summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/AST/DeclCXX.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/AST/DeclCXX.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/AST/DeclCXX.cpp1050
1 files changed, 1050 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/AST/DeclCXX.cpp b/contrib/llvm/tools/clang/lib/AST/DeclCXX.cpp
new file mode 100644
index 0000000..cd7afd9
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/DeclCXX.cpp
@@ -0,0 +1,1050 @@
+//===--- DeclCXX.cpp - C++ Declaration AST Node Implementation ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the C++ related Decl classes.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/Basic/IdentifierTable.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// Decl Allocation/Deallocation Method Implementations
+//===----------------------------------------------------------------------===//
+
+CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D)
+ : UserDeclaredConstructor(false), UserDeclaredCopyConstructor(false),
+ UserDeclaredCopyAssignment(false), UserDeclaredDestructor(false),
+ Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
+ Abstract(false), HasTrivialConstructor(true),
+ HasTrivialCopyConstructor(true), HasTrivialCopyAssignment(true),
+ HasTrivialDestructor(true), ComputedVisibleConversions(false),
+ Bases(0), NumBases(0), VBases(0), NumVBases(0),
+ Definition(D), FirstFriend(0) {
+}
+
+CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, DeclContext *DC,
+ SourceLocation L, IdentifierInfo *Id,
+ CXXRecordDecl *PrevDecl,
+ SourceLocation TKL)
+ : RecordDecl(K, TK, DC, L, Id, PrevDecl, TKL),
+ DefinitionData(PrevDecl ? PrevDecl->DefinitionData : 0),
+ TemplateOrInstantiation() { }
+
+CXXRecordDecl *CXXRecordDecl::Create(ASTContext &C, TagKind TK, DeclContext *DC,
+ SourceLocation L, IdentifierInfo *Id,
+ SourceLocation TKL,
+ CXXRecordDecl* PrevDecl,
+ bool DelayTypeCreation) {
+ CXXRecordDecl* R = new (C) CXXRecordDecl(CXXRecord, TK, DC, L, Id,
+ PrevDecl, TKL);
+
+ // FIXME: DelayTypeCreation seems like such a hack
+ if (!DelayTypeCreation)
+ C.getTypeDeclType(R, PrevDecl);
+ return R;
+}
+
+CXXRecordDecl::~CXXRecordDecl() {
+}
+
+void CXXRecordDecl::Destroy(ASTContext &C) {
+ if (data().Definition == this) {
+ C.Deallocate(data().Bases);
+ C.Deallocate(data().VBases);
+ C.Deallocate(&data());
+ }
+ this->RecordDecl::Destroy(C);
+}
+
+void
+CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases,
+ unsigned NumBases) {
+ ASTContext &C = getASTContext();
+
+ // C++ [dcl.init.aggr]p1:
+ // An aggregate is an array or a class (clause 9) with [...]
+ // no base classes [...].
+ data().Aggregate = false;
+
+ if (data().Bases)
+ C.Deallocate(data().Bases);
+
+ // The set of seen virtual base types.
+ llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes;
+
+ // The virtual bases of this class.
+ llvm::SmallVector<const CXXBaseSpecifier *, 8> VBases;
+
+ data().Bases = new(C) CXXBaseSpecifier [NumBases];
+ data().NumBases = NumBases;
+ for (unsigned i = 0; i < NumBases; ++i) {
+ data().Bases[i] = *Bases[i];
+ // Keep track of inherited vbases for this base class.
+ const CXXBaseSpecifier *Base = Bases[i];
+ QualType BaseType = Base->getType();
+ // Skip dependent types; we can't do any checking on them now.
+ if (BaseType->isDependentType())
+ continue;
+ CXXRecordDecl *BaseClassDecl
+ = cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
+
+ // Now go through all virtual bases of this base and add them.
+ for (CXXRecordDecl::base_class_iterator VBase =
+ BaseClassDecl->vbases_begin(),
+ E = BaseClassDecl->vbases_end(); VBase != E; ++VBase) {
+ // Add this base if it's not already in the list.
+ if (SeenVBaseTypes.insert(C.getCanonicalType(VBase->getType())))
+ VBases.push_back(VBase);
+ }
+
+ if (Base->isVirtual()) {
+ // Add this base if it's not already in the list.
+ if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)))
+ VBases.push_back(Base);
+ }
+
+ }
+
+ if (VBases.empty())
+ return;
+
+ // Create base specifier for any direct or indirect virtual bases.
+ data().VBases = new (C) CXXBaseSpecifier[VBases.size()];
+ data().NumVBases = VBases.size();
+ for (int I = 0, E = VBases.size(); I != E; ++I) {
+ QualType VBaseType = VBases[I]->getType();
+
+ // Skip dependent types; we can't do any checking on them now.
