diff options
Diffstat (limited to 'contrib/llvm/tools/clang/lib/AST/DeclCXX.cpp')
-rw-r--r-- | contrib/llvm/tools/clang/lib/AST/DeclCXX.cpp | 1396 |
1 files changed, 1396 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/AST/DeclCXX.cpp b/contrib/llvm/tools/clang/lib/AST/DeclCXX.cpp new file mode 100644 index 0000000..fba73f5 --- /dev/null +++ b/contrib/llvm/tools/clang/lib/AST/DeclCXX.cpp @@ -0,0 +1,1396 @@ +//===--- DeclCXX.cpp - C++ Declaration AST Node Implementation ------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the C++ related Decl classes. +// +//===----------------------------------------------------------------------===// + +#include "clang/AST/DeclCXX.h" +#include "clang/AST/DeclTemplate.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/ASTMutationListener.h" +#include "clang/AST/CXXInheritance.h" +#include "clang/AST/Expr.h" +#include "clang/AST/TypeLoc.h" +#include "clang/Basic/IdentifierTable.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallPtrSet.h" +using namespace clang; + +//===----------------------------------------------------------------------===// +// Decl Allocation/Deallocation Method Implementations +//===----------------------------------------------------------------------===// + +CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D) + : UserDeclaredConstructor(false), UserDeclaredCopyConstructor(false), + UserDeclaredCopyAssignment(false), UserDeclaredDestructor(false), + Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false), + Abstract(false), HasTrivialConstructor(true), + HasTrivialCopyConstructor(true), HasTrivialCopyAssignment(true), + HasTrivialDestructor(true), ComputedVisibleConversions(false), + DeclaredDefaultConstructor(false), DeclaredCopyConstructor(false), + DeclaredCopyAssignment(false), DeclaredDestructor(false), + NumBases(0), NumVBases(0), Bases(), VBases(), + Definition(D), FirstFriend(0) { +} + +CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, DeclContext *DC, + SourceLocation L, IdentifierInfo *Id, + CXXRecordDecl *PrevDecl, + SourceLocation TKL) + : RecordDecl(K, TK, DC, L, Id, PrevDecl, TKL), + DefinitionData(PrevDecl ? PrevDecl->DefinitionData : 0), + TemplateOrInstantiation() { } + +CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK, + DeclContext *DC, SourceLocation L, + IdentifierInfo *Id, SourceLocation TKL, + CXXRecordDecl* PrevDecl, + bool DelayTypeCreation) { + CXXRecordDecl* R = new (C) CXXRecordDecl(CXXRecord, TK, DC, L, Id, + PrevDecl, TKL); + + // FIXME: DelayTypeCreation seems like such a hack + if (!DelayTypeCreation) + C.getTypeDeclType(R, PrevDecl); + return R; +} + +CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, EmptyShell Empty) { + return new (C) CXXRecordDecl(CXXRecord, TTK_Struct, 0, SourceLocation(), 0, 0, + SourceLocation()); +} + +void +CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases, + unsigned NumBases) { + ASTContext &C = getASTContext(); + + // C++ [dcl.init.aggr]p1: + // An aggregate is an array or a class (clause 9) with [...] + // no base classes [...]. + data().Aggregate = false; + + if (!data().Bases.isOffset() && data().NumBases > 0) + C.Deallocate(data().getBases()); + + // The set of seen virtual base types. + llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes; + + // The virtual bases of this class. + llvm::SmallVector<const CXXBaseSpecifier *, 8> VBases; + + data().Bases = new(C) CXXBaseSpecifier [NumBases]; + data().NumBases = NumBases; + for (unsigned i = 0; i < NumBases; ++i) { + data().getBases()[i] = *Bases[i]; + // Keep track of inherited vbases for this base class. + const CXXBaseSpecifier *Base = Bases[i]; + QualType BaseType = Base->getType(); + // Skip dependent types; we can't do any checking on them now. + if (BaseType->isDependentType()) + continue; + CXXRecordDecl *BaseClassDecl + = cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); + + // C++ [dcl.init.aggr]p1: + // An aggregate is [...] a class with [...] no base classes [...]. + data().Aggregate = false; + + // C++ [class]p4: + // A POD-struct is an aggregate class... + data().PlainOldData = false; + + // A class with a non-empty base class is not empty. + // FIXME: Standard ref? + if (!BaseClassDecl->isEmpty()) + data().Empty = false; + + // C++ [class.virtual]p1: + // A class that declares or inherits a virtual function is called a + // polymorphic class. + if (BaseClassDecl->isPolymorphic()) + data().Polymorphic = true; + + // Now go through all virtual bases of this base and add them. + for (CXXRecordDecl::base_class_iterator VBase = + BaseClassDecl->vbases_begin(), + E = BaseClassDecl->vbases_end(); VBase != E; ++VBase) { + // Add this base if it's not already in the list. + if (SeenVBaseTypes.insert(C.getCanonicalType(VBase->getType()))) + VBases.push_back(VBase); + } + + if (Base->isVirtual()) { + // Add this base if it's not already in the list. + if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType))) + VBases.push_back(Base); + + // C++0x [meta.unary.prop] is_empty: + // T is a class type, but not a union type, with ... no virtual base + // classes + data().Empty = false; + + // C++ [class.ctor]p5: + // A constructor is trivial if its class has no virtual base classes. + data().HasTrivialConstructor = false; + + // C++ [class.copy]p6: + // A copy constructor is trivial if its class has no virtual base + // classes. + data().HasTrivialCopyConstructor = false; + + // C++ [class.copy]p11: + // A copy assignment operator is trivial if its class has no virtual + // base classes. + data().HasTrivialCopyAssignment = false; + } else { + // C++ [class.ctor]p5: + // A constructor is trivial if all the direct base classes of its + // class have trivial constructors. + if (!BaseClassDecl->hasTrivialConstructor()) + data().HasTrivialConstructor = false; + + // C++ [class.copy]p6: + // A copy constructor is trivial if all the direct base classes of its + // class have trivial copy constructors. + if (!BaseClassDecl->hasTrivialCopyConstructor()) + data().HasTrivialCopyConstructor = false; + + // C++ [class.copy]p11: + // A copy assignment operator is trivial if all the direct base classes + // of its class have trivial copy assignment operators. + if (!BaseClassDecl->hasTrivialCopyAssignment()) + data().HasTrivialCopyAssignment = false; + } + + // C++ [class.ctor]p3: + // A destructor is trivial if all the direct base classes of its class + // have trivial destructors. + if (!BaseClassDecl->hasTrivialDestructor()) + data().HasTrivialDestructor = false; + } + + if (VBases.empty()) + return; + + // Create base specifier for any direct or indirect virtual bases. + data().VBases = new (C) CXXBaseSpecifier[VBases.size()]; + data().NumVBases = VBases.size(); + for (int I = 0, E = VBases.size(); I != E; ++I) { + TypeSourceInfo *VBaseTypeInfo = VBases[I]->getTypeSourceInfo(); + + // Skip dependent types; we can't do any checking on them now. + if (VBaseTypeInfo->getType()->isDependentType()) + continue; + + CXXRecordDecl *VBaseClassDecl = cast<CXXRecordDecl>( + VBaseTypeInfo->getType()->getAs<RecordType>()->getDecl()); + + data().getVBases()[I] = + CXXBaseSpecifier(VBaseClassDecl->getSourceRange(), true, + VBaseClassDecl->getTagKind() == TTK_Class, + VBases[I]->getAccessSpecifier(), VBaseTypeInfo, + SourceLocation()); + } +} + +/// Callback function for CXXRecordDecl::forallBases that acknowledges +/// that it saw a base class. +static bool SawBase(const CXXRecordDecl *, void *) { + return true; +} + +bool CXXRecordDecl::hasAnyDependentBases() const { + if (!isDependentContext()) + return false; + + return !forallBases(SawBase, 0); +} + +bool CXXRecordDecl::hasConstCopyConstructor(const ASTContext &Context) const { + return getCopyConstructor(Context, Qualifiers::Const) != 0; +} + +/// \brief Perform a simplistic form of overload resolution that only considers +/// cv-qualifiers on a single parameter, and return the best overload candidate +/// (if there is one). +static CXXMethodDecl * +GetBestOverloadCandidateSimple( + const llvm::SmallVectorImpl<std::pair<CXXMethodDecl *, Qualifiers> > &Cands) { + if (Cands.empty()) + return 0; + if (Cands.size() == 1) + return Cands[0].first; + + unsigned Best = 0, N = Cands.size(); + for (unsigned I = 1; I != N; ++I) + if (Cands[Best].second.isSupersetOf(Cands[I].second)) + Best = I; + + for (unsigned I = 1; I != N; ++I) + if (Cands[Best].second.isSupersetOf(Cands[I].second)) + return 0; + + return Cands[Best].first; +} + +CXXConstructorDecl *CXXRecordDecl::getCopyConstructor(const ASTContext &Context, + unsigned TypeQuals) const{ + QualType ClassType + = Context.getTypeDeclType(const_cast<CXXRecordDecl*>(this)); + DeclarationName ConstructorName + = Context.DeclarationNames.getCXXConstructorName( + Context.getCanonicalType(ClassType)); + unsigned FoundTQs; + llvm::SmallVector<std::pair<CXXMethodDecl *, Qualifiers>, 4> Found; + DeclContext::lookup_const_iterator Con, ConEnd; + for (llvm::tie(Con, ConEnd) = this->lookup(ConstructorName); + Con != ConEnd; ++Con) { + // C++ [class.copy]p2: + // A non-template constructor for class X is a copy constructor if [...] + if (isa<FunctionTemplateDecl>(*Con)) + continue; + + CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con); + if (Constructor->isCopyConstructor(FoundTQs)) { + if (((TypeQuals & Qualifiers::Const) == (FoundTQs & Qualifiers::Const)) || + (!(TypeQuals & Qualifiers::Const) && (FoundTQs & Qualifiers::Const))) + Found.push_back(std::make_pair( + const_cast<CXXConstructorDecl *>(Constructor), + Qualifiers::fromCVRMask(FoundTQs))); + } + } + + return cast_or_null<CXXConstructorDecl>( + GetBestOverloadCandidateSimple(Found)); +} + +CXXMethodDecl *CXXRecordDecl::getCopyAssignmentOperator(bool ArgIsConst) const { + ASTContext &Context = getASTContext(); + QualType Class = Context.getTypeDeclType(const_cast<CXXRecordDecl *>(this)); + DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); + + llvm::SmallVector<std::pair<CXXMethodDecl *, Qualifiers>, 4> Found; + DeclContext::lookup_const_iterator Op, OpEnd; + for (llvm::tie(Op, OpEnd) = this->lookup(Name); Op != OpEnd; ++Op) { + // C++ [class.copy]p9: + // A user-declared copy assignment operator is a non-static non-template + // member function of class X with exactly one parameter of type X, X&, + // const X&, volatile X& or const volatile X&. + const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op); + if (!Method || Method->isStatic() || Method->getPrimaryTemplate()) + continue; + + const FunctionProtoType *FnType + = Method->getType()->getAs<FunctionProtoType>(); + assert(FnType && "Overloaded operator has no prototype."); + // Don't assert on this; an invalid decl might have been left in the AST. + if (FnType->getNumArgs() != 1 || FnType->isVariadic()) + continue; + + QualType ArgType = FnType->getArgType(0); + Qualifiers Quals; + if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()) { + ArgType = Ref->getPointeeType(); + // If we have a const argument and we have a reference to a non-const, + // this function does not match. + if (ArgIsConst && !ArgType.isConstQualified()) + continue; + + Quals = ArgType.getQualifiers(); + } else { + // By-value copy-assignment operators are treated like const X& + // copy-assignment operators. + Quals = Qualifiers::fromCVRMask(Qualifiers::Const); + } + + if (!Context.hasSameUnqualifiedType(ArgType, Class)) + continue; + + // Save this copy-assignment operator. It might be "the one". + Found.push_back(std::make_pair(const_cast<CXXMethodDecl *>(Method), Quals)); + } + + // Use a simplistic form of overload resolution to find the candidate. + return GetBestOverloadCandidateSimple(Found); +} + +void CXXRecordDecl::markedVirtualFunctionPure() { + // C++ [class.abstract]p2: + // A class is abstract if it has at least one pure virtual function. + data().Abstract = true; +} + +void CXXRecordDecl::addedMember(Decl *D) { + // Ignore friends and