diff options
Diffstat (limited to 'contrib/llvm/lib/VMCore')
41 files changed, 26131 insertions, 0 deletions
diff --git a/contrib/llvm/lib/VMCore/AsmWriter.cpp b/contrib/llvm/lib/VMCore/AsmWriter.cpp new file mode 100644 index 0000000..831a996 --- /dev/null +++ b/contrib/llvm/lib/VMCore/AsmWriter.cpp @@ -0,0 +1,2160 @@ +//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This library implements the functionality defined in llvm/Assembly/Writer.h +// +// Note that these routines must be extremely tolerant of various errors in the +// LLVM code, because it can be used for debugging transformations. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Assembly/Writer.h" +#include "llvm/Assembly/PrintModulePass.h" +#include "llvm/Assembly/AssemblyAnnotationWriter.h" +#include "llvm/LLVMContext.h" +#include "llvm/CallingConv.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/InlineAsm.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/Operator.h" +#include "llvm/Module.h" +#include "llvm/ValueSymbolTable.h" +#include "llvm/TypeSymbolTable.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/Support/CFG.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/Dwarf.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/FormattedStream.h" +#include <algorithm> +#include <cctype> +#include <map> +using namespace llvm; + +// Make virtual table appear in this compilation unit. +AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {} + +//===----------------------------------------------------------------------===// +// Helper Functions +//===----------------------------------------------------------------------===// + +static const Module *getModuleFromVal(const Value *V) { + if (const Argument *MA = dyn_cast<Argument>(V)) + return MA->getParent() ? MA->getParent()->getParent() : 0; + + if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) + return BB->getParent() ? BB->getParent()->getParent() : 0; + + if (const Instruction *I = dyn_cast<Instruction>(V)) { + const Function *M = I->getParent() ? I->getParent()->getParent() : 0; + return M ? M->getParent() : 0; + } + + if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) + return GV->getParent(); + return 0; +} + +// PrintEscapedString - Print each character of the specified string, escaping +// it if it is not printable or if it is an escape char. +static void PrintEscapedString(StringRef Name, raw_ostream &Out) { + for (unsigned i = 0, e = Name.size(); i != e; ++i) { + unsigned char C = Name[i]; + if (isprint(C) && C != '\\' && C != '"') + Out << C; + else + Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F); + } +} + +enum PrefixType { + GlobalPrefix, + LabelPrefix, + LocalPrefix, + NoPrefix +}; + +/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either +/// prefixed with % (if the string only contains simple characters) or is +/// surrounded with ""'s (if it has special chars in it). Print it out. +static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) { + assert(Name.data() && "Cannot get empty name!"); + switch (Prefix) { + default: llvm_unreachable("Bad prefix!"); + case NoPrefix: break; + case GlobalPrefix: OS << '@'; break; + case LabelPrefix: break; + case LocalPrefix: OS << '%'; break; + } + + // Scan the name to see if it needs quotes first. + bool NeedsQuotes = isdigit(Name[0]); + if (!NeedsQuotes) { + for (unsigned i = 0, e = Name.size(); i != e; ++i) { + char C = Name[i]; + if (!isalnum(C) && C != '-' && C != '.' && C != '_') { + NeedsQuotes = true; + break; + } + } + } + + // If we didn't need any quotes, just write out the name in one blast. + if (!NeedsQuotes) { + OS << Name; + return; + } + + // Okay, we need quotes. Output the quotes and escape any scary characters as + // needed. + OS << '"'; + PrintEscapedString(Name, OS); + OS << '"'; +} + +/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either +/// prefixed with % (if the string only contains simple characters) or is +/// surrounded with ""'s (if it has special chars in it). Print it out. +static void PrintLLVMName(raw_ostream &OS, const Value *V) { + PrintLLVMName(OS, V->getName(), + isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix); +} + +//===----------------------------------------------------------------------===// +// TypePrinting Class: Type printing machinery +//===----------------------------------------------------------------------===// + +static DenseMap<const Type *, std::string> &getTypeNamesMap(void *M) { + return *static_cast<DenseMap<const Type *, std::string>*>(M); +} + +void TypePrinting::clear() { + getTypeNamesMap(TypeNames).clear(); +} + +bool TypePrinting::hasTypeName(const Type *Ty) const { + return getTypeNamesMap(TypeNames).count(Ty); +} + +void TypePrinting::addTypeName(const Type *Ty, const std::string &N) { + getTypeNamesMap(TypeNames).insert(std::make_pair(Ty, N)); +} + + +TypePrinting::TypePrinting() { + TypeNames = new DenseMap<const Type *, std::string>(); +} + +TypePrinting::~TypePrinting() { + delete &getTypeNamesMap(TypeNames); +} + +/// CalcTypeName - Write the specified type to the specified raw_ostream, making +/// use of type names or up references to shorten the type name where possible. +void TypePrinting::CalcTypeName(const Type *Ty, + SmallVectorImpl<const Type *> &TypeStack, + raw_ostream &OS, bool IgnoreTopLevelName) { + // Check to see if the type is named. + if (!IgnoreTopLevelName) { + DenseMap<const Type *, std::string> &TM = getTypeNamesMap(TypeNames); + DenseMap<const Type *, std::string>::iterator I = TM.find(Ty); + if (I != TM.end()) { + OS << I->second; + return; + } + } + + // Check to see if the Type is already on the stack... + unsigned Slot = 0, CurSize = TypeStack.size(); + while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type + + // This is another base case for the recursion. In this case, we know + // that we have looped back to a type that we have previously visited. + // Generate the appropriate upreference to handle this. + if (Slot < CurSize) { + OS << '\\' << unsigned(CurSize-Slot); // Here's the upreference + return; + } + + TypeStack.push_back(Ty); // Recursive case: Add us to the stack.. + + switch (Ty->getTypeID()) { + case Type::VoidTyID: OS << "void"; break; + case Type::FloatTyID: OS << "float"; break; + case Type::DoubleTyID: OS << "double"; break; + case Type::X86_FP80TyID: OS << "x86_fp80"; break; + case Type::FP128TyID: OS << "fp128"; break; + case Type::PPC_FP128TyID: OS << "ppc_fp128"; break; + case Type::LabelTyID: OS << "label"; break; + case Type::MetadataTyID: OS << "metadata"; break; + case Type::IntegerTyID: + OS << 'i' << cast<IntegerType>(Ty)->getBitWidth(); + break; + + case Type::FunctionTyID: { + const FunctionType *FTy = cast<FunctionType>(Ty); + CalcTypeName(FTy->getReturnType(), TypeStack, OS); + OS << " ("; + for (FunctionType::param_iterator I = FTy->param_begin(), + E = FTy->param_end(); I != E; ++I) { + if (I != FTy->param_begin()) + OS << ", "; + CalcTypeName(*I, TypeStack, OS); + } + if (FTy->isVarArg()) { + if (FTy->getNumParams()) OS << ", "; + OS << "..."; + } + OS << ')'; + break; + } + case Type::StructTyID: { + const StructType *STy = cast<StructType>(Ty); + if (STy->isPacked()) + OS << '<'; + OS << '{'; + for (StructType::element_iterator I = STy->element_begin(), + E = STy->element_end(); I != E; ++I) { + OS << ' '; + CalcTypeName(*I, TypeStack, OS); + if (llvm::next(I) == STy->element_end()) + OS << ' '; + else + OS << ','; + } + OS << '}'; + if (STy->isPacked()) + OS << '>'; + break; + } + case Type::PointerTyID: { + const PointerType *PTy = cast<PointerType>(Ty); + CalcTypeName(PTy->getElementType(), TypeStack, OS); + if (unsigned AddressSpace = PTy->getAddressSpace()) + OS << " addrspace(" << AddressSpace << ')'; + OS << '*'; + break; + } + case Type::ArrayTyID: { + const ArrayType *ATy = cast<ArrayType>(Ty); + OS << '[' << ATy->getNumElements() << " x "; + CalcTypeName(ATy->getElementType(), TypeStack, OS); + OS << ']'; + break; + } + case Type::VectorTyID: { + const VectorType *PTy = cast<VectorType>(Ty); + OS << "<" << PTy->getNumElements() << " x "; + CalcTypeName(PTy->getElementType(), TypeStack, OS); + OS << '>'; + break; + } + case Type::OpaqueTyID: + OS << "opaque"; + break; + default: + OS << "<unrecognized-type>"; + break; + } + + TypeStack.pop_back(); // Remove self from stack. +} + +/// printTypeInt - The internal guts of printing out a type that has a +/// potentially named portion. +/// +void TypePrinting::print(const Type *Ty, raw_ostream &OS, + bool IgnoreTopLevelName) { + // Check to see if the type is named. + DenseMap<const Type*, std::string> &TM = getTypeNamesMap(TypeNames); + if (!IgnoreTopLevelName) { + DenseMap<const Type*, std::string>::iterator I = TM.find(Ty); + if (I != TM.end()) { + OS << I->second; + return; + } + } + + // Otherwise we have a type that has not been named but is a derived type. + // Carefully recurse the type hierarchy to print out any contained symbolic + // names. + SmallVector<const Type *, 16> TypeStack; + std::string TypeName; + + raw_string_ostream TypeOS(TypeName); + CalcTypeName(Ty, TypeStack, TypeOS, IgnoreTopLevelName); + OS << TypeOS.str(); + + // Cache type name for later use. + if (!IgnoreTopLevelName) + TM.insert(std::make_pair(Ty, TypeOS.str())); +} + +namespace { + class TypeFinder { + // To avoid walking constant expressions multiple times and other IR + // objects, we keep several helper maps. + DenseSet<const Value*> VisitedConstants; + DenseSet<const Type*> VisitedTypes; + + TypePrinting &TP; + std::vector<const Type*> &NumberedTypes; + public: + TypeFinder(TypePrinting &tp, std::vector<const Type*> &numberedTypes) + : TP(tp), NumberedTypes(numberedTypes) {} + + void Run(const Module &M) { + // Get types from the type symbol table. This gets opaque types referened + // only through derived named types. + const TypeSymbolTable &ST = M.getTypeSymbolTable(); + for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end(); + TI != E; ++TI) + IncorporateType(TI->second); + + // Get types from global variables. + for (Module::const_global_iterator I = M.global_begin(), + E = M.global_end(); I != E; ++I) { + IncorporateType(I->getType()); + if (I->hasInitializer()) + IncorporateValue(I->getInitializer()); + } + + // Get types from aliases. + for (Module::const_alias_iterator I = M.alias_begin(), + E = M.alias_end(); I != E; ++I) { + IncorporateType(I->getType()); + IncorporateValue(I->getAliasee()); + } + + // Get types from functions. + for (Module::const_iterator FI = M.begin(), E = M.end(); FI != E; ++FI) { + IncorporateType(FI->getType()); + + for (Function::const_iterator BB = FI->begin(), E = FI->end(); + BB != E;++BB) + for (BasicBlock::const_iterator II = BB->begin(), + E = BB->end(); II != E; ++II) { + const Instruction &I = *II; + // Incorporate the type of the instruction and all its operands. + IncorporateType(I.getType()); + for (User::const_op_iterator OI = I.op_begin(), OE = I.op_end(); + OI != OE; ++OI) + IncorporateValue(*OI); + } + } + } + + private: + void IncorporateType(const Type *Ty) { + // Check to see if we're already visited this type. + if (!VisitedTypes.insert(Ty).second) + return; + + // If this is a structure or opaque type, add a name for the type. + if (((Ty->isStructTy() && cast<StructType>(Ty)->getNumElements()) + || Ty->isOpaqueTy()) && !TP.hasTypeName(Ty)) { + TP.addTypeName(Ty, "%"+utostr(unsigned(NumberedTypes.size()))); + NumberedTypes.push_back(Ty); + } + + // Recursively walk all contained types. + for (Type::subtype_iterator I = Ty->subtype_begin(), + E = Ty->subtype_end(); I != E; ++I) + IncorporateType(*I); + } + + /// IncorporateValue - This method is used to walk operand lists finding + /// types hiding in constant expressions and other operands that won't be + /// walked in other ways. GlobalValues, basic blocks, instructions, and + /// inst operands are all explicitly enumerated. + void IncorporateValue(const Value *V) { + if (V == 0 || !isa<Constant>(V) || isa<GlobalValue>(V)) return; + + // Already visited? + if (!VisitedConstants.insert(V).second) + return; + + // Check this type. + IncorporateType(V->getType()); + + // Look in operands for types. + const Constant *C = cast<Constant>(V); + for (Constant::const_op_iterator I = C->op_begin(), + E = C->op_end(); I != E;++I) + IncorporateValue(*I); + } + }; +} // end anonymous namespace + + +/// AddModuleTypesToPrinter - Add all of the symbolic type names for types in +/// the specified module to the TypePrinter and all numbered types to it and the +/// NumberedTypes table. +static void AddModuleTypesToPrinter(TypePrinting &TP, + std::vector<const Type*> &NumberedTypes, + const Module *M) { + if (M == 0) return; + + // If the module has a symbol table, take all global types and stuff their + // names into the TypeNames map. + const TypeSymbolTable &ST = M->getTypeSymbolTable(); + for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end(); + TI != E; ++TI) { + const Type *Ty = cast<Type>(TI->second); + + // As a heuristic, don't insert pointer to primitive types, because + // they are used too often to have a single useful name. + if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) { + const Type *PETy = PTy->getElementType(); + if ((PETy->isPrimitiveType() || PETy->isIntegerTy()) && + !PETy->isOpaqueTy()) + continue; + } + + // Likewise don't insert primitives either. + if (Ty->isIntegerTy() || Ty->isPrimitiveType()) + continue; + + // Get the name as a string and insert it into TypeNames. + std::string NameStr; + raw_string_ostream NameROS(NameStr); + formatted_raw_ostream NameOS(NameROS); + PrintLLVMName(NameOS, TI->first, LocalPrefix); + NameOS.flush(); + TP.addTypeName(Ty, NameStr); + } + + // Walk the entire module to find references to unnamed structure and opaque + // types. This is required for correctness by opaque types (because multiple + // uses of an unnamed opaque type needs to be referred to by the same ID) and + // it shrinks complex recursive structure types substantially in some cases. + TypeFinder(TP, NumberedTypes).Run(*M); +} + + +/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic +/// type, iff there is an entry in the modules symbol table for the specified +/// type or one of it's component types. +/// +void llvm::WriteTypeSymbolic(raw_ostream &OS, const Type *Ty, const Module *M) { + TypePrinting Printer; + std::vector<const Type*> NumberedTypes; + AddModuleTypesToPrinter(Printer, NumberedTypes, M); + Printer.print(Ty, OS); +} + +//===----------------------------------------------------------------------===// +// SlotTracker Class: Enumerate slot numbers for unnamed values +//===----------------------------------------------------------------------===// + +namespace { + +/// This class provides computation of slot numbers for LLVM Assembly writing. +/// +class SlotTracker { +public: + /// ValueMap - A mapping of Values to slot numbers. + typedef DenseMap<const Value*, unsigned> ValueMap; + +private: + /// TheModule - The module for which we are holding slot numbers. + const Module* TheModule; + + /// TheFunction - The function for which we are holding slot numbers. + const Function* TheFunction; + bool FunctionProcessed; + + /// mMap - The TypePlanes map for the module level data. + ValueMap mMap; + unsigned mNext; + + /// fMap - The TypePlanes map for the function level data. + ValueMap fMap; + unsigned fNext; + + /// mdnMap - Map for MDNodes. + DenseMap<const MDNode*, unsigned> mdnMap; + unsigned mdnNext; +public: + /// Construct from a module + explicit SlotTracker(const Module *M); + /// Construct from a function, starting out in incorp state. + explicit SlotTracker(const Function *F); + + /// Return the slot number of the specified value in it's type + /// plane. If something is not in the SlotTracker, return -1. + int getLocalSlot(const Value *V); + int getGlobalSlot(const GlobalValue *V); + int getMetadataSlot(const MDNode *N); + + /// If you'd like to deal with a function instead of just a module, use + /// this method to get its data into the SlotTracker. + void incorporateFunction(const Function *F) { + TheFunction = F; + FunctionProcessed = false; + } + + /// After calling incorporateFunction, use this method to remove the + /// most recently incorporated function from the SlotTracker. This + /// will reset the state of the machine back to just the module contents. + void purgeFunction(); + + /// MDNode map iterators. + typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator; + mdn_iterator mdn_begin() { return mdnMap.begin(); } + mdn_iterator mdn_end() { return mdnMap.end(); } + unsigned mdn_size() const { return mdnMap.size(); } + bool mdn_empty() const { return mdnMap.empty(); } + + /// This function does the actual initialization. + inline void initialize(); + + // Implementation Details +private: + /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. + void CreateModuleSlot(const GlobalValue *V); + + /// CreateMetadataSlot - Insert the specified MDNode* into the slot table. + void CreateMetadataSlot(const MDNode *N); + + /// CreateFunctionSlot - Insert the specified Value* into the slot table. + void CreateFunctionSlot(const Value *V); + + /// Add all of the module level global variables (and their initializers) + /// and function declarations, but not the contents of those functions. + void processModule(); + + /// Add all of the functions arguments, basic blocks, and instructions. + void processFunction(); + + SlotTracker(const SlotTracker &); // DO NOT IMPLEMENT + void operator=(const SlotTracker &); // DO NOT IMPLEMENT +}; + +} // end anonymous namespace + + +static SlotTracker *createSlotTracker(const Value *V) { + if (const Argument *FA = dyn_cast<Argument>(V)) + return new SlotTracker(FA->getParent()); + + if (const Instruction *I = dyn_cast<Instruction>(V)) + return new SlotTracker(I->getParent()->getParent()); + + if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) + return new SlotTracker(BB->getParent()); + + if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) + return new SlotTracker(GV->getParent()); + + if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) + return new SlotTracker(GA->getParent()); + + if (const Function *Func = dyn_cast<Function>(V)) + return new SlotTracker(Func); + + if (const MDNode *MD = dyn_cast<MDNode>(V)) { + if (!MD->isFunctionLocal()) + return new SlotTracker(MD->getFunction()); + + return new SlotTracker((Function *)0); + } + + return 0; +} + +#if 0 +#define ST_DEBUG(X) dbgs() << X +#else +#define ST_DEBUG(X) +#endif + +// Module level constructor. Causes the contents of the Module (sans functions) +// to be added to the slot table. +SlotTracker::SlotTracker(const Module *M) + : TheModule(M), TheFunction(0), FunctionProcessed(false), + mNext(0), fNext(0), mdnNext(0) { +} + +// Function level constructor. Causes the contents of the Module and the one +// function provided to be added to the slot table. +SlotTracker::SlotTracker(const Function *F) + : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false), + mNext(0), fNext(0), mdnNext(0) { +} + +inline void SlotTracker::initialize() { + if (TheModule) { + processModule(); + TheModule = 0; ///< Prevent re-processing next time we're called. + } + + if (TheFunction && !FunctionProcessed) + processFunction(); +} + +// Iterate through all the global variables, functions, and global +// variable initializers and create slots for them. +void SlotTracker::processModule() { + ST_DEBUG("begin processModule!\n"); + + // Add all of the unnamed global variables to the value table. + for (Module::const_global_iterator I = TheModule->global_begin(), + E = TheModule->global_end(); I != E; ++I) { + if (!I->hasName()) + CreateModuleSlot(I); + } + + // Add metadata used by named metadata. + for (Module::const_named_metadata_iterator + I = TheModule->named_metadata_begin(), + E = TheModule->named_metadata_end(); I != E; ++I) { + const NamedMDNode *NMD = I; + for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) + CreateMetadataSlot(NMD->getOperand(i)); + } + + // Add all the unnamed functions to the table. + for (Module::const_iterator I = TheModule->begin(), E = TheModule->end(); + I != E; ++I) + if (!I->hasName()) + CreateModuleSlot(I); + + ST_DEBUG("end processModule!\n"); +} + +// Process the arguments, basic blocks, and instructions of a function. +void SlotTracker::processFunction() { + ST_DEBUG("begin processFunction!\n"); + fNext = 0; + + // Add all the function arguments with no names. + for(Function::const_arg_iterator AI = TheFunction->arg_begin(), + AE = TheFunction->arg_end(); AI != AE; ++AI) + if (!AI->hasName()) + CreateFunctionSlot(AI); + + ST_DEBUG("Inserting Instructions:\n"); + + SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst; + + // Add all of the basic blocks and instructions with no names. + for (Function::const_iterator BB = TheFunction->begin(), + E = TheFunction->end(); BB != E; ++BB) { + if (!BB->hasName()) + CreateFunctionSlot(BB); + + for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; + ++I) { + if (!I->getType()->isVoidTy() && !I->hasName()) + CreateFunctionSlot(I); + + // Intrinsics can directly use metadata. We allow direct calls to any + // llvm.foo function here, because the target may not be linked into the + // optimizer. + if (const CallInst *CI = dyn_cast<CallInst>(I)) { + if (Function *F = CI->getCalledFunction()) + if (F->getName().startswith("llvm.")) + for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) + if (MDNode *N = dyn_cast_or_null<MDNode>(I->getOperand(i))) + CreateMetadataSlot(N); + } + + // Process metadata attached with this instruction. + I->getAllMetadata(MDForInst); + for (unsigned i = 0, e = MDForInst.size(); i != e; ++i) + CreateMetadataSlot(MDForInst[i].second); + MDForInst.clear(); + } + } + + FunctionProcessed = true; + + ST_DEBUG("end processFunction!\n"); +} + +/// Clean up after incorporating a function. This is the only way to get out of +/// the function incorporation state that affects get*Slot/Create*Slot. Function +/// incorporation state is indicated by TheFunction != 0. +void SlotTracker::purgeFunction() { + ST_DEBUG("begin purgeFunction!\n"); + fMap.clear(); // Simply discard the function level map + TheFunction = 0; + FunctionProcessed = false; + ST_DEBUG("end purgeFunction!\n"); +} + +/// getGlobalSlot - Get the slot number of a global value. +int SlotTracker::getGlobalSlot(const GlobalValue *V) { + // Check for uninitialized state and do lazy initialization. + initialize(); + + // Find the type plane in the module map + ValueMap::iterator MI = mMap.find(V); + return MI == mMap.end() ? -1 : (int)MI->second; +} + +/// getMetadataSlot - Get the slot number of a MDNode. +int SlotTracker::getMetadataSlot(const MDNode *N) { + // Check for uninitialized state and do lazy initialization. + initialize(); + + // Find the type plane in the module map + mdn_iterator MI = mdnMap.find(N); + return MI == mdnMap.end() ? -1 : (int)MI->second; +} + + +/// getLocalSlot - Get the slot number for a value that is local to a function. +int SlotTracker::getLocalSlot(const Value *V) { + assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!"); + + // Check for uninitialized state and do lazy initialization. + initialize(); + + ValueMap::iterator FI = fMap.find(V); + return FI == fMap.end() ? -1 : (int)FI->second; +} + + +/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. +void SlotTracker::CreateModuleSlot(const GlobalValue *V) { + assert(V && "Can't insert a null Value into SlotTracker!"); + assert(!V->getType()->isVoidTy() && "Doesn't need a slot!"); + assert(!V->hasName() && "Doesn't need a slot!"); + + unsigned DestSlot = mNext++; + mMap[V] = DestSlot; + + ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" << + DestSlot << " ["); + // G = Global, F = Function, A = Alias, o = other + ST_DEBUG((isa<GlobalVariable>(V) ? 'G' : + (isa<Function>(V) ? 'F' : + (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n"); +} + +/// CreateSlot - Create a new slot for the specified value if it has no name. +void SlotTracker::CreateFunctionSlot(const Value *V) { + assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!"); + + unsigned DestSlot = fNext++; + fMap[V] = DestSlot; + + // G = Global, F = Function, o = other + ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" << + DestSlot << " [o]\n"); +} + +/// CreateModuleSlot - Insert the specified MDNode* into the slot table. +void SlotTracker::CreateMetadataSlot(const MDNode *N) { + assert(N && "Can't insert a null Value into SlotTracker!"); + + // Don't insert if N is a function-local metadata, these are always printed + // inline. + if (!N->isFunctionLocal()) { + mdn_iterator I = mdnMap.find(N); + if (I != mdnMap.end()) + return; + + unsigned DestSlot = mdnNext++; + mdnMap[N] = DestSlot; + } + + // Recursively add any MDNodes referenced by operands. + for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) + if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i))) + CreateMetadataSlot(Op); +} + +//===----------------------------------------------------------------------===// +// AsmWriter Implementation +//===----------------------------------------------------------------------===// + +static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, + TypePrinting *TypePrinter, + SlotTracker *Machine, + const Module *Context); + + + +static const char *getPredicateText(unsigned predicate) { + const char * pred = "unknown"; + switch (predicate) { + case FCmpInst::FCMP_FALSE: pred = "false"; break; + case FCmpInst::FCMP_OEQ: pred = "oeq"; break; + case FCmpInst::FCMP_OGT: pred = "ogt"; break; + case FCmpInst::FCMP_OGE: pred = "oge"; break; + case FCmpInst::FCMP_OLT: pred = "olt"; break; + case FCmpInst::FCMP_OLE: pred = "ole"; break; + case FCmpInst::FCMP_ONE: pred = "one"; break; + case FCmpInst::FCMP_ORD: pred = "ord"; break; + case FCmpInst::FCMP_UNO: pred = "uno"; break; + case FCmpInst::FCMP_UEQ: pred = "ueq"; break; + case FCmpInst::FCMP_UGT: pred = "ugt"; break; + case FCmpInst::FCMP_UGE: pred = "uge"; break; + case FCmpInst::FCMP_ULT: pred = "ult"; break; + case FCmpInst::FCMP_ULE: pred = "ule"; break; + case FCmpInst::FCMP_UNE: pred = "une"; break; + case FCmpInst::FCMP_TRUE: pred = "true"; break; + case ICmpInst::ICMP_EQ: pred = "eq"; break; + case ICmpInst::ICMP_NE: pred = "ne"; break; + case ICmpInst::ICMP_SGT: pred = "sgt"; break; + case ICmpInst::ICMP_SGE: pred = "sge"; break; + case ICmpInst::ICMP_SLT: pred = "slt"; break; + case ICmpInst::ICMP_SLE: pred = "sle"; break; + case ICmpInst::ICMP_UGT: pred = "ugt"; break; + case ICmpInst::ICMP_UGE: pred = "uge"; break; + case ICmpInst::ICMP_ULT: pred = "ult"; break; + case ICmpInst::ICMP_ULE: pred = "ule"; break; + } + return pred; +} + + +static void WriteOptimizationInfo(raw_ostream &Out, const User *U) { + if (const OverflowingBinaryOperator *OBO = + dyn_cast<OverflowingBinaryOperator>(U)) { + if (OBO->hasNoUnsignedWrap()) + Out << " nuw"; + if (OBO->hasNoSignedWrap()) + Out << " nsw"; + } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(U)) { + if (Div->isExact()) + Out << " exact"; + } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) { + if (GEP->isInBounds()) + Out << " inbounds"; + } +} + +static void WriteConstantInternal(raw_ostream &Out, const Constant *CV, + TypePrinting &TypePrinter, + SlotTracker *Machine, + const Module *Context) { + if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { + if (CI->getType()->isIntegerTy(1)) { + Out << (CI->getZExtValue() ? "true" : "false"); + return; + } + Out << CI->getValue(); + return; + } + + if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { + if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble || + &CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle) { + // We would like to output the FP constant value in exponential notation, + // but we cannot do this if doing so will lose precision. Check here to + // make sure that we only output it in exponential format if we can parse + // the value back and get the same value. + // + bool ignored; + bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble; + double Val = isDouble ? CFP->getValueAPF().convertToDouble() : + CFP->getValueAPF().convertToFloat(); + SmallString<128> StrVal; + raw_svector_ostream(StrVal) << Val; + + // Check to make sure that the stringized number is not some string like + // "Inf" or NaN, that atof will accept, but the lexer will not. Check + // that the string matches the "[-+]?[0-9]" regex. + // + if ((StrVal[0] >= '0' && StrVal[0] <= '9') || + ((StrVal[0] == '-' || StrVal[0] == '+') && + (StrVal[1] >= '0' && StrVal[1] <= '9'))) { + // Reparse stringized version! + if (atof(StrVal.c_str()) == Val) { + Out << StrVal.str(); + return; + } + } + // Otherwise we could not reparse it to exactly the same value, so we must + // output the string in hexadecimal format! Note that loading and storing + // floating point types changes the bits of NaNs on some hosts, notably + // x86, so we must not use these types. + assert(sizeof(double) == sizeof(uint64_t) && + "assuming that double is 64 bits!"); + char Buffer[40]; + APFloat apf = CFP->getValueAPF(); + // Floats are represented in ASCII IR as double, convert. + if (!isDouble) + apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, + &ignored); + Out << "0x" << + utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()), + Buffer+40); + return; + } + + // Some form of long double. These appear as a magic letter identifying + // the type, then a fixed number of hex digits. + Out << "0x"; + if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) { + Out << 'K'; + // api needed to prevent premature destruction + APInt api = CFP->getValueAPF().bitcastToAPInt(); + const uint64_t* p = api.getRawData(); + uint64_t word = p[1]; + int shiftcount=12; + int width = api.getBitWidth(); + for (int j=0; j<width; j+=4, shiftcount-=4) { + unsigned int nibble = (word>>shiftcount) & 15; + if (nibble < 10) + Out << (unsigned char)(nibble + '0'); + else + Out << (unsigned char)(nibble - 10 + 'A'); + if (shiftcount == 0 && j+4 < width) { + word = *p; + shiftcount = 64; + if (width-j-4 < 64) + shiftcount = width-j-4; + } + } + return; + } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) + Out << 'L'; + else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) + Out << 'M'; + else + llvm_unreachable("Unsupported floating point type"); + // api needed to prevent premature destruction + APInt api = CFP->getValueAPF().bitcastToAPInt(); + const uint64_t* p = api.getRawData(); + uint64_t word = *p; + int shiftcount=60; + int width = api.getBitWidth(); + for (int j=0; j<width; j+=4, shiftcount-=4) { + unsigned int nibble = (word>>shiftcount) & 15; + if (nibble < 10) + Out << (unsigned char)(nibble + '0'); + else + Out << (unsigned char)(nibble - 10 + 'A'); + if (shiftcount == 0 && j+4 < width) { + word = *(++p); + shiftcount = 64; + if (width-j-4 < 64) + shiftcount = width-j-4; + } + } + return; + } + + if (isa<ConstantAggregateZero>(CV)) { + Out << "zeroinitializer"; + return; + } + + if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) { + Out << "blockaddress("; + WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine, + Context); + Out << ", "; + WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine, + Context); + Out << ")"; + return; + } + + if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) { + // As a special case, print the array as a string if it is an array of + // i8 with ConstantInt values. + // + const Type *ETy = CA->getType()->getElementType(); + if (CA->isString()) { + Out << "c\""; + PrintEscapedString(CA->getAsString(), Out); + Out << '"'; + } else { // Cannot output in string format... + Out << '['; + if (CA->getNumOperands()) { + TypePrinter.print(ETy, Out); + Out << ' '; + WriteAsOperandInternal(Out, CA->getOperand(0), + &TypePrinter, Machine, + Context); + for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { + Out << ", "; + TypePrinter.print(ETy, Out); + Out << ' '; + WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine, + Context); + } + } + Out << ']'; + } + return; + } + + if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) { + if (CS->getType()->isPacked()) + Out << '<'; + Out << '{'; + unsigned N = CS->getNumOperands(); + if (N) { + Out << ' '; + TypePrinter.print(CS->getOperand(0)->getType(), Out); + Out << ' '; + + WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine, + Context); + + for (unsigned i = 1; i < N; i++) { + Out << ", "; + TypePrinter.print(CS->getOperand(i)->getType(), Out); + Out << ' '; + + WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine, + Context); + } + Out << ' '; + } + + Out << '}'; + if (CS->getType()->isPacked()) + Out << '>'; + return; + } + + if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) { + const Type *ETy = CP->getType()->getElementType(); + assert(CP->getNumOperands() > 0 && + "Number of operands for a PackedConst must be > 0"); + Out << '<'; + TypePrinter.print(ETy, Out); + Out << ' '; + WriteAsOperandInternal(Out, CP->getOperand(0), &TypePrinter, Machine, + Context); + for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) { + Out << ", "; + TypePrinter.print(ETy, Out); + Out << ' '; + WriteAsOperandInternal(Out, CP->getOperand(i), &TypePrinter, Machine, + Context); + } + Out << '>'; + return; + } + + if (isa<ConstantPointerNull>(CV)) { + Out << "null"; + return; + } + + if (isa<UndefValue>(CV)) { + Out << "undef"; + return; + } + + if (const MDNode *Node = dyn_cast<MDNode>(CV)) { + Out << "!" << Machine->getMetadataSlot(Node); + return; + } + + if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { + Out << CE->getOpcodeName(); + WriteOptimizationInfo(Out, CE); + if (CE->isCompare()) + Out << ' ' << getPredicateText(CE->getPredicate()); + Out << " ("; + + for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) { + TypePrinter.print((*OI)->getType(), Out); + Out << ' '; + WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context); + if (OI+1 != CE->op_end()) + Out << ", "; + } + + if (CE->hasIndices()) { + const SmallVector<unsigned, 4> &Indices = CE->getIndices(); + for (unsigned i = 0, e = Indices.size(); i != e; ++i) + Out << ", " << Indices[i]; + } + + if (CE->isCast()) { + Out << " to "; + TypePrinter.print(CE->getType(), Out); + } + + Out << ')'; + return; + } + + Out << "<placeholder or erroneous Constant>"; +} + +static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node, + TypePrinting *TypePrinter, + SlotTracker *Machine, + const Module *Context) { + Out << "!{"; + for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) { + const Value *V = Node->getOperand(mi); + if (V == 0) + Out << "null"; + else { + TypePrinter->print(V->getType(), Out); + Out << ' '; + WriteAsOperandInternal(Out, Node->getOperand(mi), + TypePrinter, Machine, Context); + } + if (mi + 1 != me) + Out << ", "; + } + + Out << "}"; +} + + +/// WriteAsOperand - Write the name of the specified value out to the specified +/// ostream. This can be useful when you just want to print int %reg126, not +/// the whole instruction that generated it. +/// +static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, + TypePrinting *TypePrinter, + SlotTracker *Machine, + const Module *Context) { + if (V->hasName()) { + PrintLLVMName(Out, V); + return; + } + + const Constant *CV = dyn_cast<Constant>(V); + if (CV && !isa<GlobalValue>(CV)) { + assert(TypePrinter && "Constants require TypePrinting!"); + WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context); + return; + } + + if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { + Out << "asm "; + if (IA->hasSideEffects()) + Out << "sideeffect "; + if (IA->isAlignStack()) + Out << "alignstack "; + Out << '"'; + PrintEscapedString(IA->getAsmString(), Out); + Out << "\", \""; + PrintEscapedString(IA->getConstraintString(), Out); + Out << '"'; + return; + } + + if (const MDNode *N = dyn_cast<MDNode>(V)) { + if (N->isFunctionLocal()) { + // Print metadata inline, not via slot reference number. + WriteMDNodeBodyInternal(Out, N, TypePrinter, Machine, Context); + return; + } + + if (!Machine) { + if (N->isFunctionLocal()) + Machine = new SlotTracker(N->getFunction()); + else + Machine = new SlotTracker(Context); + } + Out << '!' << Machine->getMetadataSlot(N); + return; + } + + if (const MDString *MDS = dyn_cast<MDString>(V)) { + Out << "!\""; + PrintEscapedString(MDS->getString(), Out); + Out << '"'; + return; + } + + if (V->getValueID() == Value::PseudoSourceValueVal || + V->getValueID() == Value::FixedStackPseudoSourceValueVal) { + V->print(Out); + return; + } + + char Prefix = '%'; + int Slot; + if (Machine) { + if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { + Slot = Machine->getGlobalSlot(GV); + Prefix = '@'; + } else { + Slot = Machine->getLocalSlot(V); + } + } else { + Machine = createSlotTracker(V); + if (Machine) { + if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { + Slot = Machine->getGlobalSlot(GV); + Prefix = '@'; + } else { + Slot = Machine->getLocalSlot(V); + } + delete Machine; + } else { + Slot = -1; + } + } + + if (Slot != -1) + Out << Prefix << Slot; + else + Out << "<badref>"; +} + +void llvm::WriteAsOperand(raw_ostream &Out, const Value *V, + bool PrintType, const Module *Context) { + + // Fast path: Don't construct and populate a TypePrinting object if we + // won't be needing any types printed. + if (!PrintType && + ((!isa<Constant>(V) && !isa<MDNode>(V)) || + V->hasName() || isa<GlobalValue>(V))) { + WriteAsOperandInternal(Out, V, 0, 0, Context); + return; + } + + if (Context == 0) Context = getModuleFromVal(V); + + TypePrinting TypePrinter; + std::vector<const Type*> NumberedTypes; + AddModuleTypesToPrinter(TypePrinter, NumberedTypes, Context); + if (PrintType) { + TypePrinter.print(V->getType(), Out); + Out << ' '; + } + + WriteAsOperandInternal(Out, V, &TypePrinter, 0, Context); +} + +namespace { + +class AssemblyWriter { + formatted_raw_ostream &Out; + SlotTracker &Machine; + const Module *TheModule; + TypePrinting TypePrinter; + AssemblyAnnotationWriter *AnnotationWriter; + std::vector<const Type*> NumberedTypes; + +public: + inline AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, + const Module *M, + AssemblyAnnotationWriter *AAW) + : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) { + AddModuleTypesToPrinter(TypePrinter, NumberedTypes, M); + } + + void printMDNodeBody(const MDNode *MD); + void printNamedMDNode(const NamedMDNode *NMD); + + void printModule(const Module *M); + + void writeOperand(const Value *Op, bool PrintType); + void writeParamOperand(const Value *Operand, Attributes Attrs); + + void writeAllMDNodes(); + + void printTypeSymbolTable(const TypeSymbolTable &ST); + void printGlobal(const GlobalVariable *GV); + void printAlias(const GlobalAlias *GV); + void printFunction(const Function *F); + void printArgument(const Argument *FA, Attributes Attrs); + void printBasicBlock(const BasicBlock *BB); + void printInstruction(const Instruction &I); + +private: + // printInfoComment - Print a little comment after the instruction indicating + // which slot it occupies. + void printInfoComment(const Value &V); +}; +} // end of anonymous namespace + +void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) { + if (Operand == 0) { + Out << "<null operand!>"; + return; + } + if (PrintType) { + TypePrinter.print(Operand->getType(), Out); + Out << ' '; + } + WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule); +} + +void AssemblyWriter::writeParamOperand(const Value *Operand, + Attributes Attrs) { + if (Operand == 0) { + Out << "<null operand!>"; + return; + } + + // Print the type + TypePrinter.print(Operand->getType(), Out); + // Print parameter attributes list + if (Attrs != Attribute::None) + Out << ' ' << Attribute::getAsString(Attrs); + Out << ' '; + // Print the operand + WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule); +} + +void AssemblyWriter::printModule(const Module *M) { + if (!M->getModuleIdentifier().empty() && + // Don't print the ID if it will start a new line (which would + // require a comment char before it). + M->getModuleIdentifier().find('\n') == std::string::npos) + Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; + + if (!M->getDataLayout().empty()) + Out << "target datalayout = \"" << M->getDataLayout() << "\"\n"; + if (!M->getTargetTriple().empty()) + Out << "target triple = \"" << M->getTargetTriple() << "\"\n"; + + if (!M->getModuleInlineAsm().empty()) { + // Split the string into lines, to make it easier to read the .ll file. + std::string Asm = M->getModuleInlineAsm(); + size_t CurPos = 0; + size_t NewLine = Asm.find_first_of('\n', CurPos); + Out << '\n'; + while (NewLine != std::string::npos) { + // We found a newline, print the portion of the asm string from the + // last newline up to this newline. + Out << "module asm \""; + PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine), + Out); + Out << "\"\n"; + CurPos = NewLine+1; + NewLine = Asm.find_first_of('\n', CurPos); + } + Out << "module asm \""; + PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out); + Out << "\"\n"; + } + + // Loop over the dependent libraries and emit them. + Module::lib_iterator LI = M->lib_begin(); + Module::lib_iterator LE = M->lib_end(); + if (LI != LE) { + Out << '\n'; + Out << "deplibs = [ "; + while (LI != LE) { + Out << '"' << *LI << '"'; + ++LI; + if (LI != LE) + Out << ", "; + } + Out << " ]"; + } + + // Loop over the symbol table, emitting all id'd types. + if (!M->getTypeSymbolTable().empty() || !NumberedTypes.empty()) Out << '\n'; + printTypeSymbolTable(M->getTypeSymbolTable()); + + // Output all globals. + if (!M->global_empty()) Out << '\n'; + for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); + I != E; ++I) + printGlobal(I); + + // Output all aliases. + if (!M->alias_empty()) Out << "\n"; + for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); + I != E; ++I) + printAlias(I); + + // Output all of the functions. + for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) + printFunction(I); + + // Output named metadata. + if (!M->named_metadata_empty()) Out << '\n'; + + for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), + E = M->named_metadata_end(); I != E; ++I) + printNamedMDNode(I); + + // Output metadata. + if (!Machine.mdn_empty()) { + Out << '\n'; + writeAllMDNodes(); + } +} + +void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) { + Out << "!" << NMD->getName() << " = !{"; + for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { + if (i) Out << ", "; + Out << '!' << Machine.getMetadataSlot(NMD->getOperand(i)); + } + Out << "}\n"; +} + + +static void PrintLinkage(GlobalValue::LinkageTypes LT, + formatted_raw_ostream &Out) { + switch (LT) { + case GlobalValue::ExternalLinkage: break; + case GlobalValue::PrivateLinkage: Out << "private "; break; + case GlobalValue::LinkerPrivateLinkage: Out << "linker_private "; break; + case GlobalValue::LinkerPrivateWeakLinkage: + Out << "linker_private_weak "; + break; + case GlobalValue::LinkerPrivateWeakDefAutoLinkage: + Out << "linker_private_weak_def_auto "; + break; + case GlobalValue::InternalLinkage: Out << "internal "; break; + case GlobalValue::LinkOnceAnyLinkage: Out << "linkonce "; break; + case GlobalValue::LinkOnceODRLinkage: Out << "linkonce_odr "; break; + case GlobalValue::WeakAnyLinkage: Out << "weak "; break; + case GlobalValue::WeakODRLinkage: Out << "weak_odr "; break; + case GlobalValue::CommonLinkage: Out << "common "; break; + case GlobalValue::AppendingLinkage: Out << "appending "; break; + case GlobalValue::DLLImportLinkage: Out << "dllimport "; break; + case GlobalValue::DLLExportLinkage: Out << "dllexport "; break; + case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break; + case GlobalValue::AvailableExternallyLinkage: + Out << "available_externally "; + break; + } +} + + +static void PrintVisibility(GlobalValue::VisibilityTypes Vis, + formatted_raw_ostream &Out) { + switch (Vis) { + case GlobalValue::DefaultVisibility: break; + case GlobalValue::HiddenVisibility: Out << "hidden "; break; + case GlobalValue::ProtectedVisibility: Out << "protected "; break; + } +} + +void AssemblyWriter::printGlobal(const GlobalVariable *GV) { + if (GV->isMaterializable()) + Out << "; Materializable\n"; + + WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent()); + Out << " = "; + + if (!GV->hasInitializer() && GV->hasExternalLinkage()) + Out << "external "; + + PrintLinkage(GV->getLinkage(), Out); + PrintVisibility(GV->getVisibility(), Out); + + if (GV->isThreadLocal()) Out << "thread_local "; + if (unsigned AddressSpace = GV->getType()->getAddressSpace()) + Out << "addrspace(" << AddressSpace << ") "; + Out << (GV->isConstant() ? "constant " : "global "); + TypePrinter.print(GV->getType()->getElementType(), Out); + + if (GV->hasInitializer()) { + Out << ' '; + writeOperand(GV->getInitializer(), false); + } + + if (GV->hasSection()) { + Out << ", section \""; + PrintEscapedString(GV->getSection(), Out); + Out << '"'; + } + if (GV->getAlignment()) + Out << ", align " << GV->getAlignment(); + + printInfoComment(*GV); + Out << '\n'; +} + +void AssemblyWriter::printAlias(const GlobalAlias *GA) { + if (GA->isMaterializable()) + Out << "; Materializable\n"; + + // Don't crash when dumping partially built GA + if (!GA->hasName()) + Out << "<<nameless>> = "; + else { + PrintLLVMName(Out, GA); + Out << " = "; + } + PrintVisibility(GA->getVisibility(), Out); + + Out << "alias "; + + PrintLinkage(GA->getLinkage(), Out); + + const Constant *Aliasee = GA->getAliasee(); + + if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Aliasee)) { + TypePrinter.print(GV->getType(), Out); + Out << ' '; + PrintLLVMName(Out, GV); + } else if (const Function *F = dyn_cast<Function>(Aliasee)) { + TypePrinter.print(F->getFunctionType(), Out); + Out << "* "; + + WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent()); + } else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Aliasee)) { + TypePrinter.print(GA->getType(), Out); + Out << ' '; + PrintLLVMName(Out, GA); + } else { + const ConstantExpr *CE = cast<ConstantExpr>(Aliasee); + // The only valid GEP is an all zero GEP. + assert((CE->getOpcode() == Instruction::BitCast || + CE->getOpcode() == Instruction::GetElementPtr) && + "Unsupported aliasee"); + writeOperand(CE, false); + } + + printInfoComment(*GA); + Out << '\n'; +} + +void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable &ST) { + // Emit all numbered types. + for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) { + Out << '%' << i << " = type "; + + // Make sure we print out at least one level of the type structure, so + // that we do not get %2 = type %2 + TypePrinter.printAtLeastOneLevel(NumberedTypes[i], Out); + Out << '\n'; + } + + // Print the named types. + for (TypeSymbolTable::const_iterator TI = ST.begin(), TE = ST.end(); + TI != TE; ++TI) { + PrintLLVMName(Out, TI->first, LocalPrefix); + Out << " = type "; + + // Make sure we print out at least one level of the type structure, so + // that we do not get %FILE = type %FILE + TypePrinter.printAtLeastOneLevel(TI->second, Out); + Out << '\n'; + } +} + +/// printFunction - Print all aspects of a function. +/// +void AssemblyWriter::printFunction(const Function *F) { + // Print out the return type and name. + Out << '\n'; + + if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out); + + if (F->isMaterializable()) + Out << "; Materializable\n"; + + if (F->isDeclaration()) + Out << "declare "; + else + Out << "define "; + + PrintLinkage(F->getLinkage(), Out); + PrintVisibility(F->getVisibility(), Out); + + // Print the calling convention. + switch (F->getCallingConv()) { + case CallingConv::C: break; // default + case CallingConv::Fast: Out << "fastcc "; break; + case CallingConv::Cold: Out << "coldcc "; break; + case CallingConv::X86_StdCall: Out << "x86_stdcallcc "; break; + case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break; + case CallingConv::X86_ThisCall: Out << "x86_thiscallcc "; break; + case CallingConv::ARM_APCS: Out << "arm_apcscc "; break; + case CallingConv::ARM_AAPCS: Out << "arm_aapcscc "; break; + case CallingConv::ARM_AAPCS_VFP:Out << "arm_aapcs_vfpcc "; break; + case CallingConv::MSP430_INTR: Out << "msp430_intrcc "; break; + default: Out << "cc" << F->getCallingConv() << " "; break; + } + + const FunctionType *FT = F->getFunctionType(); + const AttrListPtr &Attrs = F->getAttributes(); + Attributes RetAttrs = Attrs.getRetAttributes(); + if (RetAttrs != Attribute::None) + Out << Attribute::getAsString(Attrs.getRetAttributes()) << ' '; + TypePrinter.print(F->getReturnType(), Out); + Out << ' '; + WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent()); + Out << '('; + Machine.incorporateFunction(F); + + // Loop over the arguments, printing them... + + unsigned Idx = 1; + if (!F->isDeclaration()) { + // If this isn't a declaration, print the argument names as well. + for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); + I != E; ++I) { + // Insert commas as we go... the first arg doesn't get a comma + if (I != F->arg_begin()) Out << ", "; + printArgument(I, Attrs.getParamAttributes(Idx)); + Idx++; + } + } else { + // Otherwise, print the types from the function type. + for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { + // Insert commas as we go... the first arg doesn't get a comma + if (i) Out << ", "; + + // Output type... + TypePrinter.print(FT->getParamType(i), Out); + + Attributes ArgAttrs = Attrs.getParamAttributes(i+1); + if (ArgAttrs != Attribute::None) + Out << ' ' << Attribute::getAsString(ArgAttrs); + } + } + + // Finish printing arguments... + if (FT->isVarArg()) { + if (FT->getNumParams()) Out << ", "; + Out << "..."; // Output varargs portion of signature! + } + Out << ')'; + Attributes FnAttrs = Attrs.getFnAttributes(); + if (FnAttrs != Attribute::None) + Out << ' ' << Attribute::getAsString(Attrs.getFnAttributes()); + if (F->hasSection()) { + Out << " section \""; + PrintEscapedString(F->getSection(), Out); + Out << '"'; + } + if (F->getAlignment()) + Out << " align " << F->getAlignment(); + if (F->hasGC()) + Out << " gc \"" << F->getGC() << '"'; + if (F->isDeclaration()) { + Out << '\n'; + } else { + Out << " {"; + // Output all of the function's basic blocks. + for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I) + printBasicBlock(I); + + Out << "}\n"; + } + + Machine.purgeFunction(); +} + +/// printArgument - This member is called for every argument that is passed into +/// the function. Simply print it out +/// +void AssemblyWriter::printArgument(const Argument *Arg, + Attributes Attrs) { + // Output type... + TypePrinter.print(Arg->getType(), Out); + + // Output parameter attributes list + if (Attrs != Attribute::None) + Out << ' ' << Attribute::getAsString(Attrs); + + // Output name, if available... + if (Arg->hasName()) { + Out << ' '; + PrintLLVMName(Out, Arg); + } +} + +/// printBasicBlock - This member is called for each basic block in a method. +/// +void AssemblyWriter::printBasicBlock(const BasicBlock *BB) { + if (BB->hasName()) { // Print out the label if it exists... + Out << "\n"; + PrintLLVMName(Out, BB->getName(), LabelPrefix); + Out << ':'; + } else if (!BB->use_empty()) { // Don't print block # of no uses... + Out << "\n; <label>:"; + int Slot = Machine.getLocalSlot(BB); + if (Slot != -1) + Out << Slot; + else + Out << "<badref>"; + } + + if (BB->getParent() == 0) { + Out.PadToColumn(50); + Out << "; Error: Block without parent!"; + } else if (BB != &BB->getParent()->getEntryBlock()) { // Not the entry block? + // Output predecessors for the block. + Out.PadToColumn(50); + Out << ";"; + const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB); + + if (PI == PE) { + Out << " No predecessors!"; + } else { + Out << " preds = "; + writeOperand(*PI, false); + for (++PI; PI != PE; ++PI) { + Out << ", "; + writeOperand(*PI, false); + } + } + } + + Out << "\n"; + + if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out); + + // Output all of the instructions in the basic block... + for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) { + printInstruction(*I); + Out << '\n'; + } + + if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out); +} + +/// printInfoComment - Print a little comment after the instruction indicating +/// which slot it occupies. +/// +void AssemblyWriter::printInfoComment(const Value &V) { + if (AnnotationWriter) { + AnnotationWriter->printInfoComment(V, Out); + return; + } +} + +// This member is called for each Instruction in a function.. +void AssemblyWriter::printInstruction(const Instruction &I) { + if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out); + + // Print out indentation for an instruction. + Out << " "; + + // Print out name if it exists... + if (I.hasName()) { + PrintLLVMName(Out, &I); + Out << " = "; + } else if (!I.getType()->isVoidTy()) { + // Print out the def slot taken. + int SlotNum = Machine.getLocalSlot(&I); + if (SlotNum == -1) + Out << "<badref> = "; + else + Out << '%' << SlotNum << " = "; + } + + // If this is a volatile load or store, print out the volatile marker. + if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) || + (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) { + Out << "volatile "; + } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) { + // If this is a call, check if it's a tail call. + Out << "tail "; + } + + // Print out the opcode... + Out << I.getOpcodeName(); + + // Print out optimization information. + WriteOptimizationInfo(Out, &I); + + // Print out the compare instruction predicates + if (const CmpInst *CI = dyn_cast<CmpInst>(&I)) + Out << ' ' << getPredicateText(CI->getPredicate()); + + // Print out the type of the operands... + const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0; + + // Special case conditional branches to swizzle the condition out to the front + if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) { + BranchInst &BI(cast<BranchInst>(I)); + Out << ' '; + writeOperand(BI.getCondition(), true); + Out << ", "; + writeOperand(BI.getSuccessor(0), true); + Out << ", "; + writeOperand(BI.getSuccessor(1), true); + + } else if (isa<SwitchInst>(I)) { + // Special case switch instruction to get formatting nice and correct. + Out << ' '; + writeOperand(Operand , true); + Out << ", "; + writeOperand(I.getOperand(1), true); + Out << " ["; + + for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) { + Out << "\n "; + writeOperand(I.getOperand(op ), true); + Out << ", "; + writeOperand(I.getOperand(op+1), true); + } + Out << "\n ]"; + } else if (isa<IndirectBrInst>(I)) { + // Special case indirectbr instruction to get formatting nice and correct. + Out << ' '; + writeOperand(Operand, true); + Out << ", ["; + + for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { + if (i != 1) + Out << ", "; + writeOperand(I.getOperand(i), true); + } + Out << ']'; + } else if (isa<PHINode>(I)) { + Out << ' '; + TypePrinter.print(I.getType(), Out); + Out << ' '; + + for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) { + if (op) Out << ", "; + Out << "[ "; + writeOperand(I.getOperand(op ), false); Out << ", "; + writeOperand(I.getOperand(op+1), false); Out << " ]"; + } + } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) { + Out << ' '; + writeOperand(I.getOperand(0), true); + for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) + Out << ", " << *i; + } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) { + Out << ' '; + writeOperand(I.getOperand(0), true); Out << ", "; + writeOperand(I.getOperand(1), true); + for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) + Out << ", " << *i; + } else if (isa<ReturnInst>(I) && !Operand) { + Out << " void"; + } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) { + // Print the calling convention being used. + switch (CI->getCallingConv()) { + case CallingConv::C: break; // default + case CallingConv::Fast: Out << " fastcc"; break; + case CallingConv::Cold: Out << " coldcc"; break; + case CallingConv::X86_StdCall: Out << " x86_stdcallcc"; break; + case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break; + case CallingConv::X86_ThisCall: Out << " x86_thiscallcc"; break; + case CallingConv::ARM_APCS: Out << " arm_apcscc "; break; + case CallingConv::ARM_AAPCS: Out << " arm_aapcscc "; break; + case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break; + case CallingConv::MSP430_INTR: Out << " msp430_intrcc "; break; + default: Out << " cc" << CI->getCallingConv(); break; + } + + Operand = CI->getCalledValue(); + const PointerType *PTy = cast<PointerType>(Operand->getType()); + const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); + const Type *RetTy = FTy->getReturnType(); + const AttrListPtr &PAL = CI->getAttributes(); + + if (PAL.getRetAttributes() != Attribute::None) + Out << ' ' << Attribute::getAsString(PAL.getRetAttributes()); + + // If possible, print out the short form of the call instruction. We can + // only do this if the first argument is a pointer to a nonvararg function, + // and if the return type is not a pointer to a function. + // + Out << ' '; + if (!FTy->isVarArg() && + (!RetTy->isPointerTy() || + !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) { + TypePrinter.print(RetTy, Out); + Out << ' '; + writeOperand(Operand, false); + } else { + writeOperand(Operand, true); + } + Out << '('; + for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) { + if (op > 0) + Out << ", "; + writeParamOperand(CI->getArgOperand(op), PAL.getParamAttributes(op + 1)); + } + Out << ')'; + if (PAL.getFnAttributes() != Attribute::None) + Out << ' ' << Attribute::getAsString(PAL.getFnAttributes()); + } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) { + Operand = II->getCalledValue(); + const PointerType *PTy = cast<PointerType>(Operand->getType()); + const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); + const Type *RetTy = FTy->getReturnType(); + const AttrListPtr &PAL = II->getAttributes(); + + // Print the calling convention being used. + switch (II->getCallingConv()) { + case CallingConv::C: break; // default + case CallingConv::Fast: Out << " fastcc"; break; + case CallingConv::Cold: Out << " coldcc"; break; + case CallingConv::X86_StdCall: Out << " x86_stdcallcc"; break; + case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break; + case CallingConv::X86_ThisCall: Out << " x86_thiscallcc"; break; + case CallingConv::ARM_APCS: Out << " arm_apcscc "; break; + case CallingConv::ARM_AAPCS: Out << " arm_aapcscc "; break; + case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break; + case CallingConv::MSP430_INTR: Out << " msp430_intrcc "; break; + default: Out << " cc" << II->getCallingConv(); break; + } + + if (PAL.getRetAttributes() != Attribute::None) + Out << ' ' << Attribute::getAsString(PAL.getRetAttributes()); + + // If possible, print out the short form of the invoke instruction. We can + // only do this if the first argument is a pointer to a nonvararg function, + // and if the return type is not a pointer to a function. + // + Out << ' '; + if (!FTy->isVarArg() && + (!RetTy->isPointerTy() || + !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) { + TypePrinter.print(RetTy, Out); + Out << ' '; + writeOperand(Operand, false); + } else { + writeOperand(Operand, true); + } + Out << '('; + for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) { + if (op) + Out << ", "; + writeParamOperand(II->getArgOperand(op), PAL.getParamAttributes(op + 1)); + } + + Out << ')'; + if (PAL.getFnAttributes() != Attribute::None) + Out << ' ' << Attribute::getAsString(PAL.getFnAttributes()); + + Out << "\n to "; + writeOperand(II->getNormalDest(), true); + Out << " unwind "; + writeOperand(II->getUnwindDest(), true); + + } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { + Out << ' '; + TypePrinter.print(AI->getType()->getElementType(), Out); + if (!AI->getArraySize() || AI->isArrayAllocation()) { + Out << ", "; + writeOperand(AI->getArraySize(), true); + } + if (AI->getAlignment()) { + Out << ", align " << AI->getAlignment(); + } + } else if (isa<CastInst>(I)) { + if (Operand) { + Out << ' '; + writeOperand(Operand, true); // Work with broken code + } + Out << " to "; + TypePrinter.print(I.getType(), Out); + } else if (isa<VAArgInst>(I)) { + if (Operand) { + Out << ' '; + writeOperand(Operand, true); // Work with broken code + } + Out << ", "; + TypePrinter.print(I.getType(), Out); + } else if (Operand) { // Print the normal way. + + // PrintAllTypes - Instructions who have operands of all the same type + // omit the type from all but the first operand. If the instruction has + // different type operands (for example br), then they are all printed. + bool PrintAllTypes = false; + const Type *TheType = Operand->getType(); + + // Select, Store and ShuffleVector always print all types. + if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I) + || isa<ReturnInst>(I)) { + PrintAllTypes = true; + } else { + for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) { + Operand = I.getOperand(i); + // note that Operand shouldn't be null, but the test helps make dump() + // more tolerant of malformed IR + if (Operand && Operand->getType() != TheType) { + PrintAllTypes = true; // We have differing types! Print them all! + break; + } + } + } + + if (!PrintAllTypes) { + Out << ' '; + TypePrinter.print(TheType, Out); + } + + Out << ' '; + for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) { + if (i) Out << ", "; + writeOperand(I.getOperand(i), PrintAllTypes); + } + } + + // Print post operand alignment for load/store. + if (isa<LoadInst>(I) && cast<LoadInst>(I).getAlignment()) { + Out << ", align " << cast<LoadInst>(I).getAlignment(); + } else if (isa<StoreInst>(I) && cast<StoreInst>(I).getAlignment()) { + Out << ", align " << cast<StoreInst>(I).getAlignment(); + } + + // Print Metadata info. + SmallVector<std::pair<unsigned, MDNode*>, 4> InstMD; + I.getAllMetadata(InstMD); + if (!InstMD.empty()) { + SmallVector<StringRef, 8> MDNames; + I.getType()->getContext().getMDKindNames(MDNames); + for (unsigned i = 0, e = InstMD.size(); i != e; ++i) { + unsigned Kind = InstMD[i].first; + if (Kind < MDNames.size()) { + Out << ", !" << MDNames[Kind]; + } else { + Out << ", !<unknown kind #" << Kind << ">"; + } + Out << ' '; + WriteAsOperandInternal(Out, InstMD[i].second, &TypePrinter, &Machine, + TheModule); + } + } + printInfoComment(I); +} + +static void WriteMDNodeComment(const MDNode *Node, + formatted_raw_ostream &Out) { + if (Node->getNumOperands() < 1) + return; + ConstantInt *CI = dyn_cast_or_null<ConstantInt>(Node->getOperand(0)); + if (!CI) return; + APInt Val = CI->getValue(); + APInt Tag = Val & ~APInt(Val.getBitWidth(), LLVMDebugVersionMask); + if (Val.ult(LLVMDebugVersion)) + return; + + Out.PadToColumn(50); + if (Tag == dwarf::DW_TAG_auto_variable) + Out << "; [ DW_TAG_auto_variable ]"; + else if (Tag == dwarf::DW_TAG_arg_variable) + Out << "; [ DW_TAG_arg_variable ]"; + else if (Tag == dwarf::DW_TAG_return_variable) + Out << "; [ DW_TAG_return_variable ]"; + else if (Tag == dwarf::DW_TAG_vector_type) + Out << "; [ DW_TAG_vector_type ]"; + else if (Tag == dwarf::DW_TAG_user_base) + Out << "; [ DW_TAG_user_base ]"; + else if (Tag.isIntN(32)) { + if (const char *TagName = dwarf::TagString(Tag.getZExtValue())) + Out << "; [ " << TagName << " ]"; + } +} + +void AssemblyWriter::writeAllMDNodes() { + SmallVector<const MDNode *, 16> Nodes; + Nodes.resize(Machine.mdn_size()); + for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end(); + I != E; ++I) + Nodes[I->second] = cast<MDNode>(I->first); + + for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { + Out << '!' << i << " = metadata "; + printMDNodeBody(Nodes[i]); + } +} + +void AssemblyWriter::printMDNodeBody(const MDNode *Node) { + WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule); + WriteMDNodeComment(Node, Out); + Out << "\n"; +} + +//===----------------------------------------------------------------------===// +// External Interface declarations +//===----------------------------------------------------------------------===// + +void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const { + SlotTracker SlotTable(this); + formatted_raw_ostream OS(ROS); + AssemblyWriter W(OS, SlotTable, this, AAW); + W.printModule(this); +} + +void NamedMDNode::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const { + SlotTracker SlotTable(getParent()); + formatted_raw_ostream OS(ROS); + AssemblyWriter W(OS, SlotTable, getParent(), AAW); + W.printNamedMDNode(this); +} + +void Type::print(raw_ostream &OS) const { + if (this == 0) { + OS << "<null Type>"; + return; + } + TypePrinting().print(this, OS); +} + +void Value::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const { + if (this == 0) { + ROS << "printing a <null> value\n"; + return; + } + formatted_raw_ostream OS(ROS); + if (const Instruction *I = dyn_cast<Instruction>(this)) { + const Function *F = I->getParent() ? I->getParent()->getParent() : 0; + SlotTracker SlotTable(F); + AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), AAW); + W.printInstruction(*I); + } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) { + SlotTracker SlotTable(BB->getParent()); + AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), AAW); + W.printBasicBlock(BB); + } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) { + SlotTracker SlotTable(GV->getParent()); + AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW); + if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV)) + W.printGlobal(V); + else if (const Function *F = dyn_cast<Function>(GV)) + W.printFunction(F); + else + W.printAlias(cast<GlobalAlias>(GV)); + } else if (const MDNode *N = dyn_cast<MDNode>(this)) { + const Function *F = N->getFunction(); + SlotTracker SlotTable(F); + AssemblyWriter W(OS, SlotTable, F ? F->getParent() : 0, AAW); + W.printMDNodeBody(N); + } else if (const Constant *C = dyn_cast<Constant>(this)) { + TypePrinting TypePrinter; + TypePrinter.print(C->getType(), OS); + OS << ' '; + WriteConstantInternal(OS, C, TypePrinter, 0, 0); + } else if (isa<InlineAsm>(this) || isa<MDString>(this) || + isa<Argument>(this)) { + WriteAsOperand(OS, this, true, 0); + } else { + // Otherwise we don't know what it is. Call the virtual function to + // allow a subclass to print itself. + printCustom(OS); + } +} + +// Value::printCustom - subclasses should override this to implement printing. +void Value::printCustom(raw_ostream &OS) const { + llvm_unreachable("Unknown value to print out!"); +} + +// Value::dump - allow easy printing of Values from the debugger. +void Value::dump() const { print(dbgs()); dbgs() << '\n'; } + +// Type::dump - allow easy printing of Types from the debugger. +// This one uses type names from the given context module +void Type::dump(const Module *Context) const { + WriteTypeSymbolic(dbgs(), this, Context); + dbgs() << '\n'; +} + +// Type::dump - allow easy printing of Types from the debugger. +void Type::dump() const { dump(0); } + +// Module::dump() - Allow printing of Modules from the debugger. +void Module::dump() const { print(dbgs(), 0); } diff --git a/contrib/llvm/lib/VMCore/Attributes.cpp b/contrib/llvm/lib/VMCore/Attributes.cpp new file mode 100644 index 0000000..a000aee --- /dev/null +++ b/contrib/llvm/lib/VMCore/Attributes.cpp @@ -0,0 +1,334 @@ +//===-- Attributes.cpp - Implement AttributesList -------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the AttributesList class and Attribute utilities. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Attributes.h" +#include "llvm/Type.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/FoldingSet.h" +#include "llvm/System/Atomic.h" +#include "llvm/System/Mutex.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ManagedStatic.h" +#include "llvm/Support/raw_ostream.h" +using namespace llvm; + +//===----------------------------------------------------------------------===// +// Attribute Function Definitions +//===----------------------------------------------------------------------===// + +std::string Attribute::getAsString(Attributes Attrs) { + std::string Result; + if (Attrs & Attribute::ZExt) + Result += "zeroext "; + if (Attrs & Attribute::SExt) + Result += "signext "; + if (Attrs & Attribute::NoReturn) + Result += "noreturn "; + if (Attrs & Attribute::NoUnwind) + Result += "nounwind "; + if (Attrs & Attribute::InReg) + Result += "inreg "; + if (Attrs & Attribute::NoAlias) + Result += "noalias "; + if (Attrs & Attribute::NoCapture) + Result += "nocapture "; + if (Attrs & Attribute::StructRet) + Result += "sret "; + if (Attrs & Attribute::ByVal) + Result += "byval "; + if (Attrs & Attribute::Nest) + Result += "nest "; + if (Attrs & Attribute::ReadNone) + Result += "readnone "; + if (Attrs & Attribute::ReadOnly) + Result += "readonly "; + if (Attrs & Attribute::OptimizeForSize) + Result += "optsize "; + if (Attrs & Attribute::NoInline) + Result += "noinline "; + if (Attrs & Attribute::InlineHint) + Result += "inlinehint "; + if (Attrs & Attribute::AlwaysInline) + Result += "alwaysinline "; + if (Attrs & Attribute::StackProtect) + Result += "ssp "; + if (Attrs & Attribute::StackProtectReq) + Result += "sspreq "; + if (Attrs & Attribute::NoRedZone) + Result += "noredzone "; + if (Attrs & Attribute::NoImplicitFloat) + Result += "noimplicitfloat "; + if (Attrs & Attribute::Naked) + Result += "naked "; + if (Attrs & Attribute::StackAlignment) { + Result += "alignstack("; + Result += utostr(Attribute::getStackAlignmentFromAttrs(Attrs)); + Result += ") "; + } + if (Attrs & Attribute::Alignment) { + Result += "align "; + Result += utostr(Attribute::getAlignmentFromAttrs(Attrs)); + Result += " "; + } + // Trim the trailing space. + assert(!Result.empty() && "Unknown attribute!"); + Result.erase(Result.end()-1); + return Result; +} + +Attributes Attribute::typeIncompatible(const Type *Ty) { + Attributes Incompatible = None; + + if (!Ty->isIntegerTy()) + // Attributes that only apply to integers. + Incompatible |= SExt | ZExt; + + if (!Ty->isPointerTy()) + // Attributes that only apply to pointers. + Incompatible |= ByVal | Nest | NoAlias | StructRet | NoCapture; + + return Incompatible; +} + +//===----------------------------------------------------------------------===// +// AttributeListImpl Definition +//===----------------------------------------------------------------------===// + +namespace llvm { +class AttributeListImpl : public FoldingSetNode { + sys::cas_flag RefCount; + + // AttributesList is uniqued, these should not be publicly available. + void operator=(const AttributeListImpl &); // Do not implement + AttributeListImpl(const AttributeListImpl &); // Do not implement + ~AttributeListImpl(); // Private implementation +public: + SmallVector<AttributeWithIndex, 4> Attrs; + + AttributeListImpl(const AttributeWithIndex *Attr, unsigned NumAttrs) + : Attrs(Attr, Attr+NumAttrs) { + RefCount = 0; + } + + void AddRef() { sys::AtomicIncrement(&RefCount); } + void DropRef() { + sys::cas_flag old = sys::AtomicDecrement(&RefCount); + if (old == 0) delete this; + } + + void Profile(FoldingSetNodeID &ID) const { + Profile(ID, Attrs.data(), Attrs.size()); + } + static void Profile(FoldingSetNodeID &ID, const AttributeWithIndex *Attr, + unsigned NumAttrs) { + for (unsigned i = 0; i != NumAttrs; ++i) + ID.AddInteger(uint64_t(Attr[i].Attrs) << 32 | unsigned(Attr[i].Index)); + } +}; +} + +static ManagedStatic<sys::SmartMutex<true> > ALMutex; +static ManagedStatic<FoldingSet<AttributeListImpl> > AttributesLists; + +AttributeListImpl::~AttributeListImpl() { + sys::SmartScopedLock<true> Lock(*ALMutex); + AttributesLists->RemoveNode(this); +} + + +AttrListPtr AttrListPtr::get(const AttributeWithIndex *Attrs, unsigned NumAttrs) { + // If there are no attributes then return a null AttributesList pointer. + if (NumAttrs == 0) + return AttrListPtr(); + +#ifndef NDEBUG + for (unsigned i = 0; i != NumAttrs; ++i) { + assert(Attrs[i].Attrs != Attribute::None && + "Pointless attribute!"); + assert((!i || Attrs[i-1].Index < Attrs[i].Index) && + "Misordered AttributesList!"); + } +#endif + + // Otherwise, build a key to look up the existing attributes. + FoldingSetNodeID ID; + AttributeListImpl::Profile(ID, Attrs, NumAttrs); + void *InsertPos; + + sys::SmartScopedLock<true> Lock(*ALMutex); + + AttributeListImpl *PAL = + AttributesLists->FindNodeOrInsertPos(ID, InsertPos); + + // If we didn't find any existing attributes of the same shape then + // create a new one and insert it. + if (!PAL) { + PAL = new AttributeListImpl(Attrs, NumAttrs); + AttributesLists->InsertNode(PAL, InsertPos); + } + + // Return the AttributesList that we found or created. + return AttrListPtr(PAL); +} + + +//===----------------------------------------------------------------------===// +// AttrListPtr Method Implementations +//===----------------------------------------------------------------------===// + +AttrListPtr::AttrListPtr(AttributeListImpl *LI) : AttrList(LI) { + if (LI) LI->AddRef(); +} + +AttrListPtr::AttrListPtr(const AttrListPtr &P) : AttrList(P.AttrList) { + if (AttrList) AttrList->AddRef(); +} + +const AttrListPtr &AttrListPtr::operator=(const AttrListPtr &RHS) { + if (AttrList == RHS.AttrList) return *this; + if (AttrList) AttrList->DropRef(); + AttrList = RHS.AttrList; + if (AttrList) AttrList->AddRef(); + return *this; +} + +AttrListPtr::~AttrListPtr() { + if (AttrList) AttrList->DropRef(); +} + +/// getNumSlots - Return the number of slots used in this attribute list. +/// This is the number of arguments that have an attribute set on them +/// (including the function itself). +unsigned AttrListPtr::getNumSlots() const { + return AttrList ? AttrList->Attrs.size() : 0; +} + +/// getSlot - Return the AttributeWithIndex at the specified slot. This +/// holds a number plus a set of attributes. +const AttributeWithIndex &AttrListPtr::getSlot(unsigned Slot) const { + assert(AttrList && Slot < AttrList->Attrs.size() && "Slot # out of range!"); + return AttrList->Attrs[Slot]; +} + + +/// getAttributes - The attributes for the specified index are +/// returned. Attributes for the result are denoted with Idx = 0. +/// Function notes are denoted with idx = ~0. +Attributes AttrListPtr::getAttributes(unsigned Idx) const { + if (AttrList == 0) return Attribute::None; + + const SmallVector<AttributeWithIndex, 4> &Attrs = AttrList->Attrs; + for (unsigned i = 0, e = Attrs.size(); i != e && Attrs[i].Index <= Idx; ++i) + if (Attrs[i].Index == Idx) + return Attrs[i].Attrs; + return Attribute::None; +} + +/// hasAttrSomewhere - Return true if the specified attribute is set for at +/// least one parameter or for the return value. +bool AttrListPtr::hasAttrSomewhere(Attributes Attr) const { + if (AttrList == 0) return false; + + const SmallVector<AttributeWithIndex, 4> &Attrs = AttrList->Attrs; + for (unsigned i = 0, e = Attrs.size(); i != e; ++i) + if (Attrs[i].Attrs & Attr) + return true; + return false; +} + + +AttrListPtr AttrListPtr::addAttr(unsigned Idx, Attributes Attrs) const { + Attributes OldAttrs = getAttributes(Idx); +#ifndef NDEBUG + // FIXME it is not obvious how this should work for alignment. + // For now, say we can't change a known alignment. + Attributes OldAlign = OldAttrs & Attribute::Alignment; + Attributes NewAlign = Attrs & Attribute::Alignment; + assert((!OldAlign || !NewAlign || OldAlign == NewAlign) && + "Attempt to change alignment!"); +#endif + + Attributes NewAttrs = OldAttrs | Attrs; + if (NewAttrs == OldAttrs) + return *this; + + SmallVector<AttributeWithIndex, 8> NewAttrList; + if (AttrList == 0) + NewAttrList.push_back(AttributeWithIndex::get(Idx, Attrs)); + else { + const SmallVector<AttributeWithIndex, 4> &OldAttrList = AttrList->Attrs; + unsigned i = 0, e = OldAttrList.size(); + // Copy attributes for arguments before this one. + for (; i != e && OldAttrList[i].Index < Idx; ++i) + NewAttrList.push_back(OldAttrList[i]); + + // If there are attributes already at this index, merge them in. + if (i != e && OldAttrList[i].Index == Idx) { + Attrs |= OldAttrList[i].Attrs; + ++i; + } + + NewAttrList.push_back(AttributeWithIndex::get(Idx, Attrs)); + + // Copy attributes for arguments after this one. + NewAttrList.insert(NewAttrList.end(), + OldAttrList.begin()+i, OldAttrList.end()); + } + + return get(NewAttrList.data(), NewAttrList.size()); +} + +AttrListPtr AttrListPtr::removeAttr(unsigned Idx, Attributes Attrs) const { +#ifndef NDEBUG + // FIXME it is not obvious how this should work for alignment. + // For now, say we can't pass in alignment, which no current use does. + assert(!(Attrs & Attribute::Alignment) && "Attempt to exclude alignment!"); +#endif + if (AttrList == 0) return AttrListPtr(); + + Attributes OldAttrs = getAttributes(Idx); + Attributes NewAttrs = OldAttrs & ~Attrs; + if (NewAttrs == OldAttrs) + return *this; + + SmallVector<AttributeWithIndex, 8> NewAttrList; + const SmallVector<AttributeWithIndex, 4> &OldAttrList = AttrList->Attrs; + unsigned i = 0, e = OldAttrList.size(); + + // Copy attributes for arguments before this one. + for (; i != e && OldAttrList[i].Index < Idx; ++i) + NewAttrList.push_back(OldAttrList[i]); + + // If there are attributes already at this index, merge them in. + assert(OldAttrList[i].Index == Idx && "Attribute isn't set?"); + Attrs = OldAttrList[i].Attrs & ~Attrs; + ++i; + if (Attrs) // If any attributes left for this parameter, add them. + NewAttrList.push_back(AttributeWithIndex::get(Idx, Attrs)); + + // Copy attributes for arguments after this one. + NewAttrList.insert(NewAttrList.end(), + OldAttrList.begin()+i, OldAttrList.end()); + + return get(NewAttrList.data(), NewAttrList.size()); +} + +void AttrListPtr::dump() const { + dbgs() << "PAL[ "; + for (unsigned i = 0; i < getNumSlots(); ++i) { + const AttributeWithIndex &PAWI = getSlot(i); + dbgs() << "{" << PAWI.Index << "," << PAWI.Attrs << "} "; + } + + dbgs() << "]\n"; +} diff --git a/contrib/llvm/lib/VMCore/AutoUpgrade.cpp b/contrib/llvm/lib/VMCore/AutoUpgrade.cpp new file mode 100644 index 0000000..9330e14 --- /dev/null +++ b/contrib/llvm/lib/VMCore/AutoUpgrade.cpp @@ -0,0 +1,951 @@ +//===-- AutoUpgrade.cpp - Implement auto-upgrade helper functions ---------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the auto-upgrade helper functions +// +//===----------------------------------------------------------------------===// + +#include "llvm/AutoUpgrade.h" +#include "llvm/Constants.h" +#include "llvm/Function.h" +#include "llvm/LLVMContext.h" +#include "llvm/Module.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/Support/CallSite.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/IRBuilder.h" +#include <cstring> +using namespace llvm; + + +static bool UpgradeIntrinsicFunction1(Function *F, Function *&NewFn) { + assert(F && "Illegal to upgrade a non-existent Function."); + + // Get the Function's name. + const std::string& Name = F->getName(); + + // Convenience + const FunctionType *FTy = F->getFunctionType(); + + // Quickly eliminate it, if it's not a candidate. + if (Name.length() <= 8 || Name[0] != 'l' || Name[1] != 'l' || + Name[2] != 'v' || Name[3] != 'm' || Name[4] != '.') + return false; + + Module *M = F->getParent(); + switch (Name[5]) { + default: break; + case 'a': + // This upgrades the llvm.atomic.lcs, llvm.atomic.las, llvm.atomic.lss, + // and atomics with default address spaces to their new names to their new + // function name (e.g. llvm.atomic.add.i32 => llvm.atomic.add.i32.p0i32) + if (Name.compare(5,7,"atomic.",7) == 0) { + if (Name.compare(12,3,"lcs",3) == 0) { + std::string::size_type delim = Name.find('.',12); + F->setName("llvm.atomic.cmp.swap" + Name.substr(delim) + + ".p0" + Name.substr(delim+1)); + NewFn = F; + return true; + } + else if (Name.compare(12,3,"las",3) == 0) { + std::string::size_type delim = Name.find('.',12); + F->setName("llvm.atomic.load.add"+Name.substr(delim) + + ".p0" + Name.substr(delim+1)); + NewFn = F; + return true; + } + else if (Name.compare(12,3,"lss",3) == 0) { + std::string::size_type delim = Name.find('.',12); + F->setName("llvm.atomic.load.sub"+Name.substr(delim) + + ".p0" + Name.substr(delim+1)); + NewFn = F; + return true; + } + else if (Name.rfind(".p") == std::string::npos) { + // We don't have an address space qualifier so this has be upgraded + // to the new name. Copy the type name at the end of the intrinsic + // and add to it + std::string::size_type delim = Name.find_last_of('.'); + assert(delim != std::string::npos && "can not find type"); + F->setName(Name + ".p0" + Name.substr(delim+1)); + NewFn = F; + return true; + } + } else if (Name.compare(5, 9, "arm.neon.", 9) == 0) { + if (((Name.compare(14, 5, "vmovl", 5) == 0 || + Name.compare(14, 5, "vaddl", 5) == 0 || + Name.compare(14, 5, "vsubl", 5) == 0 || + Name.compare(14, 5, "vaddw", 5) == 0 || + Name.compare(14, 5, "vsubw", 5) == 0 || + Name.compare(14, 5, "vmull", 5) == 0 || + Name.compare(14, 5, "vmlal", 5) == 0 || + Name.compare(14, 5, "vmlsl", 5) == 0 || + Name.compare(14, 5, "vabdl", 5) == 0 || + Name.compare(14, 5, "vabal", 5) == 0) && + (Name.compare(19, 2, "s.", 2) == 0 || + Name.compare(19, 2, "u.", 2) == 0)) || + + (Name.compare(14, 4, "vaba", 4) == 0 && + (Name.compare(18, 2, "s.", 2) == 0 || + Name.compare(18, 2, "u.", 2) == 0)) || + + (Name.compare(14, 6, "vmovn.", 6) == 0)) { + + // Calls to these are transformed into IR without intrinsics. + NewFn = 0; + return true; + } + // Old versions of NEON ld/st intrinsics are missing alignment arguments. + bool isVLd = (Name.compare(14, 3, "vld", 3) == 0); + bool isVSt = (Name.compare(14, 3, "vst", 3) == 0); + if (isVLd || isVSt) { + unsigned NumVecs = Name.at(17) - '0'; + if (NumVecs == 0 || NumVecs > 4) + return false; + bool isLaneOp = (Name.compare(18, 5, "lane.", 5) == 0); + if (!isLaneOp && Name.at(18) != '.') + return false; + unsigned ExpectedArgs = 2; // for the address and alignment + if (isVSt || isLaneOp) + ExpectedArgs += NumVecs; + if (isLaneOp) + ExpectedArgs += 1; // for the lane number + unsigned NumP = FTy->getNumParams(); + if (NumP != ExpectedArgs - 1) + return false; + + // Change the name of the old (bad) intrinsic, because + // its type is incorrect, but we cannot overload that name. + F->setName(""); + + // One argument is missing: add the alignment argument. + std::vector<const Type*> NewParams; + for (unsigned p = 0; p < NumP; ++p) + NewParams.push_back(FTy->getParamType(p)); + NewParams.push_back(Type::getInt32Ty(F->getContext())); + FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), + NewParams, false); + NewFn = cast<Function>(M->getOrInsertFunction(Name, NewFTy)); + return true; + } + } + break; + case 'b': + // This upgrades the name of the llvm.bswap intrinsic function to only use + // a single type name for overloading. We only care about the old format + // 'llvm.bswap.i*.i*', so check for 'bswap.' and then for there being + // a '.' after 'bswap.' + if (Name.compare(5,6,"bswap.",6) == 0) { + std::string::size_type delim = Name.find('.',11); + + if (delim != std::string::npos) { + // Construct the new name as 'llvm.bswap' + '.i*' + F->setName(Name.substr(0,10)+Name.substr(delim)); + NewFn = F; + return true; + } + } + break; + + case 'c': + // We only want to fix the 'llvm.ct*' intrinsics which do not have the + // correct return type, so we check for the name, and then check if the + // return type does not match the parameter type. + if ( (Name.compare(5,5,"ctpop",5) == 0 || + Name.compare(5,4,"ctlz",4) == 0 || + Name.compare(5,4,"cttz",4) == 0) && + FTy->getReturnType() != FTy->getParamType(0)) { + // We first need to change the name of the old (bad) intrinsic, because + // its type is incorrect, but we cannot overload that name. We + // arbitrarily unique it here allowing us to construct a correctly named + // and typed function below. + F->setName(""); + + // Now construct the new intrinsic with the correct name and type. We + // leave the old function around in order to query its type, whatever it + // may be, and correctly convert up to the new type. + NewFn = cast<Function>(M->getOrInsertFunction(Name, + FTy->getParamType(0), + FTy->getParamType(0), + (Type *)0)); + return true; + } + break; + + case 'e': + // The old llvm.eh.selector.i32 is equivalent to the new llvm.eh.selector. + if (Name.compare("llvm.eh.selector.i32") == 0) { + F->setName("llvm.eh.selector"); + NewFn = F; + return true; + } + // The old llvm.eh.typeid.for.i32 is equivalent to llvm.eh.typeid.for. + if (Name.compare("llvm.eh.typeid.for.i32") == 0) { + F->setName("llvm.eh.typeid.for"); + NewFn = F; + return true; + } + // Convert the old llvm.eh.selector.i64 to a call to llvm.eh.selector. + if (Name.compare("llvm.eh.selector.i64") == 0) { + NewFn = Intrinsic::getDeclaration(M, Intrinsic::eh_selector); + return true; + } + // Convert the old llvm.eh.typeid.for.i64 to a call to llvm.eh.typeid.for. + if (Name.compare("llvm.eh.typeid.for.i64") == 0) { + NewFn = Intrinsic::getDeclaration(M, Intrinsic::eh_typeid_for); + return true; + } + break; + + case 'm': { + // This upgrades the llvm.memcpy, llvm.memmove, and llvm.memset to the + // new format that allows overloading the pointer for different address + // space (e.g., llvm.memcpy.i16 => llvm.memcpy.p0i8.p0i8.i16) + const char* NewFnName = NULL; + if (Name.compare(5,8,"memcpy.i",8) == 0) { + if (Name[13] == '8') + NewFnName = "llvm.memcpy.p0i8.p0i8.i8"; + else if (Name.compare(13,2,"16") == 0) + NewFnName = "llvm.memcpy.p0i8.p0i8.i16"; + else if (Name.compare(13,2,"32") == 0) + NewFnName = "llvm.memcpy.p0i8.p0i8.i32"; + else if (Name.compare(13,2,"64") == 0) + NewFnName = "llvm.memcpy.p0i8.p0i8.i64"; + } else if (Name.compare(5,9,"memmove.i",9) == 0) { + if (Name[14] == '8') + NewFnName = "llvm.memmove.p0i8.p0i8.i8"; + else if (Name.compare(14,2,"16") == 0) + NewFnName = "llvm.memmove.p0i8.p0i8.i16"; + else if (Name.compare(14,2,"32") == 0) + NewFnName = "llvm.memmove.p0i8.p0i8.i32"; + else if (Name.compare(14,2,"64") == 0) + NewFnName = "llvm.memmove.p0i8.p0i8.i64"; + } + else if (Name.compare(5,8,"memset.i",8) == 0) { + if (Name[13] == '8') + NewFnName = "llvm.memset.p0i8.i8"; + else if (Name.compare(13,2,"16") == 0) + NewFnName = "llvm.memset.p0i8.i16"; + else if (Name.compare(13,2,"32") == 0) + NewFnName = "llvm.memset.p0i8.i32"; + else if (Name.compare(13,2,"64") == 0) + NewFnName = "llvm.memset.p0i8.i64"; + } + if (NewFnName) { + NewFn = cast<Function>(M->getOrInsertFunction(NewFnName, + FTy->getReturnType(), + FTy->getParamType(0), + FTy->getParamType(1), + FTy->getParamType(2), + FTy->getParamType(3), + Type::getInt1Ty(F->getContext()), + (Type *)0)); + return true; + } + break; + } + case 'p': + // This upgrades the llvm.part.select overloaded intrinsic names to only + // use one type specifier in the name. We only care about the old format + // 'llvm.part.select.i*.i*', and solve as above with bswap. + if (Name.compare(5,12,"part.select.",12) == 0) { + std::string::size_type delim = Name.find('.',17); + + if (delim != std::string::npos) { + // Construct a new name as 'llvm.part.select' + '.i*' + F->setName(Name.substr(0,16)+Name.substr(delim)); + NewFn = F; + return true; + } + break; + } + + // This upgrades the llvm.part.set intrinsics similarly as above, however + // we care about 'llvm.part.set.i*.i*.i*', but only the first two types + // must match. There is an additional type specifier after these two + // matching types that we must retain when upgrading. Thus, we require + // finding 2 periods, not just one, after the intrinsic name. + if (Name.compare(5,9,"part.set.",9) == 0) { + std::string::size_type delim = Name.find('.',14); + + if (delim != std::string::npos && + Name.find('.',delim+1) != std::string::npos) { + // Construct a new name as 'llvm.part.select' + '.i*.i*' + F->setName(Name.substr(0,13)+Name.substr(delim)); + NewFn = F; + return true; + } + break; + } + + break; + case 'x': + // This fixes all MMX shift intrinsic instructions to take a + // v1i64 instead of a v2i32 as the second parameter. + if (Name.compare(5,10,"x86.mmx.ps",10) == 0 && + (Name.compare(13,4,"psll", 4) == 0 || + Name.compare(13,4,"psra", 4) == 0 || + Name.compare(13,4,"psrl", 4) == 0) && Name[17] != 'i') { + + const llvm::Type *VT = + VectorType::get(IntegerType::get(FTy->getContext(), 64), 1); + + // We don't have to do anything if the parameter already has + // the correct type. + if (FTy->getParamType(1) == VT) + break; + + // We first need to change the name of the old (bad) intrinsic, because + // its type is incorrect, but we cannot overload that name. We + // arbitrarily unique it here allowing us to construct a correctly named + // and typed function below. + F->setName(""); + + assert(FTy->getNumParams() == 2 && "MMX shift intrinsics take 2 args!"); + + // Now construct the new intrinsic with the correct name and type. We + // leave the old function around in order to query its type, whatever it + // may be, and correctly convert up to the new type. + NewFn = cast<Function>(M->getOrInsertFunction(Name, + FTy->getReturnType(), + FTy->getParamType(0), + VT, + (Type *)0)); + return true; + } else if (Name.compare(5,17,"x86.sse2.loadh.pd",17) == 0 || + Name.compare(5,17,"x86.sse2.loadl.pd",17) == 0 || + Name.compare(5,16,"x86.sse2.movl.dq",16) == 0 || + Name.compare(5,15,"x86.sse2.movs.d",15) == 0 || + Name.compare(5,16,"x86.sse2.shuf.pd",16) == 0 || + Name.compare(5,18,"x86.sse2.unpckh.pd",18) == 0 || + Name.compare(5,18,"x86.sse2.unpckl.pd",18) == 0 || + Name.compare(5,20,"x86.sse2.punpckh.qdq",20) == 0 || + Name.compare(5,20,"x86.sse2.punpckl.qdq",20) == 0) { + // Calls to these intrinsics are transformed into ShuffleVector's. + NewFn = 0; + return true; + } else if (Name.compare(5, 16, "x86.sse41.pmulld", 16) == 0) { + // Calls to these intrinsics are transformed into vector multiplies. + NewFn = 0; + return true; + } else if (Name.compare(5, 18, "x86.ssse3.palign.r", 18) == 0 || + Name.compare(5, 22, "x86.ssse3.palign.r.128", 22) == 0) { + // Calls to these intrinsics are transformed into vector shuffles, shifts, + // or 0. + NewFn = 0; + return true; + } + + break; + } + + // This may not belong here. This function is effectively being overloaded + // to both detect an intrinsic which needs upgrading, and to provide the + // upgraded form of the intrinsic. We should perhaps have two separate + // functions for this. + return false; +} + +bool llvm::UpgradeIntrinsicFunction(Function *F, Function *&NewFn) { + NewFn = 0; + bool Upgraded = UpgradeIntrinsicFunction1(F, NewFn); + + // Upgrade intrinsic attributes. This does not change the function. + if (NewFn) + F = NewFn; + if (unsigned id = F->getIntrinsicID()) + F->setAttributes(Intrinsic::getAttributes((Intrinsic::ID)id)); + return Upgraded; +} + +bool llvm::UpgradeGlobalVariable(GlobalVariable *GV) { + StringRef Name(GV->getName()); + + // We are only upgrading one symbol here. + if (Name == ".llvm.eh.catch.all.value") { + GV->setName("llvm.eh.catch.all.value"); + return true; + } + + return false; +} + +/// ExtendNEONArgs - For NEON "long" and "wide" operations, where the results +/// have vector elements twice as big as one or both source operands, do the +/// sign- or zero-extension that used to be handled by intrinsics. The +/// extended values are returned via V0 and V1. +static void ExtendNEONArgs(CallInst *CI, Value *Arg0, Value *Arg1, + Value *&V0, Value *&V1) { + Function *F = CI->getCalledFunction(); + const std::string& Name = F->getName(); + bool isLong = (Name.at(18) == 'l'); + bool isSigned = (Name.at(19) == 's'); + + if (isSigned) { + if (isLong) + V0 = new SExtInst(Arg0, CI->getType(), "", CI); + else + V0 = Arg0; + V1 = new SExtInst(Arg1, CI->getType(), "", CI); + } else { + if (isLong) + V0 = new ZExtInst(Arg0, CI->getType(), "", CI); + else + V0 = Arg0; + V1 = new ZExtInst(Arg1, CI->getType(), "", CI); + } +} + +/// CallVABD - As part of expanding a call to one of the old NEON vabdl, vaba, +/// or vabal intrinsics, construct a call to a vabd intrinsic. Examine the +/// name of the old intrinsic to determine whether to use a signed or unsigned +/// vabd intrinsic. Get the type from the old call instruction, adjusted for +/// half-size vector elements if the old intrinsic was vabdl or vabal. +static Instruction *CallVABD(CallInst *CI, Value *Arg0, Value *Arg1) { + Function *F = CI->getCalledFunction(); + const std::string& Name = F->getName(); + bool isLong = (Name.at(18) == 'l'); + bool isSigned = (Name.at(isLong ? 19 : 18) == 's'); + + Intrinsic::ID intID; + if (isSigned) + intID = Intrinsic::arm_neon_vabds; + else + intID = Intrinsic::arm_neon_vabdu; + + const Type *Ty = CI->getType(); + if (isLong) + Ty = VectorType::getTruncatedElementVectorType(cast<const VectorType>(Ty)); + + Function *VABD = Intrinsic::getDeclaration(F->getParent(), intID, &Ty, 1); + Value *Operands[2]; + Operands[0] = Arg0; + Operands[1] = Arg1; + return CallInst::Create(VABD, Operands, Operands+2, + "upgraded."+CI->getName(), CI); +} + +// UpgradeIntrinsicCall - Upgrade a call to an old intrinsic to be a call the +// upgraded intrinsic. All argument and return casting must be provided in +// order to seamlessly integrate with existing context. +void llvm::UpgradeIntrinsicCall(CallInst *CI, Function *NewFn) { + Function *F = CI->getCalledFunction(); + LLVMContext &C = CI->getContext(); + ImmutableCallSite CS(CI); + + assert(F && "CallInst has no function associated with it."); + + if (!NewFn) { + // Get the Function's name. + const std::string& Name = F->getName(); + + // Upgrade ARM NEON intrinsics. + if (Name.compare(5, 9, "arm.neon.", 9) == 0) { + Instruction *NewI; + Value *V0, *V1; + if (Name.compare(14, 7, "vmovls.", 7) == 0) { + NewI = new SExtInst(CI->getArgOperand(0), CI->getType(), + "upgraded." + CI->getName(), CI); + } else if (Name.compare(14, 7, "vmovlu.", 7) == 0) { + NewI = new ZExtInst(CI->getArgOperand(0), CI->getType(), + "upgraded." + CI->getName(), CI); + } else if (Name.compare(14, 4, "vadd", 4) == 0) { + ExtendNEONArgs(CI, CI->getArgOperand(0), CI->getArgOperand(1), V0, V1); + NewI = BinaryOperator::CreateAdd(V0, V1, "upgraded."+CI->getName(), CI); + } else if (Name.compare(14, 4, "vsub", 4) == 0) { + ExtendNEONArgs(CI, CI->getArgOperand(0), CI->getArgOperand(1), V0, V1); + NewI = BinaryOperator::CreateSub(V0, V1,"upgraded."+CI->getName(),CI); + } else if (Name.compare(14, 4, "vmul", 4) == 0) { + ExtendNEONArgs(CI, CI->getArgOperand(0), CI->getArgOperand(1), V0, V1); + NewI = BinaryOperator::CreateMul(V0, V1,"upgraded."+CI->getName(),CI); + } else if (Name.compare(14, 4, "vmla", 4) == 0) { + ExtendNEONArgs(CI, CI->getArgOperand(1), CI->getArgOperand(2), V0, V1); + Instruction *MulI = BinaryOperator::CreateMul(V0, V1, "", CI); + NewI = BinaryOperator::CreateAdd(CI->getArgOperand(0), MulI, + "upgraded."+CI->getName(), CI); + } else if (Name.compare(14, 4, "vmls", 4) == 0) { + ExtendNEONArgs(CI, CI->getArgOperand(1), CI->getArgOperand(2), V0, V1); + Instruction *MulI = BinaryOperator::CreateMul(V0, V1, "", CI); + NewI = BinaryOperator::CreateSub(CI->getArgOperand(0), MulI, + "upgraded."+CI->getName(), CI); + } else if (Name.compare(14, 4, "vabd", 4) == 0) { + NewI = CallVABD(CI, CI->getArgOperand(0), CI->getArgOperand(1)); + NewI = new ZExtInst(NewI, CI->getType(), "upgraded."+CI->getName(), CI); + } else if (Name.compare(14, 4, "vaba", 4) == 0) { + NewI = CallVABD(CI, CI->getArgOperand(1), CI->getArgOperand(2)); + if (Name.at(18) == 'l') + NewI = new ZExtInst(NewI, CI->getType(), "", CI); + NewI = BinaryOperator::CreateAdd(CI->getArgOperand(0), NewI, + "upgraded."+CI->getName(), CI); + } else if (Name.compare(14, 6, "vmovn.", 6) == 0) { + NewI = new TruncInst(CI->getArgOperand(0), CI->getType(), + "upgraded." + CI->getName(), CI); + } else { + llvm_unreachable("Unknown arm.neon function for CallInst upgrade."); + } + // Replace any uses of the old CallInst. + if (!CI->use_empty()) + CI->replaceAllUsesWith(NewI); + CI->eraseFromParent(); + return; + } + + bool isLoadH = false, isLoadL = false, isMovL = false; + bool isMovSD = false, isShufPD = false; + bool isUnpckhPD = false, isUnpcklPD = false; + bool isPunpckhQPD = false, isPunpcklQPD = false; + if (F->getName() == "llvm.x86.sse2.loadh.pd") + isLoadH = true; + else if (F->getName() == "llvm.x86.sse2.loadl.pd") + isLoadL = true; + else if (F->getName() == "llvm.x86.sse2.movl.dq") + isMovL = true; + else if (F->getName() == "llvm.x86.sse2.movs.d") + isMovSD = true; + else if (F->getName() == "llvm.x86.sse2.shuf.pd") + isShufPD = true; + else if (F->getName() == "llvm.x86.sse2.unpckh.pd") + isUnpckhPD = true; + else if (F->getName() == "llvm.x86.sse2.unpckl.pd") + isUnpcklPD = true; + else if (F->getName() == "llvm.x86.sse2.punpckh.qdq") + isPunpckhQPD = true; + else if (F->getName() == "llvm.x86.sse2.punpckl.qdq") + isPunpcklQPD = true; + + if (isLoadH || isLoadL || isMovL || isMovSD || isShufPD || + isUnpckhPD || isUnpcklPD || isPunpckhQPD || isPunpcklQPD) { + std::vector<Constant*> Idxs; + Value *Op0 = CI->getArgOperand(0); + ShuffleVectorInst *SI = NULL; + if (isLoadH || isLoadL) { + Value *Op1 = UndefValue::get(Op0->getType()); + Value *Addr = new BitCastInst(CI->getArgOperand(1), + Type::getDoublePtrTy(C), + "upgraded.", CI); + Value *Load = new LoadInst(Addr, "upgraded.", false, 8, CI); + Value *Idx = ConstantInt::get(Type::getInt32Ty(C), 0); + Op1 = InsertElementInst::Create(Op1, Load, Idx, "upgraded.", CI); + + if (isLoadH) { + Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 0)); + Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 2)); + } else { + Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 2)); + Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 1)); + } + Value *Mask = ConstantVector::get(Idxs); + SI = new ShuffleVectorInst(Op0, Op1, Mask, "upgraded.", CI); + } else if (isMovL) { + Constant *Zero = ConstantInt::get(Type::getInt32Ty(C), 0); + Idxs.push_back(Zero); + Idxs.push_back(Zero); + Idxs.push_back(Zero); + Idxs.push_back(Zero); + Value *ZeroV = ConstantVector::get(Idxs); + + Idxs.clear(); + Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 4)); + Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 5)); + Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 2)); + Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 3)); + Value *Mask = ConstantVector::get(Idxs); + SI = new ShuffleVectorInst(ZeroV, Op0, Mask, "upgraded.", CI); + } else if (isMovSD || + isUnpckhPD || isUnpcklPD || isPunpckhQPD || isPunpcklQPD) { + Value *Op1 = CI->getArgOperand(1); + if (isMovSD) { + Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 2)); + Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 1)); + } else if (isUnpckhPD || isPunpckhQPD) { + Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 1)); + Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 3)); + } else { + Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 0)); + Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 2)); + } + Value *Mask = ConstantVector::get(Idxs); + SI = new ShuffleVectorInst(Op0, Op1, Mask, "upgraded.", CI); + } else if (isShufPD) { + Value *Op1 = CI->getArgOperand(1); + unsigned MaskVal = + cast<ConstantInt>(CI->getArgOperand(2))->getZExtValue(); + Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), MaskVal & 1)); + Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), + ((MaskVal >> 1) & 1)+2)); + Value *Mask = ConstantVector::get(Idxs); + SI = new ShuffleVectorInst(Op0, Op1, Mask, "upgraded.", CI); + } + + assert(SI && "Unexpected!"); + + // Handle any uses of the old CallInst. + if (!CI->use_empty()) + // Replace all uses of the old call with the new cast which has the + // correct type. + CI->replaceAllUsesWith(SI); + + // Clean up the old call now that it has been completely upgraded. + CI->eraseFromParent(); + } else if (F->getName() == "llvm.x86.sse41.pmulld") { + // Upgrade this set of intrinsics into vector multiplies. + Instruction *Mul = BinaryOperator::CreateMul(CI->getArgOperand(0), + CI->getArgOperand(1), + CI->getName(), + CI); + // Fix up all the uses with our new multiply. + if (!CI->use_empty()) + CI->replaceAllUsesWith(Mul); + + // Remove upgraded multiply. + CI->eraseFromParent(); + } else if (F->getName() == "llvm.x86.ssse3.palign.r") { + Value *Op1 = CI->getArgOperand(0); + Value *Op2 = CI->getArgOperand(1); + Value *Op3 = CI->getArgOperand(2); + unsigned shiftVal = cast<ConstantInt>(Op3)->getZExtValue(); + Value *Rep; + IRBuilder<> Builder(C); + Builder.SetInsertPoint(CI->getParent(), CI); + + // If palignr is shifting the pair of input vectors less than 9 bytes, + // emit a shuffle instruction. + if (shiftVal <= 8) { + const Type *IntTy = Type::getInt32Ty(C); + const Type *EltTy = Type::getInt8Ty(C); + const Type *VecTy = VectorType::get(EltTy, 8); + + Op2 = Builder.CreateBitCast(Op2, VecTy); + Op1 = Builder.CreateBitCast(Op1, VecTy); + + llvm::SmallVector<llvm::Constant*, 8> Indices; + for (unsigned i = 0; i != 8; ++i) + Indices.push_back(ConstantInt::get(IntTy, shiftVal + i)); + + Value *SV = ConstantVector::get(Indices.begin(), Indices.size()); + Rep = Builder.CreateShuffleVector(Op2, Op1, SV, "palignr"); + Rep = Builder.CreateBitCast(Rep, F->getReturnType()); + } + + // If palignr is shifting the pair of input vectors more than 8 but less + // than 16 bytes, emit a logical right shift of the destination. + else if (shiftVal < 16) { + // MMX has these as 1 x i64 vectors for some odd optimization reasons. + const Type *EltTy = Type::getInt64Ty(C); + const Type *VecTy = VectorType::get(EltTy, 1); + + Op1 = Builder.CreateBitCast(Op1, VecTy, "cast"); + Op2 = ConstantInt::get(VecTy, (shiftVal-8) * 8); + + // create i32 constant + Function *I = + Intrinsic::getDeclaration(F->getParent(), Intrinsic::x86_mmx_psrl_q); + Rep = Builder.CreateCall2(I, Op1, Op2, "palignr"); + } + + // If palignr is shifting the pair of vectors more than 32 bytes, emit zero. + else { + Rep = Constant::getNullValue(F->getReturnType()); + } + + // Replace any uses with our new instruction. + if (!CI->use_empty()) + CI->replaceAllUsesWith(Rep); + + // Remove upgraded instruction. + CI->eraseFromParent(); + + } else if (F->getName() == "llvm.x86.ssse3.palign.r.128") { + Value *Op1 = CI->getArgOperand(0); + Value *Op2 = CI->getArgOperand(1); + Value *Op3 = CI->getArgOperand(2); + unsigned shiftVal = cast<ConstantInt>(Op3)->getZExtValue(); + Value *Rep; + IRBuilder<> Builder(C); + Builder.SetInsertPoint(CI->getParent(), CI); + + // If palignr is shifting the pair of input vectors less than 17 bytes, + // emit a shuffle instruction. + if (shiftVal <= 16) { + const Type *IntTy = Type::getInt32Ty(C); + const Type *EltTy = Type::getInt8Ty(C); + const Type *VecTy = VectorType::get(EltTy, 16); + + Op2 = Builder.CreateBitCast(Op2, VecTy); + Op1 = Builder.CreateBitCast(Op1, VecTy); + + llvm::SmallVector<llvm::Constant*, 16> Indices; + for (unsigned i = 0; i != 16; ++i) + Indices.push_back(ConstantInt::get(IntTy, shiftVal + i)); + + Value *SV = ConstantVector::get(Indices.begin(), Indices.size()); + Rep = Builder.CreateShuffleVector(Op2, Op1, SV, "palignr"); + Rep = Builder.CreateBitCast(Rep, F->getReturnType()); + } + + // If palignr is shifting the pair of input vectors more than 16 but less + // than 32 bytes, emit a logical right shift of the destination. + else if (shiftVal < 32) { + const Type *EltTy = Type::getInt64Ty(C); + const Type *VecTy = VectorType::get(EltTy, 2); + const Type *IntTy = Type::getInt32Ty(C); + + Op1 = Builder.CreateBitCast(Op1, VecTy, "cast"); + Op2 = ConstantInt::get(IntTy, (shiftVal-16) * 8); + + // create i32 constant + Function *I = + Intrinsic::getDeclaration(F->getParent(), Intrinsic::x86_sse2_psrl_dq); + Rep = Builder.CreateCall2(I, Op1, Op2, "palignr"); + } + + // If palignr is shifting the pair of vectors more than 32 bytes, emit zero. + else { + Rep = Constant::getNullValue(F->getReturnType()); + } + + // Replace any uses with our new instruction. + if (!CI->use_empty()) + CI->replaceAllUsesWith(Rep); + + // Remove upgraded instruction. + CI->eraseFromParent(); + + } else { + llvm_unreachable("Unknown function for CallInst upgrade."); + } + return; + } + + switch (NewFn->getIntrinsicID()) { + default: llvm_unreachable("Unknown function for CallInst upgrade."); + case Intrinsic::arm_neon_vld1: + case Intrinsic::arm_neon_vld2: + case Intrinsic::arm_neon_vld3: + case Intrinsic::arm_neon_vld4: + case Intrinsic::arm_neon_vst1: + case Intrinsic::arm_neon_vst2: + case Intrinsic::arm_neon_vst3: + case Intrinsic::arm_neon_vst4: + case Intrinsic::arm_neon_vld2lane: + case Intrinsic::arm_neon_vld3lane: + case Intrinsic::arm_neon_vld4lane: + case Intrinsic::arm_neon_vst2lane: + case Intrinsic::arm_neon_vst3lane: + case Intrinsic::arm_neon_vst4lane: { + // Add a default alignment argument of 1. + SmallVector<Value*, 8> Operands(CS.arg_begin(), CS.arg_end()); + Operands.push_back(ConstantInt::get(Type::getInt32Ty(C), 1)); + CallInst *NewCI = CallInst::Create(NewFn, Operands.begin(), Operands.end(), + CI->getName(), CI); + NewCI->setTailCall(CI->isTailCall()); + NewCI->setCallingConv(CI->getCallingConv()); + + // Handle any uses of the old CallInst. + if (!CI->use_empty()) + // Replace all uses of the old call with the new cast which has the + // correct type. + CI->replaceAllUsesWith(NewCI); + + // Clean up the old call now that it has been completely upgraded. + CI->eraseFromParent(); + break; + } + + case Intrinsic::x86_mmx_psll_d: + case Intrinsic::x86_mmx_psll_q: + case Intrinsic::x86_mmx_psll_w: + case Intrinsic::x86_mmx_psra_d: + case Intrinsic::x86_mmx_psra_w: + case Intrinsic::x86_mmx_psrl_d: + case Intrinsic::x86_mmx_psrl_q: + case Intrinsic::x86_mmx_psrl_w: { + Value *Operands[2]; + + Operands[0] = CI->getArgOperand(0); + + // Cast the second parameter to the correct type. + BitCastInst *BC = new BitCastInst(CI->getArgOperand(1), + NewFn->getFunctionType()->getParamType(1), + "upgraded.", CI); + Operands[1] = BC; + + // Construct a new CallInst + CallInst *NewCI = CallInst::Create(NewFn, Operands, Operands+2, + "upgraded."+CI->getName(), CI); + NewCI->setTailCall(CI->isTailCall()); + NewCI->setCallingConv(CI->getCallingConv()); + + // Handle any uses of the old CallInst. + if (!CI->use_empty()) + // Replace all uses of the old call with the new cast which has the + // correct type. + CI->replaceAllUsesWith(NewCI); + + // Clean up the old call now that it has been completely upgraded. + CI->eraseFromParent(); + break; + } + case Intrinsic::ctlz: + case Intrinsic::ctpop: + case Intrinsic::cttz: { + // Build a small vector of the original arguments. + SmallVector<Value*, 8> Operands(CS.arg_begin(), CS.arg_end()); + + // Construct a new CallInst + CallInst *NewCI = CallInst::Create(NewFn, Operands.begin(), Operands.end(), + "upgraded."