diff options
Diffstat (limited to 'contrib/llvm/tools/clang/lib/AST/ExprConstant.cpp')
-rw-r--r-- | contrib/llvm/tools/clang/lib/AST/ExprConstant.cpp | 3125 |
1 files changed, 3125 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/AST/ExprConstant.cpp b/contrib/llvm/tools/clang/lib/AST/ExprConstant.cpp new file mode 100644 index 0000000..786155a --- /dev/null +++ b/contrib/llvm/tools/clang/lib/AST/ExprConstant.cpp @@ -0,0 +1,3125 @@ +//===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the Expr constant evaluator. +// +//===----------------------------------------------------------------------===// + +#include "clang/AST/APValue.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/CharUnits.h" +#include "clang/AST/RecordLayout.h" +#include "clang/AST/StmtVisitor.h" +#include "clang/AST/TypeLoc.h" +#include "clang/AST/ASTDiagnostic.h" +#include "clang/AST/Expr.h" +#include "clang/Basic/Builtins.h" +#include "clang/Basic/TargetInfo.h" +#include "llvm/ADT/SmallString.h" +#include <cstring> + +using namespace clang; +using llvm::APSInt; +using llvm::APFloat; + +/// EvalInfo - This is a private struct used by the evaluator to capture +/// information about a subexpression as it is folded. It retains information +/// about the AST context, but also maintains information about the folded +/// expression. +/// +/// If an expression could be evaluated, it is still possible it is not a C +/// "integer constant expression" or constant expression. If not, this struct +/// captures information about how and why not. +/// +/// One bit of information passed *into* the request for constant folding +/// indicates whether the subexpression is "evaluated" or not according to C +/// rules. For example, the RHS of (0 && foo()) is not evaluated. We can +/// evaluate the expression regardless of what the RHS is, but C only allows +/// certain things in certain situations. +namespace { + struct EvalInfo { + const ASTContext &Ctx; + + /// EvalResult - Contains information about the evaluation. + Expr::EvalResult &EvalResult; + + typedef llvm::DenseMap<const OpaqueValueExpr*, APValue> MapTy; + MapTy OpaqueValues; + const APValue *getOpaqueValue(const OpaqueValueExpr *e) const { + MapTy::const_iterator i = OpaqueValues.find(e); + if (i == OpaqueValues.end()) return 0; + return &i->second; + } + + EvalInfo(const ASTContext &ctx, Expr::EvalResult &evalresult) + : Ctx(ctx), EvalResult(evalresult) {} + }; + + struct ComplexValue { + private: + bool IsInt; + + public: + APSInt IntReal, IntImag; + APFloat FloatReal, FloatImag; + + ComplexValue() : FloatReal(APFloat::Bogus), FloatImag(APFloat::Bogus) {} + + void makeComplexFloat() { IsInt = false; } + bool isComplexFloat() const { return !IsInt; } + APFloat &getComplexFloatReal() { return FloatReal; } + APFloat &getComplexFloatImag() { return FloatImag; } + + void makeComplexInt() { IsInt = true; } + bool isComplexInt() const { return IsInt; } + APSInt &getComplexIntReal() { return IntReal; } + APSInt &getComplexIntImag() { return IntImag; } + + void moveInto(APValue &v) const { + if (isComplexFloat()) + v = APValue(FloatReal, FloatImag); + else + v = APValue(IntReal, IntImag); + } + void setFrom(const APValue &v) { + assert(v.isComplexFloat() || v.isComplexInt()); + if (v.isComplexFloat()) { + makeComplexFloat(); + FloatReal = v.getComplexFloatReal(); + FloatImag = v.getComplexFloatImag(); + } else { + makeComplexInt(); + IntReal = v.getComplexIntReal(); + IntImag = v.getComplexIntImag(); + } + } + }; + + struct LValue { + const Expr *Base; + CharUnits Offset; + + const Expr *getLValueBase() { return Base; } + CharUnits getLValueOffset() { return Offset; } + + void moveInto(APValue &v) const { + v = APValue(Base, Offset); + } + void setFrom(const APValue &v) { + assert(v.isLValue()); + Base = v.getLValueBase(); + Offset = v.getLValueOffset(); + } + }; +} + +static bool Evaluate(EvalInfo &info, const Expr *E); +static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info); +static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info); +static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info); +static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result, + EvalInfo &Info); +static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info); +static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info); + +//===----------------------------------------------------------------------===// +// Misc utilities +//===----------------------------------------------------------------------===// + +static bool IsGlobalLValue(const Expr* E) { + if (!E) return true; + + if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { + if (isa<FunctionDecl>(DRE->getDecl())) + return true; + if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) + return VD->hasGlobalStorage(); + return false; + } + + if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(E)) + return CLE->isFileScope(); + + return true; +} + +static bool EvalPointerValueAsBool(LValue& Value, bool& Result) { + const Expr* Base = Value.Base; + + // A null base expression indicates a null pointer. These are always + // evaluatable, and they are false unless the offset is zero. + if (!Base) { + Result = !Value.Offset.isZero(); + return true; + } + + // Require the base expression to be a global l-value. + if (!IsGlobalLValue(Base)) return false; + + // We have a non-null base expression. These are generally known to + // be true, but if it'a decl-ref to a weak symbol it can be null at + // runtime. + Result = true; + + const DeclRefExpr* DeclRef = dyn_cast<DeclRefExpr>(Base); + if (!DeclRef) + return true; + + // If it's a weak symbol, it isn't constant-evaluable. + const ValueDecl* Decl = DeclRef->getDecl(); + if (Decl->hasAttr<WeakAttr>() || + Decl->hasAttr<WeakRefAttr>() || + Decl->isWeakImported()) + return false; + + return true; +} + +static bool HandleConversionToBool(const Expr* E, bool& Result, + EvalInfo &Info) { + if (E->getType()->isIntegralOrEnumerationType()) { + APSInt IntResult; + if (!EvaluateInteger(E, IntResult, Info)) + return false; + Result = IntResult != 0; + return true; + } else if (E->getType()->isRealFloatingType()) { + APFloat FloatResult(0.0); + if (!EvaluateFloat(E, FloatResult, Info)) + return false; + Result = !FloatResult.isZero(); + return true; + } else if (E->getType()->hasPointerRepresentation()) { + LValue PointerResult; + if (!EvaluatePointer(E, PointerResult, Info)) + return false; + return EvalPointerValueAsBool(PointerResult, Result); + } else if (E->getType()->isAnyComplexType()) { + ComplexValue ComplexResult; + if (!EvaluateComplex(E, ComplexResult, Info)) + return false; + if (ComplexResult.isComplexFloat()) { + Result = !ComplexResult.getComplexFloatReal().isZero() || + !ComplexResult.getComplexFloatImag().isZero(); + } else { + Result = ComplexResult.getComplexIntReal().getBoolValue() || + ComplexResult.getComplexIntImag().getBoolValue(); + } + return true; + } + + return false; +} + +static APSInt HandleFloatToIntCast(QualType DestType, QualType SrcType, + APFloat &Value, const ASTContext &Ctx) { + unsigned DestWidth = Ctx.getIntWidth(DestType); + // Determine whether we are converting to unsigned or signed. + bool DestSigned = DestType->isSignedIntegerOrEnumerationType(); + + // FIXME: Warning for overflow. + APSInt Result(DestWidth, !DestSigned); + bool ignored; + (void)Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored); + return Result; +} + +static APFloat HandleFloatToFloatCast(QualType DestType, QualType SrcType, + APFloat &Value, const ASTContext &Ctx) { + bool ignored; + APFloat Result = Value; + Result.convert(Ctx.getFloatTypeSemantics(DestType), + APFloat::rmNearestTiesToEven, &ignored); + return Result; +} + +static APSInt HandleIntToIntCast(QualType DestType, QualType SrcType, + APSInt &Value, const ASTContext &Ctx) { + unsigned DestWidth = Ctx.getIntWidth(DestType); + APSInt Result = Value; + // Figure out if this is a truncate, extend or noop cast. + // If the input is signed, do a sign extend, noop, or truncate. + Result = Result.extOrTrunc(DestWidth); + Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType()); + return Result; +} + +static APFloat HandleIntToFloatCast(QualType DestType, QualType SrcType, + APSInt &Value, const ASTContext &Ctx) { + + APFloat Result(Ctx.getFloatTypeSemantics(DestType), 1); + Result.convertFromAPInt(Value, Value.isSigned(), + APFloat::rmNearestTiesToEven); + return Result; +} + +namespace { +class HasSideEffect + : public ConstStmtVisitor<HasSideEffect, bool> { + EvalInfo &Info; +public: + + HasSideEffect(EvalInfo &info) : Info(info) {} + + // Unhandled nodes conservatively default to having side effects. + bool VisitStmt(const Stmt *S) { + return true; + } + + bool VisitParenExpr(const ParenExpr *E) { return Visit(E->getSubExpr()); } + bool VisitGenericSelectionExpr(const GenericSelectionExpr *E) { + return Visit(E->getResultExpr()); + } + bool VisitDeclRefExpr(const DeclRefExpr *E) { + if (Info.Ctx.getCanonicalType(E->getType()).isVolatileQualified()) + return true; + return false; + } + bool VisitObjCIvarRefExpr(const ObjCIvarRefExpr *E) { + if (Info.Ctx.getCanonicalType(E->getType()).isVolatileQualified()) + return true; + return false; + } + bool VisitBlockDeclRefExpr (const BlockDeclRefExpr *E) { + if (Info.Ctx.getCanonicalType(E->getType()).isVolatileQualified()) + return true; + return false; + } + + // We don't want to evaluate BlockExprs multiple times, as they generate + // a ton of code. + bool VisitBlockExpr(const BlockExpr *E) { return true; } + bool VisitPredefinedExpr(const PredefinedExpr *E) { return false; } + bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) + { return Visit(E->getInitializer()); } + bool VisitMemberExpr(const MemberExpr *E) { return Visit(E->getBase()); } + bool VisitIntegerLiteral(const IntegerLiteral *E) { return false; } + bool VisitFloatingLiteral(const FloatingLiteral *E) { return false; } + bool VisitStringLiteral(const StringLiteral *E) { return false; } + bool VisitCharacterLiteral(const CharacterLiteral *E) { return false; } + bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E) + { return false; } + bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E) + { return Visit(E->getLHS()) || Visit(E->getRHS()); } + bool VisitChooseExpr(const ChooseExpr *E) + { return Visit(E->getChosenSubExpr(Info.Ctx)); } + bool VisitCastExpr(const CastExpr *E) { return Visit(E->getSubExpr()); } + bool VisitBinAssign(const BinaryOperator *E) { return true; } + bool VisitCompoundAssignOperator(const BinaryOperator *E) { return true; } + bool VisitBinaryOperator(const BinaryOperator *E) + { return Visit(E->getLHS()) || Visit(E->getRHS()); } + bool VisitUnaryPreInc(const UnaryOperator *E) { return true; } + bool VisitUnaryPostInc(const UnaryOperator *E) { return true; } + bool VisitUnaryPreDec(const UnaryOperator *E) { return true; } + bool VisitUnaryPostDec(const UnaryOperator *E) { return true; } + bool VisitUnaryDeref(const UnaryOperator *E) { + if (Info.Ctx.getCanonicalType(E->getType()).isVolatileQualified()) + return true; + return Visit(E->getSubExpr()); + } + bool VisitUnaryOperator(const UnaryOperator *E) { return Visit(E->getSubExpr()); } + + // Has side effects if any element does. + bool VisitInitListExpr(const InitListExpr *E) { + for (unsigned i = 0, e = E->getNumInits(); i != e; ++i) + if (Visit(E->getInit(i))) return true; + if (const Expr *filler = E->getArrayFiller()) + return Visit(filler); + return false; + } + + bool VisitSizeOfPackExpr(const SizeOfPackExpr *) { return false; } +}; + +class OpaqueValueEvaluation { + EvalInfo &info; + OpaqueValueExpr *opaqueValue; + +public: + OpaqueValueEvaluation(EvalInfo &info, OpaqueValueExpr *opaqueValue, + Expr *value) + : info(info), opaqueValue(opaqueValue) { + + // If evaluation fails, fail immediately. + if (!Evaluate(info, value)) { + this->opaqueValue = 