+ if (VBaseType->isDependentType())
+ continue;
+
+ CXXRecordDecl *VBaseClassDecl
+ = cast<CXXRecordDecl>(VBaseType->getAs<RecordType>()->getDecl());
+
+ data().VBases[I] =
+ CXXBaseSpecifier(VBaseClassDecl->getSourceRange(), true,
+ VBaseClassDecl->getTagKind() == TTK_Class,
+ VBases[I]->getAccessSpecifier(), VBaseType);
+ }
+}
+
+/// Callback function for CXXRecordDecl::forallBases that acknowledges
+/// that it saw a base class.
+static bool SawBase(const CXXRecordDecl *, void *) {
+ return true;
+}
+
+bool CXXRecordDecl::hasAnyDependentBases() const {
+ if (!isDependentContext())
+ return false;
+
+ return !forallBases(SawBase, 0);
+}
+
+bool CXXRecordDecl::hasConstCopyConstructor(ASTContext &Context) const {
+ return getCopyConstructor(Context, Qualifiers::Const) != 0;
+}
+
+CXXConstructorDecl *CXXRecordDecl::getCopyConstructor(ASTContext &Context,
+ unsigned TypeQuals) const{
+ QualType ClassType
+ = Context.getTypeDeclType(const_cast<CXXRecordDecl*>(this));
+ DeclarationName ConstructorName
+ = Context.DeclarationNames.getCXXConstructorName(
+ Context.getCanonicalType(ClassType));
+ unsigned FoundTQs;
+ DeclContext::lookup_const_iterator Con, ConEnd;
+ for (llvm::tie(Con, ConEnd) = this->lookup(ConstructorName);
+ Con != ConEnd; ++Con) {
+ // C++ [class.copy]p2:
+ // A non-template constructor for class X is a copy constructor if [...]
+ if (isa<FunctionTemplateDecl>(*Con))
+ continue;
+
+ if (cast<CXXConstructorDecl>(*Con)->isCopyConstructor(FoundTQs)) {
+ if (((TypeQuals & Qualifiers::Const) == (FoundTQs & Qualifiers::Const)) ||
+ (!(TypeQuals & Qualifiers::Const) && (FoundTQs & Qualifiers::Const)))
+ return cast<CXXConstructorDecl>(*Con);
+
+ }
+ }
+ return 0;
+}
+
+bool CXXRecordDecl::hasConstCopyAssignment(ASTContext &Context,
+ const CXXMethodDecl *& MD) const {
+ QualType ClassType = Context.getCanonicalType(Context.getTypeDeclType(
+ const_cast<CXXRecordDecl*>(this)));
+ DeclarationName OpName =Context.DeclarationNames.getCXXOperatorName(OO_Equal);
+
+ DeclContext::lookup_const_iterator Op, OpEnd;
+ for (llvm::tie(Op, OpEnd) = this->lookup(OpName);
+ Op != OpEnd; ++Op) {
+ // C++ [class.copy]p9:
+ // A user-declared copy assignment operator is a non-static non-template
+ // member function of class X with exactly one parameter of type X, X&,
+ // const X&, volatile X& or const volatile X&.
+ const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
+ if (!Method)
+ continue;
+
+ if (Method->isStatic())
+ continue;
+ if (Method->getPrimaryTemplate())
+ continue;
+ const FunctionProtoType *FnType =
+ Method->getType()->getAs<FunctionProtoType>();
+ assert(FnType && "Overloaded operator has no prototype.");
+ // Don't assert on this; an invalid decl might have been left in the AST.
+ if (FnType->getNumArgs() != 1 || FnType->isVariadic())
+ continue;
+ bool AcceptsConst = true;
+ QualType ArgType = FnType->getArgType(0);
+ if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()) {
+ ArgType = Ref->getPointeeType();
+ // Is it a non-const lvalue reference?
+ if (!ArgType.isConstQualified())
+ AcceptsConst = false;
+ }
+ if (!Context.hasSameUnqualifiedType(ArgType, ClassType))
+ continue;
+ MD = Method;
+ // We have a single argument of type cv X or cv X&, i.e. we've found the
+ // copy assignment operator. Return whether it accepts const arguments.
+ return AcceptsConst;
+ }
+ assert(isInvalidDecl() &&
+ "No copy assignment operator declared in valid code.");
+ return false;
+}
+
+void
+CXXRecordDecl::addedConstructor(ASTContext &Context,
+ CXXConstructorDecl *ConDecl) {
+ assert(!ConDecl->isImplicit() && "addedConstructor - not for implicit decl");
+ // Note that we have a user-declared constructor.
+ data().UserDeclaredConstructor = true;
+
+ // C++ [dcl.init.aggr]p1:
+ // An aggregate is an array or a class (clause 9) with no
+ // user-declared constructors (12.1) [...].
+ data().Aggregate = false;
+
+ // C++ [class]p4:
+ // A POD-struct is an aggregate class [...]
+ data().PlainOldData = false;
+
+ // C++ [class.ctor]p5:
+ // A constructor is trivial if it is an implicitly-declared default
+ // constructor.
+ // FIXME: C++0x: don't do this for "= default" default constructors.
+ data().HasTrivialConstructor = false;
+
+ // Note when we have a user-declared copy constructor, which will
+ // suppress the implicit declaration of a copy constructor.
