V = Result.Val;
+ if (V.getKind() == APValue::Int)
+ return true;
+
+ return EvaluateBuiltinConstantPForLValue(V);
+ } else if (ArgType->isFloatingType() || ArgType->isAnyComplexType()) {
+ return Arg->isEvaluatable(Ctx);
+ } else if (ArgType->isPointerType() || Arg->isGLValue()) {
+ LValue LV;
+ Expr::EvalStatus Status;
+ EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
+ if ((Arg->isGLValue() ? EvaluateLValue(Arg, LV, Info)
+ : EvaluatePointer(Arg, LV, Info)) &&
+ !Status.HasSideEffects)
+ return EvaluateBuiltinConstantPForLValue(LV);
+ }
+
+ // Anything else isn't considered to be sufficiently constant.
+ return false;
+}
+
+/// Retrieves the "underlying object type" of the given expression,
+/// as used by __builtin_object_size.
+QualType IntExprEvaluator::GetObjectType(APValue::LValueBase B) {
+ if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D))
+ return VD->getType();
+ } else if (const Expr *E = B.get<const Expr*>()) {
+ if (isa<CompoundLiteralExpr>(E))
+ return E->getType();
+ }
+
+ return QualType();
+}
+
+bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E) {
+ LValue Base;
+
+ {
+ // The operand of __builtin_object_size is never evaluated for side-effects.
+ // If there are any, but we can determine the pointed-to object anyway, then
+ // ignore the side-effects.
+ SpeculativeEvaluationRAII SpeculativeEval(Info);
+ if (!EvaluatePointer(E->getArg(0), Base, Info))
+ return false;
+ }
+
+ if (!Base.getLValueBase()) {
+ // It is not possible to determine which objects ptr points to at compile time,
+ // __builtin_object_size should return (size_t) -1 for type 0 or 1
+ // and (size_t) 0 for type 2 or 3.
+ llvm::APSInt TypeIntVaue;
+ const Expr *ExprType = E->getArg(1);
+ if (!ExprType->EvaluateAsInt(TypeIntVaue, Info.Ctx))
+ return false;
+ if (TypeIntVaue == 0 || TypeIntVaue == 1)
+ return Success(-1, E);
+ if (TypeIntVaue == 2 || TypeIntVaue == 3)
+ return Success(0, E);
+ return Error(E);
+ }
+
+ QualType T = GetObjectType(Base.getLValueBase());
+ if (T.isNull() ||
+ T->isIncompleteType() ||
+ T->isFunctionType() ||
+ T->isVariablyModifiedType() ||
+ T->isDependentType())
+ return Error(E);
+
+ CharUnits Size = Info.Ctx.getTypeSizeInChars(T);
+ CharUnits Offset = Base.getLValueOffset();
+
+ if (!Offset.isNegative() && Offset <= Size)
+ Size -= Offset;
+ else
+ Size = CharUnits::Zero();
+ return Success(Size, E);
+}
+
+bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
+ switch (unsigned BuiltinOp = E->getBuiltinCallee()) {
+ default:
+ return ExprEvaluatorBaseTy::VisitCallExpr(E);
+
+ case Builtin::BI__builtin_object_size: {
+ if (TryEvaluateBuiltinObjectSize(E))
+ return true;
+
+ // If evaluating the argument has side-effects, we can't determine the size
+ // of the object, and so we lower it to unknown now. CodeGen relies on us to
+ // handle all cases where the expression has side-effects.
+ if (E->getArg(0)->HasSideEffects(Info.Ctx)) {
+ if (E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue() <= 1)
+ return Success(-1ULL, E);
+ return Success(0, E);
+ }
+
+ // Expression had no side effects, but we couldn't statically determine the
+ // size of the referenced object.
+ switch (Info.EvalMode) {
+ case EvalInfo::EM_ConstantExpression:
+ case EvalInfo::EM_PotentialConstantExpression:
+ case EvalInfo::EM_ConstantFold:
+ case EvalInfo::EM_EvaluateForOverflow:
+ case EvalInfo::EM_IgnoreSideEffects:
+ return Error(E);
+ case EvalInfo::EM_ConstantExpressionUnevaluated:
+ case EvalInfo::EM_PotentialConstantExpressionUnevaluated:
+ return Success(-1ULL, E);
+ }
+ }
+
+ case Builtin::BI__builtin_bswap16:
+ case Builtin::BI__builtin_bswap32:
+ case Builtin::BI__builtin_bswap64: {
+ APSInt Val;
+ if (!EvaluateInteger(E->getArg(0), Val, Info))
+ return false;
+
+ return Success(Val.byteSwap(), E);
+ }
+
+ case Builtin::BI__builtin_classify_type:
+ return Success(EvaluateBuiltinClassifyType(E), E);
+
+ // FIXME: BI__builtin_clrsb
+ // FIXME: BI__builtin_clrsbl
+ // FIXME: BI__builtin_clrsbll
+
+ case Builtin::BI__builtin_clz:
+ case Builtin::BI__builtin_clzl:
+ case Builtin::BI__builtin_clzll:
+ case Builtin::BI__builtin_clzs: {
+ APSInt Val;
+ if (!EvaluateInteger(E->getArg(0), Val, Info))
+ return false;
+ if (!Val)
+ return Error(E);
+
+ return Success(Val.countLeadingZeros(), E);
+ }
+
+ case Builtin::BI__builtin_constant_p:
+ return Success(EvaluateBuiltinConstantP(Info.Ctx, E->getArg(0)), E);
+
+ case Builtin::BI__builtin_ctz:
+ case Builtin::BI__builtin_ctzl:
+ case Builtin::BI__builtin_ctzll:
+ case Builtin::BI__builtin_ctzs: {
+ APSInt Val;
+ if (!EvaluateInteger(E->getArg(0), Val, Info))
+ return false;
+ if (!Val)
+ return Error(E);
+
+ return Success(Val.countTrailingZeros(), E);
+ }
+
+ case Builtin::BI__builtin_eh_return_data_regno: {
+ int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
+ Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
+ return Success(Operand, E);
+ }
+
+ case Builtin::BI__builtin_expect:
+ return Visit(E->getArg(0));
+
+ case Builtin::BI__builtin_ffs:
+ case Builtin::BI__builtin_ffsl:
+ case Builtin::BI__builtin_ffsll: {
+ APSInt Val;
+ if (!EvaluateInteger(E->getArg(0), Val, Info))
+ return false;
+
+ unsigned N = Val.countTrailingZeros();
+ return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
+ }
+
+ case Builtin::BI__builtin_fpclassify: {
+ APFloat Val(0.0);
+ if (!EvaluateFloat(E->getArg(5), Val, Info))
+ return false;
+ unsigned Arg;
+ switch (Val.getCategory()) {
+ case APFloat::fcNaN: Arg = 0; break;
+ case APFloat::fcInfinity: Arg = 1; break;
+ case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
+ case APFloat::fcZero: Arg = 4; break;
+ }
+ return Visit(E->getArg(Arg));
+ }
+
+ case Builtin::BI__builtin_isinf_sign: {
+ APFloat Val(0.0);
+ return EvaluateFloat(E->getArg(0), Val, Info) &&
+ Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
+ }
+
+ case Builtin::BI__builtin_isinf: {
+ APFloat Val(0.0);
+ return EvaluateFloat(E->getArg(0), Val, Info) &&
+ Success(Val.isInfinity() ? 1 : 0, E);
+ }
+
+ case Builtin::BI__builtin_isfinite: {
+ APFloat Val(0.0);
+ return EvaluateFloat(E->getArg(0), Val, Info) &&
+ Success(Val.isFinite() ? 1 : 0, E);
+ }
+
+ case Builtin::BI__builtin_isnan: {
+ APFloat Val(0.0);
+ return EvaluateFloat(E->getArg(0), Val, Info) &&
+ Success(Val.isNaN() ? 1 : 0, E);
+ }
+
+ case Builtin::BI__builtin_isnormal: {
+ APFloat Val(0.0);
+ return EvaluateFloat(E->getArg(0), Val, Info) &&
+ Success(Val.isNormal() ? 1 : 0, E);
+ }
+
+ case Builtin::BI__builtin_parity:
+ case Builtin::BI__builtin_parityl:
+ case Builtin::BI__builtin_parityll: {
+ APSInt Val;
+ if (!EvaluateInteger(E->getArg(0), Val, Info))
+ return false;
+
+ return Success(Val.countPopulation() % 2, E);
+ }
+
+ case Builtin::BI__builtin_popcount:
+ case Builtin::BI__builtin_popcountl:
+ case Builtin::BI__builtin_popcountll: {
+ APSInt Val;
+ if (!EvaluateInteger(E->getArg(0), Val, Info))
+ return false;
+
+ return Success(Val.countPopulation(), E);
+ }
+
+ case Builtin::BIstrlen:
+ // A call to strlen is not a constant expression.
+ if (Info.getLangOpts().CPlusPlus11)
+ Info.CCEDiag(E, diag::note_constexpr_invalid_function)
+ << /*isConstexpr*/0 << /*isConstructor*/0 << "'strlen'";
+ else
+ Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
+ // Fall through.
+ case Builtin::BI__builtin_strlen: {
+ // As an extension, we support __builtin_strlen() as a constant expression,
+ // and support folding strlen() to a constant.
+ LValue String;
+ if (!EvaluatePointer(E->getArg(0), String, Info))
+ return false;
+
+ // Fast path: if it's a string literal, search the string value.
+ if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
+ String.getLValueBase().dyn_cast<const Expr *>())) {
+ // The string literal may have embedded null characters. Find the first
+ // one and truncate there.
+ StringRef Str = S->getBytes();
+ int64_t Off = String.Offset.getQuantity();
+ if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
+ S->getCharByteWidth() == 1) {
+ Str = Str.substr(Off);
+
+ StringRef::size_type Pos = Str.find(0);
+ if (Pos != StringRef::npos)
+ Str = Str.substr(0, Pos);
+
+ return Success(Str.size(), E);
+ }
+
+ // Fall through to slow path to issue appropriate diagnostic.
+ }
+
+ // Slow path: scan the bytes of the string looking for the terminating 0.
+ QualType CharTy = E->getArg(0)->getType()->getPointeeType();
+ for (uint64_t Strlen = 0; /**/; ++Strlen) {
+ APValue Char;
+ if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) ||
+ !Char.isInt())
+ return false;
+ if (!Char.getInt())
+ return Success(Strlen, E);
+ if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1))
+ return false;
+ }
+ }
+
+ case Builtin::BI__atomic_always_lock_free:
+ case Builtin::BI__atomic_is_lock_free:
+ case Builtin::BI__c11_atomic_is_lock_free: {
+ APSInt SizeVal;
+ if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
+ return false;
+
+ // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
+ // of two less than the maximum inline atomic width, we know it is
+ // lock-free. If the size isn't a power of two, or greater than the
+ // maximum alignment where we promote atomics, we know it is not lock-free
+ // (at least not in the sense of atomic_is_lock_free). Otherwise,
+ // the answer can only be determined at runtime; for example, 16-byte
+ // atomics have lock-free implementations on some, but not all,
+ // x86-64 processors.
+
+ // Check power-of-two.
+ CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
+ if (Size.isPowerOfTwo()) {
+ // Check against inlining width.
+ unsigned InlineWidthBits =
+ Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
+ if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
+ if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
+ Size == CharUnits::One() ||
+ E->getArg(1)->isNullPointerConstant(Info.Ctx,
+ Expr::NPC_NeverValueDependent))
+ // OK, we will inline appropriately-aligned operations of this size,
+ // and _Atomic(T) is appropriately-aligned.
+ return Success(1, E);
+
+ QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
+ castAs<PointerType>()->getPointeeType();
+ if (!PointeeType->isIncompleteType() &&
+ Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
+ // OK, we will inline operations on this object.
+ return Success(1, E);
+ }
+ }
+ }
+
+ return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
+ Success(0, E) : Error(E);
+ }
+ }
+}
+
+static bool HasSameBase(const LValue &A, const LValue &B) {
+ if (!A.getLValueBase())
+ return !B.getLValueBase();
+ if (!B.getLValueBase())
+ return false;
+
+ if (A.getLValueBase().getOpaqueValue() !=
+ B.getLValueBase().getOpaqueValue()) {
+ const Decl *ADecl = GetLValueBaseDecl(A);
+ if (!ADecl)
+ return false;
+ const Decl *BDecl = GetLValueBaseDecl(B);
+ if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
+ return false;
+ }
+
+ return IsGlobalLValue(A.getLValueBase()) ||
+ A.getLValueCallIndex() == B.getLValueCallIndex();
+}
+
+/// \brief Determine whether this is a pointer past the end of the complete
+/// object referred to by the lvalue.
