summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/AST/ExprConstant.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/AST/ExprConstant.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/AST/ExprConstant.cpp3061
1 files changed, 3061 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/AST/ExprConstant.cpp b/contrib/llvm/tools/clang/lib/AST/ExprConstant.cpp
new file mode 100644
index 0000000..656bb99
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/ExprConstant.cpp
@@ -0,0 +1,3061 @@
+//===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Expr constant evaluator.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/APValue.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/CharUnits.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/AST/ASTDiagnostic.h"
+#include "clang/AST/Expr.h"
+#include "clang/Basic/Builtins.h"
+#include "clang/Basic/TargetInfo.h"
+#include "llvm/ADT/SmallString.h"
+#include <cstring>
+
+using namespace clang;
+using llvm::APSInt;
+using llvm::APFloat;
+
+/// EvalInfo - This is a private struct used by the evaluator to capture
+/// information about a subexpression as it is folded. It retains information
+/// about the AST context, but also maintains information about the folded
+/// expression.
+///
+/// If an expression could be evaluated, it is still possible it is not a C
+/// "integer constant expression" or constant expression. If not, this struct
+/// captures information about how and why not.
+///
+/// One bit of information passed *into* the request for constant folding
+/// indicates whether the subexpression is "evaluated" or not according to C
+/// rules. For example, the RHS of (0 && foo()) is not evaluated. We can
+/// evaluate the expression regardless of what the RHS is, but C only allows
+/// certain things in certain situations.
+struct EvalInfo {
+ const ASTContext &Ctx;
+
+ /// EvalResult - Contains information about the evaluation.
+ Expr::EvalResult &EvalResult;
+
+ llvm::DenseMap<const OpaqueValueExpr*, APValue> OpaqueValues;
+ const APValue *getOpaqueValue(const OpaqueValueExpr *e) {
+ llvm::DenseMap<const OpaqueValueExpr*, APValue>::iterator
+ i = OpaqueValues.find(e);
+ if (i == OpaqueValues.end()) return 0;
+ return &i->second;
+ }
+
+ EvalInfo(const ASTContext &ctx, Expr::EvalResult& evalresult)
+ : Ctx(ctx), EvalResult(evalresult) {}
+};
+
+namespace {
+ struct ComplexValue {
+ private:
+ bool IsInt;
+
+ public:
+ APSInt IntReal, IntImag;
+ APFloat FloatReal, FloatImag;
+
+ ComplexValue() : FloatReal(APFloat::Bogus), FloatImag(APFloat::Bogus) {}
+
+ void makeComplexFloat() { IsInt = false; }
+ bool isComplexFloat() const { return !IsInt; }
+ APFloat &getComplexFloatReal() { return FloatReal; }
+ APFloat &getComplexFloatImag() { return FloatImag; }
+
+ void makeComplexInt() { IsInt = true; }
+ bool isComplexInt() const { return IsInt; }
+ APSInt &getComplexIntReal() { return IntReal; }
+ APSInt &getComplexIntImag() { return IntImag; }
+
+ void moveInto(APValue &v) const {
+ if (isComplexFloat())
+ v = APValue(FloatReal, FloatImag);
+ else
+ v = APValue(IntReal, IntImag);
+ }
+ void setFrom(const APValue &v) {
+ assert(v.isComplexFloat() || v.isComplexInt());
+ if (v.isComplexFloat()) {
+ makeComplexFloat();
+ FloatReal = v.getComplexFloatReal();
+ FloatImag = v.getComplexFloatImag();
+ } else {
+ makeComplexInt();
+ IntReal = v.getComplexIntReal();
+ IntImag = v.getComplexIntImag();
+ }
+ }
+ };
+
+ struct LValue {
+ Expr *Base;
+ CharUnits Offset;
+
+ Expr *getLValueBase() { return Base; }
+ CharUnits getLValueOffset() { return Offset; }
+
+ void moveInto(APValue &v) const {
+ v = APValue(Base, Offset);
+ }
+ void setFrom(const APValue &v) {
+ assert(v.isLValue());
+ Base = v.getLValueBase();
+ Offset = v.getLValueOffset();
+ }
+ };
+}
+
+static bool Evaluate(EvalInfo &info, const Expr *E);
+static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info);
+static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info);
+static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
+static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
+ EvalInfo &Info);
+static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
+static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
+
+//===----------------------------------------------------------------------===//
+// Misc utilities
+//===----------------------------------------------------------------------===//
+
+static bool IsGlobalLValue(const Expr* E) {
+ if (!E) return true;
+
+ if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
+ if (isa<FunctionDecl>(DRE->getDecl()))
+ return true;
+ if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
+ return VD->hasGlobalStorage();
+ return false;
+ }
+
+ if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(E))
+ return CLE->isFileScope();
+
+ return true;
+}
+
+static bool EvalPointerValueAsBool(LValue& Value, bool& Result) {
+ const Expr* Base = Value.Base;
+
+ // A null base expression indicates a null pointer. These are always
+ // evaluatable, and they are false unless the offset is zero.
+ if (!Base) {
+ Result = !Value.Offset.isZero();
+ return true;
+ }
+
+ // Require the base expression to be a global l-value.
+ if (!IsGlobalLValue(Base)) return false;
+
+ // We have a non-null base expression. These are generally known to
+ // be true, but if it'a decl-ref to a weak symbol it can be null at
+ // runtime.
+ Result = true;
+
+ const DeclRefExpr* DeclRef = dyn_cast<DeclRefExpr>(Base);
+ if (!DeclRef)
+ return true;
+
+ // If it's a weak symbol, it isn't constant-evaluable.
+ const ValueDecl* Decl = DeclRef->getDecl();
+ if (Decl->hasAttr<WeakAttr>() ||
+ Decl->hasAttr<WeakRefAttr>() ||
+ Decl->hasAttr<WeakImportAttr>())
+ return false;
+
+ return true;
+}
+
+static bool HandleConversionToBool(const Expr* E, bool& Result,
+ EvalInfo &Info) {
+ if (E->getType()->isIntegralOrEnumerationType()) {
+ APSInt IntResult;
+ if (!EvaluateInteger(E, IntResult, Info))
+ return false;
+ Result = IntResult != 0;
+ return true;
+ } else if (E->getType()->isRealFloatingType()) {
+ APFloat FloatResult(0.0);
+ if (!EvaluateFloat(E, FloatResult, Info))
+ return false;
+ Result = !FloatResult.isZero();
+ return true;
+ } else if (E->getType()->hasPointerRepresentation()) {
+ LValue PointerResult;
+ if (!EvaluatePointer(E, PointerResult, Info))
+ return false;
+ return EvalPointerValueAsBool(PointerResult, Result);
+ } else if (E->getType()->isAnyComplexType()) {
+ ComplexValue ComplexResult;
+ if (!EvaluateComplex(E, ComplexResult, Info))
+ return false;
+ if (ComplexResult.isComplexFloat()) {
+ Result = !ComplexResult.getComplexFloatReal().isZero() ||
+ !ComplexResult.getComplexFloatImag().isZero();
+ } else {
+ Result = ComplexResult.getComplexIntReal().getBoolValue() ||
+ ComplexResult.getComplexIntImag().getBoolValue();
+ }
+ return true;
+ }
+
+ return false;
+}
+
+static APSInt HandleFloatToIntCast(QualType DestType, QualType SrcType,
+ APFloat &Value, const ASTContext &Ctx) {
+ unsigned DestWidth = Ctx.getIntWidth(DestType);
+ // Determine whether we are converting to unsigned or signed.
+ bool DestSigned = DestType->isSignedIntegerType();
+
+ // FIXME: Warning for overflow.
+ uint64_t Space[4];
+ bool ignored;
+ (void)Value.convertToInteger(Space, DestWidth, DestSigned,
+ llvm::APFloat::rmTowardZero, &ignored);
+ return APSInt(llvm::APInt(DestWidth, 4, Space), !DestSigned);
+}
+
+static APFloat HandleFloatToFloatCast(QualType DestType, QualType SrcType,
+ APFloat &Value, const ASTContext &Ctx) {
+ bool ignored;
+ APFloat Result = Value;
+ Result.convert(Ctx.getFloatTypeSemantics(DestType),
+ APFloat::rmNearestTiesToEven, &ignored);
+ return Result;
+}
+
+static APSInt HandleIntToIntCast(QualType DestType, QualType SrcType,
+ APSInt &Value, const ASTContext &Ctx) {
+ unsigned DestWidth = Ctx.getIntWidth(DestType);
+ APSInt Result = Value;
+ // Figure out if this is a truncate, extend or noop cast.
+ // If the input is signed, do a sign extend, noop, or truncate.
+ Result = Result.extOrTrunc(DestWidth);
+ Result.setIsUnsigned(DestType->isUnsignedIntegerType());
+ return Result;
+}
+
+static APFloat HandleIntToFloatCast(QualType DestType, QualType SrcType,
+ APSInt &Value, const ASTContext &Ctx) {
+
+ APFloat Result(Ctx.getFloatTypeSemantics(DestType), 1);
+ Result.convertFromAPInt(Value, Value.isSigned(),
+ APFloat::rmNearestTiesToEven);
+ return Result;
+}
+
+namespace {
+class HasSideEffect
+ : public StmtVisitor<HasSideEffect, bool> {
+ EvalInfo &Info;
+public:
+
+ HasSideEffect(EvalInfo &info) : Info(info) {}
+
+ // Unhandled nodes conservatively default to having side effects.
+ bool VisitStmt(Stmt *S) {
+ return true;
+ }
+
+ bool VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); }
+ bool VisitDeclRefExpr(DeclRefExpr *E) {
+ if (Info.Ctx.getCanonicalType(E->getType()).isVolatileQualified())
+ return true;
+ return false;
+ }
+ // We don't want to evaluate BlockExprs multiple times, as they generate
+ // a ton of code.
+ bool VisitBlockExpr(BlockExpr *E) { return true; }
+ bool VisitPredefinedExpr(PredefinedExpr *E) { return false; }
+ bool VisitCompoundLiteralExpr(CompoundLiteralExpr *E)
+ { return Visit(E->getInitializer()); }
+ bool VisitMemberExpr(MemberExpr *E) { return Visit(E->getBase()); }
+ bool VisitIntegerLiteral(IntegerLiteral *E) { return false; }
+ bool VisitFloatingLiteral(FloatingLiteral *E) { return false; }
+ bool VisitStringLiteral(StringLiteral *E) { return false; }
+ bool VisitCharacterLiteral(CharacterLiteral *E) { return false; }
+ bool VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E) { return false; }
+ bool VisitArraySubscriptExpr(ArraySubscriptExpr *E)
+ { return Visit(E->getLHS()) || Visit(E->getRHS()); }
+ bool VisitChooseExpr(ChooseExpr *E)
+ { return Visit(E->getChosenSubExpr(Info.Ctx)); }
+ bool VisitCastExpr(CastExpr *E) { return Visit(E->getSubExpr()); }
+ bool VisitBinAssign(BinaryOperator *E) { return true; }
+ bool VisitCompoundAssignOperator(BinaryOperator *E) { return true; }
+ bool VisitBinaryOperator(BinaryOperator *E)
+ { return Visit(E->getLHS()) || Visit(E->getRHS()); }
+ bool VisitUnaryPreInc(UnaryOperator *E) { return true; }
+ bool VisitUnaryPostInc(UnaryOperator *E) { return true; }
+ bool VisitUnaryPreDec(UnaryOperator *E) { return true; }
+ bool VisitUnaryPostDec(UnaryOperator *E) { return true; }
+ bool VisitUnaryDeref(UnaryOperator *E) {
+ if (Info.Ctx.getCanonicalType(E->getType()).isVolatileQualified())
+ return true;
+ return Visit(E->getSubExpr());
+ }
+ bool VisitUnaryOperator(UnaryOperator *E) { return Visit(E->getSubExpr()); }
+
+ // Has side effects if any element does.
+ bool VisitInitListExpr(InitListExpr *E) {
+ for (unsigned i = 0, e = E->getNumInits(); i != e; ++i)
+ if (Visit(E->getInit(i))) return true;
+ return false;
+ }
+
+ bool VisitSizeOfPackExpr(SizeOfPackExpr *) { return false; }
+};
+
+class OpaqueValueEvaluation {
+ EvalInfo &info;
+ OpaqueValueExpr *opaqueValue;
+
+public:
+ OpaqueValueEvaluation(EvalInfo &info, OpaqueValueExpr *opaqueValue,
+ Expr *value)
+ : info(info), opaqueValue(opaqueValue) {
+
+ // If evaluation fails, fail immediately.