+ if (ConDecl->isCopyConstructor()) {
+ data().UserDeclaredCopyConstructor = true;
+
+ // C++ [class.copy]p6:
+ // A copy constructor is trivial if it is implicitly declared.
+ // FIXME: C++0x: don't do this for "= default" copy constructors.
+ data().HasTrivialCopyConstructor = false;
+ }
+}
+
+void CXXRecordDecl::addedAssignmentOperator(ASTContext &Context,
+ CXXMethodDecl *OpDecl) {
+ // We're interested specifically in copy assignment operators.
+ const FunctionProtoType *FnType = OpDecl->getType()->getAs<FunctionProtoType>();
+ assert(FnType && "Overloaded operator has no proto function type.");
+ assert(FnType->getNumArgs() == 1 && !FnType->isVariadic());
+
+ // Copy assignment operators must be non-templates.
+ if (OpDecl->getPrimaryTemplate() || OpDecl->getDescribedFunctionTemplate())
+ return;
+
+ QualType ArgType = FnType->getArgType(0);
+ if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>())
+ ArgType = Ref->getPointeeType();
+
+ ArgType = ArgType.getUnqualifiedType();
+ QualType ClassType = Context.getCanonicalType(Context.getTypeDeclType(
+ const_cast<CXXRecordDecl*>(this)));
+
+ if (!Context.hasSameUnqualifiedType(ClassType, ArgType))
+ return;
+
+ // This is a copy assignment operator.
+ // Note on the decl that it is a copy assignment operator.
+ OpDecl->setCopyAssignment(true);
+
+ // Suppress the implicit declaration of a copy constructor.
+ data().UserDeclaredCopyAssignment = true;
+
+ // C++ [class.copy]p11:
+ // A copy assignment operator is trivial if it is implicitly declared.
+ // FIXME: C++0x: don't do this for "= default" copy operators.
+ data().HasTrivialCopyAssignment = false;
+
+ // C++ [class]p4:
+ // A POD-struct is an aggregate class that [...] has no user-defined copy
+ // assignment operator [...].
+ data().PlainOldData = false;
+}
+
+static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) {
+ QualType T;
+ if (isa<UsingShadowDecl>(Conv))
+ Conv = cast<UsingShadowDecl>(Conv)->getTargetDecl();
+ if (FunctionTemplateDecl *ConvTemp = dyn_cast<FunctionTemplateDecl>(Conv))
+ T = ConvTemp->getTemplatedDecl()->getResultType();
+ else
+ T = cast<CXXConversionDecl>(Conv)->getConversionType();
+ return Context.getCanonicalType(T);
+}
+
+/// Collect the visible conversions of a base class.
+///
+/// \param Base a base class of the class we're considering
+/// \param InVirtual whether this base class is a virtual base (or a base
+/// of a virtual base)
+/// \param Access the access along the inheritance path to this base
+/// \param ParentHiddenTypes the conversions provided by the inheritors
+/// of this base
+/// \param Output the set to which to add conversions from non-virtual bases
+/// \param VOutput the set to which to add conversions from virtual bases
+/// \param HiddenVBaseCs the set of conversions which were hidden in a
+/// virtual base along some inheritance path
+static void CollectVisibleConversions(ASTContext &Context,
+ CXXRecordDecl *Record,
+ bool InVirtual,
+ AccessSpecifier Access,
+ const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes,
+ UnresolvedSetImpl &Output,
+ UnresolvedSetImpl &VOutput,
+ llvm::SmallPtrSet<NamedDecl*, 8> &HiddenVBaseCs) {
+ // The set of types which have conversions in this class or its
+ // subclasses. As an optimization, we don't copy the derived set
+ // unless it might change.
+ const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes;
+ llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer;
+
+ // Collect the direct conversions and figure out which conversions
+ // will be hidden in the subclasses.
+ UnresolvedSetImpl &Cs = *Record->getConversionFunctions();
+ if (!Cs.empty()) {
+ HiddenTypesBuffer = ParentHiddenTypes;
+ HiddenTypes = &HiddenTypesBuffer;
+
+ for (UnresolvedSetIterator I = Cs.begin(), E = Cs.end(); I != E; ++I) {
+ bool Hidden =
+ !HiddenTypesBuffer.insert(GetConversionType(Context, I.getDecl()));
+
+ // If this conversion is hidden and we're in a virtual base,
+ // remember that it's hidden along some inheritance path.
+ if (Hidden && InVirtual)
+ HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()));
+
+ // If this conversion isn't hidden, add it to the appropriate output.
+ else if (!Hidden) {
+ AccessSpecifier IAccess
+ = CXXRecordDecl::MergeAccess(Access, I.getAccess());
+
+ if (InVirtual)
+ VOutput.addDecl(I.getDecl(), IAccess);
+ else
+ Output.addDecl(I.getDecl(), IAccess);
+ }
+ }
+ }
+
+ // Collect information recursively from any base classes.