+static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx,
+ const LValue &LV) {
+ // A null pointer can be viewed as being "past the end" but we don't
+ // choose to look at it that way here.
+ if (!LV.getLValueBase())
+ return false;
+
+ // If the designator is valid and refers to a subobject, we're not pointing
+ // past the end.
+ if (!LV.getLValueDesignator().Invalid &&
+ !LV.getLValueDesignator().isOnePastTheEnd())
+ return false;
+
+ // We're a past-the-end pointer if we point to the byte after the object,
+ // no matter what our type or path is.
+ auto Size = Ctx.getTypeSizeInChars(getType(LV.getLValueBase()));
+ return LV.getLValueOffset() == Size;
+}
+
+namespace {
+
+/// \brief Data recursive integer evaluator of certain binary operators.
+///
+/// We use a data recursive algorithm for binary operators so that we are able
+/// to handle extreme cases of chained binary operators without causing stack
+/// overflow.
+class DataRecursiveIntBinOpEvaluator {
+ struct EvalResult {
+ APValue Val;
+ bool Failed;
+
+ EvalResult() : Failed(false) { }
+
+ void swap(EvalResult &RHS) {
+ Val.swap(RHS.Val);
+ Failed = RHS.Failed;
+ RHS.Failed = false;
+ }
+ };
+
+ struct Job {
+ const Expr *E;
+ EvalResult LHSResult; // meaningful only for binary operator expression.
+ enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
+
+ Job() : StoredInfo(nullptr) {}
+ void startSpeculativeEval(EvalInfo &Info) {
+ OldEvalStatus = Info.EvalStatus;
+ Info.EvalStatus.Diag = nullptr;
+ StoredInfo = &Info;
+ }
+ ~Job() {
+ if (StoredInfo) {
+ StoredInfo->EvalStatus = OldEvalStatus;
+ }
+ }
+ private:
+ EvalInfo *StoredInfo; // non-null if status changed.
+ Expr::EvalStatus OldEvalStatus;
+ };
+
+ SmallVector<Job, 16> Queue;
+
+ IntExprEvaluator &IntEval;
+ EvalInfo &Info;
+ APValue &FinalResult;
+
+public:
+ DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
+ : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
+
+ /// \brief True if \param E is a binary operator that we are going to handle
+ /// data recursively.
+ /// We handle binary operators that are comma, logical, or that have operands
+ /// with integral or enumeration type.
+ static bool shouldEnqueue(const BinaryOperator *E) {
+ return E->getOpcode() == BO_Comma ||
+ E->isLogicalOp() ||
+ (E->getLHS()->getType()->isIntegralOrEnumerationType() &&
+ E->getRHS()->getType()->isIntegralOrEnumerationType());
+ }
+
+ bool Traverse(const BinaryOperator *E) {
+ enqueue(E);
+ EvalResult PrevResult;
+ while (!Queue.empty())
+ process(PrevResult);
+
+ if (PrevResult.Failed) return false;
+
+ FinalResult.swap(PrevResult.Val);
+ return true;
+ }
+
+private:
+ bool Success(uint64_t Value, const Expr *E, APValue &Result) {
+ return IntEval.Success(Value, E, Result);
+ }
+ bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
+ return IntEval.Success(Value, E, Result);
+ }
+ bool Error(const Expr *E) {
+ return IntEval.Error(E);
+ }
+ bool Error(const Expr *E, diag::kind D) {
+ return IntEval.Error(E, D);
+ }
+
+ OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
+ return Info.CCEDiag(E, D);
+ }
+
+ // \brief Returns true if visiting the RHS is necessary, false otherwise.
+ bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
+ bool &SuppressRHSDiags);
+
+ bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
+ const BinaryOperator *E, APValue &Result);
+
+ void EvaluateExpr(const Expr *E, EvalResult &Result) {
+ Result.Failed = !Evaluate(Result.Val, Info, E);
+ if (Result.Failed)
+ Result.Val = APValue();
+ }
+
+ void process(EvalResult &Result);
+
+ void enqueue(const Expr *E) {
+ E = E->IgnoreParens();
+ Queue.resize(Queue.size()+1);
+ Queue.back().E = E;
+ Queue.back().Kind = Job::AnyExprKind;
+ }
+};
+
+}
+
+bool DataRecursiveIntBinOpEvaluator::
+ VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
+ bool &SuppressRHSDiags) {
+ if (E->getOpcode() == BO_Comma) {
+ // Ignore LHS but note if we could not evaluate it.
+ if (LHSResult.Failed)
+ return Info.noteSideEffect();
+ return true;
+ }
+
+ if (E->isLogicalOp()) {
+ bool LHSAsBool;
+ if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) {
+ // We were able to evaluate the LHS, see if we can get away with not
+ // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
+ if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
+ Success(LHSAsBool, E, LHSResult.Val);
+ return false; // Ignore RHS
+ }
+ } else {
+ LHSResult.Failed = true;
+
+ // Since we weren't able to evaluate the left hand side, it
+ // must have had side effects.
+ if (!Info.noteSideEffect())
+ return false;
+
+ // We can't evaluate the LHS; however, sometimes the result
+ // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
+ // Don't ignore RHS and suppress diagnostics from this arm.
+ SuppressRHSDiags = true;
+ }
+
+ return true;
+ }
+
+ assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
+ E->getRHS()->getType()->isIntegralOrEnumerationType());
+
+ if (LHSResult.Failed && !Info.keepEvaluatingAfterFailure())
+ return false; // Ignore RHS;
+
+ return true;
+}
+
+bool DataRecursiveIntBinOpEvaluator::
+ VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
+ const BinaryOperator *E, APValue &Result) {
+ if (E->getOpcode() == BO_Comma) {
+ if (RHSResult.Failed)
+ return false;
+ Result = RHSResult.Val;
+ return true;
+ }
+
+ if (E->isLogicalOp()) {
+ bool lhsResult, rhsResult;
+ bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
+ bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
+
+ if (LHSIsOK) {
+ if (RHSIsOK) {
+ if (E->getOpcode() == BO_LOr)
+ return Success(lhsResult || rhsResult, E, Result);
+ else
+ return Success(lhsResult && rhsResult, E, Result);
+ }
+ } else {
+ if (RHSIsOK) {
+ // We can't evaluate the LHS; however, sometimes the result
+ // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
+ if (rhsResult == (E->getOpcode() == BO_LOr))
+ return Success(rhsResult, E, Result);
+ }
+ }
+
+ return false;
+ }
+
+ assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
+ E->getRHS()->getType()->isIntegralOrEnumerationType());
+
+ if (LHSResult.Failed || RHSResult.Failed)
+ return false;
+
+ const APValue &LHSVal = LHSResult.Val;
+ const APValue &RHSVal = RHSResult.Val;
+
+ // Handle cases like (unsigned long)&a + 4.
+ if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
+ Result = LHSVal;
+ CharUnits AdditionalOffset =
+ CharUnits::fromQuantity(RHSVal.getInt().getZExtValue());
+ if (E->getOpcode() == BO_Add)
+ Result.getLValueOffset() += AdditionalOffset;
+ else
+ Result.getLValueOffset() -= AdditionalOffset;
+ return true;
+ }
+
+ // Handle cases like 4 + (unsigned long)&a
+ if (E->getOpcode() == BO_Add &&
+ RHSVal.isLValue() && LHSVal.isInt()) {
+ Result = RHSVal;
+ Result.getLValueOffset() +=
+ CharUnits::fromQuantity(LHSVal.getInt().getZExtValue());
+ return true;
+ }
+
+ if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
+ // Handle (intptr_t)&&A - (intptr_t)&&B.
+ if (!LHSVal.getLValueOffset().isZero() ||
+ !RHSVal.getLValueOffset().isZero())
+ return false;
+ const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
+ const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
+ if (!LHSExpr || !RHSExpr)
+ return false;
+ const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
+ const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
+ if (!LHSAddrExpr || !RHSAddrExpr)
+ return false;
+ // Make sure both labels come from the same function.
+ if (LHSAddrExpr->getLabel()->getDeclContext() !=
+ RHSAddrExpr->getLabel()->getDeclContext())
+ return false;
+ Result = APValue(LHSAddrExpr, RHSAddrExpr);
+ return true;
+ }
+
+ // All the remaining cases expect both operands to be an integer
+ if (!LHSVal.isInt() || !RHSVal.isInt())
+ return Error(E);
+
+ // Set up the width and signedness manually, in case it can't be deduced
+ // from the operation we're performing.
+ // FIXME: Don't do this in the cases where we can deduce it.
+ APSInt Value(Info.Ctx.getIntWidth(E->getType()),
+ E->getType()->isUnsignedIntegerOrEnumerationType());
+ if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
+ RHSVal.getInt(), Value))
+ return false;
+ return Success(Value, E, Result);
+}
+
+void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
+ Job &job = Queue.back();
+
+ switch (job.Kind) {
+ case Job::AnyExprKind: {
+ if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
+ if (shouldEnqueue(Bop)) {
+ job.Kind = Job::BinOpKind;
+ enqueue(Bop->getLHS());
+ return;
+ }
+ }
+
+ EvaluateExpr(job.E, Result);
+ Queue.pop_back();
+ return;
+ }
+
+ case Job::BinOpKind: {
+ const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
+ bool SuppressRHSDiags = false;
+ if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
+ Queue.pop_back();
+ return;
+ }
+ if (SuppressRHSDiags)
+ job.startSpeculativeEval(Info);
+ job.LHSResult.swap(Result);
+ job.Kind = Job::BinOpVisitedLHSKind;
+ enqueue(Bop->getRHS());
+ return;
+ }
+
+ case Job::BinOpVisitedLHSKind: {
+ const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
+ EvalResult RHS;
+ RHS.swap(Result);
+ Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
+ Queue.pop_back();
+ return;
+ }
+ }
+
+ llvm_unreachable("Invalid Job::Kind!");
+}
+
+bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
+ if (!Info.keepEvaluatingAfterFailure() && E->isAssignmentOp())
+ return Error(E);
+
+ if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
+ return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
+
+ QualType LHSTy = E->getLHS()->getType();
+ QualType RHSTy = E->getRHS()->getType();
+
+ if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) {
+ ComplexValue LHS, RHS;
+ bool LHSOK;
+ if (E->isAssignmentOp()) {
+ LValue LV;
+ EvaluateLValue(E->getLHS(), LV, Info);
+ LHSOK = false;
+ } else if (LHSTy->isRealFloatingType()) {
+ LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info);
+ if (LHSOK) {
+ LHS.makeComplexFloat();
+ LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics());
+ }
+ } else {
+ LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
+ }
+ if (!LHSOK && !Info.keepEvaluatingAfterFailure())
+ return false;
+
+ if (E->getRHS()->getType()->isRealFloatingType()) {
+ if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK)
+ return false;
+ RHS.makeComplexFloat();
+ RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics());
+ } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
+ return false;
+
+ if (LHS.isComplexFloat()) {
+ APFloat::cmpResult CR_r =
+ LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
+ APFloat::cmpResult CR_i =
+ LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
+
+ if (E->getOpcode() == BO_EQ)
+ return Success((CR_r == APFloat::cmpEqual &&
+ CR_i == APFloat::cmpEqual), E);
+ else {
+ assert(E->getOpcode() == BO_NE &&
+ "Invalid complex comparison.");
+ return Success(((CR_r == APFloat::cmpGreaterThan ||
+ CR_r == APFloat::cmpLessThan ||
+ CR_r == APFloat::cmpUnordered) ||
+ (CR_i == APFloat::cmpGreaterThan ||
+ CR_i == APFloat::cmpLessThan ||
+ CR_i == APFloat::cmpUnordered)), E);
+ }
+ } else {
+ if (E->getOpcode() == BO_EQ)
+ return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
+ LHS.getComplexIntImag() == RHS.getComplexIntImag()), E);
+ else {
+ assert(E->getOpcode() == BO_NE &&
+ "Invalid compex comparison.");
+ return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() ||
+ LHS.getComplexIntImag() != RHS.getComplexIntImag()), E);
+ }
+ }
+ }
+
+ if (LHSTy->isRealFloatingType() &&
+ RHSTy->isRealFloatingType()) {
+ APFloat RHS(0.0), LHS(0.0);
+
+ bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
+ if (!LHSOK && !Info.keepEvaluatingAfterFailure())
+ return false;
+
+ if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
+ return false;
+
+ APFloat::cmpResult CR = LHS.compare(RHS);
+
+ switch (E->getOpcode()) {
+ default:
+ llvm_unreachable("Invalid binary operator!");
+ case BO_LT:
+ return Success(CR == APFloat::cmpLessThan, E);
+ case BO_GT:
+ return Success(CR == APFloat::cmpGreaterThan, E);
+ case BO_LE:
+ return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E);
+ case BO_GE:
+ return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual,
+ E);
+ case BO_EQ:
+ return Success(CR == APFloat::cmpEqual, E);
+ case BO_NE:
+ return Success(CR == APFloat::cmpGreaterThan
+ || CR == APFloat::cmpLessThan
+ || CR == APFloat::cmpUnordered, E);
+ }
+ }
+
+ if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
+ if (E->getOpcode() == BO_Sub || E->isComparisonOp()) {
+ LValue LHSValue, RHSValue;
+
+ bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
+ if (!LHSOK && Info.keepEvaluatingAfterFailure())
+ return false;
+
+ if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
+ return false;
+
+ // Reject differing bases from the normal codepath; we special-case
+ // comparisons to null.
