summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms')
-rw-r--r--contrib/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp92
-rw-r--r--contrib/llvm/lib/Transforms/IPO/ConstantMerge.cpp10
-rw-r--r--contrib/llvm/lib/Transforms/IPO/DeadArgumentElimination.cpp134
-rw-r--r--contrib/llvm/lib/Transforms/IPO/ExtractGV.cpp16
-rw-r--r--contrib/llvm/lib/Transforms/IPO/FunctionAttrs.cpp784
-rw-r--r--contrib/llvm/lib/Transforms/IPO/GlobalDCE.cpp6
-rw-r--r--contrib/llvm/lib/Transforms/IPO/GlobalOpt.cpp246
-rw-r--r--contrib/llvm/lib/Transforms/IPO/IPConstantPropagation.cpp12
-rw-r--r--contrib/llvm/lib/Transforms/IPO/InlineAlways.cpp126
-rw-r--r--contrib/llvm/lib/Transforms/IPO/InlineSimple.cpp73
-rw-r--r--contrib/llvm/lib/Transforms/IPO/Inliner.cpp82
-rw-r--r--contrib/llvm/lib/Transforms/IPO/Internalize.cpp24
-rw-r--r--contrib/llvm/lib/Transforms/IPO/LoopExtractor.cpp8
-rw-r--r--contrib/llvm/lib/Transforms/IPO/MergeFunctions.cpp30
-rw-r--r--contrib/llvm/lib/Transforms/IPO/PartialInlining.cpp10
-rw-r--r--contrib/llvm/lib/Transforms/IPO/PassManagerBuilder.cpp28
-rw-r--r--contrib/llvm/lib/Transforms/IPO/PruneEH.cpp28
-rw-r--r--contrib/llvm/lib/Transforms/IPO/StripDeadPrototypes.cpp4
-rw-r--r--contrib/llvm/lib/Transforms/IPO/StripSymbols.cpp16
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombine.h71
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp948
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp410
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp160
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp388
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp137
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp39
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp421
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombinePHI.cpp6
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp9
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp173
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp354
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp23
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineWorklist.h38
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp134
-rw-r--r--contrib/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp1036
-rw-r--r--contrib/llvm/lib/Transforms/Instrumentation/BlackList.cpp58
-rw-r--r--contrib/llvm/lib/Transforms/Instrumentation/BlackList.h57
-rw-r--r--contrib/llvm/lib/Transforms/Instrumentation/BoundsChecking.cpp19
-rw-r--r--contrib/llvm/lib/Transforms/Instrumentation/EdgeProfiling.cpp6
-rw-r--r--contrib/llvm/lib/Transforms/Instrumentation/GCOVProfiling.cpp299
-rw-r--r--contrib/llvm/lib/Transforms/Instrumentation/Instrumentation.cpp2
-rw-r--r--contrib/llvm/lib/Transforms/Instrumentation/MaximumSpanningTree.h4
-rw-r--r--contrib/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp1985
-rw-r--r--contrib/llvm/lib/Transforms/Instrumentation/OptimalEdgeProfiling.cpp16
-rw-r--r--contrib/llvm/lib/Transforms/Instrumentation/PathProfiling.cpp19
-rw-r--r--contrib/llvm/lib/Transforms/Instrumentation/ProfilingUtils.cpp10
-rw-r--r--contrib/llvm/lib/Transforms/Instrumentation/ThreadSanitizer.cpp160
-rw-r--r--contrib/llvm/lib/Transforms/ObjCARC/DependencyAnalysis.cpp262
-rw-r--r--contrib/llvm/lib/Transforms/ObjCARC/DependencyAnalysis.h79
-rw-r--r--contrib/llvm/lib/Transforms/ObjCARC/ObjCARC.cpp48
-rw-r--r--contrib/llvm/lib/Transforms/ObjCARC/ObjCARC.h395
-rw-r--r--contrib/llvm/lib/Transforms/ObjCARC/ObjCARCAPElim.cpp175
-rw-r--r--contrib/llvm/lib/Transforms/ObjCARC/ObjCARCAliasAnalysis.cpp162
-rw-r--r--contrib/llvm/lib/Transforms/ObjCARC/ObjCARCAliasAnalysis.h74
-rw-r--r--contrib/llvm/lib/Transforms/ObjCARC/ObjCARCContract.cpp541
-rw-r--r--contrib/llvm/lib/Transforms/ObjCARC/ObjCARCExpand.cpp128
-rw-r--r--contrib/llvm/lib/Transforms/ObjCARC/ObjCARCOpts.cpp3026
-rw-r--r--contrib/llvm/lib/Transforms/ObjCARC/ObjCARCUtil.cpp252
-rw-r--r--contrib/llvm/lib/Transforms/ObjCARC/ProvenanceAnalysis.cpp177
-rw-r--r--contrib/llvm/lib/Transforms/ObjCARC/ProvenanceAnalysis.h80
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/ADCE.cpp12
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/BasicBlockPlacement.cpp6
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/CodeGenPrepare.cpp698
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/ConstantProp.cpp10
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp39
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/DCE.cpp6
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp28
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/EarlyCSE.cpp16
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/GVN.cpp79
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/GlobalMerge.cpp137
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp65
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/JumpThreading.cpp47
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/LICM.cpp65
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/LoopDeletion.cpp60
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp543
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/LoopInstSimplify.cpp9
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/LoopRotation.cpp29
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp647
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp31
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp43
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/LowerAtomic.cpp6
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp10
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/ObjCARC.cpp4232
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/Reassociate.cpp358
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/Reg2Mem.cpp14
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/SCCP.cpp40
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/SROA.cpp1489
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/Scalar.cpp15
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp28
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/SimplifyCFGPass.cpp53
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/SimplifyLibCalls.cpp1481
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/Sink.cpp6
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/TailRecursionElimination.cpp44
-rw-r--r--contrib/llvm/lib/Transforms/Utils/AddrModeMatcher.cpp577
-rw-r--r--contrib/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp92
-rw-r--r--contrib/llvm/lib/Transforms/Utils/BreakCriticalEdges.cpp12
-rw-r--r--contrib/llvm/lib/Transforms/Utils/BuildLibCalls.cpp174
-rw-r--r--contrib/llvm/lib/Transforms/Utils/BypassSlowDivision.cpp12
-rw-r--r--contrib/llvm/lib/Transforms/Utils/CloneFunction.cpp45
-rw-r--r--contrib/llvm/lib/Transforms/Utils/CloneModule.cpp10
-rw-r--r--contrib/llvm/lib/Transforms/Utils/CmpInstAnalysis.cpp4
-rw-r--r--contrib/llvm/lib/Transforms/Utils/CodeExtractor.cpp21
-rw-r--r--contrib/llvm/lib/Transforms/Utils/DemoteRegToStack.cpp33
-rw-r--r--contrib/llvm/lib/Transforms/Utils/InlineFunction.cpp85
-rw-r--r--contrib/llvm/lib/Transforms/Utils/InstructionNamer.cpp4
-rw-r--r--contrib/llvm/lib/Transforms/Utils/IntegerDivision.cpp112
-rw-r--r--contrib/llvm/lib/Transforms/Utils/LCSSA.cpp14
-rw-r--r--contrib/llvm/lib/Transforms/Utils/Local.cpp101
-rw-r--r--contrib/llvm/lib/Transforms/Utils/LoopSimplify.cpp24
-rw-r--r--contrib/llvm/lib/Transforms/Utils/LoopUnroll.cpp2
-rw-r--r--contrib/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp2
-rw-r--r--contrib/llvm/lib/Transforms/Utils/LowerExpectIntrinsic.cpp20
-rw-r--r--contrib/llvm/lib/Transforms/Utils/LowerInvoke.cpp18
-rw-r--r--contrib/llvm/lib/Transforms/Utils/LowerSwitch.cpp12
-rw-r--r--contrib/llvm/lib/Transforms/Utils/Mem2Reg.cpp8
-rw-r--r--contrib/llvm/lib/Transforms/Utils/MetaRenamer.cpp35
-rw-r--r--contrib/llvm/lib/Transforms/Utils/ModuleUtils.cpp8
-rw-r--r--contrib/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp28
-rw-r--r--contrib/llvm/lib/Transforms/Utils/SSAUpdater.cpp8
-rw-r--r--contrib/llvm/lib/Transforms/Utils/SimplifyCFG.cpp416
-rw-r--r--contrib/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp10
-rw-r--r--contrib/llvm/lib/Transforms/Utils/SimplifyInstructions.cpp10
-rw-r--r--contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp988
-rw-r--r--contrib/llvm/lib/Transforms/Utils/UnifyFunctionExitNodes.cpp10
-rw-r--r--contrib/llvm/lib/Transforms/Utils/ValueMapper.cpp29
-rw-r--r--contrib/llvm/lib/Transforms/Vectorize/BBVectorize.cpp1116
-rw-r--r--contrib/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp3547
-rw-r--r--contrib/llvm/lib/Transforms/Vectorize/Vectorize.cpp10
128 files changed, 20331 insertions, 11722 deletions
diff --git a/contrib/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp b/contrib/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp
index be48b20..e6fa4ed 100644
--- a/contrib/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp
+++ b/contrib/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp
@@ -31,21 +31,21 @@
#define DEBUG_TYPE "argpromotion"
#include "llvm/Transforms/IPO.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Module.h"
-#include "llvm/CallGraphSCCPass.h"
-#include "llvm/Instructions.h"
-#include "llvm/LLVMContext.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CallGraph.h"
-#include "llvm/Support/CallSite.h"
+#include "llvm/Analysis/CallGraphSCCPass.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
#include "llvm/Support/CFG.h"
+#include "llvm/Support/CallSite.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/ADT/DepthFirstIterator.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/StringExtras.h"
#include <set>
using namespace llvm;
@@ -153,8 +153,8 @@ CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
SmallPtrSet<Argument*, 8> ArgsToPromote;
SmallPtrSet<Argument*, 8> ByValArgsToTransform;
for (unsigned i = 0; i != PointerArgs.size(); ++i) {
- bool isByVal=F->getParamAttributes(PointerArgs[i].second+1).
- hasAttribute(Attributes::ByVal);
+ bool isByVal=F->getAttributes().
+ hasAttribute(PointerArgs[i].second+1, Attribute::ByVal);
Argument *PtrArg = PointerArgs[i].first;
Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
@@ -511,17 +511,16 @@ CallGraphNode *ArgPromotion::DoPromotion(Function *F,
// what the new GEP/Load instructions we are inserting look like.
std::map<IndicesVector, LoadInst*> OriginalLoads;
- // Attributes - Keep track of the parameter attributes for the arguments
+ // Attribute - Keep track of the parameter attributes for the arguments
// that we are *not* promoting. For the ones that we do promote, the parameter
// attributes are lost
- SmallVector<AttributeWithIndex, 8> AttributesVec;
- const AttrListPtr &PAL = F->getAttributes();
+ SmallVector<AttributeSet, 8> AttributesVec;
+ const AttributeSet &PAL = F->getAttributes();
// Add any return attributes.
- Attributes attrs = PAL.getRetAttributes();
- if (attrs.hasAttributes())
- AttributesVec.push_back(AttributeWithIndex::get(AttrListPtr::ReturnIndex,
- attrs));
+ if (PAL.hasAttributes(AttributeSet::ReturnIndex))
+ AttributesVec.push_back(AttributeSet::get(F->getContext(),
+ PAL.getRetAttributes()));
// First, determine the new argument list
unsigned ArgIndex = 1;
@@ -537,9 +536,12 @@ CallGraphNode *ArgPromotion::DoPromotion(Function *F,
} else if (!ArgsToPromote.count(I)) {
// Unchanged argument
Params.push_back(I->getType());
- Attributes attrs = PAL.getParamAttributes(ArgIndex);
- if (attrs.hasAttributes())
- AttributesVec.push_back(AttributeWithIndex::get(Params.size(), attrs));
+ AttributeSet attrs = PAL.getParamAttributes(ArgIndex);
+ if (attrs.hasAttributes(ArgIndex)) {
+ AttrBuilder B(attrs, ArgIndex);
+ AttributesVec.
+ push_back(AttributeSet::get(F->getContext(), Params.size(), B));
+ }
} else if (I->use_empty()) {
// Dead argument (which are always marked as promotable)
++NumArgumentsDead;
@@ -591,10 +593,9 @@ CallGraphNode *ArgPromotion::DoPromotion(Function *F,
}
// Add any function attributes.
- attrs = PAL.getFnAttributes();
- if (attrs.hasAttributes())
- AttributesVec.push_back(AttributeWithIndex::get(AttrListPtr::FunctionIndex,
- attrs));
+ if (PAL.hasAttributes(AttributeSet::FunctionIndex))
+ AttributesVec.push_back(AttributeSet::get(FTy->getContext(),
+ PAL.getFnAttributes()));
Type *RetTy = FTy->getReturnType();
@@ -611,7 +612,7 @@ CallGraphNode *ArgPromotion::DoPromotion(Function *F,
// Recompute the parameter attributes list based on the new arguments for
// the function.
- NF->setAttributes(AttrListPtr::get(F->getContext(), AttributesVec));
+ NF->setAttributes(AttributeSet::get(F->getContext(), AttributesVec));
AttributesVec.clear();
F->getParent()->getFunctionList().insert(F, NF);
@@ -636,13 +637,12 @@ CallGraphNode *ArgPromotion::DoPromotion(Function *F,
CallSite CS(F->use_back());
assert(CS.getCalledFunction() == F);
Instruction *Call = CS.getInstruction();
- const AttrListPtr &CallPAL = CS.getAttributes();
+ const AttributeSet &CallPAL = CS.getAttributes();
// Add any return attributes.
- Attributes attrs = CallPAL.getRetAttributes();
- if (attrs.hasAttributes())
- AttributesVec.push_back(AttributeWithIndex::get(AttrListPtr::ReturnIndex,
- attrs));
+ if (CallPAL.hasAttributes(AttributeSet::ReturnIndex))
+ AttributesVec.push_back(AttributeSet::get(F->getContext(),
+ CallPAL.getRetAttributes()));
// Loop over the operands, inserting GEP and loads in the caller as
// appropriate.
@@ -653,10 +653,11 @@ CallGraphNode *ArgPromotion::DoPromotion(Function *F,
if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
Args.push_back(*AI); // Unmodified argument
- Attributes Attrs = CallPAL.getParamAttributes(ArgIndex);
- if (Attrs.hasAttributes())
- AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
-
+ if (CallPAL.hasAttributes(ArgIndex)) {
+ AttrBuilder B(CallPAL, ArgIndex);
+ AttributesVec.
+ push_back(AttributeSet::get(F->getContext(), Args.size(), B));
+ }
} else if (ByValArgsToTransform.count(I)) {
// Emit a GEP and load for each element of the struct.
Type *AgTy = cast<PointerType>(I->getType())->getElementType();
@@ -715,28 +716,29 @@ CallGraphNode *ArgPromotion::DoPromotion(Function *F,
// Push any varargs arguments on the list.
for (; AI != CS.arg_end(); ++AI, ++ArgIndex) {
Args.push_back(*AI);
- Attributes Attrs = CallPAL.getParamAttributes(ArgIndex);
- if (Attrs.hasAttributes())
- AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
+ if (CallPAL.hasAttributes(ArgIndex)) {
+ AttrBuilder B(CallPAL, ArgIndex);
+ AttributesVec.
+ push_back(AttributeSet::get(F->getContext(), Args.size(), B));
+ }
}
// Add any function attributes.
- attrs = CallPAL.getFnAttributes();
- if (attrs.hasAttributes())
- AttributesVec.push_back(AttributeWithIndex::get(AttrListPtr::FunctionIndex,
- attrs));
+ if (CallPAL.hasAttributes(AttributeSet::FunctionIndex))
+ AttributesVec.push_back(AttributeSet::get(Call->getContext(),
+ CallPAL.getFnAttributes()));
Instruction *New;
if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
Args, "", Call);
cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
- cast<InvokeInst>(New)->setAttributes(AttrListPtr::get(II->getContext(),
+ cast<InvokeInst>(New)->setAttributes(AttributeSet::get(II->getContext(),
AttributesVec));
} else {
New = CallInst::Create(NF, Args, "", Call);
cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
- cast<CallInst>(New)->setAttributes(AttrListPtr::get(New->getContext(),
+ cast<CallInst>(New)->setAttributes(AttributeSet::get(New->getContext(),
AttributesVec));
if (cast<CallInst>(Call)->isTailCall())
cast<CallInst>(New)->setTailCall();
diff --git a/contrib/llvm/lib/Transforms/IPO/ConstantMerge.cpp b/contrib/llvm/lib/Transforms/IPO/ConstantMerge.cpp
index e2f0126..8336d3a 100644
--- a/contrib/llvm/lib/Transforms/IPO/ConstantMerge.cpp
+++ b/contrib/llvm/lib/Transforms/IPO/ConstantMerge.cpp
@@ -19,15 +19,15 @@
#define DEBUG_TYPE "constmerge"
#include "llvm/Transforms/IPO.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Module.h"
-#include "llvm/Pass.h"
-#include "llvm/DataLayout.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
using namespace llvm;
STATISTIC(NumMerged, "Number of global constants merged");
diff --git a/contrib/llvm/lib/Transforms/IPO/DeadArgumentElimination.cpp b/contrib/llvm/lib/Transforms/IPO/DeadArgumentElimination.cpp
index 4cfd0b2..49ef1e7 100644
--- a/contrib/llvm/lib/Transforms/IPO/DeadArgumentElimination.cpp
+++ b/contrib/llvm/lib/Transforms/IPO/DeadArgumentElimination.cpp
@@ -19,23 +19,23 @@
#define DEBUG_TYPE "deadargelim"
#include "llvm/Transforms/IPO.h"
-#include "llvm/CallingConv.h"
-#include "llvm/Constant.h"
-#include "llvm/DebugInfo.h"
-#include "llvm/DerivedTypes.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringExtras.h"
#include "llvm/DIBuilder.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
+#include "llvm/DebugInfo.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/StringExtras.h"
#include <map>
#include <set>
using namespace llvm;
@@ -271,16 +271,15 @@ bool DAE::DeleteDeadVarargs(Function &Fn) {
Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs);
// Drop any attributes that were on the vararg arguments.
- AttrListPtr PAL = CS.getAttributes();
- if (!PAL.isEmpty() && PAL.getSlot(PAL.getNumSlots() - 1).Index > NumArgs) {
- SmallVector<AttributeWithIndex, 8> AttributesVec;
- for (unsigned i = 0; PAL.getSlot(i).Index <= NumArgs; ++i)
- AttributesVec.push_back(PAL.getSlot(i));
- Attributes FnAttrs = PAL.getFnAttributes();
- if (FnAttrs.hasAttributes())
- AttributesVec.push_back(AttributeWithIndex::get(AttrListPtr::FunctionIndex,
- FnAttrs));
- PAL = AttrListPtr::get(Fn.getContext(), AttributesVec);
+ AttributeSet PAL = CS.getAttributes();
+ if (!PAL.isEmpty() && PAL.getSlotIndex(PAL.getNumSlots() - 1) > NumArgs) {
+ SmallVector<AttributeSet, 8> AttributesVec;
+ for (unsigned i = 0; PAL.getSlotIndex(i) <= NumArgs; ++i)
+ AttributesVec.push_back(PAL.getSlotAttributes(i));
+ if (PAL.hasAttributes(AttributeSet::FunctionIndex))
+ AttributesVec.push_back(AttributeSet::get(Fn.getContext(),
+ PAL.getFnAttributes()));
+ PAL = AttributeSet::get(Fn.getContext(), AttributesVec);
}
Instruction *New;
@@ -351,7 +350,7 @@ bool DAE::RemoveDeadArgumentsFromCallers(Function &Fn)
if (Fn.use_empty())
return false;
- llvm::SmallVector<unsigned, 8> UnusedArgs;
+ SmallVector<unsigned, 8> UnusedArgs;
for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
I != E; ++I) {
Argument *Arg = I;
@@ -697,15 +696,10 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
std::vector<Type*> Params;
// Set up to build a new list of parameter attributes.
- SmallVector<AttributeWithIndex, 8> AttributesVec;
- const AttrListPtr &PAL = F->getAttributes();
-
- // The existing function return attributes.
- Attributes RAttrs = PAL.getRetAttributes();
- Attributes FnAttrs = PAL.getFnAttributes();
+ SmallVector<AttributeSet, 8> AttributesVec;
+ const AttributeSet &PAL = F->getAttributes();
// Find out the new return value.
-
Type *RetTy = FTy->getReturnType();
Type *NRetTy = NULL;
unsigned RetCount = NumRetVals(F);
@@ -759,22 +753,29 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
assert(NRetTy && "No new return type found?");
+ // The existing function return attributes.
+ AttributeSet RAttrs = PAL.getRetAttributes();
+
// Remove any incompatible attributes, but only if we removed all return
// values. Otherwise, ensure that we don't have any conflicting attributes
// here. Currently, this should not be possible, but special handling might be
// required when new return value attributes are added.
if (NRetTy->isVoidTy())
RAttrs =
- Attributes::get(NRetTy->getContext(), AttrBuilder(RAttrs).
- removeAttributes(Attributes::typeIncompatible(NRetTy)));
+ AttributeSet::get(NRetTy->getContext(), AttributeSet::ReturnIndex,
+ AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
+ removeAttributes(AttributeFuncs::
+ typeIncompatible(NRetTy, AttributeSet::ReturnIndex),
+ AttributeSet::ReturnIndex));
else
- assert(!AttrBuilder(RAttrs).
- hasAttributes(Attributes::typeIncompatible(NRetTy)) &&
+ assert(!AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
+ hasAttributes(AttributeFuncs::
+ typeIncompatible(NRetTy, AttributeSet::ReturnIndex),
+ AttributeSet::ReturnIndex) &&
"Return attributes no longer compatible?");
- if (RAttrs.hasAttributes())
- AttributesVec.push_back(AttributeWithIndex::get(AttrListPtr::ReturnIndex,
- RAttrs));
+ if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
+ AttributesVec.push_back(AttributeSet::get(NRetTy->getContext(), RAttrs));
// Remember which arguments are still alive.
SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
@@ -791,9 +792,11 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
// Get the original parameter attributes (skipping the first one, that is
// for the return value.
- Attributes Attrs = PAL.getParamAttributes(i + 1);
- if (Attrs.hasAttributes())
- AttributesVec.push_back(AttributeWithIndex::get(Params.size(), Attrs));
+ if (PAL.hasAttributes(i + 1)) {
+ AttrBuilder B(PAL, i + 1);
+ AttributesVec.
+ push_back(AttributeSet::get(F->getContext(), Params.size(), B));
+ }
} else {
++NumArgumentsEliminated;
DEBUG(dbgs() << "DAE - Removing argument " << i << " (" << I->getName()
@@ -801,12 +804,12 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
}
}
- if (FnAttrs.hasAttributes())
- AttributesVec.push_back(AttributeWithIndex::get(AttrListPtr::FunctionIndex,
- FnAttrs));
+ if (PAL.hasAttributes(AttributeSet::FunctionIndex))
+ AttributesVec.push_back(AttributeSet::get(F->getContext(),
+ PAL.getFnAttributes()));
// Reconstruct the AttributesList based on the vector we constructed.
- AttrListPtr NewPAL = AttrListPtr::get(F->getContext(), AttributesVec);
+ AttributeSet NewPAL = AttributeSet::get(F->getContext(), AttributesVec);
// Create the new function type based on the recomputed parameters.
FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
@@ -833,18 +836,21 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
Instruction *Call = CS.getInstruction();
AttributesVec.clear();
- const AttrListPtr &CallPAL = CS.getAttributes();
+ const AttributeSet &CallPAL = CS.getAttributes();
// The call return attributes.
- Attributes RAttrs = CallPAL.getRetAttributes();
- Attributes FnAttrs = CallPAL.getFnAttributes();
+ AttributeSet RAttrs = CallPAL.getRetAttributes();
+
// Adjust in case the function was changed to return void.
RAttrs =
- Attributes::get(NF->getContext(), AttrBuilder(RAttrs).
- removeAttributes(Attributes::typeIncompatible(NF->getReturnType())));
- if (RAttrs.hasAttributes())
- AttributesVec.push_back(AttributeWithIndex::get(AttrListPtr::ReturnIndex,
- RAttrs));
+ AttributeSet::get(NF->getContext(), AttributeSet::ReturnIndex,
+ AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
+ removeAttributes(AttributeFuncs::
+ typeIncompatible(NF->getReturnType(),
+ AttributeSet::ReturnIndex),
+ AttributeSet::ReturnIndex));
+ if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
+ AttributesVec.push_back(AttributeSet::get(NF->getContext(), RAttrs));
// Declare these outside of the loops, so we can reuse them for the second
// loop, which loops the varargs.
@@ -856,25 +862,29 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
if (ArgAlive[i]) {
Args.push_back(*I);
// Get original parameter attributes, but skip return attributes.
- Attributes Attrs = CallPAL.getParamAttributes(i + 1);
- if (Attrs.hasAttributes())
- AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
+ if (CallPAL.hasAttributes(i + 1)) {
+ AttrBuilder B(CallPAL, i + 1);
+ AttributesVec.
+ push_back(AttributeSet::get(F->getContext(), Args.size(), B));
+ }
}
// Push any varargs arguments on the list. Don't forget their attributes.
for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
Args.push_back(*I);
- Attributes Attrs = CallPAL.getParamAttributes(i + 1);
- if (Attrs.hasAttributes())
- AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
+ if (CallPAL.hasAttributes(i + 1)) {
+ AttrBuilder B(CallPAL, i + 1);
+ AttributesVec.
+ push_back(AttributeSet::get(F->getContext(), Args.size(), B));
+ }
}
- if (FnAttrs.hasAttributes())
- AttributesVec.push_back(AttributeWithIndex::get(AttrListPtr::FunctionIndex,
- FnAttrs));
+ if (CallPAL.hasAttributes(AttributeSet::FunctionIndex))
+ AttributesVec.push_back(AttributeSet::get(Call->getContext(),
+ CallPAL.getFnAttributes()));
// Reconstruct the AttributesList based on the vector we constructed.
- AttrListPtr NewCallPAL = AttrListPtr::get(F->getContext(), AttributesVec);
+ AttributeSet NewCallPAL = AttributeSet::get(F->getContext(), AttributesVec);
Instruction *New;
if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
diff --git a/contrib/llvm/lib/Transforms/IPO/ExtractGV.cpp b/contrib/llvm/lib/Transforms/IPO/ExtractGV.cpp
index 6716deb..fa3d72d 100644
--- a/contrib/llvm/lib/Transforms/IPO/ExtractGV.cpp
+++ b/contrib/llvm/lib/Transforms/IPO/ExtractGV.cpp
@@ -11,13 +11,13 @@
//
//===----------------------------------------------------------------------===//
-#include "llvm/Instructions.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
-#include "llvm/Pass.h"
-#include "llvm/Constants.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/ADT/SetVector.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
#include <algorithm>
using namespace llvm;
@@ -60,7 +60,7 @@ namespace {
continue;
}
- bool Local = I->hasLocalLinkage();
+ bool Local = I->isDiscardableIfUnused();
if (Local)
I->setVisibility(GlobalValue::HiddenVisibility);
@@ -80,7 +80,7 @@ namespace {
continue;
}
- bool Local = I->hasLocalLinkage();
+ bool Local = I->isDiscardableIfUnused();
if (Local)
I->setVisibility(GlobalValue::HiddenVisibility);
@@ -97,7 +97,7 @@ namespace {
Module::alias_iterator CurI = I;
++I;
- if (CurI->hasLocalLinkage()) {
+ if (CurI->isDiscardableIfUnused()) {
CurI->setVisibility(GlobalValue::HiddenVisibility);
CurI->setLinkage(GlobalValue::ExternalLinkage);
}
diff --git a/contrib/llvm/lib/Transforms/IPO/FunctionAttrs.cpp b/contrib/llvm/lib/Transforms/IPO/FunctionAttrs.cpp
index 18409f7..bc5109b 100644
--- a/contrib/llvm/lib/Transforms/IPO/FunctionAttrs.cpp
+++ b/contrib/llvm/lib/Transforms/IPO/FunctionAttrs.cpp
@@ -1,4 +1,4 @@
-//===- FunctionAttrs.cpp - Pass which marks functions readnone or readonly ===//
+//===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===//
//
// The LLVM Compiler Infrastructure
//
@@ -14,30 +14,34 @@
// to the function does not create any copies of the pointer value that
// outlive the call. This more or less means that the pointer is only
// dereferenced, and not returned from the function or stored in a global.
+// Finally, well-known library call declarations are marked with all
+// attributes that are consistent with the function's standard definition.
// This pass is implemented as a bottom-up traversal of the call-graph.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "functionattrs"
#include "llvm/Transforms/IPO.h"
-#include "llvm/CallGraphSCCPass.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/CallGraph.h"
-#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/CallGraph.h"
+#include "llvm/Analysis/CallGraphSCCPass.h"
+#include "llvm/Analysis/CaptureTracking.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/InstIterator.h"
+#include "llvm/Target/TargetLibraryInfo.h"
using namespace llvm;
STATISTIC(NumReadNone, "Number of functions marked readnone");
STATISTIC(NumReadOnly, "Number of functions marked readonly");
STATISTIC(NumNoCapture, "Number of arguments marked nocapture");
STATISTIC(NumNoAlias, "Number of function returns marked noalias");
+STATISTIC(NumAnnotated, "Number of attributes added to library functions");
namespace {
struct FunctionAttrs : public CallGraphSCCPass {
@@ -62,14 +66,63 @@ namespace {
// AddNoAliasAttrs - Deduce noalias attributes for the SCC.
bool AddNoAliasAttrs(const CallGraphSCC &SCC);
+ // Utility methods used by inferPrototypeAttributes to add attributes
+ // and maintain annotation statistics.
+
+ void setDoesNotAccessMemory(Function &F) {
+ if (!F.doesNotAccessMemory()) {
+ F.setDoesNotAccessMemory();
+ ++NumAnnotated;
+ }
+ }
+
+ void setOnlyReadsMemory(Function &F) {
+ if (!F.onlyReadsMemory()) {
+ F.setOnlyReadsMemory();
+ ++NumAnnotated;
+ }
+ }
+
+ void setDoesNotThrow(Function &F) {
+ if (!F.doesNotThrow()) {
+ F.setDoesNotThrow();
+ ++NumAnnotated;
+ }
+ }
+
+ void setDoesNotCapture(Function &F, unsigned n) {
+ if (!F.doesNotCapture(n)) {
+ F.setDoesNotCapture(n);
+ ++NumAnnotated;
+ }
+ }
+
+ void setDoesNotAlias(Function &F, unsigned n) {
+ if (!F.doesNotAlias(n)) {
+ F.setDoesNotAlias(n);
+ ++NumAnnotated;
+ }
+ }
+
+ // inferPrototypeAttributes - Analyze the name and prototype of the
+ // given function and set any applicable attributes. Returns true
+ // if any attributes were set and false otherwise.
+ bool inferPrototypeAttributes(Function &F);
+
+ // annotateLibraryCalls - Adds attributes to well-known standard library
+ // call declarations.
+ bool annotateLibraryCalls(const CallGraphSCC &SCC);
+
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<AliasAnalysis>();
+ AU.addRequired<TargetLibraryInfo>();
CallGraphSCCPass::getAnalysisUsage(AU);
}
private:
AliasAnalysis *AA;
+ TargetLibraryInfo *TLI;
};
}
@@ -77,6 +130,7 @@ char FunctionAttrs::ID = 0;
INITIALIZE_PASS_BEGIN(FunctionAttrs, "functionattrs",
"Deduce function attributes", false, false)
INITIALIZE_AG_DEPENDENCY(CallGraph)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
INITIALIZE_PASS_END(FunctionAttrs, "functionattrs",
"Deduce function attributes", false, false)
@@ -213,16 +267,15 @@ bool FunctionAttrs::AddReadAttrs(const CallGraphSCC &SCC) {
// Clear out any existing attributes.
AttrBuilder B;
- B.addAttribute(Attributes::ReadOnly)
- .addAttribute(Attributes::ReadNone);
- F->removeAttribute(AttrListPtr::FunctionIndex,
- Attributes::get(F->getContext(), B));
+ B.addAttribute(Attribute::ReadOnly)
+ .addAttribute(Attribute::ReadNone);
+ F->removeAttributes(AttributeSet::FunctionIndex,
+ AttributeSet::get(F->getContext(),
+ AttributeSet::FunctionIndex, B));
// Add in the new attribute.
- B.clear();
- B.addAttribute(ReadsMemory ? Attributes::ReadOnly : Attributes::ReadNone);
- F->addAttribute(AttrListPtr::FunctionIndex,
- Attributes::get(F->getContext(), B));
+ F->addAttribute(AttributeSet::FunctionIndex,
+ ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone);
if (ReadsMemory)
++NumReadOnly;
@@ -358,7 +411,7 @@ bool FunctionAttrs::AddNoCaptureAttrs(const CallGraphSCC &SCC) {
ArgumentGraph AG;
AttrBuilder B;
- B.addAttribute(Attributes::NoCapture);
+ B.addAttribute(Attribute::NoCapture);
// Check each function in turn, determining which pointer arguments are not
// captured.
@@ -381,7 +434,7 @@ bool FunctionAttrs::AddNoCaptureAttrs(const CallGraphSCC &SCC) {
for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end();
A != E; ++A) {
if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) {
- A->addAttr(Attributes::get(F->getContext(), B));
+ A->addAttr(AttributeSet::get(F->getContext(), A->getArgNo() + 1, B));
++NumNoCapture;
Changed = true;
}
@@ -396,7 +449,7 @@ bool FunctionAttrs::AddNoCaptureAttrs(const CallGraphSCC &SCC) {
if (!Tracker.Captured) {
if (Tracker.Uses.empty()) {
// If it's trivially not captured, mark it nocapture now.
- A->addAttr(Attributes::get(F->getContext(), B));
+ A->addAttr(AttributeSet::get(F->getContext(), A->getArgNo()+1, B));
++NumNoCapture;
Changed = true;
} else {
@@ -431,7 +484,9 @@ bool FunctionAttrs::AddNoCaptureAttrs(const CallGraphSCC &SCC) {
ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) {
ArgumentSCC[0]->
Definition->
- addAttr(Attributes::get(ArgumentSCC[0]->Definition->getContext(), B));
+ addAttr(AttributeSet::get(ArgumentSCC[0]->Definition->getContext(),
+ ArgumentSCC[0]->Definition->getArgNo() + 1,
+ B));
++NumNoCapture;
Changed = true;
}
@@ -473,7 +528,7 @@ bool FunctionAttrs::AddNoCaptureAttrs(const CallGraphSCC &SCC) {
for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
Argument *A = ArgumentSCC[i]->Definition;
- A->addAttr(Attributes::get(A->getContext(), B));
+ A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
++NumNoCapture;
Changed = true;
}
@@ -530,7 +585,7 @@ bool FunctionAttrs::IsFunctionMallocLike(Function *F,
case Instruction::Call:
case Instruction::Invoke: {
CallSite CS(RVI);
- if (CS.paramHasAttr(0, Attributes::NoAlias))
+ if (CS.paramHasAttr(0, Attribute::NoAlias))
break;
if (CS.getCalledFunction() &&
SCCNodes.count(CS.getCalledFunction()))
@@ -597,10 +652,693 @@ bool FunctionAttrs::AddNoAliasAttrs(const CallGraphSCC &SCC) {
return MadeChange;
}
+/// inferPrototypeAttributes - Analyze the name and prototype of the
+/// given function and set any applicable attributes. Returns true
+/// if any attributes were set and false otherwise.
+bool FunctionAttrs::inferPrototypeAttributes(Function &F) {
+ FunctionType *FTy = F.getFunctionType();
+ LibFunc::Func TheLibFunc;
+ if (!(TLI->getLibFunc(F.getName(), TheLibFunc) && TLI->has(TheLibFunc)))
+ return false;
+
+ switch (TheLibFunc) {
+ case LibFunc::strlen:
+ if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy())
+ return false;
+ setOnlyReadsMemory(F);
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 1);
+ break;
+ case LibFunc::strchr:
+ case LibFunc::strrchr:
+ if (FTy->getNumParams() != 2 ||
+ !FTy->getParamType(0)->isPointerTy() ||
+ !FTy->getParamType(1)->isIntegerTy())
+ return false;
+ setOnlyReadsMemory(F);
+ setDoesNotThrow(F);
+ break;
+ case LibFunc::strcpy:
+ case LibFunc::stpcpy:
+ case LibFunc::strcat:
+ case LibFunc::strtol:
+ case LibFunc::strtod:
+ case LibFunc::strtof:
+ case LibFunc::strtoul:
+ case LibFunc::strtoll:
+ case LibFunc::strtold:
+ case LibFunc::strncat:
+ case LibFunc::strncpy:
+ case LibFunc::stpncpy:
+ case LibFunc::strtoull:
+ if (FTy->getNumParams() < 2 ||
+ !FTy->getParamType(1)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 2);
+ break;
+ case LibFunc::strxfrm:
+ if (FTy->getNumParams() != 3 ||
+ !FTy->getParamType(0)->isPointerTy() ||
+ !FTy->getParamType(1)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 1);
+ setDoesNotCapture(F, 2);
+ break;
+ case LibFunc::strcmp:
+ case LibFunc::strspn:
+ case LibFunc::strncmp:
+ case LibFunc::strcspn:
+ case LibFunc::strcoll:
+ case LibFunc::strcasecmp:
+ case LibFunc::strncasecmp:
+ if (FTy->getNumParams() < 2 ||
+ !FTy->getParamType(0)->isPointerTy() ||
+ !FTy->getParamType(1)->isPointerTy())
+ return false;
+ setOnlyReadsMemory(F);
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 1);
+ setDoesNotCapture(F, 2);
+ break;
+ case LibFunc::strstr:
+ case LibFunc::strpbrk:
+ if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy())
+ return false;
+ setOnlyReadsMemory(F);
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 2);
+ break;
+ case LibFunc::strtok:
+ case LibFunc::strtok_r:
+ if (FTy->getNumParams() < 2 || !FTy->getParamType(1)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 2);
+ break;
+ case LibFunc::scanf:
+ case LibFunc::setbuf:
+ case LibFunc::setvbuf:
+ if (FTy->getNumParams() < 1 || !FTy->getParamType(0)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 1);
+ break;
+ case LibFunc::strdup:
+ case LibFunc::strndup:
+ if (FTy->getNumParams() < 1 || !FTy->getReturnType()->isPointerTy() ||
+ !FTy->getParamType(0)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotAlias(F, 0);
+ setDoesNotCapture(F, 1);
+ break;
+ case LibFunc::stat:
+ case LibFunc::sscanf:
+ case LibFunc::sprintf:
+ case LibFunc::statvfs:
+ if (FTy->getNumParams() < 2 ||
+ !FTy->getParamType(0)->isPointerTy() ||
+ !FTy->getParamType(1)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 1);
+ setDoesNotCapture(F, 2);
+ break;
+ case LibFunc::snprintf:
+ if (FTy->getNumParams() != 3 ||
+ !FTy->getParamType(0)->isPointerTy() ||
+ !FTy->getParamType(2)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 1);
+ setDoesNotCapture(F, 3);
+ break;
+ case LibFunc::setitimer:
+ if (FTy->getNumParams() != 3 ||
+ !FTy->getParamType(1)->isPointerTy() ||
+ !FTy->getParamType(2)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 2);
+ setDoesNotCapture(F, 3);
+ break;
+ case LibFunc::system:
+ if (FTy->getNumParams() != 1 ||
+ !FTy->getParamType(0)->isPointerTy())
+ return false;
+ // May throw; "system" is a valid pthread cancellation point.
+ setDoesNotCapture(F, 1);
+ break;
+ case LibFunc::malloc:
+ if (FTy->getNumParams() != 1 ||
+ !FTy->getReturnType()->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotAlias(F, 0);
+ break;
+ case LibFunc::memcmp:
+ if (FTy->getNumParams() != 3 ||
+ !FTy->getParamType(0)->isPointerTy() ||
+ !FTy->getParamType(1)->isPointerTy())
+ return false;
+ setOnlyReadsMemory(F);
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 1);
+ setDoesNotCapture(F, 2);
+ break;
+ case LibFunc::memchr:
+ case LibFunc::memrchr:
+ if (FTy->getNumParams() != 3)
+ return false;
+ setOnlyReadsMemory(F);
+ setDoesNotThrow(F);
+ break;
+ case LibFunc::modf:
+ case LibFunc::modff:
+ case LibFunc::modfl:
+ case LibFunc::memcpy:
+ case LibFunc::memccpy:
+ case LibFunc::memmove:
+ if (FTy->getNumParams() < 2 ||
+ !FTy->getParamType(1)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 2);
+ break;
+ case LibFunc::memalign:
+ if (!FTy->getReturnType()->isPointerTy())
+ return false;
+ setDoesNotAlias(F, 0);
+ break;
+ case LibFunc::mkdir:
+ case LibFunc::mktime:
+ if (FTy->getNumParams() == 0 ||
+ !FTy->getParamType(0)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 1);
+ break;
+ case LibFunc::realloc:
+ if (FTy->getNumParams() != 2 ||
+ !FTy->getParamType(0)->isPointerTy() ||
+ !FTy->getReturnType()->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotAlias(F, 0);
+ setDoesNotCapture(F, 1);
+ break;
+ case LibFunc::read:
+ if (FTy->getNumParams() != 3 ||
+ !FTy->getParamType(1)->isPointerTy())
+ return false;
+ // May throw; "read" is a valid pthread cancellation point.
+ setDoesNotCapture(F, 2);
+ break;
+ case LibFunc::rmdir:
+ case LibFunc::rewind:
+ case LibFunc::remove:
+ case LibFunc::realpath:
+ if (FTy->getNumParams() < 1 ||
+ !FTy->getParamType(0)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 1);
+ break;
+ case LibFunc::rename:
+ case LibFunc::readlink:
+ if (FTy->getNumParams() < 2 ||
+ !FTy->getParamType(0)->isPointerTy() ||
+ !FTy->getParamType(1)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 1);
+ setDoesNotCapture(F, 2);
+ break;
+ case LibFunc::write:
+ if (FTy->getNumParams() != 3 || !FTy->getParamType(1)->isPointerTy())
+ return false;
+ // May throw; "write" is a valid pthread cancellation point.
+ setDoesNotCapture(F, 2);
+ break;
+ case LibFunc::bcopy:
+ if (FTy->getNumParams() != 3 ||
+ !FTy->getParamType(0)->isPointerTy() ||
+ !FTy->getParamType(1)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 1);
+ setDoesNotCapture(F, 2);
+ break;
+ case LibFunc::bcmp:
+ if (FTy->getNumParams() != 3 ||
+ !FTy->getParamType(0)->isPointerTy() ||
+ !FTy->getParamType(1)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setOnlyReadsMemory(F);
+ setDoesNotCapture(F, 1);
+ setDoesNotCapture(F, 2);
+ break;
+ case LibFunc::bzero:
+ if (FTy->getNumParams() != 2 || !FTy->getParamType(0)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 1);
+ break;
+ case LibFunc::calloc:
+ if (FTy->getNumParams() != 2 ||
+ !FTy->getReturnType()->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotAlias(F, 0);
+ break;
+ case LibFunc::chmod:
+ case LibFunc::chown:
+ case LibFunc::ctermid:
+ case LibFunc::clearerr:
+ case LibFunc::closedir:
+ if (FTy->getNumParams() == 0 || !FTy->getParamType(0)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 1);
+ break;
+ case LibFunc::atoi:
+ case LibFunc::atol:
+ case LibFunc::atof:
+ case LibFunc::atoll:
+ if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setOnlyReadsMemory(F);
+ setDoesNotCapture(F, 1);
+ break;
+ case LibFunc::access:
+ if (FTy->getNumParams() != 2 || !FTy->getParamType(0)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 1);
+ break;
+ case LibFunc::fopen:
+ if (FTy->getNumParams() != 2 ||
+ !FTy->getReturnType()->isPointerTy() ||
+ !FTy->getParamType(0)->isPointerTy() ||
+ !FTy->getParamType(1)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotAlias(F, 0);
+ setDoesNotCapture(F, 1);
+ setDoesNotCapture(F, 2);
+ break;
+ case LibFunc::fdopen:
+ if (FTy->getNumParams() != 2 ||
+ !FTy->getReturnType()->isPointerTy() ||
+ !FTy->getParamType(1)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotAlias(F, 0);
+ setDoesNotCapture(F, 2);
+ break;
+ case LibFunc::feof:
+ case LibFunc::free:
+ case LibFunc::fseek:
+ case LibFunc::ftell:
+ case LibFunc::fgetc:
+ case LibFunc::fseeko:
+ case LibFunc::ftello:
+ case LibFunc::fileno:
+ case LibFunc::fflush:
+ case LibFunc::fclose:
+ case LibFunc::fsetpos:
+ case LibFunc::flockfile:
+ case LibFunc::funlockfile:
+ case LibFunc::ftrylockfile:
+ if (FTy->getNumParams() == 0 || !FTy->getParamType(0)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 1);
+ break;
+ case LibFunc::ferror:
+ if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 1);
+ setOnlyReadsMemory(F);
+ break;
+ case LibFunc::fputc:
+ case LibFunc::fstat:
+ case LibFunc::frexp:
+ case LibFunc::frexpf:
+ case LibFunc::frexpl:
+ case LibFunc::fstatvfs:
+ if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 2);
+ break;
+ case LibFunc::fgets:
+ if (FTy->getNumParams() != 3 ||
+ !FTy->getParamType(0)->isPointerTy() ||
+ !FTy->getParamType(2)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 3);
+ case LibFunc::fread:
+ case LibFunc::fwrite:
+ if (FTy->getNumParams() != 4 ||
+ !FTy->getParamType(0)->isPointerTy() ||
+ !FTy->getParamType(3)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 1);
+ setDoesNotCapture(F, 4);
+ case LibFunc::fputs:
+ case LibFunc::fscanf:
+ case LibFunc::fprintf:
+ case LibFunc::fgetpos:
+ if (FTy->getNumParams() < 2 ||
+ !FTy->getParamType(0)->isPointerTy() ||
+ !FTy->getParamType(1)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 1);
+ setDoesNotCapture(F, 2);
+ break;
+ case LibFunc::getc:
+ case LibFunc::getlogin_r:
+ case LibFunc::getc_unlocked:
+ if (FTy->getNumParams() == 0 || !FTy->getParamType(0)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 1);
+ break;
+ case LibFunc::getenv:
+ if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setOnlyReadsMemory(F);
+ setDoesNotCapture(F, 1);
+ break;
+ case LibFunc::gets:
+ case LibFunc::getchar:
+ setDoesNotThrow(F);
+ break;
+ case LibFunc::getitimer:
+ if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 2);
+ break;
+ case LibFunc::getpwnam:
+ if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 1);
+ break;
+ case LibFunc::ungetc:
+ if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 2);
+ break;
+ case LibFunc::uname:
+ case LibFunc::unlink:
+ case LibFunc::unsetenv:
+ if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 1);
+ break;
+ case LibFunc::utime:
+ case LibFunc::utimes:
+ if (FTy->getNumParams() != 2 ||
+ !FTy->getParamType(0)->isPointerTy() ||
+ !FTy->getParamType(1)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 1);
+ setDoesNotCapture(F, 2);
+ break;
+ case LibFunc::putc:
+ if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 2);
+ break;
+ case LibFunc::puts:
+ case LibFunc::printf:
+ case LibFunc::perror:
+ if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 1);
+ break;
+ case LibFunc::pread:
+ case LibFunc::pwrite:
+ if (FTy->getNumParams() != 4 || !FTy->getParamType(1)->isPointerTy())
+ return false;
+ // May throw; these are valid pthread cancellation points.
+ setDoesNotCapture(F, 2);
+ break;
+ case LibFunc::putchar:
+ setDoesNotThrow(F);
+ break;
+ case LibFunc::popen:
+ if (FTy->getNumParams() != 2 ||
+ !FTy->getReturnType()->isPointerTy() ||
+ !FTy->getParamType(0)->isPointerTy() ||
+ !FTy->getParamType(1)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotAlias(F, 0);
+ setDoesNotCapture(F, 1);
+ setDoesNotCapture(F, 2);
+ break;
+ case LibFunc::pclose:
+ if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 1);
+ break;
+ case LibFunc::vscanf:
+ if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 1);
+ break;
+ case LibFunc::vsscanf:
+ case LibFunc::vfscanf:
+ if (FTy->getNumParams() != 3 ||
+ !FTy->getParamType(1)->isPointerTy() ||
+ !FTy->getParamType(2)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 1);
+ setDoesNotCapture(F, 2);
+ break;
+ case LibFunc::valloc:
+ if (!FTy->getReturnType()->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotAlias(F, 0);
+ break;
+ case LibFunc::vprintf:
+ if (FTy->getNumParams() != 2 || !FTy->getParamType(0)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 1);
+ break;
+ case LibFunc::vfprintf:
+ case LibFunc::vsprintf:
+ if (FTy->getNumParams() != 3 ||
+ !FTy->getParamType(0)->isPointerTy() ||
+ !FTy->getParamType(1)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 1);
+ setDoesNotCapture(F, 2);
+ break;
+ case LibFunc::vsnprintf:
+ if (FTy->getNumParams() != 4 ||
+ !FTy->getParamType(0)->isPointerTy() ||
+ !FTy->getParamType(2)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 1);
+ setDoesNotCapture(F, 3);
+ break;
+ case LibFunc::open:
+ if (FTy->getNumParams() < 2 || !FTy->getParamType(0)->isPointerTy())
+ return false;
+ // May throw; "open" is a valid pthread cancellation point.
+ setDoesNotCapture(F, 1);
+ break;
+ case LibFunc::opendir:
+ if (FTy->getNumParams() != 1 ||
+ !FTy->getReturnType()->isPointerTy() ||
+ !FTy->getParamType(0)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotAlias(F, 0);
+ setDoesNotCapture(F, 1);
+ break;
+ case LibFunc::tmpfile:
+ if (!FTy->getReturnType()->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotAlias(F, 0);
+ break;
+ case LibFunc::times:
+ if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 1);
+ break;
+ case LibFunc::htonl:
+ case LibFunc::htons:
+ case LibFunc::ntohl:
+ case LibFunc::ntohs:
+ setDoesNotThrow(F);
+ setDoesNotAccessMemory(F);
+ break;
+ case LibFunc::lstat:
+ if (FTy->getNumParams() != 2 ||
+ !FTy->getParamType(0)->isPointerTy() ||
+ !FTy->getParamType(1)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 1);
+ setDoesNotCapture(F, 2);
+ break;
+ case LibFunc::lchown:
+ if (FTy->getNumParams() != 3 || !FTy->getParamType(0)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 1);
+ break;
+ case LibFunc::qsort:
+ if (FTy->getNumParams() != 4 || !FTy->getParamType(3)->isPointerTy())
+ return false;
+ // May throw; places call through function pointer.
+ setDoesNotCapture(F, 4);
+ break;
+ case LibFunc::dunder_strdup:
+ case LibFunc::dunder_strndup:
+ if (FTy->getNumParams() < 1 ||
+ !FTy->getReturnType()->isPointerTy() ||
+ !FTy->getParamType(0)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotAlias(F, 0);
+ setDoesNotCapture(F, 1);
+ break;
+ case LibFunc::dunder_strtok_r:
+ if (FTy->getNumParams() != 3 ||
+ !FTy->getParamType(1)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 2);
+ break;
+ case LibFunc::under_IO_getc:
+ if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 1);
+ break;
+ case LibFunc::under_IO_putc:
+ if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 2);
+ break;
+ case LibFunc::dunder_isoc99_scanf:
+ if (FTy->getNumParams() < 1 ||
+ !FTy->getParamType(0)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 1);
+ break;
+ case LibFunc::stat64:
+ case LibFunc::lstat64:
+ case LibFunc::statvfs64:
+ case LibFunc::dunder_isoc99_sscanf:
+ if (FTy->getNumParams() < 1 ||
+ !FTy->getParamType(0)->isPointerTy() ||
+ !FTy->getParamType(1)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 1);
+ setDoesNotCapture(F, 2);
+ break;
+ case LibFunc::fopen64:
+ if (FTy->getNumParams() != 2 ||
+ !FTy->getReturnType()->isPointerTy() ||
+ !FTy->getParamType(0)->isPointerTy() ||
+ !FTy->getParamType(1)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotAlias(F, 0);
+ setDoesNotCapture(F, 1);
+ setDoesNotCapture(F, 2);
+ break;
+ case LibFunc::fseeko64:
+ case LibFunc::ftello64:
+ if (FTy->getNumParams() == 0 || !FTy->getParamType(0)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 1);
+ break;
+ case LibFunc::tmpfile64:
+ if (!FTy->getReturnType()->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotAlias(F, 0);
+ break;
+ case LibFunc::fstat64:
+ case LibFunc::fstatvfs64:
+ if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy())
+ return false;
+ setDoesNotThrow(F);
+ setDoesNotCapture(F, 2);
+ break;
+ case LibFunc::open64:
+ if (FTy->getNumParams() < 2 || !FTy->getParamType(0)->isPointerTy())
+ return false;
+ // May throw; "open" is a valid pthread cancellation point.
+ setDoesNotCapture(F, 1);
+ break;
+ default:
+ // Didn't mark any attributes.
+ return false;
+ }
+
+ return true;
+}
+
+/// annotateLibraryCalls - Adds attributes to well-known standard library
+/// call declarations.
+bool FunctionAttrs::annotateLibraryCalls(const CallGraphSCC &SCC) {
+ bool MadeChange = false;
+
+ // Check each function in turn annotating well-known library function
+ // declarations with attributes.
+ for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
+ Function *F = (*I)->getFunction();
+
+ if (F != 0 && F->isDeclaration())
+ MadeChange |= inferPrototypeAttributes(*F);
+ }
+
+ return MadeChange;
+}
+
bool FunctionAttrs::runOnSCC(CallGraphSCC &SCC) {
AA = &getAnalysis<AliasAnalysis>();
+ TLI = &getAnalysis<TargetLibraryInfo>();
- bool Changed = AddReadAttrs(SCC);
+ bool Changed = annotateLibraryCalls(SCC);
+ Changed |= AddReadAttrs(SCC);
Changed |= AddNoCaptureAttrs(SCC);
Changed |= AddNoAliasAttrs(SCC);
return Changed;
diff --git a/contrib/llvm/lib/Transforms/IPO/GlobalDCE.cpp b/contrib/llvm/lib/Transforms/IPO/GlobalDCE.cpp
index 18c1c7b..dc99492 100644
--- a/contrib/llvm/lib/Transforms/IPO/GlobalDCE.cpp
+++ b/contrib/llvm/lib/Transforms/IPO/GlobalDCE.cpp
@@ -17,11 +17,11 @@
#define DEBUG_TYPE "globaldce"
#include "llvm/Transforms/IPO.h"
-#include "llvm/Constants.h"
-#include "llvm/Module.h"
-#include "llvm/Pass.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
using namespace llvm;
STATISTIC(NumAliases , "Number of global aliases removed");
diff --git a/contrib/llvm/lib/Transforms/IPO/GlobalOpt.cpp b/contrib/llvm/lib/Transforms/IPO/GlobalOpt.cpp
index 591278f..b035a82 100644
--- a/contrib/llvm/lib/Transforms/IPO/GlobalOpt.cpp
+++ b/contrib/llvm/lib/Transforms/IPO/GlobalOpt.cpp
@@ -15,29 +15,29 @@
#define DEBUG_TYPE "globalopt"
#include "llvm/Transforms/IPO.h"
-#include "llvm/CallingConv.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Module.h"
-#include "llvm/Operator.h"
-#include "llvm/Pass.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/MemoryBuiltins.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Target/TargetLibraryInfo.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/Pass.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/STLExtras.h"
+#include "llvm/Target/TargetLibraryInfo.h"
#include <algorithm>
using namespace llvm;
@@ -148,17 +148,13 @@ struct GlobalStatus {
/// an instruction (e.g. a constant expr or GV initializer).
bool HasNonInstructionUser;
- /// HasPHIUser - Set to true if this global has a user that is a PHI node.
- bool HasPHIUser;
-
/// AtomicOrdering - Set to the strongest atomic ordering requirement.
AtomicOrdering Ordering;
GlobalStatus() : isCompared(false), isLoaded(false), StoredType(NotStored),
StoredOnceValue(0), AccessingFunction(0),
HasMultipleAccessingFunctions(false),
- HasNonInstructionUser(false), HasPHIUser(false),
- Ordering(NotAtomic) {}
+ HasNonInstructionUser(false), Ordering(NotAtomic) {}
};
}
@@ -200,11 +196,11 @@ static bool AnalyzeGlobal(const Value *V, GlobalStatus &GS,
const User *U = *UI;
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
GS.HasNonInstructionUser = true;
-
+
// If the result of the constantexpr isn't pointer type, then we won't
// know to expect it in various places. Just reject early.
if (!isa<PointerType>(CE->getType())) return true;
-
+
if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
} else if (const Instruction *I = dyn_cast<Instruction>(U)) {
if (!GS.HasMultipleAccessingFunctions) {
@@ -274,7 +270,6 @@ static bool AnalyzeGlobal(const Value *V, GlobalStatus &GS,
// have to be careful about infinite recursion.
if (PHIUsers.insert(PN)) // Not already visited.
if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
- GS.HasPHIUser = true;
} else if (isa<CmpInst>(I)) {
GS.isCompared = true;
} else if (const MemTransferInst *MTI = dyn_cast<MemTransferInst>(I)) {
@@ -453,8 +448,8 @@ static bool CleanupPointerRootUsers(GlobalVariable *GV,
Dead[i].second->eraseFromParent();
Instruction *I = Dead[i].first;
do {
- if (isAllocationFn(I, TLI))
- break;
+ if (isAllocationFn(I, TLI))
+ break;
Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
if (!J)
break;
@@ -475,8 +470,9 @@ static bool CleanupPointerRootUsers(GlobalVariable *GV,
static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
DataLayout *TD, TargetLibraryInfo *TLI) {
bool Changed = false;
- for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
- User *U = *UI++;
+ SmallVector<User*, 8> WorkList(V->use_begin(), V->use_end());
+ while (!WorkList.empty()) {
+ User *U = WorkList.pop_back_val();
if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
if (Init) {
@@ -539,7 +535,6 @@ static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
// us, and if they are all dead, nuke them without remorse.
if (SafeToDestroyConstant(C)) {
C->destroyConstant();
- // This could have invalidated UI, start over from scratch.
CleanupConstantGlobalUsers(V, Init, TD, TLI);
return true;
}
@@ -1830,7 +1825,8 @@ static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
GlobalValue::InternalLinkage,
ConstantInt::getFalse(GV->getContext()),
GV->getName()+".b",
- GV->getThreadLocalMode());
+ GV->getThreadLocalMode(),
+ GV->getType()->getAddressSpace());
GV->getParent()->getGlobalList().insert(GV, NewGV);
Constant *InitVal = GV->getInitializer();
@@ -1850,10 +1846,10 @@ static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
bool StoringOther = SI->getOperand(0) == OtherVal;
// Only do this if we weren't storing a loaded value.
Value *StoreVal;
- if (StoringOther || SI->getOperand(0) == InitVal)
+ if (StoringOther || SI->getOperand(0) == InitVal) {
StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
StoringOther);
- else {
+ } else {
// Otherwise, we are storing a previously loaded copy. To do this,
// change the copy from copying the original value to just copying the
// bool.
@@ -1892,6 +1888,9 @@ static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
UI->eraseFromParent();
}
+ // Retain the name of the old global variable. People who are debugging their
+ // programs may expect these variables to be named the same.
+ NewGV->takeName(GV);
GV->eraseFromParent();
return true;
}
@@ -1994,7 +1993,7 @@ bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
return Changed;
} else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
- DEBUG(dbgs() << "MARKING CONSTANT: " << *GV);
+ DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
GV->setConstant(true);
// Clean up any obviously simplifiable users now.
@@ -2070,14 +2069,14 @@ static void ChangeCalleesToFastCall(Function *F) {
}
}
-static AttrListPtr StripNest(LLVMContext &C, const AttrListPtr &Attrs) {
+static AttributeSet StripNest(LLVMContext &C, const AttributeSet &Attrs) {
for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
- if (!Attrs.getSlot(i).Attrs.hasAttribute(Attributes::Nest))
+ unsigned Index = Attrs.getSlotIndex(i);
+ if (!Attrs.getSlotAttributes(i).hasAttribute(Index, Attribute::Nest))
continue;
// There can be only one.
- return Attrs.removeAttr(C, Attrs.getSlot(i).Index,
- Attributes::get(C, Attributes::Nest));
+ return Attrs.removeAttribute(C, Index, Attribute::Nest);
}
return Attrs;
@@ -2118,7 +2117,7 @@ bool GlobalOpt::OptimizeFunctions(Module &M) {
Changed = true;
}
- if (F->getAttributes().hasAttrSomewhere(Attributes::Nest) &&
+ if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
!F->hasAddressTaken()) {
// The function is not used by a trampoline intrinsic, so it is safe
// to remove the 'nest' attribute.
@@ -2157,7 +2156,7 @@ bool GlobalOpt::OptimizeGlobalVars(Module &M) {
GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
if (GV == 0) return 0;
-
+
// Verify that the initializer is simple enough for us to handle. We are
// only allowed to optimize the initializer if it is unique.
if (!GV->hasUniqueInitializer()) return 0;
@@ -2263,7 +2262,7 @@ static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
}
-static inline bool
+static inline bool
isSimpleEnoughValueToCommit(Constant *C,
SmallPtrSet<Constant*, 8> &SimpleConstants,
const DataLayout *TD);
@@ -2285,7 +2284,7 @@ static bool isSimpleEnoughValueToCommitHelper(Constant *C,
if (C->getNumOperands() == 0 || isa<BlockAddress>(C) ||
isa<GlobalValue>(C))
return true;
-
+
// Aggregate values are safe if all their elements are.
if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
isa<ConstantVector>(C)) {
@@ -2296,7 +2295,7 @@ static bool isSimpleEnoughValueToCommitHelper(Constant *C,
}
return true;
}
-
+
// We don't know exactly what relocations are allowed in constant expressions,
// so we allow &global+constantoffset, which is safe and uniformly supported
// across targets.
@@ -2314,14 +2313,14 @@ static bool isSimpleEnoughValueToCommitHelper(Constant *C,
TD->getTypeSizeInBits(CE->getOperand(0)->getType()))
return false;
return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD);
-
+
// GEP is fine if it is simple + constant offset.
case Instruction::GetElementPtr:
for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
if (!isa<ConstantInt>(CE->getOperand(i)))
return false;
return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD);
-
+
case Instruction::Add:
// We allow simple+cst.
if (!isa<ConstantInt>(CE->getOperand(1)))
@@ -2331,7 +2330,7 @@ static bool isSimpleEnoughValueToCommitHelper(Constant *C,
return false;
}
-static inline bool
+static inline bool
isSimpleEnoughValueToCommit(Constant *C,
SmallPtrSet<Constant*, 8> &SimpleConstants,
const DataLayout *TD) {
@@ -2379,7 +2378,7 @@ static bool isSimpleEnoughPointerToCommit(Constant *C) {
return false;
return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
-
+
// A constantexpr bitcast from a pointer to another pointer is a no-op,
// and we know how to evaluate it by moving the bitcast from the pointer
// operand to the value operand.
@@ -2390,7 +2389,7 @@ static bool isSimpleEnoughPointerToCommit(Constant *C) {
return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
}
}
-
+
return false;
}
@@ -2420,7 +2419,7 @@ static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
// Return the modified struct.
return ConstantStruct::get(STy, Elts);
}
-
+
ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
SequentialType *InitTy = cast<SequentialType>(Init->getType());
@@ -2589,31 +2588,45 @@ bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
while (1) {
Constant *InstResult = 0;
+ DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n");
+
if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
- if (!SI->isSimple()) return false; // no volatile/atomic accesses.
+ if (!SI->isSimple()) {
+ DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n");
+ return false; // no volatile/atomic accesses.
+ }
Constant *Ptr = getVal(SI->getOperand(1));
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
+ DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr);
Ptr = ConstantFoldConstantExpression(CE, TD, TLI);
- if (!isSimpleEnoughPointerToCommit(Ptr))
+ DEBUG(dbgs() << "; To: " << *Ptr << "\n");
+ }
+ if (!isSimpleEnoughPointerToCommit(Ptr)) {
// If this is too complex for us to commit, reject it.
+ DEBUG(dbgs() << "Pointer is too complex for us to evaluate store.");
return false;
-
+ }
+
Constant *Val = getVal(SI->getOperand(0));
// If this might be too difficult for the backend to handle (e.g. the addr
// of one global variable divided by another) then we can't commit it.
- if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, TD))
+ if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, TD)) {
+ DEBUG(dbgs() << "Store value is too complex to evaluate store. " << *Val
+ << "\n");
return false;
-
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
+ }
+
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
if (CE->getOpcode() == Instruction::BitCast) {
+ DEBUG(dbgs() << "Attempting to resolve bitcast on constant ptr.\n");
// If we're evaluating a store through a bitcast, then we need
// to pull the bitcast off the pointer type and push it onto the
// stored value.
Ptr = CE->getOperand(0);
-
+
Type *NewTy = cast<PointerType>(Ptr->getType())->getElementType();
-
+
// In order to push the bitcast onto the stored value, a bitcast
// from NewTy to Val's type must be legal. If it's not, we can try
// introspecting NewTy to find a legal conversion.
@@ -2635,32 +2648,45 @@ bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
// If we can't improve the situation by introspecting NewTy,
// we have to give up.
} else {
+ DEBUG(dbgs() << "Failed to bitcast constant ptr, can not "
+ "evaluate.\n");
return false;
}
}
-
+
// If we found compatible types, go ahead and push the bitcast
// onto the stored value.
Val = ConstantExpr::getBitCast(Val, NewTy);
+
+ DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n");
}
-
+ }
+
MutatedMemory[Ptr] = Val;
} else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
InstResult = ConstantExpr::get(BO->getOpcode(),
getVal(BO->getOperand(0)),
getVal(BO->getOperand(1)));
+ DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " << *InstResult
+ << "\n");
} else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
InstResult = ConstantExpr::getCompare(CI->getPredicate(),
getVal(CI->getOperand(0)),
getVal(CI->getOperand(1)));
+ DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult
+ << "\n");
} else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
InstResult = ConstantExpr::getCast(CI->getOpcode(),
getVal(CI->getOperand(0)),
CI->getType());
+ DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult
+ << "\n");
} else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)),
getVal(SI->getOperand(1)),
getVal(SI->getOperand(2)));
+ DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult
+ << "\n");
} else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
Constant *P = getVal(GEP->getOperand(0));
SmallVector<Constant*, 8> GEPOps;
@@ -2670,41 +2696,70 @@ bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
InstResult =
ConstantExpr::getGetElementPtr(P, GEPOps,
cast<GEPOperator>(GEP)->isInBounds());
+ DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult
+ << "\n");
} else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
- if (!LI->isSimple()) return false; // no volatile/atomic accesses.
+
+ if (!LI->isSimple()) {
+ DEBUG(dbgs() << "Found a Load! Not a simple load, can not evaluate.\n");
+ return false; // no volatile/atomic accesses.
+ }
+
Constant *Ptr = getVal(LI->getOperand(0));
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
Ptr = ConstantFoldConstantExpression(CE, TD, TLI);
+ DEBUG(dbgs() << "Found a constant pointer expression, constant "
+ "folding: " << *Ptr << "\n");
+ }
InstResult = ComputeLoadResult(Ptr);
- if (InstResult == 0) return false; // Could not evaluate load.
+ if (InstResult == 0) {
+ DEBUG(dbgs() << "Failed to compute load result. Can not evaluate load."
+ "\n");
+ return false; // Could not evaluate load.
+ }
+
+ DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n");
} else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
- if (AI->isArrayAllocation()) return false; // Cannot handle array allocs.
+ if (AI->isArrayAllocation()) {
+ DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n");
+ return false; // Cannot handle array allocs.
+ }
Type *Ty = AI->getType()->getElementType();
AllocaTmps.push_back(new GlobalVariable(Ty, false,
GlobalValue::InternalLinkage,
UndefValue::get(Ty),
AI->getName()));
InstResult = AllocaTmps.back();
+ DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n");
} else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
CallSite CS(CurInst);
// Debug info can safely be ignored here.
if (isa<DbgInfoIntrinsic>(CS.getInstruction())) {
+ DEBUG(dbgs() << "Ignoring debug info.\n");
++CurInst;
continue;
}
// Cannot handle inline asm.
- if (isa<InlineAsm>(CS.getCalledValue())) return false;
+ if (isa<InlineAsm>(CS.getCalledValue())) {
+ DEBUG(dbgs() << "Found inline asm, can not evaluate.\n");
+ return false;
+ }
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
- if (MSI->isVolatile()) return false;
+ if (MSI->isVolatile()) {
+ DEBUG(dbgs() << "Can not optimize a volatile memset " <<
+ "intrinsic.\n");
+ return false;
+ }
Constant *Ptr = getVal(MSI->getDest());
Constant *Val = getVal(MSI->getValue());
Constant *DestVal = ComputeLoadResult(getVal(Ptr));
if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
// This memset is a no-op.
+ DEBUG(dbgs() << "Ignoring no-op memset.\n");
++CurInst;
continue;
}
@@ -2712,6 +2767,7 @@ bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
II->getIntrinsicID() == Intrinsic::lifetime_end) {
+ DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n");
++CurInst;
continue;
}
@@ -2719,8 +2775,10 @@ bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
if (II->getIntrinsicID() == Intrinsic::invariant_start) {
// We don't insert an entry into Values, as it doesn't have a
// meaningful return value.