+ for (CXXRecordDecl::base_class_iterator
+ I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) {
+ const RecordType *RT = I->getType()->getAs<RecordType>();
+ if (!RT) continue;
+
+ AccessSpecifier BaseAccess
+ = CXXRecordDecl::MergeAccess(Access, I->getAccessSpecifier());
+ bool BaseInVirtual = InVirtual || I->isVirtual();
+
+ CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl());
+ CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess,
+ *HiddenTypes, Output, VOutput, HiddenVBaseCs);
+ }
+}
+
+/// Collect the visible conversions of a class.
+///
+/// This would be extremely straightforward if it weren't for virtual
+/// bases. It might be worth special-casing that, really.
+static void CollectVisibleConversions(ASTContext &Context,
+ CXXRecordDecl *Record,
+ UnresolvedSetImpl &Output) {
+ // The collection of all conversions in virtual bases that we've
+ // found. These will be added to the output as long as they don't
+ // appear in the hidden-conversions set.
+ UnresolvedSet<8> VBaseCs;
+
+ // The set of conversions in virtual bases that we've determined to
+ // be hidden.
+ llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs;
+
+ // The set of types hidden by classes derived from this one.
+ llvm::SmallPtrSet<CanQualType, 8> HiddenTypes;
+
+ // Go ahead and collect the direct conversions and add them to the
+ // hidden-types set.
+ UnresolvedSetImpl &Cs = *Record->getConversionFunctions();
+ Output.append(Cs.begin(), Cs.end());
+ for (UnresolvedSetIterator I = Cs.begin(), E = Cs.end(); I != E; ++I)
+ HiddenTypes.insert(GetConversionType(Context, I.getDecl()));
+
+ // Recursively collect conversions from base classes.
+ for (CXXRecordDecl::base_class_iterator
+ I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) {
+ const RecordType *RT = I->getType()->getAs<RecordType>();
+ if (!RT) continue;
+
+ CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()),
+ I->isVirtual(), I->getAccessSpecifier(),
+ HiddenTypes, Output, VBaseCs, HiddenVBaseCs);
+ }
+
+ // Add any unhidden conversions provided by virtual bases.
+ for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end();
+ I != E; ++I) {
+ if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())))
+ Output.addDecl(I.getDecl(), I.getAccess());
+ }
+}
+
+/// getVisibleConversionFunctions - get all conversion functions visible
+/// in current class; including conversion function templates.
+const UnresolvedSetImpl *CXXRecordDecl::getVisibleConversionFunctions() {
+ // If root class, all conversions are visible.
+ if (bases_begin() == bases_end())
+ return &data().Conversions;
+ // If visible conversion list is already evaluated, return it.
+ if (data().ComputedVisibleConversions)
+ return &data().VisibleConversions;
+ CollectVisibleConversions(getASTContext(), this, data().VisibleConversions);
+ data().ComputedVisibleConversions = true;
+ return &data().VisibleConversions;
+}
+
+#ifndef NDEBUG
+void CXXRecordDecl::CheckConversionFunction(NamedDecl *ConvDecl) {
+ assert(ConvDecl->getDeclContext() == this &&
+ "conversion function does not belong to this record");
+
+ ConvDecl = ConvDecl->getUnderlyingDecl();
+ if (FunctionTemplateDecl *Temp = dyn_cast<FunctionTemplateDecl>(ConvDecl)) {
+ assert(isa<CXXConversionDecl>(Temp->getTemplatedDecl()));
+ } else {
+ assert(isa<CXXConversionDecl>(ConvDecl));
+ }
+}
+#endif
+
+void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) {
+ // This operation is O(N) but extremely rare. Sema only uses it to
+ // remove UsingShadowDecls in a class that were followed by a direct
+ // declaration, e.g.:
+ // class A : B {
+ // using B::operator int;
+ // operator int();
+ // };
+ // This is uncommon by itself and even more uncommon in conjunction
+ // with sufficiently large numbers of directly-declared conversions
+ // that asymptotic behavior matters.