+ if (!HasSameBase(LHSValue, RHSValue)) {
+ if (E->getOpcode() == BO_Sub) {
+ // Handle &&A - &&B.
+ if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
+ return false;
+ const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr*>();
+ const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr*>();
+ if (!LHSExpr || !RHSExpr)
+ return false;
+ const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
+ const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
+ if (!LHSAddrExpr || !RHSAddrExpr)
+ return false;
+ // Make sure both labels come from the same function.
+ if (LHSAddrExpr->getLabel()->getDeclContext() !=
+ RHSAddrExpr->getLabel()->getDeclContext())
+ return false;
+ Result = APValue(LHSAddrExpr, RHSAddrExpr);
+ return true;
+ }
+ // Inequalities and subtractions between unrelated pointers have
+ // unspecified or undefined behavior.
+ if (!E->isEqualityOp())
+ return Error(E);
+ // A constant address may compare equal to the address of a symbol.
+ // The one exception is that address of an object cannot compare equal
+ // to a null pointer constant.
+ if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
+ (!RHSValue.Base && !RHSValue.Offset.isZero()))
+ return Error(E);
+ // It's implementation-defined whether distinct literals will have
+ // distinct addresses. In clang, the result of such a comparison is
+ // unspecified, so it is not a constant expression. However, we do know
+ // that the address of a literal will be non-null.
+ if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
+ LHSValue.Base && RHSValue.Base)
+ return Error(E);
+ // We can't tell whether weak symbols will end up pointing to the same
+ // object.
+ if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
+ return Error(E);
+ // We can't compare the address of the start of one object with the
+ // past-the-end address of another object, per C++ DR1652.
+ if ((LHSValue.Base && LHSValue.Offset.isZero() &&
+ isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) ||
+ (RHSValue.Base && RHSValue.Offset.isZero() &&
+ isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue)))
+ return Error(E);
+ // We can't tell whether an object is at the same address as another
+ // zero sized object.
+ if ((RHSValue.Base && isZeroSized(LHSValue)) ||
+ (LHSValue.Base && isZeroSized(RHSValue)))
+ return Error(E);
+ // Pointers with different bases cannot represent the same object.
+ // (Note that clang defaults to -fmerge-all-constants, which can
+ // lead to inconsistent results for comparisons involving the address
+ // of a constant; this generally doesn't matter in practice.)
+ return Success(E->getOpcode() == BO_NE, E);
+ }
+
+ const CharUnits &LHSOffset = LHSValue.getLValueOffset();
+ const CharUnits &RHSOffset = RHSValue.getLValueOffset();
+
+ SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
+ SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
+
+ if (E->getOpcode() == BO_Sub) {
+ // C++11 [expr.add]p6:
+ // Unless both pointers point to elements of the same array object, or
+ // one past the last element of the array object, the behavior is
+ // undefined.
+ if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
+ !AreElementsOfSameArray(getType(LHSValue.Base),
+ LHSDesignator, RHSDesignator))
+ CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
+
+ QualType Type = E->getLHS()->getType();
+ QualType ElementType = Type->getAs<PointerType>()->getPointeeType();
+
+ CharUnits ElementSize;
+ if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
+ return false;
+
+ // As an extension, a type may have zero size (empty struct or union in
+ // C, array of zero length). Pointer subtraction in such cases has
+ // undefined behavior, so is not constant.
+ if (ElementSize.isZero()) {
+ Info.Diag(E, diag::note_constexpr_pointer_subtraction_zero_size)
+ << ElementType;
+ return false;
+ }
+
+ // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
+ // and produce incorrect results when it overflows. Such behavior
+ // appears to be non-conforming, but is common, so perhaps we should
+ // assume the standard intended for such cases to be undefined behavior
+ // and check for them.
+
+ // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
+ // overflow in the final conversion to ptrdiff_t.
+ APSInt LHS(
+ llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
+ APSInt RHS(
+ llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
+ APSInt ElemSize(
+ llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), false);
+ APSInt TrueResult = (LHS - RHS) / ElemSize;
+ APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
+
+ if (Result.extend(65) != TrueResult)
+ HandleOverflow(Info, E, TrueResult, E->getType());
+ return Success(Result, E);
+ }
+
+ // C++11 [expr.rel]p3:
+ // Pointers to void (after pointer conversions) can be compared, with a
+ // result defined as follows: If both pointers represent the same
+ // address or are both the null pointer value, the result is true if the
+ // operator is <= or >= and false otherwise; otherwise the result is
+ // unspecified.
+ // We interpret this as applying to pointers to *cv* void.
+ if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset &&
+ E->isRelationalOp())
+ CCEDiag(E, diag::note_constexpr_void_comparison);
+
+ // C++11 [expr.rel]p2:
+ // - If two pointers point to non-static data members of the same object,
+ // or to subobjects or array elements fo such members, recursively, the
+ // pointer to the later declared member compares greater provided the
+ // two members have the same access control and provided their class is
+ // not a union.
+ // [...]
+ // - Otherwise pointer comparisons are unspecified.
+ if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
+ E->isRelationalOp()) {
+ bool WasArrayIndex;
+ unsigned Mismatch =
+ FindDesignatorMismatch(getType(LHSValue.Base), LHSDesignator,
+ RHSDesignator, WasArrayIndex);
+ // At the point where the designators diverge, the comparison has a
+ // specified value if:
+ // - we are comparing array indices
+ // - we are comparing fields of a union, or fields with the same access
+ // Otherwise, the result is unspecified and thus the comparison is not a
+ // constant expression.
+ if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
+ Mismatch < RHSDesignator.Entries.size()) {
+ const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
+ const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
+ if (!LF && !RF)
+ CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
+ else if (!LF)
+ CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
+ << getAsBaseClass(LHSDesignator.Entries[Mismatch])
+ << RF->getParent() << RF;
+ else if (!RF)
+ CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
+ << getAsBaseClass(RHSDesignator.Entries[Mismatch])
+ << LF->getParent() << LF;
+ else if (!LF->getParent()->isUnion() &&
+ LF->getAccess() != RF->getAccess())
+ CCEDiag(E, diag::note_constexpr_pointer_comparison_differing_access)
+ << LF << LF->getAccess() << RF << RF->getAccess()
+ << LF->getParent();
+ }
+ }
+
+ // The comparison here must be unsigned, and performed with the same
+ // width as the pointer.
+ unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
+ uint64_t CompareLHS = LHSOffset.getQuantity();
+ uint64_t CompareRHS = RHSOffset.getQuantity();
+ assert(PtrSize <= 64 && "Unexpected pointer width");
+ uint64_t Mask = ~0ULL >> (64 - PtrSize);
+ CompareLHS &= Mask;
+ CompareRHS &= Mask;
+
+ // If there is a base and this is a relational operator, we can only
+ // compare pointers within the object in question; otherwise, the result
+ // depends on where the object is located in memory.
+ if (!LHSValue.Base.isNull() && E->isRelationalOp()) {
+ QualType BaseTy = getType(LHSValue.Base);
+ if (BaseTy->isIncompleteType())
+ return Error(E);
+ CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
+ uint64_t OffsetLimit = Size.getQuantity();
+ if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
+ return Error(E);
+ }
+
+ switch (E->getOpcode()) {
+ default: llvm_unreachable("missing comparison operator");
+ case BO_LT: return Success(CompareLHS < CompareRHS, E);
+ case BO_GT: return Success(CompareLHS > CompareRHS, E);
+ case BO_LE: return Success(CompareLHS <= CompareRHS, E);
+ case BO_GE: return Success(CompareLHS >= CompareRHS, E);
+ case BO_EQ: return Success(CompareLHS == CompareRHS, E);
+ case BO_NE: return Success(CompareLHS != CompareRHS, E);
+ }
+ }
+ }
+
+ if (LHSTy->isMemberPointerType()) {
+ assert(E->isEqualityOp() && "unexpected member pointer operation");
+ assert(RHSTy->isMemberPointerType() && "invalid comparison");
+
+ MemberPtr LHSValue, RHSValue;
+
+ bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
+ if (!LHSOK && Info.keepEvaluatingAfterFailure())
+ return false;
+
+ if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
+ return false;
+
+ // C++11 [expr.eq]p2:
+ // If both operands are null, they compare equal. Otherwise if only one is
+ // null, they compare unequal.
+ if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
+ bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
+ return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
+ }
+
+ // Otherwise if either is a pointer to a virtual member function, the
+ // result is unspecified.
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
+ if (MD->isVirtual())
+ CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
+ if (MD->isVirtual())
+ CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
+
+ // Otherwise they compare equal if and only if they would refer to the
+ // same member of the same most derived object or the same subobject if
+ // they were dereferenced with a hypothetical object of the associated
+ // class type.
+ bool Equal = LHSValue == RHSValue;
+ return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
+ }
+
+ if (LHSTy->isNullPtrType()) {
+ assert(E->isComparisonOp() && "unexpected nullptr operation");
+ assert(RHSTy->isNullPtrType() && "missing pointer conversion");
+ // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
+ // are compared, the result is true of the operator is <=, >= or ==, and
+ // false otherwise.
+ BinaryOperator::Opcode Opcode = E->getOpcode();
+ return Success(Opcode == BO_EQ || Opcode == BO_LE || Opcode == BO_GE, E);
+ }
+
+ assert((!LHSTy->isIntegralOrEnumerationType() ||
+ !RHSTy->isIntegralOrEnumerationType()) &&
+ "DataRecursiveIntBinOpEvaluator should have handled integral types");
+ // We can't continue from here for non-integral types.
+ return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
+}
+
+/// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
+/// a result as the expression's type.
+bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
+ const UnaryExprOrTypeTraitExpr *E) {
+ switch(E->getKind()) {
+ case UETT_AlignOf: {
+ if (E->isArgumentType())
+ return Success(GetAlignOfType(Info, E->getArgumentType()), E);
+ else
+ return Success(GetAlignOfExpr(Info, E->getArgumentExpr()), E);
+ }
+
+ case UETT_VecStep: {
+ QualType Ty = E->getTypeOfArgument();
+
+ if (Ty->isVectorType()) {
+ unsigned n = Ty->castAs<VectorType>()->getNumElements();
+
+ // The vec_step built-in functions that take a 3-component
+ // vector return 4. (OpenCL 1.1 spec 6.11.12)
+ if (n == 3)
+ n = 4;
+
+ return Success(n, E);
+ } else
+ return Success(1, E);
+ }
+
+ case UETT_SizeOf: {
+ QualType SrcTy = E->getTypeOfArgument();
+ // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
+ // the result is the size of the referenced type."
+ if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
+ SrcTy = Ref->getPointeeType();
+
+ CharUnits Sizeof;
+ if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
+ return false;
+ return Success(Sizeof, E);
+ }
+ }
+
+ llvm_unreachable("unknown expr/type trait");
+}
+
+bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
+ CharUnits Result;
+ unsigned n = OOE->getNumComponents();
+ if (n == 0)
+ return Error(OOE);
+ QualType CurrentType = OOE->getTypeSourceInfo()->getType();
+ for (unsigned i = 0; i != n; ++i) {
+ OffsetOfExpr::OffsetOfNode ON = OOE->getComponent(i);
+ switch (ON.getKind()) {
+ case OffsetOfExpr::OffsetOfNode::Array: {
+ const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
+ APSInt IdxResult;
+ if (!EvaluateInteger(Idx, IdxResult, Info))
+ return false;
+ const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
+ if (!AT)
+ return Error(OOE);
+ CurrentType = AT->getElementType();
+ CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
+ Result += IdxResult.getSExtValue() * ElementSize;
+ break;
+ }
+
+ case OffsetOfExpr::OffsetOfNode::Field: {
+ FieldDecl *MemberDecl = ON.getField();
+ const RecordType *RT = CurrentType->getAs<RecordType>();
+ if (!RT)
+ return Error(OOE);
+ RecordDecl *RD = RT->getDecl();
+ if (RD->isInvalidDecl()) return false;
+ const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
+ unsigned i = MemberDecl->getFieldIndex();
+ assert(i < RL.getFieldCount() && "offsetof field in wrong type");
+ Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
+ CurrentType = MemberDecl->getType().getNonReferenceType();
+ break;
+ }
+
+ case OffsetOfExpr::OffsetOfNode::Identifier:
+ llvm_unreachable("dependent __builtin_offsetof");
+
+ case OffsetOfExpr::OffsetOfNode::Base: {
+ CXXBaseSpecifier *BaseSpec = ON.getBase();
+ if (BaseSpec->isVirtual())
+ return Error(OOE);
+
+ // Find the layout of the class whose base we are looking into.