- if (!II->use_empty())
+ if (!II->use_empty()) {
+ DEBUG(dbgs() << "Found unused invariant_start. Cant evaluate.\n");
return false;
+ }
ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
Value *PtrArg = getVal(II->getArgOperand(1));
Value *Ptr = PtrArg->stripPointerCasts();
@@ -2728,20 +2786,30 @@ bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
Type *ElemTy = cast<PointerType>(GV->getType())->getElementType();
if (!Size->isAllOnesValue() &&
Size->getValue().getLimitedValue() >=
- TD->getTypeStoreSize(ElemTy))
+ TD->getTypeStoreSize(ElemTy)) {
Invariants.insert(GV);
+ DEBUG(dbgs() << "Found a global var that is an invariant: " << *GV
+ << "\n");
+ } else {
+ DEBUG(dbgs() << "Found a global var, but can not treat it as an "
+ "invariant.\n");
+ }
}
// Continue even if we do nothing.
++CurInst;
continue;
}
+
+ DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n");
return false;
}
// Resolve function pointers.
Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue()));
- if (!Callee || Callee->mayBeOverridden())
+ if (!Callee || Callee->mayBeOverridden()) {
+ DEBUG(dbgs() << "Can not resolve function pointer.\n");
return false; // Cannot resolve.
+ }
SmallVector<Constant*, 8> Formals;
for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i)
@@ -2751,22 +2819,38 @@ bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
// If this is a function we can constant fold, do it.
if (Constant *C = ConstantFoldCall(Callee, Formals, TLI)) {
InstResult = C;
+ DEBUG(dbgs() << "Constant folded function call. Result: " <<
+ *InstResult << "\n");
} else {
+ DEBUG(dbgs() << "Can not constant fold function call.\n");
return false;
}
} else {
- if (Callee->getFunctionType()->isVarArg())
+ if (Callee->getFunctionType()->isVarArg()) {
+ DEBUG(dbgs() << "Can not constant fold vararg function call.\n");
return false;
+ }
- Constant *RetVal;
+ Constant *RetVal = 0;
// Execute the call, if successful, use the return value.
ValueStack.push_back(new DenseMap<Value*, Constant*>);
- if (!EvaluateFunction(Callee, RetVal, Formals))
+ if (!EvaluateFunction(Callee, RetVal, Formals)) {
+ DEBUG(dbgs() << "Failed to evaluate function.\n");
return false;
+ }
delete ValueStack.pop_back_val();
InstResult = RetVal;
+
+ if (InstResult != NULL) {
+ DEBUG(dbgs() << "Successfully evaluated function. Result: " <<
+ InstResult << "\n\n");
+ } else {
+ DEBUG(dbgs() << "Successfully evaluated function. Result: 0\n\n");
+ }
}
} else if (isa<TerminatorInst>(CurInst)) {
+ DEBUG(dbgs() << "Found a terminator instruction.\n");
+
if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
if (BI->isUnconditional()) {
NextBB = BI->getSuccessor(0);
@@ -2792,26 +2876,31 @@ bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
NextBB = 0;
} else {
// invoke, unwind, resume, unreachable.
+ DEBUG(dbgs() << "Can not handle terminator.");
return false; // Cannot handle this terminator.
}
// We succeeded at evaluating this block!
+ DEBUG(dbgs() << "Successfully evaluated block.\n");
return true;
} else {
// Did not know how to evaluate this!
+ DEBUG(dbgs() << "Failed to evaluate block due to unhandled instruction."
+ "\n");
return false;
}
if (!CurInst->use_empty()) {
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult))
InstResult = ConstantFoldConstantExpression(CE, TD, TLI);
-
+
setVal(CurInst, InstResult);
}
// If we just processed an invoke, we finished evaluating the block.
if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
NextBB = II->getNormalDest();
+ DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n");
return true;
}
@@ -2850,6 +2939,8 @@ bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
while (1) {
BasicBlock *NextBB = 0; // Initialized to avoid compiler warnings.
+ DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n");
+
if (!EvaluateBlock(CurInst, NextBB))
return false;
@@ -2891,7 +2982,7 @@ static bool EvaluateStaticConstructor(Function *F, const DataLayout *TD,
Constant *RetValDummy;
bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
SmallVector<Constant*, 0>());
-
+
if (EvalSuccess) {
// We succeeded at evaluation: commit the result.
DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
@@ -2929,6 +3020,7 @@ bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
}
break;
}
+ DEBUG(dbgs() << "Optimizing Global Constructor: " << *F << "\n");
// We cannot simplify external ctor functions.
if (F->empty()) continue;
@@ -3011,13 +3103,13 @@ static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) {
return 0;
Function *Fn = M.getFunction(TLI->getName(LibFunc::cxa_atexit));
-
+
if (!Fn)
return 0;
FunctionType *FTy = Fn->getFunctionType();
-
- // Checking that the function has the right return type, the right number of
+
+ // Checking that the function has the right return type, the right number of
// parameters and that they all have pointer types should be enough.
if (!FTy->getReturnType()->isIntegerTy() ||
FTy->getNumParams() != 3 ||
@@ -3092,7 +3184,7 @@ bool GlobalOpt::OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
// and remove them.
bool Changed = false;
- for (Function::use_iterator I = CXAAtExitFn->use_begin(),
+ for (Function::use_iterator I = CXAAtExitFn->use_begin(),
E = CXAAtExitFn->use_end(); I != E;) {
// We're only interested in calls. Theoretically, we could handle invoke
// instructions as well, but neither llvm-gcc nor clang generate invokes
@@ -3101,7 +3193,7 @@ bool GlobalOpt::OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
if (!CI)
continue;
- Function *DtorFn =
+ Function *DtorFn =
dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
if (!DtorFn)
continue;
diff --git a/contrib/llvm/lib/Transforms/IPO/IPConstantPropagation.cpp b/contrib/llvm/lib/Transforms/IPO/IPConstantPropagation.cpp
index d757e1f..4ac1dfc 100644
--- a/contrib/llvm/lib/Transforms/IPO/IPConstantPropagation.cpp
+++ b/contrib/llvm/lib/Transforms/IPO/IPConstantPropagation.cpp
@@ -17,14 +17,14 @@
#define DEBUG_TYPE "ipconstprop"
#include "llvm/Transforms/IPO.h"
-#include "llvm/Constants.h"
-#include "llvm/Instructions.h"
-#include "llvm/Module.h"
-#include "llvm/Pass.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
#include "llvm/Support/CallSite.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/SmallVector.h"
using namespace llvm;
STATISTIC(NumArgumentsProped, "Number of args turned into constants");
diff --git a/contrib/llvm/lib/Transforms/IPO/InlineAlways.cpp b/contrib/llvm/lib/Transforms/IPO/InlineAlways.cpp
index b1c36c1..a0095da 100644
--- a/contrib/llvm/lib/Transforms/IPO/InlineAlways.cpp
+++ b/contrib/llvm/lib/Transforms/IPO/InlineAlways.cpp
@@ -13,47 +13,58 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "inline"
-#include "llvm/CallingConv.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Module.h"
-#include "llvm/Type.h"
+#include "llvm/Transforms/IPO.h"
+#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/InlineCost.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
#include "llvm/Support/CallSite.h"
-#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/InlinerPass.h"
-#include "llvm/DataLayout.h"
-#include "llvm/ADT/SmallPtrSet.h"
using namespace llvm;
namespace {
- // AlwaysInliner only inlines functions that are mark as "always inline".
- class AlwaysInliner : public Inliner {
- public:
- // Use extremely low threshold.
- AlwaysInliner() : Inliner(ID, -2000000000, /*InsertLifetime*/true) {
- initializeAlwaysInlinerPass(*PassRegistry::getPassRegistry());
- }
- AlwaysInliner(bool InsertLifetime) : Inliner(ID, -2000000000,
- InsertLifetime) {
- initializeAlwaysInlinerPass(*PassRegistry::getPassRegistry());
- }
- static char ID; // Pass identification, replacement for typeid
- virtual InlineCost getInlineCost(CallSite CS);
- virtual bool doFinalization(CallGraph &CG) {
- return removeDeadFunctions(CG, /*AlwaysInlineOnly=*/true);
- }
- virtual bool doInitialization(CallGraph &CG);
- };
+/// \brief Inliner pass which only handles "always inline" functions.
+class AlwaysInliner : public Inliner {
+ InlineCostAnalysis *ICA;
+
+public:
+ // Use extremely low threshold.
+ AlwaysInliner() : Inliner(ID, -2000000000, /*InsertLifetime*/ true), ICA(0) {
+ initializeAlwaysInlinerPass(*PassRegistry::getPassRegistry());
+ }
+
+ AlwaysInliner(bool InsertLifetime)
+ : Inliner(ID, -2000000000, InsertLifetime), ICA(0) {
+ initializeAlwaysInlinerPass(*PassRegistry::getPassRegistry());
+ }
+
+ static char ID; // Pass identification, replacement for typeid
+
+ virtual InlineCost getInlineCost(CallSite CS);
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const;
+ virtual bool runOnSCC(CallGraphSCC &SCC);
+
+ using llvm::Pass::doFinalization;
+ virtual bool doFinalization(CallGraph &CG) {
+ return removeDeadFunctions(CG, /*AlwaysInlineOnly=*/ true);
+ }
+};
+
}
char AlwaysInliner::ID = 0;
INITIALIZE_PASS_BEGIN(AlwaysInliner, "always-inline",
"Inliner for always_inline functions", false, false)
INITIALIZE_AG_DEPENDENCY(CallGraph)
+INITIALIZE_PASS_DEPENDENCY(InlineCostAnalysis)
INITIALIZE_PASS_END(AlwaysInliner, "always-inline",
"Inliner for always_inline functions", false, false)
@@ -63,35 +74,6 @@ Pass *llvm::createAlwaysInlinerPass(bool InsertLifetime) {
return new AlwaysInliner(InsertLifetime);
}
-/// \brief Minimal filter to detect invalid constructs for inlining.
-static bool isInlineViable(Function &F) {
- bool ReturnsTwice =F.getFnAttributes().hasAttribute(Attributes::ReturnsTwice);
- for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
- // Disallow inlining of functions which contain an indirect branch.
- if (isa<IndirectBrInst>(BI->getTerminator()))
- return false;
-
- for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;
- ++II) {
- CallSite CS(II);
- if (!CS)
- continue;
-
- // Disallow recursive calls.
- if (&F == CS.getCalledFunction())
- return false;
-
- // Disallow calls which expose returns-twice to a function not previously
- // attributed as such.
- if (!ReturnsTwice && CS.isCall() &&
- cast<CallInst>(CS.getInstruction())->canReturnTwice())
- return false;
- }
- }
-
- return true;
-}
-
/// \brief Get the inline cost for the always-inliner.
///
/// The always inliner *only* handles functions which are marked with the
@@ -106,27 +88,25 @@ static bool isInlineViable(Function &F) {
/// likely not worth it in practice.
InlineCost AlwaysInliner::getInlineCost(CallSite CS) {
Function *Callee = CS.getCalledFunction();
- // We assume indirect calls aren't calling an always-inline function.
- if (!Callee) return InlineCost::getNever();
- // We can't inline calls to external functions.
- // FIXME: We shouldn't even get here.
- if (Callee->isDeclaration()) return InlineCost::getNever();
+ // Only inline direct calls to functions with always-inline attributes
+ // that are viable for inlining. FIXME: We shouldn't even get here for
+ // declarations.
+ if (Callee && !Callee->isDeclaration() &&
+ Callee->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::AlwaysInline) &&
+ ICA->isInlineViable(*Callee))
+ return InlineCost::getAlways();
- // Return never for anything not marked as always inline.
- if (!Callee->getFnAttributes().hasAttribute(Attributes::AlwaysInline))
- return InlineCost::getNever();
-
- // Do some minimal analysis to preclude non-viable functions.
- if (!isInlineViable(*Callee))
- return InlineCost::getNever();
+ return InlineCost::getNever();
+}
- // Otherwise, force inlining.
- return InlineCost::getAlways();
+bool AlwaysInliner::runOnSCC(CallGraphSCC &SCC) {
+ ICA = &getAnalysis<InlineCostAnalysis>();
+ return Inliner::runOnSCC(SCC);
}
-// doInitialization - Initializes the vector of functions that have not
-// been annotated with the "always inline" attribute.
-bool AlwaysInliner::doInitialization(CallGraph &CG) {
- return false;
+void AlwaysInliner::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<InlineCostAnalysis>();
+ Inliner::getAnalysisUsage(AU);
}
diff --git a/contrib/llvm/lib/Transforms/IPO/InlineSimple.cpp b/contrib/llvm/lib/Transforms/IPO/InlineSimple.cpp
index bf0b1f9..a4f7026 100644
--- a/contrib/llvm/lib/Transforms/IPO/InlineSimple.cpp
+++ b/contrib/llvm/lib/Transforms/IPO/InlineSimple.cpp
@@ -12,44 +12,57 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "inline"
-#include "llvm/CallingConv.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Module.h"
-#include "llvm/Type.h"
+#include "llvm/Transforms/IPO.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/InlineCost.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
#include "llvm/Support/CallSite.h"
-#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/InlinerPass.h"
-#include "llvm/DataLayout.h"
using namespace llvm;
namespace {
- class SimpleInliner : public Inliner {
- InlineCostAnalyzer CA;
- public:
- SimpleInliner() : Inliner(ID) {
- initializeSimpleInlinerPass(*PassRegistry::getPassRegistry());
- }
- SimpleInliner(int Threshold) : Inliner(ID, Threshold,
- /*InsertLifetime*/true) {
- initializeSimpleInlinerPass(*PassRegistry::getPassRegistry());
- }
- static char ID; // Pass identification, replacement for typeid
- InlineCost getInlineCost(CallSite CS) {
- return CA.getInlineCost(CS, getInlineThreshold(CS));
- }
- virtual bool doInitialization(CallGraph &CG);
- };
-}
+/// \brief Actaul inliner pass implementation.
+///
+/// The common implementation of the inlining logic is shared between this
+/// inliner pass and the always inliner pass. The two passes use different cost
+/// analyses to determine when to inline.
+class SimpleInliner : public Inliner {
+ InlineCostAnalysis *ICA;
+
+public:
+ SimpleInliner() : Inliner(ID), ICA(0) {
+ initializeSimpleInlinerPass(*PassRegistry::getPassRegistry());
+ }
+
+ SimpleInliner(int Threshold)
+ : Inliner(ID, Threshold, /*InsertLifetime*/ true), ICA(0) {
+ initializeSimpleInlinerPass(*PassRegistry::getPassRegistry());
+ }
+
+ static char ID; // Pass identification, replacement for typeid
+
+ InlineCost getInlineCost(CallSite CS) {
+ return ICA->getInlineCost(CS, getInlineThreshold(CS));
+ }
+
+ virtual bool runOnSCC(CallGraphSCC &SCC);
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const;
+};
+
+} // end anonymous namespace
char SimpleInliner::ID = 0;
INITIALIZE_PASS_BEGIN(SimpleInliner, "inline",
"Function Integration/Inlining", false, false)
INITIALIZE_AG_DEPENDENCY(CallGraph)
+INITIALIZE_PASS_DEPENDENCY(InlineCostAnalysis)
INITIALIZE_PASS_END(SimpleInliner, "inline",
"Function Integration/Inlining", false, false)
@@ -59,10 +72,12 @@ Pass *llvm::createFunctionInliningPass(int Threshold) {
return new SimpleInliner(Threshold);
}
-// doInitialization - Initializes the vector of functions that have been
-// annotated with the noinline attribute.
-bool SimpleInliner::doInitialization(CallGraph &CG) {
- CA.setDataLayout(getAnalysisIfAvailable<DataLayout>());
- return false;
+bool SimpleInliner::runOnSCC(CallGraphSCC &SCC) {
+ ICA = &getAnalysis<InlineCostAnalysis>();
+ return Inliner::runOnSCC(SCC);
}
+void SimpleInliner::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<InlineCostAnalysis>();
+ Inliner::getAnalysisUsage(AU);
+}
diff --git a/contrib/llvm/lib/Transforms/IPO/Inliner.cpp b/contrib/llvm/lib/Transforms/IPO/Inliner.cpp
index abcb25f..663ddb7 100644
--- a/contrib/llvm/lib/Transforms/IPO/Inliner.cpp
+++ b/contrib/llvm/lib/Transforms/IPO/Inliner.cpp
@@ -14,22 +14,22 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "inline"
-#include "llvm/Module.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/Transforms/IPO/InlinerPass.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/InlineCost.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Target/TargetLibraryInfo.h"
-#include "llvm/Transforms/IPO/InlinerPass.h"
-#include "llvm/Transforms/Utils/Cloning.h"
-#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/Statistic.h"
+#include "llvm/Target/TargetLibraryInfo.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
STATISTIC(NumInlined, "Number of functions inlined");
@@ -64,14 +64,48 @@ Inliner::Inliner(char &ID, int Threshold, bool InsertLifetime)
/// getAnalysisUsage - For this class, we declare that we require and preserve
/// the call graph. If the derived class implements this method, it should
/// always explicitly call the implementation here.
-void Inliner::getAnalysisUsage(AnalysisUsage &Info) const {
- CallGraphSCCPass::getAnalysisUsage(Info);
+void Inliner::getAnalysisUsage(AnalysisUsage &AU) const {
+ CallGraphSCCPass::getAnalysisUsage(AU);
}
typedef DenseMap<ArrayType*, std::vector<AllocaInst*> >
InlinedArrayAllocasTy;
+/// \brief If the inlined function had a higher stack protection level than the
+/// calling function, then bump up the caller's stack protection level.
+static void AdjustCallerSSPLevel(Function *Caller, Function *Callee) {
+ // If upgrading the SSP attribute, clear out the old SSP Attributes first.
+ // Having multiple SSP attributes doesn't actually hurt, but it adds useless
+ // clutter to the IR.
+ AttrBuilder B;
+ B.addAttribute(Attribute::StackProtect)
+ .addAttribute(Attribute::StackProtectStrong);
+ AttributeSet OldSSPAttr = AttributeSet::get(Caller->getContext(),
+ AttributeSet::FunctionIndex,
+ B);
+ AttributeSet CallerAttr = Caller->getAttributes(),
+ CalleeAttr = Callee->getAttributes();
+
+ if (CalleeAttr.hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::StackProtectReq)) {
+ Caller->removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr);
+ Caller->addFnAttr(Attribute::StackProtectReq);
+ } else if (CalleeAttr.hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::StackProtectStrong) &&
+ !CallerAttr.hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::StackProtectReq)) {
+ Caller->removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr);
+ Caller->addFnAttr(Attribute::StackProtectStrong);
+ } else if (CalleeAttr.hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::StackProtect) &&
+ !CallerAttr.hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::StackProtectReq) &&
+ !CallerAttr.hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::StackProtectStrong))
+ Caller->addFnAttr(Attribute::StackProtect);
+}
+
/// InlineCallIfPossible - If it is possible to inline the specified call site,
/// do so and update the CallGraph for this operation.
///
@@ -91,13 +125,7 @@ static bool InlineCallIfPossible(CallSite CS, InlineFunctionInfo &IFI,
if (!InlineFunction(CS, IFI, InsertLifetime))
return false;
- // If the inlined function had a higher stack protection level than the
- // calling function, then bump up the caller's stack protection level.
- if (Callee->getFnAttributes().hasAttribute(Attributes::StackProtectReq))
- Caller->addFnAttr(Attributes::StackProtectReq);
- else if (Callee->getFnAttributes().hasAttribute(Attributes::StackProtect) &&
- !Caller->getFnAttributes().hasAttribute(Attributes::StackProtectReq))
- Caller->addFnAttr(Attributes::StackProtect);
+ AdjustCallerSSPLevel(Caller, Callee);
// Look at all of the allocas that we inlined through this call site. If we
// have already inlined other allocas through other calls into this function,
@@ -209,16 +237,21 @@ unsigned Inliner::getInlineThreshold(CallSite CS) const {
// would decrease the threshold.
Function *Caller = CS.getCaller();
bool OptSize = Caller && !Caller->isDeclaration() &&
- Caller->getFnAttributes().hasAttribute(Attributes::OptimizeForSize);
+ Caller->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::OptimizeForSize);
if (!(InlineLimit.getNumOccurrences() > 0) && OptSize &&
OptSizeThreshold < thres)
thres = OptSizeThreshold;
- // Listen to the inlinehint attribute when it would increase the threshold.
+ // Listen to the inlinehint attribute when it would increase the threshold
+ // and the caller does not need to minimize its size.
Function *Callee = CS.getCalledFunction();
bool InlineHint = Callee && !Callee->isDeclaration() &&
- Callee->getFnAttributes().hasAttribute(Attributes::InlineHint);
- if (InlineHint && HintThreshold > thres)
+ Callee->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::InlineHint);
+ if (InlineHint && HintThreshold > thres
+ && !Caller->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::MinSize))
thres = HintThreshold;
return thres;
@@ -534,7 +567,8 @@ bool Inliner::removeDeadFunctions(CallGraph &CG, bool AlwaysInlineOnly) {
// about always-inline functions. This is a bit of a hack to share code
// between here and the InlineAlways pass.
if (AlwaysInlineOnly &&
- !F->getFnAttributes().hasAttribute(Attributes::AlwaysInline))
+ !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::AlwaysInline))
continue;
// If the only remaining users of the function are dead constants, remove
diff --git a/contrib/llvm/lib/Transforms/IPO/Internalize.cpp b/contrib/llvm/lib/Transforms/IPO/Internalize.cpp
index aa629cc..4bfab5b 100644
--- a/contrib/llvm/lib/Transforms/IPO/Internalize.cpp
+++ b/contrib/llvm/lib/Transforms/IPO/Internalize.cpp
@@ -14,14 +14,14 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "internalize"
-#include "llvm/Analysis/CallGraph.h"
#include "llvm/Transforms/IPO.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/CallGraph.h"
+#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
-#include "llvm/Module.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/ADT/Statistic.h"
#include <fstream>
#include <set>
using namespace llvm;
@@ -48,8 +48,10 @@ namespace {
public:
static char ID; // Pass identification, replacement for typeid
explicit InternalizePass();
- explicit InternalizePass(const std::vector <const char *>& exportList);
+ explicit InternalizePass(ArrayRef<const char *> exportList);
void LoadFile(const char *Filename);
+ void ClearExportList();
+ void AddToExportList(const std::string &val);
virtual bool runOnModule(Module &M);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
@@ -72,10 +74,10 @@ InternalizePass::InternalizePass()
ExternalNames.insert(APIList.begin(), APIList.end());
}
-InternalizePass::InternalizePass(const std::vector<const char *>&exportList)
+InternalizePass::InternalizePass(ArrayRef<const char *> exportList)
: ModulePass(ID){
initializeInternalizePassPass(*PassRegistry::getPassRegistry());
- for(std::vector<const char *>::const_iterator itr = exportList.begin();
+ for(ArrayRef<const char *>::const_iterator itr = exportList.begin();
itr != exportList.end(); itr++) {
ExternalNames.insert(*itr);
}
@@ -97,6 +99,14 @@ void InternalizePass::LoadFile(const char *Filename) {
}
}
+void InternalizePass::ClearExportList() {
+ ExternalNames.clear();
+}
+
+void InternalizePass::AddToExportList(const std::string &val) {
+ ExternalNames.insert(val);
+}
+
bool InternalizePass::runOnModule(Module &M) {
CallGraph *CG = getAnalysisIfAvailable<CallGraph>();
CallGraphNode *ExternalNode = CG ? CG->getExternalCallingNode() : 0;
@@ -173,6 +183,6 @@ ModulePass *llvm::createInternalizePass() {
return new InternalizePass();
}
-ModulePass *llvm::createInternalizePass(const std::vector <const char *> &el) {
+ModulePass *llvm::createInternalizePass(ArrayRef<const char *> el) {
return new InternalizePass(el);
}
diff --git a/contrib/llvm/lib/Transforms/IPO/LoopExtractor.cpp b/contrib/llvm/lib/Transforms/IPO/LoopExtractor.cpp
index 97d7cdc..8282a8e 100644
--- a/contrib/llvm/lib/Transforms/IPO/LoopExtractor.cpp
+++ b/contrib/llvm/lib/Transforms/IPO/LoopExtractor.cpp
@@ -16,16 +16,16 @@
#define DEBUG_TYPE "loop-extract"
#include "llvm/Transforms/IPO.h"
-#include "llvm/Instructions.h"
-#include "llvm/Module.h"
-#include "llvm/Pass.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopPass.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/CodeExtractor.h"
-#include "llvm/ADT/Statistic.h"
#include <fstream>
#include <set>
using namespace llvm;
diff --git a/contrib/llvm/lib/Transforms/IPO/MergeFunctions.cpp b/contrib/llvm/lib/Transforms/IPO/MergeFunctions.cpp
index 44283dd..892100f 100644
--- a/contrib/llvm/lib/Transforms/IPO/MergeFunctions.cpp
+++ b/contrib/llvm/lib/Transforms/IPO/MergeFunctions.cpp
@@ -45,25 +45,25 @@
#define DEBUG_TYPE "mergefunc"
#include "llvm/Transforms/IPO.h"
-#include "llvm/Constants.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/InlineAsm.h"
-#include "llvm/Instructions.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
-#include "llvm/Operator.h"
-#include "llvm/Pass.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/Pass.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/DataLayout.h"
#include <vector>
using namespace llvm;
@@ -346,13 +346,11 @@ bool FunctionComparator::isEquivalentGEP(const GEPOperator *GEP1,
const GEPOperator *GEP2) {
// When we have target data, we can reduce the GEP down to the value in bytes
// added to the address.
- if (TD && GEP1->hasAllConstantIndices() && GEP2->hasAllConstantIndices()) {
- SmallVector<Value *, 8> Indices1(GEP1->idx_begin(), GEP1->idx_end());
- SmallVector<Value *, 8> Indices2(GEP2->idx_begin(), GEP2->idx_end());
- uint64_t Offset1 = TD->getIndexedOffset(GEP1->getPointerOperandType(),
- Indices1);
- uint64_t Offset2 = TD->getIndexedOffset(GEP2->getPointerOperandType(),
- Indices2);
+ unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 1;
+ APInt Offset1(BitWidth, 0), Offset2(BitWidth, 0);
+ if (TD &&
+ GEP1->accumulateConstantOffset(*TD, Offset1) &&
+ GEP2->accumulateConstantOffset(*TD, Offset2)) {
return Offset1 == Offset2;
}
diff --git a/contrib/llvm/lib/Transforms/IPO/PartialInlining.cpp b/contrib/llvm/lib/Transforms/IPO/PartialInlining.cpp
index 9c9910b..fa518cb 100644
--- a/contrib/llvm/lib/Transforms/IPO/PartialInlining.cpp
+++ b/contrib/llvm/lib/Transforms/IPO/PartialInlining.cpp
@@ -14,14 +14,14 @@
#define DEBUG_TYPE "partialinlining"
#include "llvm/Transforms/IPO.h"
-#include "llvm/Instructions.h"
-#include "llvm/Module.h"
-#include "llvm/Pass.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CFG.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/CodeExtractor.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Support/CFG.h"
using namespace llvm;
STATISTIC(NumPartialInlined, "Number of functions partially inlined");
diff --git a/contrib/llvm/lib/Transforms/IPO/PassManagerBuilder.cpp b/contrib/llvm/lib/Transforms/IPO/PassManagerBuilder.cpp
index 05253fc..027a9f2 100644
--- a/contrib/llvm/lib/Transforms/IPO/PassManagerBuilder.cpp
+++ b/contrib/llvm/lib/Transforms/IPO/PassManagerBuilder.cpp
@@ -14,21 +14,17 @@
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
-
#include "llvm-c/Transforms/PassManagerBuilder.h"
-
-#include "llvm/PassManager.h"
-#include "llvm/DefaultPasses.h"
-#include "llvm/PassManager.h"
+#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/Verifier.h"
+#include "llvm/PassManager.h"
#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ManagedStatic.h"
#include "llvm/Target/TargetLibraryInfo.h"
+#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Vectorize.h"
-#include "llvm/Transforms/IPO.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/Support/ManagedStatic.h"
using namespace llvm;
@@ -190,10 +186,8 @@ void PassManagerBuilder::populateModulePassManager(PassManagerBase &MPM) {
MPM.add(createLoopIdiomPass()); // Recognize idioms like memset.
MPM.add(createLoopDeletionPass()); // Delete dead loops
- if (LoopVectorize) {
+ if (LoopVectorize && OptLevel > 2)
MPM.add(createLoopVectorizePass());
- MPM.add(createLICMPass());
- }
if (!DisableUnrollLoops)
MPM.add(createLoopUnrollPass()); // Unroll small loops
@@ -220,6 +214,10 @@ void PassManagerBuilder::populateModulePassManager(PassManagerBase &MPM) {
MPM.add(createGVNPass()); // Remove redundancies
else
MPM.add(createEarlyCSEPass()); // Catch trivial redundancies
+
+ // BBVectorize may have significantly shortened a loop body; unroll again.
+ if (!DisableUnrollLoops)
+ MPM.add(createLoopUnrollPass());
}
MPM.add(createAggressiveDCEPass()); // Delete dead instructions
@@ -323,7 +321,7 @@ void PassManagerBuilder::populateLTOPassManager(PassManagerBase &PM,
PM.add(createGlobalDCEPass());
}
-LLVMPassManagerBuilderRef LLVMPassManagerBuilderCreate(void) {
+LLVMPassManagerBuilderRef LLVMPassManagerBuilderCreate() {
PassManagerBuilder *PMB = new PassManagerBuilder();
return wrap(PMB);
}
@@ -393,9 +391,9 @@ LLVMPassManagerBuilderPopulateModulePassManager(LLVMPassManagerBuilderRef PMB,
void LLVMPassManagerBuilderPopulateLTOPassManager(LLVMPassManagerBuilderRef PMB,
LLVMPassManagerRef PM,
- bool Internalize,
- bool RunInliner) {
+ LLVMBool Internalize,
+ LLVMBool RunInliner) {
PassManagerBuilder *Builder = unwrap(PMB);
PassManagerBase *LPM = unwrap(PM);
- Builder->populateLTOPassManager(*LPM, Internalize, RunInliner);
+ Builder->populateLTOPassManager(*LPM, Internalize != 0, RunInliner != 0);
}
diff --git a/contrib/llvm/lib/Transforms/IPO/PruneEH.cpp b/contrib/llvm/lib/Transforms/IPO/PruneEH.cpp
index fb4ecbf..73d9323 100644
--- a/contrib/llvm/lib/Transforms/IPO/PruneEH.cpp
+++ b/contrib/llvm/lib/Transforms/IPO/PruneEH.cpp
@@ -16,16 +16,16 @@
#define DEBUG_TYPE "prune-eh"
#include "llvm/Transforms/IPO.h"
-#include "llvm/CallGraphSCCPass.h"
-#include "llvm/Constants.h"
-#include "llvm/Function.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Analysis/CallGraph.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/CallGraph.h"
+#include "llvm/Analysis/CallGraphSCCPass.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/CFG.h"
#include <algorithm>
using namespace llvm;
@@ -140,15 +140,17 @@ bool PruneEH::runOnSCC(CallGraphSCC &SCC) {
AttrBuilder NewAttributes;
if (!SCCMightUnwind)
- NewAttributes.addAttribute(Attributes::NoUnwind);
+ NewAttributes.addAttribute(Attribute::NoUnwind);
if (!SCCMightReturn)
- NewAttributes.addAttribute(Attributes::NoReturn);
+ NewAttributes.addAttribute(Attribute::NoReturn);
Function *F = (*I)->getFunction();
- const AttrListPtr &PAL = F->getAttributes();
- const AttrListPtr &NPAL = PAL.addAttr(F->getContext(), ~0,
- Attributes::get(F->getContext(),
- NewAttributes));
+ const AttributeSet &PAL = F->getAttributes();
+ const AttributeSet &NPAL =
+ PAL.addAttributes(F->getContext(), AttributeSet::FunctionIndex,
+ AttributeSet::get(F->getContext(),
+ AttributeSet::FunctionIndex,
+ NewAttributes));
if (PAL != NPAL) {
MadeChange = true;
F->setAttributes(NPAL);
diff --git a/contrib/llvm/lib/Transforms/IPO/StripDeadPrototypes.cpp b/contrib/llvm/lib/Transforms/IPO/StripDeadPrototypes.cpp
index b5f09ec..f00830a 100644
--- a/contrib/llvm/lib/Transforms/IPO/StripDeadPrototypes.cpp
+++ b/contrib/llvm/lib/Transforms/IPO/StripDeadPrototypes.cpp
@@ -16,9 +16,9 @@
#define DEBUG_TYPE "strip-dead-prototypes"
#include "llvm/Transforms/IPO.h"
-#include "llvm/Pass.h"
-#include "llvm/Module.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
using namespace llvm;
STATISTIC(NumDeadPrototypes, "Number of dead prototypes removed");
diff --git a/contrib/llvm/lib/Transforms/IPO/StripSymbols.cpp b/contrib/llvm/lib/Transforms/IPO/StripSymbols.cpp
index 80bfc1c..5f8681f 100644
--- a/contrib/llvm/lib/Transforms/IPO/StripSymbols.cpp
+++ b/contrib/llvm/lib/Transforms/IPO/StripSymbols.cpp
@@ -21,17 +21,17 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO.h"
-#include "llvm/Constants.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/DebugInfo.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/Module.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/TypeFinder.h"
+#include "llvm/IR/ValueSymbolTable.h"
#include "llvm/Pass.h"
-#include "llvm/TypeFinder.h"
-#include "llvm/ValueSymbolTable.h"
#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/SmallPtrSet.h"
using namespace llvm;
namespace {
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombine.h b/contrib/llvm/lib/Transforms/InstCombine/InstCombine.h
index 7467eca..1f6a3a5 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombine.h
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombine.h
@@ -11,12 +11,12 @@
#define INSTCOMBINE_INSTCOMBINE_H
#include "InstCombineWorklist.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Operator.h"
-#include "llvm/Pass.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Support/InstVisitor.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/InstVisitor.h"
+#include "llvm/Pass.h"
#include "llvm/Support/TargetFolder.h"
#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
@@ -27,7 +27,7 @@ namespace llvm {
class DbgDeclareInst;
class MemIntrinsic;
class MemSetInst;
-
+
/// SelectPatternFlavor - We can match a variety of different patterns for
/// select operations.
enum SelectPatternFlavor {
@@ -36,7 +36,7 @@ enum SelectPatternFlavor {
SPF_SMAX, SPF_UMAX
//SPF_ABS - TODO.
};
-
+
/// getComplexity: Assign a complexity or rank value to LLVM Values...
/// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
static inline unsigned getComplexity(Value *V) {
@@ -51,23 +51,23 @@ static inline unsigned getComplexity(Value *V) {
return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
}
-
+
/// InstCombineIRInserter - This is an IRBuilder insertion helper that works
/// just like the normal insertion helper, but also adds any new instructions
/// to the instcombine worklist.
-class LLVM_LIBRARY_VISIBILITY InstCombineIRInserter
+class LLVM_LIBRARY_VISIBILITY InstCombineIRInserter
: public IRBuilderDefaultInserter<true> {
InstCombineWorklist &Worklist;
public:
InstCombineIRInserter(InstCombineWorklist &WL) : Worklist(WL) {}
-
+
void InsertHelper(Instruction *I, const Twine &Name,
BasicBlock *BB, BasicBlock::iterator InsertPt) const {
IRBuilderDefaultInserter<true>::InsertHelper(I, Name, BB, InsertPt);
Worklist.Add(I);
}
};
-
+
/// InstCombiner - The -instcombine pass.
class LLVM_LIBRARY_VISIBILITY InstCombiner
: public FunctionPass,
@@ -76,6 +76,7 @@ class LLVM_LIBRARY_VISIBILITY InstCombiner
TargetLibraryInfo *TLI;
bool MadeIRChange;
LibCallSimplifier *Simplifier;
+ bool MinimizeSize;
public:
/// Worklist - All of the instructions that need to be simplified.
InstCombineWorklist Worklist;
@@ -84,15 +85,16 @@ public:
/// instructions into the worklist when they are created.
typedef IRBuilder<true, TargetFolder, InstCombineIRInserter> BuilderTy;
BuilderTy *Builder;
-
+
static char ID; // Pass identification, replacement for typeid
InstCombiner() : FunctionPass(ID), TD(0), Builder(0) {
+ MinimizeSize = false;
initializeInstCombinerPass(*PassRegistry::getPassRegistry());
}
public:
virtual bool runOnFunction(Function &F);
-
+
bool DoOneIteration(Function &F, unsigned ItNum);
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
@@ -114,6 +116,8 @@ public:
Instruction *visitSub(BinaryOperator &I);
Instruction *visitFSub(BinaryOperator &I);
Instruction *visitMul(BinaryOperator &I);
+ Value *foldFMulConst(Instruction *FMulOrDiv, ConstantFP *C,
+ Instruction *InsertBefore);
Instruction *visitFMul(BinaryOperator &I);
Instruction *visitURem(BinaryOperator &I);
Instruction *visitSRem(BinaryOperator &I);
@@ -207,11 +211,11 @@ public:
private:
bool ShouldChangeType(Type *From, Type *To) const;
Value *dyn_castNegVal(Value *V) const;
- Value *dyn_castFNegVal(Value *V) const;
- Type *FindElementAtOffset(Type *Ty, int64_t Offset,
+ Value *dyn_castFNegVal(Value *V, bool NoSignedZero=false) const;
+ Type *FindElementAtOffset(Type *Ty, int64_t Offset,
SmallVectorImpl<Value*> &NewIndices);
Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
-
+
/// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
/// results in any code being generated and is interesting to optimize out. If
/// the cast can be eliminated by some other simple transformation, we prefer
@@ -243,7 +247,7 @@ public:
return New;
}
- // InsertNewInstWith - same as InsertNewInstBefore, but also sets the
+ // InsertNewInstWith - same as InsertNewInstBefore, but also sets the
// debug loc.
//
Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) {
@@ -259,10 +263,10 @@ public:
//
Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist.
-
+
// If we are replacing the instruction with itself, this must be in a
// segment of unreachable code, so just clobber the instruction.
- if (&I == V)
+ if (&I == V)
V = UndefValue::get(I.getType());
DEBUG(errs() << "IC: Replacing " << I << "\n"
@@ -292,13 +296,13 @@ public:
MadeIRChange = true;
return 0; // Don't do anything with FI
}
-
+
void ComputeMaskedBits(Value *V, APInt &KnownZero,
APInt &KnownOne, unsigned Depth = 0) const {
return llvm::ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
}
-
- bool MaskedValueIsZero(Value *V, const APInt &Mask,
+
+ bool MaskedValueIsZero(Value *V, const APInt &Mask,
unsigned Depth = 0) const {
return llvm::MaskedValueIsZero(V, Mask, TD, Depth);
}
@@ -321,21 +325,26 @@ private:
/// SimplifyDemandedUseBits - Attempts to replace V with a simpler value
/// based on the demanded bits.
- Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
+ Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
APInt& KnownZero, APInt& KnownOne,
unsigned Depth);
- bool SimplifyDemandedBits(Use &U, APInt DemandedMask,
+ bool SimplifyDemandedBits(Use &U, APInt DemandedMask,
APInt& KnownZero, APInt& KnownOne,
unsigned Depth=0);
-
+ /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
+ /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence.
+ Value *SimplifyShrShlDemandedBits(Instruction *Lsr, Instruction *Sftl,
+ APInt DemandedMask, APInt &KnownZero,
+ APInt &KnownOne);
+
/// SimplifyDemandedInstructionBits - Inst is an integer instruction that
/// SimplifyDemandedBits knows about. See if the instruction has any
/// properties that allow us to simplify its operands.
bool SimplifyDemandedInstructionBits(Instruction &Inst);
-
+
Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
APInt& UndefElts, unsigned Depth = 0);
-
+
// FoldOpIntoPhi - Given a binary operator, cast instruction, or select
// which has a PHI node as operand #0, see if we can fold the instruction
// into the PHI (which is only possible if all operands to the PHI are
@@ -351,10 +360,10 @@ private:
Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN);
-
+
Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
ConstantInt *AndRHS, BinaryOperator &TheAnd);
-
+
Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
bool isSub, Instruction &I);
Value *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
@@ -373,8 +382,8 @@ private:
Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap);
};
-
-
+
+
} // end namespace llvm.
#endif
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp
index d8257e6..7595da0 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp
@@ -13,16 +13,840 @@
#include "InstCombine.h"
#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/DataLayout.h"
+#include "llvm/IR/DataLayout.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/PatternMatch.h"
using namespace llvm;
using namespace PatternMatch;
+namespace {
+
+ /// Class representing coefficient of floating-point addend.
+ /// This class needs to be highly efficient, which is especially true for
+ /// the constructor. As of I write this comment, the cost of the default
+ /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
+ /// perform write-merging).
+ ///
+ class FAddendCoef {
+ public:
+ // The constructor has to initialize a APFloat, which is uncessary for
+ // most addends which have coefficient either 1 or -1. So, the constructor
+ // is expensive. In order to avoid the cost of the constructor, we should
+ // reuse some instances whenever possible. The pre-created instances
+ // FAddCombine::Add[0-5] embodies this idea.
+ //
+ FAddendCoef() : IsFp(false), BufHasFpVal(false), IntVal(0) {}
+ ~FAddendCoef();
+
+ void set(short C) {
+ assert(!insaneIntVal(C) && "Insane coefficient");
+ IsFp = false; IntVal = C;
+ }
+
+ void set(const APFloat& C);
+
+ void negate();
+
+ bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
+ Value *getValue(Type *) const;
+
+ // If possible, don't define operator+/operator- etc because these
+ // operators inevitably call FAddendCoef's constructor which is not cheap.
+ void operator=(const FAddendCoef &A);
+ void operator+=(const FAddendCoef &A);
+ void operator-=(const FAddendCoef &A);
+ void operator*=(const FAddendCoef &S);
+
+ bool isOne() const { return isInt() && IntVal == 1; }
+ bool isTwo() const { return isInt() && IntVal == 2; }
+ bool isMinusOne() const { return isInt() && IntVal == -1; }
+ bool isMinusTwo() const { return isInt() && IntVal == -2; }
+
+ private:
+ bool insaneIntVal(int V) { return V > 4 || V < -4; }
+ APFloat *getFpValPtr(void)
+ { return reinterpret_cast<APFloat*>(&FpValBuf.buffer[0]); }
+ const APFloat *getFpValPtr(void) const
+ { return reinterpret_cast<const APFloat*>(&FpValBuf.buffer[0]); }
+
+ const APFloat &getFpVal(void) const {
+ assert(IsFp && BufHasFpVal && "Incorret state");
+ return *getFpValPtr();
+ }
+
+ APFloat &getFpVal(void)
+ { assert(IsFp && BufHasFpVal && "Incorret state"); return *getFpValPtr(); }
+
+ bool isInt() const { return !IsFp; }
+
+ // If the coefficient is represented by an integer, promote it to a
+ // floating point.
+ void convertToFpType(const fltSemantics &Sem);
+
+ // Construct an APFloat from a signed integer.
+ // TODO: We should get rid of this function when APFloat can be constructed
+ // from an *SIGNED* integer.
+ APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
+ private:
+
+ bool IsFp;
+
+ // True iff FpValBuf contains an instance of APFloat.
+ bool BufHasFpVal;
+
+ // The integer coefficient of an individual addend is either 1 or -1,
+ // and we try to simplify at most 4 addends from neighboring at most
+ // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
+ // is overkill of this end.
+ short IntVal;
+
+ AlignedCharArrayUnion<APFloat> FpValBuf;
+ };
+
+ /// FAddend is used to represent floating-point addend. An addend is
+ /// represented as <C, V>, where the V is a symbolic value, and C is a
+ /// constant coefficient. A constant addend is represented as <C, 0>.
+ ///
+ class FAddend {
+ public:
+ FAddend() { Val = 0; }
+
+ Value *getSymVal (void) const { return Val; }
+ const FAddendCoef &getCoef(void) const { return Coeff; }
+
+ bool isConstant() const { return Val == 0; }
+ bool isZero() const { return Coeff.isZero(); }
+
+ void set(short Coefficient, Value *V) { Coeff.set(Coefficient), Val = V; }
+ void set(const APFloat& Coefficient, Value *V)
+ { Coeff.set(Coefficient); Val = V; }
+ void set(const ConstantFP* Coefficient, Value *V)
+ { Coeff.set(Coefficient->getValueAPF()); Val = V; }
+
+ void negate() { Coeff.negate(); }
+
+ /// Drill down the U-D chain one step to find the definition of V, and
+ /// try to break the definition into one or two addends.
+ static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
+
+ /// Similar to FAddend::drillDownOneStep() except that the value being
+ /// splitted is the addend itself.
+ unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
+
+ void operator+=(const FAddend &T) {
+ assert((Val == T.Val) && "Symbolic-values disagree");
+ Coeff += T.Coeff;
+ }
+
+ private:
+ void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
+
+ // This addend has the value of "Coeff * Val".
+ Value *Val;
+ FAddendCoef Coeff;
+ };
+
+ /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
+ /// with its neighboring at most two instructions.
+ ///
+ class FAddCombine {
+ public:
+ FAddCombine(InstCombiner::BuilderTy *B) : Builder(B), Instr(0) {}
+ Value *simplify(Instruction *FAdd);
+
+ private:
+ typedef SmallVector<const FAddend*, 4> AddendVect;
+
+ Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
+
+ Value *performFactorization(Instruction *I);
+
+ /// Convert given addend to a Value
+ Value *createAddendVal(const FAddend &A, bool& NeedNeg);
+
+ /// Return the number of instructions needed to emit the N-ary addition.
+ unsigned calcInstrNumber(const AddendVect& Vect);
+ Value *createFSub(Value *Opnd0, Value *Opnd1);
+ Value *createFAdd(Value *Opnd0, Value *Opnd1);
+ Value *createFMul(Value *Opnd0, Value *Opnd1);
+ Value *createFDiv(Value *Opnd0, Value *Opnd1);
+ Value *createFNeg(Value *V);
+ Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
+ void createInstPostProc(Instruction *NewInst);
+
+ InstCombiner::BuilderTy *Builder;
+ Instruction *Instr;
+
+ private:
+ // Debugging stuff are clustered here.
+ #ifndef NDEBUG
+ unsigned CreateInstrNum;
+ void initCreateInstNum() { CreateInstrNum = 0; }
+ void incCreateInstNum() { CreateInstrNum++; }
+ #else
+ void initCreateInstNum() {}
+ void incCreateInstNum() {}
+ #endif
+ };
+}
+
+//===----------------------------------------------------------------------===//
+//
+// Implementation of
+// {FAddendCoef, FAddend, FAddition, FAddCombine}.
+//
+//===----------------------------------------------------------------------===//
+FAddendCoef::~FAddendCoef() {
+ if (BufHasFpVal)
+ getFpValPtr()->~APFloat();
+}
+
+void FAddendCoef::set(const APFloat& C) {
+ APFloat *P = getFpValPtr();
+
+ if (isInt()) {
+ // As the buffer is meanless byte stream, we cannot call
+ // APFloat::operator=().
+ new(P) APFloat(C);
+ } else
+ *P = C;
+
+ IsFp = BufHasFpVal = true;
+}
+
+void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
+ if (!isInt())
+ return;
+
+ APFloat *P = getFpValPtr();
+ if (IntVal > 0)
+ new(P) APFloat(Sem, IntVal);
+ else {
+ new(P) APFloat(Sem, 0 - IntVal);
+ P->changeSign();
+ }
+ IsFp = BufHasFpVal = true;
+}
+
+APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
+ if (Val >= 0)
+ return APFloat(Sem, Val);
+
+ APFloat T(Sem, 0 - Val);
+ T.changeSign();
+
+ return T;
+}
+
+void FAddendCoef::operator=(const FAddendCoef &That) {
+ if (That.isInt())
+ set(That.IntVal);
+ else
+ set(That.getFpVal());
+}
+
+void FAddendCoef::operator+=(const FAddendCoef &That) {
+ enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
+ if (isInt() == That.isInt()) {
+ if (isInt())
+ IntVal += That.IntVal;
+ else
+ getFpVal().add(That.getFpVal(), RndMode);
+ return;
+ }
+
+ if (isInt()) {
+ const APFloat &T = That.getFpVal();
+ convertToFpType(T.getSemantics());
+ getFpVal().add(T, RndMode);
+ return;
+ }
+
+ APFloat &T = getFpVal();
+ T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
+}
+
+void FAddendCoef::operator-=(const FAddendCoef &That) {
+ enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
+ if (isInt() == That.isInt()) {
+ if (isInt())
+ IntVal -= That.IntVal;
+ else
+ getFpVal().subtract(That.getFpVal(), RndMode);
+ return;
+ }
+
+ if (isInt()) {
+ const APFloat &T = That.getFpVal();
+ convertToFpType(T.getSemantics());
+ getFpVal().subtract(T, RndMode);
+ return;
+ }
+
+ APFloat &T = getFpVal();
+ T.subtract(createAPFloatFromInt(T.getSemantics(), IntVal), RndMode);
+}
+
+void FAddendCoef::operator*=(const FAddendCoef &That) {
+ if (That.isOne())
+ return;
+
+ if (That.isMinusOne()) {
+ negate();
+ return;
+ }
+
+ if (isInt() && That.isInt()) {
+ int Res = IntVal * (int)That.IntVal;
+ assert(!insaneIntVal(Res) && "Insane int value");
+ IntVal = Res;
+ return;
+ }
+
+ const fltSemantics &Semantic =
+ isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
+
+ if (isInt())
+ convertToFpType(Semantic);
+ APFloat &F0 = getFpVal();
+
+ if (That.isInt())
+ F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
+ APFloat::rmNearestTiesToEven);
+ else
+ F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
+
+ return;
+}
+
+void FAddendCoef::negate() {
+ if (isInt())
+ IntVal = 0 - IntVal;
+ else
+ getFpVal().changeSign();
+}
+
+Value *FAddendCoef::getValue(Type *Ty) const {
+ return isInt() ?
+ ConstantFP::get(Ty, float(IntVal)) :
+ ConstantFP::get(Ty->getContext(), getFpVal());
+}
+
+// The definition of <Val> Addends
+// =========================================
+// A + B <1, A>, <1,B>
+// A - B <1, A>, <1,B>
+// 0 - B <-1, B>
+// C * A, <C, A>
+// A + C <1, A> <C, NULL>
+// 0 +/- 0 <0, NULL> (corner case)
+//
+// Legend: A and B are not constant, C is constant
+//
+unsigned FAddend::drillValueDownOneStep
+ (Value *Val, FAddend &Addend0, FAddend &Addend1) {
+ Instruction *I = 0;
+ if (Val == 0 || !(I = dyn_cast<Instruction>(Val)))
+ return 0;
+
+ unsigned Opcode = I->getOpcode();
+
+ if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
+ ConstantFP *C0, *C1;
+ Value *Opnd0 = I->getOperand(0);
+ Value *Opnd1 = I->getOperand(1);
+ if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
+ Opnd0 = 0;
+
+ if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
+ Opnd1 = 0;
+
+ if (Opnd0) {
+ if (!C0)
+ Addend0.set(1, Opnd0);
+ else
+ Addend0.set(C0, 0);
+ }
+
+ if (Opnd1) {
+ FAddend &Addend = Opnd0 ? Addend1 : Addend0;
+ if (!C1)
+ Addend.set(1, Opnd1);
+ else
+ Addend.set(C1, 0);
+ if (Opcode == Instruction::FSub)
+ Addend.negate();
+ }
+
+ if (Opnd0 || Opnd1)
+ return Opnd0 && Opnd1 ? 2 : 1;
+
+ // Both operands are zero. Weird!
+ Addend0.set(APFloat(C0->getValueAPF().getSemantics()), 0);
+ return 1;
+ }
+
+ if (I->getOpcode() == Instruction::FMul) {
+ Value *V0 = I->getOperand(0);
+ Value *V1 = I->getOperand(1);
+ if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
+ Addend0.set(C, V1);
+ return 1;
+ }
+
+ if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
+ Addend0.set(C, V0);
+ return 1;
+ }
+ }
+
+ return 0;
+}
+
+// Try to break *this* addend into two addends. e.g. Suppose this addend is
+// <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
+// i.e. <2.3, X> and <2.3, Y>.
+//
+unsigned FAddend::drillAddendDownOneStep
+ (FAddend &Addend0, FAddend &Addend1) const {
+ if (isConstant())
+ return 0;
+
+ unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
+ if (!BreakNum || Coeff.isOne())
+ return BreakNum;
+
+ Addend0.Scale(Coeff);
+
+ if (BreakNum == 2)
+ Addend1.Scale(Coeff);
+
+ return BreakNum;
+}
+
+// Try to perform following optimization on the input instruction I. Return the
+// simplified expression if was successful; otherwise, return 0.
+//
+// Instruction "I" is Simplified into
+// -------------------------------------------------------
+// (x * y) +/- (x * z) x * (y +/- z)
+// (y / x) +/- (z / x) (y +/- z) / x
+//
+Value *FAddCombine::performFactorization(Instruction *I) {
+ assert((I->getOpcode() == Instruction::FAdd ||
+ I->getOpcode() == Instruction::FSub) && "Expect add/sub");
+
+ Instruction *I0 = dyn_cast<Instruction>(I->getOperand(0));
+ Instruction *I1 = dyn_cast<Instruction>(I->getOperand(1));
+
+ if (!I0 || !I1 || I0->getOpcode() != I1->getOpcode())
+ return 0;
+
+ bool isMpy = false;
+ if (I0->getOpcode() == Instruction::FMul)
+ isMpy = true;
+ else if (I0->getOpcode() != Instruction::FDiv)
+ return 0;
+
+ Value *Opnd0_0 = I0->getOperand(0);
+ Value *Opnd0_1 = I0->getOperand(1);
+ Value *Opnd1_0 = I1->getOperand(0);
+ Value *Opnd1_1 = I1->getOperand(1);
+
+ // Input Instr I Factor AddSub0 AddSub1
+ // ----------------------------------------------
+ // (x*y) +/- (x*z) x y z
+ // (y/x) +/- (z/x) x y z
+ //
+ Value *Factor = 0;
+ Value *AddSub0 = 0, *AddSub1 = 0;
+
+ if (isMpy) {
+ if (Opnd0_0 == Opnd1_0 || Opnd0_0 == Opnd1_1)
+ Factor = Opnd0_0;
+ else if (Opnd0_1 == Opnd1_0 || Opnd0_1 == Opnd1_1)
+ Factor = Opnd0_1;
+
+ if (Factor) {
+ AddSub0 = (Factor == Opnd0_0) ? Opnd0_1 : Opnd0_0;
+ AddSub1 = (Factor == Opnd1_0) ? Opnd1_1 : Opnd1_0;
+ }
+ } else if (Opnd0_1 == Opnd1_1) {
+ Factor = Opnd0_1;
+ AddSub0 = Opnd0_0;
+ AddSub1 = Opnd1_0;
+ }
+
+ if (!Factor)
+ return 0;
+
+ // Create expression "NewAddSub = AddSub0 +/- AddsSub1"
+ Value *NewAddSub = (I->getOpcode() == Instruction::FAdd) ?
+ createFAdd(AddSub0, AddSub1) :
+ createFSub(AddSub0, AddSub1);
+ if (ConstantFP *CFP = dyn_cast<ConstantFP>(NewAddSub)) {
+ const APFloat &F = CFP->getValueAPF();
+ if (!F.isNormal() || F.isDenormal())
+ return 0;
+ }
+
+ if (isMpy)
+ return createFMul(Factor, NewAddSub);
+
+ return createFDiv(NewAddSub, Factor);
+}
+
+Value *FAddCombine::simplify(Instruction *I) {
+ assert(I->hasUnsafeAlgebra() && "Should be in unsafe mode");
+
+ // Currently we are not able to handle vector type.
+ if (I->getType()->isVectorTy())
+ return 0;
+
+ assert((I->getOpcode() == Instruction::FAdd ||
+ I->getOpcode() == Instruction::FSub) && "Expect add/sub");
+
+ // Save the instruction before calling other member-functions.
+ Instr = I;
+
+ FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
+
+ unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
+
+ // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
+ unsigned Opnd0_ExpNum = 0;
+ unsigned Opnd1_ExpNum = 0;
+
+ if (!Opnd0.isConstant())
+ Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
+
+ // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
+ if (OpndNum == 2 && !Opnd1.isConstant())
+ Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
+
+ // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
+ if (Opnd0_ExpNum && Opnd1_ExpNum) {
+ AddendVect AllOpnds;
+ AllOpnds.push_back(&Opnd0_0);
+ AllOpnds.push_back(&Opnd1_0);
+ if (Opnd0_ExpNum == 2)
+ AllOpnds.push_back(&Opnd0_1);
+ if (Opnd1_ExpNum == 2)
+ AllOpnds.push_back(&Opnd1_1);
+
+ // Compute instruction quota. We should save at least one instruction.
+ unsigned InstQuota = 0;
+
+ Value *V0 = I->getOperand(0);
+ Value *V1 = I->getOperand(1);
+ InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
+ (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
+
+ if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
+ return R;
+ }
+
+ if (OpndNum != 2) {
+ // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
+ // splitted into two addends, say "V = X - Y", the instruction would have
+ // been optimized into "I = Y - X" in the previous steps.
+ //
+ const FAddendCoef &CE = Opnd0.getCoef();
+ return CE.isOne() ? Opnd0.getSymVal() : 0;
+ }
+
+ // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
+ if (Opnd1_ExpNum) {
+ AddendVect AllOpnds;
+ AllOpnds.push_back(&Opnd0);
+ AllOpnds.push_back(&Opnd1_0);
+ if (Opnd1_ExpNum == 2)
+ AllOpnds.push_back(&Opnd1_1);
+
+ if (Value *R = simplifyFAdd(AllOpnds, 1))
+ return R;
+ }
+
+ // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
+ if (Opnd0_ExpNum) {
+ AddendVect AllOpnds;
+ AllOpnds.push_back(&Opnd1);
+ AllOpnds.push_back(&Opnd0_0);
+ if (Opnd0_ExpNum == 2)
+ AllOpnds.push_back(&Opnd0_1);
+
+ if (Value *R = simplifyFAdd(AllOpnds, 1))
+ return R;
+ }
+
+ // step 6: Try factorization as the last resort,
+ return performFactorization(I);
+}
+
+Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
+
+ unsigned AddendNum = Addends.size();
+ assert(AddendNum <= 4 && "Too many addends");
+
+ // For saving intermediate results;
+ unsigned NextTmpIdx = 0;
+ FAddend TmpResult[3];
+
+ // Points to the constant addend of the resulting simplified expression.
+ // If the resulting expr has constant-addend, this constant-addend is
+ // desirable to reside at the top of the resulting expression tree. Placing
+ // constant close to supper-expr(s) will potentially reveal some optimization
+ // opportunities in super-expr(s).
+ //
+ const FAddend *ConstAdd = 0;
+
+ // Simplified addends are placed <SimpVect>.
+ AddendVect SimpVect;
+
+ // The outer loop works on one symbolic-value at a time. Suppose the input
+ // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
+ // The symbolic-values will be processed in this order: x, y, z.
+ //
+ for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
+
+ const FAddend *ThisAddend = Addends[SymIdx];
+ if (!ThisAddend) {
+ // This addend was processed before.
+ continue;
+ }
+
+ Value *Val = ThisAddend->getSymVal();
+ unsigned StartIdx = SimpVect.size();
+ SimpVect.push_back(ThisAddend);
+
+ // The inner loop collects addends sharing same symbolic-value, and these
+ // addends will be later on folded into a single addend. Following above
+ // example, if the symbolic value "y" is being processed, the inner loop
+ // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
+ // be later on folded into "<b1+b2, y>".
+ //
+ for (unsigned SameSymIdx = SymIdx + 1;
+ SameSymIdx < AddendNum; SameSymIdx++) {
+ const FAddend *T = Addends[SameSymIdx];
+ if (T && T->getSymVal() == Val) {
+ // Set null such that next iteration of the outer loop will not process
+ // this addend again.
+ Addends[SameSymIdx] = 0;
+ SimpVect.push_back(T);
+ }
+ }
+
+ // If multiple addends share same symbolic value, fold them together.
+ if (StartIdx + 1 != SimpVect.size()) {
+ FAddend &R = TmpResult[NextTmpIdx ++];
+ R = *SimpVect[StartIdx];
+ for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
+ R += *SimpVect[Idx];
+
+ // Pop all addends being folded and push the resulting folded addend.
+ SimpVect.resize(StartIdx);
+ if (Val != 0) {
+ if (!R.isZero()) {
+ SimpVect.push_back(&R);
+ }
+ } else {
+ // Don't push constant addend at this time. It will be the last element
+ // of <SimpVect>.
+ ConstAdd = &R;
+ }
+ }
+ }
+
+ assert((NextTmpIdx <= sizeof(TmpResult)/sizeof(TmpResult[0]) + 1) &&
+ "out-of-bound access");
+
+ if (ConstAdd)
+ SimpVect.push_back(ConstAdd);
+
+ Value *Result;
+ if (!SimpVect.empty())
+ Result = createNaryFAdd(SimpVect, InstrQuota);
+ else {
+ // The addition is folded to 0.0.
+ Result = ConstantFP::get(Instr->getType(), 0.0);
+ }
+
+ return Result;
+}
+
+Value *FAddCombine::createNaryFAdd
+ (const AddendVect &Opnds, unsigned InstrQuota) {
+ assert(!Opnds.empty() && "Expect at least one addend");
+
+ // Step 1: Check if the # of instructions needed exceeds the quota.
+ //
+ unsigned InstrNeeded = calcInstrNumber(Opnds);
+ if (InstrNeeded > InstrQuota)
+ return 0;
+
+ initCreateInstNum();
+
+ // step 2: Emit the N-ary addition.
+ // Note that at most three instructions are involved in Fadd-InstCombine: the
+ // addition in question, and at most two neighboring instructions.
+ // The resulting optimized addition should have at least one less instruction
+ // than the original addition expression tree. This implies that the resulting
+ // N-ary addition has at most two instructions, and we don't need to worry
+ // about tree-height when constructing the N-ary addition.
+
+ Value *LastVal = 0;
+ bool LastValNeedNeg = false;
+
+ // Iterate the addends, creating fadd/fsub using adjacent two addends.
+ for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end();
+ I != E; I++) {
+ bool NeedNeg;
+ Value *V = createAddendVal(**I, NeedNeg);
+ if (!LastVal) {
+ LastVal = V;
+ LastValNeedNeg = NeedNeg;
+ continue;
+ }
+
+ if (LastValNeedNeg == NeedNeg) {
+ LastVal = createFAdd(LastVal, V);
+ continue;
+ }
+
+ if (LastValNeedNeg)
+ LastVal = createFSub(V, LastVal);
+ else
+ LastVal = createFSub(LastVal, V);
+
+ LastValNeedNeg = false;
+ }
+
+ if (LastValNeedNeg) {
+ LastVal = createFNeg(LastVal);
+ }
+
+ #ifndef NDEBUG
+ assert(CreateInstrNum == InstrNeeded &&
+ "Inconsistent in instruction numbers");
+ #endif
+
+ return LastVal;
+}
+
+Value *FAddCombine::createFSub
+ (Value *Opnd0, Value *Opnd1) {
+ Value *V = Builder->CreateFSub(Opnd0, Opnd1);
+ if (Instruction *I = dyn_cast<Instruction>(V))
+ createInstPostProc(I);
+ return V;
+}
+
+Value *FAddCombine::createFNeg(Value *V) {
+ Value *Zero = cast<Value>(ConstantFP::get(V->getType(), 0.0));
+ return createFSub(Zero, V);
+}
+
+Value *FAddCombine::createFAdd
+ (Value *Opnd0, Value *Opnd1) {
+ Value *V = Builder->CreateFAdd(Opnd0, Opnd1);
+ if (Instruction *I = dyn_cast<Instruction>(V))
+ createInstPostProc(I);
+ return V;
+}
+
+Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
+ Value *V = Builder->CreateFMul(Opnd0, Opnd1);
+ if (Instruction *I = dyn_cast<Instruction>(V))
+ createInstPostProc(I);
+ return V;
+}
+
+Value *FAddCombine::createFDiv(Value *Opnd0, Value *Opnd1) {
+ Value *V = Builder->CreateFDiv(Opnd0, Opnd1);
+ if (Instruction *I = dyn_cast<Instruction>(V))
+ createInstPostProc(I);
+ return V;
+}
+
+void FAddCombine::createInstPostProc(Instruction *NewInstr) {
+ NewInstr->setDebugLoc(Instr->getDebugLoc());
+
+ // Keep track of the number of instruction created.
+ incCreateInstNum();
+
+ // Propagate fast-math flags
+ NewInstr->setFastMathFlags(Instr->getFastMathFlags());
+}
+
+// Return the number of instruction needed to emit the N-ary addition.
+// NOTE: Keep this function in sync with createAddendVal().
+unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
+ unsigned OpndNum = Opnds.size();
+ unsigned InstrNeeded = OpndNum - 1;
+
+ // The number of addends in the form of "(-1)*x".
+ unsigned NegOpndNum = 0;
+
+ // Adjust the number of instructions needed to emit the N-ary add.
+ for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end();
+ I != E; I++) {
+ const FAddend *Opnd = *I;
+ if (Opnd->isConstant())
+ continue;
+
+ const FAddendCoef &CE = Opnd->getCoef();
+ if (CE.isMinusOne() || CE.isMinusTwo())
+ NegOpndNum++;
+
+ // Let the addend be "c * x". If "c == +/-1", the value of the addend
+ // is immediately available; otherwise, it needs exactly one instruction
+ // to evaluate the value.
+ if (!CE.isMinusOne() && !CE.isOne())
+ InstrNeeded++;
+ }
+ if (NegOpndNum == OpndNum)
+ InstrNeeded++;
+ return InstrNeeded;
+}
+
+// Input Addend Value NeedNeg(output)
+// ================================================================
+// Constant C C false
+// <+/-1, V> V coefficient is -1
+// <2/-2, V> "fadd V, V" coefficient is -2
+// <C, V> "fmul V, C" false
+//
+// NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
+Value *FAddCombine::createAddendVal
+ (const FAddend &Opnd, bool &NeedNeg) {
+ const FAddendCoef &Coeff = Opnd.getCoef();
+
+ if (Opnd.isConstant()) {
+ NeedNeg = false;
+ return Coeff.getValue(Instr->getType());
+ }
+
+ Value *OpndVal = Opnd.getSymVal();
+
+ if (Coeff.isMinusOne() || Coeff.isOne()) {
+ NeedNeg = Coeff.isMinusOne();
+ return OpndVal;
+ }
+
+ if (Coeff.isTwo() || Coeff.isMinusTwo()) {
+ NeedNeg = Coeff.isMinusTwo();
+ return createFAdd(OpndVal, OpndVal);
+ }
+
+ NeedNeg = false;
+ return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
+}
+
/// AddOne - Add one to a ConstantInt.
static Constant *AddOne(Constant *C) {
return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
}
+
/// SubOne - Subtract one from a ConstantInt.
static Constant *SubOne(ConstantInt *C) {
return ConstantInt::get(C->getContext(), C->getValue()-1);
@@ -37,10 +861,10 @@ static Constant *SubOne(ConstantInt *C) {
static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
if (!V->hasOneUse() || !V->getType()->isIntegerTy())
return 0;
-
+
Instruction *I = dyn_cast<Instruction>(V);
if (I == 0) return 0;
-
+
if (I->getOpcode() == Instruction::Mul)
if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
return I->getOperand(0);
@@ -64,22 +888,22 @@ static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
// There are different heuristics we can use for this. Here are some simple
// ones.
-
- // Add has the property that adding any two 2's complement numbers can only
+
+ // Add has the property that adding any two 2's complement numbers can only
// have one carry bit which can change a sign. As such, if LHS and RHS each
// have at least two sign bits, we know that the addition of the two values
// will sign extend fine.
if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
return true;
-
-
+
+
// If one of the operands only has one non-zero bit, and if the other operand
// has a known-zero bit in a more significant place than it (not including the
// sign bit) the ripple may go up to and fill the zero, but won't change the
// sign. For example, (X & ~4) + 1.
-
+
// TODO: Implement.
-
+
return false;
}
@@ -100,7 +924,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
const APInt &Val = CI->getValue();
if (Val.isSignBit())
return BinaryOperator::CreateXor(LHS, RHS);
-
+
// See if SimplifyDemandedBits can simplify this. This handles stuff like
// (X & 254)+1 -> (X&254)|1
if (SimplifyDemandedInstructionBits(I))
@@ -110,7 +934,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
if (ZI->getSrcTy()->isIntegerTy(1))
return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
-
+
Value *XorLHS = 0; ConstantInt *XorRHS = 0;
if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
@@ -124,13 +948,13 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
else if (XorRHS->getValue().isPowerOf2())
ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
}
-
+
if (ExtendAmt) {
APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
if (!MaskedValueIsZero(XorLHS, Mask))
ExtendAmt = 0;
}
-
+
if (ExtendAmt) {
Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt);
Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext");
@@ -175,7 +999,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
return BinaryOperator::CreateNeg(NewAdd);
}
-
+
return BinaryOperator::CreateSub(RHS, LHSV);
}
@@ -209,7 +1033,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
APInt RHSKnownOne(IT->getBitWidth(), 0);
APInt RHSKnownZero(IT->getBitWidth(), 0);
ComputeMaskedBits(RHS, RHSKnownZero, RHSKnownOne);
-
+
// No bits in common -> bitwise or.
if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
return BinaryOperator::CreateOr(LHS, RHS);
@@ -251,7 +1075,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
// See if all bits from the first bit set in the Add RHS up are included
// in the mask. First, get the rightmost bit.
const APInt &AddRHSV = CRHS->getValue();
-
+
// Form a mask of all bits from the lowest bit added through the top.
APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
@@ -289,7 +1113,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
// Fold the add into the true select value.
return SelectInst::Create(SI->getCondition(), N, A);
-
+
if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
// Fold the add into the false select value.
return SelectInst::Create(SI->getCondition(), A, N);
@@ -301,18 +1125,18 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
// (add (sext x), cst) --> (sext (add x, cst'))
if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
- Constant *CI =
+ Constant *CI =
ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
if (LHSConv->hasOneUse() &&
ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
// Insert the new, smaller add.
- Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
+ Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
CI, "addconv");
return new SExtInst(NewAdd, I.getType());
}
}
-
+
// (add (sext x), (sext y)) --> (sext (add int x, y))
if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
// Only do this if x/y have the same type, if at last one of them has a
@@ -323,7 +1147,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
WillNotOverflowSignedAdd(LHSConv->getOperand(0),
RHSConv->getOperand(0))) {
// Insert the new integer add.
- Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
+ Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
RHSConv->getOperand(0), "addconv");
return new SExtInst(NewAdd, I.getType());
}
@@ -351,18 +1175,12 @@ Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
bool Changed = SimplifyAssociativeOrCommutative(I);
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
- if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
- // X + 0 --> X
- if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
- if (CFP->isExactlyValue(ConstantFP::getNegativeZero
- (I.getType())->getValueAPF()))
- return ReplaceInstUsesWith(I, LHS);
- }
+ if (Value *V = SimplifyFAddInst(LHS, RHS, I.getFastMathFlags(), TD))
+ return ReplaceInstUsesWith(I, V);
- if (isa<PHINode>(LHS))
- if (Instruction *NV = FoldOpIntoPhi(I))
- return NV;
- }
+ if (isa<Constant>(RHS) && isa<PHINode>(LHS))
+ if (Instruction *NV = FoldOpIntoPhi(I))
+ return NV;
// -A + B --> B - A
// -A + -B --> -(A + B)
@@ -374,11 +1192,6 @@ Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
if (Value *V = dyn_castFNegVal(RHS))
return BinaryOperator::CreateFSub(LHS, V);
- // Check for X+0.0. Simplify it to X if we know X is not -0.0.
- if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
- if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
- return ReplaceInstUsesWith(I, LHS);
-
// Check for (fadd double (sitofp x), y), see if we can merge this into an
// integer add followed by a promotion.
if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
@@ -388,7 +1201,7 @@ Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
// requires a constant pool load, and generally allows the add to be better
// instcombined.
if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
- Constant *CI =
+ Constant *CI =
ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
if (LHSConv->hasOneUse() &&
ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
@@ -399,7 +1212,7 @@ Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
return new SIToFPInst(NewAdd, I.getType());
}
}
-
+
// (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
// Only do this if x/y have the same type, if at last one of them has a
@@ -410,13 +1223,18 @@ Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
WillNotOverflowSignedAdd(LHSConv->getOperand(0),
RHSConv->getOperand(0))) {
// Insert the new integer add.
- Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
+ Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
RHSConv->getOperand(0),"addconv");
return new SIToFPInst(NewAdd, I.getType());
}
}
}
-
+
+ if (I.hasUnsafeAlgebra()) {
+ if (Value *V = FAddCombine(Builder).simplify(&I))
+ return ReplaceInstUsesWith(I, V);
+ }
+
return Changed ? &I : 0;
}
@@ -428,7 +1246,7 @@ Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
Type *Ty) {
assert(TD && "Must have target data info for this");
-
+
// If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
// this.
bool Swapped = false;
@@ -451,7 +1269,7 @@ Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
}
}
}
-
+
if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
// X - (gep X, ...)
if (RHSGEP->getOperand(0) == LHS) {
@@ -467,16 +1285,16 @@ Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
}
}
}
-
+
// Avoid duplicating the arithmetic if GEP2 has non-constant indices and
// multiple users.
if (GEP1 == 0 ||
(GEP2 != 0 && !GEP2->hasAllConstantIndices() && !GEP2->hasOneUse()))
return 0;
-
+
// Emit the offset of the GEP and an intptr_t.
Value *Result = EmitGEPOffset(GEP1);
-
+
// If we had a constant expression GEP on the other side offsetting the
// pointer, subtract it from the offset we have.
if (GEP2) {
@@ -517,7 +1335,7 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
// Replace (-1 - A) with (~A).
if (match(Op0, m_AllOnes()))
return BinaryOperator::CreateNot(Op1);
-
+
if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
// C - ~X == X + (1+C)
Value *X = 0;
@@ -551,20 +1369,30 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
if (SimplifyDemandedInstructionBits(I))
return &I;
+
+ // Fold (sub 0, (zext bool to B)) --> (sext bool to B)
+ if (C->isZero() && match(Op1, m_ZExt(m_Value(X))))
+ if (X->getType()->isIntegerTy(1))
+ return CastInst::CreateSExtOrBitCast(X, Op1->getType());
+
+ // Fold (sub 0, (sext bool to B)) --> (zext bool to B)
+ if (C->isZero() && match(Op1, m_SExt(m_Value(X))))
+ if (X->getType()->isIntegerTy(1))
+ return CastInst::CreateZExtOrBitCast(X, Op1->getType());
}
-
+
{ Value *Y;
// X-(X+Y) == -Y X-(Y+X) == -Y
if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) ||
match(Op1, m_Add(m_Value(Y), m_Specific(Op0))))
return BinaryOperator::CreateNeg(Y);
-
+
// (X-Y)-X == -Y
if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
return BinaryOperator::CreateNeg(Y);
}
-
+
if (Op1->hasOneUse()) {
Value *X = 0, *Y = 0, *Z = 0;
Constant *C = 0;
@@ -581,7 +1409,7 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
match(Op1, m_And(m_Specific(Op0), m_Value(Y))))
return BinaryOperator::CreateAnd(Op0,
Builder->CreateNot(Y, Y->getName() + ".not"));
-
+
// 0 - (X sdiv C) -> (X sdiv -C)
if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) &&
match(Op0, m_Zero()))
@@ -604,14 +1432,14 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
C = ConstantExpr::getSub(One, ConstantExpr::getShl(One, CI));
return BinaryOperator::CreateMul(Op0, C);
}
-
+
// X - A*-B -> X + A*B
// X - -A*B -> X + A*B
Value *A, *B;
if (match(Op1, m_Mul(m_Value(A), m_Neg(m_Value(B)))) ||
match(Op1, m_Mul(m_Neg(m_Value(A)), m_Value(B))))
return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B));
-
+
// X - A*CI -> X + A*-CI
// X - CI*A -> X + A*-CI
if (match(Op1, m_Mul(m_Value(A), m_ConstantInt(CI))) ||
@@ -630,7 +1458,7 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
if (X == dyn_castFoldableMul(Op1, C2))
return BinaryOperator::CreateMul(X, ConstantExpr::getSub(C1, C2));
}
-
+
// Optimize pointer differences into the same array into a size. Consider:
// &A[10] - &A[0]: we should compile this to "10".
if (TD) {
@@ -639,23 +1467,31 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
match(Op1, m_PtrToInt(m_Value(RHSOp))))
if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
return ReplaceInstUsesWith(I, Res);
-
+
// trunc(p)-trunc(q) -> trunc(p-q)
if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
return ReplaceInstUsesWith(I, Res);
}
-
+
return 0;
}
Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ if (Value *V = SimplifyFSubInst(Op0, Op1, I.getFastMathFlags(), TD))
+ return ReplaceInstUsesWith(I, V);
+
// If this is a 'B = x-(-A)', change to B = x+A...
if (Value *V = dyn_castFNegVal(Op1))
return BinaryOperator::CreateFAdd(Op0, V);
+ if (I.hasUnsafeAlgebra()) {
+ if (Value *V = FAddCombine(Builder).simplify(&I))
+ return ReplaceInstUsesWith(I, V);
+ }
+
return 0;
}
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
index 7d0af0d..990cbc3 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
@@ -12,18 +12,18 @@
//===----------------------------------------------------------------------===//
#include "InstCombine.h"
-#include "llvm/Intrinsics.h"
#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/Transforms/Utils/CmpInstAnalysis.h"
+#include "llvm/IR/Intrinsics.h"
#include "llvm/Support/ConstantRange.h"
#include "llvm/Support/PatternMatch.h"
+#include "llvm/Transforms/Utils/CmpInstAnalysis.h"
using namespace llvm;
using namespace PatternMatch;
/// AddOne - Add one to a ConstantInt.
-static Constant *AddOne(Constant *C) {
- return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
+static Constant *AddOne(ConstantInt *C) {
+ return ConstantInt::get(C->getContext(), C->getValue() + 1);
}
/// SubOne - Subtract one from a ConstantInt.
static Constant *SubOne(ConstantInt *C) {
@@ -36,15 +36,15 @@ static inline bool isFreeToInvert(Value *V) {
// ~(~(X)) -> X.
if (BinaryOperator::isNot(V))
return true;
-
+
// Constants can be considered to be not'ed values.
if (isa<ConstantInt>(V))
return true;
-
+
// Compares can be inverted if they have a single use.
if (CmpInst *CI = dyn_cast<CmpInst>(V))
return CI->hasOneUse();
-
+
return false;
}
@@ -56,7 +56,7 @@ static inline Value *dyn_castNotVal(Value *V) {
if (!isFreeToInvert(Operand))
return Operand;
}
-
+
// Constants can be considered to be not'ed values...
if (ConstantInt *C = dyn_cast<ConstantInt>(V))
return ConstantInt::get(C->getType(), ~C->getValue());
@@ -91,7 +91,7 @@ static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
}
/// getNewICmpValue - This is the complement of getICmpCode, which turns an
-/// opcode and two operands into either a constant true or false, or a brand
+/// opcode and two operands into either a constant true or false, or a brand
/// new ICmp instruction. The sign is passed in to determine which kind
/// of predicate to use in the new icmp instruction.
static Value *getNewICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS,
@@ -118,7 +118,7 @@ static Value *getFCmpValue(bool isordered, unsigned code,
case 4: Pred = isordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; break;
case 5: Pred = isordered ? FCmpInst::FCMP_ONE : FCmpInst::FCMP_UNE; break;
case 6: Pred = isordered ? FCmpInst::FCMP_OLE : FCmpInst::FCMP_ULE; break;
- case 7:
+ case 7:
if (!isordered) return ConstantInt::getTrue(LHS->getContext());
Pred = FCmpInst::FCMP_ORD; break;
}
@@ -154,7 +154,7 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
Or->takeName(Op);
return BinaryOperator::CreateAnd(Or, AndRHS);
}
-
+
ConstantInt *TogetherCI = dyn_cast<ConstantInt>(Together);
if (TogetherCI && !TogetherCI->isZero()){
// (X | C1) & C2 --> (X & (C2^(C1&C2))) | C1
@@ -166,7 +166,7 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
return BinaryOperator::CreateOr(And, OpRHS);
}
}
-
+
break;
case Instruction::Add:
if (Op->hasOneUse()) {
@@ -215,7 +215,7 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
if (CI->getValue() == ShlMask)
// Masking out bits that the shift already masks.
return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
-
+
if (CI != AndRHS) { // Reducing bits set in and.
TheAnd.setOperand(1, CI);
return &TheAnd;
@@ -236,7 +236,7 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
if (CI->getValue() == ShrMask)
// Masking out bits that the shift already masks.
return ReplaceInstUsesWith(TheAnd, Op);
-
+
if (CI != AndRHS) {
TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
return &TheAnd;
@@ -269,22 +269,22 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
/// true, otherwise (V < Lo || V >= Hi). In practice, we emit the more efficient
-/// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
+/// (V-Lo) \<u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
/// whether to treat the V, Lo and HI as signed or not. IB is the location to
/// insert new instructions.
Value *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
bool isSigned, bool Inside) {
- assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
+ assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
"Lo is not <= Hi in range emission code!");
-
+
if (Inside) {
if (Lo == Hi) // Trivially false.
return ConstantInt::getFalse(V->getContext());
// V >= Min && V < Hi --> V < Hi
if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
- ICmpInst::Predicate pred = (isSigned ?
+ ICmpInst::Predicate pred = (isSigned ?
ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
return Builder->CreateICmp(pred, V, Hi);
}
@@ -302,7 +302,7 @@ Value *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
// V < Min || V >= Hi -> V > Hi-1
Hi = SubOne(cast<ConstantInt>(Hi));
if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
- ICmpInst::Predicate pred = (isSigned ?
+ ICmpInst::Predicate pred = (isSigned ?
ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
return Builder->CreateICmp(pred, V, Hi);
}
@@ -327,14 +327,14 @@ static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
// look for the first zero bit after the run of ones
MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
// look for the first non-zero bit
- ME = V.getActiveBits();
+ ME = V.getActiveBits();
return true;
}
/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
/// where isSub determines whether the operator is a sub. If we can fold one of
/// the following xforms:
-///
+///
/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
@@ -355,8 +355,8 @@ Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
case Instruction::And:
if (ConstantExpr::getAnd(N, Mask) == Mask) {
// If the AndRHS is a power of two minus one (0+1+), this is simple.
- if ((Mask->getValue().countLeadingZeros() +
- Mask->getValue().countPopulation()) ==
+ if ((Mask->getValue().countLeadingZeros() +
+ Mask->getValue().countPopulation()) ==
Mask->getValue().getBitWidth())
break;
@@ -375,33 +375,33 @@ Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
case Instruction::Or:
case Instruction::Xor:
// If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
- if ((Mask->getValue().countLeadingZeros() +
+ if ((Mask->getValue().countLeadingZeros() +
Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
&& ConstantExpr::getAnd(N, Mask)->isNullValue())
break;
return 0;
}
-
+
if (isSub)
return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold");
return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold");
}
/// enum for classifying (icmp eq (A & B), C) and (icmp ne (A & B), C)
-/// One of A and B is considered the mask, the other the value. This is
-/// described as the "AMask" or "BMask" part of the enum. If the enum
+/// One of A and B is considered the mask, the other the value. This is
+/// described as the "AMask" or "BMask" part of the enum. If the enum
/// contains only "Mask", then both A and B can be considered masks.
/// If A is the mask, then it was proven, that (A & C) == C. This
/// is trivial if C == A, or C == 0. If both A and C are constants, this
/// proof is also easy.
/// For the following explanations we assume that A is the mask.
-/// The part "AllOnes" declares, that the comparison is true only
+/// The part "AllOnes" declares, that the comparison is true only
/// if (A & B) == A, or all bits of A are set in B.
/// Example: (icmp eq (A & 3), 3) -> FoldMskICmp_AMask_AllOnes
-/// The part "AllZeroes" declares, that the comparison is true only
+/// The part "AllZeroes" declares, that the comparison is true only
/// if (A & B) == 0, or all bits of A are cleared in B.
/// Example: (icmp eq (A & 3), 0) -> FoldMskICmp_Mask_AllZeroes
-/// The part "Mixed" declares, that (A & B) == C and C might or might not
+/// The part "Mixed" declares, that (A & B) == C and C might or might not
/// contain any number of one bits and zero bits.
/// Example: (icmp eq (A & 3), 1) -> FoldMskICmp_AMask_Mixed
/// The Part "Not" means, that in above descriptions "==" should be replaced
@@ -425,16 +425,16 @@ enum MaskedICmpType {
/// return the set of pattern classes (from MaskedICmpType)
/// that (icmp SCC (A & B), C) satisfies
-static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C,
+static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C,
ICmpInst::Predicate SCC)
{
ConstantInt *ACst = dyn_cast<ConstantInt>(A);
ConstantInt *BCst = dyn_cast<ConstantInt>(B);
ConstantInt *CCst = dyn_cast<ConstantInt>(C);
bool icmp_eq = (SCC == ICmpInst::ICMP_EQ);
- bool icmp_abit = (ACst != 0 && !ACst->isZero() &&
+ bool icmp_abit = (ACst != 0 && !ACst->isZero() &&
ACst->getValue().isPowerOf2());
- bool icmp_bbit = (BCst != 0 && !BCst->isZero() &&
+ bool icmp_bbit = (BCst != 0 && !BCst->isZero() &&
BCst->getValue().isPowerOf2());
unsigned result = 0;
if (CCst != 0 && CCst->isZero()) {
@@ -449,12 +449,12 @@ static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C,
FoldMskICmp_BMask_NotMixed));
if (icmp_abit)
result |= (icmp_eq ? (FoldMskICmp_AMask_NotAllOnes |
- FoldMskICmp_AMask_NotMixed)
+ FoldMskICmp_AMask_NotMixed)
: (FoldMskICmp_AMask_AllOnes |
FoldMskICmp_AMask_Mixed));
if (icmp_bbit)
result |= (icmp_eq ? (FoldMskICmp_BMask_NotAllOnes |
- FoldMskICmp_BMask_NotMixed)
+ FoldMskICmp_BMask_NotMixed)
: (FoldMskICmp_BMask_AllOnes |
FoldMskICmp_BMask_Mixed));
return result;
@@ -469,26 +469,23 @@ static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C,
FoldMskICmp_AMask_NotMixed)
: (FoldMskICmp_Mask_AllZeroes |
FoldMskICmp_AMask_Mixed));
- }
- else if (ACst != 0 && CCst != 0 &&
- ConstantExpr::getAnd(ACst, CCst) == CCst) {
+ } else if (ACst != 0 && CCst != 0 &&
+ ConstantExpr::getAnd(ACst, CCst) == CCst) {
result |= (icmp_eq ? FoldMskICmp_AMask_Mixed
: FoldMskICmp_AMask_NotMixed);
}
- if (B == C)
- {
+ if (B == C) {
result |= (icmp_eq ? (FoldMskICmp_BMask_AllOnes |
FoldMskICmp_BMask_Mixed)
: (FoldMskICmp_BMask_NotAllOnes |
FoldMskICmp_BMask_NotMixed));
if (icmp_bbit)
result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
- FoldMskICmp_BMask_NotMixed)
+ FoldMskICmp_BMask_NotMixed)
: (FoldMskICmp_Mask_AllZeroes |
FoldMskICmp_BMask_Mixed));
- }
- else if (BCst != 0 && CCst != 0 &&
- ConstantExpr::getAnd(BCst, CCst) == CCst) {
+ } else if (BCst != 0 && CCst != 0 &&
+ ConstantExpr::getAnd(BCst, CCst) == CCst) {
result |= (icmp_eq ? FoldMskICmp_BMask_Mixed
: FoldMskICmp_BMask_NotMixed);
}
@@ -531,7 +528,7 @@ static bool decomposeBitTestICmp(const ICmpInst *I, ICmpInst::Predicate &Pred,
/// handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
/// return the set of pattern classes (from MaskedICmpType)
/// that both LHS and RHS satisfy
-static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
+static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
Value*& B, Value*& C,
Value*& D, Value*& E,
ICmpInst *LHS, ICmpInst *RHS,
@@ -542,10 +539,10 @@ static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
if (LHS->getOperand(0)->getType()->isVectorTy()) return 0;
// Here comes the tricky part:
- // LHS might be of the form L11 & L12 == X, X == L21 & L22,
+ // LHS might be of the form L11 & L12 == X, X == L21 & L22,
// and L11 & L12 == L21 & L22. The same goes for RHS.
// Now we must find those components L** and R**, that are equal, so
- // that we can extract the parameters A, B, C, D, and E for the canonical
+ // that we can extract the parameters A, B, C, D, and E for the canonical
// above.
Value *L1 = LHS->getOperand(0);
Value *L2 = LHS->getOperand(1);
@@ -610,14 +607,11 @@ static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
if (L11 == A) {
B = L12; C = L2;
- }
- else if (L12 == A) {
+ } else if (L12 == A) {
B = L11; C = L2;
- }
- else if (L21 == A) {
+ } else if (L21 == A) {
B = L22; C = L1;
- }
- else if (L22 == A) {
+ } else if (L22 == A) {
B = L21; C = L1;
}
@@ -643,32 +637,32 @@ static Value* foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS,
mask >>= 1; // treat "Not"-states as normal states
if (mask & FoldMskICmp_Mask_AllZeroes) {
- // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
+ // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
// -> (icmp eq (A & (B|D)), 0)
Value* newOr = Builder->CreateOr(B, D);
Value* newAnd = Builder->CreateAnd(A, newOr);
// we can't use C as zero, because we might actually handle
- // (icmp ne (A & B), B) & (icmp ne (A & D), D)
+ // (icmp ne (A & B), B) & (icmp ne (A & D), D)
// with B and D, having a single bit set
Value* zero = Constant::getNullValue(A->getType());
return Builder->CreateICmp(NEWCC, newAnd, zero);
}
- else if (mask & FoldMskICmp_BMask_AllOnes) {
- // (icmp eq (A & B), B) & (icmp eq (A & D), D)
+ if (mask & FoldMskICmp_BMask_AllOnes) {
+ // (icmp eq (A & B), B) & (icmp eq (A & D), D)
// -> (icmp eq (A & (B|D)), (B|D))
Value* newOr = Builder->CreateOr(B, D);
Value* newAnd = Builder->CreateAnd(A, newOr);
return Builder->CreateICmp(NEWCC, newAnd, newOr);
- }
- else if (mask & FoldMskICmp_AMask_AllOnes) {
- // (icmp eq (A & B), A) & (icmp eq (A & D), A)
+ }
+ if (mask & FoldMskICmp_AMask_AllOnes) {
+ // (icmp eq (A & B), A) & (icmp eq (A & D), A)
// -> (icmp eq (A & (B&D)), A)
Value* newAnd1 = Builder->CreateAnd(B, D);
Value* newAnd = Builder->CreateAnd(A, newAnd1);
return Builder->CreateICmp(NEWCC, newAnd, A);
}
- else if (mask & FoldMskICmp_BMask_Mixed) {
- // (icmp eq (A & B), C) & (icmp eq (A & D), E)
+ if (mask & FoldMskICmp_BMask_Mixed) {
+ // (icmp eq (A & B), C) & (icmp eq (A & D), E)
// We already know that B & C == C && D & E == E.
// If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
// C and E, which are shared by both the mask B and the mask D, don't
@@ -680,7 +674,7 @@ static Value* foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS,
ConstantInt *DCst = dyn_cast<ConstantInt>(D);
if (DCst == 0) return 0;
// we can't simply use C and E, because we might actually handle
- // (icmp ne (A & B), B) & (icmp eq (A & D), D)
+ // (icmp ne (A & B), B) & (icmp eq (A & D), D)
// with B and D, having a single bit set
ConstantInt *CCst = dyn_cast<ConstantInt>(C);
@@ -727,13 +721,13 @@ Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
// handle (roughly): (icmp eq (A & B), C) & (icmp eq (A & D), E)
if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, ICmpInst::ICMP_EQ, Builder))
return V;
-
+
// This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
if (LHSCst == 0 || RHSCst == 0) return 0;
-
+
if (LHSCst == RHSCst && LHSCC == RHSCC) {
// (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
// where C is a power of 2
@@ -742,7 +736,7 @@ Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
Value *NewOr = Builder->CreateOr(Val, Val2);
return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
}
-
+
// (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
if (LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero()) {
Value *NewOr = Builder->CreateOr(Val, Val2);
@@ -759,14 +753,13 @@ Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
ConstantInt *AndCst, *SmallCst = 0, *BigCst = 0;
// (trunc x) == C1 & (and x, CA) == C2
+ // (and x, CA) == C2 & (trunc x) == C1
if (match(Val2, m_Trunc(m_Value(V))) &&
match(Val, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
SmallCst = RHSCst;
BigCst = LHSCst;
- }
- // (and x, CA) == C2 & (trunc x) == C1
- else if (match(Val, m_Trunc(m_Value(V))) &&
- match(Val2, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
+ } else if (match(Val, m_Trunc(m_Value(V))) &&
+ match(Val2, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
SmallCst = LHSCst;
BigCst = RHSCst;
}
@@ -789,7 +782,7 @@ Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
// From here on, we only handle:
// (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
if (Val != Val2) return 0;
-
+
// ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
@@ -799,9 +792,9 @@ Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
// Make a constant range that's the intersection of the two icmp ranges.
// If the intersection is empty, we know that the result is false.
- ConstantRange LHSRange =
+ ConstantRange LHSRange =
ConstantRange::makeICmpRegion(LHSCC, LHSCst->getValue());
- ConstantRange RHSRange =
+ ConstantRange RHSRange =
ConstantRange::makeICmpRegion(RHSCC, RHSCst->getValue());
if (LHSRange.intersectWith(RHSRange).isEmptySet())
@@ -810,16 +803,16 @@ Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
// We can't fold (ugt x, C) & (sgt x, C2).
if (!PredicatesFoldable(LHSCC, RHSCC))
return 0;
-
+
// Ensure that the larger constant is on the RHS.
bool ShouldSwap;
if (CmpInst::isSigned(LHSCC) ||
- (ICmpInst::isEquality(LHSCC) &&
+ (ICmpInst::isEquality(LHSCC) &&
CmpInst::isSigned(RHSCC)))
ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
else
ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
-
+
if (ShouldSwap) {
std::swap(LHS, RHS);
std::swap(LHSCst, RHSCst);
@@ -829,8 +822,8 @@ Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
// At this point, we know we have two icmp instructions
// comparing a value against two constants and and'ing the result
// together. Because of the above check, we know that we only have
- // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
- // (from the icmp folding check above), that the two constants
+ // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
+ // (from the icmp folding check above), that the two constants
// are not equal and that the larger constant is on the RHS
assert(LHSCst != RHSCst && "Compares not folded above?");
@@ -932,7 +925,7 @@ Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
}
break;
}
-
+
return 0;
}
@@ -951,7 +944,7 @@ Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
return ConstantInt::getFalse(LHS->getContext());
return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
}
-
+
// Handle vector zeros. This occurs because the canonical form of
// "fcmp ord x,x" is "fcmp ord x, 0".
if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
@@ -959,18 +952,18 @@ Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
return 0;
}
-
+
Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
-
-
+
+
if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
// Swap RHS operands to match LHS.
Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
std::swap(Op1LHS, Op1RHS);
}
-
+
if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
// Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
if (Op0CC == Op1CC)
@@ -981,7 +974,7 @@ Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
return RHS;
if (Op1CC == FCmpInst::FCMP_TRUE)
return LHS;
-
+
bool Op0Ordered;
bool Op1Ordered;
unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
@@ -1001,7 +994,7 @@ Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
return LHS;
if (Op0Ordered && (Op0Ordered == Op1Ordered))
return RHS;
-
+
// uno && oeq -> uno && (ord && eq) -> false
if (!Op0Ordered)
return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
@@ -1025,10 +1018,10 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
if (Value *V = SimplifyUsingDistributiveLaws(I))
return ReplaceInstUsesWith(I, V);
- // See if we can simplify any instructions used by the instruction whose sole
+ // See if we can simplify any instructions used by the instruction whose sole
// purpose is to compute bits we don't care about.
if (SimplifyDemandedInstructionBits(I))
- return &I;
+ return &I;
if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
const APInt &AndRHSMask = AndRHS->getValue();
@@ -1043,7 +1036,7 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
case Instruction::Or: {
// If the mask is only needed on one incoming arm, push it up.
if (!Op0I->hasOneUse()) break;
-
+
APInt NotAndRHS(~AndRHSMask);
if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
// Not masking anything out for the LHS, move to RHS.
@@ -1103,12 +1096,12 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
}
break;
}
-
+
if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
return Res;
}
-
+
// If this is an integer truncation, and if the source is an 'and' with
// immediate, transform it. This frequently occurs for bitfield accesses.
{
@@ -1116,7 +1109,7 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) {
// Change: and (trunc (and X, YC) to T), C2
// into : and (trunc X to T), trunc(YC) & C2
- // This will fold the two constants together, which may allow
+ // This will fold the two constants together, which may allow
// other simplifications.
Value *NewCast = Builder->CreateTrunc(X, I.getType(), "and.shrunk");
Constant *C3 = ConstantExpr::getTrunc(YC, I.getType());
@@ -1143,7 +1136,7 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
I.getName()+".demorgan");
return BinaryOperator::CreateNot(Or);
}
-
+
{
Value *A = 0, *B = 0, *C = 0, *D = 0;
// (A|B) & ~(A&B) -> A^B
@@ -1151,13 +1144,13 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
match(Op1, m_Not(m_And(m_Value(C), m_Value(D)))) &&
((A == C && B == D) || (A == D && B == C)))
return BinaryOperator::CreateXor(A, B);
-
+
// ~(A&B) & (A|B) -> A^B
if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
match(Op0, m_Not(m_And(m_Value(C), m_Value(D)))) &&
((A == C && B == D) || (A == D && B == C)))
return BinaryOperator::CreateXor(A, B);
-
+
// A&(A^B) => A & ~B
{
Value *tmpOp0 = Op0;
@@ -1193,19 +1186,19 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
return BinaryOperator::CreateAnd(A, Op0);
}
-
+
if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1))
if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0))
if (Value *Res = FoldAndOfICmps(LHS, RHS))
return ReplaceInstUsesWith(I, Res);
-
+
// If and'ing two fcmp, try combine them into one.
if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
if (Value *Res = FoldAndOfFCmps(LHS, RHS))
return ReplaceInstUsesWith(I, Res);
-
-
+
+
// fold (and (cast A), (cast B)) -> (cast (and A, B))
if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) {
@@ -1214,21 +1207,21 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
SrcTy == Op1C->getOperand(0)->getType() &&
SrcTy->isIntOrIntVectorTy()) {
Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
-
+
// Only do this if the casts both really cause code to be generated.
if (ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
Value *NewOp = Builder->CreateAnd(Op0COp, Op1COp, I.getName());
return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
}
-
+
// If this is and(cast(icmp), cast(icmp)), try to fold this even if the
// cast is otherwise not optimizable. This happens for vector sexts.
if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
if (Value *Res = FoldAndOfICmps(LHS, RHS))
return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
-
+
// If this is and(cast(fcmp), cast(fcmp)), try to fold this even if the
// cast is otherwise not optimizable. This happens for vector sexts.
if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
@@ -1237,21 +1230,49 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
}
}
-
+
// (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
- if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
+ if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
SI0->getOperand(1) == SI1->getOperand(1) &&
(SI0->hasOneUse() || SI1->hasOneUse())) {
Value *NewOp =
Builder->CreateAnd(SI0->getOperand(0), SI1->getOperand(0),
SI0->getName());
- return BinaryOperator::Create(SI1->getOpcode(), NewOp,
+ return BinaryOperator::Create(SI1->getOpcode(), NewOp,
SI1->getOperand(1));
}
}
+ {
+ Value *X = 0;
+ bool OpsSwapped = false;
+ // Canonicalize SExt or Not to the LHS
+ if (match(Op1, m_SExt(m_Value())) ||
+ match(Op1, m_Not(m_Value()))) {
+ std::swap(Op0, Op1);
+ OpsSwapped = true;
+ }
+
+ // Fold (and (sext bool to A), B) --> (select bool, B, 0)
+ if (match(Op0, m_SExt(m_Value(X))) &&
+ X->getType()->getScalarType()->isIntegerTy(1)) {
+ Value *Zero = Constant::getNullValue(Op1->getType());
+ return SelectInst::Create(X, Op1, Zero);
+ }
+
+ // Fold (and ~(sext bool to A), B) --> (select bool, 0, B)
+ if (match(Op0, m_Not(m_SExt(m_Value(X)))) &&
+ X->getType()->getScalarType()->isIntegerTy(1)) {
+ Value *Zero = Constant::getNullValue(Op0->getType());
+ return SelectInst::Create(X, Zero, Op1);
+ }
+
+ if (OpsSwapped)
+ std::swap(Op0, Op1);
+ }
+
return Changed ? &I : 0;
}
@@ -1288,11 +1309,11 @@ static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
ByteValues);
}
-
+
// If this is a logical shift by a constant multiple of 8, recurse with
// OverallLeftShift and ByteMask adjusted.
if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
- unsigned ShAmt =
+ unsigned ShAmt =
cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
// Ensure the shift amount is defined and of a byte value.
if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
@@ -1313,7 +1334,7 @@ static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
if (OverallLeftShift >= (int)ByteValues.size()) return true;
if (OverallLeftShift <= -(int)ByteValues.size()) return true;
- return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
+ return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
ByteValues);
}
@@ -1325,20 +1346,20 @@ static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
unsigned NumBytes = ByteValues.size();
APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
-
+
for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
// If this byte is masked out by a later operation, we don't care what
// the and mask is.
if ((ByteMask & (1 << i)) == 0)
continue;
-
+
// If the AndMask is all zeros for this byte, clear the bit.
APInt MaskB = AndMask & Byte;
if (MaskB == 0) {
ByteMask &= ~(1U << i);
continue;
}
-
+
// If the AndMask is not all ones for this byte, it's not a bytezap.
if (MaskB != Byte)
return true;
@@ -1346,11 +1367,11 @@ static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
// Otherwise, this byte is kept.
}
- return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
+ return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
ByteValues);
}
}
-
+
// Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
// the input value to the bswap. Some observations: 1) if more than one byte
// is demanded from this input, then it could not be successfully assembled
@@ -1358,7 +1379,7 @@ static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
// their ultimate destination.
if (!isPowerOf2_32(ByteMask)) return true;
unsigned InputByteNo = CountTrailingZeros_32(ByteMask);
-
+
// 2) The input and ultimate destinations must line up: if byte 3 of an i32
// is demanded, it needs to go into byte 0 of the result. This means that the
// byte needs to be shifted until it lands in the right byte bucket. The
@@ -1368,7 +1389,7 @@ static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
unsigned DestByteNo = InputByteNo + OverallLeftShift;
if (ByteValues.size()-1-DestByteNo != InputByteNo)
return true;
-
+
// If the destination byte value is already defined, the values are or'd
// together, which isn't a bswap (unless it's an or of the same bits).
if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
@@ -1381,25 +1402,25 @@ static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
/// If so, insert the new bswap intrinsic and return it.
Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
- if (!ITy || ITy->getBitWidth() % 16 ||
+ if (!ITy || ITy->getBitWidth() % 16 ||
// ByteMask only allows up to 32-byte values.
- ITy->getBitWidth() > 32*8)
+ ITy->getBitWidth() > 32*8)
return 0; // Can only bswap pairs of bytes. Can't do vectors.
-
+
/// ByteValues - For each byte of the result, we keep track of which value
/// defines each byte.
SmallVector<Value*, 8> ByteValues;
ByteValues.resize(ITy->getBitWidth()/8);
-
+
// Try to find all the pieces corresponding to the bswap.
uint32_t ByteMask = ~0U >> (32-ByteValues.size());
if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
return 0;
-
+
// Check to see if all of the bytes come from the same value.
Value *V = ByteValues[0];
if (V == 0) return 0; // Didn't find a byte? Must be zero.
-
+
// Check to make sure that all of the bytes come from the same value.
for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
if (ByteValues[i] != V)
@@ -1425,7 +1446,7 @@ static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
return SelectInst::Create(Cond, C, B);
if (match(D, m_SExt(m_Not(m_Specific(Cond)))))
return SelectInst::Create(Cond, C, B);
-
+
// ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
if (match(B, m_Not(m_SExt(m_Specific(Cond)))))
return SelectInst::Create(Cond, C, D);
@@ -1483,33 +1504,33 @@ Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
// From here on, we only handle:
// (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
if (Val != Val2) return 0;
-
+
// ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
return 0;
-
+
// We can't fold (ugt x, C) | (sgt x, C2).
if (!PredicatesFoldable(LHSCC, RHSCC))
return 0;
-
+
// Ensure that the larger constant is on the RHS.
bool ShouldSwap;
if (CmpInst::isSigned(LHSCC) ||
- (ICmpInst::isEquality(LHSCC) &&
+ (ICmpInst::isEquality(LHSCC) &&
CmpInst::isSigned(RHSCC)))
ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
else
ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
-
+
if (ShouldSwap) {
std::swap(LHS, RHS);
std::swap(LHSCst, RHSCst);
std::swap(LHSCC, RHSCC);
}
-
+
// At this point, we know we have two icmp instructions
// comparing a value against two constants and or'ing the result
// together. Because of the above check, we know that we only have
@@ -1531,6 +1552,20 @@ Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
return Builder->CreateICmpULT(Add, AddCST);
}
+
+ if (LHS->getOperand(0) == RHS->getOperand(0)) {
+ // if LHSCst and RHSCst differ only by one bit:
+ // (A == C1 || A == C2) -> (A & ~(C1 ^ C2)) == C1
+ assert(LHSCst->getValue().ule(LHSCst->getValue()));
+
+ APInt Xor = LHSCst->getValue() ^ RHSCst->getValue();
+ if (Xor.isPowerOf2()) {
+ Value *NegCst = Builder->getInt(~Xor);
+ Value *And = Builder->CreateAnd(LHS->getOperand(0), NegCst);
+ return Builder->CreateICmp(ICmpInst::ICMP_EQ, And, LHSCst);
+ }
+ }
+
break; // (X == 13 | X == 15) -> no change
case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
@@ -1632,7 +1667,7 @@ Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
/// function.
Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
- RHS->getPredicate() == FCmpInst::FCMP_UNO &&
+ RHS->getPredicate() == FCmpInst::FCMP_UNO &&
LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
@@ -1640,25 +1675,25 @@ Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
// true.
if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
return ConstantInt::getTrue(LHS->getContext());
-
+
// Otherwise, no need to compare the two constants, compare the
// rest.
return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
}
-
+
// Handle vector zeros. This occurs because the canonical form of
// "fcmp uno x,x" is "fcmp uno x, 0".
if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
isa<ConstantAggregateZero>(RHS->getOperand(1)))
return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
-
+
return 0;
}
-
+
Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
-
+
if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
// Swap RHS operands to match LHS.
Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
@@ -1692,7 +1727,7 @@ Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
/// ((A | B) & C1) | (B & C2)
///
/// into:
-///
+///
/// (A & C1) | B
///
/// when the XOR of the two constants is "all ones" (-1).
@@ -1727,7 +1762,7 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
if (Value *V = SimplifyUsingDistributiveLaws(I))
return ReplaceInstUsesWith(I, V);
- // See if we can simplify any instructions used by the instruction whose sole
+ // See if we can simplify any instructions used by the instruction whose sole
// purpose is to compute bits we don't care about.
if (SimplifyDemandedInstructionBits(I))
return &I;
@@ -1741,7 +1776,7 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
Op0->hasOneUse()) {
Value *Or = Builder->CreateOr(X, RHS);
Or->takeName(Op0);
- return BinaryOperator::CreateAnd(Or,
+ return BinaryOperator::CreateAnd(Or,
ConstantInt::get(I.getContext(),
RHS->getValue() | C1->getValue()));
}
@@ -1778,7 +1813,7 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
if (Instruction *BSwap = MatchBSwap(I))
return BSwap;
}
-
+
// (X^C)|Y -> (X|Y)^C iff Y&C == 0
if (Op0->hasOneUse() &&
match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
@@ -1827,7 +1862,7 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
return ReplaceInstUsesWith(I, B);
}
}
-
+
if ((C1->getValue() & C2->getValue()) == 0) {
// ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
// iff (C1&C2) == 0 and (N&~C1) == 0
@@ -1844,7 +1879,7 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
return BinaryOperator::CreateAnd(B,
ConstantInt::get(B->getContext(),
C1->getValue()|C2->getValue()));
-
+
// ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
// iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
ConstantInt *C3 = 0, *C4 = 0;
@@ -1904,16 +1939,16 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
if (Ret) return Ret;
}
}
-
+
// (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
- if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
+ if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
SI0->getOperand(1) == SI1->getOperand(1) &&
(SI0->hasOneUse() || SI1->hasOneUse())) {
Value *NewOp = Builder->CreateOr(SI0->getOperand(0), SI1->getOperand(0),
SI0->getName());
- return BinaryOperator::Create(SI1->getOpcode(), NewOp,
+ return BinaryOperator::Create(SI1->getOpcode(), NewOp,
SI1->getOperand(1));
}
}
@@ -1975,13 +2010,13 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
if (Value *Res = FoldOrOfICmps(LHS, RHS))
return ReplaceInstUsesWith(I, Res);
-
+
// (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
if (Value *Res = FoldOrOfFCmps(LHS, RHS))
return ReplaceInstUsesWith(I, Res);
-
+
// fold (or (cast A), (cast B)) -> (cast (or A, B))
if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
CastInst *Op1C = dyn_cast<CastInst>(Op1);
@@ -1999,14 +2034,14 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
Value *NewOp = Builder->CreateOr(Op0COp, Op1COp, I.getName());
return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
}
-
+
// If this is or(cast(icmp), cast(icmp)), try to fold this even if the
// cast is otherwise not optimizable. This happens for vector sexts.
if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
if (Value *Res = FoldOrOfICmps(LHS, RHS))
return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
-
+
// If this is or(cast(fcmp), cast(fcmp)), try to fold this even if the
// cast is otherwise not optimizable. This happens for vector sexts.
if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
@@ -2035,7 +2070,21 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
Inner->takeName(Op0);
return BinaryOperator::CreateOr(Inner, C1);
}
-
+
+ // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D))
+ // Since this OR statement hasn't been optimized further yet, we hope
+ // that this transformation will allow the new ORs to be optimized.
+ {
+ Value *X = 0, *Y = 0;
+ if (Op0->hasOneUse() && Op1->hasOneUse() &&
+ match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) &&
+ match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) {
+ Value *orTrue = Builder->CreateOr(A, C);
+ Value *orFalse = Builder->CreateOr(B, D);
+ return SelectInst::Create(X, orTrue, orFalse);
+ }
+ }
+
return Changed ? &I : 0;
}
@@ -2050,7 +2099,7 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
if (Value *V = SimplifyUsingDistributiveLaws(I))
return ReplaceInstUsesWith(I, V);
- // See if we can simplify any instructions used by the instruction whose sole
+ // See if we can simplify any instructions used by the instruction whose sole
// purpose is to compute bits we don't care about.
if (SimplifyDemandedInstructionBits(I))
return &I;
@@ -2058,7 +2107,7 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
// Is this a ~ operation?
if (Value *NotOp = dyn_castNotVal(&I)) {
if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
- if (Op0I->getOpcode() == Instruction::And ||
+ if (Op0I->getOpcode() == Instruction::And ||
Op0I->getOpcode() == Instruction::Or) {
// ~(~X & Y) --> (X | ~Y) - De Morgan's Law
// ~(~X | Y) === (X & ~Y) - De Morgan's Law
@@ -2072,10 +2121,10 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
return BinaryOperator::CreateOr(Op0NotVal, NotY);
return BinaryOperator::CreateAnd(Op0NotVal, NotY);
}
-
+
// ~(X & Y) --> (~X | ~Y) - De Morgan's Law
// ~(X | Y) === (~X & ~Y) - De Morgan's Law
- if (isFreeToInvert(Op0I->getOperand(0)) &&
+ if (isFreeToInvert(Op0I->getOperand(0)) &&
isFreeToInvert(Op0I->getOperand(1))) {
Value *NotX =
Builder->CreateNot(Op0I->getOperand(0), "notlhs");
@@ -2093,8 +2142,8 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
}
}
}
-
-
+
+
if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
if (RHS->isOne() && Op0->hasOneUse())
// xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
@@ -2109,7 +2158,7 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
if (CI->hasOneUse() && Op0C->hasOneUse()) {
Instruction::CastOps Opcode = Op0C->getOpcode();
if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
- (RHS == ConstantExpr::getCast(Opcode,
+ (RHS == ConstantExpr::getCast(Opcode,
ConstantInt::getTrue(I.getContext()),
Op0C->getDestTy()))) {
CI->setPredicate(CI->getInversePredicate());
@@ -2128,7 +2177,7 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
ConstantInt::get(I.getType(), 1));
return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
}
-
+
if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
if (Op0I->getOpcode() == Instruction::Add) {
// ~(X-c) --> (-c-1)-X
@@ -2152,13 +2201,34 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
// Anything in both C1 and C2 is known to be zero, remove it from
// NewRHS.
Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
- NewRHS = ConstantExpr::getAnd(NewRHS,
+ NewRHS = ConstantExpr::getAnd(NewRHS,
ConstantExpr::getNot(CommonBits));
Worklist.Add(Op0I);
I.setOperand(0, Op0I->getOperand(0));
I.setOperand(1, NewRHS);
return &I;
}
+ } else if (Op0I->getOpcode() == Instruction::LShr) {
+ // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
+ // E1 = "X ^ C1"
+ BinaryOperator *E1;
+ ConstantInt *C1;
+ if (Op0I->hasOneUse() &&
+ (E1 = dyn_cast<BinaryOperator>(Op0I->getOperand(0))) &&
+ E1->getOpcode() == Instruction::Xor &&
+ (C1 = dyn_cast<ConstantInt>(E1->getOperand(1)))) {
+ // fold (C1 >> C2) ^ C3
+ ConstantInt *C2 = Op0CI, *C3 = RHS;
+ APInt FoldConst = C1->getValue().lshr(C2->getValue());
+ FoldConst ^= C3->getValue();
+ // Prepare the two operands.
+ Value *Opnd0 = Builder->CreateLShr(E1->getOperand(0), C2);
+ Opnd0->takeName(Op0I);
+ cast<Instruction>(Opnd0)->setDebugLoc(I.getDebugLoc());
+ Value *FoldVal = ConstantInt::get(Opnd0->getType(), FoldConst);
+
+ return BinaryOperator::CreateXor(Opnd0, FoldVal);
+ }
}
}
}
@@ -2184,7 +2254,7 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
I.swapOperands(); // Simplified below.
std::swap(Op0, Op1);
}
- } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) &&
+ } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) &&
Op1I->hasOneUse()){
if (A == Op0) { // A^(A&B) -> A^(B&A)
Op1I->swapOperands();
@@ -2196,7 +2266,7 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
}
}
}
-
+
BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
if (Op0I) {
Value *A, *B;
@@ -2206,7 +2276,7 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
std::swap(A, B);
if (B == Op1) // (A|B)^B == A & ~B
return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1));
- } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
+ } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
Op0I->hasOneUse()){
if (A == Op1) // (A&B)^A -> (B&A)^A
std::swap(A, B);
@@ -2216,31 +2286,31 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
}
}
}
-
+
// (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
- if (Op0I && Op1I && Op0I->isShift() &&
- Op0I->getOpcode() == Op1I->getOpcode() &&
+ if (Op0I && Op1I && Op0I->isShift() &&
+ Op0I->getOpcode() == Op1I->getOpcode() &&
Op0I->getOperand(1) == Op1I->getOperand(1) &&
(Op0I->hasOneUse() || Op1I->hasOneUse())) {
Value *NewOp =
Builder->CreateXor(Op0I->getOperand(0), Op1I->getOperand(0),
Op0I->getName());
- return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
+ return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
Op1I->getOperand(1));
}
-
+
if (Op0I && Op1I) {
Value *A, *B, *C, *D;
// (A & B)^(A | B) -> A ^ B
if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
- if ((A == C && B == D) || (A == D && B == C))
+ if ((A == C && B == D) || (A == D && B == C))
return BinaryOperator::CreateXor(A, B);
}
// (A | B)^(A & B) -> A ^ B
if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
match(Op1I, m_And(m_Value(C), m_Value(D)))) {
- if ((A == C && B == D) || (A == D && B == C))
+ if ((A == C && B == D) || (A == D && B == C))
return BinaryOperator::CreateXor(A, B);
}
}
@@ -2257,7 +2327,7 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
bool isSigned = LHS->isSigned() || RHS->isSigned();
- return ReplaceInstUsesWith(I,
+ return ReplaceInstUsesWith(I,
getNewICmpValue(isSigned, Code, Op0, Op1,
Builder));
}
@@ -2270,9 +2340,9 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
Type *SrcTy = Op0C->getOperand(0)->getType();
if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isIntegerTy() &&
// Only do this if the casts both really cause code to be generated.
- ShouldOptimizeCast(Op0C->getOpcode(), Op0C->getOperand(0),
+ ShouldOptimizeCast(Op0C->getOpcode(), Op0C->getOperand(0),
I.getType()) &&
- ShouldOptimizeCast(Op1C->getOpcode(), Op1C->getOperand(0),
+ ShouldOptimizeCast(Op1C->getOpcode(), Op1C->getOperand(0),
I.getType())) {
Value *NewOp = Builder->CreateXor(Op0C->getOperand(0),
Op1C->getOperand(0), I.getName());
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp
index 48f2704..64cd1bd 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp
@@ -12,12 +12,17 @@
//===----------------------------------------------------------------------===//
#include "InstCombine.h"
-#include "llvm/Support/CallSite.h"
-#include "llvm/DataLayout.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/Support/CallSite.h"
+#include "llvm/Support/PatternMatch.h"
#include "llvm/Transforms/Utils/BuildLibCalls.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
+using namespace PatternMatch;
+
+STATISTIC(NumSimplified, "Number of library calls simplified");
/// getPromotedType - Return the specified type promoted as it would be to pass
/// though a va_arg area.
@@ -273,25 +278,25 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
return ReplaceInstUsesWith(CI, ConstantInt::get(CI.getType(), Size));
return 0;
}
- case Intrinsic::bswap:
+ case Intrinsic::bswap: {
+ Value *IIOperand = II->getArgOperand(0);
+ Value *X = 0;
+
// bswap(bswap(x)) -> x
- if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getArgOperand(0)))
- if (Operand->getIntrinsicID() == Intrinsic::bswap)
- return ReplaceInstUsesWith(CI, Operand->getArgOperand(0));
+ if (match(IIOperand, m_BSwap(m_Value(X))))
+ return ReplaceInstUsesWith(CI, X);
// bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
- if (TruncInst *TI = dyn_cast<TruncInst>(II->getArgOperand(0))) {
- if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0)))
- if (Operand->getIntrinsicID() == Intrinsic::bswap) {
- unsigned C = Operand->getType()->getPrimitiveSizeInBits() -
- TI->getType()->getPrimitiveSizeInBits();
- Value *CV = ConstantInt::get(Operand->getType(), C);
- Value *V = Builder->CreateLShr(Operand->getArgOperand(0), CV);
- return new TruncInst(V, TI->getType());
- }
+ if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
+ unsigned C = X->getType()->getPrimitiveSizeInBits() -
+ IIOperand->getType()->getPrimitiveSizeInBits();
+ Value *CV = ConstantInt::get(X->getType(), C);
+ Value *V = Builder->CreateLShr(X, CV);
+ return new TruncInst(V, IIOperand->getType());
}
-
break;
+ }
+
case Intrinsic::powi:
if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
// powi(x, 0) -> 1.0
@@ -690,7 +695,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
if (Splat->isOne()) {
if (Zext)
return CastInst::CreateZExtOrBitCast(Arg0, II->getType());
- // else
+ // else
return CastInst::CreateSExtOrBitCast(Arg0, II->getType());
}
}
@@ -785,8 +790,10 @@ static bool isSafeToEliminateVarargsCast(const CallSite CS,
Instruction *InstCombiner::tryOptimizeCall(CallInst *CI, const DataLayout *TD) {
if (CI->getCalledFunction() == 0) return 0;
- if (Value *With = Simplifier->optimizeCall(CI))
- return ReplaceInstUsesWith(*CI, With);
+ if (Value *With = Simplifier->optimizeCall(CI)) {
+ ++NumSimplified;
+ return CI->use_empty() ? CI : ReplaceInstUsesWith(*CI, With);
+ }
return 0;
}
@@ -894,7 +901,7 @@ Instruction *InstCombiner::visitCallSite(CallSite CS) {
new StoreInst(ConstantInt::getTrue(Callee->getContext()),
UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
OldCall);
- // If OldCall dues not return void then replaceAllUsesWith undef.
+ // If OldCall does not return void then replaceAllUsesWith undef.
// This allows ValueHandlers and custom metadata to adjust itself.
if (!OldCall->getType()->isVoidTy())
ReplaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
@@ -977,7 +984,7 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
if (Callee == 0)
return false;
Instruction *Caller = CS.getInstruction();
- const AttrListPtr &CallerPAL = CS.getAttributes();
+ const AttributeSet &CallerPAL = CS.getAttributes();
// Okay, this is a cast from a function to a different type. Unless doing so
// would cause a type conversion of one of our arguments, change this call to
@@ -1007,8 +1014,11 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
return false; // Cannot transform this return value.
if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
- AttrBuilder RAttrs = CallerPAL.getRetAttributes();
- if (RAttrs.hasAttributes(Attributes::typeIncompatible(NewRetTy)))
+ AttrBuilder RAttrs(CallerPAL, AttributeSet::ReturnIndex);
+ if (RAttrs.
+ hasAttributes(AttributeFuncs::
+ typeIncompatible(NewRetTy, AttributeSet::ReturnIndex),
+ AttributeSet::ReturnIndex))
return false; // Attribute not compatible with transformed value.
}
@@ -1037,14 +1047,16 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
if (!CastInst::isCastable(ActTy, ParamTy))
return false; // Cannot transform this parameter value.
- Attributes Attrs = CallerPAL.getParamAttributes(i + 1);
- if (AttrBuilder(Attrs).
- hasAttributes(Attributes::typeIncompatible(ParamTy)))
+ if (AttrBuilder(CallerPAL.getParamAttributes(i + 1), i + 1).
+ hasAttributes(AttributeFuncs::
+ typeIncompatible(ParamTy, i + 1), i + 1))
return false; // Attribute not compatible with transformed value.
// If the parameter is passed as a byval argument, then we have to have a
// sized type and the sized type has to have the same size as the old type.
- if (ParamTy != ActTy && Attrs.hasAttribute(Attributes::ByVal)) {
+ if (ParamTy != ActTy &&
+ CallerPAL.getParamAttributes(i + 1).hasAttribute(i + 1,
+ Attribute::ByVal)) {
PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
if (ParamPTy == 0 || !ParamPTy->getElementType()->isSized() || TD == 0)
return false;
@@ -1093,10 +1105,13 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
// won't be dropping them. Check that these extra arguments have attributes
// that are compatible with being a vararg call argument.
for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
- if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
+ unsigned Index = CallerPAL.getSlotIndex(i - 1);
+ if (Index <= FT->getNumParams())
break;
- Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
- if (PAttrs.hasIncompatibleWithVarArgsAttrs())
+
+ // Check if it has an attribute that's incompatible with varargs.
+ AttributeSet PAttrs = CallerPAL.getSlotAttributes(i - 1);
+ if (PAttrs.hasAttribute(Index, Attribute::StructRet))
return false;
}
@@ -1105,21 +1120,23 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
// inserting cast instructions as necessary.
std::vector<Value*> Args;
Args.reserve(NumActualArgs);
- SmallVector<AttributeWithIndex, 8> attrVec;
+ SmallVector<AttributeSet, 8> attrVec;
attrVec.reserve(NumCommonArgs);
// Get any return attributes.
- AttrBuilder RAttrs = CallerPAL.getRetAttributes();
+ AttrBuilder RAttrs(CallerPAL, AttributeSet::ReturnIndex);
// If the return value is not being used, the type may not be compatible
// with the existing attributes. Wipe out any problematic attributes.
- RAttrs.removeAttributes(Attributes::typeIncompatible(NewRetTy));
+ RAttrs.
+ removeAttributes(AttributeFuncs::
+ typeIncompatible(NewRetTy, AttributeSet::ReturnIndex),
+ AttributeSet::ReturnIndex);
// Add the new return attributes.
if (RAttrs.hasAttributes())
- attrVec.push_back(
- AttributeWithIndex::get(AttrListPtr::ReturnIndex,
- Attributes::get(FT->getContext(), RAttrs)));
+ attrVec.push_back(AttributeSet::get(Caller->getContext(),
+ AttributeSet::ReturnIndex, RAttrs));
AI = CS.arg_begin();
for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
@@ -1133,9 +1150,10 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
}
// Add any parameter attributes.
- Attributes PAttrs = CallerPAL.getParamAttributes(i + 1);
+ AttrBuilder PAttrs(CallerPAL.getParamAttributes(i + 1), i + 1);
if (PAttrs.hasAttributes())
- attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
+ attrVec.push_back(AttributeSet::get(Caller->getContext(), i + 1,
+ PAttrs));
}
// If the function takes more arguments than the call was taking, add them
@@ -1145,10 +1163,8 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
// If we are removing arguments to the function, emit an obnoxious warning.
if (FT->getNumParams() < NumActualArgs) {
- if (!FT->isVarArg()) {
- errs() << "WARNING: While resolving call to function '"
- << Callee->getName() << "' arguments were dropped!\n";
- } else {
+ // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
+ if (FT->isVarArg()) {
// Add all of the arguments in their promoted form to the arg list.
for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
Type *PTy = getPromotedType((*AI)->getType());
@@ -1162,23 +1178,23 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
}
// Add any parameter attributes.
- Attributes PAttrs = CallerPAL.getParamAttributes(i + 1);
+ AttrBuilder PAttrs(CallerPAL.getParamAttributes(i + 1), i + 1);
if (PAttrs.hasAttributes())
- attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
+ attrVec.push_back(AttributeSet::get(FT->getContext(), i + 1,
+ PAttrs));
}
}
}
- Attributes FnAttrs = CallerPAL.getFnAttributes();
- if (FnAttrs.hasAttributes())
- attrVec.push_back(AttributeWithIndex::get(AttrListPtr::FunctionIndex,
- FnAttrs));
+ AttributeSet FnAttrs = CallerPAL.getFnAttributes();
+ if (CallerPAL.hasAttributes(AttributeSet::FunctionIndex))
+ attrVec.push_back(AttributeSet::get(Callee->getContext(), FnAttrs));
if (NewRetTy->isVoidTy())
Caller->setName(""); // Void type should not have a name.
- const AttrListPtr &NewCallerPAL = AttrListPtr::get(Callee->getContext(),
- attrVec);
+ const AttributeSet &NewCallerPAL = AttributeSet::get(Callee->getContext(),
+ attrVec);
Instruction *NC;
if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
@@ -1238,13 +1254,12 @@ InstCombiner::transformCallThroughTrampoline(CallSite CS,
Value *Callee = CS.getCalledValue();
PointerType *PTy = cast<PointerType>(Callee->getType());
FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
- const AttrListPtr &Attrs = CS.getAttributes();
+ const AttributeSet &Attrs = CS.getAttributes();
// If the call already has the 'nest' attribute somewhere then give up -
// otherwise 'nest' would occur twice after splicing in the chain.
- for (unsigned I = 0, E = Attrs.getNumAttrs(); I != E; ++I)
- if (Attrs.getAttributesAtIndex(I).hasAttribute(Attributes::Nest))
- return 0;
+ if (Attrs.hasAttrSomewhere(Attribute::Nest))
+ return 0;
assert(Tramp &&
"transformCallThroughTrampoline called with incorrect CallSite.");
@@ -1253,16 +1268,16 @@ InstCombiner::transformCallThroughTrampoline(CallSite CS,
PointerType *NestFPTy = cast<PointerType>(NestF->getType());
FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
- const AttrListPtr &NestAttrs = NestF->getAttributes();
+ const AttributeSet &NestAttrs = NestF->getAttributes();
if (!NestAttrs.isEmpty()) {
unsigned NestIdx = 1;
Type *NestTy = 0;
- Attributes NestAttr;
+ AttributeSet NestAttr;
// Look for a parameter marked with the 'nest' attribute.
for (FunctionType::param_iterator I = NestFTy->param_begin(),
E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
- if (NestAttrs.getParamAttributes(NestIdx).hasAttribute(Attributes::Nest)){
+ if (NestAttrs.hasAttribute(NestIdx, Attribute::Nest)) {
// Record the parameter type and any other attributes.
NestTy = *I;
NestAttr = NestAttrs.getParamAttributes(NestIdx);
@@ -1274,17 +1289,16 @@ InstCombiner::transformCallThroughTrampoline(CallSite CS,
std::vector<Value*> NewArgs;
NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
- SmallVector<AttributeWithIndex, 8> NewAttrs;
+ SmallVector<AttributeSet, 8> NewAttrs;
NewAttrs.reserve(Attrs.getNumSlots() + 1);
// Insert the nest argument into the call argument list, which may
// mean appending it. Likewise for attributes.
// Add any result attributes.
- Attributes Attr = Attrs.getRetAttributes();
- if (Attr.hasAttributes())
- NewAttrs.push_back(AttributeWithIndex::get(AttrListPtr::ReturnIndex,
- Attr));
+ if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
+ NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
+ Attrs.getRetAttributes()));
{
unsigned Idx = 1;
@@ -1296,7 +1310,8 @@ InstCombiner::transformCallThroughTrampoline(CallSite CS,
if (NestVal->getType() != NestTy)
NestVal = Builder->CreateBitCast(NestVal, NestTy, "nest");
NewArgs.push_back(NestVal);
- NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
+ NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
+ NestAttr));
}
if (I == E)
@@ -1304,20 +1319,21 @@ InstCombiner::transformCallThroughTrampoline(CallSite CS,
// Add the original argument and attributes.
NewArgs.push_back(*I);
- Attr = Attrs.getParamAttributes(Idx);
- if (Attr.hasAttributes())
- NewAttrs.push_back
- (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
+ AttributeSet Attr = Attrs.getParamAttributes(Idx);
+ if (Attr.hasAttributes(Idx)) {
+ AttrBuilder B(Attr, Idx);
+ NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
+ Idx + (Idx >= NestIdx), B));
+ }
++Idx, ++I;
} while (1);
}
// Add any function attributes.
- Attr = Attrs.getFnAttributes();
- if (Attr.hasAttributes())
- NewAttrs.push_back(AttributeWithIndex::get(AttrListPtr::FunctionIndex,
- Attr));
+ if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
+ NewAttrs.push_back(AttributeSet::get(FTy->getContext(),
+ Attrs.getFnAttributes()));
// The trampoline may have been bitcast to a bogus type (FTy).
// Handle this by synthesizing a new function type, equal to FTy
@@ -1356,7 +1372,7 @@ InstCombiner::transformCallThroughTrampoline(CallSite CS,
NestF->getType() == PointerType::getUnqual(NewFTy) ?
NestF : ConstantExpr::getBitCast(NestF,
PointerType::getUnqual(NewFTy));
- const AttrListPtr &NewPAL = AttrListPtr::get(FTy->getContext(), NewAttrs);
+ const AttributeSet &NewPAL = AttributeSet::get(FTy->getContext(), NewAttrs);
Instruction *NewCaller;
if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp
index bb59db8..2ee1278 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp
@@ -13,9 +13,9 @@
#include "InstCombine.h"
#include "llvm/Analysis/ConstantFolding.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Target/TargetLibraryInfo.h"
+#include "llvm/IR/DataLayout.h"
#include "llvm/Support/PatternMatch.h"
+#include "llvm/Target/TargetLibraryInfo.h"
using namespace llvm;
using namespace PatternMatch;
@@ -30,7 +30,7 @@ static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
Scale = 0;
return ConstantInt::get(Val->getType(), 0);
}
-
+
if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
// Cannot look past anything that might overflow.
OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
@@ -47,19 +47,19 @@ static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
Offset = 0;
return I->getOperand(0);
}
-
+
if (I->getOpcode() == Instruction::Mul) {
// This value is scaled by 'RHS'.
Scale = RHS->getZExtValue();
Offset = 0;
return I->getOperand(0);
}
-
+
if (I->getOpcode() == Instruction::Add) {
- // We have X+C. Check to see if we really have (X*C2)+C1,
+ // We have X+C. Check to see if we really have (X*C2)+C1,
// where C1 is divisible by C2.
unsigned SubScale;
- Value *SubVal =
+ Value *SubVal =
DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
Offset += RHS->getZExtValue();
Scale = SubScale;
@@ -82,7 +82,7 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
if (!TD) return 0;
PointerType *PTy = cast<PointerType>(CI.getType());
-
+
BuilderTy AllocaBuilder(*Builder);
AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
@@ -104,13 +104,19 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy);
if (CastElTySize == 0 || AllocElTySize == 0) return 0;
+ // If the allocation has multiple uses, only promote it if we're not
+ // shrinking the amount of memory being allocated.
+ uint64_t AllocElTyStoreSize = TD->getTypeStoreSize(AllocElTy);
+ uint64_t CastElTyStoreSize = TD->getTypeStoreSize(CastElTy);
+ if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return 0;
+
// See if we can satisfy the modulus by pulling a scale out of the array
// size argument.
unsigned ArraySizeScale;
uint64_t ArrayOffset;
Value *NumElements = // See if the array size is a decomposable linear expr.
DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
-
+
// If we can now satisfy the modulus, by using a non-1 scale, we really can
// do the xform.
if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
@@ -125,17 +131,17 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
// Insert before the alloca, not before the cast.
Amt = AllocaBuilder.CreateMul(Amt, NumElements);
}
-
+
if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
Offset, true);
Amt = AllocaBuilder.CreateAdd(Amt, Off);
}
-
+
AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
New->setAlignment(AI.getAlignment());
New->takeName(&AI);
-
+
// If the allocation has multiple real uses, insert a cast and change all
// things that used it to use the new cast. This will also hack on CI, but it
// will die soon.
@@ -148,10 +154,10 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
return ReplaceInstUsesWith(CI, New);
}
-/// EvaluateInDifferentType - Given an expression that
+/// EvaluateInDifferentType - Given an expression that
/// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually
/// insert the code to evaluate the expression.
-Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
+Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
bool isSigned) {
if (Constant *C = dyn_cast<Constant>(V)) {
C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
@@ -181,7 +187,7 @@ Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
break;
- }
+ }
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
@@ -190,7 +196,7 @@ Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
// new.
if (I->getOperand(0)->getType() == Ty)
return I->getOperand(0);
-
+
// Otherwise, must be the same type of cast, so just reinsert a new one.
// This also handles the case of zext(trunc(x)) -> zext(x).
Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
@@ -212,11 +218,11 @@ Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
Res = NPN;
break;
}
- default:
+ default:
// TODO: Can handle more cases here.
llvm_unreachable("Unreachable!");
}
-
+
Res->takeName(I);
return InsertNewInstWith(Res, *I);
}
@@ -224,7 +230,7 @@ Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
/// This function is a wrapper around CastInst::isEliminableCastPair. It
/// simply extracts arguments and returns what that function returns.
-static Instruction::CastOps
+static Instruction::CastOps
isEliminableCastPair(
const CastInst *CI, ///< The first cast instruction
unsigned opcode, ///< The opcode of the second cast instruction
@@ -253,7 +259,7 @@ isEliminableCastPair(
if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
(Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
Res = 0;
-
+
return Instruction::CastOps(Res);
}
@@ -265,18 +271,18 @@ bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
Type *Ty) {
// Noop casts and casts of constants should be eliminated trivially.
if (V->getType() == Ty || isa<Constant>(V)) return false;
-
+
// If this is another cast that can be eliminated, we prefer to have it
// eliminated.
if (const CastInst *CI = dyn_cast<CastInst>(V))
if (isEliminableCastPair(CI, opc, Ty, TD))
return false;
-
+
// If this is a vector sext from a compare, then we don't want to break the
// idiom where each element of the extended vector is either zero or all ones.
if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
return false;
-
+
return true;
}
@@ -288,7 +294,7 @@ Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
// Many cases of "cast of a cast" are eliminable. If it's eliminable we just
// eliminate it now.
if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
- if (Instruction::CastOps opc =
+ if (Instruction::CastOps opc =
isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
// The first cast (CSrc) is eliminable so we need to fix up or replace
// the second cast (CI). CSrc will then have a good chance of being dead.
@@ -311,7 +317,7 @@ Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
if (Instruction *NV = FoldOpIntoPhi(CI))
return NV;
}
-
+
return 0;
}
@@ -330,15 +336,15 @@ static bool CanEvaluateTruncated(Value *V, Type *Ty) {
// We can always evaluate constants in another type.
if (isa<Constant>(V))
return true;
-
+
Instruction *I = dyn_cast<Instruction>(V);
if (!I) return false;
-
+
Type *OrigTy = V->getType();
-
+
// If this is an extension from the dest type, we can eliminate it, even if it
// has multiple uses.
- if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
+ if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
I->getOperand(0)->getType() == Ty)
return true;
@@ -423,29 +429,29 @@ static bool CanEvaluateTruncated(Value *V, Type *Ty) {
// TODO: Can handle more cases here.
break;
}
-
+
return false;
}
Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
if (Instruction *Result = commonCastTransforms(CI))
return Result;
-
- // See if we can simplify any instructions used by the input whose sole
+
+ // See if we can simplify any instructions used by the input whose sole
// purpose is to compute bits we don't care about.
if (SimplifyDemandedInstructionBits(CI))
return &CI;
-
+
Value *Src = CI.getOperand(0);
Type *DestTy = CI.getType(), *SrcTy = Src->getType();
-
+
// Attempt to truncate the entire input expression tree to the destination
// type. Only do this if the dest type is a simple type, don't convert the
// expression tree to something weird like i93 unless the source is also
// strange.
if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
CanEvaluateTruncated(Src, DestTy)) {
-
+
// If this cast is a truncate, evaluting in a different type always
// eliminates the cast, so it is always a win.
DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
@@ -462,7 +468,7 @@ Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
Value *Zero = Constant::getNullValue(Src->getType());
return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
}
-
+
// Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
Value *A = 0; ConstantInt *Cst = 0;
if (Src->hasOneUse() &&
@@ -472,7 +478,7 @@ Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
// ASize < MidSize and MidSize > ResultSize, but don't know the relation
// between ASize and ResultSize.
unsigned ASize = A->getType()->getPrimitiveSizeInBits();
-
+
// If the shift amount is larger than the size of A, then the result is
// known to be zero because all the input bits got shifted out.
if (Cst->getZExtValue() >= ASize)
@@ -485,7 +491,7 @@ Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
Shift->takeName(Src);
return CastInst::CreateIntegerCast(Shift, CI.getType(), false);
}
-
+
// Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest
// type isn't non-native.
if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) &&
@@ -508,7 +514,7 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
// cast to integer to avoid the comparison.
if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
const APInt &Op1CV = Op1C->getValue();
-
+
// zext (x <s 0) to i32 --> x>>u31 true if signbit set.
// zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
@@ -538,14 +544,14 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
// zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
// zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
// zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
- if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
+ if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
// This only works for EQ and NE
ICI->isEquality()) {
// If Op1C some other power of two, convert:
uint32_t BitWidth = Op1C->getType()->getBitWidth();
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
ComputeMaskedBits(ICI->getOperand(0), KnownZero, KnownOne);
-
+
APInt KnownZeroMask(~KnownZero);
if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
if (!DoXform) return ICI;
@@ -559,7 +565,7 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
Res = ConstantExpr::getZExt(Res, CI.getType());
return ReplaceInstUsesWith(CI, Res);
}
-
+
uint32_t ShiftAmt = KnownZeroMask.logBase2();
Value *In = ICI->getOperand(0);
if (ShiftAmt) {
@@ -568,12 +574,12 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
In->getName()+".lobit");
}
-
+
if ((Op1CV != 0) == isNE) { // Toggle the low bit.
Constant *One = ConstantInt::get(In->getType(), 1);
In = Builder->CreateXor(In, One);
}
-
+
if (CI.getType() == In->getType())
return ReplaceInstUsesWith(CI, In);
return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
@@ -646,19 +652,19 @@ static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
BitsToClear = 0;
if (isa<Constant>(V))
return true;
-
+
Instruction *I = dyn_cast<Instruction>(V);
if (!I) return false;
-
+
// If the input is a truncate from the destination type, we can trivially
// eliminate it.
if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
return true;
-
+
// We can't extend or shrink something that has multiple uses: doing so would
// require duplicating the instruction in general, which isn't profitable.
if (!I->hasOneUse()) return false;
-
+
unsigned Opc = I->getOpcode(), Tmp;
switch (Opc) {
case Instruction::ZExt: // zext(zext(x)) -> zext(x).
@@ -678,7 +684,7 @@ static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
// These can all be promoted if neither operand has 'bits to clear'.
if (BitsToClear == 0 && Tmp == 0)
return true;
-
+
// If the operation is an AND/OR/XOR and the bits to clear are zero in the
// other side, BitsToClear is ok.
if (Tmp == 0 &&
@@ -691,10 +697,10 @@ static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
APInt::getHighBitsSet(VSize, BitsToClear)))
return true;
}
-
+
// Otherwise, we don't know how to analyze this BitsToClear case yet.
return false;
-
+
case Instruction::LShr:
// We can promote lshr(x, cst) if we can promote x. This requires the
// ultimate 'and' to clear out the high zero bits we're clearing out though.
@@ -716,7 +722,7 @@ static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
Tmp != BitsToClear)
return false;
return true;
-
+
case Instruction::PHI: {
// We can change a phi if we can change all operands. Note that we never
// get into trouble with cyclic PHIs here because we only consider
@@ -739,48 +745,48 @@ static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
}
Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
- // If this zero extend is only used by a truncate, let the truncate by
+ // If this zero extend is only used by a truncate, let the truncate be
// eliminated before we try to optimize this zext.
if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
return 0;
-
+
// If one of the common conversion will work, do it.
if (Instruction *Result = commonCastTransforms(CI))
return Result;
- // See if we can simplify any instructions used by the input whose sole
+ // See if we can simplify any instructions used by the input whose sole
// purpose is to compute bits we don't care about.
if (SimplifyDemandedInstructionBits(CI))
return &CI;
-
+
Value *Src = CI.getOperand(0);
Type *SrcTy = Src->getType(), *DestTy = CI.getType();
-
+
// Attempt to extend the entire input expression tree to the destination
// type. Only do this if the dest type is a simple type, don't convert the
// expression tree to something weird like i93 unless the source is also
// strange.
unsigned BitsToClear;
if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
- CanEvaluateZExtd(Src, DestTy, BitsToClear)) {
+ CanEvaluateZExtd(Src, DestTy, BitsToClear)) {
assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
"Unreasonable BitsToClear");
-
+
// Okay, we can transform this! Insert the new expression now.
DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
" to avoid zero extend: " << CI);
Value *Res = EvaluateInDifferentType(Src, DestTy, false);
assert(Res->getType() == DestTy);
-
+
uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
uint32_t DestBitSize = DestTy->getScalarSizeInBits();
-
+
// If the high bits are already filled with zeros, just replace this
// cast with the result.
if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize,
DestBitSize-SrcBitsKept)))
return ReplaceInstUsesWith(CI, Res);
-
+
// We need to emit an AND to clear the high bits.
Constant *C = ConstantInt::get(Res->getType(),
APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
@@ -792,7 +798,7 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
// 'and' which will be much cheaper than the pair of casts.
if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast
// TODO: Subsume this into EvaluateInDifferentType.
-
+
// Get the sizes of the types involved. We know that the intermediate type
// will be smaller than A or C, but don't know the relation between A and C.
Value *A = CSrc->getOperand(0);
@@ -809,7 +815,7 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
return new ZExtInst(And, CI.getType());
}
-
+
if (SrcSize == DstSize) {
APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
@@ -818,7 +824,7 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
if (SrcSize > DstSize) {
Value *Trunc = Builder->CreateTrunc(A, CI.getType());
APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
- return BinaryOperator::CreateAnd(Trunc,
+ return BinaryOperator::CreateAnd(Trunc,
ConstantInt::get(Trunc->getType(),
AndValue));
}
@@ -876,7 +882,7 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
Value *New = Builder->CreateZExt(X, CI.getType());
return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
}
-
+
return 0;
}
@@ -989,14 +995,14 @@ static bool CanEvaluateSExtd(Value *V, Type *Ty) {
// If this is a constant, it can be trivially promoted.
if (isa<Constant>(V))
return true;
-
+
Instruction *I = dyn_cast<Instruction>(V);
if (!I) return false;
-
+
// If this is a truncate from the dest type, we can trivially eliminate it.
if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
return true;
-
+
// We can't extend or shrink something that has multiple uses: doing so would
// require duplicating the instruction in general, which isn't profitable.
if (!I->hasOneUse()) return false;
@@ -1015,14 +1021,14 @@ static bool CanEvaluateSExtd(Value *V, Type *Ty) {
// These operators can all arbitrarily be extended if their inputs can.
return CanEvaluateSExtd(I->getOperand(0), Ty) &&
CanEvaluateSExtd(I->getOperand(1), Ty);
-
+
//case Instruction::Shl: TODO
//case Instruction::LShr: TODO
-
+
case Instruction::Select:
return CanEvaluateSExtd(I->getOperand(1), Ty) &&
CanEvaluateSExtd(I->getOperand(2), Ty);
-
+
case Instruction::PHI: {
// We can change a phi if we can change all operands. Note that we never
// get into trouble with cyclic PHIs here because we only consider
@@ -1036,24 +1042,24 @@ static bool CanEvaluateSExtd(Value *V, Type *Ty) {
// TODO: Can handle more cases here.
break;
}
-
+
return false;
}
Instruction *InstCombiner::visitSExt(SExtInst &CI) {
- // If this sign extend is only used by a truncate, let the truncate by
- // eliminated before we try to optimize this zext.
+ // If this sign extend is only used by a truncate, let the truncate be
+ // eliminated before we try to optimize this sext.
if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
return 0;
-
+
if (Instruction *I = commonCastTransforms(CI))
return I;
-
- // See if we can simplify any instructions used by the input whose sole
+
+ // See if we can simplify any instructions used by the input whose sole
// purpose is to compute bits we don't care about.
if (SimplifyDemandedInstructionBits(CI))
return &CI;
-
+
Value *Src = CI.getOperand(0);
Type *SrcTy = Src->getType(), *DestTy = CI.getType();
@@ -1076,7 +1082,7 @@ Instruction *InstCombiner::visitSExt(SExtInst &CI) {
// cast with the result.
if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize)
return ReplaceInstUsesWith(CI, Res);
-
+
// We need to emit a shl + ashr to do the sign extend.
Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
@@ -1089,7 +1095,7 @@ Instruction *InstCombiner::visitSExt(SExtInst &CI) {
if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
uint32_t DestBitSize = DestTy->getScalarSizeInBits();
-
+
// We need to emit a shl + ashr to do the sign extend.
Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
@@ -1125,7 +1131,7 @@ Instruction *InstCombiner::visitSExt(SExtInst &CI) {
A = Builder->CreateShl(A, ShAmtV, CI.getName());
return BinaryOperator::CreateAShr(A, ShAmtV);
}
-
+
return 0;
}
@@ -1147,7 +1153,7 @@ static Value *LookThroughFPExtensions(Value *V) {
if (Instruction *I = dyn_cast<Instruction>(V))
if (I->getOpcode() == Instruction::FPExt)
return LookThroughFPExtensions(I->getOperand(0));
-
+
// If this value is a constant, return the constant in the smallest FP type
// that can accurately represent it. This allows us to turn
// (float)((double)X+2.0) into x+2.0f.
@@ -1166,14 +1172,14 @@ static Value *LookThroughFPExtensions(Value *V) {
return V;
// Don't try to shrink to various long double types.
}
-
+
return V;
}
Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
if (Instruction *I = commonCastTransforms(CI))
return I;
-
+
// If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are
// smaller than the destination type, we can eliminate the truncate by doing
// the add as the smaller type. This applies to fadd/fsub/fmul/fdiv as well
@@ -1190,7 +1196,7 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
Type *SrcTy = OpI->getType();
Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
- if (LHSTrunc->getType() != SrcTy &&
+ if (LHSTrunc->getType() != SrcTy &&
RHSTrunc->getType() != SrcTy) {
unsigned DstSize = CI.getType()->getScalarSizeInBits();
// If the source types were both smaller than the destination type of
@@ -1202,10 +1208,36 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
}
}
- break;
+ break;
+ }
+
+ // (fptrunc (fneg x)) -> (fneg (fptrunc x))
+ if (BinaryOperator::isFNeg(OpI)) {
+ Value *InnerTrunc = Builder->CreateFPTrunc(OpI->getOperand(1),
+ CI.getType());
+ return BinaryOperator::CreateFNeg(InnerTrunc);
}
}
-
+
+ IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0));
+ if (II) {
+ switch (II->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::fabs: {
+ // (fptrunc (fabs x)) -> (fabs (fptrunc x))
+ Value *InnerTrunc = Builder->CreateFPTrunc(II->getArgOperand(0),
+ CI.getType());
+ Type *IntrinsicType[] = { CI.getType() };
+ Function *Overload =
+ Intrinsic::getDeclaration(CI.getParent()->getParent()->getParent(),
+ II->getIntrinsicID(), IntrinsicType);
+
+ Value *Args[] = { InnerTrunc };
+ return CallInst::Create(Overload, Args, II->getName());
+ }
+ }
+ }
+
// Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x)
CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0));
if (Call && Call->getCalledFunction() && TLI->has(LibFunc::sqrtf) &&
@@ -1220,7 +1252,7 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
Arg->getOperand(0)->getType()->isFloatTy()) {
Function *Callee = Call->getCalledFunction();
Module *M = CI.getParent()->getParent()->getParent();
- Constant *SqrtfFunc = M->getOrInsertFunction("sqrtf",
+ Constant *SqrtfFunc = M->getOrInsertFunction("sqrtf",
Callee->getAttributes(),
Builder->getFloatTy(),
Builder->getFloatTy(),
@@ -1228,15 +1260,15 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0),
"sqrtfcall");
ret->setAttributes(Callee->getAttributes());
-
-
+
+
// Remove the old Call. With -fmath-errno, it won't get marked readnone.
ReplaceInstUsesWith(*Call, UndefValue::get(Call->getType()));
EraseInstFromFunction(*Call);
return ret;
}
}
-
+
return 0;
}
@@ -1254,7 +1286,7 @@ Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
// This is safe if the intermediate type has enough bits in its mantissa to
// accurately represent all values of X. For example, do not do this with
// i64->float->i64. This is also safe for sitofp case, because any negative
- // 'X' value would cause an undefined result for the fptoui.
+ // 'X' value would cause an undefined result for the fptoui.
if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
OpI->getOperand(0)->getType() == FI.getType() &&
(int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
@@ -1268,19 +1300,19 @@ Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
if (OpI == 0)
return commonCastTransforms(FI);
-
+
// fptosi(sitofp(X)) --> X
// fptosi(uitofp(X)) --> X
// This is safe if the intermediate type has enough bits in its mantissa to
// accurately represent all values of X. For example, do not do this with
// i64->float->i64. This is also safe for sitofp case, because any negative
- // 'X' value would cause an undefined result for the fptoui.
+ // 'X' value would cause an undefined result for the fptoui.
if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
OpI->getOperand(0)->getType() == FI.getType() &&
(int)FI.getType()->getScalarSizeInBits() <=
OpI->getType()->getFPMantissaWidth())
return ReplaceInstUsesWith(FI, OpI->getOperand(0));
-
+
return commonCastTransforms(FI);
}
@@ -1296,21 +1328,16 @@ Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
// If the source integer type is not the intptr_t type for this target, do a
// trunc or zext to the intptr_t type, then inttoptr of it. This allows the
// cast to be exposed to other transforms.
- if (TD) {
- if (CI.getOperand(0)->getType()->getScalarSizeInBits() >
- TD->getPointerSizeInBits()) {
- Value *P = Builder->CreateTrunc(CI.getOperand(0),
- TD->getIntPtrType(CI.getContext()));
- return new IntToPtrInst(P, CI.getType());
- }
- if (CI.getOperand(0)->getType()->getScalarSizeInBits() <
- TD->getPointerSizeInBits()) {
- Value *P = Builder->CreateZExt(CI.getOperand(0),
- TD->getIntPtrType(CI.getContext()));
- return new IntToPtrInst(P, CI.getType());
- }
+ if (TD && CI.getOperand(0)->getType()->getScalarSizeInBits() !=
+ TD->getPointerSizeInBits()) {
+ Type *Ty = TD->getIntPtrType(CI.getContext());
+ if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
+ Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
+
+ Value *P = Builder->CreateZExtOrTrunc(CI.getOperand(0), Ty);
+ return new IntToPtrInst(P, CI.getType());
}
-
+
if (Instruction *I = commonCastTransforms(CI))
return I;
@@ -1320,34 +1347,32 @@ Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
Value *Src = CI.getOperand(0);
-
+
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
// If casting the result of a getelementptr instruction with no offset, turn
// this into a cast of the original pointer!
if (GEP->hasAllZeroIndices()) {
// Changing the cast operand is usually not a good idea but it is safe
- // here because the pointer operand is being replaced with another
+ // here because the pointer operand is being replaced with another
// pointer operand so the opcode doesn't need to change.
Worklist.Add(GEP);
CI.setOperand(0, GEP->getOperand(0));
return &CI;
}
-
+
// If the GEP has a single use, and the base pointer is a bitcast, and the
// GEP computes a constant offset, see if we can convert these three
// instructions into fewer. This typically happens with unions and other
// non-type-safe code.
+ APInt Offset(TD ? TD->getPointerSizeInBits() : 1, 0);
if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0)) &&
- GEP->hasAllConstantIndices()) {
- SmallVector<Value*, 8> Ops(GEP->idx_begin(), GEP->idx_end());
- int64_t Offset = TD->getIndexedOffset(GEP->getPointerOperandType(), Ops);
-
+ GEP->accumulateConstantOffset(*TD, Offset)) {
// Get the base pointer input of the bitcast, and the type it points to.
Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
Type *GEPIdxTy =
cast<PointerType>(OrigBase->getType())->getElementType();
SmallVector<Value*, 8> NewIndices;
- if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) {
+ if (FindElementAtOffset(GEPIdxTy, Offset.getSExtValue(), NewIndices)) {
// If we were able to index down into an element, create the GEP
// and bitcast the result. This eliminates one bitcast, potentially
// two.
@@ -1355,15 +1380,15 @@ Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
Builder->CreateInBoundsGEP(OrigBase, NewIndices) :
Builder->CreateGEP(OrigBase, NewIndices);
NGEP->takeName(GEP);
-
+
if (isa<BitCastInst>(CI))
return new BitCastInst(NGEP, CI.getType());
assert(isa<PtrToIntInst>(CI));
return new PtrToIntInst(NGEP, CI.getType());
- }
+ }
}
}
-
+
return commonCastTransforms(CI);
}
@@ -1371,19 +1396,15 @@ Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
// If the destination integer type is not the intptr_t type for this target,
// do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast
// to be exposed to other transforms.
- if (TD) {
- if (CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) {
- Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
- TD->getIntPtrType(CI.getContext()));
- return new TruncInst(P, CI.getType());
- }
- if (CI.getType()->getScalarSizeInBits() > TD->getPointerSizeInBits()) {
- Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
- TD->getIntPtrType(CI.getContext()));
- return new ZExtInst(P, CI.getType());
- }
+ if (TD && CI.getType()->getScalarSizeInBits() != TD->getPointerSizeInBits()) {
+ Type *Ty = TD->getIntPtrType(CI.getContext());
+ if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
+ Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
+
+ Value *P = Builder->CreatePtrToInt(CI.getOperand(0), Ty);
+ return CastInst::CreateIntegerCast(P, CI.getType(), /*isSigned=*/false);
}
-
+
return commonPointerCastTransforms(CI);
}
@@ -1398,33 +1419,33 @@ static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy,
// element size, or the input is a multiple of the output element size.
// Convert the input type to have the same element type as the output.
VectorType *SrcTy = cast<VectorType>(InVal->getType());
-
+
if (SrcTy->getElementType() != DestTy->getElementType()) {
// The input types don't need to be identical, but for now they must be the
// same size. There is no specific reason we couldn't handle things like
// <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
- // there yet.
+ // there yet.
if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
DestTy->getElementType()->getPrimitiveSizeInBits())
return 0;
-
+
SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
}
-
+
// Now that the element types match, get the shuffle mask and RHS of the
// shuffle to use, which depends on whether we're increasing or decreasing the
// size of the input.
SmallVector<uint32_t, 16> ShuffleMask;
Value *V2;
-
+
if (SrcTy->getNumElements() > DestTy->getNumElements()) {
// If we're shrinking the number of elements, just shuffle in the low
// elements from the input and use undef as the second shuffle input.
V2 = UndefValue::get(SrcTy);
for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
ShuffleMask.push_back(i);
-
+
} else {
// If we're increasing the number of elements, shuffle in all of the
// elements from InVal and fill the rest of the result elements with zeros
@@ -1438,7 +1459,7 @@ static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy,
for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
ShuffleMask.push_back(SrcElts);
}
-
+
return new ShuffleVectorInst(InVal, V2,
ConstantDataVector::get(V2->getContext(),
ShuffleMask));
@@ -1465,7 +1486,7 @@ static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
Type *VecEltTy) {
// Undef values never contribute useful bits to the result.
if (isa<UndefValue>(V)) return true;
-
+
// If we got down to a value of the right type, we win, try inserting into the
// right element.
if (V->getType() == VecEltTy) {
@@ -1473,15 +1494,15 @@ static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
if (Constant *C = dyn_cast<Constant>(V))
if (C->isNullValue())
return true;
-
+
// Fail if multiple elements are inserted into this slot.
if (ElementIndex >= Elements.size() || Elements[ElementIndex] != 0)
return false;
-
+
Elements[ElementIndex] = V;
return true;
}
-
+
if (Constant *C = dyn_cast<Constant>(V)) {
// Figure out the # elements this provides, and bitcast it or slice it up
// as required.
@@ -1492,7 +1513,7 @@ static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
if (NumElts == 1)
return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
ElementIndex, Elements, VecEltTy);
-
+
// Okay, this is a constant that covers multiple elements. Slice it up into
// pieces and insert each element-sized piece into the vector.
if (!isa<IntegerType>(C->getType()))
@@ -1500,7 +1521,7 @@ static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
C->getType()->getPrimitiveSizeInBits()));
unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
-
+
for (unsigned i = 0; i != NumElts; ++i) {
Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
i*ElementSize));
@@ -1510,23 +1531,23 @@ static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
}
return true;
}
-
+
if (!V->hasOneUse()) return false;
-
+
Instruction *I = dyn_cast<Instruction>(V);
if (I == 0) return false;
switch (I->getOpcode()) {
default: return false; // Unhandled case.
case Instruction::BitCast:
return CollectInsertionElements(I->getOperand(0), ElementIndex,
- Elements, VecEltTy);
+ Elements, VecEltTy);
case Instruction::ZExt:
if (!isMultipleOfTypeSize(
I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
VecEltTy))
return false;
return CollectInsertionElements(I->getOperand(0), ElementIndex,
- Elements, VecEltTy);
+ Elements, VecEltTy);
case Instruction::Or:
return CollectInsertionElements(I->getOperand(0), ElementIndex,
Elements, VecEltTy) &&
@@ -1538,11 +1559,11 @@ static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
if (CI == 0) return false;
if (!isMultipleOfTypeSize(CI->getZExtValue(), VecEltTy)) return false;
unsigned IndexShift = getTypeSizeIndex(CI->getZExtValue(), VecEltTy);
-
+
return CollectInsertionElements(I->getOperand(0), ElementIndex+IndexShift,
Elements, VecEltTy);
}
-
+
}
}
@@ -1577,11 +1598,11 @@ static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
Value *Result = Constant::getNullValue(CI.getType());
for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
if (Elements[i] == 0) continue; // Unset element.
-
+
Result = IC.Builder->CreateInsertElement(Result, Elements[i],
IC.Builder->getInt32(i));
}
-
+
return Result;
}
@@ -1589,6 +1610,9 @@ static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
/// OptimizeIntToFloatBitCast - See if we can optimize an integer->float/double
/// bitcast. The various long double bitcasts can't get in here.
static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
+ // We need to know the target byte order to perform this optimization.
+ if (!IC.getDataLayout()) return 0;
+
Value *Src = CI.getOperand(0);
Type *DestTy = CI.getType();
@@ -1609,11 +1633,14 @@ static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
VecTy->getPrimitiveSizeInBits() / DestWidth);
VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
}
-
- return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(0));
+
+ unsigned Elt = 0;
+ if (IC.getDataLayout()->isBigEndian())
+ Elt = VecTy->getPrimitiveSizeInBits() / DestWidth - 1;
+ return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
}
}
-
+
// bitcast(trunc(lshr(bitcast(somevector), cst))
ConstantInt *ShAmt = 0;
if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)),
@@ -1630,8 +1657,10 @@ static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
VecTy->getPrimitiveSizeInBits() / DestWidth);
VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
}
-
+
unsigned Elt = ShAmt->getZExtValue() / DestWidth;
+ if (IC.getDataLayout()->isBigEndian())
+ Elt = VecTy->getPrimitiveSizeInBits() / DestWidth - 1 - Elt;
return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
}
}
@@ -1654,12 +1683,12 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
PointerType *SrcPTy = cast<PointerType>(SrcTy);
Type *DstElTy = DstPTy->getElementType();
Type *SrcElTy = SrcPTy->getElementType();
-
+
// If the address spaces don't match, don't eliminate the bitcast, which is
// required for changing types.
if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
return 0;
-
+
// If we are casting a alloca to a pointer to a type of the same
// size, rewrite the allocation instruction to allocate the "right" type.
// There is no need to modify malloc calls because it is their bitcast that
@@ -1667,14 +1696,14 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
return V;
-
+
// If the source and destination are pointers, and this cast is equivalent
// to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
// This can enhance SROA and other transforms that want type-safe pointers.
Constant *ZeroUInt =
Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
unsigned NumZeros = 0;
- while (SrcElTy != DstElTy &&
+ while (SrcElTy != DstElTy &&
isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
SrcElTy->getNumContainedTypes() /* not "{}" */) {
SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
@@ -1687,7 +1716,7 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
return GetElementPtrInst::CreateInBounds(Src, Idxs);
}
}
-
+
// Try to optimize int -> float bitcasts.
if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy))
if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this))
@@ -1700,7 +1729,7 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
// FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
}
-
+
if (isa<IntegerType>(SrcTy)) {
// If this is a cast from an integer to vector, check to see if the input
// is a trunc or zext of a bitcast from vector. If so, we can replace all
@@ -1713,7 +1742,7 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
cast<VectorType>(DestTy), *this))
return I;
}
-
+
// If the input is an 'or' instruction, we may be doing shifts and ors to
// assemble the elements of the vector manually. Try to rip the code out
// and replace it with insertelements.
@@ -1723,18 +1752,29 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
}
if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
- if (SrcVTy->getNumElements() == 1 && !DestTy->isVectorTy()) {
- Value *Elem =
- Builder->CreateExtractElement(Src,
- Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
- return CastInst::Create(Instruction::BitCast, Elem, DestTy);
+ if (SrcVTy->getNumElements() == 1) {
+ // If our destination is not a vector, then make this a straight
+ // scalar-scalar cast.
+ if (!DestTy->isVectorTy()) {
+ Value *Elem =
+ Builder->CreateExtractElement(Src,
+ Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
+ return CastInst::Create(Instruction::BitCast, Elem, DestTy);
+ }
+
+ // Otherwise, see if our source is an insert. If so, then use the scalar
+ // component directly.
+ if (InsertElementInst *IEI =
+ dyn_cast<InsertElementInst>(CI.getOperand(0)))
+ return CastInst::Create(Instruction::BitCast, IEI->getOperand(1),
+ DestTy);
}
}
if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
// Okay, we have (bitcast (shuffle ..)). Check to see if this is
// a bitcast to a vector with the same # elts.
- if (SVI->hasOneUse() && DestTy->isVectorTy() &&
+ if (SVI->hasOneUse() && DestTy->isVectorTy() &&
cast<VectorType>(DestTy)->getNumElements() ==
SVI->getType()->getNumElements() &&
SVI->getType()->getNumElements() ==
@@ -1743,9 +1783,9 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
// If either of the operands is a cast from CI.getType(), then
// evaluating the shuffle in the casted destination's type will allow
// us to eliminate at least one cast.
- if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
+ if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
Tmp->getOperand(0)->getType() == DestTy) ||
- ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
+ ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
Tmp->getOperand(0)->getType() == DestTy)) {
Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
@@ -1755,7 +1795,7 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
}
}
}
-
+
if (SrcTy->isPointerTy())
return commonPointerCastTransforms(CI);
return commonCastTransforms(CI);
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp
index 7c3f8fe..a96e754 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp
@@ -12,15 +12,15 @@
//===----------------------------------------------------------------------===//
#include "InstCombine.h"
-#include "llvm/IntrinsicInst.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/MemoryBuiltins.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Target/TargetLibraryInfo.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/ConstantRange.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/PatternMatch.h"
+#include "llvm/Target/TargetLibraryInfo.h"
using namespace llvm;
using namespace PatternMatch;
@@ -139,6 +139,31 @@ static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
}
}
+/// Returns true if the exploded icmp can be expressed as a signed comparison
+/// to zero and updates the predicate accordingly.
+/// The signedness of the comparison is preserved.
+static bool isSignTest(ICmpInst::Predicate &pred, const ConstantInt *RHS) {
+ if (!ICmpInst::isSigned(pred))
+ return false;
+
+ if (RHS->isZero())
+ return ICmpInst::isRelational(pred);
+
+ if (RHS->isOne()) {
+ if (pred == ICmpInst::ICMP_SLT) {
+ pred = ICmpInst::ICMP_SLE;
+ return true;
+ }
+ } else if (RHS->isAllOnesValue()) {
+ if (pred == ICmpInst::ICMP_SGT) {
+ pred = ICmpInst::ICMP_SGE;
+ return true;
+ }
+ }
+
+ return false;
+}
+
// isHighOnes - Return true if the constant is of the form 1+0+.
// This is the same as lowones(~X).
static bool isHighOnes(const ConstantInt *CI) {
@@ -443,20 +468,29 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
}
- // If a 32-bit or 64-bit magic bitvector captures the entire comparison state
+ // If a magic bitvector captures the entire comparison state
// of this load, replace it with computation that does:
// ((magic_cst >> i) & 1) != 0
- if (ArrayElementCount <= 32 ||
- (TD && ArrayElementCount <= 64 && TD->isLegalInteger(64))) {
- Type *Ty;
- if (ArrayElementCount <= 32)
+ {
+ Type *Ty = 0;
+
+ // Look for an appropriate type:
+ // - The type of Idx if the magic fits
+ // - The smallest fitting legal type if we have a DataLayout
+ // - Default to i32
+ if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
+ Ty = Idx->getType();
+ else if (TD)
+ Ty = TD->getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
+ else if (ArrayElementCount <= 32)
Ty = Type::getInt32Ty(Init->getContext());
- else
- Ty = Type::getInt64Ty(Init->getContext());
- Value *V = Builder->CreateIntCast(Idx, Ty, false);
- V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
- V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
- return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
+
+ if (Ty != 0) {
+ Value *V = Builder->CreateIntCast(Idx, Ty, false);
+ V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
+ V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
+ return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
+ }
}
return 0;
@@ -1226,6 +1260,16 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
ICI.setOperand(0, NewAnd);
return &ICI;
}
+
+ // Replace ((X & AndCST) > RHSV) with ((X & AndCST) != 0), if any
+ // bit set in (X & AndCST) will produce a result greater than RHSV.
+ if (ICI.getPredicate() == ICmpInst::ICMP_UGT) {
+ unsigned NTZ = AndCST->getValue().countTrailingZeros();
+ if ((NTZ < AndCST->getBitWidth()) &&
+ APInt::getOneBitSet(AndCST->getBitWidth(), NTZ).ugt(RHSV))
+ return new ICmpInst(ICmpInst::ICMP_NE, LHSI,
+ Constant::getNullValue(RHS->getType()));
+ }
}
// Try to optimize things like "A[i]&42 == 0" to index computations.
@@ -1263,6 +1307,23 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
break;
}
+ case Instruction::Mul: { // (icmp pred (mul X, Val), CI)
+ ConstantInt *Val = dyn_cast<ConstantInt>(LHSI->getOperand(1));
+ if (!Val) break;
+
+ // If this is a signed comparison to 0 and the mul is sign preserving,
+ // use the mul LHS operand instead.
+ ICmpInst::Predicate pred = ICI.getPredicate();
+ if (isSignTest(pred, RHS) && !Val->isZero() &&
+ cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
+ return new ICmpInst(Val->isNegative() ?
+ ICmpInst::getSwappedPredicate(pred) : pred,
+ LHSI->getOperand(0),
+ Constant::getNullValue(RHS->getType()));
+
+ break;
+ }
+
case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
if (!ShAmt) break;
@@ -1294,6 +1355,12 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
ConstantExpr::getLShr(RHS, ShAmt));
+ // If the shift is NSW and we compare to 0, then it is just shifting out
+ // sign bits, no need for an AND either.
+ if (cast<BinaryOperator>(LHSI)->hasNoSignedWrap() && RHSV == 0)
+ return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
+ ConstantExpr::getLShr(RHS, ShAmt));
+
if (LHSI->hasOneUse()) {
// Otherwise strength reduce the shift into an and.
uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
@@ -1308,6 +1375,15 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
}
}
+ // If this is a signed comparison to 0 and the shift is sign preserving,
+ // use the shift LHS operand instead.
+ ICmpInst::Predicate pred = ICI.getPredicate();
+ if (isSignTest(pred, RHS) &&
+ cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
+ return new ICmpInst(pred,
+ LHSI->getOperand(0),
+ Constant::getNullValue(RHS->getType()));
+
// Otherwise, if this is a comparison of the sign bit, simplify to and/test.
bool TrueIfSigned = false;
if (LHSI->hasOneUse() &&
@@ -1321,6 +1397,26 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
And, Constant::getNullValue(And->getType()));
}
+
+ // Transform (icmp pred iM (shl iM %v, N), CI)
+ // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (CI>>N))
+ // Transform the shl to a trunc if (trunc (CI>>N)) has no loss and M-N.
+ // This enables to get rid of the shift in favor of a trunc which can be
+ // free on the target. It has the additional benefit of comparing to a
+ // smaller constant, which will be target friendly.
+ unsigned Amt = ShAmt->getLimitedValue(TypeBits-1);
+ if (LHSI->hasOneUse() &&
+ Amt != 0 && RHSV.countTrailingZeros() >= Amt) {
+ Type *NTy = IntegerType::get(ICI.getContext(), TypeBits - Amt);
+ Constant *NCI = ConstantExpr::getTrunc(
+ ConstantExpr::getAShr(RHS,
+ ConstantInt::get(RHS->getType(), Amt)),
+ NTy);
+ return new ICmpInst(ICI.getPredicate(),
+ Builder->CreateTrunc(LHSI->getOperand(0), NTy),
+ NCI);
+ }
+
break;
}
@@ -1502,6 +1598,19 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
return new ICmpInst(pred, X, NegX);
}
}
+ break;
+ case Instruction::Mul:
+ if (RHSV == 0 && BO->hasNoSignedWrap()) {
+ if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
+ // The trivial case (mul X, 0) is handled by InstSimplify
+ // General case : (mul X, C) != 0 iff X != 0
+ // (mul X, C) == 0 iff X == 0
+ if (!BOC->isZero())
+ return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
+ Constant::getNullValue(RHS->getType()));
+ }
+ }
+ break;
default: break;
}
} else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
index 4d106fc..337cfe3 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
@@ -12,12 +12,12 @@
//===----------------------------------------------------------------------===//
#include "InstCombine.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Loads.h"
-#include "llvm/DataLayout.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/ADT/Statistic.h"
using namespace llvm;
STATISTIC(NumDeadStore, "Number of dead stores eliminated");
@@ -150,26 +150,6 @@ isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
return 0;
}
-/// getPointeeAlignment - Compute the minimum alignment of the value pointed
-/// to by the given pointer.
-static unsigned getPointeeAlignment(Value *V, const DataLayout &TD) {
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
- if (CE->getOpcode() == Instruction::BitCast ||
- (CE->getOpcode() == Instruction::GetElementPtr &&
- cast<GEPOperator>(CE)->hasAllZeroIndices()))
- return getPointeeAlignment(CE->getOperand(0), TD);
-
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
- if (!GV->isDeclaration())
- return TD.getPreferredAlignment(GV);
-
- if (PointerType *PT = dyn_cast<PointerType>(V->getType()))
- if (PT->getElementType()->isSized())
- return TD.getABITypeAlignment(PT->getElementType());
-
- return 0;
-}
-
Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
// Ensure that the alloca array size argument has type intptr_t, so that
// any casting is exposed early.
@@ -265,7 +245,7 @@ Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
}
}
- if (TD) {
+ if (AI.getAlignment()) {
// Check to see if this allocation is only modified by a memcpy/memmove from
// a constant global whose alignment is equal to or exceeds that of the
// allocation. If this is the case, we can change all users to use
@@ -274,7 +254,9 @@ Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
// is only subsequently read.
SmallVector<Instruction *, 4> ToDelete;
if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
- if (AI.getAlignment() <= getPointeeAlignment(Copy->getSource(), *TD)) {
+ unsigned SourceAlign = getOrEnforceKnownAlignment(Copy->getSource(),
+ AI.getAlignment(), TD);
+ if (AI.getAlignment() <= SourceAlign) {
DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
DEBUG(dbgs() << " memcpy = " << *Copy << '\n');
for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
@@ -820,6 +802,13 @@ bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
InsertNewInstBefore(NewSI, *BBI);
NewSI->setDebugLoc(OtherStore->getDebugLoc());
+ // If the two stores had the same TBAA tag, preserve it.
+ if (MDNode *TBAATag = SI.getMetadata(LLVMContext::MD_tbaa))
+ if ((TBAATag = MDNode::getMostGenericTBAA(TBAATag,
+ OtherStore->getMetadata(LLVMContext::MD_tbaa))))
+ NewSI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
+
+
// Nuke the old stores.
EraseInstFromFunction(SI);
EraseInstFromFunction(*OtherStore);
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
index cefe45e..173f2bf 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
@@ -13,8 +13,8 @@
//===----------------------------------------------------------------------===//
#include "InstCombine.h"
-#include "llvm/IntrinsicInst.h"
#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/PatternMatch.h"
using namespace llvm;
using namespace PatternMatch;
@@ -37,7 +37,7 @@ static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC) {
if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(PowerOf2), m_Value(A))),
m_Value(B))) &&
// The "1" can be any value known to be a power of 2.
- isPowerOfTwo(PowerOf2, IC.getDataLayout())) {
+ isKnownToBeAPowerOfTwo(PowerOf2)) {
A = IC.Builder->CreateSub(A, B);
return IC.Builder->CreateShl(PowerOf2, A);
}
@@ -45,8 +45,7 @@ static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC) {
// (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
// inexact. Similarly for <<.
if (BinaryOperator *I = dyn_cast<BinaryOperator>(V))
- if (I->isLogicalShift() &&
- isPowerOfTwo(I->getOperand(0), IC.getDataLayout())) {
+ if (I->isLogicalShift() && isKnownToBeAPowerOfTwo(I->getOperand(0))) {
// We know that this is an exact/nuw shift and that the input is a
// non-zero context as well.
if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC)) {
@@ -252,24 +251,136 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) {
return Changed ? &I : 0;
}
+//
+// Detect pattern:
+//
+// log2(Y*0.5)
+//
+// And check for corresponding fast math flags
+//
+
+static void detectLog2OfHalf(Value *&Op, Value *&Y, IntrinsicInst *&Log2) {
+
+ if (!Op->hasOneUse())
+ return;
+
+ IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op);
+ if (!II)
+ return;
+ if (II->getIntrinsicID() != Intrinsic::log2 || !II->hasUnsafeAlgebra())
+ return;
+ Log2 = II;
+
+ Value *OpLog2Of = II->getArgOperand(0);
+ if (!OpLog2Of->hasOneUse())
+ return;
+
+ Instruction *I = dyn_cast<Instruction>(OpLog2Of);
+ if (!I)
+ return;
+ if (I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra())
+ return;
+
+ ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(0));
+ if (CFP && CFP->isExactlyValue(0.5)) {
+ Y = I->getOperand(1);
+ return;
+ }
+ CFP = dyn_cast<ConstantFP>(I->getOperand(1));
+ if (CFP && CFP->isExactlyValue(0.5))
+ Y = I->getOperand(0);
+}
+
+/// Helper function of InstCombiner::visitFMul(BinaryOperator(). It returns
+/// true iff the given value is FMul or FDiv with one and only one operand
+/// being a normal constant (i.e. not Zero/NaN/Infinity).
+static bool isFMulOrFDivWithConstant(Value *V) {
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (!I || (I->getOpcode() != Instruction::FMul &&
+ I->getOpcode() != Instruction::FDiv))
+ return false;
+
+ ConstantFP *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
+ ConstantFP *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
+
+ if (C0 && C1)
+ return false;
+
+ return (C0 && C0->getValueAPF().isNormal()) ||
+ (C1 && C1->getValueAPF().isNormal());
+}
+
+static bool isNormalFp(const ConstantFP *C) {
+ const APFloat &Flt = C->getValueAPF();
+ return Flt.isNormal() && !Flt.isDenormal();
+}
+
+/// foldFMulConst() is a helper routine of InstCombiner::visitFMul().
+/// The input \p FMulOrDiv is a FMul/FDiv with one and only one operand
+/// being a constant (i.e. isFMulOrFDivWithConstant(FMulOrDiv) == true).
+/// This function is to simplify "FMulOrDiv * C" and returns the
+/// resulting expression. Note that this function could return NULL in
+/// case the constants cannot be folded into a normal floating-point.
+///
+Value *InstCombiner::foldFMulConst(Instruction *FMulOrDiv, ConstantFP *C,
+ Instruction *InsertBefore) {
+ assert(isFMulOrFDivWithConstant(FMulOrDiv) && "V is invalid");
+
+ Value *Opnd0 = FMulOrDiv->getOperand(0);
+ Value *Opnd1 = FMulOrDiv->getOperand(1);
+
+ ConstantFP *C0 = dyn_cast<ConstantFP>(Opnd0);
+ ConstantFP *C1 = dyn_cast<ConstantFP>(Opnd1);
+
+ BinaryOperator *R = 0;
+
+ // (X * C0) * C => X * (C0*C)
+ if (FMulOrDiv->getOpcode() == Instruction::FMul) {
+ Constant *F = ConstantExpr::getFMul(C1 ? C1 : C0, C);
+ if (isNormalFp(cast<ConstantFP>(F)))
+ R = BinaryOperator::CreateFMul(C1 ? Opnd0 : Opnd1, F);
+ } else {
+ if (C0) {
+ // (C0 / X) * C => (C0 * C) / X
+ ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFMul(C0, C));
+ if (isNormalFp(F))
+ R = BinaryOperator::CreateFDiv(F, Opnd1);
+ } else {
+ // (X / C1) * C => X * (C/C1) if C/C1 is not a denormal
+ ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFDiv(C, C1));
+ if (isNormalFp(F)) {
+ R = BinaryOperator::CreateFMul(Opnd0, F);
+ } else {
+ // (X / C1) * C => X / (C1/C)
+ Constant *F = ConstantExpr::getFDiv(C1, C);
+ if (isNormalFp(cast<ConstantFP>(F)))
+ R = BinaryOperator::CreateFDiv(Opnd0, F);
+ }
+ }
+ }
+
+ if (R) {
+ R->setHasUnsafeAlgebra(true);
+ InsertNewInstWith(R, *InsertBefore);
+ }
+
+ return R;
+}
+
Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
bool Changed = SimplifyAssociativeOrCommutative(I);
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- // Simplify mul instructions with a constant RHS.
- if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
- if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1C)) {
- // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
- // ANSI says we can drop signals, so we can do this anyway." (from GCC)
- if (Op1F->isExactlyValue(1.0))
- return ReplaceInstUsesWith(I, Op0); // Eliminate 'fmul double %X, 1.0'
- } else if (ConstantDataVector *Op1V = dyn_cast<ConstantDataVector>(Op1C)) {
- // As above, vector X*splat(1.0) -> X in all defined cases.
- if (ConstantFP *F = dyn_cast_or_null<ConstantFP>(Op1V->getSplatValue()))
- if (F->isExactlyValue(1.0))
- return ReplaceInstUsesWith(I, Op0);
- }
+ if (isa<Constant>(Op0))
+ std::swap(Op0, Op1);
+
+ if (Value *V = SimplifyFMulInst(Op0, Op1, I.getFastMathFlags(), TD))
+ return ReplaceInstUsesWith(I, V);
+
+ bool AllowReassociate = I.hasUnsafeAlgebra();
+ // Simplify mul instructions with a constant RHS.
+ if (isa<Constant>(Op1)) {
// Try to fold constant mul into select arguments.
if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
if (Instruction *R = FoldOpIntoSelect(I, SI))
@@ -278,11 +389,146 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
if (isa<PHINode>(Op0))
if (Instruction *NV = FoldOpIntoPhi(I))
return NV;
+
+ ConstantFP *C = dyn_cast<ConstantFP>(Op1);
+ if (C && AllowReassociate && C->getValueAPF().isNormal()) {
+ // Let MDC denote an expression in one of these forms:
+ // X * C, C/X, X/C, where C is a constant.
+ //
+ // Try to simplify "MDC * Constant"
+ if (isFMulOrFDivWithConstant(Op0)) {
+ Value *V = foldFMulConst(cast<Instruction>(Op0), C, &I);
+ if (V)
+ return ReplaceInstUsesWith(I, V);
+ }
+
+ // (MDC +/- C1) * C => (MDC * C) +/- (C1 * C)
+ Instruction *FAddSub = dyn_cast<Instruction>(Op0);
+ if (FAddSub &&
+ (FAddSub->getOpcode() == Instruction::FAdd ||
+ FAddSub->getOpcode() == Instruction::FSub)) {
+ Value *Opnd0 = FAddSub->getOperand(0);
+ Value *Opnd1 = FAddSub->getOperand(1);
+ ConstantFP *C0 = dyn_cast<ConstantFP>(Opnd0);
+ ConstantFP *C1 = dyn_cast<ConstantFP>(Opnd1);
+ bool Swap = false;
+ if (C0) {
+ std::swap(C0, C1);
+ std::swap(Opnd0, Opnd1);
+ Swap = true;
+ }
+
+ if (C1 && C1->getValueAPF().isNormal() &&
+ isFMulOrFDivWithConstant(Opnd0)) {
+ Value *M1 = ConstantExpr::getFMul(C1, C);
+ Value *M0 = isNormalFp(cast<ConstantFP>(M1)) ?
+ foldFMulConst(cast<Instruction>(Opnd0), C, &I) :
+ 0;
+ if (M0 && M1) {
+ if (Swap && FAddSub->getOpcode() == Instruction::FSub)
+ std::swap(M0, M1);
+
+ Value *R = (FAddSub->getOpcode() == Instruction::FAdd) ?
+ BinaryOperator::CreateFAdd(M0, M1) :
+ BinaryOperator::CreateFSub(M0, M1);
+ Instruction *RI = cast<Instruction>(R);
+ RI->copyFastMathFlags(&I);
+ return RI;
+ }
+ }
+ }
+ }
+ }
+
+
+ // Under unsafe algebra do:
+ // X * log2(0.5*Y) = X*log2(Y) - X
+ if (I.hasUnsafeAlgebra()) {
+ Value *OpX = NULL;
+ Value *OpY = NULL;
+ IntrinsicInst *Log2;
+ detectLog2OfHalf(Op0, OpY, Log2);
+ if (OpY) {
+ OpX = Op1;
+ } else {
+ detectLog2OfHalf(Op1, OpY, Log2);
+ if (OpY) {
+ OpX = Op0;
+ }
+ }
+ // if pattern detected emit alternate sequence
+ if (OpX && OpY) {
+ Log2->setArgOperand(0, OpY);
+ Value *FMulVal = Builder->CreateFMul(OpX, Log2);
+ Instruction *FMul = cast<Instruction>(FMulVal);
+ FMul->copyFastMathFlags(Log2);
+ Instruction *FSub = BinaryOperator::CreateFSub(FMulVal, OpX);
+ FSub->copyFastMathFlags(Log2);
+ return FSub;
+ }
}
- if (Value *Op0v = dyn_castFNegVal(Op0)) // -X * -Y = X*Y
- if (Value *Op1v = dyn_castFNegVal(Op1))
- return BinaryOperator::CreateFMul(Op0v, Op1v);
+ // Handle symmetric situation in a 2-iteration loop
+ Value *Opnd0 = Op0;
+ Value *Opnd1 = Op1;
+ for (int i = 0; i < 2; i++) {
+ bool IgnoreZeroSign = I.hasNoSignedZeros();
+ if (BinaryOperator::isFNeg(Opnd0, IgnoreZeroSign)) {
+ Value *N0 = dyn_castFNegVal(Opnd0, IgnoreZeroSign);
+ Value *N1 = dyn_castFNegVal(Opnd1, IgnoreZeroSign);
+
+ // -X * -Y => X*Y
+ if (N1)
+ return BinaryOperator::CreateFMul(N0, N1);
+
+ if (Opnd0->hasOneUse()) {
+ // -X * Y => -(X*Y) (Promote negation as high as possible)
+ Value *T = Builder->CreateFMul(N0, Opnd1);
+ cast<Instruction>(T)->setDebugLoc(I.getDebugLoc());
+ Instruction *Neg = BinaryOperator::CreateFNeg(T);
+ if (I.getFastMathFlags().any()) {
+ cast<Instruction>(T)->copyFastMathFlags(&I);
+ Neg->copyFastMathFlags(&I);
+ }
+ return Neg;
+ }
+ }
+
+ // (X*Y) * X => (X*X) * Y where Y != X
+ // The purpose is two-fold:
+ // 1) to form a power expression (of X).
+ // 2) potentially shorten the critical path: After transformation, the
+ // latency of the instruction Y is amortized by the expression of X*X,
+ // and therefore Y is in a "less critical" position compared to what it
+ // was before the transformation.
+ //
+ if (AllowReassociate) {
+ Value *Opnd0_0, *Opnd0_1;
+ if (Opnd0->hasOneUse() &&
+ match(Opnd0, m_FMul(m_Value(Opnd0_0), m_Value(Opnd0_1)))) {
+ Value *Y = 0;
+ if (Opnd0_0 == Opnd1 && Opnd0_1 != Opnd1)
+ Y = Opnd0_1;
+ else if (Opnd0_1 == Opnd1 && Opnd0_0 != Opnd1)
+ Y = Opnd0_0;
+
+ if (Y) {
+ Instruction *T = cast<Instruction>(Builder->CreateFMul(Opnd1, Opnd1));
+ T->copyFastMathFlags(&I);
+ T->setDebugLoc(I.getDebugLoc());
+
+ Instruction *R = BinaryOperator::CreateFMul(T, Y);
+ R->copyFastMathFlags(&I);
+ return R;
+ }
+ }
+ }
+
+ if (!isa<Constant>(Op1))
+ std::swap(Opnd0, Opnd1);
+ else
+ break;
+ }
return Changed ? &I : 0;
}
@@ -567,21 +813,140 @@ Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
return 0;
}
+/// CvtFDivConstToReciprocal tries to convert X/C into X*1/C if C not a special
+/// FP value and:
+/// 1) 1/C is exact, or
+/// 2) reciprocal is allowed.
+/// If the convertion was successful, the simplified expression "X * 1/C" is
+/// returned; otherwise, NULL is returned.
+///
+static Instruction *CvtFDivConstToReciprocal(Value *Dividend,
+ ConstantFP *Divisor,
+ bool AllowReciprocal) {
+ const APFloat &FpVal = Divisor->getValueAPF();
+ APFloat Reciprocal(FpVal.getSemantics());
+ bool Cvt = FpVal.getExactInverse(&Reciprocal);
+
+ if (!Cvt && AllowReciprocal && FpVal.isNormal()) {
+ Reciprocal = APFloat(FpVal.getSemantics(), 1.0f);
+ (void)Reciprocal.divide(FpVal, APFloat::rmNearestTiesToEven);
+ Cvt = !Reciprocal.isDenormal();
+ }
+
+ if (!Cvt)
+ return 0;
+
+ ConstantFP *R;
+ R = ConstantFP::get(Dividend->getType()->getContext(), Reciprocal);
+ return BinaryOperator::CreateFMul(Dividend, R);
+}
+
Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (Value *V = SimplifyFDivInst(Op0, Op1, TD))
return ReplaceInstUsesWith(I, V);
+ bool AllowReassociate = I.hasUnsafeAlgebra();
+ bool AllowReciprocal = I.hasAllowReciprocal();
+
if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
- const APFloat &Op1F = Op1C->getValueAPF();
-
- // If the divisor has an exact multiplicative inverse we can turn the fdiv
- // into a cheaper fmul.
- APFloat Reciprocal(Op1F.getSemantics());
- if (Op1F.getExactInverse(&Reciprocal)) {
- ConstantFP *RFP = ConstantFP::get(Builder->getContext(), Reciprocal);
- return BinaryOperator::CreateFMul(Op0, RFP);
+ if (AllowReassociate) {
+ ConstantFP *C1 = 0;
+ ConstantFP *C2 = Op1C;
+ Value *X;
+ Instruction *Res = 0;
+
+ if (match(Op0, m_FMul(m_Value(X), m_ConstantFP(C1)))) {
+ // (X*C1)/C2 => X * (C1/C2)
+ //
+ Constant *C = ConstantExpr::getFDiv(C1, C2);
+ const APFloat &F = cast<ConstantFP>(C)->getValueAPF();
+ if (F.isNormal() && !F.isDenormal())
+ Res = BinaryOperator::CreateFMul(X, C);
+ } else if (match(Op0, m_FDiv(m_Value(X), m_ConstantFP(C1)))) {
+ // (X/C1)/C2 => X /(C2*C1) [=> X * 1/(C2*C1) if reciprocal is allowed]
+ //
+ Constant *C = ConstantExpr::getFMul(C1, C2);
+ const APFloat &F = cast<ConstantFP>(C)->getValueAPF();
+ if (F.isNormal() && !F.isDenormal()) {
+ Res = CvtFDivConstToReciprocal(X, cast<ConstantFP>(C),
+ AllowReciprocal);
+ if (!Res)
+ Res = BinaryOperator::CreateFDiv(X, C);
+ }
+ }
+
+ if (Res) {
+ Res->setFastMathFlags(I.getFastMathFlags());
+ return Res;
+ }
+ }
+
+ // X / C => X * 1/C
+ if (Instruction *T = CvtFDivConstToReciprocal(Op0, Op1C, AllowReciprocal))
+ return T;
+
+ return 0;
+ }
+
+ if (AllowReassociate && isa<ConstantFP>(Op0)) {
+ ConstantFP *C1 = cast<ConstantFP>(Op0), *C2;
+ Constant *Fold = 0;
+ Value *X;
+ bool CreateDiv = true;
+
+ // C1 / (X*C2) => (C1/C2) / X
+ if (match(Op1, m_FMul(m_Value(X), m_ConstantFP(C2))))
+ Fold = ConstantExpr::getFDiv(C1, C2);
+ else if (match(Op1, m_FDiv(m_Value(X), m_ConstantFP(C2)))) {
+ // C1 / (X/C2) => (C1*C2) / X
+ Fold = ConstantExpr::getFMul(C1, C2);
+ } else if (match(Op1, m_FDiv(m_ConstantFP(C2), m_Value(X)))) {
+ // C1 / (C2/X) => (C1/C2) * X
+ Fold = ConstantExpr::getFDiv(C1, C2);
+ CreateDiv = false;
+ }
+
+ if (Fold) {
+ const APFloat &FoldC = cast<ConstantFP>(Fold)->getValueAPF();
+ if (FoldC.isNormal() && !FoldC.isDenormal()) {
+ Instruction *R = CreateDiv ?
+ BinaryOperator::CreateFDiv(Fold, X) :
+ BinaryOperator::CreateFMul(X, Fold);
+ R->setFastMathFlags(I.getFastMathFlags());
+ return R;
+ }
+ }
+ return 0;
+ }
+
+ if (AllowReassociate) {
+ Value *X, *Y;
+ Value *NewInst = 0;
+ Instruction *SimpR = 0;
+
+ if (Op0->hasOneUse() && match(Op0, m_FDiv(m_Value(X), m_Value(Y)))) {
+ // (X/Y) / Z => X / (Y*Z)
+ //
+ if (!isa<ConstantFP>(Y) || !isa<ConstantFP>(Op1)) {
+ NewInst = Builder->CreateFMul(Y, Op1);
+ SimpR = BinaryOperator::CreateFDiv(X, NewInst);
+ }
+ } else if (Op1->hasOneUse() && match(Op1, m_FDiv(m_Value(X), m_Value(Y)))) {
+ // Z / (X/Y) => Z*Y / X
+ //
+ if (!isa<ConstantFP>(Y) || !isa<ConstantFP>(Op0)) {
+ NewInst = Builder->CreateFMul(Op0, Y);
+ SimpR = BinaryOperator::CreateFDiv(NewInst, X);
+ }
+ }
+
+ if (NewInst) {
+ if (Instruction *T = dyn_cast<Instruction>(NewInst))
+ T->setDebugLoc(I.getDebugLoc());
+ SimpR->setFastMathFlags(I.getFastMathFlags());
+ return SimpR;
}
}
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombinePHI.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombinePHI.cpp
index de9c77e..b0a998c 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombinePHI.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombinePHI.cpp
@@ -12,10 +12,10 @@
//===----------------------------------------------------------------------===//
#include "InstCombine.h"
-#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/DataLayout.h"
-#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/IR/DataLayout.h"
using namespace llvm;
/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(a,c)]
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp
index a2d4c88..121aa1f 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp
@@ -12,9 +12,9 @@
//===----------------------------------------------------------------------===//
#include "InstCombine.h"
-#include "llvm/Support/PatternMatch.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Support/PatternMatch.h"
using namespace llvm;
using namespace PatternMatch;
@@ -127,13 +127,14 @@ Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
// If this is a non-volatile load or a cast from the same type,
// merge.
if (TI->isCast()) {
- if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
+ Type *FIOpndTy = FI->getOperand(0)->getType();
+ if (TI->getOperand(0)->getType() != FIOpndTy)
return 0;
// The select condition may be a vector. We may only change the operand
// type if the vector width remains the same (and matches the condition).
Type *CondTy = SI.getCondition()->getType();
- if (CondTy->isVectorTy() && CondTy->getVectorNumElements() !=
- FI->getOperand(0)->getType()->getVectorNumElements())
+ if (CondTy->isVectorTy() && (!FIOpndTy->isVectorTy() ||
+ CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements()))
return 0;
} else {
return 0; // unknown unary op.
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp
index 57021f1..8cf76e5 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp
@@ -12,9 +12,9 @@
//===----------------------------------------------------------------------===//
#include "InstCombine.h"
-#include "llvm/IntrinsicInst.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/PatternMatch.h"
using namespace llvm;
using namespace PatternMatch;
@@ -49,7 +49,7 @@ Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
I.setOperand(1, Rem);
return &I;
}
-
+
return 0;
}
@@ -70,10 +70,10 @@ static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift,
// We can always evaluate constants shifted.
if (isa<Constant>(V))
return true;
-
+
Instruction *I = dyn_cast<Instruction>(V);
if (!I) return false;
-
+
// If this is the opposite shift, we can directly reuse the input of the shift
// if the needed bits are already zero in the input. This allows us to reuse
// the value which means that we don't care if the shift has multiple uses.
@@ -95,14 +95,14 @@ static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift,
return CanEvaluateTruncated(I->getOperand(0), Ty);
}
#endif
-
+
}
}
-
+
// We can't mutate something that has multiple uses: doing so would
// require duplicating the instruction in general, which isn't profitable.
if (!I->hasOneUse()) return false;
-
+
switch (I->getOpcode()) {
default: return false;
case Instruction::And:
@@ -111,7 +111,7 @@ static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift,
// Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
return CanEvaluateShifted(I->getOperand(0), NumBits, isLeftShift, IC) &&
CanEvaluateShifted(I->getOperand(1), NumBits, isLeftShift, IC);
-
+
case Instruction::Shl: {
// We can often fold the shift into shifts-by-a-constant.
CI = dyn_cast<ConstantInt>(I->getOperand(1));
@@ -119,10 +119,10 @@ static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift,
// We can always fold shl(c1)+shl(c2) -> shl(c1+c2).
if (isLeftShift) return true;
-
+
// We can always turn shl(c)+shr(c) -> and(c2).
if (CI->getValue() == NumBits) return true;
-
+
unsigned TypeWidth = I->getType()->getScalarSizeInBits();
// We can turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but it isn't
@@ -133,20 +133,20 @@ static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift,
APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits))
return true;
}
-
+
return false;
}
case Instruction::LShr: {
// We can often fold the shift into shifts-by-a-constant.
CI = dyn_cast<ConstantInt>(I->getOperand(1));
if (CI == 0) return false;
-
+
// We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2).
if (!isLeftShift) return true;
-
+
// We can always turn lshr(c)+shl(c) -> and(c2).
if (CI->getValue() == NumBits) return true;
-
+
unsigned TypeWidth = I->getType()->getScalarSizeInBits();
// We can always turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but it isn't
@@ -157,7 +157,7 @@ static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift,
APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits))
return true;
}
-
+
return false;
}
case Instruction::Select: {
@@ -175,7 +175,7 @@ static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift,
return false;
return true;
}
- }
+ }
}
/// GetShiftedValue - When CanEvaluateShifted returned true for an expression,
@@ -194,7 +194,7 @@ static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
IC.getTargetLibraryInfo());
return V;
}
-
+
Instruction *I = cast<Instruction>(V);
IC.Worklist.Add(I);
@@ -207,7 +207,7 @@ static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
I->setOperand(0, GetShiftedValue(I->getOperand(0), NumBits,isLeftShift,IC));
I->setOperand(1, GetShiftedValue(I->getOperand(1), NumBits,isLeftShift,IC));
return I;
-
+
case Instruction::Shl: {
BinaryOperator *BO = cast<BinaryOperator>(I);
unsigned TypeWidth = BO->getType()->getScalarSizeInBits();
@@ -227,7 +227,7 @@ static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
BO->setHasNoSignedWrap(false);
return I;
}
-
+
// We turn shl(c)+lshr(c) -> and(c2) if the input doesn't already have
// zeros.
if (CI->getValue() == NumBits) {
@@ -240,7 +240,7 @@ static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
}
return V;
}
-
+
// We turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but only when we know that
// the and won't be needed.
assert(CI->getZExtValue() > NumBits);
@@ -255,19 +255,19 @@ static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
unsigned TypeWidth = BO->getType()->getScalarSizeInBits();
// We only accept shifts-by-a-constant in CanEvaluateShifted.
ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
-
+
// We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2).
if (!isLeftShift) {
// If this is oversized composite shift, then unsigned shifts get 0.
unsigned NewShAmt = NumBits+CI->getZExtValue();
if (NewShAmt >= TypeWidth)
return Constant::getNullValue(BO->getType());
-
+
BO->setOperand(1, ConstantInt::get(BO->getType(), NewShAmt));
BO->setIsExact(false);
return I;
}
-
+
// We turn lshr(c)+shl(c) -> and(c2) if the input doesn't already have
// zeros.
if (CI->getValue() == NumBits) {
@@ -280,7 +280,7 @@ static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
}
return V;
}
-
+
// We turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but only when we know that
// the and won't be needed.
assert(CI->getZExtValue() > NumBits);
@@ -289,7 +289,7 @@ static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
BO->setIsExact(false);
return BO;
}
-
+
case Instruction::Select:
I->setOperand(1, GetShiftedValue(I->getOperand(1), NumBits,isLeftShift,IC));
I->setOperand(2, GetShiftedValue(I->getOperand(2), NumBits,isLeftShift,IC));
@@ -304,7 +304,7 @@ static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
NumBits, isLeftShift, IC));
return PN;
}
- }
+ }
}
@@ -312,24 +312,24 @@ static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
BinaryOperator &I) {
bool isLeftShift = I.getOpcode() == Instruction::Shl;
-
-
+
+
// See if we can propagate this shift into the input, this covers the trivial
// cast of lshr(shl(x,c1),c2) as well as other more complex cases.
if (I.getOpcode() != Instruction::AShr &&
CanEvaluateShifted(Op0, Op1->getZExtValue(), isLeftShift, *this)) {
DEBUG(dbgs() << "ICE: GetShiftedValue propagating shift through expression"
" to eliminate shift:\n IN: " << *Op0 << "\n SH: " << I <<"\n");
-
- return ReplaceInstUsesWith(I,
+
+ return ReplaceInstUsesWith(I,
GetShiftedValue(Op0, Op1->getZExtValue(), isLeftShift, *this));
}
-
-
- // See if we can simplify any instructions used by the instruction whose sole
+
+
+ // See if we can simplify any instructions used by the instruction whose sole
// purpose is to compute bits we don't care about.
uint32_t TypeBits = Op0->getType()->getScalarSizeInBits();
-
+
// shl i32 X, 32 = 0 and srl i8 Y, 9 = 0, ... just don't eliminate
// a signed shift.
//
@@ -340,14 +340,14 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
return &I;
}
-
+
// ((X*C1) << C2) == (X * (C1 << C2))
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
if (BO->getOpcode() == Instruction::Mul && isLeftShift)
if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
return BinaryOperator::CreateMul(BO->getOperand(0),
ConstantExpr::getShl(BOOp, Op1));
-
+
// Try to fold constant and into select arguments.
if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
if (Instruction *R = FoldOpIntoSelect(I, SI))
@@ -355,7 +355,7 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
if (isa<PHINode>(Op0))
if (Instruction *NV = FoldOpIntoPhi(I))
return NV;
-
+
// Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
@@ -364,7 +364,7 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
// require that the input operand is a shift-by-constant so that we have
// confidence that the shifts will get folded together. We could do this
// xform in more cases, but it is unlikely to be profitable.
- if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
+ if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
isa<ConstantInt>(TrOp->getOperand(1))) {
// Okay, we'll do this xform. Make the shift of shift.
Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
@@ -378,7 +378,7 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
unsigned SrcSize = TrOp->getType()->getScalarSizeInBits();
unsigned DstSize = TI->getType()->getScalarSizeInBits();
APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
-
+
// The mask we constructed says what the trunc would do if occurring
// between the shifts. We want to know the effect *after* the second
// shift. We know that it is a logical shift by a constant, so adjust the
@@ -399,7 +399,7 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
return new TruncInst(And, I.getType());
}
}
-
+
if (Op0->hasOneUse()) {
if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
// Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
@@ -425,14 +425,13 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(),
APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
}
-
+
// Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
Value *Op0BOOp1 = Op0BO->getOperand(1);
if (isLeftShift && Op0BOOp1->hasOneUse() &&
- match(Op0BOOp1,
- m_And(m_Shr(m_Value(V1), m_Specific(Op1)),
- m_ConstantInt(CC))) &&
- cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse()) {
+ match(Op0BOOp1,
+ m_And(m_OneUse(m_Shr(m_Value(V1), m_Specific(Op1))),
+ m_ConstantInt(CC)))) {
Value *YS = // (Y << C)
Builder->CreateShl(Op0BO->getOperand(0), Op1,
Op0BO->getName());
@@ -442,7 +441,7 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
}
}
-
+
// FALL THROUGH.
case Instruction::Sub: {
// Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
@@ -458,34 +457,32 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(),
APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
}
-
+
// Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
match(Op0BO->getOperand(0),
- m_And(m_Shr(m_Value(V1), m_Value(V2)),
- m_ConstantInt(CC))) && V2 == Op1 &&
- cast<BinaryOperator>(Op0BO->getOperand(0))
- ->getOperand(0)->hasOneUse()) {
+ m_And(m_OneUse(m_Shr(m_Value(V1), m_Value(V2))),
+ m_ConstantInt(CC))) && V2 == Op1) {
Value *YS = // (Y << C)
Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
// X & (CC << C)
Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
V1->getName()+".mask");
-
+
return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
}
-
+
break;
}
}
-
-
+
+
// If the operand is an bitwise operator with a constant RHS, and the
// shift is the only use, we can pull it out of the shift.
if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
bool isValid = true; // Valid only for And, Or, Xor
bool highBitSet = false; // Transform if high bit of constant set?
-
+
switch (Op0BO->getOpcode()) {
default: isValid = false; break; // Do not perform transform!
case Instruction::Add:
@@ -499,7 +496,7 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
highBitSet = true;
break;
}
-
+
// If this is a signed shift right, and the high bit is modified
// by the logical operation, do not perform the transformation.
// The highBitSet boolean indicates the value of the high bit of
@@ -508,26 +505,26 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
//
if (isValid && I.getOpcode() == Instruction::AShr)
isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
-
+
if (isValid) {
Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
-
+
Value *NewShift =
Builder->CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
NewShift->takeName(Op0BO);
-
+
return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
NewRHS);
}
}
}
}
-
+
// Find out if this is a shift of a shift by a constant.
BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
if (ShiftOp && !ShiftOp->isShift())
ShiftOp = 0;
-
+
if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
// This is a constant shift of a constant shift. Be careful about hiding
@@ -548,9 +545,9 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
if (ShiftAmt1 == 0) return 0; // Will be simplified in the future.
Value *X = ShiftOp->getOperand(0);
-
+
IntegerType *Ty = cast<IntegerType>(I.getType());
-
+
// Check for (X << c1) << c2 and (X >> c1) >> c2
if (I.getOpcode() == ShiftOp->getOpcode()) {
uint32_t AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift.
@@ -561,11 +558,11 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
AmtSum = TypeBits-1; // Saturate to 31 for i32 ashr.
}
-
+
return BinaryOperator::Create(I.getOpcode(), X,
ConstantInt::get(Ty, AmtSum));
}
-
+
if (ShiftAmt1 == ShiftAmt2) {
// If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
if (I.getOpcode() == Instruction::LShr &&
@@ -605,7 +602,7 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
return NewLShr;
}
Value *Shift = Builder->CreateLShr(X, ShiftDiffCst);
-
+
APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
return BinaryOperator::CreateAnd(Shift,
ConstantInt::get(I.getContext(),Mask));
@@ -653,12 +650,12 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
return NewShl;
}
Value *Shift = Builder->CreateShl(X, ShiftDiffCst);
-
+
APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
return BinaryOperator::CreateAnd(Shift,
ConstantInt::get(I.getContext(),Mask));
}
-
+
// We can't handle (X << C1) >>s C2, it shifts arbitrary bits in. However,
// we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
if (I.getOpcode() == Instruction::AShr &&
@@ -682,21 +679,21 @@ Instruction *InstCombiner::visitShl(BinaryOperator &I) {
I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
TD))
return ReplaceInstUsesWith(I, V);
-
+
if (Instruction *V = commonShiftTransforms(I))
return V;
-
+
if (ConstantInt *Op1C = dyn_cast<ConstantInt>(I.getOperand(1))) {
unsigned ShAmt = Op1C->getZExtValue();
-
+
// If the shifted-out value is known-zero, then this is a NUW shift.
- if (!I.hasNoUnsignedWrap() &&
+ if (!I.hasNoUnsignedWrap() &&
MaskedValueIsZero(I.getOperand(0),
APInt::getHighBitsSet(Op1C->getBitWidth(), ShAmt))) {
I.setHasNoUnsignedWrap();
return &I;
}
-
+
// If the shifted out value is all signbits, this is a NSW shift.
if (!I.hasNoSignedWrap() &&
ComputeNumSignBits(I.getOperand(0)) > ShAmt) {
@@ -712,7 +709,7 @@ Instruction *InstCombiner::visitShl(BinaryOperator &I) {
match(I.getOperand(1), m_Constant(C2)))
return BinaryOperator::CreateShl(ConstantExpr::getShl(C1, C2), A);
- return 0;
+ return 0;
}
Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
@@ -722,9 +719,9 @@ Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
if (Instruction *R = commonShiftTransforms(I))
return R;
-
+
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
+
if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
unsigned ShAmt = Op1C->getZExtValue();
@@ -743,15 +740,15 @@ Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
return new ZExtInst(Cmp, II->getType());
}
}
-
+
// If the shifted-out value is known-zero, then this is an exact shift.
