summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/AST/ASTContext.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/AST/ASTContext.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/AST/ASTContext.cpp6768
1 files changed, 6768 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/AST/ASTContext.cpp b/contrib/llvm/tools/clang/lib/AST/ASTContext.cpp
new file mode 100644
index 0000000..acf5e0b
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/ASTContext.cpp
@@ -0,0 +1,6768 @@
+//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the ASTContext interface.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/CharUnits.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExternalASTSource.h"
+#include "clang/AST/ASTMutationListener.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/AST/Mangle.h"
+#include "clang/Basic/Builtins.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TargetInfo.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/Capacity.h"
+#include "CXXABI.h"
+#include <map>
+
+using namespace clang;
+
+unsigned ASTContext::NumImplicitDefaultConstructors;
+unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
+unsigned ASTContext::NumImplicitCopyConstructors;
+unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
+unsigned ASTContext::NumImplicitMoveConstructors;
+unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
+unsigned ASTContext::NumImplicitCopyAssignmentOperators;
+unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
+unsigned ASTContext::NumImplicitMoveAssignmentOperators;
+unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
+unsigned ASTContext::NumImplicitDestructors;
+unsigned ASTContext::NumImplicitDestructorsDeclared;
+
+enum FloatingRank {
+ HalfRank, FloatRank, DoubleRank, LongDoubleRank
+};
+
+void
+ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
+ TemplateTemplateParmDecl *Parm) {
+ ID.AddInteger(Parm->getDepth());
+ ID.AddInteger(Parm->getPosition());
+ ID.AddBoolean(Parm->isParameterPack());
+
+ TemplateParameterList *Params = Parm->getTemplateParameters();
+ ID.AddInteger(Params->size());
+ for (TemplateParameterList::const_iterator P = Params->begin(),
+ PEnd = Params->end();
+ P != PEnd; ++P) {
+ if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
+ ID.AddInteger(0);
+ ID.AddBoolean(TTP->isParameterPack());
+ continue;
+ }
+
+ if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
+ ID.AddInteger(1);
+ ID.AddBoolean(NTTP->isParameterPack());
+ ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
+ if (NTTP->isExpandedParameterPack()) {
+ ID.AddBoolean(true);
+ ID.AddInteger(NTTP->getNumExpansionTypes());
+ for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
+ QualType T = NTTP->getExpansionType(I);
+ ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
+ }
+ } else
+ ID.AddBoolean(false);
+ continue;
+ }
+
+ TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
+ ID.AddInteger(2);
+ Profile(ID, TTP);
+ }
+}
+
+TemplateTemplateParmDecl *
+ASTContext::getCanonicalTemplateTemplateParmDecl(
+ TemplateTemplateParmDecl *TTP) const {
+ // Check if we already have a canonical template template parameter.
+ llvm::FoldingSetNodeID ID;
+ CanonicalTemplateTemplateParm::Profile(ID, TTP);
+ void *InsertPos = 0;
+ CanonicalTemplateTemplateParm *Canonical
+ = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
+ if (Canonical)
+ return Canonical->getParam();
+
+ // Build a canonical template parameter list.
+ TemplateParameterList *Params = TTP->getTemplateParameters();
+ SmallVector<NamedDecl *, 4> CanonParams;
+ CanonParams.reserve(Params->size());
+ for (TemplateParameterList::const_iterator P = Params->begin(),
+ PEnd = Params->end();
+ P != PEnd; ++P) {
+ if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
+ CanonParams.push_back(
+ TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
+ SourceLocation(),
+ SourceLocation(),
+ TTP->getDepth(),
+ TTP->getIndex(), 0, false,
+ TTP->isParameterPack()));
+ else if (NonTypeTemplateParmDecl *NTTP
+ = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
+ QualType T = getCanonicalType(NTTP->getType());
+ TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
+ NonTypeTemplateParmDecl *Param;
+ if (NTTP->isExpandedParameterPack()) {
+ SmallVector<QualType, 2> ExpandedTypes;
+ SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
+ for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
+ ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
+ ExpandedTInfos.push_back(
+ getTrivialTypeSourceInfo(ExpandedTypes.back()));
+ }
+
+ Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
+ SourceLocation(),
+ SourceLocation(),
+ NTTP->getDepth(),
+ NTTP->getPosition(), 0,
+ T,
+ TInfo,
+ ExpandedTypes.data(),
+ ExpandedTypes.size(),
+ ExpandedTInfos.data());
+ } else {
+ Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
+ SourceLocation(),
+ SourceLocation(),
+ NTTP->getDepth(),
+ NTTP->getPosition(), 0,
+ T,
+ NTTP->isParameterPack(),
+ TInfo);
+ }
+ CanonParams.push_back(Param);
+
+ } else
+ CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
+ cast<TemplateTemplateParmDecl>(*P)));
+ }
+
+ TemplateTemplateParmDecl *CanonTTP
+ = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
+ SourceLocation(), TTP->getDepth(),
+ TTP->getPosition(),
+ TTP->isParameterPack(),
+ 0,
+ TemplateParameterList::Create(*this, SourceLocation(),
+ SourceLocation(),
+ CanonParams.data(),
+ CanonParams.size(),
+ SourceLocation()));
+
+ // Get the new insert position for the node we care about.
+ Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
+ assert(Canonical == 0 && "Shouldn't be in the map!");
+ (void)Canonical;
+
+ // Create the canonical template template parameter entry.
+ Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
+ CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
+ return CanonTTP;
+}
+
+CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
+ if (!LangOpts.CPlusPlus) return 0;
+
+ switch (T.getCXXABI()) {
+ case CXXABI_ARM:
+ return CreateARMCXXABI(*this);
+ case CXXABI_Itanium:
+ return CreateItaniumCXXABI(*this);
+ case CXXABI_Microsoft:
+ return CreateMicrosoftCXXABI(*this);
+ }
+ llvm_unreachable("Invalid CXXABI type!");
+}
+
+static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
+ const LangOptions &LOpts) {
+ if (LOpts.FakeAddressSpaceMap) {
+ // The fake address space map must have a distinct entry for each
+ // language-specific address space.
+ static const unsigned FakeAddrSpaceMap[] = {
+ 1, // opencl_global
+ 2, // opencl_local
+ 3 // opencl_constant
+ };
+ return &FakeAddrSpaceMap;
+ } else {
+ return &T.getAddressSpaceMap();
+ }
+}
+
+ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
+ const TargetInfo *t,
+ IdentifierTable &idents, SelectorTable &sels,
+ Builtin::Context &builtins,
+ unsigned size_reserve,
+ bool DelayInitialization)
+ : FunctionProtoTypes(this_()),
+ TemplateSpecializationTypes(this_()),
+ DependentTemplateSpecializationTypes(this_()),
+ SubstTemplateTemplateParmPacks(this_()),
+ GlobalNestedNameSpecifier(0),
+ Int128Decl(0), UInt128Decl(0),
+ ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
+ CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
+ FILEDecl(0),
+ jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
+ BlockDescriptorType(0), BlockDescriptorExtendedType(0),
+ cudaConfigureCallDecl(0),
+ NullTypeSourceInfo(QualType()),
+ FirstLocalImport(), LastLocalImport(),
+ SourceMgr(SM), LangOpts(LOpts),
+ AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
+ Idents(idents), Selectors(sels),
+ BuiltinInfo(builtins),
+ DeclarationNames(*this),
+ ExternalSource(0), Listener(0),
+ LastSDM(0, 0),
+ UniqueBlockByRefTypeID(0)
+{
+ if (size_reserve > 0) Types.reserve(size_reserve);
+ TUDecl = TranslationUnitDecl::Create(*this);
+
+ if (!DelayInitialization) {
+ assert(t && "No target supplied for ASTContext initialization");
+ InitBuiltinTypes(*t);
+ }
+}
+
+ASTContext::~ASTContext() {
+ // Release the DenseMaps associated with DeclContext objects.
+ // FIXME: Is this the ideal solution?
+ ReleaseDeclContextMaps();
+
+ // Call all of the deallocation functions.
+ for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
+ Deallocations[I].first(Deallocations[I].second);
+
+ // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
+ // because they can contain DenseMaps.
+ for (llvm::DenseMap<const ObjCContainerDecl*,
+ const ASTRecordLayout*>::iterator
+ I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
+ // Increment in loop to prevent using deallocated memory.
+ if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
+ R->Destroy(*this);
+
+ for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
+ I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
+ // Increment in loop to prevent using deallocated memory.
+ if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
+ R->Destroy(*this);
+ }
+
+ for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
+ AEnd = DeclAttrs.end();
+ A != AEnd; ++A)
+ A->second->~AttrVec();
+}
+
+void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
+ Deallocations.push_back(std::make_pair(Callback, Data));
+}
+
+void
+ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) {
+ ExternalSource.reset(Source.take());
+}
+
+void ASTContext::PrintStats() const {
+ llvm::errs() << "\n*** AST Context Stats:\n";
+ llvm::errs() << " " << Types.size() << " types total.\n";
+
+ unsigned counts[] = {
+#define TYPE(Name, Parent) 0,
+#define ABSTRACT_TYPE(Name, Parent)
+#include "clang/AST/TypeNodes.def"
+ 0 // Extra
+ };
+
+ for (unsigned i = 0, e = Types.size(); i != e; ++i) {
+ Type *T = Types[i];
+ counts[(unsigned)T->getTypeClass()]++;
+ }
+
+ unsigned Idx = 0;
+ unsigned TotalBytes = 0;
+#define TYPE(Name, Parent) \
+ if (counts[Idx]) \
+ llvm::errs() << " " << counts[Idx] << " " << #Name \
+ << " types\n"; \
+ TotalBytes += counts[Idx] * sizeof(Name##Type); \
+ ++Idx;
+#define ABSTRACT_TYPE(Name, Parent)
+#include "clang/AST/TypeNodes.def"
+
+ llvm::errs() << "Total bytes = " << TotalBytes << "\n";
+
+ // Implicit special member functions.
+ llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
+ << NumImplicitDefaultConstructors
+ << " implicit default constructors created\n";
+ llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
+ << NumImplicitCopyConstructors
+ << " implicit copy constructors created\n";
+ if (getLangOpts().CPlusPlus)
+ llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
+ << NumImplicitMoveConstructors
+ << " implicit move constructors created\n";
+ llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
+ << NumImplicitCopyAssignmentOperators
+ << " implicit copy assignment operators created\n";
+ if (getLangOpts().CPlusPlus)
+ llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
+ << NumImplicitMoveAssignmentOperators
+ << " implicit move assignment operators created\n";
+ llvm::errs() << NumImplicitDestructorsDeclared << "/"
+ << NumImplicitDestructors
+ << " implicit destructors created\n";
+
+ if (ExternalSource.get()) {
+ llvm::errs() << "\n";
+ ExternalSource->PrintStats();
+ }
+
+ BumpAlloc.PrintStats();
+}
+
+TypedefDecl *ASTContext::getInt128Decl() const {
+ if (!Int128Decl) {
+ TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
+ Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
+ getTranslationUnitDecl(),
+ SourceLocation(),
+ SourceLocation(),
+ &Idents.get("__int128_t"),
+ TInfo);
+ }
+
+ return Int128Decl;
+}
+
+TypedefDecl *ASTContext::getUInt128Decl() const {
+ if (!UInt128Decl) {
+ TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
+ UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
+ getTranslationUnitDecl(),
+ SourceLocation(),
+ SourceLocation(),
+ &Idents.get("__uint128_t"),
+ TInfo);
+ }
+
+ return UInt128Decl;
+}
+
+void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
+ BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
+ R = CanQualType::CreateUnsafe(QualType(Ty, 0));
+ Types.push_back(Ty);
+}
+
+void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
+ assert((!this->Target || this->Target == &Target) &&
+ "Incorrect target reinitialization");
+ assert(VoidTy.isNull() && "Context reinitialized?");
+
+ this->Target = &Target;
+
+ ABI.reset(createCXXABI(Target));
+ AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
+
+ // C99 6.2.5p19.
+ InitBuiltinType(VoidTy, BuiltinType::Void);
+
+ // C99 6.2.5p2.
+ InitBuiltinType(BoolTy, BuiltinType::Bool);
+ // C99 6.2.5p3.
+ if (LangOpts.CharIsSigned)
+ InitBuiltinType(CharTy, BuiltinType::Char_S);
+ else
+ InitBuiltinType(CharTy, BuiltinType::Char_U);
+ // C99 6.2.5p4.
+ InitBuiltinType(SignedCharTy, BuiltinType::SChar);
+ InitBuiltinType(ShortTy, BuiltinType::Short);
+ InitBuiltinType(IntTy, BuiltinType::Int);
+ InitBuiltinType(LongTy, BuiltinType::Long);
+ InitBuiltinType(LongLongTy, BuiltinType::LongLong);
+
+ // C99 6.2.5p6.
+ InitBuiltinType(UnsignedCharTy, BuiltinType::UChar);
+ InitBuiltinType(UnsignedShortTy, BuiltinType::UShort);
+ InitBuiltinType(UnsignedIntTy, BuiltinType::UInt);
+ InitBuiltinType(UnsignedLongTy, BuiltinType::ULong);
+ InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong);
+
+ // C99 6.2.5p10.
+ InitBuiltinType(FloatTy, BuiltinType::Float);
+ InitBuiltinType(DoubleTy, BuiltinType::Double);
+ InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble);
+
+ // GNU extension, 128-bit integers.
+ InitBuiltinType(Int128Ty, BuiltinType::Int128);
+ InitBuiltinType(UnsignedInt128Ty, BuiltinType::UInt128);
+
+ if (LangOpts.CPlusPlus) { // C++ 3.9.1p5
+ if (TargetInfo::isTypeSigned(Target.getWCharType()))
+ InitBuiltinType(WCharTy, BuiltinType::WChar_S);
+ else // -fshort-wchar makes wchar_t be unsigned.
+ InitBuiltinType(WCharTy, BuiltinType::WChar_U);
+ } else // C99
+ WCharTy = getFromTargetType(Target.getWCharType());
+
+ if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
+ InitBuiltinType(Char16Ty, BuiltinType::Char16);
+ else // C99
+ Char16Ty = getFromTargetType(Target.getChar16Type());
+
+ if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
+ InitBuiltinType(Char32Ty, BuiltinType::Char32);
+ else // C99
+ Char32Ty = getFromTargetType(Target.getChar32Type());
+
+ // Placeholder type for type-dependent expressions whose type is
+ // completely unknown. No code should ever check a type against
+ // DependentTy and users should never see it; however, it is here to
+ // help diagnose failures to properly check for type-dependent
+ // expressions.
+ InitBuiltinType(DependentTy, BuiltinType::Dependent);
+
+ // Placeholder type for functions.
+ InitBuiltinType(OverloadTy, BuiltinType::Overload);
+
+ // Placeholder type for bound members.
+ InitBuiltinType(BoundMemberTy, BuiltinType::BoundMember);
+
+ // Placeholder type for pseudo-objects.
+ InitBuiltinType(PseudoObjectTy, BuiltinType::PseudoObject);
+
+ // "any" type; useful for debugger-like clients.
+ InitBuiltinType(UnknownAnyTy, BuiltinType::UnknownAny);
+
+ // Placeholder type for unbridged ARC casts.
+ InitBuiltinType(ARCUnbridgedCastTy, BuiltinType::ARCUnbridgedCast);
+
+ // C99 6.2.5p11.
+ FloatComplexTy = getComplexType(FloatTy);
+ DoubleComplexTy = getComplexType(DoubleTy);
+ LongDoubleComplexTy = getComplexType(LongDoubleTy);
+
+ BuiltinVaListType = QualType();
+
+ // Builtin types for 'id', 'Class', and 'SEL'.
+ InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
+ InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
+ InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
+
+ // Builtin type for __objc_yes and __objc_no
+ ObjCBuiltinBoolTy = SignedCharTy;
+
+ ObjCConstantStringType = QualType();
+
+ // void * type
+ VoidPtrTy = getPointerType(VoidTy);
+
+ // nullptr type (C++0x 2.14.7)
+ InitBuiltinType(NullPtrTy, BuiltinType::NullPtr);
+
+ // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
+ InitBuiltinType(HalfTy, BuiltinType::Half);
+}
+
+DiagnosticsEngine &ASTContext::getDiagnostics() const {
+ return SourceMgr.getDiagnostics();
+}
+
+AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
+ AttrVec *&Result = DeclAttrs[D];
+ if (!Result) {
+ void *Mem = Allocate(sizeof(AttrVec));
+ Result = new (Mem) AttrVec;
+ }
+
+ return *Result;
+}
+
+/// \brief Erase the attributes corresponding to the given declaration.
+void ASTContext::eraseDeclAttrs(const Decl *D) {
+ llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
+ if (Pos != DeclAttrs.end()) {
+ Pos->second->~AttrVec();
+ DeclAttrs.erase(Pos);
+ }
+}
+
+MemberSpecializationInfo *
+ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
+ assert(Var->isStaticDataMember() && "Not a static data member");
+ llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
+ = InstantiatedFromStaticDataMember.find(Var);
+ if (Pos == InstantiatedFromStaticDataMember.end())
+ return 0;
+
+ return Pos->second;
+}
+
+void
+ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
+ TemplateSpecializationKind TSK,
+ SourceLocation PointOfInstantiation) {
+ assert(Inst->isStaticDataMember() && "Not a static data member");
+ assert(Tmpl->isStaticDataMember() && "Not a static data member");
+ assert(!InstantiatedFromStaticDataMember[Inst] &&
+ "Already noted what static data member was instantiated from");
+ InstantiatedFromStaticDataMember[Inst]
+ = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
+}
+
+FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
+ const FunctionDecl *FD){
+ assert(FD && "Specialization is 0");
+ llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
+ = ClassScopeSpecializationPattern.find(FD);
+ if (Pos == ClassScopeSpecializationPattern.end())
+ return 0;
+
+ return Pos->second;
+}
+
+void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
+ FunctionDecl *Pattern) {
+ assert(FD && "Specialization is 0");
+ assert(Pattern && "Class scope specialization pattern is 0");
+ ClassScopeSpecializationPattern[FD] = Pattern;
+}
+
+NamedDecl *
+ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
+ llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
+ = InstantiatedFromUsingDecl.find(UUD);
+ if (Pos == InstantiatedFromUsingDecl.end())
+ return 0;
+
+ return Pos->second;
+}
+
+void
+ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
+ assert((isa<UsingDecl>(Pattern) ||
+ isa<UnresolvedUsingValueDecl>(Pattern) ||
+ isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
+ "pattern decl is not a using decl");
+ assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
+ InstantiatedFromUsingDecl[Inst] = Pattern;
+}
+
+UsingShadowDecl *
+ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
+ llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
+ = InstantiatedFromUsingShadowDecl.find(Inst);
+ if (Pos == InstantiatedFromUsingShadowDecl.end())
+ return 0;
+
+ return Pos->second;
+}
+
+void
+ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
+ UsingShadowDecl *Pattern) {
+ assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
+ InstantiatedFromUsingShadowDecl[Inst] = Pattern;
+}
+
+FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
+ llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
+ = InstantiatedFromUnnamedFieldDecl.find(Field);
+ if (Pos == InstantiatedFromUnnamedFieldDecl.end())
+ return 0;
+
+ return Pos->second;
+}
+
+void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
+ FieldDecl *Tmpl) {
+ assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
+ assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
+ assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
+ "Already noted what unnamed field was instantiated from");
+
+ InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
+}
+
+bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
+ const FieldDecl *LastFD) const {
+ return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
+ FD->getBitWidthValue(*this) == 0);
+}
+
+bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
+ const FieldDecl *LastFD) const {
+ return (FD->isBitField() && LastFD && LastFD->isBitField() &&
+ FD->getBitWidthValue(*this) == 0 &&
+ LastFD->getBitWidthValue(*this) != 0);
+}
+
+bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
+ const FieldDecl *LastFD) const {
+ return (FD->isBitField() && LastFD && LastFD->isBitField() &&
+ FD->getBitWidthValue(*this) &&
+ LastFD->getBitWidthValue(*this));
+}
+
+bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
+ const FieldDecl *LastFD) const {
+ return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
+ LastFD->getBitWidthValue(*this));
+}
+
+bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
+ const FieldDecl *LastFD) const {
+ return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
+ FD->getBitWidthValue(*this));
+}
+
+ASTContext::overridden_cxx_method_iterator
+ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
+ llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
+ = OverriddenMethods.find(Method);
+ if (Pos == OverriddenMethods.end())
+ return 0;
+
+ return Pos->second.begin();
+}
+
+ASTContext::overridden_cxx_method_iterator
+ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
+ llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
+ = OverriddenMethods.find(Method);
+ if (Pos == OverriddenMethods.end())
+ return 0;
+
+ return Pos->second.end();
+}
+
+unsigned
+ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
+ llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
+ = OverriddenMethods.find(Method);
+ if (Pos == OverriddenMethods.end())
+ return 0;
+
+ return Pos->second.size();
+}
+
+void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
+ const CXXMethodDecl *Overridden) {
+ OverriddenMethods[Method].push_back(Overridden);
+}
+
+void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
+ assert(!Import->NextLocalImport && "Import declaration already in the chain");
+ assert(!Import->isFromASTFile() && "Non-local import declaration");
+ if (!FirstLocalImport) {
+ FirstLocalImport = Import;
+ LastLocalImport = Import;
+ return;
+ }
+
+ LastLocalImport->NextLocalImport = Import;
+ LastLocalImport = Import;
+}
+
+//===----------------------------------------------------------------------===//
+// Type Sizing and Analysis
+//===----------------------------------------------------------------------===//
+
+/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
+/// scalar floating point type.
+const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
+ const BuiltinType *BT = T->getAs<BuiltinType>();
+ assert(BT && "Not a floating point type!");
+ switch (BT->getKind()) {
+ default: llvm_unreachable("Not a floating point type!");
+ case BuiltinType::Half: return Target->getHalfFormat();
+ case BuiltinType::Float: return Target->getFloatFormat();
+ case BuiltinType::Double: return Target->getDoubleFormat();
+ case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
+ }
+}
+
+/// getDeclAlign - Return a conservative estimate of the alignment of the
+/// specified decl. Note that bitfields do not have a valid alignment, so
+/// this method will assert on them.
+/// If @p RefAsPointee, references are treated like their underlying type
+/// (for alignof), else they're treated like pointers (for CodeGen).
+CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
+ unsigned Align = Target->getCharWidth();
+
+ bool UseAlignAttrOnly = false;
+ if (unsigned AlignFromAttr = D->getMaxAlignment()) {
+ Align = AlignFromAttr;
+
+ // __attribute__((aligned)) can increase or decrease alignment
+ // *except* on a struct or struct member, where it only increases
+ // alignment unless 'packed' is also specified.
+ //
+ // It is an error for alignas to decrease alignment, so we can
+ // ignore that possibility; Sema should diagnose it.
+ if (isa<FieldDecl>(D)) {
+ UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
+ cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
+ } else {
+ UseAlignAttrOnly = true;
+ }
+ }
+ else if (isa<FieldDecl>(D))
+ UseAlignAttrOnly =
+ D->hasAttr<PackedAttr>() ||
+ cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
+
+ // If we're using the align attribute only, just ignore everything
+ // else about the declaration and its type.
+ if (UseAlignAttrOnly) {
+ // do nothing
+
+ } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
+ QualType T = VD->getType();
+ if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
+ if (RefAsPointee)
+ T = RT->getPointeeType();
+ else
+ T = getPointerType(RT->getPointeeType());
+ }
+ if (!T->isIncompleteType() && !T->isFunctionType()) {
+ // Adjust alignments of declarations with array type by the
+ // large-array alignment on the target.
+ unsigned MinWidth = Target->getLargeArrayMinWidth();
+ const ArrayType *arrayType;
+ if (MinWidth && (arrayType = getAsArrayType(T))) {
+ if (isa<VariableArrayType>(arrayType))
+ Align = std::max(Align, Target->getLargeArrayAlign());
+ else if (isa<ConstantArrayType>(arrayType) &&
+ MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
+ Align = std::max(Align, Target->getLargeArrayAlign());
+
+ // Walk through any array types while we're at it.
+ T = getBaseElementType(arrayType);
+ }
+ Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
+ }
+
+ // Fields can be subject to extra alignment constraints, like if
+ // the field is packed, the struct is packed, or the struct has a
+ // a max-field-alignment constraint (#pragma pack). So calculate
+ // the actual alignment of the field within the struct, and then
+ // (as we're expected to) constrain that by the alignment of the type.
+ if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
+ // So calculate the alignment of the field.
+ const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
+
+ // Start with the record's overall alignment.
+ unsigned fieldAlign = toBits(layout.getAlignment());
+
+ // Use the GCD of that and the offset within the record.
+ uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
+ if (offset > 0) {
+ // Alignment is always a power of 2, so the GCD will be a power of 2,
+ // which means we get to do this crazy thing instead of Euclid's.
+ uint64_t lowBitOfOffset = offset & (~offset + 1);
+ if (lowBitOfOffset < fieldAlign)
+ fieldAlign = static_cast<unsigned>(lowBitOfOffset);
+ }
+
+ Align = std::min(Align, fieldAlign);
+ }
+ }
+
+ return toCharUnitsFromBits(Align);
+}
+
+std::pair<CharUnits, CharUnits>
+ASTContext::getTypeInfoInChars(const Type *T) const {
+ std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
+ return std::make_pair(toCharUnitsFromBits(Info.first),
+ toCharUnitsFromBits(Info.second));
+}
+
+std::pair<CharUnits, CharUnits>
+ASTContext::getTypeInfoInChars(QualType T) const {
+ return getTypeInfoInChars(T.getTypePtr());
+}
+
+std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
+ TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
+ if (it != MemoizedTypeInfo.end())
+ return it->second;
+
+ std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
+ MemoizedTypeInfo.insert(std::make_pair(T, Info));
+ return Info;
+}
+
+/// getTypeInfoImpl - Return the size of the specified type, in bits. This
+/// method does not work on incomplete types.
+///
+/// FIXME: Pointers into different addr spaces could have different sizes and
+/// alignment requirements: getPointerInfo should take an AddrSpace, this
+/// should take a QualType, &c.