+ const RecordType *RT = CurrentType->getAs<RecordType>();
+ if (!RT)
+ return Error(OOE);
+ RecordDecl *RD = RT->getDecl();
+ if (RD->isInvalidDecl()) return false;
+ const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
+
+ // Find the base class itself.
+ CurrentType = BaseSpec->getType();
+ const RecordType *BaseRT = CurrentType->getAs<RecordType>();
+ if (!BaseRT)
+ return Error(OOE);
+
+ // Add the offset to the base.
+ Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
+ break;
+ }
+ }
+ }
+ return Success(Result, OOE);
+}
+
+bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
+ switch (E->getOpcode()) {
+ default:
+ // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
+ // See C99 6.6p3.
+ return Error(E);
+ case UO_Extension:
+ // FIXME: Should extension allow i-c-e extension expressions in its scope?
+ // If so, we could clear the diagnostic ID.
+ return Visit(E->getSubExpr());
+ case UO_Plus:
+ // The result is just the value.
+ return Visit(E->getSubExpr());
+ case UO_Minus: {
+ if (!Visit(E->getSubExpr()))
+ return false;
+ if (!Result.isInt()) return Error(E);
+ const APSInt &Value = Result.getInt();
+ if (Value.isSigned() && Value.isMinSignedValue())
+ HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
+ E->getType());
+ return Success(-Value, E);
+ }
+ case UO_Not: {
+ if (!Visit(E->getSubExpr()))
+ return false;
+ if (!Result.isInt()) return Error(E);
+ return Success(~Result.getInt(), E);
+ }
+ case UO_LNot: {
+ bool bres;
+ if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
+ return false;
+ return Success(!bres, E);
+ }
+ }
+}
+
+/// HandleCast - This is used to evaluate implicit or explicit casts where the
+/// result type is integer.
+bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
+ const Expr *SubExpr = E->getSubExpr();
+ QualType DestType = E->getType();
+ QualType SrcType = SubExpr->getType();
+
+ switch (E->getCastKind()) {
+ case CK_BaseToDerived:
+ case CK_DerivedToBase:
+ case CK_UncheckedDerivedToBase:
+ case CK_Dynamic:
+ case CK_ToUnion:
+ case CK_ArrayToPointerDecay:
+ case CK_FunctionToPointerDecay:
+ case CK_NullToPointer:
+ case CK_NullToMemberPointer:
+ case CK_BaseToDerivedMemberPointer:
+ case CK_DerivedToBaseMemberPointer:
+ case CK_ReinterpretMemberPointer:
+ case CK_ConstructorConversion:
+ case CK_IntegralToPointer:
+ case CK_ToVoid:
+ case CK_VectorSplat:
+ case CK_IntegralToFloating:
+ case CK_FloatingCast:
+ case CK_CPointerToObjCPointerCast:
+ case CK_BlockPointerToObjCPointerCast:
+ case CK_AnyPointerToBlockPointerCast:
+ case CK_ObjCObjectLValueCast:
+ case CK_FloatingRealToComplex:
+ case CK_FloatingComplexToReal:
+ case CK_FloatingComplexCast:
+ case CK_FloatingComplexToIntegralComplex:
+ case CK_IntegralRealToComplex:
+ case CK_IntegralComplexCast:
+ case CK_IntegralComplexToFloatingComplex:
+ case CK_BuiltinFnToFnPtr:
+ case CK_ZeroToOCLEvent:
+ case CK_NonAtomicToAtomic:
+ case CK_AddressSpaceConversion:
+ llvm_unreachable("invalid cast kind for integral value");
+
+ case CK_BitCast:
+ case CK_Dependent:
+ case CK_LValueBitCast:
+ case CK_ARCProduceObject:
+ case CK_ARCConsumeObject:
+ case CK_ARCReclaimReturnedObject:
+ case CK_ARCExtendBlockObject:
+ case CK_CopyAndAutoreleaseBlockObject:
+ return Error(E);
+
+ case CK_UserDefinedConversion:
+ case CK_LValueToRValue:
+ case CK_AtomicToNonAtomic:
+ case CK_NoOp:
+ return ExprEvaluatorBaseTy::VisitCastExpr(E);
+
+ case CK_MemberPointerToBoolean:
+ case CK_PointerToBoolean:
+ case CK_IntegralToBoolean:
+ case CK_FloatingToBoolean:
+ case CK_FloatingComplexToBoolean:
+ case CK_IntegralComplexToBoolean: {
+ bool BoolResult;
+ if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
+ return false;
+ return Success(BoolResult, E);
+ }
+
+ case CK_IntegralCast: {
+ if (!Visit(SubExpr))
+ return false;
+
+ if (!Result.isInt()) {
+ // Allow casts of address-of-label differences if they are no-ops
+ // or narrowing. (The narrowing case isn't actually guaranteed to
+ // be constant-evaluatable except in some narrow cases which are hard
+ // to detect here. We let it through on the assumption the user knows
+ // what they are doing.)
+ if (Result.isAddrLabelDiff())
+ return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
+ // Only allow casts of lvalues if they are lossless.
+ return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
+ }
+
+ return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
+ Result.getInt()), E);
+ }
+
+ case CK_PointerToIntegral: {
+ CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
+
+ LValue LV;
+ if (!EvaluatePointer(SubExpr, LV, Info))
+ return false;
+
+ if (LV.getLValueBase()) {
+ // Only allow based lvalue casts if they are lossless.
+ // FIXME: Allow a larger integer size than the pointer size, and allow
+ // narrowing back down to pointer width in subsequent integral casts.
+ // FIXME: Check integer type's active bits, not its type size.
+ if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
+ return Error(E);
+
+ LV.Designator.setInvalid();
+ LV.moveInto(Result);
+ return true;
+ }
+
+ APSInt AsInt = Info.Ctx.MakeIntValue(LV.getLValueOffset().getQuantity(),
+ SrcType);
+ return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
+ }
+
+ case CK_IntegralComplexToReal: {
+ ComplexValue C;
+ if (!EvaluateComplex(SubExpr, C, Info))
+ return false;
+ return Success(C.getComplexIntReal(), E);
+ }
+
+ case CK_FloatingToIntegral: {
+ APFloat F(0.0);
+ if (!EvaluateFloat(SubExpr, F, Info))
+ return false;
+
+ APSInt Value;
+ if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
+ return false;
+ return Success(Value, E);
+ }
+ }
+
+ llvm_unreachable("unknown cast resulting in integral value");
+}
+
+bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
+ if (E->getSubExpr()->getType()->isAnyComplexType()) {
+ ComplexValue LV;
+ if (!EvaluateComplex(E->getSubExpr(), LV, Info))
+ return false;
+ if (!LV.isComplexInt())
+ return Error(E);
+ return Success(LV.getComplexIntReal(), E);
+ }
+
+ return Visit(E->getSubExpr());
+}
+
+bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
+ if (E->getSubExpr()->getType()->isComplexIntegerType()) {
+ ComplexValue LV;
+ if (!EvaluateComplex(E->getSubExpr(), LV, Info))
+ return false;
+ if (!LV.isComplexInt())
+ return Error(E);
+ return Success(LV.getComplexIntImag(), E);
+ }
+
+ VisitIgnoredValue(E->getSubExpr());
+ return Success(0, E);
+}
+
+bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
+ return Success(E->getPackLength(), E);
+}
+
+bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
+ return Success(E->getValue(), E);
+}
+
+//===----------------------------------------------------------------------===//
+// Float Evaluation
+//===----------------------------------------------------------------------===//
+
+namespace {
+class FloatExprEvaluator
+ : public ExprEvaluatorBase<FloatExprEvaluator> {
+ APFloat &Result;
+public:
+ FloatExprEvaluator(EvalInfo &info, APFloat &result)
+ : ExprEvaluatorBaseTy(info), Result(result) {}
+
+ bool Success(const APValue &V, const Expr *e) {
+ Result = V.getFloat();
+ return true;
+ }
+
+ bool ZeroInitialization(const Expr *E) {
+ Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
+ return true;
+ }
+
+ bool VisitCallExpr(const CallExpr *E);
+
+ bool VisitUnaryOperator(const UnaryOperator *E);
+ bool VisitBinaryOperator(const BinaryOperator *E);
+ bool VisitFloatingLiteral(const FloatingLiteral *E);
+ bool VisitCastExpr(const CastExpr *E);
+
+ bool VisitUnaryReal(const UnaryOperator *E);
+ bool VisitUnaryImag(const UnaryOperator *E);
+
+ // FIXME: Missing: array subscript of vector, member of vector
+};
+} // end anonymous namespace
+
+static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
+ assert(E->isRValue() && E->getType()->isRealFloatingType());
+ return FloatExprEvaluator(Info, Result).Visit(E);
+}
+
+static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
+ QualType ResultTy,
+ const Expr *Arg,
+ bool SNaN,
+ llvm::APFloat &Result) {
+ const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
+ if (!S) return false;
+
+ const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
+
+ llvm::APInt fill;
+
+ // Treat empty strings as if they were zero.
+ if (S->getString().empty())
+ fill = llvm::APInt(32, 0);
+ else if (S->getString().getAsInteger(0, fill))
+ return false;
+
+ if (Context.getTargetInfo().isNan2008()) {
+ if (SNaN)
+ Result = llvm::APFloat::getSNaN(Sem, false, &fill);
+ else
+ Result = llvm::APFloat::getQNaN(Sem, false, &fill);
+ } else {
+ // Prior to IEEE 754-2008, architectures were allowed to choose whether
+ // the first bit of their significand was set for qNaN or sNaN. MIPS chose
+ // a different encoding to what became a standard in 2008, and for pre-
+ // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as
+ // sNaN. This is now known as "legacy NaN" encoding.
+ if (SNaN)
+ Result = llvm::APFloat::getQNaN(Sem, false, &fill);
+ else
+ Result = llvm::APFloat::getSNaN(Sem, false, &fill);
+ }
+
+ return true;
+}
+
+bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
+ switch (E->getBuiltinCallee()) {
+ default:
+ return ExprEvaluatorBaseTy::VisitCallExpr(E);
+
+ case Builtin::BI__builtin_huge_val:
+ case Builtin::BI__builtin_huge_valf:
+ case Builtin::BI__builtin_huge_vall:
+ case Builtin::BI__builtin_inf:
+ case Builtin::BI__builtin_inff:
+ case Builtin::BI__builtin_infl: {
+ const llvm::fltSemantics &Sem =
+ Info.Ctx.getFloatTypeSemantics(E->getType());
+ Result = llvm::APFloat::getInf(Sem);
+ return true;
+ }
+
+ case Builtin::BI__builtin_nans:
+ case Builtin::BI__builtin_nansf:
+ case Builtin::BI__builtin_nansl:
+ if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
+ true, Result))
+ return Error(E);
+ return true;
+
+ case Builtin::BI__builtin_nan:
+ case Builtin::BI__builtin_nanf:
+ case Builtin::BI__builtin_nanl:
+ // If this is __builtin_nan() turn this into a nan, otherwise we
+ // can't constant fold it.