0; + return; + } + info.OpaqueValues[opaqueValue] = info.EvalResult.Val; + } + + bool hasError() const { return opaqueValue == 0; } + + ~OpaqueValueEvaluation() { + if (opaqueValue) info.OpaqueValues.erase(opaqueValue); + } +}; + +} // end anonymous namespace + +//===----------------------------------------------------------------------===// +// Generic Evaluation +//===----------------------------------------------------------------------===// +namespace { + +template <class Derived, typename RetTy=void> +class ExprEvaluatorBase + : public ConstStmtVisitor<Derived, RetTy> { +private: + RetTy DerivedSuccess(const APValue &V, const Expr *E) { + return static_cast<Derived*>(this)->Success(V, E); + } + RetTy DerivedError(const Expr *E) { + return static_cast<Derived*>(this)->Error(E); + } + +protected: + EvalInfo &Info; + typedef ConstStmtVisitor<Derived, RetTy> StmtVisitorTy; + typedef ExprEvaluatorBase ExprEvaluatorBaseTy; + +public: + ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {} + + RetTy VisitStmt(const Stmt *) { + assert(0 && "Expression evaluator should not be called on stmts"); + return DerivedError(0); + } + RetTy VisitExpr(const Expr *E) { + return DerivedError(E); + } + + RetTy VisitParenExpr(const ParenExpr *E) + { return StmtVisitorTy::Visit(E->getSubExpr()); } + RetTy VisitUnaryExtension(const UnaryOperator *E) + { return StmtVisitorTy::Visit(E->getSubExpr()); } + RetTy VisitUnaryPlus(const UnaryOperator *E) + { return StmtVisitorTy::Visit(E->getSubExpr()); } + RetTy VisitChooseExpr(const ChooseExpr *E) + { return StmtVisitorTy::Visit(E->getChosenSubExpr(Info.Ctx)); } + RetTy VisitGenericSelectionExpr(const GenericSelectionExpr *E) + { return StmtVisitorTy::Visit(E->getResultExpr()); } + RetTy VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E) + { return StmtVisitorTy::Visit(E->getReplacement()); } + + RetTy VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) { + OpaqueValueEvaluation opaque(Info, E->getOpaqueValue(), E->getCommon()); + if (opaque.hasError()) + return DerivedError(E); + + bool cond; + if (!HandleConversionToBool(E->getCond(), cond, Info)) + return DerivedError(E); + + return StmtVisitorTy::Visit(cond ? E->getTrueExpr() : E->getFalseExpr()); + } + + RetTy VisitConditionalOperator(const ConditionalOperator *E) { + bool BoolResult; + if (!HandleConversionToBool(E->getCond(), BoolResult, Info)) + return DerivedError(E); + + Expr* EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr(); + return StmtVisitorTy::Visit(EvalExpr); + } + + RetTy VisitOpaqueValueExpr(const OpaqueValueExpr *E) { + const APValue *value = Info.getOpaqueValue(E); + if (!value) + return (E->getSourceExpr() ? StmtVisitorTy::Visit(E->getSourceExpr()) + : DerivedError(E)); + return DerivedSuccess(*value, E); + } +}; + +} + +//===----------------------------------------------------------------------===// +// LValue Evaluation +//===----------------------------------------------------------------------===// +namespace { +class LValueExprEvaluator + : public ExprEvaluatorBase<LValueExprEvaluator, bool> { + LValue &Result; + + bool Success(const Expr *E) { + Result.Base = E; + Result.Offset = CharUnits::Zero(); + return true; + } +public: + + LValueExprEvaluator(EvalInfo &info, LValue &Result) : + ExprEvaluatorBaseTy(info), Result(Result) {} + + bool Success(const APValue &V, const Expr *E) { + Result.setFrom(V); + return true; + } + bool Error(const Expr *E) { + return false; + } + + bool VisitDeclRefExpr(const DeclRefExpr *E); + bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); } + bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E); + bool VisitMemberExpr(const MemberExpr *E); + bool VisitStringLiteral(const StringLiteral *E) { return Success(E); } + bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); } + bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E); + bool VisitUnaryDeref(const UnaryOperator *E); + + bool VisitCastExpr(const CastExpr *E) { + switch (E->getCastKind()) { + default: + return false; + + case CK_NoOp: + return Visit(E->getSubExpr()); + } + } + // FIXME: Missing: __real__, __imag__ + +}; +} // end anonymous namespace + +static bool EvaluateLValue(const Expr* E, LValue& Result, EvalInfo &Info) { + return LValueExprEvaluator(Info, Result).Visit(E); +} + +bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) { + if (isa<FunctionDecl>(E->getDecl())) { + return Success(E); + } else if (const VarDecl* VD = dyn_cast<VarDecl>(E->getDecl())) { + if (!VD->getType()->isReferenceType()) + return Success(E); + // Reference parameters can refer to anything even if they have an + // "initializer" in the form of a default argument. + if (!isa<ParmVarDecl>(VD)) + // FIXME: Check whether VD might be overridden! + if (const Expr *Init = VD->getAnyInitializer()) + return Visit(Init); + } + + return ExprEvaluatorBaseTy::VisitDeclRefExpr(E); +} + +bool +LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { + return Success(E); +} + +bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) { + QualType Ty; + if (E->isArrow()) { + if (!EvaluatePointer(E->getBase(), Result, Info)) + return false; + Ty = E->getBase()->getType()->getAs<PointerType>()->getPointeeType(); + } else { + if (!Visit(E->getBase())) + return false; + Ty = E->getBase()->getType(); + } + + const RecordDecl *RD = Ty->getAs<RecordType>()->getDecl(); + const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD); + + const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl()); + if (!FD) // FIXME: deal with other kinds of member expressions + return false; + + if (FD->getType()->isReferenceType()) + return false; + + unsigned i = FD->getFieldIndex(); + Result.Offset += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i)); + return true; +} + +bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) { + if (!EvaluatePointer(E->getBase(), Result, Info)) + return false; + + APSInt Index; + if (!EvaluateInteger(E->getIdx(), Index, Info)) + return false; + + CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(E->getType()); + Result.Offset += Index.getSExtValue() * ElementSize; + return true; +} + +bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) { + return EvaluatePointer(E->getSubExpr(), Result, Info); +} + +//===----------------------------------------------------------------------===// +// Pointer Evaluation +//===----------------------------------------------------------------------===// + +namespace { +class PointerExprEvaluator + : public ExprEvaluatorBase<PointerExprEvaluator, bool> { + LValue &Result; + + bool Success(const Expr *E) { + Result.Base = E; + Result.Offset = CharUnits::Zero(); + return true; + } +public: + + PointerExprEvaluator(EvalInfo &info, LValue &Result) + : ExprEvaluatorBaseTy(info), Result(Result) {} + + bool Success(const APValue &V, const Expr *E) { + Result.setFrom(V); + return true; + } + bool Error(const Stmt *S) { + return false; + } + + bool VisitBinaryOperator(const BinaryOperator *E); + bool VisitCastExpr(const CastExpr* E); + bool VisitUnaryAddrOf(const UnaryOperator *E); + bool VisitObjCStringLiteral(const ObjCStringLiteral *E) + { return Success(E); } + bool VisitAddrLabelExpr(const AddrLabelExpr *E) + { return Success(E); } + bool VisitCallExpr(const CallExpr *E); + bool VisitBlockExpr(const BlockExpr *E) { + if (!E->getBlockDecl()->hasCaptures()) + return Success(E); + return false; + } + bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) + { return Success((Expr*)0); } + bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) + { return Success((Expr*)0); } + + // FIXME: Missing: @protocol, @selector +}; +} // end anonymous namespace + +static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info) { + assert(E->getType()->hasPointerRepresentation()); + return PointerExprEvaluator(Info, Result).Visit(E); +} + +bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { + if (E->getOpcode() != BO_Add && + E->getOpcode() != BO_Sub) + return false; + + const Expr *PExp = E->getLHS(); + const Expr *IExp = E->getRHS(); + if (IExp->getType()->isPointerType()) + std::swap(PExp, IExp); + + if (!EvaluatePointer(PExp, Result, Info)) + return false; + + llvm::APSInt Offset; + if (!EvaluateInteger(IExp, Offset, Info)) + return false; + int64_t AdditionalOffset + = Offset.isSigned() ? Offset.getSExtValue() + : static_cast<int64_t>(Offset.getZExtValue()); + + // Compute the new offset in the appropriate width. + + QualType PointeeType = + PExp->getType()->getAs<PointerType>()->getPointeeType(); + CharUnits SizeOfPointee; + + // Explicitly handle GNU void* and function pointer arithmetic extensions. + if (PointeeType->isVoidType() || PointeeType->isFunctionType()) + SizeOfPointee = CharUnits::One(); + else + SizeOfPointee = Info.Ctx.getTypeSizeInChars(PointeeType); + + if (E->getOpcode() == BO_Add) + Result.Offset += AdditionalOffset * SizeOfPointee; + else + Result.Offset -= AdditionalOffset * SizeOfPointee; + + return true; +} + +bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) { + return EvaluateLValue(E->getSubExpr(), Result, Info); +} + + +bool PointerExprEvaluator::VisitCastExpr(const CastExpr* E) { + const Expr* SubExpr = E->getSubExpr(); + + switch (E->getCastKind()) { + default: + break; + + case CK_NoOp: + case CK_BitCast: + case CK_AnyPointerToObjCPointerCast: + case CK_AnyPointerToBlockPointerCast: + return Visit(SubExpr); + + case CK_DerivedToBase: + case CK_UncheckedDerivedToBase: { + LValue BaseLV; + if (!EvaluatePointer(E->getSubExpr(), BaseLV, Info)) + return false; + + // Now figure out the necessary offset to add to the baseLV to get from + // the derived class to the base class. + CharUnits Offset = CharUnits::Zero(); + + QualType Ty = E->getSubExpr()->getType(); + const CXXRecordDecl *DerivedDecl = + Ty->getAs<PointerType>()->getPointeeType()->getAsCXXRecordDecl(); + + for (CastExpr::path_const_iterator PathI = E->path_begin(), + PathE = E->path_end(); PathI != PathE; ++PathI) { + const CXXBaseSpecifier *Base = *PathI; + + // FIXME: If the base is virtual, we'd need to determine the type of the + // most derived class and we don't support that right now. + if (Base->isVirtual()) + return false; + + const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl(); + const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl); + + Offset += Layout.getBaseClassOffset(BaseDecl); + DerivedDecl = BaseDecl; + } + + Result.Base = BaseLV.getLValueBase(); + Result.Offset = BaseLV.getLValueOffset() + Offset; + return true; + } + + case CK_NullToPointer: { + Result.Base = 0; + Result.Offset = CharUnits::Zero(); + return true; + } + + case CK_IntegralToPointer: { + APValue Value; + if (!EvaluateIntegerOrLValue(SubExpr, Value, Info)) + break; + + if (Value.isInt()) { + Value.getInt() = Value.getInt().extOrTrunc((unsigned)Info.Ctx.getTypeSize(E->getType())); + Result.Base = 0; + Result.Offset = CharUnits::fromQuantity(Value.getInt().getZExtValue()); + return true; + } else { + // Cast is of an lvalue, no need to change value. + Result.Base = Value.getLValueBase(); + Result.Offset = Value.getLValueOffset(); + return true; + } + } + case CK_ArrayToPointerDecay: + case CK_FunctionToPointerDecay: + return EvaluateLValue(SubExpr, Result, Info); + } + + return false; +} + +bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) { + if (E->isBuiltinCall(Info.Ctx) == + Builtin::BI__builtin___CFStringMakeConstantString || + E->isBuiltinCall(Info.Ctx) == + Builtin::BI__builtin___NSStringMakeConstantString) + return Success(E); + + return ExprEvaluatorBaseTy::VisitCallExpr(E); +} + +//===----------------------------------------------------------------------===// +// Vector Evaluation +//===----------------------------------------------------------------------===// + +namespace { + class VectorExprEvaluator + : public ExprEvaluatorBase<VectorExprEvaluator, APValue> { + APValue GetZeroVector(QualType VecType); + public: + + VectorExprEvaluator(EvalInfo &info) : ExprEvaluatorBaseTy(info) {} + + APValue Success(const APValue &V, const Expr *E) { return V; } + APValue Error(const Expr *E) { return APValue(); } + + APValue VisitUnaryReal(const UnaryOperator *E) + { return Visit(E->getSubExpr()); } + APValue VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) + { return GetZeroVector(E->getType()); } + APValue VisitCastExpr(const CastExpr* E); + APValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E); + APValue VisitInitListExpr(const InitListExpr *E); + APValue VisitUnaryImag(const UnaryOperator *E); + // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div, + // binary comparisons, binary and/or/xor, + // shufflevector, ExtVectorElementExpr + // (Note that these require implementing conversions + // between vector types.) + }; +} // end anonymous namespace + +static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) { + if (!E->getType()->isVectorType()) + return false; + Result = VectorExprEvaluator(Info).Visit(E); + return !Result.isUninit(); +} + +APValue VectorExprEvaluator::VisitCastExpr(const CastExpr* E) { + const VectorType *VTy = E->getType()->getAs<VectorType>(); + QualType EltTy = VTy->getElementType(); + unsigned NElts = VTy->getNumElements(); + unsigned EltWidth = Info.Ctx.getTypeSize(EltTy); + + const Expr* SE = E->getSubExpr(); + QualType SETy = SE->getType(); + + switch (E->getCastKind()) { + case CK_VectorSplat: { + APValue Result = APValue(); + if (SETy->isIntegerType()) { + APSInt IntResult; + if (!EvaluateInteger(SE, IntResult, Info)) + return APValue(); + Result = APValue(IntResult); + } else if (SETy->isRealFloatingType()) { + APFloat F(0.0); + if (!EvaluateFloat(SE, F, Info)) + return APValue(); + Result = APValue(F); + } else { + return APValue(); + } + + // Splat and create vector APValue. + llvm::SmallVector<APValue, 4> Elts(NElts, Result); + return APValue(&Elts[0], Elts.size()); + } + case CK_BitCast: { + if (SETy->isVectorType()) + return Visit(SE); + + if (!SETy->isIntegerType()) + return APValue(); + + APSInt Init; + if (!EvaluateInteger(SE, Init, Info)) + return APValue(); + + assert((EltTy->isIntegerType() || EltTy->isRealFloatingType()) && + "Vectors must be composed of ints or floats"); + + llvm::SmallVector<APValue, 4> Elts; + for (unsigned i = 0; i != NElts; ++i) { + APSInt Tmp = Init.extOrTrunc(EltWidth); + + if (EltTy->isIntegerType()) + Elts.push_back(APValue(Tmp)); + else + Elts.push_back(APValue(APFloat(Tmp))); + + Init >>= EltWidth; + } + return APValue(&Elts[0], Elts.size()); + } + case CK_LValueToRValue: + case CK_NoOp: + return Visit(SE); + default: + return APValue(); + } +} + +APValue +VectorExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { + return this->Visit(E->getInitializer()); +} + +APValue +VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) { + const VectorType *VT = E->getType()->getAs<VectorType>(); + unsigned NumInits = E->getNumInits(); + unsigned NumElements = VT->getNumElements(); + + QualType EltTy = VT->getElementType(); + llvm::SmallVector<APValue, 4> Elements; + + // If a vector is initialized with a single element, that value + // becomes every element of the vector, not just the first. + // This is the behavior described in the IBM AltiVec documentation. + if (NumInits == 1) { + + // Handle the case where the vector is initialized by a another + // vector (OpenCL 6.1.6). + if (E->getInit(0)->getType()->isVectorType()) + return this->Visit(const_cast<Expr*>(E->getInit(0))); + + APValue InitValue; + if (EltTy->isIntegerType()) { + llvm::APSInt sInt(32); + if (!EvaluateInteger(E->getInit(0), sInt, Info)) + return APValue(); + InitValue = APValue(sInt); + } else { + llvm::APFloat f(0.0); + if (!EvaluateFloat(E->getInit(0), f, Info)) + return APValue(); + InitValue = APValue(f); + } + for (unsigned i = 0; i < NumElements; i++) { + Elements.push_back(InitValue); + } + } else { + for (unsigned i = 0; i < NumElements; i++) { + if (EltTy->isIntegerType()) { + llvm::APSInt sInt(32); + if (i < NumInits) { + if (!EvaluateInteger(E->getInit(i), sInt, Info)) + return APValue(); + } else { + sInt = Info.Ctx.MakeIntValue(0, EltTy); + } + Elements.push_back(APValue(sInt)); + } else { + llvm::APFloat f(0.0); + if (i < NumInits) { + if (!EvaluateFloat(E->getInit(i), f, Info)) + return APValue(); + } else { + f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)); + } + Elements.push_back(APValue(f)); + } + } + } + return APValue(&Elements[0], Elements.size()); +} + +APValue +VectorExprEvaluator::GetZeroVector(QualType T) { + const VectorType *VT = T->getAs<VectorType>(); + QualType EltTy = VT->getElementType(); + APValue ZeroElement; + if (EltTy->isIntegerType()) + ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy)); + else + ZeroElement = + APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy))); + + llvm::SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement); + return APValue(&Elements[0], Elements.size()); +} + +APValue VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { + if (!E->getSubExpr()->isEvaluatable(Info.Ctx)) + Info.EvalResult.HasSideEffects = true; + return GetZeroVector(E->getType()); +} + +//===----------------------------------------------------------------------===// +// Integer Evaluation +//===----------------------------------------------------------------------===// + +namespace { +class IntExprEvaluator + : public ExprEvaluatorBase<IntExprEvaluator, bool> { + APValue &Result; +public: + IntExprEvaluator(EvalInfo &info, APValue &result) + : ExprEvaluatorBaseTy(info), Result(result) {} + + bool Success(const llvm::APSInt &SI, const Expr *E) { + assert(E->getType()->isIntegralOrEnumerationType() && + "Invalid evaluation result."); + assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() && + "Invalid evaluation result."); + assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && + "Invalid evaluation result."); + Result = APValue(SI); + return true; + } + + bool Success(const llvm::APInt &I, const Expr *E) { + assert(E->getType()->isIntegralOrEnumerationType() && + "Invalid evaluation result."); + assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && + "Invalid evaluation result."); + Result = APValue(APSInt(I)); + Result.getInt().setIsUnsigned( + E->getType()->isUnsignedIntegerOrEnumerationType()); + return true; + } + + bool Success(uint64_t Value, const Expr *E) { + assert(E->getType()->isIntegralOrEnumerationType() && + "Invalid evaluation result."); + Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType())); + return true; + } + + bool Success(CharUnits Size, const Expr *E) { + return Success(Size.getQuantity(), E); + } + + + bool Error(SourceLocation L, diag::kind D, const Expr *E) { + // Take the first error. + if (Info.EvalResult.Diag == 0) { + Info.EvalResult.DiagLoc = L; + Info.EvalResult.Diag = D; + Info.EvalResult.DiagExpr = E; + } + return false; + } + + bool Success(const APValue &V, const Expr *E) { + return Success(V.getInt(), E); + } + bool Error(const Expr *E) { + return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E); + } + + //===--------------------------------------------------------------------===// + // Visitor Methods + //===--------------------------------------------------------------------===// + + bool VisitIntegerLiteral(const IntegerLiteral *E) { + return Success(E->getValue(), E); + } + bool VisitCharacterLiteral(const CharacterLiteral *E) { + return Success(E->getValue(), E); + } + + bool CheckReferencedDecl(const Expr *E, const Decl *D); + bool VisitDeclRefExpr(const DeclRefExpr *E) { + if (CheckReferencedDecl(E, E->getDecl())) + return true; + + return ExprEvaluatorBaseTy::VisitDeclRefExpr(E); + } + bool VisitMemberExpr(const MemberExpr *E) { + if (CheckReferencedDecl(E, E->getMemberDecl())) { + // Conservatively assume a MemberExpr will have side-effects + Info.EvalResult.HasSideEffects = true; + return true; + } + + return ExprEvaluatorBaseTy::VisitMemberExpr(E); + } + + bool VisitCallExpr(const CallExpr *E); + bool VisitBinaryOperator(const BinaryOperator *E); + bool VisitOffsetOfExpr(const OffsetOfExpr *E); + bool VisitUnaryOperator(const UnaryOperator *E); + + bool VisitCastExpr(const CastExpr* E); + bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); + + bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { + return Success(E->getValue(), E); + } + + bool VisitGNUNullExpr(const GNUNullExpr *E) { + return Success(0, E); + } + + bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { + return Success(0, E); + } + + bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { + return Success(0, E); + } + + bool VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) { + return Success(E->getValue(), E); + } + + bool VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) { + return Success(E->getValue(), E); + } + + bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { + return Success(E->getValue(), E); + } + + bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { + return Success(E->getValue(), E); + } + + bool VisitUnaryReal(const UnaryOperator *E); + bool VisitUnaryImag(const UnaryOperator *E); + + bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E); + bool VisitSizeOfPackExpr(const SizeOfPackExpr *E); + +private: + CharUnits GetAlignOfExpr(const Expr *E); + CharUnits GetAlignOfType(QualType T); + static QualType GetObjectType(const Expr *E); + bool TryEvaluateBuiltinObjectSize(const CallExpr *E); + // FIXME: Missing: array subscript of vector, member of vector +}; +} // end anonymous namespace + +static bool EvaluateIntegerOrLValue(const Expr* E, APValue &Result, EvalInfo &Info) { + assert(E->getType()->isIntegralOrEnumerationType()); + return IntExprEvaluator(Info, Result).Visit(E); +} + +static bool EvaluateInteger(const Expr* E, APSInt &Result, EvalInfo &Info) { + assert(E->getType()->isIntegralOrEnumerationType()); + + APValue Val; + if (!EvaluateIntegerOrLValue(E, Val, Info) || !Val.isInt()) + return false; + Result = Val.getInt(); + return true; +} + +bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) { + // Enums are integer constant exprs. + if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) { + // Check for signedness/width mismatches between E type and ECD value. + bool SameSign = (ECD->getInitVal().isSigned() + == E->getType()->isSignedIntegerOrEnumerationType()); + bool SameWidth = (ECD->getInitVal().getBitWidth() + == Info.Ctx.getIntWidth(E->getType())); + if (SameSign && SameWidth) + return Success(ECD->getInitVal(), E); + else { + // Get rid of mismatch (otherwise Success assertions will fail) + // by computing a new value matching the type of E. + llvm::APSInt Val = ECD->getInitVal(); + if (!SameSign) + Val.setIsSigned(!ECD->getInitVal().isSigned()); + if (!SameWidth) + Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType())); + return Success(Val, E); + } + } + + // In C++, const, non-volatile integers initialized with ICEs are ICEs. + // In C, they can also be folded, although they are not ICEs. + if (Info.Ctx.getCanonicalType(E->getType()).getCVRQualifiers() + == Qualifiers::Const) { + + if (isa<ParmVarDecl>(D)) + return false; + + if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { + if (const Expr *Init = VD->getAnyInitializer()) { + if (APValue *V = VD->getEvaluatedValue()) { + if (V->isInt()) + return Success(V->getInt(), E); + return false; + } + + if (VD->isEvaluatingValue()) + return false; + + VD->setEvaluatingValue(); + + Expr::EvalResult EResult; + if (Init->Evaluate(EResult, Info.Ctx) && !EResult.HasSideEffects && + EResult.Val.isInt()) { + // Cache the evaluated value in the variable declaration. + Result = EResult.Val; + VD->setEvaluatedValue(Result); + return true; + } + + VD->setEvaluatedValue(APValue()); + } + } + } + + // Otherwise, random variable references are not constants. + return false; +} + +/// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way +/// as GCC. +static int EvaluateBuiltinClassifyType(const