+ if (!Evaluate(info, value)) {
+ this->opaqueValue = 0;
+ return;
+ }
+ info.OpaqueValues[opaqueValue] = info.EvalResult.Val;
+ }
+
+ bool hasError() const { return opaqueValue == 0; }
+
+ ~OpaqueValueEvaluation() {
+ if (opaqueValue) info.OpaqueValues.erase(opaqueValue);
+ }
+};
+
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// LValue Evaluation
+//===----------------------------------------------------------------------===//
+namespace {
+class LValueExprEvaluator
+ : public StmtVisitor<LValueExprEvaluator, bool> {
+ EvalInfo &Info;
+ LValue &Result;
+
+ bool Success(Expr *E) {
+ Result.Base = E;
+ Result.Offset = CharUnits::Zero();
+ return true;
+ }
+public:
+
+ LValueExprEvaluator(EvalInfo &info, LValue &Result) :
+ Info(info), Result(Result) {}
+
+ bool VisitStmt(Stmt *S) {
+ return false;
+ }
+
+ bool VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); }
+ bool VisitDeclRefExpr(DeclRefExpr *E);
+ bool VisitPredefinedExpr(PredefinedExpr *E) { return Success(E); }
+ bool VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
+ bool VisitMemberExpr(MemberExpr *E);
+ bool VisitStringLiteral(StringLiteral *E) { return Success(E); }
+ bool VisitObjCEncodeExpr(ObjCEncodeExpr *E) { return Success(E); }
+ bool VisitArraySubscriptExpr(ArraySubscriptExpr *E);
+ bool VisitUnaryDeref(UnaryOperator *E);
+ bool VisitUnaryExtension(const UnaryOperator *E)
+ { return Visit(E->getSubExpr()); }
+ bool VisitChooseExpr(const ChooseExpr *E)
+ { return Visit(E->getChosenSubExpr(Info.Ctx)); }
+
+ bool VisitCastExpr(CastExpr *E) {
+ switch (E->getCastKind()) {
+ default:
+ return false;
+
+ case CK_NoOp:
+ return Visit(E->getSubExpr());
+ }
+ }
+ // FIXME: Missing: __real__, __imag__
+};
+} // end anonymous namespace
+
+static bool EvaluateLValue(const Expr* E, LValue& Result, EvalInfo &Info) {
+ return LValueExprEvaluator(Info, Result).Visit(const_cast<Expr*>(E));
+}
+
+bool LValueExprEvaluator::VisitDeclRefExpr(DeclRefExpr *E) {
+ if (isa<FunctionDecl>(E->getDecl())) {
+ return Success(E);
+ } else if (VarDecl* VD = dyn_cast<VarDecl>(E->getDecl())) {
+ if (!VD->getType()->isReferenceType())
+ return Success(E);
+ // Reference parameters can refer to anything even if they have an
+ // "initializer" in the form of a default argument.
+ if (isa<ParmVarDecl>(VD))
+ return false;
+ // FIXME: Check whether VD might be overridden!
+ if (const Expr *Init = VD->getAnyInitializer())
+ return Visit(const_cast<Expr *>(Init));
+ }
+
+ return false;
+}
+
+bool LValueExprEvaluator::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
+ return Success(E);
+}
+
+bool LValueExprEvaluator::VisitMemberExpr(MemberExpr *E) {
+ QualType Ty;
+ if (E->isArrow()) {
+ if (!EvaluatePointer(E->getBase(), Result, Info))
+ return false;
+ Ty = E->getBase()->getType()->getAs<PointerType>()->getPointeeType();
+ } else {
+ if (!Visit(E->getBase()))
+ return false;
+ Ty = E->getBase()->getType();
+ }
+
+ RecordDecl *RD = Ty->getAs<RecordType>()->getDecl();
+ const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
+
+ FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
+ if (!FD) // FIXME: deal with other kinds of member expressions
+ return false;
+
+ if (FD->getType()->isReferenceType())
+ return false;
+
+ // FIXME: This is linear time.
+ unsigned i = 0;
+ for (RecordDecl::field_iterator Field = RD->field_begin(),
+ FieldEnd = RD->field_end();
+ Field != FieldEnd; (void)++Field, ++i) {
+ if (*Field == FD)
+ break;
+ }
+
+ Result.Offset += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
+ return true;
+}
+
+bool LValueExprEvaluator::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
+ if (!EvaluatePointer(E->getBase(), Result, Info))
+ return false;
+
+ APSInt Index;
+ if (!EvaluateInteger(E->getIdx(), Index, Info))
+ return false;
+
+ CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(E->getType());
+ Result.Offset += Index.getSExtValue() * ElementSize;
+ return true;
+}
+
+bool LValueExprEvaluator::VisitUnaryDeref(UnaryOperator *E) {
+ return EvaluatePointer(E->getSubExpr(), Result, Info);
+}
+
+//===----------------------------------------------------------------------===//
+// Pointer Evaluation
+//===----------------------------------------------------------------------===//
+
+namespace {
+class PointerExprEvaluator
+ : public StmtVisitor<PointerExprEvaluator, bool> {
+ EvalInfo &Info;
+ LValue &Result;
+
+ bool Success(Expr *E) {
+ Result.Base = E;
+ Result.Offset = CharUnits::Zero();
+ return true;
+ }
+public:
+
+ PointerExprEvaluator(EvalInfo &info, LValue &Result)
+ : Info(info), Result(Result) {}
+
+ bool VisitStmt(Stmt *S) {
+ return false;
+ }
+
+ bool VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); }
+
+ bool VisitBinaryOperator(const BinaryOperator *E);
+ bool VisitCastExpr(CastExpr* E);
+ bool VisitUnaryExtension(const UnaryOperator *E)
+ { return Visit(E->getSubExpr()); }
+ bool VisitUnaryAddrOf(const UnaryOperator *E);
+ bool VisitObjCStringLiteral(ObjCStringLiteral *E)
+ { return Success(E); }
+ bool VisitAddrLabelExpr(AddrLabelExpr *E)
+ { return Success(E); }
+ bool VisitCallExpr(CallExpr *E);
+ bool VisitBlockExpr(BlockExpr *E) {
+ if (!E->getBlockDecl()->hasCaptures())
+ return Success(E);
+ return false;
+ }
+ bool VisitImplicitValueInitExpr(ImplicitValueInitExpr *E)
+ { return Success((Expr*)0); }
+ bool VisitBinaryConditionalOperator(BinaryConditionalOperator *E);
+ bool VisitConditionalOperator(ConditionalOperator *E);
+ bool VisitChooseExpr(ChooseExpr *E)
+ { return Visit(E->getChosenSubExpr(Info.Ctx)); }
+ bool VisitCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr *E)
+ { return Success((Expr*)0); }
+
+ bool VisitOpaqueValueExpr(OpaqueValueExpr *E);
+ // FIXME: Missing: @protocol, @selector
+};
+} // end anonymous namespace
+
+static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info) {
+ assert(E->getType()->hasPointerRepresentation());
+ return PointerExprEvaluator(Info, Result).Visit(const_cast<Expr*>(E));
+}
+
+bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
+ if (E->getOpcode() != BO_Add &&
+ E->getOpcode() != BO_Sub)
+ return false;
+
+ const Expr *PExp = E->getLHS();
+ const Expr *IExp = E->getRHS();
+ if (IExp->getType()->isPointerType())
+ std::swap(PExp, IExp);
+
+ if (!EvaluatePointer(PExp, Result, Info))
+ return false;
+
+ llvm::APSInt Offset;
+ if (!EvaluateInteger(IExp, Offset, Info))
+ return false;
+ int64_t AdditionalOffset
+ = Offset.isSigned() ? Offset.getSExtValue()
+ : static_cast<int64_t>(Offset.getZExtValue());
+
+ // Compute the new offset in the appropriate width.
+
+ QualType PointeeType =
+ PExp->getType()->getAs<PointerType>()->getPointeeType();
+ CharUnits SizeOfPointee;
+
+ // Explicitly handle GNU void* and function pointer arithmetic extensions.
+ if (PointeeType->isVoidType() || PointeeType->isFunctionType())
+ SizeOfPointee = CharUnits::One();
+ else
+ SizeOfPointee = Info.Ctx.getTypeSizeInChars(PointeeType);
+
+ if (E->getOpcode() == BO_Add)
+ Result.Offset += AdditionalOffset * SizeOfPointee;
+ else
+ Result.Offset -= AdditionalOffset * SizeOfPointee;
+
+ return true;
+}
+
+bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
+ return EvaluateLValue(E->getSubExpr(), Result, Info);
+}
+
+
+bool PointerExprEvaluator::VisitCastExpr(CastExpr* E) {
+ Expr* SubExpr = E->getSubExpr();
+
+ switch (E->getCastKind()) {
+ default:
+ break;
+
+ case CK_NoOp:
+ case CK_BitCast:
+ case CK_LValueBitCast:
+ case CK_AnyPointerToObjCPointerCast:
+ case CK_AnyPointerToBlockPointerCast:
+ return Visit(SubExpr);
+
+ case CK_DerivedToBase:
+ case CK_UncheckedDerivedToBase: {
+ LValue BaseLV;
+ if (!EvaluatePointer(E->getSubExpr(), BaseLV, Info))
+ return false;
+
+ // Now figure out the necessary offset to add to the baseLV to get from
+ // the derived class to the base class.
+ CharUnits Offset = CharUnits::Zero();
+
+ QualType Ty = E->getSubExpr()->getType();
+ const CXXRecordDecl *DerivedDecl =
+ Ty->getAs<PointerType>()->getPointeeType()->getAsCXXRecordDecl();
+
+ for (CastExpr::path_const_iterator PathI = E->path_begin(),
+ PathE = E->path_end(); PathI != PathE; ++PathI) {
+ const CXXBaseSpecifier *Base = *PathI;
+
+ // FIXME: If the base is virtual, we'd need to determine the type of the
+ // most derived class and we don't support that right now.
+ if (Base->isVirtual())
+ return false;
+
+ const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
+ const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
+
+ Offset += Layout.getBaseClassOffset(BaseDecl);
+ DerivedDecl = BaseDecl;
+ }
+
+ Result.Base = BaseLV.getLValueBase();
+ Result.Offset = BaseLV.getLValueOffset() + Offset;
+ return true;
+ }
+
+ case CK_NullToPointer: {
+ Result.Base = 0;
+ Result.Offset = CharUnits::Zero();
+ return true;
+ }
+
+ case CK_IntegralToPointer: {
+ APValue Value;
+ if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
+ break;
+
+ if (Value.isInt()) {
+ Value.getInt() = Value.getInt().extOrTrunc((unsigned)Info.Ctx.getTypeSize(E->getType()));
+ Result.Base = 0;
+ Result.Offset = CharUnits::fromQuantity(Value.getInt().getZExtValue());
+ return true;
+ } else {
+ // Cast is of an lvalue, no need to change value.
+ Result.Base = Value.getLValueBase();
+ Result.Offset = Value.getLValueOffset();
+ return true;
+ }
+ }
+ case CK_ArrayToPointerDecay:
+ case CK_FunctionToPointerDecay:
+ return EvaluateLValue(SubExpr, Result, Info);
+ }
+
+ return false;
+}
+
+bool PointerExprEvaluator::VisitCallExpr(CallExpr *E) {
+ if (E->isBuiltinCall(Info.Ctx) ==
+ Builtin::BI__builtin___CFStringMakeConstantString ||
+ E->isBuiltinCall(Info.Ctx) ==
+ Builtin::BI__builtin___NSStringMakeConstantString)
+ return Success(E);
+ return false;
+}
+
+bool PointerExprEvaluator::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
+ const APValue *value = Info.getOpaqueValue(e);
+ if (!value)
+ return (e->getSourceExpr() ? Visit(e->getSourceExpr()) : false);
+ Result.setFrom(*value);
+ return true;
+}
+
+bool PointerExprEvaluator::
+VisitBinaryConditionalOperator(BinaryConditionalOperator *e) {
+ OpaqueValueEvaluation opaque(Info, e->getOpaqueValue(), e->getCommon());
+ if (opaque.hasError()) return false;
+
+ bool cond;
+ if (!HandleConversionToBool(e->getCond(), cond, Info))
+ return false;
+
+ return Visit(cond ? e->getTrueExpr() : e->getFalseExpr());
+}
+
+bool PointerExprEvaluator::VisitConditionalOperator(ConditionalOperator *E) {
+ bool BoolResult;
+ if (!HandleConversionToBool(E->getCond(), BoolResult, Info))
+ return false;
+
+ Expr* EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
+ return Visit(EvalExpr);
+}
+
+//===----------------------------------------------------------------------===//
+// Vector Evaluation
+//===----------------------------------------------------------------------===//
+
+namespace {
+ class VectorExprEvaluator
+ : public StmtVisitor<VectorExprEvaluator, APValue> {
+ EvalInfo &Info;
+ APValue GetZeroVector(QualType VecType);
+ public:
+
+ VectorExprEvaluator(EvalInfo &info) : Info(info) {}
+
+ APValue VisitStmt(Stmt *S) {
+ return APValue();
+ }
+
+ APValue VisitParenExpr(ParenExpr *E)
+ { return Visit(E->getSubExpr()); }
+ APValue VisitUnaryExtension(const UnaryOperator *E)
+ { return Visit(E->getSubExpr()); }
+ APValue VisitUnaryPlus(const UnaryOperator *E)
+ { return Visit(E->getSubExpr()); }
+ APValue VisitUnaryReal(const UnaryOperator *E)
+ { return Visit(E->getSubExpr()); }
+ APValue VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E)
+ { return GetZeroVector(E->getType()); }
+ APValue VisitCastExpr(const CastExpr* E);
+ APValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
+ APValue VisitInitListExpr(const InitListExpr *E);
+ APValue VisitConditionalOperator(const ConditionalOperator *E);
+ APValue VisitChooseExpr(const ChooseExpr *E)
+ { return Visit(E->getChosenSubExpr(Info.Ctx)); }
+ APValue VisitUnaryImag(const UnaryOperator *E);
+ // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
+ // binary comparisons, binary and/or/xor,
+ // shufflevector, ExtVectorElementExpr
+ // (Note that these require implementing conversions
+ // between vector types.)
+ };
+} // end anonymous namespace
+
+static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
+ if (!E->getType()->isVectorType())
+ return false;
+ Result = VectorExprEvaluator(Info).Visit(const_cast<Expr*>(E));
+ return !Result.isUninit();
+}
+
+APValue VectorExprEvaluator::VisitCastExpr(const CastExpr* E) {
+ const VectorType *VTy = E->getType()->getAs<VectorType>();
+ QualType EltTy = VTy->getElementType();
+ unsigned NElts = VTy->getNumElements();
+ unsigned EltWidth = Info.Ctx.getTypeSize(EltTy);
+
+ const Expr* SE = E->getSubExpr();
+ QualType SETy = SE->getType();
+ APValue Result = APValue();
+
+ // Check for vector->vector bitcast and scalar->vector splat.