+std::pair<uint64_t, unsigned>
+ASTContext::getTypeInfoImpl(const Type *T) const {
+ uint64_t Width=0;
+ unsigned Align=8;
+ switch (T->getTypeClass()) {
+#define TYPE(Class, Base)
+#define ABSTRACT_TYPE(Class, Base)
+#define NON_CANONICAL_TYPE(Class, Base)
+#define DEPENDENT_TYPE(Class, Base) case Type::Class:
+#include "clang/AST/TypeNodes.def"
+ llvm_unreachable("Should not see dependent types");
+
+ case Type::FunctionNoProto:
+ case Type::FunctionProto:
+ // GCC extension: alignof(function) = 32 bits
+ Width = 0;
+ Align = 32;
+ break;
+
+ case Type::IncompleteArray:
+ case Type::VariableArray:
+ Width = 0;
+ Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
+ break;
+
+ case Type::ConstantArray: {
+ const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
+
+ std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
+ uint64_t Size = CAT->getSize().getZExtValue();
+ assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
+ "Overflow in array type bit size evaluation");
+ Width = EltInfo.first*Size;
+ Align = EltInfo.second;
+ Width = llvm::RoundUpToAlignment(Width, Align);
+ break;
+ }
+ case Type::ExtVector:
+ case Type::Vector: {
+ const VectorType *VT = cast<VectorType>(T);
+ std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
+ Width = EltInfo.first*VT->getNumElements();
+ Align = Width;
+ // If the alignment is not a power of 2, round up to the next power of 2.
+ // This happens for non-power-of-2 length vectors.
+ if (Align & (Align-1)) {
+ Align = llvm::NextPowerOf2(Align);
+ Width = llvm::RoundUpToAlignment(Width, Align);
+ }
+ break;
+ }
+
+ case Type::Builtin:
+ switch (cast<BuiltinType>(T)->getKind()) {
+ default: llvm_unreachable("Unknown builtin type!");
+ case BuiltinType::Void:
+ // GCC extension: alignof(void) = 8 bits.
+ Width = 0;
+ Align = 8;
+ break;
+
+ case BuiltinType::Bool:
+ Width = Target->getBoolWidth();
+ Align = Target->getBoolAlign();
+ break;
+ case BuiltinType::Char_S:
+ case BuiltinType::Char_U:
+ case BuiltinType::UChar:
+ case BuiltinType::SChar:
+ Width = Target->getCharWidth();
+ Align = Target->getCharAlign();
+ break;
+ case BuiltinType::WChar_S:
+ case BuiltinType::WChar_U:
+ Width = Target->getWCharWidth();
+ Align = Target->getWCharAlign();
+ break;
+ case BuiltinType::Char16:
+ Width = Target->getChar16Width();
+ Align = Target->getChar16Align();
+ break;
+ case BuiltinType::Char32:
+ Width = Target->getChar32Width();
+ Align = Target->getChar32Align();
+ break;
+ case BuiltinType::UShort:
+ case BuiltinType::Short:
+ Width = Target->getShortWidth();
+ Align = Target->getShortAlign();
+ break;
+ case BuiltinType::UInt:
+ case BuiltinType::Int:
+ Width = Target->getIntWidth();
+ Align = Target->getIntAlign();
+ break;
+ case BuiltinType::ULong:
+ case BuiltinType::Long:
+ Width = Target->getLongWidth();
+ Align = Target->getLongAlign();
+ break;
+ case BuiltinType::ULongLong:
+ case BuiltinType::LongLong:
+ Width = Target->getLongLongWidth();
+ Align = Target->getLongLongAlign();
+ break;
+ case BuiltinType::Int128:
+ case BuiltinType::UInt128:
+ Width = 128;
+ Align = 128; // int128_t is 128-bit aligned on all targets.
+ break;
+ case BuiltinType::Half:
+ Width = Target->getHalfWidth();
+ Align = Target->getHalfAlign();
+ break;
+ case BuiltinType::Float:
+ Width = Target->getFloatWidth();
+ Align = Target->getFloatAlign();
+ break;
+ case BuiltinType::Double:
+ Width = Target->getDoubleWidth();
+ Align = Target->getDoubleAlign();
+ break;
+ case BuiltinType::LongDouble:
+ Width = Target->getLongDoubleWidth();
+ Align = Target->getLongDoubleAlign();
+ break;
+ case BuiltinType::NullPtr:
+ Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
+ Align = Target->getPointerAlign(0); // == sizeof(void*)
+ break;
+ case BuiltinType::ObjCId:
+ case BuiltinType::ObjCClass:
+ case BuiltinType::ObjCSel:
+ Width = Target->getPointerWidth(0);
+ Align = Target->getPointerAlign(0);
+ break;
+ }
+ break;
+ case Type::ObjCObjectPointer:
+ Width = Target->getPointerWidth(0);
+ Align = Target->getPointerAlign(0);
+ break;
+ case Type::BlockPointer: {
+ unsigned AS = getTargetAddressSpace(
+ cast<BlockPointerType>(T)->getPointeeType());
+ Width = Target->getPointerWidth(AS);
+ Align = Target->getPointerAlign(AS);
+ break;
+ }
+ case Type::LValueReference:
+ case Type::RValueReference: {
+ // alignof and sizeof should never enter this code path here, so we go
+ // the pointer route.
+ unsigned AS = getTargetAddressSpace(
+ cast<ReferenceType>(T)->getPointeeType());
+ Width = Target->getPointerWidth(AS);
+ Align = Target->getPointerAlign(AS);
+ break;
+ }
+ case Type::Pointer: {
+ unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
+ Width = Target->getPointerWidth(AS);
+ Align = Target->getPointerAlign(AS);
+ break;
+ }
+ case Type::MemberPointer: {
+ const MemberPointerType *MPT = cast<MemberPointerType>(T);
+ std::pair<uint64_t, unsigned> PtrDiffInfo =
+ getTypeInfo(getPointerDiffType());
+ Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
+ Align = PtrDiffInfo.second;
+ break;
+ }
+ case Type::Complex: {
+ // Complex types have the same alignment as their elements, but twice the
+ // size.
+ std::pair<uint64_t, unsigned> EltInfo =
+ getTypeInfo(cast<ComplexType>(T)->getElementType());
+ Width = EltInfo.first*2;
+ Align = EltInfo.second;
+ break;
+ }
+ case Type::ObjCObject:
+ return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
+ case Type::ObjCInterface: {
+ const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
+ const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
+ Width = toBits(Layout.getSize());
+ Align = toBits(Layout.getAlignment());
+ break;
+ }
+ case Type::Record:
+ case Type::Enum: {
+ const TagType *TT = cast<TagType>(T);
+
+ if (TT->getDecl()->isInvalidDecl()) {
+ Width = 8;
+ Align = 8;
+ break;
+ }
+
+ if (const EnumType *ET = dyn_cast<EnumType>(TT))
+ return getTypeInfo(ET->getDecl()->getIntegerType());
+
+ const RecordType *RT = cast<RecordType>(TT);
+ const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
+ Width = toBits(Layout.getSize());
+ Align = toBits(Layout.getAlignment());
+ break;
+ }
+
+ case Type::SubstTemplateTypeParm:
+ return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
+ getReplacementType().getTypePtr());
+
+ case Type::Auto: {
+ const AutoType *A = cast<AutoType>(T);
+ assert(A->isDeduced() && "Cannot request the size of a dependent type");
+ return getTypeInfo(A->getDeducedType().getTypePtr());
+ }
+
+ case Type::Paren:
+ return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
+
+ case Type::Typedef: {
+ const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
+ std::pair<uint64_t, unsigned> Info
+ = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
+ // If the typedef has an aligned attribute on it, it overrides any computed
+ // alignment we have. This violates the GCC documentation (which says that
+ // attribute(aligned) can only round up) but matches its implementation.
+ if (unsigned AttrAlign = Typedef->getMaxAlignment())
+ Align = AttrAlign;
+ else
+ Align = Info.second;
+ Width = Info.first;
+ break;
+ }
+
+ case Type::TypeOfExpr:
+ return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
+ .getTypePtr());
+
+ case Type::TypeOf:
+ return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
+
+ case Type::Decltype:
+ return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
+ .getTypePtr());
+
+ case Type::UnaryTransform:
+ return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
+
+ case Type::Elaborated:
+ return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
+
+ case Type::Attributed:
+ return getTypeInfo(
+ cast<AttributedType>(T)->getEquivalentType().getTypePtr());
+
+ case Type::TemplateSpecialization: {
+ assert(getCanonicalType(T) != T &&
+ "Cannot request the size of a dependent type");
+ const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
+ // A type alias template specialization may refer to a typedef with the
+ // aligned attribute on it.
+ if (TST->isTypeAlias())
+ return getTypeInfo(TST->getAliasedType().getTypePtr());
+ else
+ return getTypeInfo(getCanonicalType(T));
+ }
+
+ case Type::Atomic: {
+ std::pair<uint64_t, unsigned> Info
+ = getTypeInfo(cast<AtomicType>(T)->getValueType());
+ Width = Info.first;
+ Align = Info.second;
+ if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth() &&
+ llvm::isPowerOf2_64(Width)) {
+ // We can potentially perform lock-free atomic operations for this
+ // type; promote the alignment appropriately.
+ // FIXME: We could potentially promote the width here as well...
+ // is that worthwhile? (Non-struct atomic types generally have
+ // power-of-two size anyway, but structs might not. Requires a bit
+ // of implementation work to make sure we zero out the extra bits.)
+ Align = static_cast<unsigned>(Width);
+ }
+ }
+
+ }
+
+ assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
+ return std::make_pair(Width, Align);
+}
+
+/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
+CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
+ return CharUnits::fromQuantity(BitSize / getCharWidth());
+}
+
+/// toBits - Convert a size in characters to a size in characters.
+int64_t ASTContext::toBits(CharUnits CharSize) const {
+ return CharSize.getQuantity() * getCharWidth();
+}
+
+/// getTypeSizeInChars - Return the size of the specified type, in characters.
+/// This method does not work on incomplete types.
+CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
+ return toCharUnitsFromBits(getTypeSize(T));
+}
+CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
+ return toCharUnitsFromBits(getTypeSize(T));
+}
+
+/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
+/// characters. This method does not work on incomplete types.
+CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
+ return toCharUnitsFromBits(getTypeAlign(T));
+}
+CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
+ return toCharUnitsFromBits(getTypeAlign(T));
+}
+
+/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
+/// type for the current target in bits. This can be different than the ABI
+/// alignment in cases where it is beneficial for performance to overalign
+/// a data type.
+unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
+ unsigned ABIAlign = getTypeAlign(T);
+
+ // Double and long long should be naturally aligned if possible.
+ if (const ComplexType* CT = T->getAs<ComplexType>())
+ T = CT->getElementType().getTypePtr();
+ if (T->isSpecificBuiltinType(BuiltinType::Double) ||
+ T->isSpecificBuiltinType(BuiltinType::LongLong) ||
+ T->isSpecificBuiltinType(BuiltinType::ULongLong))
+ return std::max(ABIAlign, (unsigned)getTypeSize(T));
+
+ return ABIAlign;
+}
+
+/// DeepCollectObjCIvars -
+/// This routine first collects all declared, but not synthesized, ivars in
+/// super class and then collects all ivars, including those synthesized for
+/// current class. This routine is used for implementation of current class
+/// when all ivars, declared and synthesized are known.
+///
+void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
+ bool leafClass,
+ SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
+ if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
+ DeepCollectObjCIvars(SuperClass, false, Ivars);
+ if (!leafClass) {
+ for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
+ E = OI->ivar_end(); I != E; ++I)
+ Ivars.push_back(*I);
+ } else {
+ ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
+ for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
+ Iv= Iv->getNextIvar())
+ Ivars.push_back(Iv);
+ }
+}
+
+/// CollectInheritedProtocols - Collect all protocols in current class and
+/// those inherited by it.
+void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
+ llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
+ if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
+ // We can use protocol_iterator here instead of
+ // all_referenced_protocol_iterator since we are walking all categories.
+ for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
+ PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
+ ObjCProtocolDecl *Proto = (*P);
+ Protocols.insert(Proto->getCanonicalDecl());
+ for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
+ PE = Proto->protocol_end(); P != PE; ++P) {
+ Protocols.insert((*P)->getCanonicalDecl());
+ CollectInheritedProtocols(*P, Protocols);
+ }
+ }
+
+ // Categories of this Interface.
+ for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
+ CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
+ CollectInheritedProtocols(CDeclChain, Protocols);
+ if (ObjCInterfaceDecl *SD = OI->getSuperClass())
+ while (SD) {
+ CollectInheritedProtocols(SD, Protocols);
+ SD = SD->getSuperClass();
+ }
+ } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
+ for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
+ PE = OC->protocol_end(); P != PE; ++P) {
+ ObjCProtocolDecl *Proto = (*P);
+ Protocols.insert(Proto->getCanonicalDecl());
+ for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
+ PE = Proto->protocol_end(); P != PE; ++P)
+ CollectInheritedProtocols(*P, Protocols);
+ }
+ } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
+ for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
+ PE = OP->protocol_end(); P != PE; ++P) {
+ ObjCProtocolDecl *Proto = (*P);
+ Protocols.insert(Proto->getCanonicalDecl());
+ for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
+ PE = Proto->protocol_end(); P != PE; ++P)
+ CollectInheritedProtocols(*P, Protocols);
+ }
+ }
+}
+
+unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
+ unsigned count = 0;
+ // Count ivars declared in class extension.
+ for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
+ CDecl = CDecl->getNextClassExtension())
+ count += CDecl->ivar_size();
+
+ // Count ivar defined in this class's implementation. This
+ // includes synthesized ivars.
+ if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
+ count += ImplDecl->ivar_size();
+
+ return count;
+}
+
+bool ASTContext::isSentinelNullExpr(const Expr *E) {
+ if (!E)
+ return false;
+
+ // nullptr_t is always treated as null.
+ if (E->getType()->isNullPtrType()) return true;
+
+ if (E->getType()->isAnyPointerType() &&
+ E->IgnoreParenCasts()->isNullPointerConstant(*this,
+ Expr::NPC_ValueDependentIsNull))
+ return true;
+
+ // Unfortunately, __null has type 'int'.
+ if (isa<GNUNullExpr>(E)) return true;
+
+ return false;
+}
+
+/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
+ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
+ llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
+ I = ObjCImpls.find(D);
+ if (I != ObjCImpls.end())
+ return cast<ObjCImplementationDecl>(I->second);
+ return 0;
+}
+/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
+ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
+ llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
+ I = ObjCImpls.find(D);
+ if (I != ObjCImpls.end())
+ return cast<ObjCCategoryImplDecl>(I->second);
+ return 0;
+}
+
+/// \brief Set the implementation of ObjCInterfaceDecl.
+void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
+ ObjCImplementationDecl *ImplD) {
+ assert(IFaceD && ImplD && "Passed null params");
+ ObjCImpls[IFaceD] = ImplD;
+}
+/// \brief Set the implementation of ObjCCategoryDecl.
+void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
+ ObjCCategoryImplDecl *ImplD) {
+ assert(CatD && ImplD && "Passed null params");
+ ObjCImpls[CatD] = ImplD;
+}
+
+ObjCInterfaceDecl *ASTContext::getObjContainingInterface(NamedDecl *ND) const {
+ if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
+ return ID;
+ if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
+ return CD->getClassInterface();
+ if (ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
+ return IMD->getClassInterface();
+
+ return 0;
+}
+
+/// \brief Get the copy initialization expression of VarDecl,or NULL if
+/// none exists.
+Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
+ assert(VD && "Passed null params");
+ assert(VD->hasAttr<BlocksAttr>() &&
+ "getBlockVarCopyInits - not __block var");
+ llvm::DenseMap<const VarDecl*, Expr*>::iterator
+ I = BlockVarCopyInits.find(VD);
+ return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
+}
+
+/// \brief Set the copy inialization expression of a block var decl.
+void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
+ assert(VD && Init && "Passed null params");
+ assert(VD->hasAttr<BlocksAttr>() &&
+ "setBlockVarCopyInits - not __block var");
+ BlockVarCopyInits[VD] = Init;
+}
+
+/// \brief Allocate an uninitialized TypeSourceInfo.
+///
+/// The caller should initialize the memory held by TypeSourceInfo using
+/// the TypeLoc wrappers.
+///
+/// \param T the type that will be the basis for type source info. This type
+/// should refer to how the declarator was written in source code, not to
+/// what type semantic analysis resolved the declarator to.
+TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
+ unsigned DataSize) const {
+ if (!DataSize)
+ DataSize = TypeLoc::getFullDataSizeForType(T);
+ else
+ assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
+ "incorrect data size provided to CreateTypeSourceInfo!");
+
+ TypeSourceInfo *TInfo =
+ (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
+ new (TInfo) TypeSourceInfo(T);
+ return TInfo;
+}
+
+TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
+ SourceLocation L) const {
+ TypeSourceInfo *DI = CreateTypeSourceInfo(T);
+ DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
+ return DI;
+}
+
+const ASTRecordLayout &
+ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
+ return getObjCLayout(D, 0);
+}
+
+const ASTRecordLayout &
+ASTContext::getASTObjCImplementationLayout(
+ const ObjCImplementationDecl *D) const {
+ return getObjCLayout(D->getClassInterface(), D);
+}
+
+//===----------------------------------------------------------------------===//
+// Type creation/memoization methods
+//===----------------------------------------------------------------------===//
+
+QualType
+ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
+ unsigned fastQuals = quals.getFastQualifiers();
+ quals.removeFastQualifiers();
+
+ // Check if we've already instantiated this type.
+ llvm::FoldingSetNodeID ID;
+ ExtQuals::Profile(ID, baseType, quals);
+ void *insertPos = 0;
+ if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
+ assert(eq->getQualifiers() == quals);
+ return QualType(eq, fastQuals);
+ }
+
+ // If the base type is not canonical, make the appropriate canonical type.
+ QualType canon;
+ if (!baseType->isCanonicalUnqualified()) {
+ SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
+ canonSplit.Quals.addConsistentQualifiers(quals);
+ canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
+
+ // Re-find the insert position.
+ (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
+ }
+
+ ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
+ ExtQualNodes.InsertNode(eq, insertPos);
+ return QualType(eq, fastQuals);
+}
+
+QualType
+ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
+ QualType CanT = getCanonicalType(T);
+ if (CanT.getAddressSpace() == AddressSpace)
+ return T;
+
+ // If we are composing extended qualifiers together, merge together
+ // into one ExtQuals node.
+ QualifierCollector Quals;
+ const Type *TypeNode = Quals.strip(T);
+
+ // If this type already has an address space specified, it cannot get
+ // another one.
+ assert(!Quals.hasAddressSpace() &&
+ "Type cannot be in multiple addr spaces!");
+ Quals.addAddressSpace(AddressSpace);
+
+ return getExtQualType(TypeNode, Quals);
+}
+
+QualType ASTContext::getObjCGCQualType(QualType T,
+ Qualifiers::GC GCAttr) const {
+ QualType CanT = getCanonicalType(T);
+ if (CanT.getObjCGCAttr() == GCAttr)
+ return T;
+
+ if (const PointerType *ptr = T->getAs<PointerType>()) {
+ QualType Pointee = ptr->getPointeeType();
+ if (Pointee->isAnyPointerType()) {
+ QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
+ return getPointerType(ResultType);
+ }
+ }
+
+ // If we are composing extended qualifiers together, merge together
+ // into one ExtQuals node.
+ QualifierCollector Quals;
+ const Type *TypeNode = Quals.strip(T);
+
+ // If this type already has an ObjCGC specified, it cannot get
+ // another one.
+ assert(!Quals.hasObjCGCAttr() &&
+ "Type cannot have multiple ObjCGCs!");
+ Quals.addObjCGCAttr(GCAttr);
+
+ return getExtQualType(TypeNode, Quals);
+}
+
+const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
+ FunctionType::ExtInfo Info) {
+ if (T->getExtInfo() == Info)
+ return T;
+
+ QualType Result;
+ if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
+ Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
+ } else {
+ const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
+ FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
+ EPI.ExtInfo = Info;
+ Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
+ FPT->getNumArgs(), EPI);
+ }
+
+ return cast<FunctionType>(Result.getTypePtr());
+}
+
+/// getComplexType - Return the uniqued reference to the type for a complex
+/// number with the specified element type.
+QualType ASTContext::getComplexType(QualType T) const {
+ // Unique pointers, to guarantee there is only one pointer of a particular
+ // structure.
+ llvm::FoldingSetNodeID ID;
+ ComplexType::Profile(ID, T);
+
+ void *InsertPos = 0;
+ if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(CT, 0);
+
+ // If the pointee type isn't canonical, this won't be a canonical type either,
+ // so fill in the canonical type field.
+ QualType Canonical;
+ if (!T.isCanonical()) {
+ Canonical = getComplexType(getCanonicalType(T));
+
+ // Get the new insert position for the node we care about.
+ ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
+ }
+ ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
+ Types.push_back(New);
+ ComplexTypes.InsertNode(New, InsertPos);
+ return QualType(New, 0);
+}
+
+/// getPointerType - Return the uniqued reference to the type for a pointer to
+/// the specified type.
+QualType ASTContext::getPointerType(QualType T) const {
+ // Unique pointers, to guarantee there is only one pointer of a particular
+ // structure.
+ llvm::FoldingSetNodeID ID;
+ PointerType::Profile(ID, T);
+
+ void *InsertPos = 0;
+ if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(PT, 0);
+
+ // If the pointee type isn't canonical, this won't be a canonical type either,
+ // so fill in the canonical type field.
+ QualType Canonical;
+ if (!T.isCanonical()) {
+ Canonical = getPointerType(getCanonicalType(T));
+
+ // Get the new insert position for the node we care about.
+ PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
+ }
+ PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
+ Types.push_back(New);
+ PointerTypes.InsertNode(New, InsertPos);
+ return QualType(New, 0);
+}
+
+/// getBlockPointerType - Return the uniqued reference to the type for
+/// a pointer to the specified block.
+QualType ASTContext::getBlockPointerType(QualType T) const {
+ assert(T->isFunctionType() && "block of function types only");
+ // Unique pointers, to guarantee there is only one block of a particular
+ // structure.
+ llvm::FoldingSetNodeID ID;
+ BlockPointerType::Profile(ID, T);
+
+ void *InsertPos = 0;
+ if (BlockPointerType *PT =
+ BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(PT, 0);
+
+ // If the block pointee type isn't canonical, this won't be a canonical
+ // type either so fill in the canonical type field.
+ QualType Canonical;
+ if (!T.isCanonical()) {
+ Canonical = getBlockPointerType(getCanonicalType(T));
+
+ // Get the new insert position for the node we care about.
+ BlockPointerType *NewIP =
+ BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
+ }
+ BlockPointerType *New
+ = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
+ Types.push_back(New);
+ BlockPointerTypes.InsertNode(New, InsertPos);
+ return QualType(New, 0);
+}
+
+/// getLValueReferenceType - Return the uniqued reference to the type for an
+/// lvalue reference to the specified type.
+QualType
+ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
+ assert(getCanonicalType(T) != OverloadTy &&
+ "Unresolved overloaded function type");
+
+ // Unique pointers, to guarantee there is only one pointer of a particular
+ // structure.
+ llvm::FoldingSetNodeID ID;
+ ReferenceType::Profile(ID, T, SpelledAsLValue);
+
+ void *InsertPos = 0;
+ if (LValueReferenceType *RT =
+ LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(RT, 0);
+
+ const ReferenceType *InnerRef = T->getAs<ReferenceType>();
+
+ // If the referencee type isn't canonical, this won't be a canonical type
+ // either, so fill in the canonical type field.
+ QualType Canonical;
+ if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
+ QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
+ Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
+
+ // Get the new insert position for the node we care about.
+ LValueReferenceType *NewIP =
+ LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
+ }
+
+ LValueReferenceType *New
+ = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
+ SpelledAsLValue);
+ Types.push_back(New);
+ LValueReferenceTypes.InsertNode(New, InsertPos);
+
+ return QualType(New, 0);
+}
+
+/// getRValueReferenceType - Return the uniqued reference to the type for an
+/// rvalue reference to the specified type.
+QualType ASTContext::getRValueReferenceType(QualType T) const {
+ // Unique pointers, to guarantee there is only one pointer of a particular
+ // structure.
+ llvm::FoldingSetNodeID ID;
+ ReferenceType::Profile(ID, T, false);
+
+ void *InsertPos = 0;
+ if (RValueReferenceType *RT =
+ RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(RT, 0);
+
+ const ReferenceType *InnerRef = T->getAs<ReferenceType>();
+
+ // If the referencee type isn't canonical, this won't be a canonical type
+ // either, so fill in the canonical type field.
+ QualType Canonical;
+ if (InnerRef || !T.isCanonical()) {
+ QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
+ Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
+
+ // Get the new insert position for the node we care about.
+ RValueReferenceType *NewIP =
+ RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
+ }
+
+ RValueReferenceType *New
+ = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
+ Types.push_back(New);
+ RValueReferenceTypes.InsertNode(New, InsertPos);
+ return QualType(New, 0);
+}
+
+/// getMemberPointerType - Return the uniqued reference to the type for a
+/// member pointer to the specified type, in the specified class.
+QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
+ // Unique pointers, to guarantee there is only one pointer of a particular
+ // structure.
+ llvm::FoldingSetNodeID ID;
+ MemberPointerType::Profile(ID, T, Cls);
+
+ void *InsertPos = 0;
+ if (MemberPointerType *PT =
+ MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(PT, 0);
+
+ // If the pointee or class type isn't canonical, this won't be a canonical
+ // type either, so fill in the canonical type field.
+ QualType Canonical;
+ if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
+ Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
+
+ // Get the new insert position for the node we care about.
+ MemberPointerType *NewIP =
+ MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
+ }
+ MemberPointerType *New
+ = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
+ Types.push_back(New);
+ MemberPointerTypes.InsertNode(New, InsertPos);
+ return QualType(New, 0);
+}
+
+/// getConstantArrayType - Return the unique reference to the type for an
+/// array of the specified element type.
+QualType ASTContext::getConstantArrayType(QualType EltTy,
+ const llvm::APInt &ArySizeIn,
+ ArrayType::ArraySizeModifier ASM,
+ unsigned IndexTypeQuals) const {
+ assert((EltTy->isDependentType() ||
+ EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
+ "Constant array of VLAs is illegal!");
+
+ // Convert the array size into a canonical width matching the pointer size for
+ // the target.
+ llvm::APInt ArySize(ArySizeIn);
+ ArySize =
+ ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
+
+ llvm::FoldingSetNodeID ID;
+ ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
+
+ void *InsertPos = 0;
+ if (ConstantArrayType *ATP =
+ ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(ATP, 0);
+
+ // If the element type isn't canonical or has qualifiers, this won't
+ // be a canonical type either, so fill in the canonical type field.
+ QualType Canon;
+ if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
+ SplitQualType canonSplit = getCanonicalType(EltTy).split();
+ Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
+ ASM, IndexTypeQuals);
+ Canon = getQualifiedType(Canon, canonSplit.Quals);
+
+ // Get the new insert position for the node we care about.