invalid declarations. + if (D->getFriendObjectKind() || D->isInvalidDecl()) + return; + + FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D); + if (FunTmpl) + D = FunTmpl->getTemplatedDecl(); + + if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { + if (Method->isVirtual()) { + // C++ [dcl.init.aggr]p1: + // An aggregate is an array or a class with [...] no virtual functions. + data().Aggregate = false; + + // C++ [class]p4: + // A POD-struct is an aggregate class... + data().PlainOldData = false; + + // Virtual functions make the class non-empty. + // FIXME: Standard ref? + data().Empty = false; + + // C++ [class.virtual]p1: + // A class that declares or inherits a virtual function is called a + // polymorphic class. + data().Polymorphic = true; + + // None of the special member functions are trivial. + data().HasTrivialConstructor = false; + data().HasTrivialCopyConstructor = false; + data().HasTrivialCopyAssignment = false; + // FIXME: Destructor? + } + } + + if (D->isImplicit()) { + // Notify that an implicit member was added after the definition + // was completed. + if (!isBeingDefined()) + if (ASTMutationListener *L = getASTMutationListener()) + L->AddedCXXImplicitMember(data().Definition, D); + + if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) { + // If this is the implicit default constructor, note that we have now + // declared it. + if (Constructor->isDefaultConstructor()) + data().DeclaredDefaultConstructor = true; + // If this is the implicit copy constructor, note that we have now + // declared it. + else if (Constructor->isCopyConstructor()) + data().DeclaredCopyConstructor = true; + return; + } + + if (isa<CXXDestructorDecl>(D)) { + data().DeclaredDestructor = true; + return; + } + + if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { + // If this is the implicit copy constructor, note that we have now + // declared it. + // FIXME: Move constructors + if (Method->getOverloadedOperator() == OO_Equal) + data().DeclaredCopyAssignment = true; + return; + } + + // Any other implicit declarations are handled like normal declarations. + } + + // Handle (user-declared) constructors. + if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) { + // Note that we have a user-declared constructor. + data().UserDeclaredConstructor = true; + + // Note that we have no need of an implicitly-declared default constructor. + data().DeclaredDefaultConstructor = true; + + // C++ [dcl.init.aggr]p1: + // An aggregate is an array or a class (clause 9) with no + // user-declared constructors (12.1) [...]. + data().Aggregate = false; + + // C++ [class]p4: + // A POD-struct is an aggregate class [...] + data().PlainOldData = false; + + // C++ [class.ctor]p5: + // A constructor is trivial if it is an implicitly-declared default + // constructor. + // FIXME: C++0x: don't do this for "= default" default constructors. + data().HasTrivialConstructor = false; + + // Note when we have a user-declared copy constructor, which will + // suppress the implicit declaration of a copy constructor. + if (!FunTmpl && Constructor->isCopyConstructor()) { + data().UserDeclaredCopyConstructor = true; + data().DeclaredCopyConstructor = true; + + // C++ [class.copy]p6: + // A copy constructor is trivial if it is implicitly declared. + // FIXME: C++0x: don't do this for "= default" copy constructors. + data().HasTrivialCopyConstructor = false; + } + + return; + } + + // Handle (user-declared) destructors. + if (isa<CXXDestructorDecl>(D)) { + data().DeclaredDestructor = true; + data().UserDeclaredDestructor = true; + + // C++ [class]p4: + // A POD-struct is an aggregate class that has [...] no user-defined + // destructor. + data().PlainOldData = false; + + // C++ [class.dtor]p3: + // A destructor is trivial if it is an implicitly-declared destructor and + // [...]. + // + // FIXME: C++0x: don't do this for "= default" destructors + data().HasTrivialDestructor = false; + + return; + } + + // Handle (user-declared) member functions. + if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { + if (Method->getOverloadedOperator() == OO_Equal) { + // We're interested specifically in copy assignment operators. + const FunctionProtoType *FnType + = Method->getType()->getAs<FunctionProtoType>(); + assert(FnType && "Overloaded operator has no proto function type."); + assert(FnType->getNumArgs() == 1 && !FnType->isVariadic()); + + // Copy assignment operators must be non-templates. + if (Method->getPrimaryTemplate() || FunTmpl) + return; + + ASTContext &Context = getASTContext(); + QualType ArgType = FnType->getArgType(0); + if (const LValueReferenceType *Ref =ArgType->getAs<LValueReferenceType>()) + ArgType = Ref->getPointeeType(); + + ArgType = ArgType.getUnqualifiedType(); + QualType ClassType = Context.getCanonicalType(Context.getTypeDeclType( + const_cast<CXXRecordDecl*>(this))); + + if (!Context.hasSameUnqualifiedType(ClassType, ArgType)) + return; + + // This is a copy assignment operator. + // FIXME: Move assignment operators. + + // Suppress the implicit declaration of a copy constructor. + data().UserDeclaredCopyAssignment = true; + data().DeclaredCopyAssignment = true; + + // C++ [class.copy]p11: + // A copy assignment operator is trivial if it is implicitly declared. + // FIXME: C++0x: don't do this for "= default" copy operators. + data().HasTrivialCopyAssignment = false; + + // C++ [class]p4: + // A POD-struct is an aggregate class that [...] has no user-defined copy + // assignment operator [...]