+ if (SETy->isVectorType()) {
+ return this->Visit(const_cast<Expr*>(SE));
+ } else if (SETy->isIntegerType()) {
+ APSInt IntResult;
+ if (!EvaluateInteger(SE, IntResult, Info))
+ return APValue();
+ Result = APValue(IntResult);
+ } else if (SETy->isRealFloatingType()) {
+ APFloat F(0.0);
+ if (!EvaluateFloat(SE, F, Info))
+ return APValue();
+ Result = APValue(F);
+ } else
+ return APValue();
+
+ // For casts of a scalar to ExtVector, convert the scalar to the element type
+ // and splat it to all elements.
+ if (E->getType()->isExtVectorType()) {
+ if (EltTy->isIntegerType() && Result.isInt())
+ Result = APValue(HandleIntToIntCast(EltTy, SETy, Result.getInt(),
+ Info.Ctx));
+ else if (EltTy->isIntegerType())
+ Result = APValue(HandleFloatToIntCast(EltTy, SETy, Result.getFloat(),
+ Info.Ctx));
+ else if (EltTy->isRealFloatingType() && Result.isInt())
+ Result = APValue(HandleIntToFloatCast(EltTy, SETy, Result.getInt(),
+ Info.Ctx));
+ else if (EltTy->isRealFloatingType())
+ Result = APValue(HandleFloatToFloatCast(EltTy, SETy, Result.getFloat(),
+ Info.Ctx));
+ else
+ return APValue();
+
+ // Splat and create vector APValue.
+ llvm::SmallVector<APValue, 4> Elts(NElts, Result);
+ return APValue(&Elts[0], Elts.size());
+ }
+
+ // For casts of a scalar to regular gcc-style vector type, bitcast the scalar
+ // to the vector. To construct the APValue vector initializer, bitcast the
+ // initializing value to an APInt, and shift out the bits pertaining to each
+ // element.
+ APSInt Init;
+ Init = Result.isInt() ? Result.getInt() : Result.getFloat().bitcastToAPInt();
+
+ llvm::SmallVector<APValue, 4> Elts;
+ for (unsigned i = 0; i != NElts; ++i) {
+ APSInt Tmp = Init.extOrTrunc(EltWidth);
+
+ if (EltTy->isIntegerType())
+ Elts.push_back(APValue(Tmp));
+ else if (EltTy->isRealFloatingType())
+ Elts.push_back(APValue(APFloat(Tmp)));
+ else
+ return APValue();
+
+ Init >>= EltWidth;
+ }
+ return APValue(&Elts[0], Elts.size());
+}
+
+APValue
+VectorExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
+ return this->Visit(const_cast<Expr*>(E->getInitializer()));
+}
+
+APValue
+VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
+ const VectorType *VT = E->getType()->getAs<VectorType>();
+ unsigned NumInits = E->getNumInits();
+ unsigned NumElements = VT->getNumElements();
+
+ QualType EltTy = VT->getElementType();
+ llvm::SmallVector<APValue, 4> Elements;
+
+ // If a vector is initialized with a single element, that value
+ // becomes every element of the vector, not just the first.
+ // This is the behavior described in the IBM AltiVec documentation.
+ if (NumInits == 1) {
+ APValue InitValue;
+ if (EltTy->isIntegerType()) {
+ llvm::APSInt sInt(32);
+ if (!EvaluateInteger(E->getInit(0), sInt, Info))
+ return APValue();
+ InitValue = APValue(sInt);
+ } else {
+ llvm::APFloat f(0.0);
+ if (!EvaluateFloat(E->getInit(0), f, Info))
+ return APValue();
+ InitValue = APValue(f);
+ }
+ for (unsigned i = 0; i < NumElements; i++) {
+ Elements.push_back(InitValue);
+ }
+ } else {
+ for (unsigned i = 0; i < NumElements; i++) {
+ if (EltTy->isIntegerType()) {
+ llvm::APSInt sInt(32);
+ if (i < NumInits) {
+ if (!EvaluateInteger(E->getInit(i), sInt, Info))
+ return APValue();
+ } else {
+ sInt = Info.Ctx.MakeIntValue(0, EltTy);
+ }
+ Elements.push_back(APValue(sInt));
+ } else {
+ llvm::APFloat f(0.0);
+ if (i < NumInits) {
+ if (!EvaluateFloat(E->getInit(i), f, Info))
+ return APValue();
+ } else {
+ f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
+ }
+ Elements.push_back(APValue(f));
+ }
+ }
+ }
+ return APValue(&Elements[0], Elements.size());
+}
+
+APValue
+VectorExprEvaluator::GetZeroVector(QualType T) {
+ const VectorType *VT = T->getAs<VectorType>();
+ QualType EltTy = VT->getElementType();
+ APValue ZeroElement;
+ if (EltTy->isIntegerType())
+ ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
+ else
+ ZeroElement =
+ APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
+
+ llvm::SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
+ return APValue(&Elements[0], Elements.size());
+}
+
+APValue VectorExprEvaluator::VisitConditionalOperator(const ConditionalOperator *E) {
+ bool BoolResult;
+ if (!HandleConversionToBool(E->getCond(), BoolResult, Info))
+ return APValue();
+
+ Expr* EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
+
+ APValue Result;
+ if (EvaluateVector(EvalExpr, Result, Info))
+ return Result;
+ return APValue();
+}
+
+APValue VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
+ if (!E->getSubExpr()->isEvaluatable(Info.Ctx))
+ Info.EvalResult.HasSideEffects = true;
+ return GetZeroVector(E->getType());
+}
+
+//===----------------------------------------------------------------------===//
+// Integer Evaluation
+//===----------------------------------------------------------------------===//
+
+namespace {
+class IntExprEvaluator
+ : public StmtVisitor<IntExprEvaluator, bool> {
+ EvalInfo &Info;
+ APValue &Result;
+public:
+ IntExprEvaluator(EvalInfo &info, APValue &result)
+ : Info(info), Result(result) {}
+
+ bool Success(const llvm::APSInt &SI, const Expr *E) {
+ assert(E->getType()->isIntegralOrEnumerationType() &&
+ "Invalid evaluation result.");
+ assert(SI.isSigned() == E->getType()->isSignedIntegerType() &&
+ "Invalid evaluation result.");
+ assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
+ "Invalid evaluation result.");
+ Result = APValue(SI);
+ return true;
+ }
+
+ bool Success(const llvm::APInt &I, const Expr *E) {
+ assert(E->getType()->isIntegralOrEnumerationType() &&
+ "Invalid evaluation result.");
+ assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
+ "Invalid evaluation result.");
+ Result = APValue(APSInt(I));
+ Result.getInt().setIsUnsigned(E->getType()->isUnsignedIntegerType());
+ return true;
+ }
+
+ bool Success(uint64_t Value, const Expr *E) {
+ assert(E->getType()->isIntegralOrEnumerationType() &&
+ "Invalid evaluation result.");
+ Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
+ return true;
+ }
+
+ bool Error(SourceLocation L, diag::kind D, const Expr *E) {
+ // Take the first error.
+ if (Info.EvalResult.Diag == 0) {
+ Info.EvalResult.DiagLoc = L;
+ Info.EvalResult.Diag = D;
+ Info.EvalResult.DiagExpr = E;
+ }
+ return false;
+ }
+
+ //===--------------------------------------------------------------------===//
+ // Visitor Methods
+ //===--------------------------------------------------------------------===//
+
+ bool VisitStmt(Stmt *) {
+ assert(0 && "This should be called on integers, stmts are not integers");
+ return false;
+ }
+
+ bool VisitExpr(Expr *E) {
+ return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E);
+ }
+
+ bool VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); }
+
+ bool VisitIntegerLiteral(const IntegerLiteral *E) {
+ return Success(E->getValue(), E);
+ }
+ bool VisitCharacterLiteral(const CharacterLiteral *E) {
+ return Success(E->getValue(), E);
+ }
+
+ bool VisitOpaqueValueExpr(OpaqueValueExpr *e) {
+ const APValue *value = Info.getOpaqueValue(e);
+ if (!value) {
+ if (e->getSourceExpr()) return Visit(e->getSourceExpr());
+ return Error(e->getExprLoc(), diag::note_invalid_subexpr_in_ice, e);
+ }
+ return Success(value->getInt(), e);
+ }
+
+ bool CheckReferencedDecl(const Expr *E, const Decl *D);
+ bool VisitDeclRefExpr(const DeclRefExpr *E) {
+ return CheckReferencedDecl(E, E->getDecl());
+ }
+ bool VisitMemberExpr(const MemberExpr *E) {
+ if (CheckReferencedDecl(E, E->getMemberDecl())) {
+ // Conservatively assume a MemberExpr will have side-effects
+ Info.EvalResult.HasSideEffects = true;
+ return true;
+ }
+ return false;
+ }
+
+ bool VisitCallExpr(CallExpr *E);
+ bool VisitBinaryOperator(const BinaryOperator *E);
+ bool VisitOffsetOfExpr(const OffsetOfExpr *E);
+ bool VisitUnaryOperator(const UnaryOperator *E);
+ bool VisitConditionalOperator(const ConditionalOperator *E);
+ bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E);
+
+ bool VisitCastExpr(CastExpr* E);
+ bool VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
+
+ bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
+ return Success(E->getValue(), E);
+ }
+
+ bool VisitGNUNullExpr(const GNUNullExpr *E) {
+ return Success(0, E);
+ }
+
+ bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
+ return Success(0, E);
+ }
+
+ bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
+ return Success(0, E);
+ }
+
+ bool VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
+ return Success(E->getValue(), E);
+ }
+
+ bool VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
+ return Success(E->getValue(), E);
+ }
+
+ bool VisitChooseExpr(const ChooseExpr *E) {
+ return Visit(E->getChosenSubExpr(Info.Ctx));
+ }
+
+ bool VisitUnaryReal(const UnaryOperator *E);
+ bool VisitUnaryImag(const UnaryOperator *E);
+
+ bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
+ bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
+
+private:
+ CharUnits GetAlignOfExpr(const Expr *E);
+ CharUnits GetAlignOfType(QualType T);
+ static QualType GetObjectType(const Expr *E);
+ bool TryEvaluateBuiltinObjectSize(CallExpr *E);
+ // FIXME: Missing: array subscript of vector, member of vector
+};
+} // end anonymous namespace
+
+static bool EvaluateIntegerOrLValue(const Expr* E, APValue &Result, EvalInfo &Info) {
+ assert(E->getType()->isIntegralOrEnumerationType());
+ return IntExprEvaluator(Info, Result).Visit(const_cast<Expr*>(E));
+}
+
+static bool EvaluateInteger(const Expr* E, APSInt &Result, EvalInfo &Info) {
+ assert(E->getType()->isIntegralOrEnumerationType());
+
+ APValue Val;
+ if (!EvaluateIntegerOrLValue(E, Val, Info) || !Val.isInt())
+ return false;
+ Result = Val.getInt();
+ return true;
+}
+
+bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
+ // Enums are integer constant exprs.
+ if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D))
+ return Success(ECD->getInitVal(), E);
+
+ // In C++, const, non-volatile integers initialized with ICEs are ICEs.
+ // In C, they can also be folded, although they are not ICEs.
+ if (Info.Ctx.getCanonicalType(E->getType()).getCVRQualifiers()
+ == Qualifiers::Const) {
+
+ if (isa<ParmVarDecl>(D))
+ return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E);
+
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
+ if (const Expr *Init = VD->getAnyInitializer()) {
+ if (APValue *V = VD->getEvaluatedValue()) {
+ if (V->isInt())
+ return Success(V->getInt(), E);
+ return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E);
+ }
+
+ if (VD->isEvaluatingValue())
+ return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E);
+
+ VD->setEvaluatingValue();
+
+ Expr::EvalResult EResult;
+ if (Init->Evaluate(EResult, Info.Ctx) && !EResult.HasSideEffects &&
+ EResult.Val.isInt()) {
+ // Cache the evaluated value in the variable declaration.
+ Result = EResult.Val;
+ VD->setEvaluatedValue(Result);
+ return true;
+ }
+
+ VD->setEvaluatedValue(APValue());
+ }
+ }
+ }
+
+ // Otherwise, random variable references are not constants.
+ return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E);
+}
+
+/// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
+/// as GCC.
+static int EvaluateBuiltinClassifyType(const CallExpr *E) {
+ // The following enum mimics the values returned by GCC.
+ // FIXME: Does GCC differ between lvalue and rvalue references here?
+ enum gcc_type_class {
+ no_type_class = -1,
+ void_type_class, integer_type_class, char_type_class,
+ enumeral_type_class, boolean_type_class,
+ pointer_type_class, reference_type_class, offset_type_class,
+ real_type_class, complex_type_class,
+ function_type_class, method_type_class,
+ record_type_class, union_type_class,
+ array_type_class, string_type_class,
+ lang_type_class
+ };
+
+ // If no argument was supplied, default to "no_type_class". This isn't
+ // ideal, however it is what gcc does.