CallExpr *E) { + // The following enum mimics the values returned by GCC. + // FIXME: Does GCC differ between lvalue and rvalue references here? + enum gcc_type_class { + no_type_class = -1, + void_type_class, integer_type_class, char_type_class, + enumeral_type_class, boolean_type_class, + pointer_type_class, reference_type_class, offset_type_class, + real_type_class, complex_type_class, + function_type_class, method_type_class, + record_type_class, union_type_class, + array_type_class, string_type_class, + lang_type_class + }; + + // If no argument was supplied, default to "no_type_class". This isn't + // ideal, however it is what gcc does. + if (E->getNumArgs() == 0) + return no_type_class; + + QualType ArgTy = E->getArg(0)->getType(); + if (ArgTy->isVoidType()) + return void_type_class; + else if (ArgTy->isEnumeralType()) + return enumeral_type_class; + else if (ArgTy->isBooleanType()) + return boolean_type_class; + else if (ArgTy->isCharType()) + return string_type_class; // gcc doesn't appear to use char_type_class + else if (ArgTy->isIntegerType()) + return integer_type_class; + else if (ArgTy->isPointerType()) + return pointer_type_class; + else if (ArgTy->isReferenceType()) + return reference_type_class; + else if (ArgTy->isRealType()) + return real_type_class; + else if (ArgTy->isComplexType()) + return complex_type_class; + else if (ArgTy->isFunctionType()) + return function_type_class; + else if (ArgTy->isStructureOrClassType()) + return record_type_class; + else if (ArgTy->isUnionType()) + return union_type_class; + else if (ArgTy->isArrayType()) + return array_type_class; + else if (ArgTy->isUnionType()) + return union_type_class; + else // FIXME: offset_type_class, method_type_class, & lang_type_class? + assert(0 && "CallExpr::isBuiltinClassifyType(): unimplemented type"); + return -1; +} + +/// Retrieves the "underlying object type" of the given expression, +/// as used by __builtin_object_size. +QualType IntExprEvaluator::GetObjectType(const Expr *E) { + if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { + if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) + return VD->getType(); + } else if (isa<CompoundLiteralExpr>(E)) { + return E->getType(); + } + + return QualType(); +} + +bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E) { + // TODO: Perhaps we should let LLVM lower this? + LValue Base; + if (!EvaluatePointer(E->getArg(0), Base, Info)) + return false; + + // If we can prove the base is null, lower to zero now. + const Expr *LVBase = Base.getLValueBase(); + if (!LVBase) return Success(0, E); + + QualType T = GetObjectType(LVBase); + if (T.isNull() || + T->isIncompleteType() || + T->isFunctionType() || + T->isVariablyModifiedType() || + T->isDependentType()) + return false; + + CharUnits Size = Info.Ctx.getTypeSizeInChars(T); + CharUnits Offset = Base.getLValueOffset(); + + if (!Offset.isNegative() && Offset <= Size) + Size -= Offset; + else + Size = CharUnits::Zero(); + return Success(Size, E); +} + +bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) { + switch (E->isBuiltinCall(Info.Ctx)) { + default: + return ExprEvaluatorBaseTy::VisitCallExpr(E); + + case Builtin::BI__builtin_object_size: { + if (TryEvaluateBuiltinObjectSize(E)) + return true; + + // If evaluating the argument has side-effects we can't determine + // the size of the object and lower it to unknown now. + if (E->getArg(0)->HasSideEffects(Info.Ctx)) { + if (E->getArg(1)->EvaluateAsInt(Info.Ctx).getZExtValue() <= 1) + return Success(-1ULL, E); + return Success(0, E); + } + + return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E); + } + + case Builtin::BI__builtin_classify_type: + return Success(EvaluateBuiltinClassifyType(E), E); + + case Builtin::BI__builtin_constant_p: + // __builtin_constant_p always has one operand: it returns true if that + // operand can be folded, false otherwise. + return Success(E->getArg(0)->isEvaluatable(Info.Ctx), E); + + case Builtin::BI__builtin_eh_return_data_regno: { + int Operand = E->getArg(0)->EvaluateAsInt(Info.Ctx).getZExtValue(); + Operand = Info.Ctx.Target.getEHDataRegisterNumber(Operand); + return Success(Operand, E); + } + + case Builtin::BI__builtin_expect: + return Visit(E->getArg(0)); + + case Builtin::BIstrlen: + case Builtin::BI__builtin_strlen: + // As an extension, we support strlen() and __builtin_strlen() as constant + // expressions when the argument is a string literal. + if (const StringLiteral *S + = dyn_cast<StringLiteral>(E->getArg(0)->IgnoreParenImpCasts())) { + // The string literal may have embedded null characters. Find the first + // one and truncate there. + llvm::StringRef Str = S->getString(); + llvm::StringRef::size_type Pos = Str.find(0); + if (Pos != llvm::StringRef::npos) + Str = Str.substr(0, Pos); + + return Success(Str.size(), E); + } + + return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E); + } +} + +bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { + if (E->getOpcode() == BO_Comma) { + if (!Visit(E->getRHS())) + return false; + + // If we can't evaluate the LHS, it might have side effects; + // conservatively mark it. + if (!E->getLHS()->isEvaluatable(Info.Ctx)) + Info.EvalResult.HasSideEffects = true; + + return true; + } + + if (E->isLogicalOp()) { + // These need to be handled specially because the operands aren't + // necessarily integral + bool lhsResult, rhsResult; + + if (HandleConversionToBool(E->getLHS(), lhsResult, Info)) { + // We were able to evaluate the LHS, see if we can get away with not + // evaluating the RHS: 0 && X -> 0, 1 || X -> 1 + if (lhsResult == (E->getOpcode() == BO_LOr)) + return Success(lhsResult, E); + + if (HandleConversionToBool(E->getRHS(), rhsResult, Info)) { + if (E->getOpcode() == BO_LOr) + return Success(lhsResult || rhsResult, E); + else + return Success(lhsResult && rhsResult, E); + } + } else { + if (HandleConversionToBool(E->getRHS(), rhsResult, Info)) { + // We can't evaluate the LHS; however, sometimes the result + // is determined by the RHS: X && 0 -> 0, X || 1 -> 1. + if (rhsResult == (E->getOpcode() == BO_LOr) || + !rhsResult == (E->getOpcode() == BO_LAnd)) { + // Since we weren't able to evaluate the left hand side, it + // must have had side effects. + Info.EvalResult.HasSideEffects = true; + + return Success(rhsResult, E); + } + } + } + + return false; + } + + QualType LHSTy = E->getLHS()->getType(); + QualType RHSTy = E->getRHS()->getType(); + + if (LHSTy->isAnyComplexType()) { + assert(RHSTy->isAnyComplexType() && "Invalid comparison"); + ComplexValue LHS, RHS; + + if (!EvaluateComplex(E->getLHS(), LHS, Info)) + return false; + + if (!EvaluateComplex(E->getRHS(), RHS, Info)) + return false; + + if (LHS.isComplexFloat()) { + APFloat::cmpResult CR_r = + LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal()); + APFloat::cmpResult CR_i = + LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag()); + + if (E->getOpcode() == BO_EQ) + return Success((CR_r == APFloat::cmpEqual && + CR_i == APFloat::cmpEqual), E); + else { + assert(E->getOpcode() == BO_NE && + "Invalid complex comparison."); + return Success(((CR_r == APFloat::cmpGreaterThan || + CR_r == APFloat::cmpLessThan || + CR_r == APFloat::cmpUnordered) || + (CR_i == APFloat::cmpGreaterThan || + CR_i == APFloat::cmpLessThan || + CR_i == APFloat::cmpUnordered)), E); + } + } else { + if (E->getOpcode() == BO_EQ) + return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() && + LHS.getComplexIntImag() == RHS.getComplexIntImag()), E); + else { + assert(E->getOpcode() == BO_NE && + "Invalid compex comparison."); + return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() || + LHS.getComplexIntImag() != RHS.getComplexIntImag()), E); + } + } + } + + if (LHSTy->isRealFloatingType() && + RHSTy->isRealFloatingType()) { + APFloat RHS(0.0), LHS(0.0); + + if (!EvaluateFloat(E->getRHS(), RHS, Info)) + return false; + + if (!EvaluateFloat(E->getLHS(), LHS, Info)) + return false; + + APFloat::cmpResult CR = LHS.compare(RHS); + + switch (E->getOpcode()) { + default: + assert(0 && "Invalid binary operator!"); + case BO_LT: + return Success(CR == APFloat::cmpLessThan, E); + case BO_GT: + return Success(CR == APFloat::cmpGreaterThan, E); + case BO_LE: + return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E); + case BO_GE: + return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual, + E); + case BO_EQ: + return Success(CR == APFloat::cmpEqual, E); + case BO_NE: + return Success(CR == APFloat::cmpGreaterThan + || CR == APFloat::cmpLessThan + || CR == APFloat::cmpUnordered, E); + } + } + + if (LHSTy->isPointerType() && RHSTy->isPointerType()) { + if (E->getOpcode() == BO_Sub || E->isEqualityOp()) { + LValue LHSValue; + if (!EvaluatePointer(E->getLHS(), LHSValue, Info)) + return false; + + LValue RHSValue; + if (!EvaluatePointer(E->getRHS(), RHSValue, Info)) + return false; + + // Reject any bases from the normal codepath; we special-case comparisons + // to null. + if (LHSValue.getLValueBase()) { + if (!E->isEqualityOp()) + return false; + if (RHSValue.getLValueBase() || !RHSValue.getLValueOffset().isZero()) + return false; + bool bres; + if (!EvalPointerValueAsBool(LHSValue, bres)) + return false; + return Success(bres ^ (E->getOpcode() == BO_EQ), E); + } else if (RHSValue.getLValueBase()) { + if (!E->isEqualityOp()) + return false; + if (LHSValue.getLValueBase() || !LHSValue.getLValueOffset().isZero()) + return false; + bool bres; + if (!EvalPointerValueAsBool(RHSValue, bres)) + return false; + return Success(bres ^ (E->getOpcode() == BO_EQ), E); + } + + if (E->getOpcode() == BO_Sub) { + QualType Type = E->getLHS()->getType(); + QualType ElementType = Type->getAs<PointerType>()->getPointeeType(); + + CharUnits ElementSize = CharUnits::One(); + if (!ElementType->isVoidType() && !ElementType->isFunctionType()) + ElementSize = Info.Ctx.getTypeSizeInChars(ElementType); + + CharUnits Diff = LHSValue.getLValueOffset() - + RHSValue.getLValueOffset(); + return Success(Diff / ElementSize, E); + } + bool Result; + if (E->getOpcode() == BO_EQ) { + Result = LHSValue.getLValueOffset() == RHSValue.getLValueOffset(); + } else { + Result = LHSValue.getLValueOffset() != RHSValue.getLValueOffset(); + } + return Success(Result, E); + } + } + if (!LHSTy->isIntegralOrEnumerationType() || + !RHSTy->isIntegralOrEnumerationType()) { + // We can't continue from here for non-integral types, and they + // could potentially confuse the following operations. + return false; + } + + // The LHS of a constant expr is always evaluated and needed. + if (!Visit(E->getLHS())) + return false; // error in subexpression. + + APValue RHSVal; + if (!EvaluateIntegerOrLValue(E->getRHS(), RHSVal, Info)) + return false; + + // Handle cases like (unsigned long)&a + 4. + if (E->isAdditiveOp() && Result.isLValue() && RHSVal.isInt()) { + CharUnits Offset = Result.getLValueOffset(); + CharUnits AdditionalOffset = CharUnits::fromQuantity( + RHSVal.getInt().getZExtValue()); + if (E->getOpcode() == BO_Add) + Offset += AdditionalOffset; + else + Offset -= AdditionalOffset; + Result = APValue(Result.getLValueBase(), Offset); + return true; + } + + // Handle cases like 4 + (unsigned long)&a + if (E->getOpcode() == BO_Add && + RHSVal.isLValue() && Result.isInt()) { + CharUnits Offset = RHSVal.getLValueOffset(); + Offset += CharUnits::fromQuantity(Result.getInt().getZExtValue()); + Result = APValue(RHSVal.getLValueBase(), Offset); + return true; + } + + // All the following cases expect both operands to be an integer + if (!Result.isInt() || !RHSVal.isInt()) + return false; + + APSInt& RHS = RHSVal.getInt(); + + switch (E->getOpcode()) { + default: + return Error(E->getOperatorLoc(), diag::note_invalid_subexpr_in_ice, E); + case BO_Mul: return Success(Result.getInt() * RHS, E); + case BO_Add: return Success(Result.getInt() + RHS, E); + case BO_Sub: return Success(Result.getInt() - RHS, E); + case BO_And: return