- if (!I.isExact() &&
+ if (!I.isExact() &&
MaskedValueIsZero(Op0,APInt::getLowBitsSet(Op1C->getBitWidth(),ShAmt))){
I.setIsExact();
return &I;
- }
+ }
}
-
+
return 0;
}
@@ -762,12 +759,12 @@ Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
if (Instruction *R = commonShiftTransforms(I))
return R;
-
+
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
unsigned ShAmt = Op1C->getZExtValue();
-
+
// If the input is a SHL by the same constant (ashr (shl X, C), C), then we
// have a sign-extend idiom.
Value *X;
@@ -791,23 +788,23 @@ Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
}
// If the shifted-out value is known-zero, then this is an exact shift.
- if (!I.isExact() &&
+ if (!I.isExact() &&
MaskedValueIsZero(Op0,APInt::getLowBitsSet(Op1C->getBitWidth(),ShAmt))){
I.setIsExact();
return &I;
}
- }
-
+ }
+
// See if we can turn a signed shr into an unsigned shr.
if (MaskedValueIsZero(Op0,
APInt::getSignBit(I.getType()->getScalarSizeInBits())))
return BinaryOperator::CreateLShr(Op0, Op1);
-
+
// Arithmetic shifting an all-sign-bit value is a no-op.
unsigned NumSignBits = ComputeNumSignBits(Op0);
if (NumSignBits == Op0->getType()->getScalarSizeInBits())
return ReplaceInstUsesWith(I, Op0);
-
+
return 0;
}
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
index 602b203..8add1ea 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
@@ -14,17 +14,18 @@
#include "InstCombine.h"
-#include "llvm/DataLayout.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/Support/PatternMatch.h"
using namespace llvm;
+using namespace llvm::PatternMatch;
-
-/// ShrinkDemandedConstant - Check to see if the specified operand of the
+/// ShrinkDemandedConstant - Check to see if the specified operand of the
/// specified instruction is a constant integer. If so, check to see if there
/// are any bits set in the constant that are not demanded. If so, shrink the
/// constant and return true.
-static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
+static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
APInt Demanded) {
assert(I && "No instruction?");
assert(OpNo < I->getNumOperands() && "Operand index too large");
@@ -53,8 +54,8 @@ bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
-
- Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask,
+
+ Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask,
KnownZero, KnownOne, 0);
if (V == 0) return false;
if (V == &Inst) return true;
@@ -65,7 +66,7 @@ bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
/// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the
/// specified instruction operand if possible, updating it in place. It returns
/// true if it made any change and false otherwise.
-bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask,
+bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask,
APInt &KnownZero, APInt &KnownOne,
unsigned Depth) {
Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask,
@@ -86,7 +87,7 @@ bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask,
/// to be one in the expression. KnownZero contains all the bits that are known
/// to be zero in the expression. These are provided to potentially allow the
/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
-/// the expression. KnownOne and KnownZero always follow the invariant that
+/// the expression. KnownOne and KnownZero always follow the invariant that
/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
/// the bits in KnownOne and KnownZero may only be accurate for those bits set
/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
@@ -133,10 +134,10 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
return 0;
return UndefValue::get(VTy);
}
-
+
if (Depth == 6) // Limit search depth.
return 0;
-
+
APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
@@ -158,61 +159,74 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// If either the LHS or the RHS are Zero, the result is zero.
ComputeMaskedBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1);
ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
-
+
// If all of the demanded bits are known 1 on one side, return the other.
// These bits cannot contribute to the result of the 'and' in this
// context.
- if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
+ if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
(DemandedMask & ~LHSKnownZero))
return I->getOperand(0);
- if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
+ if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
(DemandedMask & ~RHSKnownZero))
return I->getOperand(1);
-
+
// If all of the demanded bits in the inputs are known zeros, return zero.
if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
return Constant::getNullValue(VTy);
-
+
} else if (I->getOpcode() == Instruction::Or) {
// We can simplify (X|Y) -> X or Y in the user's context if we know that
// only bits from X or Y are demanded.
-
+
// If either the LHS or the RHS are One, the result is One.
ComputeMaskedBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1);
ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
-
+
// If all of the demanded bits are known zero on one side, return the
// other. These bits cannot contribute to the result of the 'or' in this
// context.
- if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
+ if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
(DemandedMask & ~LHSKnownOne))
return I->getOperand(0);
- if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
+ if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
(DemandedMask & ~RHSKnownOne))
return I->getOperand(1);
-
+
// If all of the potentially set bits on one side are known to be set on
// the other side, just use the 'other' side.
- if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
+ if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
(DemandedMask & (~RHSKnownZero)))
return I->getOperand(0);
- if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
+ if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
(DemandedMask & (~LHSKnownZero)))
return I->getOperand(1);
+ } else if (I->getOpcode() == Instruction::Xor) {
+ // We can simplify (X^Y) -> X or Y in the user's context if we know that
+ // only bits from X or Y are demanded.
+
+ ComputeMaskedBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1);
+ ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
+
+ // If all of the demanded bits are known zero on one side, return the
+ // other.
+ if ((DemandedMask & RHSKnownZero) == DemandedMask)
+ return I->getOperand(0);
+ if ((DemandedMask & LHSKnownZero) == DemandedMask)
+ return I->getOperand(1);
}
-
+
// Compute the KnownZero/KnownOne bits to simplify things downstream.
ComputeMaskedBits(I, KnownZero, KnownOne, Depth);
return 0;
}
-
+
// If this is the root being simplified, allow it to have multiple uses,
// just set the DemandedMask to all bits so that we can try to simplify the
// operands. This allows visitTruncInst (for example) to simplify the
// operand of a trunc without duplicating all the logic below.
if (Depth == 0 && !V->hasOneUse())
DemandedMask = APInt::getAllOnesValue(BitWidth);
-
+
switch (I->getOpcode()) {
default:
ComputeMaskedBits(I, KnownZero, KnownOne, Depth);
@@ -224,26 +238,26 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero,
LHSKnownZero, LHSKnownOne, Depth+1))
return I;
- assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
- assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
+ assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
+ assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
// If all of the demanded bits are known 1 on one side, return the other.
// These bits cannot contribute to the result of the 'and'.
- if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
+ if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
(DemandedMask & ~LHSKnownZero))
return I->getOperand(0);
- if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
+ if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
(DemandedMask & ~RHSKnownZero))
return I->getOperand(1);
-
+
// If all of the demanded bits in the inputs are known zeros, return zero.
if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
return Constant::getNullValue(VTy);
-
+
// If the RHS is a constant, see if we can simplify it.
if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
return I;
-
+
// Output known-1 bits are only known if set in both the LHS & RHS.
KnownOne = RHSKnownOne & LHSKnownOne;
// Output known-0 are known to be clear if zero in either the LHS | RHS.
@@ -251,36 +265,36 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
break;
case Instruction::Or:
// If either the LHS or the RHS are One, the result is One.
- if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
+ if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
RHSKnownZero, RHSKnownOne, Depth+1) ||
- SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne,
+ SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne,
LHSKnownZero, LHSKnownOne, Depth+1))
return I;
- assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
- assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
-
+ assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
+ assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
+
// If all of the demanded bits are known zero on one side, return the other.
// These bits cannot contribute to the result of the 'or'.
- if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
+ if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
(DemandedMask & ~LHSKnownOne))
return I->getOperand(0);
- if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
+ if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
(DemandedMask & ~RHSKnownOne))
return I->getOperand(1);
// If all of the potentially set bits on one side are known to be set on
// the other side, just use the 'other' side.
- if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
+ if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
(DemandedMask & (~RHSKnownZero)))
return I->getOperand(0);
- if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
+ if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
(DemandedMask & (~LHSKnownZero)))
return I->getOperand(1);
-
+
// If the RHS is a constant, see if we can simplify it.
if (ShrinkDemandedConstant(I, 1, DemandedMask))
return I;
-
+
// Output known-0 bits are only known if clear in both the LHS & RHS.
KnownZero = RHSKnownZero & LHSKnownZero;
// Output known-1 are known to be set if set in either the LHS | RHS.
@@ -289,34 +303,34 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
case Instruction::Xor: {
if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
RHSKnownZero, RHSKnownOne, Depth+1) ||
- SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
+ SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
LHSKnownZero, LHSKnownOne, Depth+1))
return I;
- assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
- assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
-
+ assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
+ assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
+
// If all of the demanded bits are known zero on one side, return the other.
// These bits cannot contribute to the result of the 'xor'.
if ((DemandedMask & RHSKnownZero) == DemandedMask)
return I->getOperand(0);
if ((DemandedMask & LHSKnownZero) == DemandedMask)
return I->getOperand(1);
-
+
// If all of the demanded bits are known to be zero on one side or the
// other, turn this into an *inclusive* or.
// e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
- Instruction *Or =
+ Instruction *Or =
BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
I->getName());
return InsertNewInstWith(Or, *I);
}
-
+
// If all of the demanded bits on one side are known, and all of the set
// bits on that side are also known to be set on the other side, turn this
// into an AND, as we know the bits will be cleared.
// e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
- if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
+ if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
// all known
if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
Constant *AndC = Constant::getIntegerValue(VTy,
@@ -325,12 +339,12 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
return InsertNewInstWith(And, *I);
}
}
-
+
// If the RHS is a constant, see if we can simplify it.
// FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
if (ShrinkDemandedConstant(I, 1, DemandedMask))
return I;
-
+
// If our LHS is an 'and' and if it has one use, and if any of the bits we
// are flipping are known to be set, then the xor is just resetting those
// bits to zero. We can just knock out bits from the 'and' and the 'xor',
@@ -343,12 +357,12 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask);
-
+
Constant *AndC =
ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
InsertNewInstWith(NewAnd, *I);
-
+
Constant *XorC =
ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
@@ -364,17 +378,17 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
case Instruction::Select:
if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask,
RHSKnownZero, RHSKnownOne, Depth+1) ||
- SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
+ SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
LHSKnownZero, LHSKnownOne, Depth+1))
return I;
- assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
- assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
-
+ assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
+ assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
+
// If the operands are constants, see if we can simplify them.
if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
ShrinkDemandedConstant(I, 2, DemandedMask))
return I;
-
+
// Only known if known in both the LHS and RHS.
KnownOne = RHSKnownOne & LHSKnownOne;
KnownZero = RHSKnownZero & LHSKnownZero;
@@ -384,13 +398,13 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
DemandedMask = DemandedMask.zext(truncBf);
KnownZero = KnownZero.zext(truncBf);
KnownOne = KnownOne.zext(truncBf);
- if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
+ if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
KnownZero, KnownOne, Depth+1))
return I;
DemandedMask = DemandedMask.trunc(BitWidth);
KnownZero = KnownZero.trunc(BitWidth);
KnownOne = KnownOne.trunc(BitWidth);
- assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
+ assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
break;
}
case Instruction::BitCast:
@@ -413,12 +427,12 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
KnownZero, KnownOne, Depth+1))
return I;
- assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
+ assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
break;
case Instruction::ZExt: {
// Compute the bits in the result that are not present in the input.
unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
-
+
DemandedMask = DemandedMask.trunc(SrcBitWidth);
KnownZero = KnownZero.trunc(SrcBitWidth);
KnownOne = KnownOne.trunc(SrcBitWidth);
@@ -428,7 +442,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
DemandedMask = DemandedMask.zext(BitWidth);
KnownZero = KnownZero.zext(BitWidth);
KnownOne = KnownOne.zext(BitWidth);
- assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
+ assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
// The top bits are known to be zero.
KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
break;
@@ -436,8 +450,8 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
case Instruction::SExt: {
// Compute the bits in the result that are not present in the input.
unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
-
- APInt InputDemandedBits = DemandedMask &
+
+ APInt InputDemandedBits = DemandedMask &
APInt::getLowBitsSet(BitWidth, SrcBitWidth);
APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
@@ -445,7 +459,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// bit is demanded.
if ((NewBits & DemandedMask) != 0)
InputDemandedBits.setBit(SrcBitWidth-1);
-
+
InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth);
KnownZero = KnownZero.trunc(SrcBitWidth);
KnownOne = KnownOne.trunc(SrcBitWidth);
@@ -455,8 +469,8 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
InputDemandedBits = InputDemandedBits.zext(BitWidth);
KnownZero = KnownZero.zext(BitWidth);
KnownOne = KnownOne.zext(BitWidth);
- assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
-
+ assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
+
// If the sign bit of the input is known set or clear, then we know the
// top bits of the result.
@@ -476,7 +490,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// are not demanded, then the add doesn't demand them from its input
// either.
unsigned NLZ = DemandedMask.countLeadingZeros();
-
+
// If there is a constant on the RHS, there are a variety of xformations
// we can do.
if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
@@ -484,13 +498,13 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// won't work if the RHS is zero.
if (RHS->isZero())
break;
-
+
// If the top bit of the output is demanded, demand everything from the
// input. Otherwise, we demand all the input bits except NLZ top bits.
APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
// Find information about known zero/one bits in the input.
- if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits,
+ if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits,
LHSKnownZero, LHSKnownOne, Depth+1))
return I;
@@ -498,11 +512,11 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// the constant.
if (ShrinkDemandedConstant(I, 1, InDemandedBits))
return I;
-
+
// Avoid excess work.
if (LHSKnownZero == 0 && LHSKnownOne == 0)
break;
-
+
// Turn it into OR if input bits are zero.
if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
Instruction *Or =
@@ -510,26 +524,26 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
I->getName());
return InsertNewInstWith(Or, *I);
}
-
+
// We can say something about the output known-zero and known-one bits,
// depending on potential carries from the input constant and the
// unknowns. For example if the LHS is known to have at most the 0x0F0F0
// bits set and the RHS constant is 0x01001, then we know we have a known
// one mask of 0x00001 and a known zero mask of 0xE0F0E.
-
+
// To compute this, we first compute the potential carry bits. These are
// the bits which may be modified. I'm not aware of a better way to do
// this scan.
const APInt &RHSVal = RHS->getValue();
APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
-
+
// Now that we know which bits have carries, compute the known-1/0 sets.
-
+
// Bits are known one if they are known zero in one operand and one in the
// other, and there is no input carry.
- KnownOne = ((LHSKnownZero & RHSVal) |
+ KnownOne = ((LHSKnownZero & RHSVal) |
(LHSKnownOne & ~RHSVal)) & ~CarryBits;
-
+
// Bits are known zero if they are known zero in both operands and there
// is no input carry.
KnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
@@ -580,17 +594,28 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
break;
case Instruction::Shl:
if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ {
+ Value *VarX; ConstantInt *C1;
+ if (match(I->getOperand(0), m_Shr(m_Value(VarX), m_ConstantInt(C1)))) {
+ Instruction *Shr = cast<Instruction>(I->getOperand(0));
+ Value *R = SimplifyShrShlDemandedBits(Shr, I, DemandedMask,
+ KnownZero, KnownOne);
+ if (R)
+ return R;
+ }
+ }
+
uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
-
+
// If the shift is NUW/NSW, then it does demand the high bits.
ShlOperator *IOp = cast<ShlOperator>(I);
if (IOp->hasNoSignedWrap())
DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
else if (IOp->hasNoUnsignedWrap())
DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
-
- if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
+
+ if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
KnownZero, KnownOne, Depth+1))
return I;
assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
@@ -605,15 +630,15 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// For a logical shift right
if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
-
+
// Unsigned shift right.
APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
-
+
// If the shift is exact, then it does demand the low bits (and knows that
// they are zero).
if (cast<LShrOperator>(I)->isExact())
DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
-
+
if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
KnownZero, KnownOne, Depth+1))
return I;
@@ -637,28 +662,28 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
Instruction *NewVal = BinaryOperator::CreateLShr(
I->getOperand(0), I->getOperand(1), I->getName());
return InsertNewInstWith(NewVal, *I);
- }
+ }
// If the sign bit is the only bit demanded by this ashr, then there is no
// need to do it, the shift doesn't change the high bit.
if (DemandedMask.isSignBit())
return I->getOperand(0);
-
+
if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
-
+
// Signed shift right.
APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
// If any of the "high bits" are demanded, we should set the sign bit as
// demanded.
if (DemandedMask.countLeadingZeros() <= ShiftAmt)
DemandedMaskIn.setBit(BitWidth-1);
-
+
// If the shift is exact, then it does demand the low bits (and knows that
// they are zero).
if (cast<AShrOperator>(I)->isExact())
DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
-
+
if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
KnownZero, KnownOne, Depth+1))
return I;
@@ -667,15 +692,15 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
-
+
// Handle the sign bits.
APInt SignBit(APInt::getSignBit(BitWidth));
// Adjust to where it is now in the mask.
- SignBit = APIntOps::lshr(SignBit, ShiftAmt);
-
+ SignBit = APIntOps::lshr(SignBit, ShiftAmt);
+
// If the input sign bit is known to be zero, or if none of the top bits
// are demanded, turn this into an unsigned shift right.
- if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] ||
+ if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] ||
(HighBits & ~DemandedMask) == HighBits) {
// Perform the logical shift right.
BinaryOperator *NewVal = BinaryOperator::CreateLShr(I->getOperand(0),
@@ -718,7 +743,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0))
KnownOne |= ~LowBits;
- assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
+ assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
}
}
@@ -756,7 +781,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// just shift the input byte into position to eliminate the bswap.
unsigned NLZ = DemandedMask.countLeadingZeros();
unsigned NTZ = DemandedMask.countTrailingZeros();
-
+
// Round NTZ down to the next byte. If we have 11 trailing zeros, then
// we need all the bits down to bit 8. Likewise, round NLZ. If we
// have 14 leading zeros, round to 8.
@@ -766,7 +791,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
if (BitWidth-NLZ-NTZ == 8) {
unsigned ResultBit = NTZ;
unsigned InputBit = BitWidth-NTZ-8;
-
+
// Replace this with either a left or right shift to get the byte into
// the right place.
Instruction *NewVal;
@@ -779,7 +804,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
NewVal->takeName(I);
return InsertNewInstWith(NewVal, *I);
}
-
+
// TODO: Could compute known zero/one bits based on the input.
break;
}
@@ -792,7 +817,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
ComputeMaskedBits(V, KnownZero, KnownOne, Depth);
break;
}
-
+
// If the client is only demanding bits that we know, return the known
// constant.
if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
@@ -800,6 +825,81 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
return 0;
}
+/// Helper routine of SimplifyDemandedUseBits. It tries to simplify
+/// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
+/// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
+/// of "C2-C1".
+///
+/// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
+/// ..., bn}, without considering the specific value X is holding.
+/// This transformation is legal iff one of following conditions is hold:
+/// 1) All the bit in S are 0, in this case E1 == E2.
+/// 2) We don't care those bits in S, per the input DemandedMask.
+/// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
+/// rest bits.
+///
+/// Currently we only test condition 2).
+///
+/// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
+/// not successful.
+Value *InstCombiner::SimplifyShrShlDemandedBits(Instruction *Shr,
+ Instruction *Shl, APInt DemandedMask, APInt &KnownZero, APInt &KnownOne) {
+
+ unsigned ShlAmt = cast<ConstantInt>(Shl->getOperand(1))->getZExtValue();
+ unsigned ShrAmt = cast<ConstantInt>(Shr->getOperand(1))->getZExtValue();
+
+ KnownOne.clearAllBits();
+ KnownZero = APInt::getBitsSet(KnownZero.getBitWidth(), 0, ShlAmt-1);
+ KnownZero &= DemandedMask;
+
+ if (ShlAmt == 0 || ShrAmt == 0)
+ return 0;
+
+ Value *VarX = Shr->getOperand(0);
+ Type *Ty = VarX->getType();
+
+ APInt BitMask1(APInt::getAllOnesValue(Ty->getIntegerBitWidth()));
+ APInt BitMask2(APInt::getAllOnesValue(Ty->getIntegerBitWidth()));
+
+ bool isLshr = (Shr->getOpcode() == Instruction::LShr);
+ BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
+ (BitMask1.ashr(ShrAmt) << ShlAmt);
+
+ if (ShrAmt <= ShlAmt) {
+ BitMask2 <<= (ShlAmt - ShrAmt);
+ } else {
+ BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
+ BitMask2.ashr(ShrAmt - ShlAmt);
+ }
+
+ // Check if condition-2 (see the comment to this function) is satified.
+ if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
+ if (ShrAmt == ShlAmt)
+ return VarX;
+
+ if (!Shr->hasOneUse())
+ return 0;
+
+ BinaryOperator *New;
+ if (ShrAmt < ShlAmt) {
+ Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
+ New = BinaryOperator::CreateShl(VarX, Amt);
+ BinaryOperator *Orig = cast<BinaryOperator>(Shl);
+ New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
+ New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
+ } else {
+ Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
+ New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
+ BinaryOperator::CreateAShr(VarX, Amt);
+ if (cast<BinaryOperator>(Shr)->isExact())
+ New->setIsExact(true);
+ }
+
+ return InsertNewInstWith(New, *Shl);
+ }
+
+ return 0;
+}
/// SimplifyDemandedVectorElts - The specified value produces a vector with
/// any number of elements. DemandedElts contains the set of elements that are
@@ -821,14 +921,14 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
UndefElts = EltMask;
return 0;
}
-
+
if (DemandedElts == 0) { // If nothing is demanded, provide undef.
UndefElts = EltMask;
return UndefValue::get(V->getType());
}
UndefElts = 0;
-
+
// Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential.
if (Constant *C = dyn_cast<Constant>(V)) {
// Check if this is identity. If so, return 0 since we are not simplifying
@@ -838,7 +938,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
Type *EltTy = cast<VectorType>(V->getType())->getElementType();
Constant *Undef = UndefValue::get(EltTy);
-
+
SmallVector<Constant*, 16> Elts;
for (unsigned i = 0; i != VWidth; ++i) {
if (!DemandedElts[i]) { // If not demanded, set to undef.
@@ -846,10 +946,10 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
UndefElts.setBit(i);
continue;
}
-
+
Constant *Elt = C->getAggregateElement(i);
if (Elt == 0) return 0;
-
+
if (isa<UndefValue>(Elt)) { // Already undef.
Elts.push_back(Undef);
UndefElts.setBit(i);
@@ -857,12 +957,12 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
Elts.push_back(Elt);
}
}
-
+
// If we changed the constant, return it.
Constant *NewCV = ConstantVector::get(Elts);
return NewCV != C ? NewCV : 0;
}
-
+
// Limit search depth.
if (Depth == 10)
return 0;
@@ -881,16 +981,16 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
// Conservatively assume that all elements are needed.
DemandedElts = EltMask;
}
-
+
Instruction *I = dyn_cast<Instruction>(V);
if (!I) return 0; // Only analyze instructions.
-
+
bool MadeChange = false;
APInt UndefElts2(VWidth, 0);
Value *TmpV;
switch (I->getOpcode()) {
default: break;
-
+
case Instruction::InsertElement: {
// If this is a variable index, we don't know which element it overwrites.
// demand exactly the same input as we produce.
@@ -903,7 +1003,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
break;
}
-
+
// If this is inserting an element that isn't demanded, remove this
// insertelement.
unsigned IdxNo = Idx->getZExtValue();
@@ -911,7 +1011,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
Worklist.Add(I);
return I->getOperand(0);
}
-
+
// Otherwise, the element inserted overwrites whatever was there, so the
// input demanded set is simpler than the output set.
APInt DemandedElts2 = DemandedElts;
@@ -1007,7 +1107,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded,
UndefElts2, Depth+1);
if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; }
-
+
// Output elements are undefined if both are undefined.
UndefElts &= UndefElts2;
break;
@@ -1028,7 +1128,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
} else if (VWidth > InVWidth) {
// Untested so far.
break;
-
+
// If there are more elements in the result than there are in the source,
// then an input element is live if any of the corresponding output
// elements are live.
@@ -1040,7 +1140,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
} else {
// Untested so far.
break;
-
+
// If there are more elements in the source than there are in the result,
// then an input element is live if the corresponding output element is
// live.
@@ -1049,7 +1149,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
if (DemandedElts[InIdx/Ratio])
InputDemandedElts.setBit(InIdx);
}
-
+
// div/rem demand all inputs, because they don't want divide by zero.
TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
UndefElts2, Depth+1);
@@ -1057,7 +1157,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
I->setOperand(0, TmpV);
MadeChange = true;
}
-
+
UndefElts = UndefElts2;
if (VWidth > InVWidth) {
llvm_unreachable("Unimp");
@@ -1092,7 +1192,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
UndefElts2, Depth+1);
if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
-
+
// Output elements are undefined if both are undefined. Consider things
// like undef&0. The result is known zero, not undef.
UndefElts &= UndefElts2;
@@ -1103,13 +1203,13 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
UndefElts, Depth+1);
if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
break;
-
+
case Instruction::Call: {
IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
if (!II) break;
switch (II->getIntrinsicID()) {
default: break;
-
+
// Binary vector operations that work column-wise. A dest element is a
// function of the corresponding input elements from the two inputs.
case Intrinsic::x86_sse_sub_ss:
@@ -1140,11 +1240,11 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
Value *LHS = II->getArgOperand(0);
Value *RHS = II->getArgOperand(1);
// Extract the element as scalars.
- LHS = InsertNewInstWith(ExtractElementInst::Create(LHS,
+ LHS = InsertNewInstWith(ExtractElementInst::Create(LHS,
ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
RHS = InsertNewInstWith(ExtractElementInst::Create(RHS,
ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
-
+
switch (II->getIntrinsicID()) {
default: llvm_unreachable("Case stmts out of sync!");
case Intrinsic::x86_sse_sub_ss:
@@ -1158,7 +1258,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
II->getName()), *II);
break;
}
-
+
Instruction *New =
InsertElementInst::Create(
UndefValue::get(II->getType()), TmpV,
@@ -1166,9 +1266,9 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
II->getName());
InsertNewInstWith(New, *II);
return New;
- }
+ }
}
-
+
// Output elements are undefined if both are undefined. Consider things
// like undef&0. The result is known zero, not undef.
UndefElts &= UndefElts2;
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp
index dd7ea14..4f71db1 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp
@@ -13,7 +13,9 @@
//===----------------------------------------------------------------------===//
#include "InstCombine.h"
+#include "llvm/Support/PatternMatch.h"
using namespace llvm;
+using namespace PatternMatch;
/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
/// is to leave as a vector operation. isConstant indicates whether we're
@@ -92,6 +94,13 @@ static Value *FindScalarElement(Value *V, unsigned EltNo) {
return FindScalarElement(SVI->getOperand(1), InEl - LHSWidth);
}
+ // Extract a value from a vector add operation with a constant zero.
+ Value *Val = 0; Constant *Con = 0;
+ if (match(V, m_Add(m_Value(Val), m_Constant(Con)))) {
+ if (Con->getAggregateElement(EltNo)->isNullValue())
+ return FindScalarElement(Val, EltNo);
+ }
+
// Otherwise, we don't know.
return 0;
}
@@ -295,12 +304,12 @@ static Value *CollectShuffleElements(Value *V, SmallVectorImpl<Constant*> &Mask,
Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
return V;
}
-
+
if (isa<ConstantAggregateZero>(V)) {
Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
return V;
}
-
+
if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
// If this is an insert of an extract from some other vector, include it.
Value *VecOp = IEI->getOperand(0);
@@ -595,12 +604,12 @@ Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
// ShuffleVectorInst is equivalent to the original one.
for (unsigned i = 0; i < VWidth; ++i) {
int eltMask;
- if (Mask[i] == -1) {
+ if (Mask[i] < 0) {
// This element is an undef value.
eltMask = -1;
} else if (Mask[i] < (int)LHSWidth) {
// This element is from left hand side vector operand.
- //
+ //
// If LHS is going to be replaced (case 1, 2, or 4), calculate the
// new mask value for the element.
if (newLHS != LHS) {
@@ -609,8 +618,7 @@ Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
// with a -1 mask value.
if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
eltMask = -1;
- }
- else
+ } else
eltMask = Mask[i];
} else {
// This element is from right hand side vector operand
@@ -630,8 +638,7 @@ Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
&& "should have been check above");
eltMask = -1;
}
- }
- else
+ } else
eltMask = Mask[i]-LHSWidth;
// If LHS's width is changed, shift the mask value accordingly.
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineWorklist.h b/contrib/llvm/lib/Transforms/InstCombine/InstCombineWorklist.h
index ea654ae..49efce5 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineWorklist.h
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineWorklist.h
@@ -11,28 +11,28 @@
#define INSTCOMBINE_WORKLIST_H
#define DEBUG_TYPE "instcombine"
-#include "llvm/Instruction.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
namespace llvm {
-
+
/// InstCombineWorklist - This is the worklist management logic for
/// InstCombine.
class LLVM_LIBRARY_VISIBILITY InstCombineWorklist {
SmallVector<Instruction*, 256> Worklist;
DenseMap<Instruction*, unsigned> WorklistMap;
-
+
void operator=(const InstCombineWorklist&RHS) LLVM_DELETED_FUNCTION;
InstCombineWorklist(const InstCombineWorklist&) LLVM_DELETED_FUNCTION;
public:
InstCombineWorklist() {}
-
+
bool isEmpty() const { return Worklist.empty(); }
-
+
/// Add - Add the specified instruction to the worklist if it isn't already
/// in it.
void Add(Instruction *I) {
@@ -41,12 +41,12 @@ public:
Worklist.push_back(I);
}
}
-
+
void AddValue(Value *V) {
if (Instruction *I = dyn_cast<Instruction>(V))
Add(I);
}
-
+
/// AddInitialGroup - Add the specified batch of stuff in reverse order.
/// which should only be done when the worklist is empty and when the group
/// has no duplicates.
@@ -61,25 +61,25 @@ public:
Worklist.push_back(I);
}
}
-
+
// Remove - remove I from the worklist if it exists.
void Remove(Instruction *I) {
DenseMap<Instruction*, unsigned>::iterator It = WorklistMap.find(I);
if (It == WorklistMap.end()) return; // Not in worklist.
-
+
// Don't bother moving everything down, just null out the slot.
Worklist[It->second] = 0;
-
+
WorklistMap.erase(It);
}
-
+
Instruction *RemoveOne() {
Instruction *I = Worklist.back();
Worklist.pop_back();
WorklistMap.erase(I);
return I;
}
-
+
/// AddUsersToWorkList - When an instruction is simplified, add all users of
/// the instruction to the work lists because they might get more simplified
/// now.
@@ -89,18 +89,18 @@ public:
UI != UE; ++UI)
Add(cast<Instruction>(*UI));
}
-
-
+
+
/// Zap - check that the worklist is empty and nuke the backing store for
/// the map if it is large.
void Zap() {
assert(WorklistMap.empty() && "Worklist empty, but map not?");
-
+
// Do an explicit clear, this shrinks the map if needed.
WorklistMap.clear();
}
};
-
+
} // end namespace llvm.
#endif
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp
index 9a46f25..c6115e3 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp
@@ -36,22 +36,23 @@
#define DEBUG_TYPE "instcombine"
#include "llvm/Transforms/Scalar.h"
#include "InstCombine.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm-c/Initialization.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringSwitch.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/MemoryBuiltins.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Target/TargetLibraryInfo.h"
-#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/CFG.h"
+#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/PatternMatch.h"
#include "llvm/Support/ValueHandle.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/StringSwitch.h"
-#include "llvm-c/Initialization.h"
+#include "llvm/Target/TargetLibraryInfo.h"
+#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
#include <climits>
using namespace llvm;
@@ -65,6 +66,11 @@ STATISTIC(NumExpand, "Number of expansions");
STATISTIC(NumFactor , "Number of factorizations");
STATISTIC(NumReassoc , "Number of reassociations");
+static cl::opt<bool> UnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
+ cl::init(false),
+ cl::desc("Enable unsafe double to float "
+ "shrinking for math lib calls"));
+
// Initialization Routines
void llvm::initializeInstCombine(PassRegistry &Registry) {
initializeInstCombinerPass(Registry);
@@ -156,6 +162,21 @@ static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
return !Overflow;
}
+/// Conservatively clears subclassOptionalData after a reassociation or
+/// commutation. We preserve fast-math flags when applicable as they can be
+/// preserved.
+static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
+ FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
+ if (!FPMO) {
+ I.clearSubclassOptionalData();
+ return;
+ }
+
+ FastMathFlags FMF = I.getFastMathFlags();
+ I.clearSubclassOptionalData();
+ I.setFastMathFlags(FMF);
+}
+
/// SimplifyAssociativeOrCommutative - This performs a few simplifications for
/// operators which are associative or commutative:
//
@@ -213,7 +234,7 @@ bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
I.clearSubclassOptionalData();
I.setHasNoSignedWrap(true);
} else {
- I.clearSubclassOptionalData();
+ ClearSubclassDataAfterReassociation(I);
}
Changed = true;
@@ -235,7 +256,7 @@ bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
I.setOperand(1, C);
// Conservatively clear the optional flags, since they may not be
// preserved by the reassociation.
- I.clearSubclassOptionalData();
+ ClearSubclassDataAfterReassociation(I);
Changed = true;
++NumReassoc;
continue;
@@ -257,7 +278,7 @@ bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
I.setOperand(1, B);
// Conservatively clear the optional flags, since they may not be
// preserved by the reassociation.
- I.clearSubclassOptionalData();
+ ClearSubclassDataAfterReassociation(I);
Changed = true;
++NumReassoc;
continue;
@@ -277,7 +298,7 @@ bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
I.setOperand(1, V);
// Conservatively clear the optional flags, since they may not be
// preserved by the reassociation.
- I.clearSubclassOptionalData();
+ ClearSubclassDataAfterReassociation(I);
Changed = true;
++NumReassoc;
continue;
@@ -304,7 +325,7 @@ bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
I.setOperand(1, Folded);
// Conservatively clear the optional flags, since they may not be
// preserved by the reassociation.
- I.clearSubclassOptionalData();
+ ClearSubclassDataAfterReassociation(I);
Changed = true;
continue;
@@ -510,8 +531,8 @@ Value *InstCombiner::dyn_castNegVal(Value *V) const {
// instruction if the LHS is a constant negative zero (which is the 'negate'
// form).
//
-Value *InstCombiner::dyn_castFNegVal(Value *V) const {
- if (BinaryOperator::isFNeg(V))
+Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const {
+ if (BinaryOperator::isFNeg(V, IgnoreZeroSign))
return BinaryOperator::getFNegArgument(V);
// Constants can be considered to be negated values if they can be folded.
@@ -1303,17 +1324,15 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
/// into a gep of the original struct. This is important for SROA and alias
/// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
+ APInt Offset(TD ? TD->getPointerSizeInBits() : 1, 0);
if (TD &&
- !isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices() &&
+ !isa<BitCastInst>(BCI->getOperand(0)) &&
+ GEP.accumulateConstantOffset(*TD, Offset) &&
StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
- // Determine how much the GEP moves the pointer.
- SmallVector<Value*, 8> Ops(GEP.idx_begin(), GEP.idx_end());
- int64_t Offset = TD->getIndexedOffset(GEP.getPointerOperandType(), Ops);
-
// If this GEP instruction doesn't move the pointer, just replace the GEP
// with a bitcast of the real input to the dest type.
- if (Offset == 0) {
+ if (!Offset) {
// If the bitcast is of an allocation, and the allocation will be
// converted to match the type of the cast, don't touch this.
if (isa<AllocaInst>(BCI->getOperand(0)) ||
@@ -1337,7 +1356,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
SmallVector<Value*, 8> NewIndices;
Type *InTy =
cast<PointerType>(BCI->getOperand(0)->getType())->getElementType();
- if (FindElementAtOffset(InTy, Offset, NewIndices)) {
+ if (FindElementAtOffset(InTy, Offset.getSExtValue(), NewIndices)) {
Value *NGEP = GEP.isInBounds() ?
Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices) :
Builder->CreateGEP(BCI->getOperand(0), NewIndices);
@@ -1471,6 +1490,62 @@ Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
return 0;
}
+/// \brief Move the call to free before a NULL test.
+///
+/// Check if this free is accessed after its argument has been test
+/// against NULL (property 0).
+/// If yes, it is legal to move this call in its predecessor block.
+///
+/// The move is performed only if the block containing the call to free
+/// will be removed, i.e.:
+/// 1. it has only one predecessor P, and P has two successors
+/// 2. it contains the call and an unconditional branch
+/// 3. its successor is the same as its predecessor's successor
+///
+/// The profitability is out-of concern here and this function should
+/// be called only if the caller knows this transformation would be
+/// profitable (e.g., for code size).
+static Instruction *
+tryToMoveFreeBeforeNullTest(CallInst &FI) {
+ Value *Op = FI.getArgOperand(0);
+ BasicBlock *FreeInstrBB = FI.getParent();
+ BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
+
+ // Validate part of constraint #1: Only one predecessor
+ // FIXME: We can extend the number of predecessor, but in that case, we
+ // would duplicate the call to free in each predecessor and it may
+ // not be profitable even for code size.
+ if (!PredBB)
+ return 0;
+
+ // Validate constraint #2: Does this block contains only the call to
+ // free and an unconditional branch?
+ // FIXME: We could check if we can speculate everything in the
+ // predecessor block
+ if (FreeInstrBB->size() != 2)
+ return 0;
+ BasicBlock *SuccBB;
+ if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB)))
+ return 0;
+
+ // Validate the rest of constraint #1 by matching on the pred branch.
+ TerminatorInst *TI = PredBB->getTerminator();
+ BasicBlock *TrueBB, *FalseBB;
+ ICmpInst::Predicate Pred;
+ if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB)))
+ return 0;
+ if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
+ return 0;
+
+ // Validate constraint #3: Ensure the null case just falls through.
+ if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
+ return 0;
+ assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
+ "Broken CFG: missing edge from predecessor to successor");
+
+ FI.moveBefore(TI);
+ return &FI;
+}
Instruction *InstCombiner::visitFree(CallInst &FI) {
@@ -1489,6 +1564,16 @@ Instruction *InstCombiner::visitFree(CallInst &FI) {
if (isa<ConstantPointerNull>(Op))
return EraseInstFromFunction(FI);
+ // If we optimize for code size, try to move the call to free before the null
+ // test so that simplify cfg can remove the empty block and dead code
+ // elimination the branch. I.e., helps to turn something like:
+ // if (foo) free(foo);
+ // into
+ // free(foo);
+ if (MinimizeSize)
+ if (Instruction *I = tryToMoveFreeBeforeNullTest(FI))
+ return I;
+
return 0;
}
@@ -2374,7 +2459,7 @@ public:
InstCombinerLibCallSimplifier(const DataLayout *TD,
const TargetLibraryInfo *TLI,
InstCombiner *IC)
- : LibCallSimplifier(TD, TLI) {
+ : LibCallSimplifier(TD, TLI, UnsafeFPShrink) {
this->IC = IC;
}
@@ -2389,6 +2474,9 @@ public:
bool InstCombiner::runOnFunction(Function &F) {
TD = getAnalysisIfAvailable<DataLayout>();
TLI = &getAnalysis<TargetLibraryInfo>();
+ // Minimizing size?
+ MinimizeSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::MinSize);
/// Builder - This is an IRBuilder that automatically inserts new
/// instructions into the worklist when they are created.
diff --git a/contrib/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp b/contrib/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp
index b7be462..623c470 100644
--- a/contrib/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp
+++ b/contrib/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp
@@ -15,41 +15,47 @@
#define DEBUG_TYPE "asan"
-#include "BlackList.h"
-#include "llvm/Function.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/InlineAsm.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
-#include "llvm/Type.h"
+#include "llvm/Transforms/Instrumentation.h"
#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Triple.h"
+#include "llvm/DIBuilder.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/InstVisitor.h"
+#include "llvm/Support/CallSite.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/system_error.h"
-#include "llvm/DataLayout.h"
#include "llvm/Target/TargetMachine.h"
-#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/BlackList.h"
+#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
-
-#include <string>
#include <algorithm>
+#include <string>
using namespace llvm;
static const uint64_t kDefaultShadowScale = 3;
static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
-static const uint64_t kDefaultShadowOffsetAndroid = 0;
+static const uint64_t kDefaultShort64bitShadowOffset = 0x7FFF8000; // < 2G.
+static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 41;
static const size_t kMaxStackMallocSize = 1 << 16; // 64K
static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
@@ -59,16 +65,22 @@ static const char *kAsanModuleCtorName = "asan.module_ctor";
static const char *kAsanModuleDtorName = "asan.module_dtor";
static const int kAsanCtorAndCtorPriority = 1;
static const char *kAsanReportErrorTemplate = "__asan_report_";
+static const char *kAsanReportLoadN = "__asan_report_load_n";
+static const char *kAsanReportStoreN = "__asan_report_store_n";
static const char *kAsanRegisterGlobalsName = "__asan_register_globals";
static const char *kAsanUnregisterGlobalsName = "__asan_unregister_globals";
static const char *kAsanPoisonGlobalsName = "__asan_before_dynamic_init";
static const char *kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init";
-static const char *kAsanInitName = "__asan_init";
+static const char *kAsanInitName = "__asan_init_v3";
static const char *kAsanHandleNoReturnName = "__asan_handle_no_return";
static const char *kAsanMappingOffsetName = "__asan_mapping_offset";
static const char *kAsanMappingScaleName = "__asan_mapping_scale";
static const char *kAsanStackMallocName = "__asan_stack_malloc";
static const char *kAsanStackFreeName = "__asan_stack_free";
+static const char *kAsanGenPrefix = "__asan_gen_";
+static const char *kAsanPoisonStackMemoryName = "__asan_poison_stack_memory";
+static const char *kAsanUnpoisonStackMemoryName =
+ "__asan_unpoison_stack_memory";
static const int kAsanStackLeftRedzoneMagic = 0xf1;
static const int kAsanStackMidRedzoneMagic = 0xf2;
@@ -112,9 +124,10 @@ static cl::opt<bool> ClInitializers("asan-initialization-order",
cl::desc("Handle C++ initializer order"), cl::Hidden, cl::init(false));
static cl::opt<bool> ClMemIntrin("asan-memintrin",
cl::desc("Handle memset/memcpy/memmove"), cl::Hidden, cl::init(true));
-// This flag may need to be replaced with -fasan-blacklist.
-static cl::opt<std::string> ClBlackListFile("asan-blacklist",
- cl::desc("File containing the list of functions to ignore "
+static cl::opt<bool> ClRealignStack("asan-realign-stack",
+ cl::desc("Realign stack to 32"), cl::Hidden, cl::init(true));
+static cl::opt<std::string> ClBlacklistFile("asan-blacklist",
+ cl::desc("File containing the list of objects to ignore "
"during instrumentation"), cl::Hidden);
// These flags allow to change the shadow mapping.
@@ -124,6 +137,9 @@ static cl::opt<int> ClMappingScale("asan-mapping-scale",
cl::desc("scale of asan shadow mapping"), cl::Hidden, cl::init(0));
static cl::opt<int> ClMappingOffsetLog("asan-mapping-offset-log",
cl::desc("offset of asan shadow mapping"), cl::Hidden, cl::init(-1));
+static cl::opt<bool> ClShort64BitOffset("asan-short-64bit-mapping-offset",
+ cl::desc("Use short immediate constant as the mapping offset for 64bit"),
+ cl::Hidden, cl::init(true));
// Optimization flags. Not user visible, used mostly for testing
// and benchmarking the tool.
@@ -135,6 +151,10 @@ static cl::opt<bool> ClOptSameTemp("asan-opt-same-temp",
static cl::opt<bool> ClOptGlobals("asan-opt-globals",
cl::desc("Don't instrument scalar globals"), cl::Hidden, cl::init(true));
+static cl::opt<bool> ClCheckLifetime("asan-check-lifetime",
+ cl::desc("Use llvm.lifetime intrinsics to insert extra checks"),
+ cl::Hidden, cl::init(false));
+
// Debug flags.
static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
cl::init(0));
@@ -148,74 +168,332 @@ static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug man inst"),
cl::Hidden, cl::init(-1));
namespace {
+/// A set of dynamically initialized globals extracted from metadata.
+class SetOfDynamicallyInitializedGlobals {
+ public:
+ void Init(Module& M) {
+ // Clang generates metadata identifying all dynamically initialized globals.
+ NamedMDNode *DynamicGlobals =
+ M.getNamedMetadata("llvm.asan.dynamically_initialized_globals");
+ if (!DynamicGlobals)
+ return;
+ for (int i = 0, n = DynamicGlobals->getNumOperands(); i < n; ++i) {
+ MDNode *MDN = DynamicGlobals->getOperand(i);
+ assert(MDN->getNumOperands() == 1);
+ Value *VG = MDN->getOperand(0);
+ // The optimizer may optimize away a global entirely, in which case we
+ // cannot instrument access to it.
+ if (!VG)
+ continue;
+ DynInitGlobals.insert(cast<GlobalVariable>(VG));
+ }
+ }
+ bool Contains(GlobalVariable *G) { return DynInitGlobals.count(G) != 0; }
+ private:
+ SmallSet<GlobalValue*, 32> DynInitGlobals;
+};
+
+/// This struct defines the shadow mapping using the rule:
+/// shadow = (mem >> Scale) ADD-or-OR Offset.
+struct ShadowMapping {
+ int Scale;
+ uint64_t Offset;
+ bool OrShadowOffset;
+};
+
+static ShadowMapping getShadowMapping(const Module &M, int LongSize,
+ bool ZeroBaseShadow) {
+ llvm::Triple TargetTriple(M.getTargetTriple());
+ bool IsAndroid = TargetTriple.getEnvironment() == llvm::Triple::Android;
+ bool IsMacOSX = TargetTriple.getOS() == llvm::Triple::MacOSX;
+ bool IsPPC64 = TargetTriple.getArch() == llvm::Triple::ppc64;
+ bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64;
+
+ ShadowMapping Mapping;
+
+ // OR-ing shadow offset if more efficient (at least on x86),
+ // but on ppc64 we have to use add since the shadow offset is not neccesary
+ // 1/8-th of the address space.
+ Mapping.OrShadowOffset = !IsPPC64 && !ClShort64BitOffset;
+
+ Mapping.Offset = (IsAndroid || ZeroBaseShadow) ? 0 :
+ (LongSize == 32 ? kDefaultShadowOffset32 :
+ IsPPC64 ? kPPC64_ShadowOffset64 : kDefaultShadowOffset64);
+ if (!ZeroBaseShadow && ClShort64BitOffset && IsX86_64 && !IsMacOSX) {
+ assert(LongSize == 64);
+ Mapping.Offset = kDefaultShort64bitShadowOffset;
+ }
+ if (!ZeroBaseShadow && ClMappingOffsetLog >= 0) {
+ // Zero offset log is the special case.
+ Mapping.Offset = (ClMappingOffsetLog == 0) ? 0 : 1ULL << ClMappingOffsetLog;
+ }
+
+ Mapping.Scale = kDefaultShadowScale;
+ if (ClMappingScale) {
+ Mapping.Scale = ClMappingScale;
+ }
+
+ return Mapping;
+}
+
+static size_t RedzoneSizeForScale(int MappingScale) {
+ // Redzone used for stack and globals is at least 32 bytes.
+ // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
+ return std::max(32U, 1U << MappingScale);
+}
+
/// AddressSanitizer: instrument the code in module to find memory bugs.
struct AddressSanitizer : public FunctionPass {
- AddressSanitizer();
- virtual const char *getPassName() const;
+ AddressSanitizer(bool CheckInitOrder = true,
+ bool CheckUseAfterReturn = false,
+ bool CheckLifetime = false,
+ StringRef BlacklistFile = StringRef(),
+ bool ZeroBaseShadow = false)
+ : FunctionPass(ID),
+ CheckInitOrder(CheckInitOrder || ClInitializers),
+ CheckUseAfterReturn(CheckUseAfterReturn || ClUseAfterReturn),
+ CheckLifetime(CheckLifetime || ClCheckLifetime),
+ BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile
+ : BlacklistFile),
+ ZeroBaseShadow(ZeroBaseShadow) {}
+ virtual const char *getPassName() const {
+ return "AddressSanitizerFunctionPass";
+ }
void instrumentMop(Instruction *I);
- void instrumentAddress(Instruction *OrigIns, IRBuilder<> &IRB,
- Value *Addr, uint32_t TypeSize, bool IsWrite);
+ void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
+ Value *Addr, uint32_t TypeSize, bool IsWrite,
+ Value *SizeArgument);
Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
Value *ShadowValue, uint32_t TypeSize);
Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
- bool IsWrite, size_t AccessSizeIndex);
+ bool IsWrite, size_t AccessSizeIndex,
+ Value *SizeArgument);
bool instrumentMemIntrinsic(MemIntrinsic *MI);
void instrumentMemIntrinsicParam(Instruction *OrigIns, Value *Addr,
Value *Size,
Instruction *InsertBefore, bool IsWrite);
Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
bool runOnFunction(Function &F);
- void createInitializerPoisonCalls(Module &M,
- Value *FirstAddr, Value *LastAddr);
bool maybeInsertAsanInitAtFunctionEntry(Function &F);
- bool poisonStackInFunction(Function &F);
+ void emitShadowMapping(Module &M, IRBuilder<> &IRB) const;
virtual bool doInitialization(Module &M);
- virtual bool doFinalization(Module &M);
- bool insertGlobalRedzones(Module &M);
static char ID; // Pass identification, replacement for typeid
private:
- uint64_t getAllocaSizeInBytes(AllocaInst *AI) {
- Type *Ty = AI->getAllocatedType();
- uint64_t SizeInBytes = TD->getTypeAllocSize(Ty);
- return SizeInBytes;
- }
- uint64_t getAlignedSize(uint64_t SizeInBytes) {
- return ((SizeInBytes + RedzoneSize - 1)
- / RedzoneSize) * RedzoneSize;
- }
- uint64_t getAlignedAllocaSize(AllocaInst *AI) {
- uint64_t SizeInBytes = getAllocaSizeInBytes(AI);
- return getAlignedSize(SizeInBytes);
- }
+ void initializeCallbacks(Module &M);
- Function *checkInterfaceFunction(Constant *FuncOrBitcast);
bool ShouldInstrumentGlobal(GlobalVariable *G);
- void PoisonStack(const ArrayRef<AllocaInst*> &AllocaVec, IRBuilder<> IRB,
- Value *ShadowBase, bool DoPoison);
bool LooksLikeCodeInBug11395(Instruction *I);
void FindDynamicInitializers(Module &M);
- bool HasDynamicInitializer(GlobalVariable *G);
+
+ bool CheckInitOrder;
+ bool CheckUseAfterReturn;
+ bool CheckLifetime;
+ SmallString<64> BlacklistFile;
+ bool ZeroBaseShadow;
LLVMContext *C;
DataLayout *TD;
- uint64_t MappingOffset;
- int MappingScale;
- size_t RedzoneSize;
int LongSize;
Type *IntptrTy;
- Type *IntptrPtrTy;
+ ShadowMapping Mapping;
Function *AsanCtorFunction;
Function *AsanInitFunction;
- Function *AsanStackMallocFunc, *AsanStackFreeFunc;
Function *AsanHandleNoReturnFunc;
- Instruction *CtorInsertBefore;
OwningPtr<BlackList> BL;
// This array is indexed by AccessIsWrite and log2(AccessSize).
Function *AsanErrorCallback[2][kNumberOfAccessSizes];
+ // This array is indexed by AccessIsWrite.
+ Function *AsanErrorCallbackSized[2];
InlineAsm *EmptyAsm;
- SmallSet<GlobalValue*, 32> DynamicallyInitializedGlobals;
- SmallSet<GlobalValue*, 32> GlobalsCreatedByAsan;
+ SetOfDynamicallyInitializedGlobals DynamicallyInitializedGlobals;
+
+ friend struct FunctionStackPoisoner;
+};
+
+class AddressSanitizerModule : public ModulePass {
+ public:
+ AddressSanitizerModule(bool CheckInitOrder = true,
+ StringRef BlacklistFile = StringRef(),
+ bool ZeroBaseShadow = false)
+ : ModulePass(ID),
+ CheckInitOrder(CheckInitOrder || ClInitializers),
+ BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile
+ : BlacklistFile),
+ ZeroBaseShadow(ZeroBaseShadow) {}
+ bool runOnModule(Module &M);
+ static char ID; // Pass identification, replacement for typeid
+ virtual const char *getPassName() const {
+ return "AddressSanitizerModule";
+ }
+
+ private:
+ void initializeCallbacks(Module &M);
+
+ bool ShouldInstrumentGlobal(GlobalVariable *G);
+ void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
+ size_t RedzoneSize() const {
+ return RedzoneSizeForScale(Mapping.Scale);
+ }
+
+ bool CheckInitOrder;
+ SmallString<64> BlacklistFile;
+ bool ZeroBaseShadow;
+
+ OwningPtr<BlackList> BL;
+ SetOfDynamicallyInitializedGlobals DynamicallyInitializedGlobals;
+ Type *IntptrTy;
+ LLVMContext *C;
+ DataLayout *TD;
+ ShadowMapping Mapping;
+ Function *AsanPoisonGlobals;
+ Function *AsanUnpoisonGlobals;
+ Function *AsanRegisterGlobals;
+ Function *AsanUnregisterGlobals;
+};
+
+// Stack poisoning does not play well with exception handling.
+// When an exception is thrown, we essentially bypass the code
+// that unpoisones the stack. This is why the run-time library has
+// to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
+// stack in the interceptor. This however does not work inside the
+// actual function which catches the exception. Most likely because the
+// compiler hoists the load of the shadow value somewhere too high.
+// This causes asan to report a non-existing bug on 453.povray.
+// It sounds like an LLVM bug.
+struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
+ Function &F;
+ AddressSanitizer &ASan;
+ DIBuilder DIB;
+ LLVMContext *C;
+ Type *IntptrTy;
+ Type *IntptrPtrTy;
+ ShadowMapping Mapping;
+
+ SmallVector<AllocaInst*, 16> AllocaVec;
+ SmallVector<Instruction*, 8> RetVec;
+ uint64_t TotalStackSize;
+ unsigned StackAlignment;
+
+ Function *AsanStackMallocFunc, *AsanStackFreeFunc;
+ Function *AsanPoisonStackMemoryFunc, *AsanUnpoisonStackMemoryFunc;
+
+ // Stores a place and arguments of poisoning/unpoisoning call for alloca.
+ struct AllocaPoisonCall {
+ IntrinsicInst *InsBefore;
+ uint64_t Size;
+ bool DoPoison;
+ };
+ SmallVector<AllocaPoisonCall, 8> AllocaPoisonCallVec;
+
+ // Maps Value to an AllocaInst from which the Value is originated.
+ typedef DenseMap<Value*, AllocaInst*> AllocaForValueMapTy;
+ AllocaForValueMapTy AllocaForValue;
+
+ FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
+ : F(F), ASan(ASan), DIB(*F.getParent()), C(ASan.C),
+ IntptrTy(ASan.IntptrTy), IntptrPtrTy(PointerType::get(IntptrTy, 0)),
+ Mapping(ASan.Mapping),
+ TotalStackSize(0), StackAlignment(1 << Mapping.Scale) {}
+
+ bool runOnFunction() {
+ if (!ClStack) return false;
+ // Collect alloca, ret, lifetime instructions etc.
+ for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
+ DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
+ BasicBlock *BB = *DI;
+ visit(*BB);
+ }
+ if (AllocaVec.empty()) return false;
+
+ initializeCallbacks(*F.getParent());
+
+ poisonStack();
+
+ if (ClDebugStack) {
+ DEBUG(dbgs() << F);
+ }
+ return true;
+ }
+
+ // Finds all static Alloca instructions and puts
+ // poisoned red zones around all of them.
+ // Then unpoison everything back before the function returns.
+ void poisonStack();
+
+ // ----------------------- Visitors.
+ /// \brief Collect all Ret instructions.
+ void visitReturnInst(ReturnInst &RI) {
+ RetVec.push_back(&RI);
+ }
+
+ /// \brief Collect Alloca instructions we want (and can) handle.
+ void visitAllocaInst(AllocaInst &AI) {
+ if (!isInterestingAlloca(AI)) return;
+
+ StackAlignment = std::max(StackAlignment, AI.getAlignment());
+ AllocaVec.push_back(&AI);
+ uint64_t AlignedSize = getAlignedAllocaSize(&AI);
+ TotalStackSize += AlignedSize;
+ }
+
+ /// \brief Collect lifetime intrinsic calls to check for use-after-scope
+ /// errors.
+ void visitIntrinsicInst(IntrinsicInst &II) {
+ if (!ASan.CheckLifetime) return;
+ Intrinsic::ID ID = II.getIntrinsicID();
+ if (ID != Intrinsic::lifetime_start &&
+ ID != Intrinsic::lifetime_end)
+ return;
+ // Found lifetime intrinsic, add ASan instrumentation if necessary.
+ ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0));
+ // If size argument is undefined, don't do anything.
+ if (Size->isMinusOne()) return;
+ // Check that size doesn't saturate uint64_t and can
+ // be stored in IntptrTy.
+ const uint64_t SizeValue = Size->getValue().getLimitedValue();
+ if (SizeValue == ~0ULL ||
+ !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
+ return;
+ // Find alloca instruction that corresponds to llvm.lifetime argument.
+ AllocaInst *AI = findAllocaForValue(II.getArgOperand(1));
+ if (!AI) return;
+ bool DoPoison = (ID == Intrinsic::lifetime_end);
+ AllocaPoisonCall APC = {&II, SizeValue, DoPoison};
+ AllocaPoisonCallVec.push_back(APC);
+ }
+
+ // ---------------------- Helpers.
+ void initializeCallbacks(Module &M);
+
+ // Check if we want (and can) handle this alloca.
+ bool isInterestingAlloca(AllocaInst &AI) {
+ return (!AI.isArrayAllocation() &&
+ AI.isStaticAlloca() &&
+ AI.getAllocatedType()->isSized());
+ }
+
+ size_t RedzoneSize() const {
+ return RedzoneSizeForScale(Mapping.Scale);
+ }
+ uint64_t getAllocaSizeInBytes(AllocaInst *AI) {
+ Type *Ty = AI->getAllocatedType();
+ uint64_t SizeInBytes = ASan.TD->getTypeAllocSize(Ty);
+ return SizeInBytes;
+ }
+ uint64_t getAlignedSize(uint64_t SizeInBytes) {
+ size_t RZ = RedzoneSize();
+ return ((SizeInBytes + RZ - 1) / RZ) * RZ;
+ }
+ uint64_t getAlignedAllocaSize(AllocaInst *AI) {
+ uint64_t SizeInBytes = getAllocaSizeInBytes(AI);
+ return getAlignedSize(SizeInBytes);
+ }
+ /// Finds alloca where the value comes from.
+ AllocaInst *findAllocaForValue(Value *V);
+ void poisonRedZones(const ArrayRef<AllocaInst*> &AllocaVec, IRBuilder<> IRB,
+ Value *ShadowBase, bool DoPoison);
+ void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> IRB, bool DoPoison);
};
} // namespace
@@ -224,13 +502,21 @@ char AddressSanitizer::ID = 0;
INITIALIZE_PASS(AddressSanitizer, "asan",
"AddressSanitizer: detects use-after-free and out-of-bounds bugs.",
false, false)
-AddressSanitizer::AddressSanitizer() : FunctionPass(ID) { }
-FunctionPass *llvm::createAddressSanitizerPass() {
- return new AddressSanitizer();
+FunctionPass *llvm::createAddressSanitizerFunctionPass(
+ bool CheckInitOrder, bool CheckUseAfterReturn, bool CheckLifetime,
+ StringRef BlacklistFile, bool ZeroBaseShadow) {
+ return new AddressSanitizer(CheckInitOrder, CheckUseAfterReturn,
+ CheckLifetime, BlacklistFile, ZeroBaseShadow);
}
-const char *AddressSanitizer::getPassName() const {
- return "AddressSanitizer";
+char AddressSanitizerModule::ID = 0;
+INITIALIZE_PASS(AddressSanitizerModule, "asan-module",
+ "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
+ "ModulePass", false, false)
+ModulePass *llvm::createAddressSanitizerModulePass(
+ bool CheckInitOrder, StringRef BlacklistFile, bool ZeroBaseShadow) {
+ return new AddressSanitizerModule(CheckInitOrder, BlacklistFile,
+ ZeroBaseShadow);
}
static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
@@ -242,38 +528,44 @@ static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
// Create a constant for Str so that we can pass it to the run-time lib.
static GlobalVariable *createPrivateGlobalForString(Module &M, StringRef Str) {
Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
- return new GlobalVariable(M, StrConst->getType(), true,
- GlobalValue::PrivateLinkage, StrConst, "");
+ GlobalVariable *GV = new GlobalVariable(M, StrConst->getType(), true,
+ GlobalValue::PrivateLinkage, StrConst,
+ kAsanGenPrefix);
+ GV->setUnnamedAddr(true); // Ok to merge these.
+ GV->setAlignment(1); // Strings may not be merged w/o setting align 1.
+ return GV;
+}
+
+static bool GlobalWasGeneratedByAsan(GlobalVariable *G) {
+ return G->getName().find(kAsanGenPrefix) == 0;
}
Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
// Shadow >> scale
- Shadow = IRB.CreateLShr(Shadow, MappingScale);
- if (MappingOffset == 0)
+ Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
+ if (Mapping.Offset == 0)
return Shadow;
// (Shadow >> scale) | offset
- return IRB.CreateOr(Shadow, ConstantInt::get(IntptrTy,
- MappingOffset));
+ if (Mapping.OrShadowOffset)
+ return IRB.CreateOr(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset));
+ else
+ return IRB.CreateAdd(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset));
}
void AddressSanitizer::instrumentMemIntrinsicParam(
Instruction *OrigIns,
Value *Addr, Value *Size, Instruction *InsertBefore, bool IsWrite) {
+ IRBuilder<> IRB(InsertBefore);
+ if (Size->getType() != IntptrTy)
+ Size = IRB.CreateIntCast(Size, IntptrTy, false);
// Check the first byte.
- {
- IRBuilder<> IRB(InsertBefore);
- instrumentAddress(OrigIns, IRB, Addr, 8, IsWrite);
- }
+ instrumentAddress(OrigIns, InsertBefore, Addr, 8, IsWrite, Size);
// Check the last byte.
- {
- IRBuilder<> IRB(InsertBefore);
- Value *SizeMinusOne = IRB.CreateSub(
- Size, ConstantInt::get(Size->getType(), 1));
- SizeMinusOne = IRB.CreateIntCast(SizeMinusOne, IntptrTy, false);
- Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
- Value *AddrPlusSizeMinisOne = IRB.CreateAdd(AddrLong, SizeMinusOne);
- instrumentAddress(OrigIns, IRB, AddrPlusSizeMinisOne, 8, IsWrite);
- }
+ IRB.SetInsertPoint(InsertBefore);
+ Value *SizeMinusOne = IRB.CreateSub(Size, ConstantInt::get(IntptrTy, 1));
+ Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
+ Value *AddrLast = IRB.CreateAdd(AddrLong, SizeMinusOne);
+ instrumentAddress(OrigIns, InsertBefore, AddrLast, 8, IsWrite, Size);
}
// Instrument memset/memmove/memcpy
@@ -328,30 +620,6 @@ static Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite) {
return NULL;
}
-void AddressSanitizer::FindDynamicInitializers(Module& M) {
- // Clang generates metadata identifying all dynamically initialized globals.
- NamedMDNode *DynamicGlobals =
- M.getNamedMetadata("llvm.asan.dynamically_initialized_globals");
- if (!DynamicGlobals)
- return;
- for (int i = 0, n = DynamicGlobals->getNumOperands(); i < n; ++i) {
- MDNode *MDN = DynamicGlobals->getOperand(i);
- assert(MDN->getNumOperands() == 1);
- Value *VG = MDN->getOperand(0);
- // The optimizer may optimize away a global entirely, in which case we
- // cannot instrument access to it.
- if (!VG)
- continue;
-
- GlobalVariable *G = cast<GlobalVariable>(VG);
- DynamicallyInitializedGlobals.insert(G);
- }
-}
-// Returns true if a global variable is initialized dynamically in this TU.
-bool AddressSanitizer::HasDynamicInitializer(GlobalVariable *G) {
- return DynamicallyInitializedGlobals.count(G);
-}
-
void AddressSanitizer::instrumentMop(Instruction *I) {
bool IsWrite = false;
Value *Addr = isInterestingMemoryAccess(I, &IsWrite);
@@ -360,14 +628,12 @@ void AddressSanitizer::instrumentMop(Instruction *I) {
if (GlobalVariable *G = dyn_cast<GlobalVariable>(Addr)) {
// If initialization order checking is disabled, a simple access to a
// dynamically initialized global is always valid.
- if (!ClInitializers)
+ if (!CheckInitOrder)
return;
// If a global variable does not have dynamic initialization we don't
- // have to instrument it. However, if a global has external linkage, we
- // assume it has dynamic initialization, as it may have an initializer
- // in a different TU.
- if (G->getLinkage() != GlobalVariable::ExternalLinkage &&
- !HasDynamicInitializer(G))
+ // have to instrument it. However, if a global does not have initailizer
+ // at all, we assume it has dynamic initializer (in other TU).
+ if (G->hasInitializer() && !DynamicallyInitializedGlobals.Contains(G))
return;
}
}
@@ -378,21 +644,31 @@ void AddressSanitizer::instrumentMop(Instruction *I) {
assert(OrigTy->isSized());
uint32_t TypeSize = TD->getTypeStoreSizeInBits(OrigTy);
- if (TypeSize != 8 && TypeSize != 16 &&
- TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
- // Ignore all unusual sizes.
- return;
- }
+ assert((TypeSize % 8) == 0);
+ // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check.
+ if (TypeSize == 8 || TypeSize == 16 ||
+ TypeSize == 32 || TypeSize == 64 || TypeSize == 128)
+ return instrumentAddress(I, I, Addr, TypeSize, IsWrite, 0);
+ // Instrument unusual size (but still multiple of 8).
+ // We can not do it with a single check, so we do 1-byte check for the first
+ // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
+ // to report the actual access size.
IRBuilder<> IRB(I);
- instrumentAddress(I, IRB, Addr, TypeSize, IsWrite);
+ Value *LastByte = IRB.CreateIntToPtr(
+ IRB.CreateAdd(IRB.CreatePointerCast(Addr, IntptrTy),
+ ConstantInt::get(IntptrTy, TypeSize / 8 - 1)),
+ OrigPtrTy);
+ Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8);
+ instrumentAddress(I, I, Addr, 8, IsWrite, Size);
+ instrumentAddress(I, I, LastByte, 8, IsWrite, Size);
}
// Validate the result of Module::getOrInsertFunction called for an interface
// function of AddressSanitizer. If the instrumented module defines a function
// with the same name, their prototypes must match, otherwise
// getOrInsertFunction returns a bitcast.
-Function *AddressSanitizer::checkInterfaceFunction(Constant *FuncOrBitcast) {
+static Function *checkInterfaceFunction(Constant *FuncOrBitcast) {
if (isa<Function>(FuncOrBitcast)) return cast<Function>(FuncOrBitcast);
FuncOrBitcast->dump();
report_fatal_error("trying to redefine an AddressSanitizer "
@@ -401,10 +677,12 @@ Function *AddressSanitizer::checkInterfaceFunction(Constant *FuncOrBitcast) {
Instruction *AddressSanitizer::generateCrashCode(
Instruction *InsertBefore, Value *Addr,
- bool IsWrite, size_t AccessSizeIndex) {
+ bool IsWrite, size_t AccessSizeIndex, Value *SizeArgument) {
IRBuilder<> IRB(InsertBefore);
- CallInst *Call = IRB.CreateCall(AsanErrorCallback[IsWrite][AccessSizeIndex],
- Addr);
+ CallInst *Call = SizeArgument
+ ? IRB.CreateCall2(AsanErrorCallbackSized[IsWrite], Addr, SizeArgument)
+ : IRB.CreateCall(AsanErrorCallback[IsWrite][AccessSizeIndex], Addr);
+
// We don't do Call->setDoesNotReturn() because the BB already has
// UnreachableInst at the end.
// This EmptyAsm is required to avoid callback merge.
@@ -415,7 +693,7 @@ Instruction *AddressSanitizer::generateCrashCode(
Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
Value *ShadowValue,
uint32_t TypeSize) {
- size_t Granularity = 1 << MappingScale;
+ size_t Granularity = 1 << Mapping.Scale;
// Addr & (Granularity - 1)
Value *LastAccessedByte = IRB.CreateAnd(
AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
@@ -431,12 +709,14 @@ Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
}
void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
- IRBuilder<> &IRB, Value *Addr,
- uint32_t TypeSize, bool IsWrite) {
+ Instruction *InsertBefore,
+ Value *Addr, uint32_t TypeSize,
+ bool IsWrite, Value *SizeArgument) {
+ IRBuilder<> IRB(InsertBefore);
Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
Type *ShadowTy = IntegerType::get(
- *C, std::max(8U, TypeSize >> MappingScale));
+ *C, std::max(8U, TypeSize >> Mapping.Scale));
Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
Value *ShadowPtr = memToShadow(AddrLong, IRB);
Value *CmpVal = Constant::getNullValue(ShadowTy);
@@ -445,7 +725,7 @@ void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
- size_t Granularity = 1 << MappingScale;
+ size_t Granularity = 1 << Mapping.Scale;
TerminatorInst *CrashTerm = 0;
if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
@@ -464,14 +744,13 @@ void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
CrashTerm = SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), true);
}
- Instruction *Crash =
- generateCrashCode(CrashTerm, AddrLong, IsWrite, AccessSizeIndex);
+ Instruction *Crash = generateCrashCode(
+ CrashTerm, AddrLong, IsWrite, AccessSizeIndex, SizeArgument);
Crash->setDebugLoc(OrigIns->getDebugLoc());
}
-void AddressSanitizer::createInitializerPoisonCalls(Module &M,
- Value *FirstAddr,
- Value *LastAddr) {
+void AddressSanitizerModule::createInitializerPoisonCalls(
+ Module &M, GlobalValue *ModuleName) {
// We do all of our poisoning and unpoisoning within _GLOBAL__I_a.