+
+ UnresolvedSetImpl &Convs = *getConversionFunctions();
+ for (unsigned I = 0, E = Convs.size(); I != E; ++I) {
+ if (Convs[I].getDecl() == ConvDecl) {
+ Convs.erase(I);
+ assert(std::find(Convs.begin(), Convs.end(), ConvDecl) == Convs.end()
+ && "conversion was found multiple times in unresolved set");
+ return;
+ }
+ }
+
+ llvm_unreachable("conversion not found in set!");
+}
+
+void CXXRecordDecl::setMethodAsVirtual(FunctionDecl *Method) {
+ Method->setVirtualAsWritten(true);
+ setAggregate(false);
+ setPOD(false);
+ setEmpty(false);
+ setPolymorphic(true);
+ setHasTrivialConstructor(false);
+ setHasTrivialCopyConstructor(false);
+ setHasTrivialCopyAssignment(false);
+}
+
+CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
+ if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
+ return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
+
+ return 0;
+}
+
+MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const {
+ return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>();
+}
+
+void
+CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
+ TemplateSpecializationKind TSK) {
+ assert(TemplateOrInstantiation.isNull() &&
+ "Previous template or instantiation?");
+ assert(!isa<ClassTemplateSpecializationDecl>(this));
+ TemplateOrInstantiation
+ = new (getASTContext()) MemberSpecializationInfo(RD, TSK);
+}
+
+TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{
+ if (const ClassTemplateSpecializationDecl *Spec
+ = dyn_cast<ClassTemplateSpecializationDecl>(this))
+ return Spec->getSpecializationKind();
+
+ if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
+ return MSInfo->getTemplateSpecializationKind();
+
+ return TSK_Undeclared;
+}
+
+void
+CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
+ if (ClassTemplateSpecializationDecl *Spec
+ = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
+ Spec->setSpecializationKind(TSK);
+ return;
+ }
+
+ if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
+ MSInfo->setTemplateSpecializationKind(TSK);
+ return;
+ }
+
+ assert(false && "Not a class template or member class specialization");
+}
+
+CXXConstructorDecl *
+CXXRecordDecl::getDefaultConstructor(ASTContext &Context) {
+ QualType ClassType = Context.getTypeDeclType(this);
+ DeclarationName ConstructorName
+ = Context.DeclarationNames.getCXXConstructorName(
+ Context.getCanonicalType(ClassType.getUnqualifiedType()));
+
+ DeclContext::lookup_const_iterator Con, ConEnd;
+ for (llvm::tie(Con, ConEnd) = lookup(ConstructorName);
+ Con != ConEnd; ++Con) {
+ // FIXME: In C++0x, a constructor template can be a default constructor.
+ if (isa<FunctionTemplateDecl>(*Con))
+ continue;
+
+ CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
+ if (Constructor->isDefaultConstructor())
+ return Constructor;
+ }
+ return 0;
+}
+
+CXXDestructorDecl *CXXRecordDecl::getDestructor(ASTContext &Context) const {
+ QualType ClassType = Context.getTypeDeclType(this);
+
+ DeclarationName Name
+ = Context.DeclarationNames.getCXXDestructorName(
+ Context.getCanonicalType(ClassType));
+
+ DeclContext::lookup_const_iterator I, E;
+ llvm::tie(I, E) = lookup(Name);
+ assert(I != E && "Did not find a destructor!");
+
+ CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(*I);
+ assert(++I == E && "Found more than one destructor!");
+
+ return Dtor;
+}
+
+CXXMethodDecl *
+CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD,
+ SourceLocation L, DeclarationName N,
+ QualType T, TypeSourceInfo *TInfo,
+ bool isStatic, StorageClass SCAsWritten, bool isInline) {
+ return new (C) CXXMethodDecl(CXXMethod, RD, L, N, T, TInfo,
+ isStatic, SCAsWritten, isInline);
+}
+
+bool CXXMethodDecl::isUsualDeallocationFunction() const {
+ if (getOverloadedOperator() != OO_Delete &&
+ getOverloadedOperator() != OO_Array_Delete)
+ return false;
+
+ // C++ [basic.stc.dynamic.deallocation]p2:
+ // A template instance is never a usual deallocation function,
+ // regardless of its signature.
+ if (getPrimaryTemplate())
+ return false;
+
+ // C++ [basic.stc.dynamic.deallocation]p2:
+ // If a class T has a member deallocation function named operator delete
+ // with exactly one parameter, then that function is a usual (non-placement)
+ // deallocation function. [...]
+ if (getNumParams() == 1)
+ return true;
+
+ // C++ [basic.stc.dynamic.deallocation]p2:
+ // [...] If class T does not declare such an operator delete but does
+ // declare a member deallocation function named operator delete with
+ // exactly two parameters, the second of which has type std::size_t (18.1),
+ // then this function is a usual deallocation function.
+ ASTContext &Context = getASTContext();
+ if (getNumParams() != 2 ||
+ !Context.hasSameUnqualifiedType(getParamDecl(1)->getType(),
+ Context.getSizeType()))
+ return false;
+
+ // This function is a usual deallocation function if there are no
+ // single-parameter deallocation functions of the same kind.
+ for (DeclContext::lookup_const_result R = getDeclContext()->lookup(getDeclName());
+ R.first != R.second; ++R.first) {
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*R.first))
+ if (FD->getNumParams() == 1)
+ return false;
+ }
+
+ return true;
+}
+
+bool CXXMethodDecl::isCopyAssignmentOperator() const {
+ // C++0x [class.copy]p19:
+ // A user-declared copy assignment operator X::operator= is a non-static
+ // non-template member function of class X with exactly one parameter of
+ // type X, X&, const X&, volatile X& or const volatile X&.