Success(Result.getInt() & RHS, E); + case BO_Xor: return Success(Result.getInt() ^ RHS, E); + case BO_Or: return Success(Result.getInt() | RHS, E); + case BO_Div: + if (RHS == 0) + return Error(E->getOperatorLoc(), diag::note_expr_divide_by_zero, E); + return Success(Result.getInt() / RHS, E); + case BO_Rem: + if (RHS == 0) + return Error(E->getOperatorLoc(), diag::note_expr_divide_by_zero, E); + return Success(Result.getInt() % RHS, E); + case BO_Shl: { + // During constant-folding, a negative shift is an opposite shift. + if (RHS.isSigned() && RHS.isNegative()) { + RHS = -RHS; + goto shift_right; + } + + shift_left: + unsigned SA + = (unsigned) RHS.getLimitedValue(Result.getInt().getBitWidth()-1); + return Success(Result.getInt() << SA, E); + } + case BO_Shr: { + // During constant-folding, a negative shift is an opposite shift. + if (RHS.isSigned() && RHS.isNegative()) { + RHS = -RHS; + goto shift_left; + } + + shift_right: + unsigned SA = + (unsigned) RHS.getLimitedValue(Result.getInt().getBitWidth()-1); + return Success(Result.getInt() >> SA, E); + } + + case BO_LT: return Success(Result.getInt() < RHS, E); + case BO_GT: return Success(Result.getInt() > RHS, E); + case BO_LE: return Success(Result.getInt() <= RHS, E); + case BO_GE: return Success(Result.getInt() >= RHS, E); + case BO_EQ: return Success(Result.getInt() == RHS, E); + case BO_NE: return Success(Result.getInt() != RHS, E); + } +} + +CharUnits IntExprEvaluator::GetAlignOfType(QualType T) { + // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, + // the result is the size of the referenced type." + // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the + // result shall be the alignment of the referenced type." + if (const ReferenceType *Ref = T->getAs<ReferenceType>()) + T = Ref->getPointeeType(); + + // __alignof is defined to return the preferred alignment. + return Info.Ctx.toCharUnitsFromBits( + Info.Ctx.getPreferredTypeAlign(T.getTypePtr())); +} + +CharUnits IntExprEvaluator::GetAlignOfExpr(const Expr *E) { + E = E->IgnoreParens(); + + // alignof decl is always accepted, even if it doesn't make sense: we default + // to 1 in those cases. + if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) + return Info.Ctx.getDeclAlign(DRE->getDecl(), + /*RefAsPointee*/true); + + if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) + return Info.Ctx.getDeclAlign(ME->getMemberDecl(), + /*RefAsPointee*/true); + + return GetAlignOfType(E->getType()); +} + + +/// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with +/// a result as the expression's type. +bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr( + const UnaryExprOrTypeTraitExpr *E) { + switch(E->getKind()) { + case UETT_AlignOf: { + if (E->isArgumentType()) + return Success(GetAlignOfType(E->getArgumentType()), E); + else + return Success(GetAlignOfExpr(E->getArgumentExpr()), E); + } + + case UETT_VecStep: { + QualType Ty = E->getTypeOfArgument(); + + if (Ty->isVectorType()) { + unsigned n = Ty->getAs<VectorType>()->getNumElements(); + + // The vec_step built-in functions that take a 3-component + // vector return 4. (OpenCL 1.1 spec 6.11.12) + if (n == 3) + n = 4; + + return Success(n, E); + } else + return Success(1, E); + } + + case UETT_SizeOf: { + QualType SrcTy = E->getTypeOfArgument(); + // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, + // the result is the size of the referenced type." + // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the + // result shall be the alignment of the referenced type." + if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>()) + SrcTy = Ref->getPointeeType(); + + // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc + // extension. + if (SrcTy->isVoidType() || SrcTy->isFunctionType()) + return Success(1, E); + + // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2. + if (!SrcTy->isConstantSizeType()) + return false; + + // Get information about the size. + return Success(Info.Ctx.getTypeSizeInChars(SrcTy), E); + } + } + + llvm_unreachable("unknown expr/type trait"); + return false; +} + +bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) { + CharUnits Result; + unsigned n = OOE->getNumComponents(); + if (n == 0) + return false; + QualType CurrentType = OOE->getTypeSourceInfo()->getType(); + for (unsigned i = 0; i != n; ++i) { + OffsetOfExpr::OffsetOfNode ON = OOE->getComponent(i); + switch (ON.getKind()) { + case OffsetOfExpr::OffsetOfNode::Array: { + const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex()); + APSInt IdxResult; + if (!EvaluateInteger(Idx, IdxResult, Info)) + return false; + const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType); + if (!AT) + return false; + CurrentType = AT->getElementType(); + CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType); + Result += IdxResult.getSExtValue() * ElementSize; + break; + } + + case OffsetOfExpr::OffsetOfNode::Field: { + FieldDecl *MemberDecl = ON.getField(); + const RecordType *RT = CurrentType->getAs<RecordType>(); + if (!RT) + return false; + RecordDecl *RD = RT->getDecl(); + const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD); + unsigned i = MemberDecl->getFieldIndex(); + assert(i < RL.getFieldCount() && "offsetof field in wrong type"); + Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i)); + CurrentType = MemberDecl->getType().getNonReferenceType(); + break; + } + + case OffsetOfExpr::OffsetOfNode::Identifier: + llvm_unreachable("dependent __builtin_offsetof"); + return false; + + case OffsetOfExpr::OffsetOfNode::Base: { + CXXBaseSpecifier *BaseSpec = ON.getBase(); + if (BaseSpec->isVirtual()) + return false; + + // Find the layout of the class whose base we are looking into. + const RecordType *RT = CurrentType->getAs<RecordType>(); + if (!RT) + return false; + RecordDecl *RD = RT->getDecl(); + const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD); + + // Find the base class itself. + CurrentType = BaseSpec->getType(); + const RecordType *BaseRT = CurrentType->getAs<RecordType>(); + if (!BaseRT) + return false; + + // Add the offset to the base. + Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl())); + break; + } + } + } + return Success(Result, OOE); +} + +bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { + if (E->getOpcode() == UO_LNot) { + // LNot's operand isn't necessarily an integer, so we handle it specially. + bool bres; + if (!HandleConversionToBool(E->getSubExpr(), bres, Info)) + return false; + return Success(!bres, E); + } + + // Only handle integral operations... + if (!E->getSubExpr()->getType()->isIntegralOrEnumerationType()) + return false; + + // Get the operand value into 'Result'. + if (!Visit(E->getSubExpr())) + return false; + + switch (E->getOpcode()) { + default: + // Address, indirect, pre/post inc/dec, etc are not valid constant exprs. + // See C99 6.6p3. + return Error(E->getOperatorLoc(), diag::note_invalid_subexpr_in_ice, E); + case UO_Extension: + // FIXME: Should extension allow i-c-e extension expressions in its scope? + // If so, we could clear the diagnostic ID. + return true; + case UO_Plus: + // The result is always just the subexpr. + return true; + case UO_Minus: + if (!Result.isInt()) return false; + return Success(-Result.getInt(), E); + case UO_Not: + if (!Result.isInt()) return false; + return Success(~Result.getInt(), E); + } +} + +/// HandleCast - This is used to evaluate implicit or explicit casts where the +/// result type is integer. +bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) { + const Expr *SubExpr = E->getSubExpr(); + QualType DestType = E->getType(); + QualType SrcType = SubExpr->getType(); + + switch (E->getCastKind()) { + case CK_BaseToDerived: + case CK_DerivedToBase: + case CK_UncheckedDerivedToBase: + case CK_Dynamic: + case CK_ToUnion: + case CK_ArrayToPointerDecay: + case CK_FunctionToPointerDecay: + case CK_NullToPointer: + case CK_NullToMemberPointer: + case CK_BaseToDerivedMemberPointer: + case CK_DerivedToBaseMemberPointer: + case CK_ConstructorConversion: + case CK_IntegralToPointer: + case CK_ToVoid: + case CK_VectorSplat: + case CK_IntegralToFloating: + case CK_FloatingCast: + case CK_AnyPointerToObjCPointerCast: + case CK_AnyPointerToBlockPointerCast: + case CK_ObjCObjectLValueCast: + case CK_FloatingRealToComplex: + case CK_FloatingComplexToReal: + case CK_FloatingComplexCast: + case CK_FloatingComplexToIntegralComplex: + case CK_IntegralRealToComplex: + case CK_IntegralComplexCast: + case CK_IntegralComplexToFloatingComplex: + llvm_unreachable("invalid cast kind for integral value"); + + case CK_BitCast: + case CK_Dependent: + case CK_GetObjCProperty: + case CK_LValueBitCast: + case CK_UserDefinedConversion: + case CK_ObjCProduceObject: + case CK_ObjCConsumeObject: + case CK_ObjCReclaimReturnedObject: + return false; + + case CK_LValueToRValue: + case CK_NoOp: + return Visit(E->getSubExpr()); + + case CK_MemberPointerToBoolean: + case CK_PointerToBoolean: + case CK_IntegralToBoolean: + case CK_FloatingToBoolean: + case CK_FloatingComplexToBoolean: + case CK_IntegralComplexToBoolean: { + bool BoolResult; + if (!HandleConversionToBool(SubExpr, BoolResult, Info)) + return false; + return Success(BoolResult, E); + } + + case CK_IntegralCast: { + if (!Visit(SubExpr)) + return false; + + if (!Result.isInt()) { + // Only allow casts of lvalues if they are lossless. + return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType); + } + + return Success(HandleIntToIntCast(DestType, SrcType, + Result.getInt(), Info.Ctx), E); + } + + case CK_PointerToIntegral: { + LValue LV; + if (!EvaluatePointer(SubExpr, LV, Info)) + return false; + + if (LV.getLValueBase()) { + // Only allow based lvalue casts if they are lossless. + if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType)) + return false; + + LV.moveInto(Result); + return true; + } + + APSInt AsInt = Info.Ctx.MakeIntValue(LV.getLValueOffset().getQuantity(), + SrcType); + return Success(HandleIntToIntCast(DestType, SrcType, AsInt, Info.Ctx), E); + } + + case CK_IntegralComplexToReal: { + ComplexValue C; + if (!EvaluateComplex(SubExpr, C, Info)) + return false; + return Success(C.getComplexIntReal(), E); + } + + case CK_FloatingToIntegral: { + APFloat F(0.0); + if (!EvaluateFloat(SubExpr, F, Info)) + return false; + + return Success(HandleFloatToIntCast(DestType, SrcType, F, Info.Ctx), E); + } + } + + llvm_unreachable("unknown cast resulting in integral value"); + return false; +} + +bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { + if (E->getSubExpr()->getType()->isAnyComplexType()) { + ComplexValue LV; + if (!EvaluateComplex(E->getSubExpr(), LV, Info) || !LV.isComplexInt()) + return Error(E->getExprLoc(), diag::note_invalid_subexpr_in_ice, E); + return Success(LV.getComplexIntReal(), E); + } + + return Visit(E->getSubExpr()); +} + +bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { + if (E->getSubExpr()->getType()->isComplexIntegerType()) { + ComplexValue LV; + if (!EvaluateComplex(E->getSubExpr(), LV, Info) || !LV.isComplexInt()) + return Error(E->getExprLoc(), diag::note_invalid_subexpr_in_ice, E); + return Success(LV.getComplexIntImag(), E); + } + + if (!E->getSubExpr()->isEvaluatable(Info.Ctx)) + Info.EvalResult.HasSideEffects = true; + return Success(0, E); +} + +bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) { + return Success(E->getPackLength(), E); +} + +bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { + return Success(E->getValue(), E); +} + +//===----------------------------------------------------------------------===// +// Float Evaluation +//===----------------------------------------------------------------------===// + +namespace { +class FloatExprEvaluator + : public ExprEvaluatorBase<FloatExprEvaluator, bool> { + APFloat &Result; +public: + FloatExprEvaluator(EvalInfo &info, APFloat &result) + : ExprEvaluatorBaseTy(info), Result(result) {} + + bool Success(const APValue &V, const Expr *e) { + Result = V.getFloat(); + return true; + } + bool Error(const Stmt *S) { + return false; + } + + bool VisitCallExpr(const CallExpr *E); + + bool VisitUnaryOperator(const UnaryOperator *E); + bool VisitBinaryOperator(const BinaryOperator *E); + bool VisitFloatingLiteral(const FloatingLiteral *E); + bool VisitCastExpr(const CastExpr *E); + bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E); + + bool VisitUnaryReal(const UnaryOperator *E); + bool VisitUnaryImag(const UnaryOperator *E); + + bool VisitDeclRefExpr(const DeclRefExpr *E); + + // FIXME: Missing: array subscript of vector, member of vector, + // ImplicitValueInitExpr +}; +} // end anonymous namespace + +static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) { + assert(E->getType()->isRealFloatingType()); + return FloatExprEvaluator(Info, Result).Visit(E); +} + +static bool TryEvaluateBuiltinNaN(const ASTContext &Context, + QualType ResultTy, + const Expr *Arg, + bool SNaN, + llvm::APFloat &Result) { + const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts()); + if (!S) return false; + + const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy); + + llvm::APInt fill; + + // Treat empty strings as if they were zero. + if (S->getString().empty()) + fill = llvm::APInt(32, 0); + else if (S->getString().getAsInteger(0, fill)) + return false; + + if (SNaN) + Result = llvm::APFloat::getSNaN(Sem, false, &fill); + else + Result = llvm::APFloat::getQNaN(Sem, false, &fill); + return true; +} + +bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) { + switch (E->isBuiltinCall(Info.Ctx)) { + default: + return ExprEvaluatorBaseTy::VisitCallExpr(E); + + case Builtin::BI__builtin_huge_val: + case Builtin::BI__builtin_huge_valf: + case Builtin::BI__builtin_huge_vall: + case Builtin::BI__builtin_inf: + case Builtin::BI__builtin_inff: + case Builtin::BI__builtin_infl: { + const llvm::fltSemantics &Sem = + Info.Ctx.getFloatTypeSemantics(E->getType()); + Result = llvm::APFloat::getInf(Sem); + return true; + } + + case Builtin::BI__builtin_nans: + case Builtin::BI__builtin_nansf: + case Builtin::BI__builtin_nansl: + return TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0), + true, Result); + + case Builtin::BI__builtin_nan: + case Builtin::BI__builtin_nanf: + case Builtin::BI__builtin_nanl: + // If this is __builtin_nan() turn this into a nan, otherwise we + // can't constant fold it. + return TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0), + false, Result); + + case Builtin::BI__builtin_fabs: + case Builtin::BI__builtin_fabsf: + case Builtin::BI__builtin_fabsl: + if (!EvaluateFloat(E->getArg(0), Result, Info)) + return false; + + if (Result.isNegative()) + Result.changeSign(); + return true; + + case Builtin::BI__builtin_copysign: + case Builtin::BI__builtin_copysignf: + case Builtin::BI__builtin_copysignl: { + APFloat RHS(0.); + if (!EvaluateFloat(E->getArg(0), Result, Info) || + !EvaluateFloat(E->getArg(1), RHS, Info)) + return false; + Result.copySign(RHS); + return true; + } + } +} + +bool FloatExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) { + if (ExprEvaluatorBaseTy::VisitDeclRefExpr(E)) + return true; + + const Decl *D = E->getDecl(); + if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D)) return false; + const VarDecl *VD = cast<VarDecl>(D); + + // Require the qualifiers to be const and not volatile. + CanQualType T = Info.Ctx.getCanonicalType(E->getType()); + if (!T.isConstQualified() || T.isVolatileQualified()) + return false; + + const Expr *Init = VD->getAnyInitializer(); + if (!Init) return false; + + if (APValue *V = VD->getEvaluatedValue()) { + if (V->isFloat()) { + Result = V->getFloat(); + return true; + } + return false; + } + + if (VD->isEvaluatingValue()) + return false; + + VD->setEvaluatingValue(); + + Expr::EvalResult InitResult; + if (Init->Evaluate(InitResult, Info.Ctx) && !InitResult.HasSideEffects && + InitResult.Val.isFloat()) { + // Cache the evaluated value in the variable declaration. + Result = InitResult.Val.getFloat(); + VD->setEvaluatedValue(InitResult.Val); + return true; + } + + VD->setEvaluatedValue(APValue()); + return false; +} + +bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { + if (E->getSubExpr()->getType()->isAnyComplexType()) { + ComplexValue CV; + if (!EvaluateComplex(E->getSubExpr(), CV, Info)) + return false; + Result = CV.FloatReal; + return true; + } + + return Visit(E->getSubExpr()); +} + +bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { + if (E->getSubExpr()->getType()->isAnyComplexType()) { + ComplexValue CV; + if (!EvaluateComplex(E->getSubExpr(), CV, Info)) + return false; + Result = CV.FloatImag; + return true; + } + + if (!E->getSubExpr()->isEvaluatable(Info.Ctx)) + Info.EvalResult.HasSideEffects = true; + const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType()); + Result = llvm::APFloat::getZero(Sem); + return true; +} + +bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { + if (E->getOpcode() == UO_Deref) + return false; + + if (!EvaluateFloat(E->getSubExpr(), Result, Info)) + return false; + + switch (E->getOpcode()) { + default: return false; + case UO_Plus: + return true; + case UO_Minus: + Result.changeSign(); + return true; + } +} + +bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { + if (E->getOpcode() == BO_Comma) { + if (!EvaluateFloat(E->getRHS(), Result, Info)) + return false; + + // If we can't evaluate the LHS, it might have side effects; + // conservatively mark it. + if (!E->getLHS()->isEvaluatable(Info.Ctx)) + Info.EvalResult.HasSideEffects = true; + + return true; + } + + // We can't evaluate pointer-to-member operations. + if (E->isPtrMemOp()) + return false; + + // FIXME: Diagnostics? I really don't understand how the warnings + // and errors are supposed to work. + APFloat RHS(0.0); + if (!EvaluateFloat(E->getLHS(), Result, Info)) + return false; + if (!EvaluateFloat(E->getRHS(), RHS, Info)) + return false; + + switch (E->getOpcode()) { + default: return false; + case BO_Mul: + Result.multiply(RHS, APFloat::rmNearestTiesToEven); + return true; + case BO_Add: + Result.add(RHS, APFloat::rmNearestTiesToEven); + return true; + case BO_Sub: + Result.subtract(RHS, APFloat::rmNearestTiesToEven); + return true; + case BO_Div: + Result.divide(RHS, APFloat::rmNearestTiesToEven); + return true; + } +} + +bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) { + Result = E->getValue(); + return true; +} + +bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) { + const Expr* SubExpr = E->getSubExpr(); + + switch (E->getCastKind()) { + default: + return false; + + case CK_LValueToRValue: + case CK_NoOp: + return Visit(SubExpr); + + case CK_IntegralToFloating: { + APSInt IntResult; + if (!EvaluateInteger(SubExpr, IntResult, Info)) + return false; + Result = HandleIntToFloatCast(E->getType(), SubExpr->getType(), + IntResult, Info.Ctx); + return true; + } + + case CK_FloatingCast: { + if (!Visit(SubExpr)) + return false; + Result = HandleFloatToFloatCast(E->getType(), SubExpr->getType(), + Result, Info.Ctx); + return true; + } + + case CK_FloatingComplexToReal: { + ComplexValue V; + if (!EvaluateComplex(SubExpr, V, Info)) + return false; + Result = V.getComplexFloatReal(); + return true; + } + } + + return false; +} + +bool FloatExprEvaluator::VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { + Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType())); + return true; +} + +//===----------------------------------------------------------------------===// +// Complex Evaluation (for float and integer) +//===----------------------------------------------------------------------===// + +namespace { +class ComplexExprEvaluator + : public ExprEvaluatorBase<ComplexExprEvaluator, bool> { + ComplexValue &Result; + +public: + ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result) + : ExprEvaluatorBaseTy(info), Result(Result) {} + + bool Success(const APValue &V, const Expr *e) { + Result.setFrom(V); + return true; + } + bool Error(const Expr *E) { + return false; + } + + //===--------------------------------------------------------------------===// + // Visitor Methods + //===--------------------------------------------------------------------===// + + bool VisitImaginaryLiteral(const ImaginaryLiteral *E); + + bool VisitCastExpr(const CastExpr *E); + + bool VisitBinaryOperator(const BinaryOperator *E); + bool VisitUnaryOperator(const UnaryOperator *E); + // FIXME Missing: ImplicitValueInitExpr +}; +} // end anonymous namespace + +static bool EvaluateComplex(const Expr *E, ComplexValue &Result, + EvalInfo &Info) { + assert(E->getType()->isAnyComplexType()); + return ComplexExprEvaluator(Info, Result).Visit(E); +} + +bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) { + const Expr* SubExpr = E->getSubExpr(); + + if (SubExpr->getType()->isRealFloatingType()) { + Result.makeComplexFloat(); + APFloat &Imag = Result.FloatImag; + if (!EvaluateFloat(SubExpr, Imag, Info)) + return false; + + Result.FloatReal = APFloat(Imag.getSemantics()); + return true; + } else { + assert(SubExpr->getType()->isIntegerType() && + "Unexpected imaginary literal."); + + Result.makeComplexInt(); + APSInt &Imag = Result.IntImag; + if (!EvaluateInteger(SubExpr, Imag, Info)) + return false; + + Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned()); + return true; + } +} + +bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) { + + switch (E->getCastKind()) { + case CK_BitCast: + case CK_BaseToDerived: + case CK_DerivedToBase: + case CK_UncheckedDerivedToBase: + case CK_Dynamic: + case CK_ToUnion: + case CK_ArrayToPointerDecay: + case CK_FunctionToPointerDecay: + case CK_NullToPointer: + case CK_NullToMemberPointer: + case CK_BaseToDerivedMemberPointer: + case CK_DerivedToBaseMemberPointer: + case CK_MemberPointerToBoolean: + case CK_ConstructorConversion: + case CK_IntegralToPointer: + case CK_PointerToIntegral: + case CK_PointerToBoolean: + case CK_ToVoid: + case CK_VectorSplat: + case CK_IntegralCast: + case CK_IntegralToBoolean: + case CK_IntegralToFloating: + case CK_FloatingToIntegral: + case CK_FloatingToBoolean: + case CK_FloatingCast: + case CK_AnyPointerToObjCPointerCast: + case CK_AnyPointerToBlockPointerCast: + case CK_ObjCObjectLValueCast: + case CK_FloatingComplexToReal: + case CK_FloatingComplexToBoolean: + case CK_IntegralComplexToReal: + case CK_IntegralComplexToBoolean: + case CK_ObjCProduceObject: + case CK_ObjCConsumeObject: + case CK_ObjCReclaimReturnedObject: + llvm_unreachable("invalid cast kind for complex value"); + + case CK_LValueToRValue: + case CK_NoOp: + return Visit(E->getSubExpr()); + + case CK_Dependent: + case CK_GetObjCProperty: + case CK_LValueBitCast: + case CK_UserDefinedConversion: + return false; + + case CK_FloatingRealToComplex: { + APFloat &Real = Result.FloatReal; + if (!EvaluateFloat(E->getSubExpr(), Real, Info)) + return false; + + Result.makeComplexFloat(); + Result.FloatImag = APFloat(Real.getSemantics()); + return true; + } + + case CK_FloatingComplexCast: { + if (!Visit(E->getSubExpr())) + return false; + + QualType To = E->getType()->getAs<ComplexType>()->getElementType(); + QualType From + = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType(); + + Result.FloatReal + = HandleFloatToFloatCast(To, From, Result.FloatReal, Info.Ctx); + Result.FloatImag + = HandleFloatToFloatCast(To, From, Result.FloatImag, Info.Ctx); + return true; + } + + case CK_FloatingComplexToIntegralComplex: { + if (!Visit(E->getSubExpr())) + return false; + + QualType To = E->getType()->getAs<ComplexType>()->getElementType(); + QualType From + = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType(); + Result.makeComplexInt(); + Result.IntReal = HandleFloatToIntCast(To, From, Result.FloatReal, Info.Ctx); + Result.IntImag = HandleFloatToIntCast(To, From, Result.FloatImag, Info.Ctx); + return true; + } + + case CK_IntegralRealToComplex: { + APSInt &Real = Result.IntReal; + if (!EvaluateInteger(E->getSubExpr(), Real, Info)) + return false; + + Result.makeComplexInt(); + Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned()); + return true; + } + + case CK_IntegralComplexCast: { + if (!Visit(E->getSubExpr())) + return false; + + QualType To = E->getType()->getAs<ComplexType>()->getElementType(); + QualType From + = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType(); + + Result.IntReal = HandleIntToIntCast(To, From, Result.IntReal, Info.Ctx); + Result.IntImag = HandleIntToIntCast(To, From, Result.IntImag, Info.Ctx); + return true; + } + + case CK_IntegralComplexToFloatingComplex: { + if (!Visit(E->getSubExpr())) + return false; + + QualType To = E->getType()->getAs<ComplexType>()->getElementType(); + QualType From + = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType(); + Result.makeComplexFloat(); + Result.FloatReal = HandleIntToFloatCast(To, From, Result.IntReal, Info.Ctx); + Result.FloatImag = HandleIntToFloatCast(To, From, Result.IntImag, Info.Ctx); + return true; + } + } + + llvm_unreachable("unknown cast resulting in complex value"); + return false; +} + +bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { + if (E->getOpcode() == BO_Comma) { + if (!Visit(E->getRHS())) + return false; + + // If we can't evaluate the LHS, it might have side effects; + // conservatively mark it. + if (!E->getLHS()->isEvaluatable(Info.Ctx)) + Info.EvalResult.HasSideEffects = true; + + return true; + } + if (!Visit(E->getLHS())) + return false; + + ComplexValue RHS; + if (!EvaluateComplex(E->getRHS(), RHS, Info)) + return false; + + assert(Result.isComplexFloat() == RHS.isComplexFloat() && + "Invalid operands to binary operator."); + switch (E->getOpcode()) { + default: return false; + case BO_Add: + if (Result.isComplexFloat()) { + Result.getComplexFloatReal().add(RHS.getComplexFloatReal(), + APFloat::rmNearestTiesToEven); + Result.getComplexFloatImag().add(RHS.getComplexFloatImag(), + APFloat::rmNearestTiesToEven); + } else { + Result.getComplexIntReal() += RHS.getComplexIntReal(); + Result.getComplexIntImag() += RHS.getComplexIntImag(); + } + break; + case BO_Sub: + if (Result.isComplexFloat()) { + Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(), + APFloat::rmNearestTiesToEven); + Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(), + APFloat::rmNearestTiesToEven); + } else { + Result.getComplexIntReal() -= RHS.getComplexIntReal(); + Result.getComplexIntImag() -= RHS.getComplexIntImag(); + } + break; + case BO_Mul: + if (Result.isComplexFloat()) { + ComplexValue LHS = Result; + APFloat &LHS_r = LHS.getComplexFloatReal(); + APFloat &LHS_i = LHS.getComplexFloatImag(); + APFloat &RHS_r = RHS.getComplexFloatReal(); + APFloat &RHS_i = RHS.getComplexFloatImag(); + + APFloat Tmp = LHS_r; + Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven); + Result.getComplexFloatReal() = Tmp; + Tmp = LHS_i; + Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven); + Result.getComplexFloatReal().subtract(Tmp, APFloat::rmNearestTiesToEven); + + Tmp = LHS_r; + Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven); + Result.getComplexFloatImag() = Tmp; + Tmp = LHS_i; + Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven); + Result.getComplexFloatImag().add(Tmp, APFloat::rmNearestTiesToEven); + } else { + ComplexValue LHS = Result; + Result.getComplexIntReal() = + (LHS.getComplexIntReal() * RHS.getComplexIntReal() - + LHS.getComplexIntImag() * RHS.getComplexIntImag()); + Result.getComplexIntImag() = + (LHS.getComplexIntReal() * RHS.getComplexIntImag() + + LHS.getComplexIntImag() * RHS.getComplexIntReal()); + } + break; + case BO_Div: + if (Result.isComplexFloat()) { + ComplexValue LHS = Result; + APFloat &LHS_r = LHS.getComplexFloatReal(); + APFloat &LHS_i = LHS.getComplexFloatImag(); + APFloat &RHS_r = RHS.getComplexFloatReal(); + APFloat &RHS_i = RHS.getComplexFloatImag(); + APFloat &Res_r = Result.getComplexFloatReal(); + APFloat &Res_i = Result.getComplexFloatImag(); + + APFloat Den = RHS_r; + Den.multiply(RHS_r, APFloat::rmNearestTiesToEven); + APFloat Tmp = RHS_i; + Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven); + Den.add(Tmp, APFloat::rmNearestTiesToEven); + + Res_r = LHS_r; + Res_r.multiply(RHS_r, APFloat::rmNearestTiesToEven); + Tmp = LHS_i; + Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven); + Res_r.add(Tmp, APFloat::rmNearestTiesToEven); + Res_r.divide(Den, APFloat::rmNearestTiesToEven); + + Res_i = LHS_i; + Res_i.multiply(RHS_r, APFloat::rmNearestTiesToEven); + Tmp = LHS_r; + Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven); + Res_i.subtract(Tmp, APFloat::rmNearestTiesToEven); + Res_i.divide(Den, APFloat::rmNearestTiesToEven); + } else { + if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0) { + // FIXME: what about diagnostics? + return false; + } + ComplexValue LHS = Result; + APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() + + RHS.getComplexIntImag() * RHS.getComplexIntImag(); + Result.getComplexIntReal() = + (LHS.getComplexIntReal() * RHS.getComplexIntReal() + + LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den; + Result.getComplexIntImag() = + (LHS.getComplexIntImag() * RHS.getComplexIntReal() - + LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den; + } + break; + } + + return true; +} + +bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { + // Get the operand value into 'Result'. + if (!Visit(E->getSubExpr())) + return false; + + switch (E->getOpcode()) { + default: + // FIXME: what about diagnostics? + return false; + case UO_Extension: + return true; + case UO_Plus: + // The result is always just the subexpr. + return true; + case UO_Minus: + if (Result.isComplexFloat()) { + Result.getComplexFloatReal().changeSign(); + Result.getComplexFloatImag().changeSign(); + } + else { + Result.getComplexIntReal() = -Result.getComplexIntReal(); + Result.getComplexIntImag() = -Result.getComplexIntImag(); + } + return true; + case UO_Not: + if (Result.isComplexFloat()) + Result.getComplexFloatImag().changeSign(); + else + Result.getComplexIntImag() = -Result.getComplexIntImag(); + return true; + } +} + +//===----------------------------------------------------------------------===// +// Top level Expr::Evaluate method. +//===----------------------------------------------------------------------===// + +static bool Evaluate(EvalInfo &Info, const Expr *E) { + if (E->getType()->isVectorType()) { + if (!EvaluateVector(E, Info.EvalResult.Val, Info)) + return false; + } else if (E->getType()->isIntegralOrEnumerationType()) { + if (!IntExprEvaluator(Info, Info.EvalResult.Val).Visit(E)) + return false; + if (Info.EvalResult.Val.isLValue() && + !IsGlobalLValue(Info.EvalResult.Val.getLValueBase())) + return false; + } else if (E->getType()->hasPointerRepresentation()) { + LValue LV; + if (!EvaluatePointer(E, LV, Info)) + return false; + if (!IsGlobalLValue(LV.Base)) + return false; + LV.moveInto(Info.EvalResult.Val); + } else if (E->getType()->isRealFloatingType()) { + llvm::APFloat F(0.0); + if (!EvaluateFloat(E, F, Info)) + return false; + + Info.EvalResult.Val = APValue(F); + } else if (E->getType()->isAnyComplexType()) { + ComplexValue C; + if (!EvaluateComplex(E, C, Info)) + return false; + C.moveInto(Info.EvalResult.Val); + } else + return false; + + return true; +} + +/// Evaluate - Return true if this is a constant which we can fold using +/// any crazy technique (that has nothing to do with language standards) that +/// we want to. If this function returns true, it returns the folded constant +/// in Result. +bool Expr::Evaluate(EvalResult &Result, const ASTContext &Ctx) const { + EvalInfo Info(Ctx, Result); + return ::Evaluate(Info, this); +} + +bool Expr::EvaluateAsBooleanCondition(bool &Result, + const ASTContext &Ctx) const { + EvalResult Scratch; + EvalInfo Info(Ctx, Scratch); + + return HandleConversionToBool(this, Result, Info); +} + +bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const { + EvalInfo Info(Ctx, Result); + + LValue LV; + if (EvaluateLValue(this, LV, Info) && + !Result.HasSideEffects && + IsGlobalLValue(LV.Base)) { + LV.moveInto(Result.Val); + return true; + } + return false; +} + +bool Expr::EvaluateAsAnyLValue(EvalResult &Result, + const ASTContext &Ctx) const { + EvalInfo Info(Ctx, Result); + + LValue LV; + if (EvaluateLValue(this, LV, Info)) { + LV.moveInto(Result.Val); + return true; + } + return false; +} + +/// isEvaluatable - Call Evaluate to see if this expression can be constant +/// folded, but discard the result. +bool Expr::isEvaluatable(const ASTContext &Ctx) const { + EvalResult Result; + return Evaluate(Result, Ctx) && !Result.HasSideEffects; +} + +bool Expr::HasSideEffects(const ASTContext &Ctx) const { + Expr::EvalResult Result; + EvalInfo Info(Ctx, Result); + return HasSideEffect(Info).Visit(this); +} + +APSInt Expr::EvaluateAsInt(const ASTContext &Ctx) const { + EvalResult EvalResult; + bool Result = Evaluate(EvalResult, Ctx); + (void)Result; + assert(Result && "Could not evaluate expression"); + assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer"); + + return EvalResult.Val.getInt(); +} + + bool Expr::EvalResult::isGlobalLValue() const { + assert(Val.isLValue()); + return IsGlobalLValue(Val.getLValueBase()); + } + + +/// isIntegerConstantExpr - this recursive routine will test if an expression is +/// an integer constant expression. + +/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero, +/// comma, etc +/// +/// FIXME: Handle offsetof. Two things to do: Handle GCC's __builtin_offsetof +/// to support gcc 4.0+ and handle the idiom GCC recognizes with a null pointer +/// cast+dereference. + +// CheckICE - This function does the fundamental ICE checking: the returned +// ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation. +// Note that to reduce code duplication, this helper does no evaluation +// itself; the caller checks whether the expression is evaluatable, and +// in the rare cases where CheckICE actually cares about the evaluated +// value, it calls into Evalute. +// +// Meanings of Val: +// 0: This expression is an ICE if it can be evaluated by Evaluate. +// 1: This expression is not an ICE, but if it isn't evaluated, it's +// a legal subexpression for an ICE. This return value is used to handle +// the comma operator in C99 mode. +// 2: This expression is not an ICE, and is not a legal subexpression for one. + +namespace { + +struct ICEDiag { + unsigned Val; + SourceLocation Loc; + + public: + ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {} + ICEDiag() : Val(0) {} +}; + +} + +static ICEDiag NoDiag() { return ICEDiag(); } + +static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) { + Expr::EvalResult EVResult; + if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects || + !EVResult.Val.isInt()) { + return ICEDiag(2, E->getLocStart()); + } + return NoDiag(); +} + +static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) { + assert(!E->isValueDependent() && "Should not see value dependent exprs!"); + if (!E->getType()->isIntegralOrEnumerationType()) { + return ICEDiag(2, E->getLocStart()); + } + + switch (E->getStmtClass()) { +#define ABSTRACT_STMT(Node) +#define STMT(Node, Base) case Expr::Node##Class: +#define EXPR(Node, Base) +#include "clang/AST/StmtNodes.inc" + case Expr::PredefinedExprClass: + case Expr::FloatingLiteralClass: + case Expr::ImaginaryLiteralClass: + case Expr::StringLiteralClass: + case Expr::ArraySubscriptExprClass: + case Expr::MemberExprClass: + case Expr::CompoundAssignOperatorClass: + case Expr::CompoundLiteralExprClass: + case Expr::ExtVectorElementExprClass: + case Expr::InitListExprClass: + case Expr::DesignatedInitExprClass: + case Expr::ImplicitValueInitExprClass: + case Expr::ParenListExprClass: + case Expr::VAArgExprClass: + case Expr::AddrLabelExprClass: + case Expr::StmtExprClass: + case Expr::CXXMemberCallExprClass: + case Expr::CUDAKernelCallExprClass: + case Expr::CXXDynamicCastExprClass: + case Expr::CXXTypeidExprClass: + case Expr::CXXUuidofExprClass: + case Expr::CXXNullPtrLiteralExprClass: + case Expr::CXXThisExprClass: + case Expr::CXXThrowExprClass: + case Expr::CXXNewExprClass: + case Expr::CXXDeleteExprClass: + case Expr::CXXPseudoDestructorExprClass: + case Expr::UnresolvedLookupExprClass: + case Expr::DependentScopeDeclRefExprClass: + case Expr::CXXConstructExprClass: + case Expr::CXXBindTemporaryExprClass: + case Expr::ExprWithCleanupsClass: + case Expr::CXXTemporaryObjectExprClass: + case Expr::CXXUnresolvedConstructExprClass: + case Expr::CXXDependentScopeMemberExprClass: + case Expr::UnresolvedMemberExprClass: + case Expr::ObjCStringLiteralClass: + case Expr::ObjCEncodeExprClass: + case Expr::ObjCMessageExprClass: + case Expr::ObjCSelectorExprClass: + case Expr::ObjCProtocolExprClass: + case Expr::ObjCIvarRefExprClass: + case Expr::ObjCPropertyRefExprClass: + case Expr::ObjCIsaExprClass: + case Expr::ShuffleVectorExprClass: + case Expr::BlockExprClass: + case Expr::BlockDeclRefExprClass: + case Expr::NoStmtClass: + case Expr::OpaqueValueExprClass: + case Expr::PackExpansionExprClass: + case Expr::SubstNonTypeTemplateParmPackExprClass: + case Expr::AsTypeExprClass: + case Expr::ObjCIndirectCopyRestoreExprClass: + case Expr::MaterializeTemporaryExprClass: + return ICEDiag(2, E->getLocStart()); + + case Expr::SizeOfPackExprClass: + case Expr::GNUNullExprClass: + // GCC considers the GNU __null value to be an integral constant expression. + return NoDiag(); + + case Expr::SubstNonTypeTemplateParmExprClass: + return + CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx); + + case Expr::ParenExprClass: + return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx); + case Expr::GenericSelectionExprClass: + return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx); + case Expr::IntegerLiteralClass: + case Expr::CharacterLiteralClass: + case Expr::CXXBoolLiteralExprClass: + case Expr::CXXScalarValueInitExprClass: + case Expr::UnaryTypeTraitExprClass: + case Expr::BinaryTypeTraitExprClass: + case Expr::ArrayTypeTraitExprClass: + case Expr::ExpressionTraitExprClass: + case Expr::CXXNoexceptExprClass: + return NoDiag(); + case Expr::CallExprClass: + case Expr::CXXOperatorCallExprClass: { + const CallExpr *CE = cast<CallExpr>(E); + if (CE->isBuiltinCall(Ctx)) + return CheckEvalInICE(E, Ctx); + return ICEDiag(2, E->getLocStart()); + } + case Expr::DeclRefExprClass: + if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl())) + return NoDiag(); + if (Ctx.getLangOptions().CPlusPlus && + E->getType().getCVRQualifiers() == Qualifiers::Const) { + const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl(); + + // Parameter variables are never constants. Without this check, + // getAnyInitializer() can find a default argument, which leads + // to chaos. + if (isa<ParmVarDecl>(D)) + return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation()); + + // C++ 7.1.5.1p2 + // A variable of non-volatile const-qualified integral or enumeration + // type initialized by an ICE can be used in ICEs. + if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) { + Qualifiers Quals = Ctx.getCanonicalType(Dcl->getType()).getQualifiers(); + if (Quals.hasVolatile() || !Quals.hasConst()) + return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation()); + + // Look for a declaration of this variable that has an initializer. + const VarDecl *ID = 0; + const Expr *Init = Dcl->getAnyInitializer(ID); + if (Init) { + if (ID->isInitKnownICE()) { + // We have already checked whether this subexpression is an + // integral constant expression. + if (ID->isInitICE()) + return NoDiag(); + else + return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation()); + } + + // It's an ICE whether or not the definition we found is + // out-of-line. See DR 721 and the discussion in Clang PR + // 6206 for details. + + if (Dcl->isCheckingICE()) { + return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation()); + } + + Dcl->setCheckingICE(); + ICEDiag Result = CheckICE(Init, Ctx); + // Cache the result of the ICE test. + Dcl->setInitKnownICE(Result.Val == 0); + return Result; + } + } + } + return ICEDiag(2, E->getLocStart()); + case Expr::UnaryOperatorClass: { + const UnaryOperator *Exp = cast<UnaryOperator>(E); + switch (Exp->getOpcode()) { + case UO_PostInc: + case UO_PostDec: + case UO_PreInc: + case UO_PreDec: + case UO_AddrOf: + case UO_Deref: + return ICEDiag(2, E->getLocStart()); + case UO_Extension: + case UO_LNot: + case UO_Plus: + case UO_Minus: + case UO_Not: + case UO_Real: + case UO_Imag: + return CheckICE(Exp->getSubExpr(), Ctx); + } + + // OffsetOf falls through here. + } + case Expr::OffsetOfExprClass: { + // Note that per C99, offsetof must be an ICE. And AFAIK, using + // Evaluate matches the proposed gcc behavior for cases like + // "offsetof(struct s{int x[4];}, x[!.0])". This doesn't affect + // compliance: we should warn earlier for offsetof expressions with + // array subscripts that aren't ICEs, and if the array subscripts + // are ICEs, the value of the offsetof must be an integer constant. + return CheckEvalInICE(E, Ctx); + } + case Expr::UnaryExprOrTypeTraitExprClass: { + const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E); + if ((Exp->getKind() == UETT_SizeOf) && + Exp->getTypeOfArgument()->isVariableArrayType()) + return ICEDiag(2, E->getLocStart()); + return NoDiag(); + } + case Expr::BinaryOperatorClass: { + const BinaryOperator *Exp = cast<BinaryOperator>(E); + switch (Exp->getOpcode()) { + case BO_PtrMemD: + case BO_PtrMemI: + case BO_Assign: + case BO_MulAssign: + case BO_DivAssign: + case BO_RemAssign: + case BO_AddAssign: + case BO_SubAssign: + case BO_ShlAssign: + case BO_ShrAssign: + case BO_AndAssign: + case BO_XorAssign: + case BO_OrAssign: + return ICEDiag(2, E->getLocStart()); + + case BO_Mul: + case BO_Div: + case BO_Rem: + case BO_Add: + case BO_Sub: + case BO_Shl: + case BO_Shr: + case BO_LT: + case BO_GT: + case BO_LE: + case BO_GE: + case BO_EQ: + case BO_NE: + case BO_And: + case BO_Xor: + case BO_Or: + case BO_Comma: { + ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx); + ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx); + if (Exp->getOpcode() == BO_Div || + Exp->getOpcode() == BO_Rem) { + // Evaluate gives an error for undefined Div/Rem, so make sure + // we don't evaluate one. + if (LHSResult.Val == 0 && RHSResult.Val == 0) { + llvm::APSInt REval = Exp->getRHS()->EvaluateAsInt(Ctx); + if (REval == 0) + return ICEDiag(1, E->getLocStart()); + if (REval.isSigned() && REval.isAllOnesValue()) { + llvm::APSInt LEval = Exp->getLHS()->EvaluateAsInt(Ctx); + if (LEval.isMinSignedValue()) + return ICEDiag(1, E->getLocStart()); + } + } + } + if (Exp->getOpcode() == BO_Comma) { + if (Ctx.getLangOptions().C99) { + // C99 6.6p3 introduces a strange edge case: comma can be in an ICE + // if it isn't evaluated. + if (LHSResult.Val == 0 && RHSResult.Val == 0) + return ICEDiag(1, E->getLocStart()); + } else { + // In both C89 and C++, commas in ICEs are illegal. + return ICEDiag(2, E->getLocStart()); + } + } + if (LHSResult.Val >= RHSResult.Val) + return LHSResult; + return RHSResult; + } + case BO_LAnd: + case BO_LOr: { + ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx); + + // C++0x [expr.const]p2: + // [...] subexpressions of logical AND (5.14), logical OR + // (5.15), and condi- tional (5.16) operations that are not + // evaluated are not considered. + if (Ctx.getLangOptions().CPlusPlus0x && LHSResult.Val == 0) { + if (Exp->getOpcode() == BO_LAnd && + Exp->getLHS()->EvaluateAsInt(Ctx) == 0) + return LHSResult; + + if (Exp->getOpcode() == BO_LOr && + Exp->getLHS()->EvaluateAsInt(Ctx) != 0) + return LHSResult; + } + + ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx); + if (LHSResult.Val == 0 && RHSResult.Val == 1) { + // Rare case where the RHS has a comma "side-effect"; we need + // to actually check the condition to see whether the side + // with the comma is evaluated. + if ((Exp->getOpcode() == BO_LAnd) != + (Exp->getLHS()->EvaluateAsInt(Ctx) == 0)) + return RHSResult; + return NoDiag(); + } + + if (LHSResult.Val >= RHSResult.Val) + return LHSResult; + return RHSResult; + } + } + } + case Expr::ImplicitCastExprClass: + case Expr::CStyleCastExprClass: + case Expr::CXXFunctionalCastExprClass: + case Expr::CXXStaticCastExprClass: + case Expr::CXXReinterpretCastExprClass: + case Expr::CXXConstCastExprClass: + case Expr::ObjCBridgedCastExprClass: { + const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr(); + if (SubExpr->getType()->isIntegralOrEnumerationType()) + return CheckICE(SubExpr, Ctx); + if (isa<FloatingLiteral>(SubExpr->IgnoreParens())) + return NoDiag(); + return ICEDiag(2, E->getLocStart()); + } + case Expr::BinaryConditionalOperatorClass: { + const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E); + ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx); + if (CommonResult.Val == 2) return CommonResult; + ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx); + if (FalseResult.Val == 2) return FalseResult; + if (CommonResult.Val == 1) return CommonResult; + if (FalseResult.Val == 1 && + Exp->getCommon()->EvaluateAsInt(Ctx) == 0) return NoDiag(); + return FalseResult; + } + case Expr::ConditionalOperatorClass: { + const ConditionalOperator *Exp = cast<ConditionalOperator>(E); + // If the condition (ignoring parens) is a __builtin_constant_p call, + // then only the true side is actually considered in an integer constant + // expression, and it is fully evaluated. This is an important GNU + // extension. See GCC PR38377 for discussion. + if (const CallExpr *CallCE + = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts())) + if (CallCE->isBuiltinCall(Ctx) == Builtin::BI__builtin_constant_p) { + Expr::EvalResult EVResult; + if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects || + !EVResult.Val.isInt()) { + return ICEDiag(2, E->getLocStart()); + } + return NoDiag(); + } + ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx); + if (CondResult.Val == 2) + return CondResult; + + // C++0x [expr.const]p2: + // subexpressions of [...] conditional (5.16) operations that + // are not evaluated are not considered + bool TrueBranch = Ctx.getLangOptions().CPlusPlus0x + ? Exp->getCond()->EvaluateAsInt(Ctx) != 0 + : false; + ICEDiag TrueResult = NoDiag(); + if (!Ctx.getLangOptions().CPlusPlus0x || TrueBranch) + TrueResult = CheckICE(Exp->getTrueExpr(), Ctx); + ICEDiag FalseResult = NoDiag(); + if (!Ctx.getLangOptions().CPlusPlus0x || !TrueBranch) + FalseResult = CheckICE(Exp->getFalseExpr(), Ctx); + + if (TrueResult.Val == 2) + return TrueResult; + if (FalseResult.Val == 2) + return FalseResult; + if (CondResult.Val == 1) + return CondResult; + if (TrueResult.Val == 0 && FalseResult.Val == 0) + return NoDiag(); + // Rare case where the diagnostics depend on which side is evaluated + // Note that if we get here, CondResult is 0, and at least one of + // TrueResult and FalseResult is non-zero. + if (Exp->getCond()->EvaluateAsInt(Ctx) == 0) { + return FalseResult; + } + return TrueResult; + } + case Expr::CXXDefaultArgExprClass: + return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx); + case Expr::ChooseExprClass: { + return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx); + } + } + + // Silence a GCC warning + return ICEDiag(2, E->getLocStart()); +} + +bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx, + SourceLocation *Loc, bool isEvaluated) const { + ICEDiag d = CheckICE(this, Ctx); + if (d.Val != 0) { + if (Loc) *Loc = d.Loc; + return false; + } + EvalResult EvalResult; + if (!Evaluate(EvalResult, Ctx)) + llvm_unreachable("ICE cannot be evaluated!"); + assert(!EvalResult.HasSideEffects && "ICE with side effects!"); + assert(EvalResult.Val.isInt() && "ICE that isn't integer!"); + Result = EvalResult.Val.getInt(); + return true; +} |