+CI->getName(), CI); + NewCI->setTailCall(CI->isTailCall()); + NewCI->setCallingConv(CI->getCallingConv()); + + // Handle any uses of the old CallInst. + if (!CI->use_empty()) { + // Check for sign extend parameter attributes on the return values. + bool SrcSExt = NewFn->getAttributes().paramHasAttr(0, Attribute::SExt); + bool DestSExt = F->getAttributes().paramHasAttr(0, Attribute::SExt); + + // Construct an appropriate cast from the new return type to the old. + CastInst *RetCast = CastInst::Create( + CastInst::getCastOpcode(NewCI, SrcSExt, + F->getReturnType(), + DestSExt), + NewCI, F->getReturnType(), + NewCI->getName(), CI); + NewCI->moveBefore(RetCast); + + // Replace all uses of the old call with the new cast which has the + // correct type. + CI->replaceAllUsesWith(RetCast); + } + + // Clean up the old call now that it has been completely upgraded. + CI->eraseFromParent(); + } + break; + case Intrinsic::eh_selector: + case Intrinsic::eh_typeid_for: { + // Only the return type changed. + SmallVector<Value*, 8> Operands(CS.arg_begin(), CS.arg_end()); + CallInst *NewCI = CallInst::Create(NewFn, Operands.begin(), Operands.end(), + "upgraded." + CI->getName(), CI); + NewCI->setTailCall(CI->isTailCall()); + NewCI->setCallingConv(CI->getCallingConv()); + + // Handle any uses of the old CallInst. + if (!CI->use_empty()) { + // Construct an appropriate cast from the new return type to the old. + CastInst *RetCast = + CastInst::Create(CastInst::getCastOpcode(NewCI, true, + F->getReturnType(), true), + NewCI, F->getReturnType(), NewCI->getName(), CI); + CI->replaceAllUsesWith(RetCast); + } + CI->eraseFromParent(); + } + break; + case Intrinsic::memcpy: + case Intrinsic::memmove: + case Intrinsic::memset: { + // Add isVolatile + const llvm::Type *I1Ty = llvm::Type::getInt1Ty(CI->getContext()); + Value *Operands[5] = { CI->getArgOperand(0), CI->getArgOperand(1), + CI->getArgOperand(2), CI->getArgOperand(3), + llvm::ConstantInt::get(I1Ty, 0) }; + CallInst *NewCI = CallInst::Create(NewFn, Operands, Operands+5, + CI->getName(), CI); + NewCI->setTailCall(CI->isTailCall()); + NewCI->setCallingConv(CI->getCallingConv()); + // Handle any uses of the old CallInst. + if (!CI->use_empty()) + // Replace all uses of the old call with the new cast which has the + // correct type. + CI->replaceAllUsesWith(NewCI); + + // Clean up the old call now that it has been completely upgraded. + CI->eraseFromParent(); + break; + } + } +} + +// This tests each Function to determine if it needs upgrading. When we find +// one we are interested in, we then upgrade all calls to reflect the new +// function. +void llvm::UpgradeCallsToIntrinsic(Function* F) { + assert(F && "Illegal attempt to upgrade a non-existent intrinsic."); + + // Upgrade the function and check if it is a totaly new function. + Function* NewFn; + if (UpgradeIntrinsicFunction(F, NewFn)) { + if (NewFn != F) { + // Replace all uses to the old function with the new one if necessary. + for (Value::use_iterator UI = F->use_begin(), UE = F->use_end(); + UI != UE; ) { + if (CallInst* CI = dyn_cast<CallInst>(*UI++)) + UpgradeIntrinsicCall(CI, NewFn); + } + // Remove old function, no longer used, from the module. + F->eraseFromParent(); + } + } +} + +/// This function strips all debug info intrinsics, except for llvm.dbg.declare. +/// If an llvm.dbg.declare intrinsic is invalid, then this function simply +/// strips that use. +void llvm::CheckDebugInfoIntrinsics(Module *M) { + + + if (Function *FuncStart = M->getFunction("llvm.dbg.func.start")) { + while (!FuncStart->use_empty()) { + CallInst *CI = cast<CallInst>(FuncStart->use_back()); + CI->eraseFromParent(); + } + FuncStart->eraseFromParent(); + } + + if (Function *StopPoint = M->getFunction("llvm.dbg.stoppoint")) { + while (!StopPoint->use_empty()) { + CallInst *CI = cast<CallInst>(StopPoint->use_back()); + CI->eraseFromParent(); + } + StopPoint->eraseFromParent(); + } + + if (Function *RegionStart = M->getFunction("llvm.dbg.region.start")) { + while (!RegionStart->use_empty()) { + CallInst *CI = cast<CallInst>(RegionStart->use_back()); + CI->eraseFromParent(); + } + RegionStart->eraseFromParent(); + } + + if (Function *RegionEnd = M->getFunction("llvm.dbg.region.end")) { + while (!RegionEnd->use_empty()) { + CallInst *CI = cast<CallInst>(RegionEnd->use_back()); + CI->eraseFromParent(); + } + RegionEnd->eraseFromParent(); + } + + if (Function *Declare = M->getFunction("llvm.dbg.declare")) { + if (!Declare->use_empty()) { + DbgDeclareInst *DDI = cast<DbgDeclareInst>(Declare->use_back()); + if (!isa<MDNode>(DDI->getArgOperand(0)) || + !isa<MDNode>(DDI->getArgOperand(1))) { + while (!Declare->use_empty()) { + CallInst *CI = cast<CallInst>(Declare->use_back()); + CI->eraseFromParent(); + } + Declare->eraseFromParent(); + } + } + } +} diff --git a/contrib/llvm/lib/VMCore/BasicBlock.cpp b/contrib/llvm/lib/VMCore/BasicBlock.cpp new file mode 100644 index 0000000..8ad5373 --- /dev/null +++ b/contrib/llvm/lib/VMCore/BasicBlock.cpp @@ -0,0 +1,309 @@ +//===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the BasicBlock class for the VMCore library. +// +//===----------------------------------------------------------------------===// + +#include "llvm/BasicBlock.h" +#include "llvm/Constants.h" +#include "llvm/Instructions.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/LLVMContext.h" +#include "llvm/Type.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/Support/CFG.h" +#include "llvm/Support/LeakDetector.h" +#include "SymbolTableListTraitsImpl.h" +#include <algorithm> +using namespace llvm; + +ValueSymbolTable *BasicBlock::getValueSymbolTable() { + if (Function *F = getParent()) + return &F->getValueSymbolTable(); + return 0; +} + +LLVMContext &BasicBlock::getContext() const { + return getType()->getContext(); +} + +// Explicit instantiation of SymbolTableListTraits since some of the methods +// are not in the public header file... +template class llvm::SymbolTableListTraits<Instruction, BasicBlock>; + + +BasicBlock::BasicBlock(LLVMContext &C, const Twine &Name, Function *NewParent, + BasicBlock *InsertBefore) + : Value(Type::getLabelTy(C), Value::BasicBlockVal), Parent(0) { + + // Make sure that we get added to a function + LeakDetector::addGarbageObject(this); + + if (InsertBefore) { + assert(NewParent && + "Cannot insert block before another block with no function!"); + NewParent->getBasicBlockList().insert(InsertBefore, this); + } else if (NewParent) { + NewParent->getBasicBlockList().push_back(this); + } + + setName(Name); +} + + +BasicBlock::~BasicBlock() { + // If the address of the block is taken and it is being deleted (e.g. because + // it is dead), this means that there is either a dangling constant expr + // hanging off the block, or an undefined use of the block (source code + // expecting the address of a label to keep the block alive even though there + // is no indirect branch). Handle these cases by zapping the BlockAddress + // nodes. There are no other possible uses at this point. + if (hasAddressTaken()) { + assert(!use_empty() && "There should be at least one blockaddress!"); + Constant *Replacement = + ConstantInt::get(llvm::Type::getInt32Ty(getContext()), 1); + while (!use_empty()) { + BlockAddress *BA = cast<BlockAddress>(use_back()); + BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, + BA->getType())); + BA->destroyConstant(); + } + } + + assert(getParent() == 0 && "BasicBlock still linked into the program!"); + dropAllReferences(); + InstList.clear(); +} + +void BasicBlock::setParent(Function *parent) { + if (getParent()) + LeakDetector::addGarbageObject(this); + + // Set Parent=parent, updating instruction symtab entries as appropriate. + InstList.setSymTabObject(&Parent, parent); + + if (getParent()) + LeakDetector::removeGarbageObject(this); +} + +void BasicBlock::removeFromParent() { + getParent()->getBasicBlockList().remove(this); +} + +void BasicBlock::eraseFromParent() { + getParent()->getBasicBlockList().erase(this); +} + +/// moveBefore - Unlink this basic block from its current function and +/// insert it into the function that MovePos lives in, right before MovePos. +void BasicBlock::moveBefore(BasicBlock *MovePos) { + MovePos->getParent()->getBasicBlockList().splice(MovePos, + getParent()->getBasicBlockList(), this); +} + +/// moveAfter - Unlink this basic block from its current function and +/// insert it into the function that MovePos lives in, right after MovePos. +void BasicBlock::moveAfter(BasicBlock *MovePos) { + Function::iterator I = MovePos; + MovePos->getParent()->getBasicBlockList().splice(++I, + getParent()->getBasicBlockList(), this); +} + + +TerminatorInst *BasicBlock::getTerminator() { + if (InstList.empty()) return 0; + return dyn_cast<TerminatorInst>(&InstList.back()); +} + +const TerminatorInst *BasicBlock::getTerminator() const { + if (InstList.empty()) return 0; + return dyn_cast<TerminatorInst>(&InstList.back()); +} + +Instruction* BasicBlock::getFirstNonPHI() { + BasicBlock::iterator i = begin(); + // All valid basic blocks should have a terminator, + // which is not a PHINode. If we have an invalid basic + // block we'll get an assertion failure when dereferencing + // a past-the-end iterator. + while (isa<PHINode>(i)) ++i; + return &*i; +} + +Instruction* BasicBlock::getFirstNonPHIOrDbg() { + BasicBlock::iterator i = begin(); + // All valid basic blocks should have a terminator, + // which is not a PHINode. If we have an invalid basic + // block we'll get an assertion failure when dereferencing + // a past-the-end iterator. + while (isa<PHINode>(i) || isa<DbgInfoIntrinsic>(i)) ++i; + return &*i; +} + +void BasicBlock::dropAllReferences() { + for(iterator I = begin(), E = end(); I != E; ++I) + I->dropAllReferences(); +} + +/// getSinglePredecessor - If this basic block has a single predecessor block, +/// return the block, otherwise return a null pointer. +BasicBlock *BasicBlock::getSinglePredecessor() { + pred_iterator PI = pred_begin(this), E = pred_end(this); + if (PI == E) return 0; // No preds. + BasicBlock *ThePred = *PI; + ++PI; + return (PI == E) ? ThePred : 0 /*multiple preds*/; +} + +/// getUniquePredecessor - If this basic block has a unique predecessor block, +/// return the block, otherwise return a null pointer. +/// Note that unique predecessor doesn't mean single edge, there can be +/// multiple edges from the unique predecessor to this block (for example +/// a switch statement with multiple cases having the same destination). +BasicBlock *BasicBlock::getUniquePredecessor() { + pred_iterator PI = pred_begin(this), E = pred_end(this); + if (PI == E) return 0; // No preds. + BasicBlock *PredBB = *PI; + ++PI; + for (;PI != E; ++PI) { + if (*PI != PredBB) + return 0; + // The same predecessor appears multiple times in the predecessor list. + // This is OK. + } + return PredBB; +} + +/// removePredecessor - This method is used to notify a BasicBlock that the +/// specified Predecessor of the block is no longer able to reach it. This is +/// actually not used to update the Predecessor list, but is actually used to +/// update the PHI nodes that reside in the block. Note that this should be +/// called while the predecessor still refers to this block. +/// +void BasicBlock::removePredecessor(BasicBlock *Pred, + bool DontDeleteUselessPHIs) { + assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs. + find(pred_begin(this), pred_end(this), Pred) != pred_end(this)) && + "removePredecessor: BB is not a predecessor!"); + + if (InstList.empty()) return; + PHINode *APN = dyn_cast<PHINode>(&front()); + if (!APN) return; // Quick exit. + + // If there are exactly two predecessors, then we want to nuke the PHI nodes + // altogether. However, we cannot do this, if this in this case: + // + // Loop: + // %x = phi [X, Loop] + // %x2 = add %x, 1 ;; This would become %x2 = add %x2, 1 + // br Loop ;; %x2 does not dominate all uses + // + // This is because the PHI node input is actually taken from the predecessor + // basic block. The only case this can happen is with a self loop, so we + // check for this case explicitly now. + // + unsigned max_idx = APN->getNumIncomingValues(); + assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!"); + if (max_idx == 2) { + BasicBlock *Other = APN->getIncomingBlock(APN->getIncomingBlock(0) == Pred); + + // Disable PHI elimination! + if (this == Other) max_idx = 3; + } + + // <= Two predecessors BEFORE I remove one? + if (max_idx <= 2 && !DontDeleteUselessPHIs) { + // Yup, loop through and nuke the PHI nodes + while (PHINode *PN = dyn_cast<PHINode>(&front())) { + // Remove the predecessor first. + PN->removeIncomingValue(Pred, !DontDeleteUselessPHIs); + + // If the PHI _HAD_ two uses, replace PHI node with its now *single* value + if (max_idx == 2) { + if (PN->getOperand(0) != PN) + PN->replaceAllUsesWith(PN->getOperand(0)); + else + // We are left with an infinite loop with no entries: kill the PHI. + PN->replaceAllUsesWith(UndefValue::get(PN->getType())); + getInstList().pop_front(); // Remove the PHI node + } + + // If the PHI node already only had one entry, it got deleted by + // removeIncomingValue. + } + } else { + // Okay, now we know that we need to remove predecessor #pred_idx from all + // PHI nodes. Iterate over each PHI node fixing them up + PHINode *PN; + for (iterator II = begin(); (PN = dyn_cast<PHINode>(II)); ) { + ++II; + PN->removeIncomingValue(Pred, false); + // If all incoming values to the Phi are the same, we can replace the Phi + // with that value. + Value* PNV = 0; + if (!DontDeleteUselessPHIs && (PNV = PN->hasConstantValue())) { + PN->replaceAllUsesWith(PNV); + PN->eraseFromParent(); + } + } + } +} + + +/// splitBasicBlock - This splits a basic block into two at the specified +/// instruction. Note that all instructions BEFORE the specified iterator stay +/// as part of the original basic block, an unconditional branch is added to +/// the new BB, and the rest of the instructions in the BB are moved to the new +/// BB, including the old terminator. This invalidates the iterator. +/// +/// Note that this only works on well formed basic blocks (must have a +/// terminator), and 'I' must not be the end of instruction list (which would +/// cause a degenerate basic block to be formed, having a terminator inside of +/// the basic block). +/// +BasicBlock *BasicBlock::splitBasicBlock(iterator I, const Twine &BBName) { + assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!"); + assert(I != InstList.end() && + "Trying to get me to create degenerate basic block!"); + + BasicBlock *InsertBefore = llvm::next(Function::iterator(this)) + .getNodePtrUnchecked(); + BasicBlock *New = BasicBlock::Create(getContext(), BBName, + getParent(), InsertBefore); + + // Move all of the specified instructions from the original basic block into + // the new basic block. + New->getInstList().splice(New->end(), this->getInstList(), I, end()); + + // Add a branch instruction to the newly formed basic block. + BranchInst::Create(New, this); + + // Now we must loop through all of the successors of the New block (which + // _were_ the successors of the 'this' block), and update any PHI nodes in + // successors. If there were PHI nodes in the successors, then they need to + // know that incoming branches will be from New, not from Old. + // + for (succ_iterator I = succ_begin(New), E = succ_end(New); I != E; ++I) { + // Loop over any phi nodes in the basic block, updating the BB field of + // incoming values... + BasicBlock *Successor = *I; + PHINode *PN; + for (BasicBlock::iterator II = Successor->begin(); + (PN = dyn_cast<PHINode>(II)); ++II) { + int IDX = PN->getBasicBlockIndex(this); + while (IDX != -1) { + PN->setIncomingBlock((unsigned)IDX, New); + IDX = PN->getBasicBlockIndex(this); + } + } + } + return New; +} + diff --git a/contrib/llvm/lib/VMCore/CMakeLists.txt b/contrib/llvm/lib/VMCore/CMakeLists.txt new file mode 100644 index 0000000..1388c93 --- /dev/null +++ b/contrib/llvm/lib/VMCore/CMakeLists.txt @@ -0,0 +1,35 @@ +add_llvm_library(LLVMCore + AsmWriter.cpp + Attributes.cpp + AutoUpgrade.cpp + BasicBlock.cpp + ConstantFold.cpp + Constants.cpp + Core.cpp + DebugLoc.cpp + Dominators.cpp + Function.cpp + GVMaterializer.cpp + Globals.cpp + IRBuilder.cpp + InlineAsm.cpp + Instruction.cpp + Instructions.cpp + IntrinsicInst.cpp + LLVMContext.cpp + LLVMContextImpl.cpp + LeakDetector.cpp + Metadata.cpp + Module.cpp + Pass.cpp + PassManager.cpp + PassRegistry.cpp + PrintModulePass.cpp + Type.cpp + TypeSymbolTable.cpp + Use.cpp + Value.cpp + ValueSymbolTable.cpp + ValueTypes.cpp + Verifier.cpp + ) diff --git a/contrib/llvm/lib/VMCore/ConstantFold.cpp b/contrib/llvm/lib/VMCore/ConstantFold.cpp new file mode 100644 index 0000000..9a91daf --- /dev/null +++ b/contrib/llvm/lib/VMCore/ConstantFold.cpp @@ -0,0 +1,2259 @@ +//===- ConstantFold.cpp - LLVM constant folder ----------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements folding of constants for LLVM. This implements the +// (internal) ConstantFold.h interface, which is used by the +// ConstantExpr::get* methods to automatically fold constants when possible. +// +// The current constant folding implementation is implemented in two pieces: the +// pieces that don't need TargetData, and the pieces that do. This is to avoid +// a dependence in VMCore on Target. +// +//===----------------------------------------------------------------------===// + +#include "ConstantFold.h" +#include "llvm/Constants.h" +#include "llvm/Instructions.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Function.h" +#include "llvm/GlobalAlias.h" +#include "llvm/GlobalVariable.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/GetElementPtrTypeIterator.h" +#include "llvm/Support/ManagedStatic.h" +#include "llvm/Support/MathExtras.h" +#include <limits> +using namespace llvm; + +//===----------------------------------------------------------------------===// +// ConstantFold*Instruction Implementations +//===----------------------------------------------------------------------===// + +/// BitCastConstantVector - Convert the specified ConstantVector node to the +/// specified vector type. At this point, we know that the elements of the +/// input vector constant are all simple integer or FP values. +static Constant *BitCastConstantVector(ConstantVector *CV, + const VectorType *DstTy) { + // If this cast changes element count then we can't handle it here: + // doing so requires endianness information. This should be handled by + // Analysis/ConstantFolding.cpp + unsigned NumElts = DstTy->getNumElements(); + if (NumElts != CV->getNumOperands()) + return 0; + + // Check to verify that all elements of the input are simple. + for (unsigned i = 0; i != NumElts; ++i) { + if (!isa<ConstantInt>(CV->getOperand(i)) && + !isa<ConstantFP>(CV->getOperand(i))) + return 0; + } + + // Bitcast each element now. + std::vector<Constant*> Result; + const Type *DstEltTy = DstTy->getElementType(); + for (unsigned i = 0; i != NumElts; ++i) + Result.push_back(ConstantExpr::getBitCast(CV->getOperand(i), + DstEltTy)); + return ConstantVector::get(Result); +} + +/// This function determines which opcode to use to fold two constant cast +/// expressions together. It uses CastInst::isEliminableCastPair to determine +/// the opcode. Consequently its just a wrapper around that function. +/// @brief Determine if it is valid to fold a cast of a cast +static unsigned +foldConstantCastPair( + unsigned opc, ///< opcode of the second cast constant expression + ConstantExpr *Op, ///< the first cast constant expression + const Type *DstTy ///< desintation type of the first cast +) { + assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!"); + assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type"); + assert(CastInst::isCast(opc) && "Invalid cast opcode"); + + // The the types and opcodes for the two Cast constant expressions + const Type *SrcTy = Op->getOperand(0)->getType(); + const Type *MidTy = Op->getType(); + Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode()); + Instruction::CastOps secondOp = Instruction::CastOps(opc); + + // Let CastInst::isEliminableCastPair do the heavy lifting. + return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy, + Type::getInt64Ty(DstTy->getContext())); +} + +static Constant *FoldBitCast(Constant *V, const Type *DestTy) { + const Type *SrcTy = V->getType(); + if (SrcTy == DestTy) + return V; // no-op cast + + // Check to see if we are casting a pointer to an aggregate to a pointer to + // the first element. If so, return the appropriate GEP instruction. + if (const PointerType *PTy = dyn_cast<PointerType>(V->getType())) + if (const PointerType *DPTy = dyn_cast<PointerType>(DestTy)) + if (PTy->getAddressSpace() == DPTy->getAddressSpace()) { + SmallVector<Value*, 8> IdxList; + Value *Zero = + Constant::getNullValue(Type::getInt32Ty(DPTy->getContext())); + IdxList.push_back(Zero); + const Type *ElTy = PTy->getElementType(); + while (ElTy != DPTy->getElementType()) { + if (const StructType *STy = dyn_cast<StructType>(ElTy)) { + if (STy->getNumElements() == 0) break; + ElTy = STy->getElementType(0); + IdxList.push_back(Zero); + } else if (const SequentialType *STy = + dyn_cast<SequentialType>(ElTy)) { + if (ElTy->isPointerTy()) break; // Can't index into pointers! + ElTy = STy->getElementType(); + IdxList.push_back(Zero); + } else { + break; + } + } + + if (ElTy == DPTy->getElementType()) + // This GEP is inbounds because all indices are zero. + return ConstantExpr::getInBoundsGetElementPtr(V, &IdxList[0], + IdxList.size()); + } + + // Handle casts from one vector constant to another. We know that the src + // and dest type have the same size (otherwise its an illegal cast). + if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) { + if (const VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) { + assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() && + "Not cast between same sized vectors!"); + SrcTy = NULL; + // First, check for null. Undef is already handled. + if (isa<ConstantAggregateZero>(V)) + return Constant::getNullValue(DestTy); + + if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) + return BitCastConstantVector(CV, DestPTy); + } + + // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts + // This allows for other simplifications (although some of them + // can only be handled by Analysis/ConstantFolding.cpp). + if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) + return ConstantExpr::getBitCast(ConstantVector::get(&V, 1), DestPTy); + } + + // Finally, implement bitcast folding now. The code below doesn't handle + // bitcast right. + if (isa<ConstantPointerNull>(V)) // ptr->ptr cast. + return ConstantPointerNull::get(cast<PointerType>(DestTy)); + + // Handle integral constant input. + if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { + if (DestTy->isIntegerTy()) + // Integral -> Integral. This is a no-op because the bit widths must + // be the same. Consequently, we just fold to V. + return V; + + if (DestTy->isFloatingPointTy()) + return ConstantFP::get(DestTy->getContext(), + APFloat(CI->getValue(), + !DestTy->isPPC_FP128Ty())); + + // Otherwise, can't fold this (vector?) + return 0; + } + + // Handle ConstantFP input: FP -> Integral. + if (ConstantFP *FP = dyn_cast<ConstantFP>(V)) + return ConstantInt::get(FP->getContext(), + FP->getValueAPF().bitcastToAPInt()); + + return 0; +} + + +/// ExtractConstantBytes - V is an integer constant which only has a subset of +/// its bytes used. The bytes used are indicated by ByteStart (which is the +/// first byte used, counting from the least significant byte) and ByteSize, +/// which is the number of bytes used. +/// +/// This function analyzes the specified constant to see if the specified byte +/// range can be returned as a simplified constant. If so, the constant is +/// returned, otherwise null is returned. +/// +static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart, + unsigned ByteSize) { + assert(C->getType()->isIntegerTy() && + (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 && + "Non-byte sized integer input"); + unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8; + assert(ByteSize && "Must be accessing some piece"); + assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input"); + assert(ByteSize != CSize && "Should not extract everything"); + + // Constant Integers are simple. + if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { + APInt V = CI->getValue(); + if (ByteStart) + V = V.lshr(ByteStart*8); + V.trunc(ByteSize*8); + return ConstantInt::get(CI->getContext(), V); + } + + // In the input is a constant expr, we might be able to recursively simplify. + // If not, we definitely can't do anything. + ConstantExpr *CE = dyn_cast<ConstantExpr>(C); + if (CE == 0) return 0; + + switch (CE->getOpcode()) { + default: return 0; + case Instruction::Or: { + Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize); + if (RHS == 0) + return 0; + + // X | -1 -> -1. + if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) + if (RHSC->isAllOnesValue()) + return RHSC; + + Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize); + if (LHS == 0) + return 0; + return ConstantExpr::getOr(LHS, RHS); + } + case Instruction::And: { + Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize); + if (RHS == 0) + return 0; + + // X & 0 -> 0. + if (RHS->isNullValue()) + return RHS; + + Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize); + if (LHS == 0) + return 0; + return ConstantExpr::getAnd(LHS, RHS); + } + case Instruction::LShr: { + ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1)); + if (Amt == 0) + return 0; + unsigned ShAmt = Amt->getZExtValue(); + // Cannot analyze non-byte shifts. + if ((ShAmt & 7) != 0) + return 0; + ShAmt >>= 3; + + // If the extract is known to be all zeros, return zero. + if (ByteStart >= CSize-ShAmt) + return Constant::getNullValue(IntegerType::get(CE->getContext(), + ByteSize*8)); + // If the extract is known to be fully in the input, extract it. + if (ByteStart+ByteSize+ShAmt <= CSize) + return ExtractConstantBytes(CE->getOperand(0), ByteStart+ShAmt, ByteSize); + + // TODO: Handle the 'partially zero' case. + return 0; + } + + case Instruction::Shl: { + ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1)); + if (Amt == 0) + return 0; + unsigned ShAmt = Amt->getZExtValue(); + // Cannot analyze non-byte shifts. + if ((ShAmt & 7) != 0) + return 0; + ShAmt >>= 3; + + // If the extract is known to be all zeros, return zero. + if (ByteStart+ByteSize <= ShAmt) + return Constant::getNullValue(IntegerType::get(CE->getContext(), + ByteSize*8)); + // If the extract is known to be fully in the input, extract it. + if (ByteStart >= ShAmt) + return ExtractConstantBytes(CE->getOperand(0), ByteStart-ShAmt, ByteSize); + + // TODO: Handle the 'partially zero' case. + return 0; + } + + case Instruction::ZExt: { + unsigned SrcBitSize = + cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth(); + + // If extracting something that is completely zero, return 0. + if (ByteStart*8 >= SrcBitSize) + return Constant::getNullValue(IntegerType::get(CE->getContext(), + ByteSize*8)); + + // If exactly extracting the input, return it. + if (ByteStart == 0 && ByteSize*8 == SrcBitSize) + return CE->getOperand(0); + + // If extracting something completely in the input, if if the input is a + // multiple of 8 bits, recurse. + if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize) + return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize); + + // Otherwise, if extracting a subset of the input, which is not multiple of + // 8 bits, do a shift and trunc to get the bits. + if ((ByteStart+ByteSize)*8 < SrcBitSize) { + assert((SrcBitSize&7) && "Shouldn't get byte sized case here"); + Constant *Res = CE->getOperand(0); + if (ByteStart) + Res = ConstantExpr::getLShr(Res, + ConstantInt::get(Res->getType(), ByteStart*8)); + return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(), + ByteSize*8)); + } + + // TODO: Handle the 'partially zero' case. + return 0; + } + } +} + +/// getFoldedSizeOf - Return a ConstantExpr with type DestTy for sizeof +/// on Ty, with any known factors factored out. If Folded is false, +/// return null if no factoring was possible, to avoid endlessly +/// bouncing an unfoldable expression back into the top-level folder. +/// +static Constant *getFoldedSizeOf(const Type *Ty, const Type *DestTy, + bool Folded) { + if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { + Constant *N = ConstantInt::get(DestTy, ATy->getNumElements()); + Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true); + return ConstantExpr::getNUWMul(E, N); + } + + if (const StructType *STy = dyn_cast<StructType>(Ty)) + if (!STy->isPacked()) { + unsigned NumElems = STy->getNumElements(); + // An empty struct has size zero. + if (NumElems == 0) + return ConstantExpr::getNullValue(DestTy); + // Check for a struct with all members having the same size. + Constant *MemberSize = + getFoldedSizeOf(STy->getElementType(0), DestTy, true); + bool AllSame = true; + for (unsigned i = 1; i != NumElems; ++i) + if (MemberSize != + getFoldedSizeOf(STy->getElementType(i), DestTy, true)) { + AllSame = false; + break; + } + if (AllSame) { + Constant *N = ConstantInt::get(DestTy, NumElems); + return ConstantExpr::getNUWMul(MemberSize, N); + } + } + + // Pointer size doesn't depend on the pointee type, so canonicalize them + // to an arbitrary pointee. + if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) + if (!PTy->getElementType()->isIntegerTy(1)) + return + getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1), + PTy->getAddressSpace()), + DestTy, true); + + // If there's no interesting folding happening, bail so that we don't create + // a constant that looks like it needs folding but really doesn't. + if (!Folded) + return 0; + + // Base case: Get a regular sizeof expression. + Constant *C = ConstantExpr::getSizeOf(Ty); + C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, + DestTy, false), + C, DestTy); + return C; +} + +/// getFoldedAlignOf - Return a ConstantExpr with type DestTy for alignof +/// on Ty, with any known factors factored out. If Folded is false, +/// return null if no factoring was possible, to avoid endlessly +/// bouncing an unfoldable expression back into the top-level folder. +/// +static Constant *getFoldedAlignOf(const Type *Ty, const Type *DestTy, + bool Folded) { + // The alignment of an array is equal to the alignment of the + // array element. Note that this is not always true for vectors. + if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { + Constant *C = ConstantExpr::getAlignOf(ATy->getElementType()); + C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, + DestTy, + false), + C, DestTy); + return C; + } + + if (const StructType *STy = dyn_cast<StructType>(Ty)) { + // Packed structs always have an alignment of 1. + if (STy->isPacked()) + return ConstantInt::get(DestTy, 1); + + // Otherwise, struct alignment is the maximum alignment of any member. + // Without target data, we can't compare much, but we can check to see + // if all the members have the same alignment. + unsigned NumElems = STy->getNumElements(); + // An empty struct has minimal alignment. + if (NumElems == 0) + return ConstantInt::get(DestTy, 1); + // Check for a struct with all members having the same alignment. + Constant *MemberAlign = + getFoldedAlignOf(STy->getElementType(0), DestTy, true); + bool AllSame = true; + for (unsigned i = 1; i != NumElems; ++i) + if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) { + AllSame = false; + break; + } + if (AllSame) + return MemberAlign; + } + + // Pointer alignment doesn't depend on the pointee type, so canonicalize them + // to an arbitrary pointee. + if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) + if (!PTy->getElementType()->isIntegerTy(1)) + return + getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(), + 1), + PTy->getAddressSpace()), + DestTy, true); + + // If there's no interesting folding happening, bail so that we don't create + // a constant that looks like it needs folding but really doesn't. + if (!Folded) + return 0; + + // Base case: Get a regular alignof expression. + Constant *C = ConstantExpr::getAlignOf(Ty); + C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, + DestTy, false), + C, DestTy); + return C; +} + +/// getFoldedOffsetOf - Return a ConstantExpr with type DestTy for offsetof +/// on Ty and FieldNo, with any known factors factored out. If Folded is false, +/// return null if no factoring was possible, to avoid endlessly +/// bouncing an unfoldable expression back into the top-level folder. +/// +static Constant *getFoldedOffsetOf(const Type *Ty, Constant *FieldNo, + const Type *DestTy, + bool Folded) { + if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { + Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false, + DestTy, false), + FieldNo, DestTy); + Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true); + return ConstantExpr::getNUWMul(E, N); + } + + if (const StructType *STy = dyn_cast<StructType>(Ty)) + if (!STy->isPacked()) { + unsigned NumElems = STy->getNumElements(); + // An empty struct has no members. + if (NumElems == 0) + return 0; + // Check for a struct with all members having the same size. + Constant *MemberSize = + getFoldedSizeOf(STy->getElementType(0), DestTy, true); + bool AllSame = true; + for (unsigned i = 1; i != NumElems; ++i) + if (MemberSize != + getFoldedSizeOf(STy->getElementType(i), DestTy, true)) { + AllSame = false; + break; + } + if (AllSame) { + Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, + false, + DestTy, + false), + FieldNo, DestTy); + return ConstantExpr::getNUWMul(MemberSize, N); + } + } + + // If there's no interesting folding happening, bail so that we don't create + // a constant that looks like it needs folding but really doesn't. + if (!Folded) + return 0; + + // Base case: Get a regular offsetof expression. + Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo); + C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, + DestTy, false), + C, DestTy); + return C; +} + +Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V, + const Type *DestTy) { + if (isa<UndefValue>(V)) { + // zext(undef) = 0, because the top bits will be zero. + // sext(undef) = 0, because the top bits will all be the same. + // [us]itofp(undef) = 0, because the result value is bounded. + if (opc == Instruction::ZExt || opc == Instruction::SExt || + opc == Instruction::UIToFP || opc == Instruction::SIToFP) + return Constant::getNullValue(DestTy); + return UndefValue::get(DestTy); + } + // No compile-time operations on this type yet. + if (V->getType()->isPPC_FP128Ty() || DestTy->isPPC_FP128Ty()) + return 0; + + // If the cast operand is a constant expression, there's a few things we can + // do to try to simplify it. + if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { + if (CE->isCast()) { + // Try hard to fold cast of cast because they are often eliminable. + if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy)) + return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy); + } else if (CE->getOpcode() == Instruction::GetElementPtr) { + // If all of the indexes in the GEP are null values, there is no pointer + // adjustment going on. We might as well cast the source pointer. + bool isAllNull = true; + for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) + if (!CE->getOperand(i)->isNullValue()) { + isAllNull = false; + break; + } + if (isAllNull) + // This is casting one pointer type to another, always BitCast + return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy); + } + } + + // If the cast operand is a constant vector, perform the cast by + // operating on each element. In the cast of bitcasts, the element + // count may be mismatched; don't attempt to handle that here. + if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) + if (DestTy->isVectorTy() && + cast<VectorType>(DestTy)->getNumElements() == + CV->getType()->getNumElements()) { + std::vector<Constant*> res; + const VectorType *DestVecTy = cast<VectorType>(DestTy); + const Type *DstEltTy = DestVecTy->getElementType(); + for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) + res.push_back(ConstantExpr::getCast(opc, + CV->getOperand(i), DstEltTy)); + return ConstantVector::get(DestVecTy, res); + } + + // We actually have to do a cast now. Perform the cast according to the + // opcode specified. + switch (opc) { + default: + llvm_unreachable("Failed to cast constant expression"); + case Instruction::FPTrunc: + case Instruction::FPExt: + if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) { + bool ignored; + APFloat Val = FPC->getValueAPF(); + Val.convert(DestTy->isFloatTy() ? APFloat::IEEEsingle : + DestTy->isDoubleTy() ? APFloat::IEEEdouble : + DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended : + DestTy->isFP128Ty() ? APFloat::IEEEquad : + APFloat::Bogus, + APFloat::rmNearestTiesToEven, &ignored); + return ConstantFP::get(V->getContext(), Val); + } + return 0; // Can't fold. + case Instruction::FPToUI: + case Instruction::FPToSI: + if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) { + const APFloat &V = FPC->getValueAPF(); + bool ignored; + uint64_t x[2]; + uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth(); + (void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI, + APFloat::rmTowardZero, &ignored); + APInt Val(DestBitWidth, 2, x); + return ConstantInt::get(FPC->getContext(), Val); + } + return 0; // Can't fold. + case Instruction::IntToPtr: //always treated as unsigned + if (V->isNullValue()) // Is it an integral null value? + return ConstantPointerNull::get(cast<PointerType>(DestTy)); + return 0; // Other pointer types cannot be casted + case Instruction::PtrToInt: // always treated as unsigned + // Is it a null pointer value? + if (V->isNullValue()) + return ConstantInt::get(DestTy, 0); + // If this is a sizeof-like expression, pull out multiplications by + // known factors to expose them to subsequent folding. If it's an + // alignof-like expression, factor out known factors. + if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) + if (CE->getOpcode() == Instruction::GetElementPtr && + CE->getOperand(0)->isNullValue()) { + const Type *Ty = + cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); + if (CE->getNumOperands() == 2) { + // Handle a sizeof-like expression. + Constant *Idx = CE->getOperand(1); + bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne(); + if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) { + Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true, + DestTy, false), + Idx, DestTy); + return ConstantExpr::getMul(C, Idx); + } + } else if (CE->getNumOperands() == 3 && + CE->getOperand(1)->isNullValue()) { + // Handle an alignof-like expression. + if (const StructType *STy = dyn_cast<StructType>(Ty)) + if (!STy->isPacked()) { + ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2)); + if (CI->isOne() && + STy->getNumElements() == 2 && + STy->getElementType(0)->isIntegerTy(1)) { + return getFoldedAlignOf(STy->getElementType(1), DestTy, false); + } + } + // Handle an offsetof-like expression. + if (Ty->isStructTy() || Ty->isArrayTy()) { + if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2), + DestTy, false)) + return C; + } + } + } + // Other pointer types cannot be casted + return 0; + case Instruction::UIToFP: + case Instruction::SIToFP: + if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { + APInt api = CI->getValue(); + const uint64_t zero[] = {0, 0}; + APFloat apf = APFloat(APInt(DestTy->getPrimitiveSizeInBits(), + 2, zero)); + (void)apf.convertFromAPInt(api, + opc==Instruction::SIToFP, + APFloat::rmNearestTiesToEven); + return ConstantFP::get(V->getContext(), apf); + } + return 0; + case Instruction::ZExt: + if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { + uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth(); + APInt Result(CI->getValue()); + Result.zext(BitWidth); + return ConstantInt::get(V->getContext(), Result); + } + return 0; + case Instruction::SExt: + if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { + uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth(); + APInt Result(CI->getValue()); + Result.sext(BitWidth); + return ConstantInt::get(V->getContext(), Result); + } + return 0; + case Instruction::Trunc: { + uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth(); + if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { + APInt Result(CI->getValue()); + Result.trunc(DestBitWidth); + return ConstantInt::get(V->getContext(), Result); + } + + // The input must be a constantexpr. See if we can simplify this based on + // the bytes we are demanding. Only do this if the source and dest are an + // even multiple of a byte. + if ((DestBitWidth & 7) == 0 && + (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0) + if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8)) + return Res; + + return 0; + } + case Instruction::BitCast: + return FoldBitCast(V, DestTy); + } +} + +Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond, + Constant *V1, Constant *V2) { + if (ConstantInt *CB = dyn_cast<ConstantInt>(Cond)) + return CB->getZExtValue() ? V1 : V2; + + if (isa<UndefValue>(V1)) return V2; + if (isa<UndefValue>(V2)) return V1; + if (isa<UndefValue>(Cond)) return V1; + if (V1 == V2) return V1; + return 0; +} + +Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val, + Constant *Idx) { + if (isa<UndefValue>(Val)) // ee(undef, x) -> undef + return UndefValue::get(cast<VectorType>(Val->getType())->getElementType()); + if (Val->isNullValue()) // ee(zero, x) -> zero + return Constant::getNullValue( + cast<VectorType>(Val->getType())->getElementType()); + + if (ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) { + if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) { + return CVal->getOperand(CIdx->getZExtValue()); + } else if (isa<UndefValue>(Idx)) { + // ee({w,x,y,z}, undef) -> w (an arbitrary value). + return CVal->getOperand(0); + } + } + return 0; +} + +Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val, + Constant *Elt, + Constant *Idx) { + ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx); + if (!CIdx) return 0; + APInt idxVal = CIdx->getValue(); + if (isa<UndefValue>(Val)) { + // Insertion of scalar constant into vector undef + // Optimize away insertion of undef + if (isa<UndefValue>(Elt)) + return Val; + // Otherwise break the aggregate undef into multiple undefs and do + // the insertion + unsigned numOps = + cast<VectorType>(Val->getType())->getNumElements(); + std::vector<Constant*> Ops; + Ops.reserve(numOps); + for (unsigned i = 0; i < numOps; ++i) { + Constant *Op = + (idxVal == i) ? Elt : UndefValue::get(Elt->getType()); + Ops.push_back(Op); + } + return ConstantVector::get(Ops); + } + if (isa<ConstantAggregateZero>(Val)) { + // Insertion of scalar constant into vector aggregate zero + // Optimize away insertion of zero + if (Elt->isNullValue()) + return Val; + // Otherwise break the aggregate zero into multiple zeros and do + // the insertion + unsigned numOps = + cast<VectorType>(Val->getType())->getNumElements(); + std::vector<Constant*> Ops; + Ops.reserve(numOps); + for (unsigned i = 0; i < numOps; ++i) { + Constant *Op = + (idxVal == i) ? Elt : Constant::getNullValue(Elt->getType()); + Ops.push_back(Op); + } + return ConstantVector::get(Ops); + } + if (ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) { + // Insertion of scalar constant into vector constant + std::vector<Constant*> Ops; + Ops.reserve(CVal->getNumOperands()); + for (unsigned i = 0; i < CVal->getNumOperands(); ++i) { + Constant *Op = + (idxVal == i) ? Elt : cast<Constant>(CVal->getOperand(i)); + Ops.push_back(Op); + } + return ConstantVector::get(Ops); + } + + return 0; +} + +/// GetVectorElement - If C is a ConstantVector, ConstantAggregateZero or Undef +/// return the specified element value. Otherwise return null. +static Constant *GetVectorElement(Constant *C, unsigned EltNo) { + if (ConstantVector *CV = dyn_cast<ConstantVector>(C)) + return CV->getOperand(EltNo); + + const Type *EltTy = cast<VectorType>(C->getType())->getElementType(); + if (isa<ConstantAggregateZero>(C)) + return Constant::getNullValue(EltTy); + if (isa<UndefValue>(C)) + return UndefValue::get(EltTy); + return 0; +} + +Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1, + Constant *V2, + Constant *Mask) { + // Undefined shuffle mask -> undefined value. + if (isa<UndefValue>(Mask)) return UndefValue::get(V1->getType()); + + unsigned MaskNumElts = cast<VectorType>(Mask->getType())->getNumElements(); + unsigned SrcNumElts = cast<VectorType>(V1->getType())->getNumElements(); + const Type *EltTy = cast<VectorType>(V1->getType())->getElementType(); + + // Loop over the shuffle mask, evaluating each element. + SmallVector<Constant*, 32> Result; + for (unsigned i = 0; i != MaskNumElts; ++i) { + Constant *InElt = GetVectorElement(Mask, i); + if (InElt == 0) return 0; + + if (isa<UndefValue>(InElt)) + InElt = UndefValue::get(EltTy); + else if (ConstantInt *CI = dyn_cast<ConstantInt>(InElt)) { + unsigned Elt = CI->getZExtValue(); + if (Elt >= SrcNumElts*2) + InElt = UndefValue::get(EltTy); + else if (Elt >= SrcNumElts) + InElt = GetVectorElement(V2, Elt - SrcNumElts); + else + InElt = GetVectorElement(V1, Elt); + if (InElt == 0) return 0; + } else { + // Unknown value. + return 0; + } + Result.push_back(InElt); + } + + return ConstantVector::get(&Result[0], Result.size()); +} + +Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg, + const unsigned *Idxs, + unsigned NumIdx) { + // Base case: no indices, so return the entire value. + if (NumIdx == 0) + return Agg; + + if (isa<UndefValue>(Agg)) // ev(undef, x) -> undef + return UndefValue::get(ExtractValueInst::getIndexedType(Agg->getType(), + Idxs, + Idxs + NumIdx)); + + if (isa<ConstantAggregateZero>(Agg)) // ev(0, x) -> 0 + return + Constant::getNullValue(ExtractValueInst::getIndexedType(Agg->getType(), + Idxs, + Idxs + NumIdx)); + + // Otherwise recurse. + if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg)) + return ConstantFoldExtractValueInstruction(CS->getOperand(*Idxs), + Idxs+1, NumIdx-1); + + if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg)) + return ConstantFoldExtractValueInstruction(CA->getOperand(*Idxs), + Idxs+1, NumIdx-1); + ConstantVector *CV = cast<ConstantVector>(Agg); + return ConstantFoldExtractValueInstruction(CV->getOperand(*Idxs), + Idxs+1, NumIdx-1); +} + +Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg, + Constant *Val, + const unsigned *Idxs, + unsigned NumIdx) { + // Base case: no indices, so replace the entire value. + if (NumIdx == 0) + return Val; + + if (isa<UndefValue>(Agg)) { + // Insertion of constant into aggregate undef + // Optimize away insertion of undef. + if (isa<UndefValue>(Val)) + return Agg; + + // Otherwise break the aggregate undef into multiple undefs and do + // the insertion. + const CompositeType *AggTy = cast<CompositeType>(Agg->getType()); + unsigned numOps; + if (const ArrayType *AR = dyn_cast<ArrayType>(AggTy)) + numOps = AR->getNumElements(); + else + numOps = cast<StructType>(AggTy)->getNumElements(); + + std::vector<Constant*> Ops(numOps); + for (unsigned i = 0; i < numOps; ++i) { + const Type *MemberTy = AggTy->getTypeAtIndex(i); + Constant *Op = + (*Idxs == i) ? + ConstantFoldInsertValueInstruction(UndefValue::get(MemberTy), + Val, Idxs+1, NumIdx-1) : + UndefValue::get(MemberTy); + Ops[i] = Op; + } + + if (const StructType* ST = dyn_cast<StructType>(AggTy)) + return ConstantStruct::get(ST->getContext(), Ops, ST->isPacked()); + return ConstantArray::get(cast<ArrayType>(AggTy), Ops); + } + + if (isa<ConstantAggregateZero>(Agg)) { + // Insertion of constant into aggregate zero + // Optimize away insertion of zero. + if (Val->isNullValue()) + return Agg; + + // Otherwise break the aggregate zero into multiple zeros and do + // the insertion. + const CompositeType *AggTy = cast<CompositeType>(Agg->getType()); + unsigned numOps; + if (const ArrayType *AR = dyn_cast<ArrayType>(AggTy)) + numOps = AR->getNumElements(); + else + numOps = cast<StructType>(AggTy)->getNumElements(); + + std::vector<Constant*> Ops(numOps); + for (unsigned i = 0; i < numOps; ++i) { + const Type *MemberTy = AggTy->getTypeAtIndex(i); + Constant *Op = + (*Idxs == i) ? + ConstantFoldInsertValueInstruction(Constant::getNullValue(MemberTy), + Val, Idxs+1, NumIdx-1) : + Constant::getNullValue(MemberTy); + Ops[i] = Op; + } + + if (const StructType *ST = dyn_cast<StructType>(AggTy)) + return ConstantStruct::get(ST->getContext(), Ops, ST->isPacked()); + return ConstantArray::get(cast<ArrayType>(AggTy), Ops); + } + + if (isa<ConstantStruct>(Agg) || isa<ConstantArray>(Agg)) { + // Insertion of constant into aggregate constant. + std::vector<Constant*> Ops(Agg->getNumOperands()); + for (unsigned i = 0; i < Agg->getNumOperands(); ++i) { + Constant *Op = cast<Constant>(Agg->getOperand(i)); + if (*Idxs == i) + Op = ConstantFoldInsertValueInstruction(Op, Val, Idxs+1, NumIdx-1); + Ops[i] = Op; + } + + if (const StructType* ST = dyn_cast<StructType>(Agg->getType())) + return ConstantStruct::get(ST->getContext(), Ops, ST->isPacked()); + return ConstantArray::get(cast<ArrayType>(Agg->getType()), Ops); + } + + return 0; +} + + +Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, + Constant *C1, Constant *C2) { + // No compile-time operations on this type yet. + if (C1->getType()->isPPC_FP128Ty()) + return 0; + + // Handle UndefValue up front. + if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) { + switch (Opcode) { + case Instruction::Xor: + if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) + // Handle undef ^ undef -> 0 special case. This is a common + // idiom (misuse). + return Constant::getNullValue(C1->getType()); + // Fallthrough + case Instruction::Add: + case Instruction::Sub: + return UndefValue::get(C1->getType()); + case Instruction::Mul: + case Instruction::And: + return Constant::getNullValue(C1->getType()); + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::URem: + case Instruction::SRem: + if (!isa<UndefValue>(C2)) // undef / X -> 0 + return Constant::getNullValue(C1->getType()); + return C2; // X / undef -> undef + case Instruction::Or: // X | undef -> -1 + if (const VectorType *PTy = dyn_cast<VectorType>(C1->getType())) + return Constant::getAllOnesValue(PTy); + return Constant::getAllOnesValue(C1->getType()); + case Instruction::LShr: + if (isa<UndefValue>(C2) && isa<UndefValue>(C1)) + return C1; // undef lshr undef -> undef + return Constant::getNullValue(C1->getType()); // X lshr undef -> 0 + // undef lshr X -> 0 + case Instruction::AShr: + if (!isa<UndefValue>(C2)) + return C1; // undef ashr X --> undef + else if (isa<UndefValue>(C1)) + return C1; // undef ashr undef -> undef + else + return C1; // X ashr undef --> X + case Instruction::Shl: + // undef << X -> 0 or X << undef -> 0 + return Constant::getNullValue(C1->getType()); + } + } + + // Handle simplifications when the RHS is a constant int. + if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) { + switch (Opcode) { + case Instruction::Add: + if (CI2->equalsInt(0)) return C1; // X + 0 == X + break; + case Instruction::Sub: + if (CI2->equalsInt(0)) return C1; // X - 0 == X + break; + case Instruction::Mul: + if (CI2->equalsInt(0)) return C2; // X * 0 == 0 + if (CI2->equalsInt(1)) + return C1; // X * 1 == X + break; + case Instruction::UDiv: + case Instruction::SDiv: + if (CI2->equalsInt(1)) + return C1; // X / 1 == X + if (CI2->equalsInt(0)) + return UndefValue::get(CI2->getType()); // X / 0 == undef + break; + case Instruction::URem: + case Instruction::SRem: + if (CI2->equalsInt(1)) + return Constant::getNullValue(CI2->getType()); // X % 1 == 0 + if (CI2->equalsInt(0)) + return UndefValue::get(CI2->getType()); // X % 0 == undef + break; + case Instruction::And: + if (CI2->isZero()) return C2; // X & 0 == 0 + if (CI2->isAllOnesValue()) + return C1; // X & -1 == X + + if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { + // (zext i32 to i64) & 4294967295 -> (zext i32 to i64) + if (CE1->getOpcode() == Instruction::ZExt) { + unsigned DstWidth = CI2->getType()->getBitWidth(); + unsigned SrcWidth = + CE1->getOperand(0)->getType()->getPrimitiveSizeInBits(); + APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth)); + if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits) + return C1; + } + + // If and'ing the address of a global with a constant, fold it. + if (CE1->getOpcode() == Instruction::PtrToInt && + isa<GlobalValue>(CE1->getOperand(0))) { + GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0)); + + // Functions are at least 4-byte aligned. + unsigned GVAlign = GV->getAlignment(); + if (isa<Function>(GV)) + GVAlign = std::max(GVAlign, 4U); + + if (GVAlign > 1) { + unsigned DstWidth = CI2->getType()->getBitWidth(); + unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign)); + APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth)); + + // If checking bits we know are clear, return zero. + if ((CI2->getValue() & BitsNotSet) == CI2->getValue()) + return Constant::getNullValue(CI2->getType()); + } + } + } + break; + case Instruction::Or: + if (CI2->equalsInt(0)) return C1; // X | 0 == X + if (CI2->isAllOnesValue()) + return C2; // X | -1 == -1 + break; + case Instruction::Xor: + if (CI2->equalsInt(0)) return C1; // X ^ 0 == X + + if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { + switch (CE1->getOpcode()) { + default: break; + case Instruction::ICmp: + case Instruction::FCmp: + // cmp pred ^ true -> cmp !pred + assert(CI2->equalsInt(1)); + CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate(); + pred = CmpInst::getInversePredicate(pred); + return ConstantExpr::getCompare(pred, CE1->getOperand(0), + CE1->getOperand(1)); + } + } + break; + case Instruction::AShr: + // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2 + if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) + if (CE1->getOpcode() == Instruction::ZExt) // Top bits known zero. + return ConstantExpr::getLShr(C1, C2); + break; + } + } else if (isa<ConstantInt>(C1)) { + // If C1 is a ConstantInt and C2 is not, swap the operands. + if (Instruction::isCommutative(Opcode)) + return ConstantExpr::get(Opcode, C2, C1); + } + + // At this point we know neither constant is an UndefValue. + if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) { + if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) { + using namespace APIntOps; + const APInt &C1V = CI1->getValue(); + const APInt &C2V = CI2->getValue(); + switch (Opcode) { + default: + break; + case Instruction::Add: + return ConstantInt::get(CI1->getContext(), C1V + C2V); + case Instruction::Sub: + return ConstantInt::get(CI1->getContext(), C1V - C2V); + case Instruction::Mul: + return ConstantInt::get(CI1->getContext(), C1V * C2V); + case Instruction::UDiv: + assert(!CI2->isNullValue() && "Div by zero handled above"); + return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V)); + case Instruction::SDiv: + assert(!CI2->isNullValue() && "Div by zero handled above"); + if (C2V.isAllOnesValue() && C1V.isMinSignedValue()) + return UndefValue::get(CI1->getType()); // MIN_INT / -1 -> undef + return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V)); + case Instruction::URem: + assert(!CI2->isNullValue() && "Div by zero handled above"); + return ConstantInt::get(CI1->getContext(), C1V.urem(C2V)); + case Instruction::SRem: + assert(!CI2->isNullValue() && "Div by zero handled above"); + if (C2V.isAllOnesValue() && C1V.isMinSignedValue()) + return UndefValue::get(CI1->getType()); // MIN_INT % -1 -> undef + return ConstantInt::get(CI1->getContext(), C1V.srem(C2V)); + case Instruction::And: + return ConstantInt::get(CI1->getContext(), C1V & C2V); + case Instruction::Or: + return ConstantInt::get(CI1->getContext(), C1V | C2V); + case Instruction::Xor: + return ConstantInt::get(CI1->getContext(), C1V ^ C2V); + case Instruction::Shl: { + uint32_t shiftAmt = C2V.getZExtValue(); + if (shiftAmt < C1V.getBitWidth()) + return ConstantInt::get(CI1->getContext(), C1V.shl(shiftAmt)); + else + return UndefValue::get(C1->getType()); // too big shift is undef + } + case Instruction::LShr: { + uint32_t shiftAmt = C2V.getZExtValue(); + if (shiftAmt < C1V.getBitWidth()) + return ConstantInt::get(CI1->getContext(), C1V.lshr(shiftAmt)); + else + return UndefValue::get(C1->getType()); // too big shift is undef + } + case Instruction::AShr: { + uint32_t shiftAmt = C2V.getZExtValue(); + if (shiftAmt < C1V.getBitWidth()) + return ConstantInt::get(CI1->getContext(), C1V.ashr(shiftAmt)); + else + return UndefValue::get(C1->getType()); // too big shift is undef + } + } + } + + switch (Opcode) { + case Instruction::SDiv: + case Instruction::UDiv: + case Instruction::URem: + case Instruction::SRem: + case Instruction::LShr: + case Instruction::AShr: + case Instruction::Shl: + if (CI1->equalsInt(0)) return C1; + break; + default: + break; + } + } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) { + if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) { + APFloat C1V = CFP1->getValueAPF(); + APFloat C2V = CFP2->getValueAPF(); + APFloat C3V = C1V; // copy for modification + switch (Opcode) { + default: + break; + case Instruction::FAdd: + (void)C3V.add(C2V, APFloat::rmNearestTiesToEven); + return ConstantFP::get(C1->getContext(), C3V); + case Instruction::FSub: + (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven); + return ConstantFP::get(C1->getContext(), C3V); + case Instruction::FMul: + (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven); + return ConstantFP::get(C1->getContext(), C3V); + case Instruction::FDiv: + (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven); + return ConstantFP::get(C1->getContext(), C3V); + case Instruction::FRem: + (void)C3V.mod(C2V, APFloat::rmNearestTiesToEven); + return ConstantFP::get(C1->getContext(), C3V); + } + } + } else if (const VectorType *VTy = dyn_cast<VectorType>(C1->getType())) { + ConstantVector *CP1 = dyn_cast<ConstantVector>(C1); + ConstantVector *CP2 = dyn_cast<ConstantVector>(C2); + if ((CP1 != NULL || isa<ConstantAggregateZero>(C1)) && + (CP2 != NULL || isa<ConstantAggregateZero>(C2))) { + std::vector<Constant*> Res; + const Type* EltTy = VTy->getElementType(); + Constant *C1 = 0; + Constant *C2 = 0; + switch (Opcode) { + default: + break; + case Instruction::Add: + for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { + C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy); + C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy); + Res.push_back(ConstantExpr::getAdd(C1, C2)); + } + return ConstantVector::get(Res); + case Instruction::FAdd: + for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { + C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy); + C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy); + Res.push_back(ConstantExpr::getFAdd(C1, C2)); + } + return ConstantVector::get(Res); + case Instruction::Sub: + for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { + C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy); + C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy); + Res.push_back(ConstantExpr::getSub(C1, C2)); + } + return ConstantVector::get(Res); + case Instruction::FSub: + for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { + C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy); + C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy); + Res.push_back(ConstantExpr::getFSub(C1, C2)); + } + return ConstantVector::get(Res); + case Instruction::Mul: + for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { + C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy); + C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy); + Res.push_back(ConstantExpr::getMul(C1, C2)); + } + return ConstantVector::get(Res); + case Instruction::FMul: + for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { + C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy); + C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy); + Res.push_back(ConstantExpr::getFMul(C1, C2)); + } + return ConstantVector::get(Res); + case Instruction::UDiv: + for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { + C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy); + C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy); + Res.push_back(ConstantExpr::getUDiv(C1, C2)); + } + return ConstantVector::get(Res); + case Instruction::SDiv: + for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { + C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy); + C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy); + Res.push_back(ConstantExpr::getSDiv(C1, C2)); + } + return ConstantVector::get(Res); + case Instruction::FDiv: + for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { + C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy); + C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy); + Res.push_back(ConstantExpr::getFDiv(C1, C2)); + } + return ConstantVector::get(Res); + case Instruction::URem: + for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { + C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy); + C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy); + Res.push_back(ConstantExpr::getURem(C1, C2)); + } + return ConstantVector::get(Res); + case Instruction::SRem: + for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { + C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy); + C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy); + Res.push_back(ConstantExpr::getSRem(C1, C2)); + } + return ConstantVector::get(Res); + case Instruction::FRem: + for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { + C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy); + C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy); + Res.push_back(ConstantExpr::getFRem(C1, C2)); + } + return ConstantVector::get(Res); + case Instruction::And: + for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { + C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy); + C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy); + Res.push_back(ConstantExpr::getAnd(C1, C2)); + } + return ConstantVector::get(Res); + case Instruction::Or: + for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { + C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy); + C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy); + Res.push_back(ConstantExpr::getOr(C1, C2)); + } + return ConstantVector::get(Res); + case Instruction::Xor: + for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { + C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy); + C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy); + Res.push_back(ConstantExpr::getXor(C1, C2)); + } + return ConstantVector::get(Res); + case Instruction::LShr: + for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { + C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy); + C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy); + Res.push_back(ConstantExpr::getLShr(C1, C2)); + } + return ConstantVector::get(Res); + case Instruction::AShr: + for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { + C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy); + C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy); + Res.push_back(ConstantExpr::getAShr(C1, C2)); + } + return ConstantVector::get(Res); + case Instruction::Shl: + for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { + C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy); + C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy); + Res.push_back(ConstantExpr::getShl(C1, C2)); + } + return ConstantVector::get(Res); + } + } + } + + if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { + // There are many possible foldings we could do here. We should probably + // at least fold add of a pointer with an integer into the appropriate + // getelementptr. This will improve alias analysis a bit. + + // Given ((a + b) + c), if (b + c) folds to something interesting, return + // (a + (b + c)). + if (Instruction::isAssociative(Opcode, C1->getType()) && + CE1->getOpcode() == Opcode) { + Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2); + if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode) + return ConstantExpr::get(Opcode, CE1->getOperand(0), T); + } + } else if (isa<ConstantExpr>(C2)) { + // If C2 is a constant expr and C1 isn't, flop them around and fold the + // other way if possible. + if (Instruction::isCommutative(Opcode)) + return ConstantFoldBinaryInstruction(Opcode, C2, C1); + } + + // i1 can be simplified in many cases. + if (C1->getType()->isIntegerTy(1)) { + switch (Opcode) { + case Instruction::Add: + case Instruction::Sub: + return ConstantExpr::getXor(C1, C2); + case Instruction::Mul: + return ConstantExpr::getAnd(C1, C2); + case Instruction::Shl: + case Instruction::LShr: + case Instruction::AShr: + // We can assume that C2 == 0. If it were one the result would be + // undefined because the shift value is as large as the bitwidth. + return C1; + case Instruction::SDiv: + case Instruction::UDiv: + // We can assume that C2 == 1. If it were zero the result would be + // undefined through division by zero. + return C1; + case Instruction::URem: + case Instruction::SRem: + // We can assume that C2 == 1. If it were zero the result would be + // undefined through division by zero. + return ConstantInt::getFalse(C1->getContext()); + default: + break; + } + } + + // We don't know how to fold this. + return 0; +} + +/// isZeroSizedType - This type is zero sized if its an array or structure of +/// zero sized types. The only leaf zero sized type is an empty structure. +static bool isMaybeZeroSizedType(const Type *Ty) { + if (Ty->isOpaqueTy()) return true; // Can't say. + if (const StructType *STy = dyn_cast<StructType>(Ty)) { + + // If all of elements have zero size, this does too. + for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) + if (!isMaybeZeroSizedType(STy->getElementType(i))) return false; + return true; + + } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { + return isMaybeZeroSizedType(ATy->getElementType()); + } + return false; +} + +/// IdxCompare - Compare the two constants as though they were getelementptr +/// indices. This allows coersion of the types to be the same thing. +/// +/// If the two constants are the "same" (after coersion), return 0. If the +/// first is less than the second, return -1, if the second is less than the +/// first, return 1. If the constants are not integral, return -2. +/// +static int IdxCompare(Constant *C1, Constant *C2, const Type *ElTy) { + if (C1 == C2) return 0; + + // Ok, we found a different index. If they are not ConstantInt, we can't do + // anything with them. + if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2)) + return -2; // don't know! + + // Ok, we have two differing integer indices. Sign extend them to be the same + // type. Long is always big enough, so we use it. + if (!C1->getType()->isIntegerTy(64)) + C1 = ConstantExpr::getSExt(C1, Type::getInt64Ty(C1->getContext())); + + if (!C2->getType()->isIntegerTy(64)) + C2 = ConstantExpr::getSExt(C2, Type::getInt64Ty(C1->getContext())); + + if (C1 == C2) return 0; // They are equal + + // If the type being indexed over is really just a zero sized type, there is + // no pointer difference being made here. + if (isMaybeZeroSizedType(ElTy)) + return -2; // dunno. + + // If they are really different, now that they are the same type, then we + // found a difference! + if (cast<ConstantInt>(C1)->getSExtValue() < + cast<ConstantInt>(C2)->getSExtValue()) + return -1; + else + return 1; +} + +/// evaluateFCmpRelation - This function determines if there is anything we can +/// decide about the two constants provided. This doesn't need to handle simple +/// things like ConstantFP comparisons, but should instead handle ConstantExprs. +/// If we can determine that the two constants have a particular relation to +/// each other, we should return the corresponding FCmpInst predicate, +/// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in +/// ConstantFoldCompareInstruction. +/// +/// To simplify this code we canonicalize the relation so that the first +/// operand is always the most "complex" of the two. We consider ConstantFP +/// to be the simplest, and ConstantExprs to be the most complex. +static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) { + assert(V1->getType() == V2->getType() && + "Cannot compare values of different types!"); + + // No compile-time operations on this type yet. + if (V1->getType()->isPPC_FP128Ty()) + return FCmpInst::BAD_FCMP_PREDICATE; + + // Handle degenerate case quickly + if (V1 == V2) return FCmpInst::FCMP_OEQ; + + if (!isa<ConstantExpr>(V1)) { + if (!isa<ConstantExpr>(V2)) { + // We distilled thisUse the standard constant folder for a few cases + ConstantInt *R = 0; + R = dyn_cast<ConstantInt>( + ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2)); + if (R && !R->isZero()) + return FCmpInst::FCMP_OEQ; + R = dyn_cast<ConstantInt>( + ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2)); + if (R && !R->isZero()) + return FCmpInst::FCMP_OLT; + R = dyn_cast<ConstantInt>( + ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2)); + if (R && !R->isZero()) + return FCmpInst::FCMP_OGT; + + // Nothing more we can do + return FCmpInst::BAD_FCMP_PREDICATE; + } + + // If the first operand is simple and second is ConstantExpr, swap operands. + FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1); + if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE) + return FCmpInst::getSwappedPredicate(SwappedRelation); + } else { + // Ok, the LHS is known to be a constantexpr. The RHS can be any of a + // constantexpr or a simple constant. + ConstantExpr *CE1 = cast<ConstantExpr>(V1); + switch (CE1->getOpcode()) { + case Instruction::FPTrunc: + case Instruction::FPExt: + case Instruction::UIToFP: + case Instruction::SIToFP: + // We might be able to do something with these but we don't right now. + break; + default: + break; + } + } + // There are MANY other foldings that we could perform here. They will + // probably be added on demand, as they seem needed. + return FCmpInst::BAD_FCMP_PREDICATE; +} + +/// evaluateICmpRelation - This function determines if there is anything we can +/// decide about the two constants provided. This doesn't need to handle simple +/// things like integer comparisons, but should instead handle ConstantExprs +/// and GlobalValues. If we can determine that the two constants have a +/// particular relation to each other, we should return the corresponding ICmp +/// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE. +/// +/// To simplify this code we canonicalize the relation so that the first +/// operand is always the most "complex" of the two. We consider simple +/// constants (like ConstantInt) to be the simplest, followed by +/// GlobalValues, followed by ConstantExpr's (the most complex). +/// +static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2, + bool isSigned) { + assert(V1->getType() == V2->getType() && + "Cannot compare different types of values!"); + if (V1 == V2) return ICmpInst::ICMP_EQ; + + if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) && + !isa<BlockAddress>(V1)) { + if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) && + !isa<BlockAddress>(V2)) { + // We distilled this down to a simple case, use the standard constant + // folder. + ConstantInt *R = 0; + ICmpInst::Predicate pred = ICmpInst::ICMP_EQ; + R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2)); + if (R && !R->isZero()) + return pred; + pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; + R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2)); + if (R && !R->isZero()) + return pred; + pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; + R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2)); + if (R && !R->isZero()) + return pred; + + // If we couldn't figure it out, bail. + return ICmpInst::BAD_ICMP_PREDICATE; + } + + // If the first operand is simple, swap operands. + ICmpInst::Predicate SwappedRelation = + evaluateICmpRelation(V2, V1, isSigned); + if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) + return ICmpInst::getSwappedPredicate(SwappedRelation); + + } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) { + if (isa<ConstantExpr>(V2)) { // Swap as necessary. + ICmpInst::Predicate SwappedRelation = + evaluateICmpRelation(V2, V1, isSigned); + if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) + return ICmpInst::getSwappedPredicate(SwappedRelation); + return ICmpInst::BAD_ICMP_PREDICATE; + } + + // Now we know that the RHS is a GlobalValue, BlockAddress or simple + // constant (which, since the types must match, means that it's a + // ConstantPointerNull). + if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) { + // Don't try to decide equality of aliases. + if (!isa<GlobalAlias>(GV) && !isa<GlobalAlias>(GV2)) + if (!GV->hasExternalWeakLinkage() || !GV2->hasExternalWeakLinkage()) + return ICmpInst::ICMP_NE; + } else if (isa<BlockAddress>(V2)) { + return ICmpInst::ICMP_NE; // Globals never equal labels. + } else { + assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!"); + // GlobalVals can never be null unless they have external weak linkage. + // We don't try to evaluate aliases here. + if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV)) + return ICmpInst::ICMP_NE; + } + } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) { + if (isa<ConstantExpr>(V2)) { // Swap as necessary. + ICmpInst::Predicate SwappedRelation = + evaluateICmpRelation(V2, V1, isSigned); + if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) + return ICmpInst::getSwappedPredicate(SwappedRelation); + return ICmpInst::BAD_ICMP_PREDICATE; + } + + // Now we know that the RHS is a GlobalValue, BlockAddress or simple + // constant (which, since the types must match, means that it is a + // ConstantPointerNull). + if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) { + // Block address in another function can't equal this one, but block + // addresses in the current function might be the same if blocks are + // empty. + if (BA2->getFunction() != BA->getFunction()) + return ICmpInst::ICMP_NE; + } else { + // Block addresses aren't null, don't equal the address of globals. + assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) && + "Canonicalization guarantee!"); + return ICmpInst::ICMP_NE; + } + } else { + // Ok, the LHS is known to be a constantexpr. The RHS can be any of a + // constantexpr, a global, block address, or a simple constant. + ConstantExpr *CE1 = cast<ConstantExpr>(V1); + Constant *CE1Op0 = CE1->getOperand(0); + + switch (CE1->getOpcode()) { + case Instruction::Trunc: + case Instruction::FPTrunc: + case Instruction::FPExt: + case Instruction::FPToUI: + case Instruction::FPToSI: + break; // We can't evaluate floating point casts or truncations. + + case Instruction::UIToFP: + case Instruction::SIToFP: + case Instruction::BitCast: + case Instruction::ZExt: + case Instruction::SExt: + // If the cast is not actually changing bits, and the second operand is a + // null pointer, do the comparison with the pre-casted value. + if (V2->isNullValue() && + (CE1->getType()->isPointerTy() || CE1->getType()->isIntegerTy())) { + if (CE1->getOpcode() == Instruction::ZExt) isSigned = false; + if (CE1->getOpcode() == Instruction::SExt) isSigned = true; + return evaluateICmpRelation(CE1Op0, + Constant::getNullValue(CE1Op0->getType()), + isSigned); + } + break; + + case Instruction::GetElementPtr: + // Ok, since this is a getelementptr, we know that the constant has a + // pointer type. Check the various cases. + if (isa<ConstantPointerNull>(V2)) { + // If we are comparing a GEP to a null pointer, check to see if the base + // of the GEP equals the null pointer. + if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) { + if (GV->hasExternalWeakLinkage()) + // Weak linkage GVals could be zero or not. We're comparing that + // to null pointer so its greater-or-equal + return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; + else + // If its not weak linkage, the GVal must have a non-zero address + // so the result is greater-than + return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; + } else if (isa<ConstantPointerNull>(CE1Op0)) { + // If we are indexing from a null pointer, check to see if we have any + // non-zero indices. + for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i) + if (!CE1->getOperand(i)->isNullValue()) + // Offsetting from null, must not be equal. + return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; + // Only zero indexes from null, must still be zero. + return ICmpInst::ICMP_EQ; + } + // Otherwise, we can't really say if the first operand is null or not. + } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) { + if (isa<ConstantPointerNull>(CE1Op0)) { + if (GV2->hasExternalWeakLinkage()) + // Weak linkage GVals could be zero or not. We're comparing it to + // a null pointer, so its less-or-equal + return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; + else + // If its not weak linkage, the GVal must have a non-zero address + // so the result is less-than + return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; + } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) { + if (GV == GV2) { + // If this is a getelementptr of the same global, then it must be + // different. Because the types must match, the getelementptr could + // only have at most one index, and because we fold getelementptr's + // with a single zero index, it must be nonzero. + assert(CE1->getNumOperands() == 2 && + !CE1->getOperand(1)->isNullValue() && + "Suprising getelementptr!"); + return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; + } else { + // If they are different globals, we don't know what the value is, + // but they can't be equal. + return ICmpInst::ICMP_NE; + } + } + } else { + ConstantExpr *CE2 = cast<ConstantExpr>(V2); + Constant *CE2Op0 = CE2->getOperand(0); + + // There are MANY other foldings that we could perform here. They will + // probably be added on demand, as they seem needed. + switch (CE2->getOpcode()) { + default: break; + case Instruction::GetElementPtr: + // By far the most common case to handle is when the base pointers are + // obviously to the same or different globals. + if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) { + if (CE1Op0 != CE2Op0) // Don't know relative ordering, but not equal + return ICmpInst::ICMP_NE; + // Ok, we know that both getelementptr instructions are based on the + // same global. From this, we can precisely determine the relative + // ordering of the resultant pointers. + unsigned i = 1; + + // The logic below assumes that the result of the comparison + // can be determined by finding the first index that differs. + // This doesn't work if there is over-indexing in any + // subsequent indices, so check for that case first. + if (!CE1->isGEPWithNoNotionalOverIndexing() || + !CE2->isGEPWithNoNotionalOverIndexing()) + return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal. + + // Compare all of the operands the GEP's have in common. + gep_type_iterator GTI = gep_type_begin(CE1); + for (;i != CE1->getNumOperands() && i != CE2->getNumOperands(); + ++i, ++GTI) + switch (IdxCompare(CE1->getOperand(i), + CE2->getOperand(i), GTI.getIndexedType())) { + case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT; + case 1: return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT; + case -2: return ICmpInst::BAD_ICMP_PREDICATE; + } + + // Ok, we ran out of things they have in common. If any leftovers + // are non-zero then we have a difference, otherwise we are equal. + for (; i < CE1->getNumOperands(); ++i) + if (!CE1->getOperand(i)->isNullValue()) { + if (isa<ConstantInt>(CE1->getOperand(i))) + return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; + else + return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal. + } + + for (; i < CE2->getNumOperands(); ++i) + if (!CE2->getOperand(i)->isNullValue()) { + if (isa<ConstantInt>(CE2->getOperand(i))) + return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; + else + return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal. + } + return ICmpInst::ICMP_EQ; + } + } + } + default: + break; + } + } + + return ICmpInst::BAD_ICMP_PREDICATE; +} + +Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred, + Constant *C1, Constant *C2) { + const Type *ResultTy; + if (const VectorType *VT = dyn_cast<VectorType>(C1->getType())) + ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()), + VT->getNumElements()); + else + ResultTy = Type::getInt1Ty(C1->getContext()); + + // Fold FCMP_FALSE/FCMP_TRUE unconditionally. + if (pred == FCmpInst::FCMP_FALSE) + return Constant::getNullValue(ResultTy); + + if (pred == FCmpInst::FCMP_TRUE) + return Constant::getAllOnesValue(ResultTy); + + // Handle some degenerate cases first + if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) { + // For EQ and NE, we can always pick a value for the undef to make the + // predicate pass or fail, so we can return undef. + if (ICmpInst::isEquality(ICmpInst::Predicate(pred))) + return UndefValue::get(ResultTy); + // Otherwise, pick the same value as the non-undef operand, and fold + // it to true or false. + return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(pred)); + } + + // No compile-time operations on this type yet. + if (C1->getType()->isPPC_FP128Ty()) + return 0; + + // icmp eq/ne(null,GV) -> false/true + if (C1->isNullValue()) { + if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2)) + // Don't try to evaluate aliases. External weak GV can be null. + if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) { + if (pred == ICmpInst::ICMP_EQ) + return ConstantInt::getFalse(C1->getContext()); + else if (pred == ICmpInst::ICMP_NE) + return ConstantInt::getTrue(C1->getContext()); + } + // icmp eq/ne(GV,null) -> false/true + } else if (C2->isNullValue()) { + if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1)) + // Don't try to evaluate aliases. External weak GV can be null. + if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) { + if (pred == ICmpInst::ICMP_EQ) + return ConstantInt::getFalse(C1->getContext()); + else if (pred == ICmpInst::ICMP_NE) + return ConstantInt::getTrue(C1->getContext()); + } + } + + // If the comparison is a comparison between two i1's, simplify it. + if (C1->getType()->isIntegerTy(1)) { + switch(pred) { + case ICmpInst::ICMP_EQ: + if (isa<ConstantInt>(C2)) + return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2)); + return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2); + case ICmpInst::ICMP_NE: + return ConstantExpr::getXor(C1, C2); + default: + break; + } + } + + if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) { + APInt V1 = cast<ConstantInt>(C1)->getValue(); + APInt V2 = cast<ConstantInt>(C2)->getValue(); + switch (pred) { + default: llvm_unreachable("Invalid ICmp Predicate"); return 0; + case ICmpInst::ICMP_EQ: return ConstantInt::get(ResultTy, V1 == V2); + case ICmpInst::ICMP_NE: return ConstantInt::get(ResultTy, V1 != V2); + case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2)); + case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2)); + case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2)); + case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2)); + case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2)); + case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2)); + case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2)); + case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2)); + } + } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) { + APFloat C1V = cast<ConstantFP>(C1)->getValueAPF(); + APFloat C2V = cast<ConstantFP>(C2)->getValueAPF(); + APFloat::cmpResult R = C1V.compare(C2V); + switch (pred) { + default: llvm_unreachable("Invalid FCmp Predicate"); return 0; + case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy); + case FCmpInst::FCMP_TRUE: return Constant::getAllOnesValue(ResultTy); + case FCmpInst::FCMP_UNO: + return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered); + case FCmpInst::FCMP_ORD: + return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered); + case FCmpInst::FCMP_UEQ: + return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered || + R==APFloat::cmpEqual); + case FCmpInst::FCMP_OEQ: + return ConstantInt::get(ResultTy, R==APFloat::cmpEqual); + case FCmpInst::FCMP_UNE: + return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual); + case FCmpInst::FCMP_ONE: + return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan || + R==APFloat::cmpGreaterThan); + case FCmpInst::FCMP_ULT: + return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered || + R==APFloat::cmpLessThan); + case FCmpInst::FCMP_OLT: + return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan); + case FCmpInst::FCMP_UGT: + return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered || + R==APFloat::cmpGreaterThan); + case FCmpInst::FCMP_OGT: + return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan); + case FCmpInst::FCMP_ULE: + return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan); + case FCmpInst::FCMP_OLE: + return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan || + R==APFloat::cmpEqual); + case FCmpInst::FCMP_UGE: + return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan); + case FCmpInst::FCMP_OGE: + return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan || + R==APFloat::cmpEqual); + } + } else if (C1->getType()->isVectorTy()) { + SmallVector<Constant*, 16> C1Elts, C2Elts; + C1->getVectorElements(C1Elts); + C2->getVectorElements(C2Elts); + if (C1Elts.empty() || C2Elts.empty()) + return 0; + + // If we can constant fold the comparison of each element, constant fold + // the whole vector comparison. + SmallVector<Constant*, 4> ResElts; + for (unsigned i = 0, e = C1Elts.size(); i != e; ++i) { + // Compare the elements, producing an i1 result or constant expr. + ResElts.push_back(ConstantExpr::getCompare(pred, C1Elts[i], C2Elts[i])); + } + return ConstantVector::get(&ResElts[0], ResElts.size()); + } + + if (C1->getType()->isFloatingPointTy()) { + int Result = -1; // -1 = unknown, 0 = known false, 1 = known true. + switch (evaluateFCmpRelation(C1, C2)) { + default: llvm_unreachable("Unknown relation!"); + case FCmpInst::FCMP_UNO: + case FCmpInst::FCMP_ORD: + case FCmpInst::FCMP_UEQ: + case FCmpInst::FCMP_UNE: + case FCmpInst::FCMP_ULT: + case FCmpInst::FCMP_UGT: + case FCmpInst::FCMP_ULE: + case FCmpInst::FCMP_UGE: + case FCmpInst::FCMP_TRUE: + case FCmpInst::FCMP_FALSE: + case FCmpInst::BAD_FCMP_PREDICATE: + break; // Couldn't determine anything about these constants. + case FCmpInst::FCMP_OEQ: // We know that C1 == C2 + Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ || + pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE || + pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE); + break; + case FCmpInst::FCMP_OLT: // We know that C1 < C2 + Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE || + pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT || + pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE); + break; + case FCmpInst::FCMP_OGT: // We know that C1 > C2 + Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE || + pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT || + pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE); + break; + case FCmpInst::FCMP_OLE: // We know that C1 <= C2 + // We can only partially decide this relation. + if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT) + Result = 0; + else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT) + Result = 1; + break; + case FCmpInst::FCMP_OGE: // We known that C1 >= C2 + // We can only partially decide this relation. + if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT) + Result = 0; + else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT) + Result = 1; + break; + case ICmpInst::ICMP_NE: // We know that C1 != C2 + // We can only partially decide this relation. + if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ) + Result = 0; + else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE) + Result = 1; + break; + } + + // If we evaluated the result, return it now. + if (Result != -1) + return ConstantInt::get(ResultTy, Result); + + } else { + // Evaluate the relation between the two constants, per the predicate. + int Result = -1; // -1 = unknown, 0 = known false, 1 = known true. + switch (evaluateICmpRelation(C1, C2, CmpInst::isSigned(pred))) { + default: llvm_unreachable("Unknown relational!"); + case ICmpInst::BAD_ICMP_PREDICATE: + break; // Couldn't determine anything about these constants. + case ICmpInst::ICMP_EQ: // We know the constants are equal! + // If we know the constants are equal, we can decide the result of this + // computation precisely. + Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred); + break; + case ICmpInst::ICMP_ULT: + switch (pred) { + case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE: + Result = 1; break; + case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE: + Result = 0; break; + } + break; + case ICmpInst::ICMP_SLT: + switch (pred) { + case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE: + Result = 1; break; + case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE: + Result = 0; break; + } + break; + case ICmpInst::ICMP_UGT: + switch (pred) { + case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE: + Result = 1; break; + case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE: + Result = 0; break; + } + break; + case ICmpInst::ICMP_SGT: + switch (pred) { + case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE: + Result = 1; break; + case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE: + Result = 0; break; + } + break; + case ICmpInst::ICMP_ULE: + if (pred == ICmpInst::ICMP_UGT) Result = 0; + if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1; + break; + case ICmpInst::ICMP_SLE: + if (pred == ICmpInst::ICMP_SGT) Result = 0; + if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1; + break; + case ICmpInst::ICMP_UGE: + if (pred == ICmpInst::ICMP_ULT) Result = 0; + if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1; + break; + case ICmpInst::ICMP_SGE: + if (pred == ICmpInst::ICMP_SLT) Result = 0; + if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1; + break; + case ICmpInst::ICMP_NE: + if (pred == ICmpInst::ICMP_EQ) Result = 0; + if (pred == ICmpInst::ICMP_NE) Result = 1; + break; + } + + // If we evaluated the result, return it now. + if (Result != -1) + return ConstantInt::get(ResultTy, Result); + + // If the right hand side is a bitcast, try using its inverse to simplify + // it by moving it to the left hand side. We can't do this if it would turn + // a vector compare into a scalar compare or visa versa. + if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) { + Constant *CE2Op0 = CE2->getOperand(0); + if (CE2->getOpcode() == Instruction::BitCast && + CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy()) { + Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType()); + return ConstantExpr::getICmp(pred, Inverse, CE2Op0); + } + } + + // If the left hand side is an extension, try eliminating it. + if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { + if ((CE1->getOpcode() == Instruction::SExt && ICmpInst::isSigned(pred)) || + (CE1->getOpcode() == Instruction::ZExt && !ICmpInst::isSigned(pred))){ + Constant *CE1Op0 = CE1->getOperand(0); + Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType()); + if (CE1Inverse == CE1Op0) { + // Check whether we can safely truncate the right hand side. + Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType()); + if (ConstantExpr::getZExt(C2Inverse, C2->getType()) == C2) { + return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse); + } + } + } + } + + if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) || + (C1->isNullValue() && !C2->isNullValue())) { + // If C2 is a constant expr and C1 isn't, flip them around and fold the + // other way if possible. + // Also, if C1 is null and C2 isn't, flip them around. + pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred); + return ConstantExpr::getICmp(pred, C2, C1); + } + } + return 0; +} + +/// isInBoundsIndices - Test whether the given sequence of *normalized* indices +/// is "inbounds". +static bool isInBoundsIndices(Constant *const *Idxs, size_t NumIdx) { + // No indices means nothing that could be out of bounds. + if (NumIdx == 0) return true; + + // If the first index is zero, it's in bounds. + if (Idxs[0]->isNullValue()) return true; + + // If the first index is one and all the rest are zero, it's in bounds, + // by the one-past-the-end rule. + if (!cast<ConstantInt>(Idxs[0])->isOne()) + return false; + for (unsigned i = 1, e = NumIdx; i != e; ++i) + if (!Idxs[i]->isNullValue()) + return false; + return true; +} + +Constant *llvm::ConstantFoldGetElementPtr(Constant *C, + bool inBounds, + Constant* const *Idxs, + unsigned NumIdx) { + if (NumIdx == 0 || + (NumIdx == 1 && Idxs[0]->isNullValue())) + return C; + + if (isa<UndefValue>(C)) { + const PointerType *Ptr = cast<PointerType>(C->getType()); + const Type *Ty = GetElementPtrInst::getIndexedType(Ptr, + (Value **)Idxs, + (Value **)Idxs+NumIdx); + assert(Ty != 0 && "Invalid indices for GEP!"); + return UndefValue::get(PointerType::get(Ty, Ptr->getAddressSpace())); + } + + Constant *Idx0 = Idxs[0]; + if (C->isNullValue()) { + bool isNull = true; + for (unsigned i = 0, e = NumIdx; i != e; ++i) + if (!Idxs[i]->isNullValue()) { + isNull = false; + break; + } + if (isNull) { + const PointerType *Ptr = cast<PointerType>(C->getType()); + const Type *Ty = GetElementPtrInst::getIndexedType(Ptr, + (Value**)Idxs, + (Value**)Idxs+NumIdx); + assert(Ty != 0 && "Invalid indices for GEP!"); + return ConstantPointerNull::get( + PointerType::get(Ty,Ptr->getAddressSpace())); + } + } + + if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { + // Combine Indices - If the source pointer to this getelementptr instruction + // is a getelementptr instruction, combine the indices of the two + // getelementptr instructions into a single instruction. + // + if (CE->getOpcode() == Instruction::GetElementPtr) { + const Type *LastTy = 0; + for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE); + I != E; ++I) + LastTy = *I; + + if ((LastTy && LastTy->isArrayTy()) || Idx0->isNullValue()) { + SmallVector<Value*, 16> NewIndices; + NewIndices.reserve(NumIdx + CE->getNumOperands()); + for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i) + NewIndices.push_back(CE->getOperand(i)); + + // Add the last index of the source with the first index of the new GEP. + // Make sure to handle the case when they are actually different types. + Constant *Combined = CE->getOperand(CE->getNumOperands()-1); + // Otherwise it must be an array. + if (!Idx0->isNullValue()) { + const Type *IdxTy = Combined->getType(); + if (IdxTy != Idx0->getType()) { + const Type *Int64Ty = Type::getInt64Ty(IdxTy->getContext()); + Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, Int64Ty); + Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, Int64Ty); + Combined = ConstantExpr::get(Instruction::Add, C1, C2); + } else { + Combined = + ConstantExpr::get(Instruction::Add, Idx0, Combined); + } + } + + NewIndices.push_back(Combined); + NewIndices.append(Idxs+1, Idxs+NumIdx); + return (inBounds && cast<GEPOperator>(CE)->isInBounds()) ? + ConstantExpr::getInBoundsGetElementPtr(CE->getOperand(0), + &NewIndices[0], + NewIndices.size()) : + ConstantExpr::getGetElementPtr(CE->getOperand(0), + &NewIndices[0], + NewIndices.size()); + } + } + + // Implement folding of: + // int* getelementptr ([2 x int]* bitcast ([3 x int]* %X to [2 x int]*), + // long 0, long 0) + // To: int* getelementptr ([3 x int]* %X, long 0, long 0) + // + if (CE->isCast() && NumIdx > 1 && Idx0->isNullValue()) { + if (const PointerType *SPT = + dyn_cast<PointerType>(CE->getOperand(0)->getType())) + if (const ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType())) + if (const ArrayType *CAT = + dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType())) + if (CAT->getElementType() == SAT->getElementType()) + return inBounds ? + ConstantExpr::getInBoundsGetElementPtr( + (Constant*)CE->getOperand(0), Idxs, NumIdx) : + ConstantExpr::getGetElementPtr( + (Constant*)CE->getOperand(0), Idxs, NumIdx); + } + } + + // Check to see if any array indices are not within the corresponding + // notional array bounds. If so, try to determine if they can be factored + // out into preceding dimensions. + bool Unknown = false; + SmallVector<Constant *, 8> NewIdxs; + const Type *Ty = C->getType(); + const Type *Prev = 0; + for (unsigned i = 0; i != NumIdx; + Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) { + if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) { + if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) + if (ATy->getNumElements() <= INT64_MAX && + ATy->getNumElements() != 0 && + CI->getSExtValue() >= (int64_t)ATy->getNumElements()) { + if (isa<SequentialType>(Prev)) { + // It's out of range, but we can factor it into the prior + // dimension. + NewIdxs.resize(NumIdx); + ConstantInt *Factor = ConstantInt::get(CI->getType(), + ATy->getNumElements()); + NewIdxs[i] = ConstantExpr::getSRem(CI, Factor); + + Constant *PrevIdx = Idxs[i-1]; + Constant *Div = ConstantExpr::getSDiv(CI, Factor); + + // Before adding, extend both operands to i64 to avoid + // overflow trouble. + if (!PrevIdx->getType()->isIntegerTy(64)) + PrevIdx = ConstantExpr::getSExt(PrevIdx, + Type::getInt64Ty(Div->getContext())); + if (!Div->getType()->isIntegerTy(64)) + Div = ConstantExpr::getSExt(Div, + Type::getInt64Ty(Div->getContext())); + + NewIdxs[i-1] = ConstantExpr::getAdd(PrevIdx, Div); + } else { + // It's out of range, but the prior dimension is a struct + // so we can't do anything about it. + Unknown = true; + } + } + } else { + // We don't know if it's in range or not. + Unknown = true; + } + } + + // If we did any factoring, start over with the adjusted indices. + if (!NewIdxs.empty()) { + for (unsigned i = 0; i != NumIdx; ++i) + if (!NewIdxs[i]) NewIdxs[i] = Idxs[i]; + return inBounds ? + ConstantExpr::getInBoundsGetElementPtr(C, NewIdxs.data(), + NewIdxs.size()) : + ConstantExpr::getGetElementPtr(C, NewIdxs.data(), NewIdxs.size()); + } + + // If all indices are known integers and normalized, we can do a simple + // check for the "inbounds" property. + if (!Unknown && !inBounds && + isa<GlobalVariable>(C) && isInBoundsIndices(Idxs, NumIdx)) + return ConstantExpr::getInBoundsGetElementPtr(C, Idxs, NumIdx); + + return 0; +} diff --git a/contrib/llvm/lib/VMCore/ConstantFold.h b/contrib/llvm/lib/VMCore/ConstantFold.h new file mode 100644 index 0000000..d2dbbdd --- /dev/null +++ b/contrib/llvm/lib/VMCore/ConstantFold.h @@ -0,0 +1,54 @@ +//===-- ConstantFolding.h - Internal Constant Folding Interface -*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the (internal) constant folding interfaces for LLVM. These +// interfaces are used by the ConstantExpr::get* methods to automatically fold +// constants when possible. +// +// These operators may return a null object if they don't know how to perform +// the specified operation on the specified constant types. +// +//===----------------------------------------------------------------------===// + +#ifndef CONSTANTFOLDING_H +#define CONSTANTFOLDING_H + +namespace llvm { + class Value; + class Constant; + class Type; + + // Constant fold various types of instruction... + Constant *ConstantFoldCastInstruction( + unsigned opcode, ///< The opcode of the cast + Constant *V, ///< The source constant + const Type *DestTy ///< The destination type + ); + Constant *ConstantFoldSelectInstruction(Constant *Cond, + Constant *V1, Constant *V2); + Constant *ConstantFoldExtractElementInstruction(Constant *Val, Constant *Idx); + Constant *ConstantFoldInsertElementInstruction(Constant *Val, Constant *Elt, + Constant *Idx); + Constant *ConstantFoldShuffleVectorInstruction(Constant *V1, Constant *V2, + Constant *Mask); + Constant *ConstantFoldExtractValueInstruction(Constant *Agg, + const unsigned *Idxs, + unsigned NumIdx); + Constant *ConstantFoldInsertValueInstruction(Constant *Agg, Constant *Val, + const unsigned *Idxs, + unsigned NumIdx); + Constant *ConstantFoldBinaryInstruction(unsigned Opcode, Constant *V1, + Constant *V2); + Constant *ConstantFoldCompareInstruction(unsigned short predicate, + Constant *C1, Constant *C2); + Constant *ConstantFoldGetElementPtr(Constant *C, bool inBounds, + Constant* const *Idxs, unsigned NumIdx); +} // End llvm namespace + +#endif diff --git a/contrib/llvm/lib/VMCore/Constants.cpp b/contrib/llvm/lib/VMCore/Constants.cpp new file mode 100644 index 0000000..16eaca8 --- /dev/null +++ b/contrib/llvm/lib/VMCore/Constants.cpp @@ -0,0 +1,2209 @@ +//===-- Constants.cpp - Implement Constant nodes --------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the Constant* classes. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Constants.h" +#include "LLVMContextImpl.h" +#include "ConstantFold.h" +#include "llvm/DerivedTypes.h" +#include "llvm/GlobalValue.h" +#include "llvm/Instructions.h" +#include "llvm/Module.h" +#include "llvm/Operator.h" +#include "llvm/ADT/FoldingSet.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/StringMap.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/ManagedStatic.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Support/GetElementPtrTypeIterator.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/SmallVector.h" +#include <algorithm> +#include <map> +using namespace llvm; + +//===----------------------------------------------------------------------===// +// Constant Class +//===----------------------------------------------------------------------===// + +// Constructor to create a '0' constant of arbitrary type... +static const uint64_t zero[2] = {0, 0}; +Constant *Constant::getNullValue(const Type *Ty) { + switch (Ty->getTypeID()) { + case Type::IntegerTyID: + return ConstantInt::get(Ty, 0); + case Type::FloatTyID: + return ConstantFP::get(Ty->getContext(), APFloat(APInt(32, 0))); + case Type::DoubleTyID: + return ConstantFP::get(Ty->getContext(), APFloat(APInt(64, 0))); + case Type::X86_FP80TyID: + return ConstantFP::get(Ty->getContext(), APFloat(APInt(80, 2, zero))); + case Type::FP128TyID: + return ConstantFP::get(Ty->getContext(), + APFloat(APInt(128, 2, zero), true)); + case Type::PPC_FP128TyID: + return ConstantFP::get(Ty->getContext(), APFloat(APInt(128, 2, zero))); + case Type::PointerTyID: + return ConstantPointerNull::get(cast<PointerType>(Ty)); + case Type::StructTyID: + case Type::ArrayTyID: + case Type::VectorTyID: + return ConstantAggregateZero::get(Ty); + default: + // Function, Label, or Opaque type? + assert(!"Cannot create a null constant of that type!"); + return 0; + } +} + +Constant* Constant::getIntegerValue(const Type *Ty, const APInt &V) { + const Type *ScalarTy = Ty->getScalarType(); + + // Create the base integer constant. + Constant *C = ConstantInt::get(Ty->getContext(), V); + + // Convert an integer to a pointer, if necessary. + if (const PointerType *PTy = dyn_cast<PointerType>(ScalarTy)) + C = ConstantExpr::getIntToPtr(C, PTy); + + // Broadcast a scalar to a vector, if necessary. + if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) + C = ConstantVector::get(std::vector<Constant *>(VTy->getNumElements(), C)); + + return C; +} + +Constant* Constant::getAllOnesValue(const Type *Ty) { + if (const IntegerType *ITy = dyn_cast<IntegerType>(Ty)) + return ConstantInt::get(Ty->getContext(), + APInt::getAllOnesValue(ITy->getBitWidth())); + + std::vector<Constant*> Elts; + const VectorType *VTy = cast<VectorType>(Ty); + Elts.resize(VTy->getNumElements(), getAllOnesValue(VTy->getElementType())); + assert(Elts[0] && "Not a vector integer type!"); + return cast<ConstantVector>(ConstantVector::get(Elts)); +} + +void Constant::destroyConstantImpl() { + // When a Constant is destroyed, there may be lingering + // references to the constant by other constants in the constant pool. These + // constants are implicitly dependent on the module that is being deleted, + // but they don't know that. Because we only find out when the CPV is + // deleted, we must now notify all of our users (that should only be + // Constants) that they are, in fact, invalid now and should be deleted. + // + while (!use_empty()) { + Value *V = use_back(); +#ifndef NDEBUG // Only in -g mode... + if (!isa<Constant>(V)) { + dbgs() << "While deleting: " << *this + << "\n\nUse still stuck around after Def is destroyed: " + << *V << "\n\n"; + } +#endif + assert(isa<Constant>(V) && "References remain to Constant being destroyed"); + Constant *CV = cast<Constant>(V); + CV->destroyConstant(); + + // The constant should remove itself from our use list... + assert((use_empty() || use_back() != V) && "Constant not removed!"); + } + + // Value has no outstanding references it is safe to delete it now... + delete this; +} + +/// canTrap - Return true if evaluation of this constant could trap. This is +/// true for things like constant expressions that could divide by zero. +bool Constant::canTrap() const { + assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!"); + // The only thing that could possibly trap are constant exprs. + const ConstantExpr *CE = dyn_cast<ConstantExpr>(this); + if (!CE) return false; + + // ConstantExpr traps if any operands can trap. + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) + if (CE->getOperand(i)->canTrap()) + return true; + + // Otherwise, only specific operations can trap. + switch (CE->getOpcode()) { + default: + return false; + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::FDiv: + case Instruction::URem: + case Instruction::SRem: + case Instruction::FRem: + // Div and rem can trap if the RHS is not known to be non-zero. + if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue()) + return true; + return false; + } +} + +/// isConstantUsed - Return true if the constant has users other than constant +/// exprs and other dangling things. +bool Constant::isConstantUsed() const { + for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { + const Constant *UC = dyn_cast<Constant>(*UI); + if (UC == 0 || isa<GlobalValue>(UC)) + return true; + + if (UC->isConstantUsed()) + return true; + } + return false; +} + + + +/// getRelocationInfo - This method classifies the entry according to +/// whether or not it may generate a relocation entry. This must be +/// conservative, so if it might codegen to a relocatable entry, it should say +/// so. The return values are: +/// +/// NoRelocation: This constant pool entry is guaranteed to never have a +/// relocation applied to it (because it holds a simple constant like +/// '4'). +/// LocalRelocation: This entry has relocations, but the entries are +/// guaranteed to be resolvable by the static linker, so the dynamic +/// linker will never see them. +/// GlobalRelocations: This entry may have arbitrary relocations. +/// +/// FIXME: This really should not be in VMCore. +Constant::PossibleRelocationsTy Constant::getRelocationInfo() const { + if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) { + if (GV->hasLocalLinkage() || GV->hasHiddenVisibility()) + return LocalRelocation; // Local to this file/library. + return GlobalRelocations; // Global reference. + } + + if (const BlockAddress *BA = dyn_cast<BlockAddress>(this)) + return BA->getFunction()->getRelocationInfo(); + + // While raw uses of blockaddress need to be relocated, differences between + // two of them don't when they are for labels in the same function. This is a + // common idiom when creating a table for the indirect goto extension, so we + // handle it efficiently here. + if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this)) + if (CE->getOpcode() == Instruction::Sub) { + ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0)); + ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1)); + if (LHS && RHS && + LHS->getOpcode() == Instruction::PtrToInt && + RHS->getOpcode() == Instruction::PtrToInt && + isa<BlockAddress>(LHS->getOperand(0)) && + isa<BlockAddress>(RHS->getOperand(0)) && + cast<BlockAddress>(LHS->getOperand(0))->getFunction() == + cast<BlockAddress>(RHS->getOperand(0))->getFunction()) + return NoRelocation; + } + + PossibleRelocationsTy Result = NoRelocation; + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) + Result = std::max(Result, + cast<Constant>(getOperand(i))->getRelocationInfo()); + + return Result; +} + + +/// getVectorElements - This method, which is only valid on constant of vector +/// type, returns the elements of the vector in the specified smallvector. +/// This handles breaking down a vector undef into undef elements, etc. For +/// constant exprs and other cases we can't handle, we return an empty vector. +void Constant::getVectorElements(SmallVectorImpl<Constant*> &Elts) const { + assert(getType()->isVectorTy() && "Not a vector constant!"); + + if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) { + for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) + Elts.push_back(CV->getOperand(i)); + return; + } + + const VectorType *VT = cast<VectorType>(getType()); + if (isa<ConstantAggregateZero>(this)) { + Elts.assign(VT->getNumElements(), + Constant::getNullValue(VT->getElementType())); + return; + } + + if (isa<UndefValue>(this)) { + Elts.assign(VT->getNumElements(), UndefValue::get(VT->getElementType())); + return; + } + + // Unknown type, must be constant expr etc. +} + + + +//===----------------------------------------------------------------------===// +// ConstantInt +//===----------------------------------------------------------------------===// + +ConstantInt::ConstantInt(const IntegerType *Ty, const APInt& V) + : Constant(Ty, ConstantIntVal, 0, 0), Val(V) { + assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type"); +} + +ConstantInt* ConstantInt::getTrue(LLVMContext &Context) { + LLVMContextImpl *pImpl = Context.pImpl; + if (pImpl->TheTrueVal) + return pImpl->TheTrueVal; + else + return (pImpl->TheTrueVal = + ConstantInt::get(IntegerType::get(Context, 1), 1)); +} + +ConstantInt* ConstantInt::getFalse(LLVMContext &Context) { + LLVMContextImpl *pImpl = Context.pImpl; + if (pImpl->TheFalseVal) + return pImpl->TheFalseVal; + else + return (pImpl->TheFalseVal = + ConstantInt::get(IntegerType::get(Context, 1), 0)); +} + + +// Get a ConstantInt from an APInt. Note that the value stored in the DenseMap +// as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the +// operator== and operator!