+ ConstantArrayType *NewIP =
+ ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
+ }
+
+ ConstantArrayType *New = new(*this,TypeAlignment)
+ ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
+ ConstantArrayTypes.InsertNode(New, InsertPos);
+ Types.push_back(New);
+ return QualType(New, 0);
+}
+
+/// getVariableArrayDecayedType - Turns the given type, which may be
+/// variably-modified, into the corresponding type with all the known
+/// sizes replaced with [*].
+QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
+ // Vastly most common case.
+ if (!type->isVariablyModifiedType()) return type;
+
+ QualType result;
+
+ SplitQualType split = type.getSplitDesugaredType();
+ const Type *ty = split.Ty;
+ switch (ty->getTypeClass()) {
+#define TYPE(Class, Base)
+#define ABSTRACT_TYPE(Class, Base)
+#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
+#include "clang/AST/TypeNodes.def"
+ llvm_unreachable("didn't desugar past all non-canonical types?");
+
+ // These types should never be variably-modified.
+ case Type::Builtin:
+ case Type::Complex:
+ case Type::Vector:
+ case Type::ExtVector:
+ case Type::DependentSizedExtVector:
+ case Type::ObjCObject:
+ case Type::ObjCInterface:
+ case Type::ObjCObjectPointer:
+ case Type::Record:
+ case Type::Enum:
+ case Type::UnresolvedUsing:
+ case Type::TypeOfExpr:
+ case Type::TypeOf:
+ case Type::Decltype:
+ case Type::UnaryTransform:
+ case Type::DependentName:
+ case Type::InjectedClassName:
+ case Type::TemplateSpecialization:
+ case Type::DependentTemplateSpecialization:
+ case Type::TemplateTypeParm:
+ case Type::SubstTemplateTypeParmPack:
+ case Type::Auto:
+ case Type::PackExpansion:
+ llvm_unreachable("type should never be variably-modified");
+
+ // These types can be variably-modified but should never need to
+ // further decay.
+ case Type::FunctionNoProto:
+ case Type::FunctionProto:
+ case Type::BlockPointer:
+ case Type::MemberPointer:
+ return type;
+
+ // These types can be variably-modified. All these modifications
+ // preserve structure except as noted by comments.
+ // TODO: if we ever care about optimizing VLAs, there are no-op
+ // optimizations available here.
+ case Type::Pointer:
+ result = getPointerType(getVariableArrayDecayedType(
+ cast<PointerType>(ty)->getPointeeType()));
+ break;
+
+ case Type::LValueReference: {
+ const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
+ result = getLValueReferenceType(
+ getVariableArrayDecayedType(lv->getPointeeType()),
+ lv->isSpelledAsLValue());
+ break;
+ }
+
+ case Type::RValueReference: {
+ const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
+ result = getRValueReferenceType(
+ getVariableArrayDecayedType(lv->getPointeeType()));
+ break;
+ }
+
+ case Type::Atomic: {
+ const AtomicType *at = cast<AtomicType>(ty);
+ result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
+ break;
+ }
+
+ case Type::ConstantArray: {
+ const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
+ result = getConstantArrayType(
+ getVariableArrayDecayedType(cat->getElementType()),
+ cat->getSize(),
+ cat->getSizeModifier(),
+ cat->getIndexTypeCVRQualifiers());
+ break;
+ }
+
+ case Type::DependentSizedArray: {
+ const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
+ result = getDependentSizedArrayType(
+ getVariableArrayDecayedType(dat->getElementType()),
+ dat->getSizeExpr(),
+ dat->getSizeModifier(),
+ dat->getIndexTypeCVRQualifiers(),
+ dat->getBracketsRange());
+ break;
+ }
+
+ // Turn incomplete types into [*] types.
+ case Type::IncompleteArray: {
+ const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
+ result = getVariableArrayType(
+ getVariableArrayDecayedType(iat->getElementType()),
+ /*size*/ 0,
+ ArrayType::Normal,
+ iat->getIndexTypeCVRQualifiers(),
+ SourceRange());
+ break;
+ }
+
+ // Turn VLA types into [*] types.
+ case Type::VariableArray: {
+ const VariableArrayType *vat = cast<VariableArrayType>(ty);
+ result = getVariableArrayType(
+ getVariableArrayDecayedType(vat->getElementType()),
+ /*size*/ 0,
+ ArrayType::Star,
+ vat->getIndexTypeCVRQualifiers(),
+ vat->getBracketsRange());
+ break;
+ }
+ }
+
+ // Apply the top-level qualifiers from the original.
+ return getQualifiedType(result, split.Quals);
+}
+
+/// getVariableArrayType - Returns a non-unique reference to the type for a
+/// variable array of the specified element type.
+QualType ASTContext::getVariableArrayType(QualType EltTy,
+ Expr *NumElts,
+ ArrayType::ArraySizeModifier ASM,
+ unsigned IndexTypeQuals,
+ SourceRange Brackets) const {
+ // Since we don't unique expressions, it isn't possible to unique VLA's
+ // that have an expression provided for their size.
+ QualType Canon;
+
+ // Be sure to pull qualifiers off the element type.
+ if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
+ SplitQualType canonSplit = getCanonicalType(EltTy).split();
+ Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
+ IndexTypeQuals, Brackets);
+ Canon = getQualifiedType(Canon, canonSplit.Quals);
+ }
+
+ VariableArrayType *New = new(*this, TypeAlignment)
+ VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
+
+ VariableArrayTypes.push_back(New);
+ Types.push_back(New);
+ return QualType(New, 0);
+}
+
+/// getDependentSizedArrayType - Returns a non-unique reference to
+/// the type for a dependently-sized array of the specified element
+/// type.
+QualType ASTContext::getDependentSizedArrayType(QualType elementType,
+ Expr *numElements,
+ ArrayType::ArraySizeModifier ASM,
+ unsigned elementTypeQuals,
+ SourceRange brackets) const {
+ assert((!numElements || numElements->isTypeDependent() ||
+ numElements->isValueDependent()) &&
+ "Size must be type- or value-dependent!");
+
+ // Dependently-sized array types that do not have a specified number
+ // of elements will have their sizes deduced from a dependent
+ // initializer. We do no canonicalization here at all, which is okay
+ // because they can't be used in most locations.
+ if (!numElements) {
+ DependentSizedArrayType *newType
+ = new (*this, TypeAlignment)
+ DependentSizedArrayType(*this, elementType, QualType(),
+ numElements, ASM, elementTypeQuals,
+ brackets);
+ Types.push_back(newType);
+ return QualType(newType, 0);
+ }
+
+ // Otherwise, we actually build a new type every time, but we
+ // also build a canonical type.
+
+ SplitQualType canonElementType = getCanonicalType(elementType).split();
+
+ void *insertPos = 0;
+ llvm::FoldingSetNodeID ID;
+ DependentSizedArrayType::Profile(ID, *this,
+ QualType(canonElementType.Ty, 0),
+ ASM, elementTypeQuals, numElements);
+
+ // Look for an existing type with these properties.
+ DependentSizedArrayType *canonTy =
+ DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
+
+ // If we don't have one, build one.
+ if (!canonTy) {
+ canonTy = new (*this, TypeAlignment)
+ DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
+ QualType(), numElements, ASM, elementTypeQuals,
+ brackets);
+ DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
+ Types.push_back(canonTy);
+ }
+
+ // Apply qualifiers from the element type to the array.
+ QualType canon = getQualifiedType(QualType(canonTy,0),
+ canonElementType.Quals);
+
+ // If we didn't need extra canonicalization for the element type,
+ // then just use that as our result.
+ if (QualType(canonElementType.Ty, 0) == elementType)
+ return canon;
+
+ // Otherwise, we need to build a type which follows the spelling
+ // of the element type.
+ DependentSizedArrayType *sugaredType
+ = new (*this, TypeAlignment)
+ DependentSizedArrayType(*this, elementType, canon, numElements,
+ ASM, elementTypeQuals, brackets);
+ Types.push_back(sugaredType);
+ return QualType(sugaredType, 0);
+}
+
+QualType ASTContext::getIncompleteArrayType(QualType elementType,
+ ArrayType::ArraySizeModifier ASM,
+ unsigned elementTypeQuals) const {
+ llvm::FoldingSetNodeID ID;
+ IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
+
+ void *insertPos = 0;
+ if (IncompleteArrayType *iat =
+ IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
+ return QualType(iat, 0);
+
+ // If the element type isn't canonical, this won't be a canonical type
+ // either, so fill in the canonical type field. We also have to pull
+ // qualifiers off the element type.
+ QualType canon;
+
+ if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
+ SplitQualType canonSplit = getCanonicalType(elementType).split();
+ canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
+ ASM, elementTypeQuals);
+ canon = getQualifiedType(canon, canonSplit.Quals);
+
+ // Get the new insert position for the node we care about.
+ IncompleteArrayType *existing =
+ IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
+ assert(!existing && "Shouldn't be in the map!"); (void) existing;
+ }
+
+ IncompleteArrayType *newType = new (*this, TypeAlignment)
+ IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
+
+ IncompleteArrayTypes.InsertNode(newType, insertPos);
+ Types.push_back(newType);
+ return QualType(newType, 0);
+}
+
+/// getVectorType - Return the unique reference to a vector type of
+/// the specified element type and size. VectorType must be a built-in type.
+QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
+ VectorType::VectorKind VecKind) const {
+ assert(vecType->isBuiltinType());
+
+ // Check if we've already instantiated a vector of this type.
+ llvm::FoldingSetNodeID ID;
+ VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
+
+ void *InsertPos = 0;
+ if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(VTP, 0);
+
+ // If the element type isn't canonical, this won't be a canonical type either,
+ // so fill in the canonical type field.
+ QualType Canonical;
+ if (!vecType.isCanonical()) {
+ Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
+
+ // Get the new insert position for the node we care about.
+ VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
+ }
+ VectorType *New = new (*this, TypeAlignment)
+ VectorType(vecType, NumElts, Canonical, VecKind);
+ VectorTypes.InsertNode(New, InsertPos);
+ Types.push_back(New);
+ return QualType(New, 0);
+}
+
+/// getExtVectorType - Return the unique reference to an extended vector type of
+/// the specified element type and size. VectorType must be a built-in type.
+QualType
+ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
+ assert(vecType->isBuiltinType() || vecType->isDependentType());
+
+ // Check if we've already instantiated a vector of this type.
+ llvm::FoldingSetNodeID ID;
+ VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
+ VectorType::GenericVector);
+ void *InsertPos = 0;
+ if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(VTP, 0);
+
+ // If the element type isn't canonical, this won't be a canonical type either,
+ // so fill in the canonical type field.
+ QualType Canonical;
+ if (!vecType.isCanonical()) {
+ Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
+
+ // Get the new insert position for the node we care about.
+ VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
+ }
+ ExtVectorType *New = new (*this, TypeAlignment)
+ ExtVectorType(vecType, NumElts, Canonical);
+ VectorTypes.InsertNode(New, InsertPos);
+ Types.push_back(New);
+ return QualType(New, 0);
+}
+
+QualType
+ASTContext::getDependentSizedExtVectorType(QualType vecType,
+ Expr *SizeExpr,
+ SourceLocation AttrLoc) const {
+ llvm::FoldingSetNodeID ID;
+ DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
+ SizeExpr);
+
+ void *InsertPos = 0;
+ DependentSizedExtVectorType *Canon
+ = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
+ DependentSizedExtVectorType *New;
+ if (Canon) {
+ // We already have a canonical version of this array type; use it as
+ // the canonical type for a newly-built type.
+ New = new (*this, TypeAlignment)
+ DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
+ SizeExpr, AttrLoc);
+ } else {
+ QualType CanonVecTy = getCanonicalType(vecType);
+ if (CanonVecTy == vecType) {
+ New = new (*this, TypeAlignment)
+ DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
+ AttrLoc);
+
+ DependentSizedExtVectorType *CanonCheck
+ = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
+ (void)CanonCheck;
+ DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
+ } else {
+ QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
+ SourceLocation());
+ New = new (*this, TypeAlignment)
+ DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
+ }
+ }
+
+ Types.push_back(New);
+ return QualType(New, 0);
+}
+
+/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
+///
+QualType
+ASTContext::getFunctionNoProtoType(QualType ResultTy,
+ const FunctionType::ExtInfo &Info) const {
+ const CallingConv DefaultCC = Info.getCC();
+ const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
+ CC_X86StdCall : DefaultCC;
+ // Unique functions, to guarantee there is only one function of a particular
+ // structure.
+ llvm::FoldingSetNodeID ID;
+ FunctionNoProtoType::Profile(ID, ResultTy, Info);
+
+ void *InsertPos = 0;
+ if (FunctionNoProtoType *FT =
+ FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(FT, 0);
+
+ QualType Canonical;
+ if (!ResultTy.isCanonical() ||
+ getCanonicalCallConv(CallConv) != CallConv) {
+ Canonical =
+ getFunctionNoProtoType(getCanonicalType(ResultTy),
+ Info.withCallingConv(getCanonicalCallConv(CallConv)));
+
+ // Get the new insert position for the node we care about.
+ FunctionNoProtoType *NewIP =
+ FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
+ }
+
+ FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
+ FunctionNoProtoType *New = new (*this, TypeAlignment)
+ FunctionNoProtoType(ResultTy, Canonical, newInfo);
+ Types.push_back(New);
+ FunctionNoProtoTypes.InsertNode(New, InsertPos);
+ return QualType(New, 0);
+}
+
+/// getFunctionType - Return a normal function type with a typed argument
+/// list. isVariadic indicates whether the argument list includes '...'.
+QualType
+ASTContext::getFunctionType(QualType ResultTy,
+ const QualType *ArgArray, unsigned NumArgs,
+ const FunctionProtoType::ExtProtoInfo &EPI) const {
+ // Unique functions, to guarantee there is only one function of a particular
+ // structure.
+ llvm::FoldingSetNodeID ID;
+ FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
+
+ void *InsertPos = 0;
+ if (FunctionProtoType *FTP =
+ FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(FTP, 0);
+
+ // Determine whether the type being created is already canonical or not.
+ bool isCanonical =
+ EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical() &&
+ !EPI.HasTrailingReturn;
+ for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
+ if (!ArgArray[i].isCanonicalAsParam())
+ isCanonical = false;
+
+ const CallingConv DefaultCC = EPI.ExtInfo.getCC();
+ const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
+ CC_X86StdCall : DefaultCC;
+
+ // If this type isn't canonical, get the canonical version of it.
+ // The exception spec is not part of the canonical type.
+ QualType Canonical;
+ if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
+ SmallVector<QualType, 16> CanonicalArgs;
+ CanonicalArgs.reserve(NumArgs);
+ for (unsigned i = 0; i != NumArgs; ++i)
+ CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
+
+ FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
+ CanonicalEPI.HasTrailingReturn = false;
+ CanonicalEPI.ExceptionSpecType = EST_None;
+ CanonicalEPI.NumExceptions = 0;
+ CanonicalEPI.ExtInfo
+ = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
+
+ Canonical = getFunctionType(getCanonicalType(ResultTy),
+ CanonicalArgs.data(), NumArgs,
+ CanonicalEPI);
+
+ // Get the new insert position for the node we care about.
+ FunctionProtoType *NewIP =
+ FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
+ }
+
+ // FunctionProtoType objects are allocated with extra bytes after
+ // them for three variable size arrays at the end:
+ // - parameter types
+ // - exception types
+ // - consumed-arguments flags
+ // Instead of the exception types, there could be a noexcept
+ // expression.
+ size_t Size = sizeof(FunctionProtoType) +
+ NumArgs * sizeof(QualType);
+ if (EPI.ExceptionSpecType == EST_Dynamic)
+ Size += EPI.NumExceptions * sizeof(QualType);
+ else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
+ Size += sizeof(Expr*);
+ }
+ if (EPI.ConsumedArguments)
+ Size += NumArgs * sizeof(bool);
+
+ FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
+ FunctionProtoType::ExtProtoInfo newEPI = EPI;
+ newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
+ new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
+ Types.push_back(FTP);
+ FunctionProtoTypes.InsertNode(FTP, InsertPos);
+ return QualType(FTP, 0);
+}
+
+#ifndef NDEBUG
+static bool NeedsInjectedClassNameType(const RecordDecl *D) {
+ if (!isa<CXXRecordDecl>(D)) return false;
+ const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
+ if (isa<ClassTemplatePartialSpecializationDecl>(RD))
+ return true;
+ if (RD->getDescribedClassTemplate() &&
+ !isa<ClassTemplateSpecializationDecl>(RD))
+ return true;
+ return false;
+}
+#endif
+
+/// getInjectedClassNameType - Return the unique reference to the
+/// injected class name type for the specified templated declaration.
+QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
+ QualType TST) const {
+ assert(NeedsInjectedClassNameType(Decl));
+ if (Decl->TypeForDecl) {
+ assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
+ } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
+ assert(PrevDecl->TypeForDecl && "previous declaration has no type");
+ Decl->TypeForDecl = PrevDecl->TypeForDecl;
+ assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
+ } else {
+ Type *newType =
+ new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
+ Decl->TypeForDecl = newType;
+ Types.push_back(newType);
+ }
+ return QualType(Decl->TypeForDecl, 0);
+}
+
+/// getTypeDeclType - Return the unique reference to the type for the
+/// specified type declaration.
+QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
+ assert(Decl && "Passed null for Decl param");
+ assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
+
+ if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
+ return getTypedefType(Typedef);
+
+ assert(!isa<TemplateTypeParmDecl>(Decl) &&
+ "Template type parameter types are always available.");
+
+ if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
+ assert(!Record->getPreviousDecl() &&
+ "struct/union has previous declaration");
+ assert(!NeedsInjectedClassNameType(Record));
+ return getRecordType(Record);
+ } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
+ assert(!Enum->getPreviousDecl() &&
+ "enum has previous declaration");
+ return getEnumType(Enum);
+ } else if (const UnresolvedUsingTypenameDecl *Using =
+ dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
+ Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
+ Decl->TypeForDecl = newType;
+ Types.push_back(newType);
+ } else
+ llvm_unreachable("TypeDecl without a type?");
+
+ return QualType(Decl->TypeForDecl, 0);
+}
+
+/// getTypedefType - Return the unique reference to the type for the
+/// specified typedef name decl.
+QualType
+ASTContext::getTypedefType(const TypedefNameDecl *Decl,
+ QualType Canonical) const {
+ if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
+
+ if (Canonical.isNull())
+ Canonical = getCanonicalType(Decl->getUnderlyingType());
+ TypedefType *newType = new(*this, TypeAlignment)
+ TypedefType(Type::Typedef, Decl, Canonical);
+ Decl->TypeForDecl = newType;
+ Types.push_back(newType);
+ return QualType(newType, 0);
+}
+
+QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
+ if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
+
+ if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
+ if (PrevDecl->TypeForDecl)
+ return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
+
+ RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
+ Decl->TypeForDecl = newType;
+ Types.push_back(newType);
+ return QualType(newType, 0);
+}
+
+QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
+ if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
+
+ if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
+ if (PrevDecl->TypeForDecl)
+ return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
+
+ EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
+ Decl->TypeForDecl = newType;
+ Types.push_back(newType);
+ return QualType(newType, 0);
+}
+
+QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
+ QualType modifiedType,
+ QualType equivalentType) {
+ llvm::FoldingSetNodeID id;
+ AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
+
+ void *insertPos = 0;
+ AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
+ if (type) return QualType(type, 0);
+
+ QualType canon = getCanonicalType(equivalentType);
+ type = new (*this, TypeAlignment)
+ AttributedType(canon, attrKind, modifiedType, equivalentType);
+
+ Types.push_back(type);
+ AttributedTypes.InsertNode(type, insertPos);
+
+ return QualType(type, 0);
+}
+
+
+/// \brief Retrieve a substitution-result type.
+QualType
+ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
+ QualType Replacement) const {
+ assert(Replacement.isCanonical()
+ && "replacement types must always be canonical");
+
+ llvm::FoldingSetNodeID ID;
+ SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
+ void *InsertPos = 0;
+ SubstTemplateTypeParmType *SubstParm
+ = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
+
+ if (!SubstParm) {
+ SubstParm = new (*this, TypeAlignment)
+ SubstTemplateTypeParmType(Parm, Replacement);
+ Types.push_back(SubstParm);
+ SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
+ }
+
+ return QualType(SubstParm, 0);
+}
+
+/// \brief Retrieve a
+QualType ASTContext::getSubstTemplateTypeParmPackType(
+ const TemplateTypeParmType *Parm,
+ const TemplateArgument &ArgPack) {
+#ifndef NDEBUG
+ for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
+ PEnd = ArgPack.pack_end();
+ P != PEnd; ++P) {
+ assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
+ assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
+ }
+#endif
+
+ llvm::FoldingSetNodeID ID;
+ SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
+ void *InsertPos = 0;
+ if (SubstTemplateTypeParmPackType *SubstParm
+ = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(SubstParm, 0);
+
+ QualType Canon;
+ if (!Parm->isCanonicalUnqualified()) {
+ Canon = getCanonicalType(QualType(Parm, 0));
+ Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
+ ArgPack);
+ SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
+ }
+
+ SubstTemplateTypeParmPackType *SubstParm
+ = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
+ ArgPack);
+ Types.push_back(SubstParm);
+ SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
+ return QualType(SubstParm, 0);
+}
+
+/// \brief Retrieve the template type parameter type for a template
+/// parameter or parameter pack with the given depth, index, and (optionally)
+/// name.
+QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
+ bool ParameterPack,
+ TemplateTypeParmDecl *TTPDecl) const {
+ llvm::FoldingSetNodeID ID;
+ TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
+ void *InsertPos = 0;
+ TemplateTypeParmType *TypeParm
+ = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
+
+ if (TypeParm)
+ return QualType(TypeParm, 0);
+
+ if (TTPDecl) {
+ QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
+ TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
+
+ TemplateTypeParmType *TypeCheck
+ = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!TypeCheck && "Template type parameter canonical type broken");
+ (void)TypeCheck;
+ } else
+ TypeParm = new (*this, TypeAlignment)
+ TemplateTypeParmType(Depth, Index, ParameterPack);
+
+ Types.push_back(TypeParm);
+ TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
+
+ return QualType(TypeParm, 0);
+}
+
+TypeSourceInfo *
+ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
+ SourceLocation NameLoc,
+ const TemplateArgumentListInfo &Args,
+ QualType Underlying) const {
+ assert(!Name.getAsDependentTemplateName() &&
+ "No dependent template names here!");
+ QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
+
+ TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
+ TemplateSpecializationTypeLoc TL
+ = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
+ TL.setTemplateKeywordLoc(SourceLocation());
+ TL.setTemplateNameLoc(NameLoc);
+ TL.setLAngleLoc(Args.getLAngleLoc());
+ TL.setRAngleLoc(Args.getRAngleLoc());
+ for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
+ TL.setArgLocInfo(i, Args[i].getLocInfo());
+ return DI;
+}
+
+QualType
+ASTContext::getTemplateSpecializationType(TemplateName Template,
+ const TemplateArgumentListInfo &Args,
+ QualType Underlying) const {
+ assert(!Template.getAsDependentTemplateName() &&
+ "No dependent template names here!");
+
+ unsigned NumArgs = Args.size();
+
+ SmallVector<TemplateArgument, 4> ArgVec;
+ ArgVec.reserve(NumArgs);
+ for (unsigned i = 0; i != NumArgs; ++i)
+ ArgVec.push_back(Args[i].getArgument());
+
+ return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
+ Underlying);
+}
+
+#ifndef NDEBUG
+static bool hasAnyPackExpansions(const TemplateArgument *Args,
+ unsigned NumArgs) {
+ for (unsigned I = 0; I != NumArgs; ++I)
+ if (Args[I].isPackExpansion())
+ return true;
+
+ return true;
+}
+#endif
+
+QualType
+ASTContext::getTemplateSpecializationType(TemplateName Template,
+ const TemplateArgument *Args,
+ unsigned NumArgs,
+ QualType Underlying) const {
+ assert(!Template.getAsDependentTemplateName() &&
+ "No dependent template names here!");
+ // Look through qualified template names.
+ if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
+ Template = TemplateName(QTN->getTemplateDecl());
+
+ bool IsTypeAlias =
+ Template.getAsTemplateDecl() &&
+ isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
+ QualType CanonType;
+ if (!Underlying.isNull())
+ CanonType = getCanonicalType(Underlying);
+ else {
+ // We can get here with an alias template when the specialization contains
+ // a pack expansion that does not match up with a parameter pack.
+ assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
+ "Caller must compute aliased type");
+ IsTypeAlias = false;
+ CanonType = getCanonicalTemplateSpecializationType(Template, Args,
+ NumArgs);
+ }
+
+ // Allocate the (non-canonical) template specialization type, but don't
+ // try to unique it: these types typically have location information that
+ // we don't unique and don't want to lose.
+ void *Mem = Allocate(sizeof(TemplateSpecializationType) +
+ sizeof(TemplateArgument) * NumArgs +
+ (IsTypeAlias? sizeof(QualType) : 0),
+ TypeAlignment);
+ TemplateSpecializationType *Spec
+ = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
+ IsTypeAlias ? Underlying : QualType());
+
+ Types.push_back(Spec);
+ return QualType(Spec, 0);
+}
+
+QualType
+ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
+ const TemplateArgument *Args,
+ unsigned NumArgs) const {
+ assert(!Template.getAsDependentTemplateName() &&
+ "No dependent template names here!");
+
+ // Look through qualified template names.
+ if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
+ Template = TemplateName(QTN->getTemplateDecl());
+
+ // Build the canonical template specialization type.
+ TemplateName CanonTemplate = getCanonicalTemplateName(Template);
+ SmallVector<TemplateArgument, 4> CanonArgs;
+ CanonArgs.reserve(NumArgs);
+ for (unsigned I = 0; I != NumArgs; ++I)
+ CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
+
+ // Determine whether this canonical template specialization type already
+ // exists.
+ llvm::FoldingSetNodeID ID;
+ TemplateSpecializationType::Profile(ID, CanonTemplate,
+ CanonArgs.data(), NumArgs, *this);
+
+ void *InsertPos = 0;
+ TemplateSpecializationType *Spec
+ = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
+
+ if (!Spec) {
+ // Allocate a new canonical template specialization type.