. + data().PlainOldData = false; + } + + // Keep the list of conversion functions up-to-date. + if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) { + // We don't record specializations. + if (Conversion->getPrimaryTemplate()) + return; + + // FIXME: We intentionally don't use the decl's access here because it + // hasn't been set yet. That's really just a misdesign in Sema. + + if (FunTmpl) { + if (FunTmpl->getPreviousDeclaration()) + data().Conversions.replace(FunTmpl->getPreviousDeclaration(), + FunTmpl); + else + data().Conversions.addDecl(FunTmpl); + } else { + if (Conversion->getPreviousDeclaration()) + data().Conversions.replace(Conversion->getPreviousDeclaration(), + Conversion); + else + data().Conversions.addDecl(Conversion); + } + } + + return; + } + + // Handle non-static data members. + if (FieldDecl *Field = dyn_cast<FieldDecl>(D)) { + // C++ [dcl.init.aggr]p1: + // An aggregate is an array or a class (clause 9) with [...] no + // private or protected non-static data members (clause 11). + // + // A POD must be an aggregate. + if (D->getAccess() == AS_private || D->getAccess() == AS_protected) { + data().Aggregate = false; + data().PlainOldData = false; + } + + // C++ [class]p9: + // A POD struct is a class that is both a trivial class and a + // standard-layout class, and has no non-static data members of type + // non-POD struct, non-POD union (or array of such types). + ASTContext &Context = getASTContext(); + QualType T = Context.getBaseElementType(Field->getType()); + if (!T->isPODType()) + data().PlainOldData = false; + if (T->isReferenceType()) + data().HasTrivialConstructor = false; + + if (const RecordType *RecordTy = T->getAs<RecordType>()) { + CXXRecordDecl* FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl()); + if (FieldRec->getDefinition()) { + if (!FieldRec->hasTrivialConstructor()) + data().HasTrivialConstructor = false; + if (!FieldRec->hasTrivialCopyConstructor()) + data().HasTrivialCopyConstructor = false; + if (!FieldRec->hasTrivialCopyAssignment()) + data().HasTrivialCopyAssignment = false; + if (!FieldRec->hasTrivialDestructor()) + data().HasTrivialDestructor = false; + } + } + + // If this is not a zero-length bit-field, then the class is not empty. + if (data().Empty) { + if (!Field->getBitWidth()) + data().Empty = false; + else if (!Field->getBitWidth()->isTypeDependent() && + !Field->getBitWidth()->isValueDependent()) { + llvm::APSInt Bits; + if (Field->getBitWidth()->isIntegerConstantExpr(Bits, Context)) + if (!!Bits) + data().Empty = false; + } + } + } + + // Handle using declarations of conversion functions. + if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(D)) + if (Shadow->getDeclName().getNameKind() + == DeclarationName::CXXConversionFunctionName) + data().Conversions.addDecl(Shadow, Shadow->getAccess()); +} + +static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) { + QualType T; + if (isa<UsingShadowDecl>(Conv)) + Conv = cast<UsingShadowDecl>(Conv)->getTargetDecl(); + if (FunctionTemplateDecl *ConvTemp = dyn_cast<FunctionTemplateDecl>(Conv)) + T = ConvTemp->getTemplatedDecl()->getResultType(); + else + T = cast<CXXConversionDecl>(Conv)->getConversionType(); + return Context.getCanonicalType(T); +} + +/// Collect the visible conversions of a base class. +/// +/// \param Base a base class of the class we're considering +/// \param InVirtual whether this base class is a virtual base (or a base +/// of a virtual base) +/// \param Access the access along the inheritance path to this base +/// \param ParentHiddenTypes the conversions provided by the inheritors +/// of this base +/// \param Output the set to which to add conversions from non-virtual bases +/// \param VOutput the set to which to add conversions from virtual bases +/// \param HiddenVBaseCs the set of conversions which were hidden in a +/// virtual base along some inheritance path +static void CollectVisibleConversions(ASTContext &Context, + CXXRecordDecl *Record, + bool InVirtual, + AccessSpecifier Access, + const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes, + UnresolvedSetImpl &Output, + UnresolvedSetImpl &VOutput, + llvm::SmallPtrSet<NamedDecl*, 8> &HiddenVBaseCs) { + // The set of types which have conversions in this class or its + // subclasses. As an optimization, we don't copy the derived set + // unless it might change. + const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes; + llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer; + + // Collect the direct conversions and figure out which conversions + // will be hidden in the subclasses. + UnresolvedSetImpl &Cs = *Record->getConversionFunctions(); + if (!Cs.empty()) { + HiddenTypesBuffer = ParentHiddenTypes; + HiddenTypes = &HiddenTypesBuffer; + + for (UnresolvedSetIterator I = Cs.begin(), E = Cs.end(); I != E; ++I) { + bool Hidden = + !HiddenTypesBuffer.insert(GetConversionType(Context, I.getDecl())); + + // If this conversion is hidden and we're in a virtual base, + // remember that it's hidden along some inheritance path. + if (Hidden && InVirtual) + HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())); + + // If this conversion isn't hidden, add it to the appropriate output. + else if (!Hidden) { + AccessSpecifier IAccess + = CXXRecordDecl::MergeAccess(Access, I.getAccess()); + + if (InVirtual) + VOutput.addDecl(I.getDecl(), IAccess); + else + Output.addDecl(I.getDecl(), IAccess); + } + } + } + + // Collect information recursively from any base classes. + for (CXXRecordDecl::base_class_iterator + I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) { + const RecordType *RT = I->getType()->getAs<RecordType>(); + if (!RT) continue; + + AccessSpecifier BaseAccess + = CXXRecordDecl::MergeAccess(Access, I->getAccessSpecifier()); + bool BaseInVirtual = InVirtual || I->isVirtual(); + + CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl()); + CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess, + *HiddenTypes, Output, VOutput, HiddenVBaseCs); + } +} + +/// Collect the visible conversions of a class. +/// +/// This would be extremely straightforward if it weren't for virtual +/// bases. It might be worth special-casing that, really. +static void CollectVisibleConversions(ASTContext &Context, + CXXRecordDecl *Record, + UnresolvedSetImpl &Output) { + // The collection of all conversions in virtual bases that we've + // found. These will be