+ if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
+ false, Result))
+ return Error(E);
+ return true;
+
+ case Builtin::BI__builtin_fabs:
+ case Builtin::BI__builtin_fabsf:
+ case Builtin::BI__builtin_fabsl:
+ if (!EvaluateFloat(E->getArg(0), Result, Info))
+ return false;
+
+ if (Result.isNegative())
+ Result.changeSign();
+ return true;
+
+ // FIXME: Builtin::BI__builtin_powi
+ // FIXME: Builtin::BI__builtin_powif
+ // FIXME: Builtin::BI__builtin_powil
+
+ case Builtin::BI__builtin_copysign:
+ case Builtin::BI__builtin_copysignf:
+ case Builtin::BI__builtin_copysignl: {
+ APFloat RHS(0.);
+ if (!EvaluateFloat(E->getArg(0), Result, Info) ||
+ !EvaluateFloat(E->getArg(1), RHS, Info))
+ return false;
+ Result.copySign(RHS);
+ return true;
+ }
+ }
+}
+
+bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
+ if (E->getSubExpr()->getType()->isAnyComplexType()) {
+ ComplexValue CV;
+ if (!EvaluateComplex(E->getSubExpr(), CV, Info))
+ return false;
+ Result = CV.FloatReal;
+ return true;
+ }
+
+ return Visit(E->getSubExpr());
+}
+
+bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
+ if (E->getSubExpr()->getType()->isAnyComplexType()) {
+ ComplexValue CV;
+ if (!EvaluateComplex(E->getSubExpr(), CV, Info))
+ return false;
+ Result = CV.FloatImag;
+ return true;
+ }
+
+ VisitIgnoredValue(E->getSubExpr());
+ const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
+ Result = llvm::APFloat::getZero(Sem);
+ return true;
+}
+
+bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
+ switch (E->getOpcode()) {
+ default: return Error(E);
+ case UO_Plus:
+ return EvaluateFloat(E->getSubExpr(), Result, Info);
+ case UO_Minus:
+ if (!EvaluateFloat(E->getSubExpr(), Result, Info))
+ return false;
+ Result.changeSign();
+ return true;
+ }
+}
+
+bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
+ if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
+ return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
+
+ APFloat RHS(0.0);
+ bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
+ if (!LHSOK && !Info.keepEvaluatingAfterFailure())
+ return false;
+ return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
+ handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
+}
+
+bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
+ Result = E->getValue();
+ return true;
+}
+
+bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
+ const Expr* SubExpr = E->getSubExpr();
+
+ switch (E->getCastKind()) {
+ default:
+ return ExprEvaluatorBaseTy::VisitCastExpr(E);
+
+ case CK_IntegralToFloating: {
+ APSInt IntResult;
+ return EvaluateInteger(SubExpr, IntResult, Info) &&
+ HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult,
+ E->getType(), Result);
+ }
+
+ case CK_FloatingCast: {
+ if (!Visit(SubExpr))
+ return false;
+ return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
+ Result);
+ }
+
+ case CK_FloatingComplexToReal: {
+ ComplexValue V;
+ if (!EvaluateComplex(SubExpr, V, Info))
+ return false;
+ Result = V.getComplexFloatReal();
+ return true;
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Complex Evaluation (for float and integer)
+//===----------------------------------------------------------------------===//
+
+namespace {
+class ComplexExprEvaluator
+ : public ExprEvaluatorBase<ComplexExprEvaluator> {
+ ComplexValue &Result;
+
+public:
+ ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
+ : ExprEvaluatorBaseTy(info), Result(Result) {}
+
+ bool Success(const APValue &V, const Expr *e) {
+ Result.setFrom(V);
+ return true;
+ }
+
+ bool ZeroInitialization(const Expr *E);
+
+ //===--------------------------------------------------------------------===//
+ // Visitor Methods
+ //===--------------------------------------------------------------------===//
+
+ bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
+ bool VisitCastExpr(const CastExpr *E);
+ bool VisitBinaryOperator(const BinaryOperator *E);
+ bool VisitUnaryOperator(const UnaryOperator *E);
+ bool VisitInitListExpr(const InitListExpr *E);
+};
+} // end anonymous namespace
+
+static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
+ EvalInfo &Info) {
+ assert(E->isRValue() && E->getType()->isAnyComplexType());
+ return ComplexExprEvaluator(Info, Result).Visit(E);
+}
+
+bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
+ QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
+ if (ElemTy->isRealFloatingType()) {
+ Result.makeComplexFloat();
+ APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
+ Result.FloatReal = Zero;
+ Result.FloatImag = Zero;
+ } else {
+ Result.makeComplexInt();
+ APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
+ Result.IntReal = Zero;
+ Result.IntImag = Zero;
+ }
+ return true;
+}
+
+bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
+ const Expr* SubExpr = E->getSubExpr();
+
+ if (SubExpr->getType()->isRealFloatingType()) {
+ Result.makeComplexFloat();
+ APFloat &Imag = Result.FloatImag;
+ if (!EvaluateFloat(SubExpr, Imag, Info))
+ return false;
+
+ Result.FloatReal = APFloat(Imag.getSemantics());
+ return true;
+ } else {
+ assert(SubExpr->getType()->isIntegerType() &&
+ "Unexpected imaginary literal.");
+
+ Result.makeComplexInt();
+ APSInt &Imag = Result.IntImag;
+ if (!EvaluateInteger(SubExpr, Imag, Info))
+ return false;
+
+ Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
+ return true;
+ }
+}
+
+bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
+
+ switch (E->getCastKind()) {
+ case CK_BitCast:
+ case CK_BaseToDerived:
+ case CK_DerivedToBase:
+ case CK_UncheckedDerivedToBase:
+ case CK_Dynamic:
+ case CK_ToUnion:
+ case CK_ArrayToPointerDecay:
+ case CK_FunctionToPointerDecay:
+ case CK_NullToPointer:
+ case CK_NullToMemberPointer:
+ case CK_BaseToDerivedMemberPointer:
+ case CK_DerivedToBaseMemberPointer:
+ case CK_MemberPointerToBoolean:
+ case CK_ReinterpretMemberPointer:
+ case CK_ConstructorConversion:
+ case CK_IntegralToPointer:
+ case CK_PointerToIntegral:
+ case CK_PointerToBoolean:
+ case CK_ToVoid:
+ case CK_VectorSplat:
+ case CK_IntegralCast:
+ case CK_IntegralToBoolean:
+ case CK_IntegralToFloating:
+ case CK_FloatingToIntegral:
+ case CK_FloatingToBoolean:
+ case CK_FloatingCast:
+ case CK_CPointerToObjCPointerCast:
+ case CK_BlockPointerToObjCPointerCast:
+ case CK_AnyPointerToBlockPointerCast:
+ case CK_ObjCObjectLValueCast:
+ case CK_FloatingComplexToReal:
+ case CK_FloatingComplexToBoolean:
+ case CK_IntegralComplexToReal:
+ case CK_IntegralComplexToBoolean:
+ case CK_ARCProduceObject:
+ case CK_ARCConsumeObject:
+ case CK_ARCReclaimReturnedObject:
+ case CK_ARCExtendBlockObject:
+ case CK_CopyAndAutoreleaseBlockObject:
+ case CK_BuiltinFnToFnPtr:
+ case CK_ZeroToOCLEvent:
+ case CK_NonAtomicToAtomic:
+ case CK_AddressSpaceConversion:
+ llvm_unreachable("invalid cast kind for complex value");
+
+ case CK_LValueToRValue:
+ case CK_AtomicToNonAtomic:
+ case CK_NoOp:
+ return ExprEvaluatorBaseTy::VisitCastExpr(E);
+
+ case CK_Dependent:
+ case CK_LValueBitCast:
+ case CK_UserDefinedConversion:
+ return Error(E);
+
+ case CK_FloatingRealToComplex: {
+ APFloat &Real = Result.FloatReal;
+ if (!EvaluateFloat(E->getSubExpr(), Real, Info))
+ return false;
+
+ Result.makeComplexFloat();
+ Result.FloatImag = APFloat(Real.getSemantics());
+ return true;
+ }
+
+ case CK_FloatingComplexCast: {
+ if (!Visit(E->getSubExpr()))
+ return false;
+
+ QualType To = E->getType()->getAs<ComplexType>()->getElementType();
+ QualType From
+ = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
+
+ return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
+ HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
+ }
+
+ case CK_FloatingComplexToIntegralComplex: {
+ if (!Visit(E->getSubExpr()))
+ return false;
+
+ QualType To = E->getType()->getAs<ComplexType>()->getElementType();
+ QualType From
+ = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
+ Result.makeComplexInt();
+ return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
+ To, Result.IntReal) &&
+ HandleFloatToIntCast(Info, E, From, Result.FloatImag,
+ To, Result.IntImag);
+ }
+
+ case CK_IntegralRealToComplex: {
+ APSInt &Real = Result.IntReal;
+ if (!EvaluateInteger(E->getSubExpr(), Real, Info))
+ return false;
+
+ Result.makeComplexInt();
+ Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
+ return true;
+ }
+
+ case CK_IntegralComplexCast: {
+ if (!Visit(E->getSubExpr()))
+ return false;
+
+ QualType To = E->getType()->getAs<ComplexType>()->getElementType();
+ QualType From
+ = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
+
+ Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
+ Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
+ return true;
+ }
+
+ case CK_IntegralComplexToFloatingComplex: {
+ if (!Visit(E->getSubExpr()))
+ return false;
+
+ QualType To = E->getType()->castAs<ComplexType>()->getElementType();
+ QualType From
+ = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
+ Result.makeComplexFloat();
+ return HandleIntToFloatCast(Info, E, From, Result.IntReal,
+ To, Result.FloatReal) &&
+ HandleIntToFloatCast(Info, E, From, Result.IntImag,
+ To, Result.FloatImag);
+ }
+ }
+
+ llvm_unreachable("unknown cast resulting in complex value");
+}
+
+bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
+ if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
+ return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
+
+ // Track whether the LHS or RHS is real at the type system level. When this is
+ // the case we can simplify our evaluation strategy.
+ bool LHSReal = false, RHSReal = false;
+
+ bool LHSOK;
+ if (E->getLHS()->getType()->isRealFloatingType()) {
+ LHSReal = true;
+ APFloat &Real = Result.FloatReal;
+ LHSOK = EvaluateFloat(E->getLHS(), Real, Info);
+ if (LHSOK) {
+ Result.makeComplexFloat();
+ Result.FloatImag = APFloat(Real.getSemantics());
+ }
+ } else {
+ LHSOK = Visit(E->getLHS());
+ }
+ if (!LHSOK && !Info.keepEvaluatingAfterFailure())
+ return false;
+
+ ComplexValue RHS;
+ if (E->getRHS()->getType()->isRealFloatingType()) {
+ RHSReal = true;
+ APFloat &Real = RHS.FloatReal;
+ if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK)
+ return false;
+ RHS.makeComplexFloat();
+ RHS.FloatImag = APFloat(Real.getSemantics());
+ } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
+ return false;
+
+ assert(!(LHSReal && RHSReal) &&
+ "Cannot have both operands of a complex operation be real.");
+ switch (E->getOpcode()) {
+ default: return Error(E);
+ case BO_Add:
+ if (Result.isComplexFloat()) {
+ Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
+ APFloat::rmNearestTiesToEven);
+ if (LHSReal)
+ Result.getComplexFloatImag() = RHS.getComplexFloatImag();
+ else if (!RHSReal)
+ Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
+ APFloat::rmNearestTiesToEven);
+ } else {
+ Result.getComplexIntReal() += RHS.getComplexIntReal();
+ Result.getComplexIntImag() += RHS.getComplexIntImag();
+ }
+ break;
+ case BO_Sub:
+ if (Result.isComplexFloat()) {
+ Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
+ APFloat::rmNearestTiesToEven);
+ if (LHSReal) {
+ Result.getComplexFloatImag() = RHS.getComplexFloatImag();
+ Result.getComplexFloatImag().changeSign();
+ } else if (!RHSReal) {
+ Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
+ APFloat::rmNearestTiesToEven);
+ }
+ } else {
+ Result.getComplexIntReal() -= RHS.getComplexIntReal();
+ Result.getComplexIntImag() -= RHS.getComplexIntImag();
+ }
+ break;
+ case BO_Mul:
+ if (Result.isComplexFloat()) {
+ // This is an implementation of complex multiplication according to the
+ // constraints laid out in C11 Annex G. The implemantion uses the
+ // following naming scheme:
+ // (a + ib) * (c + id)
+ ComplexValue LHS = Result;
+ APFloat &A = LHS.getComplexFloatReal();
+ APFloat &B = LHS.getComplexFloatImag();
+ APFloat &C = RHS.getComplexFloatReal();
+ APFloat &D = RHS.getComplexFloatImag();
+ APFloat &ResR = Result.getComplexFloatReal();
+ APFloat &ResI = Result.getComplexFloatImag();
+ if (LHSReal) {
+ assert(!RHSReal && "Cannot have two real operands for a complex op!");
+ ResR = A * C;
+ ResI = A * D;
+ } else if (RHSReal) {
+ ResR = C * A;
+ ResI = C * B;
+ } else {
+ // In the fully general case, we need to handle NaNs and infinities
+ // robustly.