+ void *Mem = Allocate((sizeof(TemplateSpecializationType) +
+ sizeof(TemplateArgument) * NumArgs),
+ TypeAlignment);
+ Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
+ CanonArgs.data(), NumArgs,
+ QualType(), QualType());
+ Types.push_back(Spec);
+ TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
+ }
+
+ assert(Spec->isDependentType() &&
+ "Non-dependent template-id type must have a canonical type");
+ return QualType(Spec, 0);
+}
+
+QualType
+ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
+ NestedNameSpecifier *NNS,
+ QualType NamedType) const {
+ llvm::FoldingSetNodeID ID;
+ ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
+
+ void *InsertPos = 0;
+ ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
+ if (T)
+ return QualType(T, 0);
+
+ QualType Canon = NamedType;
+ if (!Canon.isCanonical()) {
+ Canon = getCanonicalType(NamedType);
+ ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!CheckT && "Elaborated canonical type broken");
+ (void)CheckT;
+ }
+
+ T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
+ Types.push_back(T);
+ ElaboratedTypes.InsertNode(T, InsertPos);
+ return QualType(T, 0);
+}
+
+QualType
+ASTContext::getParenType(QualType InnerType) const {
+ llvm::FoldingSetNodeID ID;
+ ParenType::Profile(ID, InnerType);
+
+ void *InsertPos = 0;
+ ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
+ if (T)
+ return QualType(T, 0);
+
+ QualType Canon = InnerType;
+ if (!Canon.isCanonical()) {
+ Canon = getCanonicalType(InnerType);
+ ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!CheckT && "Paren canonical type broken");
+ (void)CheckT;
+ }
+
+ T = new (*this) ParenType(InnerType, Canon);
+ Types.push_back(T);
+ ParenTypes.InsertNode(T, InsertPos);
+ return QualType(T, 0);
+}
+
+QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
+ NestedNameSpecifier *NNS,
+ const IdentifierInfo *Name,
+ QualType Canon) const {
+ assert(NNS->isDependent() && "nested-name-specifier must be dependent");
+
+ if (Canon.isNull()) {
+ NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
+ ElaboratedTypeKeyword CanonKeyword = Keyword;
+ if (Keyword == ETK_None)
+ CanonKeyword = ETK_Typename;
+
+ if (CanonNNS != NNS || CanonKeyword != Keyword)
+ Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
+ }
+
+ llvm::FoldingSetNodeID ID;
+ DependentNameType::Profile(ID, Keyword, NNS, Name);
+
+ void *InsertPos = 0;
+ DependentNameType *T
+ = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
+ if (T)
+ return QualType(T, 0);
+
+ T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
+ Types.push_back(T);
+ DependentNameTypes.InsertNode(T, InsertPos);
+ return QualType(T, 0);
+}
+
+QualType
+ASTContext::getDependentTemplateSpecializationType(
+ ElaboratedTypeKeyword Keyword,
+ NestedNameSpecifier *NNS,
+ const IdentifierInfo *Name,
+ const TemplateArgumentListInfo &Args) const {
+ // TODO: avoid this copy
+ SmallVector<TemplateArgument, 16> ArgCopy;
+ for (unsigned I = 0, E = Args.size(); I != E; ++I)
+ ArgCopy.push_back(Args[I].getArgument());
+ return getDependentTemplateSpecializationType(Keyword, NNS, Name,
+ ArgCopy.size(),
+ ArgCopy.data());
+}
+
+QualType
+ASTContext::getDependentTemplateSpecializationType(
+ ElaboratedTypeKeyword Keyword,
+ NestedNameSpecifier *NNS,
+ const IdentifierInfo *Name,
+ unsigned NumArgs,
+ const TemplateArgument *Args) const {
+ assert((!NNS || NNS->isDependent()) &&
+ "nested-name-specifier must be dependent");
+
+ llvm::FoldingSetNodeID ID;
+ DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
+ Name, NumArgs, Args);
+
+ void *InsertPos = 0;
+ DependentTemplateSpecializationType *T
+ = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
+ if (T)
+ return QualType(T, 0);
+
+ NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
+
+ ElaboratedTypeKeyword CanonKeyword = Keyword;
+ if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
+
+ bool AnyNonCanonArgs = false;
+ SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
+ for (unsigned I = 0; I != NumArgs; ++I) {
+ CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
+ if (!CanonArgs[I].structurallyEquals(Args[I]))
+ AnyNonCanonArgs = true;
+ }
+
+ QualType Canon;
+ if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
+ Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
+ Name, NumArgs,
+ CanonArgs.data());
+
+ // Find the insert position again.
+ DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
+ }
+
+ void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
+ sizeof(TemplateArgument) * NumArgs),
+ TypeAlignment);
+ T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
+ Name, NumArgs, Args, Canon);
+ Types.push_back(T);
+ DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
+ return QualType(T, 0);
+}
+
+QualType ASTContext::getPackExpansionType(QualType Pattern,
+ llvm::Optional<unsigned> NumExpansions) {
+ llvm::FoldingSetNodeID ID;
+ PackExpansionType::Profile(ID, Pattern, NumExpansions);
+
+ assert(Pattern->containsUnexpandedParameterPack() &&
+ "Pack expansions must expand one or more parameter packs");
+ void *InsertPos = 0;
+ PackExpansionType *T
+ = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
+ if (T)
+ return QualType(T, 0);
+
+ QualType Canon;
+ if (!Pattern.isCanonical()) {
+ Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
+
+ // Find the insert position again.
+ PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
+ }
+
+ T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
+ Types.push_back(T);
+ PackExpansionTypes.InsertNode(T, InsertPos);
+ return QualType(T, 0);
+}
+
+/// CmpProtocolNames - Comparison predicate for sorting protocols
+/// alphabetically.
+static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
+ const ObjCProtocolDecl *RHS) {
+ return LHS->getDeclName() < RHS->getDeclName();
+}
+
+static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
+ unsigned NumProtocols) {
+ if (NumProtocols == 0) return true;
+
+ if (Protocols[0]->getCanonicalDecl() != Protocols[0])
+ return false;
+
+ for (unsigned i = 1; i != NumProtocols; ++i)
+ if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
+ Protocols[i]->getCanonicalDecl() != Protocols[i])
+ return false;
+ return true;
+}
+
+static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
+ unsigned &NumProtocols) {
+ ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
+
+ // Sort protocols, keyed by name.
+ std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
+
+ // Canonicalize.
+ for (unsigned I = 0, N = NumProtocols; I != N; ++I)
+ Protocols[I] = Protocols[I]->getCanonicalDecl();
+
+ // Remove duplicates.
+ ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
+ NumProtocols = ProtocolsEnd-Protocols;
+}
+
+QualType ASTContext::getObjCObjectType(QualType BaseType,
+ ObjCProtocolDecl * const *Protocols,
+ unsigned NumProtocols) const {
+ // If the base type is an interface and there aren't any protocols
+ // to add, then the interface type will do just fine.
+ if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
+ return BaseType;
+
+ // Look in the folding set for an existing type.
+ llvm::FoldingSetNodeID ID;
+ ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
+ void *InsertPos = 0;
+ if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(QT, 0);
+
+ // Build the canonical type, which has the canonical base type and
+ // a sorted-and-uniqued list of protocols.
+ QualType Canonical;
+ bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
+ if (!ProtocolsSorted || !BaseType.isCanonical()) {
+ if (!ProtocolsSorted) {
+ SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
+ Protocols + NumProtocols);
+ unsigned UniqueCount = NumProtocols;
+
+ SortAndUniqueProtocols(&Sorted[0], UniqueCount);
+ Canonical = getObjCObjectType(getCanonicalType(BaseType),
+ &Sorted[0], UniqueCount);
+ } else {
+ Canonical = getObjCObjectType(getCanonicalType(BaseType),
+ Protocols, NumProtocols);
+ }
+
+ // Regenerate InsertPos.
+ ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
+ }
+
+ unsigned Size = sizeof(ObjCObjectTypeImpl);
+ Size += NumProtocols * sizeof(ObjCProtocolDecl *);
+ void *Mem = Allocate(Size, TypeAlignment);
+ ObjCObjectTypeImpl *T =
+ new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
+
+ Types.push_back(T);
+ ObjCObjectTypes.InsertNode(T, InsertPos);
+ return QualType(T, 0);
+}
+
+/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
+/// the given object type.
+QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
+ llvm::FoldingSetNodeID ID;
+ ObjCObjectPointerType::Profile(ID, ObjectT);
+
+ void *InsertPos = 0;
+ if (ObjCObjectPointerType *QT =
+ ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(QT, 0);
+
+ // Find the canonical object type.
+ QualType Canonical;
+ if (!ObjectT.isCanonical()) {
+ Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
+
+ // Regenerate InsertPos.
+ ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
+ }
+
+ // No match.
+ void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
+ ObjCObjectPointerType *QType =
+ new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
+
+ Types.push_back(QType);
+ ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
+ return QualType(QType, 0);
+}
+
+/// getObjCInterfaceType - Return the unique reference to the type for the
+/// specified ObjC interface decl. The list of protocols is optional.
+QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
+ ObjCInterfaceDecl *PrevDecl) const {
+ if (Decl->TypeForDecl)
+ return QualType(Decl->TypeForDecl, 0);
+
+ if (PrevDecl) {
+ assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
+ Decl->TypeForDecl = PrevDecl->TypeForDecl;
+ return QualType(PrevDecl->TypeForDecl, 0);
+ }
+
+ // Prefer the definition, if there is one.
+ if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
+ Decl = Def;
+
+ void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
+ ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
+ Decl->TypeForDecl = T;
+ Types.push_back(T);
+ return QualType(T, 0);
+}
+
+/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
+/// TypeOfExprType AST's (since expression's are never shared). For example,
+/// multiple declarations that refer to "typeof(x)" all contain different
+/// DeclRefExpr's. This doesn't effect the type checker, since it operates
+/// on canonical type's (which are always unique).
+QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
+ TypeOfExprType *toe;
+ if (tofExpr->isTypeDependent()) {
+ llvm::FoldingSetNodeID ID;
+ DependentTypeOfExprType::Profile(ID, *this, tofExpr);
+
+ void *InsertPos = 0;
+ DependentTypeOfExprType *Canon
+ = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
+ if (Canon) {
+ // We already have a "canonical" version of an identical, dependent
+ // typeof(expr) type. Use that as our canonical type.
+ toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
+ QualType((TypeOfExprType*)Canon, 0));
+ } else {
+ // Build a new, canonical typeof(expr) type.
+ Canon
+ = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
+ DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
+ toe = Canon;
+ }
+ } else {
+ QualType Canonical = getCanonicalType(tofExpr->getType());
+ toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
+ }
+ Types.push_back(toe);
+ return QualType(toe, 0);
+}
+
+/// getTypeOfType - Unlike many "get<Type>" functions, we don't unique
+/// TypeOfType AST's. The only motivation to unique these nodes would be
+/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
+/// an issue. This doesn't effect the type checker, since it operates
+/// on canonical type's (which are always unique).
+QualType ASTContext::getTypeOfType(QualType tofType) const {
+ QualType Canonical = getCanonicalType(tofType);
+ TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
+ Types.push_back(tot);
+ return QualType(tot, 0);
+}
+
+
+/// getDecltypeType - Unlike many "get<Type>" functions, we don't unique
+/// DecltypeType AST's. The only motivation to unique these nodes would be
+/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
+/// an issue. This doesn't effect the type checker, since it operates
+/// on canonical types (which are always unique).
+QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
+ DecltypeType *dt;
+
+ // C++0x [temp.type]p2:
+ // If an expression e involves a template parameter, decltype(e) denotes a
+ // unique dependent type. Two such decltype-specifiers refer to the same
+ // type only if their expressions are equivalent (14.5.6.1).
+ if (e->isInstantiationDependent()) {
+ llvm::FoldingSetNodeID ID;
+ DependentDecltypeType::Profile(ID, *this, e);
+
+ void *InsertPos = 0;
+ DependentDecltypeType *Canon
+ = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
+ if (Canon) {
+ // We already have a "canonical" version of an equivalent, dependent
+ // decltype type. Use that as our canonical type.
+ dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
+ QualType((DecltypeType*)Canon, 0));
+ } else {
+ // Build a new, canonical typeof(expr) type.
+ Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
+ DependentDecltypeTypes.InsertNode(Canon, InsertPos);
+ dt = Canon;
+ }
+ } else {
+ dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
+ getCanonicalType(UnderlyingType));
+ }
+ Types.push_back(dt);
+ return QualType(dt, 0);
+}
+
+/// getUnaryTransformationType - We don't unique these, since the memory
+/// savings are minimal and these are rare.
+QualType ASTContext::getUnaryTransformType(QualType BaseType,
+ QualType UnderlyingType,
+ UnaryTransformType::UTTKind Kind)
+ const {
+ UnaryTransformType *Ty =
+ new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
+ Kind,
+ UnderlyingType->isDependentType() ?
+ QualType() : getCanonicalType(UnderlyingType));
+ Types.push_back(Ty);
+ return QualType(Ty, 0);
+}
+
+/// getAutoType - We only unique auto types after they've been deduced.
+QualType ASTContext::getAutoType(QualType DeducedType) const {
+ void *InsertPos = 0;
+ if (!DeducedType.isNull()) {
+ // Look in the folding set for an existing type.
+ llvm::FoldingSetNodeID ID;
+ AutoType::Profile(ID, DeducedType);
+ if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(AT, 0);
+ }
+
+ AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
+ Types.push_back(AT);
+ if (InsertPos)
+ AutoTypes.InsertNode(AT, InsertPos);
+ return QualType(AT, 0);
+}
+
+/// getAtomicType - Return the uniqued reference to the atomic type for
+/// the given value type.
+QualType ASTContext::getAtomicType(QualType T) const {
+ // Unique pointers, to guarantee there is only one pointer of a particular
+ // structure.
+ llvm::FoldingSetNodeID ID;
+ AtomicType::Profile(ID, T);
+
+ void *InsertPos = 0;
+ if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(AT, 0);
+
+ // If the atomic value type isn't canonical, this won't be a canonical type
+ // either, so fill in the canonical type field.
+ QualType Canonical;
+ if (!T.isCanonical()) {
+ Canonical = getAtomicType(getCanonicalType(T));
+
+ // Get the new insert position for the node we care about.
+ AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
+ }
+ AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
+ Types.push_back(New);
+ AtomicTypes.InsertNode(New, InsertPos);
+ return QualType(New, 0);
+}
+
+/// getAutoDeductType - Get type pattern for deducing against 'auto'.
+QualType ASTContext::getAutoDeductType() const {
+ if (AutoDeductTy.isNull())
+ AutoDeductTy = getAutoType(QualType());
+ assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
+ return AutoDeductTy;
+}
+
+/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
+QualType ASTContext::getAutoRRefDeductType() const {
+ if (AutoRRefDeductTy.isNull())
+ AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
+ assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
+ return AutoRRefDeductTy;
+}
+
+/// getTagDeclType - Return the unique reference to the type for the
+/// specified TagDecl (struct/union/class/enum) decl.
+QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
+ assert (Decl);
+ // FIXME: What is the design on getTagDeclType when it requires casting
+ // away const? mutable?
+ return getTypeDeclType(const_cast<TagDecl*>(Decl));
+}
+
+/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
+/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
+/// needs to agree with the definition in <stddef.h>.
+CanQualType ASTContext::getSizeType() const {
+ return getFromTargetType(Target->getSizeType());
+}
+
+/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
+CanQualType ASTContext::getIntMaxType() const {
+ return getFromTargetType(Target->getIntMaxType());
+}
+
+/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
+CanQualType ASTContext::getUIntMaxType() const {
+ return getFromTargetType(Target->getUIntMaxType());
+}
+
+/// getSignedWCharType - Return the type of "signed wchar_t".
+/// Used when in C++, as a GCC extension.
+QualType ASTContext::getSignedWCharType() const {
+ // FIXME: derive from "Target" ?
+ return WCharTy;
+}
+
+/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
+/// Used when in C++, as a GCC extension.
+QualType ASTContext::getUnsignedWCharType() const {
+ // FIXME: derive from "Target" ?
+ return UnsignedIntTy;
+}
+
+/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
+/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
+QualType ASTContext::getPointerDiffType() const {
+ return getFromTargetType(Target->getPtrDiffType(0));
+}
+
+//===----------------------------------------------------------------------===//
+// Type Operators
+//===----------------------------------------------------------------------===//
+
+CanQualType ASTContext::getCanonicalParamType(QualType T) const {
+ // Push qualifiers into arrays, and then discard any remaining
+ // qualifiers.
+ T = getCanonicalType(T);
+ T = getVariableArrayDecayedType(T);
+ const Type *Ty = T.getTypePtr();
+ QualType Result;
+ if (isa<ArrayType>(Ty)) {
+ Result = getArrayDecayedType(QualType(Ty,0));
+ } else if (isa<FunctionType>(Ty)) {
+ Result = getPointerType(QualType(Ty, 0));
+ } else {
+ Result = QualType(Ty, 0);
+ }
+
+ return CanQualType::CreateUnsafe(Result);
+}
+
+QualType ASTContext::getUnqualifiedArrayType(QualType type,
+ Qualifiers &quals) {
+ SplitQualType splitType = type.getSplitUnqualifiedType();
+
+ // FIXME: getSplitUnqualifiedType() actually walks all the way to
+ // the unqualified desugared type and then drops it on the floor.
+ // We then have to strip that sugar back off with
+ // getUnqualifiedDesugaredType(), which is silly.
+ const ArrayType *AT =
+ dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
+
+ // If we don't have an array, just use the results in splitType.
+ if (!AT) {
+ quals = splitType.Quals;
+ return QualType(splitType.Ty, 0);
+ }
+
+ // Otherwise, recurse on the array's element type.
+ QualType elementType = AT->getElementType();
+ QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
+
+ // If that didn't change the element type, AT has no qualifiers, so we
+ // can just use the results in splitType.
+ if (elementType == unqualElementType) {
+ assert(quals.empty()); // from the recursive call
+ quals = splitType.Quals;
+ return QualType(splitType.Ty, 0);
+ }
+
+ // Otherwise, add in the qualifiers from the outermost type, then
+ // build the type back up.
+ quals.addConsistentQualifiers(splitType.Quals);
+
+ if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
+ return getConstantArrayType(unqualElementType, CAT->getSize(),
+ CAT->getSizeModifier(), 0);
+ }
+
+ if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
+ return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
+ }
+
+ if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
+ return getVariableArrayType(unqualElementType,
+ VAT->getSizeExpr(),
+ VAT->getSizeModifier(),
+ VAT->getIndexTypeCVRQualifiers(),
+ VAT->getBracketsRange());
+ }
+
+ const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
+ return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
+ DSAT->getSizeModifier(), 0,
+ SourceRange());
+}
+
+/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types that
+/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
+/// they point to and return true. If T1 and T2 aren't pointer types
+/// or pointer-to-member types, or if they are not similar at this
+/// level, returns false and leaves T1 and T2 unchanged. Top-level
+/// qualifiers on T1 and T2 are ignored. This function will typically
+/// be called in a loop that successively "unwraps" pointer and
+/// pointer-to-member types to compare them at each level.
+bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
+ const PointerType *T1PtrType = T1->getAs<PointerType>(),
+ *T2PtrType = T2->getAs<PointerType>();
+ if (T1PtrType && T2PtrType) {
+ T1 = T1PtrType->getPointeeType();
+ T2 = T2PtrType->getPointeeType();
+ return true;
+ }
+
+ const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
+ *T2MPType = T2->getAs<MemberPointerType>();
+ if (T1MPType && T2MPType &&
+ hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
+ QualType(T2MPType->getClass(), 0))) {
+ T1 = T1MPType->getPointeeType();
+ T2 = T2MPType->getPointeeType();
+ return true;
+ }
+
+ if (getLangOpts().ObjC1) {
+ const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
+ *T2OPType = T2->getAs<ObjCObjectPointerType>();
+ if (T1OPType && T2OPType) {
+ T1 = T1OPType->getPointeeType();
+ T2 = T2OPType->getPointeeType();
+ return true;
+ }
+ }
+
+ // FIXME: Block pointers, too?
+
+ return false;
+}
+
+DeclarationNameInfo
+ASTContext::getNameForTemplate(TemplateName Name,
+ SourceLocation NameLoc) const {
+ switch (Name.getKind()) {
+ case TemplateName::QualifiedTemplate:
+ case TemplateName::Template:
+ // DNInfo work in progress: CHECKME: what about DNLoc?
+ return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
+ NameLoc);
+
+ case TemplateName::OverloadedTemplate: {
+ OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
+ // DNInfo work in progress: CHECKME: what about DNLoc?
+ return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
+ }
+
+ case TemplateName::DependentTemplate: {
+ DependentTemplateName *DTN = Name.getAsDependentTemplateName();
+ DeclarationName DName;
+ if (DTN->isIdentifier()) {
+ DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
+ return DeclarationNameInfo(DName, NameLoc);
+ } else {
+ DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
+ // DNInfo work in progress: FIXME: source locations?
+ DeclarationNameLoc DNLoc;
+ DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
+ DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
+ return DeclarationNameInfo(DName, NameLoc, DNLoc);
+ }
+ }
+
+ case TemplateName::SubstTemplateTemplateParm: {
+ SubstTemplateTemplateParmStorage *subst
+ = Name.getAsSubstTemplateTemplateParm();
+ return DeclarationNameInfo(subst->getParameter()->getDeclName(),
+ NameLoc);
+ }
+
+ case TemplateName::SubstTemplateTemplateParmPack: {
+ SubstTemplateTemplateParmPackStorage *subst
+ = Name.getAsSubstTemplateTemplateParmPack();
+ return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
+ NameLoc);
+ }
+ }
+
+ llvm_unreachable("bad template name kind!");
+}
+
+TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
+ switch (Name.getKind()) {
+ case TemplateName::QualifiedTemplate:
+ case TemplateName::Template: {
+ TemplateDecl *Template = Name.getAsTemplateDecl();
+ if (TemplateTemplateParmDecl *TTP
+ = dyn_cast<TemplateTemplateParmDecl>(Template))
+ Template = getCanonicalTemplateTemplateParmDecl(TTP);
+
+ // The canonical template name is the canonical template declaration.
+ return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
+ }
+
+ case TemplateName::OverloadedTemplate:
+ llvm_unreachable("cannot canonicalize overloaded template");
+
+ case TemplateName::DependentTemplate: {
+ DependentTemplateName *DTN = Name.getAsDependentTemplateName();
+ assert(DTN && "Non-dependent template names must refer to template decls.");
+ return DTN->CanonicalTemplateName;
+ }
+
+ case TemplateName::SubstTemplateTemplateParm: {
+ SubstTemplateTemplateParmStorage *subst
+ = Name.getAsSubstTemplateTemplateParm();
+ return getCanonicalTemplateName(subst->getReplacement());
+ }
+
+ case TemplateName::SubstTemplateTemplateParmPack: {
+ SubstTemplateTemplateParmPackStorage *subst
+ = Name.getAsSubstTemplateTemplateParmPack();
+ TemplateTemplateParmDecl *canonParameter
+ = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
+ TemplateArgument canonArgPack
+ = getCanonicalTemplateArgument(subst->getArgumentPack());
+ return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
+ }
+ }
+
+ llvm_unreachable("bad template name!");
+}
+
+bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
+ X = getCanonicalTemplateName(X);
+ Y = getCanonicalTemplateName(Y);
+ return X.getAsVoidPointer() == Y.getAsVoidPointer();
+}
+
+TemplateArgument
+ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
+ switch (Arg.getKind()) {
+ case TemplateArgument::Null:
+ return Arg;
+
+ case TemplateArgument::Expression:
+ return Arg;
+
+ case TemplateArgument::Declaration: {
+ if (Decl *D = Arg.getAsDecl())
+ return TemplateArgument(D->getCanonicalDecl());
+ return TemplateArgument((Decl*)0);
+ }
+
+ case TemplateArgument::Template:
+ return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
+
+ case TemplateArgument::TemplateExpansion:
+ return TemplateArgument(getCanonicalTemplateName(
+ Arg.getAsTemplateOrTemplatePattern()),
+ Arg.getNumTemplateExpansions());
+
+ case TemplateArgument::Integral:
+ return TemplateArgument(*Arg.getAsIntegral(),
+ getCanonicalType(Arg.getIntegralType()));
+
+ case TemplateArgument::Type:
+ return TemplateArgument(getCanonicalType(Arg.getAsType()));
+
+ case TemplateArgument::Pack: {
+ if (Arg.pack_size() == 0)
+ return Arg;
+
+ TemplateArgument *CanonArgs
+ = new (*this) TemplateArgument[Arg.pack_size()];
+ unsigned Idx = 0;
+ for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
+ AEnd = Arg.pack_end();
+ A != AEnd; (void)++A, ++Idx)
+ CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
+
+ return TemplateArgument(CanonArgs, Arg.pack_size());
+ }
+ }
+
+ // Silence GCC warning
+ llvm_unreachable("Unhandled template argument kind");
+}
+
+NestedNameSpecifier *
+ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
+ if (!NNS)
+ return 0;
+
+ switch (NNS->getKind()) {
+ case NestedNameSpecifier::Identifier:
+ // Canonicalize the prefix but keep the identifier the same.
+ return NestedNameSpecifier::Create(*this,
+ getCanonicalNestedNameSpecifier(NNS->getPrefix()),
+ NNS->getAsIdentifier());
+
+ case NestedNameSpecifier::Namespace:
+ // A namespace is canonical; build a nested-name-specifier with
+ // this namespace and no prefix.
+ return NestedNameSpecifier::Create(*this, 0,
+ NNS->getAsNamespace()->getOriginalNamespace());
+
+ case NestedNameSpecifier::NamespaceAlias:
+ // A namespace is canonical; build a nested-name-specifier with
+ // this namespace and no prefix.
+ return NestedNameSpecifier::Create(*this, 0,
+ NNS->getAsNamespaceAlias()->getNamespace()
+ ->getOriginalNamespace());
+
+ case NestedNameSpecifier::TypeSpec:
+ case NestedNameSpecifier::TypeSpecWithTemplate: {
+ QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
+
+ // If we have some kind of dependent-named type (e.g., "typename T::type"),
+ // break it apart into its prefix and identifier, then reconsititute those
+ // as the canonical nested-name-specifier. This is required to canonicalize
+ // a dependent nested-name-specifier involving typedefs of dependent-name
+ // types, e.g.,
+ // typedef typename T::type T1;
+ // typedef typename T1::type T2;
+ if (const DependentNameType *DNT = T->getAs<DependentNameType>())
+ return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
+ const_cast<IdentifierInfo *>(DNT->getIdentifier()));
+
+ // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
+ // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
+ // first place?