+ if (E->getNumArgs() == 0)
+ return no_type_class;
+
+ QualType ArgTy = E->getArg(0)->getType();
+ if (ArgTy->isVoidType())
+ return void_type_class;
+ else if (ArgTy->isEnumeralType())
+ return enumeral_type_class;
+ else if (ArgTy->isBooleanType())
+ return boolean_type_class;
+ else if (ArgTy->isCharType())
+ return string_type_class; // gcc doesn't appear to use char_type_class
+ else if (ArgTy->isIntegerType())
+ return integer_type_class;
+ else if (ArgTy->isPointerType())
+ return pointer_type_class;
+ else if (ArgTy->isReferenceType())
+ return reference_type_class;
+ else if (ArgTy->isRealType())
+ return real_type_class;
+ else if (ArgTy->isComplexType())
+ return complex_type_class;
+ else if (ArgTy->isFunctionType())
+ return function_type_class;
+ else if (ArgTy->isStructureOrClassType())
+ return record_type_class;
+ else if (ArgTy->isUnionType())
+ return union_type_class;
+ else if (ArgTy->isArrayType())
+ return array_type_class;
+ else if (ArgTy->isUnionType())
+ return union_type_class;
+ else // FIXME: offset_type_class, method_type_class, & lang_type_class?
+ assert(0 && "CallExpr::isBuiltinClassifyType(): unimplemented type");
+ return -1;
+}
+
+/// Retrieves the "underlying object type" of the given expression,
+/// as used by __builtin_object_size.
+QualType IntExprEvaluator::GetObjectType(const Expr *E) {
+ if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
+ if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
+ return VD->getType();
+ } else if (isa<CompoundLiteralExpr>(E)) {
+ return E->getType();
+ }
+
+ return QualType();
+}
+
+bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(CallExpr *E) {
+ // TODO: Perhaps we should let LLVM lower this?
+ LValue Base;
+ if (!EvaluatePointer(E->getArg(0), Base, Info))
+ return false;
+
+ // If we can prove the base is null, lower to zero now.
+ const Expr *LVBase = Base.getLValueBase();
+ if (!LVBase) return Success(0, E);
+
+ QualType T = GetObjectType(LVBase);
+ if (T.isNull() ||
+ T->isIncompleteType() ||
+ T->isFunctionType() ||
+ T->isVariablyModifiedType() ||
+ T->isDependentType())
+ return false;
+
+ CharUnits Size = Info.Ctx.getTypeSizeInChars(T);
+ CharUnits Offset = Base.getLValueOffset();
+
+ if (!Offset.isNegative() && Offset <= Size)
+ Size -= Offset;
+ else
+ Size = CharUnits::Zero();
+ return Success(Size.getQuantity(), E);
+}
+
+bool IntExprEvaluator::VisitCallExpr(CallExpr *E) {
+ switch (E->isBuiltinCall(Info.Ctx)) {
+ default:
+ return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E);
+
+ case Builtin::BI__builtin_object_size: {
+ if (TryEvaluateBuiltinObjectSize(E))
+ return true;
+
+ // If evaluating the argument has side-effects we can't determine
+ // the size of the object and lower it to unknown now.
+ if (E->getArg(0)->HasSideEffects(Info.Ctx)) {
+ if (E->getArg(1)->EvaluateAsInt(Info.Ctx).getZExtValue() <= 1)
+ return Success(-1ULL, E);
+ return Success(0, E);
+ }
+
+ return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E);
+ }
+
+ case Builtin::BI__builtin_classify_type:
+ return Success(EvaluateBuiltinClassifyType(E), E);
+
+ case Builtin::BI__builtin_constant_p:
+ // __builtin_constant_p always has one operand: it returns true if that
+ // operand can be folded, false otherwise.
+ return Success(E->getArg(0)->isEvaluatable(Info.Ctx), E);
+
+ case Builtin::BI__builtin_eh_return_data_regno: {
+ int Operand = E->getArg(0)->EvaluateAsInt(Info.Ctx).getZExtValue();
+ Operand = Info.Ctx.Target.getEHDataRegisterNumber(Operand);
+ return Success(Operand, E);
+ }
+
+ case Builtin::BI__builtin_expect:
+ return Visit(E->getArg(0));
+
+ case Builtin::BIstrlen:
+ case Builtin::BI__builtin_strlen:
+ // As an extension, we support strlen() and __builtin_strlen() as constant
+ // expressions when the argument is a string literal.
+ if (StringLiteral *S
+ = dyn_cast<StringLiteral>(E->getArg(0)->IgnoreParenImpCasts())) {
+ // The string literal may have embedded null characters. Find the first
+ // one and truncate there.
+ llvm::StringRef Str = S->getString();
+ llvm::StringRef::size_type Pos = Str.find(0);
+ if (Pos != llvm::StringRef::npos)
+ Str = Str.substr(0, Pos);
+
+ return Success(Str.size(), E);
+ }
+
+ return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E);
+ }
+}
+
+bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
+ if (E->getOpcode() == BO_Comma) {
+ if (!Visit(E->getRHS()))
+ return false;
+
+ // If we can't evaluate the LHS, it might have side effects;
+ // conservatively mark it.
+ if (!E->getLHS()->isEvaluatable(Info.Ctx))
+ Info.EvalResult.HasSideEffects = true;
+
+ return true;
+ }
+
+ if (E->isLogicalOp()) {
+ // These need to be handled specially because the operands aren't
+ // necessarily integral
+ bool lhsResult, rhsResult;
+
+ if (HandleConversionToBool(E->getLHS(), lhsResult, Info)) {
+ // We were able to evaluate the LHS, see if we can get away with not
+ // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
+ if (lhsResult == (E->getOpcode() == BO_LOr))
+ return Success(lhsResult, E);
+
+ if (HandleConversionToBool(E->getRHS(), rhsResult, Info)) {
+ if (E->getOpcode() == BO_LOr)
+ return Success(lhsResult || rhsResult, E);
+ else
+ return Success(lhsResult && rhsResult, E);
+ }
+ } else {
+ if (HandleConversionToBool(E->getRHS(), rhsResult, Info)) {
+ // We can't evaluate the LHS; however, sometimes the result
+ // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
+ if (rhsResult == (E->getOpcode() == BO_LOr) ||
+ !rhsResult == (E->getOpcode() == BO_LAnd)) {
+ // Since we weren't able to evaluate the left hand side, it
+ // must have had side effects.
+ Info.EvalResult.HasSideEffects = true;
+
+ return Success(rhsResult, E);
+ }
+ }
+ }
+
+ return false;
+ }
+
+ QualType LHSTy = E->getLHS()->getType();
+ QualType RHSTy = E->getRHS()->getType();
+
+ if (LHSTy->isAnyComplexType()) {
+ assert(RHSTy->isAnyComplexType() && "Invalid comparison");
+ ComplexValue LHS, RHS;
+
+ if (!EvaluateComplex(E->getLHS(), LHS, Info))
+ return false;
+
+ if (!EvaluateComplex(E->getRHS(), RHS, Info))
+ return false;
+
+ if (LHS.isComplexFloat()) {
+ APFloat::cmpResult CR_r =
+ LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
+ APFloat::cmpResult CR_i =
+ LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
+
+ if (E->getOpcode() == BO_EQ)
+ return Success((CR_r == APFloat::cmpEqual &&
+ CR_i == APFloat::cmpEqual), E);
+ else {
+ assert(E->getOpcode() == BO_NE &&
+ "Invalid complex comparison.");
+ return Success(((CR_r == APFloat::cmpGreaterThan ||
+ CR_r == APFloat::cmpLessThan ||
+ CR_r == APFloat::cmpUnordered) ||
+ (CR_i == APFloat::cmpGreaterThan ||
+ CR_i == APFloat::cmpLessThan ||
+ CR_i == APFloat::cmpUnordered)), E);
+ }
+ } else {
+ if (E->getOpcode() == BO_EQ)
+ return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
+ LHS.getComplexIntImag() == RHS.getComplexIntImag()), E);
+ else {
+ assert(E->getOpcode() == BO_NE &&
+ "Invalid compex comparison.");
+ return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() ||
+ LHS.getComplexIntImag() != RHS.getComplexIntImag()), E);
+ }
+ }
+ }
+
+ if (LHSTy->isRealFloatingType() &&
+ RHSTy->isRealFloatingType()) {
+ APFloat RHS(0.0), LHS(0.0);
+
+ if (!EvaluateFloat(E->getRHS(), RHS, Info))
+ return false;
+
+ if (!EvaluateFloat(E->getLHS(), LHS, Info))
+ return false;
+
+ APFloat::cmpResult CR = LHS.compare(RHS);
+
+ switch (E->getOpcode()) {
+ default:
+ assert(0 && "Invalid binary operator!");
+ case BO_LT:
+ return Success(CR == APFloat::cmpLessThan, E);
+ case BO_GT:
+ return Success(CR == APFloat::cmpGreaterThan, E);
+ case BO_LE:
+ return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E);
+ case BO_GE:
+ return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual,
+ E);
+ case BO_EQ:
+ return Success(CR == APFloat::cmpEqual, E);
+ case BO_NE:
+ return Success(CR == APFloat::cmpGreaterThan
+ || CR == APFloat::cmpLessThan
+ || CR == APFloat::cmpUnordered, E);
+ }
+ }
+
+ if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
+ if (E->getOpcode() == BO_Sub || E->isEqualityOp()) {
+ LValue LHSValue;
+ if (!EvaluatePointer(E->getLHS(), LHSValue, Info))
+ return false;
+
+ LValue RHSValue;
+ if (!EvaluatePointer(E->getRHS(), RHSValue, Info))
+ return false;
+
+ // Reject any bases from the normal codepath; we special-case comparisons
+ // to null.
+ if (LHSValue.getLValueBase()) {
+ if (!E->isEqualityOp())
+ return false;
+ if (RHSValue.getLValueBase() || !RHSValue.getLValueOffset().isZero())
+ return false;
+ bool bres;
+ if (!EvalPointerValueAsBool(LHSValue, bres))
+ return false;
+ return Success(bres ^ (E->getOpcode() == BO_EQ), E);
+ } else if (RHSValue.getLValueBase()) {
+ if (!E->isEqualityOp())
+ return false;
+ if (LHSValue.getLValueBase() || !LHSValue.getLValueOffset().isZero())
+ return false;
+ bool bres;
+ if (!EvalPointerValueAsBool(RHSValue, bres))
+ return false;
+ return Success(bres ^ (E->getOpcode() == BO_EQ), E);
+ }
+
+ if (E->getOpcode() == BO_Sub) {
+ QualType Type = E->getLHS()->getType();
+ QualType ElementType = Type->getAs<PointerType>()->getPointeeType();
+
+ CharUnits ElementSize = CharUnits::One();
+ if (!ElementType->isVoidType() && !ElementType->isFunctionType())
+ ElementSize = Info.Ctx.getTypeSizeInChars(ElementType);
+
+ CharUnits Diff = LHSValue.getLValueOffset() -
+ RHSValue.getLValueOffset();
+ return Success(Diff / ElementSize, E);
+ }
+ bool Result;
+ if (E->getOpcode() == BO_EQ) {
+ Result = LHSValue.getLValueOffset() == RHSValue.getLValueOffset();
+ } else {
+ Result = LHSValue.getLValueOffset() != RHSValue.getLValueOffset();
+ }
+ return Success(Result, E);
+ }
+ }
+ if (!LHSTy->isIntegralOrEnumerationType() ||
+ !RHSTy->isIntegralOrEnumerationType()) {
+ // We can't continue from here for non-integral types, and they
+ // could potentially confuse the following operations.
+ return false;
+ }
+
+ // The LHS of a constant expr is always evaluated and needed.
+ if (!Visit(E->getLHS()))
+ return false; // error in subexpression.
+
+ APValue RHSVal;
+ if (!EvaluateIntegerOrLValue(E->getRHS(), RHSVal, Info))
+ return false;
+
+ // Handle cases like (unsigned long)&a + 4.
+ if (E->isAdditiveOp() && Result.isLValue() && RHSVal.isInt()) {
+ CharUnits Offset = Result.getLValueOffset();
+ CharUnits AdditionalOffset = CharUnits::fromQuantity(
+ RHSVal.getInt().getZExtValue());
+ if (E->getOpcode() == BO_Add)
+ Offset += AdditionalOffset;
+ else
+ Offset -= AdditionalOffset;
+ Result = APValue(Result.getLValueBase(), Offset);
+ return true;
+ }
+
+ // Handle cases like 4 + (unsigned long)&a
+ if (E->getOpcode() == BO_Add &&
+ RHSVal.isLValue() && Result.isInt()) {
+ CharUnits Offset = RHSVal.getLValueOffset();
+ Offset += CharUnits::fromQuantity(Result.getInt().getZExtValue());
+ Result = APValue(RHSVal.getLValueBase(), Offset);
+ return true;
+ }
+
+ // All the following cases expect both operands to be an integer
+ if (!Result.isInt() || !RHSVal.isInt())
+ return false;
+
+ APSInt& RHS = RHSVal.getInt();
+
+ switch (E->getOpcode()) {
+ default:
+ return Error(E->getOperatorLoc(), diag::note_invalid_subexpr_in_ice, E);
+ case BO_Mul: return Success(Result.getInt() * RHS, E);
+ case BO_Add: return Success(Result.getInt() + RHS, E);
+ case BO_Sub: return Success(Result.getInt() - RHS, E);
+ case BO_And: return Success(Result.getInt() & RHS, E);
+ case BO_Xor: return Success(Result.getInt() ^ RHS, E);
+ case BO_Or: return Success(Result.getInt() | RHS, E);
+ case BO_Div:
+ if (RHS == 0)
+ return Error(E->getOperatorLoc(), diag::note_expr_divide_by_zero, E);
+ return Success(Result.getInt() / RHS, E);
+ case BO_Rem:
+ if (RHS == 0)
+ return Error(E->getOperatorLoc(), diag::note_expr_divide_by_zero, E);
+ return Success(Result.getInt() % RHS, E);
+ case BO_Shl: {
+ // During constant-folding, a negative shift is an opposite shift.