Function *GlobalInit = M.getFunction("_GLOBAL__I_a");
// If that function is not present, this TU contains no globals, or they have
@@ -482,16 +761,9 @@ void AddressSanitizer::createInitializerPoisonCalls(Module &M,
// Set up the arguments to our poison/unpoison functions.
IRBuilder<> IRB(GlobalInit->begin()->getFirstInsertionPt());
- // Declare our poisoning and unpoisoning functions.
- Function *AsanPoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction(
- kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
- AsanPoisonGlobals->setLinkage(Function::ExternalLinkage);
- Function *AsanUnpoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction(
- kAsanUnpoisonGlobalsName, IRB.getVoidTy(), NULL));
- AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage);
-
// Add a call to poison all external globals before the given function starts.
- IRB.CreateCall2(AsanPoisonGlobals, FirstAddr, LastAddr);
+ Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
+ IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
// Add calls to unpoison all globals before each return instruction.
for (Function::iterator I = GlobalInit->begin(), E = GlobalInit->end();
@@ -502,14 +774,14 @@ void AddressSanitizer::createInitializerPoisonCalls(Module &M,
}
}
-bool AddressSanitizer::ShouldInstrumentGlobal(GlobalVariable *G) {
+bool AddressSanitizerModule::ShouldInstrumentGlobal(GlobalVariable *G) {
Type *Ty = cast<PointerType>(G->getType())->getElementType();
DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
if (BL->isIn(*G)) return false;
if (!Ty->isSized()) return false;
if (!G->hasInitializer()) return false;
- if (GlobalsCreatedByAsan.count(G)) return false; // Our own global.
+ if (GlobalWasGeneratedByAsan(G)) return false; // Our own global.
// Touch only those globals that will not be defined in other modules.
// Don't handle ODR type linkages since other modules may be built w/o asan.
if (G->getLinkage() != GlobalVariable::ExternalLinkage &&
@@ -522,7 +794,7 @@ bool AddressSanitizer::ShouldInstrumentGlobal(GlobalVariable *G) {
if (G->isThreadLocal())
return false;
// For now, just ignore this Alloca if the alignment is large.
- if (G->getAlignment() > RedzoneSize) return false;
+ if (G->getAlignment() > RedzoneSize()) return false;
// Ignore all the globals with the names starting with "\01L_OBJC_".
// Many of those are put into the .cstring section. The linker compresses
@@ -561,10 +833,43 @@ bool AddressSanitizer::ShouldInstrumentGlobal(GlobalVariable *G) {
return true;
}
+void AddressSanitizerModule::initializeCallbacks(Module &M) {
+ IRBuilder<> IRB(*C);
+ // Declare our poisoning and unpoisoning functions.
+ AsanPoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction(
+ kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy, NULL));
+ AsanPoisonGlobals->setLinkage(Function::ExternalLinkage);
+ AsanUnpoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction(
+ kAsanUnpoisonGlobalsName, IRB.getVoidTy(), NULL));
+ AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage);
+ // Declare functions that register/unregister globals.
+ AsanRegisterGlobals = checkInterfaceFunction(M.getOrInsertFunction(
+ kAsanRegisterGlobalsName, IRB.getVoidTy(),
+ IntptrTy, IntptrTy, NULL));
+ AsanRegisterGlobals->setLinkage(Function::ExternalLinkage);
+ AsanUnregisterGlobals = checkInterfaceFunction(M.getOrInsertFunction(
+ kAsanUnregisterGlobalsName,
+ IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
+ AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage);
+}
+
// This function replaces all global variables with new variables that have
// trailing redzones. It also creates a function that poisons
// redzones and inserts this function into llvm.global_ctors.
-bool AddressSanitizer::insertGlobalRedzones(Module &M) {
+bool AddressSanitizerModule::runOnModule(Module &M) {
+ if (!ClGlobals) return false;
+ TD = getAnalysisIfAvailable<DataLayout>();
+ if (!TD)
+ return false;
+ BL.reset(new BlackList(BlacklistFile));
+ if (BL->isIn(M)) return false;
+ C = &(M.getContext());
+ int LongSize = TD->getPointerSizeInBits();
+ IntptrTy = Type::getIntNTy(*C, LongSize);
+ Mapping = getShadowMapping(M, LongSize, ZeroBaseShadow);
+ initializeCallbacks(M);
+ DynamicallyInitializedGlobals.Init(M);
+
SmallVector<GlobalVariable *, 16> GlobalsToChange;
for (Module::GlobalListType::iterator G = M.global_begin(),
@@ -581,32 +886,48 @@ bool AddressSanitizer::insertGlobalRedzones(Module &M) {
// size_t size;
// size_t size_with_redzone;
// const char *name;
+ // const char *module_name;
// size_t has_dynamic_init;
// We initialize an array of such structures and pass it to a run-time call.
StructType *GlobalStructTy = StructType::get(IntptrTy, IntptrTy,
IntptrTy, IntptrTy,
- IntptrTy, NULL);
+ IntptrTy, IntptrTy, NULL);
SmallVector<Constant *, 16> Initializers(n), DynamicInit;
- IRBuilder<> IRB(CtorInsertBefore);
- if (ClInitializers)
- FindDynamicInitializers(M);
+ Function *CtorFunc = M.getFunction(kAsanModuleCtorName);
+ assert(CtorFunc);
+ IRBuilder<> IRB(CtorFunc->getEntryBlock().getTerminator());
+
+ bool HasDynamicallyInitializedGlobals = false;
- // The addresses of the first and last dynamically initialized globals in
- // this TU. Used in initialization order checking.
- Value *FirstDynamic = 0, *LastDynamic = 0;
+ GlobalVariable *ModuleName = createPrivateGlobalForString(
+ M, M.getModuleIdentifier());
+ // We shouldn't merge same module names, as this string serves as unique
+ // module ID in runtime.
+ ModuleName->setUnnamedAddr(false);
for (size_t i = 0; i < n; i++) {
+ static const uint64_t kMaxGlobalRedzone = 1 << 18;
GlobalVariable *G = GlobalsToChange[i];
PointerType *PtrTy = cast<PointerType>(G->getType());
Type *Ty = PtrTy->getElementType();
uint64_t SizeInBytes = TD->getTypeAllocSize(Ty);
- uint64_t RightRedzoneSize = RedzoneSize +
- (RedzoneSize - (SizeInBytes % RedzoneSize));
+ uint64_t MinRZ = RedzoneSize();
+ // MinRZ <= RZ <= kMaxGlobalRedzone
+ // and trying to make RZ to be ~ 1/4 of SizeInBytes.
+ uint64_t RZ = std::max(MinRZ,
+ std::min(kMaxGlobalRedzone,
+ (SizeInBytes / MinRZ / 4) * MinRZ));
+ uint64_t RightRedzoneSize = RZ;
+ // Round up to MinRZ
+ if (SizeInBytes % MinRZ)
+ RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ);
+ assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0);
Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
// Determine whether this global should be poisoned in initialization.
- bool GlobalHasDynamicInitializer = HasDynamicInitializer(G);
+ bool GlobalHasDynamicInitializer =
+ DynamicallyInitializedGlobals.Contains(G);
// Don't check initialization order if this global is blacklisted.
GlobalHasDynamicInitializer &= !BL->isInInit(*G);
@@ -615,18 +936,14 @@ bool AddressSanitizer::insertGlobalRedzones(Module &M) {
NewTy, G->getInitializer(),
Constant::getNullValue(RightRedZoneTy), NULL);
- SmallString<2048> DescriptionOfGlobal = G->getName();
- DescriptionOfGlobal += " (";
- DescriptionOfGlobal += M.getModuleIdentifier();
- DescriptionOfGlobal += ")";
- GlobalVariable *Name = createPrivateGlobalForString(M, DescriptionOfGlobal);
+ GlobalVariable *Name = createPrivateGlobalForString(M, G->getName());
// Create a new global variable with enough space for a redzone.
GlobalVariable *NewGlobal = new GlobalVariable(
M, NewTy, G->isConstant(), G->getLinkage(),
NewInitializer, "", G, G->getThreadLocalMode());
NewGlobal->copyAttributesFrom(G);
- NewGlobal->setAlignment(RedzoneSize);
+ NewGlobal->setAlignment(MinRZ);
Value *Indices2[2];
Indices2[0] = IRB.getInt32(0);
@@ -643,15 +960,13 @@ bool AddressSanitizer::insertGlobalRedzones(Module &M) {
ConstantInt::get(IntptrTy, SizeInBytes),
ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
ConstantExpr::getPointerCast(Name, IntptrTy),
+ ConstantExpr::getPointerCast(ModuleName, IntptrTy),
ConstantInt::get(IntptrTy, GlobalHasDynamicInitializer),
NULL);
// Populate the first and last globals declared in this TU.
- if (ClInitializers && GlobalHasDynamicInitializer) {
- LastDynamic = ConstantExpr::getPointerCast(NewGlobal, IntptrTy);
- if (FirstDynamic == 0)
- FirstDynamic = LastDynamic;
- }
+ if (CheckInitOrder && GlobalHasDynamicInitializer)
+ HasDynamicallyInitializedGlobals = true;
DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
}
@@ -662,14 +977,8 @@ bool AddressSanitizer::insertGlobalRedzones(Module &M) {
ConstantArray::get(ArrayOfGlobalStructTy, Initializers), "");
// Create calls for poisoning before initializers run and unpoisoning after.
- if (ClInitializers && FirstDynamic && LastDynamic)
- createInitializerPoisonCalls(M, FirstDynamic, LastDynamic);
-
- Function *AsanRegisterGlobals = checkInterfaceFunction(M.getOrInsertFunction(
- kAsanRegisterGlobalsName, IRB.getVoidTy(),
- IntptrTy, IntptrTy, NULL));
- AsanRegisterGlobals->setLinkage(Function::ExternalLinkage);
-
+ if (CheckInitOrder && HasDynamicallyInitializedGlobals)
+ createInitializerPoisonCalls(M, ModuleName);
IRB.CreateCall2(AsanRegisterGlobals,
IRB.CreatePointerCast(AllGlobals, IntptrTy),
ConstantInt::get(IntptrTy, n));
@@ -681,12 +990,6 @@ bool AddressSanitizer::insertGlobalRedzones(Module &M) {
GlobalValue::InternalLinkage, kAsanModuleDtorName, &M);
BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
IRBuilder<> IRB_Dtor(ReturnInst::Create(*C, AsanDtorBB));
- Function *AsanUnregisterGlobals =
- checkInterfaceFunction(M.getOrInsertFunction(
- kAsanUnregisterGlobalsName,
- IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
- AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage);
-
IRB_Dtor.CreateCall2(AsanUnregisterGlobals,
IRB.CreatePointerCast(AllGlobals, IntptrTy),
ConstantInt::get(IntptrTy, n));
@@ -696,33 +999,8 @@ bool AddressSanitizer::insertGlobalRedzones(Module &M) {
return true;
}
-// virtual
-bool AddressSanitizer::doInitialization(Module &M) {
- // Initialize the private fields. No one has accessed them before.
- TD = getAnalysisIfAvailable<DataLayout>();
-
- if (!TD)
- return false;
- BL.reset(new BlackList(ClBlackListFile));
-
- C = &(M.getContext());
- LongSize = TD->getPointerSizeInBits();
- IntptrTy = Type::getIntNTy(*C, LongSize);
- IntptrPtrTy = PointerType::get(IntptrTy, 0);
-
- AsanCtorFunction = Function::Create(
- FunctionType::get(Type::getVoidTy(*C), false),
- GlobalValue::InternalLinkage, kAsanModuleCtorName, &M);
- BasicBlock *AsanCtorBB = BasicBlock::Create(*C, "", AsanCtorFunction);
- CtorInsertBefore = ReturnInst::Create(*C, AsanCtorBB);
-
- // call __asan_init in the module ctor.
- IRBuilder<> IRB(CtorInsertBefore);
- AsanInitFunction = checkInterfaceFunction(
- M.getOrInsertFunction(kAsanInitName, IRB.getVoidTy(), NULL));
- AsanInitFunction->setLinkage(Function::ExternalLinkage);
- IRB.CreateCall(AsanInitFunction);
-
+void AddressSanitizer::initializeCallbacks(Module &M) {
+ IRBuilder<> IRB(*C);
// Create __asan_report* callbacks.
for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
@@ -736,74 +1014,68 @@ bool AddressSanitizer::doInitialization(Module &M) {
FunctionName, IRB.getVoidTy(), IntptrTy, NULL));
}
}
+ AsanErrorCallbackSized[0] = checkInterfaceFunction(M.getOrInsertFunction(
+ kAsanReportLoadN, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
+ AsanErrorCallbackSized[1] = checkInterfaceFunction(M.getOrInsertFunction(
+ kAsanReportStoreN, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
- AsanStackMallocFunc = checkInterfaceFunction(M.getOrInsertFunction(
- kAsanStackMallocName, IntptrTy, IntptrTy, IntptrTy, NULL));
- AsanStackFreeFunc = checkInterfaceFunction(M.getOrInsertFunction(
- kAsanStackFreeName, IRB.getVoidTy(),
- IntptrTy, IntptrTy, IntptrTy, NULL));
AsanHandleNoReturnFunc = checkInterfaceFunction(M.getOrInsertFunction(
kAsanHandleNoReturnName, IRB.getVoidTy(), NULL));
-
// We insert an empty inline asm after __asan_report* to avoid callback merge.
EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
StringRef(""), StringRef(""),
/*hasSideEffects=*/true);
+}
- llvm::Triple targetTriple(M.getTargetTriple());
- bool isAndroid = targetTriple.getEnvironment() == llvm::Triple::Android;
+void AddressSanitizer::emitShadowMapping(Module &M, IRBuilder<> &IRB) const {
+ // Tell the values of mapping offset and scale to the run-time.
+ GlobalValue *asan_mapping_offset =
+ new GlobalVariable(M, IntptrTy, true, GlobalValue::LinkOnceODRLinkage,
+ ConstantInt::get(IntptrTy, Mapping.Offset),
+ kAsanMappingOffsetName);
+ // Read the global, otherwise it may be optimized away.
+ IRB.CreateLoad(asan_mapping_offset, true);
+
+ GlobalValue *asan_mapping_scale =
+ new GlobalVariable(M, IntptrTy, true, GlobalValue::LinkOnceODRLinkage,
+ ConstantInt::get(IntptrTy, Mapping.Scale),
+ kAsanMappingScaleName);
+ // Read the global, otherwise it may be optimized away.
+ IRB.CreateLoad(asan_mapping_scale, true);
+}
- MappingOffset = isAndroid ? kDefaultShadowOffsetAndroid :
- (LongSize == 32 ? kDefaultShadowOffset32 : kDefaultShadowOffset64);
- if (ClMappingOffsetLog >= 0) {
- if (ClMappingOffsetLog == 0) {
- // special case
- MappingOffset = 0;
- } else {
- MappingOffset = 1ULL << ClMappingOffsetLog;
- }
- }
- MappingScale = kDefaultShadowScale;
- if (ClMappingScale) {
- MappingScale = ClMappingScale;
- }
- // Redzone used for stack and globals is at least 32 bytes.
- // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
- RedzoneSize = std::max(32, (int)(1 << MappingScale));
+// virtual
+bool AddressSanitizer::doInitialization(Module &M) {
+ // Initialize the private fields. No one has accessed them before.
+ TD = getAnalysisIfAvailable<DataLayout>();
+ if (!TD)
+ return false;
+ BL.reset(new BlackList(BlacklistFile));
+ DynamicallyInitializedGlobals.Init(M);
- if (ClMappingOffsetLog >= 0) {
- // Tell the run-time the current values of mapping offset and scale.
- GlobalValue *asan_mapping_offset =
- new GlobalVariable(M, IntptrTy, true, GlobalValue::LinkOnceODRLinkage,
- ConstantInt::get(IntptrTy, MappingOffset),
- kAsanMappingOffsetName);
- // Read the global, otherwise it may be optimized away.
- IRB.CreateLoad(asan_mapping_offset, true);
- }
- if (ClMappingScale) {
- GlobalValue *asan_mapping_scale =
- new GlobalVariable(M, IntptrTy, true, GlobalValue::LinkOnceODRLinkage,
- ConstantInt::get(IntptrTy, MappingScale),
- kAsanMappingScaleName);
- // Read the global, otherwise it may be optimized away.
- IRB.CreateLoad(asan_mapping_scale, true);
- }
+ C = &(M.getContext());
+ LongSize = TD->getPointerSizeInBits();
+ IntptrTy = Type::getIntNTy(*C, LongSize);
- appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndCtorPriority);
+ AsanCtorFunction = Function::Create(
+ FunctionType::get(Type::getVoidTy(*C), false),
+ GlobalValue::InternalLinkage, kAsanModuleCtorName, &M);
+ BasicBlock *AsanCtorBB = BasicBlock::Create(*C, "", AsanCtorFunction);
+ // call __asan_init in the module ctor.
+ IRBuilder<> IRB(ReturnInst::Create(*C, AsanCtorBB));
+ AsanInitFunction = checkInterfaceFunction(
+ M.getOrInsertFunction(kAsanInitName, IRB.getVoidTy(), NULL));
+ AsanInitFunction->setLinkage(Function::ExternalLinkage);
+ IRB.CreateCall(AsanInitFunction);
- return true;
-}
+ Mapping = getShadowMapping(M, LongSize, ZeroBaseShadow);
+ emitShadowMapping(M, IRB);
-bool AddressSanitizer::doFinalization(Module &M) {
- // We transform the globals at the very end so that the optimization analysis
- // works on the original globals.
- if (ClGlobals)
- return insertGlobalRedzones(M);
- return false;
+ appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndCtorPriority);
+ return true;
}
-
bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
// For each NSObject descendant having a +load method, this method is invoked
// by the ObjC runtime before any of the static constructors is called.
@@ -823,12 +1095,15 @@ bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
bool AddressSanitizer::runOnFunction(Function &F) {
if (BL->isIn(F)) return false;
if (&F == AsanCtorFunction) return false;
+ if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
+ initializeCallbacks(*F.getParent());
- // If needed, insert __asan_init before checking for AddressSafety attr.
+ // If needed, insert __asan_init before checking for SanitizeAddress attr.
maybeInsertAsanInitAtFunctionEntry(F);
- if (!F.getFnAttributes().hasAttribute(Attributes::AddressSafety))
+ if (!F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::SanitizeAddress))
return false;
if (!ClDebugFunc.empty() && ClDebugFunc != F.getName())
@@ -857,12 +1132,12 @@ bool AddressSanitizer::runOnFunction(Function &F) {
} else if (isa<MemIntrinsic>(BI) && ClMemIntrin) {
// ok, take it.
} else {
- if (CallInst *CI = dyn_cast<CallInst>(BI)) {
+ CallSite CS(BI);
+ if (CS) {
// A call inside BB.
TempsToInstrument.clear();
- if (CI->doesNotReturn()) {
- NoReturnCalls.push_back(CI);
- }
+ if (CS.doesNotReturn())
+ NoReturnCalls.push_back(CS.getInstruction());
}
continue;
}
@@ -887,7 +1162,8 @@ bool AddressSanitizer::runOnFunction(Function &F) {
NumInstrumented++;
}
- bool ChangedStack = poisonStackInFunction(F);
+ FunctionStackPoisoner FSP(F, *this);
+ bool ChangedStack = FSP.runOnFunction();
// We must unpoison the stack before every NoReturn call (throw, _exit, etc).
// See e.g. http://code.google.com/p/address-sanitizer/issues/detail?id=37
@@ -912,10 +1188,10 @@ static uint64_t ValueForPoison(uint64_t PoisonByte, size_t ShadowRedzoneSize) {
static void PoisonShadowPartialRightRedzone(uint8_t *Shadow,
size_t Size,
- size_t RedzoneSize,
+ size_t RZSize,
size_t ShadowGranularity,
uint8_t Magic) {
- for (size_t i = 0; i < RedzoneSize;
+ for (size_t i = 0; i < RZSize;
i+= ShadowGranularity, Shadow++) {
if (i + ShadowGranularity <= Size) {
*Shadow = 0; // fully addressable
@@ -927,10 +1203,35 @@ static void PoisonShadowPartialRightRedzone(uint8_t *Shadow,
}
}
-void AddressSanitizer::PoisonStack(const ArrayRef<AllocaInst*> &AllocaVec,
- IRBuilder<> IRB,
- Value *ShadowBase, bool DoPoison) {
- size_t ShadowRZSize = RedzoneSize >> MappingScale;
+// Workaround for bug 11395: we don't want to instrument stack in functions
+// with large assembly blobs (32-bit only), otherwise reg alloc may crash.
+// FIXME: remove once the bug 11395 is fixed.
+bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
+ if (LongSize != 32) return false;
+ CallInst *CI = dyn_cast<CallInst>(I);
+ if (!CI || !CI->isInlineAsm()) return false;
+ if (CI->getNumArgOperands() <= 5) return false;
+ // We have inline assembly with quite a few arguments.
+ return true;
+}
+
+void FunctionStackPoisoner::initializeCallbacks(Module &M) {
+ IRBuilder<> IRB(*C);
+ AsanStackMallocFunc = checkInterfaceFunction(M.getOrInsertFunction(
+ kAsanStackMallocName, IntptrTy, IntptrTy, IntptrTy, NULL));
+ AsanStackFreeFunc = checkInterfaceFunction(M.getOrInsertFunction(
+ kAsanStackFreeName, IRB.getVoidTy(),
+ IntptrTy, IntptrTy, IntptrTy, NULL));
+ AsanPoisonStackMemoryFunc = checkInterfaceFunction(M.getOrInsertFunction(
+ kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
+ AsanUnpoisonStackMemoryFunc = checkInterfaceFunction(M.getOrInsertFunction(
+ kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
+}
+
+void FunctionStackPoisoner::poisonRedZones(
+ const ArrayRef<AllocaInst*> &AllocaVec, IRBuilder<> IRB, Value *ShadowBase,
+ bool DoPoison) {
+ size_t ShadowRZSize = RedzoneSize() >> Mapping.Scale;
assert(ShadowRZSize >= 1 && ShadowRZSize <= 4);
Type *RZTy = Type::getIntNTy(*C, ShadowRZSize * 8);
Type *RZPtrTy = PointerType::get(RZTy, 0);
@@ -946,12 +1247,12 @@ void AddressSanitizer::PoisonStack(const ArrayRef<AllocaInst*> &AllocaVec,
IRB.CreateStore(PoisonLeft, IRB.CreateIntToPtr(ShadowBase, RZPtrTy));
// poison all other red zones.
- uint64_t Pos = RedzoneSize;
+ uint64_t Pos = RedzoneSize();
for (size_t i = 0, n = AllocaVec.size(); i < n; i++) {
AllocaInst *AI = AllocaVec[i];
uint64_t SizeInBytes = getAllocaSizeInBytes(AI);
uint64_t AlignedSize = getAlignedAllocaSize(AI);
- assert(AlignedSize - SizeInBytes < RedzoneSize);
+ assert(AlignedSize - SizeInBytes < RedzoneSize());
Value *Ptr = NULL;
Pos += AlignedSize;
@@ -961,13 +1262,13 @@ void AddressSanitizer::PoisonStack(const ArrayRef<AllocaInst*> &AllocaVec,
// Poison the partial redzone at right
Ptr = IRB.CreateAdd(
ShadowBase, ConstantInt::get(IntptrTy,
- (Pos >> MappingScale) - ShadowRZSize));
- size_t AddressableBytes = RedzoneSize - (AlignedSize - SizeInBytes);
+ (Pos >> Mapping.Scale) - ShadowRZSize));
+ size_t AddressableBytes = RedzoneSize() - (AlignedSize - SizeInBytes);
uint32_t Poison = 0;
if (DoPoison) {
PoisonShadowPartialRightRedzone((uint8_t*)&Poison, AddressableBytes,
- RedzoneSize,
- 1ULL << MappingScale,
+ RedzoneSize(),
+ 1ULL << Mapping.Scale,
kAsanStackPartialRedzoneMagic);
}
Value *PartialPoison = ConstantInt::get(RZTy, Poison);
@@ -976,76 +1277,23 @@ void AddressSanitizer::PoisonStack(const ArrayRef<AllocaInst*> &AllocaVec,
// Poison the full redzone at right.
Ptr = IRB.CreateAdd(ShadowBase,
- ConstantInt::get(IntptrTy, Pos >> MappingScale));
- Value *Poison = i == AllocaVec.size() - 1 ? PoisonRight : PoisonMid;
+ ConstantInt::get(IntptrTy, Pos >> Mapping.Scale));
+ bool LastAlloca = (i == AllocaVec.size() - 1);
+ Value *Poison = LastAlloca ? PoisonRight : PoisonMid;
IRB.CreateStore(Poison, IRB.CreateIntToPtr(Ptr, RZPtrTy));
- Pos += RedzoneSize;
+ Pos += RedzoneSize();
}
}
-// Workaround for bug 11395: we don't want to instrument stack in functions
-// with large assembly blobs (32-bit only), otherwise reg alloc may crash.
-// FIXME: remove once the bug 11395 is fixed.
-bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
- if (LongSize != 32) return false;
- CallInst *CI = dyn_cast<CallInst>(I);
- if (!CI || !CI->isInlineAsm()) return false;
- if (CI->getNumArgOperands() <= 5) return false;
- // We have inline assembly with quite a few arguments.
- return true;
-}
-
-// Find all static Alloca instructions and put
-// poisoned red zones around all of them.
-// Then unpoison everything back before the function returns.
-//
-// Stack poisoning does not play well with exception handling.
-// When an exception is thrown, we essentially bypass the code
-// that unpoisones the stack. This is why the run-time library has
-// to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
-// stack in the interceptor. This however does not work inside the
-// actual function which catches the exception. Most likely because the
-// compiler hoists the load of the shadow value somewhere too high.
-// This causes asan to report a non-existing bug on 453.povray.
-// It sounds like an LLVM bug.
-bool AddressSanitizer::poisonStackInFunction(Function &F) {
- if (!ClStack) return false;
- SmallVector<AllocaInst*, 16> AllocaVec;
- SmallVector<Instruction*, 8> RetVec;
- uint64_t TotalSize = 0;
+void FunctionStackPoisoner::poisonStack() {
+ uint64_t LocalStackSize = TotalStackSize +
+ (AllocaVec.size() + 1) * RedzoneSize();
- // Filter out Alloca instructions we want (and can) handle.
- // Collect Ret instructions.
- for (Function::iterator FI = F.begin(), FE = F.end();
- FI != FE; ++FI) {
- BasicBlock &BB = *FI;
- for (BasicBlock::iterator BI = BB.begin(), BE = BB.end();
- BI != BE; ++BI) {
- if (isa<ReturnInst>(BI)) {
- RetVec.push_back(BI);
- continue;
- }
-
- AllocaInst *AI = dyn_cast<AllocaInst>(BI);
- if (!AI) continue;
- if (AI->isArrayAllocation()) continue;
- if (!AI->isStaticAlloca()) continue;
- if (!AI->getAllocatedType()->isSized()) continue;
- if (AI->getAlignment() > RedzoneSize) continue;
- AllocaVec.push_back(AI);
- uint64_t AlignedSize = getAlignedAllocaSize(AI);
- TotalSize += AlignedSize;
- }
- }
-
- if (AllocaVec.empty()) return false;
-
- uint64_t LocalStackSize = TotalSize + (AllocaVec.size() + 1) * RedzoneSize;
-
- bool DoStackMalloc = ClUseAfterReturn
+ bool DoStackMalloc = ASan.CheckUseAfterReturn
&& LocalStackSize <= kMaxStackMallocSize;
+ assert(AllocaVec.size() > 0);
Instruction *InsBefore = AllocaVec[0];
IRBuilder<> IRB(InsBefore);
@@ -1053,7 +1301,9 @@ bool AddressSanitizer::poisonStackInFunction(Function &F) {
Type *ByteArrayTy = ArrayType::get(IRB.getInt8Ty(), LocalStackSize);
AllocaInst *MyAlloca =
new AllocaInst(ByteArrayTy, "MyAlloca", InsBefore);
- MyAlloca->setAlignment(RedzoneSize);
+ if (ClRealignStack && StackAlignment < RedzoneSize())
+ StackAlignment = RedzoneSize();
+ MyAlloca->setAlignment(StackAlignment);
assert(MyAlloca->isStaticAlloca());
Value *OrigStackBase = IRB.CreatePointerCast(MyAlloca, IntptrTy);
Value *LocalStackBase = OrigStackBase;
@@ -1063,12 +1313,24 @@ bool AddressSanitizer::poisonStackInFunction(Function &F) {
ConstantInt::get(IntptrTy, LocalStackSize), OrigStackBase);
}
- // This string will be parsed by the run-time (DescribeStackAddress).
+ // This string will be parsed by the run-time (DescribeAddressIfStack).
SmallString<2048> StackDescriptionStorage;
raw_svector_ostream StackDescription(StackDescriptionStorage);
- StackDescription << F.getName() << " " << AllocaVec.size() << " ";
+ StackDescription << AllocaVec.size() << " ";
+
+ // Insert poison calls for lifetime intrinsics for alloca.
+ bool HavePoisonedAllocas = false;
+ for (size_t i = 0, n = AllocaPoisonCallVec.size(); i < n; i++) {
+ const AllocaPoisonCall &APC = AllocaPoisonCallVec[i];
+ IntrinsicInst *II = APC.InsBefore;
+ AllocaInst *AI = findAllocaForValue(II->getArgOperand(1));
+ assert(AI);
+ IRBuilder<> IRB(II);
+ poisonAlloca(AI, APC.Size, IRB, APC.DoPoison);
+ HavePoisonedAllocas |= APC.DoPoison;
+ }
- uint64_t Pos = RedzoneSize;
+ uint64_t Pos = RedzoneSize();
// Replace Alloca instructions with base+offset.
for (size_t i = 0, n = AllocaVec.size(); i < n; i++) {
AllocaInst *AI = AllocaVec[i];
@@ -1077,57 +1339,115 @@ bool AddressSanitizer::poisonStackInFunction(Function &F) {
StackDescription << Pos << " " << SizeInBytes << " "
<< Name.size() << " " << Name << " ";
uint64_t AlignedSize = getAlignedAllocaSize(AI);
- assert((AlignedSize % RedzoneSize) == 0);
- AI->replaceAllUsesWith(
- IRB.CreateIntToPtr(
+ assert((AlignedSize % RedzoneSize()) == 0);
+ Value *NewAllocaPtr = IRB.CreateIntToPtr(
IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Pos)),
- AI->getType()));
- Pos += AlignedSize + RedzoneSize;
+ AI->getType());
+ replaceDbgDeclareForAlloca(AI, NewAllocaPtr, DIB);
+ AI->replaceAllUsesWith(NewAllocaPtr);
+ Pos += AlignedSize + RedzoneSize();
}
assert(Pos == LocalStackSize);
- // Write the Magic value and the frame description constant to the redzone.
+ // The left-most redzone has enough space for at least 4 pointers.
+ // Write the Magic value to redzone[0].
Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
BasePlus0);
- Value *BasePlus1 = IRB.CreateAdd(LocalStackBase,
- ConstantInt::get(IntptrTy, LongSize/8));
- BasePlus1 = IRB.CreateIntToPtr(BasePlus1, IntptrPtrTy);
+ // Write the frame description constant to redzone[1].
+ Value *BasePlus1 = IRB.CreateIntToPtr(
+ IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, ASan.LongSize/8)),
+ IntptrPtrTy);
GlobalVariable *StackDescriptionGlobal =
createPrivateGlobalForString(*F.getParent(), StackDescription.str());
- GlobalsCreatedByAsan.insert(StackDescriptionGlobal);
- Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy);
+ Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal,
+ IntptrTy);
IRB.CreateStore(Description, BasePlus1);
+ // Write the PC to redzone[2].
+ Value *BasePlus2 = IRB.CreateIntToPtr(
+ IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy,
+ 2 * ASan.LongSize/8)),
+ IntptrPtrTy);
+ IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
// Poison the stack redzones at the entry.
- Value *ShadowBase = memToShadow(LocalStackBase, IRB);
- PoisonStack(ArrayRef<AllocaInst*>(AllocaVec), IRB, ShadowBase, true);
+ Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
+ poisonRedZones(AllocaVec, IRB, ShadowBase, true);
// Unpoison the stack before all ret instructions.
for (size_t i = 0, n = RetVec.size(); i < n; i++) {
Instruction *Ret = RetVec[i];
IRBuilder<> IRBRet(Ret);
-
// Mark the current frame as retired.
IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
BasePlus0);
// Unpoison the stack.
- PoisonStack(ArrayRef<AllocaInst*>(AllocaVec), IRBRet, ShadowBase, false);
-
+ poisonRedZones(AllocaVec, IRBRet, ShadowBase, false);
if (DoStackMalloc) {
+ // In use-after-return mode, mark the whole stack frame unaddressable.
IRBRet.CreateCall3(AsanStackFreeFunc, LocalStackBase,
ConstantInt::get(IntptrTy, LocalStackSize),
OrigStackBase);
+ } else if (HavePoisonedAllocas) {
+ // If we poisoned some allocas in llvm.lifetime analysis,
+ // unpoison whole stack frame now.
+ assert(LocalStackBase == OrigStackBase);
+ poisonAlloca(LocalStackBase, LocalStackSize, IRBRet, false);
}
}
// We are done. Remove the old unused alloca instructions.
for (size_t i = 0, n = AllocaVec.size(); i < n; i++)
AllocaVec[i]->eraseFromParent();
+}
- if (ClDebugStack) {
- DEBUG(dbgs() << F);
- }
+void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
+ IRBuilder<> IRB, bool DoPoison) {
+ // For now just insert the call to ASan runtime.
+ Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
+ Value *SizeArg = ConstantInt::get(IntptrTy, Size);
+ IRB.CreateCall2(DoPoison ? AsanPoisonStackMemoryFunc
+ : AsanUnpoisonStackMemoryFunc,
+ AddrArg, SizeArg);
+}
- return true;
+// Handling llvm.lifetime intrinsics for a given %alloca:
+// (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
+// (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
+// invalid accesses) and unpoison it for llvm.lifetime.start (the memory
+// could be poisoned by previous llvm.lifetime.end instruction, as the
+// variable may go in and out of scope several times, e.g. in loops).
+// (3) if we poisoned at least one %alloca in a function,
+// unpoison the whole stack frame at function exit.
+
+AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) {
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(V))
+ // We're intested only in allocas we can handle.
+ return isInterestingAlloca(*AI) ? AI : 0;
+ // See if we've already calculated (or started to calculate) alloca for a
+ // given value.
+ AllocaForValueMapTy::iterator I = AllocaForValue.find(V);
+ if (I != AllocaForValue.end())
+ return I->second;
+ // Store 0 while we're calculating alloca for value V to avoid
+ // infinite recursion if the value references itself.
+ AllocaForValue[V] = 0;
+ AllocaInst *Res = 0;
+ if (CastInst *CI = dyn_cast<CastInst>(V))
+ Res = findAllocaForValue(CI->getOperand(0));
+ else if (PHINode *PN = dyn_cast<PHINode>(V)) {
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ Value *IncValue = PN->getIncomingValue(i);
+ // Allow self-referencing phi-nodes.
+ if (IncValue == PN) continue;
+ AllocaInst *IncValueAI = findAllocaForValue(IncValue);
+ // AI for incoming values should exist and should all be equal.
+ if (IncValueAI == 0 || (Res != 0 && IncValueAI != Res))
+ return 0;
+ Res = IncValueAI;
+ }
+ }
+ if (Res != 0)
+ AllocaForValue[V] = Res;
+ return Res;
}
diff --git a/contrib/llvm/lib/Transforms/Instrumentation/BlackList.cpp b/contrib/llvm/lib/Transforms/Instrumentation/BlackList.cpp
index ef34b8a..927982d 100644
--- a/contrib/llvm/lib/Transforms/Instrumentation/BlackList.cpp
+++ b/contrib/llvm/lib/Transforms/Instrumentation/BlackList.cpp
@@ -13,26 +13,26 @@
//
//===----------------------------------------------------------------------===//
-#include <utility>
-#include <string>
-
-#include "BlackList.h"
+#include "llvm/Transforms/Utils/BlackList.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
-#include "llvm/Function.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/Module.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Module.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Regex.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/system_error.h"
+#include <string>
+#include <utility>
namespace llvm {
BlackList::BlackList(const StringRef Path) {
// Validate and open blacklist file.
- if (!Path.size()) return;
+ if (Path.empty()) return;
OwningPtr<MemoryBuffer> File;
if (error_code EC = MemoryBuffer::getFile(Path, File)) {
report_fatal_error("Can't open blacklist file: " + Path + ": " +
@@ -52,6 +52,10 @@ BlackList::BlackList(const StringRef Path) {
std::pair<StringRef, StringRef> SplitLine = I->split(":");
StringRef Prefix = SplitLine.first;
std::string Regexp = SplitLine.second;
+ if (Regexp.empty()) {
+ // Missing ':' in the line.
+ report_fatal_error("malformed blacklist line: " + SplitLine.first);
+ }
// Replace * with .*
for (size_t pos = 0; (pos = Regexp.find("*", pos)) != std::string::npos;
@@ -68,38 +72,54 @@ BlackList::BlackList(const StringRef Path) {
}
// Add this regexp into the proper group by its prefix.
- if (Regexps[Prefix].size())
+ if (!Regexps[Prefix].empty())
Regexps[Prefix] += "|";
Regexps[Prefix] += Regexp;
}
// Iterate through each of the prefixes, and create Regexs for them.
- for (StringMap<std::string>::iterator I = Regexps.begin(), E = Regexps.end();
- I != E; ++I) {
+ for (StringMap<std::string>::const_iterator I = Regexps.begin(),
+ E = Regexps.end(); I != E; ++I) {
Entries[I->getKey()] = new Regex(I->getValue());
}
}
-bool BlackList::isIn(const Function &F) {
+bool BlackList::isIn(const Function &F) const {
return isIn(*F.getParent()) || inSection("fun", F.getName());
}
-bool BlackList::isIn(const GlobalVariable &G) {
+bool BlackList::isIn(const GlobalVariable &G) const {
return isIn(*G.getParent()) || inSection("global", G.getName());
}
-bool BlackList::isIn(const Module &M) {
+bool BlackList::isIn(const Module &M) const {
return inSection("src", M.getModuleIdentifier());
}
-bool BlackList::isInInit(const GlobalVariable &G) {
- return isIn(*G.getParent()) || inSection("global-init", G.getName());
+static StringRef GetGVTypeString(const GlobalVariable &G) {
+ // Types of GlobalVariables are always pointer types.
+ Type *GType = G.getType()->getElementType();
+ // For now we support blacklisting struct types only.
+ if (StructType *SGType = dyn_cast<StructType>(GType)) {
+ if (!SGType->isLiteral())
+ return SGType->getName();
+ }
+ return "<unknown type>";
+}
+
+bool BlackList::isInInit(const GlobalVariable &G) const {
+ return (isIn(*G.getParent()) ||
+ inSection("global-init", G.getName()) ||
+ inSection("global-init-type", GetGVTypeString(G)));
}
bool BlackList::inSection(const StringRef Section,
- const StringRef Query) {
- Regex *FunctionRegex = Entries[Section];
- return FunctionRegex ? FunctionRegex->match(Query) : false;
+ const StringRef Query) const {
+ StringMap<Regex*>::const_iterator I = Entries.find(Section);
+ if (I == Entries.end()) return false;
+
+ Regex *FunctionRegex = I->getValue();
+ return FunctionRegex->match(Query);
}
} // namespace llvm
diff --git a/contrib/llvm/lib/Transforms/Instrumentation/BlackList.h b/contrib/llvm/lib/Transforms/Instrumentation/BlackList.h
deleted file mode 100644
index f3c05a5..0000000
--- a/contrib/llvm/lib/Transforms/Instrumentation/BlackList.h
+++ /dev/null
@@ -1,57 +0,0 @@
-//===-- BlackList.h - blacklist for sanitizers ------------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//===----------------------------------------------------------------------===//
-//
-// This is a utility class for instrumentation passes (like AddressSanitizer
-// or ThreadSanitizer) to avoid instrumenting some functions or global
-// variables based on a user-supplied blacklist.
-//
-// The blacklist disables instrumentation of various functions and global
-// variables. Each line contains a prefix, followed by a wild card expression.
-// Empty lines and lines starting with "#" are ignored.
-// ---
-// # Blacklisted items:
-// fun:*_ZN4base6subtle*
-// global:*global_with_bad_access_or_initialization*
-// global-init:*global_with_initialization_issues*
-// src:file_with_tricky_code.cc
-// ---
-// Note that the wild card is in fact an llvm::Regex, but * is automatically
-// replaced with .*
-// This is similar to the "ignore" feature of ThreadSanitizer.
-// http://code.google.com/p/data-race-test/wiki/ThreadSanitizerIgnores
-//
-//===----------------------------------------------------------------------===//
-//
-
-#include "llvm/ADT/StringMap.h"
-
-namespace llvm {
-class Function;
-class GlobalVariable;
-class Module;
-class Regex;
-class StringRef;
-
-class BlackList {
- public:
- BlackList(const StringRef Path);
- // Returns whether either this function or it's source file are blacklisted.
- bool isIn(const Function &F);
- // Returns whether either this global or it's source file are blacklisted.
- bool isIn(const GlobalVariable &G);
- // Returns whether this module is blacklisted by filename.
- bool isIn(const Module &M);
- // Returns whether a global should be excluded from initialization checking.
- bool isInInit(const GlobalVariable &G);
- private:
- StringMap<Regex*> Entries;
-
- bool inSection(const StringRef Section, const StringRef Query);
-};
-
-} // namespace llvm
diff --git a/contrib/llvm/lib/Transforms/Instrumentation/BoundsChecking.cpp b/contrib/llvm/lib/Transforms/Instrumentation/BoundsChecking.cpp
index 7810b1b..b094d42 100644
--- a/contrib/llvm/lib/Transforms/Instrumentation/BoundsChecking.cpp
+++ b/contrib/llvm/lib/Transforms/Instrumentation/BoundsChecking.cpp
@@ -13,19 +13,19 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "bounds-checking"
-#include "llvm/IRBuilder.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/Pass.h"
+#include "llvm/Transforms/Instrumentation.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/InstIterator.h"
#include "llvm/Support/TargetFolder.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/DataLayout.h"
#include "llvm/Target/TargetLibraryInfo.h"
-#include "llvm/Transforms/Instrumentation.h"
using namespace llvm;
static cl::opt<bool> SingleTrapBB("bounds-checking-single-trap",
@@ -41,7 +41,7 @@ namespace {
struct BoundsChecking : public FunctionPass {
static char ID;
- BoundsChecking(unsigned _Penalty = 5) : FunctionPass(ID), Penalty(_Penalty){
+ BoundsChecking() : FunctionPass(ID) {
initializeBoundsCheckingPass(*PassRegistry::getPassRegistry());
}
@@ -59,7 +59,6 @@ namespace {
BuilderTy *Builder;
Instruction *Inst;
BasicBlock *TrapBB;
- unsigned Penalty;
BasicBlock *getTrapBB();
void emitBranchToTrap(Value *Cmp = 0);
@@ -109,6 +108,7 @@ void BoundsChecking::emitBranchToTrap(Value *Cmp) {
else
Cmp = 0; // unconditional branch
}
+ ++ChecksAdded;
Instruction *Inst = Builder->GetInsertPoint();
BasicBlock *OldBB = Inst->getParent();
@@ -163,7 +163,6 @@ bool BoundsChecking::instrument(Value *Ptr, Value *InstVal) {
}
emitBranchToTrap(Or);
- ++ChecksAdded;
return true;
}
@@ -208,6 +207,6 @@ bool BoundsChecking::runOnFunction(Function &F) {
return MadeChange;
}
-FunctionPass *llvm::createBoundsCheckingPass(unsigned Penalty) {
- return new BoundsChecking(Penalty);
+FunctionPass *llvm::createBoundsCheckingPass() {
+ return new BoundsChecking();
}
diff --git a/contrib/llvm/lib/Transforms/Instrumentation/EdgeProfiling.cpp b/contrib/llvm/lib/Transforms/Instrumentation/EdgeProfiling.cpp
index e8ef265..a2459fb 100644
--- a/contrib/llvm/lib/Transforms/Instrumentation/EdgeProfiling.cpp
+++ b/contrib/llvm/lib/Transforms/Instrumentation/EdgeProfiling.cpp
@@ -18,13 +18,13 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "insert-edge-profiling"
+#include "llvm/Transforms/Instrumentation.h"
#include "ProfilingUtils.h"
-#include "llvm/Module.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Transforms/Instrumentation.h"
-#include "llvm/ADT/Statistic.h"
#include <set>
using namespace llvm;
diff --git a/contrib/llvm/lib/Transforms/Instrumentation/GCOVProfiling.cpp b/contrib/llvm/lib/Transforms/Instrumentation/GCOVProfiling.cpp
index e9192e5..2edd151 100644
--- a/contrib/llvm/lib/Transforms/Instrumentation/GCOVProfiling.cpp
+++ b/contrib/llvm/lib/Transforms/Instrumentation/GCOVProfiling.cpp
@@ -16,21 +16,23 @@
#define DEBUG_TYPE "insert-gcov-profiling"
-#include "ProfilingUtils.h"
#include "llvm/Transforms/Instrumentation.h"
-#include "llvm/DebugInfo.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Instructions.h"
-#include "llvm/Module.h"
-#include "llvm/Pass.h"
+#include "ProfilingUtils.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/UniqueVector.h"
+#include "llvm/DebugInfo.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/DebugLoc.h"
+#include "llvm/Support/FileSystem.h"
#include "llvm/Support/InstIterator.h"
#include "llvm/Support/PathV2.h"
#include "llvm/Support/raw_ostream.h"
@@ -39,30 +41,57 @@
#include <utility>
using namespace llvm;
+static cl::opt<std::string>
+DefaultGCOVVersion("default-gcov-version", cl::init("402*"), cl::Hidden,
+ cl::ValueRequired);
+
+GCOVOptions GCOVOptions::getDefault() {
+ GCOVOptions Options;
+ Options.EmitNotes = true;
+ Options.EmitData = true;
+ Options.UseCfgChecksum = false;
+ Options.NoRedZone = false;
+ Options.FunctionNamesInData = true;
+
+ if (DefaultGCOVVersion.size() != 4) {
+ llvm::report_fatal_error(std::string("Invalid -default-gcov-version: ") +
+ DefaultGCOVVersion);
+ }
+ memcpy(Options.Version, DefaultGCOVVersion.c_str(), 4);
+ return Options;
+}
+
namespace {
class GCOVProfiler : public ModulePass {
public:
static char ID;
- GCOVProfiler()
- : ModulePass(ID), EmitNotes(true), EmitData(true), Use402Format(false),
- UseExtraChecksum(false) {
+ GCOVProfiler() : ModulePass(ID), Options(GCOVOptions::getDefault()) {
+ ReversedVersion[0] = Options.Version[3];
+ ReversedVersion[1] = Options.Version[2];
+ ReversedVersion[2] = Options.Version[1];
+ ReversedVersion[3] = Options.Version[0];
+ ReversedVersion[4] = '\0';
initializeGCOVProfilerPass(*PassRegistry::getPassRegistry());
}
- GCOVProfiler(bool EmitNotes, bool EmitData, bool use402Format = false,
- bool useExtraChecksum = false)
- : ModulePass(ID), EmitNotes(EmitNotes), EmitData(EmitData),
- Use402Format(use402Format), UseExtraChecksum(useExtraChecksum) {
- assert((EmitNotes || EmitData) && "GCOVProfiler asked to do nothing?");
+ GCOVProfiler(const GCOVOptions &Options) : ModulePass(ID), Options(Options){
+ assert((Options.EmitNotes || Options.EmitData) &&
+ "GCOVProfiler asked to do nothing?");
+ ReversedVersion[0] = Options.Version[3];
+ ReversedVersion[1] = Options.Version[2];
+ ReversedVersion[2] = Options.Version[1];
+ ReversedVersion[3] = Options.Version[0];
+ ReversedVersion[4] = '\0';
initializeGCOVProfilerPass(*PassRegistry::getPassRegistry());
}
virtual const char *getPassName() const {
return "GCOV Profiler";
}
+
private:
bool runOnModule(Module &M);
- // Create the GCNO files for the Module based on DebugInfo.
- void emitGCNO();
+ // Create the .gcno files for the Module based on DebugInfo.
+ void emitProfileNotes();
// Modify the program to track transitions along edges and call into the
// profiling runtime to emit .gcda files when run.
@@ -73,6 +102,8 @@ namespace {
Constant *getIncrementIndirectCounterFunc();
Constant *getEmitFunctionFunc();
Constant *getEmitArcsFunc();
+ Constant *getDeleteWriteoutFunctionListFunc();
+ Constant *getDeleteFlushFunctionListFunc();
Constant *getEndFileFunc();
// Create or retrieve an i32 state value that is used to represent the
@@ -83,21 +114,22 @@ namespace {
// block number.
GlobalVariable *buildEdgeLookupTable(Function *F,
GlobalVariable *Counter,
- const UniqueVector<BasicBlock *> &Preds,
- const UniqueVector<BasicBlock *> &Succs);
+ const UniqueVector<BasicBlock *>&Preds,
+ const UniqueVector<BasicBlock*>&Succs);
// Add the function to write out all our counters to the global destructor
// list.
- void insertCounterWriteout(ArrayRef<std::pair<GlobalVariable*, MDNode*> >);
+ Function *insertCounterWriteout(ArrayRef<std::pair<GlobalVariable*,
+ MDNode*> >);
+ Function *insertFlush(ArrayRef<std::pair<GlobalVariable*, MDNode*> >);
void insertIndirectCounterIncrement();
- void insertFlush(ArrayRef<std::pair<GlobalVariable*, MDNode*> >);
std::string mangleName(DICompileUnit CU, const char *NewStem);
- bool EmitNotes;
- bool EmitData;
- bool Use402Format;
- bool UseExtraChecksum;
+ GCOVOptions Options;
+
+ // Reversed, NUL-terminated copy of Options.Version.
+ char ReversedVersion[5];
Module *M;
LLVMContext *Ctx;
@@ -108,10 +140,14 @@ char GCOVProfiler::ID = 0;
INITIALIZE_PASS(GCOVProfiler, "insert-gcov-profiling",
"Insert instrumentation for GCOV profiling", false, false)
-ModulePass *llvm::createGCOVProfilerPass(bool EmitNotes, bool EmitData,
- bool Use402Format,
- bool UseExtraChecksum) {
- return new GCOVProfiler(EmitNotes, EmitData, Use402Format, UseExtraChecksum);
+ModulePass *llvm::createGCOVProfilerPass(const GCOVOptions &Options) {
+ return new GCOVProfiler(Options);
+}
+
+static std::string getFunctionName(DISubprogram SP) {
+ if (!SP.getLinkageName().empty())
+ return SP.getLinkageName();
+ return SP.getName();
}
namespace {
@@ -249,8 +285,8 @@ namespace {
// object users can construct, the blocks and lines will be rooted here.
class GCOVFunction : public GCOVRecord {
public:
- GCOVFunction(DISubprogram SP, raw_ostream *os,
- bool Use402Format, bool UseExtraChecksum) {
+ GCOVFunction(DISubprogram SP, raw_ostream *os, uint32_t Ident,
+ bool UseCfgChecksum) {
this->os = os;
Function *F = SP.getFunction();
@@ -262,17 +298,16 @@ namespace {
ReturnBlock = new GCOVBlock(i++, os);
writeBytes(FunctionTag, 4);
- uint32_t BlockLen = 1 + 1 + 1 + lengthOfGCOVString(SP.getName()) +
+ uint32_t BlockLen = 1 + 1 + 1 + lengthOfGCOVString(getFunctionName(SP)) +
1 + lengthOfGCOVString(SP.getFilename()) + 1;
- if (UseExtraChecksum)
+ if (UseCfgChecksum)
++BlockLen;
write(BlockLen);
- uint32_t Ident = reinterpret_cast<intptr_t>((MDNode*)SP);
write(Ident);
write(0); // lineno checksum
- if (UseExtraChecksum)
+ if (UseCfgChecksum)
write(0); // cfg checksum
- writeGCOVString(SP.getName());
+ writeGCOVString(getFunctionName(SP));
writeGCOVString(SP.getFilename());
write(SP.getLineNumber());
}
@@ -347,19 +382,23 @@ std::string GCOVProfiler::mangleName(DICompileUnit CU, const char *NewStem) {
SmallString<128> Filename = CU.getFilename();
sys::path::replace_extension(Filename, NewStem);
- return sys::path::filename(Filename.str());
+ StringRef FName = sys::path::filename(Filename);
+ SmallString<128> CurPath;
+ if (sys::fs::current_path(CurPath)) return FName;
+ sys::path::append(CurPath, FName.str());
+ return CurPath.str();
}
bool GCOVProfiler::runOnModule(Module &M) {
this->M = &M;
Ctx = &M.getContext();
- if (EmitNotes) emitGCNO();
- if (EmitData) return emitProfileArcs();
+ if (Options.EmitNotes) emitProfileNotes();
+ if (Options.EmitData) return emitProfileArcs();
return false;
}
-void GCOVProfiler::emitGCNO() {
+void GCOVProfiler::emitProfileNotes() {
NamedMDNode *CU_Nodes = M->getNamedMetadata("llvm.dbg.cu");
if (!CU_Nodes) return;
@@ -372,10 +411,9 @@ void GCOVProfiler::emitGCNO() {
std::string ErrorInfo;
raw_fd_ostream out(mangleName(CU, "gcno").c_str(), ErrorInfo,
raw_fd_ostream::F_Binary);
- if (!Use402Format)
- out.write("oncg*404MVLL", 12);
- else
- out.write("oncg*204MVLL", 12);
+ out.write("oncg", 4);
+ out.write(ReversedVersion, 4);
+ out.write("MVLL", 4);
DIArray SPs = CU.getSubprograms();
for (unsigned i = 0, e = SPs.getNumElements(); i != e; ++i) {
@@ -384,7 +422,7 @@ void GCOVProfiler::emitGCNO() {
Function *F = SP.getFunction();
if (!F) continue;
- GCOVFunction Func(SP, &out, Use402Format, UseExtraChecksum);
+ GCOVFunction Func(SP, &out, i, Options.UseCfgChecksum);
for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
GCOVBlock &Block = Func.getBlock(BB);
@@ -465,21 +503,18 @@ bool GCOVProfiler::emitProfileArcs() {
Value *Counter = Builder.CreateConstInBoundsGEP2_64(Counters, 0,
Edge);
Value *Count = Builder.CreateLoad(Counter);
- Count = Builder.CreateAdd(Count,
- ConstantInt::get(Type::getInt64Ty(*Ctx),1));
+ Count = Builder.CreateAdd(Count, Builder.getInt64(1));
Builder.CreateStore(Count, Counter);
} else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
- Value *Sel = Builder.CreateSelect(
- BI->getCondition(),
- ConstantInt::get(Type::getInt64Ty(*Ctx), Edge),
- ConstantInt::get(Type::getInt64Ty(*Ctx), Edge + 1));
+ Value *Sel = Builder.CreateSelect(BI->getCondition(),
+ Builder.getInt64(Edge),
+ Builder.getInt64(Edge + 1));
SmallVector<Value *, 2> Idx;
- Idx.push_back(Constant::getNullValue(Type::getInt64Ty(*Ctx)));
+ Idx.push_back(Builder.getInt64(0));
Idx.push_back(Sel);
Value *Counter = Builder.CreateInBoundsGEP(Counters, Idx);
Value *Count = Builder.CreateLoad(Counter);
- Count = Builder.CreateAdd(Count,
- ConstantInt::get(Type::getInt64Ty(*Ctx),1));
+ Count = Builder.CreateAdd(Count, Builder.getInt64(1));
Builder.CreateStore(Count, Counter);
} else {
ComplexEdgePreds.insert(BB);
@@ -496,10 +531,9 @@ bool GCOVProfiler::emitProfileArcs() {
ComplexEdgePreds, ComplexEdgeSuccs);
GlobalVariable *EdgeState = getEdgeStateValue();
- Type *Int32Ty = Type::getInt32Ty(*Ctx);
for (int i = 0, e = ComplexEdgePreds.size(); i != e; ++i) {
IRBuilder<> Builder(ComplexEdgePreds[i+1]->getTerminator());
- Builder.CreateStore(ConstantInt::get(Int32Ty, i), EdgeState);
+ Builder.CreateStore(Builder.getInt32(i), EdgeState);
}
for (int i = 0, e = ComplexEdgeSuccs.size(); i != e; ++i) {
// call runtime to perform increment
@@ -518,8 +552,38 @@ bool GCOVProfiler::emitProfileArcs() {
}
}
- insertCounterWriteout(CountersBySP);
- insertFlush(CountersBySP);
+ Function *WriteoutF = insertCounterWriteout(CountersBySP);
+ Function *FlushF = insertFlush(CountersBySP);
+
+ // Create a small bit of code that registers the "__llvm_gcov_writeout" to
+ // be executed at exit and the "__llvm_gcov_flush" function to be executed
+ // when "__gcov_flush" is called.
+ FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), false);
+ Function *F = Function::Create(FTy, GlobalValue::InternalLinkage,
+ "__llvm_gcov_init", M);
+ F->setUnnamedAddr(true);
+ F->setLinkage(GlobalValue::InternalLinkage);
+ F->addFnAttr(Attribute::NoInline);
+ if (Options.NoRedZone)
+ F->addFnAttr(Attribute::NoRedZone);
+
+ BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F);
+ IRBuilder<> Builder(BB);
+
+ FTy = FunctionType::get(Type::getVoidTy(*Ctx), false);
+ Type *Params[] = {
+ PointerType::get(FTy, 0),
+ PointerType::get(FTy, 0)
+ };
+ FTy = FunctionType::get(Builder.getVoidTy(), Params, false);
+
+ // Inialize the environment and register the local writeout and flush
+ // functions.
+ Constant *GCOVInit = M->getOrInsertFunction("llvm_gcov_init", FTy);
+ Builder.CreateCall2(GCOVInit, WriteoutF, FlushF);
+ Builder.CreateRetVoid();
+
+ appendToGlobalCtors(*M, F, 0);
}
if (InsertIndCounterIncrCode)
@@ -540,13 +604,13 @@ GlobalVariable *GCOVProfiler::buildEdgeLookupTable(
// read it. Threads and invoke make this untrue.
// emit [(succs * preds) x i64*], logically [succ x [pred x i64*]].
+ size_t TableSize = Succs.size() * Preds.size();
Type *Int64PtrTy = Type::getInt64PtrTy(*Ctx);
- ArrayType *EdgeTableTy = ArrayType::get(
- Int64PtrTy, Succs.size() * Preds.size());
+ ArrayType *EdgeTableTy = ArrayType::get(Int64PtrTy, TableSize);
- Constant **EdgeTable = new Constant*[Succs.size() * Preds.size()];
+ OwningArrayPtr<Constant *> EdgeTable(new Constant*[TableSize]);
Constant *NullValue = Constant::getNullValue(Int64PtrTy);
- for (int i = 0, ie = Succs.size() * Preds.size(); i != ie; ++i)
+ for (size_t i = 0; i != TableSize; ++i)
EdgeTable[i] = NullValue;
unsigned Edge = 0;
@@ -556,8 +620,8 @@ GlobalVariable *GCOVProfiler::buildEdgeLookupTable(
if (Successors > 1 && !isa<BranchInst>(TI) && !isa<ReturnInst>(TI)) {
for (int i = 0; i != Successors; ++i) {
BasicBlock *Succ = TI->getSuccessor(i);
- IRBuilder<> builder(Succ);
- Value *Counter = builder.CreateConstInBoundsGEP2_64(Counters, 0,
+ IRBuilder<> Builder(Succ);
+ Value *Counter = Builder.CreateConstInBoundsGEP2_64(Counters, 0,
Edge + i);
EdgeTable[((Succs.idFor(Succ)-1) * Preds.size()) +
(Preds.idFor(BB)-1)] = cast<Constant>(Counter);
@@ -566,7 +630,7 @@ GlobalVariable *GCOVProfiler::buildEdgeLookupTable(
Edge += Successors;
}
- ArrayRef<Constant*> V(&EdgeTable[0], Succs.size() * Preds.size());
+ ArrayRef<Constant*> V(&EdgeTable[0], TableSize);
GlobalVariable *EdgeTableGV =
new GlobalVariable(
*M, EdgeTableTy, true, GlobalValue::InternalLinkage,
@@ -577,8 +641,11 @@ GlobalVariable *GCOVProfiler::buildEdgeLookupTable(
}
Constant *GCOVProfiler::getStartFileFunc() {
- FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx),
- Type::getInt8PtrTy(*Ctx), false);
+ Type *Args[] = {
+ Type::getInt8PtrTy(*Ctx), // const char *orig_filename
+ Type::getInt8PtrTy(*Ctx), // const char version[4]
+ };
+ FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), Args, false);
return M->getOrInsertFunction("llvm_gcda_start_file", FTy);
}
@@ -594,9 +661,10 @@ Constant *GCOVProfiler::getIncrementIndirectCounterFunc() {
}
Constant *GCOVProfiler::getEmitFunctionFunc() {
- Type *Args[2] = {
+ Type *Args[3] = {
Type::getInt32Ty(*Ctx), // uint32_t ident
Type::getInt8PtrTy(*Ctx), // const char *function_name
+ Type::getInt8Ty(*Ctx), // uint8_t use_extra_checksum
};
FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), Args, false);
return M->getOrInsertFunction("llvm_gcda_emit_function", FTy);
@@ -607,11 +675,20 @@ Constant *GCOVProfiler::getEmitArcsFunc() {
Type::getInt32Ty(*Ctx), // uint32_t num_counters
Type::getInt64PtrTy(*Ctx), // uint64_t *counters
};
- FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx),
- Args, false);
+ FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), Args, false);
return M->getOrInsertFunction("llvm_gcda_emit_arcs", FTy);
}
+Constant *GCOVProfiler::getDeleteWriteoutFunctionListFunc() {
+ FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), false);
+ return M->getOrInsertFunction("llvm_delete_writeout_function_list", FTy);
+}
+
+Constant *GCOVProfiler::getDeleteFlushFunctionListFunc() {
+ FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), false);
+ return M->getOrInsertFunction("llvm_delete_flush_function_list", FTy);
+}
+
Constant *GCOVProfiler::getEndFileFunc() {
FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), false);
return M->getOrInsertFunction("llvm_gcda_end_file", FTy);
@@ -630,7 +707,7 @@ GlobalVariable *GCOVProfiler::getEdgeStateValue() {
return GV;
}
-void GCOVProfiler::insertCounterWriteout(
+Function *GCOVProfiler::insertCounterWriteout(
ArrayRef<std::pair<GlobalVariable *, MDNode *> > CountersBySP) {
FunctionType *WriteoutFTy = FunctionType::get(Type::getVoidTy(*Ctx), false);
Function *WriteoutF = M->getFunction("__llvm_gcov_writeout");
@@ -638,6 +715,9 @@ void GCOVProfiler::insertCounterWriteout(
WriteoutF = Function::Create(WriteoutFTy, GlobalValue::InternalLinkage,
"__llvm_gcov_writeout", M);
WriteoutF->setUnnamedAddr(true);
+ WriteoutF->addFnAttr(Attribute::NoInline);
+ if (Options.NoRedZone)
+ WriteoutF->addFnAttr(Attribute::NoRedZone);
BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", WriteoutF);
IRBuilder<> Builder(BB);
@@ -652,48 +732,31 @@ void GCOVProfiler::insertCounterWriteout(
for (unsigned i = 0, e = CU_Nodes->getNumOperands(); i != e; ++i) {
DICompileUnit CU(CU_Nodes->getOperand(i));
std::string FilenameGcda = mangleName(CU, "gcda");
- Builder.CreateCall(StartFile,
- Builder.CreateGlobalStringPtr(FilenameGcda));
- for (ArrayRef<std::pair<GlobalVariable *, MDNode *> >::iterator
- I = CountersBySP.begin(), E = CountersBySP.end();
- I != E; ++I) {
- DISubprogram SP(I->second);
- intptr_t ident = reinterpret_cast<intptr_t>(I->second);
- Builder.CreateCall2(EmitFunction,
- ConstantInt::get(Type::getInt32Ty(*Ctx), ident),
- Builder.CreateGlobalStringPtr(SP.getName()));
-
- GlobalVariable *GV = I->first;
+ Builder.CreateCall2(StartFile,
+ Builder.CreateGlobalStringPtr(FilenameGcda),
+ Builder.CreateGlobalStringPtr(ReversedVersion));
+ for (unsigned j = 0, e = CountersBySP.size(); j != e; ++j) {
+ DISubprogram SP(CountersBySP[j].second);
+ Builder.CreateCall3(
+ EmitFunction, Builder.getInt32(j),
+ Options.FunctionNamesInData ?
+ Builder.CreateGlobalStringPtr(getFunctionName(SP)) :
+ Constant::getNullValue(Builder.getInt8PtrTy()),
+ Builder.getInt8(Options.UseCfgChecksum));
+
+ GlobalVariable *GV = CountersBySP[j].first;
unsigned Arcs =
cast<ArrayType>(GV->getType()->getElementType())->getNumElements();
Builder.CreateCall2(EmitArcs,
- ConstantInt::get(Type::getInt32Ty(*Ctx), Arcs),
+ Builder.getInt32(Arcs),
Builder.CreateConstGEP2_64(GV, 0, 0));
}
Builder.CreateCall(EndFile);
}
}
- Builder.CreateRetVoid();
- // Create a small bit of code that registers the "__llvm_gcov_writeout"
- // function to be executed at exit.
- FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), false);
- Function *F = Function::Create(FTy, GlobalValue::InternalLinkage,
- "__llvm_gcov_init", M);
- F->setUnnamedAddr(true);
- F->setLinkage(GlobalValue::InternalLinkage);
- F->addFnAttr(Attributes::NoInline);
-
- BB = BasicBlock::Create(*Ctx, "entry", F);
- Builder.SetInsertPoint(BB);
-
- FTy = FunctionType::get(Type::getInt32Ty(*Ctx),
- PointerType::get(FTy, 0), false);
- Constant *AtExitFn = M->getOrInsertFunction("atexit", FTy);
- Builder.CreateCall(AtExitFn, WriteoutF);
Builder.CreateRetVoid();
-
- appendToGlobalCtors(*M, F, 0);
+ return WriteoutF;
}
void GCOVProfiler::insertIndirectCounterIncrement() {
@@ -701,11 +764,9 @@ void GCOVProfiler::insertIndirectCounterIncrement() {
cast<Function>(GCOVProfiler::getIncrementIndirectCounterFunc());
Fn->setUnnamedAddr(true);
Fn->setLinkage(GlobalValue::InternalLinkage);
- Fn->addFnAttr(Attributes::NoInline);
-
- Type *Int32Ty = Type::getInt32Ty(*Ctx);
- Type *Int64Ty = Type::getInt64Ty(*Ctx);
- Constant *NegOne = ConstantInt::get(Int32Ty, 0xffffffff);
+ Fn->addFnAttr(Attribute::NoInline);
+ if (Options.NoRedZone)
+ Fn->addFnAttr(Attribute::NoRedZone);
// Create basic blocks for function.
BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", Fn);
@@ -720,26 +781,27 @@ void GCOVProfiler::insertIndirectCounterIncrement() {
Argument *Arg = Fn->arg_begin();
Arg->setName("predecessor");
Value *Pred = Builder.CreateLoad(Arg, "pred");
- Value *Cond = Builder.CreateICmpEQ(Pred, NegOne);
+ Value *Cond = Builder.CreateICmpEQ(Pred, Builder.getInt32(0xffffffff));
BranchInst::Create(Exit, PredNotNegOne, Cond, BB);
Builder.SetInsertPoint(PredNotNegOne);
// uint64_t *counter = counters[pred];
// if (!counter) return;
- Value *ZExtPred = Builder.CreateZExt(Pred, Int64Ty);
+ Value *ZExtPred = Builder.CreateZExt(Pred, Builder.getInt64Ty());
Arg = llvm::next(Fn->arg_begin());
Arg->setName("counters");
Value *GEP = Builder.CreateGEP(Arg, ZExtPred);
Value *Counter = Builder.CreateLoad(GEP, "counter");
Cond = Builder.CreateICmpEQ(Counter,
- Constant::getNullValue(Int64Ty->getPointerTo()));
+ Constant::getNullValue(
+ Builder.getInt64Ty()->getPointerTo()));
Builder.CreateCondBr(Cond, Exit, CounterEnd);
// ++*counter;
Builder.SetInsertPoint(CounterEnd);
Value *Add = Builder.CreateAdd(Builder.CreateLoad(Counter),
- ConstantInt::get(Int64Ty, 1));
+ Builder.getInt64(1));
Builder.CreateStore(Add, Counter);
Builder.CreateBr(Exit);
@@ -748,16 +810,19 @@ void GCOVProfiler::insertIndirectCounterIncrement() {
Builder.CreateRetVoid();
}
-void GCOVProfiler::
+Function *GCOVProfiler::
insertFlush(ArrayRef<std::pair<GlobalVariable*, MDNode*> > CountersBySP) {
FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), false);
- Function *FlushF = M->getFunction("__gcov_flush");
+ Function *FlushF = M->getFunction("__llvm_gcov_flush");
if (!FlushF)
FlushF = Function::Create(FTy, GlobalValue::InternalLinkage,
- "__gcov_flush", M);
+ "__llvm_gcov_flush", M);
else
FlushF->setLinkage(GlobalValue::InternalLinkage);
FlushF->setUnnamedAddr(true);
+ FlushF->addFnAttr(Attribute::NoInline);
+ if (Options.NoRedZone)
+ FlushF->addFnAttr(Attribute::NoRedZone);
BasicBlock *Entry = BasicBlock::Create(*Ctx, "entry", FlushF);
@@ -781,8 +846,10 @@ insertFlush(ArrayRef<std::pair<GlobalVariable*, MDNode*> > CountersBySP) {
if (RetTy == Type::getVoidTy(*Ctx))
Builder.CreateRetVoid();
else if (RetTy->isIntegerTy())
- // Used if __gcov_flush was implicitly declared.