+ return NestedNameSpecifier::Create(*this, 0, false,
+ const_cast<Type*>(T.getTypePtr()));
+ }
+
+ case NestedNameSpecifier::Global:
+ // The global specifier is canonical and unique.
+ return NNS;
+ }
+
+ llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
+}
+
+
+const ArrayType *ASTContext::getAsArrayType(QualType T) const {
+ // Handle the non-qualified case efficiently.
+ if (!T.hasLocalQualifiers()) {
+ // Handle the common positive case fast.
+ if (const ArrayType *AT = dyn_cast<ArrayType>(T))
+ return AT;
+ }
+
+ // Handle the common negative case fast.
+ if (!isa<ArrayType>(T.getCanonicalType()))
+ return 0;
+
+ // Apply any qualifiers from the array type to the element type. This
+ // implements C99 6.7.3p8: "If the specification of an array type includes
+ // any type qualifiers, the element type is so qualified, not the array type."
+
+ // If we get here, we either have type qualifiers on the type, or we have
+ // sugar such as a typedef in the way. If we have type qualifiers on the type
+ // we must propagate them down into the element type.
+
+ SplitQualType split = T.getSplitDesugaredType();
+ Qualifiers qs = split.Quals;
+
+ // If we have a simple case, just return now.
+ const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
+ if (ATy == 0 || qs.empty())
+ return ATy;
+
+ // Otherwise, we have an array and we have qualifiers on it. Push the
+ // qualifiers into the array element type and return a new array type.
+ QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
+
+ if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
+ return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
+ CAT->getSizeModifier(),
+ CAT->getIndexTypeCVRQualifiers()));
+ if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
+ return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
+ IAT->getSizeModifier(),
+ IAT->getIndexTypeCVRQualifiers()));
+
+ if (const DependentSizedArrayType *DSAT
+ = dyn_cast<DependentSizedArrayType>(ATy))
+ return cast<ArrayType>(
+ getDependentSizedArrayType(NewEltTy,
+ DSAT->getSizeExpr(),
+ DSAT->getSizeModifier(),
+ DSAT->getIndexTypeCVRQualifiers(),
+ DSAT->getBracketsRange()));
+
+ const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
+ return cast<ArrayType>(getVariableArrayType(NewEltTy,
+ VAT->getSizeExpr(),
+ VAT->getSizeModifier(),
+ VAT->getIndexTypeCVRQualifiers(),
+ VAT->getBracketsRange()));
+}
+
+QualType ASTContext::getAdjustedParameterType(QualType T) {
+ // C99 6.7.5.3p7:
+ // A declaration of a parameter as "array of type" shall be
+ // adjusted to "qualified pointer to type", where the type
+ // qualifiers (if any) are those specified within the [ and ] of
+ // the array type derivation.
+ if (T->isArrayType())
+ return getArrayDecayedType(T);
+
+ // C99 6.7.5.3p8:
+ // A declaration of a parameter as "function returning type"
+ // shall be adjusted to "pointer to function returning type", as
+ // in 6.3.2.1.
+ if (T->isFunctionType())
+ return getPointerType(T);
+
+ return T;
+}
+
+QualType ASTContext::getSignatureParameterType(QualType T) {
+ T = getVariableArrayDecayedType(T);
+ T = getAdjustedParameterType(T);
+ return T.getUnqualifiedType();
+}
+
+/// getArrayDecayedType - Return the properly qualified result of decaying the
+/// specified array type to a pointer. This operation is non-trivial when
+/// handling typedefs etc. The canonical type of "T" must be an array type,
+/// this returns a pointer to a properly qualified element of the array.
+///
+/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
+QualType ASTContext::getArrayDecayedType(QualType Ty) const {
+ // Get the element type with 'getAsArrayType' so that we don't lose any
+ // typedefs in the element type of the array. This also handles propagation
+ // of type qualifiers from the array type into the element type if present
+ // (C99 6.7.3p8).
+ const ArrayType *PrettyArrayType = getAsArrayType(Ty);
+ assert(PrettyArrayType && "Not an array type!");
+
+ QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
+
+ // int x[restrict 4] -> int *restrict
+ return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
+}
+
+QualType ASTContext::getBaseElementType(const ArrayType *array) const {
+ return getBaseElementType(array->getElementType());
+}
+
+QualType ASTContext::getBaseElementType(QualType type) const {
+ Qualifiers qs;
+ while (true) {
+ SplitQualType split = type.getSplitDesugaredType();
+ const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
+ if (!array) break;
+
+ type = array->getElementType();
+ qs.addConsistentQualifiers(split.Quals);
+ }
+
+ return getQualifiedType(type, qs);
+}
+
+/// getConstantArrayElementCount - Returns number of constant array elements.
+uint64_t
+ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA) const {
+ uint64_t ElementCount = 1;
+ do {
+ ElementCount *= CA->getSize().getZExtValue();
+ CA = dyn_cast<ConstantArrayType>(CA->getElementType());
+ } while (CA);
+ return ElementCount;
+}
+
+/// getFloatingRank - Return a relative rank for floating point types.
+/// This routine will assert if passed a built-in type that isn't a float.
+static FloatingRank getFloatingRank(QualType T) {
+ if (const ComplexType *CT = T->getAs<ComplexType>())
+ return getFloatingRank(CT->getElementType());
+
+ assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
+ switch (T->getAs<BuiltinType>()->getKind()) {
+ default: llvm_unreachable("getFloatingRank(): not a floating type");
+ case BuiltinType::Half: return HalfRank;
+ case BuiltinType::Float: return FloatRank;
+ case BuiltinType::Double: return DoubleRank;
+ case BuiltinType::LongDouble: return LongDoubleRank;
+ }
+}
+
+/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
+/// point or a complex type (based on typeDomain/typeSize).
+/// 'typeDomain' is a real floating point or complex type.
+/// 'typeSize' is a real floating point or complex type.
+QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
+ QualType Domain) const {
+ FloatingRank EltRank = getFloatingRank(Size);
+ if (Domain->isComplexType()) {
+ switch (EltRank) {
+ case HalfRank: llvm_unreachable("Complex half is not supported");
+ case FloatRank: return FloatComplexTy;
+ case DoubleRank: return DoubleComplexTy;
+ case LongDoubleRank: return LongDoubleComplexTy;
+ }
+ }
+
+ assert(Domain->isRealFloatingType() && "Unknown domain!");
+ switch (EltRank) {
+ case HalfRank: llvm_unreachable("Half ranks are not valid here");
+ case FloatRank: return FloatTy;
+ case DoubleRank: return DoubleTy;
+ case LongDoubleRank: return LongDoubleTy;
+ }
+ llvm_unreachable("getFloatingRank(): illegal value for rank");
+}
+
+/// getFloatingTypeOrder - Compare the rank of the two specified floating
+/// point types, ignoring the domain of the type (i.e. 'double' ==
+/// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If
+/// LHS < RHS, return -1.
+int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
+ FloatingRank LHSR = getFloatingRank(LHS);
+ FloatingRank RHSR = getFloatingRank(RHS);
+
+ if (LHSR == RHSR)
+ return 0;
+ if (LHSR > RHSR)
+ return 1;
+ return -1;
+}
+
+/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
+/// routine will assert if passed a built-in type that isn't an integer or enum,
+/// or if it is not canonicalized.
+unsigned ASTContext::getIntegerRank(const Type *T) const {
+ assert(T->isCanonicalUnqualified() && "T should be canonicalized");
+
+ switch (cast<BuiltinType>(T)->getKind()) {
+ default: llvm_unreachable("getIntegerRank(): not a built-in integer");
+ case BuiltinType::Bool:
+ return 1 + (getIntWidth(BoolTy) << 3);
+ case BuiltinType::Char_S:
+ case BuiltinType::Char_U:
+ case BuiltinType::SChar:
+ case BuiltinType::UChar:
+ return 2 + (getIntWidth(CharTy) << 3);
+ case BuiltinType::Short:
+ case BuiltinType::UShort:
+ return 3 + (getIntWidth(ShortTy) << 3);
+ case BuiltinType::Int:
+ case BuiltinType::UInt:
+ return 4 + (getIntWidth(IntTy) << 3);
+ case BuiltinType::Long:
+ case BuiltinType::ULong:
+ return 5 + (getIntWidth(LongTy) << 3);
+ case BuiltinType::LongLong:
+ case BuiltinType::ULongLong:
+ return 6 + (getIntWidth(LongLongTy) << 3);
+ case BuiltinType::Int128:
+ case BuiltinType::UInt128:
+ return 7 + (getIntWidth(Int128Ty) << 3);
+ }
+}
+
+/// \brief Whether this is a promotable bitfield reference according
+/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
+///
+/// \returns the type this bit-field will promote to, or NULL if no
+/// promotion occurs.
+QualType ASTContext::isPromotableBitField(Expr *E) const {
+ if (E->isTypeDependent() || E->isValueDependent())
+ return QualType();
+
+ FieldDecl *Field = E->getBitField();
+ if (!Field)
+ return QualType();
+
+ QualType FT = Field->getType();
+
+ uint64_t BitWidth = Field->getBitWidthValue(*this);
+ uint64_t IntSize = getTypeSize(IntTy);
+ // GCC extension compatibility: if the bit-field size is less than or equal
+ // to the size of int, it gets promoted no matter what its type is.
+ // For instance, unsigned long bf : 4 gets promoted to signed int.
+ if (BitWidth < IntSize)
+ return IntTy;
+
+ if (BitWidth == IntSize)
+ return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
+
+ // Types bigger than int are not subject to promotions, and therefore act
+ // like the base type.
+ // FIXME: This doesn't quite match what gcc does, but what gcc does here
+ // is ridiculous.
+ return QualType();
+}
+
+/// getPromotedIntegerType - Returns the type that Promotable will
+/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
+/// integer type.
+QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
+ assert(!Promotable.isNull());
+ assert(Promotable->isPromotableIntegerType());
+ if (const EnumType *ET = Promotable->getAs<EnumType>())
+ return ET->getDecl()->getPromotionType();
+
+ if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
+ // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
+ // (3.9.1) can be converted to a prvalue of the first of the following
+ // types that can represent all the values of its underlying type:
+ // int, unsigned int, long int, unsigned long int, long long int, or
+ // unsigned long long int [...]
+ // FIXME: Is there some better way to compute this?
+ if (BT->getKind() == BuiltinType::WChar_S ||
+ BT->getKind() == BuiltinType::WChar_U ||
+ BT->getKind() == BuiltinType::Char16 ||
+ BT->getKind() == BuiltinType::Char32) {
+ bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
+ uint64_t FromSize = getTypeSize(BT);
+ QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
+ LongLongTy, UnsignedLongLongTy };
+ for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
+ uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
+ if (FromSize < ToSize ||
+ (FromSize == ToSize &&
+ FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
+ return PromoteTypes[Idx];
+ }
+ llvm_unreachable("char type should fit into long long");
+ }
+ }
+
+ // At this point, we should have a signed or unsigned integer type.
+ if (Promotable->isSignedIntegerType())
+ return IntTy;
+ uint64_t PromotableSize = getTypeSize(Promotable);
+ uint64_t IntSize = getTypeSize(IntTy);
+ assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
+ return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
+}
+
+/// \brief Recurses in pointer/array types until it finds an objc retainable
+/// type and returns its ownership.
+Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
+ while (!T.isNull()) {
+ if (T.getObjCLifetime() != Qualifiers::OCL_None)
+ return T.getObjCLifetime();
+ if (T->isArrayType())
+ T = getBaseElementType(T);
+ else if (const PointerType *PT = T->getAs<PointerType>())
+ T = PT->getPointeeType();
+ else if (const ReferenceType *RT = T->getAs<ReferenceType>())
+ T = RT->getPointeeType();
+ else
+ break;
+ }
+
+ return Qualifiers::OCL_None;
+}
+
+/// getIntegerTypeOrder - Returns the highest ranked integer type:
+/// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If
+/// LHS < RHS, return -1.
+int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
+ const Type *LHSC = getCanonicalType(LHS).getTypePtr();
+ const Type *RHSC = getCanonicalType(RHS).getTypePtr();
+ if (LHSC == RHSC) return 0;
+
+ bool LHSUnsigned = LHSC->isUnsignedIntegerType();
+ bool RHSUnsigned = RHSC->isUnsignedIntegerType();
+
+ unsigned LHSRank = getIntegerRank(LHSC);
+ unsigned RHSRank = getIntegerRank(RHSC);
+
+ if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned.
+ if (LHSRank == RHSRank) return 0;
+ return LHSRank > RHSRank ? 1 : -1;
+ }
+
+ // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
+ if (LHSUnsigned) {
+ // If the unsigned [LHS] type is larger, return it.
+ if (LHSRank >= RHSRank)
+ return 1;
+
+ // If the signed type can represent all values of the unsigned type, it
+ // wins. Because we are dealing with 2's complement and types that are
+ // powers of two larger than each other, this is always safe.
+ return -1;
+ }
+
+ // If the unsigned [RHS] type is larger, return it.
+ if (RHSRank >= LHSRank)
+ return -1;
+
+ // If the signed type can represent all values of the unsigned type, it
+ // wins. Because we are dealing with 2's complement and types that are
+ // powers of two larger than each other, this is always safe.
+ return 1;
+}
+
+static RecordDecl *
+CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
+ DeclContext *DC, IdentifierInfo *Id) {
+ SourceLocation Loc;
+ if (Ctx.getLangOpts().CPlusPlus)
+ return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
+ else
+ return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
+}
+
+// getCFConstantStringType - Return the type used for constant CFStrings.
+QualType ASTContext::getCFConstantStringType() const {
+ if (!CFConstantStringTypeDecl) {
+ CFConstantStringTypeDecl =
+ CreateRecordDecl(*this, TTK_Struct, TUDecl,
+ &Idents.get("NSConstantString"));
+ CFConstantStringTypeDecl->startDefinition();
+
+ QualType FieldTypes[4];
+
+ // const int *isa;
+ FieldTypes[0] = getPointerType(IntTy.withConst());
+ // int flags;
+ FieldTypes[1] = IntTy;
+ // const char *str;
+ FieldTypes[2] = getPointerType(CharTy.withConst());
+ // long length;
+ FieldTypes[3] = LongTy;
+
+ // Create fields
+ for (unsigned i = 0; i < 4; ++i) {
+ FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
+ SourceLocation(),
+ SourceLocation(), 0,
+ FieldTypes[i], /*TInfo=*/0,
+ /*BitWidth=*/0,
+ /*Mutable=*/false,
+ /*HasInit=*/false);
+ Field->setAccess(AS_public);
+ CFConstantStringTypeDecl->addDecl(Field);
+ }
+
+ CFConstantStringTypeDecl->completeDefinition();
+ }
+
+ return getTagDeclType(CFConstantStringTypeDecl);
+}
+
+void ASTContext::setCFConstantStringType(QualType T) {
+ const RecordType *Rec = T->getAs<RecordType>();
+ assert(Rec && "Invalid CFConstantStringType");
+ CFConstantStringTypeDecl = Rec->getDecl();
+}
+
+QualType ASTContext::getBlockDescriptorType() const {
+ if (BlockDescriptorType)
+ return getTagDeclType(BlockDescriptorType);
+
+ RecordDecl *T;
+ // FIXME: Needs the FlagAppleBlock bit.
+ T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
+ &Idents.get("__block_descriptor"));
+ T->startDefinition();
+
+ QualType FieldTypes[] = {
+ UnsignedLongTy,
+ UnsignedLongTy,
+ };
+
+ const char *FieldNames[] = {
+ "reserved",
+ "Size"
+ };
+
+ for (size_t i = 0; i < 2; ++i) {
+ FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
+ SourceLocation(),
+ &Idents.get(FieldNames[i]),
+ FieldTypes[i], /*TInfo=*/0,
+ /*BitWidth=*/0,
+ /*Mutable=*/false,
+ /*HasInit=*/false);
+ Field->setAccess(AS_public);
+ T->addDecl(Field);
+ }
+
+ T->completeDefinition();
+
+ BlockDescriptorType = T;
+
+ return getTagDeclType(BlockDescriptorType);
+}
+
+QualType ASTContext::getBlockDescriptorExtendedType() const {
+ if (BlockDescriptorExtendedType)
+ return getTagDeclType(BlockDescriptorExtendedType);
+
+ RecordDecl *T;
+ // FIXME: Needs the FlagAppleBlock bit.
+ T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
+ &Idents.get("__block_descriptor_withcopydispose"));
+ T->startDefinition();
+
+ QualType FieldTypes[] = {
+ UnsignedLongTy,
+ UnsignedLongTy,
+ getPointerType(VoidPtrTy),
+ getPointerType(VoidPtrTy)
+ };
+
+ const char *FieldNames[] = {
+ "reserved",
+ "Size",
+ "CopyFuncPtr",
+ "DestroyFuncPtr"
+ };
+
+ for (size_t i = 0; i < 4; ++i) {
+ FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
+ SourceLocation(),
+ &Idents.get(FieldNames[i]),
+ FieldTypes[i], /*TInfo=*/0,
+ /*BitWidth=*/0,
+ /*Mutable=*/false,
+ /*HasInit=*/false);
+ Field->setAccess(AS_public);
+ T->addDecl(Field);
+ }
+
+ T->completeDefinition();
+
+ BlockDescriptorExtendedType = T;
+
+ return getTagDeclType(BlockDescriptorExtendedType);
+}
+
+bool ASTContext::BlockRequiresCopying(QualType Ty) const {
+ if (Ty->isObjCRetainableType())
+ return true;
+ if (getLangOpts().CPlusPlus) {
+ if (const RecordType *RT = Ty->getAs<RecordType>()) {
+ CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
+ return RD->hasConstCopyConstructor();
+
+ }
+ }
+ return false;
+}
+
+QualType
+ASTContext::BuildByRefType(StringRef DeclName, QualType Ty) const {
+ // type = struct __Block_byref_1_X {
+ // void *__isa;
+ // struct __Block_byref_1_X *__forwarding;
+ // unsigned int __flags;
+ // unsigned int __size;
+ // void *__copy_helper; // as needed
+ // void *__destroy_help // as needed
+ // int X;
+ // } *
+
+ bool HasCopyAndDispose = BlockRequiresCopying(Ty);
+
+ // FIXME: Move up
+ SmallString<36> Name;
+ llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
+ ++UniqueBlockByRefTypeID << '_' << DeclName;
+ RecordDecl *T;
+ T = CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get(Name.str()));
+ T->startDefinition();
+ QualType Int32Ty = IntTy;
+ assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
+ QualType FieldTypes[] = {
+ getPointerType(VoidPtrTy),
+ getPointerType(getTagDeclType(T)),
+ Int32Ty,
+ Int32Ty,
+ getPointerType(VoidPtrTy),
+ getPointerType(VoidPtrTy),
+ Ty
+ };
+
+ StringRef FieldNames[] = {
+ "__isa",
+ "__forwarding",
+ "__flags",
+ "__size",
+ "__copy_helper",
+ "__destroy_helper",
+ DeclName,
+ };
+
+ for (size_t i = 0; i < 7; ++i) {
+ if (!HasCopyAndDispose && i >=4 && i <= 5)
+ continue;
+ FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
+ SourceLocation(),
+ &Idents.get(FieldNames[i]),
+ FieldTypes[i], /*TInfo=*/0,
+ /*BitWidth=*/0, /*Mutable=*/false,
+ /*HasInit=*/false);
+ Field->setAccess(AS_public);
+ T->addDecl(Field);
+ }
+
+ T->completeDefinition();
+
+ return getPointerType(getTagDeclType(T));
+}
+
+TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
+ if (!ObjCInstanceTypeDecl)
+ ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
+ getTranslationUnitDecl(),
+ SourceLocation(),
+ SourceLocation(),
+ &Idents.get("instancetype"),
+ getTrivialTypeSourceInfo(getObjCIdType()));
+ return ObjCInstanceTypeDecl;
+}
+
+// This returns true if a type has been typedefed to BOOL:
+// typedef <type> BOOL;
+static bool isTypeTypedefedAsBOOL(QualType T) {
+ if (const TypedefType *TT = dyn_cast<TypedefType>(T))
+ if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
+ return II->isStr("BOOL");
+
+ return false;
+}
+
+/// getObjCEncodingTypeSize returns size of type for objective-c encoding
+/// purpose.
+CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
+ if (!type->isIncompleteArrayType() && type->isIncompleteType())
+ return CharUnits::Zero();
+
+ CharUnits sz = getTypeSizeInChars(type);
+
+ // Make all integer and enum types at least as large as an int
+ if (sz.isPositive() && type->isIntegralOrEnumerationType())
+ sz = std::max(sz, getTypeSizeInChars(IntTy));
+ // Treat arrays as pointers, since that's how they're passed in.
+ else if (type->isArrayType())
+ sz = getTypeSizeInChars(VoidPtrTy);
+ return sz;
+}
+
+static inline
+std::string charUnitsToString(const CharUnits &CU) {
+ return llvm::itostr(CU.getQuantity());
+}
+
+/// getObjCEncodingForBlock - Return the encoded type for this block
+/// declaration.
+std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
+ std::string S;
+
+ const BlockDecl *Decl = Expr->getBlockDecl();
+ QualType BlockTy =
+ Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
+ // Encode result type.
+ getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
+ // Compute size of all parameters.
+ // Start with computing size of a pointer in number of bytes.
+ // FIXME: There might(should) be a better way of doing this computation!
+ SourceLocation Loc;
+ CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
+ CharUnits ParmOffset = PtrSize;
+ for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
+ E = Decl->param_end(); PI != E; ++PI) {
+ QualType PType = (*PI)->getType();
+ CharUnits sz = getObjCEncodingTypeSize(PType);
+ assert (sz.isPositive() && "BlockExpr - Incomplete param type");
+ ParmOffset += sz;
+ }
+ // Size of the argument frame
+ S += charUnitsToString(ParmOffset);
+ // Block pointer and offset.
+ S += "@?0";
+
+ // Argument types.
+ ParmOffset = PtrSize;
+ for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
+ Decl->param_end(); PI != E; ++PI) {
+ ParmVarDecl *PVDecl = *PI;
+ QualType PType = PVDecl->getOriginalType();
+ if (const ArrayType *AT =
+ dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
+ // Use array's original type only if it has known number of
+ // elements.
+ if (!isa<ConstantArrayType>(AT))
+ PType = PVDecl->getType();
+ } else if (PType->isFunctionType())
+ PType = PVDecl->getType();
+ getObjCEncodingForType(PType, S);
+ S += charUnitsToString(ParmOffset);
+ ParmOffset += getObjCEncodingTypeSize(PType);
+ }
+
+ return S;
+}
+
+bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
+ std::string& S) {
+ // Encode result type.
+ getObjCEncodingForType(Decl->getResultType(), S);
+ CharUnits ParmOffset;
+ // Compute size of all parameters.
+ for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
+ E = Decl->param_end(); PI != E; ++PI) {
+ QualType PType = (*PI)->getType();
+ CharUnits sz = getObjCEncodingTypeSize(PType);
+ if (sz.isZero())
+ return true;
+
+ assert (sz.isPositive() &&
+ "getObjCEncodingForFunctionDecl - Incomplete param type");
+ ParmOffset += sz;
+ }
+ S += charUnitsToString(ParmOffset);
+ ParmOffset = CharUnits::Zero();
+
+ // Argument types.
+ for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
+ E = Decl->param_end(); PI != E; ++PI) {
+ ParmVarDecl *PVDecl = *PI;
+ QualType PType = PVDecl->getOriginalType();
+ if (const ArrayType *AT =
+ dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
+ // Use array's original type only if it has known number of
+ // elements.
+ if (!isa<ConstantArrayType>(AT))
+ PType = PVDecl->getType();
+ } else if (PType->isFunctionType())
+ PType = PVDecl->getType();
+ getObjCEncodingForType(PType, S);
+ S += charUnitsToString(ParmOffset);
+ ParmOffset += getObjCEncodingTypeSize(PType);
+ }
+
+ return false;
+}
+
+/// getObjCEncodingForMethodParameter - Return the encoded type for a single
+/// method parameter or return type. If Extended, include class names and
+/// block object types.
+void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
+ QualType T, std::string& S,
+ bool Extended) const {
+ // Encode type qualifer, 'in', 'inout', etc. for the parameter.
+ getObjCEncodingForTypeQualifier(QT, S);
+ // Encode parameter type.
+ getObjCEncodingForTypeImpl(T, S, true, true, 0,
+ true /*OutermostType*/,
+ false /*EncodingProperty*/,
+ false /*StructField*/,
+ Extended /*EncodeBlockParameters*/,
+ Extended /*EncodeClassNames*/);
+}
+
+/// getObjCEncodingForMethodDecl - Return the encoded type for this method
+/// declaration.
+bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
+ std::string& S,
+ bool Extended) const {
+ // FIXME: This is not very efficient.
+ // Encode return type.
+ getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
+ Decl->getResultType(), S, Extended);
+ // Compute size of all parameters.
+ // Start with computing size of a pointer in number of bytes.
+ // FIXME: There might(should) be a better way of doing this computation!
+ SourceLocation Loc;
+ CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
+ // The first two arguments (self and _cmd) are pointers; account for
+ // their size.
+ CharUnits ParmOffset = 2 * PtrSize;
+ for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
+ E = Decl->sel_param_end(); PI != E; ++PI) {
+ QualType PType = (*PI)->getType();
+ CharUnits sz = getObjCEncodingTypeSize(PType);
+ if (sz.isZero())
+ return true;
+
+ assert (sz.isPositive() &&
+ "getObjCEncodingForMethodDecl - Incomplete param type");
+ ParmOffset += sz;
+ }
+ S += charUnitsToString(ParmOffset);
+ S += "@0:";
+ S += charUnitsToString(PtrSize);
+
+ // Argument types.
+ ParmOffset = 2 * PtrSize;
+ for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
+ E = Decl->sel_param_end(); PI != E; ++PI) {
+ const ParmVarDecl *PVDecl = *PI;
+ QualType PType = PVDecl->getOriginalType();
+ if (const ArrayType *AT =
+ dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
+ // Use array's original type only if it has known number of
+ // elements.
+ if (!isa<ConstantArrayType>(AT))
+ PType = PVDecl->getType();
+ } else if (PType->isFunctionType())
+ PType = PVDecl->getType();
+ getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
+ PType, S, Extended);
+ S += charUnitsToString(ParmOffset);
+ ParmOffset += getObjCEncodingTypeSize(PType);
+ }
+
+ return false;
+}
+
+/// getObjCEncodingForPropertyDecl - Return the encoded type for this
+/// property declaration. If non-NULL, Container must be either an
+/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
+/// NULL when getting encodings for protocol properties.