= to ensure that the DenseMap doesn't attempt to +// compare APInt's of different widths, which would violate an APInt class +// invariant which generates an assertion. +ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt& V) { + // Get the corresponding integer type for the bit width of the value. + const IntegerType *ITy = IntegerType::get(Context, V.getBitWidth()); + // get an existing value or the insertion position + DenseMapAPIntKeyInfo::KeyTy Key(V, ITy); + ConstantInt *&Slot = Context.pImpl->IntConstants[Key]; + if (!Slot) Slot = new ConstantInt(ITy, V); + return Slot; +} + +Constant* ConstantInt::get(const Type* Ty, uint64_t V, bool isSigned) { + Constant *C = get(cast<IntegerType>(Ty->getScalarType()), + V, isSigned); + + // For vectors, broadcast the value. + if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) + return ConstantVector::get( + std::vector<Constant *>(VTy->getNumElements(), C)); + + return C; +} + +ConstantInt* ConstantInt::get(const IntegerType* Ty, uint64_t V, + bool isSigned) { + return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned)); +} + +ConstantInt* ConstantInt::getSigned(const IntegerType* Ty, int64_t V) { + return get(Ty, V, true); +} + +Constant *ConstantInt::getSigned(const Type *Ty, int64_t V) { + return get(Ty, V, true); +} + +Constant* ConstantInt::get(const Type* Ty, const APInt& V) { + ConstantInt *C = get(Ty->getContext(), V); + assert(C->getType() == Ty->getScalarType() && + "ConstantInt type doesn't match the type implied by its value!"); + + // For vectors, broadcast the value. + if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) + return ConstantVector::get( + std::vector<Constant *>(VTy->getNumElements(), C)); + + return C; +} + +ConstantInt* ConstantInt::get(const IntegerType* Ty, StringRef Str, + uint8_t radix) { + return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix)); +} + +//===----------------------------------------------------------------------===// +// ConstantFP +//===----------------------------------------------------------------------===// + +static const fltSemantics *TypeToFloatSemantics(const Type *Ty) { + if (Ty->isFloatTy()) + return &APFloat::IEEEsingle; + if (Ty->isDoubleTy()) + return &APFloat::IEEEdouble; + if (Ty->isX86_FP80Ty()) + return &APFloat::x87DoubleExtended; + else if (Ty->isFP128Ty()) + return &APFloat::IEEEquad; + + assert(Ty->isPPC_FP128Ty() && "Unknown FP format"); + return &APFloat::PPCDoubleDouble; +} + +/// get() - This returns a constant fp for the specified value in the +/// specified type. This should only be used for simple constant values like +/// 2.0/1.0 etc, that are known-valid both as double and as the target format. +Constant* ConstantFP::get(const Type* Ty, double V) { + LLVMContext &Context = Ty->getContext(); + + APFloat FV(V); + bool ignored; + FV.convert(*TypeToFloatSemantics(Ty->getScalarType()), + APFloat::rmNearestTiesToEven, &ignored); + Constant *C = get(Context, FV); + + // For vectors, broadcast the value. + if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) + return ConstantVector::get( + std::vector<Constant *>(VTy->getNumElements(), C)); + + return C; +} + + +Constant* ConstantFP::get(const Type* Ty, StringRef Str) { + LLVMContext &Context = Ty->getContext(); + + APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str); + Constant *C = get(Context, FV); + + // For vectors, broadcast the value. + if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) + return ConstantVector::get( + std::vector<Constant *>(VTy->getNumElements(), C)); + + return C; +} + + +ConstantFP* ConstantFP::getNegativeZero(const Type* Ty) { + LLVMContext &Context = Ty->getContext(); + APFloat apf = cast <ConstantFP>(Constant::getNullValue(Ty))->getValueAPF(); + apf.changeSign(); + return get(Context, apf); +} + + +Constant* ConstantFP::getZeroValueForNegation(const Type* Ty) { + if (const VectorType *PTy = dyn_cast<VectorType>(Ty)) + if (PTy->getElementType()->isFloatingPointTy()) { + std::vector<Constant*> zeros(PTy->getNumElements(), + getNegativeZero(PTy->getElementType())); + return ConstantVector::get(PTy, zeros); + } + + if (Ty->isFloatingPointTy()) + return getNegativeZero(Ty); + + return Constant::getNullValue(Ty); +} + + +// ConstantFP accessors. +ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) { + DenseMapAPFloatKeyInfo::KeyTy Key(V); + + LLVMContextImpl* pImpl = Context.pImpl; + + ConstantFP *&Slot = pImpl->FPConstants[Key]; + + if (!Slot) { + const Type *Ty; + if (&V.getSemantics() == &APFloat::IEEEsingle) + Ty = Type::getFloatTy(Context); + else if (&V.getSemantics() == &APFloat::IEEEdouble) + Ty = Type::getDoubleTy(Context); + else if (&V.getSemantics() == &APFloat::x87DoubleExtended) + Ty = Type::getX86_FP80Ty(Context); + else if (&V.getSemantics() == &APFloat::IEEEquad) + Ty = Type::getFP128Ty(Context); + else { + assert(&V.getSemantics() == &APFloat::PPCDoubleDouble && + "Unknown FP format"); + Ty = Type::getPPC_FP128Ty(Context); + } + Slot = new ConstantFP(Ty, V); + } + + return Slot; +} + +ConstantFP *ConstantFP::getInfinity(const Type *Ty, bool Negative) { + const fltSemantics &Semantics = *TypeToFloatSemantics(Ty); + return ConstantFP::get(Ty->getContext(), + APFloat::getInf(Semantics, Negative)); +} + +ConstantFP::ConstantFP(const Type *Ty, const APFloat& V) + : Constant(Ty, ConstantFPVal, 0, 0), Val(V) { + assert(&V.getSemantics() == TypeToFloatSemantics(Ty) && + "FP type Mismatch"); +} + +bool ConstantFP::isNullValue() const { + return Val.isZero() && !Val.isNegative(); +} + +bool ConstantFP::isExactlyValue(const APFloat& V) const { + return Val.bitwiseIsEqual(V); +} + +//===----------------------------------------------------------------------===// +// ConstantXXX Classes +//===----------------------------------------------------------------------===// + + +ConstantArray::ConstantArray(const ArrayType *T, + const std::vector<Constant*> &V) + : Constant(T, ConstantArrayVal, + OperandTraits<ConstantArray>::op_end(this) - V.size(), + V.size()) { + assert(V.size() == T->getNumElements() && + "Invalid initializer vector for constant array"); + Use *OL = OperandList; + for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end(); + I != E; ++I, ++OL) { + Constant *C = *I; + assert(C->getType() == T->getElementType() && + "Initializer for array element doesn't match array element type!"); + *OL = C; + } +} + +Constant *ConstantArray::get(const ArrayType *Ty, + const std::vector<Constant*> &V) { + for (unsigned i = 0, e = V.size(); i != e; ++i) { + assert(V[i]->getType() == Ty->getElementType() && + "Wrong type in array element initializer"); + } + LLVMContextImpl *pImpl = Ty->getContext().pImpl; + // If this is an all-zero array, return a ConstantAggregateZero object + if (!V.empty()) { + Constant *C = V[0]; + if (!C->isNullValue()) + return pImpl->ArrayConstants.getOrCreate(Ty, V); + + for (unsigned i = 1, e = V.size(); i != e; ++i) + if (V[i] != C) + return pImpl->ArrayConstants.getOrCreate(Ty, V); + } + + return ConstantAggregateZero::get(Ty); +} + + +Constant* ConstantArray::get(const ArrayType* T, Constant* const* Vals, + unsigned NumVals) { + // FIXME: make this the primary ctor method. + return get(T, std::vector<Constant*>(Vals, Vals+NumVals)); +} + +/// ConstantArray::get(const string&) - Return an array that is initialized to +/// contain the specified string. If length is zero then a null terminator is +/// added to the specified string so that it may be used in a natural way. +/// Otherwise, the length parameter specifies how much of the string to use +/// and it won't be null terminated. +/// +Constant* ConstantArray::get(LLVMContext &Context, StringRef Str, + bool AddNull) { + std::vector<Constant*> ElementVals; + ElementVals.reserve(Str.size() + size_t(AddNull)); + for (unsigned i = 0; i < Str.size(); ++i) + ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), Str[i])); + + // Add a null terminator to the string... + if (AddNull) { + ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), 0)); + } + + ArrayType *ATy = ArrayType::get(Type::getInt8Ty(Context), ElementVals.size()); + return get(ATy, ElementVals); +} + + + +ConstantStruct::ConstantStruct(const StructType *T, + const std::vector<Constant*> &V) + : Constant(T, ConstantStructVal, + OperandTraits<ConstantStruct>::op_end(this) - V.size(), + V.size()) { + assert(V.size() == T->getNumElements() && + "Invalid initializer vector for constant structure"); + Use *OL = OperandList; + for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end(); + I != E; ++I, ++OL) { + Constant *C = *I; + assert(C->getType() == T->getElementType(I-V.begin()) && + "Initializer for struct element doesn't match struct element type!"); + *OL = C; + } +} + +// ConstantStruct accessors. +Constant* ConstantStruct::get(const StructType* T, + const std::vector<Constant*>& V) { + LLVMContextImpl* pImpl = T->getContext().pImpl; + + // Create a ConstantAggregateZero value if all elements are zeros... + for (unsigned i = 0, e = V.size(); i != e; ++i) + if (!V[i]->isNullValue()) + return pImpl->StructConstants.getOrCreate(T, V); + + return ConstantAggregateZero::get(T); +} + +Constant* ConstantStruct::get(LLVMContext &Context, + const std::vector<Constant*>& V, bool packed) { + std::vector<const Type*> StructEls; + StructEls.reserve(V.size()); + for (unsigned i = 0, e = V.size(); i != e; ++i) + StructEls.push_back(V[i]->getType()); + return get(StructType::get(Context, StructEls, packed), V); +} + +Constant* ConstantStruct::get(LLVMContext &Context, + Constant* const *Vals, unsigned NumVals, + bool Packed) { + // FIXME: make this the primary ctor method. + return get(Context, std::vector<Constant*>(Vals, Vals+NumVals), Packed); +} + +ConstantVector::ConstantVector(const VectorType *T, + const std::vector<Constant*> &V) + : Constant(T, ConstantVectorVal, + OperandTraits<ConstantVector>::op_end(this) - V.size(), + V.size()) { + Use *OL = OperandList; + for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end(); + I != E; ++I, ++OL) { + Constant *C = *I; + assert(C->getType() == T->getElementType() && + "Initializer for vector element doesn't match vector element type!"); + *OL = C; + } +} + +// ConstantVector accessors. +Constant* ConstantVector::get(const VectorType* T, + const std::vector<Constant*>& V) { + assert(!V.empty() && "Vectors can't be empty"); + LLVMContext &Context = T->getContext(); + LLVMContextImpl *pImpl = Context.pImpl; + + // If this is an all-undef or alll-zero vector, return a + // ConstantAggregateZero or UndefValue. + Constant *C = V[0]; + bool isZero = C->isNullValue(); + bool isUndef = isa<UndefValue>(C); + + if (isZero || isUndef) { + for (unsigned i = 1, e = V.size(); i != e; ++i) + if (V[i] != C) { + isZero = isUndef = false; + break; + } + } + + if (isZero) + return ConstantAggregateZero::get(T); + if (isUndef) + return UndefValue::get(T); + + return pImpl->VectorConstants.getOrCreate(T, V); +} + +Constant* ConstantVector::get(const std::vector<Constant*>& V) { + assert(!V.empty() && "Cannot infer type if V is empty"); + return get(VectorType::get(V.front()->getType(),V.size()), V); +} + +Constant* ConstantVector::get(Constant* const* Vals, unsigned NumVals) { + // FIXME: make this the primary ctor method. + return get(std::vector<Constant*>(Vals, Vals+NumVals)); +} + +Constant* ConstantExpr::getNSWNeg(Constant* C) { + assert(C->getType()->isIntOrIntVectorTy() && + "Cannot NEG a nonintegral value!"); + return getNSWSub(ConstantFP::getZeroValueForNegation(C->getType()), C); +} + +Constant* ConstantExpr::getNUWNeg(Constant* C) { + assert(C->getType()->isIntOrIntVectorTy() && + "Cannot NEG a nonintegral value!"); + return getNUWSub(ConstantFP::getZeroValueForNegation(C->getType()), C); +} + +Constant* ConstantExpr::getNSWAdd(Constant* C1, Constant* C2) { + return getTy(C1->getType(), Instruction::Add, C1, C2, + OverflowingBinaryOperator::NoSignedWrap); +} + +Constant* ConstantExpr::getNUWAdd(Constant* C1, Constant* C2) { + return getTy(C1->getType(), Instruction::Add, C1, C2, + OverflowingBinaryOperator::NoUnsignedWrap); +} + +Constant* ConstantExpr::getNSWSub(Constant* C1, Constant* C2) { + return getTy(C1->getType(), Instruction::Sub, C1, C2, + OverflowingBinaryOperator::NoSignedWrap); +} + +Constant* ConstantExpr::getNUWSub(Constant* C1, Constant* C2) { + return getTy(C1->getType(), Instruction::Sub, C1, C2, + OverflowingBinaryOperator::NoUnsignedWrap); +} + +Constant* ConstantExpr::getNSWMul(Constant* C1, Constant* C2) { + return getTy(C1->getType(), Instruction::Mul, C1, C2, + OverflowingBinaryOperator::NoSignedWrap); +} + +Constant* ConstantExpr::getNUWMul(Constant* C1, Constant* C2) { + return getTy(C1->getType(), Instruction::Mul, C1, C2, + OverflowingBinaryOperator::NoUnsignedWrap); +} + +Constant* ConstantExpr::getExactSDiv(Constant* C1, Constant* C2) { + return getTy(C1->getType(), Instruction::SDiv, C1, C2, + SDivOperator::IsExact); +} + +// Utility function for determining if a ConstantExpr is a CastOp or not. This +// can't be inline because we don't want to #include Instruction.h into +// Constant.h +bool ConstantExpr::isCast() const { + return Instruction::isCast(getOpcode()); +} + +bool ConstantExpr::isCompare() const { + return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp; +} + +bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const { + if (getOpcode() != Instruction::GetElementPtr) return false; + + gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this); + User::const_op_iterator OI = llvm::next(this->op_begin()); + + // Skip the first index, as it has no static limit. + ++GEPI; + ++OI; + + // The remaining indices must be compile-time known integers within the + // bounds of the corresponding notional static array types. + for (; GEPI != E; ++GEPI, ++OI) { + ConstantInt *CI = dyn_cast<ConstantInt>(*OI); + if (!CI) return false; + if (const ArrayType *ATy = dyn_cast<ArrayType>(*GEPI)) + if (CI->getValue().getActiveBits() > 64 || + CI->getZExtValue() >= ATy->getNumElements()) + return false; + } + + // All the indices checked out. + return true; +} + +bool ConstantExpr::hasIndices() const { + return getOpcode() == Instruction::ExtractValue || + getOpcode() == Instruction::InsertValue; +} + +const SmallVector<unsigned, 4> &ConstantExpr::getIndices() const { + if (const ExtractValueConstantExpr *EVCE = + dyn_cast<ExtractValueConstantExpr>(this)) + return EVCE->Indices; + + return cast<InsertValueConstantExpr>(this)->Indices; +} + +unsigned ConstantExpr::getPredicate() const { + assert(getOpcode() == Instruction::FCmp || + getOpcode() == Instruction::ICmp); + return ((const CompareConstantExpr*)this)->predicate; +} + +/// getWithOperandReplaced - Return a constant expression identical to this +/// one, but with the specified operand set to the specified value. +Constant * +ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const { + assert(OpNo < getNumOperands() && "Operand num is out of range!"); + assert(Op->getType() == getOperand(OpNo)->getType() && + "Replacing operand with value of different type!"); + if (getOperand(OpNo) == Op) + return const_cast<ConstantExpr*>(this); + + Constant *Op0, *Op1, *Op2; + switch (getOpcode()) { + case Instruction::Trunc: + case Instruction::ZExt: + case Instruction::SExt: + case Instruction::FPTrunc: + case Instruction::FPExt: + case Instruction::UIToFP: + case Instruction::SIToFP: + case Instruction::FPToUI: + case Instruction::FPToSI: + case Instruction::PtrToInt: + case Instruction::IntToPtr: + case Instruction::BitCast: + return ConstantExpr::getCast(getOpcode(), Op, getType()); + case Instruction::Select: + Op0 = (OpNo == 0) ? Op : getOperand(0); + Op1 = (OpNo == 1) ? Op : getOperand(1); + Op2 = (OpNo == 2) ? Op : getOperand(2); + return ConstantExpr::getSelect(Op0, Op1, Op2); + case Instruction::InsertElement: + Op0 = (OpNo == 0) ? Op : getOperand(0); + Op1 = (OpNo == 1) ? Op : getOperand(1); + Op2 = (OpNo == 2) ? Op : getOperand(2); + return ConstantExpr::getInsertElement(Op0, Op1, Op2); + case Instruction::ExtractElement: + Op0 = (OpNo == 0) ? Op : getOperand(0); + Op1 = (OpNo == 1) ? Op : getOperand(1); + return ConstantExpr::getExtractElement(Op0, Op1); + case Instruction::ShuffleVector: + Op0 = (OpNo == 0) ? Op : getOperand(0); + Op1 = (OpNo == 1) ? Op : getOperand(1); + Op2 = (OpNo == 2) ? Op : getOperand(2); + return ConstantExpr::getShuffleVector(Op0, Op1, Op2); + case Instruction::GetElementPtr: { + SmallVector<Constant*, 8> Ops; + Ops.resize(getNumOperands()-1); + for (unsigned i = 1, e = getNumOperands(); i != e; ++i) + Ops[i-1] = getOperand(i); + if (OpNo == 0) + return cast<GEPOperator>(this)->isInBounds() ? + ConstantExpr::getInBoundsGetElementPtr(Op, &Ops[0], Ops.size()) : + ConstantExpr::getGetElementPtr(Op, &Ops[0], Ops.size()); + Ops[OpNo-1] = Op; + return cast<GEPOperator>(this)->isInBounds() ? + ConstantExpr::getInBoundsGetElementPtr(getOperand(0), &Ops[0],Ops.size()): + ConstantExpr::getGetElementPtr(getOperand(0), &Ops[0], Ops.size()); + } + default: + assert(getNumOperands() == 2 && "Must be binary operator?"); + Op0 = (OpNo == 0) ? Op : getOperand(0); + Op1 = (OpNo == 1) ? Op : getOperand(1); + return ConstantExpr::get(getOpcode(), Op0, Op1, SubclassOptionalData); + } +} + +/// getWithOperands - This returns the current constant expression with the +/// operands replaced with the specified values. The specified operands must +/// match count and type with the existing ones. +Constant *ConstantExpr:: +getWithOperands(Constant* const *Ops, unsigned NumOps) const { + assert(NumOps == getNumOperands() && "Operand count mismatch!"); + bool AnyChange = false; + for (unsigned i = 0; i != NumOps; ++i) { + assert(Ops[i]->getType() == getOperand(i)->getType() && + "Operand type mismatch!"); + AnyChange |= Ops[i] != getOperand(i); + } + if (!AnyChange) // No operands changed, return self. + return const_cast<ConstantExpr*>(this); + + switch (getOpcode()) { + case Instruction::Trunc: + case Instruction::ZExt: + case Instruction::SExt: + case Instruction::FPTrunc: + case Instruction::FPExt: + case Instruction::UIToFP: + case Instruction::SIToFP: + case Instruction::FPToUI: + case Instruction::FPToSI: + case Instruction::PtrToInt: + case Instruction::IntToPtr: + case Instruction::BitCast: + return ConstantExpr::getCast(getOpcode(), Ops[0], getType()); + case Instruction::Select: + return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]); + case Instruction::InsertElement: + return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); + case Instruction::ExtractElement: + return ConstantExpr::getExtractElement(Ops[0], Ops[1]); + case Instruction::ShuffleVector: + return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]); + case Instruction::GetElementPtr: + return cast<GEPOperator>(this)->isInBounds() ? + ConstantExpr::getInBoundsGetElementPtr(Ops[0], &Ops[1], NumOps-1) : + ConstantExpr::getGetElementPtr(Ops[0], &Ops[1], NumOps-1); + case Instruction::ICmp: + case Instruction::FCmp: + return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]); + default: + assert(getNumOperands() == 2 && "Must be binary operator?"); + return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData); + } +} + + +//===----------------------------------------------------------------------===// +// isValueValidForType implementations + +bool ConstantInt::isValueValidForType(const Type *Ty, uint64_t Val) { + unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay + if (Ty == Type::getInt1Ty(Ty->getContext())) + return Val == 0 || Val == 1; + if (NumBits >= 64) + return true; // always true, has to fit in largest type + uint64_t Max = (1ll << NumBits) - 1; + return Val <= Max; +} + +bool ConstantInt::isValueValidForType(const Type *Ty, int64_t Val) { + unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay + if (Ty == Type::getInt1Ty(Ty->getContext())) + return Val == 0 || Val == 1 || Val == -1; + if (NumBits >= 64) + return true; // always true, has to fit in largest type + int64_t Min = -(1ll << (NumBits-1)); + int64_t Max = (1ll << (NumBits-1)) - 1; + return (Val >= Min && Val <= Max); +} + +bool ConstantFP::isValueValidForType(const Type *Ty, const APFloat& Val) { + // convert modifies in place, so make a copy. + APFloat Val2 = APFloat(Val); + bool losesInfo; + switch (Ty->getTypeID()) { + default: + return false; // These can't be represented as floating point! + + // FIXME rounding mode needs to be more flexible + case Type::FloatTyID: { + if (&Val2.getSemantics() == &APFloat::IEEEsingle) + return true; + Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo); + return !losesInfo; + } + case Type::DoubleTyID: { + if (&Val2.getSemantics() == &APFloat::IEEEsingle || + &Val2.getSemantics() == &APFloat::IEEEdouble) + return true; + Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo); + return !losesInfo; + } + case Type::X86_FP80TyID: + return &Val2.getSemantics() == &APFloat::IEEEsingle || + &Val2.getSemantics() == &APFloat::IEEEdouble || + &Val2.getSemantics() == &APFloat::x87DoubleExtended; + case Type::FP128TyID: + return &Val2.getSemantics() == &APFloat::IEEEsingle || + &Val2.getSemantics() == &APFloat::IEEEdouble || + &Val2.getSemantics() == &APFloat::IEEEquad; + case Type::PPC_FP128TyID: + return &Val2.getSemantics() == &APFloat::IEEEsingle || + &Val2.getSemantics() == &APFloat::IEEEdouble || + &Val2.getSemantics() == &APFloat::PPCDoubleDouble; + } +} + +//===----------------------------------------------------------------------===// +// Factory Function Implementation + +ConstantAggregateZero* ConstantAggregateZero::get(const Type* Ty) { + assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) && + "Cannot create an aggregate zero of non-aggregate type!"); + + LLVMContextImpl *pImpl = Ty->getContext().pImpl; + return pImpl->AggZeroConstants.getOrCreate(Ty, 0); +} + +/// destroyConstant - Remove the constant from the constant table... +/// +void ConstantAggregateZero::destroyConstant() { + getRawType()->getContext().pImpl->AggZeroConstants.remove(this); + destroyConstantImpl(); +} + +/// destroyConstant - Remove the constant from the constant table... +/// +void ConstantArray::destroyConstant() { + getRawType()->getContext().pImpl->ArrayConstants.remove(this); + destroyConstantImpl(); +} + +/// isString - This method returns true if the array is an array of i8, and +/// if the elements of the array are all ConstantInt's. +bool ConstantArray::isString() const { + // Check the element type for i8... + if (!getType()->getElementType()->isIntegerTy(8)) + return false; + // Check the elements to make sure they are all integers, not constant + // expressions. + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) + if (!isa<ConstantInt>(getOperand(i))) + return false; + return true; +} + +/// isCString - This method returns true if the array is a string (see +/// isString) and it ends in a null byte \\0 and does not contains any other +/// null bytes except its terminator. +bool ConstantArray::isCString() const { + // Check the element type for i8... + if (!getType()->getElementType()->isIntegerTy(8)) + return false; + + // Last element must be a null. + if (!getOperand(getNumOperands()-1)->isNullValue()) + return false; + // Other elements must be non-null integers. + for (unsigned i = 0, e = getNumOperands()-1; i != e; ++i) { + if (!isa<ConstantInt>(getOperand(i))) + return false; + if (getOperand(i)->isNullValue()) + return false; + } + return true; +} + + +/// getAsString - If the sub-element type of this array is i8 +/// then this method converts the array to an std::string and returns it. +/// Otherwise, it asserts out. +/// +std::string ConstantArray::getAsString() const { + assert(isString() && "Not a string!"); + std::string Result; + Result.reserve(getNumOperands()); + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) + Result.push_back((char)cast<ConstantInt>(getOperand(i))->getZExtValue()); + return Result; +} + + +//---- ConstantStruct::get() implementation... +// + +namespace llvm { + +} + +// destroyConstant - Remove the constant from the constant table... +// +void ConstantStruct::destroyConstant() { + getRawType()->getContext().pImpl->StructConstants.remove(this); + destroyConstantImpl(); +} + +// destroyConstant - Remove the constant from the constant table... +// +void ConstantVector::destroyConstant() { + getRawType()->getContext().pImpl->VectorConstants.remove(this); + destroyConstantImpl(); +} + +/// This function will return true iff every element in this vector constant +/// is set to all ones. +/// @returns true iff this constant's emements are all set to all ones. +/// @brief Determine if the value is all ones. +bool ConstantVector::isAllOnesValue() const { + // Check out first element. + const Constant *Elt = getOperand(0); + const ConstantInt *CI = dyn_cast<ConstantInt>(Elt); + if (!CI || !CI->isAllOnesValue()) return false; + // Then make sure all remaining elements point to the same value. + for (unsigned I = 1, E = getNumOperands(); I < E; ++I) { + if (getOperand(I) != Elt) return false; + } + return true; +} + +/// getSplatValue - If this is a splat constant, where all of the +/// elements have the same value, return that value. Otherwise return null. +Constant *ConstantVector::getSplatValue() { + // Check out first element. + Constant *Elt = getOperand(0); + // Then make sure all remaining elements point to the same value. + for (unsigned I = 1, E = getNumOperands(); I < E; ++I) + if (getOperand(I) != Elt) return 0; + return Elt; +} + +//---- ConstantPointerNull::get() implementation. +// + +ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) { + return Ty->getContext().pImpl->NullPtrConstants.getOrCreate(Ty, 0); +} + +// destroyConstant - Remove the constant from the constant table... +// +void ConstantPointerNull::destroyConstant() { + getRawType()->getContext().pImpl->NullPtrConstants.remove(this); + destroyConstantImpl(); +} + + +//---- UndefValue::get() implementation. +// + +UndefValue *UndefValue::get(const Type *Ty) { + return Ty->getContext().pImpl->UndefValueConstants.getOrCreate(Ty, 0); +} + +// destroyConstant - Remove the constant from the constant table. +// +void UndefValue::destroyConstant() { + getRawType()->getContext().pImpl->UndefValueConstants.remove(this); + destroyConstantImpl(); +} + +//---- BlockAddress::get() implementation. +// + +BlockAddress *BlockAddress::get(BasicBlock *BB) { + assert(BB->getParent() != 0 && "Block must have a parent"); + return get(BB->getParent(), BB); +} + +BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) { + BlockAddress *&BA = + F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)]; + if (BA == 0) + BA = new BlockAddress(F, BB); + + assert(BA->getFunction() == F && "Basic block moved between functions"); + return BA; +} + +BlockAddress::BlockAddress(Function *F, BasicBlock *BB) +: Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal, + &Op<0>(), 2) { + setOperand(0, F); + setOperand(1, BB); + BB->AdjustBlockAddressRefCount(1); +} + + +// destroyConstant - Remove the constant from the constant table. +// +void BlockAddress::destroyConstant() { + getFunction()->getRawType()->getContext().pImpl + ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock())); + getBasicBlock()->AdjustBlockAddressRefCount(-1); + destroyConstantImpl(); +} + +void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) { + // This could be replacing either the Basic Block or the Function. In either + // case, we have to remove the map entry. + Function *NewF = getFunction(); + BasicBlock *NewBB = getBasicBlock(); + + if (U == &Op<0>()) + NewF = cast<Function>(To); + else + NewBB = cast<BasicBlock>(To); + + // See if the 'new' entry already exists, if not, just update this in place + // and return early. + BlockAddress *&NewBA = + getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)]; + if (NewBA == 0) { + getBasicBlock()->AdjustBlockAddressRefCount(-1); + + // Remove the old entry, this can't cause the map to rehash (just a + // tombstone will get added). + getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(), + getBasicBlock())); + NewBA = this; + setOperand(0, NewF); + setOperand(1, NewBB); + getBasicBlock()->AdjustBlockAddressRefCount(1); + return; + } + + // Otherwise, I do need to replace this with an existing value. + assert(NewBA != this && "I didn't contain From!"); + + // Everyone using this now uses the replacement. + uncheckedReplaceAllUsesWith(NewBA); + + destroyConstant(); +} + +//---- ConstantExpr::get() implementations. +// + +/// This is a utility function to handle folding of casts and lookup of the +/// cast in the ExprConstants map. It is used by the various get* methods below. +static inline Constant *getFoldedCast( + Instruction::CastOps opc, Constant *C, const Type *Ty) { + assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!"); + // Fold a few common cases + if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty)) + return FC; + + LLVMContextImpl *pImpl = Ty->getContext().pImpl; + + // Look up the constant in the table first to ensure uniqueness + std::vector<Constant*> argVec(1, C); + ExprMapKeyType Key(opc, argVec); + + return pImpl->ExprConstants.getOrCreate(Ty, Key); +} + +Constant *ConstantExpr::getCast(unsigned oc, Constant *C, const Type *Ty) { + Instruction::CastOps opc = Instruction::CastOps(oc); + assert(Instruction::isCast(opc) && "opcode out of range"); + assert(C && Ty && "Null arguments to getCast"); + assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!"); + + switch (opc) { + default: + llvm_unreachable("Invalid cast opcode"); + break; + case Instruction::Trunc: return getTrunc(C, Ty); + case Instruction::ZExt: return getZExt(C, Ty); + case Instruction::SExt: return getSExt(C, Ty); + case Instruction::FPTrunc: return getFPTrunc(C, Ty); + case Instruction::FPExt: return getFPExtend(C, Ty); + case Instruction::UIToFP: return getUIToFP(C, Ty); + case Instruction::SIToFP: return getSIToFP(C, Ty); + case Instruction::FPToUI: return getFPToUI(C, Ty); + case Instruction::FPToSI: return getFPToSI(C, Ty); + case Instruction::PtrToInt: return getPtrToInt(C, Ty); + case Instruction::IntToPtr: return getIntToPtr(C, Ty); + case Instruction::BitCast: return getBitCast(C, Ty); + } + return 0; +} + +Constant *ConstantExpr::getZExtOrBitCast(Constant *C, const Type *Ty) { + if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) + return getBitCast(C, Ty); + return getZExt(C, Ty); +} + +Constant *ConstantExpr::getSExtOrBitCast(Constant *C, const Type *Ty) { + if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) + return getBitCast(C, Ty); + return getSExt(C, Ty); +} + +Constant *ConstantExpr::getTruncOrBitCast(Constant *C, const Type *Ty) { + if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) + return getBitCast(C, Ty); + return getTrunc(C, Ty); +} + +Constant *ConstantExpr::getPointerCast(Constant *S, const Type *Ty) { + assert(S->getType()->isPointerTy() && "Invalid cast"); + assert((Ty->isIntegerTy() || Ty->isPointerTy()) && "Invalid cast"); + + if (Ty->isIntegerTy()) + return getPtrToInt(S, Ty); + return getBitCast(S, Ty); +} + +Constant *ConstantExpr::getIntegerCast(Constant *C, const Type *Ty, + bool isSigned) { + assert(C->getType()->isIntOrIntVectorTy() && + Ty->isIntOrIntVectorTy() && "Invalid cast"); + unsigned SrcBits = C->getType()->getScalarSizeInBits(); + unsigned DstBits = Ty->getScalarSizeInBits(); + Instruction::CastOps opcode = + (SrcBits == DstBits ? Instruction::BitCast : + (SrcBits > DstBits ? Instruction::Trunc : + (isSigned ? Instruction::SExt : Instruction::ZExt))); + return getCast(opcode, C, Ty); +} + +Constant *ConstantExpr::getFPCast(Constant *C, const Type *Ty) { + assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && + "Invalid cast"); + unsigned SrcBits = C->getType()->getScalarSizeInBits(); + unsigned DstBits = Ty->getScalarSizeInBits(); + if (SrcBits == DstBits) + return C; // Avoid a useless cast + Instruction::CastOps opcode = + (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt); + return getCast(opcode, C, Ty); +} + +Constant *ConstantExpr::getTrunc(Constant *C, const Type *Ty) { +#ifndef NDEBUG + bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; + bool toVec = Ty->getTypeID() == Type::VectorTyID; +#endif + assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); + assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer"); + assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral"); + assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& + "SrcTy must be larger than DestTy for Trunc!"); + + return getFoldedCast(Instruction::Trunc, C, Ty); +} + +Constant *ConstantExpr::getSExt(Constant *C, const Type *Ty) { +#ifndef NDEBUG + bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; + bool toVec = Ty->getTypeID() == Type::VectorTyID; +#endif + assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); + assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral"); + assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer"); + assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& + "SrcTy must be smaller than DestTy for SExt!"); + + return getFoldedCast(Instruction::SExt, C, Ty); +} + +Constant *ConstantExpr::getZExt(Constant *C, const Type *Ty) { +#ifndef NDEBUG + bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; + bool toVec = Ty->getTypeID() == Type::VectorTyID; +#endif + assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); + assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral"); + assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer"); + assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& + "SrcTy must be smaller than DestTy for ZExt!"); + + return getFoldedCast(Instruction::ZExt, C, Ty); +} + +Constant *ConstantExpr::getFPTrunc(Constant *C, const Type *Ty) { +#ifndef NDEBUG + bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; + bool toVec = Ty->getTypeID() == Type::VectorTyID; +#endif + assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); + assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && + C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& + "This is an illegal floating point truncation!"); + return getFoldedCast(Instruction::FPTrunc, C, Ty); +} + +Constant *ConstantExpr::getFPExtend(Constant *C, const Type *Ty) { +#ifndef NDEBUG + bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; + bool toVec = Ty->getTypeID() == Type::VectorTyID; +#endif + assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); + assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && + C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& + "This is an illegal floating point extension!"); + return getFoldedCast(Instruction::FPExt, C, Ty); +} + +Constant *ConstantExpr::getUIToFP(Constant *C, const Type *Ty) { +#ifndef NDEBUG + bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; + bool toVec = Ty->getTypeID() == Type::VectorTyID; +#endif + assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); + assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && + "This is an illegal uint to floating point cast!"); + return getFoldedCast(Instruction::UIToFP, C, Ty); +} + +Constant *ConstantExpr::getSIToFP(Constant *C, const Type *Ty) { +#ifndef NDEBUG + bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; + bool toVec = Ty->getTypeID() == Type::VectorTyID; +#endif + assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); + assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && + "This is an illegal sint to floating point cast!"); + return getFoldedCast(Instruction::SIToFP, C, Ty); +} + +Constant *ConstantExpr::getFPToUI(Constant *C, const Type *Ty) { +#ifndef NDEBUG + bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; + bool toVec = Ty->getTypeID() == Type::VectorTyID; +#endif + assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); + assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && + "This is an illegal floating point to uint cast!"); + return getFoldedCast(Instruction::FPToUI, C, Ty); +} + +Constant *ConstantExpr::getFPToSI(Constant *C, const Type *Ty) { +#ifndef NDEBUG + bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; + bool toVec = Ty->getTypeID() == Type::VectorTyID; +#endif + assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); + assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && + "This is an illegal floating point to sint cast!"); + return getFoldedCast(Instruction::FPToSI, C, Ty); +} + +Constant *ConstantExpr::getPtrToInt(Constant *C, const Type *DstTy) { + assert(C->getType()->isPointerTy() && "PtrToInt source must be pointer"); + assert(DstTy->isIntegerTy() && "PtrToInt destination must be integral"); + return getFoldedCast(Instruction::PtrToInt, C, DstTy); +} + +Constant *ConstantExpr::getIntToPtr(Constant *C, const Type *DstTy) { + assert(C->getType()->isIntegerTy() && "IntToPtr source must be integral"); + assert(DstTy->isPointerTy() && "IntToPtr destination must be a pointer"); + return getFoldedCast(Instruction::IntToPtr, C, DstTy); +} + +Constant *ConstantExpr::getBitCast(Constant *C, const Type *DstTy) { + assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) && + "Invalid constantexpr bitcast!"); + + // It is common to ask for a bitcast of a value to its own type, handle this + // speedily. + if (C->getType() == DstTy) return C; + + return getFoldedCast(Instruction::BitCast, C, DstTy); +} + +Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode, + Constant *C1, Constant *C2, + unsigned Flags) { + // Check the operands for consistency first + assert(Opcode >= Instruction::BinaryOpsBegin && + Opcode < Instruction::BinaryOpsEnd && + "Invalid opcode in binary constant expression"); + assert(C1->getType() == C2->getType() && + "Operand types in binary constant expression should match"); + + if (ReqTy == C1->getType() || ReqTy == Type::getInt1Ty(ReqTy->getContext())) + if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2)) + return FC; // Fold a few common cases... + + std::vector<Constant*> argVec(1, C1); argVec.push_back(C2); + ExprMapKeyType Key(Opcode, argVec, 0, Flags); + + LLVMContextImpl *pImpl = ReqTy->getContext().pImpl; + return pImpl->ExprConstants.getOrCreate(ReqTy, Key); +} + +Constant *ConstantExpr::getCompareTy(unsigned short predicate, + Constant *C1, Constant *C2) { + switch (predicate) { + default: llvm_unreachable("Invalid CmpInst predicate"); + case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT: + case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE: + case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO: + case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE: + case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE: + case CmpInst::FCMP_TRUE: + return getFCmp(predicate, C1, C2); + + case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT: + case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE: + case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT: + case CmpInst::ICMP_SLE: + return getICmp(predicate, C1, C2); + } +} + +Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2, + unsigned Flags) { +#ifndef NDEBUG + switch (Opcode) { + case Instruction::Add: + case Instruction::Sub: + case Instruction::Mul: + assert(C1->getType() == C2->getType() && "Op types should be identical!"); + assert(C1->getType()->isIntOrIntVectorTy() && + "Tried to create an integer operation on a non-integer type!"); + break; + case Instruction::FAdd: + case Instruction::FSub: + case Instruction::FMul: + assert(C1->getType() == C2->getType() && "Op types should be identical!"); + assert(C1->getType()->isFPOrFPVectorTy() && + "Tried to create a floating-point operation on a " + "non-floating-point type!"); + break; + case Instruction::UDiv: + case Instruction::SDiv: + assert(C1->getType() == C2->getType() && "Op types should be identical!"); + assert(C1->getType()->isIntOrIntVectorTy() && + "Tried to create an arithmetic operation on a non-arithmetic type!"); + break; + case Instruction::FDiv: + assert(C1->getType() == C2->getType() && "Op types should be identical!"); + assert(C1->getType()->isFPOrFPVectorTy() && + "Tried to create an arithmetic operation on a non-arithmetic type!"); + break; + case Instruction::URem: + case Instruction::SRem: + assert(C1->getType() == C2->getType() && "Op types should be identical!"); + assert(C1->getType()->isIntOrIntVectorTy() && + "Tried to create an arithmetic operation on a non-arithmetic type!"); + break; + case Instruction::FRem: + assert(C1->getType() == C2->getType() && "Op types should be identical!"); + assert(C1->getType()->isFPOrFPVectorTy() && + "Tried to create an arithmetic operation on a non-arithmetic type!"); + break; + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: + assert(C1->getType() == C2->getType() && "Op types should be identical!"); + assert(C1->getType()->isIntOrIntVectorTy() && + "Tried to create a logical operation on a non-integral type!"); + break; + case Instruction::Shl: + case Instruction::LShr: + case Instruction::AShr: + assert(C1->getType() == C2->getType() && "Op types should be identical!"); + assert(C1->getType()->isIntOrIntVectorTy() && + "Tried to create a shift operation on a non-integer type!"); + break; + default: + break; + } +#endif + + return getTy(C1->getType(), Opcode, C1, C2, Flags); +} + +Constant* ConstantExpr::getSizeOf(const Type* Ty) { + // sizeof is implemented as: (i64) gep (Ty*)null, 1 + // Note that a non-inbounds gep is used, as null isn't within any object. + Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); + Constant *GEP = getGetElementPtr( + Constant::getNullValue(PointerType::getUnqual(Ty)), &GEPIdx, 1); + return getPtrToInt(GEP, + Type::getInt64Ty(Ty->getContext())); +} + +Constant* ConstantExpr::getAlignOf(const Type* Ty) { + // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1 + // Note that a non-inbounds gep is used, as null isn't within any object. + const Type *AligningTy = StructType::get(Ty->getContext(), + Type::getInt1Ty(Ty->getContext()), Ty, NULL); + Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo()); + Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0); + Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); + Constant *Indices[2] = { Zero, One }; + Constant *GEP = getGetElementPtr(NullPtr, Indices, 2); + return getPtrToInt(GEP, + Type::getInt64Ty(Ty->getContext())); +} + +Constant* ConstantExpr::getOffsetOf(const StructType* STy, unsigned FieldNo) { + return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()), + FieldNo)); +} + +Constant* ConstantExpr::getOffsetOf(const Type* Ty, Constant *FieldNo) { + // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo + // Note that a non-inbounds gep is used, as null isn't within any object. + Constant *GEPIdx[] = { + ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0), + FieldNo + }; + Constant *GEP = getGetElementPtr( + Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx, 2); + return getPtrToInt(GEP, + Type::getInt64Ty(Ty->getContext())); +} + +Constant *ConstantExpr::getCompare(unsigned short pred, + Constant *C1, Constant *C2) { + assert(C1->getType() == C2->getType() && "Op types should be identical!"); + return getCompareTy(pred, C1, C2); +} + +Constant *ConstantExpr::getSelectTy(const Type *ReqTy, Constant *C, + Constant *V1, Constant *V2) { + assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands"); + + if (ReqTy == V1->getType()) + if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2)) + return SC; // Fold common cases + + std::vector<Constant*> argVec(3, C); + argVec[1] = V1; + argVec[2] = V2; + ExprMapKeyType Key(Instruction::Select, argVec); + + LLVMContextImpl *pImpl = ReqTy->getContext().pImpl; + return pImpl->ExprConstants.getOrCreate(ReqTy, Key); +} + +Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C, + Value* const *Idxs, + unsigned NumIdx) { + assert(GetElementPtrInst::getIndexedType(C->getType(), Idxs, + Idxs+NumIdx) == + cast<PointerType>(ReqTy)->getElementType() && + "GEP indices invalid!"); + + if (Constant *FC = ConstantFoldGetElementPtr(C, /*inBounds=*/false, + (Constant**)Idxs, NumIdx)) + return FC; // Fold a few common cases... + + assert(C->getType()->isPointerTy() && + "Non-pointer type for constant GetElementPtr expression"); + // Look up the constant in the table first to ensure uniqueness + std::vector<Constant*> ArgVec; + ArgVec.reserve(NumIdx+1); + ArgVec.push_back(C); + for (unsigned i = 0; i != NumIdx; ++i) + ArgVec.push_back(cast<Constant>(Idxs[i])); + const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec); + + LLVMContextImpl *pImpl = ReqTy->getContext().pImpl; + return pImpl->ExprConstants.getOrCreate(ReqTy, Key); +} + +Constant *ConstantExpr::getInBoundsGetElementPtrTy(const Type *ReqTy, + Constant *C, + Value *const *Idxs, + unsigned NumIdx) { + assert(GetElementPtrInst::getIndexedType(C->getType(), Idxs, + Idxs+NumIdx) == + cast<PointerType>(ReqTy)->getElementType() && + "GEP indices invalid!"); + + if (Constant *FC = ConstantFoldGetElementPtr(C, /*inBounds=*/true, + (Constant**)Idxs, NumIdx)) + return FC; // Fold a few common cases... + + assert(C->getType()->isPointerTy() && + "Non-pointer type for constant GetElementPtr expression"); + // Look up the constant in the table first to ensure uniqueness + std::vector<Constant*> ArgVec; + ArgVec.reserve(NumIdx+1); + ArgVec.push_back(C); + for (unsigned i = 0; i != NumIdx; ++i) + ArgVec.push_back(cast<Constant>(Idxs[i])); + const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0, + GEPOperator::IsInBounds); + + LLVMContextImpl *pImpl = ReqTy->getContext().pImpl; + return pImpl->ExprConstants.getOrCreate(ReqTy, Key); +} + +Constant *ConstantExpr::getGetElementPtr(Constant *C, Value* const *Idxs, + unsigned NumIdx) { + // Get the result type of the getelementptr! + const Type *Ty = + GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx); + assert(Ty && "GEP indices invalid!"); + unsigned As = cast<PointerType>(C->getType())->getAddressSpace(); + return getGetElementPtrTy(PointerType::get(Ty, As), C, Idxs, NumIdx); +} + +Constant *ConstantExpr::getInBoundsGetElementPtr(Constant *C, + Value* const *Idxs, + unsigned NumIdx) { + // Get the result type of the getelementptr! + const Type *Ty = + GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx); + assert(Ty && "GEP indices invalid!"); + unsigned As = cast<PointerType>(C->getType())->getAddressSpace(); + return getInBoundsGetElementPtrTy(PointerType::get(Ty, As), C, Idxs, NumIdx); +} + +Constant *ConstantExpr::getGetElementPtr(Constant *C, Constant* const *Idxs, + unsigned NumIdx) { + return getGetElementPtr(C, (Value* const *)Idxs, NumIdx); +} + +Constant *ConstantExpr::getInBoundsGetElementPtr(Constant *C, + Constant* const *Idxs, + unsigned NumIdx) { + return getInBoundsGetElementPtr(C, (Value* const *)Idxs, NumIdx); +} + +Constant * +ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) { + assert(LHS->getType() == RHS->getType()); + assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE && + pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate"); + + if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) + return FC; // Fold a few common cases... + + // Look up the constant in the table first to ensure uniqueness + std::vector<Constant*> ArgVec; + ArgVec.push_back(LHS); + ArgVec.push_back(RHS); + // Get the key type with both the opcode and predicate + const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred); + + const Type *ResultTy = Type::getInt1Ty(LHS->getContext()); + if (const VectorType *VT = dyn_cast<VectorType>(LHS->getType())) + ResultTy = VectorType::get(ResultTy, VT->getNumElements()); + + LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; + return pImpl->ExprConstants.getOrCreate(ResultTy, Key); +} + +Constant * +ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) { + assert(LHS->getType() == RHS->getType()); + assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate"); + + if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) + return FC; // Fold a few common cases... + + // Look up the constant in the table first to ensure uniqueness + std::vector<Constant*> ArgVec; + ArgVec.push_back(LHS); + ArgVec.push_back(RHS); + // Get the key type with both the opcode and predicate + const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred); + + const Type *ResultTy = Type::getInt1Ty(LHS->getContext()); + if (const VectorType *VT = dyn_cast<VectorType>(LHS->getType())) + ResultTy = VectorType::get(ResultTy, VT->getNumElements()); + + LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; + return pImpl->ExprConstants.getOrCreate(ResultTy, Key); +} + +Constant *ConstantExpr::getExtractElementTy(const Type *ReqTy, Constant *Val, + Constant *Idx) { + if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx)) + return FC; // Fold a few common cases. + // Look up the constant in the table first to ensure uniqueness + std::vector<Constant*> ArgVec(1, Val); + ArgVec.push_back(Idx); + const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec); + + LLVMContextImpl *pImpl = ReqTy->getContext().pImpl; + return pImpl->ExprConstants.getOrCreate(ReqTy, Key); +} + +Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) { + assert(Val->getType()->isVectorTy() && + "Tried to create extractelement operation on non-vector type!"); + assert(Idx->getType()->isIntegerTy(32) && + "Extractelement index must be i32 type!"); + return getExtractElementTy(cast<VectorType>(Val->getType())->getElementType(), + Val, Idx); +} + +Constant *ConstantExpr::getInsertElementTy(const Type *ReqTy, Constant *Val, + Constant *Elt, Constant *Idx) { + if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx)) + return FC; // Fold a few common cases. + // Look up the constant in the table first to ensure uniqueness + std::vector<Constant*> ArgVec(1, Val); + ArgVec.push_back(Elt); + ArgVec.push_back(Idx); + const ExprMapKeyType Key(Instruction::InsertElement,ArgVec); + + LLVMContextImpl *pImpl = ReqTy->getContext().pImpl; + return pImpl->ExprConstants.getOrCreate(ReqTy, Key); +} + +Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, + Constant *Idx) { + assert(Val->getType()->isVectorTy() && + "Tried to create insertelement operation on non-vector type!"); + assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType() + && "Insertelement types must match!"); + assert(Idx->getType()->isIntegerTy(32) && + "Insertelement index must be i32 type!"); + return getInsertElementTy(Val->getType(), Val, Elt, Idx); +} + +Constant *ConstantExpr::getShuffleVectorTy(const Type *ReqTy, Constant *V1, + Constant *V2, Constant *Mask) { + if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask)) + return FC; // Fold a few common cases... + // Look up the constant in the table first to ensure uniqueness + std::vector<Constant*> ArgVec(1, V1); + ArgVec.push_back(V2); + ArgVec.push_back(Mask); + const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec); + + LLVMContextImpl *pImpl = ReqTy->getContext().pImpl; + return pImpl->ExprConstants.getOrCreate(ReqTy, Key); +} + +Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, + Constant *Mask) { + assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) && + "Invalid shuffle vector constant expr operands!"); + + unsigned NElts = cast<VectorType>(Mask->getType())->getNumElements(); + const Type *EltTy = cast<VectorType>(V1->getType())->getElementType(); + const Type *ShufTy = VectorType::get(EltTy, NElts); + return getShuffleVectorTy(ShufTy, V1, V2, Mask); +} + +Constant *ConstantExpr::getInsertValueTy(const Type *ReqTy, Constant *Agg, + Constant *Val, + const unsigned *Idxs, unsigned NumIdx) { + assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs, + Idxs+NumIdx) == Val->getType() && + "insertvalue indices invalid!"); + assert(Agg->getType() == ReqTy && + "insertvalue type invalid!"); + assert(Agg->getType()->isFirstClassType() && + "Non-first-class type for constant InsertValue expression"); + Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs, NumIdx); + assert(FC && "InsertValue constant expr couldn't be folded!"); + return FC; +} + +Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val, + const unsigned *IdxList, unsigned NumIdx) { + assert(Agg->getType()->isFirstClassType() && + "Tried to create insertelement operation on non-first-class type!"); + + const Type *ReqTy = Agg->getType(); +#ifndef NDEBUG + const Type *ValTy = + ExtractValueInst::getIndexedType(Agg->getType(), IdxList, IdxList+NumIdx); +#endif + assert(ValTy == Val->getType() && "insertvalue indices invalid!"); + return getInsertValueTy(ReqTy, Agg, Val, IdxList, NumIdx); +} + +Constant *ConstantExpr::getExtractValueTy(const Type *ReqTy, Constant *Agg, + const unsigned *Idxs, unsigned NumIdx) { + assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs, + Idxs+NumIdx) == ReqTy && + "extractvalue indices invalid!"); + assert(Agg->getType()->isFirstClassType() && + "Non-first-class type for constant extractvalue expression"); + Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs, NumIdx); + assert(FC && "ExtractValue constant expr couldn't be folded!"); + return FC; +} + +Constant *ConstantExpr::getExtractValue(Constant *Agg, + const unsigned *IdxList, unsigned NumIdx) { + assert(Agg->getType()->isFirstClassType() && + "Tried to create extractelement operation on non-first-class type!"); + + const Type *ReqTy = + ExtractValueInst::getIndexedType(Agg->getType(), IdxList, IdxList+NumIdx); + assert(ReqTy && "extractvalue indices invalid!"); + return getExtractValueTy(ReqTy, Agg, IdxList, NumIdx); +} + +Constant* ConstantExpr::getNeg(Constant* C) { + assert(C->getType()->isIntOrIntVectorTy() && + "Cannot NEG a nonintegral value!"); + return get(Instruction::Sub, + ConstantFP::getZeroValueForNegation(C->getType()), + C); +} + +Constant* ConstantExpr::getFNeg(Constant* C) { + assert(C->getType()->isFPOrFPVectorTy() && + "Cannot FNEG a non-floating-point value!"); + return get(Instruction::FSub, + ConstantFP::getZeroValueForNegation(C->getType()), + C); +} + +Constant* ConstantExpr::getNot(Constant* C) { + assert(C->getType()->isIntOrIntVectorTy() && + "Cannot NOT a nonintegral value!"); + return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType())); +} + +Constant* ConstantExpr::getAdd(Constant* C1, Constant* C2) { + return get(Instruction::Add, C1, C2); +} + +Constant* ConstantExpr::getFAdd(Constant* C1, Constant* C2) { + return get(Instruction::FAdd, C1, C2); +} + +Constant* ConstantExpr::getSub(Constant* C1, Constant* C2) { + return get(Instruction::Sub, C1, C2); +} + +Constant* ConstantExpr::getFSub(Constant* C1, Constant* C2) { + return get(Instruction::FSub, C1, C2); +} + +Constant* ConstantExpr::getMul(Constant* C1, Constant* C2) { + return get(Instruction::Mul, C1, C2); +} + +Constant* ConstantExpr::getFMul(Constant* C1, Constant* C2) { + return get(Instruction::FMul, C1, C2); +} + +Constant* ConstantExpr::getUDiv(Constant* C1, Constant* C2) { + return get(Instruction::UDiv, C1, C2); +} + +Constant* ConstantExpr::getSDiv(Constant* C1, Constant* C2) { + return get(Instruction::SDiv, C1, C2); +} + +Constant* ConstantExpr::getFDiv(Constant* C1, Constant* C2) { + return get(Instruction::FDiv, C1, C2); +} + +Constant* ConstantExpr::getURem(Constant* C1, Constant* C2) { + return get(Instruction::URem, C1, C2); +} + +Constant* ConstantExpr::getSRem(Constant* C1, Constant* C2) { + return get(Instruction::SRem, C1, C2); +} + +Constant* ConstantExpr::getFRem(Constant* C1, Constant* C2) { + return get(Instruction::FRem, C1, C2); +} + +Constant* ConstantExpr::getAnd(Constant* C1, Constant* C2) { + return get(Instruction::And, C1, C2); +} + +Constant* ConstantExpr::getOr(Constant* C1, Constant* C2) { + return get(Instruction::Or, C1, C2); +} + +Constant* ConstantExpr::getXor(Constant* C1, Constant* C2) { + return get(Instruction::Xor, C1, C2); +} + +Constant* ConstantExpr::getShl(Constant* C1, Constant* C2) { + return get(Instruction::Shl, C1, C2); +} + +Constant* ConstantExpr::getLShr(Constant* C1, Constant* C2) { + return get(Instruction::LShr, C1, C2); +} + +Constant* ConstantExpr::getAShr(Constant* C1, Constant* C2) { + return get(Instruction::AShr, C1, C2); +} + +// destroyConstant - Remove the constant from the constant table... +// +void ConstantExpr::destroyConstant() { + getRawType()->getContext().pImpl->ExprConstants.remove(this); + destroyConstantImpl(); +} + +const char *ConstantExpr::getOpcodeName() const { + return Instruction::getOpcodeName(getOpcode()); +} + + + +GetElementPtrConstantExpr:: +GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList, + const Type *DestTy) + : ConstantExpr(DestTy, Instruction::GetElementPtr, + OperandTraits<GetElementPtrConstantExpr>::op_end(this) + - (IdxList.size()+1), IdxList.size()+1) { + OperandList[0] = C; + for (unsigned i = 0, E = IdxList.size(); i != E; ++i) + OperandList[i+1] = IdxList[i]; +} + + +//===----------------------------------------------------------------------===// +// replaceUsesOfWithOnConstant implementations + +/// replaceUsesOfWithOnConstant - Update this constant array to change uses of +/// 'From' to be uses of 'To'. This must update the uniquing data structures +/// etc. +/// +/// Note that we intentionally replace all uses of From with To here. Consider +/// a large array that uses 'From' 1000 times. By handling this case all here, +/// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that +/// single invocation handles all 1000 uses. Handling them one at a time would +/// work, but would be really slow because it would have to unique each updated +/// array instance. +/// +void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To, + Use *U) { + assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); + Constant *ToC = cast<Constant>(To); + + LLVMContextImpl *pImpl = getRawType()->getContext().pImpl; + + std::pair<LLVMContextImpl::ArrayConstantsTy::MapKey, ConstantArray*> Lookup; + Lookup.first.first = cast<ArrayType>(getRawType()); + Lookup.second = this; + + std::vector<Constant*> &Values = Lookup.first.second; + Values.reserve(getNumOperands()); // Build replacement array. + + // Fill values with the modified operands of the constant array. Also, + // compute whether this turns into an all-zeros array. + bool isAllZeros = false; + unsigned NumUpdated = 0; + if (!ToC->isNullValue()) { + for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { + Constant *Val = cast<Constant>(O->get()); + if (Val == From) { + Val = ToC; + ++NumUpdated; + } + Values.push_back(Val); + } + } else { + isAllZeros = true; + for (Use *O = OperandList, *E = OperandList+getNumOperands();O != E; ++O) { + Constant *Val = cast<Constant>(O->get()); + if (Val == From) { + Val = ToC; + ++NumUpdated; + } + Values.push_back(Val); + if (isAllZeros) isAllZeros = Val->isNullValue(); + } + } + + Constant *Replacement = 0; + if (isAllZeros) { + Replacement = ConstantAggregateZero::get(getRawType()); + } else { + // Check to see if we have this array type already. + bool Exists; + LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I = + pImpl->ArrayConstants.InsertOrGetItem(Lookup, Exists); + + if (Exists) { + Replacement = I->second; + } else { + // Okay, the new shape doesn't exist in the system yet. Instead of + // creating a new constant array, inserting it, replaceallusesof'ing the + // old with the new, then deleting the old... just update the current one + // in place! + pImpl->ArrayConstants.MoveConstantToNewSlot(this, I); + + // Update to the new value. Optimize for the case when we have a single + // operand that we're changing, but handle bulk updates efficiently. + if (NumUpdated == 1) { + unsigned OperandToUpdate = U - OperandList; + assert(getOperand(OperandToUpdate) == From && + "ReplaceAllUsesWith broken!"); + setOperand(OperandToUpdate, ToC); + } else { + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) + if (getOperand(i) == From) + setOperand(i, ToC); + } + return; + } + } + + // Otherwise, I do need to replace this with an existing value. + assert(Replacement != this && "I didn't contain From!"); + + // Everyone using this now uses the replacement. + uncheckedReplaceAllUsesWith(Replacement); + + // Delete the old constant! + destroyConstant(); +} + +void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To, + Use *U) { + assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); + Constant *ToC = cast<Constant>(To); + + unsigned OperandToUpdate = U-OperandList; + assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!"); + + std::pair<LLVMContextImpl::StructConstantsTy::MapKey, ConstantStruct*> Lookup; + Lookup.first.first = cast<StructType>(getRawType()); + Lookup.second = this; + std::vector<Constant*> &Values = Lookup.first.second; + Values.reserve(getNumOperands()); // Build replacement struct. + + + // Fill values with the modified operands of the constant struct. Also, + // compute whether this turns into an all-zeros struct. + bool isAllZeros = false; + if (!ToC->isNullValue()) { + for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) + Values.push_back(cast<Constant>(O->get())); + } else { + isAllZeros = true; + for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { + Constant *Val = cast<Constant>(O->get()); + Values.push_back(Val); + if (isAllZeros) isAllZeros = Val->isNullValue(); + } + } + Values[OperandToUpdate] = ToC; + + LLVMContextImpl *pImpl = getRawType()->getContext().pImpl; + + Constant *Replacement = 0; + if (isAllZeros) { + Replacement = ConstantAggregateZero::get(getRawType()); + } else { + // Check to see if we have this struct type already. + bool Exists; + LLVMContextImpl::StructConstantsTy::MapTy::iterator I = + pImpl->StructConstants.InsertOrGetItem(Lookup, Exists); + + if (Exists) { + Replacement = I->second; + } else { + // Okay, the new shape doesn't exist in the system yet. Instead of + // creating a new constant struct, inserting it, replaceallusesof'ing the + // old with the new, then deleting the old... just update the current one + // in place! + pImpl->StructConstants.MoveConstantToNewSlot(this, I); + + // Update to the new value. + setOperand(OperandToUpdate, ToC); + return; + } + } + + assert(Replacement != this && "I didn't contain From!"); + + // Everyone using this now uses the replacement. + uncheckedReplaceAllUsesWith(Replacement); + + // Delete the old constant! + destroyConstant(); +} + +void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To, + Use *U) { + assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); + + std::vector<Constant*> Values; + Values.reserve(getNumOperands()); // Build replacement array... + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { + Constant *Val = getOperand(i); + if (Val == From) Val = cast<Constant>(To); + Values.push_back(Val); + } + + Constant *Replacement = get(cast<VectorType>(getRawType()), Values); + assert(Replacement != this && "I didn't contain From!"); + + // Everyone using this now uses the replacement. + uncheckedReplaceAllUsesWith(Replacement); + + // Delete the old constant! + destroyConstant(); +} + +void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV, + Use *U) { + assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!"); + Constant *To = cast<Constant>(ToV); + + Constant *Replacement = 0; + if (getOpcode() == Instruction::GetElementPtr) { + SmallVector<Constant*, 8> Indices; + Constant *Pointer = getOperand(0); + Indices.reserve(getNumOperands()-1); + if (Pointer == From) Pointer = To; + + for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { + Constant *Val = getOperand(i); + if (Val == From) Val = To; + Indices.push_back(Val); + } + Replacement = ConstantExpr::getGetElementPtr(Pointer, + &Indices[0], Indices.size()); + } else if (getOpcode() == Instruction::ExtractValue) { + Constant *Agg = getOperand(0); + if (Agg == From) Agg = To; + + const SmallVector<unsigned, 4> &Indices = getIndices(); + Replacement = ConstantExpr::getExtractValue(Agg, + &Indices[0], Indices.size()); + } else if (getOpcode() == Instruction::InsertValue) { + Constant *Agg = getOperand(0); + Constant *Val = getOperand(1); + if (Agg == From) Agg = To; + if (Val == From) Val = To; + + const SmallVector<unsigned, 4> &Indices = getIndices(); + Replacement = ConstantExpr::getInsertValue(Agg, Val, + &Indices[0], Indices.size()); + } else if (isCast()) { + assert(getOperand(0) == From && "Cast only has one use!"); + Replacement = ConstantExpr::getCast(getOpcode(), To, getRawType()); + } else if (getOpcode() == Instruction::Select) { + Constant *C1 = getOperand(0); + Constant *C2 = getOperand(1); + Constant *C3 = getOperand(2); + if (C1 == From) C1 = To; + if (C2 == From) C2 = To; + if (C3 == From) C3 = To; + Replacement = ConstantExpr::getSelect(C1, C2, C3); + } else if (getOpcode() == Instruction::ExtractElement) { + Constant *C1 = getOperand(0); + Constant *C2 = getOperand(1); + if (C1 == From) C1 = To; + if (C2 == From) C2 = To; + Replacement = ConstantExpr::getExtractElement(C1, C2); + } else if (getOpcode() == Instruction::InsertElement) { + Constant *C1 = getOperand(0); + Constant *C2 = getOperand(1); + Constant *C3 = getOperand(1); + if (C1 == From) C1 = To; + if (C2 == From) C2 = To; + if (C3 == From) C3 = To; + Replacement = ConstantExpr::getInsertElement(C1, C2, C3); + } else if (getOpcode() == Instruction::ShuffleVector) { + Constant *C1 = getOperand(0); + Constant *C2 = getOperand(1); + Constant *C3 = getOperand(2); + if (C1 == From) C1 = To; + if (C2 == From) C2 = To; + if (C3 == From) C3 = To; + Replacement = ConstantExpr::getShuffleVector(C1, C2, C3); + } else if (isCompare()) { + Constant *C1 = getOperand(0); + Constant *C2 = getOperand(1); + if (C1 == From) C1 = To; + if (C2 == From) C2 = To; + if (getOpcode() == Instruction::ICmp) + Replacement = ConstantExpr::getICmp(getPredicate(), C1, C2); + else { + assert(getOpcode() == Instruction::FCmp); + Replacement = ConstantExpr::getFCmp(getPredicate(), C1, C2); + } + } else if (getNumOperands() == 2) { + Constant *C1 = getOperand(0); + Constant *C2 = getOperand(1); + if (C1 == From) C1 = To; + if (C2 == From) C2 = To; + Replacement = ConstantExpr::get(getOpcode(), C1, C2, SubclassOptionalData); + } else { + llvm_unreachable("Unknown ConstantExpr type!"); + return; + } + + assert(Replacement != this && "I didn't contain From!"); + + // Everyone using this now uses the replacement. + uncheckedReplaceAllUsesWith(Replacement); + + // Delete the old constant! + destroyConstant(); +} diff --git a/contrib/llvm/lib/VMCore/ConstantsContext.h b/contrib/llvm/lib/VMCore/ConstantsContext.h new file mode 100644 index 0000000..1c04c3e --- /dev/null +++ b/contrib/llvm/lib/VMCore/ConstantsContext.h @@ -0,0 +1,835 @@ +//===-- ConstantsContext.h - Constants-related Context Interals -----------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines various helper methods and classes used by +// LLVMContextImpl for creating and managing constants. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_CONSTANTSCONTEXT_H +#define LLVM_CONSTANTSCONTEXT_H + +#include "llvm/InlineAsm.h" +#include "llvm/Instructions.h" +#include "llvm/Operator.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include <map> + +namespace llvm { +template<class ValType> +struct ConstantTraits; + +/// UnaryConstantExpr - This class is private to Constants.cpp, and is used +/// behind the scenes to implement unary constant exprs. +class UnaryConstantExpr : public ConstantExpr { + void *operator new(size_t, unsigned); // DO NOT IMPLEMENT +public: + // allocate space for exactly one operand + void *operator new(size_t s) { + return User::operator new(s, 1); + } + UnaryConstantExpr(unsigned Opcode, Constant *C, const Type *Ty) + : ConstantExpr(Ty, Opcode, &Op<0>(), 1) { + Op<0>() = C; + } + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); +}; + +/// BinaryConstantExpr - This class is private to Constants.cpp, and is used +/// behind the scenes to implement binary constant exprs. +class BinaryConstantExpr : public ConstantExpr { + void *operator new(size_t, unsigned); // DO NOT IMPLEMENT +public: + // allocate space for exactly two operands + void *operator new(size_t s) { + return User::operator new(s, 2); + } + BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2, + unsigned Flags) + : ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) { + Op<0>() = C1; + Op<1>() = C2; + SubclassOptionalData = Flags; + } + /// Transparently provide more efficient getOperand methods. + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); +}; + +/// SelectConstantExpr - This class is private to Constants.cpp, and is used +/// behind the scenes to implement select constant exprs. +class SelectConstantExpr : public ConstantExpr { + void *operator new(size_t, unsigned); // DO NOT IMPLEMENT +public: + // allocate space for exactly three operands + void *operator new(size_t s) { + return User::operator new(s, 3); + } + SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3) + : ConstantExpr(C2->getType(), Instruction::Select, &Op<0>(), 3) { + Op<0>() = C1; + Op<1>() = C2; + Op<2>() = C3; + } + /// Transparently provide more efficient getOperand methods. + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); +}; + +/// ExtractElementConstantExpr - This class is private to +/// Constants.cpp, and is used behind the scenes to implement +/// extractelement constant exprs. +class ExtractElementConstantExpr : public ConstantExpr { + void *operator new(size_t, unsigned); // DO NOT IMPLEMENT +public: + // allocate space for exactly two operands + void *operator new(size_t s) { + return User::operator new(s, 2); + } + ExtractElementConstantExpr(Constant *C1, Constant *C2) + : ConstantExpr(cast<VectorType>(C1->getType())->getElementType(), + Instruction::ExtractElement, &Op<0>(), 2) { + Op<0>() = C1; + Op<1>() = C2; + } + /// Transparently provide more efficient getOperand methods. + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); +}; + +/// InsertElementConstantExpr - This class is private to +/// Constants.cpp, and is used behind the scenes to implement +/// insertelement constant exprs. +class InsertElementConstantExpr : public ConstantExpr { + void *operator new(size_t, unsigned); // DO NOT IMPLEMENT +public: + // allocate space for exactly three operands + void *operator new(size_t s) { + return User::operator new(s, 3); + } + InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3) + : ConstantExpr(C1->getType(), Instruction::InsertElement, + &Op<0>(), 3) { + Op<0>() = C1; + Op<1>() = C2; + Op<2>() = C3; + } + /// Transparently provide more efficient getOperand methods. + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); +}; + +/// ShuffleVectorConstantExpr - This class is private to +/// Constants.cpp, and is used behind the scenes to implement +/// shufflevector constant exprs. +class ShuffleVectorConstantExpr : public ConstantExpr { + void *operator new(size_t, unsigned); // DO NOT IMPLEMENT +public: + // allocate space for exactly three operands + void *operator new(size_t s) { + return User::operator new(s, 3); + } + ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3) + : ConstantExpr(VectorType::get( + cast<VectorType>(C1->getType())->getElementType(), + cast<VectorType>(C3->getType())->getNumElements()), + Instruction::ShuffleVector, + &Op<0>(), 3) { + Op<0>() = C1; + Op<1>() = C2; + Op<2>() = C3; + } + /// Transparently provide more efficient getOperand methods. + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); +}; + +/// ExtractValueConstantExpr - This class is private to +/// Constants.cpp, and is used behind the scenes to implement +/// extractvalue constant exprs. +class ExtractValueConstantExpr : public ConstantExpr { + void *operator new(size_t, unsigned); // DO NOT IMPLEMENT +public: + // allocate space for exactly one operand + void *operator new(size_t s) { + return User::operator new(s, 1); + } + ExtractValueConstantExpr(Constant *Agg, + const SmallVector<unsigned, 4> &IdxList, + const Type *DestTy) + : ConstantExpr(DestTy, Instruction::ExtractValue, &Op<0>(), 1), + Indices(IdxList) { + Op<0>() = Agg; + } + + /// Indices - These identify which value to extract. + const SmallVector<unsigned, 4> Indices; + + /// Transparently provide more efficient getOperand methods. + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); +}; + +/// InsertValueConstantExpr - This class is private to +/// Constants.cpp, and is used behind the scenes to implement +/// insertvalue constant exprs. +class InsertValueConstantExpr : public ConstantExpr { + void *operator new(size_t, unsigned); // DO NOT IMPLEMENT +public: + // allocate space for exactly one operand + void *operator new(size_t s) { + return User::operator new(s, 2); + } + InsertValueConstantExpr(Constant *Agg, Constant *Val, + const SmallVector<unsigned, 4> &IdxList, + const Type *DestTy) + : ConstantExpr(DestTy, Instruction::InsertValue, &Op<0>(), 2), + Indices(IdxList) { + Op<0>() = Agg; + Op<1>() = Val; + } + + /// Indices - These identify the position for the insertion. + const SmallVector<unsigned, 4> Indices; + + /// Transparently provide more efficient getOperand methods. + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); +}; + + +/// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is +/// used behind the scenes to implement getelementpr constant exprs. +class GetElementPtrConstantExpr : public ConstantExpr { + GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList, + const Type *DestTy); +public: + static GetElementPtrConstantExpr *Create(Constant *C, + const std::vector<Constant*>&IdxList, + const Type *DestTy, + unsigned Flags) { + GetElementPtrConstantExpr *Result = + new(IdxList.size() + 1) GetElementPtrConstantExpr(C, IdxList, DestTy); + Result->SubclassOptionalData = Flags; + return Result; + } + /// Transparently provide more efficient getOperand methods. + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); +}; + +// CompareConstantExpr - This class is private to Constants.cpp, and is used +// behind the scenes to implement ICmp and FCmp constant expressions. This is +// needed in order to store the predicate value for these instructions. +struct CompareConstantExpr : public ConstantExpr { + void *operator new(size_t, unsigned); // DO NOT IMPLEMENT + // allocate space for exactly two operands + void *operator new(size_t s) { + return User::operator new(s, 2); + } + unsigned short predicate; + CompareConstantExpr(const Type *ty, Instruction::OtherOps opc, + unsigned short pred, Constant* LHS, Constant* RHS) + : ConstantExpr(ty, opc, &Op<0>(), 2), predicate(pred) { + Op<0>() = LHS; + Op<1>() = RHS; + } + /// Transparently provide more efficient getOperand methods. + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); +}; + +template <> +struct OperandTraits<UnaryConstantExpr> : public FixedNumOperandTraits<1> { +}; +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr, Value) + +template <> +struct OperandTraits<BinaryConstantExpr> : public FixedNumOperandTraits<2> { +}; +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr, Value) + +template <> +struct OperandTraits<SelectConstantExpr> : public FixedNumOperandTraits<3> { +}; +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr, Value) + +template <> +struct OperandTraits<ExtractElementConstantExpr> : public FixedNumOperandTraits<2> { +}; +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr, Value) + +template <> +struct OperandTraits<InsertElementConstantExpr> : public FixedNumOperandTraits<3> { +}; +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr, Value) + +template <> +struct OperandTraits<ShuffleVectorConstantExpr> : public FixedNumOperandTraits<3> { +}; +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr, Value) + +template <> +struct OperandTraits<ExtractValueConstantExpr> : public FixedNumOperandTraits<1> { +}; +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractValueConstantExpr, Value) + +template <> +struct OperandTraits<InsertValueConstantExpr> : public FixedNumOperandTraits<2> { +}; +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueConstantExpr, Value) + +template <> +struct OperandTraits<GetElementPtrConstantExpr> : public VariadicOperandTraits<1> { +}; + +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr, Value) + + +template <> +struct OperandTraits<CompareConstantExpr> : public FixedNumOperandTraits<2> { +}; +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value) + +struct ExprMapKeyType { + typedef SmallVector<unsigned, 4> IndexList; + + ExprMapKeyType(unsigned opc, + const std::vector<Constant*> &ops, + unsigned short flags = 0, + unsigned short optionalflags = 0, + const IndexList &inds = IndexList()) + : opcode(opc), subclassoptionaldata(optionalflags), subclassdata(flags), + operands(ops), indices(inds) {} + uint8_t opcode; + uint8_t subclassoptionaldata; + uint16_t subclassdata; + std::vector<Constant*> operands; + IndexList indices; + bool operator==(const ExprMapKeyType& that) const { + return this->opcode == that.opcode && + this->subclassdata == that.subclassdata && + this->subclassoptionaldata == that.subclassoptionaldata && + this->operands == that.operands && + this->indices == that.indices; + } + bool operator<(const ExprMapKeyType & that) const { + if (this->opcode != that.opcode) return this->opcode < that.opcode; + if (this->operands != that.operands) return this->operands < that.operands; + if (this->subclassdata != that.subclassdata) + return this->subclassdata < that.subclassdata; + if (this->subclassoptionaldata != that.subclassoptionaldata) + return this->subclassoptionaldata < that.subclassoptionaldata; + if (this->indices != that.indices) return this->indices < that.indices; + return false; + } + + bool operator!=(const ExprMapKeyType& that) const { + return !(*this == that); + } +}; + +struct InlineAsmKeyType { + InlineAsmKeyType(StringRef AsmString, + StringRef Constraints, bool hasSideEffects, + bool isAlignStack) + : asm_string(AsmString), constraints(Constraints), + has_side_effects(hasSideEffects), is_align_stack(isAlignStack) {} + std::string asm_string; + std::string constraints; + bool has_side_effects; + bool is_align_stack; + bool operator==(const InlineAsmKeyType& that) const { + return this->asm_string == that.asm_string && + this->constraints == that.constraints && + this->has_side_effects == that.has_side_effects && + this->is_align_stack == that.is_align_stack; + } + bool operator<(const InlineAsmKeyType& that) const { + if (this->asm_string != that.asm_string) + return this->asm_string < that.asm_string; + if (this->constraints != that.constraints) + return this->constraints < that.constraints; + if (this->has_side_effects != that.has_side_effects) + return this->has_side_effects < that.has_side_effects; + if (this->is_align_stack != that.is_align_stack) + return this->is_align_stack < that.is_align_stack; + return false; + } + + bool operator!=(const InlineAsmKeyType& that) const { + return !(*this == that); + } +}; + +// The number of operands for each ConstantCreator::create method is +// determined by the ConstantTraits template. +// ConstantCreator - A class that is used to create constants by +// ConstantUniqueMap*. This class should be partially specialized if there is +// something strange that needs to be done to interface to the ctor for the +// constant. +// +template<typename T, typename Alloc> +struct ConstantTraits< std::vector<T, Alloc> > { + static unsigned uses(const std::vector<T, Alloc>& v) { + return v.size(); + } +}; + +template<> +struct ConstantTraits<Constant *> { + static unsigned uses(Constant * const & v) { + return 1; + } +}; + +template<class ConstantClass, class TypeClass, class ValType> +struct ConstantCreator { + static ConstantClass *create(const TypeClass *Ty, const ValType &V) { + return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V); + } +}; + +template<class ConstantClass> +struct ConstantKeyData { + typedef void ValType; + static ValType getValType(ConstantClass *C) { + llvm_unreachable("Unknown Constant type!"); + } +}; + +template<> +struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> { + static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V, + unsigned short pred = 0) { + if (Instruction::isCast(V.opcode)) + return new UnaryConstantExpr(V.opcode, V.operands[0], Ty); + if ((V.opcode >= Instruction::BinaryOpsBegin && + V.opcode < Instruction::BinaryOpsEnd)) + return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1], + V.subclassoptionaldata); + if (V.opcode == Instruction::Select) + return new SelectConstantExpr(V.operands[0], V.operands[1], + V.operands[2]); + if (V.opcode == Instruction::ExtractElement) + return new ExtractElementConstantExpr(V.operands[0], V.operands[1]); + if (V.opcode == Instruction::InsertElement) + return new InsertElementConstantExpr(V.operands[0], V.operands[1], + V.operands[2]); + if (V.opcode == Instruction::ShuffleVector) + return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1], + V.operands[2]); + if (V.opcode == Instruction::InsertValue) + return new InsertValueConstantExpr(V.operands[0], V.operands[1], + V.indices, Ty); + if (V.opcode == Instruction::ExtractValue) + return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty); + if (V.opcode == Instruction::GetElementPtr) { + std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end()); + return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty, + V.subclassoptionaldata); + } + + // The compare instructions are weird. We have to encode the predicate + // value and it is combined with the instruction opcode by multiplying + // the opcode by one hundred. We must decode this to get the predicate. + if (V.opcode == Instruction::ICmp) + return new CompareConstantExpr(Ty, Instruction::ICmp, V.subclassdata, + V.operands[0], V.operands[1]); + if (V.opcode == Instruction::FCmp) + return new CompareConstantExpr(Ty, Instruction::FCmp, V.subclassdata, + V.operands[0], V.operands[1]); + llvm_unreachable("Invalid ConstantExpr!"); + return 0; + } +}; + +template<> +struct ConstantKeyData<ConstantExpr> { + typedef ExprMapKeyType ValType; + static ValType getValType(ConstantExpr *CE) { + std::vector<Constant*> Operands; + Operands.reserve(CE->getNumOperands()); + for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) + Operands.push_back(cast<Constant>(CE->getOperand(i))); + return ExprMapKeyType(CE->getOpcode(), Operands, + CE->isCompare() ? CE->getPredicate() : 0, + CE->getRawSubclassOptionalData(), + CE->hasIndices() ? + CE->getIndices() : SmallVector<unsigned, 4>()); + } +}; + +// ConstantAggregateZero does not take extra "value" argument... +template<class ValType> +struct ConstantCreator<ConstantAggregateZero, Type, ValType> { + static ConstantAggregateZero *create(const Type *Ty, const ValType &V){ + return new ConstantAggregateZero(Ty); + } +}; + +template<> +struct ConstantKeyData<ConstantVector> { + typedef std::vector<Constant*> ValType; + static ValType getValType(ConstantVector *CP) { + std::vector<Constant*> Elements; + Elements.reserve(CP->getNumOperands()); + for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) + Elements.push_back(CP->getOperand(i)); + return Elements; + } +}; + +template<> +struct ConstantKeyData<ConstantAggregateZero> { + typedef char ValType; + static ValType getValType(ConstantAggregateZero *C) { + return 0; + } +}; + +template<> +struct ConstantKeyData<ConstantArray> { + typedef std::vector<Constant*> ValType; + static ValType getValType(ConstantArray *CA) { + std::vector<Constant*> Elements; + Elements.reserve(CA->getNumOperands()); + for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) + Elements.push_back(cast<Constant>(CA->getOperand(i))); + return Elements; + } +}; + +template<> +struct ConstantKeyData<ConstantStruct> { + typedef std::vector<Constant*> ValType; + static ValType getValType(ConstantStruct *CS) { + std::vector<Constant*> Elements; + Elements.reserve(CS->getNumOperands()); + for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) + Elements.push_back(cast<Constant>(CS->getOperand(i))); + return Elements; + } +}; + +// ConstantPointerNull does not take extra "value" argument... +template<class ValType> +struct ConstantCreator<ConstantPointerNull, PointerType, ValType> { + static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){ + return new ConstantPointerNull(Ty); + } +}; + +template<> +struct ConstantKeyData<ConstantPointerNull> { + typedef char ValType; + static ValType getValType(ConstantPointerNull *C) { + return 0; + } +}; + +// UndefValue does not take extra "value" argument... +template<class ValType> +struct ConstantCreator<UndefValue, Type, ValType> { + static UndefValue *create(const Type *Ty, const ValType &V) { + return new UndefValue(Ty); + } +}; + +template<> +struct ConstantKeyData<UndefValue> { + typedef char ValType; + static ValType getValType(UndefValue *C) { + return 0; + } +}; + +template<> +struct ConstantCreator<InlineAsm, PointerType, InlineAsmKeyType> { + static InlineAsm *create(const PointerType *Ty, const InlineAsmKeyType &Key) { + return new InlineAsm(Ty, Key.asm_string, Key.constraints, + Key.has_side_effects, Key.is_align_stack); + } +}; + +template<> +struct ConstantKeyData<InlineAsm> { + typedef InlineAsmKeyType ValType; + static ValType getValType(InlineAsm *Asm) { + return InlineAsmKeyType(Asm->getAsmString(), Asm->getConstraintString(), + Asm->hasSideEffects(), Asm->isAlignStack()); + } +}; + +template<class ValType, class TypeClass, class ConstantClass, + bool HasLargeKey = false /*true for arrays and structs*/ > +class ConstantUniqueMap : public AbstractTypeUser { +public: + typedef std::pair<const TypeClass*, ValType> MapKey; + typedef std::map<MapKey, ConstantClass *> MapTy; + typedef std::map<ConstantClass *, typename MapTy::iterator> InverseMapTy; + typedef std::map<const DerivedType*, typename MapTy::iterator> + AbstractTypeMapTy; +private: + /// Map - This is the main map from the element descriptor to the Constants. + /// This is the primary way we avoid creating two of the same shape + /// constant. + MapTy Map; + + /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping + /// from the constants to their element in Map. This is important for + /// removal of constants from the array, which would otherwise have to scan + /// through the map with very large keys. + InverseMapTy InverseMap; + + /// AbstractTypeMap - Map for abstract type constants. + /// + AbstractTypeMapTy AbstractTypeMap; + +public: + typename MapTy::iterator map_begin() { return Map.begin(); } + typename MapTy::iterator map_end() { return Map.end(); } + + void freeConstants() { + for (typename MapTy::iterator I=Map.begin(), E=Map.end(); + I != E; ++I) { + // Asserts that use_empty(). + delete I->second; + } + } + + /// InsertOrGetItem - Return an iterator for the specified element. + /// If the element exists in the map, the returned iterator points to the + /// entry and Exists=true. If not, the iterator points to the newly + /// inserted entry and returns Exists=false. Newly inserted entries have + /// I->second == 0, and should be filled in. + typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, ConstantClass *> + &InsertVal, + bool &Exists) { + std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal); + Exists = !IP.second; + return IP.first; + } + +private: + typename MapTy::iterator FindExistingElement(ConstantClass *CP) { + if (HasLargeKey) { + typename InverseMapTy::iterator IMI = InverseMap.find(CP); + assert(IMI != InverseMap.end() && IMI->second != Map.end() && + IMI->second->second == CP && + "InverseMap corrupt!"); + return IMI->second; + } + + typename MapTy::iterator I = + Map.find(MapKey(static_cast<const TypeClass*>(CP->getRawType()), + ConstantKeyData<ConstantClass>::getValType(CP))); + if (I == Map.end() || I->second != CP) { + // FIXME: This should not use a linear scan. If this gets to be a + // performance problem, someone should look at this. + for (I = Map.begin(); I != Map.end() && I->second != CP; ++I) + /* empty */; + } + return I; + } + + void AddAbstractTypeUser(const Type *Ty, typename MapTy::iterator I) { + // If the type of the constant is abstract, make sure that an entry + // exists for it in the AbstractTypeMap. + if (Ty->isAbstract()) { + const DerivedType *DTy = static_cast<const DerivedType *>(Ty); + typename AbstractTypeMapTy::iterator TI = AbstractTypeMap.find(DTy); + + if (TI == AbstractTypeMap.end()) { + // Add ourselves to the ATU list of the type. + cast<DerivedType>(DTy)->addAbstractTypeUser(this); + + AbstractTypeMap.insert(TI, std::make_pair(DTy, I)); + } + } + } + + ConstantClass* Create(const TypeClass *Ty, const ValType &V, + typename MapTy::iterator I) { + ConstantClass* Result = + ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V); + + assert(Result->getType() == Ty && "Type specified is not correct!"); + I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result)); + + if (HasLargeKey) // Remember the reverse mapping if needed. + InverseMap.insert(std::make_pair(Result, I)); + + AddAbstractTypeUser(Ty, I); + + return Result; + } +public: + + /// getOrCreate - Return the specified constant from the map, creating it if + /// necessary. + ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) { + MapKey Lookup(Ty, V); + ConstantClass* Result = 0; + + typename MapTy::iterator I = Map.find(Lookup); + // Is it in the map? + if (I != Map.end()) + Result = I->second; + + if (!Result) { + // If no preexisting value, create one now... + Result = Create(Ty, V, I); + } + + return Result; + } + + void UpdateAbstractTypeMap(const DerivedType *Ty, + typename MapTy::iterator I) { + assert(AbstractTypeMap.count(Ty) && + "Abstract type not in AbstractTypeMap?"); + typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty]; + if (ATMEntryIt == I) { + // Yes, we are removing the representative entry for this type. + // See if there are any other entries of the same type. + typename MapTy::iterator TmpIt = ATMEntryIt; + + // First check the entry before this one... + if (TmpIt != Map.begin()) { + --TmpIt; + if (TmpIt->first.first != Ty) // Not the same type, move back... + ++TmpIt; + } + + // If we didn't find the same type, try to move forward... + if (TmpIt == ATMEntryIt) { + ++TmpIt; + if (TmpIt == Map.end() || TmpIt->first.first != Ty) + --TmpIt; // No entry afterwards with the same type + } + + // If there is another entry in the map of the same abstract type, + // update the AbstractTypeMap entry now. + if (TmpIt != ATMEntryIt) { + ATMEntryIt = TmpIt; + } else { + // Otherwise, we are removing the last instance of this type + // from the table. Remove from the ATM, and from user list. + cast<DerivedType>(Ty)->removeAbstractTypeUser(this); + AbstractTypeMap.erase(Ty); + } + } + } + + void remove(ConstantClass *CP) { + typename MapTy::iterator I = FindExistingElement(CP); + assert(I != Map.end() && "Constant not found in constant table!"); + assert(I->second == CP && "Didn't find correct element?"); + + if (HasLargeKey) // Remember the reverse mapping if needed. + InverseMap.erase(CP); + + // Now that we found the entry, make sure this isn't the entry that + // the AbstractTypeMap points to. + const TypeClass *Ty = I->first.first; + if (Ty->isAbstract()) + UpdateAbstractTypeMap(static_cast<const DerivedType *>(Ty), I); + + Map.erase(I); + } + + /// MoveConstantToNewSlot - If we are about to change C to be the element + /// specified by I, update our internal data structures to reflect this + /// fact. + void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) { + // First, remove the old location of the specified constant in the map. + typename MapTy::iterator OldI = FindExistingElement(C); + assert(OldI != Map.end() && "Constant not found in constant table!"); + assert(OldI->second == C && "Didn't find correct element?"); + + // If this constant is the representative element for its abstract type, + // update the AbstractTypeMap so that the representative element is I. + // + // This must use getRawType() because if the type is under refinement, we + // will get the refineAbstractType callback below, and we don't want to + // kick union find in on the constant. + if (C->getRawType()->isAbstract()) { + typename AbstractTypeMapTy::iterator ATI = + AbstractTypeMap.find(cast<DerivedType>(C->getRawType())); + assert(ATI != AbstractTypeMap.end() && + "Abstract type not in AbstractTypeMap?"); + if (ATI->second == OldI) + ATI->second = I; + } + + // Remove the old entry from the map. + Map.erase(OldI); + + // Update the inverse map so that we know that this constant is now + // located at descriptor I. + if (HasLargeKey) { + assert(I->second == C && "Bad inversemap entry!"); + InverseMap[C] = I; + } + } + + void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) { + typename AbstractTypeMapTy::iterator I = AbstractTypeMap.find(OldTy); + + assert(I != AbstractTypeMap.end() && + "Abstract type not in AbstractTypeMap?"); + + // Convert a constant at a time until the last one is gone. The last one + // leaving will remove() itself, causing the AbstractTypeMapEntry to be + // eliminated eventually. + do { + ConstantClass *C = I->second->second; + MapKey Key(cast<TypeClass>(NewTy), + ConstantKeyData<ConstantClass>::getValType(C)); + + std::pair<typename MapTy::iterator, bool> IP = + Map.insert(std::make_pair(Key, C)); + if (IP.second) { + // The map didn't previously have an appropriate constant in the + // new type. + + // Remove the old entry. + typename MapTy::iterator OldI = + Map.find(MapKey(cast<TypeClass>(OldTy), IP.first->first.second)); + assert(OldI != Map.end() && "Constant not in map!"); + UpdateAbstractTypeMap(OldTy, OldI); + Map.erase(OldI); + + // Set the constant's type. This is done in place! + setType(C, NewTy); + + // Update the inverse map so that we know that this constant is now + // located at descriptor I. + if (HasLargeKey) + InverseMap[C] = IP.first; + + AddAbstractTypeUser(NewTy, IP.first); + } else { + // The map already had an appropriate constant in the new type, so + // there's no longer a need for the old constant. + C->uncheckedReplaceAllUsesWith(IP.first->second); + C->destroyConstant(); // This constant is now dead, destroy it. + } + I = AbstractTypeMap.find(OldTy); + } while (I != AbstractTypeMap.end()); + } + + // If the type became concrete without being refined to any other existing + // type, we just remove ourselves from the ATU list. + void typeBecameConcrete(const DerivedType *AbsTy) { + AbsTy->removeAbstractTypeUser(this); + } + + void dump() const { + DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n"); + } +}; + +} + +#endif diff --git a/contrib/llvm/lib/VMCore/Core.cpp b/contrib/llvm/lib/VMCore/Core.cpp new file mode 100644 index 0000000..5aad19d --- /dev/null +++ b/contrib/llvm/lib/VMCore/Core.cpp @@ -0,0 +1,2249 @@ +//===-- Core.cpp ----------------------------------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the C bindings for libLLVMCore.a, which implements +// the LLVM intermediate representation. +// +//===----------------------------------------------------------------------===// + +#include "llvm-c/Core.h" +#include "llvm/Bitcode/ReaderWriter.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/GlobalVariable.h" +#include "llvm/GlobalAlias.h" +#include "llvm/LLVMContext.h" +#include "llvm/TypeSymbolTable.h" +#include "llvm/InlineAsm.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/PassManager.h" +#include "llvm/Support/CallSite.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MemoryBuffer.h" +#include "llvm/Support/raw_ostream.h" +#include <cassert> +#include <cstdlib> +#include <cstring> + +using namespace llvm; + + +/*===-- Error handling ----------------------------------------------------===*/ + +void LLVMDisposeMessage(char *Message) { + free(Message); +} + + +/*===-- Operations on contexts --------------------------------------------===*/ + +LLVMContextRef LLVMContextCreate() { + return wrap(new LLVMContext()); +} + +LLVMContextRef LLVMGetGlobalContext() { + return wrap(&getGlobalContext()); +} + +void LLVMContextDispose(LLVMContextRef C) { + delete unwrap(C); +} + +unsigned LLVMGetMDKindIDInContext(LLVMContextRef C, const char* Name, + unsigned SLen) { + return unwrap(C)->getMDKindID(StringRef(Name, SLen)); +} + +unsigned LLVMGetMDKindID(const char* Name, unsigned SLen) { + return LLVMGetMDKindIDInContext(LLVMGetGlobalContext(), Name, SLen); +} + + +/*===-- Operations on modules ---------------------------------------------===*/ + +LLVMModuleRef LLVMModuleCreateWithName(const char *ModuleID) { + return wrap(new Module(ModuleID, getGlobalContext())); +} + +LLVMModuleRef LLVMModuleCreateWithNameInContext(const char *ModuleID, + LLVMContextRef C) { + return wrap(new Module(ModuleID, *unwrap(C))); +} + +void LLVMDisposeModule(LLVMModuleRef M) { + delete unwrap(M); +} + +/*--.. Data layout .........................................................--*/ +const char * LLVMGetDataLayout(LLVMModuleRef M) { + return unwrap(M)->getDataLayout().c_str(); +} + +void LLVMSetDataLayout(LLVMModuleRef M, const char *Triple) { + unwrap(M)->setDataLayout(Triple); +} + +/*--.. Target triple .......................................................--*/ +const char * LLVMGetTarget(LLVMModuleRef M) { + return unwrap(M)->getTargetTriple().c_str(); +} + +void LLVMSetTarget(LLVMModuleRef M, const char *Triple) { + unwrap(M)->setTargetTriple(Triple); +} + +/*--.. Type names ..........................................................--*/ +LLVMBool LLVMAddTypeName(LLVMModuleRef M, const char *Name, LLVMTypeRef Ty) { + return unwrap(M)->addTypeName(Name, unwrap(Ty)); +} + +void LLVMDeleteTypeName(LLVMModuleRef M, const char *Name) { + TypeSymbolTable &TST = unwrap(M)->getTypeSymbolTable(); + + TypeSymbolTable::iterator I = TST.find(Name); + if (I != TST.end()) + TST.remove(I); +} + +LLVMTypeRef LLVMGetTypeByName(LLVMModuleRef M, const char *Name) { + return wrap(unwrap(M)->getTypeByName(Name)); +} + +void LLVMDumpModule(LLVMModuleRef M) { + unwrap(M)->dump(); +} + +/*--.. Operations on inline assembler ......................................--*/ +void LLVMSetModuleInlineAsm(LLVMModuleRef M, const char *Asm) { + unwrap(M)->setModuleInlineAsm(StringRef(Asm)); +} + + +/*===-- Operations on types -----------------------------------------------===*/ + +/*--.. Operations on all types (mostly) ....................................--*/ + +LLVMTypeKind LLVMGetTypeKind(LLVMTypeRef Ty) { + switch (unwrap(Ty)->getTypeID()) { + default: + assert(false && "Unhandled TypeID."); + case Type::VoidTyID: + return LLVMVoidTypeKind; + case Type::FloatTyID: + return LLVMFloatTypeKind; + case Type::DoubleTyID: + return LLVMDoubleTypeKind; + case Type::X86_FP80TyID: + return LLVMX86_FP80TypeKind; + case Type::FP128TyID: + return LLVMFP128TypeKind; + case Type::PPC_FP128TyID: + return LLVMPPC_FP128TypeKind; + case Type::LabelTyID: + return LLVMLabelTypeKind; + case Type::MetadataTyID: + return LLVMMetadataTypeKind; + case Type::IntegerTyID: + return LLVMIntegerTypeKind; + case Type::FunctionTyID: + return LLVMFunctionTypeKind; + case Type::StructTyID: + return LLVMStructTypeKind; + case Type::ArrayTyID: + return LLVMArrayTypeKind; + case Type::PointerTyID: + return LLVMPointerTypeKind; + case Type::OpaqueTyID: + return LLVMOpaqueTypeKind; + case Type::VectorTyID: + return LLVMVectorTypeKind; + } +} + +LLVMContextRef LLVMGetTypeContext(LLVMTypeRef Ty) { + return wrap(&unwrap(Ty)->getContext()); +} + +/*--.. Operations on integer types .........................................--*/ + +LLVMTypeRef LLVMInt1TypeInContext(LLVMContextRef C) { + return (LLVMTypeRef) Type::getInt1Ty(*unwrap(C)); +} +LLVMTypeRef LLVMInt8TypeInContext(LLVMContextRef C) { + return (LLVMTypeRef) Type::getInt8Ty(*unwrap(C)); +} +LLVMTypeRef LLVMInt16TypeInContext(LLVMContextRef C) { + return (LLVMTypeRef) Type::getInt16Ty(*unwrap(C)); +} +LLVMTypeRef LLVMInt32TypeInContext(LLVMContextRef C) { + return (LLVMTypeRef) Type::getInt32Ty(*unwrap(C)); +} +LLVMTypeRef LLVMInt64TypeInContext(LLVMContextRef C) { + return (LLVMTypeRef) Type::getInt64Ty(*unwrap(C)); +} +LLVMTypeRef LLVMIntTypeInContext(LLVMContextRef C, unsigned NumBits) { + return wrap(IntegerType::get(*unwrap(C), NumBits)); +} + +LLVMTypeRef LLVMInt1Type(void) { + return LLVMInt1TypeInContext(LLVMGetGlobalContext()); +} +LLVMTypeRef LLVMInt8Type(void) { + return LLVMInt8TypeInContext(LLVMGetGlobalContext()); +} +LLVMTypeRef LLVMInt16Type(void) { + return LLVMInt16TypeInContext(LLVMGetGlobalContext()); +} +LLVMTypeRef LLVMInt32Type(void) { + return LLVMInt32TypeInContext(LLVMGetGlobalContext()); +} +LLVMTypeRef LLVMInt64Type(void) { + return LLVMInt64TypeInContext(LLVMGetGlobalContext()); +} +LLVMTypeRef LLVMIntType(unsigned NumBits) { + return LLVMIntTypeInContext(LLVMGetGlobalContext(), NumBits); +} + +unsigned LLVMGetIntTypeWidth(LLVMTypeRef IntegerTy) { + return unwrap<IntegerType>(IntegerTy)->getBitWidth(); +} + +/*--.. Operations on real types ............................................--*/ + +LLVMTypeRef LLVMFloatTypeInContext(LLVMContextRef C) { + return (LLVMTypeRef) Type::getFloatTy(*unwrap(C)); +} +LLVMTypeRef LLVMDoubleTypeInContext(LLVMContextRef C) { + return (LLVMTypeRef) Type::getDoubleTy(*unwrap(C)); +} +LLVMTypeRef LLVMX86FP80TypeInContext(LLVMContextRef C) { + return (LLVMTypeRef) Type::getX86_FP80Ty(*unwrap(C)); +} +LLVMTypeRef LLVMFP128TypeInContext(LLVMContextRef C) { + return (LLVMTypeRef) Type::getFP128Ty(*unwrap(C)); +} +LLVMTypeRef LLVMPPCFP128TypeInContext(LLVMContextRef C) { + return (LLVMTypeRef) Type::getPPC_FP128Ty(*unwrap(C)); +} + +LLVMTypeRef LLVMFloatType(void) { + return LLVMFloatTypeInContext(LLVMGetGlobalContext()); +} +LLVMTypeRef LLVMDoubleType(void) { + return LLVMDoubleTypeInContext(LLVMGetGlobalContext()); +} +LLVMTypeRef LLVMX86FP80Type(void) { + return LLVMX86FP80TypeInContext(LLVMGetGlobalContext()); +} +LLVMTypeRef LLVMFP128Type(void) { + return LLVMFP128TypeInContext(LLVMGetGlobalContext()); +} +LLVMTypeRef LLVMPPCFP128Type(void) { + return LLVMPPCFP128TypeInContext(LLVMGetGlobalContext()); +} + +/*--.. Operations on function types ........................................--*/ + +LLVMTypeRef LLVMFunctionType(LLVMTypeRef ReturnType, + LLVMTypeRef *ParamTypes, unsigned ParamCount, + LLVMBool IsVarArg) { + std::vector<const Type*> Tys; + for (LLVMTypeRef *I = ParamTypes, *E = ParamTypes + ParamCount; I != E; ++I) + Tys.push_back(unwrap(*I)); + + return wrap(FunctionType::get(unwrap(ReturnType), Tys, IsVarArg != 0)); +} + +LLVMBool LLVMIsFunctionVarArg(LLVMTypeRef FunctionTy) { + return unwrap<FunctionType>(FunctionTy)->isVarArg(); +} + +LLVMTypeRef LLVMGetReturnType(LLVMTypeRef FunctionTy) { + return wrap(unwrap<FunctionType>(FunctionTy)->getReturnType()); +} + +unsigned LLVMCountParamTypes(LLVMTypeRef FunctionTy) { + return unwrap<FunctionType>(FunctionTy)->getNumParams(); +} + +void LLVMGetParamTypes(LLVMTypeRef FunctionTy, LLVMTypeRef *Dest) { + FunctionType *Ty = unwrap<FunctionType>(FunctionTy); + for (FunctionType::param_iterator I = Ty->param_begin(), + E = Ty->param_end(); I != E; ++I) + *Dest++ = wrap(*I); +} + +/*--.. Operations on struct types ..........................................--*/ + +LLVMTypeRef LLVMStructTypeInContext(LLVMContextRef C, LLVMTypeRef *ElementTypes, + unsigned ElementCount, LLVMBool Packed) { + std::vector<const Type*> Tys; + for (LLVMTypeRef *I = ElementTypes, + *E = ElementTypes + ElementCount; I != E; ++I) + Tys.push_back(unwrap(*I)); + + return wrap(StructType::get(*unwrap(C), Tys, Packed != 0)); +} + +LLVMTypeRef LLVMStructType(LLVMTypeRef *ElementTypes, + unsigned ElementCount, LLVMBool Packed) { + return LLVMStructTypeInContext(LLVMGetGlobalContext(), ElementTypes, + ElementCount, Packed); +} + + +unsigned LLVMCountStructElementTypes(LLVMTypeRef StructTy) { + return unwrap<StructType>(StructTy)->getNumElements(); +} + +void LLVMGetStructElementTypes(LLVMTypeRef StructTy, LLVMTypeRef *Dest) { + StructType *Ty = unwrap<StructType>(StructTy); + for (FunctionType::param_iterator I = Ty->element_begin(), + E = Ty->element_end(); I != E; ++I) + *Dest++ = wrap(*I); +} + +LLVMBool LLVMIsPackedStruct(LLVMTypeRef StructTy) { + return unwrap<StructType>(StructTy)->isPacked(); +} + +/*--.. Operations on array, pointer, and vector types (sequence types) .....--*/ + +LLVMTypeRef LLVMArrayType(LLVMTypeRef ElementType, unsigned ElementCount) { + return wrap(ArrayType::get(unwrap(ElementType), ElementCount)); +} + +LLVMTypeRef LLVMPointerType(LLVMTypeRef ElementType, unsigned AddressSpace) { + return wrap(PointerType::get(unwrap(ElementType), AddressSpace)); +} + +LLVMTypeRef LLVMVectorType(LLVMTypeRef ElementType, unsigned ElementCount) { + return wrap(VectorType::get(unwrap(ElementType), ElementCount)); +} + +LLVMTypeRef LLVMGetElementType(LLVMTypeRef Ty) { + return wrap(unwrap<SequentialType>(Ty)->getElementType()); +} + +unsigned LLVMGetArrayLength(LLVMTypeRef ArrayTy) { + return unwrap<ArrayType>(ArrayTy)->getNumElements(); +} + +unsigned LLVMGetPointerAddressSpace(LLVMTypeRef PointerTy) { + return unwrap<PointerType>(PointerTy)->getAddressSpace(); +} + +unsigned LLVMGetVectorSize(LLVMTypeRef VectorTy) { + return unwrap<VectorType>(VectorTy)->getNumElements(); +} + +/*--.. Operations on other types ...........................................--*/ + +LLVMTypeRef LLVMVoidTypeInContext(LLVMContextRef C) { + return wrap(Type::getVoidTy(*unwrap(C))); +} +LLVMTypeRef LLVMLabelTypeInContext(LLVMContextRef C) { + return wrap(Type::getLabelTy(*unwrap(C))); +} +LLVMTypeRef LLVMOpaqueTypeInContext(LLVMContextRef C) { + return wrap(OpaqueType::get(*unwrap(C))); +} + +LLVMTypeRef LLVMVoidType(void) { + return LLVMVoidTypeInContext(LLVMGetGlobalContext()); +} +LLVMTypeRef LLVMLabelType(void) { + return LLVMLabelTypeInContext(LLVMGetGlobalContext()); +} +LLVMTypeRef LLVMOpaqueType(void) { + return LLVMOpaqueTypeInContext(LLVMGetGlobalContext()); +} + +/*--.. Operations on type handles ..........................................--*/ + +LLVMTypeHandleRef LLVMCreateTypeHandle(LLVMTypeRef PotentiallyAbstractTy) { + return wrap(new PATypeHolder(unwrap(PotentiallyAbstractTy))); +} + +void LLVMDisposeTypeHandle(LLVMTypeHandleRef TypeHandle) { + delete unwrap(TypeHandle); +} + +LLVMTypeRef LLVMResolveTypeHandle(LLVMTypeHandleRef TypeHandle) { + return wrap(unwrap(TypeHandle)->get()); +} + +void LLVMRefineType(LLVMTypeRef AbstractTy, LLVMTypeRef ConcreteTy) { + unwrap<DerivedType>(AbstractTy)->refineAbstractTypeTo(unwrap(ConcreteTy)); +} + + +/*===-- Operations on values ----------------------------------------------===*/ + +/*--.. Operations on all values ............................................