+ if (/*operator=*/getOverloadedOperator() != OO_Equal ||
+ /*non-static*/ isStatic() ||
+ /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate() ||
+ /*exactly one parameter*/getNumParams() != 1)
+ return false;
+
+ QualType ParamType = getParamDecl(0)->getType();
+ if (const LValueReferenceType *Ref = ParamType->getAs<LValueReferenceType>())
+ ParamType = Ref->getPointeeType();
+
+ ASTContext &Context = getASTContext();
+ QualType ClassType
+ = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
+ return Context.hasSameUnqualifiedType(ClassType, ParamType);
+}
+
+void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
+ assert(MD->isCanonicalDecl() && "Method is not canonical!");
+ assert(!MD->getParent()->isDependentContext() &&
+ "Can't add an overridden method to a class template!");
+
+ getASTContext().addOverriddenMethod(this, MD);
+}
+
+CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
+ return getASTContext().overridden_methods_begin(this);
+}
+
+CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
+ return getASTContext().overridden_methods_end(this);
+}
+
+QualType CXXMethodDecl::getThisType(ASTContext &C) const {
+ // C++ 9.3.2p1: The type of this in a member function of a class X is X*.
+ // If the member function is declared const, the type of this is const X*,
+ // if the member function is declared volatile, the type of this is
+ // volatile X*, and if the member function is declared const volatile,
+ // the type of this is const volatile X*.
+
+ assert(isInstance() && "No 'this' for static methods!");
+
+ QualType ClassTy = C.getTypeDeclType(getParent());
+ ClassTy = C.getQualifiedType(ClassTy,
+ Qualifiers::fromCVRMask(getTypeQualifiers()));
+ return C.getPointerType(ClassTy);
+}
+
+bool CXXMethodDecl::hasInlineBody() const {
+ // If this function is a template instantiation, look at the template from
+ // which it was instantiated.
+ const FunctionDecl *CheckFn = getTemplateInstantiationPattern();
+ if (!CheckFn)
+ CheckFn = this;
+
+ const FunctionDecl *fn;
+ return CheckFn->getBody(fn) && !fn->isOutOfLine();
+}
+
+CXXBaseOrMemberInitializer::
+CXXBaseOrMemberInitializer(ASTContext &Context,
+ TypeSourceInfo *TInfo, bool IsVirtual,
+ SourceLocation L, Expr *Init, SourceLocation R)
+ : BaseOrMember(TInfo), Init(Init), AnonUnionMember(0),
+ LParenLoc(L), RParenLoc(R), IsVirtual(IsVirtual), IsWritten(false),
+ SourceOrderOrNumArrayIndices(0)
+{
+}
+
+CXXBaseOrMemberInitializer::
+CXXBaseOrMemberInitializer(ASTContext &Context,
+ FieldDecl *Member, SourceLocation MemberLoc,
+ SourceLocation L, Expr *Init, SourceLocation R)
+ : BaseOrMember(Member), MemberLocation(MemberLoc), Init(Init),
+ AnonUnionMember(0), LParenLoc(L), RParenLoc(R), IsVirtual(false),
+ IsWritten(false), SourceOrderOrNumArrayIndices(0)
+{
+}
+
+CXXBaseOrMemberInitializer::
+CXXBaseOrMemberInitializer(ASTContext &Context,
+ FieldDecl *Member, SourceLocation MemberLoc,
+ SourceLocation L, Expr *Init, SourceLocation R,
+ VarDecl **Indices,
+ unsigned NumIndices)
+ : BaseOrMember(Member), MemberLocation(MemberLoc), Init(Init),
+ AnonUnionMember(0), LParenLoc(L), RParenLoc(R), IsVirtual(false),
+ IsWritten(false), SourceOrderOrNumArrayIndices(NumIndices)
+{
+ VarDecl **MyIndices = reinterpret_cast<VarDecl **> (this + 1);
+ memcpy(MyIndices, Indices, NumIndices * sizeof(VarDecl *));
+}
+
+CXXBaseOrMemberInitializer *
+CXXBaseOrMemberInitializer::Create(ASTContext &Context,
+ FieldDecl *Member,
+ SourceLocation MemberLoc,
+ SourceLocation L,
+ Expr *Init,
+ SourceLocation R,
+ VarDecl **Indices,
+ unsigned NumIndices) {
+ void *Mem = Context.Allocate(sizeof(CXXBaseOrMemberInitializer) +
+ sizeof(VarDecl *) * NumIndices,
+ llvm::alignof<CXXBaseOrMemberInitializer>());
+ return new (Mem) CXXBaseOrMemberInitializer(Context, Member, MemberLoc,
+ L, Init, R, Indices, NumIndices);
+}
+
+void CXXBaseOrMemberInitializer::Destroy(ASTContext &Context) {
+ if (Init)
+ Init->Destroy(Context);
+ // FIXME: Destroy indices
+ this->~CXXBaseOrMemberInitializer();
+}
+
+TypeLoc CXXBaseOrMemberInitializer::getBaseClassLoc() const {
+ if (isBaseInitializer())
+ return BaseOrMember.get<TypeSourceInfo*>()->getTypeLoc();