+/// Property attributes are stored as a comma-delimited C string. The simple
+/// attributes readonly and bycopy are encoded as single characters. The
+/// parametrized attributes, getter=name, setter=name, and ivar=name, are
+/// encoded as single characters, followed by an identifier. Property types
+/// are also encoded as a parametrized attribute. The characters used to encode
+/// these attributes are defined by the following enumeration:
+/// @code
+/// enum PropertyAttributes {
+/// kPropertyReadOnly = 'R', // property is read-only.
+/// kPropertyBycopy = 'C', // property is a copy of the value last assigned
+/// kPropertyByref = '&', // property is a reference to the value last assigned
+/// kPropertyDynamic = 'D', // property is dynamic
+/// kPropertyGetter = 'G', // followed by getter selector name
+/// kPropertySetter = 'S', // followed by setter selector name
+/// kPropertyInstanceVariable = 'V' // followed by instance variable name
+/// kPropertyType = 'T' // followed by old-style type encoding.
+/// kPropertyWeak = 'W' // 'weak' property
+/// kPropertyStrong = 'P' // property GC'able
+/// kPropertyNonAtomic = 'N' // property non-atomic
+/// };
+/// @endcode
+void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
+ const Decl *Container,
+ std::string& S) const {
+ // Collect information from the property implementation decl(s).
+ bool Dynamic = false;
+ ObjCPropertyImplDecl *SynthesizePID = 0;
+
+ // FIXME: Duplicated code due to poor abstraction.
+ if (Container) {
+ if (const ObjCCategoryImplDecl *CID =
+ dyn_cast<ObjCCategoryImplDecl>(Container)) {
+ for (ObjCCategoryImplDecl::propimpl_iterator
+ i = CID->propimpl_begin(), e = CID->propimpl_end();
+ i != e; ++i) {
+ ObjCPropertyImplDecl *PID = *i;
+ if (PID->getPropertyDecl() == PD) {
+ if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
+ Dynamic = true;
+ } else {
+ SynthesizePID = PID;
+ }
+ }
+ }
+ } else {
+ const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
+ for (ObjCCategoryImplDecl::propimpl_iterator
+ i = OID->propimpl_begin(), e = OID->propimpl_end();
+ i != e; ++i) {
+ ObjCPropertyImplDecl *PID = *i;
+ if (PID->getPropertyDecl() == PD) {
+ if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
+ Dynamic = true;
+ } else {
+ SynthesizePID = PID;
+ }
+ }
+ }
+ }
+ }
+
+ // FIXME: This is not very efficient.
+ S = "T";
+
+ // Encode result type.
+ // GCC has some special rules regarding encoding of properties which
+ // closely resembles encoding of ivars.
+ getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
+ true /* outermost type */,
+ true /* encoding for property */);
+
+ if (PD->isReadOnly()) {
+ S += ",R";
+ } else {
+ switch (PD->getSetterKind()) {
+ case ObjCPropertyDecl::Assign: break;
+ case ObjCPropertyDecl::Copy: S += ",C"; break;
+ case ObjCPropertyDecl::Retain: S += ",&"; break;
+ case ObjCPropertyDecl::Weak: S += ",W"; break;
+ }
+ }
+
+ // It really isn't clear at all what this means, since properties
+ // are "dynamic by default".
+ if (Dynamic)
+ S += ",D";
+
+ if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
+ S += ",N";
+
+ if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
+ S += ",G";
+ S += PD->getGetterName().getAsString();
+ }
+
+ if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
+ S += ",S";
+ S += PD->getSetterName().getAsString();
+ }
+
+ if (SynthesizePID) {
+ const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
+ S += ",V";
+ S += OID->getNameAsString();
+ }
+
+ // FIXME: OBJCGC: weak & strong
+}
+
+/// getLegacyIntegralTypeEncoding -
+/// Another legacy compatibility encoding: 32-bit longs are encoded as
+/// 'l' or 'L' , but not always. For typedefs, we need to use
+/// 'i' or 'I' instead if encoding a struct field, or a pointer!
+///
+void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
+ if (isa<TypedefType>(PointeeTy.getTypePtr())) {
+ if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
+ if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
+ PointeeTy = UnsignedIntTy;
+ else
+ if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
+ PointeeTy = IntTy;
+ }
+ }
+}
+
+void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
+ const FieldDecl *Field) const {
+ // We follow the behavior of gcc, expanding structures which are
+ // directly pointed to, and expanding embedded structures. Note that
+ // these rules are sufficient to prevent recursive encoding of the
+ // same type.
+ getObjCEncodingForTypeImpl(T, S, true, true, Field,
+ true /* outermost type */);
+}
+
+static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
+ switch (T->getAs<BuiltinType>()->getKind()) {
+ default: llvm_unreachable("Unhandled builtin type kind");
+ case BuiltinType::Void: return 'v';
+ case BuiltinType::Bool: return 'B';
+ case BuiltinType::Char_U:
+ case BuiltinType::UChar: return 'C';
+ case BuiltinType::UShort: return 'S';
+ case BuiltinType::UInt: return 'I';
+ case BuiltinType::ULong:
+ return C->getIntWidth(T) == 32 ? 'L' : 'Q';
+ case BuiltinType::UInt128: return 'T';
+ case BuiltinType::ULongLong: return 'Q';
+ case BuiltinType::Char_S:
+ case BuiltinType::SChar: return 'c';
+ case BuiltinType::Short: return 's';
+ case BuiltinType::WChar_S:
+ case BuiltinType::WChar_U:
+ case BuiltinType::Int: return 'i';
+ case BuiltinType::Long:
+ return C->getIntWidth(T) == 32 ? 'l' : 'q';
+ case BuiltinType::LongLong: return 'q';
+ case BuiltinType::Int128: return 't';
+ case BuiltinType::Float: return 'f';
+ case BuiltinType::Double: return 'd';
+ case BuiltinType::LongDouble: return 'D';
+ }
+}
+
+static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
+ EnumDecl *Enum = ET->getDecl();
+
+ // The encoding of an non-fixed enum type is always 'i', regardless of size.
+ if (!Enum->isFixed())
+ return 'i';
+
+ // The encoding of a fixed enum type matches its fixed underlying type.
+ return ObjCEncodingForPrimitiveKind(C, Enum->getIntegerType());
+}
+
+static void EncodeBitField(const ASTContext *Ctx, std::string& S,
+ QualType T, const FieldDecl *FD) {
+ assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
+ S += 'b';
+ // The NeXT runtime encodes bit fields as b followed by the number of bits.
+ // The GNU runtime requires more information; bitfields are encoded as b,
+ // then the offset (in bits) of the first element, then the type of the
+ // bitfield, then the size in bits. For example, in this structure:
+ //
+ // struct
+ // {
+ // int integer;
+ // int flags:2;
+ // };
+ // On a 32-bit system, the encoding for flags would be b2 for the NeXT
+ // runtime, but b32i2 for the GNU runtime. The reason for this extra
+ // information is not especially sensible, but we're stuck with it for
+ // compatibility with GCC, although providing it breaks anything that
+ // actually uses runtime introspection and wants to work on both runtimes...
+ if (!Ctx->getLangOpts().NeXTRuntime) {
+ const RecordDecl *RD = FD->getParent();
+ const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
+ S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
+ if (const EnumType *ET = T->getAs<EnumType>())
+ S += ObjCEncodingForEnumType(Ctx, ET);
+ else
+ S += ObjCEncodingForPrimitiveKind(Ctx, T);
+ }
+ S += llvm::utostr(FD->getBitWidthValue(*Ctx));
+}
+
+// FIXME: Use SmallString for accumulating string.
+void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
+ bool ExpandPointedToStructures,
+ bool ExpandStructures,
+ const FieldDecl *FD,
+ bool OutermostType,
+ bool EncodingProperty,
+ bool StructField,
+ bool EncodeBlockParameters,
+ bool EncodeClassNames) const {
+ if (T->getAs<BuiltinType>()) {
+ if (FD && FD->isBitField())
+ return EncodeBitField(this, S, T, FD);
+ S += ObjCEncodingForPrimitiveKind(this, T);
+ return;
+ }
+
+ if (const ComplexType *CT = T->getAs<ComplexType>()) {
+ S += 'j';
+ getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
+ false);
+ return;
+ }
+
+ // encoding for pointer or r3eference types.
+ QualType PointeeTy;
+ if (const PointerType *PT = T->getAs<PointerType>()) {
+ if (PT->isObjCSelType()) {
+ S += ':';
+ return;
+ }
+ PointeeTy = PT->getPointeeType();
+ }
+ else if (const ReferenceType *RT = T->getAs<ReferenceType>())
+ PointeeTy = RT->getPointeeType();
+ if (!PointeeTy.isNull()) {
+ bool isReadOnly = false;
+ // For historical/compatibility reasons, the read-only qualifier of the
+ // pointee gets emitted _before_ the '^'. The read-only qualifier of
+ // the pointer itself gets ignored, _unless_ we are looking at a typedef!
+ // Also, do not emit the 'r' for anything but the outermost type!
+ if (isa<TypedefType>(T.getTypePtr())) {
+ if (OutermostType && T.isConstQualified()) {
+ isReadOnly = true;
+ S += 'r';
+ }
+ } else if (OutermostType) {
+ QualType P = PointeeTy;
+ while (P->getAs<PointerType>())
+ P = P->getAs<PointerType>()->getPointeeType();
+ if (P.isConstQualified()) {
+ isReadOnly = true;
+ S += 'r';
+ }
+ }
+ if (isReadOnly) {
+ // Another legacy compatibility encoding. Some ObjC qualifier and type
+ // combinations need to be rearranged.
+ // Rewrite "in const" from "nr" to "rn"
+ if (StringRef(S).endswith("nr"))
+ S.replace(S.end()-2, S.end(), "rn");
+ }
+
+ if (PointeeTy->isCharType()) {
+ // char pointer types should be encoded as '*' unless it is a
+ // type that has been typedef'd to 'BOOL'.
+ if (!isTypeTypedefedAsBOOL(PointeeTy)) {
+ S += '*';
+ return;
+ }
+ } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
+ // GCC binary compat: Need to convert "struct objc_class *" to "#".
+ if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
+ S += '#';
+ return;
+ }
+ // GCC binary compat: Need to convert "struct objc_object *" to "@".
+ if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
+ S += '@';
+ return;
+ }
+ // fall through...
+ }
+ S += '^';
+ getLegacyIntegralTypeEncoding(PointeeTy);
+
+ getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
+ NULL);
+ return;
+ }
+
+ if (const ArrayType *AT =
+ // Ignore type qualifiers etc.
+ dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
+ if (isa<IncompleteArrayType>(AT) && !StructField) {
+ // Incomplete arrays are encoded as a pointer to the array element.
+ S += '^';
+
+ getObjCEncodingForTypeImpl(AT->getElementType(), S,
+ false, ExpandStructures, FD);
+ } else {
+ S += '[';
+
+ if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
+ if (getTypeSize(CAT->getElementType()) == 0)
+ S += '0';
+ else
+ S += llvm::utostr(CAT->getSize().getZExtValue());
+ } else {
+ //Variable length arrays are encoded as a regular array with 0 elements.
+ assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
+ "Unknown array type!");
+ S += '0';
+ }
+
+ getObjCEncodingForTypeImpl(AT->getElementType(), S,
+ false, ExpandStructures, FD);
+ S += ']';
+ }
+ return;
+ }
+
+ if (T->getAs<FunctionType>()) {
+ S += '?';
+ return;
+ }
+
+ if (const RecordType *RTy = T->getAs<RecordType>()) {
+ RecordDecl *RDecl = RTy->getDecl();
+ S += RDecl->isUnion() ? '(' : '{';
+ // Anonymous structures print as '?'
+ if (const IdentifierInfo *II = RDecl->getIdentifier()) {
+ S += II->getName();
+ if (ClassTemplateSpecializationDecl *Spec
+ = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
+ const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
+ std::string TemplateArgsStr
+ = TemplateSpecializationType::PrintTemplateArgumentList(
+ TemplateArgs.data(),
+ TemplateArgs.size(),
+ (*this).getPrintingPolicy());
+
+ S += TemplateArgsStr;
+ }
+ } else {
+ S += '?';
+ }
+ if (ExpandStructures) {
+ S += '=';
+ if (!RDecl->isUnion()) {
+ getObjCEncodingForStructureImpl(RDecl, S, FD);
+ } else {
+ for (RecordDecl::field_iterator Field = RDecl->field_begin(),
+ FieldEnd = RDecl->field_end();
+ Field != FieldEnd; ++Field) {
+ if (FD) {
+ S += '"';
+ S += Field->getNameAsString();
+ S += '"';
+ }
+
+ // Special case bit-fields.
+ if (Field->isBitField()) {
+ getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
+ (*Field));
+ } else {
+ QualType qt = Field->getType();
+ getLegacyIntegralTypeEncoding(qt);
+ getObjCEncodingForTypeImpl(qt, S, false, true,
+ FD, /*OutermostType*/false,
+ /*EncodingProperty*/false,
+ /*StructField*/true);
+ }
+ }
+ }
+ }
+ S += RDecl->isUnion() ? ')' : '}';
+ return;
+ }
+
+ if (const EnumType *ET = T->getAs<EnumType>()) {
+ if (FD && FD->isBitField())
+ EncodeBitField(this, S, T, FD);
+ else
+ S += ObjCEncodingForEnumType(this, ET);
+ return;
+ }
+
+ if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) {
+ S += "@?"; // Unlike a pointer-to-function, which is "^?".
+ if (EncodeBlockParameters) {
+ const FunctionType *FT = BT->getPointeeType()->getAs<FunctionType>();
+
+ S += '<';
+ // Block return type
+ getObjCEncodingForTypeImpl(FT->getResultType(), S,
+ ExpandPointedToStructures, ExpandStructures,
+ FD,
+ false /* OutermostType */,
+ EncodingProperty,
+ false /* StructField */,
+ EncodeBlockParameters,
+ EncodeClassNames);
+ // Block self
+ S += "@?";
+ // Block parameters
+ if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
+ for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
+ E = FPT->arg_type_end(); I && (I != E); ++I) {
+ getObjCEncodingForTypeImpl(*I, S,
+ ExpandPointedToStructures,
+ ExpandStructures,
+ FD,
+ false /* OutermostType */,
+ EncodingProperty,
+ false /* StructField */,
+ EncodeBlockParameters,
+ EncodeClassNames);
+ }
+ }
+ S += '>';
+ }
+ return;
+ }
+
+ // Ignore protocol qualifiers when mangling at this level.
+ if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
+ T = OT->getBaseType();
+
+ if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
+ // @encode(class_name)
+ ObjCInterfaceDecl *OI = OIT->getDecl();
+ S += '{';
+ const IdentifierInfo *II = OI->getIdentifier();
+ S += II->getName();
+ S += '=';
+ SmallVector<const ObjCIvarDecl*, 32> Ivars;
+ DeepCollectObjCIvars(OI, true, Ivars);
+ for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
+ const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
+ if (Field->isBitField())
+ getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
+ else
+ getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
+ }
+ S += '}';
+ return;
+ }
+
+ if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
+ if (OPT->isObjCIdType()) {
+ S += '@';
+ return;
+ }
+
+ if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
+ // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
+ // Since this is a binary compatibility issue, need to consult with runtime
+ // folks. Fortunately, this is a *very* obsure construct.
+ S += '#';
+ return;
+ }
+
+ if (OPT->isObjCQualifiedIdType()) {
+ getObjCEncodingForTypeImpl(getObjCIdType(), S,
+ ExpandPointedToStructures,
+ ExpandStructures, FD);
+ if (FD || EncodingProperty || EncodeClassNames) {
+ // Note that we do extended encoding of protocol qualifer list
+ // Only when doing ivar or property encoding.
+ S += '"';
+ for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
+ E = OPT->qual_end(); I != E; ++I) {
+ S += '<';
+ S += (*I)->getNameAsString();
+ S += '>';
+ }
+ S += '"';
+ }
+ return;
+ }
+
+ QualType PointeeTy = OPT->getPointeeType();
+ if (!EncodingProperty &&
+ isa<TypedefType>(PointeeTy.getTypePtr())) {
+ // Another historical/compatibility reason.
+ // We encode the underlying type which comes out as
+ // {...};
+ S += '^';
+ getObjCEncodingForTypeImpl(PointeeTy, S,
+ false, ExpandPointedToStructures,
+ NULL);
+ return;
+ }
+
+ S += '@';
+ if (OPT->getInterfaceDecl() &&
+ (FD || EncodingProperty || EncodeClassNames)) {
+ S += '"';
+ S += OPT->getInterfaceDecl()->getIdentifier()->getName();
+ for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
+ E = OPT->qual_end(); I != E; ++I) {
+ S += '<';
+ S += (*I)->getNameAsString();
+ S += '>';
+ }
+ S += '"';
+ }
+ return;
+ }
+
+ // gcc just blithely ignores member pointers.
+ // TODO: maybe there should be a mangling for these
+ if (T->getAs<MemberPointerType>())
+ return;
+
+ if (T->isVectorType()) {
+ // This matches gcc's encoding, even though technically it is
+ // insufficient.
+ // FIXME. We should do a better job than gcc.
+ return;
+ }
+
+ llvm_unreachable("@encode for type not implemented!");
+}
+
+void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
+ std::string &S,
+ const FieldDecl *FD,
+ bool includeVBases) const {
+ assert(RDecl && "Expected non-null RecordDecl");
+ assert(!RDecl->isUnion() && "Should not be called for unions");
+ if (!RDecl->getDefinition())
+ return;
+
+ CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
+ std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
+ const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
+
+ if (CXXRec) {
+ for (CXXRecordDecl::base_class_iterator
+ BI = CXXRec->bases_begin(),
+ BE = CXXRec->bases_end(); BI != BE; ++BI) {
+ if (!BI->isVirtual()) {
+ CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
+ if (base->isEmpty())
+ continue;
+ uint64_t offs = layout.getBaseClassOffsetInBits(base);
+ FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
+ std::make_pair(offs, base));
+ }
+ }
+ }
+
+ unsigned i = 0;
+ for (RecordDecl::field_iterator Field = RDecl->field_begin(),
+ FieldEnd = RDecl->field_end();
+ Field != FieldEnd; ++Field, ++i) {
+ uint64_t offs = layout.getFieldOffset(i);
+ FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
+ std::make_pair(offs, *Field));
+ }
+
+ if (CXXRec && includeVBases) {
+ for (CXXRecordDecl::base_class_iterator
+ BI = CXXRec->vbases_begin(),
+ BE = CXXRec->vbases_end(); BI != BE; ++BI) {
+ CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
+ if (base->isEmpty())
+ continue;
+ uint64_t offs = layout.getVBaseClassOffsetInBits(base);
+ if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
+ FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
+ std::make_pair(offs, base));
+ }
+ }
+
+ CharUnits size;
+ if (CXXRec) {
+ size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
+ } else {
+ size = layout.getSize();
+ }
+
+ uint64_t CurOffs = 0;
+ std::multimap<uint64_t, NamedDecl *>::iterator
+ CurLayObj = FieldOrBaseOffsets.begin();
+
+ if ((CurLayObj != FieldOrBaseOffsets.end() && CurLayObj->first != 0) ||
+ (CurLayObj == FieldOrBaseOffsets.end() &&
+ CXXRec && CXXRec->isDynamicClass())) {
+ assert(CXXRec && CXXRec->isDynamicClass() &&
+ "Offset 0 was empty but no VTable ?");
+ if (FD) {
+ S += "\"_vptr$";
+ std::string recname = CXXRec->getNameAsString();
+ if (recname.empty()) recname = "?";
+ S += recname;
+ S += '"';
+ }
+ S += "^^?";
+ CurOffs += getTypeSize(VoidPtrTy);
+ }
+
+ if (!RDecl->hasFlexibleArrayMember()) {
+ // Mark the end of the structure.
+ uint64_t offs = toBits(size);
+ FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
+ std::make_pair(offs, (NamedDecl*)0));
+ }
+
+ for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
+ assert(CurOffs <= CurLayObj->first);
+
+ if (CurOffs < CurLayObj->first) {
+ uint64_t padding = CurLayObj->first - CurOffs;
+ // FIXME: There doesn't seem to be a way to indicate in the encoding that
+ // packing/alignment of members is different that normal, in which case
+ // the encoding will be out-of-sync with the real layout.
+ // If the runtime switches to just consider the size of types without
+ // taking into account alignment, we could make padding explicit in the
+ // encoding (e.g. using arrays of chars). The encoding strings would be
+ // longer then though.
+ CurOffs += padding;
+ }
+
+ NamedDecl *dcl = CurLayObj->second;
+ if (dcl == 0)
+ break; // reached end of structure.
+
+ if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
+ // We expand the bases without their virtual bases since those are going
+ // in the initial structure. Note that this differs from gcc which
+ // expands virtual bases each time one is encountered in the hierarchy,
+ // making the encoding type bigger than it really is.
+ getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
+ assert(!base->isEmpty());
+ CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
+ } else {
+ FieldDecl *field = cast<FieldDecl>(dcl);
+ if (FD) {
+ S += '"';
+ S += field->getNameAsString();
+ S += '"';
+ }
+
+ if (field->isBitField()) {
+ EncodeBitField(this, S, field->getType(), field);
+ CurOffs += field->getBitWidthValue(*this);
+ } else {
+ QualType qt = field->getType();
+ getLegacyIntegralTypeEncoding(qt);
+ getObjCEncodingForTypeImpl(qt, S, false, true, FD,
+ /*OutermostType*/false,
+ /*EncodingProperty*/false,
+ /*StructField*/true);
+ CurOffs += getTypeSize(field->getType());
+ }
+ }
+ }
+}
+
+void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
+ std::string& S) const {
+ if (QT & Decl::OBJC_TQ_In)
+ S += 'n';
+ if (QT & Decl::OBJC_TQ_Inout)
+ S += 'N';
+ if (QT & Decl::OBJC_TQ_Out)
+ S += 'o';
+ if (QT & Decl::OBJC_TQ_Bycopy)
+ S += 'O';
+ if (QT & Decl::OBJC_TQ_Byref)
+ S += 'R';
+ if (QT & Decl::OBJC_TQ_Oneway)
+ S += 'V';
+}
+
+void ASTContext::setBuiltinVaListType(QualType T) {
+ assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
+
+ BuiltinVaListType = T;
+}
+
+TypedefDecl *ASTContext::getObjCIdDecl() const {
+ if (!ObjCIdDecl) {
+ QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
+ T = getObjCObjectPointerType(T);
+ TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
+ ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
+ getTranslationUnitDecl(),
+ SourceLocation(), SourceLocation(),
+ &Idents.get("id"), IdInfo);
+ }
+
+ return ObjCIdDecl;
+}
+
+TypedefDecl *ASTContext::getObjCSelDecl() const {
+ if (!ObjCSelDecl) {
+ QualType SelT = getPointerType(ObjCBuiltinSelTy);
+ TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
+ ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
+ getTranslationUnitDecl(),
+ SourceLocation(), SourceLocation(),
+ &Idents.get("SEL"), SelInfo);
+ }
+ return ObjCSelDecl;
+}
+
+TypedefDecl *ASTContext::getObjCClassDecl() const {
+ if (!ObjCClassDecl) {
+ QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
+ T = getObjCObjectPointerType(T);
+ TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
+ ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
+ getTranslationUnitDecl(),
+ SourceLocation(), SourceLocation(),
+ &Idents.get("Class"), ClassInfo);
+ }
+
+ return ObjCClassDecl;
+}
+
+ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
+ if (!ObjCProtocolClassDecl) {
+ ObjCProtocolClassDecl
+ = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
+ SourceLocation(),
+ &Idents.get("Protocol"),
+ /*PrevDecl=*/0,
+ SourceLocation(), true);
+ }
+
+ return ObjCProtocolClassDecl;
+}
+
+void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
+ assert(ObjCConstantStringType.isNull() &&
+ "'NSConstantString' type already set!");
+
+ ObjCConstantStringType = getObjCInterfaceType(Decl);
+}
+
+/// \brief Retrieve the template name that corresponds to a non-empty
+/// lookup.
+TemplateName
+ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
+ UnresolvedSetIterator End) const {
+ unsigned size = End - Begin;
+ assert(size > 1 && "set is not overloaded!");
+
+ void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
+ size * sizeof(FunctionTemplateDecl*));
+ OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
+
+ NamedDecl **Storage = OT->getStorage();
+ for (UnresolvedSetIterator I = Begin; I != End; ++I) {
+ NamedDecl *D = *I;
+ assert(isa<FunctionTemplateDecl>(D) ||
+ (isa<UsingShadowDecl>(D) &&
+ isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
+ *Storage++ = D;
+ }
+
+ return TemplateName(OT);
+}
+
+/// \brief Retrieve the template name that represents a qualified
+/// template name such as \c std::vector.
+TemplateName
+ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
+ bool TemplateKeyword,
+ TemplateDecl *Template) const {
+ assert(NNS && "Missing nested-name-specifier in qualified template name");
+
+ // FIXME: Canonicalization?
+ llvm::FoldingSetNodeID ID;
+ QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
+
+ void *InsertPos = 0;
+ QualifiedTemplateName *QTN =
+ QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
+ if (!QTN) {
+ QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
+ QualifiedTemplateNames.InsertNode(QTN, InsertPos);
+ }
+
+ return TemplateName(QTN);
+}
+
+/// \brief Retrieve the template name that represents a dependent
+/// template name such as \c MetaFun::template apply.
+TemplateName
+ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
+ const IdentifierInfo *Name) const {
+ assert((!NNS || NNS->isDependent()) &&
+ "Nested name specifier must be dependent");
+
+ llvm::FoldingSetNodeID ID;
+ DependentTemplateName::Profile(ID, NNS, Name);
+
+ void *InsertPos = 0;
+ DependentTemplateName *QTN =
+ DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
+
+ if (QTN)
+ return TemplateName(QTN);
+
+ NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
+ if (CanonNNS == NNS) {
+ QTN = new (*this,4) DependentTemplateName(NNS, Name);
+ } else {
+ TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
+ QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
+ DependentTemplateName *CheckQTN =
+ DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!CheckQTN && "Dependent type name canonicalization broken");
+ (void)CheckQTN;
+ }
+
+ DependentTemplateNames.InsertNode(QTN, InsertPos);
+ return TemplateName(QTN);
+}
+
+/// \brief Retrieve the template name that represents a dependent
+/// template name such as \c MetaFun::template operator+.