--*/ + +LLVMTypeRef LLVMTypeOf(LLVMValueRef Val) { + return wrap(unwrap(Val)->getType()); +} + +const char *LLVMGetValueName(LLVMValueRef Val) { + return unwrap(Val)->getName().data(); +} + +void LLVMSetValueName(LLVMValueRef Val, const char *Name) { + unwrap(Val)->setName(Name); +} + +void LLVMDumpValue(LLVMValueRef Val) { + unwrap(Val)->dump(); +} + +void LLVMReplaceAllUsesWith(LLVMValueRef OldVal, LLVMValueRef NewVal) { + unwrap(OldVal)->replaceAllUsesWith(unwrap(NewVal)); +} + +int LLVMHasMetadata(LLVMValueRef Inst) { + return unwrap<Instruction>(Inst)->hasMetadata(); +} + +LLVMValueRef LLVMGetMetadata(LLVMValueRef Inst, unsigned KindID) { + return wrap(unwrap<Instruction>(Inst)->getMetadata(KindID)); +} + +void LLVMSetMetadata(LLVMValueRef Inst, unsigned KindID, LLVMValueRef MD) { + unwrap<Instruction>(Inst)->setMetadata(KindID, MD? unwrap<MDNode>(MD) : NULL); +} + +/*--.. Conversion functions ................................................--*/ + +#define LLVM_DEFINE_VALUE_CAST(name) \ + LLVMValueRef LLVMIsA##name(LLVMValueRef Val) { \ + return wrap(static_cast<Value*>(dyn_cast_or_null<name>(unwrap(Val)))); \ + } + +LLVM_FOR_EACH_VALUE_SUBCLASS(LLVM_DEFINE_VALUE_CAST) + +/*--.. Operations on Uses ..................................................--*/ +LLVMUseRef LLVMGetFirstUse(LLVMValueRef Val) { + Value *V = unwrap(Val); + Value::use_iterator I = V->use_begin(); + if (I == V->use_end()) + return 0; + return wrap(&(I.getUse())); +} + +LLVMUseRef LLVMGetNextUse(LLVMUseRef U) { + Use *Next = unwrap(U)->getNext(); + if (Next) + return wrap(Next); + return 0; +} + +LLVMValueRef LLVMGetUser(LLVMUseRef U) { + return wrap(unwrap(U)->getUser()); +} + +LLVMValueRef LLVMGetUsedValue(LLVMUseRef U) { + return wrap(unwrap(U)->get()); +} + +/*--.. Operations on Users .................................................--*/ +LLVMValueRef LLVMGetOperand(LLVMValueRef Val, unsigned Index) { + return wrap(unwrap<User>(Val)->getOperand(Index)); +} + +void LLVMSetOperand(LLVMValueRef Val, unsigned Index, LLVMValueRef Op) { + unwrap<User>(Val)->setOperand(Index, unwrap(Op)); +} + +int LLVMGetNumOperands(LLVMValueRef Val) { + return unwrap<User>(Val)->getNumOperands(); +} + +/*--.. Operations on constants of any type .................................--*/ + +LLVMValueRef LLVMConstNull(LLVMTypeRef Ty) { + return wrap(Constant::getNullValue(unwrap(Ty))); +} + +LLVMValueRef LLVMConstAllOnes(LLVMTypeRef Ty) { + return wrap(Constant::getAllOnesValue(unwrap(Ty))); +} + +LLVMValueRef LLVMGetUndef(LLVMTypeRef Ty) { + return wrap(UndefValue::get(unwrap(Ty))); +} + +LLVMBool LLVMIsConstant(LLVMValueRef Ty) { + return isa<Constant>(unwrap(Ty)); +} + +LLVMBool LLVMIsNull(LLVMValueRef Val) { + if (Constant *C = dyn_cast<Constant>(unwrap(Val))) + return C->isNullValue(); + return false; +} + +LLVMBool LLVMIsUndef(LLVMValueRef Val) { + return isa<UndefValue>(unwrap(Val)); +} + +LLVMValueRef LLVMConstPointerNull(LLVMTypeRef Ty) { + return + wrap(ConstantPointerNull::get(unwrap<PointerType>(Ty))); +} + +/*--.. Operations on metadata nodes ........................................--*/ + +LLVMValueRef LLVMMDStringInContext(LLVMContextRef C, const char *Str, + unsigned SLen) { + return wrap(MDString::get(*unwrap(C), StringRef(Str, SLen))); +} + +LLVMValueRef LLVMMDString(const char *Str, unsigned SLen) { + return LLVMMDStringInContext(LLVMGetGlobalContext(), Str, SLen); +} + +LLVMValueRef LLVMMDNodeInContext(LLVMContextRef C, LLVMValueRef *Vals, + unsigned Count) { + return wrap(MDNode::get(*unwrap(C), unwrap<Value>(Vals, Count), Count)); +} + +LLVMValueRef LLVMMDNode(LLVMValueRef *Vals, unsigned Count) { + return LLVMMDNodeInContext(LLVMGetGlobalContext(), Vals, Count); +} + +/*--.. Operations on scalar constants ......................................--*/ + +LLVMValueRef LLVMConstInt(LLVMTypeRef IntTy, unsigned long long N, + LLVMBool SignExtend) { + return wrap(ConstantInt::get(unwrap<IntegerType>(IntTy), N, SignExtend != 0)); +} + +LLVMValueRef LLVMConstIntOfString(LLVMTypeRef IntTy, const char Str[], + uint8_t Radix) { + return wrap(ConstantInt::get(unwrap<IntegerType>(IntTy), StringRef(Str), + Radix)); +} + +LLVMValueRef LLVMConstIntOfStringAndSize(LLVMTypeRef IntTy, const char Str[], + unsigned SLen, uint8_t Radix) { + return wrap(ConstantInt::get(unwrap<IntegerType>(IntTy), StringRef(Str, SLen), + Radix)); +} + +LLVMValueRef LLVMConstReal(LLVMTypeRef RealTy, double N) { + return wrap(ConstantFP::get(unwrap(RealTy), N)); +} + +LLVMValueRef LLVMConstRealOfString(LLVMTypeRef RealTy, const char *Text) { + return wrap(ConstantFP::get(unwrap(RealTy), StringRef(Text))); +} + +LLVMValueRef LLVMConstRealOfStringAndSize(LLVMTypeRef RealTy, const char Str[], + unsigned SLen) { + return wrap(ConstantFP::get(unwrap(RealTy), StringRef(Str, SLen))); +} + +unsigned long long LLVMConstIntGetZExtValue(LLVMValueRef ConstantVal) { + return unwrap<ConstantInt>(ConstantVal)->getZExtValue(); +} + +long long LLVMConstIntGetSExtValue(LLVMValueRef ConstantVal) { + return unwrap<ConstantInt>(ConstantVal)->getSExtValue(); +} + +/*--.. Operations on composite constants ...................................--*/ + +LLVMValueRef LLVMConstStringInContext(LLVMContextRef C, const char *Str, + unsigned Length, + LLVMBool DontNullTerminate) { + /* Inverted the sense of AddNull because ', 0)' is a + better mnemonic for null termination than ', 1)'. */ + return wrap(ConstantArray::get(*unwrap(C), std::string(Str, Length), + DontNullTerminate == 0)); +} +LLVMValueRef LLVMConstStructInContext(LLVMContextRef C, + LLVMValueRef *ConstantVals, + unsigned Count, LLVMBool Packed) { + return wrap(ConstantStruct::get(*unwrap(C), + unwrap<Constant>(ConstantVals, Count), + Count, Packed != 0)); +} + +LLVMValueRef LLVMConstString(const char *Str, unsigned Length, + LLVMBool DontNullTerminate) { + return LLVMConstStringInContext(LLVMGetGlobalContext(), Str, Length, + DontNullTerminate); +} +LLVMValueRef LLVMConstArray(LLVMTypeRef ElementTy, + LLVMValueRef *ConstantVals, unsigned Length) { + return wrap(ConstantArray::get(ArrayType::get(unwrap(ElementTy), Length), + unwrap<Constant>(ConstantVals, Length), + Length)); +} +LLVMValueRef LLVMConstStruct(LLVMValueRef *ConstantVals, unsigned Count, + LLVMBool Packed) { + return LLVMConstStructInContext(LLVMGetGlobalContext(), ConstantVals, Count, + Packed); +} +LLVMValueRef LLVMConstVector(LLVMValueRef *ScalarConstantVals, unsigned Size) { + return wrap(ConstantVector::get( + unwrap<Constant>(ScalarConstantVals, Size), Size)); +} +/*--.. Constant expressions ................................................--*/ + +LLVMOpcode LLVMGetConstOpcode(LLVMValueRef ConstantVal) { + return (LLVMOpcode)unwrap<ConstantExpr>(ConstantVal)->getOpcode(); +} + +LLVMValueRef LLVMAlignOf(LLVMTypeRef Ty) { + return wrap(ConstantExpr::getAlignOf(unwrap(Ty))); +} + +LLVMValueRef LLVMSizeOf(LLVMTypeRef Ty) { + return wrap(ConstantExpr::getSizeOf(unwrap(Ty))); +} + +LLVMValueRef LLVMConstNeg(LLVMValueRef ConstantVal) { + return wrap(ConstantExpr::getNeg( + unwrap<Constant>(ConstantVal))); +} + +LLVMValueRef LLVMConstNSWNeg(LLVMValueRef ConstantVal) { + return wrap(ConstantExpr::getNSWNeg( + unwrap<Constant>(ConstantVal))); +} + +LLVMValueRef LLVMConstNUWNeg(LLVMValueRef ConstantVal) { + return wrap(ConstantExpr::getNUWNeg( + unwrap<Constant>(ConstantVal))); +} + + +LLVMValueRef LLVMConstFNeg(LLVMValueRef ConstantVal) { + return wrap(ConstantExpr::getFNeg( + unwrap<Constant>(ConstantVal))); +} + +LLVMValueRef LLVMConstNot(LLVMValueRef ConstantVal) { + return wrap(ConstantExpr::getNot( + unwrap<Constant>(ConstantVal))); +} + +LLVMValueRef LLVMConstAdd(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) { + return wrap(ConstantExpr::getAdd( + unwrap<Constant>(LHSConstant), + unwrap<Constant>(RHSConstant))); +} + +LLVMValueRef LLVMConstNSWAdd(LLVMValueRef LHSConstant, + LLVMValueRef RHSConstant) { + return wrap(ConstantExpr::getNSWAdd( + unwrap<Constant>(LHSConstant), + unwrap<Constant>(RHSConstant))); +} + +LLVMValueRef LLVMConstNUWAdd(LLVMValueRef LHSConstant, + LLVMValueRef RHSConstant) { + return wrap(ConstantExpr::getNUWAdd( + unwrap<Constant>(LHSConstant), + unwrap<Constant>(RHSConstant))); +} + +LLVMValueRef LLVMConstFAdd(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) { + return wrap(ConstantExpr::getFAdd( + unwrap<Constant>(LHSConstant), + unwrap<Constant>(RHSConstant))); +} + +LLVMValueRef LLVMConstSub(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) { + return wrap(ConstantExpr::getSub( + unwrap<Constant>(LHSConstant), + unwrap<Constant>(RHSConstant))); +} + +LLVMValueRef LLVMConstNSWSub(LLVMValueRef LHSConstant, + LLVMValueRef RHSConstant) { + return wrap(ConstantExpr::getNSWSub( + unwrap<Constant>(LHSConstant), + unwrap<Constant>(RHSConstant))); +} + +LLVMValueRef LLVMConstNUWSub(LLVMValueRef LHSConstant, + LLVMValueRef RHSConstant) { + return wrap(ConstantExpr::getNUWSub( + unwrap<Constant>(LHSConstant), + unwrap<Constant>(RHSConstant))); +} + +LLVMValueRef LLVMConstFSub(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) { + return wrap(ConstantExpr::getFSub(unwrap<Constant>(LHSConstant), + unwrap<Constant>(RHSConstant))); +} + +LLVMValueRef LLVMConstMul(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) { + return wrap(ConstantExpr::getMul( + unwrap<Constant>(LHSConstant), + unwrap<Constant>(RHSConstant))); +} + +LLVMValueRef LLVMConstNSWMul(LLVMValueRef LHSConstant, + LLVMValueRef RHSConstant) { + return wrap(ConstantExpr::getNSWMul( + unwrap<Constant>(LHSConstant), + unwrap<Constant>(RHSConstant))); +} + +LLVMValueRef LLVMConstNUWMul(LLVMValueRef LHSConstant, + LLVMValueRef RHSConstant) { + return wrap(ConstantExpr::getNUWMul( + unwrap<Constant>(LHSConstant), + unwrap<Constant>(RHSConstant))); +} + +LLVMValueRef LLVMConstFMul(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) { + return wrap(ConstantExpr::getFMul( + unwrap<Constant>(LHSConstant), + unwrap<Constant>(RHSConstant))); +} + +LLVMValueRef LLVMConstUDiv(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) { + return wrap(ConstantExpr::getUDiv( + unwrap<Constant>(LHSConstant), + unwrap<Constant>(RHSConstant))); +} + +LLVMValueRef LLVMConstSDiv(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) { + return wrap(ConstantExpr::getSDiv( + unwrap<Constant>(LHSConstant), + unwrap<Constant>(RHSConstant))); +} + +LLVMValueRef LLVMConstExactSDiv(LLVMValueRef LHSConstant, + LLVMValueRef RHSConstant) { + return wrap(ConstantExpr::getExactSDiv( + unwrap<Constant>(LHSConstant), + unwrap<Constant>(RHSConstant))); +} + +LLVMValueRef LLVMConstFDiv(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) { + return wrap(ConstantExpr::getFDiv( + unwrap<Constant>(LHSConstant), + unwrap<Constant>(RHSConstant))); +} + +LLVMValueRef LLVMConstURem(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) { + return wrap(ConstantExpr::getURem( + unwrap<Constant>(LHSConstant), + unwrap<Constant>(RHSConstant))); +} + +LLVMValueRef LLVMConstSRem(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) { + return wrap(ConstantExpr::getSRem( + unwrap<Constant>(LHSConstant), + unwrap<Constant>(RHSConstant))); +} + +LLVMValueRef LLVMConstFRem(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) { + return wrap(ConstantExpr::getFRem( + unwrap<Constant>(LHSConstant), + unwrap<Constant>(RHSConstant))); +} + +LLVMValueRef LLVMConstAnd(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) { + return wrap(ConstantExpr::getAnd( + unwrap<Constant>(LHSConstant), + unwrap<Constant>(RHSConstant))); +} + +LLVMValueRef LLVMConstOr(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) { + return wrap(ConstantExpr::getOr( + unwrap<Constant>(LHSConstant), + unwrap<Constant>(RHSConstant))); +} + +LLVMValueRef LLVMConstXor(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) { + return wrap(ConstantExpr::getXor( + unwrap<Constant>(LHSConstant), + unwrap<Constant>(RHSConstant))); +} + +LLVMValueRef LLVMConstICmp(LLVMIntPredicate Predicate, + LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) { + return wrap(ConstantExpr::getICmp(Predicate, + unwrap<Constant>(LHSConstant), + unwrap<Constant>(RHSConstant))); +} + +LLVMValueRef LLVMConstFCmp(LLVMRealPredicate Predicate, + LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) { + return wrap(ConstantExpr::getFCmp(Predicate, + unwrap<Constant>(LHSConstant), + unwrap<Constant>(RHSConstant))); +} + +LLVMValueRef LLVMConstShl(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) { + return wrap(ConstantExpr::getShl( + unwrap<Constant>(LHSConstant), + unwrap<Constant>(RHSConstant))); +} + +LLVMValueRef LLVMConstLShr(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) { + return wrap(ConstantExpr::getLShr( + unwrap<Constant>(LHSConstant), + unwrap<Constant>(RHSConstant))); +} + +LLVMValueRef LLVMConstAShr(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) { + return wrap(ConstantExpr::getAShr( + unwrap<Constant>(LHSConstant), + unwrap<Constant>(RHSConstant))); +} + +LLVMValueRef LLVMConstGEP(LLVMValueRef ConstantVal, + LLVMValueRef *ConstantIndices, unsigned NumIndices) { + return wrap(ConstantExpr::getGetElementPtr( + unwrap<Constant>(ConstantVal), + unwrap<Constant>(ConstantIndices, + NumIndices), + NumIndices)); +} + +LLVMValueRef LLVMConstInBoundsGEP(LLVMValueRef ConstantVal, + LLVMValueRef *ConstantIndices, + unsigned NumIndices) { + Constant* Val = unwrap<Constant>(ConstantVal); + Constant** Idxs = unwrap<Constant>(ConstantIndices, NumIndices); + return wrap(ConstantExpr::getInBoundsGetElementPtr(Val, Idxs, NumIndices)); +} + +LLVMValueRef LLVMConstTrunc(LLVMValueRef ConstantVal, LLVMTypeRef ToType) { + return wrap(ConstantExpr::getTrunc( + unwrap<Constant>(ConstantVal), + unwrap(ToType))); +} + +LLVMValueRef LLVMConstSExt(LLVMValueRef ConstantVal, LLVMTypeRef ToType) { + return wrap(ConstantExpr::getSExt( + unwrap<Constant>(ConstantVal), + unwrap(ToType))); +} + +LLVMValueRef LLVMConstZExt(LLVMValueRef ConstantVal, LLVMTypeRef ToType) { + return wrap(ConstantExpr::getZExt( + unwrap<Constant>(ConstantVal), + unwrap(ToType))); +} + +LLVMValueRef LLVMConstFPTrunc(LLVMValueRef ConstantVal, LLVMTypeRef ToType) { + return wrap(ConstantExpr::getFPTrunc( + unwrap<Constant>(ConstantVal), + unwrap(ToType))); +} + +LLVMValueRef LLVMConstFPExt(LLVMValueRef ConstantVal, LLVMTypeRef ToType) { + return wrap(ConstantExpr::getFPExtend( + unwrap<Constant>(ConstantVal), + unwrap(ToType))); +} + +LLVMValueRef LLVMConstUIToFP(LLVMValueRef ConstantVal, LLVMTypeRef ToType) { + return wrap(ConstantExpr::getUIToFP( + unwrap<Constant>(ConstantVal), + unwrap(ToType))); +} + +LLVMValueRef LLVMConstSIToFP(LLVMValueRef ConstantVal, LLVMTypeRef ToType) { + return wrap(ConstantExpr::getSIToFP(unwrap<Constant>(ConstantVal), + unwrap(ToType))); +} + +LLVMValueRef LLVMConstFPToUI(LLVMValueRef ConstantVal, LLVMTypeRef ToType) { + return wrap(ConstantExpr::getFPToUI(unwrap<Constant>(ConstantVal), + unwrap(ToType))); +} + +LLVMValueRef LLVMConstFPToSI(LLVMValueRef ConstantVal, LLVMTypeRef ToType) { + return wrap(ConstantExpr::getFPToSI( + unwrap<Constant>(ConstantVal), + unwrap(ToType))); +} + +LLVMValueRef LLVMConstPtrToInt(LLVMValueRef ConstantVal, LLVMTypeRef ToType) { + return wrap(ConstantExpr::getPtrToInt( + unwrap<Constant>(ConstantVal), + unwrap(ToType))); +} + +LLVMValueRef LLVMConstIntToPtr(LLVMValueRef ConstantVal, LLVMTypeRef ToType) { + return wrap(ConstantExpr::getIntToPtr( + unwrap<Constant>(ConstantVal), + unwrap(ToType))); +} + +LLVMValueRef LLVMConstBitCast(LLVMValueRef ConstantVal, LLVMTypeRef ToType) { + return wrap(ConstantExpr::getBitCast( + unwrap<Constant>(ConstantVal), + unwrap(ToType))); +} + +LLVMValueRef LLVMConstZExtOrBitCast(LLVMValueRef ConstantVal, + LLVMTypeRef ToType) { + return wrap(ConstantExpr::getZExtOrBitCast( + unwrap<Constant>(ConstantVal), + unwrap(ToType))); +} + +LLVMValueRef LLVMConstSExtOrBitCast(LLVMValueRef ConstantVal, + LLVMTypeRef ToType) { + return wrap(ConstantExpr::getSExtOrBitCast( + unwrap<Constant>(ConstantVal), + unwrap(ToType))); +} + +LLVMValueRef LLVMConstTruncOrBitCast(LLVMValueRef ConstantVal, + LLVMTypeRef ToType) { + return wrap(ConstantExpr::getTruncOrBitCast( + unwrap<Constant>(ConstantVal), + unwrap(ToType))); +} + +LLVMValueRef LLVMConstPointerCast(LLVMValueRef ConstantVal, + LLVMTypeRef ToType) { + return wrap(ConstantExpr::getPointerCast( + unwrap<Constant>(ConstantVal), + unwrap(ToType))); +} + +LLVMValueRef LLVMConstIntCast(LLVMValueRef ConstantVal, LLVMTypeRef ToType, + LLVMBool isSigned) { + return wrap(ConstantExpr::getIntegerCast( + unwrap<Constant>(ConstantVal), + unwrap(ToType), + isSigned)); +} + +LLVMValueRef LLVMConstFPCast(LLVMValueRef ConstantVal, LLVMTypeRef ToType) { + return wrap(ConstantExpr::getFPCast( + unwrap<Constant>(ConstantVal), + unwrap(ToType))); +} + +LLVMValueRef LLVMConstSelect(LLVMValueRef ConstantCondition, + LLVMValueRef ConstantIfTrue, + LLVMValueRef ConstantIfFalse) { + return wrap(ConstantExpr::getSelect( + unwrap<Constant>(ConstantCondition), + unwrap<Constant>(ConstantIfTrue), + unwrap<Constant>(ConstantIfFalse))); +} + +LLVMValueRef LLVMConstExtractElement(LLVMValueRef VectorConstant, + LLVMValueRef IndexConstant) { + return wrap(ConstantExpr::getExtractElement( + unwrap<Constant>(VectorConstant), + unwrap<Constant>(IndexConstant))); +} + +LLVMValueRef LLVMConstInsertElement(LLVMValueRef VectorConstant, + LLVMValueRef ElementValueConstant, + LLVMValueRef IndexConstant) { + return wrap(ConstantExpr::getInsertElement( + unwrap<Constant>(VectorConstant), + unwrap<Constant>(ElementValueConstant), + unwrap<Constant>(IndexConstant))); +} + +LLVMValueRef LLVMConstShuffleVector(LLVMValueRef VectorAConstant, + LLVMValueRef VectorBConstant, + LLVMValueRef MaskConstant) { + return wrap(ConstantExpr::getShuffleVector( + unwrap<Constant>(VectorAConstant), + unwrap<Constant>(VectorBConstant), + unwrap<Constant>(MaskConstant))); +} + +LLVMValueRef LLVMConstExtractValue(LLVMValueRef AggConstant, unsigned *IdxList, + unsigned NumIdx) { + return wrap(ConstantExpr::getExtractValue( + unwrap<Constant>(AggConstant), + IdxList, NumIdx)); +} + +LLVMValueRef LLVMConstInsertValue(LLVMValueRef AggConstant, + LLVMValueRef ElementValueConstant, + unsigned *IdxList, unsigned NumIdx) { + return wrap(ConstantExpr::getInsertValue( + unwrap<Constant>(AggConstant), + unwrap<Constant>(ElementValueConstant), + IdxList, NumIdx)); +} + +LLVMValueRef LLVMConstInlineAsm(LLVMTypeRef Ty, const char *AsmString, + const char *Constraints, + LLVMBool HasSideEffects, + LLVMBool IsAlignStack) { + return wrap(InlineAsm::get(dyn_cast<FunctionType>(unwrap(Ty)), AsmString, + Constraints, HasSideEffects, IsAlignStack)); +} + +LLVMValueRef LLVMBlockAddress(LLVMValueRef F, LLVMBasicBlockRef BB) { + return wrap(BlockAddress::get(unwrap<Function>(F), unwrap(BB))); +} + +/*--.. Operations on global variables, functions, and aliases (globals) ....--*/ + +LLVMModuleRef LLVMGetGlobalParent(LLVMValueRef Global) { + return wrap(unwrap<GlobalValue>(Global)->getParent()); +} + +LLVMBool LLVMIsDeclaration(LLVMValueRef Global) { + return unwrap<GlobalValue>(Global)->isDeclaration(); +} + +LLVMLinkage LLVMGetLinkage(LLVMValueRef Global) { + switch (unwrap<GlobalValue>(Global)->getLinkage()) { + default: + assert(false && "Unhandled Linkage Type."); + case GlobalValue::ExternalLinkage: + return LLVMExternalLinkage; + case GlobalValue::AvailableExternallyLinkage: + return LLVMAvailableExternallyLinkage; + case GlobalValue::LinkOnceAnyLinkage: + return LLVMLinkOnceAnyLinkage; + case GlobalValue::LinkOnceODRLinkage: + return LLVMLinkOnceODRLinkage; + case GlobalValue::WeakAnyLinkage: + return LLVMWeakAnyLinkage; + case GlobalValue::WeakODRLinkage: + return LLVMWeakODRLinkage; + case GlobalValue::AppendingLinkage: + return LLVMAppendingLinkage; + case GlobalValue::InternalLinkage: + return LLVMInternalLinkage; + case GlobalValue::PrivateLinkage: + return LLVMPrivateLinkage; + case GlobalValue::LinkerPrivateLinkage: + return LLVMLinkerPrivateLinkage; + case GlobalValue::LinkerPrivateWeakLinkage: + return LLVMLinkerPrivateWeakLinkage; + case GlobalValue::LinkerPrivateWeakDefAutoLinkage: + return LLVMLinkerPrivateWeakDefAutoLinkage; + case GlobalValue::DLLImportLinkage: + return LLVMDLLImportLinkage; + case GlobalValue::DLLExportLinkage: + return LLVMDLLExportLinkage; + case GlobalValue::ExternalWeakLinkage: + return LLVMExternalWeakLinkage; + case GlobalValue::CommonLinkage: + return LLVMCommonLinkage; + } + + // Should never get here. + return static_cast<LLVMLinkage>(0); +} + +void LLVMSetLinkage(LLVMValueRef Global, LLVMLinkage Linkage) { + GlobalValue *GV = unwrap<GlobalValue>(Global); + + switch (Linkage) { + default: + assert(false && "Unhandled Linkage Type."); + case LLVMExternalLinkage: + GV->setLinkage(GlobalValue::ExternalLinkage); + break; + case LLVMAvailableExternallyLinkage: + GV->setLinkage(GlobalValue::AvailableExternallyLinkage); + break; + case LLVMLinkOnceAnyLinkage: + GV->setLinkage(GlobalValue::LinkOnceAnyLinkage); + break; + case LLVMLinkOnceODRLinkage: + GV->setLinkage(GlobalValue::LinkOnceODRLinkage); + break; + case LLVMWeakAnyLinkage: + GV->setLinkage(GlobalValue::WeakAnyLinkage); + break; + case LLVMWeakODRLinkage: + GV->setLinkage(GlobalValue::WeakODRLinkage); + break; + case LLVMAppendingLinkage: + GV->setLinkage(GlobalValue::AppendingLinkage); + break; + case LLVMInternalLinkage: + GV->setLinkage(GlobalValue::InternalLinkage); + break; + case LLVMPrivateLinkage: + GV->setLinkage(GlobalValue::PrivateLinkage); + break; + case LLVMLinkerPrivateLinkage: + GV->setLinkage(GlobalValue::LinkerPrivateLinkage); + break; + case LLVMLinkerPrivateWeakLinkage: + GV->setLinkage(GlobalValue::LinkerPrivateWeakLinkage); + break; + case LLVMLinkerPrivateWeakDefAutoLinkage: + GV->setLinkage(GlobalValue::LinkerPrivateWeakDefAutoLinkage); + break; + case LLVMDLLImportLinkage: + GV->setLinkage(GlobalValue::DLLImportLinkage); + break; + case LLVMDLLExportLinkage: + GV->setLinkage(GlobalValue::DLLExportLinkage); + break; + case LLVMExternalWeakLinkage: + GV->setLinkage(GlobalValue::ExternalWeakLinkage); + break; + case LLVMGhostLinkage: + DEBUG(errs() + << "LLVMSetLinkage(): LLVMGhostLinkage is no longer supported."); + break; + case LLVMCommonLinkage: + GV->setLinkage(GlobalValue::CommonLinkage); + break; + } +} + +const char *LLVMGetSection(LLVMValueRef Global) { + return unwrap<GlobalValue>(Global)->getSection().c_str(); +} + +void LLVMSetSection(LLVMValueRef Global, const char *Section) { + unwrap<GlobalValue>(Global)->setSection(Section); +} + +LLVMVisibility LLVMGetVisibility(LLVMValueRef Global) { + return static_cast<LLVMVisibility>( + unwrap<GlobalValue>(Global)->getVisibility()); +} + +void LLVMSetVisibility(LLVMValueRef Global, LLVMVisibility Viz) { + unwrap<GlobalValue>(Global) + ->setVisibility(static_cast<GlobalValue::VisibilityTypes>(Viz)); +} + +unsigned LLVMGetAlignment(LLVMValueRef Global) { + return unwrap<GlobalValue>(Global)->getAlignment(); +} + +void LLVMSetAlignment(LLVMValueRef Global, unsigned Bytes) { + unwrap<GlobalValue>(Global)->setAlignment(Bytes); +} + +/*--.. Operations on global variables ......................................--*/ + +LLVMValueRef LLVMAddGlobal(LLVMModuleRef M, LLVMTypeRef Ty, const char *Name) { + return wrap(new GlobalVariable(*unwrap(M), unwrap(Ty), false, + GlobalValue::ExternalLinkage, 0, Name)); +} + +LLVMValueRef LLVMAddGlobalInAddressSpace(LLVMModuleRef M, LLVMTypeRef Ty, + const char *Name, + unsigned AddressSpace) { + return wrap(new GlobalVariable(*unwrap(M), unwrap(Ty), false, + GlobalValue::ExternalLinkage, 0, Name, 0, + false, AddressSpace)); +} + +LLVMValueRef LLVMGetNamedGlobal(LLVMModuleRef M, const char *Name) { + return wrap(unwrap(M)->getNamedGlobal(Name)); +} + +LLVMValueRef LLVMGetFirstGlobal(LLVMModuleRef M) { + Module *Mod = unwrap(M); + Module::global_iterator I = Mod->global_begin(); + if (I == Mod->global_end()) + return 0; + return wrap(I); +} + +LLVMValueRef LLVMGetLastGlobal(LLVMModuleRef M) { + Module *Mod = unwrap(M); + Module::global_iterator I = Mod->global_end(); + if (I == Mod->global_begin()) + return 0; + return wrap(--I); +} + +LLVMValueRef LLVMGetNextGlobal(LLVMValueRef GlobalVar) { + GlobalVariable *GV = unwrap<GlobalVariable>(GlobalVar); + Module::global_iterator I = GV; + if (++I == GV->getParent()->global_end()) + return 0; + return wrap(I); +} + +LLVMValueRef LLVMGetPreviousGlobal(LLVMValueRef GlobalVar) { + GlobalVariable *GV = unwrap<GlobalVariable>(GlobalVar); + Module::global_iterator I = GV; + if (I == GV->getParent()->global_begin()) + return 0; + return wrap(--I); +} + +void LLVMDeleteGlobal(LLVMValueRef GlobalVar) { + unwrap<GlobalVariable>(GlobalVar)->eraseFromParent(); +} + +LLVMValueRef LLVMGetInitializer(LLVMValueRef GlobalVar) { + GlobalVariable* GV = unwrap<GlobalVariable>(GlobalVar); + if ( !GV->hasInitializer() ) + return 0; + return wrap(GV->getInitializer()); +} + +void LLVMSetInitializer(LLVMValueRef GlobalVar, LLVMValueRef ConstantVal) { + unwrap<GlobalVariable>(GlobalVar) + ->setInitializer(unwrap<Constant>(ConstantVal)); +} + +LLVMBool LLVMIsThreadLocal(LLVMValueRef GlobalVar) { + return unwrap<GlobalVariable>(GlobalVar)->isThreadLocal(); +} + +void LLVMSetThreadLocal(LLVMValueRef GlobalVar, LLVMBool IsThreadLocal) { + unwrap<GlobalVariable>(GlobalVar)->setThreadLocal(IsThreadLocal != 0); +} + +LLVMBool LLVMIsGlobalConstant(LLVMValueRef GlobalVar) { + return unwrap<GlobalVariable>(GlobalVar)->isConstant(); +} + +void LLVMSetGlobalConstant(LLVMValueRef GlobalVar, LLVMBool IsConstant) { + unwrap<GlobalVariable>(GlobalVar)->setConstant(IsConstant != 0); +} + +/*--.. Operations on aliases ......................................--*/ + +LLVMValueRef LLVMAddAlias(LLVMModuleRef M, LLVMTypeRef Ty, LLVMValueRef Aliasee, + const char *Name) { + return wrap(new GlobalAlias(unwrap(Ty), GlobalValue::ExternalLinkage, Name, + unwrap<Constant>(Aliasee), unwrap (M))); +} + +/*--.. Operations on functions .............................................--*/ + +LLVMValueRef LLVMAddFunction(LLVMModuleRef M, const char *Name, + LLVMTypeRef FunctionTy) { + return wrap(Function::Create(unwrap<FunctionType>(FunctionTy), + GlobalValue::ExternalLinkage, Name, unwrap(M))); +} + +LLVMValueRef LLVMGetNamedFunction(LLVMModuleRef M, const char *Name) { + return wrap(unwrap(M)->getFunction(Name)); +} + +LLVMValueRef LLVMGetFirstFunction(LLVMModuleRef M) { + Module *Mod = unwrap(M); + Module::iterator I = Mod->begin(); + if (I == Mod->end()) + return 0; + return wrap(I); +} + +LLVMValueRef LLVMGetLastFunction(LLVMModuleRef M) { + Module *Mod = unwrap(M); + Module::iterator I = Mod->end(); + if (I == Mod->begin()) + return 0; + return wrap(--I); +} + +LLVMValueRef LLVMGetNextFunction(LLVMValueRef Fn) { + Function *Func = unwrap<Function>(Fn); + Module::iterator I = Func; + if (++I == Func->getParent()->end()) + return 0; + return wrap(I); +} + +LLVMValueRef LLVMGetPreviousFunction(LLVMValueRef Fn) { + Function *Func = unwrap<Function>(Fn); + Module::iterator I = Func; + if (I == Func->getParent()->begin()) + return 0; + return wrap(--I); +} + +void LLVMDeleteFunction(LLVMValueRef Fn) { + unwrap<Function>(Fn)->eraseFromParent(); +} + +unsigned LLVMGetIntrinsicID(LLVMValueRef Fn) { + if (Function *F = dyn_cast<Function>(unwrap(Fn))) + return F->getIntrinsicID(); + return 0; +} + +unsigned LLVMGetFunctionCallConv(LLVMValueRef Fn) { + return unwrap<Function>(Fn)->getCallingConv(); +} + +void LLVMSetFunctionCallConv(LLVMValueRef Fn, unsigned CC) { + return unwrap<Function>(Fn)->setCallingConv( + static_cast<CallingConv::ID>(CC)); +} + +const char *LLVMGetGC(LLVMValueRef Fn) { + Function *F = unwrap<Function>(Fn); + return F->hasGC()? F->getGC() : 0; +} + +void LLVMSetGC(LLVMValueRef Fn, const char *GC) { + Function *F = unwrap<Function>(Fn); + if (GC) + F->setGC(GC); + else + F->clearGC(); +} + +void LLVMAddFunctionAttr(LLVMValueRef Fn, LLVMAttribute PA) { + Function *Func = unwrap<Function>(Fn); + const AttrListPtr PAL = Func->getAttributes(); + const AttrListPtr PALnew = PAL.addAttr(~0U, PA); + Func->setAttributes(PALnew); +} + +void LLVMRemoveFunctionAttr(LLVMValueRef Fn, LLVMAttribute PA) { + Function *Func = unwrap<Function>(Fn); + const AttrListPtr PAL = Func->getAttributes(); + const AttrListPtr PALnew = PAL.removeAttr(~0U, PA); + Func->setAttributes(PALnew); +} + +LLVMAttribute LLVMGetFunctionAttr(LLVMValueRef Fn) { + Function *Func = unwrap<Function>(Fn); + const AttrListPtr PAL = Func->getAttributes(); + Attributes attr = PAL.getFnAttributes(); + return (LLVMAttribute)attr; +} + +/*--.. Operations on parameters ............................................--*/ + +unsigned LLVMCountParams(LLVMValueRef FnRef) { + // This function is strictly redundant to + // LLVMCountParamTypes(LLVMGetElementType(LLVMTypeOf(FnRef))) + return unwrap<Function>(FnRef)->arg_size(); +} + +void LLVMGetParams(LLVMValueRef FnRef, LLVMValueRef *ParamRefs) { + Function *Fn = unwrap<Function>(FnRef); + for (Function::arg_iterator I = Fn->arg_begin(), + E = Fn->arg_end(); I != E; I++) + *ParamRefs++ = wrap(I); +} + +LLVMValueRef LLVMGetParam(LLVMValueRef FnRef, unsigned index) { + Function::arg_iterator AI = unwrap<Function>(FnRef)->arg_begin(); + while (index --> 0) + AI++; + return wrap(AI); +} + +LLVMValueRef LLVMGetParamParent(LLVMValueRef V) { + return wrap(unwrap<Argument>(V)->getParent()); +} + +LLVMValueRef LLVMGetFirstParam(LLVMValueRef Fn) { + Function *Func = unwrap<Function>(Fn); + Function::arg_iterator I = Func->arg_begin(); + if (I == Func->arg_end()) + return 0; + return wrap(I); +} + +LLVMValueRef LLVMGetLastParam(LLVMValueRef Fn) { + Function *Func = unwrap<Function>(Fn); + Function::arg_iterator I = Func->arg_end(); + if (I == Func->arg_begin()) + return 0; + return wrap(--I); +} + +LLVMValueRef LLVMGetNextParam(LLVMValueRef Arg) { + Argument *A = unwrap<Argument>(Arg); + Function::arg_iterator I = A; + if (++I == A->getParent()->arg_end()) + return 0; + return wrap(I); +} + +LLVMValueRef LLVMGetPreviousParam(LLVMValueRef Arg) { + Argument *A = unwrap<Argument>(Arg); + Function::arg_iterator I = A; + if (I == A->getParent()->arg_begin()) + return 0; + return wrap(--I); +} + +void LLVMAddAttribute(LLVMValueRef Arg, LLVMAttribute PA) { + unwrap<Argument>(Arg)->addAttr(PA); +} + +void LLVMRemoveAttribute(LLVMValueRef Arg, LLVMAttribute PA) { + unwrap<Argument>(Arg)->removeAttr(PA); +} + +LLVMAttribute LLVMGetAttribute(LLVMValueRef Arg) { + Argument *A = unwrap<Argument>(Arg); + Attributes attr = A->getParent()->getAttributes().getParamAttributes( + A->getArgNo()+1); + return (LLVMAttribute)attr; +} + + +void LLVMSetParamAlignment(LLVMValueRef Arg, unsigned align) { + unwrap<Argument>(Arg)->addAttr( + Attribute::constructAlignmentFromInt(align)); +} + +/*--.. Operations on basic blocks ..........................................--*/ + +LLVMValueRef LLVMBasicBlockAsValue(LLVMBasicBlockRef BB) { + return wrap(static_cast<Value*>(unwrap(BB))); +} + +LLVMBool LLVMValueIsBasicBlock(LLVMValueRef Val) { + return isa<BasicBlock>(unwrap(Val)); +} + +LLVMBasicBlockRef LLVMValueAsBasicBlock(LLVMValueRef Val) { + return wrap(unwrap<BasicBlock>(Val)); +} + +LLVMValueRef LLVMGetBasicBlockParent(LLVMBasicBlockRef BB) { + return wrap(unwrap(BB)->getParent()); +} + +unsigned LLVMCountBasicBlocks(LLVMValueRef FnRef) { + return unwrap<Function>(FnRef)->size(); +} + +void LLVMGetBasicBlocks(LLVMValueRef FnRef, LLVMBasicBlockRef *BasicBlocksRefs){ + Function *Fn = unwrap<Function>(FnRef); + for (Function::iterator I = Fn->begin(), E = Fn->end(); I != E; I++) + *BasicBlocksRefs++ = wrap(I); +} + +LLVMBasicBlockRef LLVMGetEntryBasicBlock(LLVMValueRef Fn) { + return wrap(&unwrap<Function>(Fn)->getEntryBlock()); +} + +LLVMBasicBlockRef LLVMGetFirstBasicBlock(LLVMValueRef Fn) { + Function *Func = unwrap<Function>(Fn); + Function::iterator I = Func->begin(); + if (I == Func->end()) + return 0; + return wrap(I); +} + +LLVMBasicBlockRef LLVMGetLastBasicBlock(LLVMValueRef Fn) { + Function *Func = unwrap<Function>(Fn); + Function::iterator I = Func->end(); + if (I == Func->begin()) + return 0; + return wrap(--I); +} + +LLVMBasicBlockRef LLVMGetNextBasicBlock(LLVMBasicBlockRef BB) { + BasicBlock *Block = unwrap(BB); + Function::iterator I = Block; + if (++I == Block->getParent()->end()) + return 0; + return wrap(I); +} + +LLVMBasicBlockRef LLVMGetPreviousBasicBlock(LLVMBasicBlockRef BB) { + BasicBlock *Block = unwrap(BB); + Function::iterator I = Block; + if (I == Block->getParent()->begin()) + return 0; + return wrap(--I); +} + +LLVMBasicBlockRef LLVMAppendBasicBlockInContext(LLVMContextRef C, + LLVMValueRef FnRef, + const char *Name) { + return wrap(BasicBlock::Create(*unwrap(C), Name, unwrap<Function>(FnRef))); +} + +LLVMBasicBlockRef LLVMAppendBasicBlock(LLVMValueRef FnRef, const char *Name) { + return LLVMAppendBasicBlockInContext(LLVMGetGlobalContext(), FnRef, Name); +} + +LLVMBasicBlockRef LLVMInsertBasicBlockInContext(LLVMContextRef C, + LLVMBasicBlockRef BBRef, + const char *Name) { + BasicBlock *BB = unwrap(BBRef); + return wrap(BasicBlock::Create(*unwrap(C), Name, BB->getParent(), BB)); +} + +LLVMBasicBlockRef LLVMInsertBasicBlock(LLVMBasicBlockRef BBRef, + const char *Name) { + return LLVMInsertBasicBlockInContext(LLVMGetGlobalContext(), BBRef, Name); +} + +void LLVMDeleteBasicBlock(LLVMBasicBlockRef BBRef) { + unwrap(BBRef)->eraseFromParent(); +} + +void LLVMMoveBasicBlockBefore(LLVMBasicBlockRef BB, LLVMBasicBlockRef MovePos) { + unwrap(BB)->moveBefore(unwrap(MovePos)); +} + +void LLVMMoveBasicBlockAfter(LLVMBasicBlockRef BB, LLVMBasicBlockRef MovePos) { + unwrap(BB)->moveAfter(unwrap(MovePos)); +} + +/*--.. Operations on instructions ..........................................--*/ + +LLVMBasicBlockRef LLVMGetInstructionParent(LLVMValueRef Inst) { + return wrap(unwrap<Instruction>(Inst)->getParent()); +} + +LLVMValueRef LLVMGetFirstInstruction(LLVMBasicBlockRef BB) { + BasicBlock *Block = unwrap(BB); + BasicBlock::iterator I = Block->begin(); + if (I == Block->end()) + return 0; + return wrap(I); +} + +LLVMValueRef LLVMGetLastInstruction(LLVMBasicBlockRef BB) { + BasicBlock *Block = unwrap(BB); + BasicBlock::iterator I = Block->end(); + if (I == Block->begin()) + return 0; + return wrap(--I); +} + +LLVMValueRef LLVMGetNextInstruction(LLVMValueRef Inst) { + Instruction *Instr = unwrap<Instruction>(Inst); + BasicBlock::iterator I = Instr; + if (++I == Instr->getParent()->end()) + return 0; + return wrap(I); +} + +LLVMValueRef LLVMGetPreviousInstruction(LLVMValueRef Inst) { + Instruction *Instr = unwrap<Instruction>(Inst); + BasicBlock::iterator I = Instr; + if (I == Instr->getParent()->begin()) + return 0; + return wrap(--I); +} + +/*--.. Call and invoke instructions ........................................--*/ + +unsigned LLVMGetInstructionCallConv(LLVMValueRef Instr) { + Value *V = unwrap(Instr); + if (CallInst *CI = dyn_cast<CallInst>(V)) + return CI->getCallingConv(); + else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) + return II->getCallingConv(); + llvm_unreachable("LLVMGetInstructionCallConv applies only to call and invoke!"); + return 0; +} + +void LLVMSetInstructionCallConv(LLVMValueRef Instr, unsigned CC) { + Value *V = unwrap(Instr); + if (CallInst *CI = dyn_cast<CallInst>(V)) + return CI->setCallingConv(static_cast<CallingConv::ID>(CC)); + else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) + return II->setCallingConv(static_cast<CallingConv::ID>(CC)); + llvm_unreachable("LLVMSetInstructionCallConv applies only to call and invoke!"); +} + +void LLVMAddInstrAttribute(LLVMValueRef Instr, unsigned index, + LLVMAttribute PA) { + CallSite Call = CallSite(unwrap<Instruction>(Instr)); + Call.setAttributes( + Call.getAttributes().addAttr(index, PA)); +} + +void LLVMRemoveInstrAttribute(LLVMValueRef Instr, unsigned index, + LLVMAttribute PA) { + CallSite Call = CallSite(unwrap<Instruction>(Instr)); + Call.setAttributes( + Call.getAttributes().removeAttr(index, PA)); +} + +void LLVMSetInstrParamAlignment(LLVMValueRef Instr, unsigned index, + unsigned align) { + CallSite Call = CallSite(unwrap<Instruction>(Instr)); + Call.setAttributes( + Call.getAttributes().addAttr(index, + Attribute::constructAlignmentFromInt(align))); +} + +/*--.. Operations on call instructions (only) ..............................--*/ + +LLVMBool LLVMIsTailCall(LLVMValueRef Call) { + return unwrap<CallInst>(Call)->isTailCall(); +} + +void LLVMSetTailCall(LLVMValueRef Call, LLVMBool isTailCall) { + unwrap<CallInst>(Call)->setTailCall(isTailCall); +} + +/*--.. Operations on phi nodes .............................................--*/ + +void LLVMAddIncoming(LLVMValueRef PhiNode, LLVMValueRef *IncomingValues, + LLVMBasicBlockRef *IncomingBlocks, unsigned Count) { + PHINode *PhiVal = unwrap<PHINode>(PhiNode); + for (unsigned I = 0; I != Count; ++I) + PhiVal->addIncoming(unwrap(IncomingValues[I]), unwrap(IncomingBlocks[I])); +} + +unsigned LLVMCountIncoming(LLVMValueRef PhiNode) { + return unwrap<PHINode>(PhiNode)->getNumIncomingValues(); +} + +LLVMValueRef LLVMGetIncomingValue(LLVMValueRef PhiNode, unsigned Index) { + return wrap(unwrap<PHINode>(PhiNode)->getIncomingValue(Index)); +} + +LLVMBasicBlockRef LLVMGetIncomingBlock(LLVMValueRef PhiNode, unsigned Index) { + return wrap(unwrap<PHINode>(PhiNode)->getIncomingBlock(Index)); +} + + +/*===-- Instruction builders ----------------------------------------------===*/ + +LLVMBuilderRef LLVMCreateBuilderInContext(LLVMContextRef C) { + return wrap(new IRBuilder<>(*unwrap(C))); +} + +LLVMBuilderRef LLVMCreateBuilder(void) { + return LLVMCreateBuilderInContext(LLVMGetGlobalContext()); +} + +void LLVMPositionBuilder(LLVMBuilderRef Builder, LLVMBasicBlockRef Block, + LLVMValueRef Instr) { + BasicBlock *BB = unwrap(Block); + Instruction *I = Instr? unwrap<Instruction>(Instr) : (Instruction*) BB->end(); + unwrap(Builder)->SetInsertPoint(BB, I); +} + +void LLVMPositionBuilderBefore(LLVMBuilderRef Builder, LLVMValueRef Instr) { + Instruction *I = unwrap<Instruction>(Instr); + unwrap(Builder)->SetInsertPoint(I->getParent(), I); +} + +void LLVMPositionBuilderAtEnd(LLVMBuilderRef Builder, LLVMBasicBlockRef Block) { + BasicBlock *BB = unwrap(Block); + unwrap(Builder)->SetInsertPoint(BB); +} + +LLVMBasicBlockRef LLVMGetInsertBlock(LLVMBuilderRef Builder) { + return wrap(unwrap(Builder)->GetInsertBlock()); +} + +void LLVMClearInsertionPosition(LLVMBuilderRef Builder) { + unwrap(Builder)->ClearInsertionPoint(); +} + +void LLVMInsertIntoBuilder(LLVMBuilderRef Builder, LLVMValueRef Instr) { + unwrap(Builder)->Insert(unwrap<Instruction>(Instr)); +} + +void LLVMInsertIntoBuilderWithName(LLVMBuilderRef Builder, LLVMValueRef Instr, + const char *Name) { + unwrap(Builder)->Insert(unwrap<Instruction>(Instr), Name); +} + +void LLVMDisposeBuilder(LLVMBuilderRef Builder) { + delete unwrap(Builder); +} + +/*--.. Metadata builders ...................................................--*/ + +void LLVMSetCurrentDebugLocation(LLVMBuilderRef Builder, LLVMValueRef L) { + MDNode *Loc = L ? unwrap<MDNode>(L) : NULL; + unwrap(Builder)->SetCurrentDebugLocation(DebugLoc::getFromDILocation(Loc)); +} + +LLVMValueRef LLVMGetCurrentDebugLocation(LLVMBuilderRef Builder) { + return wrap(unwrap(Builder)->getCurrentDebugLocation() + .getAsMDNode(unwrap(Builder)->getContext())); +} + +void LLVMSetInstDebugLocation(LLVMBuilderRef Builder, LLVMValueRef Inst) { + unwrap(Builder)->SetInstDebugLocation(unwrap<Instruction>(Inst)); +} + + +/*--.. Instruction builders ................................................--*/ + +LLVMValueRef LLVMBuildRetVoid(LLVMBuilderRef B) { + return wrap(unwrap(B)->CreateRetVoid()); +} + +LLVMValueRef LLVMBuildRet(LLVMBuilderRef B, LLVMValueRef V) { + return wrap(unwrap(B)->CreateRet(unwrap(V))); +} + +LLVMValueRef LLVMBuildAggregateRet(LLVMBuilderRef B, LLVMValueRef *RetVals, + unsigned N) { + return wrap(unwrap(B)->CreateAggregateRet(unwrap(RetVals), N)); +} + +LLVMValueRef LLVMBuildBr(LLVMBuilderRef B, LLVMBasicBlockRef Dest) { + return wrap(unwrap(B)->CreateBr(unwrap(Dest))); +} + +LLVMValueRef LLVMBuildCondBr(LLVMBuilderRef B, LLVMValueRef If, + LLVMBasicBlockRef Then, LLVMBasicBlockRef Else) { + return wrap(unwrap(B)->CreateCondBr(unwrap(If), unwrap(Then), unwrap(Else))); +} + +LLVMValueRef LLVMBuildSwitch(LLVMBuilderRef B, LLVMValueRef V, + LLVMBasicBlockRef Else, unsigned NumCases) { + return wrap(unwrap(B)->CreateSwitch(unwrap(V), unwrap(Else), NumCases)); +} + +LLVMValueRef LLVMBuildIndirectBr(LLVMBuilderRef B, LLVMValueRef Addr, + unsigned NumDests) { + return wrap(unwrap(B)->CreateIndirectBr(unwrap(Addr), NumDests)); +} + +LLVMValueRef LLVMBuildInvoke(LLVMBuilderRef B, LLVMValueRef Fn, + LLVMValueRef *Args, unsigned NumArgs, + LLVMBasicBlockRef Then, LLVMBasicBlockRef Catch, + const char *Name) { + return wrap(unwrap(B)->CreateInvoke(unwrap(Fn), unwrap(Then), unwrap(Catch), + unwrap(Args), unwrap(Args) + NumArgs, + Name)); +} + +LLVMValueRef LLVMBuildUnwind(LLVMBuilderRef B) { + return wrap(unwrap(B)->CreateUnwind()); +} + +LLVMValueRef LLVMBuildUnreachable(LLVMBuilderRef B) { + return wrap(unwrap(B)->CreateUnreachable()); +} + +void LLVMAddCase(LLVMValueRef Switch, LLVMValueRef OnVal, + LLVMBasicBlockRef Dest) { + unwrap<SwitchInst>(Switch)->addCase(unwrap<ConstantInt>(OnVal), unwrap(Dest)); +} + +void LLVMAddDestination(LLVMValueRef IndirectBr, LLVMBasicBlockRef Dest) { + unwrap<IndirectBrInst>(IndirectBr)->addDestination(unwrap(Dest)); +} + +/*--.. Arithmetic ..........................................................--*/ + +LLVMValueRef LLVMBuildAdd(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS, + const char *Name) { + return wrap(unwrap(B)->CreateAdd(unwrap(LHS), unwrap(RHS), Name)); +} + +LLVMValueRef LLVMBuildNSWAdd(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS, + const char *Name) { + return wrap(unwrap(B)->CreateNSWAdd(unwrap(LHS), unwrap(RHS), Name)); +} + +LLVMValueRef LLVMBuildNUWAdd(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS, + const char *Name) { + return wrap(unwrap(B)->CreateNUWAdd(unwrap(LHS), unwrap(RHS), Name)); +} + +LLVMValueRef LLVMBuildFAdd(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS, + const char *Name) { + return wrap(unwrap(B)->CreateFAdd(unwrap(LHS), unwrap(RHS), Name)); +} + +LLVMValueRef LLVMBuildSub(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS, + const char *Name) { + return wrap(unwrap(B)->CreateSub(unwrap(LHS), unwrap(RHS), Name)); +} + +LLVMValueRef LLVMBuildNSWSub(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS, + const char *Name) { + return wrap(unwrap(B)->CreateNSWSub(unwrap(LHS), unwrap(RHS), Name)); +} + +LLVMValueRef LLVMBuildNUWSub(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS, + const char *Name) { + return wrap(unwrap(B)->CreateNUWSub(unwrap(LHS), unwrap(RHS), Name)); +} + +LLVMValueRef LLVMBuildFSub(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS, + const char *Name) { + return wrap(unwrap(B)->CreateFSub(unwrap(LHS), unwrap(RHS), Name)); +} + +LLVMValueRef LLVMBuildMul(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS, + const char *Name) { + return wrap(unwrap(B)->CreateMul(unwrap(LHS), unwrap(RHS), Name)); +} + +LLVMValueRef LLVMBuildNSWMul(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS, + const char *Name) { + return wrap(unwrap(B)->CreateNSWMul(unwrap(LHS), unwrap(RHS), Name)); +} + +LLVMValueRef LLVMBuildNUWMul(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS, + const char *Name) { + return wrap(unwrap(B)->CreateNUWMul(unwrap(LHS), unwrap(RHS), Name)); +} + +LLVMValueRef LLVMBuildFMul(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS, + const char *Name) { + return wrap(unwrap(B)->CreateFMul(unwrap(LHS), unwrap(RHS), Name)); +} + +LLVMValueRef LLVMBuildUDiv(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS, + const char *Name) { + return wrap(unwrap(B)->CreateUDiv(unwrap(LHS), unwrap(RHS), Name)); +} + +LLVMValueRef LLVMBuildSDiv(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS, + const char *Name) { + return wrap(unwrap(B)->CreateSDiv(unwrap(LHS), unwrap(RHS), Name)); +} + +LLVMValueRef LLVMBuildExactSDiv(LLVMBuilderRef B, LLVMValueRef LHS, + LLVMValueRef RHS, const char *Name) { + return wrap(unwrap(B)->CreateExactSDiv(unwrap(LHS), unwrap(RHS), Name)); +} + +LLVMValueRef LLVMBuildFDiv(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS, + const char *Name) { + return wrap(unwrap(B)->CreateFDiv(unwrap(LHS), unwrap(RHS), Name)); +} + +LLVMValueRef LLVMBuildURem(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS, + const char *Name) { + return wrap(unwrap(B)->CreateURem(unwrap(LHS), unwrap(RHS), Name)); +} + +LLVMValueRef LLVMBuildSRem(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS, + const char *Name) { + return wrap(unwrap(B)->CreateSRem(unwrap(LHS), unwrap(RHS), Name)); +} + +LLVMValueRef LLVMBuildFRem(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS, + const char *Name) { + return wrap(unwrap(B)->CreateFRem(unwrap(LHS), unwrap(RHS), Name)); +} + +LLVMValueRef LLVMBuildShl(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS, + const char *Name) { + return wrap(unwrap(B)->CreateShl(unwrap(LHS), unwrap(RHS), Name)); +} + +LLVMValueRef LLVMBuildLShr(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS, + const char *Name) { + return wrap(unwrap(B)->CreateLShr(unwrap(LHS), unwrap(RHS), Name)); +} + +LLVMValueRef LLVMBuildAShr(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS, + const char *Name) { + return wrap(unwrap(B)->CreateAShr(unwrap(LHS), unwrap(RHS), Name)); +} + +LLVMValueRef LLVMBuildAnd(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS, + const char *Name) { + return wrap(unwrap(B)->CreateAnd(unwrap(LHS), unwrap(RHS), Name)); +} + +LLVMValueRef LLVMBuildOr(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS, + const char *Name) { + return wrap(unwrap(B)->CreateOr(unwrap(LHS), unwrap(RHS), Name)); +} + +LLVMValueRef LLVMBuildXor(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS, + const char *Name) { + return wrap(unwrap(B)->CreateXor(unwrap(LHS), unwrap(RHS), Name)); +} + +LLVMValueRef LLVMBuildBinOp(LLVMBuilderRef B, LLVMOpcode Op, + LLVMValueRef LHS, LLVMValueRef RHS, + const char *Name) { + return wrap(unwrap(B)->CreateBinOp(Instruction::BinaryOps(Op), unwrap(LHS), + unwrap(RHS), Name)); +} + +LLVMValueRef LLVMBuildNeg(LLVMBuilderRef B, LLVMValueRef V, const char *Name) { + return wrap(unwrap(B)->CreateNeg(unwrap(V), Name)); +} + +LLVMValueRef LLVMBuildNSWNeg(LLVMBuilderRef B, LLVMValueRef V, + const char *Name) { + return wrap(unwrap(B)->CreateNSWNeg(unwrap(V), Name)); +} + +LLVMValueRef LLVMBuildNUWNeg(LLVMBuilderRef B, LLVMValueRef V, + const char *Name) { + return wrap(unwrap(B)->CreateNUWNeg(unwrap(V), Name)); +} + +LLVMValueRef LLVMBuildFNeg(LLVMBuilderRef B, LLVMValueRef V, const char *Name) { + return wrap(unwrap(B)->CreateFNeg(unwrap(V), Name)); +} + +LLVMValueRef LLVMBuildNot(LLVMBuilderRef B, LLVMValueRef V, const char *Name) { + return wrap(unwrap(B)->CreateNot(unwrap(V), Name)); +} + +/*--.. Memory ..............................................................--*/ + +LLVMValueRef LLVMBuildMalloc(LLVMBuilderRef B, LLVMTypeRef Ty, + const char *Name) { + const Type* ITy = Type::getInt32Ty(unwrap(B)->GetInsertBlock()->getContext()); + Constant* AllocSize = ConstantExpr::getSizeOf(unwrap(Ty)); + AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, ITy); + Instruction* Malloc = CallInst::CreateMalloc(unwrap(B)->GetInsertBlock(), + ITy, unwrap(Ty), AllocSize, + 0, 0, ""); + return wrap(unwrap(B)->Insert(Malloc, Twine(Name))); +} + +LLVMValueRef LLVMBuildArrayMalloc(LLVMBuilderRef B, LLVMTypeRef Ty, + LLVMValueRef Val, const char *Name) { + const Type* ITy = Type::getInt32Ty(unwrap(B)->GetInsertBlock()->getContext()); + Constant* AllocSize = ConstantExpr::getSizeOf(unwrap(Ty)); + AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, ITy); + Instruction* Malloc = CallInst::CreateMalloc(unwrap(B)->GetInsertBlock(), + ITy, unwrap(Ty), AllocSize, + unwrap(Val), 0, ""); + return wrap(unwrap(B)->Insert(Malloc, Twine(Name))); +} + +LLVMValueRef LLVMBuildAlloca(LLVMBuilderRef B, LLVMTypeRef Ty, + const char *Name) { + return wrap(unwrap(B)->CreateAlloca(unwrap(Ty), 0, Name)); +} + +LLVMValueRef LLVMBuildArrayAlloca(LLVMBuilderRef B, LLVMTypeRef Ty, + LLVMValueRef Val, const char *Name) { + return wrap(unwrap(B)->CreateAlloca(unwrap(Ty), unwrap(Val), Name)); +} + +LLVMValueRef LLVMBuildFree(LLVMBuilderRef B, LLVMValueRef PointerVal) { + return wrap(unwrap(B)->Insert( + CallInst::CreateFree(unwrap(PointerVal), unwrap(B)->GetInsertBlock()))); +} + + +LLVMValueRef LLVMBuildLoad(LLVMBuilderRef B, LLVMValueRef PointerVal, + const char *Name) { + return wrap(unwrap(B)->CreateLoad(unwrap(PointerVal), Name)); +} + +LLVMValueRef LLVMBuildStore(LLVMBuilderRef B, LLVMValueRef Val, + LLVMValueRef PointerVal) { + return wrap(unwrap(B)->CreateStore(unwrap(Val), unwrap(PointerVal))); +} + +LLVMValueRef LLVMBuildGEP(LLVMBuilderRef B, LLVMValueRef Pointer, + LLVMValueRef *Indices, unsigned NumIndices, + const char *Name) { + return wrap(unwrap(B)->CreateGEP(unwrap(Pointer), unwrap(Indices), + unwrap(Indices) + NumIndices, Name)); +} + +LLVMValueRef LLVMBuildInBoundsGEP(LLVMBuilderRef B, LLVMValueRef Pointer, + LLVMValueRef *Indices, unsigned NumIndices, + const char *Name) { + return wrap(unwrap(B)->CreateInBoundsGEP(unwrap(Pointer), unwrap(Indices), + unwrap(Indices) + NumIndices, Name)); +} + +LLVMValueRef LLVMBuildStructGEP(LLVMBuilderRef B, LLVMValueRef Pointer, + unsigned Idx, const char *Name) { + return wrap(unwrap(B)->CreateStructGEP(unwrap(Pointer), Idx, Name)); +} + +LLVMValueRef LLVMBuildGlobalString(LLVMBuilderRef B, const char *Str, + const char *Name) { + return wrap(unwrap(B)->CreateGlobalString(Str, Name)); +} + +LLVMValueRef LLVMBuildGlobalStringPtr(LLVMBuilderRef B, const char *Str, + const char *Name) { + return wrap(unwrap(B)->CreateGlobalStringPtr(Str, Name)); +} + +/*--.. Casts ...............................................................--*/ + +LLVMValueRef LLVMBuildTrunc(LLVMBuilderRef B, LLVMValueRef Val, + LLVMTypeRef DestTy, const char *Name) { + return wrap(unwrap(B)->CreateTrunc(unwrap(Val), unwrap(DestTy), Name)); +} + +LLVMValueRef LLVMBuildZExt(LLVMBuilderRef B, LLVMValueRef Val, + LLVMTypeRef DestTy, const char *Name) { + return wrap(unwrap(B)->CreateZExt(unwrap(Val), unwrap(DestTy), Name)); +} + +LLVMValueRef LLVMBuildSExt(LLVMBuilderRef B, LLVMValueRef Val, + LLVMTypeRef DestTy, const char *Name) { + return wrap(unwrap(B)->CreateSExt(unwrap(Val), unwrap(DestTy), Name)); +} + +LLVMValueRef LLVMBuildFPToUI(LLVMBuilderRef B, LLVMValueRef Val, + LLVMTypeRef DestTy, const char *Name) { + return wrap(unwrap(B)->CreateFPToUI(unwrap(Val), unwrap(DestTy), Name)); +} + +LLVMValueRef LLVMBuildFPToSI(LLVMBuilderRef B, LLVMValueRef Val, + LLVMTypeRef DestTy, const char *Name) { + return wrap(unwrap(B)->CreateFPToSI(unwrap(Val), unwrap(DestTy), Name)); +} + +LLVMValueRef LLVMBuildUIToFP(LLVMBuilderRef B, LLVMValueRef Val, + LLVMTypeRef DestTy, const char *Name) { + return wrap(unwrap(B)->CreateUIToFP(unwrap(Val), unwrap(DestTy), Name)); +} + +LLVMValueRef LLVMBuildSIToFP(LLVMBuilderRef B, LLVMValueRef Val, + LLVMTypeRef DestTy, const char *Name) { + return wrap(unwrap(B)->CreateSIToFP(unwrap(Val), unwrap(DestTy), Name)); +} + +LLVMValueRef LLVMBuildFPTrunc(LLVMBuilderRef B, LLVMValueRef Val, + LLVMTypeRef DestTy, const char *Name) { + return wrap(unwrap(B)->CreateFPTrunc(unwrap(Val), unwrap(DestTy), Name)); +} + +LLVMValueRef LLVMBuildFPExt(LLVMBuilderRef B, LLVMValueRef Val, + LLVMTypeRef DestTy, const char *Name) { + return wrap(unwrap(B)->CreateFPExt(unwrap(Val), unwrap(DestTy), Name)); +} + +LLVMValueRef LLVMBuildPtrToInt(LLVMBuilderRef B, LLVMValueRef Val, + LLVMTypeRef DestTy, const char *Name) { + return wrap(unwrap(B)->CreatePtrToInt(unwrap(Val), unwrap(DestTy), Name)); +} + +LLVMValueRef LLVMBuildIntToPtr(LLVMBuilderRef B, LLVMValueRef Val, + LLVMTypeRef DestTy, const char *Name) { + return wrap(unwrap(B)->CreateIntToPtr(unwrap(Val), unwrap(DestTy), Name)); +} + +LLVMValueRef LLVMBuildBitCast(LLVMBuilderRef B, LLVMValueRef Val, + LLVMTypeRef DestTy, const char *Name) { + return wrap(unwrap(B)->CreateBitCast(unwrap(Val), unwrap(DestTy), Name)); +} + +LLVMValueRef LLVMBuildZExtOrBitCast(LLVMBuilderRef B, LLVMValueRef Val, + LLVMTypeRef DestTy, const char *Name) { + return wrap(unwrap(B)->CreateZExtOrBitCast(unwrap(Val), unwrap(DestTy), + Name)); +} + +LLVMValueRef LLVMBuildSExtOrBitCast(LLVMBuilderRef B, LLVMValueRef Val, + LLVMTypeRef DestTy, const char *Name) { + return wrap(unwrap(B)->CreateSExtOrBitCast(unwrap(Val), unwrap(DestTy), + Name)); +} + +LLVMValueRef LLVMBuildTruncOrBitCast(LLVMBuilderRef B, LLVMValueRef Val, + LLVMTypeRef DestTy, const char *Name) { + return wrap(unwrap(B)->CreateTruncOrBitCast(unwrap(Val), unwrap(DestTy), + Name)); +} + +LLVMValueRef LLVMBuildCast(LLVMBuilderRef B, LLVMOpcode Op, LLVMValueRef Val, + LLVMTypeRef DestTy, const char *Name) { + return wrap(unwrap(B)->CreateCast(Instruction::CastOps(Op), unwrap(Val), + unwrap(DestTy), Name)); +} + +LLVMValueRef LLVMBuildPointerCast(LLVMBuilderRef B, LLVMValueRef Val, + LLVMTypeRef DestTy, const char *Name) { + return wrap(unwrap(B)->CreatePointerCast(unwrap(Val), unwrap(DestTy), Name)); +} + +LLVMValueRef LLVMBuildIntCast(LLVMBuilderRef B, LLVMValueRef Val, + LLVMTypeRef DestTy, const char *Name) { + return wrap(unwrap(B)->CreateIntCast(unwrap(Val), unwrap(DestTy), + /*isSigned*/true, Name)); +} + +LLVMValueRef LLVMBuildFPCast(LLVMBuilderRef B, LLVMValueRef Val, + LLVMTypeRef DestTy, const char *Name) { + return wrap(unwrap(B)->CreateFPCast(unwrap(Val), unwrap(DestTy), Name)); +} + +/*--.. Comparisons .........................................................--*/ + +LLVMValueRef LLVMBuildICmp(LLVMBuilderRef B, LLVMIntPredicate Op, + LLVMValueRef LHS, LLVMValueRef RHS, + const char *Name) { + return wrap(unwrap(B)->CreateICmp(static_cast<ICmpInst::Predicate>(Op), + unwrap(LHS), unwrap(RHS), Name)); +} + +LLVMValueRef LLVMBuildFCmp(LLVMBuilderRef B, LLVMRealPredicate Op, + LLVMValueRef LHS, LLVMValueRef RHS, + const char *Name) { + return wrap(unwrap(B)->CreateFCmp(static_cast<FCmpInst::Predicate>(Op), + unwrap(LHS), unwrap(RHS), Name)); +} + +/*--.. Miscellaneous instructions ..........................................--*/ + +LLVMValueRef LLVMBuildPhi(LLVMBuilderRef B, LLVMTypeRef Ty, const char *Name) { + return wrap(unwrap(B)->CreatePHI(unwrap(Ty), Name)); +} + +LLVMValueRef LLVMBuildCall(LLVMBuilderRef B, LLVMValueRef Fn, + LLVMValueRef *Args, unsigned NumArgs, + const char *Name) { + return wrap(unwrap(B)->CreateCall(unwrap(Fn), unwrap(Args), + unwrap(Args) + NumArgs, Name)); +} + +LLVMValueRef LLVMBuildSelect(LLVMBuilderRef B, LLVMValueRef If, + LLVMValueRef Then, LLVMValueRef Else, + const char *Name) { + return wrap(unwrap(B)->CreateSelect(unwrap(If), unwrap(Then), unwrap(Else), + Name)); +} + +LLVMValueRef LLVMBuildVAArg(LLVMBuilderRef B, LLVMValueRef List, + LLVMTypeRef Ty, const char *Name) { + return wrap(unwrap(B)->CreateVAArg(unwrap(List), unwrap(Ty), Name)); +} + +LLVMValueRef LLVMBuildExtractElement(LLVMBuilderRef B, LLVMValueRef VecVal, + LLVMValueRef Index, const char *Name) { + return wrap(unwrap(B)->CreateExtractElement(unwrap(VecVal), unwrap(Index), + Name)); +} + +LLVMValueRef LLVMBuildInsertElement(LLVMBuilderRef B, LLVMValueRef VecVal, + LLVMValueRef EltVal, LLVMValueRef Index, + const char *Name) { + return wrap(unwrap(B)->CreateInsertElement(unwrap(VecVal), unwrap(EltVal), + unwrap(Index), Name)); +} + +LLVMValueRef LLVMBuildShuffleVector(LLVMBuilderRef B, LLVMValueRef V1, + LLVMValueRef V2, LLVMValueRef Mask, + const char *Name) { + return wrap(unwrap(B)->CreateShuffleVector(unwrap(V1), unwrap(V2), + unwrap(Mask), Name)); +} + +LLVMValueRef LLVMBuildExtractValue(LLVMBuilderRef B, LLVMValueRef AggVal, + unsigned Index, const char *Name) { + return wrap(unwrap(B)->CreateExtractValue(unwrap(AggVal), Index, Name)); +} + +LLVMValueRef LLVMBuildInsertValue(LLVMBuilderRef B, LLVMValueRef AggVal, + LLVMValueRef EltVal, unsigned Index, + const char *Name) { + return wrap(unwrap(B)->CreateInsertValue(unwrap(AggVal), unwrap(EltVal), + Index, Name)); +} + +LLVMValueRef LLVMBuildIsNull(LLVMBuilderRef B, LLVMValueRef Val, + const char *Name) { + return wrap(unwrap(B)->CreateIsNull(unwrap(Val), Name)); +} + +LLVMValueRef LLVMBuildIsNotNull(LLVMBuilderRef B, LLVMValueRef Val, + const char *Name) { + return wrap(unwrap(B)->CreateIsNotNull(unwrap(Val), Name)); +} + +LLVMValueRef LLVMBuildPtrDiff(LLVMBuilderRef B, LLVMValueRef LHS, + LLVMValueRef RHS, const char *Name) { + return wrap(unwrap(B)->CreatePtrDiff(unwrap(LHS), unwrap(RHS), Name)); +} + + +/*===-- Module providers --------------------------------------------------===*/ + +LLVMModuleProviderRef +LLVMCreateModuleProviderForExistingModule(LLVMModuleRef M) { + return reinterpret_cast<LLVMModuleProviderRef>(M); +} + +void LLVMDisposeModuleProvider(LLVMModuleProviderRef MP) { + delete unwrap(MP); +} + + +/*===-- Memory buffers ----------------------------------------------------===*/ + +LLVMBool LLVMCreateMemoryBufferWithContentsOfFile( + const char *Path, + LLVMMemoryBufferRef *OutMemBuf, + char **OutMessage) { + + std::string Error; + if (MemoryBuffer *MB = MemoryBuffer::getFile(Path, &Error)) { + *OutMemBuf = wrap(MB); + return 0; + } + + *OutMessage = strdup(Error.c_str()); + return 1; +} + +LLVMBool LLVMCreateMemoryBufferWithSTDIN(LLVMMemoryBufferRef *OutMemBuf, + char **OutMessage) { + std::string Error; + if (MemoryBuffer *MB = MemoryBuffer::getSTDIN(&Error)) { + *OutMemBuf = wrap(MB); + return 0; + } + + *OutMessage = strdup(Error.c_str()); + return 1; +} + +void LLVMDisposeMemoryBuffer(LLVMMemoryBufferRef MemBuf) { + delete unwrap(MemBuf); +} + + +/*===-- Pass Manager ------------------------------------------------------===*/ + +LLVMPassManagerRef LLVMCreatePassManager() { + return wrap(new PassManager()); +} + +LLVMPassManagerRef LLVMCreateFunctionPassManagerForModule(LLVMModuleRef M) { + return wrap(new FunctionPassManager(unwrap(M))); +} + +LLVMPassManagerRef LLVMCreateFunctionPassManager(LLVMModuleProviderRef P) { + return LLVMCreateFunctionPassManagerForModule( + reinterpret_cast<LLVMModuleRef>(P)); +} + +LLVMBool LLVMRunPassManager(LLVMPassManagerRef PM, LLVMModuleRef M) { + return unwrap<PassManager>(PM)->run(*unwrap(M)); +} + +LLVMBool LLVMInitializeFunctionPassManager(LLVMPassManagerRef FPM) { + return unwrap<FunctionPassManager>(FPM)->doInitialization(); +} + +LLVMBool LLVMRunFunctionPassManager(LLVMPassManagerRef FPM, LLVMValueRef F) { + return unwrap<FunctionPassManager>(FPM)->run(*unwrap<Function>(F)); +} + +LLVMBool LLVMFinalizeFunctionPassManager(LLVMPassManagerRef FPM) { + return unwrap<FunctionPassManager>(FPM)->doFinalization(); +} + +void LLVMDisposePassManager(LLVMPassManagerRef PM) { + delete unwrap(PM); +} diff --git a/contrib/llvm/lib/VMCore/DebugLoc.cpp b/contrib/llvm/lib/VMCore/DebugLoc.cpp new file mode 100644 index 0000000..f8b45ee --- /dev/null +++ b/contrib/llvm/lib/VMCore/DebugLoc.cpp @@ -0,0 +1,288 @@ +//===-- DebugLoc.cpp - Implement DebugLoc class ---------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Support/DebugLoc.h" +#include "LLVMContextImpl.h" +using namespace llvm; + +//===----------------------------------------------------------------------===// +// DebugLoc Implementation +//===----------------------------------------------------------------------===// + +MDNode *DebugLoc::getScope(const LLVMContext &Ctx) const { + if (ScopeIdx == 0) return 0; + + if (ScopeIdx > 0) { + // Positive ScopeIdx is an index into ScopeRecords, which has no inlined-at + // position specified. + assert(unsigned(ScopeIdx) <= Ctx.pImpl->ScopeRecords.size() && + "Invalid ScopeIdx!"); + return Ctx.pImpl->ScopeRecords[ScopeIdx-1].get(); + } + + // Otherwise, the index is in the ScopeInlinedAtRecords array. + assert(unsigned(-ScopeIdx) <= Ctx.pImpl->ScopeInlinedAtRecords.size() && + "Invalid ScopeIdx"); + return Ctx.pImpl->ScopeInlinedAtRecords[-ScopeIdx-1].first.get(); +} + +MDNode *DebugLoc::getInlinedAt(const LLVMContext &Ctx) const { + // Positive ScopeIdx is an index into ScopeRecords, which has no inlined-at + // position specified. Zero is invalid. + if (ScopeIdx >= 0) return 0; + + // Otherwise, the index is in the ScopeInlinedAtRecords array. + assert(unsigned(-ScopeIdx) <= Ctx.pImpl->ScopeInlinedAtRecords.size() && + "Invalid ScopeIdx"); + return Ctx.pImpl->ScopeInlinedAtRecords[-ScopeIdx-1].second.get(); +} + +/// Return both the Scope and the InlinedAt values. +void DebugLoc::getScopeAndInlinedAt(MDNode *&Scope, MDNode *&IA, + const LLVMContext &Ctx) const { + if (ScopeIdx == 0) { + Scope = IA = 0; + return; + } + + if (ScopeIdx > 0) { + // Positive ScopeIdx is an index into ScopeRecords, which has no inlined-at + // position specified. + assert(unsigned(ScopeIdx) <= Ctx.pImpl->ScopeRecords.size() && + "Invalid ScopeIdx!"); + Scope = Ctx.pImpl->ScopeRecords[ScopeIdx-1].get(); + IA = 0; + return; + } + + // Otherwise, the index is in the ScopeInlinedAtRecords array. + assert(unsigned(-ScopeIdx) <= Ctx.pImpl->ScopeInlinedAtRecords.size() && + "Invalid ScopeIdx"); + Scope = Ctx.pImpl->ScopeInlinedAtRecords[-ScopeIdx-1].first.get(); + IA = Ctx.pImpl->ScopeInlinedAtRecords[-ScopeIdx-1].second.get(); +} + + +DebugLoc DebugLoc::get(unsigned Line, unsigned Col, + MDNode *Scope, MDNode *InlinedAt) { + DebugLoc Result; + + // If no scope is available, this is an unknown location. + if (Scope == 0) return Result; + + // Saturate line and col to "unknown". + if (Col > 255) Col = 0; + if (Line >= (1 << 24)) Line = 0; + Result.LineCol = Line | (Col << 24); + + LLVMContext &Ctx = Scope->getContext(); + + // If there is no inlined-at location, use the ScopeRecords array. + if (InlinedAt == 0) + Result.ScopeIdx = Ctx.pImpl->getOrAddScopeRecordIdxEntry(Scope, 0); + else + Result.ScopeIdx = Ctx.pImpl->getOrAddScopeInlinedAtIdxEntry(Scope, + InlinedAt, 0); + + return Result; +} + +/// getAsMDNode - This method converts the compressed DebugLoc node into a +/// DILocation compatible MDNode. +MDNode *DebugLoc::getAsMDNode(const LLVMContext &Ctx) const { + if (isUnknown()) return 0; + + MDNode *Scope, *IA; + getScopeAndInlinedAt(Scope, IA, Ctx); + assert(Scope && "If scope is null, this should be isUnknown()"); + + LLVMContext &Ctx2 = Scope->getContext(); + const Type *Int32 = Type::getInt32Ty(Ctx2); + Value *Elts[] = { + ConstantInt::get(Int32, getLine()), ConstantInt::get(Int32, getCol()), + Scope, IA + }; + return MDNode::get(Ctx2, &Elts[0], 4); +} + +/// getFromDILocation - Translate the DILocation quad into a DebugLoc. +DebugLoc DebugLoc::getFromDILocation(MDNode *N) { + if (N == 0 || N->getNumOperands() != 4) return DebugLoc(); + + MDNode *Scope = dyn_cast_or_null<MDNode>(N->getOperand(2)); + if (Scope == 0) return DebugLoc(); + + unsigned LineNo = 0, ColNo = 0; + if (ConstantInt *Line = dyn_cast_or_null<ConstantInt>(N->getOperand(0))) + LineNo = Line->getZExtValue(); + if (ConstantInt *Col = dyn_cast_or_null<ConstantInt>(N->getOperand(1))) + ColNo = Col->getZExtValue(); + + return get(LineNo, ColNo, Scope, dyn_cast_or_null<MDNode>(N->getOperand(3))); +} + +//===----------------------------------------------------------------------===// +// LLVMContextImpl Implementation +//===----------------------------------------------------------------------===// + +int LLVMContextImpl::getOrAddScopeRecordIdxEntry(MDNode *Scope, + int ExistingIdx) { + // If we already have an entry for this scope, return it. + int &Idx = ScopeRecordIdx[Scope]; + if (Idx) return Idx; + + // If we don't have an entry, but ExistingIdx is specified, use it. + if (ExistingIdx) + return Idx = ExistingIdx; + + // Otherwise add a new entry. + + // Start out ScopeRecords with a minimal reasonable size to avoid + // excessive reallocation starting out. + if (ScopeRecords.empty()) + ScopeRecords.reserve(128); + + // Index is biased by 1 for index. + Idx = ScopeRecords.size()+1; + ScopeRecords.push_back(DebugRecVH(Scope, this, Idx)); + return Idx; +} + +int LLVMContextImpl::getOrAddScopeInlinedAtIdxEntry(MDNode *Scope, MDNode *IA, + int ExistingIdx) { + // If we already have an entry, return it. + int &Idx = ScopeInlinedAtIdx[std::make_pair(Scope, IA)]; + if (Idx) return Idx; + + // If we don't have an entry, but ExistingIdx is specified, use it. + if (ExistingIdx) + return Idx = ExistingIdx; + + // Start out ScopeInlinedAtRecords with a minimal reasonable size to avoid + // excessive reallocation starting out. + if (ScopeInlinedAtRecords.empty()) + ScopeInlinedAtRecords.reserve(128); + + // Index is biased by 1 and negated. + Idx = -ScopeInlinedAtRecords.size()-1; + ScopeInlinedAtRecords.push_back(std::make_pair(DebugRecVH(Scope, this, Idx), + DebugRecVH(IA, this, Idx))); + return Idx; +} + + +//===----------------------------------------------------------------------===// +// DebugRecVH Implementation +//===----------------------------------------------------------------------===// + +/// deleted - The MDNode this is pointing to got deleted, so this pointer needs +/// to drop to null and we need remove our entry from the DenseMap. +void DebugRecVH::deleted() { + // If this is a non-canonical reference, just drop the value to null, we know + // it doesn't have a map entry. + if (Idx == 0) { + setValPtr(0); + return; + } + + MDNode *Cur = get(); + + // If the index is positive, it is an entry in ScopeRecords. + if (Idx > 0) { + assert(Ctx->ScopeRecordIdx[Cur] == Idx && "Mapping out of date!"); + Ctx->ScopeRecordIdx.erase(Cur); + // Reset this VH to null and we're done. + setValPtr(0); + Idx = 0; + return; + } + + // Otherwise, it is an entry in ScopeInlinedAtRecords, we don't know if it + // is the scope or the inlined-at record entry. + assert(unsigned(-Idx-1) < Ctx->ScopeInlinedAtRecords.size()); + std::pair<DebugRecVH, DebugRecVH> &Entry = Ctx->ScopeInlinedAtRecords[-Idx-1]; + assert((this == &Entry.first || this == &Entry.second) && + "Mapping out of date!"); + + MDNode *OldScope = Entry.first.get(); + MDNode *OldInlinedAt = Entry.second.get(); + assert(OldScope != 0 && OldInlinedAt != 0 && + "Entry should be non-canonical if either val dropped to null"); + + // Otherwise, we do have an entry in it, nuke it and we're done. + assert(Ctx->ScopeInlinedAtIdx[std::make_pair(OldScope, OldInlinedAt)] == Idx&& + "Mapping out of date"); + Ctx->ScopeInlinedAtIdx.erase(std::make_pair(OldScope, OldInlinedAt)); + + // Reset this VH to null. Drop both 'Idx' values to null to indicate that + // we're in non-canonical form now. + setValPtr(0); + Entry.first.Idx = Entry.second.Idx = 0; +} + +void DebugRecVH::allUsesReplacedWith(Value *NewVa) { + // If being replaced with a non-mdnode value (e.g. undef) handle this as if + // the mdnode got deleted. + MDNode *NewVal = dyn_cast<MDNode>(NewVa); + if (NewVal == 0) return deleted(); + + // If this is a non-canonical reference, just change it, we know it already + // doesn't have a map entry. + if (Idx == 0) { + setValPtr(NewVa); + return; + } + + MDNode *OldVal = get(); + assert(OldVal != NewVa && "Node replaced with self?"); + + // If the index is positive, it is an entry in ScopeRecords. + if (Idx > 0) { + assert(Ctx->ScopeRecordIdx[OldVal] == Idx && "Mapping out of date!"); + Ctx->ScopeRecordIdx.erase(OldVal); + setValPtr(NewVal); + + int NewEntry = Ctx->getOrAddScopeRecordIdxEntry(NewVal, Idx); + + // If NewVal already has an entry, this becomes a non-canonical reference, + // just drop Idx to 0 to signify this. + if (NewEntry != Idx) + Idx = 0; + return; + } + + // Otherwise, it is an entry in ScopeInlinedAtRecords, we don't know if it + // is the scope or the inlined-at record entry. + assert(unsigned(-Idx-1) < Ctx->ScopeInlinedAtRecords.size()); + std::pair<DebugRecVH, DebugRecVH> &Entry = Ctx->ScopeInlinedAtRecords[-Idx-1]; + assert((this == &Entry.first || this == &Entry.second) && + "Mapping out of date!"); + + MDNode *OldScope = Entry.first.get(); + MDNode *OldInlinedAt = Entry.second.get(); + assert(OldScope != 0 && OldInlinedAt != 0 && + "Entry should be non-canonical if either val dropped to null"); + + // Otherwise, we do have an entry in it, nuke it and we're done. + assert(Ctx->ScopeInlinedAtIdx[std::make_pair(OldScope, OldInlinedAt)] == Idx&& + "Mapping out of date"); + Ctx->ScopeInlinedAtIdx.erase(std::make_pair(OldScope, OldInlinedAt)); + + // Reset this VH to the new value. + setValPtr(NewVal); + + int NewIdx = Ctx->getOrAddScopeInlinedAtIdxEntry(Entry.first.get(), + Entry.second.get(), Idx); + // If NewVal already has an entry, this becomes a non-canonical reference, + // just drop Idx to 0 to signify this. + if (NewIdx != Idx) { + std::pair<DebugRecVH, DebugRecVH> &Entry=Ctx->ScopeInlinedAtRecords[-Idx-1]; + Entry.first.Idx = Entry.second.Idx = 0; + } +} diff --git a/contrib/llvm/lib/VMCore/Dominators.cpp b/contrib/llvm/lib/VMCore/Dominators.cpp new file mode 100644 index 0000000..f3dad82 --- /dev/null +++ b/contrib/llvm/lib/VMCore/Dominators.cpp @@ -0,0 +1,360 @@ +//===- Dominators.cpp - Dominator Calculation -----------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements simple dominator construction algorithms for finding +// forward dominators. Postdominators are available in libanalysis, but are not +// included in libvmcore, because it's not needed. Forward dominators are +// needed to support the Verifier pass. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/Dominators.h" +#include "llvm/Support/CFG.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/ADT/DepthFirstIterator.h" +#include "llvm/ADT/SetOperations.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/Analysis/DominatorInternals.h" +#include "llvm/Instructions.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Support/CommandLine.h" +#include <algorithm> +using namespace llvm; + +// Always verify dominfo if expensive checking is enabled. +#ifdef XDEBUG +static bool VerifyDomInfo = true; +#else +static bool VerifyDomInfo = false; +#endif +static cl::opt<bool,true> +VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo), + cl::desc("Verify dominator info (time consuming)")); + +//===----------------------------------------------------------------------===// +// DominatorTree Implementation +//===----------------------------------------------------------------------===// +// +// Provide public access to DominatorTree information. Implementation details +// can be found in DominatorCalculation.h. +// +//===----------------------------------------------------------------------===// + +TEMPLATE_INSTANTIATION(class llvm::DomTreeNodeBase<BasicBlock>); +TEMPLATE_INSTANTIATION(class llvm::DominatorTreeBase<BasicBlock>); + +char DominatorTree::ID = 0; +INITIALIZE_PASS(DominatorTree, "domtree", + "Dominator Tree Construction", true, true); + +bool DominatorTree::runOnFunction(Function &F) { + DT->recalculate(F); + return false; +} + +void DominatorTree::verifyAnalysis() const { + if (!VerifyDomInfo) return; + + Function &F = *getRoot()->getParent(); + + DominatorTree OtherDT; + OtherDT.getBase().recalculate(F); + assert(!compare(OtherDT) && "Invalid DominatorTree info!"); +} + +void DominatorTree::print(raw_ostream &OS, const Module *) const { + DT->print(OS); +} + +// dominates - Return true if A dominates a use in B. This performs the +// special checks necessary if A and B are in the same basic block. +bool DominatorTree::dominates(const Instruction *A, const Instruction *B) const{ + const BasicBlock *BBA = A->getParent(), *BBB = B->getParent(); + + // If A is an invoke instruction, its value is only available in this normal + // successor block. + if (const InvokeInst *II = dyn_cast<InvokeInst>(A)) + BBA = II->getNormalDest(); + + if (BBA != BBB) return dominates(BBA, BBB); + + // It is not possible to determine dominance between two PHI nodes + // based on their ordering. + if (isa<PHINode>(A) && isa<PHINode>(B)) + return false; + + // Loop through the basic block until we find A or B. + BasicBlock::const_iterator I = BBA->begin(); + for (; &*I != A && &*I != B; ++I) + /*empty*/; + + return &*I == A; +} + + + +//===----------------------------------------------------------------------===// +// DominanceFrontier Implementation +//===----------------------------------------------------------------------===// + +char DominanceFrontier::ID = 0; +INITIALIZE_PASS(DominanceFrontier, "domfrontier", + "Dominance Frontier Construction", true, true); + +void DominanceFrontier::verifyAnalysis() const { + if (!VerifyDomInfo) return; + + DominatorTree &DT = getAnalysis<DominatorTree>(); + + DominanceFrontier OtherDF; + const std::vector<BasicBlock*> &DTRoots = DT.getRoots(); + OtherDF.calculate(DT, DT.getNode(DTRoots[0])); + assert(!compare(OtherDF) && "Invalid DominanceFrontier info!"); +} + +// NewBB is split and now it has one successor. Update dominance frontier to +// reflect this change. +void DominanceFrontier::splitBlock(BasicBlock *NewBB) { + assert(NewBB->getTerminator()->getNumSuccessors() == 1 && + "NewBB should have a single successor!"); + BasicBlock *NewBBSucc = NewBB->getTerminator()->getSuccessor(0); + + // NewBBSucc inherits original NewBB frontier. + DominanceFrontier::iterator NewBBI = find(NewBB); + if (NewBBI != end()) + addBasicBlock(NewBBSucc, NewBBI->second); + + // If NewBB dominates NewBBSucc, then DF(NewBB) is now going to be the + // DF(NewBBSucc) without the stuff that the new block does not dominate + // a predecessor of. + DominatorTree &DT = getAnalysis<DominatorTree>(); + DomTreeNode *NewBBNode = DT.getNode(NewBB); + DomTreeNode *NewBBSuccNode = DT.getNode(NewBBSucc); + if (DT.dominates(NewBBNode, NewBBSuccNode)) { + DominanceFrontier::iterator DFI = find(NewBBSucc); + if (DFI != end()) { + DominanceFrontier::DomSetType Set = DFI->second; + // Filter out stuff in Set that we do not dominate a predecessor of. + for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(), + E = Set.end(); SetI != E;) { + bool DominatesPred = false; + for (pred_iterator PI = pred_begin(*SetI), E = pred_end(*SetI); + PI != E; ++PI) + if (DT.dominates(NewBBNode, DT.getNode(*PI))) { + DominatesPred = true; + break; + } + if (!DominatesPred) + Set.erase(SetI++); + else + ++SetI; + } + + if (NewBBI != end()) { + for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(), + E = Set.end(); SetI != E; ++SetI) { + BasicBlock *SB = *SetI; + addToFrontier(NewBBI, SB); + } + } else + addBasicBlock(NewBB, Set); + } + + } else { + // DF(NewBB) is {NewBBSucc} because NewBB does not strictly dominate + // NewBBSucc, but it does dominate itself (and there is an edge (NewBB -> + // NewBBSucc)). NewBBSucc is the single successor of NewBB. + DominanceFrontier::DomSetType NewDFSet; + NewDFSet.insert(NewBBSucc); + addBasicBlock(NewBB, NewDFSet); + } + + // Now update dominance frontiers which either used to contain NewBBSucc + // or which now need to include NewBB. + + // Collect the set of blocks which dominate a predecessor of NewBB or + // NewSuccBB and which don't dominate both. This is an initial + // approximation of the blocks whose dominance frontiers will need updates. + SmallVector<DomTreeNode *, 16> AllPredDoms; + + // Compute the block which dominates both NewBBSucc and NewBB. This is + // the immediate dominator of NewBBSucc unless NewBB dominates NewBBSucc. + // The code below which climbs dominator trees will stop at this point, + // because from this point up, dominance frontiers are unaffected. + DomTreeNode *DominatesBoth = 0; + if (NewBBSuccNode) { + DominatesBoth = NewBBSuccNode->getIDom(); + if (DominatesBoth == NewBBNode) + DominatesBoth = NewBBNode->getIDom(); + } + + // Collect the set of all blocks which dominate a predecessor of NewBB. + SmallPtrSet<DomTreeNode *, 8> NewBBPredDoms; + for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB); PI != E; ++PI) + for (DomTreeNode *DTN = DT.getNode(*PI); DTN; DTN = DTN->getIDom()) { + if (DTN == DominatesBoth) + break; + if (!NewBBPredDoms.insert(DTN)) + break; + AllPredDoms.push_back(DTN); + } + + // Collect the set of all blocks which dominate a predecessor of NewSuccBB. + SmallPtrSet<DomTreeNode *, 8> NewBBSuccPredDoms; + for (pred_iterator PI = pred_begin(NewBBSucc), + E = pred_end(NewBBSucc); PI != E; ++PI) + for (DomTreeNode *DTN = DT.getNode(*PI); DTN; DTN = DTN->getIDom()) { + if (DTN == DominatesBoth) + break; + if (!NewBBSuccPredDoms.insert(DTN)) + break; + if (!NewBBPredDoms.count(DTN)) + AllPredDoms.push_back(DTN); + } + + // Visit all relevant dominance frontiers and make any needed updates. + for (SmallVectorImpl<DomTreeNode *>::const_iterator I = AllPredDoms.begin(), + E = AllPredDoms.end(); I != E; ++I) { + DomTreeNode *DTN = *I; + iterator DFI = find((*I)->getBlock()); + + // Only consider nodes that have NewBBSucc in their dominator frontier. + if (DFI == end() || !DFI->second.count(NewBBSucc)) continue; + + // If the block dominates a predecessor of NewBB but does not properly + // dominate NewBB itself, add NewBB to its dominance frontier. + if (NewBBPredDoms.count(DTN) && + !DT.properlyDominates(DTN, NewBBNode)) + addToFrontier(DFI, NewBB); + + // If the block does not dominate a predecessor of NewBBSucc or + // properly dominates NewBBSucc itself, remove NewBBSucc from its + // dominance frontier. + if (!NewBBSuccPredDoms.count(DTN) || + DT.properlyDominates(DTN, NewBBSuccNode)) + removeFromFrontier(DFI, NewBBSucc); + } +} + +namespace { + class DFCalculateWorkObject { + public: + DFCalculateWorkObject(BasicBlock *B, BasicBlock *P, + const DomTreeNode *N, + const DomTreeNode *PN) + : currentBB(B), parentBB(P), Node(N), parentNode(PN) {} + BasicBlock *currentBB; + BasicBlock *parentBB; + const DomTreeNode *Node; + const DomTreeNode *parentNode; + }; +} + +const DominanceFrontier::DomSetType & +DominanceFrontier::calculate(const DominatorTree &DT, + const DomTreeNode *Node) { + BasicBlock *BB = Node->getBlock(); + DomSetType *Result = NULL; + + std::vector<DFCalculateWorkObject> workList; + SmallPtrSet<BasicBlock *, 32> visited; + + workList.push_back(DFCalculateWorkObject(BB, NULL, Node, NULL)); + do { + DFCalculateWorkObject *currentW = &workList.back(); + assert (currentW && "Missing work object."); + + BasicBlock *currentBB = currentW->currentBB; + BasicBlock *parentBB = currentW->parentBB; + const DomTreeNode *currentNode = currentW->Node; + const DomTreeNode *parentNode = currentW->parentNode; + assert (currentBB && "Invalid work object. Missing current Basic Block"); + assert (currentNode && "Invalid work object. Missing current Node"); + DomSetType &S = Frontiers[currentBB]; + + // Visit each block only once. + if (visited.count(currentBB) == 0) { + visited.insert(currentBB); + + // Loop over CFG successors to calculate DFlocal[currentNode] + for (succ_iterator SI = succ_begin(currentBB), SE = succ_end(currentBB); + SI != SE; ++SI) { + // Does Node immediately dominate this successor? + if (DT[*SI]->getIDom() != currentNode) + S.insert(*SI); + } + } + + // At this point, S is DFlocal. Now we union in DFup's of our children... + // Loop through and visit the nodes that Node immediately dominates (Node's + // children in the IDomTree) + bool visitChild = false; + for (DomTreeNode::const_iterator NI = currentNode->begin(), + NE = currentNode->end(); NI != NE; ++NI) { + DomTreeNode *IDominee = *NI; + BasicBlock *childBB = IDominee->getBlock(); + if (visited.count(childBB) == 0) { + workList.push_back(DFCalculateWorkObject(childBB, currentBB, + IDominee, currentNode)); + visitChild = true; + } + } + + // If all children are visited or there is any child then pop this block + // from the workList. + if (!visitChild) { + + if (!parentBB) { + Result = &S; + break; + } + + DomSetType::const_iterator CDFI = S.begin(), CDFE = S.end(); + DomSetType &parentSet = Frontiers[parentBB]; + for (; CDFI != CDFE; ++CDFI) { + if (!DT.properlyDominates(parentNode, DT[*CDFI])) + parentSet.insert(*CDFI); + } + workList.pop_back(); + } + + } while (!workList.empty()); + + return *Result; +} + +void DominanceFrontierBase::print(raw_ostream &OS, const Module* ) const { + for (const_iterator I = begin(), E = end(); I != E; ++I) { + OS << " DomFrontier for BB "; + if (I->first) + WriteAsOperand(OS, I->first, false); + else + OS << " <<exit node>>"; + OS << " is:\t"; + + const std::set<BasicBlock*> &BBs = I->second; + + for (std::set<BasicBlock*>::const_iterator I = BBs.begin(), E = BBs.end(); + I != E; ++I) { + OS << ' '; + if (*I) + WriteAsOperand(OS, *I, false); + else + OS << "<<exit node>>"; + } + OS << "\n"; + } +} + +void DominanceFrontierBase::dump() const { + print(dbgs()); +} + diff --git a/contrib/llvm/lib/VMCore/Function.cpp b/contrib/llvm/lib/VMCore/Function.cpp new file mode 100644 index 0000000..8f94efc --- /dev/null +++ b/contrib/llvm/lib/VMCore/Function.cpp @@ -0,0 +1,418 @@ +//===-- Function.cpp - Implement the Global object classes ----------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the Function class for the VMCore library. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Module.h" +#include "llvm/DerivedTypes.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/LLVMContext.h" +#include "llvm/CodeGen/ValueTypes.h" +#include "llvm/Support/CallSite.h" +#include "llvm/Support/LeakDetector.h" +#include "llvm/Support/ManagedStatic.h" +#include "llvm/Support/StringPool.h" +#include "llvm/System/RWMutex.h" +#include "llvm/System/Threading.h" +#include "SymbolTableListTraitsImpl.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/StringExtras.h" +using namespace llvm; + + +// Explicit instantiations of SymbolTableListTraits since some of the methods +// are not in the public header file... +template class llvm::SymbolTableListTraits<Argument, Function>; +template class llvm::SymbolTableListTraits<BasicBlock, Function>; + +//===----------------------------------------------------------------------===// +// Argument Implementation +//===----------------------------------------------------------------------===// + +Argument::Argument(const Type *Ty, const Twine &Name, Function *Par) + : Value(Ty, Value::ArgumentVal) { + Parent = 0; + + // Make sure that we get added to a function + LeakDetector::addGarbageObject(this); + + if (Par) + Par->getArgumentList().push_back(this); + setName(Name); +} + +void Argument::setParent(Function *parent) { + if (getParent()) + LeakDetector::addGarbageObject(this); + Parent = parent; + if (getParent()) + LeakDetector::removeGarbageObject(this); +} + +/// getArgNo - Return the index of this formal argument in its containing +/// function. For example in "void foo(int a, float b)" a is 0 and b is 1. +unsigned Argument::getArgNo() const { + const Function *F = getParent(); + assert(F && "Argument is not in a function"); + + Function::const_arg_iterator AI = F->arg_begin(); + unsigned ArgIdx = 0; + for (; &*AI != this; ++AI) + ++ArgIdx; + + return ArgIdx; +} + +/// hasByValAttr - Return true if this argument has the byval attribute on it +/// in its containing function. +bool Argument::hasByValAttr() const { + if (!getType()->isPointerTy()) return false; + return getParent()->paramHasAttr(getArgNo()+1, Attribute::ByVal); +} + +/// hasNestAttr - Return true if this argument has the nest attribute on +/// it in its containing function. +bool Argument::hasNestAttr() const { + if (!getType()->isPointerTy()) return false; + return getParent()->paramHasAttr(getArgNo()+1, Attribute::Nest); +} + +/// hasNoAliasAttr - Return true if this argument has the noalias attribute on +/// it in its containing function. +bool Argument::hasNoAliasAttr() const { + if (!getType()->isPointerTy()) return false; + return getParent()->paramHasAttr(getArgNo()+1, Attribute::NoAlias); +} + +/// hasNoCaptureAttr - Return true if this argument has the nocapture attribute +/// on it in its containing function. +bool Argument::hasNoCaptureAttr() const { + if (!getType()->isPointerTy()) return false; + return getParent()->paramHasAttr(getArgNo()+1, Attribute::NoCapture); +} + +/// hasSRetAttr - Return true if this argument has the sret attribute on +/// it in its containing function. +bool Argument::hasStructRetAttr() const { + if (!getType()->isPointerTy()) return false; + if (this != getParent()->arg_begin()) + return false; // StructRet param must be first param + return getParent()->paramHasAttr(1, Attribute::StructRet); +} + +/// addAttr - Add a Attribute to an argument +void Argument::addAttr(Attributes attr) { + getParent()->addAttribute(getArgNo() + 1, attr); +} + +/// removeAttr - Remove a Attribute from an argument +void Argument::removeAttr(Attributes attr) { + getParent()->removeAttribute(getArgNo() + 1, attr); +} + + +//===----------------------------------------------------------------------===// +// Helper Methods in Function +//===----------------------------------------------------------------------===// + +LLVMContext &Function::getContext() const { + return getType()->getContext(); +} + +const FunctionType *Function::getFunctionType() const { + return cast<FunctionType>(getType()->getElementType()); +} + +bool Function::isVarArg() const { + return getFunctionType()->isVarArg(); +} + +const Type *Function::getReturnType() const { + return getFunctionType()->getReturnType(); +} + +void Function::removeFromParent() { + getParent()->getFunctionList().remove(this); +} + +void Function::eraseFromParent() { + getParent()->getFunctionList().erase(this); +} + +//===----------------------------------------------------------------------===// +// Function Implementation +//===----------------------------------------------------------------------===// + +Function::Function(const FunctionType *Ty, LinkageTypes Linkage, + const Twine &name, Module *ParentModule) + : GlobalValue(PointerType::getUnqual(Ty), + Value::FunctionVal, 0, 0, Linkage, name) { + assert(FunctionType::isValidReturnType(getReturnType()) && + !getReturnType()->isOpaqueTy() && "invalid return type"); + SymTab = new ValueSymbolTable(); + + // If the function has arguments, mark them as lazily built. + if (Ty->getNumParams()) + setValueSubclassData(1); // Set the "has lazy arguments" bit. + + // Make sure that we get added to a function + LeakDetector::addGarbageObject(this); + + if (ParentModule) + ParentModule->getFunctionList().push_back(this); + + // Ensure intrinsics have the right parameter attributes. + if (unsigned IID = getIntrinsicID()) + setAttributes(Intrinsic::getAttributes(Intrinsic::ID(IID))); + +} + +Function::~Function() { + dropAllReferences(); // After this it is safe to delete instructions. + + // Delete all of the method arguments and unlink from symbol table... + ArgumentList.clear(); + delete SymTab; + + // Remove the function from the on-the-side GC table. + clearGC(); +} + +void Function::BuildLazyArguments() const { + // Create the arguments vector, all arguments start out unnamed. + const FunctionType *FT = getFunctionType(); + for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { + assert(!FT->getParamType(i)->isVoidTy() && + "Cannot have void typed arguments!"); + ArgumentList.push_back(new Argument(FT->getParamType(i))); + } + + // Clear the lazy arguments bit. + unsigned SDC = getSubclassDataFromValue(); + const_cast<Function*>(this)->setValueSubclassData(SDC &= ~1); +} + +size_t Function::arg_size() const { + return getFunctionType()->getNumParams(); +} +bool Function::arg_empty() const { + return getFunctionType()->getNumParams() == 0; +} + +void Function::setParent(Module *parent) { + if (getParent()) + LeakDetector::addGarbageObject(this); + Parent = parent; + if (getParent()) + LeakDetector::removeGarbageObject(this); +} + +// dropAllReferences() - This function causes all the subinstructions to "let +// go" of all references that they are maintaining. This allows one to +// 'delete' a whole class at a time, even though there may be circular +// references... first all references are dropped, and all use counts go to +// zero. Then everything is deleted for real. Note that no operations are +// valid on an object that has "dropped all references", except operator +// delete. +// +void Function::dropAllReferences() { + for (iterator I = begin(), E = end(); I != E; ++I) + I->dropAllReferences(); + + // Delete all basic blocks. + while (!BasicBlocks.empty()) { + // If there is still a reference to the block, it must be a 'blockaddress' + // constant pointing to it. Just replace the BlockAddress with undef. + BasicBlock *BB = BasicBlocks.begin(); + if (!BB->use_empty()) { + BlockAddress *BA = cast<BlockAddress>(BB->use_back()); + BA->replaceAllUsesWith(UndefValue::get(BA->getType())); + BA->destroyConstant(); + } + + BB->eraseFromParent(); + } +} + +void Function::addAttribute(unsigned i, Attributes attr) { + AttrListPtr PAL = getAttributes(); + PAL = PAL.addAttr(i, attr); + setAttributes(PAL); +} + +void Function::removeAttribute(unsigned i, Attributes attr) { + AttrListPtr PAL = getAttributes(); + PAL = PAL.removeAttr(i, attr); + setAttributes(PAL); +} + +// Maintain the GC name for each function in an on-the-side table. This saves +// allocating an additional word in Function for programs which do not use GC +// (i.e., most programs) at the cost of increased overhead for clients which do +// use GC. +static DenseMap<const Function*,PooledStringPtr> *GCNames; +static StringPool *GCNamePool; +static ManagedStatic<sys::SmartRWMutex<true> > GCLock; + +bool Function::hasGC() const { + sys::SmartScopedReader<true> Reader(*GCLock); + return GCNames && GCNames->count(this); +} + +const char *Function::getGC() const { + assert(hasGC() && "Function has no collector"); + sys::SmartScopedReader<true> Reader(*GCLock); + return *(*GCNames)[this]; +} + +void Function::setGC(const char *Str) { + sys::SmartScopedWriter<true> Writer(*GCLock); + if (!GCNamePool) + GCNamePool = new StringPool(); + if (!GCNames) + GCNames = new DenseMap<const Function*,PooledStringPtr>(); + (*GCNames)[this] = GCNamePool->intern(Str); +} + +void Function::clearGC() { + sys::SmartScopedWriter<true> Writer(*GCLock); + if (GCNames) { + GCNames->erase(this); + if (GCNames->empty()) { + delete GCNames; + GCNames = 0; + if (GCNamePool->empty()) { + delete GCNamePool; + GCNamePool = 0; + } + } + } +} + +/// copyAttributesFrom - copy all additional attributes (those not needed to +/// create a Function) from the Function Src to this one. +void Function::copyAttributesFrom(const GlobalValue *Src) { + assert(isa<Function>(Src) && "Expected a Function!"); + GlobalValue::copyAttributesFrom(Src); + const Function *SrcF = cast<Function>(Src); + setCallingConv(SrcF->getCallingConv()); + setAttributes(SrcF->getAttributes()); + if (SrcF->hasGC()) + setGC(SrcF->getGC()); + else + clearGC(); +} + +/// getIntrinsicID - This method returns the ID number of the specified +/// function, or Intrinsic::not_intrinsic if the function is not an +/// intrinsic, or if the pointer is null. This value is always defined to be +/// zero to allow easy checking for whether a function is intrinsic or not. The +/// particular intrinsic functions which correspond to this value are defined in +/// llvm/Intrinsics.h. +/// +unsigned Function::getIntrinsicID() const { + const ValueName *ValName = this->getValueName(); + if (!ValName) + return 0; + unsigned Len = ValName->getKeyLength(); + const char *Name = ValName->getKeyData(); + + if (Len < 5 || Name[4] != '.' || Name[0] != 'l' || Name[1] != 'l' + || Name[2] != 'v' || Name[3] != 'm') + return 0; // All intrinsics start with 'llvm.' + +#define GET_FUNCTION_RECOGNIZER +#include "llvm/Intrinsics.gen" +#undef GET_FUNCTION_RECOGNIZER + return 0; +} + +std::string Intrinsic::getName(ID id, const Type **Tys, unsigned numTys) { + assert(id < num_intrinsics && "Invalid intrinsic ID!"); + const char * const Table[] = { + "not_intrinsic", +#define GET_INTRINSIC_NAME_TABLE +#include "llvm/Intrinsics.gen" +#undef GET_INTRINSIC_NAME_TABLE + }; + if (numTys == 0) + return Table[id]; + std::string Result(Table[id]); + for (unsigned i = 0; i < numTys; ++i) { + if (const PointerType* PTyp = dyn_cast<PointerType>(Tys[i])) { + Result += ".p" + llvm::utostr(PTyp->getAddressSpace()) + + EVT::getEVT(PTyp->getElementType()).getEVTString(); + } + else if (Tys[i]) + Result += "." + EVT::getEVT(Tys[i]).getEVTString(); + } + return Result; +} + +const FunctionType *Intrinsic::getType(LLVMContext &Context, + ID id, const Type **Tys, + unsigned numTys) { + const Type *ResultTy = NULL; + std::vector<const Type*> ArgTys; + bool IsVarArg = false; + +#define GET_INTRINSIC_GENERATOR +#include "llvm/Intrinsics.gen" +#undef GET_INTRINSIC_GENERATOR + + return FunctionType::get(ResultTy, ArgTys, IsVarArg); +} + +bool Intrinsic::isOverloaded(ID id) { + const bool OTable[] = { + false, +#define GET_INTRINSIC_OVERLOAD_TABLE +#include "llvm/Intrinsics.gen" +#undef GET_INTRINSIC_OVERLOAD_TABLE + }; + return OTable[id]; +} + +/// This defines the "Intrinsic::getAttributes(ID id)" method. +#define GET_INTRINSIC_ATTRIBUTES +#include "llvm/Intrinsics.gen" +#undef GET_INTRINSIC_ATTRIBUTES + +Function *Intrinsic::getDeclaration(Module *M, ID id, const Type **Tys, + unsigned numTys) { + // There can never be multiple globals with the same name of different types, + // because intrinsics must be a specific type. + return + cast<Function>(M->getOrInsertFunction(getName(id, Tys, numTys), + getType(M->getContext(), + id, Tys, numTys))); +} + +// This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. +#define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN +#include "llvm/Intrinsics.gen" +#undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN + +/// hasAddressTaken - returns true if there are any uses of this function +/// other than direct calls or invokes to it. +bool Function::hasAddressTaken(const User* *PutOffender) const { + for (Value::const_use_iterator I = use_begin(), E = use_end(); I != E; ++I) { + const User *U = *I; + if (!isa<CallInst>(U) && !isa<InvokeInst>(U)) + return PutOffender ? (*PutOffender = U, true) : true; + ImmutableCallSite CS(cast<Instruction>(U)); + if (!CS.isCallee(I)) + return PutOffender ? (*PutOffender = U, true) : true; + } + return false; +} + +// vim: sw=2 ai diff --git a/contrib/llvm/lib/VMCore/GVMaterializer.cpp b/contrib/llvm/lib/VMCore/GVMaterializer.cpp new file mode 100644 index 0000000..f77a9c9 --- /dev/null +++ b/contrib/llvm/lib/VMCore/GVMaterializer.cpp @@ -0,0 +1,18 @@ +//===-- GVMaterializer.cpp - Base implementation for GV materializers -----===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// Minimal implementation of the abstract interface for materializing +// GlobalValues. +// +//===----------------------------------------------------------------------===// + +#include "llvm/GVMaterializer.h" +using namespace llvm; + +GVMaterializer::~GVMaterializer() {} diff --git a/contrib/llvm/lib/VMCore/Globals.cpp b/contrib/llvm/lib/VMCore/Globals.cpp new file mode 100644 index 0000000..96716ee --- /dev/null +++ b/contrib/llvm/lib/VMCore/Globals.cpp @@ -0,0 +1,310 @@ +//===-- Globals.cpp - Implement the GlobalValue & GlobalVariable class ----===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the GlobalValue & GlobalVariable classes for the VMCore +// library. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Constants.h" +#include "llvm/GlobalVariable.h" +#include "llvm/GlobalAlias.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Module.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/LeakDetector.h" +using namespace llvm; + +//===----------------------------------------------------------------------===// +// GlobalValue Class +//===----------------------------------------------------------------------===// + +/// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove +/// it. This involves recursively eliminating any dead users of the +/// constantexpr. +static bool removeDeadUsersOfConstant(const Constant *C) { + if (isa<GlobalValue>(C)) return false; // Cannot remove this + + while (!C->use_empty()) { + const Constant *User = dyn_cast<Constant>(C->use_back()); + if (!User) return false; // Non-constant usage; + if (!removeDeadUsersOfConstant(User)) + return false; // Constant wasn't dead + } + + const_cast<Constant*>(C)->destroyConstant(); + return true; +} + +bool GlobalValue::isMaterializable() const { + return getParent() && getParent()->isMaterializable(this); +} +bool GlobalValue::isDematerializable() const { + return getParent() && getParent()->isDematerializable(this); +} +bool GlobalValue::Materialize(std::string *ErrInfo) { + return getParent()->Materialize(this, ErrInfo); +} +void GlobalValue::Dematerialize() { + getParent()->Dematerialize(this); +} + +/// removeDeadConstantUsers - If there are any dead constant users dangling +/// off of this global value, remove them. This method is useful for clients +/// that want to check to see if a global is unused, but don't want to deal +/// with potentially dead constants hanging off of the globals. +void GlobalValue::removeDeadConstantUsers() const { + Value::const_use_iterator I = use_begin(), E = use_end(); + Value::const_use_iterator LastNonDeadUser = E; + while (I != E) { + if (const Constant *User = dyn_cast<Constant>(*I)) { + if (!removeDeadUsersOfConstant(User)) { + // If the constant wasn't dead, remember that this was the last live use + // and move on to the next constant. + LastNonDeadUser = I; + ++I; + } else { + // If the constant was dead, then the iterator is invalidated. + if (LastNonDeadUser == E) { + I = use_begin(); + if (I == E) break; + } else { + I = LastNonDeadUser; + ++I; + } + } + } else { + LastNonDeadUser = I; + ++I; + } + } +} + + +/// Override destroyConstant to make sure it doesn't get called on +/// GlobalValue's because they shouldn't be treated like other constants. +void GlobalValue::destroyConstant() { + llvm_unreachable("You can't GV->destroyConstant()!"); +} + +/// copyAttributesFrom - copy all additional attributes (those not needed to +/// create a GlobalValue) from the GlobalValue Src to this one. +void GlobalValue::copyAttributesFrom(const GlobalValue *Src) { + setAlignment(Src->getAlignment()); + setSection(Src->getSection()); + setVisibility(Src->getVisibility()); +} + +void GlobalValue::setAlignment(unsigned Align) { + assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); + assert(Align <= MaximumAlignment && + "Alignment is greater than MaximumAlignment!"); + Alignment = Log2_32(Align) + 1; + assert(getAlignment() == Align && "Alignment representation error!"); +} + +//===----------------------------------------------------------------------===// +// GlobalVariable Implementation +//===----------------------------------------------------------------------===// + +GlobalVariable::GlobalVariable(const Type *Ty, bool constant, LinkageTypes Link, + Constant *InitVal, const Twine &Name, + bool ThreadLocal, unsigned AddressSpace) + : GlobalValue(PointerType::get(Ty, AddressSpace), + Value::GlobalVariableVal, + OperandTraits<GlobalVariable>::op_begin(this), + InitVal != 0, Link, Name), + isConstantGlobal(constant), isThreadLocalSymbol(ThreadLocal) { + if (InitVal) { + assert(InitVal->getType() == Ty && + "Initializer should be the same type as the GlobalVariable!"); + Op<0>() = InitVal; + } + + LeakDetector::addGarbageObject(this); +} + +GlobalVariable::GlobalVariable(Module &M, const Type *Ty, bool constant, + LinkageTypes Link, Constant *InitVal, + const Twine &Name, + GlobalVariable *Before, bool ThreadLocal, + unsigned AddressSpace) + : GlobalValue(PointerType::get(Ty, AddressSpace), + Value::GlobalVariableVal, + OperandTraits<GlobalVariable>::op_begin(this), + InitVal != 0, Link, Name), + isConstantGlobal(constant), isThreadLocalSymbol(ThreadLocal) { + if (InitVal) { + assert(InitVal->getType() == Ty && + "Initializer should be the same type as the GlobalVariable!"); + Op<0>() = InitVal; + } + + LeakDetector::addGarbageObject(this); + + if (Before) + Before->getParent()->getGlobalList().insert(Before, this); + else + M.getGlobalList().push_back(this); +} + +void GlobalVariable::setParent(Module *parent) { + if (getParent()) + LeakDetector::addGarbageObject(this); + Parent = parent; + if (getParent()) + LeakDetector::removeGarbageObject(this); +} + +void GlobalVariable::removeFromParent() { + getParent()->getGlobalList().remove(this); +} + +void GlobalVariable::eraseFromParent() { + getParent()->getGlobalList().erase(this); +} + +void GlobalVariable::replaceUsesOfWithOnConstant(Value *From, Value *To, + Use *U) { + // If you call this, then you better know this GVar has a constant + // initializer worth replacing. Enforce that here. + assert(getNumOperands() == 1 && + "Attempt to replace uses of Constants on a GVar with no initializer"); + + // And, since you know it has an initializer, the From value better be + // the initializer :) + assert(getOperand(0) == From && + "Attempt to replace wrong constant initializer in GVar"); + + // And, you better have a constant for the replacement value + assert(isa<Constant>(To) && + "Attempt to replace GVar initializer with non-constant"); + + // Okay, preconditions out of the way, replace the constant initializer. + this->setOperand(0, cast<Constant>(To)); +} + +void GlobalVariable::setInitializer(Constant *InitVal) { + if (InitVal == 0) { + if (hasInitializer()) { + Op<0>().set(0); + NumOperands = 0; + } + } else { + assert(InitVal->getType() == getType()->getElementType() && + "Initializer type must match GlobalVariable type"); + if (!hasInitializer()) + NumOperands = 1; + Op<0>().set(InitVal); + } +} + +/// copyAttributesFrom - copy all additional attributes (those not needed to +/// create a GlobalVariable) from the GlobalVariable Src to this one. +void GlobalVariable::copyAttributesFrom(const GlobalValue *Src) { + assert(isa<GlobalVariable>(Src) && "Expected a GlobalVariable!"); + GlobalValue::copyAttributesFrom(Src); + const GlobalVariable *SrcVar = cast<GlobalVariable>(Src); + setThreadLocal(SrcVar->isThreadLocal()); +} + + +//===----------------------------------------------------------------------===// +// GlobalAlias Implementation +//===----------------------------------------------------------------------===// + +GlobalAlias::GlobalAlias(const Type *Ty, LinkageTypes Link, + const Twine &Name, Constant* aliasee, + Module *ParentModule) + : GlobalValue(Ty, Value::GlobalAliasVal, &Op<0>(), 1, Link, Name) { + LeakDetector::addGarbageObject(this); + + if (aliasee) + assert(aliasee->getType() == Ty && "Alias and aliasee types should match!"); + Op<0>() = aliasee; + + if (ParentModule) + ParentModule->getAliasList().push_back(this); +} + +void GlobalAlias::setParent(Module *parent) { + if (getParent()) + LeakDetector::addGarbageObject(this); + Parent = parent; + if (getParent()) + LeakDetector::removeGarbageObject(this); +} + +void GlobalAlias::removeFromParent() { + getParent()->getAliasList().remove(this); +} + +void GlobalAlias::eraseFromParent() { + getParent()->getAliasList().erase(this); +} + +bool GlobalAlias::isDeclaration() const { + const GlobalValue* AV = getAliasedGlobal(); + if (AV) + return AV->isDeclaration(); + else + return false; +} + +void GlobalAlias::setAliasee(Constant *Aliasee) +{ + if (Aliasee) + assert(Aliasee->getType() == getType() && + "Alias and aliasee types should match!"); + + setOperand(0, Aliasee); +} + +const GlobalValue *GlobalAlias::getAliasedGlobal() const { + const Constant *C = getAliasee(); + if (C) { + if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) + return GV; + else { + const ConstantExpr *CE = 0; + if ((CE = dyn_cast<ConstantExpr>(C)) && + (CE->getOpcode() == Instruction::BitCast || + CE->getOpcode() == Instruction::GetElementPtr)) + return dyn_cast<GlobalValue>(CE->getOperand(0)); + else + llvm_unreachable("Unsupported aliasee"); + } + } + return 0; +} + +const GlobalValue *GlobalAlias::resolveAliasedGlobal(bool stopOnWeak) const { + SmallPtrSet<const GlobalValue*, 3> Visited; + + // Check if we need to stop early. + if (stopOnWeak && mayBeOverridden()) + return this; + + const GlobalValue *GV = getAliasedGlobal(); + Visited.insert(GV); + + // Iterate over aliasing chain, stopping on weak alias if necessary. + while (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV)) { + if (stopOnWeak && GA->mayBeOverridden()) + break; + + GV = GA->getAliasedGlobal(); + + if (!Visited.insert(GV)) + return NULL; + } + + return GV; +} diff --git a/contrib/llvm/lib/VMCore/IRBuilder.cpp b/contrib/llvm/lib/VMCore/IRBuilder.cpp new file mode 100644 index 0000000..c1b783c --- /dev/null +++ b/contrib/llvm/lib/VMCore/IRBuilder.cpp @@ -0,0 +1,38 @@ +//===---- IRBuilder.cpp - Builder for LLVM Instrs -------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the IRBuilder class, which is used as a convenient way +// to create LLVM instructions with a consistent and simplified interface. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Support/IRBuilder.h" +#include "llvm/GlobalVariable.h" +#include "llvm/Function.h" +#include "llvm/LLVMContext.h" +using namespace llvm; + +/// CreateGlobalString - Make a new global variable with an initializer that +/// has array of i8 type filled in with the nul terminated string value +/// specified. If Name is specified, it is the name of the global variable +/// created. +Value *IRBuilderBase::CreateGlobalString(const char *Str, const Twine &Name) { + Constant *StrConstant = ConstantArray::get(Context, Str, true); + Module &M = *BB->getParent()->getParent(); + GlobalVariable *GV = new GlobalVariable(M, StrConstant->getType(), + true, GlobalValue::InternalLinkage, + StrConstant, "", 0, false); + GV->setName(Name); + return GV; +} + +const Type *IRBuilderBase::getCurrentFunctionReturnType() const { + assert(BB && BB->getParent() && "No current function!"); + return BB->getParent()->getReturnType(); +} diff --git a/contrib/llvm/lib/VMCore/InlineAsm.cpp b/contrib/llvm/lib/VMCore/InlineAsm.cpp new file mode 100644 index 0000000..69f713b --- /dev/null +++ b/contrib/llvm/lib/VMCore/InlineAsm.cpp @@ -0,0 +1,238 @@ +//===-- InlineAsm.cpp - Implement the InlineAsm class ---------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the InlineAsm class. +// +//===----------------------------------------------------------------------===// + +#include "llvm/InlineAsm.h" +#include "ConstantsContext.h" +#include "LLVMContextImpl.h" +#include "llvm/DerivedTypes.h" +#include <algorithm> +#include <cctype> +using namespace llvm; + +// Implement the first virtual method in this class in this file so the +// InlineAsm vtable is emitted here. +InlineAsm::~InlineAsm() { +} + + +InlineAsm *InlineAsm::get(const FunctionType *Ty, StringRef AsmString, + StringRef Constraints, bool hasSideEffects, + bool isAlignStack) { + InlineAsmKeyType Key(AsmString, Constraints, hasSideEffects, isAlignStack); + LLVMContextImpl *pImpl = Ty->getContext().pImpl; + return pImpl->InlineAsms.getOrCreate(PointerType::getUnqual(Ty), Key); +} + +InlineAsm::InlineAsm(const PointerType *Ty, const std::string &asmString, + const std::string &constraints, bool hasSideEffects, + bool isAlignStack) + : Value(Ty, Value::InlineAsmVal), + AsmString(asmString), + Constraints(constraints), HasSideEffects(hasSideEffects), + IsAlignStack(isAlignStack) { + + // Do various checks on the constraint string and type. + assert(Verify(getFunctionType(), constraints) && + "Function type not legal for constraints!"); +} + +void InlineAsm::destroyConstant() { + delete this; +} + +const FunctionType *InlineAsm::getFunctionType() const { + return cast<FunctionType>(getType()->getElementType()); +} + +/// Parse - Analyze the specified string (e.g. "==&{eax}") and fill in the +/// fields in this structure. If the constraint string is not understood, +/// return true, otherwise return false. +bool InlineAsm::ConstraintInfo::Parse(StringRef Str, + std::vector<InlineAsm::ConstraintInfo> &ConstraintsSoFar) { + StringRef::iterator I = Str.begin(), E = Str.end(); + + // Initialize + Type = isInput; + isEarlyClobber = false; + MatchingInput = -1; + isCommutative = false; + isIndirect = false; + + // Parse prefixes. + if (*I == '~') { + Type = isClobber; + ++I; + } else if (*I == '=') { + ++I; + Type = isOutput; + } + + if (*I == '*') { + isIndirect = true; + ++I; + } + + if (I == E) return true; // Just a prefix, like "==" or "~". + + // Parse the modifiers. + bool DoneWithModifiers = false; + while (!DoneWithModifiers) { + switch (*I) { + default: + DoneWithModifiers = true; + break; + case '&': // Early clobber. + if (Type != isOutput || // Cannot early clobber anything but output. + isEarlyClobber) // Reject &&&&&& + return true; + isEarlyClobber = true; + break; + case '%': // Commutative. + if (Type == isClobber || // Cannot commute clobbers. + isCommutative) // Reject %%%%% + return true; + isCommutative = true; + break; + case '#': // Comment. + case '*': // Register preferencing. + return true; // Not supported. + } + + if (!DoneWithModifiers) { + ++I; + if (I == E) return true; // Just prefixes and modifiers! + } + } + + // Parse the various constraints. + while (I != E) { + if (*I == '{') { // Physical register reference. + // Find the end of the register name. + StringRef::iterator ConstraintEnd = std::find(I+1, E, '}'); + if (ConstraintEnd == E) return true; // "{foo" + Codes.push_back(std::string(I, ConstraintEnd+1)); + I = ConstraintEnd+1; + } else if (isdigit(*I)) { // Matching Constraint + // Maximal munch numbers. + StringRef::iterator NumStart = I; + while (I != E && isdigit(*I)) + ++I; + Codes.push_back(std::string(NumStart, I)); + unsigned N = atoi(Codes.back().c_str()); + // Check that this is a valid matching constraint! + if (N >= ConstraintsSoFar.size() || ConstraintsSoFar[N].Type != isOutput|| + Type != isInput) + return true; // Invalid constraint number. + + // If Operand N already has a matching input, reject this. An output + // can't be constrained to the same value as multiple inputs. + if (ConstraintsSoFar[N].hasMatchingInput()) + return true; + + // Note that operand #n has a matching input. + ConstraintsSoFar[N].MatchingInput = ConstraintsSoFar.size(); + } else { + // Single letter constraint. + Codes.push_back(std::string(I, I+1)); + ++I; + } + } + + return false; +} + +std::vector<InlineAsm::ConstraintInfo> +InlineAsm::ParseConstraints(StringRef Constraints) { + std::vector<ConstraintInfo> Result; + + // Scan the constraints string. + for (StringRef::iterator I = Constraints.begin(), + E = Constraints.end(); I != E; ) { + ConstraintInfo Info; + + // Find the end of this constraint. + StringRef::iterator ConstraintEnd = std::find(I, E, ','); + + if (ConstraintEnd == I || // Empty constraint like ",," + Info.Parse(StringRef(I, ConstraintEnd-I), Result)) { + Result.clear(); // Erroneous constraint? + break; + } + + Result.push_back(Info); + + // ConstraintEnd may be either the next comma or the end of the string. In + // the former case, we skip the comma. + I = ConstraintEnd; + if (I != E) { + ++I; + if (I == E) { Result.clear(); break; } // don't allow "xyz," + } + } + + return Result; +} + + +/// Verify - Verify that the specified constraint string is reasonable for the +/// specified function type, and otherwise validate the constraint string. +bool InlineAsm::Verify(const FunctionType *Ty, StringRef ConstStr) { + if (Ty->isVarArg()) return false; + + std::vector<ConstraintInfo> Constraints = ParseConstraints(ConstStr); + + // Error parsing constraints. + if (Constraints.empty() && !ConstStr.empty()) return false; + + unsigned NumOutputs = 0, NumInputs = 0, NumClobbers = 0; + unsigned NumIndirect = 0; + + for (unsigned i = 0, e = Constraints.size(); i != e; ++i) { + switch (Constraints[i].Type) { + case InlineAsm::isOutput: + if ((NumInputs-NumIndirect) != 0 || NumClobbers != 0) + return false; // outputs before inputs and clobbers. + if (!Constraints[i].isIndirect) { + ++NumOutputs; + break; + } + ++NumIndirect; + // FALLTHROUGH for Indirect Outputs. + case InlineAsm::isInput: + if (NumClobbers) return false; // inputs before clobbers. + ++NumInputs; + break; + case InlineAsm::isClobber: + ++NumClobbers; + break; + } + } + + switch (NumOutputs) { + case 0: + if (!Ty->getReturnType()->isVoidTy()) return false; + break; + case 1: + if (Ty->getReturnType()->isStructTy()) return false; + break; + default: + const StructType *STy = dyn_cast<StructType>(Ty->getReturnType()); + if (STy == 0 || STy->getNumElements() != NumOutputs) + return false; + break; + } + + if (Ty->getNumParams() != NumInputs) return false; + return true; +} + diff --git a/contrib/llvm/lib/VMCore/Instruction.cpp b/contrib/llvm/lib/VMCore/Instruction.cpp new file mode 100644 index 0000000..05bed4c --- /dev/null +++ b/contrib/llvm/lib/VMCore/Instruction.cpp @@ -0,0 +1,454 @@ +//===-- Instruction.cpp - Implement the Instruction class -----------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the Instruction class for the VMCore library. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Instruction.h" +#include "llvm/Type.h" +#include "llvm/Instructions.h" +#include "llvm/Constants.h" +#include "llvm/Module.h" +#include "llvm/Support/CallSite.h" +#include "llvm/Support/LeakDetector.h" +using namespace llvm; + +Instruction::Instruction(const Type *ty, unsigned it, Use *Ops, unsigned NumOps, + Instruction *InsertBefore) + : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(0) { + // Make sure that we get added to a basicblock + LeakDetector::addGarbageObject(this); + + // If requested, insert this instruction into a basic block... + if (InsertBefore) { + assert(InsertBefore->getParent() && + "Instruction to insert before is not in a basic block!"); + InsertBefore->getParent()->getInstList().insert(InsertBefore, this); + } +} + +Instruction::Instruction(const Type *ty, unsigned it, Use *Ops, unsigned NumOps, + BasicBlock *InsertAtEnd) + : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(0) { + // Make sure that we get added to a basicblock + LeakDetector::addGarbageObject(this); + + // append this instruction into the basic block + assert(InsertAtEnd && "Basic block to append to may not be NULL!"); + InsertAtEnd->getInstList().push_back(this); +} + + +// Out of line virtual method, so the vtable, etc has a home. +Instruction::~Instruction() { + assert(Parent == 0 && "Instruction still linked in the program!"); + if (hasMetadataHashEntry()) + clearMetadataHashEntries(); +} + + +void Instruction::setParent(BasicBlock *P) { + if (getParent()) { + if (!P) LeakDetector::addGarbageObject(this); + } else { + if (P) LeakDetector::removeGarbageObject(this); + } + + Parent = P; +} + +void Instruction::removeFromParent() { + getParent()->getInstList().remove(this); +} + +void Instruction::eraseFromParent() { + getParent()->getInstList().erase(this); +} + +/// insertBefore - Insert an unlinked instructions into a basic block +/// immediately before the specified instruction. +void Instruction::insertBefore(Instruction *InsertPos) { + InsertPos->getParent()->getInstList().insert(InsertPos, this); +} + +/// insertAfter - Insert an unlinked instructions into a basic block +/// immediately after the specified instruction. +void Instruction::insertAfter(Instruction *InsertPos) { + InsertPos->getParent()->getInstList().insertAfter(InsertPos, this); +} + +/// moveBefore - Unlink this instruction from its current basic block and +/// insert it into the basic block that MovePos lives in, right before +/// MovePos. +void Instruction::moveBefore(Instruction *MovePos) { + MovePos->getParent()->getInstList().splice(MovePos,getParent()->getInstList(), + this); +} + + +const char *Instruction::getOpcodeName(unsigned OpCode) { + switch (OpCode) { + // Terminators + case Ret: return "ret"; + case Br: return "br"; + case Switch: return "switch"; + case IndirectBr: return "indirectbr"; + case Invoke: return "invoke"; + case Unwind: return "unwind"; + case Unreachable: return "unreachable"; + + // Standard binary operators... + case Add: return "add"; + case FAdd: return "fadd"; + case Sub: return "sub"; + case FSub: return "fsub"; + case Mul: return "mul"; + case FMul: return "fmul"; + case UDiv: return "udiv"; + case SDiv: return "sdiv"; + case FDiv: return "fdiv"; + case URem: return "urem"; + case SRem: return "srem"; + case FRem: return "frem"; + + // Logical operators... + case And: return "and"; + case Or : return "or"; + case Xor: return "xor"; + + // Memory instructions... + case Alloca: return "alloca"; + case Load: return "load"; + case Store: return "store"; + case GetElementPtr: return "getelementptr"; + + // Convert instructions... + case Trunc: return "trunc"; + case ZExt: return "zext"; + case SExt: return "sext"; + case FPTrunc: return "fptrunc"; + case FPExt: return "fpext"; + case FPToUI: return "fptoui"; + case FPToSI: return "fptosi"; + case UIToFP: return "uitofp"; + case SIToFP: return "sitofp"; + case IntToPtr: return "inttoptr"; + case PtrToInt: return "ptrtoint"; + case BitCast: return "bitcast"; + + // Other instructions... + case ICmp: return "icmp"; + case FCmp: return "fcmp"; + case PHI: return "phi"; + case Select: return "select"; + case Call: return "call"; + case Shl: return "shl"; + case LShr: return "lshr"; + case AShr: return "ashr"; + case VAArg: return "va_arg"; + case ExtractElement: return "extractelement"; + case InsertElement: return "insertelement"; + case ShuffleVector: return "shufflevector"; + case ExtractValue: return "extractvalue"; + case InsertValue: return "insertvalue"; + + default: return "<Invalid operator> "; + } + + return 0; +} + +/// isIdenticalTo - Return true if the specified instruction is exactly +/// identical to the current one. This means that all operands match and any +/// extra information (e.g. load is volatile) agree. +bool Instruction::isIdenticalTo(const Instruction *I) const { + return isIdenticalToWhenDefined(I) && + SubclassOptionalData == I->SubclassOptionalData; +} + +/// isIdenticalToWhenDefined - This is like isIdenticalTo, except that it +/// ignores the SubclassOptionalData flags, which specify conditions +/// under which the instruction's result is undefined. +bool Instruction::isIdenticalToWhenDefined(const Instruction *I) const { + if (getOpcode() != I->getOpcode() || + getNumOperands() != I->getNumOperands() || + getType() != I->getType()) + return false; + + // We have two instructions of identical opcode and #operands. Check to see + // if all operands are the same. + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) + if (getOperand(i) != I->getOperand(i)) + return false; + + // Check special state that is a part of some instructions. + if (const LoadInst *LI = dyn_cast<LoadInst>(this)) + return LI->isVolatile() == cast<LoadInst>(I)->isVolatile() && + LI->getAlignment() == cast<LoadInst>(I)->getAlignment(); + if (const StoreInst *SI = dyn_cast<StoreInst>(this)) + return SI->isVolatile() == cast<StoreInst>(I)->isVolatile() && + SI->getAlignment() == cast<StoreInst>(I)->getAlignment(); + if (const CmpInst *CI = dyn_cast<CmpInst>(this)) + return CI->getPredicate() == cast<CmpInst>(I)->getPredicate(); + if (const CallInst *CI = dyn_cast<CallInst>(this)) + return CI->isTailCall() == cast<CallInst>(I)->isTailCall() && + CI->getCallingConv() == cast<CallInst>(I)->getCallingConv() && + CI->getAttributes().getRawPointer() == + cast<CallInst>(I)->getAttributes().getRawPointer(); + if (const InvokeInst *CI = dyn_cast<InvokeInst>(this)) + return CI->getCallingConv() == cast<InvokeInst>(I)->getCallingConv() && + CI->getAttributes().getRawPointer() == + cast<InvokeInst>(I)->getAttributes().getRawPointer(); + if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(this)) { + if (IVI->getNumIndices() != cast<InsertValueInst>(I)->getNumIndices()) + return false; + for (unsigned i = 0, e = IVI->getNumIndices(); i != e; ++i) + if (IVI->idx_begin()[i] != cast<InsertValueInst>(I)->idx_begin()[i]) + return false; + return true; + } + if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(this)) { + if (EVI->getNumIndices() != cast<ExtractValueInst>(I)->getNumIndices()) + return false; + for (unsigned i = 0, e = EVI->getNumIndices(); i != e; ++i) + if (EVI->idx_begin()[i] != cast<ExtractValueInst>(I)->idx_begin()[i]) + return false; + return true; + } + + return true; +} + +// isSameOperationAs +// This should be kept in sync with isEquivalentOperation in +// lib/Transforms/IPO/MergeFunctions.cpp. +bool Instruction::isSameOperationAs(const Instruction *I) const { + if (getOpcode() != I->getOpcode() || + getNumOperands() != I->getNumOperands() || + getType() != I->getType()) + return false; + + // We have two instructions of identical opcode and #operands. Check to see + // if all operands are the same type + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) + if (getOperand(i)->getType() != I->getOperand(i)->getType()) + return false; + + // Check special state that is a part of some instructions. + if (const LoadInst *LI = dyn_cast<LoadInst>(this)) + return LI->isVolatile() == cast<LoadInst>(I)->isVolatile() && + LI->getAlignment() == cast<LoadInst>(I)->getAlignment(); + if (const StoreInst *SI = dyn_cast<StoreInst>(this)) + return SI->isVolatile() == cast<StoreInst>(I)->isVolatile() && + SI->getAlignment() == cast<StoreInst>(I)->getAlignment(); + if (const CmpInst *CI = dyn_cast<CmpInst>(this)) + return CI->getPredicate() == cast<CmpInst>(I)->getPredicate(); + if (const CallInst *CI = dyn_cast<CallInst>(this)) + return CI->isTailCall() == cast<CallInst>(I)->isTailCall() && + CI->getCallingConv() == cast<CallInst>(I)->getCallingConv() && + CI->getAttributes().getRawPointer() == + cast<CallInst>(I)->getAttributes().getRawPointer(); + if (const InvokeInst *CI = dyn_cast<InvokeInst>(this)) + return CI->getCallingConv() == cast<InvokeInst>(I)->getCallingConv() && + CI->getAttributes().getRawPointer() == + cast<InvokeInst>(I)->getAttributes().getRawPointer(); + if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(this)) { + if (IVI->getNumIndices() != cast<InsertValueInst>(I)->getNumIndices()) + return false; + for (unsigned i = 0, e = IVI->getNumIndices(); i != e; ++i) + if (IVI->idx_begin()[i] != cast<InsertValueInst>(I)->idx_begin()[i]) + return false; + return true; + } + if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(this)) { + if (EVI->getNumIndices() != cast<ExtractValueInst>(I)->getNumIndices()) + return false; + for (unsigned i = 0, e = EVI->getNumIndices(); i != e; ++i) + if (EVI->idx_begin()[i] != cast<ExtractValueInst>(I)->idx_begin()[i]) + return false; + return true; + } + + return true; +} + +/// isUsedOutsideOfBlock - Return true if there are any uses of I outside of the +/// specified block. Note that PHI nodes are considered to evaluate their +/// operands in the corresponding predecessor block. +bool Instruction::isUsedOutsideOfBlock(const BasicBlock *BB) const { + for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { + // PHI nodes uses values in the corresponding predecessor block. For other + // instructions, just check to see whether the parent of the use matches up. + const User *U = *UI; + const PHINode *PN = dyn_cast<PHINode>(U); + if (PN == 0) { + if (cast<Instruction>(U)->getParent() != BB) + return true; + continue; + } + + if (PN->getIncomingBlock(UI) != BB) + return true; + } + return false; +} + +/// mayReadFromMemory - Return true if this instruction may read memory. +/// +bool Instruction::mayReadFromMemory() const { + switch (getOpcode()) { + default: return false; + case Instruction::VAArg: + case Instruction::Load: + return true; + case Instruction::Call: + return !cast<CallInst>(this)->doesNotAccessMemory(); + case Instruction::Invoke: + return !cast<InvokeInst>(this)->doesNotAccessMemory(); + case Instruction::Store: + return cast<StoreInst>(this)->isVolatile(); + } +} + +/// mayWriteToMemory - Return true if this instruction may modify memory. +/// +bool Instruction::mayWriteToMemory() const { + switch (getOpcode()) { + default: return false; + case Instruction::Store: + case Instruction::VAArg: + return true; + case Instruction::Call: + return !cast<CallInst>(this)->onlyReadsMemory(); + case Instruction::Invoke: + return !cast<InvokeInst>(this)->onlyReadsMemory(); + case Instruction::Load: + return cast<LoadInst>(this)->isVolatile(); + } +} + +/// mayThrow - Return true if this instruction may throw an exception. +/// +bool Instruction::mayThrow() const { + if (const CallInst *CI = dyn_cast<CallInst>(this)) + return !CI->doesNotThrow(); + return false; +} + +/// isAssociative - Return true if the instruction is associative: +/// +/// Associative operators satisfy: x op (y op z) === (x op y) op z +/// +/// In LLVM, the Add, Mul, And, Or, and Xor operators are associative. +/// +bool Instruction::isAssociative(unsigned Opcode, const Type *Ty) { + return Opcode == And || Opcode == Or || Opcode == Xor || + Opcode == Add || Opcode == Mul; +} + +/// isCommutative - Return true if the instruction is commutative: +/// +/// Commutative operators satisfy: (x op y) === (y op x) +/// +/// In LLVM, these are the associative operators, plus SetEQ and SetNE, when +/// applied to any type. +/// +bool Instruction::isCommutative(unsigned op) { + switch (op) { + case Add: + case FAdd: + case Mul: + case FMul: + case And: + case Or: + case Xor: + return true; + default: + return false; + } +} + +bool Instruction::isSafeToSpeculativelyExecute() const { + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) + if (Constant *C = dyn_cast<Constant>(getOperand(i))) + if (C->canTrap()) + return false; + + switch (getOpcode()) { + default: + return true; + case UDiv: + case URem: { + // x / y is undefined if y == 0, but calcuations like x / 3 are safe. + ConstantInt *Op = dyn_cast<ConstantInt>(getOperand(1)); + return Op && !Op->isNullValue(); + } + case SDiv: + case SRem: { + // x / y is undefined if y == 0, and might be undefined if y == -1, + // but calcuations like x / 3 are safe. + ConstantInt *Op = dyn_cast<ConstantInt>(getOperand(1)); + return Op && !Op->isNullValue() && !Op->isAllOnesValue(); + } + case Load: { + if (cast<LoadInst>(this)->isVolatile()) + return false; + // Note that it is not safe to speculate into a malloc'd region because + // malloc may return null. + // It's also not safe to follow a bitcast, for example: + // bitcast i8* (alloca i8) to i32* + // would result in a 4-byte load from a 1-byte alloca. + Value *Op0 = getOperand(0); + if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0)) { + // TODO: it's safe to do this for any GEP with constant indices that + // compute inside the allocated type, but not for any inbounds gep. + if (GEP->hasAllZeroIndices()) + Op0 = GEP->getPointerOperand(); + } + if (isa<AllocaInst>(Op0)) + return true; + if (GlobalVariable *GV = dyn_cast<GlobalVariable>(getOperand(0))) + return !GV->hasExternalWeakLinkage(); + return false; + } + case Call: + return false; // The called function could have undefined behavior or + // side-effects. + // FIXME: We should special-case some intrinsics (bswap, + // overflow-checking arithmetic, etc.) + case VAArg: + case Alloca: + case Invoke: + case PHI: + case Store: + case Ret: + case Br: + case IndirectBr: + case Switch: + case Unwind: + case Unreachable: + return false; // Misc instructions which have effects + } +} + +Instruction *Instruction::clone() const { + Instruction *New = clone_impl(); + New->SubclassOptionalData = SubclassOptionalData; + if (!hasMetadata()) + return New; + + // Otherwise, enumerate and copy over metadata from the old instruction to the + // new one. + SmallVector<std::pair<unsigned, MDNode*>, 4> TheMDs; + getAllMetadata(TheMDs); + for (unsigned i = 0, e = TheMDs.size(); i != e; ++i) + New->setMetadata(TheMDs[i].first, TheMDs[i].second); + return New; +} diff --git a/contrib/llvm/lib/VMCore/Instructions.cpp b/contrib/llvm/lib/VMCore/Instructions.cpp new file mode 100644 index 0000000..401802e --- /dev/null +++ b/contrib/llvm/lib/VMCore/Instructions.cpp @@ -0,0 +1,3374 @@ +//===-- Instructions.cpp - Implement the LLVM instructions ----------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements all of the non-inline methods for the LLVM instruction +// classes. +// +//===----------------------------------------------------------------------===// + +#include "LLVMContextImpl.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Function.h" +#include "llvm/Instructions.h" +#include "llvm/Module.h" +#include "llvm/Operator.h" +#include "llvm/Analysis/Dominators.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/CallSite.h" +#include "llvm/Support/ConstantRange.h" +#include "llvm/Support/MathExtras.h" +using namespace llvm; + +//===----------------------------------------------------------------------===// +// CallSite Class +//===----------------------------------------------------------------------===// + +User::op_iterator CallSite::getCallee() const { + Instruction *II(getInstruction()); + return isCall() + ? cast<CallInst>(II)->op_end() - 1 // Skip Callee + : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee +} + +//===----------------------------------------------------------------------===// +// TerminatorInst Class +//===----------------------------------------------------------------------===// + +// Out of line virtual method, so the vtable, etc has a home. +TerminatorInst::~TerminatorInst() { +} + +//===----------------------------------------------------------------------===// +// UnaryInstruction Class +//===----------------------------------------------------------------------===// + +// Out of line virtual method, so the vtable, etc has a home. +UnaryInstruction::~UnaryInstruction() { +} + +//===----------------------------------------------------------------------===// +// SelectInst Class +//===----------------------------------------------------------------------===// + +/// areInvalidOperands - Return a string if the specified operands are invalid +/// for a select operation, otherwise return null. +const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) { + if (Op1->getType() != Op2->getType()) + return "both values to select must have same type"; + + if (const VectorType *VT = dyn_cast<VectorType>(Op0->getType())) { + // Vector select. + if (VT->getElementType() != Type::getInt1Ty(Op0->getContext())) + return "vector select condition element type must be i1"; + const VectorType *ET = dyn_cast<VectorType>(Op1->getType()); + if (ET == 0) + return "selected values for vector select must be vectors"; + if (ET->getNumElements() != VT->getNumElements()) + return "vector select requires selected vectors to have " + "the same vector length as select condition"; + } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) { + return "select condition must be i1 or <n x i1>"; + } + return 0; +} + + +//===----------------------------------------------------------------------===// +// PHINode Class +//===----------------------------------------------------------------------===// + +PHINode::PHINode(const PHINode &PN) + : Instruction(PN.getType(), Instruction::PHI, + allocHungoffUses(PN.getNumOperands()), PN.getNumOperands()), + ReservedSpace(PN.getNumOperands()) { + Use *OL = OperandList; + for (unsigned i = 0, e = PN.getNumOperands(); i != e; i+=2) { + OL[i] = PN.getOperand(i); + OL[i+1] = PN.getOperand(i+1); + } + SubclassOptionalData = PN.SubclassOptionalData; +} + +PHINode::~PHINode() { + if (OperandList) + dropHungoffUses(OperandList); +} + +// removeIncomingValue - Remove an incoming value. This is useful if a +// predecessor basic block is deleted. +Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) { + unsigned NumOps = getNumOperands(); + Use *OL = OperandList; + assert(Idx*2 < NumOps && "BB not in PHI node!"); + Value *Removed = OL[Idx*2]; + + // Move everything after this operand down. + // + // FIXME: we could just swap with the end of the list, then erase. However, + // client might not expect this to happen. The code as it is thrashes the + // use/def lists, which is kinda lame. + for (unsigned i = (Idx+1)*2; i != NumOps; i += 2) { + OL[i-2] = OL[i]; + OL[i-2+1] = OL[i+1]; + } + + // Nuke the last value. + OL[NumOps-2].set(0); + OL[NumOps-2+1].set(0); + NumOperands = NumOps-2; + + // If the PHI node is dead, because it has zero entries, nuke it now. + if (NumOps == 2 && DeletePHIIfEmpty) { + // If anyone is using this PHI, make them use a dummy value instead... + replaceAllUsesWith(UndefValue::get(getType())); + eraseFromParent(); + } + return Removed; +} + +/// resizeOperands - resize operands - This adjusts the length of the operands +/// list according to the following behavior: +/// 1. If NumOps == 0, grow the operand list in response to a push_back style +/// of operation. This grows the number of ops by 1.5 times. +/// 2. If NumOps > NumOperands, reserve space for NumOps operands. +/// 3. If NumOps == NumOperands, trim the reserved space. +/// +void PHINode::resizeOperands(unsigned NumOps) { + unsigned e = getNumOperands(); + if (NumOps == 0) { + NumOps = e*3/2; + if (NumOps < 4) NumOps = 4; // 4 op PHI nodes are VERY common. + } else if (NumOps*2 > NumOperands) { + // No resize needed. + if (ReservedSpace >= NumOps) return; + } else if (NumOps == NumOperands) { + if (ReservedSpace == NumOps) return; + } else { + return; + } + + ReservedSpace = NumOps; + Use *OldOps = OperandList; + Use *NewOps = allocHungoffUses(NumOps); + std::copy(OldOps, OldOps + e, NewOps); + OperandList = NewOps; + if (OldOps) Use::zap(OldOps, OldOps + e, true); +} + +/// hasConstantValue - If the specified PHI node always merges together the same +/// value, return the value, otherwise return null. +/// +/// If the PHI has undef operands, but all the rest of the operands are +/// some unique value, return that value if it can be proved that the +/// value dominates the PHI. If DT is null, use a conservative check, +/// otherwise use DT to test for dominance. +/// +Value *PHINode::hasConstantValue(DominatorTree *DT) const { + // If the PHI node only has one incoming value, eliminate the PHI node. + if (getNumIncomingValues() == 1) { + if (getIncomingValue(0) != this) // not X = phi X + return getIncomingValue(0); + return UndefValue::get(getType()); // Self cycle is dead. + } + + // Otherwise if all of the incoming values are the same for the PHI, replace + // the PHI node with the incoming value. + // + Value *InVal = 0; + bool HasUndefInput = false; + for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) + if (isa<UndefValue>(getIncomingValue(i))) { + HasUndefInput = true; + } else if (getIncomingValue(i) != this) { // Not the PHI node itself... + if (InVal && getIncomingValue(i) != InVal) + return 0; // Not the same, bail out. + InVal = getIncomingValue(i); + } + + // The only case that could cause InVal to be null is if we have a PHI node + // that only has entries for itself. In this case, there is no entry into the + // loop, so kill the PHI. + // + if (InVal == 0) InVal = UndefValue::get(getType()); + + // If we have a PHI node like phi(X, undef, X), where X is defined by some + // instruction, we cannot always return X as the result of the PHI node. Only + // do this if X is not an instruction (thus it must dominate the PHI block), + // or if the client is prepared to deal with this possibility. + if (!HasUndefInput || !isa<Instruction>(InVal)) + return InVal; + + Instruction *IV = cast<Instruction>(InVal); + if (DT) { + // We have a DominatorTree. Do a precise test. + if (!DT->dominates(IV, this)) + return 0; + } else { + // If it is in the entry block, it obviously dominates everything. + if (IV->getParent() != &IV->getParent()->getParent()->getEntryBlock() || + isa<InvokeInst>(IV)) + return 0; // Cannot guarantee that InVal dominates this PHINode. + } + + // All of the incoming values are the same, return the value now. + return InVal; +} + + +//===----------------------------------------------------------------------===// +// CallInst Implementation +//===----------------------------------------------------------------------===// + +CallInst::~CallInst() { +} + +void CallInst::init(Value *Func, Value* const *Params, unsigned NumParams) { + assert(NumOperands == NumParams+1 && "NumOperands not set up?"); + Op<-1>() = Func; + + const FunctionType *FTy = + cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType()); + FTy = FTy; // silence warning. + + assert((NumParams == FTy->getNumParams() || + (FTy->isVarArg() && NumParams > FTy->getNumParams())) && + "Calling a function with bad signature!"); + for (unsigned i = 0; i != NumParams; ++i) { + assert((i >= FTy->getNumParams() || + FTy->getParamType(i) == Params[i]->getType()) && + "Calling a function with a bad signature!"); + OperandList[i] = Params[i]; + } +} + +void CallInst::init(Value *Func, Value *Actual1, Value *Actual2) { + assert(NumOperands == 3 && "NumOperands not set up?"); + Op<-1>() = Func; + Op<0>() = Actual1; + Op<1>() = Actual2; + + const FunctionType *FTy = + cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType()); + FTy = FTy; // silence warning. + + assert((FTy->getNumParams() == 2 || + (FTy->isVarArg() && FTy->getNumParams() < 2)) && + "Calling a function with bad signature"); + assert((0 >= FTy->getNumParams() || + FTy->getParamType(0) == Actual1->getType()) && + "Calling a function with a bad signature!"); + assert((1 >= FTy->getNumParams() || + FTy->getParamType(1) == Actual2->getType()) && + "Calling a function with a bad signature!"); +} + +void CallInst::init(Value *Func, Value *Actual) { + assert(NumOperands == 2 && "NumOperands not set up?"); + Op<-1>() = Func; + Op<0>() = Actual; + + const FunctionType *FTy = + cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType()); + FTy = FTy; // silence warning. + + assert((FTy->getNumParams() == 1 || + (FTy->isVarArg() && FTy->getNumParams() == 0)) && + "Calling a function with bad signature"); + assert((0 == FTy->getNumParams() || + FTy->getParamType(0) == Actual->getType()) && + "Calling a function with a bad signature!"); +} + +void CallInst::init(Value *Func) { + assert(NumOperands == 1 && "NumOperands not set up?"); + Op<-1>() = Func; + + const FunctionType *FTy = + cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType()); + FTy = FTy; // silence warning. + + assert(FTy->getNumParams() == 0 && "Calling a function with bad signature"); +} + +CallInst::CallInst(Value *Func, Value* Actual, const Twine &Name, + Instruction *InsertBefore) + : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType()) + ->getElementType())->getReturnType(), + Instruction::Call, + OperandTraits<CallInst>::op_end(this) - 2, + 2, InsertBefore) { + init(Func, Actual); + setName(Name); +} + +CallInst::CallInst(Value *Func, Value* Actual, const Twine &Name, + BasicBlock *InsertAtEnd) + : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType()) + ->getElementType())->getReturnType(), + Instruction::Call, + OperandTraits<CallInst>::op_end(this) - 2, + 2, InsertAtEnd) { + init(Func, Actual); + setName(Name); +} +CallInst::CallInst(Value *Func, const Twine &Name, + Instruction *InsertBefore) + : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType()) + ->getElementType())->getReturnType(), + Instruction::Call, + OperandTraits<CallInst>::op_end(this) - 1, + 1, InsertBefore) { + init(Func); + setName(Name); +} + +CallInst::CallInst(Value *Func, const Twine &Name, + BasicBlock *InsertAtEnd) + : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType()) + ->getElementType())->getReturnType(), + Instruction::Call, + OperandTraits<CallInst>::op_end(this) - 1, + 1, InsertAtEnd) { + init(Func); + setName(Name); +} + +CallInst::CallInst(const CallInst &CI) + : Instruction(CI.getType(), Instruction::Call, + OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(), + CI.getNumOperands()) { + setAttributes(CI.getAttributes()); + setTailCall(CI.isTailCall()); + setCallingConv(CI.getCallingConv()); + + Use *OL = OperandList; + Use *InOL = CI.OperandList; + for (unsigned i = 0, e = CI.getNumOperands(); i != e; ++i) + OL[i] = InOL[i]; + SubclassOptionalData = CI.SubclassOptionalData; +} + +void CallInst::addAttribute(unsigned i, Attributes attr) { + AttrListPtr PAL = getAttributes(); + PAL = PAL.addAttr(i, attr); + setAttributes(PAL); +} + +void CallInst::removeAttribute(unsigned i, Attributes attr) { + AttrListPtr PAL = getAttributes(); + PAL = PAL.removeAttr(i, attr); + setAttributes(PAL); +} + +bool CallInst::paramHasAttr(unsigned i, Attributes attr) const { + if (AttributeList.paramHasAttr(i, attr)) + return true; + if (const Function *F = getCalledFunction()) + return F->paramHasAttr(i, attr); + return false; +} + +/// IsConstantOne - Return true only if val is constant int 1 +static bool IsConstantOne(Value *val) { + assert(val && "IsConstantOne does not work with NULL val"); + return isa<ConstantInt>(val) && cast<ConstantInt>(val)->isOne(); +} + +static Instruction *createMalloc(Instruction *InsertBefore, + BasicBlock *InsertAtEnd, const Type *IntPtrTy, + const Type *AllocTy, Value *AllocSize, + Value *ArraySize, Function *MallocF, + const Twine &Name) { + assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && + "createMalloc needs either InsertBefore or InsertAtEnd"); + + // malloc(type) becomes: + // bitcast (i8* malloc(typeSize)) to type* + // malloc(type, arraySize) becomes: + // bitcast (i8 *malloc(typeSize*arraySize)) to type* + if (!ArraySize) + ArraySize = ConstantInt::get(IntPtrTy, 1); + else if (ArraySize->getType() != IntPtrTy) { + if (InsertBefore) + ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, + "", InsertBefore); + else + ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, + "", InsertAtEnd); + } + + if (!IsConstantOne(ArraySize)) { + if (IsConstantOne(AllocSize)) { + AllocSize = ArraySize; // Operand * 1 = Operand + } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) { + Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy, + false /*ZExt*/); + // Malloc arg is constant product of type size and array size + AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize)); + } else { + // Multiply type size by the array size... + if (InsertBefore) + AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, + "mallocsize", InsertBefore); + else + AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, + "mallocsize", InsertAtEnd); + } + } + + assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size"); + // Create the call to Malloc. + BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; + Module* M = BB->getParent()->getParent(); + const Type *BPTy = Type::getInt8PtrTy(BB->getContext()); + Value *MallocFunc = MallocF; + if (!MallocFunc) + // prototype malloc as "void *malloc(size_t)" + MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, NULL); + const PointerType *AllocPtrType = PointerType::getUnqual(AllocTy); + CallInst *MCall = NULL; + Instruction *Result = NULL; + if (InsertBefore) { + MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall", InsertBefore); + Result = MCall; + if (Result->getType() != AllocPtrType) + // Create a cast instruction to convert to the right type... + Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore); + } else { + MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall"); + Result = MCall; + if (Result->getType() != AllocPtrType) { + InsertAtEnd->getInstList().push_back(MCall); + // Create a cast instruction to convert to the right type... + Result = new BitCastInst(MCall, AllocPtrType, Name); + } + } + MCall->setTailCall(); + if (Function *F = dyn_cast<Function>(MallocFunc)) { + MCall->setCallingConv(F->getCallingConv()); + if (!F->doesNotAlias(0)) F->setDoesNotAlias(0); + } + assert(!MCall->getType()->isVoidTy() && "Malloc has void return type"); + + return Result; +} + +/// CreateMalloc - Generate the IR for a call to malloc: +/// 1. Compute the malloc call's argument as the specified type's size, +/// possibly multiplied by the array size if the array size is not +/// constant 1. +/// 2. Call malloc with that argument. +/// 3. Bitcast the result of the malloc call to the specified type. +Instruction *CallInst::CreateMalloc(Instruction *InsertBefore, + const Type *IntPtrTy, const Type *AllocTy, + Value *AllocSize, Value *ArraySize, + Function * MallocF, + const Twine &Name) { + return createMalloc(InsertBefore, NULL, IntPtrTy, AllocTy, AllocSize, + ArraySize, MallocF, Name); +} + +/// CreateMalloc - Generate the IR for a call to malloc: +/// 1. Compute the malloc call's argument as the specified type's size, +/// possibly multiplied by the array size if the array size is not +/// constant 1. +/// 2. Call malloc with that argument. +/// 3. Bitcast the result of the malloc call to the specified type. +/// Note: This function does not add the bitcast to the basic block, that is the +/// responsibility of the caller. +Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd, + const Type *IntPtrTy, const Type *AllocTy, + Value *AllocSize, Value *ArraySize, + Function *MallocF, const Twine &Name) { + return createMalloc(NULL, InsertAtEnd, IntPtrTy, AllocTy, AllocSize, + ArraySize, MallocF, Name); +} + +static Instruction* createFree(Value* Source, Instruction *InsertBefore, + BasicBlock *InsertAtEnd) { + assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && + "createFree needs either InsertBefore or InsertAtEnd"); + assert(Source->getType()->isPointerTy() && + "Can not free something of nonpointer type!"); + + BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; + Module* M = BB->getParent()->getParent(); + + const Type *VoidTy = Type::getVoidTy(M->getContext()); + const Type *IntPtrTy = Type::getInt8PtrTy(M->getContext()); + // prototype free as "void free(void*)" + Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, NULL); + CallInst* Result = NULL; + Value *PtrCast = Source; + if (InsertBefore) { + if (Source->getType() != IntPtrTy) + PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore); + Result = CallInst::Create(FreeFunc, PtrCast, "", InsertBefore); + } else { + if (Source->getType() != IntPtrTy) + PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd); + Result = CallInst::Create(FreeFunc, PtrCast, ""); + } + Result->setTailCall(); + if (Function *F = dyn_cast<Function>(FreeFunc)) + Result->setCallingConv(F->getCallingConv()); + + return Result; +} + +/// CreateFree - Generate the IR for a call to the builtin free function. +Instruction * CallInst::CreateFree(Value* Source, Instruction *InsertBefore) { + return createFree(Source, InsertBefore, NULL); +} + +/// CreateFree - Generate the IR for a call to the builtin free function. +/// Note: This function does not add the call to the basic block, that is the +/// responsibility of the caller. +Instruction* CallInst::CreateFree(Value* Source, BasicBlock *InsertAtEnd) { + Instruction* FreeCall = createFree(Source, NULL, InsertAtEnd); + assert(FreeCall && "CreateFree did not create a CallInst"); + return FreeCall; +} + +//===----------------------------------------------------------------------===// +// InvokeInst Implementation +//===----------------------------------------------------------------------===// + +void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException, + Value* const *Args, unsigned NumArgs) { + assert(NumOperands == 3+NumArgs && "NumOperands not set up?"); + Op<-3>() = Fn; + Op<-2>() = IfNormal; + Op<-1>() = IfException; + const FunctionType *FTy = + cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType()); + FTy = FTy; // silence warning. + + assert(((NumArgs == FTy->getNumParams()) || + (FTy->isVarArg() && NumArgs > FTy->getNumParams())) && + "Invoking a function with bad signature"); + + Use *OL = OperandList; + for (unsigned i = 0, e = NumArgs; i != e; i++) { + assert((i >= FTy->getNumParams() || + FTy->getParamType(i) == Args[i]->getType()) && + "Invoking a function with a bad signature!"); + + OL[i] = Args[i]; + } +} + +InvokeInst::InvokeInst(const InvokeInst &II) + : TerminatorInst(II.getType(), Instruction::Invoke, + OperandTraits<InvokeInst>::op_end(this) + - II.getNumOperands(), + II.getNumOperands()) { + setAttributes(II.getAttributes()); + setCallingConv(II.getCallingConv()); + Use *OL = OperandList, *InOL = II.OperandList; + for (unsigned i = 0, e = II.getNumOperands(); i != e; ++i) + OL[i] = InOL[i]; + SubclassOptionalData = II.SubclassOptionalData; +} + +BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const { + return getSuccessor(idx); +} +unsigned InvokeInst::getNumSuccessorsV() const { + return getNumSuccessors(); +} +void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) { + return setSuccessor(idx, B); +} + +bool InvokeInst::paramHasAttr(unsigned i, Attributes attr) const { + if (AttributeList.paramHasAttr(i, attr)) + return true; + if (const Function *F = getCalledFunction()) + return F->paramHasAttr(i, attr); + return false; +} + +void InvokeInst::addAttribute(unsigned i, Attributes attr) { + AttrListPtr PAL = getAttributes(); + PAL = PAL.addAttr(i, attr); + setAttributes(PAL); +} + +void InvokeInst::removeAttribute(unsigned i, Attributes attr) { + AttrListPtr PAL = getAttributes(); + PAL = PAL.removeAttr(i, attr); + setAttributes(PAL); +} + + +//===----------------------------------------------------------------------===// +// ReturnInst Implementation +//===----------------------------------------------------------------------===// + +ReturnInst::ReturnInst(const ReturnInst &RI) + : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret, + OperandTraits<ReturnInst>::op_end(this) - + RI.getNumOperands(), + RI.getNumOperands()) { + if (RI.getNumOperands()) + Op<0>() = RI.Op<0>(); + SubclassOptionalData = RI.SubclassOptionalData; +} + +ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore) + : TerminatorInst(Type::getVoidTy(C), Instruction::Ret, + OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, + InsertBefore) { + if (retVal) + Op<0>() = retVal; +} +ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd) + : TerminatorInst(Type::getVoidTy(C), Instruction::Ret, + OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, + InsertAtEnd) { + if (retVal) + Op<0>() = retVal; +} +ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd) + : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret, + OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) { +} + +unsigned ReturnInst::getNumSuccessorsV() const { + return getNumSuccessors(); +} + +/// Out-of-line ReturnInst method, put here so the C++ compiler can choose to +/// emit the vtable for the class in this translation unit. +void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { + llvm_unreachable("ReturnInst has no successors!"); +} + +BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const { + llvm_unreachable("ReturnInst has no successors!"); + return 0; +} + +ReturnInst::~ReturnInst() { +} + +//===----------------------------------------------------------------------===// +// UnwindInst Implementation +//===----------------------------------------------------------------------===// + +UnwindInst::UnwindInst(LLVMContext &Context, Instruction *InsertBefore) + : TerminatorInst(Type::getVoidTy(Context), Instruction::Unwind, + 0, 0, InsertBefore) { +} +UnwindInst::UnwindInst(LLVMContext &Context, BasicBlock *InsertAtEnd) + : TerminatorInst(Type::getVoidTy(Context), Instruction::Unwind, + 0, 0, InsertAtEnd) { +} + + +unsigned UnwindInst::getNumSuccessorsV() const { + return getNumSuccessors(); +} + +void UnwindInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { + llvm_unreachable("UnwindInst has no successors!"); +} + +BasicBlock *UnwindInst::getSuccessorV(unsigned idx) const { + llvm_unreachable("UnwindInst has no successors!"); + return 0; +} + +//===----------------------------------------------------------------------===// +// UnreachableInst Implementation +//===----------------------------------------------------------------------===// + +UnreachableInst::UnreachableInst(LLVMContext &Context, + Instruction *InsertBefore) + : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable, + 0, 0, InsertBefore) { +} +UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd) + : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable, + 0, 0, InsertAtEnd) { +} + +unsigned UnreachableInst::getNumSuccessorsV() const { + return getNumSuccessors(); +} + +void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { + llvm_unreachable("UnwindInst has no successors!"); +} + +BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const { + llvm_unreachable("UnwindInst has no successors!"); + return 0; +} + +//===----------------------------------------------------------------------===// +// BranchInst Implementation +//===----------------------------------------------------------------------===// + +void BranchInst::AssertOK() { + if (isConditional()) + assert(getCondition()->getType()->isIntegerTy(1) && + "May only branch on boolean predicates!"); +} + +BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore) + : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, + OperandTraits<BranchInst>::op_end(this) - 1, + 1, InsertBefore) { + assert(IfTrue != 0 && "Branch destination may not be null!"); + Op<-1>() = IfTrue; +} +BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, + Instruction *InsertBefore) + : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, + OperandTraits<BranchInst>::op_end(this) - 3, + 3, InsertBefore) { + Op<-1>() = IfTrue; + Op<-2>() = IfFalse; + Op<-3>() = Cond; +#ifndef NDEBUG + AssertOK(); +#endif +} + +BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) + : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, + OperandTraits<BranchInst>::op_end(this) - 1, + 1, InsertAtEnd) { + assert(IfTrue != 0 && "Branch destination may not be null!"); + Op<-1>() = IfTrue; +} + +BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, + BasicBlock *InsertAtEnd) + : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, + OperandTraits<BranchInst>::op_end(this) - 3, + 3, InsertAtEnd) { + Op<-1>() = IfTrue; + Op<-2>() = IfFalse; + Op<-3>() = Cond; +#ifndef NDEBUG + AssertOK(); +#endif +} + + +BranchInst::BranchInst(const BranchInst &BI) : + TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br, + OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(), + BI.getNumOperands()) { + Op<-1>() = BI.Op<-1>(); + if (BI.getNumOperands() != 1) { + assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!"); + Op<-3>() = BI.Op<-3>(); + Op<-2>() = BI.Op<-2>(); + } + SubclassOptionalData = BI.SubclassOptionalData; +} + + +Use* Use::getPrefix() { + PointerIntPair<Use**, 2, PrevPtrTag> &PotentialPrefix(this[-1].Prev); + if (PotentialPrefix.getOpaqueValue()) + return 0; + + return reinterpret_cast<Use*>((char*)&PotentialPrefix + 1); +} + +BranchInst::~BranchInst() { + if (NumOperands == 1) { + if (Use *Prefix = OperandList->getPrefix()) { + Op<-1>() = 0; + // + // mark OperandList to have a special value for scrutiny + // by baseclass destructors and operator delete + OperandList = Prefix; + } else { + NumOperands = 3; + OperandList = op_begin(); + } + } +} + + +BasicBlock *BranchInst::getSuccessorV(unsigned idx) const { + return getSuccessor(idx); +} +unsigned BranchInst::getNumSuccessorsV() const { + return getNumSuccessors(); +} +void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) { + setSuccessor(idx, B); +} + + +//===----------------------------------------------------------------------===// +// AllocaInst Implementation +//===----------------------------------------------------------------------===// + +static Value *getAISize(LLVMContext &Context, Value *Amt) { + if (!Amt) + Amt = ConstantInt::get(Type::getInt32Ty(Context), 1); + else { + assert(!isa<BasicBlock>(Amt) && + "Passed basic block into allocation size parameter! Use other ctor"); + assert(Amt->getType()->isIntegerTy() && + "Allocation array size is not an integer!"); + } + return Amt; +} + +AllocaInst::AllocaInst(const Type *Ty, Value *ArraySize, + const Twine &Name, Instruction *InsertBefore) + : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, + getAISize(Ty->getContext(), ArraySize), InsertBefore) { + setAlignment(0); + assert(!Ty->isVoidTy() && "Cannot allocate void!"); + setName(Name); +} + +AllocaInst::AllocaInst(const Type *Ty, Value *ArraySize, + const Twine &Name, BasicBlock *InsertAtEnd) + : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, + getAISize(Ty->getContext(), ArraySize), InsertAtEnd) { + setAlignment(0); + assert(!Ty->isVoidTy() && "Cannot allocate void!"); + setName(Name); +} + +AllocaInst::AllocaInst(const Type *Ty, const Twine &Name, + Instruction *InsertBefore) + : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, + getAISize(Ty->getContext(), 0), InsertBefore) { + setAlignment(0); + assert(!Ty->isVoidTy() && "Cannot allocate void!"); + setName(Name); +} + +AllocaInst::AllocaInst(const Type *Ty, const Twine &Name, + BasicBlock *InsertAtEnd) + : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, + getAISize(Ty->getContext(), 0), InsertAtEnd) { + setAlignment(0); + assert(!Ty->isVoidTy() && "Cannot allocate void!"); + setName(Name); +} + +AllocaInst::AllocaInst(const Type *Ty, Value *ArraySize, unsigned Align, + const Twine &Name, Instruction *InsertBefore) + : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, + getAISize(Ty->getContext(), ArraySize), InsertBefore) { + setAlignment(Align); + assert(!Ty->isVoidTy() && "Cannot allocate void!"); + setName(Name); +} + +AllocaInst::AllocaInst(const Type *Ty, Value *ArraySize, unsigned Align, + const Twine &Name, BasicBlock *InsertAtEnd) + : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, + getAISize(Ty->getContext(), ArraySize), InsertAtEnd) { + setAlignment(Align); + assert(!Ty->isVoidTy() && "Cannot allocate void!"); + setName(Name); +} + +// Out of line virtual method, so the vtable, etc has a home. +AllocaInst::~AllocaInst() { +} + +void AllocaInst::setAlignment(unsigned Align) { + assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); + assert(Align <= MaximumAlignment && + "Alignment is greater than MaximumAlignment!"); + setInstructionSubclassData(Log2_32(Align) + 1); + assert(getAlignment() == Align && "Alignment representation error!"); +} + +bool AllocaInst::isArrayAllocation() const { + if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0))) + return CI->getZExtValue() != 1; + return true; +} + +const Type *AllocaInst::getAllocatedType() const { + return getType()->getElementType(); +} + +/// isStaticAlloca - Return true if this alloca is in the entry block of the +/// function and is a constant size. If so, the code generator will fold it +/// into the prolog/epilog code, so it is basically free. +bool AllocaInst::isStaticAlloca() const { + // Must be constant size. + if (!isa<ConstantInt>(getArraySize())) return false; + + // Must be in the entry block. + const BasicBlock *Parent = getParent(); + return Parent == &Parent->getParent()->front(); +} + +//===----------------------------------------------------------------------===// +// LoadInst Implementation +//===----------------------------------------------------------------------===// + +void LoadInst::AssertOK() { + assert(getOperand(0)->getType()->isPointerTy() && + "Ptr must have pointer type."); +} + +LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef) + : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), + Load, Ptr, InsertBef) { + setVolatile(false); + setAlignment(0); + AssertOK(); + setName(Name); +} + +LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE) + : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), + Load, Ptr, InsertAE) { + setVolatile(false); + setAlignment(0); + AssertOK(); + setName(Name); +} + +LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, + Instruction *InsertBef) + : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), + Load, Ptr, InsertBef) { + setVolatile(isVolatile); + setAlignment(0); + AssertOK(); + setName(Name); +} + +LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, + unsigned Align, Instruction *InsertBef) + : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), + Load, Ptr, InsertBef) { + setVolatile(isVolatile); + setAlignment(Align); + AssertOK(); + setName(Name); +} + +LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, + unsigned Align, BasicBlock *InsertAE) + : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), + Load, Ptr, InsertAE) { + setVolatile(isVolatile); + setAlignment(Align); + AssertOK(); + setName(Name); +} + +LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, + BasicBlock *InsertAE) + : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), + Load, Ptr, InsertAE) { + setVolatile(isVolatile); + setAlignment(0); + AssertOK(); + setName(Name); +} + + + +LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef) + : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), + Load, Ptr, InsertBef) { + setVolatile(false); + setAlignment(0); + AssertOK(); + if (Name && Name[0]) setName(Name); +} + +LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE) + : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), + Load, Ptr, InsertAE) { + setVolatile(false); + setAlignment(0); + AssertOK(); + if (Name && Name[0]) setName(Name); +} + +LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile, + Instruction *InsertBef) +: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), + Load, Ptr, InsertBef) { + setVolatile(isVolatile); + setAlignment(0); + AssertOK(); + if (Name && Name[0]) setName(Name); +} + +LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile, + BasicBlock *InsertAE) + : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), + Load, Ptr, InsertAE) { + setVolatile(isVolatile); + setAlignment(0); + AssertOK(); + if (Name && Name[0]) setName(Name); +} + +void LoadInst::setAlignment(unsigned Align) { + assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); + assert(Align <= MaximumAlignment && + "Alignment is greater than MaximumAlignment!"); + setInstructionSubclassData((getSubclassDataFromInstruction() & 1) | + ((Log2_32(Align)+1)<<1)); + assert(getAlignment() == Align && "Alignment representation error!"); +} + +//===----------------------------------------------------------------------===// +// StoreInst Implementation +//===----------------------------------------------------------------------===// + +void StoreInst::AssertOK() { + assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!"); + assert(getOperand(1)->getType()->isPointerTy() && + "Ptr must have pointer type!"); + assert(getOperand(0)->getType() == + cast<PointerType>(getOperand(1)->getType())->getElementType() + && "Ptr must be a pointer to Val type!"); +} + + +StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore) + : Instruction(Type::getVoidTy(val->getContext()), Store, + OperandTraits<StoreInst>::op_begin(this), + OperandTraits<StoreInst>::operands(this), + InsertBefore) { + Op<0>() = val; + Op<1>() = addr; + setVolatile(false); + setAlignment(0); + AssertOK(); +} + +StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd) + : Instruction(Type::getVoidTy(val->getContext()), Store, + OperandTraits<StoreInst>::op_begin(this), + OperandTraits<StoreInst>::operands(this), + InsertAtEnd) { + Op<0>() = val; + Op<1>() = addr; + setVolatile(false); + setAlignment(0); + AssertOK(); +} + +StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, + Instruction *InsertBefore) + : Instruction(Type::getVoidTy(val->getContext()), Store, + OperandTraits<StoreInst>::op_begin(this), + OperandTraits<StoreInst>::operands(this), + InsertBefore) { + Op<0>() = val; + Op<1>() = addr; + setVolatile(isVolatile); + setAlignment(0); + AssertOK(); +} + +StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, + unsigned Align, Instruction *InsertBefore) + : Instruction(Type::getVoidTy(val->getContext()), Store, + OperandTraits<StoreInst>::op_begin(this), + OperandTraits<StoreInst>::operands(this), + InsertBefore) { + Op<0>() = val; + Op<1>() = addr; + setVolatile(isVolatile); + setAlignment(Align); + AssertOK(); +} + +StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, + unsigned Align, BasicBlock *InsertAtEnd) + : Instruction(Type::getVoidTy(val->getContext()), Store, + OperandTraits<StoreInst>::op_begin(this), + OperandTraits<StoreInst>::operands(this), + InsertAtEnd) { + Op<0>() = val; + Op<1>() = addr; + setVolatile(isVolatile); + setAlignment(Align); + AssertOK(); +} + +StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, + BasicBlock *InsertAtEnd) + : Instruction(Type::getVoidTy(val->getContext()), Store, + OperandTraits<StoreInst>::op_begin(this), + OperandTraits<StoreInst>::operands(this), + InsertAtEnd) { + Op<0>() = val; + Op<1>() = addr; + setVolatile(isVolatile); + setAlignment(0); + AssertOK(); +} + +void StoreInst::setAlignment(unsigned Align) { + assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); + assert(Align <= MaximumAlignment && + "Alignment is greater than MaximumAlignment!"); + setInstructionSubclassData((getSubclassDataFromInstruction() & 1) | + ((Log2_32(Align)+1) << 1)); + assert(getAlignment() == Align && "Alignment representation error!"); +} + +//===----------------------------------------------------------------------===// +// GetElementPtrInst Implementation +//===----------------------------------------------------------------------===// + +static unsigned retrieveAddrSpace(const Value *Val) { + return cast<PointerType>(Val->getType())->getAddressSpace(); +} + +void GetElementPtrInst::init(Value *Ptr, Value* const *Idx, unsigned NumIdx, + const Twine &Name) { + assert(NumOperands == 1+NumIdx && "NumOperands not initialized?"); + Use *OL = OperandList; + OL[0] = Ptr; + + for (unsigned i = 0; i != NumIdx; ++i) + OL[i+1] = Idx[i]; + + setName(Name); +} + +void GetElementPtrInst::init(Value *Ptr, Value *Idx, const Twine &Name) { + assert(NumOperands == 2 && "NumOperands not initialized?"); + Use *OL = OperandList; + OL[0] = Ptr; + OL[1] = Idx; + + setName(Name); +} + +GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI) + : Instruction(GEPI.getType(), GetElementPtr, + OperandTraits<GetElementPtrInst>::op_end(this) + - GEPI.getNumOperands(), + GEPI.getNumOperands()) { + Use *OL = OperandList; + Use *GEPIOL = GEPI.OperandList; + for (unsigned i = 0, E = NumOperands; i != E; ++i) + OL[i] = GEPIOL[i]; + SubclassOptionalData = GEPI.SubclassOptionalData; +} + +GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx, + const Twine &Name, Instruction *InBe) + : Instruction(PointerType::get( + checkType(getIndexedType(Ptr->getType(),Idx)), retrieveAddrSpace(Ptr)), + GetElementPtr, + OperandTraits<GetElementPtrInst>::op_end(this) - 2, + 2, InBe) { + init(Ptr, Idx, Name); +} + +GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx, + const Twine &Name, BasicBlock *IAE) + : Instruction(PointerType::get( + checkType(getIndexedType(Ptr->getType(),Idx)), + retrieveAddrSpace(Ptr)), + GetElementPtr, + OperandTraits<GetElementPtrInst>::op_end(this) - 2, + 2, IAE) { + init(Ptr, Idx, Name); +} + +/// getIndexedType - Returns the type of the element that would be accessed with +/// a gep instruction with the specified parameters. +/// +/// The Idxs pointer should point to a continuous piece of memory containing the +/// indices, either as Value* or uint64_t. +/// +/// A null type is returned if the indices are invalid for the specified +/// pointer type. +/// +template <typename IndexTy> +static const Type* getIndexedTypeInternal(const Type *Ptr, IndexTy const *Idxs, + unsigned NumIdx) { + const PointerType *PTy = dyn_cast<PointerType>(Ptr); + if (!PTy) return 0; // Type isn't a pointer type! + const Type *Agg = PTy->getElementType(); + + // Handle the special case of the empty set index set, which is always valid. + if (NumIdx == 0) + return Agg; + + // If there is at least one index, the top level type must be sized, otherwise + // it cannot be 'stepped over'. We explicitly allow abstract types (those + // that contain opaque types) under the assumption that it will be resolved to + // a sane type later. + if (!Agg->isSized() && !Agg->isAbstract()) + return 0; + + unsigned CurIdx = 1; + for (; CurIdx != NumIdx; ++CurIdx) { + const CompositeType *CT = dyn_cast<CompositeType>(Agg); + if (!CT || CT->isPointerTy()) return 0; + IndexTy Index = Idxs[CurIdx]; + if (!CT->indexValid(Index)) return 0; + Agg = CT->getTypeAtIndex(Index); + + // If the new type forwards to another type, then it is in the middle + // of being refined to another type (and hence, may have dropped all + // references to what it was using before). So, use the new forwarded + // type. + if (const Type *Ty = Agg->getForwardedType()) + Agg = Ty; + } + return CurIdx == NumIdx ? Agg : 0; +} + +const Type* GetElementPtrInst::getIndexedType(const Type *Ptr, + Value* const *Idxs, + unsigned NumIdx) { + return getIndexedTypeInternal(Ptr, Idxs, NumIdx); +} + +const Type* GetElementPtrInst::getIndexedType(const Type *Ptr, + uint64_t const *Idxs, + unsigned NumIdx) { + return getIndexedTypeInternal(Ptr, Idxs, NumIdx); +} + +const Type* GetElementPtrInst::getIndexedType(const Type *Ptr, Value *Idx) { + const PointerType *PTy = dyn_cast<PointerType>(Ptr); + if (!PTy) return 0; // Type isn't a pointer type! + + // Check the pointer index. + if (!PTy->indexValid(Idx)) return 0; + + return PTy->getElementType(); +} + + +/// hasAllZeroIndices - Return true if all of the indices of this GEP are +/// zeros. If so, the result pointer and the first operand have the same +/// value, just potentially different types. +bool GetElementPtrInst::hasAllZeroIndices() const { + for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { + if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) { + if (!CI->isZero()) return false; + } else { + return false; + } + } + return true; +} + +/// hasAllConstantIndices - Return true if all of the indices of this GEP are +/// constant integers. If so, the result pointer and the first operand have +/// a constant offset between them. +bool GetElementPtrInst::hasAllConstantIndices() const { + for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { + if (!isa<ConstantInt>(getOperand(i))) + return false; + } + return true; +} + +void GetElementPtrInst::setIsInBounds(bool B) { + cast<GEPOperator>(this)->setIsInBounds(B); +} + +bool GetElementPtrInst::isInBounds() const { + return cast<GEPOperator>(this)->isInBounds(); +} + +//===----------------------------------------------------------------------===// +// ExtractElementInst Implementation +//===----------------------------------------------------------------------===// + +ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, + const Twine &Name, + Instruction *InsertBef) + : Instruction(cast<VectorType>(Val->getType())->getElementType(), + ExtractElement, + OperandTraits<ExtractElementInst>::op_begin(this), + 2, InsertBef) { + assert(isValidOperands(Val, Index) && + "Invalid extractelement instruction operands!"); + Op<0>() = Val; + Op<1>() = Index; + setName(Name); +} + +ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, + const Twine &Name, + BasicBlock *InsertAE) + : Instruction(cast<VectorType>(Val->getType())->getElementType(), + ExtractElement, + OperandTraits<ExtractElementInst>::op_begin(this), + 2, InsertAE) { + assert(isValidOperands(Val, Index) && + "Invalid extractelement instruction operands!"); + + Op<0>() = Val; + Op<1>() = Index; + setName(Name); +} + + +bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) { + if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy(32)) + return false; + return true; +} + + +//===----------------------------------------------------------------------===// +// InsertElementInst Implementation +//===----------------------------------------------------------------------===// + +InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, + const Twine &Name, + Instruction *InsertBef) + : Instruction(Vec->getType(), InsertElement, + OperandTraits<InsertElementInst>::op_begin(this), + 3, InsertBef) { + assert(isValidOperands(Vec, Elt, Index) && + "Invalid insertelement instruction operands!"); + Op<0>() = Vec; + Op<1>() = Elt; + Op<2>() = Index; + setName(Name); +} + +InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, + const Twine &Name, + BasicBlock *InsertAE) + : Instruction(Vec->getType(), InsertElement, + OperandTraits<InsertElementInst>::op_begin(this), + 3, InsertAE) { + assert(isValidOperands(Vec, Elt, Index) && + "Invalid insertelement instruction operands!"); + + Op<0>() = Vec; + Op<1>() = Elt; + Op<2>() = Index; + setName(Name); +} + +bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt, + const Value *Index) { + if (!Vec->getType()->isVectorTy()) + return false; // First operand of insertelement must be vector type. + + if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType()) + return false;// Second operand of insertelement must be vector element type. + + if (!Index->getType()->isIntegerTy(32)) + return false; // Third operand of insertelement must be i32. + return true; +} + + +//===----------------------------------------------------------------------===// +// ShuffleVectorInst Implementation +//===----------------------------------------------------------------------===// + +ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, + const Twine &Name, + Instruction *InsertBefore) +: Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(), + cast<VectorType>(Mask->getType())->getNumElements()), + ShuffleVector, + OperandTraits<ShuffleVectorInst>::op_begin(this), + OperandTraits<ShuffleVectorInst>::operands(this), + InsertBefore) { + assert(isValidOperands(V1, V2, Mask) && + "Invalid shuffle vector instruction operands!"); + Op<0>() = V1; + Op<1>() = V2; + Op<2>() = Mask; + setName(Name); +} + +ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, + const Twine &Name, + BasicBlock *InsertAtEnd) +: Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(), + cast<VectorType>(Mask->getType())->getNumElements()), + ShuffleVector, + OperandTraits<ShuffleVectorInst>::op_begin(this), + OperandTraits<ShuffleVectorInst>::operands(this), + InsertAtEnd) { + assert(isValidOperands(V1, V2, Mask) && + "Invalid shuffle vector instruction operands!"); + + Op<0>() = V1; + Op<1>() = V2; + Op<2>() = Mask; + setName(Name); +} + +bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2, + const Value *Mask) { + if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType()) + return false; + + const VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType()); + if (MaskTy == 0 || !MaskTy->getElementType()->isIntegerTy(32)) + return false; + + // Check to see if Mask is valid. + if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) { + const VectorType *VTy = cast<VectorType>(V1->getType()); + for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) { + if (ConstantInt* CI = dyn_cast<ConstantInt>(MV->getOperand(i))) { + if (CI->uge(VTy->getNumElements()*2)) + return false; + } else if (!isa<UndefValue>(MV->getOperand(i))) { + return false; + } + } + } + else if (!isa<UndefValue>(Mask) && !isa<ConstantAggregateZero>(Mask)) + return false; + + return true; +} + +/// getMaskValue - Return the index from the shuffle mask for the specified +/// output result. This is either -1 if the element is undef or a number less +/// than 2*numelements. +int ShuffleVectorInst::getMaskValue(unsigned i) const { + const Constant *Mask = cast<Constant>(getOperand(2)); + if (isa<UndefValue>(Mask)) return -1; + if (isa<ConstantAggregateZero>(Mask)) return 0; + const ConstantVector *MaskCV = cast<ConstantVector>(Mask); + assert(i < MaskCV->getNumOperands() && "Index out of range"); + + if (isa<UndefValue>(MaskCV->getOperand(i))) + return -1; + return cast<ConstantInt>(MaskCV->getOperand(i))->getZExtValue(); +} + +//===----------------------------------------------------------------------===// +// InsertValueInst Class +//===----------------------------------------------------------------------===// + +void InsertValueInst::init(Value *Agg, Value *Val, const unsigned *Idx, + unsigned NumIdx, const Twine &Name) { + assert(NumOperands == 2 && "NumOperands not initialized?"); + Op<0>() = Agg; + Op<1>() = Val; + + Indices.append(Idx, Idx + NumIdx); + setName(Name); +} + +void InsertValueInst::init(Value *Agg, Value *Val, unsigned Idx, + const Twine &Name) { + assert(NumOperands == 2 && "NumOperands not initialized?"); + Op<0>() = Agg; + Op<1>() = Val; + + Indices.push_back(Idx); + setName(Name); +} + +InsertValueInst::InsertValueInst(const InsertValueInst &IVI) + : Instruction(IVI.getType(), InsertValue, + OperandTraits<InsertValueInst>::op_begin(this), 2), + Indices(IVI.Indices) { + Op<0>() = IVI.getOperand(0); + Op<1>() = IVI.getOperand(1); + SubclassOptionalData = IVI.SubclassOptionalData; +} + +InsertValueInst::InsertValueInst(Value *Agg, + Value *Val, + unsigned Idx, + const Twine &Name, + Instruction *InsertBefore) + : Instruction(Agg->getType(), InsertValue, + OperandTraits<InsertValueInst>::op_begin(this), + 2, InsertBefore) { + init(Agg, Val, Idx, Name); +} + +InsertValueInst::InsertValueInst(Value *Agg, + Value *Val, + unsigned Idx, + const Twine &Name, + BasicBlock *InsertAtEnd) + : Instruction(Agg->getType(), InsertValue, + OperandTraits<InsertValueInst>::op_begin(this), + 2, InsertAtEnd) { + init(Agg, Val, Idx, Name); +} + +//===----------------------------------------------------------------------===// +// ExtractValueInst Class +//===----------------------------------------------------------------------===// + +void ExtractValueInst::init(const unsigned *Idx, unsigned NumIdx, + const Twine &Name) { + assert(NumOperands == 1 && "NumOperands not initialized?"); + + Indices.append(Idx, Idx + NumIdx); + setName(Name); +} + +void ExtractValueInst::init(unsigned Idx, const Twine &Name) { + assert(NumOperands == 1 && "NumOperands not initialized?"); + + Indices.push_back(Idx); + setName(Name); +} + +ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI) + : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)), + Indices(EVI.Indices) { + SubclassOptionalData = EVI.SubclassOptionalData; +} + +// getIndexedType - Returns the type of the element that would be extracted +// with an extractvalue instruction with the specified parameters. +// +// A null type is returned if the indices are invalid for the specified +// pointer type. +// +const Type* ExtractValueInst::getIndexedType(const Type *Agg, + const unsigned *Idxs, + unsigned NumIdx) { + unsigned CurIdx = 0; + for (; CurIdx != NumIdx; ++CurIdx) { + const CompositeType *CT = dyn_cast<CompositeType>(Agg); + if (!CT || CT->isPointerTy() || CT->isVectorTy()) return 0; + unsigned Index = Idxs[CurIdx]; + if (!CT->indexValid(Index)) return 0; + Agg = CT->getTypeAtIndex(Index); + + // If the new type forwards to another type, then it is in the middle + // of being refined to another type (and hence, may have dropped all + // references to what it was using before). So, use the new forwarded + // type. + if (const Type *Ty = Agg->getForwardedType()) + Agg = Ty; + } + return CurIdx == NumIdx ? Agg : 0; +} + +const Type* ExtractValueInst::getIndexedType(const Type *Agg, + unsigned Idx) { + return getIndexedType(Agg, &Idx, 1); +} + +//===----------------------------------------------------------------------===// +// BinaryOperator Class +//===----------------------------------------------------------------------===// + +BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, + const Type *Ty, const Twine &Name, + Instruction *InsertBefore) + : Instruction(Ty, iType, + OperandTraits<BinaryOperator>::op_begin(this), + OperandTraits<BinaryOperator>::operands(this), + InsertBefore) { + Op<0>() = S1; + Op<1>() = S2; + init(iType); + setName(Name); +} + +BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, + const Type *Ty, const Twine &Name, + BasicBlock *InsertAtEnd) + : Instruction(Ty, iType, + OperandTraits<BinaryOperator>::op_begin(this), + OperandTraits<BinaryOperator>::operands(this), + InsertAtEnd) { + Op<0>() = S1; + Op<1>() = S2; + init(iType); + setName(Name); +} + + +void BinaryOperator::init(BinaryOps iType) { + Value *LHS = getOperand(0), *RHS = getOperand(1); + LHS = LHS; RHS = RHS; // Silence warnings. + assert(LHS->getType() == RHS->getType() && + "Binary operator operand types must match!"); +#ifndef NDEBUG + switch (iType) { + case Add: case Sub: + case Mul: + assert(getType() == LHS->getType() && + "Arithmetic operation should return same type as operands!"); + assert(getType()->isIntOrIntVectorTy() && + "Tried to create an integer operation on a non-integer type!"); + break; + case FAdd: case FSub: + case FMul: + assert(getType() == LHS->getType() && + "Arithmetic operation should return same type as operands!"); + assert(getType()->isFPOrFPVectorTy() && + "Tried to create a floating-point operation on a " + "non-floating-point type!"); + break; + case UDiv: + case SDiv: + assert(getType() == LHS->getType() && + "Arithmetic operation should return same type as operands!"); + assert((getType()->isIntegerTy() || (getType()->isVectorTy() && + cast<VectorType>(getType())->getElementType()->isIntegerTy())) && + "Incorrect operand type (not integer) for S/UDIV"); + break; + case FDiv: + assert(getType() == LHS->getType() && + "Arithmetic operation should return same type as operands!"); + assert(getType()->isFPOrFPVectorTy() && + "Incorrect operand type (not floating point) for FDIV"); + break; + case URem: + case SRem: + assert(getType() == LHS->getType() && + "Arithmetic operation should return same type as operands!"); + assert((getType()->isIntegerTy() || (getType()->isVectorTy() && + cast<VectorType>(getType())->getElementType()->isIntegerTy())) && + "Incorrect operand type (not integer) for S/UREM"); + break; + case FRem: + assert(getType() == LHS->getType() && + "Arithmetic operation should return same type as operands!"); + assert(getType()->isFPOrFPVectorTy() && + "Incorrect operand type (not floating point) for FREM"); + break; + case Shl: + case LShr: + case AShr: + assert(getType() == LHS->getType() && + "Shift operation should return same type as operands!"); + assert((getType()->isIntegerTy() || + (getType()->isVectorTy() && + cast<VectorType>(getType())->getElementType()->isIntegerTy())) && + "Tried to create a shift operation on a non-integral type!"); + break; + case And: case Or: + case Xor: + assert(getType() == LHS->getType() && + "Logical operation should return same type as operands!"); + assert((getType()->isIntegerTy() || + (getType()->isVectorTy() && + cast<VectorType>(getType())->getElementType()->isIntegerTy())) && + "Tried to create a logical operation on a non-integral type!"); + break; + default: + break; + } +#endif +} + +BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, + const Twine &Name, + Instruction *InsertBefore) { + assert(S1->getType() == S2->getType() && + "Cannot create binary operator with two operands of differing type!"); + return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore); +} + +BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, + const Twine &Name, + BasicBlock *InsertAtEnd) { + BinaryOperator *Res = Create(Op, S1, S2, Name); + InsertAtEnd->getInstList().push_back(Res); + return Res; +} + +BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, + Instruction *InsertBefore) { + Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); + return new BinaryOperator(Instruction::Sub, + zero, Op, + Op->getType(), Name, InsertBefore); +} + +BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, + BasicBlock *InsertAtEnd) { + Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); + return new BinaryOperator(Instruction::Sub, + zero, Op, + Op->getType(), Name, InsertAtEnd); +} + +BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, + Instruction *InsertBefore) { + Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); + return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore); +} + +BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, + BasicBlock *InsertAtEnd) { + Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); + return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd); +} + +BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, + Instruction *InsertBefore) { + Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); + return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore); +} + +BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, + BasicBlock *InsertAtEnd) { + Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); + return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd); +} + +BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name, + Instruction *InsertBefore) { + Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); + return new BinaryOperator(Instruction::FSub, + zero, Op, + Op->getType(), Name, InsertBefore); +} + +BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name, + BasicBlock *InsertAtEnd) { + Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); + return new BinaryOperator(Instruction::FSub, + zero, Op, + Op->getType(), Name, InsertAtEnd); +} + +BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, + Instruction *InsertBefore) { + Constant *C; + if (const VectorType *PTy = dyn_cast<VectorType>(Op->getType())) { + C = Constant::getAllOnesValue(PTy->getElementType()); + C = ConstantVector::get( + std::vector<Constant*>(PTy->getNumElements(), C)); + } else { + C = Constant::getAllOnesValue(Op->getType()); + } + + return new BinaryOperator(Instruction::Xor, Op, C, + Op->getType(), Name, InsertBefore); +} + +BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, + BasicBlock *InsertAtEnd) { + Constant *AllOnes; + if (const VectorType *PTy = dyn_cast<VectorType>(Op->getType())) { + // Create a vector of all ones values. + Constant *Elt = Constant::getAllOnesValue(PTy->getElementType()); + AllOnes = ConstantVector::get( + std::vector<Constant*>(PTy->getNumElements(), Elt)); + } else { + AllOnes = Constant::getAllOnesValue(Op->getType()); + } + + return new BinaryOperator(Instruction::Xor, Op, AllOnes, + Op->getType(), Name, InsertAtEnd); +} + + +// isConstantAllOnes - Helper function for several functions below +static inline bool isConstantAllOnes(const Value *V) { + if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) + return CI->isAllOnesValue(); + if (const ConstantVector *CV = dyn_cast<ConstantVector>(V)) + return CV->isAllOnesValue(); + return false; +} + +bool BinaryOperator::isNeg(const Value *V) { + if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V)) + if (Bop->getOpcode() == Instruction::Sub) + if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0))) + return C->isNegativeZeroValue(); + return false; +} + +bool BinaryOperator::isFNeg(const Value *V) { + if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V)) + if (Bop->getOpcode() == Instruction::FSub) + if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0))) + return C->isNegativeZeroValue(); + return false; +} + +bool BinaryOperator::isNot(const Value *V) { + if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V)) + return (Bop->getOpcode() == Instruction::Xor && + (isConstantAllOnes(Bop->getOperand(1)) || + isConstantAllOnes(Bop->getOperand(0)))); + return false; +} + +Value *BinaryOperator::getNegArgument(Value *BinOp) { + return cast<BinaryOperator>(BinOp)->getOperand(1); +} + +const Value *BinaryOperator::getNegArgument(const Value *BinOp) { + return getNegArgument(const_cast<Value*>(BinOp)); +} + +Value *BinaryOperator::getFNegArgument(Value *BinOp) { + return cast<BinaryOperator>(BinOp)->getOperand(1); +} + +const Value *BinaryOperator::getFNegArgument(const Value *BinOp) { + return getFNegArgument(const_cast<Value*>(BinOp)); +} + +Value *BinaryOperator::getNotArgument(Value *BinOp) { + assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!"); + BinaryOperator *BO = cast<BinaryOperator>(BinOp); + Value *Op0 = BO->getOperand(0); + Value *Op1 = BO->getOperand(1); + if (isConstantAllOnes(Op0)) return Op1; + + assert(isConstantAllOnes(Op1)); + return Op0; +} + +const Value *BinaryOperator::getNotArgument(const Value *BinOp) { + return getNotArgument(const_cast<Value*>(BinOp)); +} + + +// swapOperands - Exchange the two operands to this instruction. This +// instruction is safe to use on any binary instruction and does not +// modify the semantics of the instruction. If the instruction is +// order dependent (SetLT f.e.) the opcode is changed. +// +bool BinaryOperator::swapOperands() { + if (!isCommutative()) + return true; // Can't commute operands + Op<0>().swap(Op<1>()); + return false; +} + +void BinaryOperator::setHasNoUnsignedWrap(bool b) { + cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b); +} + +void BinaryOperator::setHasNoSignedWrap(bool b) { + cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b); +} + +void BinaryOperator::setIsExact(bool b) { + cast<SDivOperator>(this)->setIsExact(b); +} + +bool BinaryOperator::hasNoUnsignedWrap() const { + return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap(); +} + +bool BinaryOperator::hasNoSignedWrap() const { + return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap(); +} + +bool BinaryOperator::isExact() const { + return cast<SDivOperator>(this)->isExact(); +} + +//===----------------------------------------------------------------------===// +// CastInst Class +//===----------------------------------------------------------------------===// + +// Just determine if this cast only deals with integral->integral conversion. +bool CastInst::isIntegerCast() const { + switch (getOpcode()) { + default: return false; + case Instruction::ZExt: + case Instruction::SExt: + case Instruction::Trunc: + return true; + case Instruction::BitCast: + return getOperand(0)->getType()->isIntegerTy() && + getType()->isIntegerTy(); + } +} + +bool CastInst::isLosslessCast() const { + // Only BitCast can be lossless, exit fast if we're not BitCast + if (getOpcode() != Instruction::BitCast) + return false; + + // Identity cast is always lossless + const Type* SrcTy = getOperand(0)->getType(); + const Type* DstTy = getType(); + if (SrcTy == DstTy) + return true; + + // Pointer to pointer is always lossless. + if (SrcTy->isPointerTy()) + return DstTy->isPointerTy(); + return false; // Other types have no identity values +} + +/// This function determines if the CastInst does not require any bits to be +/// changed in order to effect the cast. Essentially, it identifies cases where +/// no code gen is necessary for the cast, hence the name no-op cast. For +/// example, the following are all no-op casts: +/// # bitcast i32* %x to i8* +/// # bitcast <2 x i32> %x to <4 x i16> +/// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only +/// @brief Determine if the described cast is a no-op. +bool CastInst::isNoopCast(Instruction::CastOps Opcode, + const Type *SrcTy, + const Type *DestTy, + const Type *IntPtrTy) { + switch (Opcode) { + default: + assert(!"Invalid CastOp"); + case Instruction::Trunc: + case Instruction::ZExt: + case Instruction::SExt: + case Instruction::FPTrunc: + case Instruction::FPExt: + case Instruction::UIToFP: + case Instruction::SIToFP: + case Instruction::FPToUI: + case Instruction::FPToSI: + return false; // These always modify bits + case Instruction::BitCast: + return true; // BitCast never modifies bits. + case Instruction::PtrToInt: + return IntPtrTy->getScalarSizeInBits() == + DestTy->getScalarSizeInBits(); + case Instruction::IntToPtr: + return IntPtrTy->getScalarSizeInBits() == + SrcTy->getScalarSizeInBits(); + } +} + +/// @brief Determine if a cast is a no-op. +bool CastInst::isNoopCast(const Type *IntPtrTy) const { + return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy); +} + +/// This function determines if a pair of casts can be eliminated and what +/// opcode should be used in the elimination. This assumes that there are two +/// instructions like this: +/// * %F = firstOpcode SrcTy %x to MidTy +/// * %S = secondOpcode MidTy %F to DstTy +/// The function returns a resultOpcode so these two casts can be replaced with: +/// * %Replacement = resultOpcode %SrcTy %x to DstTy +/// If no such cast is permited, the function returns 0. +unsigned CastInst::isEliminableCastPair( + Instruction::CastOps firstOp, Instruction::CastOps secondOp, + const Type *SrcTy, const Type *MidTy, const Type *DstTy, const Type *IntPtrTy) +{ + // Define the 144 possibilities for these two cast instructions. The values + // in this matrix determine what to do in a given situation and select the + // case in the switch below. The rows correspond to firstOp, the columns + // correspond to secondOp. In looking at the table below, keep in mind + // the following cast properties: + // + // Size Compare Source Destination + // Operator Src ? Size Type Sign Type Sign + // -------- ------------ ------------------- --------------------- + // TRUNC > Integer Any Integral Any + // ZEXT < Integral Unsigned Integer Any + // SEXT < Integral Signed Integer Any + // FPTOUI n/a FloatPt n/a Integral Unsigned + // FPTOSI n/a FloatPt n/a Integral Signed + // UITOFP n/a Integral Unsigned FloatPt n/a + // SITOFP n/a Integral Signed FloatPt n/a + // FPTRUNC > FloatPt n/a FloatPt n/a + // FPEXT < FloatPt n/a FloatPt n/a + // PTRTOINT n/a Pointer n/a Integral Unsigned + // INTTOPTR n/a Integral Unsigned Pointer n/a + // BITCAST = FirstClass n/a FirstClass n/a + // + // NOTE: some transforms are safe, but we consider them to be non-profitable. + // For example, we could merge "fptoui double to i32" + "zext i32 to i64", + // into "fptoui double to i64", but this loses information about the range + // of the produced value (we no longer know the top-part is all zeros). + // Further this conversion is often much more expensive for typical hardware, + // and causes issues when building libgcc. We disallow fptosi+sext for the + // same reason. + const unsigned numCastOps = + Instruction::CastOpsEnd - Instruction::CastOpsBegin; + static const uint8_t CastResults[numCastOps][numCastOps] = { + // T F F U S F F P I B -+ + // R Z S P P I I T P 2 N T | + // U E E 2 2 2 2 R E I T C +- secondOp + // N X X U S F F N X N 2 V | + // C T T I I P P C T T P T -+ + { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc -+ + { 8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt | + { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt | + { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI | + { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI | + { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP +- firstOp + { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP | + { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc | + { 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt | + { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt | + { 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr | + { 5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast -+ + }; + + // If either of the casts are a bitcast from scalar to vector, disallow the + // merging. + if ((firstOp == Instruction::BitCast && + isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) || + (secondOp == Instruction::BitCast && + isa<VectorType>(MidTy) != isa<VectorType>(DstTy))) + return 0; // Disallowed + + int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin] + [secondOp-Instruction::CastOpsBegin]; + switch (ElimCase) { + case 0: + // categorically disallowed + return 0; + case 1: + // allowed, use first cast's opcode + return firstOp; + case 2: + // allowed, use second cast's opcode + return secondOp; + case 3: + // no-op cast in second op implies firstOp as long as the DestTy + // is integer and we are not converting between a vector and a + // non vector type. + if (!SrcTy->isVectorTy() && DstTy->isIntegerTy()) + return firstOp; + return 0; + case 4: + // no-op cast in second op implies firstOp as long as the DestTy + // is floating point. + if (DstTy->isFloatingPointTy()) + return firstOp; + return 0; + case 5: + // no-op cast in first op implies secondOp as long as the SrcTy + // is an integer. + if (SrcTy->isIntegerTy()) + return secondOp; + return 0; + case 6: + // no-op cast in first op implies secondOp as long as the SrcTy + // is a floating point. + if (SrcTy->isFloatingPointTy()) + return secondOp; + return 0; + case 7: { + // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size + if (!IntPtrTy) + return 0; + unsigned PtrSize = IntPtrTy->getScalarSizeInBits(); + unsigned MidSize = MidTy->getScalarSizeInBits(); + if (MidSize >= PtrSize) + return Instruction::BitCast; + return 0; + } + case 8: { + // ext, trunc -> bitcast, if the SrcTy and DstTy are same size + // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy) + // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy) + unsigned SrcSize = SrcTy->getScalarSizeInBits(); + unsigned DstSize = DstTy->getScalarSizeInBits(); + if (SrcSize == DstSize) + return Instruction::BitCast; + else if (SrcSize < DstSize) + return firstOp; + return secondOp; + } + case 9: // zext, sext -> zext, because sext can't sign extend after zext + return Instruction::ZExt; + case 10: + // fpext followed by ftrunc is allowed if the bit size returned to is + // the same as the original, in which case its just a bitcast + if (SrcTy == DstTy) + return Instruction::BitCast; + return 0; // If the types are not the same we can't eliminate it. + case 11: + // bitcast followed by ptrtoint is allowed as long as the bitcast + // is a pointer to pointer cast. + if (SrcTy->isPointerTy() && MidTy->isPointerTy()) + return secondOp; + return 0; + case 12: + // inttoptr, bitcast -> intptr if bitcast is a ptr to ptr cast + if (MidTy->isPointerTy() && DstTy->isPointerTy()) + return firstOp; + return 0; + case 13: { + // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize + if (!IntPtrTy) + return 0; + unsigned PtrSize = IntPtrTy->getScalarSizeInBits(); + unsigned SrcSize = SrcTy->getScalarSizeInBits(); + unsigned DstSize = DstTy->getScalarSizeInBits(); + if (SrcSize <= PtrSize && SrcSize == DstSize) + return Instruction::BitCast; + return 0; + } + case 99: + // cast combination can't happen (error in input). This is for all cases + // where the MidTy is not the same for the two cast instructions. + assert(!"Invalid Cast Combination"); + return 0; + default: + assert(!"Error in CastResults table!!!"); + return 0; + } + return 0; +} + +CastInst *CastInst::Create(Instruction::CastOps op, Value *S, const Type *Ty, + const Twine &Name, Instruction *InsertBefore) { + // Construct and return the appropriate CastInst subclass + switch (op) { + case Trunc: return new TruncInst (S, Ty, Name, InsertBefore); + case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore); + case SExt: return new SExtInst (S, Ty, Name, InsertBefore); + case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore); + case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore); + case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore); + case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore); + case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore); + case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore); + case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore); + case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore); + case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore); + default: + assert(!"Invalid opcode provided"); + } + return 0; +} + +CastInst *CastInst::Create(Instruction::CastOps op, Value *S, const Type *Ty, + const Twine &Name, BasicBlock *InsertAtEnd) { + // Construct and return the appropriate CastInst subclass + switch (op) { + case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd); + case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd); + case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd); + case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd); + case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd); + case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd); + case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd); + case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd); + case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd); + case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd); + case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd); + case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd); + default: + assert(!"Invalid opcode provided"); + } + return 0; +} + +CastInst *CastInst::CreateZExtOrBitCast(Value *S, const Type *Ty, + const Twine &Name, + Instruction *InsertBefore) { + if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) + return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); + return Create(Instruction::ZExt, S, Ty, Name, InsertBefore); +} + +CastInst *CastInst::CreateZExtOrBitCast(Value *S, const Type *Ty, + const Twine &Name, + BasicBlock *InsertAtEnd) { + if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) + return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); + return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd); +} + +CastInst *CastInst::CreateSExtOrBitCast(Value *S, const Type *Ty, + const Twine &Name, + Instruction *InsertBefore) { + if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) + return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); + return Create(Instruction::SExt, S, Ty, Name, InsertBefore); +} + +CastInst *CastInst::CreateSExtOrBitCast(Value *S, const Type *Ty, + const Twine &Name, + BasicBlock *InsertAtEnd) { + if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) + return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); + return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd); +} + +CastInst *CastInst::CreateTruncOrBitCast(Value *S, const Type *Ty, + const Twine &Name, + Instruction *InsertBefore) { + if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) + return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); + return Create(Instruction::Trunc, S, Ty, Name, InsertBefore); +} + +CastInst *CastInst::CreateTruncOrBitCast(Value *S, const Type *Ty, + const Twine &Name, + BasicBlock *InsertAtEnd) { + if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) + return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); + return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd); +} + +CastInst *CastInst::CreatePointerCast(Value *S, const Type *Ty, + const Twine &Name, + BasicBlock *InsertAtEnd) { + assert(S->getType()->isPointerTy() && "Invalid cast"); + assert((Ty->isIntegerTy() || Ty->isPointerTy()) && + "Invalid cast"); + + if (Ty->isIntegerTy()) + return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd); + return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); +} + +/// @brief Create a BitCast or a PtrToInt cast instruction +CastInst *CastInst::CreatePointerCast(Value *S, const Type *Ty, + const Twine &Name, + Instruction *InsertBefore) { + assert(S->getType()->isPointerTy() && "Invalid cast"); + assert((Ty->isIntegerTy() || Ty->isPointerTy()) && + "Invalid cast"); + + if (Ty->isIntegerTy()) + return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore); + return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); +} + +CastInst *CastInst::CreateIntegerCast(Value *C, const Type *Ty, + bool isSigned, const Twine &Name, + Instruction *InsertBefore) { + assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && + "Invalid integer cast"); + unsigned SrcBits = C->getType()->getScalarSizeInBits(); + unsigned DstBits = Ty->getScalarSizeInBits(); + Instruction::CastOps opcode = + (SrcBits == DstBits ? Instruction::BitCast : + (SrcBits > DstBits ? Instruction::Trunc : + (isSigned ? Instruction::SExt : Instruction::ZExt))); + return Create(opcode, C, Ty, Name, InsertBefore); +} + +CastInst *CastInst::CreateIntegerCast(Value *C, const Type *Ty, + bool isSigned, const Twine &Name, + BasicBlock *InsertAtEnd) { + assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && + "Invalid cast"); + unsigned SrcBits = C->getType()->getScalarSizeInBits(); + unsigned DstBits = Ty->getScalarSizeInBits(); + Instruction::CastOps opcode = + (SrcBits == DstBits ? Instruction::BitCast : + (SrcBits > DstBits ? Instruction::Trunc : + (isSigned ? Instruction::SExt : Instruction::ZExt))); + return Create(opcode, C, Ty, Name, InsertAtEnd); +} + +CastInst *CastInst::CreateFPCast(Value *C, const Type *Ty, + const Twine &Name, + Instruction *InsertBefore) { + assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && + "Invalid cast"); + unsigned SrcBits = C->getType()->getScalarSizeInBits(); + unsigned DstBits = Ty->getScalarSizeInBits(); + Instruction::CastOps opcode = + (SrcBits == DstBits ? Instruction::BitCast : + (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); + return Create(opcode, C, Ty, Name, InsertBefore); +} + +CastInst *CastInst::CreateFPCast(Value *C, const Type *Ty, + const Twine &Name, + BasicBlock *InsertAtEnd) { + assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && + "Invalid cast"); + unsigned SrcBits = C->getType()->getScalarSizeInBits(); + unsigned DstBits = Ty->getScalarSizeInBits(); + Instruction::CastOps opcode = + (SrcBits == DstBits ? Instruction::BitCast : + (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); + return Create(opcode, C, Ty, Name, InsertAtEnd); +} + +// Check whether it is valid to call getCastOpcode for these types. +// This routine must be kept in sync with getCastOpcode. +bool CastInst::isCastable(const Type *SrcTy, const Type *DestTy) { + if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType()) + return false; + + if (SrcTy == DestTy) + return true; + + // Get the bit sizes, we'll need these + unsigned SrcBits = SrcTy->getScalarSizeInBits(); // 0 for ptr + unsigned DestBits = DestTy->getScalarSizeInBits(); // 0 for ptr + + // Run through the possibilities ... + if (DestTy->isIntegerTy()) { // Casting to integral + if (SrcTy->isIntegerTy()) { // Casting from integral + return true; + } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt + return true; + } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) { + // Casting from vector + return DestBits == PTy->getBitWidth(); + } else { // Casting from something else + return SrcTy->isPointerTy(); + } + } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt + if (SrcTy->isIntegerTy()) { // Casting from integral + return true; + } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt + return true; + } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) { + // Casting from vector + return DestBits == PTy->getBitWidth(); + } else { // Casting from something else + return false; + } + } else if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) { + // Casting to vector + if (const VectorType *SrcPTy = dyn_cast<VectorType>(SrcTy)) { + // Casting from vector + return DestPTy->getBitWidth() == SrcPTy->getBitWidth(); + } else { // Casting from something else + return DestPTy->getBitWidth() == SrcBits; + } + } else if (DestTy->isPointerTy()) { // Casting to pointer + if (SrcTy->isPointerTy()) { // Casting from pointer + return true; + } else if (SrcTy->isIntegerTy()) { // Casting from integral + return true; + } else { // Casting from something else + return false; + } + } else { // Casting to something else + return false; + } +} + +// Provide a way to get a "cast" where the cast opcode is inferred from the +// types and size of the operand. This, basically, is a parallel of the +// logic in the castIsValid function below. This axiom should hold: +// castIsValid( getCastOpcode(Val, Ty), Val, Ty) +// should not assert in castIsValid. In other words, this produces a "correct" +// casting opcode for the arguments passed to it. +// This routine must be kept in sync with isCastable. +Instruction::CastOps +CastInst::getCastOpcode( + const Value *Src, bool SrcIsSigned, const Type *DestTy, bool DestIsSigned) { + // Get the bit sizes, we'll need these + const Type *SrcTy = Src->getType(); + unsigned SrcBits = SrcTy->getScalarSizeInBits(); // 0 for ptr + unsigned DestBits = DestTy->getScalarSizeInBits(); // 0 for ptr + + assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() && + "Only first class types are castable!"); + + // Run through the possibilities ... + if (DestTy->isIntegerTy()) { // Casting to integral + if (SrcTy->isIntegerTy()) { // Casting from integral + if (DestBits < SrcBits) + return Trunc; // int -> smaller int + else if (DestBits > SrcBits) { // its an extension + if (SrcIsSigned) + return SExt; // signed -> SEXT + else + return ZExt; // unsigned -> ZEXT + } else { + return BitCast; // Same size, No-op cast + } + } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt + if (DestIsSigned) + return FPToSI; // FP -> sint + else + return FPToUI; // FP -> uint + } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) { + assert(DestBits == PTy->getBitWidth() && + "Casting vector to integer of different width"); + PTy = NULL; + return BitCast; // Same size, no-op cast + } else { + assert(SrcTy->isPointerTy() && + "Casting from a value that is not first-class type"); + return PtrToInt; // ptr -> int + } + } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt + if (SrcTy->isIntegerTy()) { // Casting from integral + if (SrcIsSigned) + return SIToFP; // sint -> FP + else + return UIToFP; // uint -> FP + } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt + if (DestBits < SrcBits) { + return FPTrunc; // FP -> smaller FP + } else if (DestBits > SrcBits) { + return FPExt; // FP -> larger FP + } else { + return BitCast; // same size, no-op cast + } + } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) { + assert(DestBits == PTy->getBitWidth() && + "Casting vector to floating point of different width"); + PTy = NULL; + return BitCast; // same size, no-op cast + } else { + llvm_unreachable("Casting pointer or non-first class to float"); + } + } else if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) { + if (const VectorType *SrcPTy = dyn_cast<VectorType>(SrcTy)) { + assert(DestPTy->getBitWidth() == SrcPTy->getBitWidth() && + "Casting vector to vector of different widths"); + SrcPTy = NULL; + return BitCast; // vector -> vector + } else if (DestPTy->getBitWidth() == SrcBits) { + return BitCast; // float/int -> vector + } else { + assert(!"Illegal cast to vector (wrong type or size)"); + } + } else if (DestTy->isPointerTy()) { + if (SrcTy->isPointerTy()) { + return BitCast; // ptr -> ptr + } else if (SrcTy->isIntegerTy()) { + return IntToPtr; // int -> ptr + } else { + assert(!"Casting pointer to other than pointer or int"); + } + } else { + assert(!"Casting to type that is not first-class"); + } + + // If we fall through to here we probably hit an assertion cast above + // and assertions are not turned on. Anything we return is an error, so + // BitCast is as good a choice as any. + return BitCast; +} + +//===----------------------------------------------------------------------===// +// CastInst SubClass Constructors +//===----------------------------------------------------------------------===// + +/// Check that the construction parameters for a CastInst are correct. This +/// could be broken out into the separate constructors but it is useful to have +/// it in one place and to eliminate the redundant code for getting the sizes +/// of the types involved. +bool +CastInst::castIsValid(Instruction::CastOps op, Value *S, const Type *DstTy) { + + // Check for type sanity on the arguments + const Type *SrcTy = S->getType(); + if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() || + SrcTy->isAggregateType() || DstTy->isAggregateType()) + return false; + + // Get the size of the types in bits, we'll need this later + unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); + unsigned DstBitSize = DstTy->getScalarSizeInBits(); + + // Switch on the opcode provided + switch (op) { + default: return false; // This is an input error + case Instruction::Trunc: + return SrcTy->isIntOrIntVectorTy() && + DstTy->isIntOrIntVectorTy()&& SrcBitSize > DstBitSize; + case Instruction::ZExt: + return SrcTy->isIntOrIntVectorTy() && + DstTy->isIntOrIntVectorTy()&& SrcBitSize < DstBitSize; + case Instruction::SExt: + return SrcTy->isIntOrIntVectorTy() && + DstTy->isIntOrIntVectorTy()&& SrcBitSize < DstBitSize; + case Instruction::FPTrunc: + return SrcTy->isFPOrFPVectorTy() && + DstTy->isFPOrFPVectorTy() && + SrcBitSize > DstBitSize; + case Instruction::FPExt: + return SrcTy->isFPOrFPVectorTy() && + DstTy->isFPOrFPVectorTy() && + SrcBitSize < DstBitSize; + case Instruction::UIToFP: + case Instruction::SIToFP: + if (const VectorType *SVTy = dyn_cast<VectorType>(SrcTy)) { + if (const VectorType *DVTy = dyn_cast<VectorType>(DstTy)) { + return SVTy->getElementType()->isIntOrIntVectorTy() && + DVTy->getElementType()->isFPOrFPVectorTy() && + SVTy->getNumElements() == DVTy->getNumElements(); + } + } + return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy(); + case Instruction::FPToUI: + case Instruction::FPToSI: + if (const VectorType *SVTy = dyn_cast<VectorType>(SrcTy)) { + if (const VectorType *DVTy = dyn_cast<VectorType>(DstTy)) { + return SVTy->getElementType()->isFPOrFPVectorTy() && + DVTy->getElementType()->isIntOrIntVectorTy() && + SVTy->getNumElements() == DVTy->getNumElements(); + } + } + return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy(); + case Instruction::PtrToInt: + return SrcTy->isPointerTy() && DstTy->isIntegerTy(); + case Instruction::IntToPtr: + return SrcTy->isIntegerTy() && DstTy->isPointerTy(); + case Instruction::BitCast: + // BitCast implies a no-op cast of type only. No bits change. + // However, you can't cast pointers to anything but pointers. + if (SrcTy->isPointerTy() != DstTy->isPointerTy()) + return false; + + // Now we know we're not dealing with a pointer/non-pointer mismatch. In all + // these cases, the cast is okay if the source and destination bit widths + // are identical. + return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits(); + } +} + +TruncInst::TruncInst( + Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore +) : CastInst(Ty, Trunc, S, Name, InsertBefore) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); +} + +TruncInst::TruncInst( + Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd +) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); +} + +ZExtInst::ZExtInst( + Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore +) : CastInst(Ty, ZExt, S, Name, InsertBefore) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); +} + +ZExtInst::ZExtInst( + Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd +) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); +} +SExtInst::SExtInst( + Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore +) : CastInst(Ty, SExt, S, Name, InsertBefore) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); +} + +SExtInst::SExtInst( + Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd +) : CastInst(Ty, SExt, S, Name, InsertAtEnd) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); +} + +FPTruncInst::FPTruncInst( + Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore +) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); +} + +FPTruncInst::FPTruncInst( + Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd +) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); +} + +FPExtInst::FPExtInst( + Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore +) : CastInst(Ty, FPExt, S, Name, InsertBefore) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); +} + +FPExtInst::FPExtInst( + Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd +) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); +} + +UIToFPInst::UIToFPInst( + Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore +) : CastInst(Ty, UIToFP, S, Name, InsertBefore) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); +} + +UIToFPInst::UIToFPInst( + Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd +) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); +} + +SIToFPInst::SIToFPInst( + Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore +) : CastInst(Ty, SIToFP, S, Name, InsertBefore) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); +} + +SIToFPInst::SIToFPInst( + Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd +) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); +} + +FPToUIInst::FPToUIInst( + Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore +) : CastInst(Ty, FPToUI, S, Name, InsertBefore) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); +} + +FPToUIInst::FPToUIInst( + Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd +) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); +} + +FPToSIInst::FPToSIInst( + Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore +) : CastInst(Ty, FPToSI, S, Name, InsertBefore) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); +} + +FPToSIInst::FPToSIInst( + Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd +) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); +} + +PtrToIntInst::PtrToIntInst( + Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore +) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); +} + +PtrToIntInst::PtrToIntInst( + Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd +) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); +} + +IntToPtrInst::IntToPtrInst( + Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore +) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); +} + +IntToPtrInst::IntToPtrInst( + Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd +) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); +} + +BitCastInst::BitCastInst( + Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore +) : CastInst(Ty, BitCast, S, Name, InsertBefore) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); +} + +BitCastInst::BitCastInst( + Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd +) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); +} + +//===----------------------------------------------------------------------===// +// CmpInst Classes +//===----------------------------------------------------------------------===// + +void CmpInst::Anchor() const {} + +CmpInst::CmpInst(const Type *ty, OtherOps op, unsigned short predicate, + Value *LHS, Value *RHS, const Twine &Name, + Instruction *InsertBefore) + : Instruction(ty, op, + OperandTraits<CmpInst>::op_begin(this), + OperandTraits<CmpInst>::operands(this), + InsertBefore) { + Op<0>() = LHS; + Op<1>() = RHS; + setPredicate((Predicate)predicate); + setName(Name); +} + +CmpInst::CmpInst(const Type *ty, OtherOps op, unsigned short predicate, + Value *LHS, Value *RHS, const Twine &Name, + BasicBlock *InsertAtEnd) + : Instruction(ty, op, + OperandTraits<CmpInst>::op_begin(this), + OperandTraits<CmpInst>::operands(this), + InsertAtEnd) { + Op<0>() = LHS; + Op<1>() = RHS; + setPredicate((Predicate)predicate); + setName(Name); +} + +CmpInst * +CmpInst::Create(OtherOps Op, unsigned short predicate, + Value *S1, Value *S2, + const Twine &Name, Instruction *InsertBefore) { + if (Op == Instruction::ICmp) { + if (InsertBefore) + return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate), + S1, S2, Name); + else + return new ICmpInst(CmpInst::Predicate(predicate), + S1, S2, Name); + } + + if (InsertBefore) + return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate), + S1, S2, Name); + else + return new FCmpInst(CmpInst::Predicate(predicate), + S1, S2, Name); +} + +CmpInst * +CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2, + const Twine &Name, BasicBlock *InsertAtEnd) { + if (Op == Instruction::ICmp) { + return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate), + S1, S2, Name); + } + return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate), + S1, S2, Name); +} + +void CmpInst::swapOperands() { + if (ICmpInst *IC = dyn_cast<ICmpInst>(this)) + IC->swapOperands(); + else + cast<FCmpInst>(this)->swapOperands(); +} + +bool CmpInst::isCommutative() { + if (ICmpInst *IC = dyn_cast<ICmpInst>(this)) + return IC->isCommutative(); + return cast<FCmpInst>(this)->isCommutative(); +} + +bool CmpInst::isEquality() { + if (ICmpInst *IC = dyn_cast<ICmpInst>(this)) + return IC->isEquality(); + return cast<FCmpInst>(this)->isEquality(); +} + + +CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) { + switch (pred) { + default: assert(!"Unknown cmp predicate!"); + case ICMP_EQ: return ICMP_NE; + case ICMP_NE: return ICMP_EQ; + case ICMP_UGT: return ICMP_ULE; + case ICMP_ULT: return ICMP_UGE; + case ICMP_UGE: return ICMP_ULT; + case ICMP_ULE: return ICMP_UGT; + case ICMP_SGT: return ICMP_SLE; + case ICMP_SLT: return ICMP_SGE; + case ICMP_SGE: return ICMP_SLT; + case ICMP_SLE: return ICMP_SGT; + + case FCMP_OEQ: return FCMP_UNE; + case FCMP_ONE: return FCMP_UEQ; + case FCMP_OGT: return FCMP_ULE; + case FCMP_OLT: return FCMP_UGE; + case FCMP_OGE: return FCMP_ULT; + case FCMP_OLE: return FCMP_UGT; + case FCMP_UEQ: return FCMP_ONE; + case FCMP_UNE: return FCMP_OEQ; + case FCMP_UGT: return FCMP_OLE; + case FCMP_ULT: return FCMP_OGE; + case FCMP_UGE: return FCMP_OLT; + case FCMP_ULE: return FCMP_OGT; + case FCMP_ORD: return FCMP_UNO; + case FCMP_UNO: return FCMP_ORD; + case FCMP_TRUE: return FCMP_FALSE; + case FCMP_FALSE: return FCMP_TRUE; + } +} + +ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) { + switch (pred) { + default: assert(! "Unknown icmp predicate!"); + case ICMP_EQ: case ICMP_NE: + case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE: + return pred; + case ICMP_UGT: return ICMP_SGT; + case ICMP_ULT: return ICMP_SLT; + case ICMP_UGE: return ICMP_SGE; + case ICMP_ULE: return ICMP_SLE; + } +} + +ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) { + switch (pred) { + default: assert(! "Unknown icmp predicate!"); + case ICMP_EQ: case ICMP_NE: + case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE: + return pred; + case ICMP_SGT: return ICMP_UGT; + case ICMP_SLT: return ICMP_ULT; + case ICMP_SGE: return ICMP_UGE; + case ICMP_SLE: return ICMP_ULE; + } +} + +/// Initialize a set of values that all satisfy the condition with C. +/// +ConstantRange +ICmpInst::makeConstantRange(Predicate pred, const APInt &C) { + APInt Lower(C); + APInt Upper(C); + uint32_t BitWidth = C.getBitWidth(); + switch (pred) { + default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!"); + case ICmpInst::ICMP_EQ: Upper++; break; + case ICmpInst::ICMP_NE: Lower++; break; + case ICmpInst::ICMP_ULT: + Lower = APInt::getMinValue(BitWidth); + // Check for an empty-set condition. + if (Lower == Upper) + return ConstantRange(BitWidth, /*isFullSet=*/false); + break; + case ICmpInst::ICMP_SLT: + Lower = APInt::getSignedMinValue(BitWidth); + // Check for an empty-set condition. + if (Lower == Upper) + return ConstantRange(BitWidth, /*isFullSet=*/false); + break; + case ICmpInst::ICMP_UGT: + Lower++; Upper = APInt::getMinValue(BitWidth); // Min = Next(Max) + // Check for an empty-set condition. + if (Lower == Upper) + return ConstantRange(BitWidth, /*isFullSet=*/false); + break; + case ICmpInst::ICMP_SGT: + Lower++; Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max) + // Check for an empty-set condition. + if (Lower == Upper) + return ConstantRange(BitWidth, /*isFullSet=*/false); + break; + case ICmpInst::ICMP_ULE: + Lower = APInt::getMinValue(BitWidth); Upper++; + // Check for a full-set condition. + if (Lower == Upper) + return ConstantRange(BitWidth, /*isFullSet=*/true); + break; + case ICmpInst::ICMP_SLE: + Lower = APInt::getSignedMinValue(BitWidth); Upper++; + // Check for a full-set condition. + if (Lower == Upper) + return ConstantRange(BitWidth, /*isFullSet=*/true); + break; + case ICmpInst::ICMP_UGE: + Upper = APInt::getMinValue(BitWidth); // Min = Next(Max) + // Check for a full-set condition. + if (Lower == Upper) + return ConstantRange(BitWidth, /*isFullSet=*/true); + break; + case ICmpInst::ICMP_SGE: + Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max) + // Check for a full-set condition. + if (Lower == Upper) + return ConstantRange(BitWidth, /*isFullSet=*/true); + break; + } + return ConstantRange(Lower, Upper); +} + +CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) { + switch (pred) { + default: assert(!"Unknown cmp predicate!"); + case ICMP_EQ: case ICMP_NE: + return pred; + case ICMP_SGT: return ICMP_SLT; + case ICMP_SLT: return ICMP_SGT; + case ICMP_SGE: return ICMP_SLE; + case ICMP_SLE: return ICMP_SGE; + case ICMP_UGT: return ICMP_ULT; + case ICMP_ULT: return ICMP_UGT; + case ICMP_UGE: return ICMP_ULE; + case ICMP_ULE: return ICMP_UGE; + + case FCMP_FALSE: case FCMP_TRUE: + case FCMP_OEQ: case FCMP_ONE: + case FCMP_UEQ: case FCMP_UNE: + case FCMP_ORD: case FCMP_UNO: + return pred; + case FCMP_OGT: return FCMP_OLT; + case FCMP_OLT: return FCMP_OGT; + case FCMP_OGE: return FCMP_OLE; + case FCMP_OLE: return FCMP_OGE; + case FCMP_UGT: return FCMP_ULT; + case FCMP_ULT: return FCMP_UGT; + case FCMP_UGE: return FCMP_ULE; + case FCMP_ULE: return FCMP_UGE; + } +} + +bool CmpInst::isUnsigned(unsigned short predicate) { + switch (predicate) { + default: return false; + case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT: + case ICmpInst::ICMP_UGE: return true; + } +} + +bool CmpInst::isSigned(unsigned short predicate) { + switch (predicate) { + default: return false; + case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT: + case ICmpInst::ICMP_SGE: return true; + } +} + +bool CmpInst::isOrdered(unsigned short predicate) { + switch (predicate) { + default: return false; + case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT: + case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE: + case FCmpInst::FCMP_ORD: return true; + } +} + +bool CmpInst::isUnordered(unsigned short predicate) { + switch (predicate) { + default: return false; + case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT: + case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE: + case FCmpInst::FCMP_UNO: return true; + } +} + +bool CmpInst::isTrueWhenEqual(unsigned short predicate) { + switch(predicate) { + default: return false; + case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE: + case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true; + } +} + +bool CmpInst::isFalseWhenEqual(unsigned short predicate) { + switch(predicate) { + case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT: + case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true; + default: return false; + } +} + + +//===----------------------------------------------------------------------===// +// SwitchInst Implementation +//===----------------------------------------------------------------------===// + +void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumCases) { + assert(Value && Default); + ReservedSpace = 2+NumCases*2; + NumOperands = 2; + OperandList = allocHungoffUses(ReservedSpace); + + OperandList[0] = Value; + OperandList[1] = Default; +} + +/// SwitchInst ctor - Create a new switch instruction, specifying a value to +/// switch on and a default destination. The number of additional cases can +/// be specified here to make memory allocation more efficient. This +/// constructor can also autoinsert before another instruction. +SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, + Instruction *InsertBefore) + : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch, + 0, 0, InsertBefore) { + init(Value, Default, NumCases); +} + +/// SwitchInst ctor - Create a new switch instruction, specifying a value to +/// switch on and a default destination. The number of additional cases can +/// be specified here to make memory allocation more efficient. This +/// constructor also autoinserts at the end of the specified BasicBlock. +SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, + BasicBlock *InsertAtEnd) + : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch, + 0, 0, InsertAtEnd) { + init(Value, Default, NumCases); +} + +SwitchInst::SwitchInst(const SwitchInst &SI) + : TerminatorInst(Type::getVoidTy(SI.getContext()), Instruction::Switch, + allocHungoffUses(SI.getNumOperands()), SI.getNumOperands()) { + Use *OL = OperandList, *InOL = SI.OperandList; + for (unsigned i = 0, E = SI.getNumOperands(); i != E; i+=2) { + OL[i] = InOL[i]; + OL[i+1] = InOL[i+1]; + } + SubclassOptionalData = SI.SubclassOptionalData; +} + +SwitchInst::~SwitchInst() { + dropHungoffUses(OperandList); +} + + +/// addCase - Add an entry to the switch instruction... +/// +void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) { + unsigned OpNo = NumOperands; + if (OpNo+2 > ReservedSpace) + resizeOperands(0); // Get more space! + // Initialize some new operands. + assert(OpNo+1 < ReservedSpace && "Growing didn't work!"); + NumOperands = OpNo+2; + OperandList[OpNo] = OnVal; + OperandList[OpNo+1] = Dest; +} + +/// removeCase - This method removes the specified successor from the switch +/// instruction. Note that this cannot be used to remove the default +/// destination (successor #0). +/// +void SwitchInst::removeCase(unsigned idx) { + assert(idx != 0 && "Cannot remove the default case!"); + assert(idx*2 < getNumOperands() && "Successor index out of range!!!"); + + unsigned NumOps = getNumOperands(); + Use *OL = OperandList; + + // Move everything after this operand down. + // + // FIXME: we could just swap with the end of the list, then erase. However, + // client might not expect this to happen. The code as it is thrashes the + // use/def lists, which is kinda lame. + for (unsigned i = (idx+1)*2; i != NumOps; i += 2) { + OL[i-2] = OL[i]; + OL[i-2+1] = OL[i+1]; + } + + // Nuke the last value. + OL[NumOps-2].set(0); + OL[NumOps-2+1].set(0); + NumOperands = NumOps-2; +} + +/// resizeOperands - resize operands - This adjusts the length of the operands +/// list according to the following behavior: +/// 1. If NumOps == 0, grow the operand list in response to a push_back style +/// of operation. This grows the number of ops by 3 times. +/// 2. If NumOps > NumOperands, reserve space for NumOps operands. +/// 3. If NumOps == NumOperands, trim the reserved space. +/// +void SwitchInst::resizeOperands(unsigned NumOps) { + unsigned e = getNumOperands(); + if (NumOps == 0) { + NumOps = e*3; + } else if (NumOps*2 > NumOperands) { + // No resize needed. + if (ReservedSpace >= NumOps) return; + } else if (NumOps == NumOperands) { + if (ReservedSpace == NumOps) return; + } else { + return; + } + + ReservedSpace = NumOps; + Use *NewOps = allocHungoffUses(NumOps); + Use *OldOps = OperandList; + for (unsigned i = 0; i != e; ++i) { + NewOps[i] = OldOps[i]; + } + OperandList = NewOps; + if (OldOps) Use::zap(OldOps, OldOps + e, true); +} + + +BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const { + return getSuccessor(idx); +} +unsigned SwitchInst::getNumSuccessorsV() const { + return getNumSuccessors(); +} +void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) { + setSuccessor(idx, B); +} + +//===----------------------------------------------------------------------===// +// SwitchInst Implementation +//===----------------------------------------------------------------------===// + +void IndirectBrInst::init(Value *Address, unsigned NumDests) { + assert(Address && Address->getType()->isPointerTy() && + "Address of indirectbr must be a pointer"); + ReservedSpace = 1+NumDests; + NumOperands = 1; + OperandList = allocHungoffUses(ReservedSpace); + + OperandList[0] = Address; +} + + +/// resizeOperands - resize operands - This adjusts the length of the operands +/// list according to the following behavior: +/// 1. If NumOps == 0, grow the operand list in response to a push_back style +/// of operation. This grows the number of ops by 2 times. +/// 2. If NumOps > NumOperands, reserve space for NumOps operands. +/// 3. If NumOps == NumOperands, trim the reserved space. +/// +void IndirectBrInst::resizeOperands(unsigned NumOps) { + unsigned e = getNumOperands(); + if (NumOps == 0) { + NumOps = e*2; + } else if (NumOps*2 > NumOperands) { + // No resize needed. + if (ReservedSpace >= NumOps) return; + } else if (NumOps == NumOperands) { + if (ReservedSpace == NumOps) return; + } else { + return; + } + + ReservedSpace = NumOps; + Use *NewOps = allocHungoffUses(NumOps); + Use *OldOps = OperandList; + for (unsigned i = 0; i != e; ++i) + NewOps[i] = OldOps[i]; + OperandList = NewOps; + if (OldOps) Use::zap(OldOps, OldOps + e, true); +} + +IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, + Instruction *InsertBefore) +: TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr, + 0, 0, InsertBefore) { + init(Address, NumCases); +} + +IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, + BasicBlock *InsertAtEnd) +: TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr, + 0, 0, InsertAtEnd) { + init(Address, NumCases); +} + +IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI) + : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr, + allocHungoffUses(IBI.getNumOperands()), + IBI.getNumOperands()) { + Use *OL = OperandList, *InOL = IBI.OperandList; + for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i) + OL[i] = InOL[i]; + SubclassOptionalData = IBI.SubclassOptionalData; +} + +IndirectBrInst::~IndirectBrInst() { + dropHungoffUses(OperandList); +} + +/// addDestination - Add a destination. +/// +void IndirectBrInst::addDestination(BasicBlock *DestBB) { + unsigned OpNo = NumOperands; + if (OpNo+1 > ReservedSpace) + resizeOperands(0); // Get more space! + // Initialize some new operands. + assert(OpNo < ReservedSpace && "Growing didn't work!"); + NumOperands = OpNo+1; + OperandList[OpNo] = DestBB; +} + +/// removeDestination - This method removes the specified successor from the +/// indirectbr instruction. +void IndirectBrInst::removeDestination(unsigned idx) { + assert(idx < getNumOperands()-1 && "Successor index out of range!"); + + unsigned NumOps = getNumOperands(); + Use *OL = OperandList; + + // Replace this value with the last one. + OL[idx+1] = OL[NumOps-1]; + + // Nuke the last value. + OL[NumOps-1].set(0); + NumOperands = NumOps-1; +} + +BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const { + return getSuccessor(idx); +} +unsigned IndirectBrInst::getNumSuccessorsV() const { + return getNumSuccessors(); +} +void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) { + setSuccessor(idx, B); +} + +//===----------------------------------------------------------------------===// +// clone_impl() implementations +//===----------------------------------------------------------------------===// + +// Define these methods here so vtables don't get emitted into every translation +// unit that uses these classes. + +GetElementPtrInst *GetElementPtrInst::clone_impl() const { + return new (getNumOperands()) GetElementPtrInst(*this); +} + +BinaryOperator *BinaryOperator::clone_impl() const { + return Create(getOpcode(), Op<0>(), Op<1>()); +} + +FCmpInst* FCmpInst::clone_impl() const { + return new FCmpInst(getPredicate(), Op<0>(), Op<1>()); +} + +ICmpInst* ICmpInst::clone_impl() const { + return new ICmpInst(getPredicate(), Op<0>(), Op<1>()); +} + +ExtractValueInst *ExtractValueInst::clone_impl() const { + return new ExtractValueInst(*this); +} + +InsertValueInst *InsertValueInst::clone_impl() const { + return new InsertValueInst(*this); +} + +AllocaInst *AllocaInst::clone_impl() const { + return new AllocaInst(getAllocatedType(), + (Value*)getOperand(0), + getAlignment()); +} + +LoadInst *LoadInst::clone_impl() const { + return new LoadInst(getOperand(0), + Twine(), isVolatile(), + getAlignment()); +} + +StoreInst *StoreInst::clone_impl() const { + return new StoreInst(getOperand(0), getOperand(1), + isVolatile(), getAlignment()); +} + +TruncInst *TruncInst::clone_impl() const { + return new TruncInst(getOperand(0), getType()); +} + +ZExtInst *ZExtInst::clone_impl() const { + return new ZExtInst(getOperand(0), getType()); +} + +SExtInst *SExtInst::clone_impl() const { + return new SExtInst(getOperand(0), getType()); +} + +FPTruncInst *FPTruncInst::clone_impl() const { + return new FPTruncInst(getOperand(0), getType()); +} + +FPExtInst *FPExtInst::clone_impl() const { + return new FPExtInst(getOperand(0), getType()); +} + +UIToFPInst *UIToFPInst::clone_impl() const { + return new UIToFPInst(getOperand(0), getType()); +} + +SIToFPInst *SIToFPInst::clone_impl() const { + return new SIToFPInst(getOperand(0), getType()); +} + +FPToUIInst *FPToUIInst::clone_impl() const { + return new FPToUIInst(getOperand(0), getType()); +} + +FPToSIInst *FPToSIInst::clone_impl() const { + return new FPToSIInst(getOperand(0), getType()); +} + +PtrToIntInst *PtrToIntInst::clone_impl() const { + return new PtrToIntInst(getOperand(0), getType()); +} + +IntToPtrInst *IntToPtrInst::clone_impl() const { + return new IntToPtrInst(getOperand(0), getType()); +} + +BitCastInst *BitCastInst::clone_impl() const { + return new BitCastInst(getOperand(0), getType()); +} + +CallInst *CallInst::clone_impl() const { + return new(getNumOperands()) CallInst(*this); +} + +SelectInst *SelectInst::clone_impl() const { + return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2)); +} + +VAArgInst *VAArgInst::clone_impl() const { + return new VAArgInst(getOperand(0), getType()); +} + +ExtractElementInst *ExtractElementInst::clone_impl() const { + return ExtractElementInst::Create(getOperand(0), getOperand(1)); +} + +InsertElementInst *InsertElementInst::clone_impl() const { + return InsertElementInst::Create(getOperand(0), + getOperand(1), + getOperand(2)); +} + +ShuffleVectorInst *ShuffleVectorInst::clone_impl() const { + return new ShuffleVectorInst(getOperand(0), + getOperand(1), + getOperand(2)); +} + +PHINode *PHINode::clone_impl() const { + return new PHINode(*this); +} + +ReturnInst *ReturnInst::clone_impl() const { + return new(getNumOperands()) ReturnInst(*this); +} + +BranchInst *BranchInst::clone_impl() const { + unsigned Ops(getNumOperands()); + return new(Ops, Ops == 1) BranchInst(*this); +} + +SwitchInst *SwitchInst::clone_impl() const { + return new SwitchInst(*this); +} + +IndirectBrInst *IndirectBrInst::clone_impl() const { + return new IndirectBrInst(*this); +} + + +InvokeInst *InvokeInst::clone_impl() const { + return new(getNumOperands()) InvokeInst(*this); +} + +UnwindInst *UnwindInst::clone_impl() const { + LLVMContext &Context = getContext(); + return new UnwindInst(Context); +} + +UnreachableInst *UnreachableInst::clone_impl() const { + LLVMContext &Context = getContext(); + return new UnreachableInst(Context); +} diff --git a/contrib/llvm/lib/VMCore/IntrinsicInst.cpp b/contrib/llvm/lib/VMCore/IntrinsicInst.cpp new file mode 100644 index 0000000..ac8ec20 --- /dev/null +++ b/contrib/llvm/lib/VMCore/IntrinsicInst.cpp @@ -0,0 +1,73 @@ +//===-- InstrinsicInst.cpp - Intrinsic Instruction Wrappers -----*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements methods that make it really easy to deal with intrinsic +// functions. +// +// All intrinsic function calls are instances of the call instruction, so these +// are all subclasses of the CallInst class. Note that none of these classes +// has state or virtual methods, which is an important part of this gross/neat +// hack working. +// +// In some cases, arguments to intrinsics need to be generic and are defined as +// type pointer to empty struct { }*. To access the real item of interest the +// cast instruction needs to be stripped away. +// +//===----------------------------------------------------------------------===// + +#include "llvm/IntrinsicInst.h" +#include "llvm/Constants.h" +#include "llvm/GlobalVariable.h" +#include "llvm/Metadata.h" +using namespace llvm; + +//===----------------------------------------------------------------------===// +/// DbgInfoIntrinsic - This is the common base class for debug info intrinsics +/// + +static Value *CastOperand(Value *C) { + if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) + if (CE->isCast()) + return CE->getOperand(0); + return NULL; +} + +Value *DbgInfoIntrinsic::StripCast(Value *C) { + if (Value *CO = CastOperand(C)) { + C = StripCast(CO); + } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) { + if (GV->hasInitializer()) + if (Value *CO = CastOperand(GV->getInitializer())) + C = StripCast(CO); + } + return dyn_cast<GlobalVariable>(C); +} + +//===----------------------------------------------------------------------===// +/// DbgDeclareInst - This represents the llvm.dbg.declare instruction. +/// + +Value *DbgDeclareInst::getAddress() const { + if (MDNode* MD = cast_or_null<MDNode>(getArgOperand(0))) + return MD->getOperand(0); + else + return NULL; +} + +//===----------------------------------------------------------------------===// +/// DbgValueInst - This represents the llvm.dbg.value instruction. +/// + +const Value *DbgValueInst::getValue() const { + return cast<MDNode>(getArgOperand(0))->getOperand(0); +} + +Value *DbgValueInst::getValue() { + return cast<MDNode>(getArgOperand(0))->getOperand(0); +} diff --git a/contrib/llvm/lib/VMCore/LLVMContext.cpp b/contrib/llvm/lib/VMCore/LLVMContext.cpp new file mode 100644 index 0000000..563c651 --- /dev/null +++ b/contrib/llvm/lib/VMCore/LLVMContext.cpp @@ -0,0 +1,127 @@ +//===-- LLVMContext.cpp - Implement LLVMContext -----------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements LLVMContext, as a wrapper around the opaque +// class LLVMContextImpl. +// +//===----------------------------------------------------------------------===// + +#include "llvm/LLVMContext.h" +#include "llvm/Metadata.h" +#include "llvm/Constants.h" +#include "llvm/Instruction.h" +#include "llvm/Support/ManagedStatic.h" +#include "llvm/Support/SourceMgr.h" +#include "LLVMContextImpl.h" +using namespace llvm; + +static ManagedStatic<LLVMContext> GlobalContext; + +LLVMContext& llvm::getGlobalContext() { + return *GlobalContext; +} + +LLVMContext::LLVMContext() : pImpl(new LLVMContextImpl(*this)) { + // Create the first metadata kind, which is always 'dbg'. + unsigned DbgID = getMDKindID("dbg"); + assert(DbgID == MD_dbg && "dbg kind id drifted"); (void)DbgID; +} +LLVMContext::~LLVMContext() { delete pImpl; } + +//===----------------------------------------------------------------------===// +// Recoverable Backend Errors +//===----------------------------------------------------------------------===// + +void LLVMContext::setInlineAsmDiagnosticHandler(void *DiagHandler, + void *DiagContext) { + pImpl->InlineAsmDiagHandler = DiagHandler; + pImpl->InlineAsmDiagContext = DiagContext; +} + +/// getInlineAsmDiagnosticHandler - Return the diagnostic handler set by +/// setInlineAsmDiagnosticHandler. +void *LLVMContext::getInlineAsmDiagnosticHandler() const { + return pImpl->InlineAsmDiagHandler; +} + +/// getInlineAsmDiagnosticContext - Return the diagnostic context set by +/// setInlineAsmDiagnosticHandler. +void *LLVMContext::getInlineAsmDiagnosticContext() const { + return pImpl->InlineAsmDiagContext; +} + +void LLVMContext::emitError(StringRef ErrorStr) { + emitError(0U, ErrorStr); +} + +void LLVMContext::emitError(const Instruction *I, StringRef ErrorStr) { + unsigned LocCookie = 0; + if (const MDNode *SrcLoc = I->getMetadata("srcloc")) { + if (SrcLoc->getNumOperands() != 0) + if (const ConstantInt *CI = dyn_cast<ConstantInt>(SrcLoc->getOperand(0))) + LocCookie = CI->getZExtValue(); + } + return emitError(LocCookie, ErrorStr); +} + +void LLVMContext::emitError(unsigned LocCookie, StringRef ErrorStr) { + // If there is no error handler installed, just print the error and exit. + if (pImpl->InlineAsmDiagHandler == 0) { + errs() << "error: " << ErrorStr << "\n"; + exit(1); + } + + // If we do have an error handler, we can report the error and keep going. + SMDiagnostic Diag("", "error: " + ErrorStr.str()); + + ((SourceMgr::DiagHandlerTy)(intptr_t)pImpl->InlineAsmDiagHandler) + (Diag, pImpl->InlineAsmDiagContext, LocCookie); + +} + +//===----------------------------------------------------------------------===// +// Metadata Kind Uniquing +//===----------------------------------------------------------------------===// + +#ifndef NDEBUG +/// isValidName - Return true if Name is a valid custom metadata handler name. +static bool isValidName(StringRef MDName) { + if (MDName.empty()) + return false; + + if (!isalpha(MDName[0])) + return false; + + for (StringRef::iterator I = MDName.begin() + 1, E = MDName.end(); I != E; + ++I) { + if (!isalnum(*I) && *I != '_' && *I != '-' && *I != '.') + return false; + } + return true; +} +#endif + +/// getMDKindID - Return a unique non-zero ID for the specified metadata kind. +unsigned LLVMContext::getMDKindID(StringRef Name) const { + assert(isValidName(Name) && "Invalid MDNode name"); + + // If this is new, assign it its ID. + return + pImpl->CustomMDKindNames.GetOrCreateValue( + Name, pImpl->CustomMDKindNames.size()).second; +} + +/// getHandlerNames - Populate client supplied smallvector using custome +/// metadata name and ID. +void LLVMContext::getMDKindNames(SmallVectorImpl<StringRef> &Names) const { + Names.resize(pImpl->CustomMDKindNames.size()); + for (StringMap<unsigned>::const_iterator I = pImpl->CustomMDKindNames.begin(), + E = pImpl->CustomMDKindNames.end(); I != E; ++I) + Names[I->second] = I->first(); +} diff --git a/contrib/llvm/lib/VMCore/LLVMContextImpl.cpp b/contrib/llvm/lib/VMCore/LLVMContextImpl.cpp new file mode 100644 index 0000000..93a075f --- /dev/null +++ b/contrib/llvm/lib/VMCore/LLVMContextImpl.cpp @@ -0,0 +1,104 @@ +//===-- LLVMContextImpl.cpp - Implement LLVMContextImpl -------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the opaque LLVMContextImpl. +// +//===----------------------------------------------------------------------===// + +#include "LLVMContextImpl.h" +#include <algorithm> +using namespace llvm; + +LLVMContextImpl::LLVMContextImpl(LLVMContext &C) + : TheTrueVal(0), TheFalseVal(0), + VoidTy(C, Type::VoidTyID), + LabelTy(C, Type::LabelTyID), + FloatTy(C, Type::FloatTyID), + DoubleTy(C, Type::DoubleTyID), + MetadataTy(C, Type::MetadataTyID), + X86_FP80Ty(C, Type::X86_FP80TyID), + FP128Ty(C, Type::FP128TyID), + PPC_FP128Ty(C, Type::PPC_FP128TyID), + Int1Ty(C, 1), + Int8Ty(C, 8), + Int16Ty(C, 16), + Int32Ty(C, 32), + Int64Ty(C, 64), + AlwaysOpaqueTy(new OpaqueType(C)) { + InlineAsmDiagHandler = 0; + InlineAsmDiagContext = 0; + + // Make sure the AlwaysOpaqueTy stays alive as long as the Context. + AlwaysOpaqueTy->addRef(); + OpaqueTypes.insert(AlwaysOpaqueTy); +} + +namespace { +struct DropReferences { + // Takes the value_type of a ConstantUniqueMap's internal map, whose 'second' + // is a Constant*. + template<typename PairT> + void operator()(const PairT &P) { + P.second->dropAllReferences(); + } +}; +} + +LLVMContextImpl::~LLVMContextImpl() { + std::for_each(ExprConstants.map_begin(), ExprConstants.map_end(), + DropReferences()); + std::for_each(ArrayConstants.map_begin(), ArrayConstants.map_end(), + DropReferences()); + std::for_each(StructConstants.map_begin(), StructConstants.map_end(), + DropReferences()); + std::for_each(VectorConstants.map_begin(), VectorConstants.map_end(), + DropReferences()); + ExprConstants.freeConstants(); + ArrayConstants.freeConstants(); + StructConstants.freeConstants(); + VectorConstants.freeConstants(); + AggZeroConstants.freeConstants(); + NullPtrConstants.freeConstants(); + UndefValueConstants.freeConstants(); + InlineAsms.freeConstants(); + for (IntMapTy::iterator I = IntConstants.begin(), E = IntConstants.end(); + I != E; ++I) { + delete I->second; + } + for (FPMapTy::iterator I = FPConstants.begin(), E = FPConstants.end(); + I != E; ++I) { + delete I->second; + } + AlwaysOpaqueTy->dropRef(); + for (OpaqueTypesTy::iterator I = OpaqueTypes.begin(), E = OpaqueTypes.end(); + I != E; ++I) { + (*I)->AbstractTypeUsers.clear(); + delete *I; + } + // Destroy MDNodes. ~MDNode can move and remove nodes between the MDNodeSet + // and the NonUniquedMDNodes sets, so copy the values out first. + SmallVector<MDNode*, 8> MDNodes; + MDNodes.reserve(MDNodeSet.size() + NonUniquedMDNodes.size()); + for (FoldingSetIterator<MDNode> I = MDNodeSet.begin(), E = MDNodeSet.end(); + I != E; ++I) { + MDNodes.push_back(&*I); + } + MDNodes.append(NonUniquedMDNodes.begin(), NonUniquedMDNodes.end()); + for (SmallVector<MDNode*, 8>::iterator I = MDNodes.begin(), + E = MDNodes.end(); I != E; ++I) { + (*I)->destroy(); + } + assert(MDNodeSet.empty() && NonUniquedMDNodes.empty() && + "Destroying all MDNodes didn't empty the Context's sets."); + // Destroy MDStrings. + for (StringMap<MDString*>::iterator I = MDStringCache.begin(), + E = MDStringCache.end(); I != E; ++I) { + delete I->second; + } +} diff --git a/contrib/llvm/lib/VMCore/LLVMContextImpl.h b/contrib/llvm/lib/VMCore/LLVMContextImpl.h new file mode 100644 index 0000000..51b2992 --- /dev/null +++ b/contrib/llvm/lib/VMCore/LLVMContextImpl.h @@ -0,0 +1,244 @@ +//===-- LLVMContextImpl.h - The LLVMContextImpl opaque class ----*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file declares LLVMContextImpl, the opaque implementation +// of LLVMContext. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_LLVMCONTEXT_IMPL_H +#define LLVM_LLVMCONTEXT_IMPL_H + +#include "ConstantsContext.h" +#include "LeaksContext.h" +#include "TypesContext.h" +#include "llvm/LLVMContext.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Metadata.h" +#include "llvm/Assembly/Writer.h" +#include "llvm/Support/ValueHandle.h" +#include "llvm/ADT/APFloat.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/FoldingSet.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/StringMap.h" +#include <vector> + +namespace llvm { + +class ConstantInt; +class ConstantFP; +class LLVMContext; +class Type; +class Value; + +struct DenseMapAPIntKeyInfo { + struct KeyTy { + APInt val; + const Type* type; + KeyTy(const APInt& V, const Type* Ty) : val(V), type(Ty) {} + KeyTy(const KeyTy& that) : val(that.val), type(that.type) {} + bool operator==(const KeyTy& that) const { + return type == that.type && this->val == that.val; + } + bool operator!=(const KeyTy& that) const { + return !this->operator==(that); + } + }; + static inline KeyTy getEmptyKey() { return KeyTy(APInt(1,0), 0); } + static inline KeyTy getTombstoneKey() { return KeyTy(APInt(1,1), 0); } + static unsigned getHashValue(const KeyTy &Key) { + return DenseMapInfo<void*>::getHashValue(Key.type) ^ + Key.val.getHashValue(); + } + static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) { + return LHS == RHS; + } +}; + +struct DenseMapAPFloatKeyInfo { + struct KeyTy { + APFloat val; + KeyTy(const APFloat& V) : val(V){} + KeyTy(const KeyTy& that) : val(that.val) {} + bool operator==(const KeyTy& that) const { + return this->val.bitwiseIsEqual(that.val); + } + bool operator!=(const KeyTy& that) const { + return !this->operator==(that); + } + }; + static inline KeyTy getEmptyKey() { + return KeyTy(APFloat(APFloat::Bogus,1)); + } + static inline KeyTy getTombstoneKey() { + return KeyTy(APFloat(APFloat::Bogus,2)); + } + static unsigned getHashValue(const KeyTy &Key) { + return Key.val.getHashValue(); + } + static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) { + return LHS == RHS; + } +}; + +/// DebugRecVH - This is a CallbackVH used to keep the Scope -> index maps +/// up to date as MDNodes mutate. This class is implemented in DebugLoc.cpp. +class DebugRecVH : public CallbackVH { + /// Ctx - This is the LLVM Context being referenced. + LLVMContextImpl *Ctx; + + /// Idx - The index into either ScopeRecordIdx or ScopeInlinedAtRecords that + /// this reference lives in. If this is zero, then it represents a + /// non-canonical entry that has no DenseMap value. This can happen due to + /// RAUW. + int Idx; +public: + DebugRecVH(MDNode *n, LLVMContextImpl *ctx, int idx) + : CallbackVH(n), Ctx(ctx), Idx(idx) {} + + MDNode *get() const { + return cast_or_null<MDNode>(getValPtr()); + } + + virtual void deleted(); + virtual void allUsesReplacedWith(Value *VNew); +}; + +class LLVMContextImpl { +public: + void *InlineAsmDiagHandler, *InlineAsmDiagContext; + + typedef DenseMap<DenseMapAPIntKeyInfo::KeyTy, ConstantInt*, + DenseMapAPIntKeyInfo> IntMapTy; + IntMapTy IntConstants; + + typedef DenseMap<DenseMapAPFloatKeyInfo::KeyTy, ConstantFP*, + DenseMapAPFloatKeyInfo> FPMapTy; + FPMapTy FPConstants; + + StringMap<MDString*> MDStringCache; + + FoldingSet<MDNode> MDNodeSet; + // MDNodes may be uniqued or not uniqued. When they're not uniqued, they + // aren't in the MDNodeSet, but they're still shared between objects, so no + // one object can destroy them. This set allows us to at least destroy them + // on Context destruction. + SmallPtrSet<MDNode*, 1> NonUniquedMDNodes; + + ConstantUniqueMap<char, Type, ConstantAggregateZero> AggZeroConstants; + + typedef ConstantUniqueMap<std::vector<Constant*>, ArrayType, + ConstantArray, true /*largekey*/> ArrayConstantsTy; + ArrayConstantsTy ArrayConstants; + + typedef ConstantUniqueMap<std::vector<Constant*>, StructType, + ConstantStruct, true /*largekey*/> StructConstantsTy; + StructConstantsTy StructConstants; + + typedef ConstantUniqueMap<std::vector<Constant*>, VectorType, + ConstantVector> VectorConstantsTy; + VectorConstantsTy VectorConstants; + + ConstantUniqueMap<char, PointerType, ConstantPointerNull> NullPtrConstants; + ConstantUniqueMap<char, Type, UndefValue> UndefValueConstants; + + DenseMap<std::pair<Function*, BasicBlock*> , BlockAddress*> BlockAddresses; + ConstantUniqueMap<ExprMapKeyType, Type, ConstantExpr> ExprConstants; + + ConstantUniqueMap<InlineAsmKeyType, PointerType, InlineAsm> InlineAsms; + + ConstantInt *TheTrueVal; + ConstantInt *TheFalseVal; + + LeakDetectorImpl<Value> LLVMObjects; + + // Basic type instances. + const Type VoidTy; + const Type LabelTy; + const Type FloatTy; + const Type DoubleTy; + const Type MetadataTy; + const Type X86_FP80Ty; + const Type FP128Ty; + const Type PPC_FP128Ty; + const IntegerType Int1Ty; + const IntegerType Int8Ty; + const IntegerType Int16Ty; + const IntegerType Int32Ty; + const IntegerType Int64Ty; + + // Concrete/Abstract TypeDescriptions - We lazily calculate type descriptions + // for types as they are needed. Because resolution of types must invalidate + // all of the abstract type descriptions, we keep them in a seperate map to + // make this easy. + TypePrinting ConcreteTypeDescriptions; + TypePrinting AbstractTypeDescriptions; + + TypeMap<ArrayValType, ArrayType> ArrayTypes; + TypeMap<VectorValType, VectorType> VectorTypes; + TypeMap<PointerValType, PointerType> PointerTypes; + TypeMap<FunctionValType, FunctionType> FunctionTypes; + TypeMap<StructValType, StructType> StructTypes; + TypeMap<IntegerValType, IntegerType> IntegerTypes; + + // Opaque types are not structurally uniqued, so don't use TypeMap. + typedef SmallPtrSet<const OpaqueType*, 8> OpaqueTypesTy; + OpaqueTypesTy OpaqueTypes; + + /// Used as an abstract type that will never be resolved. + OpaqueType *const AlwaysOpaqueTy; + + + /// ValueHandles - This map keeps track of all of the value handles that are + /// watching a Value*. The Value::HasValueHandle bit is used to know + // whether or not a value has an entry in this map. + typedef DenseMap<Value*, ValueHandleBase*> ValueHandlesTy; + ValueHandlesTy ValueHandles; + + /// CustomMDKindNames - Map to hold the metadata string to ID mapping. + StringMap<unsigned> CustomMDKindNames; + + typedef std::pair<unsigned, TrackingVH<MDNode> > MDPairTy; + typedef SmallVector<MDPairTy, 2> MDMapTy; + + /// MetadataStore - Collection of per-instruction metadata used in this + /// context. + DenseMap<const Instruction *, MDMapTy> MetadataStore; + + /// ScopeRecordIdx - This is the index in ScopeRecords for an MDNode scope + /// entry with no "inlined at" element. + DenseMap<MDNode*, int> ScopeRecordIdx; + + /// ScopeRecords - These are the actual mdnodes (in a value handle) for an + /// index. The ValueHandle ensures that ScopeRecordIdx stays up to date if + /// the MDNode is RAUW'd. + std::vector<DebugRecVH> ScopeRecords; + + /// ScopeInlinedAtIdx - This is the index in ScopeInlinedAtRecords for an + /// scope/inlined-at pair. + DenseMap<std::pair<MDNode*, MDNode*>, int> ScopeInlinedAtIdx; + + /// ScopeInlinedAtRecords - These are the actual mdnodes (in value handles) + /// for an index. The ValueHandle ensures that ScopeINlinedAtIdx stays up + /// to date. + std::vector<std::pair<DebugRecVH, DebugRecVH> > ScopeInlinedAtRecords; + + int getOrAddScopeRecordIdxEntry(MDNode *N, int ExistingIdx); + int getOrAddScopeInlinedAtIdxEntry(MDNode *Scope, MDNode *IA,int ExistingIdx); + + LLVMContextImpl(LLVMContext &C); + ~LLVMContextImpl(); +}; + +} + +#endif diff --git a/contrib/llvm/lib/VMCore/LeakDetector.cpp b/contrib/llvm/lib/VMCore/LeakDetector.cpp new file mode 100644 index 0000000..a44f61d --- /dev/null +++ b/contrib/llvm/lib/VMCore/LeakDetector.cpp @@ -0,0 +1,69 @@ +//===-- LeakDetector.cpp - Implement LeakDetector interface ---------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the LeakDetector class. +// +//===----------------------------------------------------------------------===// + +#include "LLVMContextImpl.h" +#include "llvm/Support/LeakDetector.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/ManagedStatic.h" +#include "llvm/System/Mutex.h" +#include "llvm/System/Threading.h" +#include "llvm/Value.h" +using namespace llvm; + +static ManagedStatic<sys::SmartMutex<true> > ObjectsLock; +static ManagedStatic<LeakDetectorImpl<void> > Objects; + +static void clearGarbage(LLVMContext &Context) { + Objects->clear(); + Context.pImpl->LLVMObjects.clear(); +} + +void LeakDetector::addGarbageObjectImpl(void *Object) { + sys::SmartScopedLock<true> Lock(*ObjectsLock); + Objects->addGarbage(Object); +} + +void LeakDetector::addGarbageObjectImpl(const Value *Object) { + LLVMContextImpl *pImpl = Object->getContext().pImpl; + pImpl->LLVMObjects.addGarbage(Object); +} + +void LeakDetector::removeGarbageObjectImpl(void *Object) { + sys::SmartScopedLock<true> Lock(*ObjectsLock); + Objects->removeGarbage(Object); +} + +void LeakDetector::removeGarbageObjectImpl(const Value *Object) { + LLVMContextImpl *pImpl = Object->getContext().pImpl; + pImpl->LLVMObjects.removeGarbage(Object); +} + +void LeakDetector::checkForGarbageImpl(LLVMContext &Context, + const std::string &Message) { + LLVMContextImpl *pImpl = Context.pImpl; + sys::SmartScopedLock<true> Lock(*ObjectsLock); + + Objects->setName("GENERIC"); + pImpl->LLVMObjects.setName("LLVM"); + + // use non-short-circuit version so that both checks are performed + if (Objects->hasGarbage(Message) | + pImpl->LLVMObjects.hasGarbage(Message)) + errs() << "\nThis is probably because you removed an object, but didn't " + << "delete it. Please check your code for memory leaks.\n"; + + // Clear out results so we don't get duplicate warnings on + // next call... + clearGarbage(Context); +} diff --git a/contrib/llvm/lib/VMCore/LeaksContext.h b/contrib/llvm/lib/VMCore/LeaksContext.h new file mode 100644 index 0000000..b9e59d4 --- /dev/null +++ b/contrib/llvm/lib/VMCore/LeaksContext.h @@ -0,0 +1,92 @@ +//===- LeaksContext.h - LeadDetector Implementation ------------*- C++ -*--===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines various helper methods and classes used by +// LLVMContextImpl for leaks detectors. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Value.h" +#include "llvm/ADT/SmallPtrSet.h" + +namespace llvm { + +template <class T> +struct PrinterTrait { + static void print(const T* P) { errs() << P; } +}; + +template<> +struct PrinterTrait<Value> { + static void print(const Value* P) { errs() << *P; } +}; + +template <typename T> +struct LeakDetectorImpl { + explicit LeakDetectorImpl(const char* const name = "") : + Cache(0), Name(name) { } + + void clear() { + Cache = 0; + Ts.clear(); + } + + void setName(const char* n) { + Name = n; + } + + // Because the most common usage pattern, by far, is to add a + // garbage object, then remove it immediately, we optimize this + // case. When an object is added, it is not added to the set + // immediately, it is added to the CachedValue Value. If it is + // immediately removed, no set search need be performed. + void addGarbage(const T* o) { + assert(Ts.count(o) == 0 && "Object already in set!"); + if (Cache) { + assert(Cache != o && "Object already in set!"); + Ts.insert(Cache); + } + Cache = o; + } + + void removeGarbage(const T* o) { + if (o == Cache) + Cache = 0; // Cache hit + else + Ts.erase(o); + } + + bool hasGarbage(const std::string& Message) { + addGarbage(0); // Flush the Cache + + assert(Cache == 0 && "No value should be cached anymore!"); + + if (!Ts.empty()) { + errs() << "Leaked " << Name << " objects found: " << Message << ":\n"; + for (typename SmallPtrSet<const T*, 8>::iterator I = Ts.begin(), + E = Ts.end(); I != E; ++I) { + errs() << '\t'; + PrinterTrait<T>::print(*I); + errs() << '\n'; + } + errs() << '\n'; + + return true; + } + + return false; + } + +private: + SmallPtrSet<const T*, 8> Ts; + const T* Cache; + const char* Name; +}; + +} diff --git a/contrib/llvm/lib/VMCore/Makefile b/contrib/llvm/lib/VMCore/Makefile new file mode 100644 index 0000000..03a4fc7 --- /dev/null +++ b/contrib/llvm/lib/VMCore/Makefile @@ -0,0 +1,34 @@ +##===- lib/VMCore/Makefile ---------------------------------*- Makefile -*-===## +# +# The LLVM Compiler Infrastructure +# +# This file is distributed under the University of Illinois Open Source +# License. See LICENSE.TXT for details. +# +##===----------------------------------------------------------------------===## +LEVEL = ../.. +LIBRARYNAME = LLVMCore +BUILD_ARCHIVE = 1 +REQUIRES_RTTI = 1 + +BUILT_SOURCES = $(PROJ_OBJ_ROOT)/include/llvm/Intrinsics.gen + +include $(LEVEL)/Makefile.common + +GENFILE:=$(PROJ_OBJ_ROOT)/include/llvm/Intrinsics.gen + +INTRINSICTD := $(PROJ_SRC_ROOT)/include/llvm/Intrinsics.td +INTRINSICTDS := $(wildcard $(PROJ_SRC_ROOT)/include/llvm/Intrinsics*.td) + +$(ObjDir)/Intrinsics.gen.tmp: $(ObjDir)/.dir $(INTRINSICTDS) $(TBLGEN) + $(Echo) Building Intrinsics.gen.tmp from Intrinsics.td + $(Verb) $(TableGen) $(call SYSPATH, $(INTRINSICTD)) -o $(call SYSPATH, $@) -gen-intrinsic + +$(GENFILE): $(ObjDir)/Intrinsics.gen.tmp + $(Verb) $(CMP) -s $@ $< || ( $(CP) $< $@ && \ + $(EchoCmd) Updated Intrinsics.gen because Intrinsics.gen.tmp \ + changed significantly. ) + +install-local:: $(GENFILE) + $(Echo) Installing $(DESTDIR)$(PROJ_includedir)/llvm/Intrinsics.gen + $(Verb) $(DataInstall) $(GENFILE) $(DESTDIR)$(PROJ_includedir)/llvm/Intrinsics.gen diff --git a/contrib/llvm/lib/VMCore/Metadata.cpp b/contrib/llvm/lib/VMCore/Metadata.cpp new file mode 100644 index 0000000..da69c43 --- /dev/null +++ b/contrib/llvm/lib/VMCore/Metadata.cpp @@ -0,0 +1,565 @@ +//===-- Metadata.cpp - Implement Metadata classes -------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the Metadata classes. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Metadata.h" +#include "LLVMContextImpl.h" +#include "llvm/LLVMContext.h" +#include "llvm/Module.h" +#include "llvm/Instruction.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/StringMap.h" +#include "llvm/ADT/SmallString.h" +#include "SymbolTableListTraitsImpl.h" +#include "llvm/Support/LeakDetector.h" +#include "llvm/Support/ValueHandle.h" +using namespace llvm; + +//===----------------------------------------------------------------------===// +// MDString implementation. +// + +MDString::MDString(LLVMContext &C, StringRef S) + : Value(Type::getMetadataTy(C), Value::MDStringVal), Str(S) {} + +MDString *MDString::get(LLVMContext &Context, StringRef Str) { + LLVMContextImpl *pImpl = Context.pImpl; + StringMapEntry<MDString *> &Entry = + pImpl->MDStringCache.GetOrCreateValue(Str); + MDString *&S = Entry.getValue(); + if (!S) S = new MDString(Context, Entry.getKey()); + return S; +} + +//===----------------------------------------------------------------------===// +// MDNodeOperand implementation. +// + +// Use CallbackVH to hold MDNode operands. +namespace llvm { +class MDNodeOperand : public CallbackVH { + MDNode *Parent; +public: + MDNodeOperand(Value *V, MDNode *P) : CallbackVH(V), Parent(P) {} + ~MDNodeOperand() {} + + void set(Value *V) { + setValPtr(V); + } + + virtual void deleted(); + virtual void allUsesReplacedWith(Value *NV); +}; +} // end namespace llvm. + + +void MDNodeOperand::deleted() { + Parent->replaceOperand(this, 0); +} + +void MDNodeOperand::allUsesReplacedWith(Value *NV) { + Parent->replaceOperand(this, NV); +} + + + +//===----------------------------------------------------------------------===// +// MDNode implementation. +// + +/// getOperandPtr - Helper function to get the MDNodeOperand's coallocated on +/// the end of the MDNode. +static MDNodeOperand *getOperandPtr(MDNode *N, unsigned Op) { + // Use <= instead of < to permit a one-past-the-end address. + assert(Op <= N->getNumOperands() && "Invalid operand number"); + return reinterpret_cast<MDNodeOperand*>(N+1)+Op; +} + +MDNode::MDNode(LLVMContext &C, Value *const *Vals, unsigned NumVals, + bool isFunctionLocal) +: Value(Type::getMetadataTy(C), Value::MDNodeVal) { + NumOperands = NumVals; + + if (isFunctionLocal) + setValueSubclassData(getSubclassDataFromValue() | FunctionLocalBit); + + // Initialize the operand list, which is co-allocated on the end of the node. + for (MDNodeOperand *Op = getOperandPtr(this, 0), *E = Op+NumOperands; + Op != E; ++Op, ++Vals) + new (Op) MDNodeOperand(*Vals, this); +} + + +/// ~MDNode - Destroy MDNode. +MDNode::~MDNode() { + assert((getSubclassDataFromValue() & DestroyFlag) != 0 && + "Not being destroyed through destroy()?"); + LLVMContextImpl *pImpl = getType()->getContext().pImpl; + if (isNotUniqued()) { + pImpl->NonUniquedMDNodes.erase(this); + } else { + pImpl->MDNodeSet.RemoveNode(this); + } + + // Destroy the operands. + for (MDNodeOperand *Op = getOperandPtr(this, 0), *E = Op+NumOperands; + Op != E; ++Op) + Op->~MDNodeOperand(); +} + +static const Function *getFunctionForValue(Value *V) { + if (!V) return NULL; + if (Instruction *I = dyn_cast<Instruction>(V)) { + BasicBlock *BB = I->getParent(); + return BB ? BB->getParent() : 0; + } + if (Argument *A = dyn_cast<Argument>(V)) + return A->getParent(); + if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) + return BB->getParent(); + if (MDNode *MD = dyn_cast<MDNode>(V)) + return MD->getFunction(); + return NULL; +} + +#ifndef NDEBUG +static const Function *assertLocalFunction(const MDNode *N) { + if (!N->isFunctionLocal()) return 0; + + // FIXME: This does not handle cyclic function local metadata. + const Function *F = 0, *NewF = 0; + for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { + if (Value *V = N->getOperand(i)) { + if (MDNode *MD = dyn_cast<MDNode>(V)) + NewF = assertLocalFunction(MD); + else + NewF = getFunctionForValue(V); + } + if (F == 0) + F = NewF; + else + assert((NewF == 0 || F == NewF) &&"inconsistent function-local metadata"); + } + return F; +} +#endif + +// getFunction - If this metadata is function-local and recursively has a +// function-local operand, return the first such operand's parent function. +// Otherwise, return null. getFunction() should not be used for performance- +// critical code because it recursively visits all the MDNode's operands. +const Function *MDNode::getFunction() const { +#ifndef NDEBUG + return assertLocalFunction(this); +#endif + if (!isFunctionLocal()) return NULL; + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) + if (const Function *F = getFunctionForValue(getOperand(i))) + return F; + return NULL; +} + +// destroy - Delete this node. Only when there are no uses. +void MDNode::destroy() { + setValueSubclassData(getSubclassDataFromValue() | DestroyFlag); + // Placement delete, the free the memory. + this->~MDNode(); + free(this); +} + +/// isFunctionLocalValue - Return true if this is a value that would require a +/// function-local MDNode. +static bool isFunctionLocalValue(Value *V) { + return isa<Instruction>(V) || isa<Argument>(V) || isa<BasicBlock>(V) || + (isa<MDNode>(V) && cast<MDNode>(V)->isFunctionLocal()); +} + +MDNode *MDNode::getMDNode(LLVMContext &Context, Value *const *Vals, + unsigned NumVals, FunctionLocalness FL, + bool Insert) { + LLVMContextImpl *pImpl = Context.pImpl; + + // Add all the operand pointers. Note that we don't have to add the + // isFunctionLocal bit because that's implied by the operands. + // Note that if the operands are later nulled out, the node will be + // removed from the uniquing map. + FoldingSetNodeID ID; + for (unsigned i = 0; i != NumVals; ++i) + ID.AddPointer(Vals[i]); + + void *InsertPoint; + MDNode *N = NULL; + + if ((N = pImpl->MDNodeSet.FindNodeOrInsertPos(ID, InsertPoint))) + return N; + + bool isFunctionLocal = false; + switch (FL) { + case FL_Unknown: + for (unsigned i = 0; i != NumVals; ++i) { + Value *V = Vals[i]; + if (!V) continue; + if (isFunctionLocalValue(V)) { + isFunctionLocal = true; + break; + } + } + break; + case FL_No: + isFunctionLocal = false; + break; + case FL_Yes: + isFunctionLocal = true; + break; + } + + // Coallocate space for the node and Operands together, then placement new. + void *Ptr = malloc(sizeof(MDNode)+NumVals*sizeof(MDNodeOperand)); + N = new (Ptr) MDNode(Context, Vals, NumVals, isFunctionLocal); + + // InsertPoint will have been set by the FindNodeOrInsertPos call. + pImpl->MDNodeSet.InsertNode(N, InsertPoint); + + return N; +} + +MDNode *MDNode::get(LLVMContext &Context, Value*const* Vals, unsigned NumVals) { + return getMDNode(Context, Vals, NumVals, FL_Unknown); +} + +MDNode *MDNode::getWhenValsUnresolved(LLVMContext &Context, Value *const *Vals, + unsigned NumVals, bool isFunctionLocal) { + return getMDNode(Context, Vals, NumVals, isFunctionLocal ? FL_Yes : FL_No); +} + +MDNode *MDNode::getIfExists(LLVMContext &Context, Value *const *Vals, + unsigned NumVals) { + return getMDNode(Context, Vals, NumVals, FL_Unknown, false); +} + +MDNode *MDNode::getTemporary(LLVMContext &Context, Value *const *Vals, + unsigned NumVals) { + MDNode *N = (MDNode *)malloc(sizeof(MDNode)+NumVals*sizeof(MDNodeOperand)); + N = new (N) MDNode(Context, Vals, NumVals, FL_No); + N->setValueSubclassData(N->getSubclassDataFromValue() | + NotUniquedBit); + LeakDetector::addGarbageObject(N); + return N; +} + +void MDNode::deleteTemporary(MDNode *N) { + assert(N->use_empty() && "Temporary MDNode has uses!"); + assert(!N->getContext().pImpl->MDNodeSet.RemoveNode(N) && + "Deleting a non-temporary uniqued node!"); + assert(!N->getContext().pImpl->NonUniquedMDNodes.erase(N) && + "Deleting a non-temporary non-uniqued node!"); + assert((N->getSubclassDataFromValue() & NotUniquedBit) && + "Temporary MDNode does not have NotUniquedBit set!"); + assert((N->getSubclassDataFromValue() & DestroyFlag) == 0 && + "Temporary MDNode has DestroyFlag set!"); + LeakDetector::removeGarbageObject(N); + N->destroy(); +} + +/// getOperand - Return specified operand. +Value *MDNode::getOperand(unsigned i) const { + return *getOperandPtr(const_cast<MDNode*>(this), i); +} + +void MDNode::Profile(FoldingSetNodeID &ID) const { + // Add all the operand pointers. Note that we don't have to add the + // isFunctionLocal bit because that's implied by the operands. + // Note that if the operands are later nulled out, the node will be + // removed from the uniquing map. + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) + ID.AddPointer(getOperand(i)); +} + +void MDNode::setIsNotUniqued() { + setValueSubclassData(getSubclassDataFromValue() | NotUniquedBit); + LLVMContextImpl *pImpl = getType()->getContext().pImpl; + pImpl->NonUniquedMDNodes.insert(this); +} + +// Replace value from this node's operand list. +void MDNode::replaceOperand(MDNodeOperand *Op, Value *To) { + Value *From = *Op; + + // If is possible that someone did GV->RAUW(inst), replacing a global variable + // with an instruction or some other function-local object. If this is a + // non-function-local MDNode, it can't point to a function-local object. + // Handle this case by implicitly dropping the MDNode reference to null. + // Likewise if the MDNode is function-local but for a different function. + if (To && isFunctionLocalValue(To)) { + if (!isFunctionLocal()) + To = 0; + else { + const Function *F = getFunction(); + const Function *FV = getFunctionForValue(To); + // Metadata can be function-local without having an associated function. + // So only consider functions to have changed if non-null. + if (F && FV && F != FV) + To = 0; + } + } + + if (From == To) + return; + + // Update the operand. + Op->set(To); + + // If this node is already not being uniqued (because one of the operands + // already went to null), then there is nothing else to do here. + if (isNotUniqued()) return; + + LLVMContextImpl *pImpl = getType()->getContext().pImpl; + + // Remove "this" from the context map. FoldingSet doesn't have to reprofile + // this node to remove it, so we don't care what state the operands are in. + pImpl->MDNodeSet.RemoveNode(this); + + // If we are dropping an argument to null, we choose to not unique the MDNode + // anymore. This commonly occurs during destruction, and uniquing these + // brings little reuse. Also, this means we don't need to include + // isFunctionLocal bits in FoldingSetNodeIDs for MDNodes. + if (To == 0) { + setIsNotUniqued(); + return; + } + + // Now that the node is out of the folding set, get ready to reinsert it. + // First, check to see if another node with the same operands already exists + // in the set. If it doesn't exist, this returns the position to insert it. + FoldingSetNodeID ID; + Profile(ID); + void *InsertPoint; + MDNode *N = pImpl->MDNodeSet.FindNodeOrInsertPos(ID, InsertPoint); + + if (N) { + N->replaceAllUsesWith(this); + N->destroy(); + N = pImpl->MDNodeSet.FindNodeOrInsertPos(ID, InsertPoint); + assert(N == 0 && "shouldn't be in the map now!"); (void)N; + } + + // InsertPoint will have been set by the FindNodeOrInsertPos call. + pImpl->MDNodeSet.InsertNode(this, InsertPoint); + + // If this MDValue was previously function-local but no longer is, clear + // its function-local flag. + if (isFunctionLocal() && !isFunctionLocalValue(To)) { + bool isStillFunctionLocal = false; + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { + Value *V = getOperand(i); + if (!V) continue; + if (isFunctionLocalValue(V)) { + isStillFunctionLocal = true; + break; + } + } + if (!isStillFunctionLocal) + setValueSubclassData(getSubclassDataFromValue() & ~FunctionLocalBit); + } +} + +//===----------------------------------------------------------------------===// +// NamedMDNode implementation. +// + +static SmallVector<TrackingVH<MDNode>, 4> &getNMDOps(void *Operands) { + return *(SmallVector<TrackingVH<MDNode>, 4>*)Operands; +} + +NamedMDNode::NamedMDNode(const Twine &N) + : Name(N.str()), Parent(0), + Operands(new SmallVector<TrackingVH<MDNode>, 4>()) { +} + +NamedMDNode::~NamedMDNode() { + dropAllReferences(); + delete &getNMDOps(Operands); +} + +/// getNumOperands - Return number of NamedMDNode operands. +unsigned NamedMDNode::getNumOperands() const { + return (unsigned)getNMDOps(Operands).size(); +} + +/// getOperand - Return specified operand. +MDNode *NamedMDNode::getOperand(unsigned i) const { + assert(i < getNumOperands() && "Invalid Operand number!"); + return dyn_cast<MDNode>(&*getNMDOps(Operands)[i]); +} + +/// addOperand - Add metadata Operand. +void NamedMDNode::addOperand(MDNode *M) { + assert(!M->isFunctionLocal() && + "NamedMDNode operands must not be function-local!"); + getNMDOps(Operands).push_back(TrackingVH<MDNode>(M)); +} + +/// eraseFromParent - Drop all references and remove the node from parent +/// module. +void NamedMDNode::eraseFromParent() { + getParent()->eraseNamedMetadata(this); +} + +/// dropAllReferences - Remove all uses and clear node vector. +void NamedMDNode::dropAllReferences() { + getNMDOps(Operands).clear(); +} + +/// getName - Return a constant reference to this named metadata's name. +StringRef NamedMDNode::getName() const { + return StringRef(Name); +} + +//===----------------------------------------------------------------------===// +// Instruction Metadata method implementations. +// + +void Instruction::setMetadata(const char *Kind, MDNode *Node) { + if (Node == 0 && !hasMetadata()) return; + setMetadata(getContext().getMDKindID(Kind), Node); +} + +MDNode *Instruction::getMetadataImpl(const char *Kind) const { + return getMetadataImpl(getContext().getMDKindID(Kind)); +} + +/// setMetadata - Set the metadata of of the specified kind to the specified +/// node. This updates/replaces metadata if already present, or removes it if +/// Node is null. +void Instruction::setMetadata(unsigned KindID, MDNode *Node) { + if (Node == 0 && !hasMetadata()) return; + + // Handle 'dbg' as a special case since it is not stored in the hash table. + if (KindID == LLVMContext::MD_dbg) { + DbgLoc = DebugLoc::getFromDILocation(Node); + return; + } + + // Handle the case when we're adding/updating metadata on an instruction. + if (Node) { + LLVMContextImpl::MDMapTy &Info = getContext().pImpl->MetadataStore[this]; + assert(!Info.empty() == hasMetadataHashEntry() && + "HasMetadata bit is wonked"); + if (Info.empty()) { + setHasMetadataHashEntry(true); + } else { + // Handle replacement of an existing value. + for (unsigned i = 0, e = Info.size(); i != e; ++i) + if (Info[i].first == KindID) { + Info[i].second = Node; + return; + } + } + + // No replacement, just add it to the list. + Info.push_back(std::make_pair(KindID, Node)); + return; + } + + // Otherwise, we're removing metadata from an instruction. + assert(hasMetadataHashEntry() && + getContext().pImpl->MetadataStore.count(this) && + "HasMetadata bit out of date!"); + LLVMContextImpl::MDMapTy &Info = getContext().pImpl->MetadataStore[this]; + + // Common case is removing the only entry. + if (Info.size() == 1 && Info[0].first == KindID) { + getContext().pImpl->MetadataStore.erase(this); + setHasMetadataHashEntry(false); + return; + } + + // Handle removal of an existing value. + for (unsigned i = 0, e = Info.size(); i != e; ++i) + if (Info[i].first == KindID) { + Info[i] = Info.back(); + Info.pop_back(); + assert(!Info.empty() && "Removing last entry should be handled above"); + return; + } + // Otherwise, removing an entry that doesn't exist on the instruction. +} + +MDNode *Instruction::getMetadataImpl(unsigned KindID) const { + // Handle 'dbg' as a special case since it is not stored in the hash table. + if (KindID == LLVMContext::MD_dbg) + return DbgLoc.getAsMDNode(getContext()); + + if (!hasMetadataHashEntry()) return 0; + + LLVMContextImpl::MDMapTy &Info = getContext().pImpl->MetadataStore[this]; + assert(!Info.empty() && "bit out of sync with hash table"); + + for (LLVMContextImpl::MDMapTy::iterator I = Info.begin(), E = Info.end(); + I != E; ++I) + if (I->first == KindID) + return I->second; + return 0; +} + +void Instruction::getAllMetadataImpl(SmallVectorImpl<std::pair<unsigned, + MDNode*> > &Result) const { + Result.clear(); + + // Handle 'dbg' as a special case since it is not stored in the hash table. + if (!DbgLoc.isUnknown()) { + Result.push_back(std::make_pair((unsigned)LLVMContext::MD_dbg, + DbgLoc.getAsMDNode(getContext()))); + if (!hasMetadataHashEntry()) return; + } + + assert(hasMetadataHashEntry() && + getContext().pImpl->MetadataStore.count(this) && + "Shouldn't have called this"); + const LLVMContextImpl::MDMapTy &Info = + getContext().pImpl->MetadataStore.find(this)->second; + assert(!Info.empty() && "Shouldn't have called this"); + + Result.append(Info.begin(), Info.end()); + + // Sort the resulting array so it is stable. + if (Result.size() > 1) + array_pod_sort(Result.begin(), Result.end()); +} + +void Instruction:: +getAllMetadataOtherThanDebugLocImpl(SmallVectorImpl<std::pair<unsigned, + MDNode*> > &Result) const { + Result.clear(); + assert(hasMetadataHashEntry() && + getContext().pImpl->MetadataStore.count(this) && + "Shouldn't have called this"); + const LLVMContextImpl::MDMapTy &Info = + getContext().pImpl->MetadataStore.find(this)->second; + assert(!Info.empty() && "Shouldn't have called this"); + + Result.append(Info.begin(), Info.end()); + + // Sort the resulting array so it is stable. + if (Result.size() > 1) + array_pod_sort(Result.begin(), Result.end()); +} + + +/// clearMetadataHashEntries - Clear all hashtable-based metadata from +/// this instruction. +void Instruction::clearMetadataHashEntries() { + assert(hasMetadataHashEntry() && "Caller should check"); + getContext().pImpl->MetadataStore.erase(this); + setHasMetadataHashEntry(false); +} + diff --git a/contrib/llvm/lib/VMCore/Module.cpp b/contrib/llvm/lib/VMCore/Module.cpp new file mode 100644 index 0000000..d7ddf96 --- /dev/null +++ b/contrib/llvm/lib/VMCore/Module.cpp @@ -0,0 +1,471 @@ +//===-- Module.cpp - Implement the Module class ---------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the Module class for the VMCore library. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Module.h" +#include "llvm/InstrTypes.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/GVMaterializer.h" +#include "llvm/LLVMContext.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/Support/LeakDetector.h" +#include "SymbolTableListTraitsImpl.h" +#include "llvm/TypeSymbolTable.h" +#include <algorithm> +#include <cstdarg> +#include <cstdlib> +using namespace llvm; + +//===----------------------------------------------------------------------===// +// Methods to implement the globals and functions lists. +// + +GlobalVariable *ilist_traits<GlobalVariable>::createSentinel() { + GlobalVariable *Ret = new GlobalVariable(Type::getInt32Ty(getGlobalContext()), + false, GlobalValue::ExternalLinkage); + // This should not be garbage monitored. + LeakDetector::removeGarbageObject(Ret); + return Ret; +} +GlobalAlias *ilist_traits<GlobalAlias>::createSentinel() { + GlobalAlias *Ret = new GlobalAlias(Type::getInt32Ty(getGlobalContext()), + GlobalValue::ExternalLinkage); + // This should not be garbage monitored. + LeakDetector::removeGarbageObject(Ret); + return Ret; +} + +// Explicit instantiations of SymbolTableListTraits since some of the methods +// are not in the public header file. +template class llvm::SymbolTableListTraits<GlobalVariable, Module>; +template class llvm::SymbolTableListTraits<Function, Module>; +template class llvm::SymbolTableListTraits<GlobalAlias, Module>; + +//===----------------------------------------------------------------------===// +// Primitive Module methods. +// + +Module::Module(StringRef MID, LLVMContext& C) + : Context(C), Materializer(NULL), ModuleID(MID) { + ValSymTab = new ValueSymbolTable(); + TypeSymTab = new TypeSymbolTable(); + NamedMDSymTab = new StringMap<NamedMDNode *>(); +} + +Module::~Module() { + dropAllReferences(); + GlobalList.clear(); + FunctionList.clear(); + AliasList.clear(); + LibraryList.clear(); + NamedMDList.clear(); + delete ValSymTab; + delete TypeSymTab; + delete static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab); +} + +/// Target endian information... +Module::Endianness Module::getEndianness() const { + StringRef temp = DataLayout; + Module::Endianness ret = AnyEndianness; + + while (!temp.empty()) { + StringRef token = DataLayout; + tie(token, temp) = getToken(temp, "-"); + + if (token[0] == 'e') { + ret = LittleEndian; + } else if (token[0] == 'E') { + ret = BigEndian; + } + } + + return ret; +} + +/// Target Pointer Size information... +Module::PointerSize Module::getPointerSize() const { + StringRef temp = DataLayout; + Module::PointerSize ret = AnyPointerSize; + + while (!temp.empty()) { + StringRef token, signalToken; + tie(token, temp) = getToken(temp, "-"); + tie(signalToken, token) = getToken(token, ":"); + + if (signalToken[0] == 'p') { + int size = 0; + getToken(token, ":").first.getAsInteger(10, size); + if (size == 32) + ret = Pointer32; + else if (size == 64) + ret = Pointer64; + } + } + + return ret; +} + +/// getNamedValue - Return the first global value in the module with +/// the specified name, of arbitrary type. This method returns null +/// if a global with the specified name is not found. +GlobalValue *Module::getNamedValue(StringRef Name) const { + return cast_or_null<GlobalValue>(getValueSymbolTable().lookup(Name)); +} + +/// getMDKindID - Return a unique non-zero ID for the specified metadata kind. +/// This ID is uniqued across modules in the current LLVMContext. +unsigned Module::getMDKindID(StringRef Name) const { + return Context.getMDKindID(Name); +} + +/// getMDKindNames - Populate client supplied SmallVector with the name for +/// custom metadata IDs registered in this LLVMContext. ID #0 is not used, +/// so it is filled in as an empty string. +void Module::getMDKindNames(SmallVectorImpl<StringRef> &Result) const { + return Context.getMDKindNames(Result); +} + + +//===----------------------------------------------------------------------===// +// Methods for easy access to the functions in the module. +// + +// getOrInsertFunction - Look up the specified function in the module symbol +// table. If it does not exist, add a prototype for the function and return +// it. This is nice because it allows most passes to get away with not handling +// the symbol table directly for this common task. +// +Constant *Module::getOrInsertFunction(StringRef Name, + const FunctionType *Ty, + AttrListPtr AttributeList) { + // See if we have a definition for the specified function already. + GlobalValue *F = getNamedValue(Name); + if (F == 0) { + // Nope, add it + Function *New = Function::Create(Ty, GlobalVariable::ExternalLinkage, Name); + if (!New->isIntrinsic()) // Intrinsics get attrs set on construction + New->setAttributes(AttributeList); + FunctionList.push_back(New); + return New; // Return the new prototype. + } + + // Okay, the function exists. Does it have externally visible linkage? + if (F->hasLocalLinkage()) { + // Clear the function's name. + F->setName(""); + // Retry, now there won't be a conflict. + Constant *NewF = getOrInsertFunction(Name, Ty); + F->setName(Name); + return NewF; + } + + // If the function exists but has the wrong type, return a bitcast to the + // right type. + if (F->getType() != PointerType::getUnqual(Ty)) + return ConstantExpr::getBitCast(F, PointerType::getUnqual(Ty)); + + // Otherwise, we just found the existing function or a prototype. + return F; +} + +Constant *Module::getOrInsertTargetIntrinsic(StringRef Name, + const FunctionType *Ty, + AttrListPtr AttributeList) { + // See if we have a definition for the specified function already. + GlobalValue *F = getNamedValue(Name); + if (F == 0) { + // Nope, add it + Function *New = Function::Create(Ty, GlobalVariable::ExternalLinkage, Name); + New->setAttributes(AttributeList); + FunctionList.push_back(New); + return New; // Return the new prototype. + } + + // Otherwise, we just found the existing function or a prototype. + return F; +} + +Constant *Module::getOrInsertFunction(StringRef Name, + const FunctionType *Ty) { + AttrListPtr AttributeList = AttrListPtr::get((AttributeWithIndex *)0, 0); + return getOrInsertFunction(Name, Ty, AttributeList); +} + +// getOrInsertFunction - Look up the specified function in the module symbol +// table. If it does not exist, add a prototype for the function and return it. +// This version of the method takes a null terminated list of function +// arguments, which makes it easier for clients to use. +// +Constant *Module::getOrInsertFunction(StringRef Name, + AttrListPtr AttributeList, + const Type *RetTy, ...) { + va_list Args; + va_start(Args, RetTy); + + // Build the list of argument types... + std::vector<const Type*> ArgTys; + while (const Type *ArgTy = va_arg(Args, const Type*)) + ArgTys.push_back(ArgTy); + + va_end(Args); + + // Build the function type and chain to the other getOrInsertFunction... + return getOrInsertFunction(Name, + FunctionType::get(RetTy, ArgTys, false), + AttributeList); +} + +Constant *Module::getOrInsertFunction(StringRef Name, + const Type *RetTy, ...) { + va_list Args; + va_start(Args, RetTy); + + // Build the list of argument types... + std::vector<const Type*> ArgTys; + while (const Type *ArgTy = va_arg(Args, const Type*)) + ArgTys.push_back(ArgTy); + + va_end(Args); + + // Build the function type and chain to the other getOrInsertFunction... + return getOrInsertFunction(Name, + FunctionType::get(RetTy, ArgTys, false), + AttrListPtr::get((AttributeWithIndex *)0, 0)); +} + +// getFunction - Look up the specified function in the module symbol table. +// If it does not exist, return null. +// +Function *Module::getFunction(StringRef Name) const { + return dyn_cast_or_null<Function>(getNamedValue(Name)); +} + +//===----------------------------------------------------------------------===// +// Methods for easy access to the global variables in the module. +// + +/// getGlobalVariable - Look up the specified global variable in the module +/// symbol table. If it does not exist, return null. The type argument +/// should be the underlying type of the global, i.e., it should not have +/// the top-level PointerType, which represents the address of the global. +/// If AllowLocal is set to true, this function will return types that +/// have an local. By default, these types are not returned. +/// +GlobalVariable *Module::getGlobalVariable(StringRef Name, + bool AllowLocal) const { + if (GlobalVariable *Result = + dyn_cast_or_null<GlobalVariable>(getNamedValue(Name))) + if (AllowLocal || !Result->hasLocalLinkage()) + return Result; + return 0; +} + +/// getOrInsertGlobal - Look up the specified global in the module symbol table. +/// 1. If it does not exist, add a declaration of the global and return it. +/// 2. Else, the global exists but has the wrong type: return the function +/// with a constantexpr cast to the right type. +/// 3. Finally, if the existing global is the correct delclaration, return the +/// existing global. +Constant *Module::getOrInsertGlobal(StringRef Name, const Type *Ty) { + // See if we have a definition for the specified global already. + GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(getNamedValue(Name)); + if (GV == 0) { + // Nope, add it + GlobalVariable *New = + new GlobalVariable(*this, Ty, false, GlobalVariable::ExternalLinkage, + 0, Name); + return New; // Return the new declaration. + } + + // If the variable exists but has the wrong type, return a bitcast to the + // right type. + if (GV->getType() != PointerType::getUnqual(Ty)) + return ConstantExpr::getBitCast(GV, PointerType::getUnqual(Ty)); + + // Otherwise, we just found the existing function or a prototype. + return GV; +} + +//===----------------------------------------------------------------------===// +// Methods for easy access to the global variables in the module. +// + +// getNamedAlias - Look up the specified global in the module symbol table. +// If it does not exist, return null. +// +GlobalAlias *Module::getNamedAlias(StringRef Name) const { + return dyn_cast_or_null<GlobalAlias>(getNamedValue(Name)); +} + +/// getNamedMetadata - Return the first NamedMDNode in the module with the +/// specified name. This method returns null if a NamedMDNode with the +/// specified name is not found. +NamedMDNode *Module::getNamedMetadata(const Twine &Name) const { + SmallString<256> NameData; + StringRef NameRef = Name.toStringRef(NameData); + return static_cast<StringMap<NamedMDNode*> *>(NamedMDSymTab)->lookup(NameRef); +} + +/// getOrInsertNamedMetadata - Return the first named MDNode in the module +/// with the specified name. This method returns a new NamedMDNode if a +/// NamedMDNode with the specified name is not found. +NamedMDNode *Module::getOrInsertNamedMetadata(StringRef Name) { + NamedMDNode *&NMD = + (*static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab))[Name]; + if (!NMD) { + NMD = new NamedMDNode(Name); + NMD->setParent(this); + NamedMDList.push_back(NMD); + } + return NMD; +} + +void Module::eraseNamedMetadata(NamedMDNode *NMD) { + static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab)->erase(NMD->getName()); + NamedMDList.erase(NMD); +} + +//===----------------------------------------------------------------------===// +// Methods for easy access to the types in the module. +// + + +// addTypeName - Insert an entry in the symbol table mapping Str to Type. If +// there is already an entry for this name, true is returned and the symbol +// table is not modified. +// +bool Module::addTypeName(StringRef Name, const Type *Ty) { + TypeSymbolTable &ST = getTypeSymbolTable(); + + if (ST.lookup(Name)) return true; // Already in symtab... + + // Not in symbol table? Set the name with the Symtab as an argument so the + // type knows what to update... + ST.insert(Name, Ty); + + return false; +} + +/// getTypeByName - Return the type with the specified name in this module, or +/// null if there is none by that name. +const Type *Module::getTypeByName(StringRef Name) const { + const TypeSymbolTable &ST = getTypeSymbolTable(); + return cast_or_null<Type>(ST.lookup(Name)); +} + +// getTypeName - If there is at least one entry in the symbol table for the +// specified type, return it. +// +std::string Module::getTypeName(const Type *Ty) const { + const TypeSymbolTable &ST = getTypeSymbolTable(); + + TypeSymbolTable::const_iterator TI = ST.begin(); + TypeSymbolTable::const_iterator TE = ST.end(); + if ( TI == TE ) return ""; // No names for types + + while (TI != TE && TI->second != Ty) + ++TI; + + if (TI != TE) // Must have found an entry! + return TI->first; + return ""; // Must not have found anything... +} + +//===----------------------------------------------------------------------===// +// Methods to control the materialization of GlobalValues in the Module. +// +void Module::setMaterializer(GVMaterializer *GVM) { + assert(!Materializer && + "Module already has a GVMaterializer. Call MaterializeAllPermanently" + " to clear it out before setting another one."); + Materializer.reset(GVM); +} + +bool Module::isMaterializable(const GlobalValue *GV) const { + if (Materializer) + return Materializer->isMaterializable(GV); + return false; +} + +bool Module::isDematerializable(const GlobalValue *GV) const { + if (Materializer) + return Materializer->isDematerializable(GV); + return false; +} + +bool Module::Materialize(GlobalValue *GV, std::string *ErrInfo) { + if (Materializer) + return Materializer->Materialize(GV, ErrInfo); + return false; +} + +void Module::Dematerialize(GlobalValue *GV) { + if (Materializer) + return Materializer->Dematerialize(GV); +} + +bool Module::MaterializeAll(std::string *ErrInfo) { + if (!Materializer) + return false; + return Materializer->MaterializeModule(this, ErrInfo); +} + +bool Module::MaterializeAllPermanently(std::string *ErrInfo) { + if (MaterializeAll(ErrInfo)) + return true; + Materializer.reset(); + return false; +} + +//===----------------------------------------------------------------------===// +// Other module related stuff. +// + + +// dropAllReferences() - This function causes all the subelementss to "let go" +// of all references that they are maintaining. This allows one to 'delete' a +// whole module at a time, even though there may be circular references... first +// all references are dropped, and all use counts go to zero. Then everything +// is deleted for real. Note that no operations are valid on an object that +// has "dropped all references", except operator delete. +// +void Module::dropAllReferences() { + for(Module::iterator I = begin(), E = end(); I != E; ++I) + I->dropAllReferences(); + + for(Module::global_iterator I = global_begin(), E = global_end(); I != E; ++I) + I->dropAllReferences(); + + for(Module::alias_iterator I = alias_begin(), E = alias_end(); I != E; ++I) + I->dropAllReferences(); +} + +void Module::addLibrary(StringRef Lib) { + for (Module::lib_iterator I = lib_begin(), E = lib_end(); I != E; ++I) + if (*I == Lib) + return; + LibraryList.push_back(Lib); +} + +void Module::removeLibrary(StringRef Lib) { + LibraryListType::iterator I = LibraryList.begin(); + LibraryListType::iterator E = LibraryList.end(); + for (;I != E; ++I) + if (*I == Lib) { + LibraryList.erase(I); + return; + } +} diff --git a/contrib/llvm/lib/VMCore/Pass.cpp b/contrib/llvm/lib/VMCore/Pass.cpp new file mode 100644 index 0000000..a7d7f61 --- /dev/null +++ b/contrib/llvm/lib/VMCore/Pass.cpp @@ -0,0 +1,294 @@ +//===- Pass.cpp - LLVM Pass Infrastructure Implementation -----------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the LLVM Pass infrastructure. It is primarily +// responsible with ensuring that passes are executed and batched together +// optimally. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Pass.h" +#include "llvm/PassRegistry.h" +#include "llvm/Assembly/PrintModulePass.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/PassNameParser.h" +#include "llvm/Support/raw_ostream.h" +using namespace llvm; + +//===----------------------------------------------------------------------===// +// Pass Implementation +// + +Pass::Pass(PassKind K, char &pid) : Resolver(0), PassID(&pid), Kind(K) { } + +// Force out-of-line virtual method. +Pass::~Pass() { + delete Resolver; +} + +// Force out-of-line virtual method. +ModulePass::~ModulePass() { } + +Pass *ModulePass::createPrinterPass(raw_ostream &O, + const std::string &Banner) const { + return createPrintModulePass(&O, false, Banner); +} + +PassManagerType ModulePass::getPotentialPassManagerType() const { + return PMT_ModulePassManager; +} + +bool Pass::mustPreserveAnalysisID(char &AID) const { + return Resolver->getAnalysisIfAvailable(&AID, true) != 0; +} + +// dumpPassStructure - Implement the -debug-passes=Structure option +void Pass::dumpPassStructure(unsigned Offset) { + dbgs().indent(Offset*2) << getPassName() << "\n"; +} + +/// getPassName - Return a nice clean name for a pass. This usually +/// implemented in terms of the name that is registered by one of the +/// Registration templates, but can be overloaded directly. +/// +const char *Pass::getPassName() const { + AnalysisID AID = getPassID(); + const PassInfo *PI = PassRegistry::getPassRegistry()->getPassInfo(AID); + if (PI) + return PI->getPassName(); + return "Unnamed pass: implement Pass::getPassName()"; +} + +void Pass::preparePassManager(PMStack &) { + // By default, don't do anything. +} + +PassManagerType Pass::getPotentialPassManagerType() const { + // Default implementation. + return PMT_Unknown; +} + +void Pass::getAnalysisUsage(AnalysisUsage &) const { + // By default, no analysis results are used, all are invalidated. +} + +void Pass::releaseMemory() { + // By default, don't do anything. +} + +void Pass::verifyAnalysis() const { + // By default, don't do anything. +} + +void *Pass::getAdjustedAnalysisPointer(AnalysisID AID) { + return this; +} + +ImmutablePass *Pass::getAsImmutablePass() { + return 0; +} + +PMDataManager *Pass::getAsPMDataManager() { + return 0; +} + +void Pass::setResolver(AnalysisResolver *AR) { + assert(!Resolver && "Resolver is already set"); + Resolver = AR; +} + +// print - Print out the internal state of the pass. This is called by Analyze +// to print out the contents of an analysis. Otherwise it is not necessary to +// implement this method. +// +void Pass::print(raw_ostream &O,const Module*) const { + O << "Pass::print not implemented for pass: '" << getPassName() << "'!\n"; +} + +// dump - call print(cerr); +void Pass::dump() const { + print(dbgs(), 0); +} + +//===----------------------------------------------------------------------===// +// ImmutablePass Implementation +// +// Force out-of-line virtual method. +ImmutablePass::~ImmutablePass() { } + +void ImmutablePass::initializePass() { + // By default, don't do anything. +} + +//===----------------------------------------------------------------------===// +// FunctionPass Implementation +// + +Pass *FunctionPass::createPrinterPass(raw_ostream &O, + const std::string &Banner) const { + return createPrintFunctionPass(Banner, &O); +} + +bool FunctionPass::doInitialization(Module &) { + // By default, don't do anything. + return false; +} + +bool FunctionPass::doFinalization(Module &) { + // By default, don't do anything. + return false; +} + +PassManagerType FunctionPass::getPotentialPassManagerType() const { + return PMT_FunctionPassManager; +} + +//===----------------------------------------------------------------------===// +// BasicBlockPass Implementation +// + +Pass *BasicBlockPass::createPrinterPass(raw_ostream &O, + const std::string &Banner) const { + + llvm_unreachable("BasicBlockPass printing unsupported."); + return 0; +} + +bool BasicBlockPass::doInitialization(Module &) { + // By default, don't do anything. + return false; +} + +bool BasicBlockPass::doInitialization(Function &) { + // By default, don't do anything. + return false; +} + +bool BasicBlockPass::doFinalization(Function &) { + // By default, don't do anything. + return false; +} + +bool BasicBlockPass::doFinalization(Module &) { + // By default, don't do anything. + return false; +} + +PassManagerType BasicBlockPass::getPotentialPassManagerType() const { + return PMT_BasicBlockPassManager; +} + +const PassInfo *Pass::lookupPassInfo(const void *TI) { + return PassRegistry::getPassRegistry()->getPassInfo(TI); +} + +const PassInfo *Pass::lookupPassInfo(StringRef Arg) { + return PassRegistry::getPassRegistry()->getPassInfo(Arg); +} + +Pass *PassInfo::createPass() const { + assert((!isAnalysisGroup() || NormalCtor) && + "No default implementation found for analysis group!"); + assert(NormalCtor && + "Cannot call createPass on PassInfo without default ctor!"); + return NormalCtor(); +} + +//===----------------------------------------------------------------------===// +// Analysis Group Implementation Code +//===----------------------------------------------------------------------===// + +// RegisterAGBase implementation +// +RegisterAGBase::RegisterAGBase(const char *Name, const void *InterfaceID, + const void *PassID, bool isDefault) + : PassInfo(Name, InterfaceID) { + PassRegistry::getPassRegistry()->registerAnalysisGroup(InterfaceID, PassID, + *this, isDefault); +} + + +//===----------------------------------------------------------------------===// +// PassRegistrationListener implementation +// + +// PassRegistrationListener ctor - Add the current object to the list of +// PassRegistrationListeners... +PassRegistrationListener::PassRegistrationListener() { + PassRegistry::getPassRegistry()->addRegistrationListener(this); +} + +// dtor - Remove object from list of listeners... +PassRegistrationListener::~PassRegistrationListener() { + PassRegistry::getPassRegistry()->removeRegistrationListener(this); +} + +// enumeratePasses - Iterate over the registered passes, calling the +// passEnumerate callback on each PassInfo object. +// +void PassRegistrationListener::enumeratePasses() { + PassRegistry::getPassRegistry()->enumerateWith(this); +} + +PassNameParser::~PassNameParser() {} + +//===----------------------------------------------------------------------===// +// AnalysisUsage Class Implementation +// + +namespace { + struct GetCFGOnlyPasses : public PassRegistrationListener { + typedef AnalysisUsage::VectorType VectorType; + VectorType &CFGOnlyList; + GetCFGOnlyPasses(VectorType &L) : CFGOnlyList(L) {} + + void passEnumerate(const PassInfo *P) { + if (P->isCFGOnlyPass()) + CFGOnlyList.push_back(P->getTypeInfo()); + } + }; +} + +// setPreservesCFG - This function should be called to by the pass, iff they do +// not: +// +// 1. Add or remove basic blocks from the function +// 2. Modify terminator instructions in any way. +// +// This function annotates the AnalysisUsage info object to say that analyses +// that only depend on the CFG are preserved by this pass. +// +void AnalysisUsage::setPreservesCFG() { + // Since this transformation doesn't modify the CFG, it preserves all analyses + // that only depend on the CFG (like dominators, loop info, etc...) + GetCFGOnlyPasses(Preserved).enumeratePasses(); +} + +AnalysisUsage &AnalysisUsage::addPreserved(StringRef Arg) { + const PassInfo *PI = Pass::lookupPassInfo(Arg); + // If the pass exists, preserve it. Otherwise silently do nothing. + if (PI) Preserved.push_back(PI->getTypeInfo()); + return *this; +} + +AnalysisUsage &AnalysisUsage::addRequiredID(const void *ID) { + Required.push_back(ID); + return *this; +} + +AnalysisUsage &AnalysisUsage::addRequiredID(char &ID) { + Required.push_back(&ID); + return *this; +} + +AnalysisUsage &AnalysisUsage::addRequiredTransitiveID(char &ID) { + Required.push_back(&ID); + RequiredTransitive.push_back(&ID); + return *this; +} diff --git a/contrib/llvm/lib/VMCore/PassManager.cpp b/contrib/llvm/lib/VMCore/PassManager.cpp new file mode 100644 index 0000000..ab4d4e5 --- /dev/null +++ b/contrib/llvm/lib/VMCore/PassManager.cpp @@ -0,0 +1,1809 @@ +//===- PassManager.cpp - LLVM Pass Infrastructure Implementation ----------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the LLVM Pass Manager infrastructure. +// +//===----------------------------------------------------------------------===// + + +#include "llvm/PassManagers.h" +#include "llvm/PassManager.h" +#include "llvm/Assembly/PrintModulePass.h" +#include "llvm/Assembly/Writer.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/Timer.h" +#include "llvm/Module.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/ManagedStatic.h" +#include "llvm/Support/PassNameParser.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/System/Mutex.h" +#include <algorithm> +#include <cstdio> +#include <map> +using namespace llvm; + +// See PassManagers.h for Pass Manager infrastructure overview. + +namespace llvm { + +//===----------------------------------------------------------------------===// +// Pass debugging information. Often it is useful to find out what pass is +// running when a crash occurs in a utility. When this library is compiled with +// debugging on, a command line option (--debug-pass) is enabled that causes the +// pass name to be printed before it executes. +// + +// Different debug levels that can be enabled... +enum PassDebugLevel { + None, Arguments, Structure, Executions, Details +}; + +static cl::opt<enum PassDebugLevel> +PassDebugging("debug-pass", cl::Hidden, + cl::desc("Print PassManager debugging information"), + cl::values( + clEnumVal(None , "disable debug output"), + clEnumVal(Arguments , "print pass arguments to pass to 'opt'"), + clEnumVal(Structure , "print pass structure before run()"), + clEnumVal(Executions, "print pass name before it is executed"), + clEnumVal(Details , "print pass details when it is executed"), + clEnumValEnd)); + +typedef llvm::cl::list<const llvm::PassInfo *, bool, PassNameParser> +PassOptionList; + +// Print IR out before/after specified passes. +static PassOptionList +PrintBefore("print-before", + llvm::cl::desc("Print IR before specified passes")); + +static PassOptionList +PrintAfter("print-after", + llvm::cl::desc("Print IR after specified passes")); + +static cl::opt<bool> +PrintBeforeAll("print-before-all", + llvm::cl::desc("Print IR before each pass"), + cl::init(false)); +static cl::opt<bool> +PrintAfterAll("print-after-all", + llvm::cl::desc("Print IR after each pass"), + cl::init(false)); + +/// This is a helper to determine whether to print IR before or +/// after a pass. + +static bool ShouldPrintBeforeOrAfterPass(const void *PassID, + PassOptionList &PassesToPrint) { + if (const llvm::PassInfo *PI = + PassRegistry::getPassRegistry()->getPassInfo(PassID)) { + for (unsigned i = 0, ie = PassesToPrint.size(); i < ie; ++i) { + const llvm::PassInfo *PassInf = PassesToPrint[i]; + if (PassInf) + if (PassInf->getPassArgument() == PI->getPassArgument()) { + return true; + } + } + } + return false; +} + + +/// This is a utility to check whether a pass should have IR dumped +/// before it. +static bool ShouldPrintBeforePass(const void *PassID) { + return PrintBeforeAll || ShouldPrintBeforeOrAfterPass(PassID, PrintBefore); +} + +/// This is a utility to check whether a pass should have IR dumped +/// after it. +static bool ShouldPrintAfterPass(const void *PassID) { + return PrintAfterAll || ShouldPrintBeforeOrAfterPass(PassID, PrintAfter); +} + +} // End of llvm namespace + +/// isPassDebuggingExecutionsOrMore - Return true if -debug-pass=Executions +/// or higher is specified. +bool PMDataManager::isPassDebuggingExecutionsOrMore() const { + return PassDebugging >= Executions; +} + + + + +void PassManagerPrettyStackEntry::print(raw_ostream &OS) const { + if (V == 0 && M == 0) + OS << "Releasing pass '"; + else + OS << "Running pass '"; + + OS << P->getPassName() << "'"; + + if (M) { + OS << " on module '" << M->getModuleIdentifier() << "'.\n"; + return; + } + if (V == 0) { + OS << '\n'; + return; + } + + OS << " on "; + if (isa<Function>(V)) + OS << "function"; + else if (isa<BasicBlock>(V)) + OS << "basic block"; + else + OS << "value"; + + OS << " '"; + WriteAsOperand(OS, V, /*PrintTy=*/false, M); + OS << "'\n"; +} + + +namespace { + +//===----------------------------------------------------------------------===// +// BBPassManager +// +/// BBPassManager manages BasicBlockPass. It batches all the +/// pass together and sequence them to process one basic block before +/// processing next basic block. +class BBPassManager : public PMDataManager, public FunctionPass { + +public: + static char ID; + explicit BBPassManager(int Depth) + : PMDataManager(Depth), FunctionPass(ID) {} + + /// Execute all of the passes scheduled for execution. Keep track of + /// whether any of the passes modifies the function, and if so, return true. + bool runOnFunction(Function &F); + + /// Pass Manager itself does not invalidate any analysis info. + void getAnalysisUsage(AnalysisUsage &Info) const { + Info.setPreservesAll(); + } + + bool doInitialization(Module &M); + bool doInitialization(Function &F); + bool doFinalization(Module &M); + bool doFinalization(Function &F); + + virtual PMDataManager *getAsPMDataManager() { return this; } + virtual Pass *getAsPass() { return this; } + + virtual const char *getPassName() const { + return "BasicBlock Pass Manager"; + } + + // Print passes managed by this manager + void dumpPassStructure(unsigned Offset) { + llvm::dbgs() << std::string(Offset*2, ' ') << "BasicBlockPass Manager\n"; + for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { + BasicBlockPass *BP = getContainedPass(Index); + BP->dumpPassStructure(Offset + 1); + dumpLastUses(BP, Offset+1); + } + } + + BasicBlockPass *getContainedPass(unsigned N) { + assert(N < PassVector.size() && "Pass number out of range!"); + BasicBlockPass *BP = static_cast<BasicBlockPass *>(PassVector[N]); + return BP; + } + + virtual PassManagerType getPassManagerType() const { + return PMT_BasicBlockPassManager; + } +}; + +char BBPassManager::ID = 0; +} + +namespace llvm { + +//===----------------------------------------------------------------------===// +// FunctionPassManagerImpl +// +/// FunctionPassManagerImpl manages FPPassManagers +class FunctionPassManagerImpl : public Pass, + public PMDataManager, + public PMTopLevelManager { +private: + bool wasRun; +public: + static char ID; + explicit FunctionPassManagerImpl(int Depth) : + Pass(PT_PassManager, ID), PMDataManager(Depth), + PMTopLevelManager(new FPPassManager(1)), wasRun(false) {} + + /// add - Add a pass to the queue of passes to run. This passes ownership of + /// the Pass to the PassManager. When the PassManager is destroyed, the pass + /// will be destroyed as well, so there is no need to delete the pass. This + /// implies that all passes MUST be allocated with 'new'. + void add(Pass *P) { + schedulePass(P); + } + + /// createPrinterPass - Get a function printer pass. + Pass *createPrinterPass(raw_ostream &O, const std::string &Banner) const { + return createPrintFunctionPass(Banner, &O); + } + + // Prepare for running an on the fly pass, freeing memory if needed + // from a previous run. + void releaseMemoryOnTheFly(); + + /// run - Execute all of the passes scheduled for execution. Keep track of + /// whether any of the passes modifies the module, and if so, return true. + bool run(Function &F); + + /// doInitialization - Run all of the initializers for the function passes. + /// + bool doInitialization(Module &M); + + /// doFinalization - Run all of the finalizers for the function passes. + /// + bool doFinalization(Module &M); + + + virtual PMDataManager *getAsPMDataManager() { return this; } + virtual Pass *getAsPass() { return this; } + + /// Pass Manager itself does not invalidate any analysis info. + void getAnalysisUsage(AnalysisUsage &Info) const { + Info.setPreservesAll(); + } + + void addTopLevelPass(Pass *P) { + if (ImmutablePass *IP = P->getAsImmutablePass()) { + // P is a immutable pass and it will be managed by this + // top level manager. Set up analysis resolver to connect them. + AnalysisResolver *AR = new AnalysisResolver(*this); + P->setResolver(AR); + initializeAnalysisImpl(P); + addImmutablePass(IP); + recordAvailableAnalysis(IP); + } else { + P->assignPassManager(activeStack, PMT_FunctionPassManager); + } + + } + + FPPassManager *getContainedManager(unsigned N) { + assert(N < PassManagers.size() && "Pass number out of range!"); + FPPassManager *FP = static_cast<FPPassManager *>(PassManagers[N]); + return FP; + } +}; + +char FunctionPassManagerImpl::ID = 0; + +//===----------------------------------------------------------------------===// +// MPPassManager +// +/// MPPassManager manages ModulePasses and function pass managers. +/// It batches all Module passes and function pass managers together and +/// sequences them to process one module. +class MPPassManager : public Pass, public PMDataManager { +public: + static char ID; + explicit MPPassManager(int Depth) : + Pass(PT_PassManager, ID), PMDataManager(Depth) { } + + // Delete on the fly managers. + virtual ~MPPassManager() { + for (std::map<Pass *, FunctionPassManagerImpl *>::iterator + I = OnTheFlyManagers.begin(), E = OnTheFlyManagers.end(); + I != E; ++I) { + FunctionPassManagerImpl *FPP = I->second; + delete FPP; + } + } + + /// createPrinterPass - Get a module printer pass. + Pass *createPrinterPass(raw_ostream &O, const std::string &Banner) const { + return createPrintModulePass(&O, false, Banner); + } + + /// run - Execute all of the passes scheduled for execution. Keep track of + /// whether any of the passes modifies the module, and if so, return true. + bool runOnModule(Module &M); + + /// Pass Manager itself does not invalidate any analysis info. + void getAnalysisUsage(AnalysisUsage &Info) const { + Info.setPreservesAll(); + } + + /// Add RequiredPass into list of lower level passes required by pass P. + /// RequiredPass is run on the fly by Pass Manager when P requests it + /// through getAnalysis interface. + virtual void addLowerLevelRequiredPass(Pass *P, Pass *RequiredPass); + + /// Return function pass corresponding to PassInfo PI, that is + /// required by module pass MP. Instantiate analysis pass, by using + /// its runOnFunction() for function F. + virtual Pass* getOnTheFlyPass(Pass *MP, AnalysisID PI, Function &F); + + virtual const char *getPassName() const { + return "Module Pass Manager"; + } + + virtual PMDataManager *getAsPMDataManager() { return this; } + virtual Pass *getAsPass() { return this; } + + // Print passes managed by this manager + void dumpPassStructure(unsigned Offset) { + llvm::dbgs() << std::string(Offset*2, ' ') << "ModulePass Manager\n"; + for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { + ModulePass *MP = getContainedPass(Index); + MP->dumpPassStructure(Offset + 1); + std::map<Pass *, FunctionPassManagerImpl *>::const_iterator I = + OnTheFlyManagers.find(MP); + if (I != OnTheFlyManagers.end()) + I->second->dumpPassStructure(Offset + 2); + dumpLastUses(MP, Offset+1); + } + } + + ModulePass *getContainedPass(unsigned N) { + assert(N < PassVector.size() && "Pass number out of range!"); + return static_cast<ModulePass *>(PassVector[N]); + } + + virtual PassManagerType getPassManagerType() const { + return PMT_ModulePassManager; + } + + private: + /// Collection of on the fly FPPassManagers. These managers manage + /// function passes that are required by module passes. + std::map<Pass *, FunctionPassManagerImpl *> OnTheFlyManagers; +}; + +char MPPassManager::ID = 0; +//===----------------------------------------------------------------------===// +// PassManagerImpl +// + +/// PassManagerImpl manages MPPassManagers +class PassManagerImpl : public Pass, + public PMDataManager, + public PMTopLevelManager { + +public: + static char ID; + explicit PassManagerImpl(int Depth) : + Pass(PT_PassManager, ID), PMDataManager(Depth), + PMTopLevelManager(new MPPassManager(1)) {} + + /// add - Add a pass to the queue of passes to run. This passes ownership of + /// the Pass to the PassManager. When the PassManager is destroyed, the pass + /// will be destroyed as well, so there is no need to delete the pass. This + /// implies that all passes MUST be allocated with 'new'. + void add(Pass *P) { + schedulePass(P); + } + + /// createPrinterPass - Get a module printer pass. + Pass *createPrinterPass(raw_ostream &O, const std::string &Banner) const { + return createPrintModulePass(&O, false, Banner); + } + + /// run - Execute all of the passes scheduled for execution. Keep track of + /// whether any of the passes modifies the module, and if so, return true. + bool run(Module &M); + + /// Pass Manager itself does not invalidate any analysis info. + void getAnalysisUsage(AnalysisUsage &Info) const { + Info.setPreservesAll(); + } + + void addTopLevelPass(Pass *P) { + if (ImmutablePass *IP = P->getAsImmutablePass()) { + // P is a immutable pass and it will be managed by this + // top level manager. Set up analysis resolver to connect them. + AnalysisResolver *AR = new AnalysisResolver(*this); + P->setResolver(AR); + initializeAnalysisImpl(P); + addImmutablePass(IP); + recordAvailableAnalysis(IP); + } else { + P->assignPassManager(activeStack, PMT_ModulePassManager); + } + } + + virtual PMDataManager *getAsPMDataManager() { return this; } + virtual Pass *getAsPass() { return this; } + + MPPassManager *getContainedManager(unsigned N) { + assert(N < PassManagers.size() && "Pass number out of range!"); + MPPassManager *MP = static_cast<MPPassManager *>(PassManagers[N]); + return MP; + } +}; + +char PassManagerImpl::ID = 0; +} // End of llvm namespace + +namespace { + +//===----------------------------------------------------------------------===// +/// TimingInfo Class - This class is used to calculate information about the +/// amount of time each pass takes to execute. This only happens when +/// -time-passes is enabled on the command line. +/// + +static ManagedStatic<sys::SmartMutex<true> > TimingInfoMutex; + +class TimingInfo { + DenseMap<Pass*, Timer*> TimingData; + TimerGroup TG; +public: + // Use 'create' member to get this. + TimingInfo() : TG("... Pass execution timing report ...") {} + + // TimingDtor - Print out information about timing information + ~TimingInfo() { + // Delete all of the timers, which accumulate their info into the + // TimerGroup. + for (DenseMap<Pass*, Timer*>::iterator I = TimingData.begin(), + E = TimingData.end(); I != E; ++I) + delete I->second; + // TimerGroup is deleted next, printing the report. + } + + // createTheTimeInfo - This method either initializes the TheTimeInfo pointer + // to a non null value (if the -time-passes option is enabled) or it leaves it + // null. It may be called multiple times. + static void createTheTimeInfo(); + + /// getPassTimer - Return the timer for the specified pass if it exists. + Timer *getPassTimer(Pass *P) { + if (P->getAsPMDataManager()) + return 0; + + sys::SmartScopedLock<true> Lock(*TimingInfoMutex); + Timer *&T = TimingData[P]; + if (T == 0) + T = new Timer(P->getPassName(), TG); + return T; + } +}; + +} // End of anon namespace + +static TimingInfo *TheTimeInfo; + +//===----------------------------------------------------------------------===// +// PMTopLevelManager implementation + +/// Initialize top level manager. Create first pass manager. +PMTopLevelManager::PMTopLevelManager(PMDataManager *PMDM) { + PMDM->setTopLevelManager(this); + addPassManager(PMDM); + activeStack.push(PMDM); +} + +/// Set pass P as the last user of the given analysis passes. +void PMTopLevelManager::setLastUser(SmallVector<Pass *, 12> &AnalysisPasses, + Pass *P) { + for (SmallVector<Pass *, 12>::iterator I = AnalysisPasses.begin(), + E = AnalysisPasses.end(); I != E; ++I) { + Pass *AP = *I; + LastUser[AP] = P; + + if (P == AP) + continue; + + // If AP is the last user of other passes then make P last user of + // such passes. + for (DenseMap<Pass *, Pass *>::iterator LUI = LastUser.begin(), + LUE = LastUser.end(); LUI != LUE; ++LUI) { + if (LUI->second == AP) + // DenseMap iterator is not invalidated here because + // this is just updating exisitng entry. + LastUser[LUI->first] = P; + } + } +} + +/// Collect passes whose last user is P +void PMTopLevelManager::collectLastUses(SmallVector<Pass *, 12> &LastUses, + Pass *P) { + DenseMap<Pass *, SmallPtrSet<Pass *, 8> >::iterator DMI = + InversedLastUser.find(P); + if (DMI == InversedLastUser.end()) + return; + + SmallPtrSet<Pass *, 8> &LU = DMI->second; + for (SmallPtrSet<Pass *, 8>::iterator I = LU.begin(), + E = LU.end(); I != E; ++I) { + LastUses.push_back(*I); + } + +} + +AnalysisUsage *PMTopLevelManager::findAnalysisUsage(Pass *P) { + AnalysisUsage *AnUsage = NULL; + DenseMap<Pass *, AnalysisUsage *>::iterator DMI = AnUsageMap.find(P); + if (DMI != AnUsageMap.end()) + AnUsage = DMI->second; + else { + AnUsage = new AnalysisUsage(); + P->getAnalysisUsage(*AnUsage); + AnUsageMap[P] = AnUsage; + } + return AnUsage; +} + +/// Schedule pass P for execution. Make sure that passes required by +/// P are run before P is run. Update analysis info maintained by +/// the manager. Remove dead passes. This is a recursive function. +void PMTopLevelManager::schedulePass(Pass *P) { + + // TODO : Allocate function manager for this pass, other wise required set + // may be inserted into previous function manager + + // Give pass a chance to prepare the stage. + P->preparePassManager(activeStack); + + // If P is an analysis pass and it is available then do not + // generate the analysis again. Stale analysis info should not be + // available at this point. + const PassInfo *PI = + PassRegistry::getPassRegistry()->getPassInfo(P->getPassID()); + if (PI && PI->isAnalysis() && findAnalysisPass(P->getPassID())) { + delete P; + return; + } + + AnalysisUsage *AnUsage = findAnalysisUsage(P); + + bool checkAnalysis = true; + while (checkAnalysis) { + checkAnalysis = false; + + const AnalysisUsage::VectorType &RequiredSet = AnUsage->getRequiredSet(); + for (AnalysisUsage::VectorType::const_iterator I = RequiredSet.begin(), + E = RequiredSet.end(); I != E; ++I) { + + Pass *AnalysisPass = findAnalysisPass(*I); + if (!AnalysisPass) { + const PassInfo *PI = PassRegistry::getPassRegistry()->getPassInfo(*I); + AnalysisPass = PI->createPass(); + if (P->getPotentialPassManagerType () == + AnalysisPass->getPotentialPassManagerType()) + // Schedule analysis pass that is managed by the same pass manager. + schedulePass(AnalysisPass); + else if (P->getPotentialPassManagerType () > + AnalysisPass->getPotentialPassManagerType()) { + // Schedule analysis pass that is managed by a new manager. + schedulePass(AnalysisPass); + // Recheck analysis passes to ensure that required analyses that + // are already checked are still available. + checkAnalysis = true; + } + else + // Do not schedule this analysis. Lower level analsyis + // passes are run on the fly. + delete AnalysisPass; + } + } + } + + // Now all required passes are available. + addTopLevelPass(P); +} + +/// Find the pass that implements Analysis AID. Search immutable +/// passes and all pass managers. If desired pass is not found +/// then return NULL. +Pass *PMTopLevelManager::findAnalysisPass(AnalysisID AID) { + + Pass *P = NULL; + // Check pass managers + for (SmallVector<PMDataManager *, 8>::iterator I = PassManagers.begin(), + E = PassManagers.end(); P == NULL && I != E; ++I) { + PMDataManager *PMD = *I; + P = PMD->findAnalysisPass(AID, false); + } + + // Check other pass managers + for (SmallVector<PMDataManager *, 8>::iterator + I = IndirectPassManagers.begin(), + E = IndirectPassManagers.end(); P == NULL && I != E; ++I) + P = (*I)->findAnalysisPass(AID, false); + + for (SmallVector<ImmutablePass *, 8>::iterator I = ImmutablePasses.begin(), + E = ImmutablePasses.end(); P == NULL && I != E; ++I) { + AnalysisID PI = (*I)->getPassID(); + if (PI == AID) + P = *I; + + // If Pass not found then check the interfaces implemented by Immutable Pass + if (!P) { + const PassInfo *PassInf = + PassRegistry::getPassRegistry()->getPassInfo(PI); + const std::vector<const PassInfo*> &ImmPI = + PassInf->getInterfacesImplemented(); + for (std::vector<const PassInfo*>::const_iterator II = ImmPI.begin(), + EE = ImmPI.end(); II != EE; ++II) { + if ((*II)->getTypeInfo() == AID) + P = *I; + } + } + } + + return P; +} + +// Print passes managed by this top level manager. +void PMTopLevelManager::dumpPasses() const { + + if (PassDebugging < Structure) + return; + + // Print out the immutable passes + for (unsigned i = 0, e = ImmutablePasses.size(); i != e; ++i) { + ImmutablePasses[i]->dumpPassStructure(0); + } + + // Every class that derives from PMDataManager also derives from Pass + // (sometimes indirectly), but there's no inheritance relationship + // between PMDataManager and Pass, so we have to getAsPass to get + // from a PMDataManager* to a Pass*. + for (SmallVector<PMDataManager *, 8>::const_iterator I = PassManagers.begin(), + E = PassManagers.end(); I != E; ++I) + (*I)->getAsPass()->dumpPassStructure(1); +} + +void PMTopLevelManager::dumpArguments() const { + + if (PassDebugging < Arguments) + return; + + dbgs() << "Pass Arguments: "; + for (SmallVector<PMDataManager *, 8>::const_iterator I = PassManagers.begin(), + E = PassManagers.end(); I != E; ++I) + (*I)->dumpPassArguments(); + dbgs() << "\n"; +} + +void PMTopLevelManager::initializeAllAnalysisInfo() { + for (SmallVector<PMDataManager *, 8>::iterator I = PassManagers.begin(), + E = PassManagers.end(); I != E; ++I) + (*I)->initializeAnalysisInfo(); + + // Initailize other pass managers + for (SmallVector<PMDataManager *, 8>::iterator + I = IndirectPassManagers.begin(), E = IndirectPassManagers.end(); + I != E; ++I) + (*I)->initializeAnalysisInfo(); + + for (DenseMap<Pass *, Pass *>::iterator DMI = LastUser.begin(), + DME = LastUser.end(); DMI != DME; ++DMI) { + DenseMap<Pass *, SmallPtrSet<Pass *, 8> >::iterator InvDMI = + InversedLastUser.find(DMI->second); + if (InvDMI != InversedLastUser.end()) { + SmallPtrSet<Pass *, 8> &L = InvDMI->second; + L.insert(DMI->first); + } else { + SmallPtrSet<Pass *, 8> L; L.insert(DMI->first); + InversedLastUser[DMI->second] = L; + } + } +} + +/// Destructor +PMTopLevelManager::~PMTopLevelManager() { + for (SmallVector<PMDataManager *, 8>::iterator I = PassManagers.begin(), + E = PassManagers.end(); I != E; ++I) + delete *I; + + for (SmallVector<ImmutablePass *, 8>::iterator + I = ImmutablePasses.begin(), E = ImmutablePasses.end(); I != E; ++I) + delete *I; + + for (DenseMap<Pass *, AnalysisUsage *>::iterator DMI = AnUsageMap.begin(), + DME = AnUsageMap.end(); DMI != DME; ++DMI) + delete DMI->second; +} + +//===----------------------------------------------------------------------===// +// PMDataManager implementation + +/// Augement AvailableAnalysis by adding analysis made available by pass P. +void PMDataManager::recordAvailableAnalysis(Pass *P) { + AnalysisID PI = P->getPassID(); + + AvailableAnalysis[PI] = P; + + assert(!AvailableAnalysis.empty()); + + // This pass is the current implementation of all of the interfaces it + // implements as well. + const PassInfo *PInf = PassRegistry::getPassRegistry()->getPassInfo(PI); + if (PInf == 0) return; + const std::vector<const PassInfo*> &II = PInf->getInterfacesImplemented(); + for (unsigned i = 0, e = II.size(); i != e; ++i) + AvailableAnalysis[II[i]->getTypeInfo()] = P; +} + +// Return true if P preserves high level analysis used by other +// passes managed by this manager +bool PMDataManager::preserveHigherLevelAnalysis(Pass *P) { + AnalysisUsage *AnUsage = TPM->findAnalysisUsage(P); + if (AnUsage->getPreservesAll()) + return true; + + const AnalysisUsage::VectorType &PreservedSet = AnUsage->getPreservedSet(); + for (SmallVector<Pass *, 8>::iterator I = HigherLevelAnalysis.begin(), + E = HigherLevelAnalysis.end(); I != E; ++I) { + Pass *P1 = *I; + if (P1->getAsImmutablePass() == 0 && + std::find(PreservedSet.begin(), PreservedSet.end(), + P1->getPassID()) == + PreservedSet.end()) + return false; + } + + return true; +} + +/// verifyPreservedAnalysis -- Verify analysis preserved by pass P. +void PMDataManager::verifyPreservedAnalysis(Pass *P) { + // Don't do this unless assertions are enabled. +#ifdef NDEBUG + return; +#endif + AnalysisUsage *AnUsage = TPM->findAnalysisUsage(P); + const AnalysisUsage::VectorType &PreservedSet = AnUsage->getPreservedSet(); + + // Verify preserved analysis + for (AnalysisUsage::VectorType::const_iterator I = PreservedSet.begin(), + E = PreservedSet.end(); I != E; ++I) { + AnalysisID AID = *I; + if (Pass *AP = findAnalysisPass(AID, true)) { + TimeRegion PassTimer(getPassTimer(AP)); + AP->verifyAnalysis(); + } + } +} + +/// Remove Analysis not preserved by Pass P +void PMDataManager::removeNotPreservedAnalysis(Pass *P) { + AnalysisUsage *AnUsage = TPM->findAnalysisUsage(P); + if (AnUsage->getPreservesAll()) + return; + + const AnalysisUsage::VectorType &PreservedSet = AnUsage->getPreservedSet(); + for (std::map<AnalysisID, Pass*>::iterator I = AvailableAnalysis.begin(), + E = AvailableAnalysis.end(); I != E; ) { + std::map<AnalysisID, Pass*>::iterator Info = I++; + if (Info->second->getAsImmutablePass() == 0 && + std::find(PreservedSet.begin(), PreservedSet.end(), Info->first) == + PreservedSet.end()) { + // Remove this analysis + if (PassDebugging >= Details) { + Pass *S = Info->second; + dbgs() << " -- '" << P->getPassName() << "' is not preserving '"; + dbgs() << S->getPassName() << "'\n"; + } + AvailableAnalysis.erase(Info); + } + } + + // Check inherited analysis also. If P is not preserving analysis + // provided by parent manager then remove it here. + for (unsigned Index = 0; Index < PMT_Last; ++Index) { + + if (!InheritedAnalysis[Index]) + continue; + + for (std::map<AnalysisID, Pass*>::iterator + I = InheritedAnalysis[Index]->begin(), + E = InheritedAnalysis[Index]->end(); I != E; ) { + std::map<AnalysisID, Pass *>::iterator Info = I++; + if (Info->second->getAsImmutablePass() == 0 && + std::find(PreservedSet.begin(), PreservedSet.end(), Info->first) == + PreservedSet.end()) { + // Remove this analysis + if (PassDebugging >= Details) { + Pass *S = Info->second; + dbgs() << " -- '" << P->getPassName() << "' is not preserving '"; + dbgs() << S->getPassName() << "'\n"; + } + InheritedAnalysis[Index]->erase(Info); + } + } + } +} + +/// Remove analysis passes that are not used any longer +void PMDataManager::removeDeadPasses(Pass *P, StringRef Msg, + enum PassDebuggingString DBG_STR) { + + SmallVector<Pass *, 12> DeadPasses; + + // If this is a on the fly manager then it does not have TPM. + if (!TPM) + return; + + TPM->collectLastUses(DeadPasses, P); + + if (PassDebugging >= Details && !DeadPasses.empty()) { + dbgs() << " -*- '" << P->getPassName(); + dbgs() << "' is the last user of following pass instances."; + dbgs() << " Free these instances\n"; + } + + for (SmallVector<Pass *, 12>::iterator I = DeadPasses.begin(), + E = DeadPasses.end(); I != E; ++I) + freePass(*I, Msg, DBG_STR); +} + +void PMDataManager::freePass(Pass *P, StringRef Msg, + enum PassDebuggingString DBG_STR) { + dumpPassInfo(P, FREEING_MSG, DBG_STR, Msg); + + { + // If the pass crashes releasing memory, remember this. + PassManagerPrettyStackEntry X(P); + TimeRegion PassTimer(getPassTimer(P)); + + P->releaseMemory(); + } + + AnalysisID PI = P->getPassID(); + if (const PassInfo *PInf = PassRegistry::getPassRegistry()->getPassInfo(PI)) { + // Remove the pass itself (if it is not already removed). + AvailableAnalysis.erase(PI); + + // Remove all interfaces this pass implements, for which it is also + // listed as the available implementation. + const std::vector<const PassInfo*> &II = PInf->getInterfacesImplemented(); + for (unsigned i = 0, e = II.size(); i != e; ++i) { + std::map<AnalysisID, Pass*>::iterator Pos = + AvailableAnalysis.find(II[i]->getTypeInfo()); + if (Pos != AvailableAnalysis.end() && Pos->second == P) + AvailableAnalysis.erase(Pos); + } + } +} + +/// Add pass P into the PassVector. Update +/// AvailableAnalysis appropriately if ProcessAnalysis is true. +void PMDataManager::add(Pass *P, bool ProcessAnalysis) { + // This manager is going to manage pass P. Set up analysis resolver + // to connect them. + AnalysisResolver *AR = new AnalysisResolver(*this); + P->setResolver(AR); + + // If a FunctionPass F is the last user of ModulePass info M + // then the F's manager, not F, records itself as a last user of M. + SmallVector<Pass *, 12> TransferLastUses; + + if (!ProcessAnalysis) { + // Add pass + PassVector.push_back(P); + return; + } + + // At the moment, this pass is the last user of all required passes. + SmallVector<Pass *, 12> LastUses; + SmallVector<Pass *, 8> RequiredPasses; + SmallVector<AnalysisID, 8> ReqAnalysisNotAvailable; + + unsigned PDepth = this->getDepth(); + + collectRequiredAnalysis(RequiredPasses, + ReqAnalysisNotAvailable, P); + for (SmallVector<Pass *, 8>::iterator I = RequiredPasses.begin(), + E = RequiredPasses.end(); I != E; ++I) { + Pass *PRequired = *I; + unsigned RDepth = 0; + + assert(PRequired->getResolver() && "Analysis Resolver is not set"); + PMDataManager &DM = PRequired->getResolver()->getPMDataManager(); + RDepth = DM.getDepth(); + + if (PDepth == RDepth) + LastUses.push_back(PRequired); + else if (PDepth > RDepth) { + // Let the parent claim responsibility of last use + TransferLastUses.push_back(PRequired); + // Keep track of higher level analysis used by this manager. + HigherLevelAnalysis.push_back(PRequired); + } else + llvm_unreachable("Unable to accomodate Required Pass"); + } + + // Set P as P's last user until someone starts using P. + // However, if P is a Pass Manager then it does not need + // to record its last user. + if (P->getAsPMDataManager() == 0) + LastUses.push_back(P); + TPM->setLastUser(LastUses, P); + + if (!TransferLastUses.empty()) { + Pass *My_PM = getAsPass(); + TPM->setLastUser(TransferLastUses, My_PM); + TransferLastUses.clear(); + } + + // Now, take care of required analyses that are not available. + for (SmallVector<AnalysisID, 8>::iterator + I = ReqAnalysisNotAvailable.begin(), + E = ReqAnalysisNotAvailable.end() ;I != E; ++I) { + const PassInfo *PI = PassRegistry::getPassRegistry()->getPassInfo(*I); + Pass *AnalysisPass = PI->createPass(); + this->addLowerLevelRequiredPass(P, AnalysisPass); + } + + // Take a note of analysis required and made available by this pass. + // Remove the analysis not preserved by this pass + removeNotPreservedAnalysis(P); + recordAvailableAnalysis(P); + + // Add pass + PassVector.push_back(P); +} + + +/// Populate RP with analysis pass that are required by +/// pass P and are available. Populate RP_NotAvail with analysis +/// pass that are required by pass P but are not available. +void PMDataManager::collectRequiredAnalysis(SmallVector<Pass *, 8>&RP, + SmallVector<AnalysisID, 8> &RP_NotAvail, + Pass *P) { + AnalysisUsage *AnUsage = TPM->findAnalysisUsage(P); + const AnalysisUsage::VectorType &RequiredSet = AnUsage->getRequiredSet(); + for (AnalysisUsage::VectorType::const_iterator + I = RequiredSet.begin(), E = RequiredSet.end(); I != E; ++I) { + if (Pass *AnalysisPass = findAnalysisPass(*I, true)) + RP.push_back(AnalysisPass); + else + RP_NotAvail.push_back(*I); + } + + const AnalysisUsage::VectorType &IDs = AnUsage->getRequiredTransitiveSet(); + for (AnalysisUsage::VectorType::const_iterator I = IDs.begin(), + E = IDs.end(); I != E; ++I) { + if (Pass *AnalysisPass = findAnalysisPass(*I, true)) + RP.push_back(AnalysisPass); + else + RP_NotAvail.push_back(*I); + } +} + +// All Required analyses should be available to the pass as it runs! Here +// we fill in the AnalysisImpls member of the pass so that it can +// successfully use the getAnalysis() method to retrieve the +// implementations it needs. +// +void PMDataManager::initializeAnalysisImpl(Pass *P) { + AnalysisUsage *AnUsage = TPM->findAnalysisUsage(P); + + for (AnalysisUsage::VectorType::const_iterator + I = AnUsage->getRequiredSet().begin(), + E = AnUsage->getRequiredSet().end(); I != E; ++I) { + Pass *Impl = findAnalysisPass(*I, true); + if (Impl == 0) + // This may be analysis pass that is initialized on the fly. + // If that is not the case then it will raise an assert when it is used. + continue; + AnalysisResolver *AR = P->getResolver(); + assert(AR && "Analysis Resolver is not set"); + AR->addAnalysisImplsPair(*I, Impl); + } +} + +/// Find the pass that implements Analysis AID. If desired pass is not found +/// then return NULL. +Pass *PMDataManager::findAnalysisPass(AnalysisID AID, bool SearchParent) { + + // Check if AvailableAnalysis map has one entry. + std::map<AnalysisID, Pass*>::const_iterator I = AvailableAnalysis.find(AID); + + if (I != AvailableAnalysis.end()) + return I->second; + + // Search Parents through TopLevelManager + if (SearchParent) + return TPM->findAnalysisPass(AID); + + return NULL; +} + +// Print list of passes that are last used by P. +void PMDataManager::dumpLastUses(Pass *P, unsigned Offset) const{ + + SmallVector<Pass *, 12> LUses; + + // If this is a on the fly manager then it does not have TPM. + if (!TPM) + return; + + TPM->collectLastUses(LUses, P); + + for (SmallVector<Pass *, 12>::iterator I = LUses.begin(), + E = LUses.end(); I != E; ++I) { + llvm::dbgs() << "--" << std::string(Offset*2, ' '); + (*I)->dumpPassStructure(0); + } +} + +void PMDataManager::dumpPassArguments() const { + for (SmallVector<Pass *, 8>::const_iterator I = PassVector.begin(), + E = PassVector.end(); I != E; ++I) { + if (PMDataManager *PMD = (*I)->getAsPMDataManager()) + PMD->dumpPassArguments(); + else + if (const PassInfo *PI = + PassRegistry::getPassRegistry()->getPassInfo((*I)->getPassID())) + if (!PI->isAnalysisGroup()) + dbgs() << " -" << PI->getPassArgument(); + } +} + +void PMDataManager::dumpPassInfo(Pass *P, enum PassDebuggingString S1, + enum PassDebuggingString S2, + StringRef Msg) { + if (PassDebugging < Executions) + return; + dbgs() << (void*)this << std::string(getDepth()*2+1, ' '); + switch (S1) { + case EXECUTION_MSG: + dbgs() << "Executing Pass '" << P->getPassName(); + break; + case MODIFICATION_MSG: + dbgs() << "Made Modification '" << P->getPassName(); + break; + case FREEING_MSG: + dbgs() << " Freeing Pass '" << P->getPassName(); + break; + default: + break; + } + switch (S2) { + case ON_BASICBLOCK_MSG: + dbgs() << "' on BasicBlock '" << Msg << "'...