added to the output as long as they don't + // appear in the hidden-conversions set. + UnresolvedSet<8> VBaseCs; + + // The set of conversions in virtual bases that we've determined to + // be hidden. + llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs; + + // The set of types hidden by classes derived from this one. + llvm::SmallPtrSet<CanQualType, 8> HiddenTypes; + + // Go ahead and collect the direct conversions and add them to the + // hidden-types set. + UnresolvedSetImpl &Cs = *Record->getConversionFunctions(); + Output.append(Cs.begin(), Cs.end()); + for (UnresolvedSetIterator I = Cs.begin(), E = Cs.end(); I != E; ++I) + HiddenTypes.insert(GetConversionType(Context, I.getDecl())); + + // Recursively collect conversions from base classes. + for (CXXRecordDecl::base_class_iterator + I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) { + const RecordType *RT = I->getType()->getAs<RecordType>(); + if (!RT) continue; + + CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()), + I->isVirtual(), I->getAccessSpecifier(), + HiddenTypes, Output, VBaseCs, HiddenVBaseCs); + } + + // Add any unhidden conversions provided by virtual bases. + for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end(); + I != E; ++I) { + if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()))) + Output.addDecl(I.getDecl(), I.getAccess()); + } +} + +/// getVisibleConversionFunctions - get all conversion functions visible +/// in current class; including conversion function templates. +const UnresolvedSetImpl *CXXRecordDecl::getVisibleConversionFunctions() { + // If root class, all conversions are visible. + if (bases_begin() == bases_end()) + return &data().Conversions; + // If visible conversion list is already evaluated, return it. + if (data().ComputedVisibleConversions) + return &data().VisibleConversions; + CollectVisibleConversions(getASTContext(), this, data().VisibleConversions); + data().ComputedVisibleConversions = true; + return &data().VisibleConversions; +} + +void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) { + // This operation is O(N) but extremely rare. Sema only uses it to + // remove UsingShadowDecls in a class that were followed by a direct + // declaration, e.g.: + // class A : B { + // using B::operator int; + // operator int(); + // }; + // This is uncommon by itself and even more uncommon in conjunction + // with sufficiently large numbers of directly-declared conversions + // that asymptotic behavior matters. + + UnresolvedSetImpl &Convs = *getConversionFunctions(); + for (unsigned I = 0, E = Convs.size(); I != E; ++I) { + if (Convs[I].getDecl() == ConvDecl) { + Convs.erase(I); + assert(std::find(Convs.begin(), Convs.end(), ConvDecl) == Convs.end() + && "conversion was found multiple times in unresolved set"); + return; + } + } + + llvm_unreachable("conversion not found in set!"); +} + +CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const { + if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) + return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom()); + + return 0; +} + +MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const { + return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>(); +} + +void +CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD, + TemplateSpecializationKind TSK) { + assert(TemplateOrInstantiation.isNull() && + "Previous template or instantiation?"); + assert(!isa<ClassTemplateSpecializationDecl>(this)); + TemplateOrInstantiation + = new (getASTContext()) MemberSpecializationInfo(RD, TSK); +} + +TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{ + if (const ClassTemplateSpecializationDecl *Spec + = dyn_cast<ClassTemplateSpecializationDecl>(this)) + return Spec->getSpecializationKind(); + + if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) + return MSInfo->getTemplateSpecializationKind(); + + return TSK_Undeclared; +} + +void +CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) { + if (ClassTemplateSpecializationDecl *Spec + = dyn_cast<ClassTemplateSpecializationDecl>(this)) { + Spec->setSpecializationKind(TSK); + return; + } + + if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { + MSInfo->setTemplateSpecializationKind(TSK); + return; + } + + assert(false && "Not a class template or member class specialization"); +} + +CXXDestructorDecl *CXXRecordDecl::getDestructor() const { + ASTContext &Context = getASTContext(); + QualType ClassType = Context.getTypeDeclType(this); + + DeclarationName Name + = Context.DeclarationNames.getCXXDestructorName( + Context.getCanonicalType(ClassType)); + + DeclContext::lookup_const_iterator I, E; + llvm::tie(I, E) = lookup(Name); + if (I == E) + return 0; + + CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(*I); + assert(++I == E && "Found more than one destructor!"); + + return Dtor; +} + +void CXXRecordDecl::completeDefinition() { + completeDefinition(0); +} + +void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) { + RecordDecl::completeDefinition(); + + // If the class may be abstract (but hasn't been marked as such), check for + // any pure final overriders. + if (mayBeAbstract()) { + CXXFinalOverriderMap MyFinalOverriders; + if (!FinalOverriders) { + getFinalOverriders(MyFinalOverriders); + FinalOverriders = &MyFinalOverriders; + } + + bool Done = false; + for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(), + MEnd = FinalOverriders->end(); + M != MEnd && !Done; ++M) { + for (OverridingMethods::iterator SO = M->second.begin(), + SOEnd = M->second.end(); + SO != SOEnd && !Done; ++SO) { + assert(SO->second.size() > 0 && + "All virtual functions have overridding virtual functions"); + + // C++ [class.abstract]p4: + // A class is abstract if it contains or inherits at least one + // pure virtual function for which the final overrider is pure + // virtual. + if (SO->second.front().Method->isPure()) { + data().Abstract = true; + Done = true; + break; + } + } + } + } + + // Set