+TemplateName
+ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
+ OverloadedOperatorKind Operator) const {
+ assert((!NNS || NNS->isDependent()) &&
+ "Nested name specifier must be dependent");
+
+ llvm::FoldingSetNodeID ID;
+ DependentTemplateName::Profile(ID, NNS, Operator);
+
+ void *InsertPos = 0;
+ DependentTemplateName *QTN
+ = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
+
+ if (QTN)
+ return TemplateName(QTN);
+
+ NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
+ if (CanonNNS == NNS) {
+ QTN = new (*this,4) DependentTemplateName(NNS, Operator);
+ } else {
+ TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
+ QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
+
+ DependentTemplateName *CheckQTN
+ = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!CheckQTN && "Dependent template name canonicalization broken");
+ (void)CheckQTN;
+ }
+
+ DependentTemplateNames.InsertNode(QTN, InsertPos);
+ return TemplateName(QTN);
+}
+
+TemplateName
+ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
+ TemplateName replacement) const {
+ llvm::FoldingSetNodeID ID;
+ SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
+
+ void *insertPos = 0;
+ SubstTemplateTemplateParmStorage *subst
+ = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
+
+ if (!subst) {
+ subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
+ SubstTemplateTemplateParms.InsertNode(subst, insertPos);
+ }
+
+ return TemplateName(subst);
+}
+
+TemplateName
+ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
+ const TemplateArgument &ArgPack) const {
+ ASTContext &Self = const_cast<ASTContext &>(*this);
+ llvm::FoldingSetNodeID ID;
+ SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
+
+ void *InsertPos = 0;
+ SubstTemplateTemplateParmPackStorage *Subst
+ = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
+
+ if (!Subst) {
+ Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
+ ArgPack.pack_size(),
+ ArgPack.pack_begin());
+ SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
+ }
+
+ return TemplateName(Subst);
+}
+
+/// getFromTargetType - Given one of the integer types provided by
+/// TargetInfo, produce the corresponding type. The unsigned @p Type
+/// is actually a value of type @c TargetInfo::IntType.
+CanQualType ASTContext::getFromTargetType(unsigned Type) const {
+ switch (Type) {
+ case TargetInfo::NoInt: return CanQualType();
+ case TargetInfo::SignedShort: return ShortTy;
+ case TargetInfo::UnsignedShort: return UnsignedShortTy;
+ case TargetInfo::SignedInt: return IntTy;
+ case TargetInfo::UnsignedInt: return UnsignedIntTy;
+ case TargetInfo::SignedLong: return LongTy;
+ case TargetInfo::UnsignedLong: return UnsignedLongTy;
+ case TargetInfo::SignedLongLong: return LongLongTy;
+ case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
+ }
+
+ llvm_unreachable("Unhandled TargetInfo::IntType value");
+}
+
+//===----------------------------------------------------------------------===//
+// Type Predicates.
+//===----------------------------------------------------------------------===//
+
+/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
+/// garbage collection attribute.
+///
+Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
+ if (getLangOpts().getGC() == LangOptions::NonGC)
+ return Qualifiers::GCNone;
+
+ assert(getLangOpts().ObjC1);
+ Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
+
+ // Default behaviour under objective-C's gc is for ObjC pointers
+ // (or pointers to them) be treated as though they were declared
+ // as __strong.
+ if (GCAttrs == Qualifiers::GCNone) {
+ if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
+ return Qualifiers::Strong;
+ else if (Ty->isPointerType())
+ return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
+ } else {
+ // It's not valid to set GC attributes on anything that isn't a
+ // pointer.
+#ifndef NDEBUG
+ QualType CT = Ty->getCanonicalTypeInternal();
+ while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
+ CT = AT->getElementType();
+ assert(CT->isAnyPointerType() || CT->isBlockPointerType());
+#endif
+ }
+ return GCAttrs;
+}
+
+//===----------------------------------------------------------------------===//
+// Type Compatibility Testing
+//===----------------------------------------------------------------------===//
+
+/// areCompatVectorTypes - Return true if the two specified vector types are
+/// compatible.
+static bool areCompatVectorTypes(const VectorType *LHS,
+ const VectorType *RHS) {
+ assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
+ return LHS->getElementType() == RHS->getElementType() &&
+ LHS->getNumElements() == RHS->getNumElements();
+}
+
+bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
+ QualType SecondVec) {
+ assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
+ assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
+
+ if (hasSameUnqualifiedType(FirstVec, SecondVec))
+ return true;
+
+ // Treat Neon vector types and most AltiVec vector types as if they are the
+ // equivalent GCC vector types.
+ const VectorType *First = FirstVec->getAs<VectorType>();
+ const VectorType *Second = SecondVec->getAs<VectorType>();
+ if (First->getNumElements() == Second->getNumElements() &&
+ hasSameType(First->getElementType(), Second->getElementType()) &&
+ First->getVectorKind() != VectorType::AltiVecPixel &&
+ First->getVectorKind() != VectorType::AltiVecBool &&
+ Second->getVectorKind() != VectorType::AltiVecPixel &&
+ Second->getVectorKind() != VectorType::AltiVecBool)
+ return true;
+
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
+//===----------------------------------------------------------------------===//
+
+/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
+/// inheritance hierarchy of 'rProto'.
+bool
+ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
+ ObjCProtocolDecl *rProto) const {
+ if (declaresSameEntity(lProto, rProto))
+ return true;
+ for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
+ E = rProto->protocol_end(); PI != E; ++PI)
+ if (ProtocolCompatibleWithProtocol(lProto, *PI))
+ return true;
+ return false;
+}
+
+/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
+/// return true if lhs's protocols conform to rhs's protocol; false
+/// otherwise.
+bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
+ if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
+ return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
+ return false;
+}
+
+/// ObjCQualifiedClassTypesAreCompatible - compare Class<p,...> and
+/// Class<p1, ...>.
+bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
+ QualType rhs) {
+ const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
+ const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
+ assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
+
+ for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
+ E = lhsQID->qual_end(); I != E; ++I) {
+ bool match = false;
+ ObjCProtocolDecl *lhsProto = *I;
+ for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
+ E = rhsOPT->qual_end(); J != E; ++J) {
+ ObjCProtocolDecl *rhsProto = *J;
+ if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
+ match = true;
+ break;
+ }
+ }
+ if (!match)
+ return false;
+ }
+ return true;
+}
+
+/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
+/// ObjCQualifiedIDType.
+bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
+ bool compare) {
+ // Allow id<P..> and an 'id' or void* type in all cases.
+ if (lhs->isVoidPointerType() ||
+ lhs->isObjCIdType() || lhs->isObjCClassType())
+ return true;
+ else if (rhs->isVoidPointerType() ||
+ rhs->isObjCIdType() || rhs->isObjCClassType())
+ return true;
+
+ if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
+ const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
+
+ if (!rhsOPT) return false;
+
+ if (rhsOPT->qual_empty()) {
+ // If the RHS is a unqualified interface pointer "NSString*",
+ // make sure we check the class hierarchy.
+ if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
+ for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
+ E = lhsQID->qual_end(); I != E; ++I) {
+ // when comparing an id<P> on lhs with a static type on rhs,
+ // see if static class implements all of id's protocols, directly or
+ // through its super class and categories.
+ if (!rhsID->ClassImplementsProtocol(*I, true))
+ return false;
+ }
+ }
+ // If there are no qualifiers and no interface, we have an 'id'.
+ return true;
+ }
+ // Both the right and left sides have qualifiers.
+ for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
+ E = lhsQID->qual_end(); I != E; ++I) {
+ ObjCProtocolDecl *lhsProto = *I;
+ bool match = false;
+
+ // when comparing an id<P> on lhs with a static type on rhs,
+ // see if static class implements all of id's protocols, directly or
+ // through its super class and categories.
+ for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
+ E = rhsOPT->qual_end(); J != E; ++J) {
+ ObjCProtocolDecl *rhsProto = *J;
+ if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
+ (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
+ match = true;
+ break;
+ }
+ }
+ // If the RHS is a qualified interface pointer "NSString<P>*",
+ // make sure we check the class hierarchy.
+ if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
+ for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
+ E = lhsQID->qual_end(); I != E; ++I) {
+ // when comparing an id<P> on lhs with a static type on rhs,
+ // see if static class implements all of id's protocols, directly or
+ // through its super class and categories.
+ if (rhsID->ClassImplementsProtocol(*I, true)) {
+ match = true;
+ break;
+ }
+ }
+ }
+ if (!match)
+ return false;
+ }
+
+ return true;
+ }
+
+ const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
+ assert(rhsQID && "One of the LHS/RHS should be id<x>");
+
+ if (const ObjCObjectPointerType *lhsOPT =
+ lhs->getAsObjCInterfacePointerType()) {
+ // If both the right and left sides have qualifiers.
+ for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
+ E = lhsOPT->qual_end(); I != E; ++I) {
+ ObjCProtocolDecl *lhsProto = *I;
+ bool match = false;
+
+ // when comparing an id<P> on rhs with a static type on lhs,
+ // see if static class implements all of id's protocols, directly or
+ // through its super class and categories.
+ // First, lhs protocols in the qualifier list must be found, direct
+ // or indirect in rhs's qualifier list or it is a mismatch.
+ for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
+ E = rhsQID->qual_end(); J != E; ++J) {
+ ObjCProtocolDecl *rhsProto = *J;
+ if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
+ (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
+ match = true;
+ break;
+ }
+ }
+ if (!match)
+ return false;
+ }
+
+ // Static class's protocols, or its super class or category protocols
+ // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
+ if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
+ llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
+ CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
+ // This is rather dubious but matches gcc's behavior. If lhs has
+ // no type qualifier and its class has no static protocol(s)
+ // assume that it is mismatch.
+ if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
+ return false;
+ for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
+ LHSInheritedProtocols.begin(),
+ E = LHSInheritedProtocols.end(); I != E; ++I) {
+ bool match = false;
+ ObjCProtocolDecl *lhsProto = (*I);
+ for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
+ E = rhsQID->qual_end(); J != E; ++J) {
+ ObjCProtocolDecl *rhsProto = *J;
+ if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
+ (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
+ match = true;
+ break;
+ }
+ }
+ if (!match)
+ return false;
+ }
+ }
+ return true;
+ }
+ return false;
+}
+
+/// canAssignObjCInterfaces - Return true if the two interface types are
+/// compatible for assignment from RHS to LHS. This handles validation of any
+/// protocol qualifiers on the LHS or RHS.
+///
+bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
+ const ObjCObjectPointerType *RHSOPT) {
+ const ObjCObjectType* LHS = LHSOPT->getObjectType();
+ const ObjCObjectType* RHS = RHSOPT->getObjectType();
+
+ // If either type represents the built-in 'id' or 'Class' types, return true.
+ if (LHS->isObjCUnqualifiedIdOrClass() ||
+ RHS->isObjCUnqualifiedIdOrClass())
+ return true;
+
+ if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
+ return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
+ QualType(RHSOPT,0),
+ false);
+
+ if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
+ return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
+ QualType(RHSOPT,0));
+
+ // If we have 2 user-defined types, fall into that path.
+ if (LHS->getInterface() && RHS->getInterface())
+ return canAssignObjCInterfaces(LHS, RHS);
+
+ return false;
+}
+
+/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
+/// for providing type-safety for objective-c pointers used to pass/return
+/// arguments in block literals. When passed as arguments, passing 'A*' where
+/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
+/// not OK. For the return type, the opposite is not OK.
+bool ASTContext::canAssignObjCInterfacesInBlockPointer(
+ const ObjCObjectPointerType *LHSOPT,
+ const ObjCObjectPointerType *RHSOPT,
+ bool BlockReturnType) {
+ if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
+ return true;
+
+ if (LHSOPT->isObjCBuiltinType()) {
+ return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
+ }
+
+ if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
+ return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
+ QualType(RHSOPT,0),
+ false);
+
+ const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
+ const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
+ if (LHS && RHS) { // We have 2 user-defined types.
+ if (LHS != RHS) {
+ if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
+ return BlockReturnType;
+ if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
+ return !BlockReturnType;
+ }
+ else
+ return true;
+ }
+ return false;
+}
+
+/// getIntersectionOfProtocols - This routine finds the intersection of set
+/// of protocols inherited from two distinct objective-c pointer objects.
+/// It is used to build composite qualifier list of the composite type of
+/// the conditional expression involving two objective-c pointer objects.
+static
+void getIntersectionOfProtocols(ASTContext &Context,
+ const ObjCObjectPointerType *LHSOPT,
+ const ObjCObjectPointerType *RHSOPT,
+ SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
+
+ const ObjCObjectType* LHS = LHSOPT->getObjectType();
+ const ObjCObjectType* RHS = RHSOPT->getObjectType();
+ assert(LHS->getInterface() && "LHS must have an interface base");
+ assert(RHS->getInterface() && "RHS must have an interface base");
+
+ llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
+ unsigned LHSNumProtocols = LHS->getNumProtocols();
+ if (LHSNumProtocols > 0)
+ InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
+ else {
+ llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
+ Context.CollectInheritedProtocols(LHS->getInterface(),
+ LHSInheritedProtocols);
+ InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
+ LHSInheritedProtocols.end());
+ }
+
+ unsigned RHSNumProtocols = RHS->getNumProtocols();
+ if (RHSNumProtocols > 0) {
+ ObjCProtocolDecl **RHSProtocols =
+ const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
+ for (unsigned i = 0; i < RHSNumProtocols; ++i)
+ if (InheritedProtocolSet.count(RHSProtocols[i]))
+ IntersectionOfProtocols.push_back(RHSProtocols[i]);
+ } else {
+ llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
+ Context.CollectInheritedProtocols(RHS->getInterface(),
+ RHSInheritedProtocols);
+ for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
+ RHSInheritedProtocols.begin(),
+ E = RHSInheritedProtocols.end(); I != E; ++I)
+ if (InheritedProtocolSet.count((*I)))
+ IntersectionOfProtocols.push_back((*I));
+ }
+}
+
+/// areCommonBaseCompatible - Returns common base class of the two classes if
+/// one found. Note that this is O'2 algorithm. But it will be called as the
+/// last type comparison in a ?-exp of ObjC pointer types before a
+/// warning is issued. So, its invokation is extremely rare.
+QualType ASTContext::areCommonBaseCompatible(
+ const ObjCObjectPointerType *Lptr,
+ const ObjCObjectPointerType *Rptr) {
+ const ObjCObjectType *LHS = Lptr->getObjectType();
+ const ObjCObjectType *RHS = Rptr->getObjectType();
+ const ObjCInterfaceDecl* LDecl = LHS->getInterface();
+ const ObjCInterfaceDecl* RDecl = RHS->getInterface();
+ if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
+ return QualType();
+
+ do {
+ LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
+ if (canAssignObjCInterfaces(LHS, RHS)) {
+ SmallVector<ObjCProtocolDecl *, 8> Protocols;
+ getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
+
+ QualType Result = QualType(LHS, 0);
+ if (!Protocols.empty())
+ Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
+ Result = getObjCObjectPointerType(Result);
+ return Result;
+ }
+ } while ((LDecl = LDecl->getSuperClass()));
+
+ return QualType();
+}
+
+bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
+ const ObjCObjectType *RHS) {
+ assert(LHS->getInterface() && "LHS is not an interface type");
+ assert(RHS->getInterface() && "RHS is not an interface type");
+
+ // Verify that the base decls are compatible: the RHS must be a subclass of
+ // the LHS.
+ if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
+ return false;
+
+ // RHS must have a superset of the protocols in the LHS. If the LHS is not
+ // protocol qualified at all, then we are good.
+ if (LHS->getNumProtocols() == 0)
+ return true;
+
+ // Okay, we know the LHS has protocol qualifiers. If the RHS doesn't,
+ // more detailed analysis is required.
+ if (RHS->getNumProtocols() == 0) {
+ // OK, if LHS is a superclass of RHS *and*
+ // this superclass is assignment compatible with LHS.
+ // false otherwise.
+ bool IsSuperClass =
+ LHS->getInterface()->isSuperClassOf(RHS->getInterface());
+ if (IsSuperClass) {
+ // OK if conversion of LHS to SuperClass results in narrowing of types
+ // ; i.e., SuperClass may implement at least one of the protocols
+ // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
+ // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
+ llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
+ CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
+ // If super class has no protocols, it is not a match.
+ if (SuperClassInheritedProtocols.empty())
+ return false;
+
+ for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
+ LHSPE = LHS->qual_end();
+ LHSPI != LHSPE; LHSPI++) {
+ bool SuperImplementsProtocol = false;
+ ObjCProtocolDecl *LHSProto = (*LHSPI);
+
+ for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
+ SuperClassInheritedProtocols.begin(),
+ E = SuperClassInheritedProtocols.end(); I != E; ++I) {
+ ObjCProtocolDecl *SuperClassProto = (*I);
+ if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
+ SuperImplementsProtocol = true;
+ break;
+ }
+ }
+ if (!SuperImplementsProtocol)
+ return false;
+ }
+ return true;
+ }
+ return false;
+ }
+
+ for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
+ LHSPE = LHS->qual_end();
+ LHSPI != LHSPE; LHSPI++) {
+ bool RHSImplementsProtocol = false;
+
+ // If the RHS doesn't implement the protocol on the left, the types
+ // are incompatible.
+ for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
+ RHSPE = RHS->qual_end();
+ RHSPI != RHSPE; RHSPI++) {
+ if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
+ RHSImplementsProtocol = true;
+ break;
+ }
+ }
+ // FIXME: For better diagnostics, consider passing back the protocol name.
+ if (!RHSImplementsProtocol)
+ return false;
+ }
+ // The RHS implements all protocols listed on the LHS.
+ return true;
+}
+
+bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
+ // get the "pointed to" types
+ const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
+ const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
+
+ if (!LHSOPT || !RHSOPT)
+ return false;
+
+ return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
+ canAssignObjCInterfaces(RHSOPT, LHSOPT);
+}
+
+bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
+ return canAssignObjCInterfaces(
+ getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
+ getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
+}
+
+/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
+/// both shall have the identically qualified version of a compatible type.
+/// C99 6.2.7p1: Two types have compatible types if their types are the
+/// same. See 6.7.[2,3,5] for additional rules.
+bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
+ bool CompareUnqualified) {
+ if (getLangOpts().CPlusPlus)
+ return hasSameType(LHS, RHS);
+
+ return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
+}
+
+bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
+ return typesAreCompatible(LHS, RHS);
+}
+
+bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
+ return !mergeTypes(LHS, RHS, true).isNull();
+}
+
+/// mergeTransparentUnionType - if T is a transparent union type and a member
+/// of T is compatible with SubType, return the merged type, else return
+/// QualType()
+QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
+ bool OfBlockPointer,
+ bool Unqualified) {
+ if (const RecordType *UT = T->getAsUnionType()) {
+ RecordDecl *UD = UT->getDecl();
+ if (UD->hasAttr<TransparentUnionAttr>()) {
+ for (RecordDecl::field_iterator it = UD->field_begin(),
+ itend = UD->field_end(); it != itend; ++it) {
+ QualType ET = it->getType().getUnqualifiedType();
+ QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
+ if (!MT.isNull())
+ return MT;
+ }
+ }
+ }
+
+ return QualType();
+}
+
+/// mergeFunctionArgumentTypes - merge two types which appear as function
+/// argument types
+QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
+ bool OfBlockPointer,
+ bool Unqualified) {
+ // GNU extension: two types are compatible if they appear as a function
+ // argument, one of the types is a transparent union type and the other
+ // type is compatible with a union member
+ QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
+ Unqualified);
+ if (!lmerge.isNull())
+ return lmerge;
+
+ QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
+ Unqualified);
+ if (!rmerge.isNull())
+ return rmerge;
+
+ return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
+}
+
+QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
+ bool OfBlockPointer,
+ bool Unqualified) {
+ const FunctionType *lbase = lhs->getAs<FunctionType>();
+ const FunctionType *rbase = rhs->getAs<FunctionType>();
+ const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
+ const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
+ bool allLTypes = true;
+ bool allRTypes = true;
+
+ // Check return type
+ QualType retType;
+ if (OfBlockPointer) {
+ QualType RHS = rbase->getResultType();
+ QualType LHS = lbase->getResultType();
+ bool UnqualifiedResult = Unqualified;
+ if (!UnqualifiedResult)
+ UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
+ retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
+ }
+ else
+ retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
+ Unqualified);
+ if (retType.isNull()) return QualType();
+
+ if (Unqualified)
+ retType = retType.getUnqualifiedType();
+
+ CanQualType LRetType = getCanonicalType(lbase->getResultType());
+ CanQualType RRetType = getCanonicalType(rbase->getResultType());
+ if (Unqualified) {
+ LRetType = LRetType.getUnqualifiedType();
+ RRetType = RRetType.getUnqualifiedType();
+ }
+
+ if (getCanonicalType(retType) != LRetType)
+ allLTypes = false;
+ if (getCanonicalType(retType) != RRetType)
+ allRTypes = false;
+
+ // FIXME: double check this
+ // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
+ // rbase->getRegParmAttr() != 0 &&
+ // lbase->getRegParmAttr() != rbase->getRegParmAttr()?
+ FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
+ FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
+
+ // Compatible functions must have compatible calling conventions
+ if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
+ return QualType();
+
+ // Regparm is part of the calling convention.
+ if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
+ return QualType();
+ if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
+ return QualType();
+
+ if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
+ return QualType();
+
+ // functypes which return are preferred over those that do not.
+ if (lbaseInfo.getNoReturn() && !rbaseInfo.getNoReturn())
+ allLTypes = false;
+ else if (!lbaseInfo.getNoReturn() && rbaseInfo.getNoReturn())
+ allRTypes = false;
+ // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
+ bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
+
+ FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
+
+ if (lproto && rproto) { // two C99 style function prototypes
+ assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
+ "C++ shouldn't be here");
+ unsigned lproto_nargs = lproto->getNumArgs();
+ unsigned rproto_nargs = rproto->getNumArgs();
+
+ // Compatible functions must have the same number of arguments
+ if (lproto_nargs != rproto_nargs)
+ return QualType();
+
+ // Variadic and non-variadic functions aren't compatible
+ if (lproto->isVariadic() != rproto->isVariadic())
+ return QualType();
+
+ if (lproto->getTypeQuals() != rproto->getTypeQuals())
+ return QualType();
+
+ if (LangOpts.ObjCAutoRefCount &&
+ !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
+ return QualType();
+
+ // Check argument compatibility
+ SmallVector<QualType, 10> types;
+ for (unsigned i = 0; i < lproto_nargs; i++) {
+ QualType largtype = lproto->getArgType(i).getUnqualifiedType();
+ QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
+ QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
+ OfBlockPointer,
+ Unqualified);
+ if (argtype.isNull()) return QualType();
+
+ if (Unqualified)
+ argtype = argtype.getUnqualifiedType();
+
+ types.push_back(argtype);
+ if (Unqualified) {
+ largtype = largtype.getUnqualifiedType();
+ rargtype = rargtype.getUnqualifiedType();
+ }
+
+ if (getCanonicalType(argtype) != getCanonicalType(largtype))
+ allLTypes = false;
+ if (getCanonicalType(argtype) != getCanonicalType(rargtype))
+ allRTypes = false;
+ }
+
+ if (allLTypes) return lhs;
+ if (allRTypes) return rhs;
+
+ FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
+ EPI.ExtInfo = einfo;
+ return getFunctionType(retType, types.begin(), types.size(), EPI);
+ }
+
+ if (lproto) allRTypes = false;
+ if (rproto) allLTypes = false;
+
+ const FunctionProtoType *proto = lproto ? lproto : rproto;
+ if (proto) {
+ assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
+ if (proto->isVariadic()) return QualType();
+ // Check that the types are compatible with the types that
+ // would result from default argument promotions (C99 6.7.5.3p15).
+ // The only types actually affected are promotable integer
+ // types and floats, which would be passed as a different
+ // type depending on whether the prototype is visible.
+ unsigned proto_nargs = proto->getNumArgs();
+ for (unsigned i = 0; i < proto_nargs; ++i) {
+ QualType argTy = proto->getArgType(i);
+
+ // Look at the promotion type of enum types, since that is the type used
+ // to pass enum values.
+ if (const EnumType *Enum = argTy->getAs<EnumType>())
+ argTy = Enum->getDecl()->getPromotionType();
+
+ if (argTy->isPromotableIntegerType() ||
+ getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
+ return QualType();
+ }
+
+ if (allLTypes) return lhs;
+ if (allRTypes) return rhs;
+
+ FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
+ EPI.ExtInfo = einfo;
+ return getFunctionType(retType, proto->arg_type_begin(),
+ proto->getNumArgs(), EPI);
+ }
+
+ if (allLTypes) return lhs;
+ if (allRTypes) return rhs;
+ return getFunctionNoProtoType(retType, einfo);
+}
+
+QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
+ bool OfBlockPointer,
+ bool Unqualified, bool BlockReturnType) {
+ // C++ [expr]: If an expression initially has the type "reference to T", the
+ // type is adjusted to "T" prior to any further analysis, the expression
+ // designates the object or function denoted by the reference, and the
+ // expression is an lvalue unless the reference is an rvalue reference and
+ // the expression is a function call (possibly inside parentheses).
+ assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
+ assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
+
+ if (Unqualified) {
+ LHS = LHS.getUnqualifiedType();
+ RHS = RHS.getUnqualifiedType();
+ }
+
+ QualType LHSCan = getCanonicalType(LHS),
+ RHSCan = getCanonicalType(RHS);
+
+ // If two types are identical, they are compatible.
+ if (LHSCan == RHSCan)
+ return LHS;
+
+ // If the qualifiers are different, the types aren't compatible... mostly.
+ Qualifiers LQuals = LHSCan.getLocalQualifiers();
+ Qualifiers RQuals = RHSCan.getLocalQualifiers();
+ if (LQuals != RQuals) {
+ // If any of these qualifiers are different, we have a type
+ // mismatch.
+ if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
+ LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
+ LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
+ return QualType();
+
+ // Exactly one GC qualifier difference is allowed: __strong is
+ // okay if the other type has no GC qualifier but is an Objective
+ // C object pointer (i.e. implicitly strong by default). We fix
+ // this by pretending that the unqualified type was actually
+ // qualified __strong.
+ Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
+ Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
+ assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
+
+ if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
+ return QualType();
+
+ if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
+ return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
+ }
+ if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
+ return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
+ }
+ return QualType();
+ }
+
+ // Okay, qualifiers are equal.
+
+ Type::TypeClass LHSClass = LHSCan->getTypeClass();
+ Type::TypeClass RHSClass = RHSCan->getTypeClass();
+
+ // We want to consider the two function types to be the same for these
+ // comparisons, just force one to the other.