+ if (RHS.isSigned() && RHS.isNegative()) {
+ RHS = -RHS;
+ goto shift_right;
+ }
+
+ shift_left:
+ unsigned SA
+ = (unsigned) RHS.getLimitedValue(Result.getInt().getBitWidth()-1);
+ return Success(Result.getInt() << SA, E);
+ }
+ case BO_Shr: {
+ // During constant-folding, a negative shift is an opposite shift.
+ if (RHS.isSigned() && RHS.isNegative()) {
+ RHS = -RHS;
+ goto shift_left;
+ }
+
+ shift_right:
+ unsigned SA =
+ (unsigned) RHS.getLimitedValue(Result.getInt().getBitWidth()-1);
+ return Success(Result.getInt() >> SA, E);
+ }
+
+ case BO_LT: return Success(Result.getInt() < RHS, E);
+ case BO_GT: return Success(Result.getInt() > RHS, E);
+ case BO_LE: return Success(Result.getInt() <= RHS, E);
+ case BO_GE: return Success(Result.getInt() >= RHS, E);
+ case BO_EQ: return Success(Result.getInt() == RHS, E);
+ case BO_NE: return Success(Result.getInt() != RHS, E);
+ }
+}
+
+bool IntExprEvaluator::
+VisitBinaryConditionalOperator(const BinaryConditionalOperator *e) {
+ OpaqueValueEvaluation opaque(Info, e->getOpaqueValue(), e->getCommon());
+ if (opaque.hasError()) return false;
+
+ bool cond;
+ if (!HandleConversionToBool(e->getCond(), cond, Info))
+ return false;
+
+ return Visit(cond ? e->getTrueExpr() : e->getFalseExpr());
+}
+
+bool IntExprEvaluator::VisitConditionalOperator(const ConditionalOperator *E) {
+ bool Cond;
+ if (!HandleConversionToBool(E->getCond(), Cond, Info))
+ return false;
+
+ return Visit(Cond ? E->getTrueExpr() : E->getFalseExpr());
+}
+
+CharUnits IntExprEvaluator::GetAlignOfType(QualType T) {
+ // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
+ // the result is the size of the referenced type."
+ // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
+ // result shall be the alignment of the referenced type."
+ if (const ReferenceType *Ref = T->getAs<ReferenceType>())
+ T = Ref->getPointeeType();
+
+ // __alignof is defined to return the preferred alignment.
+ return Info.Ctx.toCharUnitsFromBits(
+ Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
+}
+
+CharUnits IntExprEvaluator::GetAlignOfExpr(const Expr *E) {
+ E = E->IgnoreParens();
+
+ // alignof decl is always accepted, even if it doesn't make sense: we default
+ // to 1 in those cases.
+ if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
+ return Info.Ctx.getDeclAlign(DRE->getDecl(),
+ /*RefAsPointee*/true);
+
+ if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
+ return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
+ /*RefAsPointee*/true);
+
+ return GetAlignOfType(E->getType());
+}
+
+
+/// VisitSizeAlignOfExpr - Evaluate a sizeof or alignof with a result as the
+/// expression's type.
+bool IntExprEvaluator::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
+ // Handle alignof separately.
+ if (!E->isSizeOf()) {
+ if (E->isArgumentType())
+ return Success(GetAlignOfType(E->getArgumentType()).getQuantity(), E);
+ else
+ return Success(GetAlignOfExpr(E->getArgumentExpr()).getQuantity(), E);
+ }
+
+ QualType SrcTy = E->getTypeOfArgument();
+ // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
+ // the result is the size of the referenced type."
+ // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
+ // result shall be the alignment of the referenced type."
+ if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
+ SrcTy = Ref->getPointeeType();
+
+ // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
+ // extension.
+ if (SrcTy->isVoidType() || SrcTy->isFunctionType())
+ return Success(1, E);
+
+ // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
+ if (!SrcTy->isConstantSizeType())
+ return false;
+
+ // Get information about the size.
+ return Success(Info.Ctx.getTypeSizeInChars(SrcTy).getQuantity(), E);
+}
+
+bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *E) {
+ CharUnits Result;
+ unsigned n = E->getNumComponents();
+ OffsetOfExpr* OOE = const_cast<OffsetOfExpr*>(E);
+ if (n == 0)
+ return false;
+ QualType CurrentType = E->getTypeSourceInfo()->getType();
+ for (unsigned i = 0; i != n; ++i) {
+ OffsetOfExpr::OffsetOfNode ON = OOE->getComponent(i);
+ switch (ON.getKind()) {
+ case OffsetOfExpr::OffsetOfNode::Array: {
+ Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
+ APSInt IdxResult;
+ if (!EvaluateInteger(Idx, IdxResult, Info))
+ return false;
+ const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
+ if (!AT)
+ return false;
+ CurrentType = AT->getElementType();
+ CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
+ Result += IdxResult.getSExtValue() * ElementSize;
+ break;
+ }
+
+ case OffsetOfExpr::OffsetOfNode::Field: {
+ FieldDecl *MemberDecl = ON.getField();
+ const RecordType *RT = CurrentType->getAs<RecordType>();
+ if (!RT)
+ return false;
+ RecordDecl *RD = RT->getDecl();
+ const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
+ unsigned i = MemberDecl->getFieldIndex();
+ assert(i < RL.getFieldCount() && "offsetof field in wrong type");
+ Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
+ CurrentType = MemberDecl->getType().getNonReferenceType();
+ break;
+ }
+
+ case OffsetOfExpr::OffsetOfNode::Identifier:
+ llvm_unreachable("dependent __builtin_offsetof");
+ return false;
+
+ case OffsetOfExpr::OffsetOfNode::Base: {
+ CXXBaseSpecifier *BaseSpec = ON.getBase();
+ if (BaseSpec->isVirtual())
+ return false;
+
+ // Find the layout of the class whose base we are looking into.
+ const RecordType *RT = CurrentType->getAs<RecordType>();
+ if (!RT)
+ return false;
+ RecordDecl *RD = RT->getDecl();
+ const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
+
+ // Find the base class itself.
+ CurrentType = BaseSpec->getType();
+ const RecordType *BaseRT = CurrentType->getAs<RecordType>();
+ if (!BaseRT)
+ return false;
+
+ // Add the offset to the base.
+ Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
+ break;
+ }
+ }
+ }
+ return Success(Result.getQuantity(), E);
+}
+
+bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
+ if (E->getOpcode() == UO_LNot) {
+ // LNot's operand isn't necessarily an integer, so we handle it specially.
+ bool bres;
+ if (!HandleConversionToBool(E->getSubExpr(), bres, Info))
+ return false;
+ return Success(!bres, E);
+ }
+
+ // Only handle integral operations...
+ if (!E->getSubExpr()->getType()->isIntegralOrEnumerationType())
+ return false;
+
+ // Get the operand value into 'Result'.
+ if (!Visit(E->getSubExpr()))
+ return false;
+
+ switch (E->getOpcode()) {
+ default:
+ // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
+ // See C99 6.6p3.
+ return Error(E->getOperatorLoc(), diag::note_invalid_subexpr_in_ice, E);
+ case UO_Extension:
+ // FIXME: Should extension allow i-c-e extension expressions in its scope?
+ // If so, we could clear the diagnostic ID.
+ return true;
+ case UO_Plus:
+ // The result is always just the subexpr.
+ return true;
+ case UO_Minus:
+ if (!Result.isInt()) return false;
+ return Success(-Result.getInt(), E);
+ case UO_Not:
+ if (!Result.isInt()) return false;
+ return Success(~Result.getInt(), E);
+ }
+}
+
+/// HandleCast - This is used to evaluate implicit or explicit casts where the
+/// result type is integer.
+bool IntExprEvaluator::VisitCastExpr(CastExpr *E) {
+ Expr *SubExpr = E->getSubExpr();
+ QualType DestType = E->getType();
+ QualType SrcType = SubExpr->getType();
+
+ if (DestType->isBooleanType()) {
+ bool BoolResult;
+ if (!HandleConversionToBool(SubExpr, BoolResult, Info))
+ return false;
+ return Success(BoolResult, E);
+ }
+
+ // Handle simple integer->integer casts.
+ if (SrcType->isIntegralOrEnumerationType()) {
+ if (!Visit(SubExpr))
+ return false;
+
+ if (!Result.isInt()) {
+ // Only allow casts of lvalues if they are lossless.
+ return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
+ }
+
+ return Success(HandleIntToIntCast(DestType, SrcType,
+ Result.getInt(), Info.Ctx), E);
+ }
+
+ // FIXME: Clean this up!
+ if (SrcType->isPointerType()) {
+ LValue LV;
+ if (!EvaluatePointer(SubExpr, LV, Info))
+ return false;
+
+ if (LV.getLValueBase()) {
+ // Only allow based lvalue casts if they are lossless.
+ if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
+ return false;
+
+ LV.moveInto(Result);
+ return true;
+ }
+
+ APSInt AsInt = Info.Ctx.MakeIntValue(LV.getLValueOffset().getQuantity(),
+ SrcType);
+ return Success(HandleIntToIntCast(DestType, SrcType, AsInt, Info.Ctx), E);
+ }
+
+ if (SrcType->isArrayType() || SrcType->isFunctionType()) {
+ // This handles double-conversion cases, where there's both
+ // an l-value promotion and an implicit conversion to int.
+ LValue LV;
+ if (!EvaluateLValue(SubExpr, LV, Info))
+ return false;
+
+ if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(Info.Ctx.VoidPtrTy))
+ return false;
+
+ LV.moveInto(Result);
+ return true;
+ }
+
+ if (SrcType->isAnyComplexType()) {
+ ComplexValue C;
+ if (!EvaluateComplex(SubExpr, C, Info))
+ return false;
+ if (C.isComplexFloat())
+ return Success(HandleFloatToIntCast(DestType, SrcType,
+ C.getComplexFloatReal(), Info.Ctx),
+ E);
+ else
+ return Success(HandleIntToIntCast(DestType, SrcType,
+ C.getComplexIntReal(), Info.Ctx), E);
+ }
+ // FIXME: Handle vectors
+
+ if (!SrcType->isRealFloatingType())
+ return Error(E->getExprLoc(), diag::note_invalid_subexpr_in_ice, E);
+
+ APFloat F(0.0);
+ if (!EvaluateFloat(SubExpr, F, Info))
+ return Error(E->getExprLoc(), diag::note_invalid_subexpr_in_ice, E);
+
+ return Success(HandleFloatToIntCast(DestType, SrcType, F, Info.Ctx), E);
+}
+
+bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
+ if (E->getSubExpr()->getType()->isAnyComplexType()) {
+ ComplexValue LV;
+ if (!EvaluateComplex(E->getSubExpr(), LV, Info) || !LV.isComplexInt())
+ return Error(E->getExprLoc(), diag::note_invalid_subexpr_in_ice, E);
+ return Success(LV.getComplexIntReal(), E);
+ }
+
+ return Visit(E->getSubExpr());
+}
+
+bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
+ if (E->getSubExpr()->getType()->isComplexIntegerType()) {
+ ComplexValue LV;
+ if (!EvaluateComplex(E->getSubExpr(), LV, Info) || !LV.isComplexInt())
+ return Error(E->getExprLoc(), diag::note_invalid_subexpr_in_ice, E);
+ return Success(LV.getComplexIntImag(), E);
+ }
+
+ if (!E->getSubExpr()->isEvaluatable(Info.Ctx))
+ Info.EvalResult.HasSideEffects = true;
+ return Success(0, E);
+}
+
+bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
+ return Success(E->getPackLength(), E);
+}
+
+bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
+ return Success(E->getValue(), E);
+}
+
+//===----------------------------------------------------------------------===//
+// Float Evaluation
+//===----------------------------------------------------------------------===//
+
+namespace {
+class FloatExprEvaluator
+ : public StmtVisitor<FloatExprEvaluator, bool> {
+ EvalInfo &Info;
+ APFloat &Result;
+public:
+ FloatExprEvaluator(EvalInfo &info, APFloat &result)
+ : Info(info), Result(result) {}
+
+ bool VisitStmt(Stmt *S) {
+ return false;
+ }
+
+ bool VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); }
+ bool VisitCallExpr(const CallExpr *E);
+
+ bool VisitUnaryOperator(const UnaryOperator *E);
+ bool VisitBinaryOperator(const BinaryOperator *E);
+ bool VisitFloatingLiteral(const FloatingLiteral *E);
+ bool VisitCastExpr(CastExpr *E);
+ bool VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
+ bool VisitConditionalOperator(ConditionalOperator *E);
+ bool VisitBinaryConditionalOperator(BinaryConditionalOperator *E);
+
+ bool VisitChooseExpr(const ChooseExpr *E)
+ { return Visit(E->getChosenSubExpr(Info.Ctx)); }
+ bool VisitUnaryExtension(const UnaryOperator *E)
+ { return Visit(E->getSubExpr()); }
+ bool VisitUnaryReal(const UnaryOperator *E);
+ bool VisitUnaryImag(const UnaryOperator *E);
+
+ bool VisitDeclRefExpr(const DeclRefExpr *E);
+
+ bool VisitOpaqueValueExpr(const OpaqueValueExpr *e) {
+ const APValue *value = Info.getOpaqueValue(e);
+ if (!value)
+ return (e->getSourceExpr() ? Visit(e->getSourceExpr()) : false);
+ Result = value->getFloat();
+ return true;
+ }
+
+ // FIXME: Missing: array subscript of vector, member of vector,
+ // ImplicitValueInitExpr
+};
+} // end anonymous namespace
+
+static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
+ assert(E->getType()->isRealFloatingType());
+ return FloatExprEvaluator(Info, Result).Visit(const_cast<Expr*>(E));
+}
+
+static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
+ QualType ResultTy,
+ const Expr *Arg,
+ bool SNaN,
+ llvm::APFloat &Result) {
+ const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
+ if (!S) return false;
+
+ const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
+
+ llvm::APInt fill;
+
+ // Treat empty strings as if they were zero.