+ APFloat AC = A * C;
+ APFloat BD = B * D;
+ APFloat AD = A * D;
+ APFloat BC = B * C;
+ ResR = AC - BD;
+ ResI = AD + BC;
+ if (ResR.isNaN() && ResI.isNaN()) {
+ bool Recalc = false;
+ if (A.isInfinity() || B.isInfinity()) {
+ A = APFloat::copySign(
+ APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
+ B = APFloat::copySign(
+ APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
+ if (C.isNaN())
+ C = APFloat::copySign(APFloat(C.getSemantics()), C);
+ if (D.isNaN())
+ D = APFloat::copySign(APFloat(D.getSemantics()), D);
+ Recalc = true;
+ }
+ if (C.isInfinity() || D.isInfinity()) {
+ C = APFloat::copySign(
+ APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
+ D = APFloat::copySign(
+ APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
+ if (A.isNaN())
+ A = APFloat::copySign(APFloat(A.getSemantics()), A);
+ if (B.isNaN())
+ B = APFloat::copySign(APFloat(B.getSemantics()), B);
+ Recalc = true;
+ }
+ if (!Recalc && (AC.isInfinity() || BD.isInfinity() ||
+ AD.isInfinity() || BC.isInfinity())) {
+ if (A.isNaN())
+ A = APFloat::copySign(APFloat(A.getSemantics()), A);
+ if (B.isNaN())
+ B = APFloat::copySign(APFloat(B.getSemantics()), B);
+ if (C.isNaN())
+ C = APFloat::copySign(APFloat(C.getSemantics()), C);
+ if (D.isNaN())
+ D = APFloat::copySign(APFloat(D.getSemantics()), D);
+ Recalc = true;
+ }
+ if (Recalc) {
+ ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D);
+ ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C);
+ }
+ }
+ }
+ } else {
+ ComplexValue LHS = Result;
+ Result.getComplexIntReal() =
+ (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
+ LHS.getComplexIntImag() * RHS.getComplexIntImag());
+ Result.getComplexIntImag() =
+ (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
+ LHS.getComplexIntImag() * RHS.getComplexIntReal());
+ }
+ break;
+ case BO_Div:
+ if (Result.isComplexFloat()) {
+ // This is an implementation of complex division according to the
+ // constraints laid out in C11 Annex G. The implemantion uses the
+ // following naming scheme:
+ // (a + ib) / (c + id)
+ ComplexValue LHS = Result;
+ APFloat &A = LHS.getComplexFloatReal();
+ APFloat &B = LHS.getComplexFloatImag();
+ APFloat &C = RHS.getComplexFloatReal();
+ APFloat &D = RHS.getComplexFloatImag();
+ APFloat &ResR = Result.getComplexFloatReal();
+ APFloat &ResI = Result.getComplexFloatImag();
+ if (RHSReal) {
+ ResR = A / C;
+ ResI = B / C;
+ } else {
+ if (LHSReal) {
+ // No real optimizations we can do here, stub out with zero.
+ B = APFloat::getZero(A.getSemantics());
+ }
+ int DenomLogB = 0;
+ APFloat MaxCD = maxnum(abs(C), abs(D));
+ if (MaxCD.isFinite()) {
+ DenomLogB = ilogb(MaxCD);
+ C = scalbn(C, -DenomLogB);
+ D = scalbn(D, -DenomLogB);
+ }
+ APFloat Denom = C * C + D * D;
+ ResR = scalbn((A * C + B * D) / Denom, -DenomLogB);
+ ResI = scalbn((B * C - A * D) / Denom, -DenomLogB);
+ if (ResR.isNaN() && ResI.isNaN()) {
+ if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) {
+ ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A;
+ ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B;
+ } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() &&
+ D.isFinite()) {
+ A = APFloat::copySign(
+ APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
+ B = APFloat::copySign(
+ APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
+ ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D);
+ ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D);
+ } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) {
+ C = APFloat::copySign(
+ APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
+ D = APFloat::copySign(
+ APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
+ ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D);
+ ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D);
+ }
+ }
+ }
+ } else {
+ if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
+ return Error(E, diag::note_expr_divide_by_zero);
+
+ ComplexValue LHS = Result;
+ APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
+ RHS.getComplexIntImag() * RHS.getComplexIntImag();
+ Result.getComplexIntReal() =
+ (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
+ LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
+ Result.getComplexIntImag() =
+ (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
+ LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
+ }
+ break;
+ }
+
+ return true;
+}
+
+bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
+ // Get the operand value into 'Result'.
+ if (!Visit(E->getSubExpr()))
+ return false;
+
+ switch (E->getOpcode()) {
+ default:
+ return Error(E);
+ case UO_Extension:
+ return true;
+ case UO_Plus:
+ // The result is always just the subexpr.
+ return true;
+ case UO_Minus:
+ if (Result.isComplexFloat()) {
+ Result.getComplexFloatReal().changeSign();
+ Result.getComplexFloatImag().changeSign();
+ }
+ else {
+ Result.getComplexIntReal() = -Result.getComplexIntReal();
+ Result.getComplexIntImag() = -Result.getComplexIntImag();
+ }
+ return true;
+ case UO_Not:
+ if (Result.isComplexFloat())
+ Result.getComplexFloatImag().changeSign();
+ else
+ Result.getComplexIntImag() = -Result.getComplexIntImag();
+ return true;
+ }
+}
+
+bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
+ if (E->getNumInits() == 2) {
+ if (E->getType()->isComplexType()) {
+ Result.makeComplexFloat();
+ if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
+ return false;
+ if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
+ return false;
+ } else {
+ Result.makeComplexInt();
+ if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
+ return false;
+ if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
+ return false;
+ }
+ return true;
+ }
+ return ExprEvaluatorBaseTy::VisitInitListExpr(E);
+}
+
+//===----------------------------------------------------------------------===//
+// Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
+// implicit conversion.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class AtomicExprEvaluator :
+ public ExprEvaluatorBase<AtomicExprEvaluator> {
+ APValue &Result;
+public:
+ AtomicExprEvaluator(EvalInfo &Info, APValue &Result)
+ : ExprEvaluatorBaseTy(Info), Result(Result) {}
+
+ bool Success(const APValue &V, const Expr *E) {
+ Result = V;
+ return true;
+ }
+
+ bool ZeroInitialization(const Expr *E) {
+ ImplicitValueInitExpr VIE(
+ E->getType()->castAs<AtomicType>()->getValueType());
+ return Evaluate(Result, Info, &VIE);
+ }
+
+ bool VisitCastExpr(const CastExpr *E) {
+ switch (E->getCastKind()) {
+ default:
+ return ExprEvaluatorBaseTy::VisitCastExpr(E);
+ case CK_NonAtomicToAtomic:
+ return Evaluate(Result, Info, E->getSubExpr());
+ }
+ }
+};
+} // end anonymous namespace
+
+static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info) {
+ assert(E->isRValue() && E->getType()->isAtomicType());
+ return AtomicExprEvaluator(Info, Result).Visit(E);
+}
+
+//===----------------------------------------------------------------------===//
+// Void expression evaluation, primarily for a cast to void on the LHS of a
+// comma operator
+//===----------------------------------------------------------------------===//
+
+namespace {
+class VoidExprEvaluator
+ : public ExprEvaluatorBase<VoidExprEvaluator> {
+public:
+ VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
+
+ bool Success(const APValue &V, const Expr *e) { return true; }
+
+ bool VisitCastExpr(const CastExpr *E) {
+ switch (E->getCastKind()) {
+ default:
+ return ExprEvaluatorBaseTy::VisitCastExpr(E);
+ case CK_ToVoid:
+ VisitIgnoredValue(E->getSubExpr());
+ return true;
+ }
+ }
+
+ bool VisitCallExpr(const CallExpr *E) {
+ switch (E->getBuiltinCallee()) {
+ default:
+ return ExprEvaluatorBaseTy::VisitCallExpr(E);
+ case Builtin::BI__assume:
+ case Builtin::BI__builtin_assume:
+ // The argument is not evaluated!
+ return true;
+ }
+ }
+};
+} // end anonymous namespace
+
+static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
+ assert(E->isRValue() && E->getType()->isVoidType());
+ return VoidExprEvaluator(Info).Visit(E);
+}
+
+//===----------------------------------------------------------------------===//
+// Top level Expr::EvaluateAsRValue method.
+//===----------------------------------------------------------------------===//
+
+static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
+ // In C, function designators are not lvalues, but we evaluate them as if they
+ // are.
+ QualType T = E->getType();
+ if (E->isGLValue() || T->isFunctionType()) {
+ LValue LV;
+ if (!EvaluateLValue(E, LV, Info))
+ return false;
+ LV.moveInto(Result);
+ } else if (T->isVectorType()) {
+ if (!EvaluateVector(E, Result, Info))
+ return false;
+ } else if (T->isIntegralOrEnumerationType()) {
+ if (!IntExprEvaluator(Info, Result).Visit(E))
+ return false;
+ } else if (T->hasPointerRepresentation()) {
+ LValue LV;
+ if (!EvaluatePointer(E, LV, Info))
+ return false;
+ LV.moveInto(Result);
+ } else if (T->isRealFloatingType()) {
+ llvm::APFloat F(0.0);
+ if (!EvaluateFloat(E, F, Info))
+ return false;
+ Result = APValue(F);
+ } else if (T->isAnyComplexType()) {
+ ComplexValue C;
+ if (!EvaluateComplex(E, C, Info))
+ return false;
+ C.moveInto(Result);
+ } else if (T->isMemberPointerType()) {
+ MemberPtr P;
+ if (!EvaluateMemberPointer(E, P, Info))
+ return false;
+ P.moveInto(Result);
+ return true;
+ } else if (T->isArrayType()) {
+ LValue LV;
+ LV.set(E, Info.CurrentCall->Index);
+ APValue &Value = Info.CurrentCall->createTemporary(E, false);
+ if (!EvaluateArray(E, LV, Value, Info))
+ return false;
+ Result = Value;
+ } else if (T->isRecordType()) {
+ LValue LV;
+ LV.set(E, Info.CurrentCall->Index);
+ APValue &Value = Info.CurrentCall->createTemporary(E, false);
+ if (!EvaluateRecord(E, LV, Value, Info))
+ return false;
+ Result = Value;
+ } else if (T->isVoidType()) {
+ if (!Info.getLangOpts().CPlusPlus11)
+ Info.CCEDiag(E, diag::note_constexpr_nonliteral)
+ << E->getType();
+ if (!EvaluateVoid(E, Info))
+ return false;
+ } else if (T->isAtomicType()) {
+ if (!EvaluateAtomic(E, Result, Info))
+ return false;
+ } else if (Info.getLangOpts().CPlusPlus11) {
+ Info.Diag(E, diag::note_constexpr_nonliteral) << E->getType();
+ return false;
+ } else {
+ Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
+ return false;
+ }
+
+ return true;
+}
+
+/// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
+/// cases, the in-place evaluation is essential, since later initializers for
+/// an object can indirectly refer to subobjects which were initialized earlier.
+static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
+ const Expr *E, bool AllowNonLiteralTypes) {
+ assert(!E->isValueDependent());
+
+ if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
+ return false;
+
+ if (E->isRValue()) {
+ // Evaluate arrays and record types in-place, so that later initializers can
+ // refer to earlier-initialized members of the object.
+ if (E->getType()->isArrayType())
+ return EvaluateArray(E, This, Result, Info);
+ else if (E->getType()->isRecordType())
+ return EvaluateRecord(E, This, Result, Info);
+ }
+
+ // For any other type, in-place evaluation is unimportant.
+ return Evaluate(Result, Info, E);
+}
+
+/// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
+/// lvalue-to-rvalue cast if it is an lvalue.
+static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
+ if (E->getType().isNull())
+ return false;
+
+ if (!CheckLiteralType(Info, E))
+ return false;
+
+ if (!::Evaluate(Result, Info, E))
+ return false;
+
+ if (E->isGLValue()) {
+ LValue LV;
+ LV.setFrom(Info.Ctx, Result);
+ if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
+ return false;
+ }
+
+ // Check this core constant expression is a constant expression.
+ return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result);
+}
+
+static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
+ const ASTContext &Ctx, bool &IsConst) {
+ // Fast-path evaluations of integer literals, since we sometimes see files
+ // containing vast quantities of these.
+ if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
+ Result.Val = APValue(APSInt(L->getValue(),
+ L->getType()->isUnsignedIntegerType()));
+ IsConst = true;
+ return true;
+ }
+
+ // This case should be rare, but we need to check it before we check on
+ // the type below.
+ if (Exp->getType().isNull()) {
+ IsConst = false;
+ return true;
+ }
+
+ // FIXME: Evaluating values of large array and record types can cause
+ // performance problems. Only do so in C++11 for now.