+ if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
+ if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
+
+ // Same as above for arrays
+ if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
+ LHSClass = Type::ConstantArray;
+ if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
+ RHSClass = Type::ConstantArray;
+
+ // ObjCInterfaces are just specialized ObjCObjects.
+ if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
+ if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
+
+ // Canonicalize ExtVector -> Vector.
+ if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
+ if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
+
+ // If the canonical type classes don't match.
+ if (LHSClass != RHSClass) {
+ // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
+ // a signed integer type, or an unsigned integer type.
+ // Compatibility is based on the underlying type, not the promotion
+ // type.
+ if (const EnumType* ETy = LHS->getAs<EnumType>()) {
+ QualType TINT = ETy->getDecl()->getIntegerType();
+ if (!TINT.isNull() && hasSameType(TINT, RHSCan.getUnqualifiedType()))
+ return RHS;
+ }
+ if (const EnumType* ETy = RHS->getAs<EnumType>()) {
+ QualType TINT = ETy->getDecl()->getIntegerType();
+ if (!TINT.isNull() && hasSameType(TINT, LHSCan.getUnqualifiedType()))
+ return LHS;
+ }
+ // allow block pointer type to match an 'id' type.
+ if (OfBlockPointer && !BlockReturnType) {
+ if (LHS->isObjCIdType() && RHS->isBlockPointerType())
+ return LHS;
+ if (RHS->isObjCIdType() && LHS->isBlockPointerType())
+ return RHS;
+ }
+
+ return QualType();
+ }
+
+ // The canonical type classes match.
+ switch (LHSClass) {
+#define TYPE(Class, Base)
+#define ABSTRACT_TYPE(Class, Base)
+#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
+#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
+#define DEPENDENT_TYPE(Class, Base) case Type::Class:
+#include "clang/AST/TypeNodes.def"
+ llvm_unreachable("Non-canonical and dependent types shouldn't get here");
+
+ case Type::LValueReference:
+ case Type::RValueReference:
+ case Type::MemberPointer:
+ llvm_unreachable("C++ should never be in mergeTypes");
+
+ case Type::ObjCInterface:
+ case Type::IncompleteArray:
+ case Type::VariableArray:
+ case Type::FunctionProto:
+ case Type::ExtVector:
+ llvm_unreachable("Types are eliminated above");
+
+ case Type::Pointer:
+ {
+ // Merge two pointer types, while trying to preserve typedef info
+ QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
+ QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
+ if (Unqualified) {
+ LHSPointee = LHSPointee.getUnqualifiedType();
+ RHSPointee = RHSPointee.getUnqualifiedType();
+ }
+ QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
+ Unqualified);
+ if (ResultType.isNull()) return QualType();
+ if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
+ return LHS;
+ if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
+ return RHS;
+ return getPointerType(ResultType);
+ }
+ case Type::BlockPointer:
+ {
+ // Merge two block pointer types, while trying to preserve typedef info
+ QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
+ QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
+ if (Unqualified) {
+ LHSPointee = LHSPointee.getUnqualifiedType();
+ RHSPointee = RHSPointee.getUnqualifiedType();
+ }
+ QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
+ Unqualified);
+ if (ResultType.isNull()) return QualType();
+ if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
+ return LHS;
+ if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
+ return RHS;
+ return getBlockPointerType(ResultType);
+ }
+ case Type::Atomic:
+ {
+ // Merge two pointer types, while trying to preserve typedef info
+ QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
+ QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
+ if (Unqualified) {
+ LHSValue = LHSValue.getUnqualifiedType();
+ RHSValue = RHSValue.getUnqualifiedType();
+ }
+ QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
+ Unqualified);
+ if (ResultType.isNull()) return QualType();
+ if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
+ return LHS;
+ if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
+ return RHS;
+ return getAtomicType(ResultType);
+ }
+ case Type::ConstantArray:
+ {
+ const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
+ const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
+ if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
+ return QualType();
+
+ QualType LHSElem = getAsArrayType(LHS)->getElementType();
+ QualType RHSElem = getAsArrayType(RHS)->getElementType();
+ if (Unqualified) {
+ LHSElem = LHSElem.getUnqualifiedType();
+ RHSElem = RHSElem.getUnqualifiedType();
+ }
+
+ QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
+ if (ResultType.isNull()) return QualType();
+ if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
+ return LHS;
+ if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
+ return RHS;
+ if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
+ ArrayType::ArraySizeModifier(), 0);
+ if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
+ ArrayType::ArraySizeModifier(), 0);
+ const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
+ const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
+ if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
+ return LHS;
+ if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
+ return RHS;
+ if (LVAT) {
+ // FIXME: This isn't correct! But tricky to implement because
+ // the array's size has to be the size of LHS, but the type
+ // has to be different.
+ return LHS;
+ }
+ if (RVAT) {
+ // FIXME: This isn't correct! But tricky to implement because
+ // the array's size has to be the size of RHS, but the type
+ // has to be different.
+ return RHS;
+ }
+ if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
+ if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
+ return getIncompleteArrayType(ResultType,
+ ArrayType::ArraySizeModifier(), 0);
+ }
+ case Type::FunctionNoProto:
+ return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
+ case Type::Record:
+ case Type::Enum:
+ return QualType();
+ case Type::Builtin:
+ // Only exactly equal builtin types are compatible, which is tested above.
+ return QualType();
+ case Type::Complex:
+ // Distinct complex types are incompatible.
+ return QualType();
+ case Type::Vector:
+ // FIXME: The merged type should be an ExtVector!
+ if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
+ RHSCan->getAs<VectorType>()))
+ return LHS;
+ return QualType();
+ case Type::ObjCObject: {
+ // Check if the types are assignment compatible.
+ // FIXME: This should be type compatibility, e.g. whether
+ // "LHS x; RHS x;" at global scope is legal.
+ const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
+ const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
+ if (canAssignObjCInterfaces(LHSIface, RHSIface))
+ return LHS;
+
+ return QualType();
+ }
+ case Type::ObjCObjectPointer: {
+ if (OfBlockPointer) {
+ if (canAssignObjCInterfacesInBlockPointer(
+ LHS->getAs<ObjCObjectPointerType>(),
+ RHS->getAs<ObjCObjectPointerType>(),
+ BlockReturnType))
+ return LHS;
+ return QualType();
+ }
+ if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
+ RHS->getAs<ObjCObjectPointerType>()))
+ return LHS;
+
+ return QualType();
+ }
+ }
+
+ llvm_unreachable("Invalid Type::Class!");
+}
+
+bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
+ const FunctionProtoType *FromFunctionType,
+ const FunctionProtoType *ToFunctionType) {
+ if (FromFunctionType->hasAnyConsumedArgs() !=
+ ToFunctionType->hasAnyConsumedArgs())
+ return false;
+ FunctionProtoType::ExtProtoInfo FromEPI =
+ FromFunctionType->getExtProtoInfo();
+ FunctionProtoType::ExtProtoInfo ToEPI =
+ ToFunctionType->getExtProtoInfo();
+ if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
+ for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
+ ArgIdx != NumArgs; ++ArgIdx) {
+ if (FromEPI.ConsumedArguments[ArgIdx] !=
+ ToEPI.ConsumedArguments[ArgIdx])
+ return false;
+ }
+ return true;
+}
+
+/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
+/// 'RHS' attributes and returns the merged version; including for function
+/// return types.
+QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
+ QualType LHSCan = getCanonicalType(LHS),
+ RHSCan = getCanonicalType(RHS);
+ // If two types are identical, they are compatible.
+ if (LHSCan == RHSCan)
+ return LHS;
+ if (RHSCan->isFunctionType()) {
+ if (!LHSCan->isFunctionType())
+ return QualType();
+ QualType OldReturnType =
+ cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
+ QualType NewReturnType =
+ cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
+ QualType ResReturnType =
+ mergeObjCGCQualifiers(NewReturnType, OldReturnType);
+ if (ResReturnType.isNull())
+ return QualType();
+ if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
+ // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
+ // In either case, use OldReturnType to build the new function type.
+ const FunctionType *F = LHS->getAs<FunctionType>();
+ if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
+ FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
+ EPI.ExtInfo = getFunctionExtInfo(LHS);
+ QualType ResultType
+ = getFunctionType(OldReturnType, FPT->arg_type_begin(),
+ FPT->getNumArgs(), EPI);
+ return ResultType;
+ }
+ }
+ return QualType();
+ }
+
+ // If the qualifiers are different, the types can still be merged.
+ Qualifiers LQuals = LHSCan.getLocalQualifiers();
+ Qualifiers RQuals = RHSCan.getLocalQualifiers();
+ if (LQuals != RQuals) {
+ // If any of these qualifiers are different, we have a type mismatch.
+ if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
+ LQuals.getAddressSpace() != RQuals.getAddressSpace())
+ return QualType();
+
+ // Exactly one GC qualifier difference is allowed: __strong is
+ // okay if the other type has no GC qualifier but is an Objective
+ // C object pointer (i.e. implicitly strong by default). We fix
+ // this by pretending that the unqualified type was actually
+ // qualified __strong.
+ Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
+ Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
+ assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
+
+ if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
+ return QualType();
+
+ if (GC_L == Qualifiers::Strong)
+ return LHS;
+ if (GC_R == Qualifiers::Strong)
+ return RHS;
+ return QualType();
+ }
+
+ if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
+ QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
+ QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
+ QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
+ if (ResQT == LHSBaseQT)
+ return LHS;
+ if (ResQT == RHSBaseQT)
+ return RHS;
+ }
+ return QualType();
+}
+
+//===----------------------------------------------------------------------===//
+// Integer Predicates
+//===----------------------------------------------------------------------===//
+
+unsigned ASTContext::getIntWidth(QualType T) const {
+ if (const EnumType *ET = dyn_cast<EnumType>(T))
+ T = ET->getDecl()->getIntegerType();
+ if (T->isBooleanType())
+ return 1;
+ // For builtin types, just use the standard type sizing method
+ return (unsigned)getTypeSize(T);
+}
+
+QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
+ assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
+
+ // Turn <4 x signed int> -> <4 x unsigned int>
+ if (const VectorType *VTy = T->getAs<VectorType>())
+ return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
+ VTy->getNumElements(), VTy->getVectorKind());
+
+ // For enums, we return the unsigned version of the base type.
+ if (const EnumType *ETy = T->getAs<EnumType>())
+ T = ETy->getDecl()->getIntegerType();
+
+ const BuiltinType *BTy = T->getAs<BuiltinType>();
+ assert(BTy && "Unexpected signed integer type");
+ switch (BTy->getKind()) {
+ case BuiltinType::Char_S:
+ case BuiltinType::SChar:
+ return UnsignedCharTy;
+ case BuiltinType::Short:
+ return UnsignedShortTy;
+ case BuiltinType::Int:
+ return UnsignedIntTy;
+ case BuiltinType::Long:
+ return UnsignedLongTy;
+ case BuiltinType::LongLong:
+ return UnsignedLongLongTy;
+ case BuiltinType::Int128:
+ return UnsignedInt128Ty;
+ default:
+ llvm_unreachable("Unexpected signed integer type");
+ }
+}
+
+ASTMutationListener::~ASTMutationListener() { }
+
+
+//===----------------------------------------------------------------------===//
+// Builtin Type Computation
+//===----------------------------------------------------------------------===//
+
+/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
+/// pointer over the consumed characters. This returns the resultant type. If
+/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
+/// types. This allows "v2i*" to be parsed as a pointer to a v2i instead of
+/// a vector of "i*".
+///
+/// RequiresICE is filled in on return to indicate whether the value is required
+/// to be an Integer Constant Expression.
+static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
+ ASTContext::GetBuiltinTypeError &Error,
+ bool &RequiresICE,
+ bool AllowTypeModifiers) {
+ // Modifiers.
+ int HowLong = 0;
+ bool Signed = false, Unsigned = false;
+ RequiresICE = false;
+
+ // Read the prefixed modifiers first.
+ bool Done = false;
+ while (!Done) {
+ switch (*Str++) {
+ default: Done = true; --Str; break;
+ case 'I':
+ RequiresICE = true;
+ break;
+ case 'S':
+ assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
+ assert(!Signed && "Can't use 'S' modifier multiple times!");
+ Signed = true;
+ break;
+ case 'U':
+ assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
+ assert(!Unsigned && "Can't use 'S' modifier multiple times!");
+ Unsigned = true;
+ break;
+ case 'L':
+ assert(HowLong <= 2 && "Can't have LLLL modifier");
+ ++HowLong;
+ break;
+ }
+ }
+
+ QualType Type;
+
+ // Read the base type.
+ switch (*Str++) {
+ default: llvm_unreachable("Unknown builtin type letter!");
+ case 'v':
+ assert(HowLong == 0 && !Signed && !Unsigned &&
+ "Bad modifiers used with 'v'!");
+ Type = Context.VoidTy;
+ break;
+ case 'f':
+ assert(HowLong == 0 && !Signed && !Unsigned &&
+ "Bad modifiers used with 'f'!");
+ Type = Context.FloatTy;
+ break;
+ case 'd':
+ assert(HowLong < 2 && !Signed && !Unsigned &&
+ "Bad modifiers used with 'd'!");
+ if (HowLong)
+ Type = Context.LongDoubleTy;
+ else
+ Type = Context.DoubleTy;
+ break;
+ case 's':
+ assert(HowLong == 0 && "Bad modifiers used with 's'!");
+ if (Unsigned)
+ Type = Context.UnsignedShortTy;
+ else
+ Type = Context.ShortTy;
+ break;
+ case 'i':
+ if (HowLong == 3)
+ Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
+ else if (HowLong == 2)
+ Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
+ else if (HowLong == 1)
+ Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
+ else
+ Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
+ break;
+ case 'c':
+ assert(HowLong == 0 && "Bad modifiers used with 'c'!");
+ if (Signed)
+ Type = Context.SignedCharTy;
+ else if (Unsigned)
+ Type = Context.UnsignedCharTy;
+ else
+ Type = Context.CharTy;
+ break;
+ case 'b': // boolean
+ assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
+ Type = Context.BoolTy;
+ break;
+ case 'z': // size_t.
+ assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
+ Type = Context.getSizeType();
+ break;
+ case 'F':
+ Type = Context.getCFConstantStringType();
+ break;
+ case 'G':
+ Type = Context.getObjCIdType();
+ break;
+ case 'H':
+ Type = Context.getObjCSelType();
+ break;
+ case 'a':
+ Type = Context.getBuiltinVaListType();
+ assert(!Type.isNull() && "builtin va list type not initialized!");
+ break;
+ case 'A':
+ // This is a "reference" to a va_list; however, what exactly
+ // this means depends on how va_list is defined. There are two
+ // different kinds of va_list: ones passed by value, and ones
+ // passed by reference. An example of a by-value va_list is
+ // x86, where va_list is a char*. An example of by-ref va_list
+ // is x86-64, where va_list is a __va_list_tag[1]. For x86,
+ // we want this argument to be a char*&; for x86-64, we want
+ // it to be a __va_list_tag*.
+ Type = Context.getBuiltinVaListType();
+ assert(!Type.isNull() && "builtin va list type not initialized!");
+ if (Type->isArrayType())
+ Type = Context.getArrayDecayedType(Type);
+ else
+ Type = Context.getLValueReferenceType(Type);
+ break;
+ case 'V': {
+ char *End;
+ unsigned NumElements = strtoul(Str, &End, 10);
+ assert(End != Str && "Missing vector size");
+ Str = End;
+
+ QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
+ RequiresICE, false);
+ assert(!RequiresICE && "Can't require vector ICE");
+
+ // TODO: No way to make AltiVec vectors in builtins yet.
+ Type = Context.getVectorType(ElementType, NumElements,
+ VectorType::GenericVector);
+ break;
+ }
+ case 'X': {
+ QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
+ false);
+ assert(!RequiresICE && "Can't require complex ICE");
+ Type = Context.getComplexType(ElementType);
+ break;
+ }
+ case 'Y' : {
+ Type = Context.getPointerDiffType();
+ break;
+ }
+ case 'P':
+ Type = Context.getFILEType();
+ if (Type.isNull()) {
+ Error = ASTContext::GE_Missing_stdio;
+ return QualType();
+ }
+ break;
+ case 'J':
+ if (Signed)
+ Type = Context.getsigjmp_bufType();
+ else
+ Type = Context.getjmp_bufType();
+
+ if (Type.isNull()) {
+ Error = ASTContext::GE_Missing_setjmp;
+ return QualType();
+ }
+ break;
+ case 'K':
+ assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
+ Type = Context.getucontext_tType();
+
+ if (Type.isNull()) {
+ Error = ASTContext::GE_Missing_ucontext;
+ return QualType();
+ }
+ break;
+ }
+
+ // If there are modifiers and if we're allowed to parse them, go for it.
+ Done = !AllowTypeModifiers;
+ while (!Done) {
+ switch (char c = *Str++) {
+ default: Done = true; --Str; break;
+ case '*':
+ case '&': {
+ // Both pointers and references can have their pointee types
+ // qualified with an address space.
+ char *End;
+ unsigned AddrSpace = strtoul(Str, &End, 10);
+ if (End != Str && AddrSpace != 0) {
+ Type = Context.getAddrSpaceQualType(Type, AddrSpace);
+ Str = End;
+ }
+ if (c == '*')
+ Type = Context.getPointerType(Type);
+ else
+ Type = Context.getLValueReferenceType(Type);
+ break;
+ }
+ // FIXME: There's no way to have a built-in with an rvalue ref arg.
+ case 'C':
+ Type = Type.withConst();
+ break;
+ case 'D':
+ Type = Context.getVolatileType(Type);
+ break;
+ case 'R':
+ Type = Type.withRestrict();
+ break;
+ }
+ }
+
+ assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
+ "Integer constant 'I' type must be an integer");
+
+ return Type;
+}
+
+/// GetBuiltinType - Return the type for the specified builtin.
+QualType ASTContext::GetBuiltinType(unsigned Id,
+ GetBuiltinTypeError &Error,
+ unsigned *IntegerConstantArgs) const {
+ const char *TypeStr = BuiltinInfo.GetTypeString(Id);
+
+ SmallVector<QualType, 8> ArgTypes;
+
+ bool RequiresICE = false;
+ Error = GE_None;
+ QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
+ RequiresICE, true);
+ if (Error != GE_None)
+ return QualType();
+
+ assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
+
+ while (TypeStr[0] && TypeStr[0] != '.') {
+ QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
+ if (Error != GE_None)
+ return QualType();
+
+ // If this argument is required to be an IntegerConstantExpression and the
+ // caller cares, fill in the bitmask we return.
+ if (RequiresICE && IntegerConstantArgs)
+ *IntegerConstantArgs |= 1 << ArgTypes.size();
+
+ // Do array -> pointer decay. The builtin should use the decayed type.
+ if (Ty->isArrayType())
+ Ty = getArrayDecayedType(Ty);
+
+ ArgTypes.push_back(Ty);
+ }
+
+ assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
+ "'.' should only occur at end of builtin type list!");
+
+ FunctionType::ExtInfo EI;
+ if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
+
+ bool Variadic = (TypeStr[0] == '.');
+
+ // We really shouldn't be making a no-proto type here, especially in C++.
+ if (ArgTypes.empty() && Variadic)
+ return getFunctionNoProtoType(ResType, EI);
+
+ FunctionProtoType::ExtProtoInfo EPI;
+ EPI.ExtInfo = EI;
+ EPI.Variadic = Variadic;
+
+ return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
+}
+
+GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
+ GVALinkage External = GVA_StrongExternal;
+
+ Linkage L = FD->getLinkage();
+ switch (L) {
+ case NoLinkage:
+ case InternalLinkage:
+ case UniqueExternalLinkage:
+ return GVA_Internal;
+
+ case ExternalLinkage:
+ switch (FD->getTemplateSpecializationKind()) {
+ case TSK_Undeclared:
+ case TSK_ExplicitSpecialization:
+ External = GVA_StrongExternal;
+ break;
+
+ case TSK_ExplicitInstantiationDefinition:
+ return GVA_ExplicitTemplateInstantiation;
+
+ case TSK_ExplicitInstantiationDeclaration:
+ case TSK_ImplicitInstantiation:
+ External = GVA_TemplateInstantiation;
+ break;
+ }
+ }
+
+ if (!FD->isInlined())
+ return External;
+
+ if (!getLangOpts().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
+ // GNU or C99 inline semantics. Determine whether this symbol should be
+ // externally visible.
+ if (FD->isInlineDefinitionExternallyVisible())
+ return External;
+
+ // C99 inline semantics, where the symbol is not externally visible.
+ return GVA_C99Inline;
+ }
+
+ // C++0x [temp.explicit]p9:
+ // [ Note: The intent is that an inline function that is the subject of
+ // an explicit instantiation declaration will still be implicitly
+ // instantiated when used so that the body can be considered for
+ // inlining, but that no out-of-line copy of the inline function would be
+ // generated in the translation unit. -- end note ]
+ if (FD->getTemplateSpecializationKind()
+ == TSK_ExplicitInstantiationDeclaration)
+ return GVA_C99Inline;
+
+ return GVA_CXXInline;
+}
+
+GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
+ // If this is a static data member, compute the kind of template
+ // specialization. Otherwise, this variable is not part of a
+ // template.
+ TemplateSpecializationKind TSK = TSK_Undeclared;
+ if (VD->isStaticDataMember())
+ TSK = VD->getTemplateSpecializationKind();
+
+ Linkage L = VD->getLinkage();
+ if (L == ExternalLinkage && getLangOpts().CPlusPlus &&
+ VD->getType()->getLinkage() == UniqueExternalLinkage)
+ L = UniqueExternalLinkage;
+
+ switch (L) {
+ case NoLinkage:
+ case InternalLinkage:
+ case UniqueExternalLinkage:
+ return GVA_Internal;
+
+ case ExternalLinkage:
+ switch (TSK) {
+ case TSK_Undeclared:
+ case TSK_ExplicitSpecialization:
+ return GVA_StrongExternal;
+
+ case TSK_ExplicitInstantiationDeclaration:
+ llvm_unreachable("Variable should not be instantiated");
+ // Fall through to treat this like any other instantiation.
+
+ case TSK_ExplicitInstantiationDefinition:
+ return GVA_ExplicitTemplateInstantiation;
+
+ case TSK_ImplicitInstantiation:
+ return GVA_TemplateInstantiation;
+ }
+ }
+
+ llvm_unreachable("Invalid Linkage!");
+}
+
+bool ASTContext::DeclMustBeEmitted(const Decl *D) {
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
+ if (!VD->isFileVarDecl())
+ return false;
+ } else if (!isa<FunctionDecl>(D))
+ return false;
+
+ // Weak references don't produce any output by themselves.
+ if (D->hasAttr<WeakRefAttr>())
+ return false;
+
+ // Aliases and used decls are required.
+ if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
+ return true;
+
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ // Forward declarations aren't required.
+ if (!FD->doesThisDeclarationHaveABody())
+ return FD->doesDeclarationForceExternallyVisibleDefinition();
+
+ // Constructors and destructors are required.
+ if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
+ return true;
+
+ // The key function for a class is required.
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
+ const CXXRecordDecl *RD = MD->getParent();
+ if (MD->isOutOfLine() && RD->isDynamicClass()) {
+ const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
+ if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
+ return true;
+ }
+ }
+
+ GVALinkage Linkage = GetGVALinkageForFunction(FD);
+
+ // static, static inline, always_inline, and extern inline functions can
+ // always be deferred. Normal inline functions can be deferred in C99/C++.
+ // Implicit template instantiations can also be deferred in C++.
+ if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
+ Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
+ return false;
+ return true;
+ }
+
+ const VarDecl *VD = cast<VarDecl>(D);
+ assert(VD->isFileVarDecl() && "Expected file scoped var");
+
+ if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
+ return false;
+
+ // Structs that have non-trivial constructors or destructors are required.
+
+ // FIXME: Handle references.
+ // FIXME: Be more selective about which constructors we care about.
+ if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
+ if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
+ if (RD->hasDefinition() && !(RD->hasTrivialDefaultConstructor() &&
+ RD->hasTrivialCopyConstructor() &&
+ RD->hasTrivialMoveConstructor() &&
+ RD->hasTrivialDestructor()))
+ return true;
+ }
+ }
+
+ GVALinkage L = GetGVALinkageForVariable(VD);
+ if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
+ if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
+ return false;
+ }
+
+ return true;
+}
+
+CallingConv ASTContext::getDefaultMethodCallConv() {
+ // Pass through to the C++ ABI object
+ return ABI->getDefaultMethodCallConv();
+}
+
+bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
+ // Pass through to the C++ ABI object
+ return ABI->isNearlyEmpty(RD);
+}
+
+MangleContext *ASTContext::createMangleContext() {
+ switch (Target->getCXXABI()) {
+ case CXXABI_ARM:
+ case CXXABI_Itanium:
+ return createItaniumMangleContext(*this, getDiagnostics());
+ case CXXABI_Microsoft:
+ return createMicrosoftMangleContext(*this, getDiagnostics());
+ }
+ llvm_unreachable("Unsupported ABI");
+}
+
+CXXABI::~CXXABI() {}
+
+size_t ASTContext::getSideTableAllocatedMemory() const {
+ return ASTRecordLayouts.getMemorySize()
+ + llvm::capacity_in_bytes(ObjCLayouts)
+ + llvm::capacity_in_bytes(KeyFunctions)
+ + llvm::capacity_in_bytes(ObjCImpls)
+ + llvm::capacity_in_bytes(BlockVarCopyInits)
+ + llvm::capacity_in_bytes(DeclAttrs)
+ + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
+ + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
+ + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
+ + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
+ + llvm::capacity_in_bytes(OverriddenMethods)
+ + llvm::capacity_in_bytes(Types)
+ + llvm::capacity_in_bytes(VariableArrayTypes)
+ + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
+}
+
+unsigned ASTContext::getLambdaManglingNumber(CXXMethodDecl *CallOperator) {
+ CXXRecordDecl *Lambda = CallOperator->getParent();
+ return LambdaMangleContexts[Lambda->getDeclContext()]
+ .getManglingNumber(CallOperator);
+}
+
+
+void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
+ ParamIndices[D] = index;
+}
+
+unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
+ ParameterIndexTable::const_iterator I = ParamIndices.find(D);
+ assert(I != ParamIndices.end() &&
+ "ParmIndices lacks entry set by ParmVarDecl");
+ return I->second;
+}
OpenPOWER on IntegriCloud