+ else
+ return TypeLoc();
+}
+
+Type *CXXBaseOrMemberInitializer::getBaseClass() {
+ if (isBaseInitializer())
+ return BaseOrMember.get<TypeSourceInfo*>()->getType().getTypePtr();
+ else
+ return 0;
+}
+
+const Type *CXXBaseOrMemberInitializer::getBaseClass() const {
+ if (isBaseInitializer())
+ return BaseOrMember.get<TypeSourceInfo*>()->getType().getTypePtr();
+ else
+ return 0;
+}
+
+SourceLocation CXXBaseOrMemberInitializer::getSourceLocation() const {
+ if (isMemberInitializer())
+ return getMemberLocation();
+
+ return getBaseClassLoc().getLocalSourceRange().getBegin();
+}
+
+SourceRange CXXBaseOrMemberInitializer::getSourceRange() const {
+ return SourceRange(getSourceLocation(), getRParenLoc());
+}
+
+CXXConstructorDecl *
+CXXConstructorDecl::Create(ASTContext &C, EmptyShell Empty) {
+ return new (C) CXXConstructorDecl(0, SourceLocation(), DeclarationName(),
+ QualType(), 0, false, false, false);
+}
+
+CXXConstructorDecl *
+CXXConstructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
+ SourceLocation L, DeclarationName N,
+ QualType T, TypeSourceInfo *TInfo,
+ bool isExplicit,
+ bool isInline,
+ bool isImplicitlyDeclared) {
+ assert(N.getNameKind() == DeclarationName::CXXConstructorName &&
+ "Name must refer to a constructor");
+ return new (C) CXXConstructorDecl(RD, L, N, T, TInfo, isExplicit,
+ isInline, isImplicitlyDeclared);
+}
+
+bool CXXConstructorDecl::isDefaultConstructor() const {
+ // C++ [class.ctor]p5:
+ // A default constructor for a class X is a constructor of class
+ // X that can be called without an argument.
+ return (getNumParams() == 0) ||
+ (getNumParams() > 0 && getParamDecl(0)->hasDefaultArg());
+}
+
+bool
+CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const {
+ // C++ [class.copy]p2:
+ // A non-template constructor for class X is a copy constructor
+ // if its first parameter is of type X&, const X&, volatile X& or
+ // const volatile X&, and either there are no other parameters
+ // or else all other parameters have default arguments (8.3.6).
+ if ((getNumParams() < 1) ||
+ (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
+ (getPrimaryTemplate() != 0) ||
+ (getDescribedFunctionTemplate() != 0))
+ return false;
+
+ const ParmVarDecl *Param = getParamDecl(0);
+
+ // Do we have a reference type? Rvalue references don't count.
+ const LValueReferenceType *ParamRefType =
+ Param->getType()->getAs<LValueReferenceType>();
+ if (!ParamRefType)
+ return false;
+
+ // Is it a reference to our class type?
+ ASTContext &Context = getASTContext();
+
+ CanQualType PointeeType
+ = Context.getCanonicalType(ParamRefType->getPointeeType());
+ CanQualType ClassTy
+ = Context.getCanonicalType(Context.getTagDeclType(getParent()));
+ if (PointeeType.getUnqualifiedType() != ClassTy)
+ return false;
+
+ // FIXME: other qualifiers?
+
+ // We have a copy constructor.
+ TypeQuals = PointeeType.getCVRQualifiers();
+ return true;
+}
+
+bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
+ // C++ [class.conv.ctor]p1:
+ // A constructor declared without the function-specifier explicit
+ // that can be called with a single parameter specifies a
+ // conversion from the type of its first parameter to the type of
+ // its class. Such a constructor is called a converting
+ // constructor.
+ if (isExplicit() && !AllowExplicit)
+ return false;
+
+ return (getNumParams() == 0 &&
+ getType()->getAs<FunctionProtoType>()->isVariadic()) ||
+ (getNumParams() == 1) ||
+ (getNumParams() > 1 && getParamDecl(1)->hasDefaultArg());
+}
+
+bool CXXConstructorDecl::isCopyConstructorLikeSpecialization() const {
+ if ((getNumParams() < 1) ||
+ (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
+ (getPrimaryTemplate() == 0) ||
+ (getDescribedFunctionTemplate() != 0))
+ return false;
+
+ const ParmVarDecl *Param = getParamDecl(0);
+
+ ASTContext &Context = getASTContext();
+ CanQualType ParamType = Context.getCanonicalType(Param->getType());
+
+ // Strip off the lvalue reference, if any.
+ if (CanQual<LValueReferenceType> ParamRefType
+ = ParamType->getAs<LValueReferenceType>())
+ ParamType = ParamRefType->getPointeeType();
+
+
+ // Is it the same as our our class type?