+ // Used if __llvm_gcov_flush was implicitly declared.
Builder.CreateRet(ConstantInt::get(RetTy, 0));
else
- report_fatal_error("invalid return type for __gcov_flush");
+ report_fatal_error("invalid return type for __llvm_gcov_flush");
+
+ return FlushF;
}
diff --git a/contrib/llvm/lib/Transforms/Instrumentation/Instrumentation.cpp b/contrib/llvm/lib/Transforms/Instrumentation/Instrumentation.cpp
index 1e0b4a3..8ba1025 100644
--- a/contrib/llvm/lib/Transforms/Instrumentation/Instrumentation.cpp
+++ b/contrib/llvm/lib/Transforms/Instrumentation/Instrumentation.cpp
@@ -21,11 +21,13 @@ using namespace llvm;
/// library.
void llvm::initializeInstrumentation(PassRegistry &Registry) {
initializeAddressSanitizerPass(Registry);
+ initializeAddressSanitizerModulePass(Registry);
initializeBoundsCheckingPass(Registry);
initializeEdgeProfilerPass(Registry);
initializeGCOVProfilerPass(Registry);
initializeOptimalEdgeProfilerPass(Registry);
initializePathProfilerPass(Registry);
+ initializeMemorySanitizerPass(Registry);
initializeThreadSanitizerPass(Registry);
}
diff --git a/contrib/llvm/lib/Transforms/Instrumentation/MaximumSpanningTree.h b/contrib/llvm/lib/Transforms/Instrumentation/MaximumSpanningTree.h
index a4bb5a6..363539b 100644
--- a/contrib/llvm/lib/Transforms/Instrumentation/MaximumSpanningTree.h
+++ b/contrib/llvm/lib/Transforms/Instrumentation/MaximumSpanningTree.h
@@ -15,10 +15,10 @@
#ifndef LLVM_ANALYSIS_MAXIMUMSPANNINGTREE_H
#define LLVM_ANALYSIS_MAXIMUMSPANNINGTREE_H
-#include "llvm/BasicBlock.h"
#include "llvm/ADT/EquivalenceClasses.h"
-#include <vector>
+#include "llvm/IR/BasicBlock.h"
#include <algorithm>
+#include <vector>
namespace llvm {
diff --git a/contrib/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp b/contrib/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp
new file mode 100644
index 0000000..4e75904
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp
@@ -0,0 +1,1985 @@
+//===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file is a part of MemorySanitizer, a detector of uninitialized
+/// reads.
+///
+/// Status: early prototype.
+///
+/// The algorithm of the tool is similar to Memcheck
+/// (http://goo.gl/QKbem). We associate a few shadow bits with every
+/// byte of the application memory, poison the shadow of the malloc-ed
+/// or alloca-ed memory, load the shadow bits on every memory read,
+/// propagate the shadow bits through some of the arithmetic
+/// instruction (including MOV), store the shadow bits on every memory
+/// write, report a bug on some other instructions (e.g. JMP) if the
+/// associated shadow is poisoned.
+///
+/// But there are differences too. The first and the major one:
+/// compiler instrumentation instead of binary instrumentation. This
+/// gives us much better register allocation, possible compiler
+/// optimizations and a fast start-up. But this brings the major issue
+/// as well: msan needs to see all program events, including system
+/// calls and reads/writes in system libraries, so we either need to
+/// compile *everything* with msan or use a binary translation
+/// component (e.g. DynamoRIO) to instrument pre-built libraries.
+/// Another difference from Memcheck is that we use 8 shadow bits per
+/// byte of application memory and use a direct shadow mapping. This
+/// greatly simplifies the instrumentation code and avoids races on
+/// shadow updates (Memcheck is single-threaded so races are not a
+/// concern there. Memcheck uses 2 shadow bits per byte with a slow
+/// path storage that uses 8 bits per byte).
+///
+/// The default value of shadow is 0, which means "clean" (not poisoned).
+///
+/// Every module initializer should call __msan_init to ensure that the
+/// shadow memory is ready. On error, __msan_warning is called. Since
+/// parameters and return values may be passed via registers, we have a
+/// specialized thread-local shadow for return values
+/// (__msan_retval_tls) and parameters (__msan_param_tls).
+///
+/// Origin tracking.
+///
+/// MemorySanitizer can track origins (allocation points) of all uninitialized
+/// values. This behavior is controlled with a flag (msan-track-origins) and is
+/// disabled by default.
+///
+/// Origins are 4-byte values created and interpreted by the runtime library.
+/// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
+/// of application memory. Propagation of origins is basically a bunch of
+/// "select" instructions that pick the origin of a dirty argument, if an
+/// instruction has one.
+///
+/// Every 4 aligned, consecutive bytes of application memory have one origin
+/// value associated with them. If these bytes contain uninitialized data
+/// coming from 2 different allocations, the last store wins. Because of this,
+/// MemorySanitizer reports can show unrelated origins, but this is unlikely in
+/// practice.
+///
+/// Origins are meaningless for fully initialized values, so MemorySanitizer
+/// avoids storing origin to memory when a fully initialized value is stored.
+/// This way it avoids needless overwritting origin of the 4-byte region on
+/// a short (i.e. 1 byte) clean store, and it is also good for performance.
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "msan"
+
+#include "llvm/Transforms/Instrumentation.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/ValueMap.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/InstVisitor.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/BlackList.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/ModuleUtils.h"
+
+using namespace llvm;
+
+static const uint64_t kShadowMask32 = 1ULL << 31;
+static const uint64_t kShadowMask64 = 1ULL << 46;
+static const uint64_t kOriginOffset32 = 1ULL << 30;
+static const uint64_t kOriginOffset64 = 1ULL << 45;
+static const unsigned kMinOriginAlignment = 4;
+static const unsigned kShadowTLSAlignment = 8;
+
+/// \brief Track origins of uninitialized values.
+///
+/// Adds a section to MemorySanitizer report that points to the allocation
+/// (stack or heap) the uninitialized bits came from originally.
+static cl::opt<bool> ClTrackOrigins("msan-track-origins",
+ cl::desc("Track origins (allocation sites) of poisoned memory"),
+ cl::Hidden, cl::init(false));
+static cl::opt<bool> ClKeepGoing("msan-keep-going",
+ cl::desc("keep going after reporting a UMR"),
+ cl::Hidden, cl::init(false));
+static cl::opt<bool> ClPoisonStack("msan-poison-stack",
+ cl::desc("poison uninitialized stack variables"),
+ cl::Hidden, cl::init(true));
+static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
+ cl::desc("poison uninitialized stack variables with a call"),
+ cl::Hidden, cl::init(false));
+static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
+ cl::desc("poison uninitialized stack variables with the given patter"),
+ cl::Hidden, cl::init(0xff));
+static cl::opt<bool> ClPoisonUndef("msan-poison-undef",
+ cl::desc("poison undef temps"),
+ cl::Hidden, cl::init(true));
+
+static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
+ cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
+ cl::Hidden, cl::init(true));
+
+static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact",
+ cl::desc("exact handling of relational integer ICmp"),
+ cl::Hidden, cl::init(false));
+
+static cl::opt<bool> ClStoreCleanOrigin("msan-store-clean-origin",
+ cl::desc("store origin for clean (fully initialized) values"),
+ cl::Hidden, cl::init(false));
+
+// This flag controls whether we check the shadow of the address
+// operand of load or store. Such bugs are very rare, since load from
+// a garbage address typically results in SEGV, but still happen
+// (e.g. only lower bits of address are garbage, or the access happens
+// early at program startup where malloc-ed memory is more likely to
+// be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
+static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
+ cl::desc("report accesses through a pointer which has poisoned shadow"),
+ cl::Hidden, cl::init(true));
+
+static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
+ cl::desc("print out instructions with default strict semantics"),
+ cl::Hidden, cl::init(false));
+
+static cl::opt<std::string> ClBlacklistFile("msan-blacklist",
+ cl::desc("File containing the list of functions where MemorySanitizer "
+ "should not report bugs"), cl::Hidden);
+
+namespace {
+
+/// \brief An instrumentation pass implementing detection of uninitialized
+/// reads.
+///
+/// MemorySanitizer: instrument the code in module to find
+/// uninitialized reads.
+class MemorySanitizer : public FunctionPass {
+ public:
+ MemorySanitizer(bool TrackOrigins = false,
+ StringRef BlacklistFile = StringRef())
+ : FunctionPass(ID),
+ TrackOrigins(TrackOrigins || ClTrackOrigins),
+ TD(0),
+ WarningFn(0),
+ BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile
+ : BlacklistFile) { }
+ const char *getPassName() const { return "MemorySanitizer"; }
+ bool runOnFunction(Function &F);
+ bool doInitialization(Module &M);
+ static char ID; // Pass identification, replacement for typeid.
+
+ private:
+ void initializeCallbacks(Module &M);
+
+ /// \brief Track origins (allocation points) of uninitialized values.
+ bool TrackOrigins;
+
+ DataLayout *TD;
+ LLVMContext *C;
+ Type *IntptrTy;
+ Type *OriginTy;
+ /// \brief Thread-local shadow storage for function parameters.
+ GlobalVariable *ParamTLS;
+ /// \brief Thread-local origin storage for function parameters.
+ GlobalVariable *ParamOriginTLS;
+ /// \brief Thread-local shadow storage for function return value.
+ GlobalVariable *RetvalTLS;
+ /// \brief Thread-local origin storage for function return value.
+ GlobalVariable *RetvalOriginTLS;
+ /// \brief Thread-local shadow storage for in-register va_arg function
+ /// parameters (x86_64-specific).
+ GlobalVariable *VAArgTLS;
+ /// \brief Thread-local shadow storage for va_arg overflow area
+ /// (x86_64-specific).
+ GlobalVariable *VAArgOverflowSizeTLS;
+ /// \brief Thread-local space used to pass origin value to the UMR reporting
+ /// function.
+ GlobalVariable *OriginTLS;
+
+ /// \brief The run-time callback to print a warning.
+ Value *WarningFn;
+ /// \brief Run-time helper that copies origin info for a memory range.
+ Value *MsanCopyOriginFn;
+ /// \brief Run-time helper that generates a new origin value for a stack
+ /// allocation.
+ Value *MsanSetAllocaOriginFn;
+ /// \brief Run-time helper that poisons stack on function entry.
+ Value *MsanPoisonStackFn;
+ /// \brief MSan runtime replacements for memmove, memcpy and memset.
+ Value *MemmoveFn, *MemcpyFn, *MemsetFn;
+
+ /// \brief Address mask used in application-to-shadow address calculation.
+ /// ShadowAddr is computed as ApplicationAddr & ~ShadowMask.
+ uint64_t ShadowMask;
+ /// \brief Offset of the origin shadow from the "normal" shadow.
+ /// OriginAddr is computed as (ShadowAddr + OriginOffset) & ~3ULL
+ uint64_t OriginOffset;
+ /// \brief Branch weights for error reporting.
+ MDNode *ColdCallWeights;
+ /// \brief Branch weights for origin store.
+ MDNode *OriginStoreWeights;
+ /// \bried Path to blacklist file.
+ SmallString<64> BlacklistFile;
+ /// \brief The blacklist.
+ OwningPtr<BlackList> BL;
+ /// \brief An empty volatile inline asm that prevents callback merge.
+ InlineAsm *EmptyAsm;
+
+ friend struct MemorySanitizerVisitor;
+ friend struct VarArgAMD64Helper;
+};
+} // namespace
+
+char MemorySanitizer::ID = 0;
+INITIALIZE_PASS(MemorySanitizer, "msan",
+ "MemorySanitizer: detects uninitialized reads.",
+ false, false)
+
+FunctionPass *llvm::createMemorySanitizerPass(bool TrackOrigins,
+ StringRef BlacklistFile) {
+ return new MemorySanitizer(TrackOrigins, BlacklistFile);
+}
+
+/// \brief Create a non-const global initialized with the given string.
+///
+/// Creates a writable global for Str so that we can pass it to the
+/// run-time lib. Runtime uses first 4 bytes of the string to store the
+/// frame ID, so the string needs to be mutable.
+static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
+ StringRef Str) {
+ Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
+ return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
+ GlobalValue::PrivateLinkage, StrConst, "");
+}
+
+
+/// \brief Insert extern declaration of runtime-provided functions and globals.
+void MemorySanitizer::initializeCallbacks(Module &M) {
+ // Only do this once.
+ if (WarningFn)
+ return;
+
+ IRBuilder<> IRB(*C);
+ // Create the callback.
+ // FIXME: this function should have "Cold" calling conv,
+ // which is not yet implemented.
+ StringRef WarningFnName = ClKeepGoing ? "__msan_warning"
+ : "__msan_warning_noreturn";
+ WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), NULL);
+
+ MsanCopyOriginFn = M.getOrInsertFunction(
+ "__msan_copy_origin", IRB.getVoidTy(), IRB.getInt8PtrTy(),
+ IRB.getInt8PtrTy(), IntptrTy, NULL);
+ MsanSetAllocaOriginFn = M.getOrInsertFunction(
+ "__msan_set_alloca_origin", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
+ IRB.getInt8PtrTy(), NULL);
+ MsanPoisonStackFn = M.getOrInsertFunction(
+ "__msan_poison_stack", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, NULL);
+ MemmoveFn = M.getOrInsertFunction(
+ "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
+ IRB.getInt8PtrTy(), IntptrTy, NULL);
+ MemcpyFn = M.getOrInsertFunction(
+ "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
+ IntptrTy, NULL);
+ MemsetFn = M.getOrInsertFunction(
+ "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
+ IntptrTy, NULL);
+
+ // Create globals.
+ RetvalTLS = new GlobalVariable(
+ M, ArrayType::get(IRB.getInt64Ty(), 8), false,
+ GlobalVariable::ExternalLinkage, 0, "__msan_retval_tls", 0,
+ GlobalVariable::GeneralDynamicTLSModel);
+ RetvalOriginTLS = new GlobalVariable(
+ M, OriginTy, false, GlobalVariable::ExternalLinkage, 0,
+ "__msan_retval_origin_tls", 0, GlobalVariable::GeneralDynamicTLSModel);
+
+ ParamTLS = new GlobalVariable(
+ M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
+ GlobalVariable::ExternalLinkage, 0, "__msan_param_tls", 0,
+ GlobalVariable::GeneralDynamicTLSModel);
+ ParamOriginTLS = new GlobalVariable(
+ M, ArrayType::get(OriginTy, 1000), false, GlobalVariable::ExternalLinkage,
+ 0, "__msan_param_origin_tls", 0, GlobalVariable::GeneralDynamicTLSModel);
+
+ VAArgTLS = new GlobalVariable(
+ M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
+ GlobalVariable::ExternalLinkage, 0, "__msan_va_arg_tls", 0,
+ GlobalVariable::GeneralDynamicTLSModel);
+ VAArgOverflowSizeTLS = new GlobalVariable(
+ M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, 0,
+ "__msan_va_arg_overflow_size_tls", 0,
+ GlobalVariable::GeneralDynamicTLSModel);
+ OriginTLS = new GlobalVariable(
+ M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, 0,
+ "__msan_origin_tls", 0, GlobalVariable::GeneralDynamicTLSModel);
+
+ // We insert an empty inline asm after __msan_report* to avoid callback merge.
+ EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
+ StringRef(""), StringRef(""),
+ /*hasSideEffects=*/true);
+}
+
+/// \brief Module-level initialization.
+///
+/// inserts a call to __msan_init to the module's constructor list.
+bool MemorySanitizer::doInitialization(Module &M) {
+ TD = getAnalysisIfAvailable<DataLayout>();
+ if (!TD)
+ return false;
+ BL.reset(new BlackList(BlacklistFile));
+ C = &(M.getContext());
+ unsigned PtrSize = TD->getPointerSizeInBits(/* AddressSpace */0);
+ switch (PtrSize) {
+ case 64:
+ ShadowMask = kShadowMask64;
+ OriginOffset = kOriginOffset64;
+ break;
+ case 32:
+ ShadowMask = kShadowMask32;
+ OriginOffset = kOriginOffset32;
+ break;
+ default:
+ report_fatal_error("unsupported pointer size");
+ break;
+ }
+
+ IRBuilder<> IRB(*C);
+ IntptrTy = IRB.getIntPtrTy(TD);
+ OriginTy = IRB.getInt32Ty();
+
+ ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
+ OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
+
+ // Insert a call to __msan_init/__msan_track_origins into the module's CTORs.
+ appendToGlobalCtors(M, cast<Function>(M.getOrInsertFunction(
+ "__msan_init", IRB.getVoidTy(), NULL)), 0);
+
+ new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
+ IRB.getInt32(TrackOrigins), "__msan_track_origins");
+
+ new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
+ IRB.getInt32(ClKeepGoing), "__msan_keep_going");
+
+ return true;
+}
+
+namespace {
+
+/// \brief A helper class that handles instrumentation of VarArg
+/// functions on a particular platform.
+///
+/// Implementations are expected to insert the instrumentation
+/// necessary to propagate argument shadow through VarArg function
+/// calls. Visit* methods are called during an InstVisitor pass over
+/// the function, and should avoid creating new basic blocks. A new
+/// instance of this class is created for each instrumented function.
+struct VarArgHelper {
+ /// \brief Visit a CallSite.
+ virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;
+
+ /// \brief Visit a va_start call.
+ virtual void visitVAStartInst(VAStartInst &I) = 0;
+
+ /// \brief Visit a va_copy call.
+ virtual void visitVACopyInst(VACopyInst &I) = 0;
+
+ /// \brief Finalize function instrumentation.
+ ///
+ /// This method is called after visiting all interesting (see above)
+ /// instructions in a function.
+ virtual void finalizeInstrumentation() = 0;
+
+ virtual ~VarArgHelper() {}
+};
+
+struct MemorySanitizerVisitor;
+
+VarArgHelper*
+CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
+ MemorySanitizerVisitor &Visitor);
+
+/// This class does all the work for a given function. Store and Load
+/// instructions store and load corresponding shadow and origin
+/// values. Most instructions propagate shadow from arguments to their
+/// return values. Certain instructions (most importantly, BranchInst)
+/// test their argument shadow and print reports (with a runtime call) if it's
+/// non-zero.
+struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
+ Function &F;
+ MemorySanitizer &MS;
+ SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
+ ValueMap<Value*, Value*> ShadowMap, OriginMap;
+ bool InsertChecks;
+ bool LoadShadow;
+ OwningPtr<VarArgHelper> VAHelper;
+
+ struct ShadowOriginAndInsertPoint {
+ Instruction *Shadow;
+ Instruction *Origin;
+ Instruction *OrigIns;
+ ShadowOriginAndInsertPoint(Instruction *S, Instruction *O, Instruction *I)
+ : Shadow(S), Origin(O), OrigIns(I) { }
+ ShadowOriginAndInsertPoint() : Shadow(0), Origin(0), OrigIns(0) { }
+ };
+ SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
+ SmallVector<Instruction*, 16> StoreList;
+
+ MemorySanitizerVisitor(Function &F, MemorySanitizer &MS)
+ : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) {
+ LoadShadow = InsertChecks =
+ !MS.BL->isIn(F) &&
+ F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::SanitizeMemory);
+
+ DEBUG(if (!InsertChecks)
+ dbgs() << "MemorySanitizer is not inserting checks into '"
+ << F.getName() << "'\n");
+ }
+
+ void materializeStores() {
+ for (size_t i = 0, n = StoreList.size(); i < n; i++) {
+ StoreInst& I = *dyn_cast<StoreInst>(StoreList[i]);
+
+ IRBuilder<> IRB(&I);
+ Value *Val = I.getValueOperand();
+ Value *Addr = I.getPointerOperand();
+ Value *Shadow = getShadow(Val);
+ Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
+
+ StoreInst *NewSI =
+ IRB.CreateAlignedStore(Shadow, ShadowPtr, I.getAlignment());
+ DEBUG(dbgs() << " STORE: " << *NewSI << "\n");
+ (void)NewSI;
+
+ if (ClCheckAccessAddress)
+ insertCheck(Addr, &I);
+
+ if (MS.TrackOrigins) {
+ unsigned Alignment = std::max(kMinOriginAlignment, I.getAlignment());
+ if (ClStoreCleanOrigin || isa<StructType>(Shadow->getType())) {
+ IRB.CreateAlignedStore(getOrigin(Val), getOriginPtr(Addr, IRB),
+ Alignment);
+ } else {
+ Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
+
+ Constant *Cst = dyn_cast_or_null<Constant>(ConvertedShadow);
+ // TODO(eugenis): handle non-zero constant shadow by inserting an
+ // unconditional check (can not simply fail compilation as this could
+ // be in the dead code).
+ if (Cst)
+ continue;
+
+ Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
+ getCleanShadow(ConvertedShadow), "_mscmp");
+ Instruction *CheckTerm =
+ SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false,
+ MS.OriginStoreWeights);
+ IRBuilder<> IRBNew(CheckTerm);
+ IRBNew.CreateAlignedStore(getOrigin(Val), getOriginPtr(Addr, IRBNew),
+ Alignment);
+ }
+ }
+ }
+ }
+
+ void materializeChecks() {
+ for (size_t i = 0, n = InstrumentationList.size(); i < n; i++) {
+ Instruction *Shadow = InstrumentationList[i].Shadow;
+ Instruction *OrigIns = InstrumentationList[i].OrigIns;
+ IRBuilder<> IRB(OrigIns);
+ DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n");
+ Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
+ DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n");
+ Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
+ getCleanShadow(ConvertedShadow), "_mscmp");
+ Instruction *CheckTerm =
+ SplitBlockAndInsertIfThen(cast<Instruction>(Cmp),
+ /* Unreachable */ !ClKeepGoing,
+ MS.ColdCallWeights);
+
+ IRB.SetInsertPoint(CheckTerm);
+ if (MS.TrackOrigins) {
+ Instruction *Origin = InstrumentationList[i].Origin;
+ IRB.CreateStore(Origin ? (Value*)Origin : (Value*)IRB.getInt32(0),
+ MS.OriginTLS);
+ }
+ CallInst *Call = IRB.CreateCall(MS.WarningFn);
+ Call->setDebugLoc(OrigIns->getDebugLoc());
+ IRB.CreateCall(MS.EmptyAsm);
+ DEBUG(dbgs() << " CHECK: " << *Cmp << "\n");
+ }
+ DEBUG(dbgs() << "DONE:\n" << F);
+ }
+
+ /// \brief Add MemorySanitizer instrumentation to a function.
+ bool runOnFunction() {
+ MS.initializeCallbacks(*F.getParent());
+ if (!MS.TD) return false;
+
+ // In the presence of unreachable blocks, we may see Phi nodes with
+ // incoming nodes from such blocks. Since InstVisitor skips unreachable
+ // blocks, such nodes will not have any shadow value associated with them.
+ // It's easier to remove unreachable blocks than deal with missing shadow.
+ removeUnreachableBlocks(F);
+
+ // Iterate all BBs in depth-first order and create shadow instructions
+ // for all instructions (where applicable).
+ // For PHI nodes we create dummy shadow PHIs which will be finalized later.
+ for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
+ DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
+ BasicBlock *BB = *DI;
+ visit(*BB);
+ }
+
+ // Finalize PHI nodes.
+ for (size_t i = 0, n = ShadowPHINodes.size(); i < n; i++) {
+ PHINode *PN = ShadowPHINodes[i];
+ PHINode *PNS = cast<PHINode>(getShadow(PN));
+ PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : 0;
+ size_t NumValues = PN->getNumIncomingValues();
+ for (size_t v = 0; v < NumValues; v++) {
+ PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
+ if (PNO)
+ PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
+ }
+ }
+
+ VAHelper->finalizeInstrumentation();
+
+ // Delayed instrumentation of StoreInst.
+ // This may add new checks to be inserted later.
+ materializeStores();
+
+ // Insert shadow value checks.
+ materializeChecks();
+
+ return true;
+ }
+
+ /// \brief Compute the shadow type that corresponds to a given Value.
+ Type *getShadowTy(Value *V) {
+ return getShadowTy(V->getType());
+ }
+
+ /// \brief Compute the shadow type that corresponds to a given Type.
+ Type *getShadowTy(Type *OrigTy) {
+ if (!OrigTy->isSized()) {
+ return 0;
+ }
+ // For integer type, shadow is the same as the original type.
+ // This may return weird-sized types like i1.
+ if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
+ return IT;
+ if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
+ uint32_t EltSize = MS.TD->getTypeSizeInBits(VT->getElementType());
+ return VectorType::get(IntegerType::get(*MS.C, EltSize),
+ VT->getNumElements());
+ }
+ if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
+ SmallVector<Type*, 4> Elements;
+ for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
+ Elements.push_back(getShadowTy(ST->getElementType(i)));
+ StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
+ DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
+ return Res;
+ }
+ uint32_t TypeSize = MS.TD->getTypeSizeInBits(OrigTy);
+ return IntegerType::get(*MS.C, TypeSize);
+ }
+
+ /// \brief Flatten a vector type.
+ Type *getShadowTyNoVec(Type *ty) {
+ if (VectorType *vt = dyn_cast<VectorType>(ty))
+ return IntegerType::get(*MS.C, vt->getBitWidth());
+ return ty;
+ }
+
+ /// \brief Convert a shadow value to it's flattened variant.
+ Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
+ Type *Ty = V->getType();
+ Type *NoVecTy = getShadowTyNoVec(Ty);
+ if (Ty == NoVecTy) return V;
+ return IRB.CreateBitCast(V, NoVecTy);
+ }
+
+ /// \brief Compute the shadow address that corresponds to a given application
+ /// address.
+ ///
+ /// Shadow = Addr & ~ShadowMask.
+ Value *getShadowPtr(Value *Addr, Type *ShadowTy,
+ IRBuilder<> &IRB) {
+ Value *ShadowLong =
+ IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
+ ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
+ return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
+ }
+
+ /// \brief Compute the origin address that corresponds to a given application
+ /// address.
+ ///
+ /// OriginAddr = (ShadowAddr + OriginOffset) & ~3ULL
+ Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB) {
+ Value *ShadowLong =
+ IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
+ ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
+ Value *Add =
+ IRB.CreateAdd(ShadowLong,
+ ConstantInt::get(MS.IntptrTy, MS.OriginOffset));
+ Value *SecondAnd =
+ IRB.CreateAnd(Add, ConstantInt::get(MS.IntptrTy, ~3ULL));
+ return IRB.CreateIntToPtr(SecondAnd, PointerType::get(IRB.getInt32Ty(), 0));
+ }
+
+ /// \brief Compute the shadow address for a given function argument.
+ ///
+ /// Shadow = ParamTLS+ArgOffset.
+ Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
+ int ArgOffset) {
+ Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
+ Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
+ return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
+ "_msarg");
+ }
+
+ /// \brief Compute the origin address for a given function argument.
+ Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
+ int ArgOffset) {
+ if (!MS.TrackOrigins) return 0;
+ Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
+ Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
+ return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
+ "_msarg_o");
+ }
+
+ /// \brief Compute the shadow address for a retval.
+ Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
+ Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy);
+ return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
+ "_msret");
+ }
+
+ /// \brief Compute the origin address for a retval.
+ Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
+ // We keep a single origin for the entire retval. Might be too optimistic.
+ return MS.RetvalOriginTLS;
+ }
+
+ /// \brief Set SV to be the shadow value for V.
+ void setShadow(Value *V, Value *SV) {
+ assert(!ShadowMap.count(V) && "Values may only have one shadow");
+ ShadowMap[V] = SV;
+ }
+
+ /// \brief Set Origin to be the origin value for V.
+ void setOrigin(Value *V, Value *Origin) {
+ if (!MS.TrackOrigins) return;
+ assert(!OriginMap.count(V) && "Values may only have one origin");
+ DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n");
+ OriginMap[V] = Origin;
+ }
+
+ /// \brief Create a clean shadow value for a given value.
+ ///
+ /// Clean shadow (all zeroes) means all bits of the value are defined
+ /// (initialized).
+ Constant *getCleanShadow(Value *V) {
+ Type *ShadowTy = getShadowTy(V);
+ if (!ShadowTy)
+ return 0;
+ return Constant::getNullValue(ShadowTy);
+ }
+
+ /// \brief Create a dirty shadow of a given shadow type.
+ Constant *getPoisonedShadow(Type *ShadowTy) {
+ assert(ShadowTy);
+ if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
+ return Constant::getAllOnesValue(ShadowTy);
+ StructType *ST = cast<StructType>(ShadowTy);
+ SmallVector<Constant *, 4> Vals;
+ for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
+ Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
+ return ConstantStruct::get(ST, Vals);
+ }
+
+ /// \brief Create a dirty shadow for a given value.
+ Constant *getPoisonedShadow(Value *V) {
+ Type *ShadowTy = getShadowTy(V);
+ if (!ShadowTy)
+ return 0;
+ return getPoisonedShadow(ShadowTy);
+ }
+
+ /// \brief Create a clean (zero) origin.
+ Value *getCleanOrigin() {
+ return Constant::getNullValue(MS.OriginTy);
+ }
+
+ /// \brief Get the shadow value for a given Value.
+ ///
+ /// This function either returns the value set earlier with setShadow,
+ /// or extracts if from ParamTLS (for function arguments).
+ Value *getShadow(Value *V) {
+ if (Instruction *I = dyn_cast<Instruction>(V)) {
+ // For instructions the shadow is already stored in the map.
+ Value *Shadow = ShadowMap[V];
+ if (!Shadow) {
+ DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
+ (void)I;
+ assert(Shadow && "No shadow for a value");
+ }
+ return Shadow;
+ }
+ if (UndefValue *U = dyn_cast<UndefValue>(V)) {
+ Value *AllOnes = ClPoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V);
+ DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
+ (void)U;
+ return AllOnes;
+ }
+ if (Argument *A = dyn_cast<Argument>(V)) {
+ // For arguments we compute the shadow on demand and store it in the map.
+ Value **ShadowPtr = &ShadowMap[V];
+ if (*ShadowPtr)
+ return *ShadowPtr;
+ Function *F = A->getParent();
+ IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI());
+ unsigned ArgOffset = 0;
+ for (Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
+ AI != AE; ++AI) {
+ if (!AI->getType()->isSized()) {
+ DEBUG(dbgs() << "Arg is not sized\n");
+ continue;
+ }
+ unsigned Size = AI->hasByValAttr()
+ ? MS.TD->getTypeAllocSize(AI->getType()->getPointerElementType())
+ : MS.TD->getTypeAllocSize(AI->getType());
+ if (A == AI) {
+ Value *Base = getShadowPtrForArgument(AI, EntryIRB, ArgOffset);
+ if (AI->hasByValAttr()) {
+ // ByVal pointer itself has clean shadow. We copy the actual
+ // argument shadow to the underlying memory.
+ Value *Cpy = EntryIRB.CreateMemCpy(
+ getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB),
+ Base, Size, AI->getParamAlignment());
+ DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n");
+ (void)Cpy;
+ *ShadowPtr = getCleanShadow(V);
+ } else {
+ *ShadowPtr = EntryIRB.CreateLoad(Base);
+ }
+ DEBUG(dbgs() << " ARG: " << *AI << " ==> " <<
+ **ShadowPtr << "\n");
+ if (MS.TrackOrigins) {
+ Value* OriginPtr = getOriginPtrForArgument(AI, EntryIRB, ArgOffset);
+ setOrigin(A, EntryIRB.CreateLoad(OriginPtr));
+ }
+ }
+ ArgOffset += DataLayout::RoundUpAlignment(Size, 8);
+ }
+ assert(*ShadowPtr && "Could not find shadow for an argument");
+ return *ShadowPtr;
+ }
+ // For everything else the shadow is zero.
+ return getCleanShadow(V);
+ }
+
+ /// \brief Get the shadow for i-th argument of the instruction I.
+ Value *getShadow(Instruction *I, int i) {
+ return getShadow(I->getOperand(i));
+ }
+
+ /// \brief Get the origin for a value.
+ Value *getOrigin(Value *V) {
+ if (!MS.TrackOrigins) return 0;
+ if (isa<Instruction>(V) || isa<Argument>(V)) {
+ Value *Origin = OriginMap[V];
+ if (!Origin) {
+ DEBUG(dbgs() << "NO ORIGIN: " << *V << "\n");
+ Origin = getCleanOrigin();
+ }
+ return Origin;
+ }
+ return getCleanOrigin();
+ }
+
+ /// \brief Get the origin for i-th argument of the instruction I.
+ Value *getOrigin(Instruction *I, int i) {
+ return getOrigin(I->getOperand(i));
+ }
+
+ /// \brief Remember the place where a shadow check should be inserted.
+ ///
+ /// This location will be later instrumented with a check that will print a
+ /// UMR warning in runtime if the value is not fully defined.
+ void insertCheck(Value *Val, Instruction *OrigIns) {
+ assert(Val);
+ if (!InsertChecks) return;
+ Instruction *Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
+ if (!Shadow) return;
+#ifndef NDEBUG
+ Type *ShadowTy = Shadow->getType();
+ assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
+ "Can only insert checks for integer and vector shadow types");
+#endif
+ Instruction *Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
+ InstrumentationList.push_back(
+ ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
+ }
+
+ // ------------------- Visitors.
+
+ /// \brief Instrument LoadInst
+ ///
+ /// Loads the corresponding shadow and (optionally) origin.
+ /// Optionally, checks that the load address is fully defined.
+ void visitLoadInst(LoadInst &I) {
+ assert(I.getType()->isSized() && "Load type must have size");
+ IRBuilder<> IRB(&I);
+ Type *ShadowTy = getShadowTy(&I);
+ Value *Addr = I.getPointerOperand();
+ if (LoadShadow) {
+ Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
+ setShadow(&I,
+ IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld"));
+ } else {
+ setShadow(&I, getCleanShadow(&I));
+ }
+
+ if (ClCheckAccessAddress)
+ insertCheck(I.getPointerOperand(), &I);
+
+ if (MS.TrackOrigins) {
+ if (LoadShadow) {
+ unsigned Alignment = std::max(kMinOriginAlignment, I.getAlignment());
+ setOrigin(&I,
+ IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB), Alignment));
+ } else {
+ setOrigin(&I, getCleanOrigin());
+ }
+ }
+ }
+
+ /// \brief Instrument StoreInst
+ ///
+ /// Stores the corresponding shadow and (optionally) origin.
+ /// Optionally, checks that the store address is fully defined.
+ void visitStoreInst(StoreInst &I) {
+ StoreList.push_back(&I);
+ }
+
+ // Vector manipulation.
+ void visitExtractElementInst(ExtractElementInst &I) {
+ insertCheck(I.getOperand(1), &I);
+ IRBuilder<> IRB(&I);
+ setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
+ "_msprop"));
+ setOrigin(&I, getOrigin(&I, 0));
+ }
+
+ void visitInsertElementInst(InsertElementInst &I) {
+ insertCheck(I.getOperand(2), &I);
+ IRBuilder<> IRB(&I);
+ setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
+ I.getOperand(2), "_msprop"));
+ setOriginForNaryOp(I);
+ }
+
+ void visitShuffleVectorInst(ShuffleVectorInst &I) {
+ insertCheck(I.getOperand(2), &I);
+ IRBuilder<> IRB(&I);
+ setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
+ I.getOperand(2), "_msprop"));
+ setOriginForNaryOp(I);
+ }
+
+ // Casts.
+ void visitSExtInst(SExtInst &I) {
+ IRBuilder<> IRB(&I);
+ setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
+ setOrigin(&I, getOrigin(&I, 0));
+ }
+
+ void visitZExtInst(ZExtInst &I) {
+ IRBuilder<> IRB(&I);
+ setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
+ setOrigin(&I, getOrigin(&I, 0));
+ }
+
+ void visitTruncInst(TruncInst &I) {
+ IRBuilder<> IRB(&I);
+ setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
+ setOrigin(&I, getOrigin(&I, 0));
+ }
+
+ void visitBitCastInst(BitCastInst &I) {
+ IRBuilder<> IRB(&I);
+ setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
+ setOrigin(&I, getOrigin(&I, 0));
+ }
+
+ void visitPtrToIntInst(PtrToIntInst &I) {
+ IRBuilder<> IRB(&I);
+ setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
+ "_msprop_ptrtoint"));
+ setOrigin(&I, getOrigin(&I, 0));
+ }
+
+ void visitIntToPtrInst(IntToPtrInst &I) {
+ IRBuilder<> IRB(&I);
+ setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
+ "_msprop_inttoptr"));
+ setOrigin(&I, getOrigin(&I, 0));
+ }
+
+ void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
+ void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
+ void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
+ void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
+ void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
+ void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
+
+ /// \brief Propagate shadow for bitwise AND.
+ ///
+ /// This code is exact, i.e. if, for example, a bit in the left argument
+ /// is defined and 0, then neither the value not definedness of the
+ /// corresponding bit in B don't affect the resulting shadow.
+ void visitAnd(BinaryOperator &I) {
+ IRBuilder<> IRB(&I);
+ // "And" of 0 and a poisoned value results in unpoisoned value.
+ // 1&1 => 1; 0&1 => 0; p&1 => p;
+ // 1&0 => 0; 0&0 => 0; p&0 => 0;
+ // 1&p => p; 0&p => 0; p&p => p;
+ // S = (S1 & S2) | (V1 & S2) | (S1 & V2)
+ Value *S1 = getShadow(&I, 0);
+ Value *S2 = getShadow(&I, 1);
+ Value *V1 = I.getOperand(0);
+ Value *V2 = I.getOperand(1);
+ if (V1->getType() != S1->getType()) {
+ V1 = IRB.CreateIntCast(V1, S1->getType(), false);
+ V2 = IRB.CreateIntCast(V2, S2->getType(), false);
+ }
+ Value *S1S2 = IRB.CreateAnd(S1, S2);
+ Value *V1S2 = IRB.CreateAnd(V1, S2);
+ Value *S1V2 = IRB.CreateAnd(S1, V2);
+ setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
+ setOriginForNaryOp(I);
+ }
+
+ void visitOr(BinaryOperator &I) {
+ IRBuilder<> IRB(&I);
+ // "Or" of 1 and a poisoned value results in unpoisoned value.
+ // 1|1 => 1; 0|1 => 1; p|1 => 1;
+ // 1|0 => 1; 0|0 => 0; p|0 => p;
+ // 1|p => 1; 0|p => p; p|p => p;
+ // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
+ Value *S1 = getShadow(&I, 0);
+ Value *S2 = getShadow(&I, 1);
+ Value *V1 = IRB.CreateNot(I.getOperand(0));
+ Value *V2 = IRB.CreateNot(I.getOperand(1));
+ if (V1->getType() != S1->getType()) {
+ V1 = IRB.CreateIntCast(V1, S1->getType(), false);
+ V2 = IRB.CreateIntCast(V2, S2->getType(), false);
+ }
+ Value *S1S2 = IRB.CreateAnd(S1, S2);
+ Value *V1S2 = IRB.CreateAnd(V1, S2);
+ Value *S1V2 = IRB.CreateAnd(S1, V2);
+ setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
+ setOriginForNaryOp(I);
+ }
+
+ /// \brief Default propagation of shadow and/or origin.
+ ///
+ /// This class implements the general case of shadow propagation, used in all
+ /// cases where we don't know and/or don't care about what the operation
+ /// actually does. It converts all input shadow values to a common type
+ /// (extending or truncating as necessary), and bitwise OR's them.
+ ///
+ /// This is much cheaper than inserting checks (i.e. requiring inputs to be
+ /// fully initialized), and less prone to false positives.
+ ///
+ /// This class also implements the general case of origin propagation. For a
+ /// Nary operation, result origin is set to the origin of an argument that is
+ /// not entirely initialized. If there is more than one such arguments, the
+ /// rightmost of them is picked. It does not matter which one is picked if all
+ /// arguments are initialized.
+ template <bool CombineShadow>
+ class Combiner {
+ Value *Shadow;
+ Value *Origin;
+ IRBuilder<> &IRB;
+ MemorySanitizerVisitor *MSV;
+
+ public:
+ Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) :
+ Shadow(0), Origin(0), IRB(IRB), MSV(MSV) {}
+
+ /// \brief Add a pair of shadow and origin values to the mix.
+ Combiner &Add(Value *OpShadow, Value *OpOrigin) {
+ if (CombineShadow) {
+ assert(OpShadow);
+ if (!Shadow)
+ Shadow = OpShadow;
+ else {
+ OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
+ Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
+ }
+ }
+
+ if (MSV->MS.TrackOrigins) {
+ assert(OpOrigin);
+ if (!Origin) {
+ Origin = OpOrigin;
+ } else {
+ Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB);
+ Value *Cond = IRB.CreateICmpNE(FlatShadow,
+ MSV->getCleanShadow(FlatShadow));
+ Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
+ }
+ }
+ return *this;
+ }
+
+ /// \brief Add an application value to the mix.
+ Combiner &Add(Value *V) {
+ Value *OpShadow = MSV->getShadow(V);
+ Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : 0;
+ return Add(OpShadow, OpOrigin);
+ }
+
+ /// \brief Set the current combined values as the given instruction's shadow
+ /// and origin.
+ void Done(Instruction *I) {
+ if (CombineShadow) {
+ assert(Shadow);
+ Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
+ MSV->setShadow(I, Shadow);
+ }
+ if (MSV->MS.TrackOrigins) {
+ assert(Origin);
+ MSV->setOrigin(I, Origin);
+ }
+ }
+ };
+
+ typedef Combiner<true> ShadowAndOriginCombiner;
+ typedef Combiner<false> OriginCombiner;
+
+ /// \brief Propagate origin for arbitrary operation.
+ void setOriginForNaryOp(Instruction &I) {
+ if (!MS.TrackOrigins) return;
+ IRBuilder<> IRB(&I);
+ OriginCombiner OC(this, IRB);
+ for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
+ OC.Add(OI->get());
+ OC.Done(&I);
+ }
+
+ size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
+ assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
+ "Vector of pointers is not a valid shadow type");
+ return Ty->isVectorTy() ?
+ Ty->getVectorNumElements() * Ty->getScalarSizeInBits() :
+ Ty->getPrimitiveSizeInBits();
+ }
+
+ /// \brief Cast between two shadow types, extending or truncating as
+ /// necessary.
+ Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy) {
+ Type *srcTy = V->getType();
+ if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
+ return IRB.CreateIntCast(V, dstTy, false);
+ if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
+ dstTy->getVectorNumElements() == srcTy->getVectorNumElements())
+ return IRB.CreateIntCast(V, dstTy, false);
+ size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
+ size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
+ Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
+ Value *V2 =
+ IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), false);
+ return IRB.CreateBitCast(V2, dstTy);
+ // TODO: handle struct types.
+ }
+
+ /// \brief Propagate shadow for arbitrary operation.
+ void handleShadowOr(Instruction &I) {
+ IRBuilder<> IRB(&I);
+ ShadowAndOriginCombiner SC(this, IRB);
+ for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
+ SC.Add(OI->get());
+ SC.Done(&I);
+ }
+
+ void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
+ void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
+ void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
+ void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
+ void visitSub(BinaryOperator &I) { handleShadowOr(I); }
+ void visitXor(BinaryOperator &I) { handleShadowOr(I); }
+ void visitMul(BinaryOperator &I) { handleShadowOr(I); }
+
+ void handleDiv(Instruction &I) {
+ IRBuilder<> IRB(&I);
+ // Strict on the second argument.
+ insertCheck(I.getOperand(1), &I);
+ setShadow(&I, getShadow(&I, 0));
+ setOrigin(&I, getOrigin(&I, 0));
+ }
+
+ void visitUDiv(BinaryOperator &I) { handleDiv(I); }
+ void visitSDiv(BinaryOperator &I) { handleDiv(I); }
+ void visitFDiv(BinaryOperator &I) { handleDiv(I); }
+ void visitURem(BinaryOperator &I) { handleDiv(I); }
+ void visitSRem(BinaryOperator &I) { handleDiv(I); }
+ void visitFRem(BinaryOperator &I) { handleDiv(I); }
+
+ /// \brief Instrument == and != comparisons.
+ ///
+ /// Sometimes the comparison result is known even if some of the bits of the
+ /// arguments are not.
+ void handleEqualityComparison(ICmpInst &I) {
+ IRBuilder<> IRB(&I);
+ Value *A = I.getOperand(0);
+ Value *B = I.getOperand(1);
+ Value *Sa = getShadow(A);
+ Value *Sb = getShadow(B);
+
+ // Get rid of pointers and vectors of pointers.
+ // For ints (and vectors of ints), types of A and Sa match,
+ // and this is a no-op.
+ A = IRB.CreatePointerCast(A, Sa->getType());
+ B = IRB.CreatePointerCast(B, Sb->getType());
+
+ // A == B <==> (C = A^B) == 0
+ // A != B <==> (C = A^B) != 0
+ // Sc = Sa | Sb
+ Value *C = IRB.CreateXor(A, B);
+ Value *Sc = IRB.CreateOr(Sa, Sb);
+ // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
+ // Result is defined if one of the following is true
+ // * there is a defined 1 bit in C
+ // * C is fully defined
+ // Si = !(C & ~Sc) && Sc
+ Value *Zero = Constant::getNullValue(Sc->getType());
+ Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
+ Value *Si =
+ IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
+ IRB.CreateICmpEQ(
+ IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
+ Si->setName("_msprop_icmp");
+ setShadow(&I, Si);
+ setOriginForNaryOp(I);
+ }
+
+ /// \brief Build the lowest possible value of V, taking into account V's
+ /// uninitialized bits.
+ Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
+ bool isSigned) {
+ if (isSigned) {
+ // Split shadow into sign bit and other bits.
+ Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
+ Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
+ // Maximise the undefined shadow bit, minimize other undefined bits.
+ return
+ IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit);
+ } else {
+ // Minimize undefined bits.
+ return IRB.CreateAnd(A, IRB.CreateNot(Sa));
+ }
+ }
+
+ /// \brief Build the highest possible value of V, taking into account V's
+ /// uninitialized bits.
+ Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
+ bool isSigned) {
+ if (isSigned) {
+ // Split shadow into sign bit and other bits.
+ Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
+ Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
+ // Minimise the undefined shadow bit, maximise other undefined bits.
+ return
+ IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits);
+ } else {
+ // Maximize undefined bits.
+ return IRB.CreateOr(A, Sa);
+ }
+ }
+
+ /// \brief Instrument relational comparisons.
+ ///
+ /// This function does exact shadow propagation for all relational
+ /// comparisons of integers, pointers and vectors of those.
+ /// FIXME: output seems suboptimal when one of the operands is a constant
+ void handleRelationalComparisonExact(ICmpInst &I) {
+ IRBuilder<> IRB(&I);
+ Value *A = I.getOperand(0);
+ Value *B = I.getOperand(1);
+ Value *Sa = getShadow(A);
+ Value *Sb = getShadow(B);
+
+ // Get rid of pointers and vectors of pointers.
+ // For ints (and vectors of ints), types of A and Sa match,
+ // and this is a no-op.
+ A = IRB.CreatePointerCast(A, Sa->getType());
+ B = IRB.CreatePointerCast(B, Sb->getType());
+
+ // Let [a0, a1] be the interval of possible values of A, taking into account
+ // its undefined bits. Let [b0, b1] be the interval of possible values of B.
+ // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
+ bool IsSigned = I.isSigned();
+ Value *S1 = IRB.CreateICmp(I.getPredicate(),
+ getLowestPossibleValue(IRB, A, Sa, IsSigned),
+ getHighestPossibleValue(IRB, B, Sb, IsSigned));
+ Value *S2 = IRB.CreateICmp(I.getPredicate(),
+ getHighestPossibleValue(IRB, A, Sa, IsSigned),
+ getLowestPossibleValue(IRB, B, Sb, IsSigned));
+ Value *Si = IRB.CreateXor(S1, S2);
+ setShadow(&I, Si);
+ setOriginForNaryOp(I);
+ }
+
+ /// \brief Instrument signed relational comparisons.
+ ///
+ /// Handle (x<0) and (x>=0) comparisons (essentially, sign bit tests) by
+ /// propagating the highest bit of the shadow. Everything else is delegated
+ /// to handleShadowOr().
+ void handleSignedRelationalComparison(ICmpInst &I) {
+ Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
+ Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
+ Value* op = NULL;
+ CmpInst::Predicate pre = I.getPredicate();
+ if (constOp0 && constOp0->isNullValue() &&
+ (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE)) {
+ op = I.getOperand(1);
+ } else if (constOp1 && constOp1->isNullValue() &&
+ (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) {
+ op = I.getOperand(0);
+ }
+ if (op) {
+ IRBuilder<> IRB(&I);
+ Value* Shadow =
+ IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), "_msprop_icmpslt");
+ setShadow(&I, Shadow);
+ setOrigin(&I, getOrigin(op));
+ } else {
+ handleShadowOr(I);
+ }
+ }
+
+ void visitICmpInst(ICmpInst &I) {
+ if (!ClHandleICmp) {
+ handleShadowOr(I);
+ return;
+ }
+ if (I.isEquality()) {
+ handleEqualityComparison(I);
+ return;
+ }
+
+ assert(I.isRelational());
+ if (ClHandleICmpExact) {
+ handleRelationalComparisonExact(I);
+ return;
+ }
+ if (I.isSigned()) {
+ handleSignedRelationalComparison(I);
+ return;
+ }
+
+ assert(I.isUnsigned());
+ if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
+ handleRelationalComparisonExact(I);
+ return;
+ }
+
+ handleShadowOr(I);
+ }
+
+ void visitFCmpInst(FCmpInst &I) {
+ handleShadowOr(I);
+ }
+
+ void handleShift(BinaryOperator &I) {
+ IRBuilder<> IRB(&I);
+ // If any of the S2 bits are poisoned, the whole thing is poisoned.
+ // Otherwise perform the same shift on S1.
+ Value *S1 = getShadow(&I, 0);
+ Value *S2 = getShadow(&I, 1);
+ Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
+ S2->getType());
+ Value *V2 = I.getOperand(1);
+ Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
+ setShadow(&I, IRB.CreateOr(Shift, S2Conv));
+ setOriginForNaryOp(I);
+ }
+
+ void visitShl(BinaryOperator &I) { handleShift(I); }
+ void visitAShr(BinaryOperator &I) { handleShift(I); }
+ void visitLShr(BinaryOperator &I) { handleShift(I); }
+
+ /// \brief Instrument llvm.memmove
+ ///
+ /// At this point we don't know if llvm.memmove will be inlined or not.
+ /// If we don't instrument it and it gets inlined,
+ /// our interceptor will not kick in and we will lose the memmove.
+ /// If we instrument the call here, but it does not get inlined,
+ /// we will memove the shadow twice: which is bad in case
+ /// of overlapping regions. So, we simply lower the intrinsic to a call.
+ ///
+ /// Similar situation exists for memcpy and memset.
+ void visitMemMoveInst(MemMoveInst &I) {
+ IRBuilder<> IRB(&I);
+ IRB.CreateCall3(
+ MS.MemmoveFn,
+ IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
+ IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
+ IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
+ I.eraseFromParent();
+ }
+
+ // Similar to memmove: avoid copying shadow twice.
+ // This is somewhat unfortunate as it may slowdown small constant memcpys.
+ // FIXME: consider doing manual inline for small constant sizes and proper
+ // alignment.
+ void visitMemCpyInst(MemCpyInst &I) {
+ IRBuilder<> IRB(&I);
+ IRB.CreateCall3(
+ MS.MemcpyFn,
+ IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
+ IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
+ IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
+ I.eraseFromParent();
+ }
+
+ // Same as memcpy.
+ void visitMemSetInst(MemSetInst &I) {
+ IRBuilder<> IRB(&I);
+ IRB.CreateCall3(
+ MS.MemsetFn,
+ IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
+ IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
+ IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
+ I.eraseFromParent();
+ }
+
+ void visitVAStartInst(VAStartInst &I) {
+ VAHelper->visitVAStartInst(I);
+ }
+
+ void visitVACopyInst(VACopyInst &I) {
+ VAHelper->visitVACopyInst(I);
+ }
+
+ enum IntrinsicKind {
+ IK_DoesNotAccessMemory,
+ IK_OnlyReadsMemory,
+ IK_WritesMemory
+ };
+
+ static IntrinsicKind getIntrinsicKind(Intrinsic::ID iid) {
+ const int DoesNotAccessMemory = IK_DoesNotAccessMemory;
+ const int OnlyReadsArgumentPointees = IK_OnlyReadsMemory;
+ const int OnlyReadsMemory = IK_OnlyReadsMemory;
+ const int OnlyAccessesArgumentPointees = IK_WritesMemory;
+ const int UnknownModRefBehavior = IK_WritesMemory;
+#define GET_INTRINSIC_MODREF_BEHAVIOR
+#define ModRefBehavior IntrinsicKind
+#include "llvm/IR/Intrinsics.gen"
+#undef ModRefBehavior
+#undef GET_INTRINSIC_MODREF_BEHAVIOR
+ }
+
+ /// \brief Handle vector store-like intrinsics.
+ ///
+ /// Instrument intrinsics that look like a simple SIMD store: writes memory,
+ /// has 1 pointer argument and 1 vector argument, returns void.
+ bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
+ IRBuilder<> IRB(&I);
+ Value* Addr = I.getArgOperand(0);
+ Value *Shadow = getShadow(&I, 1);
+ Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
+
+ // We don't know the pointer alignment (could be unaligned SSE store!).
+ // Have to assume to worst case.
+ IRB.CreateAlignedStore(Shadow, ShadowPtr, 1);
+
+ if (ClCheckAccessAddress)
+ insertCheck(Addr, &I);
+
+ // FIXME: use ClStoreCleanOrigin
+ // FIXME: factor out common code from materializeStores
+ if (MS.TrackOrigins)
+ IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB));
+ return true;
+ }
+
+ /// \brief Handle vector load-like intrinsics.
+ ///
+ /// Instrument intrinsics that look like a simple SIMD load: reads memory,
+ /// has 1 pointer argument, returns a vector.
+ bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
+ IRBuilder<> IRB(&I);
+ Value *Addr = I.getArgOperand(0);
+
+ Type *ShadowTy = getShadowTy(&I);
+ if (LoadShadow) {
+ Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
+ // We don't know the pointer alignment (could be unaligned SSE load!).
+ // Have to assume to worst case.
+ setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, 1, "_msld"));
+ } else {
+ setShadow(&I, getCleanShadow(&I));
+ }
+
+
+ if (ClCheckAccessAddress)
+ insertCheck(Addr, &I);
+
+ if (MS.TrackOrigins) {
+ if (LoadShadow)
+ setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB)));
+ else
+ setOrigin(&I, getCleanOrigin());
+ }
+ return true;
+ }
+
+ /// \brief Handle (SIMD arithmetic)-like intrinsics.
+ ///
+ /// Instrument intrinsics with any number of arguments of the same type,
+ /// equal to the return type. The type should be simple (no aggregates or
+ /// pointers; vectors are fine).
+ /// Caller guarantees that this intrinsic does not access memory.
+ bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
+ Type *RetTy = I.getType();
+ if (!(RetTy->isIntOrIntVectorTy() ||
+ RetTy->isFPOrFPVectorTy() ||
+ RetTy->isX86_MMXTy()))
+ return false;
+
+ unsigned NumArgOperands = I.getNumArgOperands();
+
+ for (unsigned i = 0; i < NumArgOperands; ++i) {
+ Type *Ty = I.getArgOperand(i)->getType();
+ if (Ty != RetTy)
+ return false;
+ }
+
+ IRBuilder<> IRB(&I);
+ ShadowAndOriginCombiner SC(this, IRB);
+ for (unsigned i = 0; i < NumArgOperands; ++i)
+ SC.Add(I.getArgOperand(i));
+ SC.Done(&I);
+
+ return true;
+ }
+
+ /// \brief Heuristically instrument unknown intrinsics.
+ ///
+ /// The main purpose of this code is to do something reasonable with all
+ /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
+ /// We recognize several classes of intrinsics by their argument types and
+ /// ModRefBehaviour and apply special intrumentation when we are reasonably
+ /// sure that we know what the intrinsic does.
+ ///
+ /// We special-case intrinsics where this approach fails. See llvm.bswap
+ /// handling as an example of that.
+ bool handleUnknownIntrinsic(IntrinsicInst &I) {
+ unsigned NumArgOperands = I.getNumArgOperands();
+ if (NumArgOperands == 0)
+ return false;
+
+ Intrinsic::ID iid = I.getIntrinsicID();
+ IntrinsicKind IK = getIntrinsicKind(iid);
+ bool OnlyReadsMemory = IK == IK_OnlyReadsMemory;
+ bool WritesMemory = IK == IK_WritesMemory;
+ assert(!(OnlyReadsMemory && WritesMemory));
+
+ if (NumArgOperands == 2 &&
+ I.getArgOperand(0)->getType()->isPointerTy() &&
+ I.getArgOperand(1)->getType()->isVectorTy() &&
+ I.getType()->isVoidTy() &&
+ WritesMemory) {
+ // This looks like a vector store.
+ return handleVectorStoreIntrinsic(I);
+ }
+
+ if (NumArgOperands == 1 &&
+ I.getArgOperand(0)->getType()->isPointerTy() &&
+ I.getType()->isVectorTy() &&
+ OnlyReadsMemory) {
+ // This looks like a vector load.
+ return handleVectorLoadIntrinsic(I);
+ }
+
+ if (!OnlyReadsMemory && !WritesMemory)
+ if (maybeHandleSimpleNomemIntrinsic(I))
+ return true;
+
+ // FIXME: detect and handle SSE maskstore/maskload
+ return false;
+ }
+
+ void handleBswap(IntrinsicInst &I) {
+ IRBuilder<> IRB(&I);
+ Value *Op = I.getArgOperand(0);
+ Type *OpType = Op->getType();
+ Function *BswapFunc = Intrinsic::getDeclaration(
+ F.getParent(), Intrinsic::bswap, ArrayRef<Type*>(&OpType, 1));
+ setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
+ setOrigin(&I, getOrigin(Op));
+ }
+
+ void visitIntrinsicInst(IntrinsicInst &I) {
+ switch (I.getIntrinsicID()) {
+ case llvm::Intrinsic::bswap:
+ handleBswap(I);
+ break;
+ default:
+ if (!handleUnknownIntrinsic(I))
+ visitInstruction(I);
+ break;
+ }
+ }
+
+ void visitCallSite(CallSite CS) {
+ Instruction &I = *CS.getInstruction();
+ assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite");
+ if (CS.isCall()) {
+ CallInst *Call = cast<CallInst>(&I);
+
+ // For inline asm, do the usual thing: check argument shadow and mark all
+ // outputs as clean. Note that any side effects of the inline asm that are
+ // not immediately visible in its constraints are not handled.
+ if (Call->isInlineAsm()) {
+ visitInstruction(I);
+ return;
+ }
+
+ // Allow only tail calls with the same types, otherwise
+ // we may have a false positive: shadow for a non-void RetVal
+ // will get propagated to a void RetVal.
+ if (Call->isTailCall() && Call->getType() != Call->getParent()->getType())
+ Call->setTailCall(false);
+
+ assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere");
+
+ // We are going to insert code that relies on the fact that the callee
+ // will become a non-readonly function after it is instrumented by us. To
+ // prevent this code from being optimized out, mark that function
+ // non-readonly in advance.
+ if (Function *Func = Call->getCalledFunction()) {
+ // Clear out readonly/readnone attributes.
+ AttrBuilder B;
+ B.addAttribute(Attribute::ReadOnly)
+ .addAttribute(Attribute::ReadNone);
+ Func->removeAttributes(AttributeSet::FunctionIndex,
+ AttributeSet::get(Func->getContext(),
+ AttributeSet::FunctionIndex,
+ B));
+ }
+ }
+ IRBuilder<> IRB(&I);
+ unsigned ArgOffset = 0;
+ DEBUG(dbgs() << " CallSite: " << I << "\n");
+ for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
+ ArgIt != End; ++ArgIt) {
+ Value *A = *ArgIt;
+ unsigned i = ArgIt - CS.arg_begin();
+ if (!A->getType()->isSized()) {
+ DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
+ continue;
+ }
+ unsigned Size = 0;
+ Value *Store = 0;
+ // Compute the Shadow for arg even if it is ByVal, because
+ // in that case getShadow() will copy the actual arg shadow to
+ // __msan_param_tls.
+ Value *ArgShadow = getShadow(A);
+ Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
+ DEBUG(dbgs() << " Arg#" << i << ": " << *A <<
+ " Shadow: " << *ArgShadow << "\n");
+ if (CS.paramHasAttr(i + 1, Attribute::ByVal)) {
+ assert(A->getType()->isPointerTy() &&
+ "ByVal argument is not a pointer!");
+ Size = MS.TD->getTypeAllocSize(A->getType()->getPointerElementType());
+ unsigned Alignment = CS.getParamAlignment(i + 1);
+ Store = IRB.CreateMemCpy(ArgShadowBase,
+ getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB),
+ Size, Alignment);
+ } else {
+ Size = MS.TD->getTypeAllocSize(A->getType());
+ Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
+ kShadowTLSAlignment);
+ }
+ if (MS.TrackOrigins)
+ IRB.CreateStore(getOrigin(A),
+ getOriginPtrForArgument(A, IRB, ArgOffset));
+ (void)Store;
+ assert(Size != 0 && Store != 0);
+ DEBUG(dbgs() << " Param:" << *Store << "\n");
+ ArgOffset += DataLayout::RoundUpAlignment(Size, 8);
+ }
+ DEBUG(dbgs() << " done with call args\n");
+
+ FunctionType *FT =
+ cast<FunctionType>(CS.getCalledValue()->getType()-> getContainedType(0));
+ if (FT->isVarArg()) {
+ VAHelper->visitCallSite(CS, IRB);
+ }
+
+ // Now, get the shadow for the RetVal.
+ if (!I.getType()->isSized()) return;
+ IRBuilder<> IRBBefore(&I);
+ // Untill we have full dynamic coverage, make sure the retval shadow is 0.
+ Value *Base = getShadowPtrForRetval(&I, IRBBefore);
+ IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment);
+ Instruction *NextInsn = 0;
+ if (CS.isCall()) {
+ NextInsn = I.getNextNode();
+ } else {
+ BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
+ if (!NormalDest->getSinglePredecessor()) {
+ // FIXME: this case is tricky, so we are just conservative here.
+ // Perhaps we need to split the edge between this BB and NormalDest,
+ // but a naive attempt to use SplitEdge leads to a crash.
+ setShadow(&I, getCleanShadow(&I));
+ setOrigin(&I, getCleanOrigin());
+ return;
+ }
+ NextInsn = NormalDest->getFirstInsertionPt();
+ assert(NextInsn &&
+ "Could not find insertion point for retval shadow load");
+ }
+ IRBuilder<> IRBAfter(NextInsn);
+ Value *RetvalShadow =
+ IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter),
+ kShadowTLSAlignment, "_msret");
+ setShadow(&I, RetvalShadow);
+ if (MS.TrackOrigins)
+ setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter)));
+ }
+
+ void visitReturnInst(ReturnInst &I) {
+ IRBuilder<> IRB(&I);
+ if (Value *RetVal = I.getReturnValue()) {
+ // Set the shadow for the RetVal.
+ Value *Shadow = getShadow(RetVal);
+ Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
+ DEBUG(dbgs() << "Return: " << *Shadow << "\n" << *ShadowPtr << "\n");
+ IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
+ if (MS.TrackOrigins)
+ IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
+ }
+ }
+
+ void visitPHINode(PHINode &I) {
+ IRBuilder<> IRB(&I);
+ ShadowPHINodes.push_back(&I);
+ setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
+ "_msphi_s"));
+ if (MS.TrackOrigins)
+ setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
+ "_msphi_o"));
+ }
+
+ void visitAllocaInst(AllocaInst &I) {
+ setShadow(&I, getCleanShadow(&I));
+ if (!ClPoisonStack) return;
+ IRBuilder<> IRB(I.getNextNode());
+ uint64_t Size = MS.TD->getTypeAllocSize(I.getAllocatedType());
+ if (ClPoisonStackWithCall) {
+ IRB.CreateCall2(MS.MsanPoisonStackFn,
+ IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
+ ConstantInt::get(MS.IntptrTy, Size));
+ } else {
+ Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB);
+ IRB.CreateMemSet(ShadowBase, IRB.getInt8(ClPoisonStackPattern),
+ Size, I.getAlignment());
+ }
+
+ if (MS.TrackOrigins) {
+ setOrigin(&I, getCleanOrigin());
+ SmallString<2048> StackDescriptionStorage;
+ raw_svector_ostream StackDescription(StackDescriptionStorage);
+ // We create a string with a description of the stack allocation and
+ // pass it into __msan_set_alloca_origin.
+ // It will be printed by the run-time if stack-originated UMR is found.
+ // The first 4 bytes of the string are set to '----' and will be replaced
+ // by __msan_va_arg_overflow_size_tls at the first call.
+ StackDescription << "----" << I.getName() << "@" << F.getName();
+ Value *Descr =
+ createPrivateNonConstGlobalForString(*F.getParent(),
+ StackDescription.str());
+ IRB.CreateCall3(MS.MsanSetAllocaOriginFn,
+ IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
+ ConstantInt::get(MS.IntptrTy, Size),
+ IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()));
+ }
+ }
+
+ void visitSelectInst(SelectInst& I) {
+ IRBuilder<> IRB(&I);
+ setShadow(&I, IRB.CreateSelect(I.getCondition(),
+ getShadow(I.getTrueValue()), getShadow(I.getFalseValue()),
+ "_msprop"));
+ if (MS.TrackOrigins) {
+ // Origins are always i32, so any vector conditions must be flattened.
+ // FIXME: consider tracking vector origins for app vectors?
+ Value *Cond = I.getCondition();
+ if (Cond->getType()->isVectorTy()) {
+ Value *ConvertedShadow = convertToShadowTyNoVec(Cond, IRB);
+ Cond = IRB.CreateICmpNE(ConvertedShadow,
+ getCleanShadow(ConvertedShadow), "_mso_select");
+ }
+ setOrigin(&I, IRB.CreateSelect(Cond,
+ getOrigin(I.getTrueValue()), getOrigin(I.getFalseValue())));
+ }
+ }
+
+ void visitLandingPadInst(LandingPadInst &I) {
+ // Do nothing.
+ // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1
+ setShadow(&I, getCleanShadow(&I));
+ setOrigin(&I, getCleanOrigin());
+ }
+
+ void visitGetElementPtrInst(GetElementPtrInst &I) {
+ handleShadowOr(I);
+ }
+
+ void visitExtractValueInst(ExtractValueInst &I) {
+ IRBuilder<> IRB(&I);
+ Value *Agg = I.getAggregateOperand();
+ DEBUG(dbgs() << "ExtractValue: " << I << "\n");
+ Value *AggShadow = getShadow(Agg);
+ DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
+ Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
+ DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n");
+ setShadow(&I, ResShadow);
+ setOrigin(&I, getCleanOrigin());
+ }
+
+ void visitInsertValueInst(InsertValueInst &I) {
+ IRBuilder<> IRB(&I);
+ DEBUG(dbgs() << "InsertValue: " << I << "\n");
+ Value *AggShadow = getShadow(I.getAggregateOperand());
+ Value *InsShadow = getShadow(I.getInsertedValueOperand());
+ DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
+ DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n");
+ Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
+ DEBUG(dbgs() << " Res: " << *Res << "\n");
+ setShadow(&I, Res);
+ setOrigin(&I, getCleanOrigin());
+ }
+
+ void dumpInst(Instruction &I) {
+ if (CallInst *CI = dyn_cast<CallInst>(&I)) {
+ errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
+ } else {
+ errs() << "ZZZ " << I.getOpcodeName() << "\n";
+ }
+ errs() << "QQQ " << I << "\n";
+ }
+
+ void visitResumeInst(ResumeInst &I) {
+ DEBUG(dbgs() << "Resume: " << I << "\n");
+ // Nothing to do here.
+ }
+
+ void visitInstruction(Instruction &I) {
+ // Everything else: stop propagating and check for poisoned shadow.
+ if (ClDumpStrictInstructions)
+ dumpInst(I);
+ DEBUG(dbgs() << "DEFAULT: " << I << "\n");
+ for (size_t i = 0, n = I.getNumOperands(); i < n; i++)
+ insertCheck(I.getOperand(i), &I);
+ setShadow(&I, getCleanShadow(&I));
+ setOrigin(&I, getCleanOrigin());
+ }
+};
+
+/// \brief AMD64-specific implementation of VarArgHelper.
+struct VarArgAMD64Helper : public VarArgHelper {
+ // An unfortunate workaround for asymmetric lowering of va_arg stuff.
+ // See a comment in visitCallSite for more details.
+ static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
+ static const unsigned AMD64FpEndOffset = 176;
+
+ Function &F;
+ MemorySanitizer &MS;
+ MemorySanitizerVisitor &MSV;
+ Value *VAArgTLSCopy;
+ Value *VAArgOverflowSize;
+
+ SmallVector<CallInst*, 16> VAStartInstrumentationList;
+
+ VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
+ MemorySanitizerVisitor &MSV)
+ : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(0), VAArgOverflowSize(0) { }
+
+ enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
+
+ ArgKind classifyArgument(Value* arg) {
+ // A very rough approximation of X86_64 argument classification rules.
+ Type *T = arg->getType();
+ if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
+ return AK_FloatingPoint;
+ if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
+ return AK_GeneralPurpose;
+ if (T->isPointerTy())
+ return AK_GeneralPurpose;
+ return AK_Memory;
+ }
+
+ // For VarArg functions, store the argument shadow in an ABI-specific format
+ // that corresponds to va_list layout.