\n"; + break; + case ON_FUNCTION_MSG: + dbgs() << "' on Function '" << Msg << "'...\n"; + break; + case ON_MODULE_MSG: + dbgs() << "' on Module '" << Msg << "'...\n"; + break; + case ON_LOOP_MSG: + dbgs() << "' on Loop '" << Msg << "'...\n"; + break; + case ON_CG_MSG: + dbgs() << "' on Call Graph Nodes '" << Msg << "'...\n"; + break; + default: + break; + } +} + +void PMDataManager::dumpRequiredSet(const Pass *P) const { + if (PassDebugging < Details) + return; + + AnalysisUsage analysisUsage; + P->getAnalysisUsage(analysisUsage); + dumpAnalysisUsage("Required", P, analysisUsage.getRequiredSet()); +} + +void PMDataManager::dumpPreservedSet(const Pass *P) const { + if (PassDebugging < Details) + return; + + AnalysisUsage analysisUsage; + P->getAnalysisUsage(analysisUsage); + dumpAnalysisUsage("Preserved", P, analysisUsage.getPreservedSet()); +} + +void PMDataManager::dumpAnalysisUsage(StringRef Msg, const Pass *P, + const AnalysisUsage::VectorType &Set) const { + assert(PassDebugging >= Details); + if (Set.empty()) + return; + dbgs() << (void*)P << std::string(getDepth()*2+3, ' ') << Msg << " Analyses:"; + for (unsigned i = 0; i != Set.size(); ++i) { + if (i) dbgs() << ','; + const PassInfo *PInf = PassRegistry::getPassRegistry()->getPassInfo(Set[i]); + dbgs() << ' ' << PInf->getPassName(); + } + dbgs() << '\n'; +} + +/// Add RequiredPass into list of lower level passes required by pass P. +/// RequiredPass is run on the fly by Pass Manager when P requests it +/// through getAnalysis interface. +/// This should be handled by specific pass manager. +void PMDataManager::addLowerLevelRequiredPass(Pass *P, Pass *RequiredPass) { + if (TPM) { + TPM->dumpArguments(); + TPM->dumpPasses(); + } + + // Module Level pass may required Function Level analysis info + // (e.g. dominator info). Pass manager uses on the fly function pass manager + // to provide this on demand. In that case, in Pass manager terminology, + // module level pass is requiring lower level analysis info managed by + // lower level pass manager. + + // When Pass manager is not able to order required analysis info, Pass manager + // checks whether any lower level manager will be able to provide this + // analysis info on demand or not. +#ifndef NDEBUG + dbgs() << "Unable to schedule '" << RequiredPass->getPassName(); + dbgs() << "' required by '" << P->getPassName() << "'\n"; +#endif + llvm_unreachable("Unable to schedule pass"); +} + +Pass *PMDataManager::getOnTheFlyPass(Pass *P, AnalysisID PI, Function &F) { + assert(0 && "Unable to find on the fly pass"); + return NULL; +} + +// Destructor +PMDataManager::~PMDataManager() { + for (SmallVector<Pass *, 8>::iterator I = PassVector.begin(), + E = PassVector.end(); I != E; ++I) + delete *I; +} + +//===----------------------------------------------------------------------===// +// NOTE: Is this the right place to define this method ? +// getAnalysisIfAvailable - Return analysis result or null if it doesn't exist. +Pass *AnalysisResolver::getAnalysisIfAvailable(AnalysisID ID, bool dir) const { + return PM.findAnalysisPass(ID, dir); +} + +Pass *AnalysisResolver::findImplPass(Pass *P, AnalysisID AnalysisPI, + Function &F) { + return PM.getOnTheFlyPass(P, AnalysisPI, F); +} + +//===----------------------------------------------------------------------===// +// BBPassManager implementation + +/// Execute all of the passes scheduled for execution by invoking +/// runOnBasicBlock method. Keep track of whether any of the passes modifies +/// the function, and if so, return true. +bool BBPassManager::runOnFunction(Function &F) { + if (F.isDeclaration()) + return false; + + bool Changed = doInitialization(F); + + for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) + for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { + BasicBlockPass *BP = getContainedPass(Index); + bool LocalChanged = false; + + dumpPassInfo(BP, EXECUTION_MSG, ON_BASICBLOCK_MSG, I->getName()); + dumpRequiredSet(BP); + + initializeAnalysisImpl(BP); + + { + // If the pass crashes, remember this. + PassManagerPrettyStackEntry X(BP, *I); + TimeRegion PassTimer(getPassTimer(BP)); + + LocalChanged |= BP->runOnBasicBlock(*I); + } + + Changed |= LocalChanged; + if (LocalChanged) + dumpPassInfo(BP, MODIFICATION_MSG, ON_BASICBLOCK_MSG, + I->getName()); + dumpPreservedSet(BP); + + verifyPreservedAnalysis(BP); + removeNotPreservedAnalysis(BP); + recordAvailableAnalysis(BP); + removeDeadPasses(BP, I->getName(), ON_BASICBLOCK_MSG); + } + + return doFinalization(F) || Changed; +} + +// Implement doInitialization and doFinalization +bool BBPassManager::doInitialization(Module &M) { + bool Changed = false; + + for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) + Changed |= getContainedPass(Index)->doInitialization(M); + + return Changed; +} + +bool BBPassManager::doFinalization(Module &M) { + bool Changed = false; + + for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) + Changed |= getContainedPass(Index)->doFinalization(M); + + return Changed; +} + +bool BBPassManager::doInitialization(Function &F) { + bool Changed = false; + + for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { + BasicBlockPass *BP = getContainedPass(Index); + Changed |= BP->doInitialization(F); + } + + return Changed; +} + +bool BBPassManager::doFinalization(Function &F) { + bool Changed = false; + + for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { + BasicBlockPass *BP = getContainedPass(Index); + Changed |= BP->doFinalization(F); + } + + return Changed; +} + + +//===----------------------------------------------------------------------===// +// FunctionPassManager implementation + +/// Create new Function pass manager +FunctionPassManager::FunctionPassManager(Module *m) : M(m) { + FPM = new FunctionPassManagerImpl(0); + // FPM is the top level manager. + FPM->setTopLevelManager(FPM); + + AnalysisResolver *AR = new AnalysisResolver(*FPM); + FPM->setResolver(AR); +} + +FunctionPassManager::~FunctionPassManager() { + delete FPM; +} + +/// addImpl - Add a pass to the queue of passes to run, without +/// checking whether to add a printer pass. +void FunctionPassManager::addImpl(Pass *P) { + FPM->add(P); +} + +/// add - Add a pass to the queue of passes to run. This passes +/// ownership of the Pass to the PassManager. When the +/// PassManager_X is destroyed, the pass will be destroyed as well, so +/// there is no need to delete the pass. (TODO delete passes.) +/// This implies that all passes MUST be allocated with 'new'. +void FunctionPassManager::add(Pass *P) { + // If this is a not a function pass, don't add a printer for it. + const void *PassID = P->getPassID(); + if (P->getPassKind() == PT_Function) + if (ShouldPrintBeforePass(PassID)) + addImpl(P->createPrinterPass(dbgs(), std::string("*** IR Dump Before ") + + P->getPassName() + " ***")); + + addImpl(P); + + if (P->getPassKind() == PT_Function) + if (ShouldPrintAfterPass(PassID)) + addImpl(P->createPrinterPass(dbgs(), std::string("*** IR Dump After ") + + P->getPassName() + " ***")); +} + +/// run - Execute all of the passes scheduled for execution. Keep +/// track of whether any of the passes modifies the function, and if +/// so, return true. +/// +bool FunctionPassManager::run(Function &F) { + if (F.isMaterializable()) { + std::string errstr; + if (F.Materialize(&errstr)) + report_fatal_error("Error reading bitcode file: " + Twine(errstr)); + } + return FPM->run(F); +} + + +/// doInitialization - Run all of the initializers for the function passes. +/// +bool FunctionPassManager::doInitialization() { + return FPM->doInitialization(*M); +} + +/// doFinalization - Run all of the finalizers for the function passes. +/// +bool FunctionPassManager::doFinalization() { + return FPM->doFinalization(*M); +} + +//===----------------------------------------------------------------------===// +// FunctionPassManagerImpl implementation +// +bool FunctionPassManagerImpl::doInitialization(Module &M) { + bool Changed = false; + + dumpArguments(); + dumpPasses(); + + for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index) + Changed |= getContainedManager(Index)->doInitialization(M); + + return Changed; +} + +bool FunctionPassManagerImpl::doFinalization(Module &M) { + bool Changed = false; + + for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index) + Changed |= getContainedManager(Index)->doFinalization(M); + + return Changed; +} + +/// cleanup - After running all passes, clean up pass manager cache. +void FPPassManager::cleanup() { + for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { + FunctionPass *FP = getContainedPass(Index); + AnalysisResolver *AR = FP->getResolver(); + assert(AR && "Analysis Resolver is not set"); + AR->clearAnalysisImpls(); + } +} + +void FunctionPassManagerImpl::releaseMemoryOnTheFly() { + if (!wasRun) + return; + for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index) { + FPPassManager *FPPM = getContainedManager(Index); + for (unsigned Index = 0; Index < FPPM->getNumContainedPasses(); ++Index) { + FPPM->getContainedPass(Index)->releaseMemory(); + } + } + wasRun = false; +} + +// Execute all the passes managed by this top level manager. +// Return true if any function is modified by a pass. +bool FunctionPassManagerImpl::run(Function &F) { + bool Changed = false; + TimingInfo::createTheTimeInfo(); + + initializeAllAnalysisInfo(); + for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index) + Changed |= getContainedManager(Index)->runOnFunction(F); + + for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index) + getContainedManager(Index)->cleanup(); + + wasRun = true; + return Changed; +} + +//===----------------------------------------------------------------------===// +// FPPassManager implementation + +char FPPassManager::ID = 0; +/// Print passes managed by this manager +void FPPassManager::dumpPassStructure(unsigned Offset) { + llvm::dbgs() << std::string(Offset*2, ' ') << "FunctionPass Manager\n"; + for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { + FunctionPass *FP = getContainedPass(Index); + FP->dumpPassStructure(Offset + 1); + dumpLastUses(FP, Offset+1); + } +} + + +/// Execute all of the passes scheduled for execution by invoking +/// runOnFunction method. Keep track of whether any of the passes modifies +/// the function, and if so, return true. +bool FPPassManager::runOnFunction(Function &F) { + if (F.isDeclaration()) + return false; + + bool Changed = false; + + // Collect inherited analysis from Module level pass manager. + populateInheritedAnalysis(TPM->activeStack); + + for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { + FunctionPass *FP = getContainedPass(Index); + bool LocalChanged = false; + + dumpPassInfo(FP, EXECUTION_MSG, ON_FUNCTION_MSG, F.getName()); + dumpRequiredSet(FP); + + initializeAnalysisImpl(FP); + + { + PassManagerPrettyStackEntry X(FP, F); + TimeRegion PassTimer(getPassTimer(FP)); + + LocalChanged |= FP->runOnFunction(F); + } + + Changed |= LocalChanged; + if (LocalChanged) + dumpPassInfo(FP, MODIFICATION_MSG, ON_FUNCTION_MSG, F.getName()); + dumpPreservedSet(FP); + + verifyPreservedAnalysis(FP); + removeNotPreservedAnalysis(FP); + recordAvailableAnalysis(FP); + removeDeadPasses(FP, F.getName(), ON_FUNCTION_MSG); + } + return Changed; +} + +bool FPPassManager::runOnModule(Module &M) { + bool Changed = doInitialization(M); + + for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) + runOnFunction(*I); + + return doFinalization(M) || Changed; +} + +bool FPPassManager::doInitialization(Module &M) { + bool Changed = false; + + for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) + Changed |= getContainedPass(Index)->doInitialization(M); + + return Changed; +} + +bool FPPassManager::doFinalization(Module &M) { + bool Changed = false; + + for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) + Changed |= getContainedPass(Index)->doFinalization(M); + + return Changed; +} + +//===----------------------------------------------------------------------===// +// MPPassManager implementation + +/// Execute all of the passes scheduled for execution by invoking +/// runOnModule method. Keep track of whether any of the passes modifies +/// the module, and if so, return true. +bool +MPPassManager::runOnModule(Module &M) { + bool Changed = false; + + // Initialize on-the-fly passes + for (std::map<Pass *, FunctionPassManagerImpl *>::iterator + I = OnTheFlyManagers.begin(), E = OnTheFlyManagers.end(); + I != E; ++I) { + FunctionPassManagerImpl *FPP = I->second; + Changed |= FPP->doInitialization(M); + } + + for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { + ModulePass *MP = getContainedPass(Index); + bool LocalChanged = false; + + dumpPassInfo(MP, EXECUTION_MSG, ON_MODULE_MSG, M.getModuleIdentifier()); + dumpRequiredSet(MP); + + initializeAnalysisImpl(MP); + + { + PassManagerPrettyStackEntry X(MP, M); + TimeRegion PassTimer(getPassTimer(MP)); + + LocalChanged |= MP->runOnModule(M); + } + + Changed |= LocalChanged; + if (LocalChanged) + dumpPassInfo(MP, MODIFICATION_MSG, ON_MODULE_MSG, + M.getModuleIdentifier()); + dumpPreservedSet(MP); + + verifyPreservedAnalysis(MP); + removeNotPreservedAnalysis(MP); + recordAvailableAnalysis(MP); + removeDeadPasses(MP, M.getModuleIdentifier(), ON_MODULE_MSG); + } + + // Finalize on-the-fly passes + for (std::map<Pass *, FunctionPassManagerImpl *>::iterator + I = OnTheFlyManagers.begin(), E = OnTheFlyManagers.end(); + I != E; ++I) { + FunctionPassManagerImpl *FPP = I->second; + // We don't know when is the last time an on-the-fly pass is run, + // so we need to releaseMemory / finalize here + FPP->releaseMemoryOnTheFly(); + Changed |= FPP->doFinalization(M); + } + return Changed; +} + +/// Add RequiredPass into list of lower level passes required by pass P. +/// RequiredPass is run on the fly by Pass Manager when P requests it +/// through getAnalysis interface. +void MPPassManager::addLowerLevelRequiredPass(Pass *P, Pass *RequiredPass) { + assert(P->getPotentialPassManagerType() == PMT_ModulePassManager && + "Unable to handle Pass that requires lower level Analysis pass"); + assert((P->getPotentialPassManagerType() < + RequiredPass->getPotentialPassManagerType()) && + "Unable to handle Pass that requires lower level Analysis pass"); + + FunctionPassManagerImpl *FPP = OnTheFlyManagers[P]; + if (!FPP) { + FPP = new FunctionPassManagerImpl(0); + // FPP is the top level manager. + FPP->setTopLevelManager(FPP); + + OnTheFlyManagers[P] = FPP; + } + FPP->add(RequiredPass); + + // Register P as the last user of RequiredPass. + SmallVector<Pass *, 12> LU; + LU.push_back(RequiredPass); + FPP->setLastUser(LU, P); +} + +/// Return function pass corresponding to PassInfo PI, that is +/// required by module pass MP. Instantiate analysis pass, by using +/// its runOnFunction() for function F. +Pass* MPPassManager::getOnTheFlyPass(Pass *MP, AnalysisID PI, Function &F){ + FunctionPassManagerImpl *FPP = OnTheFlyManagers[MP]; + assert(FPP && "Unable to find on the fly pass"); + + FPP->releaseMemoryOnTheFly(); + FPP->run(F); + return ((PMTopLevelManager*)FPP)->findAnalysisPass(PI); +} + + +//===----------------------------------------------------------------------===// +// PassManagerImpl implementation +// +/// run - Execute all of the passes scheduled for execution. Keep track of +/// whether any of the passes modifies the module, and if so, return true. +bool PassManagerImpl::run(Module &M) { + bool Changed = false; + TimingInfo::createTheTimeInfo(); + + dumpArguments(); + dumpPasses(); + + initializeAllAnalysisInfo(); + for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index) + Changed |= getContainedManager(Index)->runOnModule(M); + return Changed; +} + +//===----------------------------------------------------------------------===// +// PassManager implementation + +/// Create new pass manager +PassManager::PassManager() { + PM = new PassManagerImpl(0); + // PM is the top level manager + PM->setTopLevelManager(PM); +} + +PassManager::~PassManager() { + delete PM; +} + +/// addImpl - Add a pass to the queue of passes to run, without +/// checking whether to add a printer pass. +void PassManager::addImpl(Pass *P) { + PM->add(P); +} + +/// add - Add a pass to the queue of passes to run. This passes ownership of +/// the Pass to the PassManager. When the PassManager is destroyed, the pass +/// will be destroyed as well, so there is no need to delete the pass. This +/// implies that all passes MUST be allocated with 'new'. +void PassManager::add(Pass *P) { + const void* PassID = P->getPassID(); + if (ShouldPrintBeforePass(PassID)) + addImpl(P->createPrinterPass(dbgs(), std::string("*** IR Dump Before ") + + P->getPassName() + " ***")); + + addImpl(P); + + if (ShouldPrintAfterPass(PassID)) + addImpl(P->createPrinterPass(dbgs(), std::string("*** IR Dump After ") + + P->getPassName() + " ***")); +} + +/// run - Execute all of the passes scheduled for execution. Keep track of +/// whether any of the passes modifies the module, and if so, return true. +bool PassManager::run(Module &M) { + return PM->run(M); +} + +//===----------------------------------------------------------------------===// +// TimingInfo Class - This class is used to calculate information about the +// amount of time each pass takes to execute. This only happens with +// -time-passes is enabled on the command line. +// +bool llvm::TimePassesIsEnabled = false; +static cl::opt<bool,true> +EnableTiming("time-passes", cl::location(TimePassesIsEnabled), + cl::desc("Time each pass, printing elapsed time for each on exit")); + +// createTheTimeInfo - This method either initializes the TheTimeInfo pointer to +// a non null value (if the -time-passes option is enabled) or it leaves it +// null. It may be called multiple times. +void TimingInfo::createTheTimeInfo() { + if (!TimePassesIsEnabled || TheTimeInfo) return; + + // Constructed the first time this is called, iff -time-passes is enabled. + // This guarantees that the object will be constructed before static globals, + // thus it will be destroyed before them. + static ManagedStatic<TimingInfo> TTI; + TheTimeInfo = &*TTI; +} + +/// If TimingInfo is enabled then start pass timer. +Timer *llvm::getPassTimer(Pass *P) { + if (TheTimeInfo) + return TheTimeInfo->getPassTimer(P); + return 0; +} + +//===----------------------------------------------------------------------===// +// PMStack implementation +// + +// Pop Pass Manager from the stack and clear its analysis info. +void PMStack::pop() { + + PMDataManager *Top = this->top(); + Top->initializeAnalysisInfo(); + + S.pop_back(); +} + +// Push PM on the stack and set its top level manager. +void PMStack::push(PMDataManager *PM) { + assert(PM && "Unable to push. Pass Manager expected"); + + if (!this->empty()) { + PMTopLevelManager *TPM = this->top()->getTopLevelManager(); + + assert(TPM && "Unable to find top level manager"); + TPM->addIndirectPassManager(PM); + PM->setTopLevelManager(TPM); + } + + S.push_back(PM); +} + +// Dump content of the pass manager stack. +void PMStack::dump() const { + for (std::vector<PMDataManager *>::const_iterator I = S.begin(), + E = S.end(); I != E; ++I) + printf("%s ", (*I)->getAsPass()->getPassName()); + + if (!S.empty()) + printf("\n"); +} + +/// Find appropriate Module Pass Manager in the PM Stack and +/// add self into that manager. +void ModulePass::assignPassManager(PMStack &PMS, + PassManagerType PreferredType) { + // Find Module Pass Manager + while (!PMS.empty()) { + PassManagerType TopPMType = PMS.top()->getPassManagerType(); + if (TopPMType == PreferredType) + break; // We found desired pass manager + else if (TopPMType > PMT_ModulePassManager) + PMS.pop(); // Pop children pass managers + else + break; + } + assert(!PMS.empty() && "Unable to find appropriate Pass Manager"); + PMS.top()->add(this); +} + +/// Find appropriate Function Pass Manager or Call Graph Pass Manager +/// in the PM Stack and add self into that manager. +void FunctionPass::assignPassManager(PMStack &PMS, + PassManagerType PreferredType) { + + // Find Module Pass Manager + while (!PMS.empty()) { + if (PMS.top()->getPassManagerType() > PMT_FunctionPassManager) + PMS.pop(); + else + break; + } + + // Create new Function Pass Manager if needed. + FPPassManager *FPP; + if (PMS.top()->getPassManagerType() == PMT_FunctionPassManager) { + FPP = (FPPassManager *)PMS.top(); + } else { + assert(!PMS.empty() && "Unable to create Function Pass Manager"); + PMDataManager *PMD = PMS.top(); + + // [1] Create new Function Pass Manager + FPP = new FPPassManager(PMD->getDepth() + 1); + FPP->populateInheritedAnalysis(PMS); + + // [2] Set up new manager's top level manager + PMTopLevelManager *TPM = PMD->getTopLevelManager(); + TPM->addIndirectPassManager(FPP); + + // [3] Assign manager to manage this new manager. This may create + // and push new managers into PMS + FPP->assignPassManager(PMS, PMD->getPassManagerType()); + + // [4] Push new manager into PMS + PMS.push(FPP); + } + + // Assign FPP as the manager of this pass. + FPP->add(this); +} + +/// Find appropriate Basic Pass Manager or Call Graph Pass Manager +/// in the PM Stack and add self into that manager. +void BasicBlockPass::assignPassManager(PMStack &PMS, + PassManagerType PreferredType) { + BBPassManager *BBP; + + // Basic Pass Manager is a leaf pass manager. It does not handle + // any other pass manager. + if (!PMS.empty() && + PMS.top()->getPassManagerType() == PMT_BasicBlockPassManager) { + BBP = (BBPassManager *)PMS.top(); + } else { + // If leaf manager is not Basic Block Pass manager then create new + // basic Block Pass manager. + assert(!PMS.empty() && "Unable to create BasicBlock Pass Manager"); + PMDataManager *PMD = PMS.top(); + + // [1] Create new Basic Block Manager + BBP = new BBPassManager(PMD->getDepth() + 1); + + // [2] Set up new manager's top level manager + // Basic Block Pass Manager does not live by itself + PMTopLevelManager *TPM = PMD->getTopLevelManager(); + TPM->addIndirectPassManager(BBP); + + // [3] Assign manager to manage this new manager. This may create + // and push new managers into PMS + BBP->assignPassManager(PMS, PreferredType); + + // [4] Push new manager into PMS + PMS.push(BBP); + } + + // Assign BBP as the manager of this pass. + BBP->add(this); +} + +PassManagerBase::~PassManagerBase() {} diff --git a/contrib/llvm/lib/VMCore/PassRegistry.cpp b/contrib/llvm/lib/VMCore/PassRegistry.cpp new file mode 100644 index 0000000..21dba56 --- /dev/null +++ b/contrib/llvm/lib/VMCore/PassRegistry.cpp @@ -0,0 +1,159 @@ +//===- PassRegistry.cpp - Pass Registration Implementation ----------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the PassRegistry, with which passes are registered on +// initialization, and supports the PassManager in dependency resolution. +// +//===----------------------------------------------------------------------===// + +#include "llvm/PassRegistry.h" +#include "llvm/PassSupport.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/ManagedStatic.h" + +using namespace llvm; + +static PassRegistry *PassRegistryObj = 0; +PassRegistry *PassRegistry::getPassRegistry() { + // Use double-checked locking to safely initialize the registrar when + // we're running in multithreaded mode. + PassRegistry* tmp = PassRegistryObj; + if (llvm_is_multithreaded()) { + sys::MemoryFence(); + if (!tmp) { + llvm_acquire_global_lock(); + tmp = PassRegistryObj; + if (!tmp) { + tmp = new PassRegistry(); + sys::MemoryFence(); + PassRegistryObj = tmp; + } + llvm_release_global_lock(); + } + } else if (!tmp) { + PassRegistryObj = new PassRegistry(); + } + + return PassRegistryObj; +} + +namespace { + +// FIXME: We use ManagedCleanup to erase the pass registrar on shutdown. +// Unfortunately, passes are registered with static ctors, and having +// llvm_shutdown clear this map prevents successful ressurection after +// llvm_shutdown is run. Ideally we should find a solution so that we don't +// leak the map, AND can still resurrect after shutdown. +void cleanupPassRegistry(void*) { + if (PassRegistryObj) { + delete PassRegistryObj; + PassRegistryObj = 0; + } +} +ManagedCleanup<&cleanupPassRegistry> registryCleanup ATTRIBUTE_USED; + +} + +const PassInfo *PassRegistry::getPassInfo(const void *TI) const { + sys::SmartScopedLock<true> Guard(Lock); + MapType::const_iterator I = PassInfoMap.find(TI); + return I != PassInfoMap.end() ? I->second : 0; +} + +const PassInfo *PassRegistry::getPassInfo(StringRef Arg) const { + sys::SmartScopedLock<true> Guard(Lock); + StringMapType::const_iterator I = PassInfoStringMap.find(Arg); + return I != PassInfoStringMap.end() ? I->second : 0; +} + +//===----------------------------------------------------------------------===// +// Pass Registration mechanism +// + +void PassRegistry::registerPass(const PassInfo &PI) { + sys::SmartScopedLock<true> Guard(Lock); + bool Inserted = + PassInfoMap.insert(std::make_pair(PI.getTypeInfo(),&PI)).second; + assert(Inserted && "Pass registered multiple times!"); Inserted=Inserted; + PassInfoStringMap[PI.getPassArgument()] = &PI; + + // Notify any listeners. + for (std::vector<PassRegistrationListener*>::iterator + I = Listeners.begin(), E = Listeners.end(); I != E; ++I) + (*I)->passRegistered(&PI); +} + +void PassRegistry::unregisterPass(const PassInfo &PI) { + sys::SmartScopedLock<true> Guard(Lock); + MapType::iterator I = PassInfoMap.find(PI.getTypeInfo()); + assert(I != PassInfoMap.end() && "Pass registered but not in map!"); + + // Remove pass from the map. + PassInfoMap.erase(I); + PassInfoStringMap.erase(PI.getPassArgument()); +} + +void PassRegistry::enumerateWith(PassRegistrationListener *L) { + sys::SmartScopedLock<true> Guard(Lock); + for (MapType::const_iterator I = PassInfoMap.begin(), + E = PassInfoMap.end(); I != E; ++I) + L->passEnumerate(I->second); +} + + +/// Analysis Group Mechanisms. +void PassRegistry::registerAnalysisGroup(const void *InterfaceID, + const void *PassID, + PassInfo& Registeree, + bool isDefault) { + PassInfo *InterfaceInfo = const_cast<PassInfo*>(getPassInfo(InterfaceID)); + if (InterfaceInfo == 0) { + // First reference to Interface, register it now. + registerPass(Registeree); + InterfaceInfo = &Registeree; + } + assert(Registeree.isAnalysisGroup() && + "Trying to join an analysis group that is a normal pass!"); + + if (PassID) { + PassInfo *ImplementationInfo = const_cast<PassInfo*>(getPassInfo(PassID)); + assert(ImplementationInfo && + "Must register pass before adding to AnalysisGroup!"); + + // Make sure we keep track of the fact that the implementation implements + // the interface. + ImplementationInfo->addInterfaceImplemented(InterfaceInfo); + + sys::SmartScopedLock<true> Guard(Lock); + AnalysisGroupInfo &AGI = AnalysisGroupInfoMap[InterfaceInfo]; + assert(AGI.Implementations.count(ImplementationInfo) == 0 && + "Cannot add a pass to the same analysis group more than once!"); + AGI.Implementations.insert(ImplementationInfo); + if (isDefault) { + assert(InterfaceInfo->getNormalCtor() == 0 && + "Default implementation for analysis group already specified!"); + assert(ImplementationInfo->getNormalCtor() && + "Cannot specify pass as default if it does not have a default ctor"); + InterfaceInfo->setNormalCtor(ImplementationInfo->getNormalCtor()); + } + } +} + +void PassRegistry::addRegistrationListener(PassRegistrationListener *L) { + sys::SmartScopedLock<true> Guard(Lock); + Listeners.push_back(L); +} + +void PassRegistry::removeRegistrationListener(PassRegistrationListener *L) { + sys::SmartScopedLock<true> Guard(Lock); + std::vector<PassRegistrationListener*>::iterator I = + std::find(Listeners.begin(), Listeners.end(), L); + assert(I != Listeners.end() && "PassRegistrationListener not registered!"); + Listeners.erase(I); +} diff --git a/contrib/llvm/lib/VMCore/PrintModulePass.cpp b/contrib/llvm/lib/VMCore/PrintModulePass.cpp new file mode 100644 index 0000000..2ee49d2 --- /dev/null +++ b/contrib/llvm/lib/VMCore/PrintModulePass.cpp @@ -0,0 +1,101 @@ +//===--- VMCore/PrintModulePass.cpp - Module/Function Printer -------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// PrintModulePass and PrintFunctionPass implementations. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Assembly/PrintModulePass.h" + +#include "llvm/Function.h" +#include "llvm/Module.h" +#include "llvm/Pass.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +using namespace llvm; + +namespace { + + class PrintModulePass : public ModulePass { + std::string Banner; + raw_ostream *Out; // raw_ostream to print on + bool DeleteStream; // Delete the ostream in our dtor? + public: + static char ID; + PrintModulePass() : ModulePass(ID), Out(&dbgs()), + DeleteStream(false) {} + PrintModulePass(const std::string &B, raw_ostream *o, bool DS) + : ModulePass(ID), Banner(B), Out(o), DeleteStream(DS) {} + + ~PrintModulePass() { + if (DeleteStream) delete Out; + } + + bool runOnModule(Module &M) { + (*Out) << Banner << M; + return false; + } + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesAll(); + } + }; + + class PrintFunctionPass : public FunctionPass { + std::string Banner; // String to print before each function + raw_ostream *Out; // raw_ostream to print on + bool DeleteStream; // Delete the ostream in our dtor? + public: + static char ID; + PrintFunctionPass() : FunctionPass(ID), Banner(""), Out(&dbgs()), + DeleteStream(false) {} + PrintFunctionPass(const std::string &B, raw_ostream *o, bool DS) + : FunctionPass(ID), Banner(B), Out(o), DeleteStream(DS) {} + + ~PrintFunctionPass() { + if (DeleteStream) delete Out; + } + + // runOnFunction - This pass just prints a banner followed by the + // function as it's processed. + // + bool runOnFunction(Function &F) { + (*Out) << Banner << static_cast<Value&>(F); + return false; + } + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesAll(); + } + }; +} + +char PrintModulePass::ID = 0; +INITIALIZE_PASS(PrintModulePass, "print-module", + "Print module to stderr", false, false); +char PrintFunctionPass::ID = 0; +INITIALIZE_PASS(PrintFunctionPass, "print-function", + "Print function to stderr", false, false); + +/// createPrintModulePass - Create and return a pass that writes the +/// module to the specified raw_ostream. +ModulePass *llvm::createPrintModulePass(llvm::raw_ostream *OS, + bool DeleteStream, + const std::string &Banner) { + return new PrintModulePass(Banner, OS, DeleteStream); +} + +/// createPrintFunctionPass - Create and return a pass that prints +/// functions to the specified raw_ostream as they are processed. +FunctionPass *llvm::createPrintFunctionPass(const std::string &Banner, + llvm::raw_ostream *OS, + bool DeleteStream) { + return new PrintFunctionPass(Banner, OS, DeleteStream); +} + diff --git a/contrib/llvm/lib/VMCore/SymbolTableListTraitsImpl.h b/contrib/llvm/lib/VMCore/SymbolTableListTraitsImpl.h new file mode 100644 index 0000000..72687bb --- /dev/null +++ b/contrib/llvm/lib/VMCore/SymbolTableListTraitsImpl.h @@ -0,0 +1,118 @@ +//===-- llvm/SymbolTableListTraitsImpl.h - Implementation ------*- C++ -*--===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the stickier parts of the SymbolTableListTraits class, +// and is explicitly instantiated where needed to avoid defining all this code +// in a widely used header. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_SYMBOLTABLELISTTRAITS_IMPL_H +#define LLVM_SYMBOLTABLELISTTRAITS_IMPL_H + +#include "llvm/SymbolTableListTraits.h" +#include "llvm/ValueSymbolTable.h" + +namespace llvm { + +/// setSymTabObject - This is called when (f.e.) the parent of a basic block +/// changes. This requires us to remove all the instruction symtab entries from +/// the current function and reinsert them into the new function. +template<typename ValueSubClass, typename ItemParentClass> +template<typename TPtr> +void SymbolTableListTraits<ValueSubClass,ItemParentClass> +::setSymTabObject(TPtr *Dest, TPtr Src) { + // Get the old symtab and value list before doing the assignment. + ValueSymbolTable *OldST = TraitsClass::getSymTab(getListOwner()); + + // Do it. + *Dest = Src; + + // Get the new SymTab object. + ValueSymbolTable *NewST = TraitsClass::getSymTab(getListOwner()); + + // If there is nothing to do, quick exit. + if (OldST == NewST) return; + + // Move all the elements from the old symtab to the new one. + iplist<ValueSubClass> &ItemList = TraitsClass::getList(getListOwner()); + if (ItemList.empty()) return; + + if (OldST) { + // Remove all entries from the previous symtab. + for (typename iplist<ValueSubClass>::iterator I = ItemList.begin(); + I != ItemList.end(); ++I) + if (I->hasName()) + OldST->removeValueName(I->getValueName()); + } + + if (NewST) { + // Add all of the items to the new symtab. + for (typename iplist<ValueSubClass>::iterator I = ItemList.begin(); + I != ItemList.end(); ++I) + if (I->hasName()) + NewST->reinsertValue(I); + } + +} + +template<typename ValueSubClass, typename ItemParentClass> +void SymbolTableListTraits<ValueSubClass,ItemParentClass> +::addNodeToList(ValueSubClass *V) { + assert(V->getParent() == 0 && "Value already in a container!!"); + ItemParentClass *Owner = getListOwner(); + V->setParent(Owner); + if (V->hasName()) + if (ValueSymbolTable *ST = TraitsClass::getSymTab(Owner)) + ST->reinsertValue(V); +} + +template<typename ValueSubClass, typename ItemParentClass> +void SymbolTableListTraits<ValueSubClass,ItemParentClass> +::removeNodeFromList(ValueSubClass *V) { + V->setParent(0); + if (V->hasName()) + if (ValueSymbolTable *ST = TraitsClass::getSymTab(getListOwner())) + ST->removeValueName(V->getValueName()); +} + +template<typename ValueSubClass, typename ItemParentClass> +void SymbolTableListTraits<ValueSubClass,ItemParentClass> +::transferNodesFromList(ilist_traits<ValueSubClass> &L2, + ilist_iterator<ValueSubClass> first, + ilist_iterator<ValueSubClass> last) { + // We only have to do work here if transferring instructions between BBs + ItemParentClass *NewIP = getListOwner(), *OldIP = L2.getListOwner(); + if (NewIP == OldIP) return; // No work to do at all... + + // We only have to update symbol table entries if we are transferring the + // instructions to a different symtab object... + ValueSymbolTable *NewST = TraitsClass::getSymTab(NewIP); + ValueSymbolTable *OldST = TraitsClass::getSymTab(OldIP); + if (NewST != OldST) { + for (; first != last; ++first) { + ValueSubClass &V = *first; + bool HasName = V.hasName(); + if (OldST && HasName) + OldST->removeValueName(V.getValueName()); + V.setParent(NewIP); + if (NewST && HasName) + NewST->reinsertValue(&V); + } + } else { + // Just transferring between blocks in the same function, simply update the + // parent fields in the instructions... + for (; first != last; ++first) + first->setParent(NewIP); + } +} + +} // End llvm namespace + +#endif diff --git a/contrib/llvm/lib/VMCore/Type.cpp b/contrib/llvm/lib/VMCore/Type.cpp new file mode 100644 index 0000000..c55e626 --- /dev/null +++ b/contrib/llvm/lib/VMCore/Type.cpp @@ -0,0 +1,1210 @@ +//===-- Type.cpp - Implement the Type class -------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the Type class for the VMCore library. +// +//===----------------------------------------------------------------------===// + +#include "LLVMContextImpl.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Constants.h" +#include "llvm/Assembly/Writer.h" +#include "llvm/LLVMContext.h" +#include "llvm/Metadata.h" +#include "llvm/ADT/DepthFirstIterator.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/SCCIterator.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/ManagedStatic.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/System/Threading.h" +#include <algorithm> +#include <cstdarg> +using namespace llvm; + +// DEBUG_MERGE_TYPES - Enable this #define to see how and when derived types are +// created and later destroyed, all in an effort to make sure that there is only +// a single canonical version of a type. +// +// #define DEBUG_MERGE_TYPES 1 + +AbstractTypeUser::~AbstractTypeUser() {} + +void AbstractTypeUser::setType(Value *V, const Type *NewTy) { + V->VTy = NewTy; +} + +//===----------------------------------------------------------------------===// +// Type Class Implementation +//===----------------------------------------------------------------------===// + +/// Because of the way Type subclasses are allocated, this function is necessary +/// to use the correct kind of "delete" operator to deallocate the Type object. +/// Some type objects (FunctionTy, StructTy) allocate additional space +/// after the space for their derived type to hold the contained types array of +/// PATypeHandles. Using this allocation scheme means all the PATypeHandles are +/// allocated with the type object, decreasing allocations and eliminating the +/// need for a std::vector to be used in the Type class itself. +/// @brief Type destruction function +void Type::destroy() const { + // Nothing calls getForwardedType from here on. + if (ForwardType && ForwardType->isAbstract()) { + ForwardType->dropRef(); + ForwardType = NULL; + } + + // Structures and Functions allocate their contained types past the end of + // the type object itself. These need to be destroyed differently than the + // other types. + if (this->isFunctionTy() || this->isStructTy()) { + // First, make sure we destruct any PATypeHandles allocated by these + // subclasses. They must be manually destructed. + for (unsigned i = 0; i < NumContainedTys; ++i) + ContainedTys[i].PATypeHandle::~PATypeHandle(); + + // Now call the destructor for the subclass directly because we're going + // to delete this as an array of char. + if (this->isFunctionTy()) + static_cast<const FunctionType*>(this)->FunctionType::~FunctionType(); + else { + assert(isStructTy()); + static_cast<const StructType*>(this)->StructType::~StructType(); + } + + // Finally, remove the memory as an array deallocation of the chars it was + // constructed from. + operator delete(const_cast<Type *>(this)); + + return; + } else if (const OpaqueType *opaque_this = dyn_cast<OpaqueType>(this)) { + LLVMContextImpl *pImpl = this->getContext().pImpl; + pImpl->OpaqueTypes.erase(opaque_this); + } + + // For all the other type subclasses, there is either no contained types or + // just one (all Sequentials). For Sequentials, the PATypeHandle is not + // allocated past the type object, its included directly in the SequentialType + // class. This means we can safely just do "normal" delete of this object and + // all the destructors that need to run will be run. + delete this; +} + +const Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) { + switch (IDNumber) { + case VoidTyID : return getVoidTy(C); + case FloatTyID : return getFloatTy(C); + case DoubleTyID : return getDoubleTy(C); + case X86_FP80TyID : return getX86_FP80Ty(C); + case FP128TyID : return getFP128Ty(C); + case PPC_FP128TyID : return getPPC_FP128Ty(C); + case LabelTyID : return getLabelTy(C); + case MetadataTyID : return getMetadataTy(C); + default: + return 0; + } +} + +const Type *Type::getVAArgsPromotedType(LLVMContext &C) const { + if (ID == IntegerTyID && getSubclassData() < 32) + return Type::getInt32Ty(C); + else if (ID == FloatTyID) + return Type::getDoubleTy(C); + else + return this; +} + +/// getScalarType - If this is a vector type, return the element type, +/// otherwise return this. +const Type *Type::getScalarType() const { + if (const VectorType *VTy = dyn_cast<VectorType>(this)) + return VTy->getElementType(); + return this; +} + +/// isIntegerTy - Return true if this is an IntegerType of the specified width. +bool Type::isIntegerTy(unsigned Bitwidth) const { + return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth; +} + +/// isIntOrIntVectorTy - Return true if this is an integer type or a vector of +/// integer types. +/// +bool Type::isIntOrIntVectorTy() const { + if (isIntegerTy()) + return true; + if (ID != Type::VectorTyID) return false; + + return cast<VectorType>(this)->getElementType()->isIntegerTy(); +} + +/// isFPOrFPVectorTy - Return true if this is a FP type or a vector of FP types. +/// +bool Type::isFPOrFPVectorTy() const { + if (ID == Type::FloatTyID || ID == Type::DoubleTyID || + ID == Type::FP128TyID || ID == Type::X86_FP80TyID || + ID == Type::PPC_FP128TyID) + return true; + if (ID != Type::VectorTyID) return false; + + return cast<VectorType>(this)->getElementType()->isFloatingPointTy(); +} + +// canLosslesslyBitCastTo - Return true if this type can be converted to +// 'Ty' without any reinterpretation of bits. For example, i8* to i32*. +// +bool Type::canLosslesslyBitCastTo(const Type *Ty) const { + // Identity cast means no change so return true + if (this == Ty) + return true; + + // They are not convertible unless they are at least first class types + if (!this->isFirstClassType() || !Ty->isFirstClassType()) + return false; + + // Vector -> Vector conversions are always lossless if the two vector types + // have the same size, otherwise not. + if (const VectorType *thisPTy = dyn_cast<VectorType>(this)) + if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty)) + return thisPTy->getBitWidth() == thatPTy->getBitWidth(); + + // At this point we have only various mismatches of the first class types + // remaining and ptr->ptr. Just select the lossless conversions. Everything + // else is not lossless. + if (this->isPointerTy()) + return Ty->isPointerTy(); + return false; // Other types have no identity values +} + +unsigned Type::getPrimitiveSizeInBits() const { + switch (getTypeID()) { + case Type::FloatTyID: return 32; + case Type::DoubleTyID: return 64; + case Type::X86_FP80TyID: return 80; + case Type::FP128TyID: return 128; + case Type::PPC_FP128TyID: return 128; + case Type::IntegerTyID: return cast<IntegerType>(this)->getBitWidth(); + case Type::VectorTyID: return cast<VectorType>(this)->getBitWidth(); + default: return 0; + } +} + +/// getScalarSizeInBits - If this is a vector type, return the +/// getPrimitiveSizeInBits value for the element type. Otherwise return the +/// getPrimitiveSizeInBits value for this type. +unsigned Type::getScalarSizeInBits() const { + return getScalarType()->getPrimitiveSizeInBits(); +} + +/// getFPMantissaWidth - Return the width of the mantissa of this type. This +/// is only valid on floating point types. If the FP type does not +/// have a stable mantissa (e.g. ppc long double), this method returns -1. +int Type::getFPMantissaWidth() const { + if (const VectorType *VTy = dyn_cast<VectorType>(this)) + return VTy->getElementType()->getFPMantissaWidth(); + assert(isFloatingPointTy() && "Not a floating point type!"); + if (ID == FloatTyID) return 24; + if (ID == DoubleTyID) return 53; + if (ID == X86_FP80TyID) return 64; + if (ID == FP128TyID) return 113; + assert(ID == PPC_FP128TyID && "unknown fp type"); + return -1; +} + +/// isSizedDerivedType - Derived types like structures and arrays are sized +/// iff all of the members of the type are sized as well. Since asking for +/// their size is relatively uncommon, move this operation out of line. +bool Type::isSizedDerivedType() const { + if (this->isIntegerTy()) + return true; + + if (const ArrayType *ATy = dyn_cast<ArrayType>(this)) + return ATy->getElementType()->isSized(); + + if (const VectorType *PTy = dyn_cast<VectorType>(this)) + return PTy->getElementType()->isSized(); + + if (!this->isStructTy()) + return false; + + // Okay, our struct is sized if all of the elements are... + for (subtype_iterator I = subtype_begin(), E = subtype_end(); I != E; ++I) + if (!(*I)->isSized()) + return false; + + return true; +} + +/// getForwardedTypeInternal - This method is used to implement the union-find +/// algorithm for when a type is being forwarded to another type. +const Type *Type::getForwardedTypeInternal() const { + assert(ForwardType && "This type is not being forwarded to another type!"); + + // Check to see if the forwarded type has been forwarded on. If so, collapse + // the forwarding links. + const Type *RealForwardedType = ForwardType->getForwardedType(); + if (!RealForwardedType) + return ForwardType; // No it's not forwarded again + + // Yes, it is forwarded again. First thing, add the reference to the new + // forward type. + if (RealForwardedType->isAbstract()) + RealForwardedType->addRef(); + + // Now drop the old reference. This could cause ForwardType to get deleted. + // ForwardType must be abstract because only abstract types can have their own + // ForwardTypes. + ForwardType->dropRef(); + + // Return the updated type. + ForwardType = RealForwardedType; + return ForwardType; +} + +void Type::refineAbstractType(const DerivedType *OldTy, const Type *NewTy) { + llvm_unreachable("Attempting to refine a derived type!"); +} +void Type::typeBecameConcrete(const DerivedType *AbsTy) { + llvm_unreachable("DerivedType is already a concrete type!"); +} + + +std::string Type::getDescription() const { + LLVMContextImpl *pImpl = getContext().pImpl; + TypePrinting &Map = + isAbstract() ? + pImpl->AbstractTypeDescriptions : + pImpl->ConcreteTypeDescriptions; + + std::string DescStr; + raw_string_ostream DescOS(DescStr); + Map.print(this, DescOS); + return DescOS.str(); +} + + +bool StructType::indexValid(const Value *V) const { + // Structure indexes require 32-bit integer constants. + if (V->getType()->isIntegerTy(32)) + if (const ConstantInt *CU = dyn_cast<ConstantInt>(V)) + return indexValid(CU->getZExtValue()); + return false; +} + +bool StructType::indexValid(unsigned V) const { + return V < NumContainedTys; +} + +// getTypeAtIndex - Given an index value into the type, return the type of the +// element. For a structure type, this must be a constant value... +// +const Type *StructType::getTypeAtIndex(const Value *V) const { + unsigned Idx = (unsigned)cast<ConstantInt>(V)->getZExtValue(); + return getTypeAtIndex(Idx); +} + +const Type *StructType::getTypeAtIndex(unsigned Idx) const { + assert(indexValid(Idx) && "Invalid structure index!"); + return ContainedTys[Idx]; +} + + +//===----------------------------------------------------------------------===// +// Primitive 'Type' data +//===----------------------------------------------------------------------===// + +const Type *Type::getVoidTy(LLVMContext &C) { + return &C.pImpl->VoidTy; +} + +const Type *Type::getLabelTy(LLVMContext &C) { + return &C.pImpl->LabelTy; +} + +const Type *Type::getFloatTy(LLVMContext &C) { + return &C.pImpl->FloatTy; +} + +const Type *Type::getDoubleTy(LLVMContext &C) { + return &C.pImpl->DoubleTy; +} + +const Type *Type::getMetadataTy(LLVMContext &C) { + return &C.pImpl->MetadataTy; +} + +const Type *Type::getX86_FP80Ty(LLVMContext &C) { + return &C.pImpl->X86_FP80Ty; +} + +const Type *Type::getFP128Ty(LLVMContext &C) { + return &C.pImpl->FP128Ty; +} + +const Type *Type::getPPC_FP128Ty(LLVMContext &C) { + return &C.pImpl->PPC_FP128Ty; +} + +const IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) { + return IntegerType::get(C, N); +} + +const IntegerType *Type::getInt1Ty(LLVMContext &C) { + return &C.pImpl->Int1Ty; +} + +const IntegerType *Type::getInt8Ty(LLVMContext &C) { + return &C.pImpl->Int8Ty; +} + +const IntegerType *Type::getInt16Ty(LLVMContext &C) { + return &C.pImpl->Int16Ty; +} + +const IntegerType *Type::getInt32Ty(LLVMContext &C) { + return &C.pImpl->Int32Ty; +} + +const IntegerType *Type::getInt64Ty(LLVMContext &C) { + return &C.pImpl->Int64Ty; +} + +const PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) { + return getFloatTy(C)->getPointerTo(AS); +} + +const PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) { + return getDoubleTy(C)->getPointerTo(AS); +} + +const PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) { + return getX86_FP80Ty(C)->getPointerTo(AS); +} + +const PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) { + return getFP128Ty(C)->getPointerTo(AS); +} + +const PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) { + return getPPC_FP128Ty(C)->getPointerTo(AS); +} + +const PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) { + return getIntNTy(C, N)->getPointerTo(AS); +} + +const PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) { + return getInt1Ty(C)->getPointerTo(AS); +} + +const PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) { + return getInt8Ty(C)->getPointerTo(AS); +} + +const PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) { + return getInt16Ty(C)->getPointerTo(AS); +} + +const PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) { + return getInt32Ty(C)->getPointerTo(AS); +} + +const PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) { + return getInt64Ty(C)->getPointerTo(AS); +} + +//===----------------------------------------------------------------------===// +// Derived Type Constructors +//===----------------------------------------------------------------------===// + +/// isValidReturnType - Return true if the specified type is valid as a return +/// type. +bool FunctionType::isValidReturnType(const Type *RetTy) { + return !RetTy->isFunctionTy() && !RetTy->isLabelTy() && + !RetTy->isMetadataTy(); +} + +/// isValidArgumentType - Return true if the specified type is valid as an +/// argument type. +bool FunctionType::isValidArgumentType(const Type *ArgTy) { + return ArgTy->isFirstClassType() || ArgTy->isOpaqueTy(); +} + +FunctionType::FunctionType(const Type *Result, + const std::vector<const Type*> &Params, + bool IsVarArgs) + : DerivedType(Result->getContext(), FunctionTyID), isVarArgs(IsVarArgs) { + ContainedTys = reinterpret_cast<PATypeHandle*>(this+1); + NumContainedTys = Params.size() + 1; // + 1 for result type + assert(isValidReturnType(Result) && "invalid return type for function"); + + + bool isAbstract = Result->isAbstract(); + new (&ContainedTys[0]) PATypeHandle(Result, this); + + for (unsigned i = 0; i != Params.size(); ++i) { + assert(isValidArgumentType(Params[i]) && + "Not a valid type for function argument!"); + new (&ContainedTys[i+1]) PATypeHandle(Params[i], this); + isAbstract |= Params[i]->isAbstract(); + } + + // Calculate whether or not this type is abstract + setAbstract(isAbstract); +} + +StructType::StructType(LLVMContext &C, + const std::vector<const Type*> &Types, bool isPacked) + : CompositeType(C, StructTyID) { + ContainedTys = reinterpret_cast<PATypeHandle*>(this + 1); + NumContainedTys = Types.size(); + setSubclassData(isPacked); + bool isAbstract = false; + for (unsigned i = 0; i < Types.size(); ++i) { + assert(Types[i] && "<null> type for structure field!"); + assert(isValidElementType(Types[i]) && + "Invalid type for structure element!"); + new (&ContainedTys[i]) PATypeHandle(Types[i], this); + isAbstract |= Types[i]->isAbstract(); + } + + // Calculate whether or not this type is abstract + setAbstract(isAbstract); +} + +ArrayType::ArrayType(const Type *ElType, uint64_t NumEl) + : SequentialType(ArrayTyID, ElType) { + NumElements = NumEl; + + // Calculate whether or not this type is abstract + setAbstract(ElType->isAbstract()); +} + +VectorType::VectorType(const Type *ElType, unsigned NumEl) + : SequentialType(VectorTyID, ElType) { + NumElements = NumEl; + setAbstract(ElType->isAbstract()); + assert(NumEl > 0 && "NumEl of a VectorType must be greater than 0"); + assert(isValidElementType(ElType) && + "Elements of a VectorType must be a primitive type"); + +} + + +PointerType::PointerType(const Type *E, unsigned AddrSpace) + : SequentialType(PointerTyID, E) { + AddressSpace = AddrSpace; + // Calculate whether or not this type is abstract + setAbstract(E->isAbstract()); +} + +OpaqueType::OpaqueType(LLVMContext &C) : DerivedType(C, OpaqueTyID) { + setAbstract(true); +#ifdef DEBUG_MERGE_TYPES + DEBUG(dbgs() << "Derived new type: " << *this << "\n"); +#endif +} + +void PATypeHolder::destroy() { + Ty = 0; +} + +// dropAllTypeUses - When this (abstract) type is resolved to be equal to +// another (more concrete) type, we must eliminate all references to other +// types, to avoid some circular reference problems. +void DerivedType::dropAllTypeUses() { + if (NumContainedTys != 0) { + // The type must stay abstract. To do this, we insert a pointer to a type + // that will never get resolved, thus will always be abstract. + ContainedTys[0] = getContext().pImpl->AlwaysOpaqueTy; + + // Change the rest of the types to be Int32Ty's. It doesn't matter what we + // pick so long as it doesn't point back to this type. We choose something + // concrete to avoid overhead for adding to AbstractTypeUser lists and + // stuff. + const Type *ConcreteTy = Type::getInt32Ty(getContext()); + for (unsigned i = 1, e = NumContainedTys; i != e; ++i) + ContainedTys[i] = ConcreteTy; + } +} + + +namespace { + +/// TypePromotionGraph and graph traits - this is designed to allow us to do +/// efficient SCC processing of type graphs. This is the exact same as +/// GraphTraits<Type*>, except that we pretend that concrete types have no +/// children to avoid processing them. +struct TypePromotionGraph { + Type *Ty; + TypePromotionGraph(Type *T) : Ty(T) {} +}; + +} + +namespace llvm { + template <> struct GraphTraits<TypePromotionGraph> { + typedef Type NodeType; + typedef Type::subtype_iterator ChildIteratorType; + + static inline NodeType *getEntryNode(TypePromotionGraph G) { return G.Ty; } + static inline ChildIteratorType child_begin(NodeType *N) { + if (N->isAbstract()) + return N->subtype_begin(); + // No need to process children of concrete types. + return N->subtype_end(); + } + static inline ChildIteratorType child_end(NodeType *N) { + return N->subtype_end(); + } + }; +} + + +// PromoteAbstractToConcrete - This is a recursive function that walks a type +// graph calculating whether or not a type is abstract. +// +void Type::PromoteAbstractToConcrete() { + if (!isAbstract()) return; + + scc_iterator<TypePromotionGraph> SI = scc_begin(TypePromotionGraph(this)); + scc_iterator<TypePromotionGraph> SE = scc_end (TypePromotionGraph(this)); + + for (; SI != SE; ++SI) { + std::vector<Type*> &SCC = *SI; + + // Concrete types are leaves in the tree. Since an SCC will either be all + // abstract or all concrete, we only need to check one type. + if (!SCC[0]->isAbstract()) continue; + + if (SCC[0]->isOpaqueTy()) + return; // Not going to be concrete, sorry. + + // If all of the children of all of the types in this SCC are concrete, + // then this SCC is now concrete as well. If not, neither this SCC, nor + // any parent SCCs will be concrete, so we might as well just exit. + for (unsigned i = 0, e = SCC.size(); i != e; ++i) + for (Type::subtype_iterator CI = SCC[i]->subtype_begin(), + E = SCC[i]->subtype_end(); CI != E; ++CI) + if ((*CI)->isAbstract()) + // If the child type is in our SCC, it doesn't make the entire SCC + // abstract unless there is a non-SCC abstract type. + if (std::find(SCC.begin(), SCC.end(), *CI) == SCC.end()) + return; // Not going to be concrete, sorry. + + // Okay, we just discovered this whole SCC is now concrete, mark it as + // such! + for (unsigned i = 0, e = SCC.size(); i != e; ++i) { + assert(SCC[i]->isAbstract() && "Why are we processing concrete types?"); + + SCC[i]->setAbstract(false); + } + + for (unsigned i = 0, e = SCC.size(); i != e; ++i) { + assert(!SCC[i]->isAbstract() && "Concrete type became abstract?"); + // The type just became concrete, notify all users! + cast<DerivedType>(SCC[i])->notifyUsesThatTypeBecameConcrete(); + } + } +} + + +//===----------------------------------------------------------------------===// +// Type Structural Equality Testing +//===----------------------------------------------------------------------===// + +// TypesEqual - Two types are considered structurally equal if they have the +// same "shape": Every level and element of the types have identical primitive +// ID's, and the graphs have the same edges/nodes in them. Nodes do not have to +// be pointer equals to be equivalent though. This uses an optimistic algorithm +// that assumes that two graphs are the same until proven otherwise. +// +static bool TypesEqual(const Type *Ty, const Type *Ty2, + std::map<const Type *, const Type *> &EqTypes) { + if (Ty == Ty2) return true; + if (Ty->getTypeID() != Ty2->getTypeID()) return false; + if (Ty->isOpaqueTy()) + return false; // Two unequal opaque types are never equal + + std::map<const Type*, const Type*>::iterator It = EqTypes.find(Ty); + if (It != EqTypes.end()) + return It->second == Ty2; // Looping back on a type, check for equality + + // Otherwise, add the mapping to the table to make sure we don't get + // recursion on the types... + EqTypes.insert(It, std::make_pair(Ty, Ty2)); + + // Two really annoying special cases that breaks an otherwise nice simple + // algorithm is the fact that arraytypes have sizes that differentiates types, + // and that function types can be varargs or not. Consider this now. + // + if (const IntegerType *ITy = dyn_cast<IntegerType>(Ty)) { + const IntegerType *ITy2 = cast<IntegerType>(Ty2); + return ITy->getBitWidth() == ITy2->getBitWidth(); + } + + if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) { + const PointerType *PTy2 = cast<PointerType>(Ty2); + return PTy->getAddressSpace() == PTy2->getAddressSpace() && + TypesEqual(PTy->getElementType(), PTy2->getElementType(), EqTypes); + } + + if (const StructType *STy = dyn_cast<StructType>(Ty)) { + const StructType *STy2 = cast<StructType>(Ty2); + if (STy->getNumElements() != STy2->getNumElements()) return false; + if (STy->isPacked() != STy2->isPacked()) return false; + for (unsigned i = 0, e = STy2->getNumElements(); i != e; ++i) + if (!TypesEqual(STy->getElementType(i), STy2->getElementType(i), EqTypes)) + return false; + return true; + } + + if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { + const ArrayType *ATy2 = cast<ArrayType>(Ty2); + return ATy->getNumElements() == ATy2->getNumElements() && + TypesEqual(ATy->getElementType(), ATy2->getElementType(), EqTypes); + } + + if (const VectorType *PTy = dyn_cast<VectorType>(Ty)) { + const VectorType *PTy2 = cast<VectorType>(Ty2); + return PTy->getNumElements() == PTy2->getNumElements() && + TypesEqual(PTy->getElementType(), PTy2->getElementType(), EqTypes); + } + + if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) { + const FunctionType *FTy2 = cast<FunctionType>(Ty2); + if (FTy->isVarArg() != FTy2->isVarArg() || + FTy->getNumParams() != FTy2->getNumParams() || + !TypesEqual(FTy->getReturnType(), FTy2->getReturnType(), EqTypes)) + return false; + for (unsigned i = 0, e = FTy2->getNumParams(); i != e; ++i) { + if (!TypesEqual(FTy->getParamType(i), FTy2->getParamType(i), EqTypes)) + return false; + } + return true; + } + + llvm_unreachable("Unknown derived type!"); + return false; +} + +namespace llvm { // in namespace llvm so findable by ADL +static bool TypesEqual(const Type *Ty, const Type *Ty2) { + std::map<const Type *, const Type *> EqTypes; + return ::TypesEqual(Ty, Ty2, EqTypes); +} +} + +// AbstractTypeHasCycleThrough - Return true there is a path from CurTy to +// TargetTy in the type graph. We know that Ty is an abstract type, so if we +// ever reach a non-abstract type, we know that we don't need to search the +// subgraph. +static bool AbstractTypeHasCycleThrough(const Type *TargetTy, const Type *CurTy, + SmallPtrSet<const Type*, 128> &VisitedTypes) { + if (TargetTy == CurTy) return true; + if (!CurTy->isAbstract()) return false; + + if (!VisitedTypes.insert(CurTy)) + return false; // Already been here. + + for (Type::subtype_iterator I = CurTy->subtype_begin(), + E = CurTy->subtype_end(); I != E; ++I) + if (AbstractTypeHasCycleThrough(TargetTy, *I, VisitedTypes)) + return true; + return false; +} + +static bool ConcreteTypeHasCycleThrough(const Type *TargetTy, const Type *CurTy, + SmallPtrSet<const Type*, 128> &VisitedTypes) { + if (TargetTy == CurTy) return true; + + if (!VisitedTypes.insert(CurTy)) + return false; // Already been here. + + for (Type::subtype_iterator I = CurTy->subtype_begin(), + E = CurTy->subtype_end(); I != E; ++I) + if (ConcreteTypeHasCycleThrough(TargetTy, *I, VisitedTypes)) + return true; + return false; +} + +/// TypeHasCycleThroughItself - Return true if the specified type has +/// a cycle back to itself. + +namespace llvm { // in namespace llvm so it's findable by ADL +static bool TypeHasCycleThroughItself(const Type *Ty) { + SmallPtrSet<const Type*, 128> VisitedTypes; + + if (Ty->isAbstract()) { // Optimized case for abstract types. + for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end(); + I != E; ++I) + if (AbstractTypeHasCycleThrough(Ty, *I, VisitedTypes)) + return true; + } else { + for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end(); + I != E; ++I) + if (ConcreteTypeHasCycleThrough(Ty, *I, VisitedTypes)) + return true; + } + return false; +} +} + +//===----------------------------------------------------------------------===// +// Function Type Factory and Value Class... +// +const IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) { + assert(NumBits >= MIN_INT_BITS && "bitwidth too small"); + assert(NumBits <= MAX_INT_BITS && "bitwidth too large"); + + // Check for the built-in integer types + switch (NumBits) { + case 1: return cast<IntegerType>(Type::getInt1Ty(C)); + case 8: return cast<IntegerType>(Type::getInt8Ty(C)); + case 16: return cast<IntegerType>(Type::getInt16Ty(C)); + case 32: return cast<IntegerType>(Type::getInt32Ty(C)); + case 64: return cast<IntegerType>(Type::getInt64Ty(C)); + default: + break; + } + + LLVMContextImpl *pImpl = C.pImpl; + + IntegerValType IVT(NumBits); + IntegerType *ITy = 0; + + // First, see if the type is already in the table, for which + // a reader lock suffices. + ITy = pImpl->IntegerTypes.get(IVT); + + if (!ITy) { + // Value not found. Derive a new type! + ITy = new IntegerType(C, NumBits); + pImpl->IntegerTypes.add(IVT, ITy); + } +#ifdef DEBUG_MERGE_TYPES + DEBUG(dbgs() << "Derived new type: " << *ITy << "\n"); +#endif + return ITy; +} + +bool IntegerType::isPowerOf2ByteWidth() const { + unsigned BitWidth = getBitWidth(); + return (BitWidth > 7) && isPowerOf2_32(BitWidth); +} + +APInt IntegerType::getMask() const { + return APInt::getAllOnesValue(getBitWidth()); +} + +FunctionValType FunctionValType::get(const FunctionType *FT) { + // Build up a FunctionValType + std::vector<const Type *> ParamTypes; + ParamTypes.reserve(FT->getNumParams()); + for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) + ParamTypes.push_back(FT->getParamType(i)); + return FunctionValType(FT->getReturnType(), ParamTypes, FT->isVarArg()); +} + + +// FunctionType::get - The factory function for the FunctionType class... +FunctionType *FunctionType::get(const Type *ReturnType, + const std::vector<const Type*> &Params, + bool isVarArg) { + FunctionValType VT(ReturnType, Params, isVarArg); + FunctionType *FT = 0; + + LLVMContextImpl *pImpl = ReturnType->getContext().pImpl; + + FT = pImpl->FunctionTypes.get(VT); + + if (!FT) { + FT = (FunctionType*) operator new(sizeof(FunctionType) + + sizeof(PATypeHandle)*(Params.size()+1)); + new (FT) FunctionType(ReturnType, Params, isVarArg); + pImpl->FunctionTypes.add(VT, FT); + } + +#ifdef DEBUG_MERGE_TYPES + DEBUG(dbgs() << "Derived new type: " << FT << "\n"); +#endif + return FT; +} + +ArrayType *ArrayType::get(const Type *ElementType, uint64_t NumElements) { + assert(ElementType && "Can't get array of <null> types!"); + assert(isValidElementType(ElementType) && "Invalid type for array element!"); + + ArrayValType AVT(ElementType, NumElements); + ArrayType *AT = 0; + + LLVMContextImpl *pImpl = ElementType->getContext().pImpl; + + AT = pImpl->ArrayTypes.get(AVT); + + if (!AT) { + // Value not found. Derive a new type! + pImpl->ArrayTypes.add(AVT, AT = new ArrayType(ElementType, NumElements)); + } +#ifdef DEBUG_MERGE_TYPES + DEBUG(dbgs() << "Derived new type: " << *AT << "\n"); +#endif + return AT; +} + +bool ArrayType::isValidElementType(const Type *ElemTy) { + return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() && + !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy(); +} + +VectorType *VectorType::get(const Type *ElementType, unsigned NumElements) { + assert(ElementType && "Can't get vector of <null> types!"); + + VectorValType PVT(ElementType, NumElements); + VectorType *PT = 0; + + LLVMContextImpl *pImpl = ElementType->getContext().pImpl; + + PT = pImpl->VectorTypes.get(PVT); + + if (!PT) { + pImpl->VectorTypes.add(PVT, PT = new VectorType(ElementType, NumElements)); + } +#ifdef DEBUG_MERGE_TYPES + DEBUG(dbgs() << "Derived new type: " << *PT << "\n"); +#endif + return PT; +} + +bool VectorType::isValidElementType(const Type *ElemTy) { + return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() || + ElemTy->isOpaqueTy(); +} + +//===----------------------------------------------------------------------===// +// Struct Type Factory... +// + +StructType *StructType::get(LLVMContext &Context, + const std::vector<const Type*> &ETypes, + bool isPacked) { + StructValType STV(ETypes, isPacked); + StructType *ST = 0; + + LLVMContextImpl *pImpl = Context.pImpl; + + ST = pImpl->StructTypes.get(STV); + + if (!ST) { + // Value not found. Derive a new type! + ST = (StructType*) operator new(sizeof(StructType) + + sizeof(PATypeHandle) * ETypes.size()); + new (ST) StructType(Context, ETypes, isPacked); + pImpl->StructTypes.add(STV, ST); + } +#ifdef DEBUG_MERGE_TYPES + DEBUG(dbgs() << "Derived new type: " << *ST << "\n"); +#endif + return ST; +} + +StructType *StructType::get(LLVMContext &Context, const Type *type, ...) { + va_list ap; + std::vector<const llvm::Type*> StructFields; + va_start(ap, type); + while (type) { + StructFields.push_back(type); + type = va_arg(ap, llvm::Type*); + } + return llvm::StructType::get(Context, StructFields); +} + +bool StructType::isValidElementType(const Type *ElemTy) { + return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() && + !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy(); +} + + +//===----------------------------------------------------------------------===// +// Pointer Type Factory... +// + +PointerType *PointerType::get(const Type *ValueType, unsigned AddressSpace) { + assert(ValueType && "Can't get a pointer to <null> type!"); + assert(ValueType->getTypeID() != VoidTyID && + "Pointer to void is not valid, use i8* instead!"); + assert(isValidElementType(ValueType) && "Invalid type for pointer element!"); + PointerValType PVT(ValueType, AddressSpace); + + PointerType *PT = 0; + + LLVMContextImpl *pImpl = ValueType->getContext().pImpl; + + PT = pImpl->PointerTypes.get(PVT); + + if (!PT) { + // Value not found. Derive a new type! + pImpl->PointerTypes.add(PVT, PT = new PointerType(ValueType, AddressSpace)); + } +#ifdef DEBUG_MERGE_TYPES + DEBUG(dbgs() << "Derived new type: " << *PT << "\n"); +#endif + return PT; +} + +const PointerType *Type::getPointerTo(unsigned addrs) const { + return PointerType::get(this, addrs); +} + +bool PointerType::isValidElementType(const Type *ElemTy) { + return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() && + !ElemTy->isMetadataTy(); +} + + +//===----------------------------------------------------------------------===// +// Opaque Type Factory... +// + +OpaqueType *OpaqueType::get(LLVMContext &C) { + OpaqueType *OT = new OpaqueType(C); // All opaque types are distinct. + LLVMContextImpl *pImpl = C.pImpl; + pImpl->OpaqueTypes.insert(OT); + return OT; +} + + + +//===----------------------------------------------------------------------===// +// Derived Type Refinement Functions +//===----------------------------------------------------------------------===// + +// addAbstractTypeUser - Notify an abstract type that there is a new user of +// it. This function is called primarily by the PATypeHandle class. +void Type::addAbstractTypeUser(AbstractTypeUser *U) const { + assert(isAbstract() && "addAbstractTypeUser: Current type not abstract!"); + AbstractTypeUsers.push_back(U); +} + + +// removeAbstractTypeUser - Notify an abstract type that a user of the class +// no longer has a handle to the type. This function is called primarily by +// the PATypeHandle class. When there are no users of the abstract type, it +// is annihilated, because there is no way to get a reference to it ever again. +// +void Type::removeAbstractTypeUser(AbstractTypeUser *U) const { + + // Search from back to front because we will notify users from back to + // front. Also, it is likely that there will be a stack like behavior to + // users that register and unregister users. + // + unsigned i; + for (i = AbstractTypeUsers.size(); AbstractTypeUsers[i-1] != U; --i) + assert(i != 0 && "AbstractTypeUser not in user list!"); + + --i; // Convert to be in range 0 <= i < size() + assert(i < AbstractTypeUsers.size() && "Index out of range!"); // Wraparound? + + AbstractTypeUsers.erase(AbstractTypeUsers.begin()+i); + +#ifdef DEBUG_MERGE_TYPES + DEBUG(dbgs() << " remAbstractTypeUser[" << (void*)this << ", " + << *this << "][" << i << "] User = " << U << "\n"); +#endif + + if (AbstractTypeUsers.empty() && getRefCount() == 0 && isAbstract()) { +#ifdef DEBUG_MERGE_TYPES + DEBUG(dbgs() << "DELETEing unused abstract type: <" << *this + << ">[" << (void*)this << "]" << "\n"); +#endif + + this->destroy(); + } +} + +// refineAbstractTypeTo - This function is used when it is discovered +// that the 'this' abstract type is actually equivalent to the NewType +// specified. This causes all users of 'this' to switch to reference the more +// concrete type NewType and for 'this' to be deleted. Only used for internal +// callers. +// +void DerivedType::refineAbstractTypeTo(const Type *NewType) { + assert(isAbstract() && "refineAbstractTypeTo: Current type is not abstract!"); + assert(this != NewType && "Can't refine to myself!"); + assert(ForwardType == 0 && "This type has already been refined!"); + + LLVMContextImpl *pImpl = getContext().pImpl; + + // The descriptions may be out of date. Conservatively clear them all! + pImpl->AbstractTypeDescriptions.clear(); + +#ifdef DEBUG_MERGE_TYPES + DEBUG(dbgs() << "REFINING abstract type [" << (void*)this << " " + << *this << "] to [" << (void*)NewType << " " + << *NewType << "]!\n"); +#endif + + // Make sure to put the type to be refined to into a holder so that if IT gets + // refined, that we will not continue using a dead reference... + // + PATypeHolder NewTy(NewType); + // Any PATypeHolders referring to this type will now automatically forward to + // the type we are resolved to. + ForwardType = NewType; + if (ForwardType->isAbstract()) + ForwardType->addRef(); + + // Add a self use of the current type so that we don't delete ourself until + // after the function exits. + // + PATypeHolder CurrentTy(this); + + // To make the situation simpler, we ask the subclass to remove this type from + // the type map, and to replace any type uses with uses of non-abstract types. + // This dramatically limits the amount of recursive type trouble we can find + // ourselves in. + dropAllTypeUses(); + + // Iterate over all of the uses of this type, invoking callback. Each user + // should remove itself from our use list automatically. We have to check to + // make sure that NewTy doesn't _become_ 'this'. If it does, resolving types + // will not cause users to drop off of the use list. If we resolve to ourself + // we succeed! + // + while (!AbstractTypeUsers.empty() && NewTy != this) { + AbstractTypeUser *User = AbstractTypeUsers.back(); + + unsigned OldSize = AbstractTypeUsers.size(); OldSize=OldSize; +#ifdef DEBUG_MERGE_TYPES + DEBUG(dbgs() << " REFINING user " << OldSize-1 << "[" << (void*)User + << "] of abstract type [" << (void*)this << " " + << *this << "] to [" << (void*)NewTy.get() << " " + << *NewTy << "]!\n"); +#endif + User->refineAbstractType(this, NewTy); + + assert(AbstractTypeUsers.size() != OldSize && + "AbsTyUser did not remove self from user list!"); + } + + // If we were successful removing all users from the type, 'this' will be + // deleted when the last PATypeHolder is destroyed or updated from this type. + // This may occur on exit of this function, as the CurrentTy object is + // destroyed. +} + +// notifyUsesThatTypeBecameConcrete - Notify AbstractTypeUsers of this type that +// the current type has transitioned from being abstract to being concrete. +// +void DerivedType::notifyUsesThatTypeBecameConcrete() { +#ifdef DEBUG_MERGE_TYPES + DEBUG(dbgs() << "typeIsREFINED type: " << (void*)this << " " << *this <<"\n"); +#endif + + unsigned OldSize = AbstractTypeUsers.size(); OldSize=OldSize; + while (!AbstractTypeUsers.empty()) { + AbstractTypeUser *ATU = AbstractTypeUsers.back(); + ATU->typeBecameConcrete(this); + + assert(AbstractTypeUsers.size() < OldSize-- && + "AbstractTypeUser did not remove itself from the use list!"); + } +} + +// refineAbstractType - Called when a contained type is found to be more +// concrete - this could potentially change us from an abstract type to a +// concrete type. +// +void FunctionType::refineAbstractType(const DerivedType *OldType, + const Type *NewType) { + LLVMContextImpl *pImpl = OldType->getContext().pImpl; + pImpl->FunctionTypes.RefineAbstractType(this, OldType, NewType); +} + +void FunctionType::typeBecameConcrete(const DerivedType *AbsTy) { + LLVMContextImpl *pImpl = AbsTy->getContext().pImpl; + pImpl->FunctionTypes.TypeBecameConcrete(this, AbsTy); +} + + +// refineAbstractType - Called when a contained type is found to be more +// concrete - this could potentially change us from an abstract type to a +// concrete type. +// +void ArrayType::refineAbstractType(const DerivedType *OldType, + const Type *NewType) { + LLVMContextImpl *pImpl = OldType->getContext().pImpl; + pImpl->ArrayTypes.RefineAbstractType(this, OldType, NewType); +} + +void ArrayType::typeBecameConcrete(const DerivedType *AbsTy) { + LLVMContextImpl *pImpl = AbsTy->getContext().pImpl; + pImpl->ArrayTypes.TypeBecameConcrete(this, AbsTy); +} + +// refineAbstractType - Called when a contained type is found to be more +// concrete - this could potentially change us from an abstract type to a +// concrete type. +// +void VectorType::refineAbstractType(const DerivedType *OldType, + const Type *NewType) { + LLVMContextImpl *pImpl = OldType->getContext().pImpl; + pImpl->VectorTypes.RefineAbstractType(this, OldType, NewType); +} + +void VectorType::typeBecameConcrete(const DerivedType *AbsTy) { + LLVMContextImpl *pImpl = AbsTy->getContext().pImpl; + pImpl->VectorTypes.TypeBecameConcrete(this, AbsTy); +} + +// refineAbstractType - Called when a contained type is found to be more +// concrete - this could potentially change us from an abstract type to a +// concrete type. +// +void StructType::refineAbstractType(const DerivedType *OldType, + const Type *NewType) { + LLVMContextImpl *pImpl = OldType->getContext().pImpl; + pImpl->StructTypes.RefineAbstractType(this, OldType, NewType); +} + +void StructType::typeBecameConcrete(const DerivedType *AbsTy) { + LLVMContextImpl *pImpl = AbsTy->getContext().pImpl; + pImpl->StructTypes.TypeBecameConcrete(this, AbsTy); +} + +// refineAbstractType - Called when a contained type is found to be more +// concrete - this could potentially change us from an abstract type to a +// concrete type. +// +void PointerType::refineAbstractType(const DerivedType *OldType, + const Type *NewType) { + LLVMContextImpl *pImpl = OldType->getContext().pImpl; + pImpl->PointerTypes.RefineAbstractType(this, OldType, NewType); +} + +void PointerType::typeBecameConcrete(const DerivedType *AbsTy) { + LLVMContextImpl *pImpl = AbsTy->getContext().pImpl; + pImpl->PointerTypes.TypeBecameConcrete(this, AbsTy); +} + +bool SequentialType::indexValid(const Value *V) const { + if (V->getType()->isIntegerTy()) + return true; + return false; +} + +namespace llvm { +raw_ostream &operator<<(raw_ostream &OS, const Type &T) { + T.print(OS); + return OS; +} +} diff --git a/contrib/llvm/lib/VMCore/TypeSymbolTable.cpp b/contrib/llvm/lib/VMCore/TypeSymbolTable.cpp new file mode 100644 index 0000000..d68a44b --- /dev/null +++ b/contrib/llvm/lib/VMCore/TypeSymbolTable.cpp @@ -0,0 +1,169 @@ +//===-- TypeSymbolTable.cpp - Implement the TypeSymbolTable class ---------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the TypeSymbolTable class for the VMCore library. +// +//===----------------------------------------------------------------------===// + +#include "llvm/TypeSymbolTable.h" +#include "llvm/DerivedTypes.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ManagedStatic.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +using namespace llvm; + +#define DEBUG_SYMBOL_TABLE 0 +#define DEBUG_ABSTYPE 0 + +TypeSymbolTable::~TypeSymbolTable() { + // Drop all abstract type references in the type plane... + for (iterator TI = tmap.begin(), TE = tmap.end(); TI != TE; ++TI) { + if (TI->second->isAbstract()) // If abstract, drop the reference... + cast<DerivedType>(TI->second)->removeAbstractTypeUser(this); + } +} + +std::string TypeSymbolTable::getUniqueName(StringRef BaseName) const { + std::string TryName = BaseName; + + const_iterator End = tmap.end(); + + // See if the name exists + while (tmap.find(TryName) != End) // Loop until we find a free + TryName = BaseName.str() + utostr(++LastUnique); // name in the symbol table + return TryName; +} + +// lookup a type by name - returns null on failure +Type* TypeSymbolTable::lookup(StringRef Name) const { + const_iterator TI = tmap.find(Name); + Type* result = 0; + if (TI != tmap.end()) + result = const_cast<Type*>(TI->second); + return result; +} + +// remove - Remove a type from the symbol table... +Type* TypeSymbolTable::remove(iterator Entry) { + assert(Entry != tmap.end() && "Invalid entry to remove!"); + const Type* Result = Entry->second; + +#if DEBUG_SYMBOL_TABLE + dump(); + dbgs() << " Removing Value: " << Result->getDescription() << "\n"; +#endif + + tmap.erase(Entry); + + // If we are removing an abstract type, remove the symbol table from it's use + // list... + if (Result->isAbstract()) { +#if DEBUG_ABSTYPE + dbgs() << "Removing abstract type from symtab" + << Result->getDescription() + << "\n"; +#endif + cast<DerivedType>(Result)->removeAbstractTypeUser(this); + } + + return const_cast<Type*>(Result); +} + + +// insert - Insert a type into the symbol table with the specified name... +void TypeSymbolTable::insert(StringRef Name, const Type* T) { + assert(T && "Can't insert null type into symbol table!"); + + if (tmap.insert(std::make_pair(Name, T)).second) { + // Type inserted fine with no conflict. + +#if DEBUG_SYMBOL_TABLE + dump(); + dbgs() << " Inserted type: " << Name << ": " << T->getDescription() << "\n"; +#endif + } else { + // If there is a name conflict... + + // Check to see if there is a naming conflict. If so, rename this type! + std::string UniqueName = Name; + if (lookup(Name)) + UniqueName = getUniqueName(Name); + +#if DEBUG_SYMBOL_TABLE + dump(); + dbgs() << " Inserting type: " << UniqueName << ": " + << T->getDescription() << "\n"; +#endif + + // Insert the tmap entry + tmap.insert(make_pair(UniqueName, T)); + } + + // If we are adding an abstract type, add the symbol table to it's use list. + if (T->isAbstract()) { + cast<DerivedType>(T)->addAbstractTypeUser(this); +#if DEBUG_ABSTYPE + dbgs() << "Added abstract type to ST: " << T->getDescription() << "\n"; +#endif + } +} + +// This function is called when one of the types in the type plane are refined +void TypeSymbolTable::refineAbstractType(const DerivedType *OldType, + const Type *NewType) { + // Loop over all of the types in the symbol table, replacing any references + // to OldType with references to NewType. Note that there may be multiple + // occurrences, and although we only need to remove one at a time, it's + // faster to remove them all in one pass. + // + for (iterator I = begin(), E = end(); I != E; ++I) { + // FIXME when Types aren't const. + if (I->second == const_cast<DerivedType *>(OldType)) { +#if DEBUG_ABSTYPE + dbgs() << "Removing type " << OldType->getDescription() << "\n"; +#endif + OldType->removeAbstractTypeUser(this); + + // TODO FIXME when types aren't const + I->second = const_cast<Type *>(NewType); + if (NewType->isAbstract()) { +#if DEBUG_ABSTYPE + dbgs() << "Added type " << NewType->getDescription() << "\n"; +#endif + cast<DerivedType>(NewType)->addAbstractTypeUser(this); + } + } + } +} + + +// Handle situation where type becomes Concreate from Abstract +void TypeSymbolTable::typeBecameConcrete(const DerivedType *AbsTy) { + // Loop over all of the types in the symbol table, dropping any abstract + // type user entries for AbsTy which occur because there are names for the + // type. + for (iterator TI = begin(), TE = end(); TI != TE; ++TI) + if (TI->second == const_cast<Type*>(static_cast<const Type*>(AbsTy))) + AbsTy->removeAbstractTypeUser(this); +} + +static void DumpTypes(const std::pair<const std::string, const Type*>& T ) { + dbgs() << " '" << T.first << "' = "; + T.second->dump(); + dbgs() << "\n"; +} + +void TypeSymbolTable::dump() const { + dbgs() << "TypeSymbolPlane: "; + for_each(tmap.begin(), tmap.end(), DumpTypes); +} + diff --git a/contrib/llvm/lib/VMCore/TypesContext.h b/contrib/llvm/lib/VMCore/TypesContext.h new file mode 100644 index 0000000..5a90917 --- /dev/null +++ b/contrib/llvm/lib/VMCore/TypesContext.h @@ -0,0 +1,425 @@ +//===-- TypesContext.h - Types-related Context Internals ------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines various helper methods and classes used by +// LLVMContextImpl for creating and managing types. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_TYPESCONTEXT_H +#define LLVM_TYPESCONTEXT_H + +#include "llvm/ADT/STLExtras.h" +#include <map> + + +//===----------------------------------------------------------------------===// +// Derived Type Factory Functions +//===----------------------------------------------------------------------===// +namespace llvm { + +/// getSubElementHash - Generate a hash value for all of the SubType's of this +/// type. The hash value is guaranteed to be zero if any of the subtypes are +/// an opaque type. Otherwise we try to mix them in as well as possible, but do +/// not look at the subtype's subtype's. +static unsigned getSubElementHash(const Type *Ty) { + unsigned HashVal = 0; + for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end(); + I != E; ++I) { + HashVal *= 32; + const Type *SubTy = I->get(); + HashVal += SubTy->getTypeID(); + switch (SubTy->getTypeID()) { + default: break; + case Type::OpaqueTyID: return 0; // Opaque -> hash = 0 no matter what. + case Type::IntegerTyID: + HashVal ^= (cast<IntegerType>(SubTy)->getBitWidth() << 3); + break; + case Type::FunctionTyID: + HashVal ^= cast<FunctionType>(SubTy)->getNumParams()*2 + + cast<FunctionType>(SubTy)->isVarArg(); + break; + case Type::ArrayTyID: + HashVal ^= cast<ArrayType>(SubTy)->getNumElements(); + break; + case Type::VectorTyID: + HashVal ^= cast<VectorType>(SubTy)->getNumElements(); + break; + case Type::StructTyID: + HashVal ^= cast<StructType>(SubTy)->getNumElements(); + break; + case Type::PointerTyID: + HashVal ^= cast<PointerType>(SubTy)->getAddressSpace(); + break; + } + } + return HashVal ? HashVal : 1; // Do not return zero unless opaque subty. +} + +//===----------------------------------------------------------------------===// +// Integer Type Factory... +// +class IntegerValType { + uint32_t bits; +public: + IntegerValType(uint32_t numbits) : bits(numbits) {} + + static IntegerValType get(const IntegerType *Ty) { + return IntegerValType(Ty->getBitWidth()); + } + + static unsigned hashTypeStructure(const IntegerType *Ty) { + return (unsigned)Ty->getBitWidth(); + } + + inline bool operator<(const IntegerValType &IVT) const { + return bits < IVT.bits; + } +}; + +// PointerValType - Define a class to hold the key that goes into the TypeMap +// +class PointerValType { + const Type *ValTy; + unsigned AddressSpace; +public: + PointerValType(const Type *val, unsigned as) : ValTy(val), AddressSpace(as) {} + + static PointerValType get(const PointerType *PT) { + return PointerValType(PT->getElementType(), PT->getAddressSpace()); + } + + static unsigned hashTypeStructure(const PointerType *PT) { + return getSubElementHash(PT); + } + + bool operator<(const PointerValType &MTV) const { + if (AddressSpace < MTV.AddressSpace) return true; + return AddressSpace == MTV.AddressSpace && ValTy < MTV.ValTy; + } +}; + +//===----------------------------------------------------------------------===// +// Array Type Factory... +// +class ArrayValType { + const Type *ValTy; + uint64_t Size; +public: + ArrayValType(const Type *val, uint64_t sz) : ValTy(val), Size(sz) {} + + static ArrayValType get(const ArrayType *AT) { + return ArrayValType(AT->getElementType(), AT->getNumElements()); + } + + static unsigned hashTypeStructure(const ArrayType *AT) { + return (unsigned)AT->getNumElements(); + } + + inline bool operator<(const ArrayValType &MTV) const { + if (Size < MTV.Size) return true; + return Size == MTV.Size && ValTy < MTV.ValTy; + } +}; + +//===----------------------------------------------------------------------===// +// Vector Type Factory... +// +class VectorValType { + const Type *ValTy; + unsigned Size; +public: + VectorValType(const Type *val, int sz) : ValTy(val), Size(sz) {} + + static VectorValType get(const VectorType *PT) { + return VectorValType(PT->getElementType(), PT->getNumElements()); + } + + static unsigned hashTypeStructure(const VectorType *PT) { + return PT->getNumElements(); + } + + inline bool operator<(const VectorValType &MTV) const { + if (Size < MTV.Size) return true; + return Size == MTV.Size && ValTy < MTV.ValTy; + } +}; + +// StructValType - Define a class to hold the key that goes into the TypeMap +// +class StructValType { + std::vector<const Type*> ElTypes; + bool packed; +public: + StructValType(const std::vector<const Type*> &args, bool isPacked) + : ElTypes(args), packed(isPacked) {} + + static StructValType get(const StructType *ST) { + std::vector<const Type *> ElTypes; + ElTypes.reserve(ST->getNumElements()); + for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) + ElTypes.push_back(ST->getElementType(i)); + + return StructValType(ElTypes, ST->isPacked()); + } + + static unsigned hashTypeStructure(const StructType *ST) { + return ST->getNumElements(); + } + + inline bool operator<(const StructValType &STV) const { + if (ElTypes < STV.ElTypes) return true; + else if (ElTypes > STV.ElTypes) return false; + else return (int)packed < (int)STV.packed; + } +}; + +// FunctionValType - Define a class to hold the key that goes into the TypeMap +// +class FunctionValType { + const Type *RetTy; + std::vector<const Type*> ArgTypes; + bool isVarArg; +public: + FunctionValType(const Type *ret, const std::vector<const Type*> &args, + bool isVA) : RetTy(ret), ArgTypes(args), isVarArg(isVA) {} + + static FunctionValType get(const FunctionType *FT); + + static unsigned hashTypeStructure(const FunctionType *FT) { + unsigned Result = FT->getNumParams()*2 + FT->isVarArg(); + return Result; + } + + inline bool operator<(const FunctionValType &MTV) const { + if (RetTy < MTV.RetTy) return true; + if (RetTy > MTV.RetTy) return false; + if (isVarArg < MTV.isVarArg) return true; + if (isVarArg > MTV.isVarArg) return false; + if (ArgTypes < MTV.ArgTypes) return true; + if (ArgTypes > MTV.ArgTypes) return false; + return false; + } +}; + +class TypeMapBase { +protected: + /// TypesByHash - Keep track of types by their structure hash value. Note + /// that we only keep track of types that have cycles through themselves in + /// this map. + /// + std::multimap<unsigned, PATypeHolder> TypesByHash; + + ~TypeMapBase() { + // PATypeHolder won't destroy non-abstract types. + // We can't destroy them by simply iterating, because + // they may contain references to each-other. + for (std::multimap<unsigned, PATypeHolder>::iterator I + = TypesByHash.begin(), E = TypesByHash.end(); I != E; ++I) { + Type *Ty = const_cast<Type*>(I->second.Ty); + I->second.destroy(); + // We can't invoke destroy or delete, because the type may + // contain references to already freed types. + // So we have to destruct the object the ugly way. + if (Ty) { + Ty->AbstractTypeUsers.clear(); + static_cast<const Type*>(Ty)->Type::~Type(); + operator delete(Ty); + } + } + } + +public: + void RemoveFromTypesByHash(unsigned Hash, const Type *Ty) { + std::multimap<unsigned, PATypeHolder>::iterator I = + TypesByHash.lower_bound(Hash); + for (; I != TypesByHash.end() && I->first == Hash; ++I) { + if (I->second == Ty) { + TypesByHash.erase(I); + return; + } + } + + // This must be do to an opaque type that was resolved. Switch down to hash + // code of zero. + assert(Hash && "Didn't find type entry!"); + RemoveFromTypesByHash(0, Ty); + } + + /// TypeBecameConcrete - When Ty gets a notification that TheType just became + /// concrete, drop uses and make Ty non-abstract if we should. + void TypeBecameConcrete(DerivedType *Ty, const DerivedType *TheType) { + // If the element just became concrete, remove 'ty' from the abstract + // type user list for the type. Do this for as many times as Ty uses + // OldType. + for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end(); + I != E; ++I) + if (I->get() == TheType) + TheType->removeAbstractTypeUser(Ty); + + // If the type is currently thought to be abstract, rescan all of our + // subtypes to see if the type has just become concrete! Note that this + // may send out notifications to AbstractTypeUsers that types become + // concrete. + if (Ty->isAbstract()) + Ty->PromoteAbstractToConcrete(); + } +}; + +// TypeMap - Make sure that only one instance of a particular type may be +// created on any given run of the compiler... note that this involves updating +// our map if an abstract type gets refined somehow. +// +template<class ValType, class TypeClass> +class TypeMap : public TypeMapBase { + std::map<ValType, PATypeHolder> Map; +public: + typedef typename std::map<ValType, PATypeHolder>::iterator iterator; + + inline TypeClass *get(const ValType &V) { + iterator I = Map.find(V); + return I != Map.end() ? cast<TypeClass>((Type*)I->second.get()) : 0; + } + + inline void add(const ValType &V, TypeClass *Ty) { + Map.insert(std::make_pair(V, Ty)); + + // If this type has a cycle, remember it. + TypesByHash.insert(std::make_pair(ValType::hashTypeStructure(Ty), Ty)); + print("add"); + } + + /// RefineAbstractType - This method is called after we have merged a type + /// with another one. We must now either merge the type away with + /// some other type or reinstall it in the map with it's new configuration. + void RefineAbstractType(TypeClass *Ty, const DerivedType *OldType, + const Type *NewType) { +#ifdef DEBUG_MERGE_TYPES + DEBUG(dbgs() << "RefineAbstractType(" << (void*)OldType << "[" << *OldType + << "], " << (void*)NewType << " [" << *NewType << "])\n"); +#endif + + // Otherwise, we are changing one subelement type into another. Clearly the + // OldType must have been abstract, making us abstract. + assert(Ty->isAbstract() && "Refining a non-abstract type!"); + assert(OldType != NewType); + + // Make a temporary type holder for the type so that it doesn't disappear on + // us when we erase the entry from the map. + PATypeHolder TyHolder = Ty; + + // The old record is now out-of-date, because one of the children has been + // updated. Remove the obsolete entry from the map. + unsigned NumErased = Map.erase(ValType::get(Ty)); + assert(NumErased && "Element not found!"); NumErased = NumErased; + + // Remember the structural hash for the type before we start hacking on it, + // in case we need it later. + unsigned OldTypeHash = ValType::hashTypeStructure(Ty); + + // Find the type element we are refining... and change it now! + for (unsigned i = 0, e = Ty->getNumContainedTypes(); i != e; ++i) + if (Ty->ContainedTys[i] == OldType) + Ty->ContainedTys[i] = NewType; + unsigned NewTypeHash = ValType::hashTypeStructure(Ty); + + // If there are no cycles going through this node, we can do a simple, + // efficient lookup in the map, instead of an inefficient nasty linear + // lookup. + if (!TypeHasCycleThroughItself(Ty)) { + typename std::map<ValType, PATypeHolder>::iterator I; + bool Inserted; + + tie(I, Inserted) = Map.insert(std::make_pair(ValType::get(Ty), Ty)); + if (!Inserted) { + // Refined to a different type altogether? + RemoveFromTypesByHash(OldTypeHash, Ty); + + // We already have this type in the table. Get rid of the newly refined + // type. + TypeClass *NewTy = cast<TypeClass>((Type*)I->second.get()); + Ty->refineAbstractTypeTo(NewTy); + return; + } + } else { + // Now we check to see if there is an existing entry in the table which is + // structurally identical to the newly refined type. If so, this type + // gets refined to the pre-existing type. + // + std::multimap<unsigned, PATypeHolder>::iterator I, E, Entry; + tie(I, E) = TypesByHash.equal_range(NewTypeHash); + Entry = E; + for (; I != E; ++I) { + if (I->second == Ty) { + // Remember the position of the old type if we see it in our scan. + Entry = I; + continue; + } + + if (!TypesEqual(Ty, I->second)) + continue; + + TypeClass *NewTy = cast<TypeClass>((Type*)I->second.get()); + + // Remove the old entry form TypesByHash. If the hash values differ + // now, remove it from the old place. Otherwise, continue scanning + // withing this hashcode to reduce work. + if (NewTypeHash != OldTypeHash) { + RemoveFromTypesByHash(OldTypeHash, Ty); + } else { + if (Entry == E) { + // Find the location of Ty in the TypesByHash structure if we + // haven't seen it already. + while (I->second != Ty) { + ++I; + assert(I != E && "Structure doesn't contain type??"); + } + Entry = I; + } + TypesByHash.erase(Entry); + } + Ty->refineAbstractTypeTo(NewTy); + return; + } + + // If there is no existing type of the same structure, we reinsert an + // updated record into the map. + Map.insert(std::make_pair(ValType::get(Ty), Ty)); + } + + // If the hash codes differ, update TypesByHash + if (NewTypeHash != OldTypeHash) { + RemoveFromTypesByHash(OldTypeHash, Ty); + TypesByHash.insert(std::make_pair(NewTypeHash, Ty)); + } + + // If the type is currently thought to be abstract, rescan all of our + // subtypes to see if the type has just become concrete! Note that this + // may send out notifications to AbstractTypeUsers that types become + // concrete. + if (Ty->isAbstract()) + Ty->PromoteAbstractToConcrete(); + } + + void print(const char *Arg) const { +#ifdef DEBUG_MERGE_TYPES + DEBUG(dbgs() << "TypeMap<>::" << Arg << " table contents:\n"); + unsigned i = 0; + for (typename std::map<ValType, PATypeHolder>::const_iterator I + = Map.begin(), E = Map.end(); I != E; ++I) + DEBUG(dbgs() << " " << (++i) << ". " << (void*)I->second.get() << " " + << *I->second.get() << "\n"); +#endif + } + + void dump() const { print("dump output"); } +}; +} + +#endif diff --git a/contrib/llvm/lib/VMCore/Use.cpp b/contrib/llvm/lib/VMCore/Use.cpp new file mode 100644 index 0000000..fec710b --- /dev/null +++ b/contrib/llvm/lib/VMCore/Use.cpp @@ -0,0 +1,246 @@ +//===-- Use.cpp - Implement the Use class ---------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the algorithm for finding the User of a Use. +// +//===----------------------------------------------------------------------===// + +#include "llvm/User.h" + +namespace llvm { + +//===----------------------------------------------------------------------===// +// Use swap Implementation +//===----------------------------------------------------------------------===// + +void Use::swap(Use &RHS) { + Value *V1(Val); + Value *V2(RHS.Val); + if (V1 != V2) { + if (V1) { + removeFromList(); + } + + if (V2) { + RHS.removeFromList(); + Val = V2; + V2->addUse(*this); + } else { + Val = 0; + } + + if (V1) { + RHS.Val = V1; + V1->addUse(RHS); + } else { + RHS.Val = 0; + } + } +} + +//===----------------------------------------------------------------------===// +// Use getImpliedUser Implementation +//===----------------------------------------------------------------------===// + +const Use *Use::getImpliedUser() const { + const Use *Current = this; + + while (true) { + unsigned Tag = (Current++)->Prev.getInt(); + switch (Tag) { + case zeroDigitTag: + case oneDigitTag: + continue; + + case stopTag: { + ++Current; + ptrdiff_t Offset = 1; + while (true) { + unsigned Tag = Current->Prev.getInt(); + switch (Tag) { + case zeroDigitTag: + case oneDigitTag: + ++Current; + Offset = (Offset << 1) + Tag; + continue; + default: + return Current + Offset; + } + } + } + + case fullStopTag: + return Current; + } + } +} + +//===----------------------------------------------------------------------===// +// Use initTags Implementation +//===----------------------------------------------------------------------===// + +Use *Use::initTags(Use * const Start, Use *Stop, ptrdiff_t Done) { + while (Done < 20) { + if (Start == Stop--) + return Start; + static const PrevPtrTag tags[20] = { fullStopTag, oneDigitTag, stopTag, + oneDigitTag, oneDigitTag, stopTag, + zeroDigitTag, oneDigitTag, oneDigitTag, + stopTag, zeroDigitTag, oneDigitTag, + zeroDigitTag, oneDigitTag, stopTag, + oneDigitTag, oneDigitTag, oneDigitTag, + oneDigitTag, stopTag + }; + Stop->Prev.setFromOpaqueValue(reinterpret_cast<Use**>(tags[Done++])); + Stop->Val = 0; + } + + ptrdiff_t Count = Done; + while (Start != Stop) { + --Stop; + Stop->Val = 0; + if (!Count) { + Stop->Prev.setFromOpaqueValue(reinterpret_cast<Use**>(stopTag)); + ++Done; + Count = Done; + } else { + Stop->Prev.setFromOpaqueValue(reinterpret_cast<Use**>(Count & 1)); + Count >>= 1; + ++Done; + } + } + + return Start; +} + +//===----------------------------------------------------------------------===// +// Use zap Implementation +//===----------------------------------------------------------------------===// + +void Use::zap(Use *Start, const Use *Stop, bool del) { + if (del) { + while (Start != Stop) { + (--Stop)->~Use(); + } + ::operator delete(Start); + return; + } + + while (Start != Stop) { + (Start++)->set(0); + } +} + +//===----------------------------------------------------------------------===// +// AugmentedUse layout struct +//===----------------------------------------------------------------------===// + +struct AugmentedUse : public Use { + PointerIntPair<User*, 1, Tag> ref; + AugmentedUse(); // not implemented +}; + + +//===----------------------------------------------------------------------===// +// Use getUser Implementation +//===----------------------------------------------------------------------===// + +User *Use::getUser() const { + const Use *End = getImpliedUser(); + const PointerIntPair<User*, 1, Tag>& ref( + static_cast<const AugmentedUse*>(End - 1)->ref); + User *She = ref.getPointer(); + return ref.getInt() + ? She + : (User*)End; +} + +//===----------------------------------------------------------------------===// +// User allocHungoffUses Implementation +//===----------------------------------------------------------------------===// + +Use *User::allocHungoffUses(unsigned N) const { + Use *Begin = static_cast<Use*>(::operator new(sizeof(Use) * N + + sizeof(AugmentedUse) + - sizeof(Use))); + Use *End = Begin + N; + PointerIntPair<User*, 1, Tag>& ref(static_cast<AugmentedUse&>(End[-1]).ref); + ref.setPointer(const_cast<User*>(this)); + ref.setInt(tagOne); + return Use::initTags(Begin, End); +} + +//===----------------------------------------------------------------------===// +// User operator new Implementations +//===----------------------------------------------------------------------===// + +void *User::operator new(size_t s, unsigned Us) { + void *Storage = ::operator new(s + sizeof(Use) * Us); + Use *Start = static_cast<Use*>(Storage); + Use *End = Start + Us; + User *Obj = reinterpret_cast<User*>(End); + Obj->OperandList = Start; + Obj->NumOperands = Us; + Use::initTags(Start, End); + return Obj; +} + +/// Prefixed allocation - just before the first Use, allocate a NULL pointer. +/// The destructor can detect its presence and readjust the OperandList +/// for deletition. +/// +void *User::operator new(size_t s, unsigned Us, bool Prefix) { + // currently prefixed allocation only admissible for + // unconditional branch instructions + if (!Prefix) + return operator new(s, Us); + + assert(Us == 1 && "Other than one Use allocated?"); + typedef PointerIntPair<void*, 2, Use::PrevPtrTag> TaggedPrefix; + void *Raw = ::operator new(s + sizeof(TaggedPrefix) + sizeof(Use) * Us); + TaggedPrefix *Pre = static_cast<TaggedPrefix*>(Raw); + Pre->setFromOpaqueValue(0); + void *Storage = Pre + 1; // skip over prefix + Use *Start = static_cast<Use*>(Storage); + Use *End = Start + Us; + User *Obj = reinterpret_cast<User*>(End); + Obj->OperandList = Start; + Obj->NumOperands = Us; + Use::initTags(Start, End); + return Obj; +} + +//===----------------------------------------------------------------------===// +// User operator delete Implementation +//===----------------------------------------------------------------------===// + +void User::operator delete(void *Usr) { + User *Start = static_cast<User*>(Usr); + Use *Storage = static_cast<Use*>(Usr) - Start->NumOperands; + // + // look for a variadic User + if (Storage == Start->OperandList) { + ::operator delete(Storage); + return; + } + // + // check for the flag whether the destructor has detected a prefixed + // allocation, in which case we remove the flag and delete starting + // at OperandList + if (reinterpret_cast<intptr_t>(Start->OperandList) & 1) { + ::operator delete(reinterpret_cast<char*>(Start->OperandList) - 1); + return; + } + // + // in all other cases just delete the nullary User (covers hung-off + // uses also + ::operator delete(Usr); +} + +} // End llvm namespace diff --git a/contrib/llvm/lib/VMCore/Value.cpp b/contrib/llvm/lib/VMCore/Value.cpp new file mode 100644 index 0000000..b8c6775 --- /dev/null +++ b/contrib/llvm/lib/VMCore/Value.cpp @@ -0,0 +1,625 @@ +//===-- Value.cpp - Implement the Value class -----------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the Value, ValueHandle, and User classes. +// +//===----------------------------------------------------------------------===// + +#include "LLVMContextImpl.h" +#include "llvm/Constant.