+ CanQualType ClassTy
+ = Context.getCanonicalType(Context.getTagDeclType(getParent()));
+ if (ParamType.getUnqualifiedType() != ClassTy)
+ return false;
+
+ return true;
+}
+
+CXXDestructorDecl *
+CXXDestructorDecl::Create(ASTContext &C, EmptyShell Empty) {
+ return new (C) CXXDestructorDecl(0, SourceLocation(), DeclarationName(),
+ QualType(), false, false);
+}
+
+CXXDestructorDecl *
+CXXDestructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
+ SourceLocation L, DeclarationName N,
+ QualType T, bool isInline,
+ bool isImplicitlyDeclared) {
+ assert(N.getNameKind() == DeclarationName::CXXDestructorName &&
+ "Name must refer to a destructor");
+ return new (C) CXXDestructorDecl(RD, L, N, T, isInline, isImplicitlyDeclared);
+}
+
+void
+CXXConstructorDecl::Destroy(ASTContext& C) {
+ C.Deallocate(BaseOrMemberInitializers);
+ CXXMethodDecl::Destroy(C);
+}
+
+CXXConversionDecl *
+CXXConversionDecl::Create(ASTContext &C, EmptyShell Empty) {
+ return new (C) CXXConversionDecl(0, SourceLocation(), DeclarationName(),
+ QualType(), 0, false, false);
+}
+
+CXXConversionDecl *
+CXXConversionDecl::Create(ASTContext &C, CXXRecordDecl *RD,
+ SourceLocation L, DeclarationName N,
+ QualType T, TypeSourceInfo *TInfo,
+ bool isInline, bool isExplicit) {
+ assert(N.getNameKind() == DeclarationName::CXXConversionFunctionName &&
+ "Name must refer to a conversion function");
+ return new (C) CXXConversionDecl(RD, L, N, T, TInfo, isInline, isExplicit);
+}
+
+LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C,
+ DeclContext *DC,
+ SourceLocation L,
+ LanguageIDs Lang, bool Braces) {
+ return new (C) LinkageSpecDecl(DC, L, Lang, Braces);
+}
+
+UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation L,
+ SourceLocation NamespaceLoc,
+ SourceRange QualifierRange,
+ NestedNameSpecifier *Qualifier,
+ SourceLocation IdentLoc,
+ NamedDecl *Used,
+ DeclContext *CommonAncestor) {
+ if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Used))
+ Used = NS->getOriginalNamespace();
+ return new (C) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierRange,
+ Qualifier, IdentLoc, Used, CommonAncestor);
+}
+
+NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() {
+ if (NamespaceAliasDecl *NA =
+ dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace))
+ return NA->getNamespace();
+ return cast_or_null<NamespaceDecl>(NominatedNamespace);
+}
+
+void UsingDirectiveDecl::setNominatedNamespace(NamedDecl* ND) {
+ assert((isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND)) &&
+ "expected a NamespaceDecl or NamespaceAliasDecl");
+ NominatedNamespace = ND;
+}
+
+NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation L,
+ SourceLocation AliasLoc,
+ IdentifierInfo *Alias,
+ SourceRange QualifierRange,
+ NestedNameSpecifier *Qualifier,
+ SourceLocation IdentLoc,
+ NamedDecl *Namespace) {
+ if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Namespace))
+ Namespace = NS->getOriginalNamespace();
+ return new (C) NamespaceAliasDecl(DC, L, AliasLoc, Alias, QualifierRange,
+ Qualifier, IdentLoc, Namespace);
+}
+
+UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation L, SourceRange NNR, SourceLocation UL,
+ NestedNameSpecifier* TargetNNS, DeclarationName Name,
+ bool IsTypeNameArg) {
+ return new (C) UsingDecl(DC, L, NNR, UL, TargetNNS, Name, IsTypeNameArg);
+}
+
+UnresolvedUsingValueDecl *
+UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation UsingLoc,
+ SourceRange TargetNNR,
+ NestedNameSpecifier *TargetNNS,
+ SourceLocation TargetNameLoc,
+ DeclarationName TargetName) {
+ return new (C) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc,
+ TargetNNR, TargetNNS,
+ TargetNameLoc, TargetName);
+}
+
+UnresolvedUsingTypenameDecl *
+UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation UsingLoc,
+ SourceLocation TypenameLoc,
+ SourceRange TargetNNR,
+ NestedNameSpecifier *TargetNNS,
+ SourceLocation TargetNameLoc,
+ DeclarationName TargetName) {
+ return new (C) UnresolvedUsingTypenameDecl(DC, UsingLoc, TypenameLoc,
+ TargetNNR, TargetNNS,
+ TargetNameLoc,
+ TargetName.getAsIdentifierInfo());
+}
+
+StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation L, Expr *AssertExpr,
+ StringLiteral *Message) {
+ return new (C) StaticAssertDecl(DC, L, AssertExpr, Message);
+}
+
+void StaticAssertDecl::Destroy(ASTContext& C) {
+ AssertExpr->Destroy(C);
+ Message->Destroy(C);
+ Decl::Destroy(C);
+}
+
+StaticAssertDecl::~StaticAssertDecl() {
+}
+
+static const char *getAccessName(AccessSpecifier AS) {
+ switch (AS) {
+ default:
+ case AS_none:
+ assert("Invalid access specifier!");
+ return 0;
+ case AS_public:
+ return "public";
+ case AS_private:
+ return "private";
+ case AS_protected:
+ return "protected";
+ }
+}
+
+const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB,
+ AccessSpecifier AS) {
+ return DB << getAccessName(AS);
+}
+
+
OpenPOWER on IntegriCloud