+ if (Exp->isRValue() && (Exp->getType()->isArrayType() ||
+ Exp->getType()->isRecordType()) &&
+ !Ctx.getLangOpts().CPlusPlus11) {
+ IsConst = false;
+ return true;
+ }
+ return false;
+}
+
+
+/// EvaluateAsRValue - Return true if this is a constant which we can fold using
+/// any crazy technique (that has nothing to do with language standards) that
+/// we want to. If this function returns true, it returns the folded constant
+/// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
+/// will be applied to the result.
+bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const {
+ bool IsConst;
+ if (FastEvaluateAsRValue(this, Result, Ctx, IsConst))
+ return IsConst;
+
+ EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
+ return ::EvaluateAsRValue(Info, this, Result.Val);
+}
+
+bool Expr::EvaluateAsBooleanCondition(bool &Result,
+ const ASTContext &Ctx) const {
+ EvalResult Scratch;
+ return EvaluateAsRValue(Scratch, Ctx) &&
+ HandleConversionToBool(Scratch.Val, Result);
+}
+
+bool Expr::EvaluateAsInt(APSInt &Result, const ASTContext &Ctx,
+ SideEffectsKind AllowSideEffects) const {
+ if (!getType()->isIntegralOrEnumerationType())
+ return false;
+
+ EvalResult ExprResult;
+ if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isInt() ||
+ (!AllowSideEffects && ExprResult.HasSideEffects))
+ return false;
+
+ Result = ExprResult.Val.getInt();
+ return true;
+}
+
+bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const {
+ EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
+
+ LValue LV;
+ if (!EvaluateLValue(this, LV, Info) || Result.HasSideEffects ||
+ !CheckLValueConstantExpression(Info, getExprLoc(),
+ Ctx.getLValueReferenceType(getType()), LV))
+ return false;
+
+ LV.moveInto(Result.Val);
+ return true;
+}
+
+bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
+ const VarDecl *VD,
+ SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
+ // FIXME: Evaluating initializers for large array and record types can cause
+ // performance problems. Only do so in C++11 for now.
+ if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
+ !Ctx.getLangOpts().CPlusPlus11)
+ return false;
+
+ Expr::EvalStatus EStatus;
+ EStatus.Diag = &Notes;
+
+ EvalInfo InitInfo(Ctx, EStatus, EvalInfo::EM_ConstantFold);
+ InitInfo.setEvaluatingDecl(VD, Value);
+
+ LValue LVal;
+ LVal.set(VD);
+
+ // C++11 [basic.start.init]p2:
+ // Variables with static storage duration or thread storage duration shall be
+ // zero-initialized before any other initialization takes place.
+ // This behavior is not present in C.
+ if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() &&
+ !VD->getType()->isReferenceType()) {
+ ImplicitValueInitExpr VIE(VD->getType());
+ if (!EvaluateInPlace(Value, InitInfo, LVal, &VIE,
+ /*AllowNonLiteralTypes=*/true))
+ return false;
+ }
+
+ if (!EvaluateInPlace(Value, InitInfo, LVal, this,
+ /*AllowNonLiteralTypes=*/true) ||
+ EStatus.HasSideEffects)
+ return false;
+
+ return CheckConstantExpression(InitInfo, VD->getLocation(), VD->getType(),
+ Value);
+}
+
+/// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
+/// constant folded, but discard the result.
+bool Expr::isEvaluatable(const ASTContext &Ctx) const {
+ EvalResult Result;
+ return EvaluateAsRValue(Result, Ctx) && !Result.HasSideEffects;
+}
+
+APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
+ SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
+ EvalResult EvalResult;
+ EvalResult.Diag = Diag;
+ bool Result = EvaluateAsRValue(EvalResult, Ctx);
+ (void)Result;
+ assert(Result && "Could not evaluate expression");
+ assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer");
+
+ return EvalResult.Val.getInt();
+}
+
+void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
+ bool IsConst;
+ EvalResult EvalResult;
+ if (!FastEvaluateAsRValue(this, EvalResult, Ctx, IsConst)) {
+ EvalInfo Info(Ctx, EvalResult, EvalInfo::EM_EvaluateForOverflow);
+ (void)::EvaluateAsRValue(Info, this, EvalResult.Val);
+ }
+}
+
+bool Expr::EvalResult::isGlobalLValue() const {
+ assert(Val.isLValue());
+ return IsGlobalLValue(Val.getLValueBase());
+}
+
+
+/// isIntegerConstantExpr - this recursive routine will test if an expression is
+/// an integer constant expression.
+
+/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
+/// comma, etc
+
+// CheckICE - This function does the fundamental ICE checking: the returned
+// ICEDiag contains an ICEKind indicating whether the expression is an ICE,
+// and a (possibly null) SourceLocation indicating the location of the problem.
+//
+// Note that to reduce code duplication, this helper does no evaluation
+// itself; the caller checks whether the expression is evaluatable, and
+// in the rare cases where CheckICE actually cares about the evaluated
+// value, it calls into Evalute.
+
+namespace {
+
+enum ICEKind {
+ /// This expression is an ICE.
+ IK_ICE,
+ /// This expression is not an ICE, but if it isn't evaluated, it's
+ /// a legal subexpression for an ICE. This return value is used to handle
+ /// the comma operator in C99 mode, and non-constant subexpressions.
+ IK_ICEIfUnevaluated,
+ /// This expression is not an ICE, and is not a legal subexpression for one.
+ IK_NotICE
+};
+
+struct ICEDiag {
+ ICEKind Kind;
+ SourceLocation Loc;
+
+ ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
+};
+
+}
+
+static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
+
+static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
+
+static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
+ Expr::EvalResult EVResult;
+ if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects ||
+ !EVResult.Val.isInt())
+ return ICEDiag(IK_NotICE, E->getLocStart());
+
+ return NoDiag();
+}
+
+static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
+ assert(!E->isValueDependent() && "Should not see value dependent exprs!");
+ if (!E->getType()->isIntegralOrEnumerationType())
+ return ICEDiag(IK_NotICE, E->getLocStart());
+
+ switch (E->getStmtClass()) {
+#define ABSTRACT_STMT(Node)
+#define STMT(Node, Base) case Expr::Node##Class:
+#define EXPR(Node, Base)
+#include "clang/AST/StmtNodes.inc"
+ case Expr::PredefinedExprClass:
+ case Expr::FloatingLiteralClass:
+ case Expr::ImaginaryLiteralClass:
+ case Expr::StringLiteralClass:
+ case Expr::ArraySubscriptExprClass:
+ case Expr::MemberExprClass:
+ case Expr::CompoundAssignOperatorClass:
+ case Expr::CompoundLiteralExprClass:
+ case Expr::ExtVectorElementExprClass:
+ case Expr::DesignatedInitExprClass:
+ case Expr::ImplicitValueInitExprClass:
+ case Expr::ParenListExprClass:
+ case Expr::VAArgExprClass:
+ case Expr::AddrLabelExprClass:
+ case Expr::StmtExprClass:
+ case Expr::CXXMemberCallExprClass:
+ case Expr::CUDAKernelCallExprClass:
+ case Expr::CXXDynamicCastExprClass:
+ case Expr::CXXTypeidExprClass:
+ case Expr::CXXUuidofExprClass:
+ case Expr::MSPropertyRefExprClass:
+ case Expr::CXXNullPtrLiteralExprClass:
+ case Expr::UserDefinedLiteralClass:
+ case Expr::CXXThisExprClass:
+ case Expr::CXXThrowExprClass:
+ case Expr::CXXNewExprClass:
+ case Expr::CXXDeleteExprClass:
+ case Expr::CXXPseudoDestructorExprClass:
+ case Expr::UnresolvedLookupExprClass:
+ case Expr::TypoExprClass:
+ case Expr::DependentScopeDeclRefExprClass:
+ case Expr::CXXConstructExprClass:
+ case Expr::CXXStdInitializerListExprClass:
+ case Expr::CXXBindTemporaryExprClass:
+ case Expr::ExprWithCleanupsClass:
+ case Expr::CXXTemporaryObjectExprClass:
+ case Expr::CXXUnresolvedConstructExprClass:
+ case Expr::CXXDependentScopeMemberExprClass:
+ case Expr::UnresolvedMemberExprClass:
+ case Expr::ObjCStringLiteralClass:
+ case Expr::ObjCBoxedExprClass:
+ case Expr::ObjCArrayLiteralClass:
+ case Expr::ObjCDictionaryLiteralClass:
+ case Expr::ObjCEncodeExprClass:
+ case Expr::ObjCMessageExprClass:
+ case Expr::ObjCSelectorExprClass:
+ case Expr::ObjCProtocolExprClass:
+ case Expr::ObjCIvarRefExprClass:
+ case Expr::ObjCPropertyRefExprClass:
+ case Expr::ObjCSubscriptRefExprClass:
+ case Expr::ObjCIsaExprClass:
+ case Expr::ShuffleVectorExprClass:
+ case Expr::ConvertVectorExprClass:
+ case Expr::BlockExprClass:
+ case Expr::NoStmtClass:
+ case Expr::OpaqueValueExprClass:
+ case Expr::PackExpansionExprClass:
+ case Expr::SubstNonTypeTemplateParmPackExprClass:
+ case Expr::FunctionParmPackExprClass:
+ case Expr::AsTypeExprClass:
+ case Expr::ObjCIndirectCopyRestoreExprClass:
+ case Expr::MaterializeTemporaryExprClass:
+ case Expr::PseudoObjectExprClass:
+ case Expr::AtomicExprClass:
+ case Expr::LambdaExprClass:
+ case Expr::CXXFoldExprClass:
+ return ICEDiag(IK_NotICE, E->getLocStart());
+
+ case Expr::InitListExprClass: {
+ // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
+ // form "T x = { a };" is equivalent to "T x = a;".
+ // Unless we're initializing a reference, T is a scalar as it is known to be
+ // of integral or enumeration type.
+ if (E->isRValue())
+ if (cast<InitListExpr>(E)->getNumInits() == 1)
+ return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx);
+ return ICEDiag(IK_NotICE, E->getLocStart());
+ }
+
+ case Expr::SizeOfPackExprClass:
+ case Expr::GNUNullExprClass:
+ // GCC considers the GNU __null value to be an integral constant expression.
+ return NoDiag();
+
+ case Expr::SubstNonTypeTemplateParmExprClass:
+ return
+ CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
+
+ case Expr::ParenExprClass:
+ return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
+ case Expr::GenericSelectionExprClass:
+ return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
+ case Expr::IntegerLiteralClass:
+ case Expr::CharacterLiteralClass:
+ case Expr::ObjCBoolLiteralExprClass:
+ case Expr::CXXBoolLiteralExprClass:
+ case Expr::CXXScalarValueInitExprClass:
+ case Expr::TypeTraitExprClass:
+ case Expr::ArrayTypeTraitExprClass:
+ case Expr::ExpressionTraitExprClass:
+ case Expr::CXXNoexceptExprClass:
+ return NoDiag();
+ case Expr::CallExprClass:
+ case Expr::CXXOperatorCallExprClass: {
+ // C99 6.6/3 allows function calls within unevaluated subexpressions of
+ // constant expressions, but they can never be ICEs because an ICE cannot
+ // contain an operand of (pointer to) function type.
+ const CallExpr *CE = cast<CallExpr>(E);
+ if (CE->getBuiltinCallee())
+ return CheckEvalInICE(E, Ctx);
+ return ICEDiag(IK_NotICE, E->getLocStart());
+ }
+ case Expr::DeclRefExprClass: {
+ if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
+ return NoDiag();
+ const ValueDecl *D = dyn_cast<ValueDecl>(cast<DeclRefExpr>(E)->getDecl());
+ if (Ctx.getLangOpts().CPlusPlus &&
+ D && IsConstNonVolatile(D->getType())) {
+ // Parameter variables are never constants. Without this check,
+ // getAnyInitializer() can find a default argument, which leads
+ // to chaos.
+ if (isa<ParmVarDecl>(D))
+ return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
+
+ // C++ 7.1.5.1p2
+ // A variable of non-volatile const-qualified integral or enumeration
+ // type initialized by an ICE can be used in ICEs.
+ if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
+ if (!Dcl->getType()->isIntegralOrEnumerationType())
+ return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
+
+ const VarDecl *VD;
+ // Look for a declaration of this variable that has an initializer, and
+ // check whether it is an ICE.