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/InstrTypes.h" +#include "llvm/Instructions.h" +#include "llvm/Operator.h" +#include "llvm/Module.h" +#include "llvm/ValueSymbolTable.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/LeakDetector.h" +#include "llvm/Support/ManagedStatic.h" +#include "llvm/Support/ValueHandle.h" +#include "llvm/ADT/DenseMap.h" +#include <algorithm> +using namespace llvm; + +//===----------------------------------------------------------------------===// +// Value Class +//===----------------------------------------------------------------------===// + +static inline const Type *checkType(const Type *Ty) { + assert(Ty && "Value defined with a null type: Error!"); + return Ty; +} + +Value::Value(const Type *ty, unsigned scid) + : SubclassID(scid), HasValueHandle(0), + SubclassOptionalData(0), SubclassData(0), VTy(checkType(ty)), + UseList(0), Name(0) { + if (isa<CallInst>(this) || isa<InvokeInst>(this)) + assert((VTy->isFirstClassType() || VTy->isVoidTy() || + ty->isOpaqueTy() || VTy->isStructTy()) && + "invalid CallInst type!"); + else if (!isa<Constant>(this) && !isa<BasicBlock>(this)) + assert((VTy->isFirstClassType() || VTy->isVoidTy() || + ty->isOpaqueTy()) && + "Cannot create non-first-class values except for constants!"); +} + +Value::~Value() { + // Notify all ValueHandles (if present) that this value is going away. + if (HasValueHandle) + ValueHandleBase::ValueIsDeleted(this); + +#ifndef NDEBUG // Only in -g mode... + // Check to make sure that there are no uses of this value that are still + // around when the value is destroyed. If there are, then we have a dangling + // reference and something is wrong. This code is here to print out what is + // still being referenced. The value in question should be printed as + // a <badref> + // + if (!use_empty()) { + dbgs() << "While deleting: " << *VTy << " %" << getNameStr() << "\n"; + for (use_iterator I = use_begin(), E = use_end(); I != E; ++I) + dbgs() << "Use still stuck around after Def is destroyed:" + << **I << "\n"; + } +#endif + assert(use_empty() && "Uses remain when a value is destroyed!"); + + // If this value is named, destroy the name. This should not be in a symtab + // at this point. + if (Name) + Name->Destroy(); + + // There should be no uses of this object anymore, remove it. + LeakDetector::removeGarbageObject(this); +} + +/// hasNUses - Return true if this Value has exactly N users. +/// +bool Value::hasNUses(unsigned N) const { + const_use_iterator UI = use_begin(), E = use_end(); + + for (; N; --N, ++UI) + if (UI == E) return false; // Too few. + return UI == E; +} + +/// hasNUsesOrMore - Return true if this value has N users or more. This is +/// logically equivalent to getNumUses() >= N. +/// +bool Value::hasNUsesOrMore(unsigned N) const { + const_use_iterator UI = use_begin(), E = use_end(); + + for (; N; --N, ++UI) + if (UI == E) return false; // Too few. + + return true; +} + +/// isUsedInBasicBlock - Return true if this value is used in the specified +/// basic block. +bool Value::isUsedInBasicBlock(const BasicBlock *BB) const { + for (const_use_iterator I = use_begin(), E = use_end(); I != E; ++I) { + const Instruction *User = dyn_cast<Instruction>(*I); + if (User && User->getParent() == BB) + return true; + } + return false; +} + + +/// getNumUses - This method computes the number of uses of this Value. This +/// is a linear time operation. Use hasOneUse or hasNUses to check for specific +/// values. +unsigned Value::getNumUses() const { + return (unsigned)std::distance(use_begin(), use_end()); +} + +static bool getSymTab(Value *V, ValueSymbolTable *&ST) { + ST = 0; + if (Instruction *I = dyn_cast<Instruction>(V)) { + if (BasicBlock *P = I->getParent()) + if (Function *PP = P->getParent()) + ST = &PP->getValueSymbolTable(); + } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) { + if (Function *P = BB->getParent()) + ST = &P->getValueSymbolTable(); + } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { + if (Module *P = GV->getParent()) + ST = &P->getValueSymbolTable(); + } else if (Argument *A = dyn_cast<Argument>(V)) { + if (Function *P = A->getParent()) + ST = &P->getValueSymbolTable(); + } else if (isa<MDString>(V)) + return true; + else { + assert(isa<Constant>(V) && "Unknown value type!"); + return true; // no name is setable for this. + } + return false; +} + +StringRef Value::getName() const { + // Make sure the empty string is still a C string. For historical reasons, + // some clients want to call .data() on the result and expect it to be null + // terminated. + if (!Name) return StringRef("", 0); + return Name->getKey(); +} + +std::string Value::getNameStr() const { + return getName().str(); +} + +void Value::setName(const Twine &NewName) { + // Fast path for common IRBuilder case of setName("") when there is no name. + if (NewName.isTriviallyEmpty() && !hasName()) + return; + + SmallString<256> NameData; + StringRef NameRef = NewName.toStringRef(NameData); + + // Name isn't changing? + if (getName() == NameRef) + return; + + assert(!getType()->isVoidTy() && "Cannot assign a name to void values!"); + + // Get the symbol table to update for this object. + ValueSymbolTable *ST; + if (getSymTab(this, ST)) + return; // Cannot set a name on this value (e.g. constant). + + if (!ST) { // No symbol table to update? Just do the change. + if (NameRef.empty()) { + // Free the name for this value. + Name->Destroy(); + Name = 0; + return; + } + + if (Name) + Name->Destroy(); + + // NOTE: Could optimize for the case the name is shrinking to not deallocate + // then reallocated. + + // Create the new name. + Name = ValueName::Create(NameRef.begin(), NameRef.end()); + Name->setValue(this); + return; + } + + // NOTE: Could optimize for the case the name is shrinking to not deallocate + // then reallocated. + if (hasName()) { + // Remove old name. + ST->removeValueName(Name); + Name->Destroy(); + Name = 0; + + if (NameRef.empty()) + return; + } + + // Name is changing to something new. + Name = ST->createValueName(NameRef, this); +} + + +/// takeName - transfer the name from V to this value, setting V's name to +/// empty. It is an error to call V->takeName(V). +void Value::takeName(Value *V) { + ValueSymbolTable *ST = 0; + // If this value has a name, drop it. + if (hasName()) { + // Get the symtab this is in. + if (getSymTab(this, ST)) { + // We can't set a name on this value, but we need to clear V's name if + // it has one. + if (V->hasName()) V->setName(""); + return; // Cannot set a name on this value (e.g. constant). + } + + // Remove old name. + if (ST) + ST->removeValueName(Name); + Name->Destroy(); + Name = 0; + } + + // Now we know that this has no name. + + // If V has no name either, we're done. + if (!V->hasName()) return; + + // Get this's symtab if we didn't before. + if (!ST) { + if (getSymTab(this, ST)) { + // Clear V's name. + V->setName(""); + return; // Cannot set a name on this value (e.g. constant). + } + } + + // Get V's ST, this should always succed, because V has a name. + ValueSymbolTable *VST; + bool Failure = getSymTab(V, VST); + assert(!Failure && "V has a name, so it should have a ST!"); Failure=Failure; + + // If these values are both in the same symtab, we can do this very fast. + // This works even if both values have no symtab yet. + if (ST == VST) { + // Take the name! + Name = V->Name; + V->Name = 0; + Name->setValue(this); + return; + } + + // Otherwise, things are slightly more complex. Remove V's name from VST and + // then reinsert it into ST. + + if (VST) + VST->removeValueName(V->Name); + Name = V->Name; + V->Name = 0; + Name->setValue(this); + + if (ST) + ST->reinsertValue(this); +} + + +// uncheckedReplaceAllUsesWith - This is exactly the same as replaceAllUsesWith, +// except that it doesn't have all of the asserts. The asserts fail because we +// are half-way done resolving types, which causes some types to exist as two +// different Type*'s at the same time. This is a sledgehammer to work around +// this problem. +// +void Value::uncheckedReplaceAllUsesWith(Value *New) { + // Notify all ValueHandles (if present) that this value is going away. + if (HasValueHandle) + ValueHandleBase::ValueIsRAUWd(this, New); + + while (!use_empty()) { + Use &U = *UseList; + // Must handle Constants specially, we cannot call replaceUsesOfWith on a + // constant because they are uniqued. + if (Constant *C = dyn_cast<Constant>(U.getUser())) { + if (!isa<GlobalValue>(C)) { + C->replaceUsesOfWithOnConstant(this, New, &U); + continue; + } + } + + U.set(New); + } +} + +void Value::replaceAllUsesWith(Value *New) { + assert(New && "Value::replaceAllUsesWith(<null>) is invalid!"); + assert(New != this && "this->replaceAllUsesWith(this) is NOT valid!"); + assert(New->getType() == getType() && + "replaceAllUses of value with new value of different type!"); + + uncheckedReplaceAllUsesWith(New); +} + +Value *Value::stripPointerCasts() { + if (!getType()->isPointerTy()) + return this; + + // Even though we don't look through PHI nodes, we could be called on an + // instruction in an unreachable block, which may be on a cycle. + SmallPtrSet<Value *, 4> Visited; + + Value *V = this; + Visited.insert(V); + do { + if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { + if (!GEP->hasAllZeroIndices()) + return V; + V = GEP->getPointerOperand(); + } else if (Operator::getOpcode(V) == Instruction::BitCast) { + V = cast<Operator>(V)->getOperand(0); + } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { + if (GA->mayBeOverridden()) + return V; + V = GA->getAliasee(); + } else { + return V; + } + assert(V->getType()->isPointerTy() && "Unexpected operand type!"); + } while (Visited.insert(V)); + + return V; +} + +Value *Value::getUnderlyingObject(unsigned MaxLookup) { + if (!getType()->isPointerTy()) + return this; + Value *V = this; + for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { + if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { + V = GEP->getPointerOperand(); + } else if (Operator::getOpcode(V) == Instruction::BitCast) { + V = cast<Operator>(V)->getOperand(0); + } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { + if (GA->mayBeOverridden()) + return V; + V = GA->getAliasee(); + } else { + return V; + } + assert(V->getType()->isPointerTy() && "Unexpected operand type!"); + } + return V; +} + +/// DoPHITranslation - If this value is a PHI node with CurBB as its parent, +/// return the value in the PHI node corresponding to PredBB. If not, return +/// ourself. This is useful if you want to know the value something has in a +/// predecessor block. +Value *Value::DoPHITranslation(const BasicBlock *CurBB, + const BasicBlock *PredBB) { + PHINode *PN = dyn_cast<PHINode>(this); + if (PN && PN->getParent() == CurBB) + return PN->getIncomingValueForBlock(PredBB); + return this; +} + +LLVMContext &Value::getContext() const { return VTy->getContext(); } + +//===----------------------------------------------------------------------===// +// ValueHandleBase Class +//===----------------------------------------------------------------------===// + +/// AddToExistingUseList - Add this ValueHandle to the use list for VP, where +/// List is known to point into the existing use list. +void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) { + assert(List && "Handle list is null?"); + + // Splice ourselves into the list. + Next = *List; + *List = this; + setPrevPtr(List); + if (Next) { + Next->setPrevPtr(&Next); + assert(VP == Next->VP && "Added to wrong list?"); + } +} + +void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) { + assert(List && "Must insert after existing node"); + + Next = List->Next; + setPrevPtr(&List->Next); + List->Next = this; + if (Next) + Next->setPrevPtr(&Next); +} + +/// AddToUseList - Add this ValueHandle to the use list for VP. +void ValueHandleBase::AddToUseList() { + assert(VP && "Null pointer doesn't have a use list!"); + + LLVMContextImpl *pImpl = VP->getContext().pImpl; + + if (VP->HasValueHandle) { + // If this value already has a ValueHandle, then it must be in the + // ValueHandles map already. + ValueHandleBase *&Entry = pImpl->ValueHandles[VP]; + assert(Entry != 0 && "Value doesn't have any handles?"); + AddToExistingUseList(&Entry); + return; + } + + // Ok, it doesn't have any handles yet, so we must insert it into the + // DenseMap. However, doing this insertion could cause the DenseMap to + // reallocate itself, which would invalidate all of the PrevP pointers that + // point into the old table. Handle this by checking for reallocation and + // updating the stale pointers only if needed. + DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; + const void *OldBucketPtr = Handles.getPointerIntoBucketsArray(); + + ValueHandleBase *&Entry = Handles[VP]; + assert(Entry == 0 && "Value really did already have handles?"); + AddToExistingUseList(&Entry); + VP->HasValueHandle = true; + + // If reallocation didn't happen or if this was the first insertion, don't + // walk the table. + if (Handles.isPointerIntoBucketsArray(OldBucketPtr) || + Handles.size() == 1) { + return; + } + + // Okay, reallocation did happen. Fix the Prev Pointers. + for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(), + E = Handles.end(); I != E; ++I) { + assert(I->second && I->first == I->second->VP && "List invariant broken!"); + I->second->setPrevPtr(&I->second); + } +} + +/// RemoveFromUseList - Remove this ValueHandle from its current use list. +void ValueHandleBase::RemoveFromUseList() { + assert(VP && VP->HasValueHandle && "Pointer doesn't have a use list!"); + + // Unlink this from its use list. + ValueHandleBase **PrevPtr = getPrevPtr(); + assert(*PrevPtr == this && "List invariant broken"); + + *PrevPtr = Next; + if (Next) { + assert(Next->getPrevPtr() == &Next && "List invariant broken"); + Next->setPrevPtr(PrevPtr); + return; + } + + // If the Next pointer was null, then it is possible that this was the last + // ValueHandle watching VP. If so, delete its entry from the ValueHandles + // map. + LLVMContextImpl *pImpl = VP->getContext().pImpl; + DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; + if (Handles.isPointerIntoBucketsArray(PrevPtr)) { + Handles.erase(VP); + VP->HasValueHandle = false; + } +} + + +void ValueHandleBase::ValueIsDeleted(Value *V) { + assert(V->HasValueHandle && "Should only be called if ValueHandles present"); + + // Get the linked list base, which is guaranteed to exist since the + // HasValueHandle flag is set. + LLVMContextImpl *pImpl = V->getContext().pImpl; + ValueHandleBase *Entry = pImpl->ValueHandles[V]; + assert(Entry && "Value bit set but no entries exist"); + + // We use a local ValueHandleBase as an iterator so that ValueHandles can add + // and remove themselves from the list without breaking our iteration. This + // is not really an AssertingVH; we just have to give ValueHandleBase a kind. + // Note that we deliberately do not the support the case when dropping a value + // handle results in a new value handle being permanently added to the list + // (as might occur in theory for CallbackVH's): the new value handle will not + // be processed and the checking code will mete out righteous punishment if + // the handle is still present once we have finished processing all the other + // value handles (it is fine to momentarily add then remove a value handle). + for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { + Iterator.RemoveFromUseList(); + Iterator.AddToExistingUseListAfter(Entry); + assert(Entry->Next == &Iterator && "Loop invariant broken."); + + switch (Entry->getKind()) { + case Assert: + break; + case Tracking: + // Mark that this value has been deleted by setting it to an invalid Value + // pointer. + Entry->operator=(DenseMapInfo<Value *>::getTombstoneKey()); + break; + case Weak: + // Weak just goes to null, which will unlink it from the list. + Entry->operator=(0); + break; + case Callback: + // Forward to the subclass's implementation. + static_cast<CallbackVH*>(Entry)->deleted(); + break; + } + } + + // All callbacks, weak references, and assertingVHs should be dropped by now. + if (V->HasValueHandle) { +#ifndef NDEBUG // Only in +Asserts mode... + dbgs() << "While deleting: " << *V->getType() << " %" << V->getNameStr() + << "\n"; + if (pImpl->ValueHandles[V]->getKind() == Assert) + llvm_unreachable("An asserting value handle still pointed to this" + " value!"); + +#endif + llvm_unreachable("All references to V were not removed?"); + } +} + + +void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) { + assert(Old->HasValueHandle &&"Should only be called if ValueHandles present"); + assert(Old != New && "Changing value into itself!"); + + // Get the linked list base, which is guaranteed to exist since the + // HasValueHandle flag is set. + LLVMContextImpl *pImpl = Old->getContext().pImpl; + ValueHandleBase *Entry = pImpl->ValueHandles[Old]; + + assert(Entry && "Value bit set but no entries exist"); + + // We use a local ValueHandleBase as an iterator so that + // ValueHandles can add and remove themselves from the list without + // breaking our iteration. This is not really an AssertingVH; we + // just have to give ValueHandleBase some kind. + for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { + Iterator.RemoveFromUseList(); + Iterator.AddToExistingUseListAfter(Entry); + assert(Entry->Next == &Iterator && "Loop invariant broken."); + + switch (Entry->getKind()) { + case Assert: + // Asserting handle does not follow RAUW implicitly. + break; + case Tracking: + // Tracking goes to new value like a WeakVH. Note that this may make it + // something incompatible with its templated type. We don't want to have a + // virtual (or inline) interface to handle this though, so instead we make + // the TrackingVH accessors guarantee that a client never sees this value. + + // FALLTHROUGH + case Weak: + // Weak goes to the new value, which will unlink it from Old's list. + Entry->operator=(New); + break; + case Callback: + // Forward to the subclass's implementation. + static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New); + break; + } + } + +#ifndef NDEBUG + // If any new tracking or weak value handles were added while processing the + // list, then complain about it now. + if (Old->HasValueHandle) + for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next) + switch (Entry->getKind()) { + case Tracking: + case Weak: + dbgs() << "After RAUW from " << *Old->getType() << " %" + << Old->getNameStr() << " to " << *New->getType() << " %" + << New->getNameStr() << "\n"; + llvm_unreachable("A tracking or weak value handle still pointed to the" + " old value!\n"); + default: + break; + } +#endif +} + +/// ~CallbackVH. Empty, but defined here to avoid emitting the vtable +/// more than once. +CallbackVH::~CallbackVH() {} + + +//===----------------------------------------------------------------------===// +// User Class +//===----------------------------------------------------------------------===// + +// replaceUsesOfWith - Replaces all references to the "From" definition with +// references to the "To" definition. +// +void User::replaceUsesOfWith(Value *From, Value *To) { + if (From == To) return; // Duh what? + + assert((!isa<Constant>(this) || isa<GlobalValue>(this)) && + "Cannot call User::replaceUsesOfWith on a constant!"); + + for (unsigned i = 0, E = getNumOperands(); i != E; ++i) + if (getOperand(i) == From) { // Is This operand is pointing to oldval? + // The side effects of this setOperand call include linking to + // "To", adding "this" to the uses list of To, and + // most importantly, removing "this" from the use list of "From". + setOperand(i, To); // Fix it now... + } +} diff --git a/contrib/llvm/lib/VMCore/ValueSymbolTable.cpp b/contrib/llvm/lib/VMCore/ValueSymbolTable.cpp new file mode 100644 index 0000000..254bf06 --- /dev/null +++ b/contrib/llvm/lib/VMCore/ValueSymbolTable.cpp @@ -0,0 +1,117 @@ +//===-- ValueSymbolTable.cpp - Implement the ValueSymbolTable class -------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the ValueSymbolTable class for the VMCore library. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "valuesymtab" +#include "llvm/GlobalValue.h" +#include "llvm/Type.h" +#include "llvm/ValueSymbolTable.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +using namespace llvm; + +// Class destructor +ValueSymbolTable::~ValueSymbolTable() { +#ifndef NDEBUG // Only do this in -g mode... + for (iterator VI = vmap.begin(), VE = vmap.end(); VI != VE; ++VI) + dbgs() << "Value still in symbol table! Type = '" + << VI->getValue()->getType()->getDescription() << "' Name = '" + << VI->getKeyData() << "'\n"; + assert(vmap.empty() && "Values remain in symbol table!"); +#endif +} + +// Insert a value into the symbol table with the specified name... +// +void ValueSymbolTable::reinsertValue(Value* V) { + assert(V->hasName() && "Can't insert nameless Value into symbol table"); + + // Try inserting the name, assuming it won't conflict. + if (vmap.insert(V->Name)) { + //DEBUG(dbgs() << " Inserted value: " << V->Name << ": " << *V << "\n"); + return; + } + + // Otherwise, there is a naming conflict. Rename this value. + SmallString<256> UniqueName(V->getName().begin(), V->getName().end()); + + // The name is too already used, just free it so we can allocate a new name. + V->Name->Destroy(); + + unsigned BaseSize = UniqueName.size(); + while (1) { + // Trim any suffix off and append the next number. + UniqueName.resize(BaseSize); + raw_svector_ostream(UniqueName) << ++LastUnique; + + // Try insert the vmap entry with this suffix. + ValueName &NewName = vmap.GetOrCreateValue(UniqueName); + if (NewName.getValue() == 0) { + // Newly inserted name. Success! + NewName.setValue(V); + V->Name = &NewName; + //DEBUG(dbgs() << " Inserted value: " << UniqueName << ": " << *V << "\n"); + return; + } + } +} + +void ValueSymbolTable::removeValueName(ValueName *V) { + //DEBUG(dbgs() << " Removing Value: " << V->getKeyData() << "\n"); + // Remove the value from the symbol table. + vmap.remove(V); +} + +/// createValueName - This method attempts to create a value name and insert +/// it into the symbol table with the specified name. If it conflicts, it +/// auto-renames the name and returns that instead. +ValueName *ValueSymbolTable::createValueName(StringRef Name, Value *V) { + // In the common case, the name is not already in the symbol table. + ValueName &Entry = vmap.GetOrCreateValue(Name); + if (Entry.getValue() == 0) { + Entry.setValue(V); + //DEBUG(dbgs() << " Inserted value: " << Entry.getKeyData() << ": " + // << *V << "\n"); + return &Entry; + } + + // Otherwise, there is a naming conflict. Rename this value. + SmallString<256> UniqueName(Name.begin(), Name.end()); + + while (1) { + // Trim any suffix off and append the next number. + UniqueName.resize(Name.size()); + raw_svector_ostream(UniqueName) << ++LastUnique; + + // Try insert the vmap entry with this suffix. + ValueName &NewName = vmap.GetOrCreateValue(UniqueName); + if (NewName.getValue() == 0) { + // Newly inserted name. Success! + NewName.setValue(V); + //DEBUG(dbgs() << " Inserted value: " << UniqueName << ": " << *V << "\n"); + return &NewName; + } + } +} + + +// dump - print out the symbol table +// +void ValueSymbolTable::dump() const { + //DEBUG(dbgs() << "ValueSymbolTable:\n"); + for (const_iterator I = begin(), E = end(); I != E; ++I) { + //DEBUG(dbgs() << " '" << I->getKeyData() << "' = "); + I->getValue()->dump(); + //DEBUG(dbgs() << "\n"); + } +} diff --git a/contrib/llvm/lib/VMCore/ValueTypes.cpp b/contrib/llvm/lib/VMCore/ValueTypes.cpp new file mode 100644 index 0000000..d2a8ce3 --- /dev/null +++ b/contrib/llvm/lib/VMCore/ValueTypes.cpp @@ -0,0 +1,208 @@ +//===----------- ValueTypes.cpp - Implementation of EVT methods -----------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements methods in the CodeGen/ValueTypes.h header. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/StringExtras.h" +#include "llvm/CodeGen/ValueTypes.h" +#include "llvm/LLVMContext.h" +#include "llvm/Type.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Support/ErrorHandling.h" +using namespace llvm; + +EVT EVT::getExtendedIntegerVT(LLVMContext &Context, unsigned BitWidth) { + EVT VT; + VT.LLVMTy = IntegerType::get(Context, BitWidth); + assert(VT.isExtended() && "Type is not extended!"); + return VT; +} + +EVT EVT::getExtendedVectorVT(LLVMContext &Context, EVT VT, + unsigned NumElements) { + EVT ResultVT; + ResultVT.LLVMTy = VectorType::get(VT.getTypeForEVT(Context), NumElements); + assert(ResultVT.isExtended() && "Type is not extended!"); + return ResultVT; +} + +bool EVT::isExtendedFloatingPoint() const { + assert(isExtended() && "Type is not extended!"); + return LLVMTy->isFPOrFPVectorTy(); +} + +bool EVT::isExtendedInteger() const { + assert(isExtended() && "Type is not extended!"); + return LLVMTy->isIntOrIntVectorTy(); +} + +bool EVT::isExtendedVector() const { + assert(isExtended() && "Type is not extended!"); + return LLVMTy->isVectorTy(); +} + +bool EVT::isExtended64BitVector() const { + return isExtendedVector() && getSizeInBits() == 64; +} + +bool EVT::isExtended128BitVector() const { + return isExtendedVector() && getSizeInBits() == 128; +} + +bool EVT::isExtended256BitVector() const { + return isExtendedVector() && getSizeInBits() == 256; +} + +bool EVT::isExtended512BitVector() const { + return isExtendedVector() && getSizeInBits() == 512; +} + +EVT EVT::getExtendedVectorElementType() const { + assert(isExtended() && "Type is not extended!"); + return EVT::getEVT(cast<VectorType>(LLVMTy)->getElementType()); +} + +unsigned EVT::getExtendedVectorNumElements() const { + assert(isExtended() && "Type is not extended!"); + return cast<VectorType>(LLVMTy)->getNumElements(); +} + +unsigned EVT::getExtendedSizeInBits() const { + assert(isExtended() && "Type is not extended!"); + if (const IntegerType *ITy = dyn_cast<IntegerType>(LLVMTy)) + return ITy->getBitWidth(); + if (const VectorType *VTy = dyn_cast<VectorType>(LLVMTy)) + return VTy->getBitWidth(); + assert(false && "Unrecognized extended type!"); + return 0; // Suppress warnings. +} + +/// getEVTString - This function returns value type as a string, e.g. "i32". +std::string EVT::getEVTString() const { + switch (V.SimpleTy) { + default: + if (isVector()) + return "v" + utostr(getVectorNumElements()) + + getVectorElementType().getEVTString(); + if (isInteger()) + return "i" + utostr(getSizeInBits()); + llvm_unreachable("Invalid EVT!"); + return "?"; + case MVT::i1: return "i1"; + case MVT::i8: return "i8"; + case MVT::i16: return "i16"; + case MVT::i32: return "i32"; + case MVT::i64: return "i64"; + case MVT::i128: return "i128"; + case MVT::f32: return "f32"; + case MVT::f64: return "f64"; + case MVT::f80: return "f80"; + case MVT::f128: return "f128"; + case MVT::ppcf128: return "ppcf128"; + case MVT::isVoid: return "isVoid"; + case MVT::Other: return "ch"; + case MVT::Flag: return "flag"; + case MVT::v2i8: return "v2i8"; + case MVT::v4i8: return "v4i8"; + case MVT::v8i8: return "v8i8"; + case MVT::v16i8: return "v16i8"; + case MVT::v32i8: return "v32i8"; + case MVT::v2i16: return "v2i16"; + case MVT::v4i16: return "v4i16"; + case MVT::v8i16: return "v8i16"; + case MVT::v16i16: return "v16i16"; + case MVT::v2i32: return "v2i32"; + case MVT::v4i32: return "v4i32"; + case MVT::v8i32: return "v8i32"; + case MVT::v1i64: return "v1i64"; + case MVT::v2i64: return "v2i64"; + case MVT::v4i64: return "v4i64"; + case MVT::v8i64: return "v8i64"; + case MVT::v2f32: return "v2f32"; + case MVT::v4f32: return "v4f32"; + case MVT::v8f32: return "v8f32"; + case MVT::v2f64: return "v2f64"; + case MVT::v4f64: return "v4f64"; + case MVT::Metadata:return "Metadata"; + } +} + +/// getTypeForEVT - This method returns an LLVM type corresponding to the +/// specified EVT. For integer types, this returns an unsigned type. Note +/// that this will abort for types that cannot be represented. +const Type *EVT::getTypeForEVT(LLVMContext &Context) const { + switch (V.SimpleTy) { + default: + assert(isExtended() && "Type is not extended!"); + return LLVMTy; + case MVT::isVoid: return Type::getVoidTy(Context); + case MVT::i1: return Type::getInt1Ty(Context); + case MVT::i8: return Type::getInt8Ty(Context); + case MVT::i16: return Type::getInt16Ty(Context); + case MVT::i32: return Type::getInt32Ty(Context); + case MVT::i64: return Type::getInt64Ty(Context); + case MVT::i128: return IntegerType::get(Context, 128); + case MVT::f32: return Type::getFloatTy(Context); + case MVT::f64: return Type::getDoubleTy(Context); + case MVT::f80: return Type::getX86_FP80Ty(Context); + case MVT::f128: return Type::getFP128Ty(Context); + case MVT::ppcf128: return Type::getPPC_FP128Ty(Context); + case MVT::v2i8: return VectorType::get(Type::getInt8Ty(Context), 2); + case MVT::v4i8: return VectorType::get(Type::getInt8Ty(Context), 4); + case MVT::v8i8: return VectorType::get(Type::getInt8Ty(Context), 8); + case MVT::v16i8: return VectorType::get(Type::getInt8Ty(Context), 16); + case MVT::v32i8: return VectorType::get(Type::getInt8Ty(Context), 32); + case MVT::v2i16: return VectorType::get(Type::getInt16Ty(Context), 2); + case MVT::v4i16: return VectorType::get(Type::getInt16Ty(Context), 4); + case MVT::v8i16: return VectorType::get(Type::getInt16Ty(Context), 8); + case MVT::v16i16: return VectorType::get(Type::getInt16Ty(Context), 16); + case MVT::v2i32: return VectorType::get(Type::getInt32Ty(Context), 2); + case MVT::v4i32: return VectorType::get(Type::getInt32Ty(Context), 4); + case MVT::v8i32: return VectorType::get(Type::getInt32Ty(Context), 8); + case MVT::v1i64: return VectorType::get(Type::getInt64Ty(Context), 1); + case MVT::v2i64: return VectorType::get(Type::getInt64Ty(Context), 2); + case MVT::v4i64: return VectorType::get(Type::getInt64Ty(Context), 4); + case MVT::v8i64: return VectorType::get(Type::getInt64Ty(Context), 8); + case MVT::v2f32: return VectorType::get(Type::getFloatTy(Context), 2); + case MVT::v4f32: return VectorType::get(Type::getFloatTy(Context), 4); + case MVT::v8f32: return VectorType::get(Type::getFloatTy(Context), 8); + case MVT::v2f64: return VectorType::get(Type::getDoubleTy(Context), 2); + case MVT::v4f64: return VectorType::get(Type::getDoubleTy(Context), 4); + case MVT::Metadata: return Type::getMetadataTy(Context); + } +} + +/// getEVT - Return the value type corresponding to the specified type. This +/// returns all pointers as MVT::iPTR. If HandleUnknown is true, unknown types +/// are returned as Other, otherwise they are invalid. +EVT EVT::getEVT(const Type *Ty, bool HandleUnknown){ + switch (Ty->getTypeID()) { + default: + if (HandleUnknown) return MVT(MVT::Other); + llvm_unreachable("Unknown type!"); + return MVT::isVoid; + case Type::VoidTyID: + return MVT::isVoid; + case Type::IntegerTyID: + return getIntegerVT(Ty->getContext(), cast<IntegerType>(Ty)->getBitWidth()); + case Type::FloatTyID: return MVT(MVT::f32); + case Type::DoubleTyID: return MVT(MVT::f64); + case Type::X86_FP80TyID: return MVT(MVT::f80); + case Type::FP128TyID: return MVT(MVT::f128); + case Type::PPC_FP128TyID: return MVT(MVT::ppcf128); + case Type::PointerTyID: return MVT(MVT::iPTR); + case Type::VectorTyID: { + const VectorType *VTy = cast<VectorType>(Ty); + return getVectorVT(Ty->getContext(), getEVT(VTy->getElementType(), false), + VTy->getNumElements()); + } + } +} diff --git a/contrib/llvm/lib/VMCore/Verifier.cpp b/contrib/llvm/lib/VMCore/Verifier.cpp new file mode 100644 index 0000000..e3ecc97 --- /dev/null +++ b/contrib/llvm/lib/VMCore/Verifier.cpp @@ -0,0 +1,1978 @@ +//===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the function verifier interface, that can be used for some +// sanity checking of input to the system. +// +// Note that this does not provide full `Java style' security and verifications, +// instead it just tries to ensure that code is well-formed. +// +// * Both of a binary operator's parameters are of the same type +// * Verify that the indices of mem access instructions match other operands +// * Verify that arithmetic and other things are only performed on first-class +// types. Verify that shifts & logicals only happen on integrals f.e. +// * All of the constants in a switch statement are of the correct type +// * The code is in valid SSA form +// * It should be illegal to put a label into any other type (like a structure) +// or to return one. [except constant arrays!] +// * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad +// * PHI nodes must have an entry for each predecessor, with no extras. +// * PHI nodes must be the first thing in a basic block, all grouped together +// * PHI nodes must have at least one entry +// * All basic blocks should only end with terminator insts, not contain them +// * The entry node to a function must not have predecessors +// * All Instructions must be embedded into a basic block +// * Functions cannot take a void-typed parameter +// * Verify that a function's argument list agrees with it's declared type. +// * It is illegal to specify a name for a void value. +// * It is illegal to have a internal global value with no initializer +// * It is illegal to have a ret instruction that returns a value that does not +// agree with the function return value type. +// * Function call argument types match the function prototype +// * All other things that are tested by asserts spread about the code... +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/Verifier.h" +#include "llvm/CallingConv.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/InlineAsm.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/Metadata.h" +#include "llvm/Module.h" +#include "llvm/Pass.h" +#include "llvm/PassManager.h" +#include "llvm/TypeSymbolTable.h" +#include "llvm/Analysis/Dominators.h" +#include "llvm/Assembly/Writer.h" +#include "llvm/CodeGen/ValueTypes.h" +#include "llvm/Support/CallSite.h" +#include "llvm/Support/CFG.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/InstVisitor.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cstdarg> +using namespace llvm; + +namespace { // Anonymous namespace for class + struct PreVerifier : public FunctionPass { + static char ID; // Pass ID, replacement for typeid + + PreVerifier() : FunctionPass(ID) { } + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesAll(); + } + + // Check that the prerequisites for successful DominatorTree construction + // are satisfied. + bool runOnFunction(Function &F) { + bool Broken = false; + + for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) { + if (I->empty() || !I->back().isTerminator()) { + dbgs() << "Basic Block in function '" << F.getName() + << "' does not have terminator!\n"; + WriteAsOperand(dbgs(), I, true); + dbgs() << "\n"; + Broken = true; + } + } + + if (Broken) + report_fatal_error("Broken module, no Basic Block terminator!"); + + return false; + } + }; +} + +char PreVerifier::ID = 0; +INITIALIZE_PASS(PreVerifier, "preverify", "Preliminary module verification", + false, false); +char &PreVerifyID = PreVerifier::ID; + +namespace { + class TypeSet : public AbstractTypeUser { + public: + TypeSet() {} + + /// Insert a type into the set of types. + bool insert(const Type *Ty) { + if (!Types.insert(Ty)) + return false; + if (Ty->isAbstract()) + Ty->addAbstractTypeUser(this); + return true; + } + + // Remove ourselves as abstract type listeners for any types that remain + // abstract when the TypeSet is destroyed. + ~TypeSet() { + for (SmallSetVector<const Type *, 16>::iterator I = Types.begin(), + E = Types.end(); I != E; ++I) { + const Type *Ty = *I; + if (Ty->isAbstract()) + Ty->removeAbstractTypeUser(this); + } + } + + // Abstract type user interface. + + /// Remove types from the set when refined. Do not insert the type it was + /// refined to because that type hasn't been verified yet. + void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) { + Types.remove(OldTy); + OldTy->removeAbstractTypeUser(this); + } + + /// Stop listening for changes to a type which is no longer abstract. + void typeBecameConcrete(const DerivedType *AbsTy) { + AbsTy->removeAbstractTypeUser(this); + } + + void dump() const {} + + private: + SmallSetVector<const Type *, 16> Types; + + // Disallow copying. + TypeSet(const TypeSet &); + TypeSet &operator=(const TypeSet &); + }; + + struct Verifier : public FunctionPass, public InstVisitor<Verifier> { + static char ID; // Pass ID, replacement for typeid + bool Broken; // Is this module found to be broken? + bool RealPass; // Are we not being run by a PassManager? + VerifierFailureAction action; + // What to do if verification fails. + Module *Mod; // Module we are verifying right now + LLVMContext *Context; // Context within which we are verifying + DominatorTree *DT; // Dominator Tree, caution can be null! + + std::string Messages; + raw_string_ostream MessagesStr; + + /// InstInThisBlock - when verifying a basic block, keep track of all of the + /// instructions we have seen so far. This allows us to do efficient + /// dominance checks for the case when an instruction has an operand that is + /// an instruction in the same block. + SmallPtrSet<Instruction*, 16> InstsInThisBlock; + + /// Types - keep track of the types that have been checked already. + TypeSet Types; + + /// MDNodes - keep track of the metadata nodes that have been checked + /// already. + SmallPtrSet<MDNode *, 32> MDNodes; + + Verifier() + : FunctionPass(ID), + Broken(false), RealPass(true), action(AbortProcessAction), + Mod(0), Context(0), DT(0), MessagesStr(Messages) {} + explicit Verifier(VerifierFailureAction ctn) + : FunctionPass(ID), + Broken(false), RealPass(true), action(ctn), Mod(0), Context(0), DT(0), + MessagesStr(Messages) {} + + bool doInitialization(Module &M) { + Mod = &M; + Context = &M.getContext(); + verifyTypeSymbolTable(M.getTypeSymbolTable()); + + // If this is a real pass, in a pass manager, we must abort before + // returning back to the pass manager, or else the pass manager may try to + // run other passes on the broken module. + if (RealPass) + return abortIfBroken(); + return false; + } + + bool runOnFunction(Function &F) { + // Get dominator information if we are being run by PassManager + if (RealPass) DT = &getAnalysis<DominatorTree>(); + + Mod = F.getParent(); + if (!Context) Context = &F.getContext(); + + visit(F); + InstsInThisBlock.clear(); + + // If this is a real pass, in a pass manager, we must abort before + // returning back to the pass manager, or else the pass manager may try to + // run other passes on the broken module. + if (RealPass) + return abortIfBroken(); + + return false; + } + + bool doFinalization(Module &M) { + // Scan through, checking all of the external function's linkage now... + for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) { + visitGlobalValue(*I); + + // Check to make sure function prototypes are okay. + if (I->isDeclaration()) visitFunction(*I); + } + + for (Module::global_iterator I = M.global_begin(), E = M.global_end(); + I != E; ++I) + visitGlobalVariable(*I); + + for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); + I != E; ++I) + visitGlobalAlias(*I); + + for (Module::named_metadata_iterator I = M.named_metadata_begin(), + E = M.named_metadata_end(); I != E; ++I) + visitNamedMDNode(*I); + + // If the module is broken, abort at this time. + return abortIfBroken(); + } + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesAll(); + AU.addRequiredID(PreVerifyID); + if (RealPass) + AU.addRequired<DominatorTree>(); + } + + /// abortIfBroken - If the module is broken and we are supposed to abort on + /// this condition, do so. + /// + bool abortIfBroken() { + if (!Broken) return false; + MessagesStr << "Broken module found, "; + switch (action) { + default: llvm_unreachable("Unknown action"); + case AbortProcessAction: + MessagesStr << "compilation aborted!\n"; + dbgs() << MessagesStr.str(); + // Client should choose different reaction if abort is not desired + abort(); + case PrintMessageAction: + MessagesStr << "verification continues.\n"; + dbgs() << MessagesStr.str(); + return false; + case ReturnStatusAction: + MessagesStr << "compilation terminated.\n"; + return true; + } + } + + + // Verification methods... + void verifyTypeSymbolTable(TypeSymbolTable &ST); + void visitGlobalValue(GlobalValue &GV); + void visitGlobalVariable(GlobalVariable &GV); + void visitGlobalAlias(GlobalAlias &GA); + void visitNamedMDNode(NamedMDNode &NMD); + void visitMDNode(MDNode &MD, Function *F); + void visitFunction(Function &F); + void visitBasicBlock(BasicBlock &BB); + using InstVisitor<Verifier>::visit; + + void visit(Instruction &I); + + void visitTruncInst(TruncInst &I); + void visitZExtInst(ZExtInst &I); + void visitSExtInst(SExtInst &I); + void visitFPTruncInst(FPTruncInst &I); + void visitFPExtInst(FPExtInst &I); + void visitFPToUIInst(FPToUIInst &I); + void visitFPToSIInst(FPToSIInst &I); + void visitUIToFPInst(UIToFPInst &I); + void visitSIToFPInst(SIToFPInst &I); + void visitIntToPtrInst(IntToPtrInst &I); + void visitPtrToIntInst(PtrToIntInst &I); + void visitBitCastInst(BitCastInst &I); + void visitPHINode(PHINode &PN); + void visitBinaryOperator(BinaryOperator &B); + void visitICmpInst(ICmpInst &IC); + void visitFCmpInst(FCmpInst &FC); + void visitExtractElementInst(ExtractElementInst &EI); + void visitInsertElementInst(InsertElementInst &EI); + void visitShuffleVectorInst(ShuffleVectorInst &EI); + void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } + void visitCallInst(CallInst &CI); + void visitInvokeInst(InvokeInst &II); + void visitGetElementPtrInst(GetElementPtrInst &GEP); + void visitLoadInst(LoadInst &LI); + void visitStoreInst(StoreInst &SI); + void visitInstruction(Instruction &I); + void visitTerminatorInst(TerminatorInst &I); + void visitBranchInst(BranchInst &BI); + void visitReturnInst(ReturnInst &RI); + void visitSwitchInst(SwitchInst &SI); + void visitIndirectBrInst(IndirectBrInst &BI); + void visitSelectInst(SelectInst &SI); + void visitUserOp1(Instruction &I); + void visitUserOp2(Instruction &I) { visitUserOp1(I); } + void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI); + void visitAllocaInst(AllocaInst &AI); + void visitExtractValueInst(ExtractValueInst &EVI); + void visitInsertValueInst(InsertValueInst &IVI); + + void VerifyCallSite(CallSite CS); + bool PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty, + int VT, unsigned ArgNo, std::string &Suffix); + void VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F, + unsigned RetNum, unsigned ParamNum, ...); + void VerifyParameterAttrs(Attributes Attrs, const Type *Ty, + bool isReturnValue, const Value *V); + void VerifyFunctionAttrs(const FunctionType *FT, const AttrListPtr &Attrs, + const Value *V); + void VerifyType(const Type *Ty); + + void WriteValue(const Value *V) { + if (!V) return; + if (isa<Instruction>(V)) { + MessagesStr << *V << '\n'; + } else { + WriteAsOperand(MessagesStr, V, true, Mod); + MessagesStr << '\n'; + } + } + + void WriteType(const Type *T) { + if (!T) return; + MessagesStr << ' '; + WriteTypeSymbolic(MessagesStr, T, Mod); + } + + + // CheckFailed - A check failed, so print out the condition and the message + // that failed. This provides a nice place to put a breakpoint if you want + // to see why something is not correct. + void CheckFailed(const Twine &Message, + const Value *V1 = 0, const Value *V2 = 0, + const Value *V3 = 0, const Value *V4 = 0) { + MessagesStr << Message.str() << "\n"; + WriteValue(V1); + WriteValue(V2); + WriteValue(V3); + WriteValue(V4); + Broken = true; + } + + void CheckFailed(const Twine &Message, const Value *V1, + const Type *T2, const Value *V3 = 0) { + MessagesStr << Message.str() << "\n"; + WriteValue(V1); + WriteType(T2); + WriteValue(V3); + Broken = true; + } + + void CheckFailed(const Twine &Message, const Type *T1, + const Type *T2 = 0, const Type *T3 = 0) { + MessagesStr << Message.str() << "\n"; + WriteType(T1); + WriteType(T2); + WriteType(T3); + Broken = true; + } + }; +} // End anonymous namespace + +char Verifier::ID = 0; +INITIALIZE_PASS(Verifier, "verify", "Module Verifier", false, false); + +// Assert - We know that cond should be true, if not print an error message. +#define Assert(C, M) \ + do { if (!(C)) { CheckFailed(M); return; } } while (0) +#define Assert1(C, M, V1) \ + do { if (!(C)) { CheckFailed(M, V1); return; } } while (0) +#define Assert2(C, M, V1, V2) \ + do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0) +#define Assert3(C, M, V1, V2, V3) \ + do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0) +#define Assert4(C, M, V1, V2, V3, V4) \ + do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0) + +void Verifier::visit(Instruction &I) { + for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) + Assert1(I.getOperand(i) != 0, "Operand is null", &I); + InstVisitor<Verifier>::visit(I); +} + + +void Verifier::visitGlobalValue(GlobalValue &GV) { + Assert1(!GV.isDeclaration() || + GV.isMaterializable() || + GV.hasExternalLinkage() || + GV.hasDLLImportLinkage() || + GV.hasExternalWeakLinkage() || + (isa<GlobalAlias>(GV) && + (GV.hasLocalLinkage() || GV.hasWeakLinkage())), + "Global is external, but doesn't have external or dllimport or weak linkage!", + &GV); + + Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(), + "Global is marked as dllimport, but not external", &GV); + + Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), + "Only global variables can have appending linkage!", &GV); + + if (GV.hasAppendingLinkage()) { + GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); + Assert1(GVar && GVar->getType()->getElementType()->isArrayTy(), + "Only global arrays can have appending linkage!", GVar); + } + + Assert1(!GV.hasLinkerPrivateWeakDefAutoLinkage() || GV.hasDefaultVisibility(), + "linker_private_weak_def_auto can only have default visibility!", + &GV); +} + +void Verifier::visitGlobalVariable(GlobalVariable &GV) { + if (GV.hasInitializer()) { + Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(), + "Global variable initializer type does not match global " + "variable type!", &GV); + + // If the global has common linkage, it must have a zero initializer and + // cannot be constant. + if (GV.hasCommonLinkage()) { + Assert1(GV.getInitializer()->isNullValue(), + "'common' global must have a zero initializer!", &GV); + Assert1(!GV.isConstant(), "'common' global may not be marked constant!", + &GV); + } + } else { + Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() || + GV.hasExternalWeakLinkage(), + "invalid linkage type for global declaration", &GV); + } + + visitGlobalValue(GV); +} + +void Verifier::visitGlobalAlias(GlobalAlias &GA) { + Assert1(!GA.getName().empty(), + "Alias name cannot be empty!", &GA); + Assert1(GA.hasExternalLinkage() || GA.hasLocalLinkage() || + GA.hasWeakLinkage(), + "Alias should have external or external weak linkage!", &GA); + Assert1(GA.getAliasee(), + "Aliasee cannot be NULL!", &GA); + Assert1(GA.getType() == GA.getAliasee()->getType(), + "Alias and aliasee types should match!", &GA); + + if (!isa<GlobalValue>(GA.getAliasee())) { + const ConstantExpr *CE = dyn_cast<ConstantExpr>(GA.getAliasee()); + Assert1(CE && + (CE->getOpcode() == Instruction::BitCast || + CE->getOpcode() == Instruction::GetElementPtr) && + isa<GlobalValue>(CE->getOperand(0)), + "Aliasee should be either GlobalValue or bitcast of GlobalValue", + &GA); + } + + const GlobalValue* Aliasee = GA.resolveAliasedGlobal(/*stopOnWeak*/ false); + Assert1(Aliasee, + "Aliasing chain should end with function or global variable", &GA); + + visitGlobalValue(GA); +} + +void Verifier::visitNamedMDNode(NamedMDNode &NMD) { + for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) { + MDNode *MD = NMD.getOperand(i); + if (!MD) + continue; + + Assert1(!MD->isFunctionLocal(), + "Named metadata operand cannot be function local!", MD); + visitMDNode(*MD, 0); + } +} + +void Verifier::visitMDNode(MDNode &MD, Function *F) { + // Only visit each node once. Metadata can be mutually recursive, so this + // avoids infinite recursion here, as well as being an optimization. + if (!MDNodes.insert(&MD)) + return; + + for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) { + Value *Op = MD.getOperand(i); + if (!Op) + continue; + if (isa<Constant>(Op) || isa<MDString>(Op)) + continue; + if (MDNode *N = dyn_cast<MDNode>(Op)) { + Assert2(MD.isFunctionLocal() || !N->isFunctionLocal(), + "Global metadata operand cannot be function local!", &MD, N); + visitMDNode(*N, F); + continue; + } + Assert2(MD.isFunctionLocal(), "Invalid operand for global metadata!", &MD, Op); + + // If this was an instruction, bb, or argument, verify that it is in the + // function that we expect. + Function *ActualF = 0; + if (Instruction *I = dyn_cast<Instruction>(Op)) + ActualF = I->getParent()->getParent(); + else if (BasicBlock *BB = dyn_cast<BasicBlock>(Op)) + ActualF = BB->getParent(); + else if (Argument *A = dyn_cast<Argument>(Op)) + ActualF = A->getParent(); + assert(ActualF && "Unimplemented function local metadata case!"); + + Assert2(ActualF == F, "function-local metadata used in wrong function", + &MD, Op); + } +} + +void Verifier::verifyTypeSymbolTable(TypeSymbolTable &ST) { + for (TypeSymbolTable::iterator I = ST.begin(), E = ST.end(); I != E; ++I) + VerifyType(I->second); +} + +// VerifyParameterAttrs - Check the given attributes for an argument or return +// value of the specified type. The value V is printed in error messages. +void Verifier::VerifyParameterAttrs(Attributes Attrs, const Type *Ty, + bool isReturnValue, const Value *V) { + if (Attrs == Attribute::None) + return; + + Attributes FnCheckAttr = Attrs & Attribute::FunctionOnly; + Assert1(!FnCheckAttr, "Attribute " + Attribute::getAsString(FnCheckAttr) + + " only applies to the function!", V); + + if (isReturnValue) { + Attributes RetI = Attrs & Attribute::ParameterOnly; + Assert1(!RetI, "Attribute " + Attribute::getAsString(RetI) + + " does not apply to return values!", V); + } + + for (unsigned i = 0; + i < array_lengthof(Attribute::MutuallyIncompatible); ++i) { + Attributes MutI = Attrs & Attribute::MutuallyIncompatible[i]; + Assert1(!(MutI & (MutI - 1)), "Attributes " + + Attribute::getAsString(MutI) + " are incompatible!", V); + } + + Attributes TypeI = Attrs & Attribute::typeIncompatible(Ty); + Assert1(!TypeI, "Wrong type for attribute " + + Attribute::getAsString(TypeI), V); + + Attributes ByValI = Attrs & Attribute::ByVal; + if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) { + Assert1(!ByValI || PTy->getElementType()->isSized(), + "Attribute " + Attribute::getAsString(ByValI) + + " does not support unsized types!", V); + } else { + Assert1(!ByValI, + "Attribute " + Attribute::getAsString(ByValI) + + " only applies to parameters with pointer type!", V); + } +} + +// VerifyFunctionAttrs - Check parameter attributes against a function type. +// The value V is printed in error messages. +void Verifier::VerifyFunctionAttrs(const FunctionType *FT, + const AttrListPtr &Attrs, + const Value *V) { + if (Attrs.isEmpty()) + return; + + bool SawNest = false; + + for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) { + const AttributeWithIndex &Attr = Attrs.getSlot(i); + + const Type *Ty; + if (Attr.Index == 0) + Ty = FT->getReturnType(); + else if (Attr.Index-1 < FT->getNumParams()) + Ty = FT->getParamType(Attr.Index-1); + else + break; // VarArgs attributes, verified elsewhere. + + VerifyParameterAttrs(Attr.Attrs, Ty, Attr.Index == 0, V); + + if (Attr.Attrs & Attribute::Nest) { + Assert1(!SawNest, "More than one parameter has attribute nest!", V); + SawNest = true; + } + + if (Attr.Attrs & Attribute::StructRet) + Assert1(Attr.Index == 1, "Attribute sret not on first parameter!", V); + } + + Attributes FAttrs = Attrs.getFnAttributes(); + Attributes NotFn = FAttrs & (~Attribute::FunctionOnly); + Assert1(!NotFn, "Attribute " + Attribute::getAsString(NotFn) + + " does not apply to the function!", V); + + for (unsigned i = 0; + i < array_lengthof(Attribute::MutuallyIncompatible); ++i) { + Attributes MutI = FAttrs & Attribute::MutuallyIncompatible[i]; + Assert1(!(MutI & (MutI - 1)), "Attributes " + + Attribute::getAsString(MutI) + " are incompatible!", V); + } +} + +static bool VerifyAttributeCount(const AttrListPtr &Attrs, unsigned Params) { + if (Attrs.isEmpty()) + return true; + + unsigned LastSlot = Attrs.getNumSlots() - 1; + unsigned LastIndex = Attrs.getSlot(LastSlot).Index; + if (LastIndex <= Params + || (LastIndex == (unsigned)~0 + && (LastSlot == 0 || Attrs.getSlot(LastSlot - 1).Index <= Params))) + return true; + + return false; +} + +// visitFunction - Verify that a function is ok. +// +void Verifier::visitFunction(Function &F) { + // Check function arguments. + const FunctionType *FT = F.getFunctionType(); + unsigned NumArgs = F.arg_size(); + + Assert1(Context == &F.getContext(), + "Function context does not match Module context!", &F); + + Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); + Assert2(FT->getNumParams() == NumArgs, + "# formal arguments must match # of arguments for function type!", + &F, FT); + Assert1(F.getReturnType()->isFirstClassType() || + F.getReturnType()->isVoidTy() || + F.getReturnType()->isStructTy(), + "Functions cannot return aggregate values!", &F); + + Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), + "Invalid struct return type!", &F); + + const AttrListPtr &Attrs = F.getAttributes(); + + Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()), + "Attributes after last parameter!", &F); + + // Check function attributes. + VerifyFunctionAttrs(FT, Attrs, &F); + + // Check that this function meets the restrictions on this calling convention. + switch (F.getCallingConv()) { + default: + break; + case CallingConv::C: + break; + case CallingConv::Fast: + case CallingConv::Cold: + case CallingConv::X86_FastCall: + case CallingConv::X86_ThisCall: + Assert1(!F.isVarArg(), + "Varargs functions must have C calling conventions!", &F); + break; + } + + bool isLLVMdotName = F.getName().size() >= 5 && + F.getName().substr(0, 5) == "llvm."; + + // Check that the argument values match the function type for this function... + unsigned i = 0; + for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); + I != E; ++I, ++i) { + Assert2(I->getType() == FT->getParamType(i), + "Argument value does not match function argument type!", + I, FT->getParamType(i)); + Assert1(I->getType()->isFirstClassType(), + "Function arguments must have first-class types!", I); + if (!isLLVMdotName) + Assert2(!I->getType()->isMetadataTy(), + "Function takes metadata but isn't an intrinsic", I, &F); + } + + if (F.isMaterializable()) { + // Function has a body somewhere we can't see. + } else if (F.isDeclaration()) { + Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() || + F.hasExternalWeakLinkage(), + "invalid linkage type for function declaration", &F); + } else { + // Verify that this function (which has a body) is not named "llvm.*". It + // is not legal to define intrinsics. + Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); + + // Check the entry node + BasicBlock *Entry = &F.getEntryBlock(); + Assert1(pred_begin(Entry) == pred_end(Entry), + "Entry block to function must not have predecessors!", Entry); + + // The address of the entry block cannot be taken, unless it is dead. + if (Entry->hasAddressTaken()) { + Assert1(!BlockAddress::get(Entry)->isConstantUsed(), + "blockaddress may not be used with the entry block!", Entry); + } + } + + // If this function is actually an intrinsic, verify that it is only used in + // direct call/invokes, never having its "address taken". + if (F.getIntrinsicID()) { + const User *U; + if (F.hasAddressTaken(&U)) + Assert1(0, "Invalid user of intrinsic instruction!", U); + } +} + +// verifyBasicBlock - Verify that a basic block is well formed... +// +void Verifier::visitBasicBlock(BasicBlock &BB) { + InstsInThisBlock.clear(); + + // Ensure that basic blocks have terminators! + Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB); + + // Check constraints that this basic block imposes on all of the PHI nodes in + // it. + if (isa<PHINode>(BB.front())) { + SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB)); + SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; + std::sort(Preds.begin(), Preds.end()); + PHINode *PN; + for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) { + // Ensure that PHI nodes have at least one entry! + Assert1(PN->getNumIncomingValues() != 0, + "PHI nodes must have at least one entry. If the block is dead, " + "the PHI should be removed!", PN); + Assert1(PN->getNumIncomingValues() == Preds.size(), + "PHINode should have one entry for each predecessor of its " + "parent basic block!", PN); + + // Get and sort all incoming values in the PHI node... + Values.clear(); + Values.reserve(PN->getNumIncomingValues()); + for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) + Values.push_back(std::make_pair(PN->getIncomingBlock(i), + PN->getIncomingValue(i))); + std::sort(Values.begin(), Values.end()); + + for (unsigned i = 0, e = Values.size(); i != e; ++i) { + // Check to make sure that if there is more than one entry for a + // particular basic block in this PHI node, that the incoming values are + // all identical. + // + Assert4(i == 0 || Values[i].first != Values[i-1].first || + Values[i].second == Values[i-1].second, + "PHI node has multiple entries for the same basic block with " + "different incoming values!", PN, Values[i].first, + Values[i].second, Values[i-1].second); + + // Check to make sure that the predecessors and PHI node entries are + // matched up. + Assert3(Values[i].first == Preds[i], + "PHI node entries do not match predecessors!", PN, + Values[i].first, Preds[i]); + } + } + } +} + +void Verifier::visitTerminatorInst(TerminatorInst &I) { + // Ensure that terminators only exist at the end of the basic block. + Assert1(&I == I.getParent()->getTerminator(), + "Terminator found in the middle of a basic block!", I.getParent()); + visitInstruction(I); +} + +void Verifier::visitBranchInst(BranchInst &BI) { + if (BI.isConditional()) { + Assert2(BI.getCondition()->getType()->isIntegerTy(1), + "Branch condition is not 'i1' type!", &BI, BI.getCondition()); + } + visitTerminatorInst(BI); +} + +void Verifier::visitReturnInst(ReturnInst &RI) { + Function *F = RI.getParent()->getParent(); + unsigned N = RI.getNumOperands(); + if (F->getReturnType()->isVoidTy()) + Assert2(N == 0, + "Found return instr that returns non-void in Function of void " + "return type!", &RI, F->getReturnType()); + else if (N == 1 && F->getReturnType() == RI.getOperand(0)->getType()) { + // Exactly one return value and it matches the return type. Good. + } else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) { + // The return type is a struct; check for multiple return values. + Assert2(STy->getNumElements() == N, + "Incorrect number of return values in ret instruction!", + &RI, F->getReturnType()); + for (unsigned i = 0; i != N; ++i) + Assert2(STy->getElementType(i) == RI.getOperand(i)->getType(), + "Function return type does not match operand " + "type of return inst!", &RI, F->getReturnType()); + } else if (const ArrayType *ATy = dyn_cast<ArrayType>(F->getReturnType())) { + // The return type is an array; check for multiple return values. + Assert2(ATy->getNumElements() == N, + "Incorrect number of return values in ret instruction!", + &RI, F->getReturnType()); + for (unsigned i = 0; i != N; ++i) + Assert2(ATy->getElementType() == RI.getOperand(i)->getType(), + "Function return type does not match operand " + "type of return inst!", &RI, F->getReturnType()); + } else { + CheckFailed("Function return type does not match operand " + "type of return inst!", &RI, F->getReturnType()); + } + + // Check to make sure that the return value has necessary properties for + // terminators... + visitTerminatorInst(RI); +} + +void Verifier::visitSwitchInst(SwitchInst &SI) { + // Check to make sure that all of the constants in the switch instruction + // have the same type as the switched-on value. + const Type *SwitchTy = SI.getCondition()->getType(); + SmallPtrSet<ConstantInt*, 32> Constants; + for (unsigned i = 1, e = SI.getNumCases(); i != e; ++i) { + Assert1(SI.getCaseValue(i)->getType() == SwitchTy, + "Switch constants must all be same type as switch value!", &SI); + Assert2(Constants.insert(SI.getCaseValue(i)), + "Duplicate integer as switch case", &SI, SI.getCaseValue(i)); + } + + visitTerminatorInst(SI); +} + +void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { + Assert1(BI.getAddress()->getType()->isPointerTy(), + "Indirectbr operand must have pointer type!", &BI); + for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) + Assert1(BI.getDestination(i)->getType()->isLabelTy(), + "Indirectbr destinations must all have pointer type!", &BI); + + visitTerminatorInst(BI); +} + +void Verifier::visitSelectInst(SelectInst &SI) { + Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), + SI.getOperand(2)), + "Invalid operands for select instruction!", &SI); + + Assert1(SI.getTrueValue()->getType() == SI.getType(), + "Select values must have same type as select instruction!", &SI); + visitInstruction(SI); +} + +/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of +/// a pass, if any exist, it's an error. +/// +void Verifier::visitUserOp1(Instruction &I) { + Assert1(0, "User-defined operators should not live outside of a pass!", &I); +} + +void Verifier::visitTruncInst(TruncInst &I) { + // Get the source and destination types + const Type *SrcTy = I.getOperand(0)->getType(); + const Type *DestTy = I.getType(); + + // Get the size of the types in bits, we'll need this later + unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); + unsigned DestBitSize = DestTy->getScalarSizeInBits(); + + Assert1(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); + Assert1(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); + Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), + "trunc source and destination must both be a vector or neither", &I); + Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I); + + visitInstruction(I); +} + +void Verifier::visitZExtInst(ZExtInst &I) { + // Get the source and destination types + const Type *SrcTy = I.getOperand(0)->getType(); + const Type *DestTy = I.getType(); + + // Get the size of the types in bits, we'll need this later + Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); + Assert1(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); + Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), + "zext source and destination must both be a vector or neither", &I); + unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); + unsigned DestBitSize = DestTy->getScalarSizeInBits(); + + Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I); + + visitInstruction(I); +} + +void Verifier::visitSExtInst(SExtInst &I) { + // Get the source and destination types + const Type *SrcTy = I.getOperand(0)->getType(); + const Type *DestTy = I.getType(); + + // Get the size of the types in bits, we'll need this later + unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); + unsigned DestBitSize = DestTy->getScalarSizeInBits(); + + Assert1(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); + Assert1(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); + Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), + "sext source and destination must both be a vector or neither", &I); + Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I); + + visitInstruction(I); +} + +void Verifier::visitFPTruncInst(FPTruncInst &I) { + // Get the source and destination types + const Type *SrcTy = I.getOperand(0)->getType(); + const Type *DestTy = I.getType(); + // Get the size of the types in bits, we'll need this later + unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); + unsigned DestBitSize = DestTy->getScalarSizeInBits(); + + Assert1(SrcTy->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I); + Assert1(DestTy->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I); + Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), + "fptrunc source and destination must both be a vector or neither",&I); + Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I); + + visitInstruction(I); +} + +void Verifier::visitFPExtInst(FPExtInst &I) { + // Get the source and destination types + const Type *SrcTy = I.getOperand(0)->getType(); + const Type *DestTy = I.getType(); + + // Get the size of the types in bits, we'll need this later + unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); + unsigned DestBitSize = DestTy->getScalarSizeInBits(); + + Assert1(SrcTy->isFPOrFPVectorTy(),"FPExt only operates on FP", &I); + Assert1(DestTy->isFPOrFPVectorTy(),"FPExt only produces an FP", &I); + Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), + "fpext source and destination must both be a vector or neither", &I); + Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I); + + visitInstruction(I); +} + +void Verifier::visitUIToFPInst(UIToFPInst &I) { + // Get the source and destination types + const Type *SrcTy = I.getOperand(0)->getType(); + const Type *DestTy = I.getType(); + + bool SrcVec = SrcTy->isVectorTy(); + bool DstVec = DestTy->isVectorTy(); + + Assert1(SrcVec == DstVec, + "UIToFP source and dest must both be vector or scalar", &I); + Assert1(SrcTy->isIntOrIntVectorTy(), + "UIToFP source must be integer or integer vector", &I); + Assert1(DestTy->isFPOrFPVectorTy(), + "UIToFP result must be FP or FP vector", &I); + + if (SrcVec && DstVec) + Assert1(cast<VectorType>(SrcTy)->getNumElements() == + cast<VectorType>(DestTy)->getNumElements(), + "UIToFP source and dest vector length mismatch", &I); + + visitInstruction(I); +} + +void Verifier::visitSIToFPInst(SIToFPInst &I) { + // Get the source and destination types + const Type *SrcTy = I.getOperand(0)->getType(); + const Type *DestTy = I.getType(); + + bool SrcVec = SrcTy->isVectorTy(); + bool DstVec = DestTy->isVectorTy(); + + Assert1(SrcVec == DstVec, + "SIToFP source and dest must both be vector or scalar", &I); + Assert1(SrcTy->isIntOrIntVectorTy(), + "SIToFP source must be integer or integer vector", &I); + Assert1(DestTy->isFPOrFPVectorTy(), + "SIToFP result must be FP or FP vector", &I); + + if (SrcVec && DstVec) + Assert1(cast<VectorType>(SrcTy)->getNumElements() == + cast<VectorType>(DestTy)->getNumElements(), + "SIToFP source and dest vector length mismatch", &I); + + visitInstruction(I); +} + +void Verifier::visitFPToUIInst(FPToUIInst &I) { + // Get the source and destination types + const Type *SrcTy = I.getOperand(0)->getType(); + const Type *DestTy = I.getType(); + + bool SrcVec = SrcTy->isVectorTy(); + bool DstVec = DestTy->isVectorTy(); + + Assert1(SrcVec == DstVec, + "FPToUI source and dest must both be vector or scalar", &I); + Assert1(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", + &I); + Assert1(DestTy->isIntOrIntVectorTy(), + "FPToUI result must be integer or integer vector", &I); + + if (SrcVec && DstVec) + Assert1(cast<VectorType>(SrcTy)->getNumElements() == + cast<VectorType>(DestTy)->getNumElements(), + "FPToUI source and dest vector length mismatch", &I); + + visitInstruction(I); +} + +void Verifier::visitFPToSIInst(FPToSIInst &I) { + // Get the source and destination types + const Type *SrcTy = I.getOperand(0)->getType(); + const Type *DestTy = I.getType(); + + bool SrcVec = SrcTy->isVectorTy(); + bool DstVec = DestTy->isVectorTy(); + + Assert1(SrcVec == DstVec, + "FPToSI source and dest must both be vector or scalar", &I); + Assert1(SrcTy->isFPOrFPVectorTy(), + "FPToSI source must be FP or FP vector", &I); + Assert1(DestTy->isIntOrIntVectorTy(), + "FPToSI result must be integer or integer vector", &I); + + if (SrcVec && DstVec) + Assert1(cast<VectorType>(SrcTy)->getNumElements() == + cast<VectorType>(DestTy)->getNumElements(), + "FPToSI source and dest vector length mismatch", &I); + + visitInstruction(I); +} + +void Verifier::visitPtrToIntInst(PtrToIntInst &I) { + // Get the source and destination types + const Type *SrcTy = I.getOperand(0)->getType(); + const Type *DestTy = I.getType(); + + Assert1(SrcTy->isPointerTy(), "PtrToInt source must be pointer", &I); + Assert1(DestTy->isIntegerTy(), "PtrToInt result must be integral", &I); + + visitInstruction(I); +} + +void Verifier::visitIntToPtrInst(IntToPtrInst &I) { + // Get the source and destination types + const Type *SrcTy = I.getOperand(0)->getType(); + const Type *DestTy = I.getType(); + + Assert1(SrcTy->isIntegerTy(), "IntToPtr source must be an integral", &I); + Assert1(DestTy->isPointerTy(), "IntToPtr result must be a pointer",&I); + + visitInstruction(I); +} + +void Verifier::visitBitCastInst(BitCastInst &I) { + // Get the source and destination types + const Type *SrcTy = I.getOperand(0)->getType(); + const Type *DestTy = I.getType(); + + // Get the size of the types in bits, we'll need this later + unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits(); + unsigned DestBitSize = DestTy->getPrimitiveSizeInBits(); + + // BitCast implies a no-op cast of type only. No bits change. + // However, you can't cast pointers to anything but pointers. + Assert1(DestTy->isPointerTy() == DestTy->isPointerTy(), + "Bitcast requires both operands to be pointer or neither", &I); + Assert1(SrcBitSize == DestBitSize, "Bitcast requires types of same width",&I); + + // Disallow aggregates. + Assert1(!SrcTy->isAggregateType(), + "Bitcast operand must not be aggregate", &I); + Assert1(!DestTy->isAggregateType(), + "Bitcast type must not be aggregate", &I); + + visitInstruction(I); +} + +/// visitPHINode - Ensure that a PHI node is well formed. +/// +void Verifier::visitPHINode(PHINode &PN) { + // Ensure that the PHI nodes are all grouped together at the top of the block. + // This can be tested by checking whether the instruction before this is + // either nonexistent (because this is begin()) or is a PHI node. If not, + // then there is some other instruction before a PHI. + Assert2(&PN == &PN.getParent()->front() || + isa<PHINode>(--BasicBlock::iterator(&PN)), + "PHI nodes not grouped at top of basic block!", + &PN, PN.getParent()); + + // Check that all of the values of the PHI node have the same type as the + // result, and that the incoming blocks are really basic blocks. + for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { + Assert1(PN.getType() == PN.getIncomingValue(i)->getType(), + "PHI node operands are not the same type as the result!", &PN); + Assert1(isa<BasicBlock>(PN.getOperand( + PHINode::getOperandNumForIncomingBlock(i))), + "PHI node incoming block is not a BasicBlock!", &PN); + } + + // All other PHI node constraints are checked in the visitBasicBlock method. + + visitInstruction(PN); +} + +void Verifier::VerifyCallSite(CallSite CS) { + Instruction *I = CS.getInstruction(); + + Assert1(CS.getCalledValue()->getType()->isPointerTy(), + "Called function must be a pointer!", I); + const PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType()); + + Assert1(FPTy->getElementType()->isFunctionTy(), + "Called function is not pointer to function type!", I); + const FunctionType *FTy = cast<FunctionType>(FPTy->getElementType()); + + // Verify that the correct number of arguments are being passed + if (FTy->isVarArg()) + Assert1(CS.arg_size() >= FTy->getNumParams(), + "Called function requires more parameters than were provided!",I); + else + Assert1(CS.arg_size() == FTy->getNumParams(), + "Incorrect number of arguments passed to called function!", I); + + // Verify that all arguments to the call match the function type. + for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) + Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i), + "Call parameter type does not match function signature!", + CS.getArgument(i), FTy->getParamType(i), I); + + const AttrListPtr &Attrs = CS.getAttributes(); + + Assert1(VerifyAttributeCount(Attrs, CS.arg_size()), + "Attributes after last parameter!", I); + + // Verify call attributes. + VerifyFunctionAttrs(FTy, Attrs, I); + + if (FTy->isVarArg()) + // Check attributes on the varargs part. + for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) { + Attributes Attr = Attrs.getParamAttributes(Idx); + + VerifyParameterAttrs(Attr, CS.getArgument(Idx-1)->getType(), false, I); + + Attributes VArgI = Attr & Attribute::VarArgsIncompatible; + Assert1(!VArgI, "Attribute " + Attribute::getAsString(VArgI) + + " cannot be used for vararg call arguments!", I); + } + + // Verify that there's no metadata unless it's a direct call to an intrinsic. + if (!CS.getCalledFunction() || + !CS.getCalledFunction()->getName().startswith("llvm.")) { + for (FunctionType::param_iterator PI = FTy->param_begin(), + PE = FTy->param_end(); PI != PE; ++PI) + Assert1(!PI->get()->isMetadataTy(), + "Function has metadata parameter but isn't an intrinsic", I); + } + + visitInstruction(*I); +} + +void Verifier::visitCallInst(CallInst &CI) { + VerifyCallSite(&CI); + + if (Function *F = CI.getCalledFunction()) + if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) + visitIntrinsicFunctionCall(ID, CI); +} + +void Verifier::visitInvokeInst(InvokeInst &II) { + VerifyCallSite(&II); + visitTerminatorInst(II); +} + +/// visitBinaryOperator - Check that both arguments to the binary operator are +/// of the same type! +/// +void Verifier::visitBinaryOperator(BinaryOperator &B) { + Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(), + "Both operands to a binary operator are not of the same type!", &B); + + switch (B.getOpcode()) { + // Check that integer arithmetic operators are only used with + // integral operands. + case Instruction::Add: + case Instruction::Sub: + case Instruction::Mul: + case Instruction::SDiv: + case Instruction::UDiv: + case Instruction::SRem: + case Instruction::URem: + Assert1(B.getType()->isIntOrIntVectorTy(), + "Integer arithmetic operators only work with integral types!", &B); + Assert1(B.getType() == B.getOperand(0)->getType(), + "Integer arithmetic operators must have same type " + "for operands and result!", &B); + break; + // Check that floating-point arithmetic operators are only used with + // floating-point operands. + case Instruction::FAdd: + case Instruction::FSub: + case Instruction::FMul: + case Instruction::FDiv: + case Instruction::FRem: + Assert1(B.getType()->isFPOrFPVectorTy(), + "Floating-point arithmetic operators only work with " + "floating-point types!", &B); + Assert1(B.getType() == B.getOperand(0)->getType(), + "Floating-point arithmetic operators must have same type " + "for operands and result!", &B); + break; + // Check that logical operators are only used with integral operands. + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: + Assert1(B.getType()->isIntOrIntVectorTy(), + "Logical operators only work with integral types!", &B); + Assert1(B.getType() == B.getOperand(0)->getType(), + "Logical operators must have same type for operands and result!", + &B); + break; + case Instruction::Shl: + case Instruction::LShr: + case Instruction::AShr: + Assert1(B.getType()->isIntOrIntVectorTy(), + "Shifts only work with integral types!", &B); + Assert1(B.getType() == B.getOperand(0)->getType(), + "Shift return type must be same as operands!", &B); + break; + default: + llvm_unreachable("Unknown BinaryOperator opcode!"); + } + + visitInstruction(B); +} + +void Verifier::visitICmpInst(ICmpInst &IC) { + // Check that the operands are the same type + const Type *Op0Ty = IC.getOperand(0)->getType(); + const Type *Op1Ty = IC.getOperand(1)->getType(); + Assert1(Op0Ty == Op1Ty, + "Both operands to ICmp instruction are not of the same type!", &IC); + // Check that the operands are the right type + Assert1(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPointerTy(), + "Invalid operand types for ICmp instruction", &IC); + // Check that the predicate is valid. + Assert1(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE && + IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE, + "Invalid predicate in ICmp instruction!", &IC); + + visitInstruction(IC); +} + +void Verifier::visitFCmpInst(FCmpInst &FC) { + // Check that the operands are the same type + const Type *Op0Ty = FC.getOperand(0)->getType(); + const Type *Op1Ty = FC.getOperand(1)->getType(); + Assert1(Op0Ty == Op1Ty, + "Both operands to FCmp instruction are not of the same type!", &FC); + // Check that the operands are the right type + Assert1(Op0Ty->isFPOrFPVectorTy(), + "Invalid operand types for FCmp instruction", &FC); + // Check that the predicate is valid. + Assert1(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE && + FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE, + "Invalid predicate in FCmp instruction!", &FC); + + visitInstruction(FC); +} + +void Verifier::visitExtractElementInst(ExtractElementInst &EI) { + Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0), + EI.getOperand(1)), + "Invalid extractelement operands!", &EI); + visitInstruction(EI); +} + +void Verifier::visitInsertElementInst(InsertElementInst &IE) { + Assert1(InsertElementInst::isValidOperands(IE.getOperand(0), + IE.getOperand(1), + IE.getOperand(2)), + "Invalid insertelement operands!", &IE); + visitInstruction(IE); +} + +void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { + Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), + SV.getOperand(2)), + "Invalid shufflevector operands!", &SV); + visitInstruction(SV); +} + +void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { + SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end()); + const Type *ElTy = + GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(), + Idxs.begin(), Idxs.end()); + Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP); + Assert2(GEP.getType()->isPointerTy() && + cast<PointerType>(GEP.getType())->getElementType() == ElTy, + "GEP is not of right type for indices!", &GEP, ElTy); + visitInstruction(GEP); +} + +void Verifier::visitLoadInst(LoadInst &LI) { + const PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); + Assert1(PTy, "Load operand must be a pointer.", &LI); + const Type *ElTy = PTy->getElementType(); + Assert2(ElTy == LI.getType(), + "Load result type does not match pointer operand type!", &LI, ElTy); + visitInstruction(LI); +} + +void Verifier::visitStoreInst(StoreInst &SI) { + const PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); + Assert1(PTy, "Store operand must be a pointer.", &SI); + const Type *ElTy = PTy->getElementType(); + Assert2(ElTy == SI.getOperand(0)->getType(), + "Stored value type does not match pointer operand type!", + &SI, ElTy); + visitInstruction(SI); +} + +void Verifier::visitAllocaInst(AllocaInst &AI) { + const PointerType *PTy = AI.getType(); + Assert1(PTy->getAddressSpace() == 0, + "Allocation instruction pointer not in the generic address space!", + &AI); + Assert1(PTy->getElementType()->isSized(), "Cannot allocate unsized type", + &AI); + Assert1(AI.getArraySize()->getType()->isIntegerTy(), + "Alloca array size must have integer type", &AI); + visitInstruction(AI); +} + +void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { + Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), + EVI.idx_begin(), EVI.idx_end()) == + EVI.getType(), + "Invalid ExtractValueInst operands!", &EVI); + + visitInstruction(EVI); +} + +void Verifier::visitInsertValueInst(InsertValueInst &IVI) { + Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), + IVI.idx_begin(), IVI.idx_end()) == + IVI.getOperand(1)->getType(), + "Invalid InsertValueInst operands!", &IVI); + + visitInstruction(IVI); +} + +/// verifyInstruction - Verify that an instruction is well formed. +/// +void Verifier::visitInstruction(Instruction &I) { + BasicBlock *BB = I.getParent(); + Assert1(BB, "Instruction not embedded in basic block!", &I); + + if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential + for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); + UI != UE; ++UI) + Assert1(*UI != (User*)&I || !DT->isReachableFromEntry(BB), + "Only PHI nodes may reference their own value!", &I); + } + + // Check that void typed values don't have names + Assert1(!I.getType()->isVoidTy() || !I.hasName(), + "Instruction has a name, but provides a void value!", &I); + + // Check that the return value of the instruction is either void or a legal + // value type. + Assert1(I.getType()->isVoidTy() || + I.getType()->isFirstClassType(), + "Instruction returns a non-scalar type!", &I); + + // Check that the instruction doesn't produce metadata. Calls are already + // checked against the callee type. + Assert1(!I.getType()->isMetadataTy() || + isa<CallInst>(I) || isa<InvokeInst>(I), + "Invalid use of metadata!", &I); + + // Check that all uses of the instruction, if they are instructions + // themselves, actually have parent basic blocks. If the use is not an + // instruction, it is an error! + for (User::use_iterator UI = I.use_begin(), UE = I.use_end(); + UI != UE; ++UI) { + if (Instruction *Used = dyn_cast<Instruction>(*UI)) + Assert2(Used->getParent() != 0, "Instruction referencing instruction not" + " embedded in a basic block!", &I, Used); + else { + CheckFailed("Use of instruction is not an instruction!", *UI); + return; + } + } + + for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { + Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I); + + // Check to make sure that only first-class-values are operands to + // instructions. + if (!I.getOperand(i)->getType()->isFirstClassType()) { + Assert1(0, "Instruction operands must be first-class values!", &I); + } + + if (Function *F = dyn_cast<Function>(I.getOperand(i))) { + // Check to make sure that the "address of" an intrinsic function is never + // taken. + Assert1(!F->isIntrinsic() || (i + 1 == e && isa<CallInst>(I)), + "Cannot take the address of an intrinsic!", &I); + Assert1(F->getParent() == Mod, "Referencing function in another module!", + &I); + } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { + Assert1(OpBB->getParent() == BB->getParent(), + "Referring to a basic block in another function!", &I); + } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { + Assert1(OpArg->getParent() == BB->getParent(), + "Referring to an argument in another function!", &I); + } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { + Assert1(GV->getParent() == Mod, "Referencing global in another module!", + &I); + } else if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) { + BasicBlock *OpBlock = Op->getParent(); + + // Check that a definition dominates all of its uses. + if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { + // Invoke results are only usable in the normal destination, not in the + // exceptional destination. + BasicBlock *NormalDest = II->getNormalDest(); + + Assert2(NormalDest != II->getUnwindDest(), + "No uses of invoke possible due to dominance structure!", + Op, &I); + + // PHI nodes differ from other nodes because they actually "use" the + // value in the predecessor basic blocks they correspond to. + BasicBlock *UseBlock = BB; + if (isa<PHINode>(I)) + UseBlock = dyn_cast<BasicBlock>(I.getOperand(i+1)); + Assert2(UseBlock, "Invoke operand is PHI node with bad incoming-BB", + Op, &I); + + if (isa<PHINode>(I) && UseBlock == OpBlock) { + // Special case of a phi node in the normal destination or the unwind + // destination. + Assert2(BB == NormalDest || !DT->isReachableFromEntry(UseBlock), + "Invoke result not available in the unwind destination!", + Op, &I); + } else { + Assert2(DT->dominates(NormalDest, UseBlock) || + !DT->isReachableFromEntry(UseBlock), + "Invoke result does not dominate all uses!", Op, &I); + + // If the normal successor of an invoke instruction has multiple + // predecessors, then the normal edge from the invoke is critical, + // so the invoke value can only be live if the destination block + // dominates all of it's predecessors (other than the invoke). + if (!NormalDest->getSinglePredecessor() && + DT->isReachableFromEntry(UseBlock)) + // If it is used by something non-phi, then the other case is that + // 'NormalDest' dominates all of its predecessors other than the + // invoke. In this case, the invoke value can still be used. + for (pred_iterator PI = pred_begin(NormalDest), + E = pred_end(NormalDest); PI != E; ++PI) + if (*PI != II->getParent() && !DT->dominates(NormalDest, *PI) && + DT->isReachableFromEntry(*PI)) { + CheckFailed("Invoke result does not dominate all uses!", Op,&I); + return; + } + } + } else if (isa<PHINode>(I)) { + // PHI nodes are more difficult than other nodes because they actually + // "use" the value in the predecessor basic blocks they correspond to. + BasicBlock *PredBB = dyn_cast<BasicBlock>(I.getOperand(i+1)); + Assert2(PredBB && (DT->dominates(OpBlock, PredBB) || + !DT->isReachableFromEntry(PredBB)), + "Instruction does not dominate all uses!", Op, &I); + } else { + if (OpBlock == BB) { + // If they are in the same basic block, make sure that the definition + // comes before the use. + Assert2(InstsInThisBlock.count(Op) || !DT->isReachableFromEntry(BB), + "Instruction does not dominate all uses!", Op, &I); + } + + // Definition must dominate use unless use is unreachable! + Assert2(InstsInThisBlock.count(Op) || DT->dominates(Op, &I) || + !DT->isReachableFromEntry(BB), + "Instruction does not dominate all uses!", Op, &I); + } + } else if (isa<InlineAsm>(I.getOperand(i))) { + Assert1((i + 1 == e && isa<CallInst>(I)) || + (i + 3 == e && isa<InvokeInst>(I)), + "Cannot take the address of an inline asm!", &I); + } + } + InstsInThisBlock.insert(&I); + + VerifyType(I.getType()); +} + +/// VerifyType - Verify that a type is well formed. +/// +void Verifier::VerifyType(const Type *Ty) { + if (!Types.insert(Ty)) return; + + Assert1(Context == &Ty->getContext(), + "Type context does not match Module context!", Ty); + + switch (Ty->getTypeID()) { + case Type::FunctionTyID: { + const FunctionType *FTy = cast<FunctionType>(Ty); + + const Type *RetTy = FTy->getReturnType(); + Assert2(FunctionType::isValidReturnType(RetTy), + "Function type with invalid return type", RetTy, FTy); + VerifyType(RetTy); + + for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { + const Type *ElTy = FTy->getParamType(i); + Assert2(FunctionType::isValidArgumentType(ElTy), + "Function type with invalid parameter type", ElTy, FTy); + VerifyType(ElTy); + } + break; + } + case Type::StructTyID: { + const StructType *STy = cast<StructType>(Ty); + for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { + const Type *ElTy = STy->getElementType(i); + Assert2(StructType::isValidElementType(ElTy), + "Structure type with invalid element type", ElTy, STy); + VerifyType(ElTy); + } + break; + } + case Type::ArrayTyID: { + const ArrayType *ATy = cast<ArrayType>(Ty); + Assert1(ArrayType::isValidElementType(ATy->getElementType()), + "Array type with invalid element type", ATy); + VerifyType(ATy->getElementType()); + break; + } + case Type::PointerTyID: { + const PointerType *PTy = cast<PointerType>(Ty); + Assert1(PointerType::isValidElementType(PTy->getElementType()), + "Pointer type with invalid element type", PTy); + VerifyType(PTy->getElementType()); + break; + } + case Type::VectorTyID: { + const VectorType *VTy = cast<VectorType>(Ty); + Assert1(VectorType::isValidElementType(VTy->getElementType()), + "Vector type with invalid element type", VTy); + VerifyType(VTy->getElementType()); + break; + } + default: + break; + } +} + +// Flags used by TableGen to mark intrinsic parameters with the +// LLVMExtendedElementVectorType and LLVMTruncatedElementVectorType classes. +static const unsigned ExtendedElementVectorType = 0x40000000; +static const unsigned TruncatedElementVectorType = 0x20000000; + +/// visitIntrinsicFunction - Allow intrinsics to be verified in different ways. +/// +void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) { + Function *IF = CI.getCalledFunction(); + Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!", + IF); + +#define GET_INTRINSIC_VERIFIER +#include "llvm/Intrinsics.gen" +#undef GET_INTRINSIC_VERIFIER + + // If the intrinsic takes MDNode arguments, verify that they are either global + // or are local to *this* function. + for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i) + if (MDNode *MD = dyn_cast<MDNode>(CI.getArgOperand(i))) + visitMDNode(*MD, CI.getParent()->getParent()); + + switch (ID) { + default: + break; + case Intrinsic::dbg_declare: { // llvm.dbg.declare + Assert1(CI.getArgOperand(0) && isa<MDNode>(CI.getArgOperand(0)), + "invalid llvm.dbg.declare intrinsic call 1", &CI); + MDNode *MD = cast<MDNode>(CI.getArgOperand(0)); + Assert1(MD->getNumOperands() == 1, + "invalid llvm.dbg.declare intrinsic call 2", &CI); + } break; + case Intrinsic::memcpy: + case Intrinsic::memmove: + case Intrinsic::memset: + Assert1(isa<ConstantInt>(CI.getArgOperand(3)), + "alignment argument of memory intrinsics must be a constant int", + &CI); + break; + case Intrinsic::gcroot: + case Intrinsic::gcwrite: + case Intrinsic::gcread: + if (ID == Intrinsic::gcroot) { + AllocaInst *AI = + dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts()); + Assert1(AI && AI->getType()->getElementType()->isPointerTy(), + "llvm.gcroot parameter #1 must be a pointer alloca.", &CI); + Assert1(isa<Constant>(CI.getArgOperand(1)), + "llvm.gcroot parameter #2 must be a constant.", &CI); + } + + Assert1(CI.getParent()->getParent()->hasGC(), + "Enclosing function does not use GC.", &CI); + break; + case Intrinsic::init_trampoline: + Assert1(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()), + "llvm.init_trampoline parameter #2 must resolve to a function.", + &CI); + break; + case Intrinsic::prefetch: + Assert1(isa<ConstantInt>(CI.getArgOperand(1)) && + isa<ConstantInt>(CI.getArgOperand(2)) && + cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 && + cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4, + "invalid arguments to llvm.prefetch", + &CI); + break; + case Intrinsic::stackprotector: + Assert1(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()), + "llvm.stackprotector parameter #2 must resolve to an alloca.", + &CI); + break; + case Intrinsic::lifetime_start: + case Intrinsic::lifetime_end: + case Intrinsic::invariant_start: + Assert1(isa<ConstantInt>(CI.getArgOperand(0)), + "size argument of memory use markers must be a constant integer", + &CI); + break; + case Intrinsic::invariant_end: + Assert1(isa<ConstantInt>(CI.getArgOperand(1)), + "llvm.invariant.end parameter #2 must be a constant integer", &CI); + break; + } +} + +/// Produce a string to identify an intrinsic parameter or return value. +/// The ArgNo value numbers the return values from 0 to NumRets-1 and the +/// parameters beginning with NumRets. +/// +static std::string IntrinsicParam(unsigned ArgNo, unsigned NumRets) { + if (ArgNo >= NumRets) + return "Intrinsic parameter #" + utostr(ArgNo - NumRets); + if (NumRets == 1) + return "Intrinsic result type"; + return "Intrinsic result type #" + utostr(ArgNo); +} + +bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty, + int VT, unsigned ArgNo, std::string &Suffix) { + const FunctionType *FTy = F->getFunctionType(); + + unsigned NumElts = 0; + const Type *EltTy = Ty; + const VectorType *VTy = dyn_cast<VectorType>(Ty); + if (VTy) { + EltTy = VTy->getElementType(); + NumElts = VTy->getNumElements(); + } + + const Type *RetTy = FTy->getReturnType(); + const StructType *ST = dyn_cast<StructType>(RetTy); + unsigned NumRetVals; + if (RetTy->isVoidTy()) + NumRetVals = 0; + else if (ST) + NumRetVals = ST->getNumElements(); + else + NumRetVals = 1; + + if (VT < 0) { + int Match = ~VT; + + // Check flags that indicate a type that is an integral vector type with + // elements that are larger or smaller than the elements of the matched + // type. + if ((Match & (ExtendedElementVectorType | + TruncatedElementVectorType)) != 0) { + const IntegerType *IEltTy = dyn_cast<IntegerType>(EltTy); + if (!VTy || !IEltTy) { + CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not " + "an integral vector type.", F); + return false; + } + // Adjust the current Ty (in the opposite direction) rather than + // the type being matched against. + if ((Match & ExtendedElementVectorType) != 0) { + if ((IEltTy->getBitWidth() & 1) != 0) { + CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " vector " + "element bit-width is odd.", F); + return false; + } + Ty = VectorType::getTruncatedElementVectorType(VTy); + } else + Ty = VectorType::getExtendedElementVectorType(VTy); + Match &= ~(ExtendedElementVectorType | TruncatedElementVectorType); + } + + if (Match <= static_cast<int>(NumRetVals - 1)) { + if (ST) + RetTy = ST->getElementType(Match); + + if (Ty != RetTy) { + CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " does not " + "match return type.", F); + return false; + } + } else { + if (Ty != FTy->getParamType(Match - NumRetVals)) { + CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " does not " + "match parameter %" + utostr(Match - NumRetVals) + ".", F); + return false; + } + } + } else if (VT == MVT::iAny) { + if (!EltTy->isIntegerTy()) { + CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not " + "an integer type.", F); + return false; + } + + unsigned GotBits = cast<IntegerType>(EltTy)->getBitWidth(); + Suffix += "."; + + if (EltTy != Ty) + Suffix += "v" + utostr(NumElts); + + Suffix += "i" + utostr(GotBits); + + // Check some constraints on various intrinsics. + switch (ID) { + default: break; // Not everything needs to be checked. + case Intrinsic::bswap: + if (GotBits < 16 || GotBits % 16 != 0) { + CheckFailed("Intrinsic requires even byte width argument", F); + return false; + } + break; + } + } else if (VT == MVT::fAny) { + if (!EltTy->isFloatingPointTy()) { + CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not " + "a floating-point type.", F); + return false; + } + + Suffix += "."; + + if (EltTy != Ty) + Suffix += "v" + utostr(NumElts); + + Suffix += EVT::getEVT(EltTy).getEVTString(); + } else if (VT == MVT::vAny) { + if (!VTy) { + CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a vector type.", + F); + return false; + } + Suffix += ".v" + utostr(NumElts) + EVT::getEVT(EltTy).getEVTString(); + } else if (VT == MVT::iPTR) { + if (!Ty->isPointerTy()) { + CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a " + "pointer and a pointer is required.", F); + return false; + } + } else if (VT == MVT::iPTRAny) { + // Outside of TableGen, we don't distinguish iPTRAny (to any address space) + // and iPTR. In the verifier, we can not distinguish which case we have so + // allow either case to be legal. + if (const PointerType* PTyp = dyn_cast<PointerType>(Ty)) { + EVT PointeeVT = EVT::getEVT(PTyp->getElementType(), true); + if (PointeeVT == MVT::Other) { + CheckFailed("Intrinsic has pointer to complex type."); + return false; + } + Suffix += ".p" + utostr(PTyp->getAddressSpace()) + + PointeeVT.getEVTString(); + } else { + CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a " + "pointer and a pointer is required.", F); + return false; + } + } else if (EVT((MVT::SimpleValueType)VT).isVector()) { + EVT VVT = EVT((MVT::SimpleValueType)VT); + + // If this is a vector argument, verify the number and type of elements. + if (VVT.getVectorElementType() != EVT::getEVT(EltTy)) { + CheckFailed("Intrinsic prototype has incorrect vector element type!", F); + return false; + } + + if (VVT.getVectorNumElements() != NumElts) { + CheckFailed("Intrinsic prototype has incorrect number of " + "vector elements!", F); + return false; + } + } else if (EVT((MVT::SimpleValueType)VT).getTypeForEVT(Ty->getContext()) != + EltTy) { + CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is wrong!", F); + return false; + } else if (EltTy != Ty) { + CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is a vector " + "and a scalar is required.", F); + return false; + } + + return true; +} + +/// VerifyIntrinsicPrototype - TableGen emits calls to this function into +/// Intrinsics.gen. This implements a little state machine that verifies the +/// prototype of intrinsics. +void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F, + unsigned NumRetVals, + unsigned NumParams, ...) { + va_list VA; + va_start(VA, NumParams); + const FunctionType *FTy = F->getFunctionType(); + + // For overloaded intrinsics, the Suffix of the function name must match the + // types of the arguments. This variable keeps track of the expected + // suffix, to be checked at the end. + std::string Suffix; + + if (FTy->getNumParams() + FTy->isVarArg() != NumParams) { + CheckFailed("Intrinsic prototype has incorrect number of arguments!", F); + return; + } + + const Type *Ty = FTy->getReturnType(); + const StructType *ST = dyn_cast<StructType>(Ty); + + if (NumRetVals == 0 && !Ty->isVoidTy()) { + CheckFailed("Intrinsic should return void", F); + return; + } + + // Verify the return types. + if (ST && ST->getNumElements() != NumRetVals) { + CheckFailed("Intrinsic prototype has incorrect number of return types!", F); + return; + } + + for (unsigned ArgNo = 0; ArgNo != NumRetVals; ++ArgNo) { + int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative. + + if (ST) Ty = ST->getElementType(ArgNo); + if (!PerformTypeCheck(ID, F, Ty, VT, ArgNo, Suffix)) + break; + } + + // Verify the parameter types. + for (unsigned ArgNo = 0; ArgNo != NumParams; ++ArgNo) { + int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative. + + if (VT == MVT::isVoid && ArgNo > 0) { + if (!FTy->isVarArg()) + CheckFailed("Intrinsic prototype has no '...'!", F); + break; + } + + if (!PerformTypeCheck(ID, F, FTy->getParamType(ArgNo), VT, + ArgNo + NumRetVals, Suffix)) + break; + } + + va_end(VA); + + // For intrinsics without pointer arguments, if we computed a Suffix then the + // intrinsic is overloaded and we need to make sure that the name of the + // function is correct. We add the suffix to the name of the intrinsic and + // compare against the given function name. If they are not the same, the + // function name is invalid. This ensures that overloading of intrinsics + // uses a sane and consistent naming convention. Note that intrinsics with + // pointer argument may or may not be overloaded so we will check assuming it + // has a suffix and not. + if (!Suffix.empty()) { + std::string Name(Intrinsic::getName(ID)); + if (Name + Suffix != F->getName()) { + CheckFailed("Overloaded intrinsic has incorrect suffix: '" + + F->getName().substr(Name.length()) + "'. It should be '" + + Suffix + "'", F); + } + } + + // Check parameter attributes. + Assert1(F->getAttributes() == Intrinsic::getAttributes(ID), + "Intrinsic has wrong parameter attributes!", F); +} + + +//===----------------------------------------------------------------------===// +// Implement the public interfaces to this file... +//===----------------------------------------------------------------------===// + +FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) { + return new Verifier(action); +} + + +/// verifyFunction - Check a function for errors, printing messages on stderr. +/// Return true if the function is corrupt. +/// +bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) { + Function &F = const_cast<Function&>(f); + assert(!F.isDeclaration() && "Cannot verify external functions"); + + FunctionPassManager FPM(F.getParent()); + Verifier *V = new Verifier(action); + FPM.add(V); + FPM.run(F); + return V->Broken; +} + +/// verifyModule - Check a module for errors, printing messages on stderr. +/// Return true if the module is corrupt. +/// +bool llvm::verifyModule(const Module &M, VerifierFailureAction action, + std::string *ErrorInfo) { + PassManager PM; + Verifier *V = new Verifier(action); + PM.add(V); + PM.run(const_cast<Module&>(M)); + + if (ErrorInfo && V->Broken) + *ErrorInfo = V->MessagesStr.str(); + return V->Broken; +} |