+ if (S->getString().empty())
+ fill = llvm::APInt(32, 0);
+ else if (S->getString().getAsInteger(0, fill))
+ return false;
+
+ if (SNaN)
+ Result = llvm::APFloat::getSNaN(Sem, false, &fill);
+ else
+ Result = llvm::APFloat::getQNaN(Sem, false, &fill);
+ return true;
+}
+
+bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
+ switch (E->isBuiltinCall(Info.Ctx)) {
+ default: return false;
+ case Builtin::BI__builtin_huge_val:
+ case Builtin::BI__builtin_huge_valf:
+ case Builtin::BI__builtin_huge_vall:
+ case Builtin::BI__builtin_inf:
+ case Builtin::BI__builtin_inff:
+ case Builtin::BI__builtin_infl: {
+ const llvm::fltSemantics &Sem =
+ Info.Ctx.getFloatTypeSemantics(E->getType());
+ Result = llvm::APFloat::getInf(Sem);
+ return true;
+ }
+
+ case Builtin::BI__builtin_nans:
+ case Builtin::BI__builtin_nansf:
+ case Builtin::BI__builtin_nansl:
+ return TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
+ true, Result);
+
+ case Builtin::BI__builtin_nan:
+ case Builtin::BI__builtin_nanf:
+ case Builtin::BI__builtin_nanl:
+ // If this is __builtin_nan() turn this into a nan, otherwise we
+ // can't constant fold it.
+ return TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
+ false, Result);
+
+ case Builtin::BI__builtin_fabs:
+ case Builtin::BI__builtin_fabsf:
+ case Builtin::BI__builtin_fabsl:
+ if (!EvaluateFloat(E->getArg(0), Result, Info))
+ return false;
+
+ if (Result.isNegative())
+ Result.changeSign();
+ return true;
+
+ case Builtin::BI__builtin_copysign:
+ case Builtin::BI__builtin_copysignf:
+ case Builtin::BI__builtin_copysignl: {
+ APFloat RHS(0.);
+ if (!EvaluateFloat(E->getArg(0), Result, Info) ||
+ !EvaluateFloat(E->getArg(1), RHS, Info))
+ return false;
+ Result.copySign(RHS);
+ return true;
+ }
+ }
+}
+
+bool FloatExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
+ const Decl *D = E->getDecl();
+ if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D)) return false;
+ const VarDecl *VD = cast<VarDecl>(D);
+
+ // Require the qualifiers to be const and not volatile.
+ CanQualType T = Info.Ctx.getCanonicalType(E->getType());
+ if (!T.isConstQualified() || T.isVolatileQualified())
+ return false;
+
+ const Expr *Init = VD->getAnyInitializer();
+ if (!Init) return false;
+
+ if (APValue *V = VD->getEvaluatedValue()) {
+ if (V->isFloat()) {
+ Result = V->getFloat();
+ return true;
+ }
+ return false;
+ }
+
+ if (VD->isEvaluatingValue())
+ return false;
+
+ VD->setEvaluatingValue();
+
+ Expr::EvalResult InitResult;
+ if (Init->Evaluate(InitResult, Info.Ctx) && !InitResult.HasSideEffects &&
+ InitResult.Val.isFloat()) {
+ // Cache the evaluated value in the variable declaration.
+ Result = InitResult.Val.getFloat();
+ VD->setEvaluatedValue(InitResult.Val);
+ return true;
+ }
+
+ VD->setEvaluatedValue(APValue());
+ return false;
+}
+
+bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
+ if (E->getSubExpr()->getType()->isAnyComplexType()) {
+ ComplexValue CV;
+ if (!EvaluateComplex(E->getSubExpr(), CV, Info))
+ return false;
+ Result = CV.FloatReal;
+ return true;
+ }
+
+ return Visit(E->getSubExpr());
+}
+
+bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
+ if (E->getSubExpr()->getType()->isAnyComplexType()) {
+ ComplexValue CV;
+ if (!EvaluateComplex(E->getSubExpr(), CV, Info))
+ return false;
+ Result = CV.FloatImag;
+ return true;
+ }
+
+ if (!E->getSubExpr()->isEvaluatable(Info.Ctx))
+ Info.EvalResult.HasSideEffects = true;
+ const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
+ Result = llvm::APFloat::getZero(Sem);
+ return true;
+}
+
+bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
+ if (E->getOpcode() == UO_Deref)
+ return false;
+
+ if (!EvaluateFloat(E->getSubExpr(), Result, Info))
+ return false;
+
+ switch (E->getOpcode()) {
+ default: return false;
+ case UO_Plus:
+ return true;
+ case UO_Minus:
+ Result.changeSign();
+ return true;
+ }
+}
+
+bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
+ if (E->getOpcode() == BO_Comma) {
+ if (!EvaluateFloat(E->getRHS(), Result, Info))
+ return false;
+
+ // If we can't evaluate the LHS, it might have side effects;
+ // conservatively mark it.
+ if (!E->getLHS()->isEvaluatable(Info.Ctx))
+ Info.EvalResult.HasSideEffects = true;
+
+ return true;
+ }
+
+ // We can't evaluate pointer-to-member operations.
+ if (E->isPtrMemOp())
+ return false;
+
+ // FIXME: Diagnostics? I really don't understand how the warnings
+ // and errors are supposed to work.
+ APFloat RHS(0.0);
+ if (!EvaluateFloat(E->getLHS(), Result, Info))
+ return false;
+ if (!EvaluateFloat(E->getRHS(), RHS, Info))
+ return false;
+
+ switch (E->getOpcode()) {
+ default: return false;
+ case BO_Mul:
+ Result.multiply(RHS, APFloat::rmNearestTiesToEven);
+ return true;
+ case BO_Add:
+ Result.add(RHS, APFloat::rmNearestTiesToEven);
+ return true;
+ case BO_Sub:
+ Result.subtract(RHS, APFloat::rmNearestTiesToEven);
+ return true;
+ case BO_Div:
+ Result.divide(RHS, APFloat::rmNearestTiesToEven);
+ return true;
+ }
+}
+
+bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
+ Result = E->getValue();
+ return true;
+}
+
+bool FloatExprEvaluator::VisitCastExpr(CastExpr *E) {
+ Expr* SubExpr = E->getSubExpr();
+
+ if (SubExpr->getType()->isIntegralOrEnumerationType()) {
+ APSInt IntResult;
+ if (!EvaluateInteger(SubExpr, IntResult, Info))
+ return false;
+ Result = HandleIntToFloatCast(E->getType(), SubExpr->getType(),
+ IntResult, Info.Ctx);
+ return true;
+ }
+ if (SubExpr->getType()->isRealFloatingType()) {
+ if (!Visit(SubExpr))
+ return false;
+ Result = HandleFloatToFloatCast(E->getType(), SubExpr->getType(),
+ Result, Info.Ctx);
+ return true;
+ }
+
+ if (E->getCastKind() == CK_FloatingComplexToReal) {
+ ComplexValue V;
+ if (!EvaluateComplex(SubExpr, V, Info))
+ return false;
+ Result = V.getComplexFloatReal();
+ return true;
+ }
+
+ return false;
+}
+
+bool FloatExprEvaluator::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
+ Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
+ return true;
+}
+
+bool FloatExprEvaluator::
+VisitBinaryConditionalOperator(BinaryConditionalOperator *e) {
+ OpaqueValueEvaluation opaque(Info, e->getOpaqueValue(), e->getCommon());
+ if (opaque.hasError()) return false;
+
+ bool cond;
+ if (!HandleConversionToBool(e->getCond(), cond, Info))
+ return false;
+
+ return Visit(cond ? e->getTrueExpr() : e->getFalseExpr());
+}
+
+bool FloatExprEvaluator::VisitConditionalOperator(ConditionalOperator *E) {
+ bool Cond;
+ if (!HandleConversionToBool(E->getCond(), Cond, Info))
+ return false;
+
+ return Visit(Cond ? E->getTrueExpr() : E->getFalseExpr());
+}
+
+//===----------------------------------------------------------------------===//
+// Complex Evaluation (for float and integer)
+//===----------------------------------------------------------------------===//
+
+namespace {
+class ComplexExprEvaluator
+ : public StmtVisitor<ComplexExprEvaluator, bool> {
+ EvalInfo &Info;
+ ComplexValue &Result;
+
+public:
+ ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
+ : Info(info), Result(Result) {}
+
+ //===--------------------------------------------------------------------===//
+ // Visitor Methods
+ //===--------------------------------------------------------------------===//
+
+ bool VisitStmt(Stmt *S) {
+ return false;
+ }
+
+ bool VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); }
+
+ bool VisitImaginaryLiteral(ImaginaryLiteral *E);
+
+ bool VisitCastExpr(CastExpr *E);
+
+ bool VisitBinaryOperator(const BinaryOperator *E);
+ bool VisitUnaryOperator(const UnaryOperator *E);
+ bool VisitConditionalOperator(const ConditionalOperator *E);
+ bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E);
+ bool VisitChooseExpr(const ChooseExpr *E)
+ { return Visit(E->getChosenSubExpr(Info.Ctx)); }
+ bool VisitUnaryExtension(const UnaryOperator *E)
+ { return Visit(E->getSubExpr()); }
+ bool VisitOpaqueValueExpr(const OpaqueValueExpr *e) {
+ const APValue *value = Info.getOpaqueValue(e);
+ if (!value)
+ return (e->getSourceExpr() ? Visit(e->getSourceExpr()) : false);
+ Result.setFrom(*value);
+ return true;
+ }
+ // FIXME Missing: ImplicitValueInitExpr
+};
+} // end anonymous namespace
+
+static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
+ EvalInfo &Info) {
+ assert(E->getType()->isAnyComplexType());
+ return ComplexExprEvaluator(Info, Result).Visit(const_cast<Expr*>(E));
+}
+
+bool ComplexExprEvaluator::VisitImaginaryLiteral(ImaginaryLiteral *E) {
+ Expr* SubExpr = E->getSubExpr();
+
+ if (SubExpr->getType()->isRealFloatingType()) {
+ Result.makeComplexFloat();
+ APFloat &Imag = Result.FloatImag;
+ if (!EvaluateFloat(SubExpr, Imag, Info))
+ return false;
+
+ Result.FloatReal = APFloat(Imag.getSemantics());
+ return true;
+ } else {
+ assert(SubExpr->getType()->isIntegerType() &&
+ "Unexpected imaginary literal.");
+
+ Result.makeComplexInt();
+ APSInt &Imag = Result.IntImag;
+ if (!EvaluateInteger(SubExpr, Imag, Info))
+ return false;
+
+ Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
+ return true;
+ }
+}
+
+bool ComplexExprEvaluator::VisitCastExpr(CastExpr *E) {
+
+ switch (E->getCastKind()) {
+ case CK_BitCast:
+ case CK_LValueBitCast:
+ case CK_BaseToDerived:
+ case CK_DerivedToBase:
+ case CK_UncheckedDerivedToBase:
+ case CK_Dynamic:
+ case CK_ToUnion:
+ case CK_ArrayToPointerDecay:
+ case CK_FunctionToPointerDecay:
+ case CK_NullToPointer:
+ case CK_NullToMemberPointer:
+ case CK_BaseToDerivedMemberPointer:
+ case CK_DerivedToBaseMemberPointer:
+ case CK_MemberPointerToBoolean:
+ case CK_ConstructorConversion:
+ case CK_IntegralToPointer:
+ case CK_PointerToIntegral:
+ case CK_PointerToBoolean:
+ case CK_ToVoid:
+ case CK_VectorSplat:
+ case CK_IntegralCast:
+ case CK_IntegralToBoolean:
+ case CK_IntegralToFloating:
+ case CK_FloatingToIntegral:
+ case CK_FloatingToBoolean:
+ case CK_FloatingCast:
+ case CK_AnyPointerToObjCPointerCast:
+ case CK_AnyPointerToBlockPointerCast:
+ case CK_ObjCObjectLValueCast:
+ case CK_FloatingComplexToReal:
+ case CK_FloatingComplexToBoolean:
+ case CK_IntegralComplexToReal:
+ case CK_IntegralComplexToBoolean:
+ llvm_unreachable("invalid cast kind for complex value");
+
+ case CK_LValueToRValue:
+ case CK_NoOp:
+ return Visit(E->getSubExpr());
+
+ case CK_Dependent:
+ case CK_GetObjCProperty:
+ case CK_UserDefinedConversion:
+ return false;
+
+ case CK_FloatingRealToComplex: {
+ APFloat &Real = Result.FloatReal;
+ if (!EvaluateFloat(E->getSubExpr(), Real, Info))
+ return false;
+
+ Result.makeComplexFloat();
+ Result.FloatImag = APFloat(Real.getSemantics());
+ return true;
+ }
+
+ case CK_FloatingComplexCast: {
+ if (!Visit(E->getSubExpr()))
+ return false;
+
+ QualType To = E->getType()->getAs<ComplexType>()->getElementType();
+ QualType From
+ = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
+
+ Result.FloatReal
+ = HandleFloatToFloatCast(To, From, Result.FloatReal, Info.Ctx);
+ Result.FloatImag
+ = HandleFloatToFloatCast(To, From, Result.FloatImag, Info.Ctx);
+ return true;
+ }
+
+ case CK_FloatingComplexToIntegralComplex: {
+ if (!Visit(E->getSubExpr()))
+ return false;
+
+ QualType To = E->getType()->getAs<ComplexType>()->getElementType();
+ QualType From
+ = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
+ Result.makeComplexInt();
+ Result.IntReal = HandleFloatToIntCast(To, From, Result.FloatReal, Info.Ctx);
+ Result.IntImag = HandleFloatToIntCast(To, From, Result.FloatImag, Info.Ctx);
+ return true;
+ }
+
+ case CK_IntegralRealToComplex: {
+ APSInt &Real = Result.IntReal;
+ if (!EvaluateInteger(E->getSubExpr(), Real, Info))
+ return false;
+
+ Result.makeComplexInt();
+ Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
+ return true;
+ }
+
+ case CK_IntegralComplexCast: {
+ if (!Visit(E->getSubExpr()))
+ return false;
+
+ QualType To = E->getType()->getAs<ComplexType>()->getElementType();
+ QualType From
+ = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
+
+ Result.IntReal = HandleIntToIntCast(To, From, Result.IntReal, Info.Ctx);
+ Result.IntImag = HandleIntToIntCast(To, From, Result.IntImag, Info.Ctx);
+ return true;
+ }
+
+ case CK_IntegralComplexToFloatingComplex: {
+ if (!Visit(E->getSubExpr()))
+ return false;
+
+ QualType To = E->getType()->getAs<ComplexType>()->getElementType();
+ QualType From
+ = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
+ Result.makeComplexFloat();
+ Result.FloatReal = HandleIntToFloatCast(To, From, Result.IntReal, Info.Ctx);
+ Result.FloatImag = HandleIntToFloatCast(To, From, Result.IntImag, Info.Ctx);
+ return true;
+ }
+ }
+
+ llvm_unreachable("unknown cast resulting in complex value");
+ return false;
+}
+
+bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
+ if (E->getOpcode() == BO_Comma) {
+ if (!Visit(E->getRHS()))
+ return false;
+
+ // If we can't evaluate the LHS, it might have side effects;
+ // conservatively mark it.