access bits correctly on the directly-declared conversions. + for (UnresolvedSetIterator I = data().Conversions.begin(), + E = data().Conversions.end(); + I != E; ++I) + data().Conversions.setAccess(I, (*I)->getAccess()); +} + +bool CXXRecordDecl::mayBeAbstract() const { + if (data().Abstract || isInvalidDecl() || !data().Polymorphic || + isDependentContext()) + return false; + + for (CXXRecordDecl::base_class_const_iterator B = bases_begin(), + BEnd = bases_end(); + B != BEnd; ++B) { + CXXRecordDecl *BaseDecl + = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl()); + if (BaseDecl->isAbstract()) + return true; + } + + return false; +} + +CXXMethodDecl * +CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD, + const DeclarationNameInfo &NameInfo, + QualType T, TypeSourceInfo *TInfo, + bool isStatic, StorageClass SCAsWritten, bool isInline) { + return new (C) CXXMethodDecl(CXXMethod, RD, NameInfo, T, TInfo, + isStatic, SCAsWritten, isInline); +} + +bool CXXMethodDecl::isUsualDeallocationFunction() const { + if (getOverloadedOperator() != OO_Delete && + getOverloadedOperator() != OO_Array_Delete) + return false; + + // C++ [basic.stc.dynamic.deallocation]p2: + // A template instance is never a usual deallocation function, + // regardless of its signature. + if (getPrimaryTemplate()) + return false; + + // C++ [basic.stc.dynamic.deallocation]p2: + // If a class T has a member deallocation function named operator delete + // with exactly one parameter, then that function is a usual (non-placement) + // deallocation function. [...] + if (getNumParams() == 1) + return true; + + // C++ [basic.stc.dynamic.deallocation]p2: + // [...] If class T does not declare such an operator delete but does + // declare a member deallocation function named operator delete with + // exactly two parameters, the second of which has type std::size_t (18.1), + // then this function is a usual deallocation function. + ASTContext &Context = getASTContext(); + if (getNumParams() != 2 || + !Context.hasSameUnqualifiedType(getParamDecl(1)->getType(), + Context.getSizeType())) + return false; + + // This function is a usual deallocation function if there are no + // single-parameter deallocation functions of the same kind. + for (DeclContext::lookup_const_result R = getDeclContext()->lookup(getDeclName()); + R.first != R.second; ++R.first) { + if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*R.first)) + if (FD->getNumParams() == 1) + return false; + } + + return true; +} + +bool CXXMethodDecl::isCopyAssignmentOperator() const { + // C++0x [class.copy]p19: + // A user-declared copy assignment operator X::operator= is a non-static + // non-template member function of class X with exactly one parameter of + // type X, X&, const X&, volatile X& or const volatile X&. + if (/*operator=*/getOverloadedOperator() != OO_Equal || + /*non-static*/ isStatic() || + /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate() || + /*exactly one parameter*/getNumParams() != 1) + return false; + + QualType ParamType = getParamDecl(0)->getType(); + if (const LValueReferenceType *Ref = ParamType->getAs<LValueReferenceType>()) + ParamType = Ref->getPointeeType(); + + ASTContext &Context = getASTContext(); + QualType ClassType + = Context.getCanonicalType(Context.getTypeDeclType(getParent())); + return Context.hasSameUnqualifiedType(ClassType, ParamType); +} + +void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) { + assert(MD->isCanonicalDecl() && "Method is not canonical!"); + assert(!MD->getParent()->isDependentContext() && + "Can't add an overridden method to a class template!"); + + getASTContext().addOverriddenMethod(this, MD); +} + +CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const { + return getASTContext().overridden_methods_begin(this); +} + +CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const { + return getASTContext().overridden_methods_end(this); +} + +unsigned CXXMethodDecl::size_overridden_methods() const { + return getASTContext().overridden_methods_size(this); +} + +QualType CXXMethodDecl::getThisType(ASTContext &C) const { + // C++ 9.3.2p1: The type of this in a member function of a class X is X*. + // If the member function is declared const, the type of this is const X*, + // if the member function is declared volatile, the type of this is + // volatile X*, and if the member function is declared const volatile, + // the type of this is const volatile X*. + + assert(isInstance() && "No 'this' for static methods!"); + + QualType ClassTy = C.getTypeDeclType(getParent()); + ClassTy = C.getQualifiedType(ClassTy, + Qualifiers::fromCVRMask(getTypeQualifiers())); + return C.getPointerType(ClassTy); +} + +bool CXXMethodDecl::hasInlineBody() const { + // If this function is a template instantiation, look at the template from + // which it was instantiated. + const FunctionDecl *CheckFn = getTemplateInstantiationPattern(); + if (!CheckFn) + CheckFn = this; + + const FunctionDecl *fn; + return CheckFn->hasBody(fn) && !fn->isOutOfLine(); +} + +CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, + TypeSourceInfo *TInfo, bool IsVirtual, + SourceLocation L, Expr *Init, + SourceLocation R, + SourceLocation EllipsisLoc) + : Initializee(TInfo), MemberOrEllipsisLocation(EllipsisLoc), Init(Init), + LParenLoc(L), RParenLoc(R), IsVirtual(IsVirtual), IsWritten(false), + SourceOrderOrNumArrayIndices(0) +{ +} + +CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, + FieldDecl *Member, + SourceLocation MemberLoc, + SourceLocation L, Expr *Init, + SourceLocation R) + : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init), + LParenLoc(L), RParenLoc(R), IsVirtual(false), + IsWritten(false), SourceOrderOrNumArrayIndices(0) +{ +} + +CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, + IndirectFieldDecl *Member, + SourceLocation MemberLoc, + SourceLocation L, Expr *Init, + SourceLocation R) + : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init), + LParenLoc(L), RParenLoc(R), IsVirtual(false), + IsWritten(false), SourceOrderOrNumArrayIndices(0) +{ +} + +CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, + FieldDecl *Member, + SourceLocation MemberLoc, + SourceLocation L, Expr *Init, + SourceLocation R, + VarDecl **Indices, + unsigned NumIndices) + : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init), + LParenLoc(L), RParenLoc(R), IsVirtual(false), + IsWritten(false), SourceOrderOrNumArrayIndices(NumIndices) +{ + VarDecl **MyIndices = reinterpret_cast<VarDecl **> (this + 1); + memcpy(MyIndices, Indices, NumIndices * sizeof(VarDecl *)); +} + +CXXCtorInitializer *CXXCtorInitializer::Create(ASTContext &Context, + FieldDecl *Member, + SourceLocation MemberLoc, + SourceLocation L, Expr *Init, + SourceLocation R, + VarDecl **Indices, + unsigned NumIndices) { + void *Mem = Context.Allocate(sizeof(CXXCtorInitializer) + + sizeof(VarDecl *) * NumIndices, + llvm::alignOf<CXXCtorInitializer>()); + return new (Mem) CXXCtorInitializer(Context, Member, MemberLoc, L, Init, R, + Indices, NumIndices); +} + +TypeLoc CXXCtorInitializer::getBaseClassLoc() const { + if (isBaseInitializer()) + return Initializee.get<TypeSourceInfo*>()->getTypeLoc(); + else + return TypeLoc(); +} + +const Type *CXXCtorInitializer::getBaseClass() const { + if (isBaseInitializer()) + return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr(); + else + return 0; +} + +SourceLocation CXXCtorInitializer::getSourceLocation() const { + if (isAnyMemberInitializer()) + return getMemberLocation(); + + return getBaseClassLoc().getLocalSourceRange().getBegin(); +} + +SourceRange CXXCtorInitializer::getSourceRange() const { + return SourceRange(getSourceLocation(), getRParenLoc()); +} + +CXXConstructorDecl * +CXXConstructorDecl::Create(ASTContext &C, EmptyShell Empty) { + return new (C) CXXConstructorDecl(0, DeclarationNameInfo(), + QualType(), 0, false, false, false); +} + +CXXConstructorDecl * +CXXConstructorDecl::Create(ASTContext &C, CXXRecordDecl *RD, + const DeclarationNameInfo &NameInfo, + QualType T, TypeSourceInfo *TInfo, + bool isExplicit, + bool isInline, + bool isImplicitlyDeclared) { + assert(NameInfo.getName().getNameKind() + == DeclarationName::CXXConstructorName && + "Name must refer to a constructor"); + return new (C) CXXConstructorDecl(RD, NameInfo, T, TInfo, isExplicit, + isInline, isImplicitlyDeclared); +} + +bool CXXConstructorDecl::isDefaultConstructor() const { + // C++ [class.ctor]p5: + // A default constructor for a class X is a constructor of class + // X that can be called without an argument. + return (getNumParams() == 0) || + (getNumParams() > 0 && getParamDecl(0)->hasDefaultArg()); +} + +bool +CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const { + return isCopyOrMoveConstructor(TypeQuals) && + getParamDecl(0)->getType()->isLValueReferenceType(); +} + +bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const { + return isCopyOrMoveConstructor(TypeQuals) && + getParamDecl(0)->getType()->isRValueReferenceType(); +} + +/// \brief Determine whether this is a copy or move constructor. +bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const { + // C++ [class.copy]p2: + // A non-template constructor for class X is a copy constructor + // if its first parameter is of type X&, const X&, volatile X& or + // const volatile X&, and either there are no other parameters + // or else all other parameters have default arguments (8.3.6). + // C++0x [class.copy]p3: + // A non-template constructor for class X is a move constructor if its + // first parameter is of type X&&, const X&&, volatile X&&, or + // const volatile X&&, and either there are no other parameters or else + // all other parameters have default arguments. + if ((getNumParams() < 1) || + (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) || + (getPrimaryTemplate() != 0) || + (getDescribedFunctionTemplate() != 0)) + return false; + + const ParmVarDecl *Param = getParamDecl(0); + + // Do we have a reference type? + const ReferenceType *ParamRefType = Param->getType()->getAs<ReferenceType>(); + if (!ParamRefType) + return false; + + // Is it a reference to our class type? + ASTContext &Context = getASTContext(); + + CanQualType PointeeType + = Context.getCanonicalType(ParamRefType->getPointeeType()); + CanQualType ClassTy + = Context.getCanonicalType(Context.getTagDeclType(getParent())); + if (PointeeType.getUnqualifiedType() != ClassTy) + return false; + + // FIXME: other qualifiers? + + // We have a copy or move constructor. + TypeQuals = PointeeType.getCVRQualifiers(); + return true; +} + +bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const { + // C++ [class.conv.ctor]p1: + // A constructor declared without the function-specifier explicit + // that can be called with a single parameter specifies a + // conversion from the type of its first parameter to the type of + // its class. Such a constructor is called a converting + // constructor. + if (isExplicit() && !AllowExplicit) + return false; + + return (getNumParams() == 0 && + getType()->getAs<FunctionProtoType>()->isVariadic()) || + (getNumParams() == 1) || + (getNumParams() > 1 && getParamDecl(1)->hasDefaultArg()); +} + +bool CXXConstructorDecl::isSpecializationCopyingObject() const { + if ((getNumParams() < 1) || + (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) || + (getPrimaryTemplate() == 0) || + (getDescribedFunctionTemplate() != 0)) + return false; + + const ParmVarDecl *Param = getParamDecl(0); + + ASTContext &Context = getASTContext(); + CanQualType ParamType = Context.getCanonicalType(Param->getType()); + + // Is it the same as our our class type? + CanQualType ClassTy + = Context.getCanonicalType(Context.getTagDeclType(getParent())); + if (ParamType.getUnqualifiedType() != ClassTy) + return false; + + return true; +} + +const CXXConstructorDecl *CXXConstructorDecl::getInheritedConstructor() const { + // Hack: we store the