+ if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE())
+ return NoDiag();
+ else
+ return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
+ }
+ }
+ return ICEDiag(IK_NotICE, E->getLocStart());
+ }
+ case Expr::UnaryOperatorClass: {
+ const UnaryOperator *Exp = cast<UnaryOperator>(E);
+ switch (Exp->getOpcode()) {
+ case UO_PostInc:
+ case UO_PostDec:
+ case UO_PreInc:
+ case UO_PreDec:
+ case UO_AddrOf:
+ case UO_Deref:
+ // C99 6.6/3 allows increment and decrement within unevaluated
+ // subexpressions of constant expressions, but they can never be ICEs
+ // because an ICE cannot contain an lvalue operand.
+ return ICEDiag(IK_NotICE, E->getLocStart());
+ case UO_Extension:
+ case UO_LNot:
+ case UO_Plus:
+ case UO_Minus:
+ case UO_Not:
+ case UO_Real:
+ case UO_Imag:
+ return CheckICE(Exp->getSubExpr(), Ctx);
+ }
+
+ // OffsetOf falls through here.
+ }
+ case Expr::OffsetOfExprClass: {
+ // Note that per C99, offsetof must be an ICE. And AFAIK, using
+ // EvaluateAsRValue matches the proposed gcc behavior for cases like
+ // "offsetof(struct s{int x[4];}, x[1.0])". This doesn't affect
+ // compliance: we should warn earlier for offsetof expressions with
+ // array subscripts that aren't ICEs, and if the array subscripts
+ // are ICEs, the value of the offsetof must be an integer constant.
+ return CheckEvalInICE(E, Ctx);
+ }
+ case Expr::UnaryExprOrTypeTraitExprClass: {
+ const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
+ if ((Exp->getKind() == UETT_SizeOf) &&
+ Exp->getTypeOfArgument()->isVariableArrayType())
+ return ICEDiag(IK_NotICE, E->getLocStart());
+ return NoDiag();
+ }
+ case Expr::BinaryOperatorClass: {
+ const BinaryOperator *Exp = cast<BinaryOperator>(E);
+ switch (Exp->getOpcode()) {
+ case BO_PtrMemD:
+ case BO_PtrMemI:
+ case BO_Assign:
+ case BO_MulAssign:
+ case BO_DivAssign:
+ case BO_RemAssign:
+ case BO_AddAssign:
+ case BO_SubAssign:
+ case BO_ShlAssign:
+ case BO_ShrAssign:
+ case BO_AndAssign:
+ case BO_XorAssign:
+ case BO_OrAssign:
+ // C99 6.6/3 allows assignments within unevaluated subexpressions of
+ // constant expressions, but they can never be ICEs because an ICE cannot
+ // contain an lvalue operand.
+ return ICEDiag(IK_NotICE, E->getLocStart());
+
+ case BO_Mul:
+ case BO_Div:
+ case BO_Rem:
+ case BO_Add:
+ case BO_Sub:
+ case BO_Shl:
+ case BO_Shr:
+ case BO_LT:
+ case BO_GT:
+ case BO_LE:
+ case BO_GE:
+ case BO_EQ:
+ case BO_NE:
+ case BO_And:
+ case BO_Xor:
+ case BO_Or:
+ case BO_Comma: {
+ ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
+ ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
+ if (Exp->getOpcode() == BO_Div ||
+ Exp->getOpcode() == BO_Rem) {
+ // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
+ // we don't evaluate one.
+ if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
+ llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
+ if (REval == 0)
+ return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
+ if (REval.isSigned() && REval.isAllOnesValue()) {
+ llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
+ if (LEval.isMinSignedValue())
+ return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
+ }
+ }
+ }
+ if (Exp->getOpcode() == BO_Comma) {
+ if (Ctx.getLangOpts().C99) {
+ // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
+ // if it isn't evaluated.
+ if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
+ return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
+ } else {
+ // In both C89 and C++, commas in ICEs are illegal.
+ return ICEDiag(IK_NotICE, E->getLocStart());
+ }
+ }
+ return Worst(LHSResult, RHSResult);
+ }
+ case BO_LAnd:
+ case BO_LOr: {
+ ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
+ ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
+ if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
+ // Rare case where the RHS has a comma "side-effect"; we need
+ // to actually check the condition to see whether the side
+ // with the comma is evaluated.
+ if ((Exp->getOpcode() == BO_LAnd) !=
+ (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
+ return RHSResult;
+ return NoDiag();
+ }
+
+ return Worst(LHSResult, RHSResult);
+ }
+ }
+ }
+ case Expr::ImplicitCastExprClass:
+ case Expr::CStyleCastExprClass:
+ case Expr::CXXFunctionalCastExprClass:
+ case Expr::CXXStaticCastExprClass:
+ case Expr::CXXReinterpretCastExprClass:
+ case Expr::CXXConstCastExprClass:
+ case Expr::ObjCBridgedCastExprClass: {
+ const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
+ if (isa<ExplicitCastExpr>(E)) {
+ if (const FloatingLiteral *FL
+ = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
+ unsigned DestWidth = Ctx.getIntWidth(E->getType());
+ bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
+ APSInt IgnoredVal(DestWidth, !DestSigned);
+ bool Ignored;
+ // If the value does not fit in the destination type, the behavior is
+ // undefined, so we are not required to treat it as a constant
+ // expression.
+ if (FL->getValue().convertToInteger(IgnoredVal,
+ llvm::APFloat::rmTowardZero,
+ &Ignored) & APFloat::opInvalidOp)
+ return ICEDiag(IK_NotICE, E->getLocStart());
+ return NoDiag();
+ }
+ }
+ switch (cast<CastExpr>(E)->getCastKind()) {
+ case CK_LValueToRValue:
+ case CK_AtomicToNonAtomic:
+ case CK_NonAtomicToAtomic:
+ case CK_NoOp:
+ case CK_IntegralToBoolean:
+ case CK_IntegralCast:
+ return CheckICE(SubExpr, Ctx);
+ default:
+ return ICEDiag(IK_NotICE, E->getLocStart());
+ }
+ }
+ case Expr::BinaryConditionalOperatorClass: {
+ const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
+ ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
+ if (CommonResult.Kind == IK_NotICE) return CommonResult;
+ ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
+ if (FalseResult.Kind == IK_NotICE) return FalseResult;
+ if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
+ if (FalseResult.Kind == IK_ICEIfUnevaluated &&
+ Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
+ return FalseResult;
+ }
+ case Expr::ConditionalOperatorClass: {
+ const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
+ // If the condition (ignoring parens) is a __builtin_constant_p call,
+ // then only the true side is actually considered in an integer constant
+ // expression, and it is fully evaluated. This is an important GNU
+ // extension. See GCC PR38377 for discussion.
+ if (const CallExpr *CallCE
+ = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
+ if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
+ return CheckEvalInICE(E, Ctx);
+ ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
+ if (CondResult.Kind == IK_NotICE)
+ return CondResult;
+
+ ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
+ ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
+
+ if (TrueResult.Kind == IK_NotICE)
+ return TrueResult;
+ if (FalseResult.Kind == IK_NotICE)
+ return FalseResult;
+ if (CondResult.Kind == IK_ICEIfUnevaluated)
+ return CondResult;
+ if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
+ return NoDiag();
+ // Rare case where the diagnostics depend on which side is evaluated
+ // Note that if we get here, CondResult is 0, and at least one of
+ // TrueResult and FalseResult is non-zero.
+ if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
+ return FalseResult;
+ return TrueResult;
+ }
+ case Expr::CXXDefaultArgExprClass:
+ return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
+ case Expr::CXXDefaultInitExprClass:
+ return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
+ case Expr::ChooseExprClass: {
+ return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
+ }
+ }
+
+ llvm_unreachable("Invalid StmtClass!");
+}
+
+/// Evaluate an expression as a C++11 integral constant expression.
+static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
+ const Expr *E,
+ llvm::APSInt *Value,
+ SourceLocation *Loc) {
+ if (!E->getType()->isIntegralOrEnumerationType()) {
+ if (Loc) *Loc = E->getExprLoc();
+ return false;
+ }
+
+ APValue Result;
+ if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
+ return false;
+
+ if (!Result.isInt()) {
+ if (Loc) *Loc = E->getExprLoc();
+ return false;
+ }
+
+ if (Value) *Value = Result.getInt();
+ return true;
+}
+
+bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
+ SourceLocation *Loc) const {
+ if (Ctx.getLangOpts().CPlusPlus11)
+ return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc);
+
+ ICEDiag D = CheckICE(this, Ctx);
+ if (D.Kind != IK_ICE) {
+ if (Loc) *Loc = D.Loc;
+ return false;
+ }
+ return true;
+}
+
+bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, const ASTContext &Ctx,
+ SourceLocation *Loc, bool isEvaluated) const {
+ if (Ctx.getLangOpts().CPlusPlus11)
+ return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc);
+
+ if (!isIntegerConstantExpr(Ctx, Loc))
+ return false;
+ if (!EvaluateAsInt(Value, Ctx))
+ llvm_unreachable("ICE cannot be evaluated!");
+ return true;
+}
+
+bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
+ return CheckICE(this, Ctx).Kind == IK_ICE;
+}
+
+bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
+ SourceLocation *Loc) const {
+ // We support this checking in C++98 mode in order to diagnose compatibility
+ // issues.
+ assert(Ctx.getLangOpts().CPlusPlus);
+
+ // Build evaluation settings.
+ Expr::EvalStatus Status;
+ SmallVector<PartialDiagnosticAt, 8> Diags;
+ Status.Diag = &Diags;
+ EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
+
+ APValue Scratch;
+ bool IsConstExpr = ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch);
+
+ if (!Diags.empty()) {
+ IsConstExpr = false;
+ if (Loc) *Loc = Diags[0].first;
+ } else if (!IsConstExpr) {
+ // FIXME: This shouldn't happen.
+ if (Loc) *Loc = getExprLoc();
+ }
+
+ return IsConstExpr;
+}
+
+bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
+ const FunctionDecl *Callee,
+ ArrayRef<const Expr*> Args) const {
+ Expr::EvalStatus Status;
+ EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
+
+ ArgVector ArgValues(Args.size());
+ for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
+ I != E; ++I) {
+ if ((*I)->isValueDependent() ||
+ !Evaluate(ArgValues[I - Args.begin()], Info, *I))
+ // If evaluation fails, throw away the argument entirely.
+ ArgValues[I - Args.begin()] = APValue();
+ if (Info.EvalStatus.HasSideEffects)
+ return false;
+ }
+
+ // Build fake call to Callee.
+ CallStackFrame Frame(Info, Callee->getLocation(), Callee, /*This*/nullptr,
+ ArgValues.data());
+ return Evaluate(Value, Info, this) && !Info.EvalStatus.HasSideEffects;
+}
+
+bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
+ SmallVectorImpl<
+ PartialDiagnosticAt> &Diags) {
+ // FIXME: It would be useful to check constexpr function templates, but at the
+ // moment the constant expression evaluator cannot cope with the non-rigorous
+ // ASTs which we build for dependent expressions.
+ if (FD->isDependentContext())
+ return true;
+
+ Expr::EvalStatus Status;
+ Status.Diag = &Diags;
+
+ EvalInfo Info(FD->getASTContext(), Status,
+ EvalInfo::EM_PotentialConstantExpression);
+
+ const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
+ const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr;
+
+ // Fabricate an arbitrary expression on the stack and pretend that it
+ // is a temporary being used as the 'this' pointer.
+ LValue This;
+ ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
+ This.set(&VIE, Info.CurrentCall->Index);
+
+ ArrayRef<const Expr*> Args;
+
+ SourceLocation Loc = FD->getLocation();
+
+ APValue Scratch;
+ if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
+ // Evaluate the call as a constant initializer, to allow the construction
+ // of objects of non-literal types.
+ Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
+ HandleConstructorCall(Loc, This, Args, CD, Info, Scratch);
+ } else
+ HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr,
+ Args, FD->getBody(), Info, Scratch);
+
+ return Diags.empty();
+}
+
+bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
+ const FunctionDecl *FD,
+ SmallVectorImpl<
+ PartialDiagnosticAt> &Diags) {
+ Expr::EvalStatus Status;
+ Status.Diag = &Diags;
+
+ EvalInfo Info(FD->getASTContext(), Status,
+ EvalInfo::EM_PotentialConstantExpressionUnevaluated);
+
+ // Fabricate a call stack frame to give the arguments a plausible cover story.
+ ArrayRef<const Expr*> Args;
+ ArgVector ArgValues(0);
+ bool Success = EvaluateArgs(Args, ArgValues, Info);
+ (void)Success;
+ assert(Success &&
+ "Failed to set up arguments for potential constant evaluation");
+ CallStackFrame Frame(Info, SourceLocation(), FD, nullptr, ArgValues.data());
+
+ APValue ResultScratch;
+ Evaluate(ResultScratch, Info, E);
+ return Diags.empty();
+}
OpenPOWER on IntegriCloud