+ if (!E->getLHS()->isEvaluatable(Info.Ctx))
+ Info.EvalResult.HasSideEffects = true;
+
+ return true;
+ }
+ if (!Visit(E->getLHS()))
+ return false;
+
+ ComplexValue RHS;
+ if (!EvaluateComplex(E->getRHS(), RHS, Info))
+ return false;
+
+ assert(Result.isComplexFloat() == RHS.isComplexFloat() &&
+ "Invalid operands to binary operator.");
+ switch (E->getOpcode()) {
+ default: return false;
+ case BO_Add:
+ if (Result.isComplexFloat()) {
+ Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
+ APFloat::rmNearestTiesToEven);
+ Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
+ APFloat::rmNearestTiesToEven);
+ } else {
+ Result.getComplexIntReal() += RHS.getComplexIntReal();
+ Result.getComplexIntImag() += RHS.getComplexIntImag();
+ }
+ break;
+ case BO_Sub:
+ if (Result.isComplexFloat()) {
+ Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
+ APFloat::rmNearestTiesToEven);
+ Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
+ APFloat::rmNearestTiesToEven);
+ } else {
+ Result.getComplexIntReal() -= RHS.getComplexIntReal();
+ Result.getComplexIntImag() -= RHS.getComplexIntImag();
+ }
+ break;
+ case BO_Mul:
+ if (Result.isComplexFloat()) {
+ ComplexValue LHS = Result;
+ APFloat &LHS_r = LHS.getComplexFloatReal();
+ APFloat &LHS_i = LHS.getComplexFloatImag();
+ APFloat &RHS_r = RHS.getComplexFloatReal();
+ APFloat &RHS_i = RHS.getComplexFloatImag();
+
+ APFloat Tmp = LHS_r;
+ Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
+ Result.getComplexFloatReal() = Tmp;
+ Tmp = LHS_i;
+ Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
+ Result.getComplexFloatReal().subtract(Tmp, APFloat::rmNearestTiesToEven);
+
+ Tmp = LHS_r;
+ Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
+ Result.getComplexFloatImag() = Tmp;
+ Tmp = LHS_i;
+ Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
+ Result.getComplexFloatImag().add(Tmp, APFloat::rmNearestTiesToEven);
+ } else {
+ ComplexValue LHS = Result;
+ Result.getComplexIntReal() =
+ (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
+ LHS.getComplexIntImag() * RHS.getComplexIntImag());
+ Result.getComplexIntImag() =
+ (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
+ LHS.getComplexIntImag() * RHS.getComplexIntReal());
+ }
+ break;
+ case BO_Div:
+ if (Result.isComplexFloat()) {
+ ComplexValue LHS = Result;
+ APFloat &LHS_r = LHS.getComplexFloatReal();
+ APFloat &LHS_i = LHS.getComplexFloatImag();
+ APFloat &RHS_r = RHS.getComplexFloatReal();
+ APFloat &RHS_i = RHS.getComplexFloatImag();
+ APFloat &Res_r = Result.getComplexFloatReal();
+ APFloat &Res_i = Result.getComplexFloatImag();
+
+ APFloat Den = RHS_r;
+ Den.multiply(RHS_r, APFloat::rmNearestTiesToEven);
+ APFloat Tmp = RHS_i;
+ Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
+ Den.add(Tmp, APFloat::rmNearestTiesToEven);
+
+ Res_r = LHS_r;
+ Res_r.multiply(RHS_r, APFloat::rmNearestTiesToEven);
+ Tmp = LHS_i;
+ Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
+ Res_r.add(Tmp, APFloat::rmNearestTiesToEven);
+ Res_r.divide(Den, APFloat::rmNearestTiesToEven);
+
+ Res_i = LHS_i;
+ Res_i.multiply(RHS_r, APFloat::rmNearestTiesToEven);
+ Tmp = LHS_r;
+ Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
+ Res_i.subtract(Tmp, APFloat::rmNearestTiesToEven);
+ Res_i.divide(Den, APFloat::rmNearestTiesToEven);
+ } else {
+ if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0) {
+ // FIXME: what about diagnostics?
+ return false;
+ }
+ ComplexValue LHS = Result;
+ APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
+ RHS.getComplexIntImag() * RHS.getComplexIntImag();
+ Result.getComplexIntReal() =
+ (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
+ LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
+ Result.getComplexIntImag() =
+ (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
+ LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
+ }
+ break;
+ }
+
+ return true;
+}
+
+bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
+ // Get the operand value into 'Result'.
+ if (!Visit(E->getSubExpr()))
+ return false;
+
+ switch (E->getOpcode()) {
+ default:
+ // FIXME: what about diagnostics?
+ return false;
+ case UO_Extension:
+ return true;
+ case UO_Plus:
+ // The result is always just the subexpr.
+ return true;
+ case UO_Minus:
+ if (Result.isComplexFloat()) {
+ Result.getComplexFloatReal().changeSign();
+ Result.getComplexFloatImag().changeSign();
+ }
+ else {
+ Result.getComplexIntReal() = -Result.getComplexIntReal();
+ Result.getComplexIntImag() = -Result.getComplexIntImag();
+ }
+ return true;
+ case UO_Not:
+ if (Result.isComplexFloat())
+ Result.getComplexFloatImag().changeSign();
+ else
+ Result.getComplexIntImag() = -Result.getComplexIntImag();
+ return true;
+ }
+}
+
+bool ComplexExprEvaluator::
+VisitBinaryConditionalOperator(const BinaryConditionalOperator *e) {
+ OpaqueValueEvaluation opaque(Info, e->getOpaqueValue(), e->getCommon());
+ if (opaque.hasError()) return false;
+
+ bool cond;
+ if (!HandleConversionToBool(e->getCond(), cond, Info))
+ return false;
+
+ return Visit(cond ? e->getTrueExpr() : e->getFalseExpr());
+}
+
+bool ComplexExprEvaluator::VisitConditionalOperator(const ConditionalOperator *E) {
+ bool Cond;
+ if (!HandleConversionToBool(E->getCond(), Cond, Info))
+ return false;
+
+ return Visit(Cond ? E->getTrueExpr() : E->getFalseExpr());
+}
+
+//===----------------------------------------------------------------------===//
+// Top level Expr::Evaluate method.
+//===----------------------------------------------------------------------===//
+
+static bool Evaluate(EvalInfo &Info, const Expr *E) {
+ if (E->getType()->isVectorType()) {
+ if (!EvaluateVector(E, Info.EvalResult.Val, Info))
+ return false;
+ } else if (E->getType()->isIntegerType()) {
+ if (!IntExprEvaluator(Info, Info.EvalResult.Val).Visit(const_cast<Expr*>(E)))
+ return false;
+ if (Info.EvalResult.Val.isLValue() &&
+ !IsGlobalLValue(Info.EvalResult.Val.getLValueBase()))
+ return false;
+ } else if (E->getType()->hasPointerRepresentation()) {
+ LValue LV;
+ if (!EvaluatePointer(E, LV, Info))
+ return false;
+ if (!IsGlobalLValue(LV.Base))
+ return false;
+ LV.moveInto(Info.EvalResult.Val);
+ } else if (E->getType()->isRealFloatingType()) {
+ llvm::APFloat F(0.0);
+ if (!EvaluateFloat(E, F, Info))
+ return false;
+
+ Info.EvalResult.Val = APValue(F);
+ } else if (E->getType()->isAnyComplexType()) {
+ ComplexValue C;
+ if (!EvaluateComplex(E, C, Info))
+ return false;
+ C.moveInto(Info.EvalResult.Val);
+ } else
+ return false;
+
+ return true;
+}
+
+/// Evaluate - Return true if this is a constant which we can fold using
+/// any crazy technique (that has nothing to do with language standards) that
+/// we want to. If this function returns true, it returns the folded constant
+/// in Result.
+bool Expr::Evaluate(EvalResult &Result, const ASTContext &Ctx) const {
+ EvalInfo Info(Ctx, Result);
+ return ::Evaluate(Info, this);
+}
+
+bool Expr::EvaluateAsBooleanCondition(bool &Result,
+ const ASTContext &Ctx) const {
+ EvalResult Scratch;
+ EvalInfo Info(Ctx, Scratch);
+
+ return HandleConversionToBool(this, Result, Info);
+}
+
+bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const {
+ EvalInfo Info(Ctx, Result);
+
+ LValue LV;
+ if (EvaluateLValue(this, LV, Info) &&
+ !Result.HasSideEffects &&
+ IsGlobalLValue(LV.Base)) {
+ LV.moveInto(Result.Val);
+ return true;
+ }
+ return false;
+}
+
+bool Expr::EvaluateAsAnyLValue(EvalResult &Result,
+ const ASTContext &Ctx) const {
+ EvalInfo Info(Ctx, Result);
+
+ LValue LV;
+ if (EvaluateLValue(this, LV, Info)) {
+ LV.moveInto(Result.Val);
+ return true;
+ }
+ return false;
+}
+
+/// isEvaluatable - Call Evaluate to see if this expression can be constant
+/// folded, but discard the result.
+bool Expr::isEvaluatable(const ASTContext &Ctx) const {
+ EvalResult Result;
+ return Evaluate(Result, Ctx) && !Result.HasSideEffects;
+}
+
+bool Expr::HasSideEffects(const ASTContext &Ctx) const {
+ Expr::EvalResult Result;
+ EvalInfo Info(Ctx, Result);
+ return HasSideEffect(Info).Visit(const_cast<Expr*>(this));
+}
+
+APSInt Expr::EvaluateAsInt(const ASTContext &Ctx) const {
+ EvalResult EvalResult;
+ bool Result = Evaluate(EvalResult, Ctx);
+ (void)Result;
+ assert(Result && "Could not evaluate expression");
+ assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer");
+
+ return EvalResult.Val.getInt();
+}
+
+ bool Expr::EvalResult::isGlobalLValue() const {
+ assert(Val.isLValue());
+ return IsGlobalLValue(Val.getLValueBase());
+ }
+
+
+/// isIntegerConstantExpr - this recursive routine will test if an expression is
+/// an integer constant expression.
+
+/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
+/// comma, etc
+///
+/// FIXME: Handle offsetof. Two things to do: Handle GCC's __builtin_offsetof
+/// to support gcc 4.0+ and handle the idiom GCC recognizes with a null pointer
+/// cast+dereference.
+
+// CheckICE - This function does the fundamental ICE checking: the returned
+// ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation.
+// Note that to reduce code duplication, this helper does no evaluation
+// itself; the caller checks whether the expression is evaluatable, and
+// in the rare cases where CheckICE actually cares about the evaluated
+// value, it calls into Evalute.
+//
+// Meanings of Val:
+// 0: This expression is an ICE if it can be evaluated by Evaluate.
+// 1: This expression is not an ICE, but if it isn't evaluated, it's
+// a legal subexpression for an ICE. This return value is used to handle
+// the comma operator in C99 mode.
+// 2: This expression is not an ICE, and is not a legal subexpression for one.