inherited constructor in the overridden method table + method_iterator It = begin_overridden_methods(); + if (It == end_overridden_methods()) + return 0; + + return cast<CXXConstructorDecl>(*It); +} + +void +CXXConstructorDecl::setInheritedConstructor(const CXXConstructorDecl *BaseCtor){ + // Hack: we store the inherited constructor in the overridden method table + assert(size_overridden_methods() == 0 && "Base ctor already set."); + addOverriddenMethod(BaseCtor); +} + +CXXDestructorDecl * +CXXDestructorDecl::Create(ASTContext &C, EmptyShell Empty) { + return new (C) CXXDestructorDecl(0, DeclarationNameInfo(), + QualType(), 0, false, false); +} + +CXXDestructorDecl * +CXXDestructorDecl::Create(ASTContext &C, CXXRecordDecl *RD, + const DeclarationNameInfo &NameInfo, + QualType T, TypeSourceInfo *TInfo, + bool isInline, + bool isImplicitlyDeclared) { + assert(NameInfo.getName().getNameKind() + == DeclarationName::CXXDestructorName && + "Name must refer to a destructor"); + return new (C) CXXDestructorDecl(RD, NameInfo, T, TInfo, isInline, + isImplicitlyDeclared); +} + +CXXConversionDecl * +CXXConversionDecl::Create(ASTContext &C, EmptyShell Empty) { + return new (C) CXXConversionDecl(0, DeclarationNameInfo(), + QualType(), 0, false, false); +} + +CXXConversionDecl * +CXXConversionDecl::Create(ASTContext &C, CXXRecordDecl *RD, + const DeclarationNameInfo &NameInfo, + QualType T, TypeSourceInfo *TInfo, + bool isInline, bool isExplicit) { + assert(NameInfo.getName().getNameKind() + == DeclarationName::CXXConversionFunctionName && + "Name must refer to a conversion function"); + return new (C) CXXConversionDecl(RD, NameInfo, T, TInfo, + isInline, isExplicit); +} + +LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C, + DeclContext *DC, + SourceLocation L, + LanguageIDs Lang, bool Braces) { + return new (C) LinkageSpecDecl(DC, L, Lang, Braces); +} + +UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC, + SourceLocation L, + SourceLocation NamespaceLoc, + SourceRange QualifierRange, + NestedNameSpecifier *Qualifier, + SourceLocation IdentLoc, + NamedDecl *Used, + DeclContext *CommonAncestor) { + if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Used)) + Used = NS->getOriginalNamespace(); + return new (C) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierRange, + Qualifier, IdentLoc, Used, CommonAncestor); +} + +NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() { + if (NamespaceAliasDecl *NA = + dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace)) + return NA->getNamespace(); + return cast_or_null<NamespaceDecl>(NominatedNamespace); +} + +NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC, + SourceLocation UsingLoc, + SourceLocation AliasLoc, + IdentifierInfo *Alias, + SourceRange QualifierRange, + NestedNameSpecifier *Qualifier, + SourceLocation IdentLoc, + NamedDecl *Namespace) { + if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Namespace)) + Namespace = NS->getOriginalNamespace(); + return new (C) NamespaceAliasDecl(DC, UsingLoc, AliasLoc, Alias, QualifierRange, + Qualifier, IdentLoc, Namespace); +} + +UsingDecl *UsingShadowDecl::getUsingDecl() const { + const UsingShadowDecl *Shadow = this; + while (const UsingShadowDecl *NextShadow = + dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow)) + Shadow = NextShadow; + return cast<UsingDecl>(Shadow->UsingOrNextShadow); +} + +void UsingDecl::addShadowDecl(UsingShadowDecl *S) { + assert(std::find(shadow_begin(), shadow_end(), S) == shadow_end() && + "declaration already in set"); + assert(S->getUsingDecl() == this); + + if (FirstUsingShadow) + S->UsingOrNextShadow = FirstUsingShadow; + FirstUsingShadow = S; +} + +void UsingDecl::removeShadowDecl(UsingShadowDecl *S) { + assert(std::find(shadow_begin(), shadow_end(), S) != shadow_end() && + "declaration not in set"); + assert(S->getUsingDecl() == this); + + // Remove S from the shadow decl chain. This is O(n) but hopefully rare. + + if (FirstUsingShadow == S) { + FirstUsingShadow = dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow); + S->UsingOrNextShadow = this; + return; + } + + UsingShadowDecl *Prev = FirstUsingShadow; + while (Prev->UsingOrNextShadow != S) + Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow); + Prev->UsingOrNextShadow = S->UsingOrNextShadow; + S->UsingOrNextShadow = this; +} + +UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, + SourceRange NNR, SourceLocation UL, + NestedNameSpecifier* TargetNNS, + const DeclarationNameInfo &NameInfo, + bool IsTypeNameArg) { + return new (C) UsingDecl(DC, NNR, UL, TargetNNS, NameInfo, IsTypeNameArg); +} + +UnresolvedUsingValueDecl * +UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC, + SourceLocation UsingLoc, + SourceRange TargetNNR, + NestedNameSpecifier *TargetNNS, + const DeclarationNameInfo &NameInfo) { + return new (C) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc, + TargetNNR, TargetNNS, NameInfo); +} + +UnresolvedUsingTypenameDecl * +UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC, + SourceLocation UsingLoc, + SourceLocation TypenameLoc, + SourceRange TargetNNR, + NestedNameSpecifier *TargetNNS, + SourceLocation TargetNameLoc, + DeclarationName TargetName) { + return new (C) UnresolvedUsingTypenameDecl(DC, UsingLoc, TypenameLoc, + TargetNNR, TargetNNS, + TargetNameLoc, + TargetName.getAsIdentifierInfo()); +} + +StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC, + SourceLocation L, Expr *AssertExpr, + StringLiteral *Message) { + return new (C) StaticAssertDecl(DC, L, AssertExpr, Message); +} + +static const char *getAccessName(AccessSpecifier AS) { + switch (AS) { + default: + case AS_none: + assert("Invalid access specifier!"); + return 0; + case AS_public: + return "public"; + case AS_private: + return "private"; + case AS_protected: + return "protected"; + } +} + +const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB, + AccessSpecifier AS) { + return DB << getAccessName(AS); +} |