+
+namespace {
+
+struct ICEDiag {
+ unsigned Val;
+ SourceLocation Loc;
+
+ public:
+ ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {}
+ ICEDiag() : Val(0) {}
+};
+
+}
+
+static ICEDiag NoDiag() { return ICEDiag(); }
+
+static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
+ Expr::EvalResult EVResult;
+ if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
+ !EVResult.Val.isInt()) {
+ return ICEDiag(2, E->getLocStart());
+ }
+ return NoDiag();
+}
+
+static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
+ assert(!E->isValueDependent() && "Should not see value dependent exprs!");
+ if (!E->getType()->isIntegralOrEnumerationType()) {
+ return ICEDiag(2, E->getLocStart());
+ }
+
+ switch (E->getStmtClass()) {
+#define ABSTRACT_STMT(Node)
+#define STMT(Node, Base) case Expr::Node##Class:
+#define EXPR(Node, Base)
+#include "clang/AST/StmtNodes.inc"
+ case Expr::PredefinedExprClass:
+ case Expr::FloatingLiteralClass:
+ case Expr::ImaginaryLiteralClass:
+ case Expr::StringLiteralClass:
+ case Expr::ArraySubscriptExprClass:
+ case Expr::MemberExprClass:
+ case Expr::CompoundAssignOperatorClass:
+ case Expr::CompoundLiteralExprClass:
+ case Expr::ExtVectorElementExprClass:
+ case Expr::InitListExprClass:
+ case Expr::DesignatedInitExprClass:
+ case Expr::ImplicitValueInitExprClass:
+ case Expr::ParenListExprClass:
+ case Expr::VAArgExprClass:
+ case Expr::AddrLabelExprClass:
+ case Expr::StmtExprClass:
+ case Expr::CXXMemberCallExprClass:
+ case Expr::CUDAKernelCallExprClass:
+ case Expr::CXXDynamicCastExprClass:
+ case Expr::CXXTypeidExprClass:
+ case Expr::CXXUuidofExprClass:
+ case Expr::CXXNullPtrLiteralExprClass:
+ case Expr::CXXThisExprClass:
+ case Expr::CXXThrowExprClass:
+ case Expr::CXXNewExprClass:
+ case Expr::CXXDeleteExprClass:
+ case Expr::CXXPseudoDestructorExprClass:
+ case Expr::UnresolvedLookupExprClass:
+ case Expr::DependentScopeDeclRefExprClass:
+ case Expr::CXXConstructExprClass:
+ case Expr::CXXBindTemporaryExprClass:
+ case Expr::ExprWithCleanupsClass:
+ case Expr::CXXTemporaryObjectExprClass:
+ case Expr::CXXUnresolvedConstructExprClass:
+ case Expr::CXXDependentScopeMemberExprClass:
+ case Expr::UnresolvedMemberExprClass:
+ case Expr::ObjCStringLiteralClass:
+ case Expr::ObjCEncodeExprClass:
+ case Expr::ObjCMessageExprClass:
+ case Expr::ObjCSelectorExprClass:
+ case Expr::ObjCProtocolExprClass:
+ case Expr::ObjCIvarRefExprClass:
+ case Expr::ObjCPropertyRefExprClass:
+ case Expr::ObjCIsaExprClass:
+ case Expr::ShuffleVectorExprClass:
+ case Expr::BlockExprClass:
+ case Expr::BlockDeclRefExprClass:
+ case Expr::NoStmtClass:
+ case Expr::OpaqueValueExprClass:
+ case Expr::PackExpansionExprClass:
+ case Expr::SubstNonTypeTemplateParmPackExprClass:
+ return ICEDiag(2, E->getLocStart());
+
+ case Expr::SizeOfPackExprClass:
+ case Expr::GNUNullExprClass:
+ // GCC considers the GNU __null value to be an integral constant expression.
+ return NoDiag();
+
+ case Expr::ParenExprClass:
+ return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
+ case Expr::IntegerLiteralClass:
+ case Expr::CharacterLiteralClass:
+ case Expr::CXXBoolLiteralExprClass:
+ case Expr::CXXScalarValueInitExprClass:
+ case Expr::UnaryTypeTraitExprClass:
+ case Expr::BinaryTypeTraitExprClass:
+ case Expr::CXXNoexceptExprClass:
+ return NoDiag();
+ case Expr::CallExprClass:
+ case Expr::CXXOperatorCallExprClass: {
+ const CallExpr *CE = cast<CallExpr>(E);
+ if (CE->isBuiltinCall(Ctx))
+ return CheckEvalInICE(E, Ctx);
+ return ICEDiag(2, E->getLocStart());
+ }
+ case Expr::DeclRefExprClass:
+ if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
+ return NoDiag();
+ if (Ctx.getLangOptions().CPlusPlus &&
+ E->getType().getCVRQualifiers() == Qualifiers::Const) {
+ const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
+
+ // Parameter variables are never constants. Without this check,
+ // getAnyInitializer() can find a default argument, which leads
+ // to chaos.
+ if (isa<ParmVarDecl>(D))
+ return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
+
+ // C++ 7.1.5.1p2
+ // A variable of non-volatile const-qualified integral or enumeration
+ // type initialized by an ICE can be used in ICEs.
+ if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
+ Qualifiers Quals = Ctx.getCanonicalType(Dcl->getType()).getQualifiers();
+ if (Quals.hasVolatile() || !Quals.hasConst())
+ return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
+
+ // Look for a declaration of this variable that has an initializer.
+ const VarDecl *ID = 0;
+ const Expr *Init = Dcl->getAnyInitializer(ID);
+ if (Init) {
+ if (ID->isInitKnownICE()) {
+ // We have already checked whether this subexpression is an
+ // integral constant expression.
+ if (ID->isInitICE())
+ return NoDiag();
+ else
+ return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
+ }
+
+ // It's an ICE whether or not the definition we found is
+ // out-of-line. See DR 721 and the discussion in Clang PR
+ // 6206 for details.
+
+ if (Dcl->isCheckingICE()) {
+ return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
+ }
+
+ Dcl->setCheckingICE();
+ ICEDiag Result = CheckICE(Init, Ctx);
+ // Cache the result of the ICE test.
+ Dcl->setInitKnownICE(Result.Val == 0);
+ return Result;
+ }
+ }
+ }
+ return ICEDiag(2, E->getLocStart());
+ case Expr::UnaryOperatorClass: {
+ const UnaryOperator *Exp = cast<UnaryOperator>(E);
+ switch (Exp->getOpcode()) {
+ case UO_PostInc:
+ case UO_PostDec:
+ case UO_PreInc:
+ case UO_PreDec:
+ case UO_AddrOf:
+ case UO_Deref:
+ return ICEDiag(2, E->getLocStart());
+ case UO_Extension:
+ case UO_LNot:
+ case UO_Plus:
+ case UO_Minus:
+ case UO_Not:
+ case UO_Real:
+ case UO_Imag:
+ return CheckICE(Exp->getSubExpr(), Ctx);
+ }
+
+ // OffsetOf falls through here.
+ }
+ case Expr::OffsetOfExprClass: {
+ // Note that per C99, offsetof must be an ICE. And AFAIK, using
+ // Evaluate matches the proposed gcc behavior for cases like
+ // "offsetof(struct s{int x[4];}, x[!.0])". This doesn't affect
+ // compliance: we should warn earlier for offsetof expressions with
+ // array subscripts that aren't ICEs, and if the array subscripts
+ // are ICEs, the value of the offsetof must be an integer constant.
+ return CheckEvalInICE(E, Ctx);
+ }
+ case Expr::SizeOfAlignOfExprClass: {
+ const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(E);
+ if (Exp->isSizeOf() && Exp->getTypeOfArgument()->isVariableArrayType())
+ return ICEDiag(2, E->getLocStart());
+ return NoDiag();
+ }
+ case Expr::BinaryOperatorClass: {
+ const BinaryOperator *Exp = cast<BinaryOperator>(E);
+ switch (Exp->getOpcode()) {
+ case BO_PtrMemD:
+ case BO_PtrMemI:
+ case BO_Assign:
+ case BO_MulAssign:
+ case BO_DivAssign:
+ case BO_RemAssign:
+ case BO_AddAssign:
+ case BO_SubAssign:
+ case BO_ShlAssign:
+ case BO_ShrAssign:
+ case BO_AndAssign:
+ case BO_XorAssign:
+ case BO_OrAssign:
+ return ICEDiag(2, E->getLocStart());
+
+ case BO_Mul:
+ case BO_Div:
+ case BO_Rem:
+ case BO_Add:
+ case BO_Sub:
+ case BO_Shl:
+ case BO_Shr:
+ case BO_LT:
+ case BO_GT:
+ case BO_LE:
+ case BO_GE:
+ case BO_EQ:
+ case BO_NE:
+ case BO_And:
+ case BO_Xor:
+ case BO_Or:
+ case BO_Comma: {
+ ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
+ ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
+ if (Exp->getOpcode() == BO_Div ||
+ Exp->getOpcode() == BO_Rem) {
+ // Evaluate gives an error for undefined Div/Rem, so make sure
+ // we don't evaluate one.
+ if (LHSResult.Val != 2 && RHSResult.Val != 2) {
+ llvm::APSInt REval = Exp->getRHS()->EvaluateAsInt(Ctx);
+ if (REval == 0)
+ return ICEDiag(1, E->getLocStart());
+ if (REval.isSigned() && REval.isAllOnesValue()) {
+ llvm::APSInt LEval = Exp->getLHS()->EvaluateAsInt(Ctx);
+ if (LEval.isMinSignedValue())
+ return ICEDiag(1, E->getLocStart());
+ }
+ }
+ }
+ if (Exp->getOpcode() == BO_Comma) {
+ if (Ctx.getLangOptions().C99) {
+ // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
+ // if it isn't evaluated.
+ if (LHSResult.Val == 0 && RHSResult.Val == 0)
+ return ICEDiag(1, E->getLocStart());
+ } else {
+ // In both C89 and C++, commas in ICEs are illegal.
+ return ICEDiag(2, E->getLocStart());
+ }
+ }
+ if (LHSResult.Val >= RHSResult.Val)
+ return LHSResult;
+ return RHSResult;
+ }
+ case BO_LAnd:
+ case BO_LOr: {
+ ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
+ ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
+ if (LHSResult.Val == 0 && RHSResult.Val == 1) {
+ // Rare case where the RHS has a comma "side-effect"; we need
+ // to actually check the condition to see whether the side
+ // with the comma is evaluated.
+ if ((Exp->getOpcode() == BO_LAnd) !=
+ (Exp->getLHS()->EvaluateAsInt(Ctx) == 0))
+ return RHSResult;
+ return NoDiag();
+ }
+
+ if (LHSResult.Val >= RHSResult.Val)
+ return LHSResult;
+ return RHSResult;
+ }
+ }
+ }
+ case Expr::ImplicitCastExprClass:
+ case Expr::CStyleCastExprClass:
+ case Expr::CXXFunctionalCastExprClass:
+ case Expr::CXXStaticCastExprClass:
+ case Expr::CXXReinterpretCastExprClass:
+ case Expr::CXXConstCastExprClass: {
+ const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
+ if (SubExpr->getType()->isIntegralOrEnumerationType())
+ return CheckICE(SubExpr, Ctx);
+ if (isa<FloatingLiteral>(SubExpr->IgnoreParens()))
+ return NoDiag();
+ return ICEDiag(2, E->getLocStart());
+ }
+ case Expr::BinaryConditionalOperatorClass: {
+ const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
+ ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
+ if (CommonResult.Val == 2) return CommonResult;
+ ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
+ if (FalseResult.Val == 2) return FalseResult;
+ if (CommonResult.Val == 1) return CommonResult;
+ if (FalseResult.Val == 1 &&
+ Exp->getCommon()->EvaluateAsInt(Ctx) == 0) return NoDiag();
+ return FalseResult;
+ }
+ case Expr::ConditionalOperatorClass: {
+ const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
+ // If the condition (ignoring parens) is a __builtin_constant_p call,
+ // then only the true side is actually considered in an integer constant
+ // expression, and it is fully evaluated. This is an important GNU
+ // extension. See GCC PR38377 for discussion.
+ if (const CallExpr *CallCE
+ = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
+ if (CallCE->isBuiltinCall(Ctx) == Builtin::BI__builtin_constant_p) {
+ Expr::EvalResult EVResult;
+ if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
+ !EVResult.Val.isInt()) {
+ return ICEDiag(2, E->getLocStart());
+ }
+ return NoDiag();
+ }
+ ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
+ ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
+ ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
+ if (CondResult.Val == 2)
+ return CondResult;
+ if (TrueResult.Val == 2)
+ return TrueResult;
+ if (FalseResult.Val == 2)
+ return FalseResult;
+ if (CondResult.Val == 1)
+ return CondResult;
+ if (TrueResult.Val == 0 && FalseResult.Val == 0)
+ return NoDiag();
+ // Rare case where the diagnostics depend on which side is evaluated
+ // Note that if we get here, CondResult is 0, and at least one of
+ // TrueResult and FalseResult is non-zero.
+ if (Exp->getCond()->EvaluateAsInt(Ctx) == 0) {
+ return FalseResult;
+ }
+ return TrueResult;
+ }
+ case Expr::CXXDefaultArgExprClass:
+ return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
+ case Expr::ChooseExprClass: {
+ return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx);
+ }
+ }
+
+ // Silence a GCC warning
+ return ICEDiag(2, E->getLocStart());
+}
+
+bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
+ SourceLocation *Loc, bool isEvaluated) const {
+ ICEDiag d = CheckICE(this, Ctx);
+ if (d.Val != 0) {
+ if (Loc) *Loc = d.Loc;
+ return false;
+ }
+ EvalResult EvalResult;
+ if (!Evaluate(EvalResult, Ctx))
+ llvm_unreachable("ICE cannot be evaluated!");
+ assert(!EvalResult.HasSideEffects && "ICE with side effects!");
+ assert(EvalResult.Val.isInt() && "ICE that isn't integer!");
+ Result = EvalResult.Val.getInt();
+ return true;
+}
OpenPOWER on IntegriCloud