+ // We do this because Clang lowers va_arg in the frontend, and this pass
+ // only sees the low level code that deals with va_list internals.
+ // A much easier alternative (provided that Clang emits va_arg instructions)
+ // would have been to associate each live instance of va_list with a copy of
+ // MSanParamTLS, and extract shadow on va_arg() call in the argument list
+ // order.
+ void visitCallSite(CallSite &CS, IRBuilder<> &IRB) {
+ unsigned GpOffset = 0;
+ unsigned FpOffset = AMD64GpEndOffset;
+ unsigned OverflowOffset = AMD64FpEndOffset;
+ for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
+ ArgIt != End; ++ArgIt) {
+ Value *A = *ArgIt;
+ ArgKind AK = classifyArgument(A);
+ if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
+ AK = AK_Memory;
+ if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
+ AK = AK_Memory;
+ Value *Base;
+ switch (AK) {
+ case AK_GeneralPurpose:
+ Base = getShadowPtrForVAArgument(A, IRB, GpOffset);
+ GpOffset += 8;
+ break;
+ case AK_FloatingPoint:
+ Base = getShadowPtrForVAArgument(A, IRB, FpOffset);
+ FpOffset += 16;
+ break;
+ case AK_Memory:
+ uint64_t ArgSize = MS.TD->getTypeAllocSize(A->getType());
+ Base = getShadowPtrForVAArgument(A, IRB, OverflowOffset);
+ OverflowOffset += DataLayout::RoundUpAlignment(ArgSize, 8);
+ }
+ IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
+ }
+ Constant *OverflowSize =
+ ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
+ IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
+ }
+
+ /// \brief Compute the shadow address for a given va_arg.
+ Value *getShadowPtrForVAArgument(Value *A, IRBuilder<> &IRB,
+ int ArgOffset) {
+ Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
+ Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
+ return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(A), 0),
+ "_msarg");
+ }
+
+ void visitVAStartInst(VAStartInst &I) {
+ IRBuilder<> IRB(&I);
+ VAStartInstrumentationList.push_back(&I);
+ Value *VAListTag = I.getArgOperand(0);
+ Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
+
+ // Unpoison the whole __va_list_tag.
+ // FIXME: magic ABI constants.
+ IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
+ /* size */24, /* alignment */8, false);
+ }
+
+ void visitVACopyInst(VACopyInst &I) {
+ IRBuilder<> IRB(&I);
+ Value *VAListTag = I.getArgOperand(0);
+ Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
+
+ // Unpoison the whole __va_list_tag.
+ // FIXME: magic ABI constants.
+ IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
+ /* size */24, /* alignment */8, false);
+ }
+
+ void finalizeInstrumentation() {
+ assert(!VAArgOverflowSize && !VAArgTLSCopy &&
+ "finalizeInstrumentation called twice");
+ if (!VAStartInstrumentationList.empty()) {
+ // If there is a va_start in this function, make a backup copy of
+ // va_arg_tls somewhere in the function entry block.
+ IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
+ VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
+ Value *CopySize =
+ IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
+ VAArgOverflowSize);
+ VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
+ IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
+ }
+
+ // Instrument va_start.
+ // Copy va_list shadow from the backup copy of the TLS contents.
+ for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
+ CallInst *OrigInst = VAStartInstrumentationList[i];
+ IRBuilder<> IRB(OrigInst->getNextNode());
+ Value *VAListTag = OrigInst->getArgOperand(0);
+
+ Value *RegSaveAreaPtrPtr =
+ IRB.CreateIntToPtr(
+ IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
+ ConstantInt::get(MS.IntptrTy, 16)),
+ Type::getInt64PtrTy(*MS.C));
+ Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
+ Value *RegSaveAreaShadowPtr =
+ MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
+ IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy,
+ AMD64FpEndOffset, 16);
+
+ Value *OverflowArgAreaPtrPtr =
+ IRB.CreateIntToPtr(
+ IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
+ ConstantInt::get(MS.IntptrTy, 8)),
+ Type::getInt64PtrTy(*MS.C));
+ Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr);
+ Value *OverflowArgAreaShadowPtr =
+ MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB);
+ Value *SrcPtr =
+ getShadowPtrForVAArgument(VAArgTLSCopy, IRB, AMD64FpEndOffset);
+ IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16);
+ }
+ }
+};
+
+VarArgHelper* CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
+ MemorySanitizerVisitor &Visitor) {
+ return new VarArgAMD64Helper(Func, Msan, Visitor);
+}
+
+} // namespace
+
+bool MemorySanitizer::runOnFunction(Function &F) {
+ MemorySanitizerVisitor Visitor(F, *this);
+
+ // Clear out readonly/readnone attributes.
+ AttrBuilder B;
+ B.addAttribute(Attribute::ReadOnly)
+ .addAttribute(Attribute::ReadNone);
+ F.removeAttributes(AttributeSet::FunctionIndex,
+ AttributeSet::get(F.getContext(),
+ AttributeSet::FunctionIndex, B));
+
+ return Visitor.runOnFunction();
+}
diff --git a/contrib/llvm/lib/Transforms/Instrumentation/OptimalEdgeProfiling.cpp b/contrib/llvm/lib/Transforms/Instrumentation/OptimalEdgeProfiling.cpp
index 1fe1254..b45aef65 100644
--- a/contrib/llvm/lib/Transforms/Instrumentation/OptimalEdgeProfiling.cpp
+++ b/contrib/llvm/lib/Transforms/Instrumentation/OptimalEdgeProfiling.cpp
@@ -13,20 +13,20 @@
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "insert-optimal-edge-profiling"
+#include "llvm/Transforms/Instrumentation.h"
+#include "MaximumSpanningTree.h"
#include "ProfilingUtils.h"
-#include "llvm/Constants.h"
-#include "llvm/Module.h"
-#include "llvm/Pass.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/ProfileInfo.h"
#include "llvm/Analysis/ProfileInfoLoader.h"
-#include "llvm/Support/raw_ostream.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Transforms/Instrumentation.h"
-#include "llvm/ADT/DenseSet.h"
-#include "llvm/ADT/Statistic.h"
-#include "MaximumSpanningTree.h"
using namespace llvm;
STATISTIC(NumEdgesInserted, "The # of edges inserted.");
diff --git a/contrib/llvm/lib/Transforms/Instrumentation/PathProfiling.cpp b/contrib/llvm/lib/Transforms/Instrumentation/PathProfiling.cpp
index cc27146..7de7326 100644
--- a/contrib/llvm/lib/Transforms/Instrumentation/PathProfiling.cpp
+++ b/contrib/llvm/lib/Transforms/Instrumentation/PathProfiling.cpp
@@ -45,24 +45,23 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "insert-path-profiling"
-#include "llvm/DerivedTypes.h"
+#include "llvm/Transforms/Instrumentation.h"
#include "ProfilingUtils.h"
#include "llvm/Analysis/PathNumbering.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/InstrTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/TypeBuilder.h"
#include "llvm/Pass.h"
-#include "llvm/TypeBuilder.h"
-#include "llvm/Support/Compiler.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Transforms/Instrumentation.h"
#include <vector>
#define HASH_THRESHHOLD 100000
diff --git a/contrib/llvm/lib/Transforms/Instrumentation/ProfilingUtils.cpp b/contrib/llvm/lib/Transforms/Instrumentation/ProfilingUtils.cpp
index de57cd1..4b3de6d 100644
--- a/contrib/llvm/lib/Transforms/Instrumentation/ProfilingUtils.cpp
+++ b/contrib/llvm/lib/Transforms/Instrumentation/ProfilingUtils.cpp
@@ -15,11 +15,11 @@
//===----------------------------------------------------------------------===//
#include "ProfilingUtils.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
void llvm::InsertProfilingInitCall(Function *MainFn, const char *FnName,
GlobalValue *Array,
diff --git a/contrib/llvm/lib/Transforms/Instrumentation/ThreadSanitizer.cpp b/contrib/llvm/lib/Transforms/Instrumentation/ThreadSanitizer.cpp
index 9e10fc4..299060a 100644
--- a/contrib/llvm/lib/Transforms/Instrumentation/ThreadSanitizer.cpp
+++ b/contrib/llvm/lib/Transforms/Instrumentation/ThreadSanitizer.cpp
@@ -21,31 +21,32 @@
#define DEBUG_TYPE "tsan"
-#include "BlackList.h"
-#include "llvm/Function.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Metadata.h"
-#include "llvm/Module.h"
-#include "llvm/Type.h"
+#include "llvm/Transforms/Instrumentation.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/BlackList.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
using namespace llvm;
-static cl::opt<std::string> ClBlackListFile("tsan-blacklist",
+static cl::opt<std::string> ClBlacklistFile("tsan-blacklist",
cl::desc("Blacklist file"), cl::Hidden);
static cl::opt<bool> ClInstrumentMemoryAccesses(
"tsan-instrument-memory-accesses", cl::init(true),
@@ -56,6 +57,9 @@ static cl::opt<bool> ClInstrumentFuncEntryExit(
static cl::opt<bool> ClInstrumentAtomics(
"tsan-instrument-atomics", cl::init(true),
cl::desc("Instrument atomics"), cl::Hidden);
+static cl::opt<bool> ClInstrumentMemIntrinsics(
+ "tsan-instrument-memintrinsics", cl::init(true),
+ cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden);
STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
@@ -63,6 +67,7 @@ STATISTIC(NumOmittedReadsBeforeWrite,
"Number of reads ignored due to following writes");
STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size");
STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes");
+STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads");
STATISTIC(NumOmittedReadsFromConstantGlobals,
"Number of reads from constant globals");
STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads");
@@ -71,21 +76,29 @@ namespace {
/// ThreadSanitizer: instrument the code in module to find races.
struct ThreadSanitizer : public FunctionPass {
- ThreadSanitizer();
+ ThreadSanitizer(StringRef BlacklistFile = StringRef())
+ : FunctionPass(ID),
+ TD(0),
+ BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile
+ : BlacklistFile) { }
const char *getPassName() const;
bool runOnFunction(Function &F);
bool doInitialization(Module &M);
static char ID; // Pass identification, replacement for typeid.
private:
+ void initializeCallbacks(Module &M);
bool instrumentLoadOrStore(Instruction *I);
bool instrumentAtomic(Instruction *I);
+ bool instrumentMemIntrinsic(Instruction *I);
void chooseInstructionsToInstrument(SmallVectorImpl<Instruction*> &Local,
SmallVectorImpl<Instruction*> &All);
bool addrPointsToConstantData(Value *Addr);
int getMemoryAccessFuncIndex(Value *Addr);
DataLayout *TD;
+ Type *IntptrTy;
+ SmallString<64> BlacklistFile;
OwningPtr<BlackList> BL;
IntegerType *OrdTy;
// Callbacks to run-time library are computed in doInitialization.
@@ -102,6 +115,8 @@ struct ThreadSanitizer : public FunctionPass {
Function *TsanAtomicThreadFence;
Function *TsanAtomicSignalFence;
Function *TsanVptrUpdate;
+ Function *TsanVptrLoad;
+ Function *MemmoveFn, *MemcpyFn, *MemsetFn;
};
} // namespace
@@ -114,13 +129,8 @@ const char *ThreadSanitizer::getPassName() const {
return "ThreadSanitizer";
}
-ThreadSanitizer::ThreadSanitizer()
- : FunctionPass(ID),
- TD(NULL) {
-}
-
-FunctionPass *llvm::createThreadSanitizerPass() {
- return new ThreadSanitizer();
+FunctionPass *llvm::createThreadSanitizerPass(StringRef BlacklistFile) {
+ return new ThreadSanitizer(BlacklistFile);
}
static Function *checkInterfaceFunction(Constant *FuncOrBitcast) {
@@ -130,18 +140,8 @@ static Function *checkInterfaceFunction(Constant *FuncOrBitcast) {
report_fatal_error("ThreadSanitizer interface function redefined");
}
-bool ThreadSanitizer::doInitialization(Module &M) {
- TD = getAnalysisIfAvailable<DataLayout>();
- if (!TD)
- return false;
- BL.reset(new BlackList(ClBlackListFile));
-
- // Always insert a call to __tsan_init into the module's CTORs.
+void ThreadSanitizer::initializeCallbacks(Module &M) {
IRBuilder<> IRB(M.getContext());
- Value *TsanInit = M.getOrInsertFunction("__tsan_init",
- IRB.getVoidTy(), NULL);
- appendToGlobalCtors(M, cast<Function>(TsanInit), 0);
-
// Initialize the callbacks.
TsanFuncEntry = checkInterfaceFunction(M.getOrInsertFunction(
"__tsan_func_entry", IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL));
@@ -188,6 +188,8 @@ bool ThreadSanitizer::doInitialization(Module &M) {
NamePart = "_fetch_or";
else if (op == AtomicRMWInst::Xor)
NamePart = "_fetch_xor";
+ else if (op == AtomicRMWInst::Nand)
+ NamePart = "_fetch_nand";
else
continue;
SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart);
@@ -198,15 +200,42 @@ bool ThreadSanitizer::doInitialization(Module &M) {
SmallString<32> AtomicCASName("__tsan_atomic" + itostr(BitSize) +
"_compare_exchange_val");
TsanAtomicCAS[i] = checkInterfaceFunction(M.getOrInsertFunction(
- AtomicCASName, Ty, PtrTy, Ty, Ty, OrdTy, NULL));
+ AtomicCASName, Ty, PtrTy, Ty, Ty, OrdTy, OrdTy, NULL));
}
TsanVptrUpdate = checkInterfaceFunction(M.getOrInsertFunction(
"__tsan_vptr_update", IRB.getVoidTy(), IRB.getInt8PtrTy(),
IRB.getInt8PtrTy(), NULL));
+ TsanVptrLoad = checkInterfaceFunction(M.getOrInsertFunction(
+ "__tsan_vptr_read", IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL));
TsanAtomicThreadFence = checkInterfaceFunction(M.getOrInsertFunction(
"__tsan_atomic_thread_fence", IRB.getVoidTy(), OrdTy, NULL));
TsanAtomicSignalFence = checkInterfaceFunction(M.getOrInsertFunction(
"__tsan_atomic_signal_fence", IRB.getVoidTy(), OrdTy, NULL));
+
+ MemmoveFn = checkInterfaceFunction(M.getOrInsertFunction(
+ "memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
+ IRB.getInt8PtrTy(), IntptrTy, NULL));
+ MemcpyFn = checkInterfaceFunction(M.getOrInsertFunction(
+ "memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
+ IntptrTy, NULL));
+ MemsetFn = checkInterfaceFunction(M.getOrInsertFunction(
+ "memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
+ IntptrTy, NULL));
+}
+
+bool ThreadSanitizer::doInitialization(Module &M) {
+ TD = getAnalysisIfAvailable<DataLayout>();
+ if (!TD)
+ return false;
+ BL.reset(new BlackList(BlacklistFile));
+
+ // Always insert a call to __tsan_init into the module's CTORs.
+ IRBuilder<> IRB(M.getContext());
+ IntptrTy = IRB.getIntPtrTy(TD);
+ Value *TsanInit = M.getOrInsertFunction("__tsan_init",
+ IRB.getVoidTy(), NULL);
+ appendToGlobalCtors(M, cast<Function>(TsanInit), 0);
+
return true;
}
@@ -297,10 +326,12 @@ static bool isAtomic(Instruction *I) {
bool ThreadSanitizer::runOnFunction(Function &F) {
if (!TD) return false;
if (BL->isIn(F)) return false;
+ initializeCallbacks(*F.getParent());
SmallVector<Instruction*, 8> RetVec;
SmallVector<Instruction*, 8> AllLoadsAndStores;
SmallVector<Instruction*, 8> LocalLoadsAndStores;
SmallVector<Instruction*, 8> AtomicAccesses;
+ SmallVector<Instruction*, 8> MemIntrinCalls;
bool Res = false;
bool HasCalls = false;
@@ -317,6 +348,8 @@ bool ThreadSanitizer::runOnFunction(Function &F) {
else if (isa<ReturnInst>(BI))
RetVec.push_back(BI);
else if (isa<CallInst>(BI) || isa<InvokeInst>(BI)) {
+ if (isa<MemIntrinsic>(BI))
+ MemIntrinCalls.push_back(BI);
HasCalls = true;
chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores);
}
@@ -340,6 +373,11 @@ bool ThreadSanitizer::runOnFunction(Function &F) {
Res |= instrumentAtomic(AtomicAccesses[i]);
}
+ if (ClInstrumentMemIntrinsics)
+ for (size_t i = 0, n = MemIntrinCalls.size(); i < n; ++i) {
+ Res |= instrumentMemIntrinsic(MemIntrinCalls[i]);
+ }
+
// Instrument function entry/exit points if there were instrumented accesses.
if ((Res || HasCalls) && ClInstrumentFuncEntryExit) {
IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
@@ -378,6 +416,12 @@ bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I) {
NumInstrumentedVtableWrites++;
return true;
}
+ if (!IsWrite && isVtableAccess(I)) {
+ IRB.CreateCall(TsanVptrLoad,
+ IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
+ NumInstrumentedVtableReads++;
+ return true;
+ }
Value *OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx];
IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
if (IsWrite) NumInstrumentedWrites++;
@@ -391,7 +435,7 @@ static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
case NotAtomic: assert(false);
case Unordered: // Fall-through.
case Monotonic: v = 0; break;
- // case Consume: v = 1; break; // Not specified yet.
+ // case Consume: v = 1; break; // Not specified yet.
case Acquire: v = 2; break;
case Release: v = 3; break;
case AcquireRelease: v = 4; break;
@@ -400,6 +444,55 @@ static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
return IRB->getInt32(v);
}
+static ConstantInt *createFailOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
+ uint32_t v = 0;
+ switch (ord) {
+ case NotAtomic: assert(false);
+ case Unordered: // Fall-through.
+ case Monotonic: v = 0; break;
+ // case Consume: v = 1; break; // Not specified yet.
+ case Acquire: v = 2; break;
+ case Release: v = 0; break;
+ case AcquireRelease: v = 2; break;
+ case SequentiallyConsistent: v = 5; break;
+ }
+ return IRB->getInt32(v);
+}
+
+// If a memset intrinsic gets inlined by the code gen, we will miss races on it.
+// So, we either need to ensure the intrinsic is not inlined, or instrument it.
+// We do not instrument memset/memmove/memcpy intrinsics (too complicated),
+// instead we simply replace them with regular function calls, which are then
+// intercepted by the run-time.
+// Since tsan is running after everyone else, the calls should not be
+// replaced back with intrinsics. If that becomes wrong at some point,
+// we will need to call e.g. __tsan_memset to avoid the intrinsics.
+bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) {
+ IRBuilder<> IRB(I);
+ if (MemSetInst *M = dyn_cast<MemSetInst>(I)) {
+ IRB.CreateCall3(MemsetFn,
+ IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
+ IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false),
+ IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false));
+ I->eraseFromParent();
+ } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) {
+ IRB.CreateCall3(isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn,
+ IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
+ IRB.CreatePointerCast(M->getArgOperand(1), IRB.getInt8PtrTy()),
+ IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false));
+ I->eraseFromParent();
+ }
+ return false;
+}
+
+// Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x
+// standards. For background see C++11 standard. A slightly older, publically
+// available draft of the standard (not entirely up-to-date, but close enough
+// for casual browsing) is available here:
+// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
+// The following page contains more background information:
+// http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
+
bool ThreadSanitizer::instrumentAtomic(Instruction *I) {
IRBuilder<> IRB(I);
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
@@ -461,7 +554,8 @@ bool ThreadSanitizer::instrumentAtomic(Instruction *I) {
Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
IRB.CreateIntCast(CASI->getCompareOperand(), Ty, false),
IRB.CreateIntCast(CASI->getNewValOperand(), Ty, false),
- createOrdering(&IRB, CASI->getOrdering())};
+ createOrdering(&IRB, CASI->getOrdering()),
+ createFailOrdering(&IRB, CASI->getOrdering())};
CallInst *C = CallInst::Create(TsanAtomicCAS[Idx], ArrayRef<Value*>(Args));
ReplaceInstWithInst(I, C);
} else if (FenceInst *FI = dyn_cast<FenceInst>(I)) {
diff --git a/contrib/llvm/lib/Transforms/ObjCARC/DependencyAnalysis.cpp b/contrib/llvm/lib/Transforms/ObjCARC/DependencyAnalysis.cpp
new file mode 100644
index 0000000..8f917ae
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/ObjCARC/DependencyAnalysis.cpp
@@ -0,0 +1,262 @@
+//===- DependencyAnalysis.cpp - ObjC ARC Optimization ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+///
+/// This file defines special dependency analysis routines used in Objective C
+/// ARC Optimizations.
+///
+/// WARNING: This file knows about certain library functions. It recognizes them
+/// by name, and hardwires knowledge of their semantics.
+///
+/// WARNING: This file knows about how certain Objective-C library functions are
+/// used. Naive LLVM IR transformations which would otherwise be
+/// behavior-preserving may break these assumptions.
+///
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "objc-arc-dependency"
+#include "ObjCARC.h"
+#include "DependencyAnalysis.h"
+#include "ProvenanceAnalysis.h"
+#include "llvm/Support/CFG.h"
+
+using namespace llvm;
+using namespace llvm::objcarc;
+
+/// Test whether the given instruction can result in a reference count
+/// modification (positive or negative) for the pointer's object.
+bool
+llvm::objcarc::CanAlterRefCount(const Instruction *Inst, const Value *Ptr,
+ ProvenanceAnalysis &PA,
+ InstructionClass Class) {
+ switch (Class) {
+ case IC_Autorelease:
+ case IC_AutoreleaseRV:
+ case IC_IntrinsicUser:
+ case IC_User:
+ // These operations never directly modify a reference count.
+ return false;
+ default: break;
+ }
+
+ ImmutableCallSite CS = static_cast<const Value *>(Inst);
+ assert(CS && "Only calls can alter reference counts!");
+
+ // See if AliasAnalysis can help us with the call.
+ AliasAnalysis::ModRefBehavior MRB = PA.getAA()->getModRefBehavior(CS);
+ if (AliasAnalysis::onlyReadsMemory(MRB))
+ return false;
+ if (AliasAnalysis::onlyAccessesArgPointees(MRB)) {
+ for (ImmutableCallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
+ I != E; ++I) {
+ const Value *Op = *I;
+ if (IsPotentialRetainableObjPtr(Op, *PA.getAA()) && PA.related(Ptr, Op))
+ return true;
+ }
+ return false;
+ }
+
+ // Assume the worst.
+ return true;
+}
+
+/// Test whether the given instruction can "use" the given pointer's object in a
+/// way that requires the reference count to be positive.
+bool
+llvm::objcarc::CanUse(const Instruction *Inst, const Value *Ptr,
+ ProvenanceAnalysis &PA, InstructionClass Class) {
+ // IC_Call operations (as opposed to IC_CallOrUser) never "use" objc pointers.
+ if (Class == IC_Call)
+ return false;
+
+ // Consider various instructions which may have pointer arguments which are
+ // not "uses".
+ if (const ICmpInst *ICI = dyn_cast<ICmpInst>(Inst)) {
+ // Comparing a pointer with null, or any other constant, isn't really a use,
+ // because we don't care what the pointer points to, or about the values
+ // of any other dynamic reference-counted pointers.
+ if (!IsPotentialRetainableObjPtr(ICI->getOperand(1), *PA.getAA()))
+ return false;
+ } else if (ImmutableCallSite CS = static_cast<const Value *>(Inst)) {
+ // For calls, just check the arguments (and not the callee operand).
+ for (ImmutableCallSite::arg_iterator OI = CS.arg_begin(),
+ OE = CS.arg_end(); OI != OE; ++OI) {
+ const Value *Op = *OI;
+ if (IsPotentialRetainableObjPtr(Op, *PA.getAA()) && PA.related(Ptr, Op))
+ return true;
+ }
+ return false;
+ } else if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
+ // Special-case stores, because we don't care about the stored value, just
+ // the store address.
+ const Value *Op = GetUnderlyingObjCPtr(SI->getPointerOperand());
+ // If we can't tell what the underlying object was, assume there is a
+ // dependence.
+ return IsPotentialRetainableObjPtr(Op, *PA.getAA()) && PA.related(Op, Ptr);
+ }
+
+ // Check each operand for a match.
+ for (User::const_op_iterator OI = Inst->op_begin(), OE = Inst->op_end();
+ OI != OE; ++OI) {
+ const Value *Op = *OI;
+ if (IsPotentialRetainableObjPtr(Op, *PA.getAA()) && PA.related(Ptr, Op))
+ return true;
+ }
+ return false;
+}
+
+/// Test if there can be dependencies on Inst through Arg. This function only
+/// tests dependencies relevant for removing pairs of calls.
+bool
+llvm::objcarc::Depends(DependenceKind Flavor, Instruction *Inst,
+ const Value *Arg, ProvenanceAnalysis &PA) {
+ // If we've reached the definition of Arg, stop.
+ if (Inst == Arg)
+ return true;
+
+ switch (Flavor) {
+ case NeedsPositiveRetainCount: {
+ InstructionClass Class = GetInstructionClass(Inst);
+ switch (Class) {
+ case IC_AutoreleasepoolPop:
+ case IC_AutoreleasepoolPush:
+ case IC_None:
+ return false;
+ default:
+ return CanUse(Inst, Arg, PA, Class);
+ }
+ }
+
+ case AutoreleasePoolBoundary: {
+ InstructionClass Class = GetInstructionClass(Inst);
+ switch (Class) {
+ case IC_AutoreleasepoolPop:
+ case IC_AutoreleasepoolPush:
+ // These mark the end and begin of an autorelease pool scope.
+ return true;
+ default:
+ // Nothing else does this.
+ return false;
+ }
+ }
+
+ case CanChangeRetainCount: {
+ InstructionClass Class = GetInstructionClass(Inst);
+ switch (Class) {
+ case IC_AutoreleasepoolPop:
+ // Conservatively assume this can decrement any count.
+ return true;
+ case IC_AutoreleasepoolPush:
+ case IC_None:
+ return false;
+ default:
+ return CanAlterRefCount(Inst, Arg, PA, Class);
+ }
+ }
+
+ case RetainAutoreleaseDep:
+ switch (GetBasicInstructionClass(Inst)) {
+ case IC_AutoreleasepoolPop:
+ case IC_AutoreleasepoolPush:
+ // Don't merge an objc_autorelease with an objc_retain inside a different
+ // autoreleasepool scope.
+ return true;
+ case IC_Retain:
+ case IC_RetainRV:
+ // Check for a retain of the same pointer for merging.
+ return GetObjCArg(Inst) == Arg;
+ default:
+ // Nothing else matters for objc_retainAutorelease formation.
+ return false;
+ }
+
+ case RetainAutoreleaseRVDep: {
+ InstructionClass Class = GetBasicInstructionClass(Inst);
+ switch (Class) {
+ case IC_Retain:
+ case IC_RetainRV:
+ // Check for a retain of the same pointer for merging.
+ return GetObjCArg(Inst) == Arg;
+ default:
+ // Anything that can autorelease interrupts
+ // retainAutoreleaseReturnValue formation.
+ return CanInterruptRV(Class);
+ }
+ }
+
+ case RetainRVDep:
+ return CanInterruptRV(GetBasicInstructionClass(Inst));
+ }
+
+ llvm_unreachable("Invalid dependence flavor");
+}
+
+/// Walk up the CFG from StartPos (which is in StartBB) and find local and
+/// non-local dependencies on Arg.
+///
+/// TODO: Cache results?
+void
+llvm::objcarc::FindDependencies(DependenceKind Flavor,
+ const Value *Arg,
+ BasicBlock *StartBB, Instruction *StartInst,
+ SmallPtrSet<Instruction *, 4> &DependingInsts,
+ SmallPtrSet<const BasicBlock *, 4> &Visited,
+ ProvenanceAnalysis &PA) {
+ BasicBlock::iterator StartPos = StartInst;
+
+ SmallVector<std::pair<BasicBlock *, BasicBlock::iterator>, 4> Worklist;
+ Worklist.push_back(std::make_pair(StartBB, StartPos));
+ do {
+ std::pair<BasicBlock *, BasicBlock::iterator> Pair =
+ Worklist.pop_back_val();
+ BasicBlock *LocalStartBB = Pair.first;
+ BasicBlock::iterator LocalStartPos = Pair.second;
+ BasicBlock::iterator StartBBBegin = LocalStartBB->begin();
+ for (;;) {
+ if (LocalStartPos == StartBBBegin) {
+ pred_iterator PI(LocalStartBB), PE(LocalStartBB, false);
+ if (PI == PE)
+ // If we've reached the function entry, produce a null dependence.
+ DependingInsts.insert(0);
+ else
+ // Add the predecessors to the worklist.
+ do {
+ BasicBlock *PredBB = *PI;
+ if (Visited.insert(PredBB))
+ Worklist.push_back(std::make_pair(PredBB, PredBB->end()));
+ } while (++PI != PE);
+ break;
+ }
+
+ Instruction *Inst = --LocalStartPos;
+ if (Depends(Flavor, Inst, Arg, PA)) {
+ DependingInsts.insert(Inst);
+ break;
+ }
+ }
+ } while (!Worklist.empty());
+
+ // Determine whether the original StartBB post-dominates all of the blocks we
+ // visited. If not, insert a sentinal indicating that most optimizations are
+ // not safe.
+ for (SmallPtrSet<const BasicBlock *, 4>::const_iterator I = Visited.begin(),
+ E = Visited.end(); I != E; ++I) {
+ const BasicBlock *BB = *I;
+ if (BB == StartBB)
+ continue;
+ const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
+ for (succ_const_iterator SI(TI), SE(TI, false); SI != SE; ++SI) {
+ const BasicBlock *Succ = *SI;
+ if (Succ != StartBB && !Visited.count(Succ)) {
+ DependingInsts.insert(reinterpret_cast<Instruction *>(-1));
+ return;
+ }
+ }
+ }
+}
diff --git a/contrib/llvm/lib/Transforms/ObjCARC/DependencyAnalysis.h b/contrib/llvm/lib/Transforms/ObjCARC/DependencyAnalysis.h
new file mode 100644
index 0000000..24d358b
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/ObjCARC/DependencyAnalysis.h
@@ -0,0 +1,79 @@
+//===- DependencyAnalysis.h - ObjC ARC Optimization ---*- mode: c++ -*-----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+///
+/// This file declares special dependency analysis routines used in Objective C
+/// ARC Optimizations.
+///
+/// WARNING: This file knows about certain library functions. It recognizes them
+/// by name, and hardwires knowledge of their semantics.
+///
+/// WARNING: This file knows about how certain Objective-C library functions are
+/// used. Naive LLVM IR transformations which would otherwise be
+/// behavior-preserving may break these assumptions.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TRANSFORMS_OBJCARC_DEPEDENCYANALYSIS_H
+#define LLVM_TRANSFORMS_OBJCARC_DEPEDENCYANALYSIS_H
+
+#include "llvm/ADT/SmallPtrSet.h"
+
+namespace llvm {
+ class BasicBlock;
+ class Instruction;
+ class Value;
+}
+
+namespace llvm {
+namespace objcarc {
+
+class ProvenanceAnalysis;
+
+/// \enum DependenceKind
+/// \brief Defines different dependence kinds among various ARC constructs.
+///
+/// There are several kinds of dependence-like concepts in use here.
+///
+enum DependenceKind {
+ NeedsPositiveRetainCount,
+ AutoreleasePoolBoundary,
+ CanChangeRetainCount,
+ RetainAutoreleaseDep, ///< Blocks objc_retainAutorelease.
+ RetainAutoreleaseRVDep, ///< Blocks objc_retainAutoreleaseReturnValue.
+ RetainRVDep ///< Blocks objc_retainAutoreleasedReturnValue.
+};
+
+void FindDependencies(DependenceKind Flavor,
+ const Value *Arg,
+ BasicBlock *StartBB, Instruction *StartInst,
+ SmallPtrSet<Instruction *, 4> &DependingInstructions,
+ SmallPtrSet<const BasicBlock *, 4> &Visited,
+ ProvenanceAnalysis &PA);
+
+bool
+Depends(DependenceKind Flavor, Instruction *Inst, const Value *Arg,
+ ProvenanceAnalysis &PA);
+
+/// Test whether the given instruction can "use" the given pointer's object in a
+/// way that requires the reference count to be positive.
+bool
+CanUse(const Instruction *Inst, const Value *Ptr, ProvenanceAnalysis &PA,
+ InstructionClass Class);
+
+/// Test whether the given instruction can result in a reference count
+/// modification (positive or negative) for the pointer's object.
+bool
+CanAlterRefCount(const Instruction *Inst, const Value *Ptr,
+ ProvenanceAnalysis &PA, InstructionClass Class);
+
+} // namespace objcarc
+} // namespace llvm
+
+#endif // LLVM_TRANSFORMS_OBJCARC_DEPEDENCYANALYSIS_H
diff --git a/contrib/llvm/lib/Transforms/ObjCARC/ObjCARC.cpp b/contrib/llvm/lib/Transforms/ObjCARC/ObjCARC.cpp
new file mode 100644
index 0000000..53a31b0
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/ObjCARC/ObjCARC.cpp
@@ -0,0 +1,48 @@
+//===-- ObjCARC.cpp -------------------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements common infrastructure for libLLVMObjCARCOpts.a, which
+// implements several scalar transformations over the LLVM intermediate
+// representation, including the C bindings for that library.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ObjCARC.h"
+#include "llvm-c/Core.h"
+#include "llvm-c/Initialization.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/Support/CommandLine.h"
+
+namespace llvm {
+ class PassRegistry;
+}
+
+using namespace llvm;
+using namespace llvm::objcarc;
+
+/// \brief A handy option to enable/disable all ARC Optimizations.
+bool llvm::objcarc::EnableARCOpts;
+static cl::opt<bool, true>
+EnableARCOptimizations("enable-objc-arc-opts",
+ cl::location(EnableARCOpts),
+ cl::init(true));
+
+/// initializeObjCARCOptsPasses - Initialize all passes linked into the
+/// ObjCARCOpts library.
+void llvm::initializeObjCARCOpts(PassRegistry &Registry) {
+ initializeObjCARCAliasAnalysisPass(Registry);
+ initializeObjCARCAPElimPass(Registry);
+ initializeObjCARCExpandPass(Registry);
+ initializeObjCARCContractPass(Registry);
+ initializeObjCARCOptPass(Registry);
+}
+
+void LLVMInitializeObjCARCOpts(LLVMPassRegistryRef R) {
+ initializeObjCARCOpts(*unwrap(R));
+}
diff --git a/contrib/llvm/lib/Transforms/ObjCARC/ObjCARC.h b/contrib/llvm/lib/Transforms/ObjCARC/ObjCARC.h
new file mode 100644
index 0000000..39670f3
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/ObjCARC/ObjCARC.h
@@ -0,0 +1,395 @@
+//===- ObjCARC.h - ObjC ARC Optimization --------------*- mode: c++ -*-----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file defines common definitions/declarations used by the ObjC ARC
+/// Optimizer. ARC stands for Automatic Reference Counting and is a system for
+/// managing reference counts for objects in Objective C.
+///
+/// WARNING: This file knows about certain library functions. It recognizes them
+/// by name, and hardwires knowledge of their semantics.
+///
+/// WARNING: This file knows about how certain Objective-C library functions are
+/// used. Naive LLVM IR transformations which would otherwise be
+/// behavior-preserving may break these assumptions.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TRANSFORMS_SCALAR_OBJCARC_H
+#define LLVM_TRANSFORMS_SCALAR_OBJCARC_H
+
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/Passes.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CallSite.h"
+#include "llvm/Support/InstIterator.h"
+#include "llvm/Transforms/ObjCARC.h"
+#include "llvm/Transforms/Utils/Local.h"
+
+namespace llvm {
+class raw_ostream;
+}
+
+namespace llvm {
+namespace objcarc {
+
+/// \brief A handy option to enable/disable all ARC Optimizations.
+extern bool EnableARCOpts;
+
+/// \brief Test if the given module looks interesting to run ARC optimization
+/// on.
+static inline bool ModuleHasARC(const Module &M) {
+ return
+ M.getNamedValue("objc_retain") ||
+ M.getNamedValue("objc_release") ||
+ M.getNamedValue("objc_autorelease") ||
+ M.getNamedValue("objc_retainAutoreleasedReturnValue") ||
+ M.getNamedValue("objc_retainBlock") ||
+ M.getNamedValue("objc_autoreleaseReturnValue") ||
+ M.getNamedValue("objc_autoreleasePoolPush") ||
+ M.getNamedValue("objc_loadWeakRetained") ||
+ M.getNamedValue("objc_loadWeak") ||
+ M.getNamedValue("objc_destroyWeak") ||
+ M.getNamedValue("objc_storeWeak") ||
+ M.getNamedValue("objc_initWeak") ||
+ M.getNamedValue("objc_moveWeak") ||
+ M.getNamedValue("objc_copyWeak") ||
+ M.getNamedValue("objc_retainedObject") ||
+ M.getNamedValue("objc_unretainedObject") ||
+ M.getNamedValue("objc_unretainedPointer") ||
+ M.getNamedValue("clang.arc.use");
+}
+
+/// \enum InstructionClass
+/// \brief A simple classification for instructions.
+enum InstructionClass {
+ IC_Retain, ///< objc_retain
+ IC_RetainRV, ///< objc_retainAutoreleasedReturnValue
+ IC_RetainBlock, ///< objc_retainBlock
+ IC_Release, ///< objc_release
+ IC_Autorelease, ///< objc_autorelease
+ IC_AutoreleaseRV, ///< objc_autoreleaseReturnValue
+ IC_AutoreleasepoolPush, ///< objc_autoreleasePoolPush
+ IC_AutoreleasepoolPop, ///< objc_autoreleasePoolPop
+ IC_NoopCast, ///< objc_retainedObject, etc.
+ IC_FusedRetainAutorelease, ///< objc_retainAutorelease
+ IC_FusedRetainAutoreleaseRV, ///< objc_retainAutoreleaseReturnValue
+ IC_LoadWeakRetained, ///< objc_loadWeakRetained (primitive)
+ IC_StoreWeak, ///< objc_storeWeak (primitive)
+ IC_InitWeak, ///< objc_initWeak (derived)
+ IC_LoadWeak, ///< objc_loadWeak (derived)
+ IC_MoveWeak, ///< objc_moveWeak (derived)
+ IC_CopyWeak, ///< objc_copyWeak (derived)
+ IC_DestroyWeak, ///< objc_destroyWeak (derived)
+ IC_StoreStrong, ///< objc_storeStrong (derived)
+ IC_IntrinsicUser, ///< clang.arc.use
+ IC_CallOrUser, ///< could call objc_release and/or "use" pointers
+ IC_Call, ///< could call objc_release
+ IC_User, ///< could "use" a pointer
+ IC_None ///< anything else
+};
+
+raw_ostream &operator<<(raw_ostream &OS, const InstructionClass Class);
+
+/// \brief Test if the given class is a kind of user.
+inline static bool IsUser(InstructionClass Class) {
+ return Class == IC_User ||
+ Class == IC_CallOrUser ||
+ Class == IC_IntrinsicUser;
+}
+
+/// \brief Test if the given class is objc_retain or equivalent.
+static inline bool IsRetain(InstructionClass Class) {
+ return Class == IC_Retain ||
+ Class == IC_RetainRV;
+}
+
+/// \brief Test if the given class is objc_autorelease or equivalent.
+static inline bool IsAutorelease(InstructionClass Class) {
+ return Class == IC_Autorelease ||
+ Class == IC_AutoreleaseRV;
+}
+
+/// \brief Test if the given class represents instructions which return their
+/// argument verbatim.
+static inline bool IsForwarding(InstructionClass Class) {
+ return Class == IC_Retain ||
+ Class == IC_RetainRV ||
+ Class == IC_Autorelease ||
+ Class == IC_AutoreleaseRV ||
+ Class == IC_NoopCast;
+}
+
+/// \brief Test if the given class represents instructions which do nothing if
+/// passed a null pointer.
+static inline bool IsNoopOnNull(InstructionClass Class) {
+ return Class == IC_Retain ||
+ Class == IC_RetainRV ||
+ Class == IC_Release ||
+ Class == IC_Autorelease ||
+ Class == IC_AutoreleaseRV ||
+ Class == IC_RetainBlock;
+}
+
+/// \brief Test if the given class represents instructions which are always safe
+/// to mark with the "tail" keyword.
+static inline bool IsAlwaysTail(InstructionClass Class) {
+ // IC_RetainBlock may be given a stack argument.
+ return Class == IC_Retain ||
+ Class == IC_RetainRV ||
+ Class == IC_AutoreleaseRV;
+}
+
+/// \brief Test if the given class represents instructions which are never safe
+/// to mark with the "tail" keyword.
+static inline bool IsNeverTail(InstructionClass Class) {
+ /// It is never safe to tail call objc_autorelease since by tail calling
+ /// objc_autorelease, we also tail call -[NSObject autorelease] which supports
+ /// fast autoreleasing causing our object to be potentially reclaimed from the
+ /// autorelease pool which violates the semantics of __autoreleasing types in
+ /// ARC.
+ return Class == IC_Autorelease;
+}
+
+/// \brief Test if the given class represents instructions which are always safe
+/// to mark with the nounwind attribute.
+static inline bool IsNoThrow(InstructionClass Class) {
+ // objc_retainBlock is not nounwind because it calls user copy constructors
+ // which could theoretically throw.
+ return Class == IC_Retain ||
+ Class == IC_RetainRV ||
+ Class == IC_Release ||
+ Class == IC_Autorelease ||
+ Class == IC_AutoreleaseRV ||
+ Class == IC_AutoreleasepoolPush ||
+ Class == IC_AutoreleasepoolPop;
+}
+
+/// Test whether the given instruction can autorelease any pointer or cause an
+/// autoreleasepool pop.
+static inline bool
+CanInterruptRV(InstructionClass Class) {
+ switch (Class) {
+ case IC_AutoreleasepoolPop:
+ case IC_CallOrUser:
+ case IC_Call:
+ case IC_Autorelease:
+ case IC_AutoreleaseRV:
+ case IC_FusedRetainAutorelease:
+ case IC_FusedRetainAutoreleaseRV:
+ return true;
+ default:
+ return false;
+ }
+}
+
+/// \brief Determine if F is one of the special known Functions. If it isn't,
+/// return IC_CallOrUser.
+InstructionClass GetFunctionClass(const Function *F);
+
+/// \brief Determine which objc runtime call instruction class V belongs to.
+///
+/// This is similar to GetInstructionClass except that it only detects objc
+/// runtime calls. This allows it to be faster.
+///
+static inline InstructionClass GetBasicInstructionClass(const Value *V) {
+ if (const CallInst *CI = dyn_cast<CallInst>(V)) {
+ if (const Function *F = CI->getCalledFunction())
+ return GetFunctionClass(F);
+ // Otherwise, be conservative.
+ return IC_CallOrUser;
+ }
+
+ // Otherwise, be conservative.
+ return isa<InvokeInst>(V) ? IC_CallOrUser : IC_User;
+}
+
+/// \brief Determine what kind of construct V is.
+InstructionClass GetInstructionClass(const Value *V);
+
+/// \brief This is a wrapper around getUnderlyingObject which also knows how to
+/// look through objc_retain and objc_autorelease calls, which we know to return
+/// their argument verbatim.
+static inline const Value *GetUnderlyingObjCPtr(const Value *V) {
+ for (;;) {
+ V = GetUnderlyingObject(V);
+ if (!IsForwarding(GetBasicInstructionClass(V)))
+ break;
+ V = cast<CallInst>(V)->getArgOperand(0);
+ }
+
+ return V;
+}
+
+/// \brief This is a wrapper around Value::stripPointerCasts which also knows
+/// how to look through objc_retain and objc_autorelease calls, which we know to
+/// return their argument verbatim.
+static inline const Value *StripPointerCastsAndObjCCalls(const Value *V) {
+ for (;;) {
+ V = V->stripPointerCasts();
+ if (!IsForwarding(GetBasicInstructionClass(V)))
+ break;
+ V = cast<CallInst>(V)->getArgOperand(0);
+ }
+ return V;
+}
+
+/// \brief This is a wrapper around Value::stripPointerCasts which also knows
+/// how to look through objc_retain and objc_autorelease calls, which we know to
+/// return their argument verbatim.
+static inline Value *StripPointerCastsAndObjCCalls(Value *V) {
+ for (;;) {
+ V = V->stripPointerCasts();
+ if (!IsForwarding(GetBasicInstructionClass(V)))
+ break;
+ V = cast<CallInst>(V)->getArgOperand(0);
+ }
+ return V;
+}
+
+/// \brief Assuming the given instruction is one of the special calls such as
+/// objc_retain or objc_release, return the argument value, stripped of no-op
+/// casts and forwarding calls.
+static inline Value *GetObjCArg(Value *Inst) {
+ return StripPointerCastsAndObjCCalls(cast<CallInst>(Inst)->getArgOperand(0));
+}
+
+static inline bool IsNullOrUndef(const Value *V) {
+ return isa<ConstantPointerNull>(V) || isa<UndefValue>(V);
+}
+
+static inline bool IsNoopInstruction(const Instruction *I) {
+ return isa<BitCastInst>(I) ||
+ (isa<GetElementPtrInst>(I) &&
+ cast<GetElementPtrInst>(I)->hasAllZeroIndices());
+}
+
+
+/// \brief Erase the given instruction.
+///
+/// Many ObjC calls return their argument verbatim,
+/// so if it's such a call and the return value has users, replace them with the
+/// argument value.
+///
+static inline void EraseInstruction(Instruction *CI) {
+ Value *OldArg = cast<CallInst>(CI)->getArgOperand(0);
+
+ bool Unused = CI->use_empty();
+
+ if (!Unused) {
+ // Replace the return value with the argument.
+ assert(IsForwarding(GetBasicInstructionClass(CI)) &&
+ "Can't delete non-forwarding instruction with users!");
+ CI->replaceAllUsesWith(OldArg);
+ }
+
+ CI->eraseFromParent();
+
+ if (Unused)
+ RecursivelyDeleteTriviallyDeadInstructions(OldArg);
+}
+
+/// \brief Test whether the given value is possible a retainable object pointer.
+static inline bool IsPotentialRetainableObjPtr(const Value *Op) {
+ // Pointers to static or stack storage are not valid retainable object
+ // pointers.
+ if (isa<Constant>(Op) || isa<AllocaInst>(Op))
+ return false;
+ // Special arguments can not be a valid retainable object pointer.
+ if (const Argument *Arg = dyn_cast<Argument>(Op))
+ if (Arg->hasByValAttr() ||
+ Arg->hasNestAttr() ||
+ Arg->hasStructRetAttr())
+ return false;
+ // Only consider values with pointer types.
+ //
+ // It seemes intuitive to exclude function pointer types as well, since
+ // functions are never retainable object pointers, however clang occasionally
+ // bitcasts retainable object pointers to function-pointer type temporarily.
+ PointerType *Ty = dyn_cast<PointerType>(Op->getType());
+ if (!Ty)
+ return false;
+ // Conservatively assume anything else is a potential retainable object
+ // pointer.
+ return true;
+}
+
+static inline bool IsPotentialRetainableObjPtr(const Value *Op,
+ AliasAnalysis &AA) {
+ // First make the rudimentary check.
+ if (!IsPotentialRetainableObjPtr(Op))
+ return false;
+
+ // Objects in constant memory are not reference-counted.
+ if (AA.pointsToConstantMemory(Op))
+ return false;
+
+ // Pointers in constant memory are not pointing to reference-counted objects.
+ if (const LoadInst *LI = dyn_cast<LoadInst>(Op))
+ if (AA.pointsToConstantMemory(LI->getPointerOperand()))
+ return false;
+
+ // Otherwise assume the worst.
+ return true;
+}
+
+/// \brief Helper for GetInstructionClass. Determines what kind of construct CS
+/// is.
+static inline InstructionClass GetCallSiteClass(ImmutableCallSite CS) {
+ for (ImmutableCallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
+ I != E; ++I)
+ if (IsPotentialRetainableObjPtr(*I))
+ return CS.onlyReadsMemory() ? IC_User : IC_CallOrUser;
+
+ return CS.onlyReadsMemory() ? IC_None : IC_Call;
+}
+
+/// \brief Return true if this value refers to a distinct and identifiable
+/// object.
+///
+/// This is similar to AliasAnalysis's isIdentifiedObject, except that it uses
+/// special knowledge of ObjC conventions.
+static inline bool IsObjCIdentifiedObject(const Value *V) {
+ // Assume that call results and arguments have their own "provenance".
+ // Constants (including GlobalVariables) and Allocas are never
+ // reference-counted.
+ if (isa<CallInst>(V) || isa<InvokeInst>(V) ||
+ isa<Argument>(V) || isa<Constant>(V) ||
+ isa<AllocaInst>(V))
+ return true;
+
+ if (const LoadInst *LI = dyn_cast<LoadInst>(V)) {
+ const Value *Pointer =
+ StripPointerCastsAndObjCCalls(LI->getPointerOperand());
+ if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Pointer)) {
+ // A constant pointer can't be pointing to an object on the heap. It may
+ // be reference-counted, but it won't be deleted.
+ if (GV->isConstant())
+ return true;
+ StringRef Name = GV->getName();
+ // These special variables are known to hold values which are not
+ // reference-counted pointers.
+ if (Name.startswith("\01L_OBJC_SELECTOR_REFERENCES_") ||
+ Name.startswith("\01L_OBJC_CLASSLIST_REFERENCES_") ||
+ Name.startswith("\01L_OBJC_CLASSLIST_SUP_REFS_$_") ||
+ Name.startswith("\01L_OBJC_METH_VAR_NAME_") ||
+ Name.startswith("\01l_objc_msgSend_fixup_"))
+ return true;
+ }
+ }
+
+ return false;
+}
+
+} // end namespace objcarc
+} // end namespace llvm
+
+#endif // LLVM_TRANSFORMS_SCALAR_OBJCARC_H
diff --git a/contrib/llvm/lib/Transforms/ObjCARC/ObjCARCAPElim.cpp b/contrib/llvm/lib/Transforms/ObjCARC/ObjCARCAPElim.cpp
new file mode 100644
index 0000000..00d9864
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/ObjCARC/ObjCARCAPElim.cpp
@@ -0,0 +1,175 @@
+//===- ObjCARCAPElim.cpp - ObjC ARC Optimization --------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+///
+/// This file defines ObjC ARC optimizations. ARC stands for Automatic
+/// Reference Counting and is a system for managing reference counts for objects
+/// in Objective C.
+///
+/// This specific file implements optimizations which remove extraneous
+/// autorelease pools.
+///
+/// WARNING: This file knows about certain library functions. It recognizes them
+/// by name, and hardwires knowledge of their semantics.
+///
+/// WARNING: This file knows about how certain Objective-C library functions are
+/// used. Naive LLVM IR transformations which would otherwise be
+/// behavior-preserving may break these assumptions.
+///
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "objc-arc-ap-elim"
+#include "ObjCARC.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+using namespace llvm::objcarc;
+
+namespace {
+ /// \brief Autorelease pool elimination.
+ class ObjCARCAPElim : public ModulePass {
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const;
+ virtual bool runOnModule(Module &M);
+
+ static bool MayAutorelease(ImmutableCallSite CS, unsigned Depth = 0);
+ static bool OptimizeBB(BasicBlock *BB);
+
+ public:
+ static char ID;
+ ObjCARCAPElim() : ModulePass(ID) {
+ initializeObjCARCAPElimPass(*PassRegistry::getPassRegistry());
+ }
+ };
+}
+
+char ObjCARCAPElim::ID = 0;
+INITIALIZE_PASS(ObjCARCAPElim,
+ "objc-arc-apelim",
+ "ObjC ARC autorelease pool elimination",
+ false, false)
+
+Pass *llvm::createObjCARCAPElimPass() {
+ return new ObjCARCAPElim();
+}
+
+void ObjCARCAPElim::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+}
+
+/// Interprocedurally determine if calls made by the given call site can
+/// possibly produce autoreleases.
+bool ObjCARCAPElim::MayAutorelease(ImmutableCallSite CS, unsigned Depth) {
+ if (const Function *Callee = CS.getCalledFunction()) {
+ if (Callee->isDeclaration() || Callee->mayBeOverridden())
+ return true;
+ for (Function::const_iterator I = Callee->begin(), E = Callee->end();
+ I != E; ++I) {
+ const BasicBlock *BB = I;
+ for (BasicBlock::const_iterator J = BB->begin(), F = BB->end();
+ J != F; ++J)
+ if (ImmutableCallSite JCS = ImmutableCallSite(J))
+ // This recursion depth limit is arbitrary. It's just great
+ // enough to cover known interesting testcases.
+ if (Depth < 3 &&
+ !JCS.onlyReadsMemory() &&
+ MayAutorelease(JCS, Depth + 1))
+ return true;
+ }
+ return false;
+ }
+
+ return true;
+}
+
+bool ObjCARCAPElim::OptimizeBB(BasicBlock *BB) {
+ bool Changed = false;
+
+ Instruction *Push = 0;
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
+ Instruction *Inst = I++;
+ switch (GetBasicInstructionClass(Inst)) {
+ case IC_AutoreleasepoolPush:
+ Push = Inst;
+ break;
+ case IC_AutoreleasepoolPop:
+ // If this pop matches a push and nothing in between can autorelease,
+ // zap the pair.
+ if (Push && cast<CallInst>(Inst)->getArgOperand(0) == Push) {
+ Changed = true;
+ DEBUG(dbgs() << "ObjCARCAPElim::OptimizeBB: Zapping push pop "
+ "autorelease pair:\n"
+ " Pop: " << *Inst << "\n"
+ << " Push: " << *Push << "\n");
+ Inst->eraseFromParent();
+ Push->eraseFromParent();
+ }
+ Push = 0;
+ break;
+ case IC_CallOrUser:
+ if (MayAutorelease(ImmutableCallSite(Inst)))
+ Push = 0;
+ break;
+ default:
+ break;
+ }
+ }
+
+ return Changed;
+}
+
+bool ObjCARCAPElim::runOnModule(Module &M) {
+ if (!EnableARCOpts)
+ return false;
+
+ // If nothing in the Module uses ARC, don't do anything.
+ if (!ModuleHasARC(M))
+ return false;
+
+ // Find the llvm.global_ctors variable, as the first step in
+ // identifying the global constructors. In theory, unnecessary autorelease
+ // pools could occur anywhere, but in practice it's pretty rare. Global
+ // ctors are a place where autorelease pools get inserted automatically,
+ // so it's pretty common for them to be unnecessary, and it's pretty
+ // profitable to eliminate them.
+ GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
+ if (!GV)
+ return false;
+
+ assert(GV->hasDefinitiveInitializer() &&
+ "llvm.global_ctors is uncooperative!");
+
+ bool Changed = false;
+
+ // Dig the constructor functions out of GV's initializer.
+ ConstantArray *Init = cast<ConstantArray>(GV->getInitializer());
+ for (User::op_iterator OI = Init->op_begin(), OE = Init->op_end();
+ OI != OE; ++OI) {
+ Value *Op = *OI;
+ // llvm.global_ctors is an array of pairs where the second members
+ // are constructor functions.
+ Function *F = dyn_cast<Function>(cast<ConstantStruct>(Op)->getOperand(1));
+ // If the user used a constructor function with the wrong signature and
+ // it got bitcasted or whatever, look the other way.
+ if (!F)
+ continue;
+ // Only look at function definitions.
+ if (F->isDeclaration())
+ continue;
+ // Only look at functions with one basic block.
+ if (llvm::next(F->begin()) != F->end())
+ continue;
+ // Ok, a single-block constructor function definition. Try to optimize it.
+ Changed |= OptimizeBB(F->begin());
+ }
+
+ return Changed;
+}
diff --git a/contrib/llvm/lib/Transforms/ObjCARC/ObjCARCAliasAnalysis.cpp b/contrib/llvm/lib/Transforms/ObjCARC/ObjCARCAliasAnalysis.cpp
new file mode 100644
index 0000000..46b2de7
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/ObjCARC/ObjCARCAliasAnalysis.cpp
@@ -0,0 +1,162 @@
+//===- ObjCARCAliasAnalysis.cpp - ObjC ARC Optimization -*- mode: c++ -*---===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file defines a simple ARC-aware AliasAnalysis using special knowledge
+/// of Objective C to enhance other optimization passes which rely on the Alias
+/// Analysis infrastructure.
+///
+/// WARNING: This file knows about certain library functions. It recognizes them
+/// by name, and hardwires knowledge of their semantics.
+///
+/// WARNING: This file knows about how certain Objective-C library functions are
+/// used. Naive LLVM IR transformations which would otherwise be
+/// behavior-preserving may break these assumptions.
+///
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "objc-arc-aa"
+#include "ObjCARC.h"
+#include "ObjCARCAliasAnalysis.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/PassAnalysisSupport.h"
+#include "llvm/PassSupport.h"
+
+namespace llvm {
+ class Function;
+ class Value;
+}
+
+using namespace llvm;
+using namespace llvm::objcarc;
+
+// Register this pass...
+char ObjCARCAliasAnalysis::ID = 0;
+INITIALIZE_AG_PASS(ObjCARCAliasAnalysis, AliasAnalysis, "objc-arc-aa",
+ "ObjC-ARC-Based Alias Analysis", false, true, false)
+
+ImmutablePass *llvm::createObjCARCAliasAnalysisPass() {
+ return new ObjCARCAliasAnalysis();
+}
+
+void
+ObjCARCAliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesAll();
+ AliasAnalysis::getAnalysisUsage(AU);
+}
+
+AliasAnalysis::AliasResult
+ObjCARCAliasAnalysis::alias(const Location &LocA, const Location &LocB) {
+ if (!EnableARCOpts)
+ return AliasAnalysis::alias(LocA, LocB);
+
+ // First, strip off no-ops, including ObjC-specific no-ops, and try making a
+ // precise alias query.
+ const Value *SA = StripPointerCastsAndObjCCalls(LocA.Ptr);
+ const Value *SB = StripPointerCastsAndObjCCalls(LocB.Ptr);
+ AliasResult Result =
+ AliasAnalysis::alias(Location(SA, LocA.Size, LocA.TBAATag),
+ Location(SB, LocB.Size, LocB.TBAATag));
+ if (Result != MayAlias)
+ return Result;
+
+ // If that failed, climb to the underlying object, including climbing through
+ // ObjC-specific no-ops, and try making an imprecise alias query.
+ const Value *UA = GetUnderlyingObjCPtr(SA);
+ const Value *UB = GetUnderlyingObjCPtr(SB);
+ if (UA != SA || UB != SB) {
+ Result = AliasAnalysis::alias(Location(UA), Location(UB));
+ // We can't use MustAlias or PartialAlias results here because
+ // GetUnderlyingObjCPtr may return an offsetted pointer value.
+ if (Result == NoAlias)
+ return NoAlias;
+ }
+
+ // If that failed, fail. We don't need to chain here, since that's covered
+ // by the earlier precise query.
+ return MayAlias;
+}
+
+bool
+ObjCARCAliasAnalysis::pointsToConstantMemory(const Location &Loc,
+ bool OrLocal) {
+ if (!EnableARCOpts)
+ return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
+
+ // First, strip off no-ops, including ObjC-specific no-ops, and try making
+ // a precise alias query.
+ const Value *S = StripPointerCastsAndObjCCalls(Loc.Ptr);
+ if (AliasAnalysis::pointsToConstantMemory(Location(S, Loc.Size, Loc.TBAATag),
+ OrLocal))
+ return true;
+
+ // If that failed, climb to the underlying object, including climbing through
+ // ObjC-specific no-ops, and try making an imprecise alias query.
+ const Value *U = GetUnderlyingObjCPtr(S);
+ if (U != S)
+ return AliasAnalysis::pointsToConstantMemory(Location(U), OrLocal);
+
+ // If that failed, fail. We don't need to chain here, since that's covered
+ // by the earlier precise query.
+ return false;
+}
+
+AliasAnalysis::ModRefBehavior
+ObjCARCAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
+ // We have nothing to do. Just chain to the next AliasAnalysis.
+ return AliasAnalysis::getModRefBehavior(CS);
+}
+
+AliasAnalysis::ModRefBehavior
+ObjCARCAliasAnalysis::getModRefBehavior(const Function *F) {
+ if (!EnableARCOpts)
+ return AliasAnalysis::getModRefBehavior(F);
+
+ switch (GetFunctionClass(F)) {
+ case IC_NoopCast:
+ return DoesNotAccessMemory;
+ default:
+ break;
+ }
+
+ return AliasAnalysis::getModRefBehavior(F);
+}
+
+AliasAnalysis::ModRefResult
+ObjCARCAliasAnalysis::getModRefInfo(ImmutableCallSite CS, const Location &Loc) {
+ if (!EnableARCOpts)
+ return AliasAnalysis::getModRefInfo(CS, Loc);
+
+ switch (GetBasicInstructionClass(CS.getInstruction())) {
+ case IC_Retain:
+ case IC_RetainRV:
+ case IC_Autorelease:
+ case IC_AutoreleaseRV:
+ case IC_NoopCast:
+ case IC_AutoreleasepoolPush:
+ case IC_FusedRetainAutorelease:
+ case IC_FusedRetainAutoreleaseRV:
+ // These functions don't access any memory visible to the compiler.
+ // Note that this doesn't include objc_retainBlock, because it updates
+ // pointers when it copies block data.
+ return NoModRef;
+ default:
+ break;
+ }
+
+ return AliasAnalysis::getModRefInfo(CS, Loc);
+}
+
+AliasAnalysis::ModRefResult
+ObjCARCAliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
+ ImmutableCallSite CS2) {
+ // TODO: Theoretically we could check for dependencies between objc_* calls
+ // and OnlyAccessesArgumentPointees calls or other well-behaved calls.
+ return AliasAnalysis::getModRefInfo(CS1, CS2);
+}
diff --git a/contrib/llvm/lib/Transforms/ObjCARC/ObjCARCAliasAnalysis.h b/contrib/llvm/lib/Transforms/ObjCARC/ObjCARCAliasAnalysis.h
new file mode 100644
index 0000000..7abe995
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/ObjCARC/ObjCARCAliasAnalysis.h
@@ -0,0 +1,74 @@
+//===- ObjCARCAliasAnalysis.h - ObjC ARC Optimization -*- mode: c++ -*-----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file declares a simple ARC-aware AliasAnalysis using special knowledge
+/// of Objective C to enhance other optimization passes which rely on the Alias
+/// Analysis infrastructure.
+///
+/// WARNING: This file knows about certain library functions. It recognizes them
+/// by name, and hardwires knowledge of their semantics.
+///
+/// WARNING: This file knows about how certain Objective-C library functions are
+/// used. Naive LLVM IR transformations which would otherwise be
+/// behavior-preserving may break these assumptions.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TRANSFORMS_OBJCARC_OBJCARCALIASANALYSIS_H
+#define LLVM_TRANSFORMS_OBJCARC_OBJCARCALIASANALYSIS_H
+
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Pass.h"
+
+namespace llvm {
+namespace objcarc {
+
+ /// \brief This is a simple alias analysis implementation that uses knowledge
+ /// of ARC constructs to answer queries.
+ ///
+ /// TODO: This class could be generalized to know about other ObjC-specific
+ /// tricks. Such as knowing that ivars in the non-fragile ABI are non-aliasing
+ /// even though their offsets are dynamic.
+ class ObjCARCAliasAnalysis : public ImmutablePass,
+ public AliasAnalysis {
+ public:
+ static char ID; // Class identification, replacement for typeinfo
+ ObjCARCAliasAnalysis() : ImmutablePass(ID) {
+ initializeObjCARCAliasAnalysisPass(*PassRegistry::getPassRegistry());
+ }
+
+ private:
+ virtual void initializePass() {
+ InitializeAliasAnalysis(this);
+ }
+
+ /// This method is used when a pass implements an analysis interface through
+ /// multiple inheritance. If needed, it should override this to adjust the
+ /// this pointer as needed for the specified pass info.
+ virtual void *getAdjustedAnalysisPointer(const void *PI) {
+ if (PI == &AliasAnalysis::ID)
+ return static_cast<AliasAnalysis *>(this);
+ return this;
+ }
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const;
+ virtual AliasResult alias(const Location &LocA, const Location &LocB);
+ virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal);
+ virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
+ virtual ModRefBehavior getModRefBehavior(const Function *F);
+ virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
+ const Location &Loc);
+ virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
+ ImmutableCallSite CS2);
+ };
+
+} // namespace objcarc
+} // namespace llvm
+
+#endif // LLVM_TRANSFORMS_OBJCARC_OBJCARCALIASANALYSIS_H
diff --git a/contrib/llvm/lib/Transforms/ObjCARC/ObjCARCContract.cpp b/contrib/llvm/lib/Transforms/ObjCARC/ObjCARCContract.cpp
new file mode 100644
index 0000000..b96c64f
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/ObjCARC/ObjCARCContract.cpp
@@ -0,0 +1,541 @@
+//===- ObjCARCContract.cpp - ObjC ARC Optimization ------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file defines late ObjC ARC optimizations. ARC stands for Automatic
+/// Reference Counting and is a system for managing reference counts for objects
+/// in Objective C.
+///
+/// This specific file mainly deals with ``contracting'' multiple lower level
+/// operations into singular higher level operations through pattern matching.
+///
+/// WARNING: This file knows about certain library functions. It recognizes them
+/// by name, and hardwires knowledge of their semantics.
+///
+/// WARNING: This file knows about how certain Objective-C library functions are
+/// used. Naive LLVM IR transformations which would otherwise be
+/// behavior-preserving may break these assumptions.
+///
+//===----------------------------------------------------------------------===//
+
+// TODO: ObjCARCContract could insert PHI nodes when uses aren't
+// dominated by single calls.
+
+#define DEBUG_TYPE "objc-arc-contract"
+#include "ObjCARC.h"
+#include "DependencyAnalysis.h"
+#include "ProvenanceAnalysis.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/Support/Debug.h"
+
+using namespace llvm;
+using namespace llvm::objcarc;
+
+STATISTIC(NumPeeps, "Number of calls peephole-optimized");
+STATISTIC(NumStoreStrongs, "Number objc_storeStrong calls formed");
+
+namespace {
+ /// \brief Late ARC optimizations
+ ///
+ /// These change the IR in a way that makes it difficult to be analyzed by
+ /// ObjCARCOpt, so it's run late.
+ class ObjCARCContract : public FunctionPass {
+ bool Changed;
+ AliasAnalysis *AA;
+ DominatorTree *DT;
+ ProvenanceAnalysis PA;
+
+ /// A flag indicating whether this optimization pass should run.
+ bool Run;
+
+ /// Declarations for ObjC runtime functions, for use in creating calls to
+ /// them. These are initialized lazily to avoid cluttering up the Module
+ /// with unused declarations.
+
+ /// Declaration for objc_storeStrong().
+ Constant *StoreStrongCallee;
+ /// Declaration for objc_retainAutorelease().
+ Constant *RetainAutoreleaseCallee;
+ /// Declaration for objc_retainAutoreleaseReturnValue().
+ Constant *RetainAutoreleaseRVCallee;
+
+ /// The inline asm string to insert between calls and RetainRV calls to make
+ /// the optimization work on targets which need it.
+ const MDString *RetainRVMarker;
+
+ /// The set of inserted objc_storeStrong calls. If at the end of walking the
+ /// function we have found no alloca instructions, these calls can be marked
+ /// "tail".
+ SmallPtrSet<CallInst *, 8> StoreStrongCalls;
+
+ Constant *getStoreStrongCallee(Module *M);
+ Constant *getRetainAutoreleaseCallee(Module *M);
+ Constant *getRetainAutoreleaseRVCallee(Module *M);
+
+ bool ContractAutorelease(Function &F, Instruction *Autorelease,
+ InstructionClass Class,
+ SmallPtrSet<Instruction *, 4>
+ &DependingInstructions,
+ SmallPtrSet<const BasicBlock *, 4>
+ &Visited);
+
+ void ContractRelease(Instruction *Release,
+ inst_iterator &Iter);
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const;
+ virtual bool doInitialization(Module &M);
+ virtual bool runOnFunction(Function &F);
+
+ public:
+ static char ID;
+ ObjCARCContract() : FunctionPass(ID) {
+ initializeObjCARCContractPass(*PassRegistry::getPassRegistry());
+ }
+ };
+}
+
+char ObjCARCContract::ID = 0;
+INITIALIZE_PASS_BEGIN(ObjCARCContract,
+ "objc-arc-contract", "ObjC ARC contraction", false, false)
+INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_PASS_DEPENDENCY(DominatorTree)
+INITIALIZE_PASS_END(ObjCARCContract,
+ "objc-arc-contract", "ObjC ARC contraction", false, false)
+
+Pass *llvm::createObjCARCContractPass() {
+ return new ObjCARCContract();
+}
+
+void ObjCARCContract::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<AliasAnalysis>();
+ AU.addRequired<DominatorTree>();
+ AU.setPreservesCFG();
+}
+
+Constant *ObjCARCContract::getStoreStrongCallee(Module *M) {
+ if (!StoreStrongCallee) {
+ LLVMContext &C = M->getContext();
+ Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
+ Type *I8XX = PointerType::getUnqual(I8X);
+ Type *Params[] = { I8XX, I8X };
+
+ AttributeSet Attr = AttributeSet()
+ .addAttribute(M->getContext(), AttributeSet::FunctionIndex,
+ Attribute::NoUnwind)
+ .addAttribute(M->getContext(), 1, Attribute::NoCapture);
+
+ StoreStrongCallee =
+ M->getOrInsertFunction(
+ "objc_storeStrong",
+ FunctionType::get(Type::getVoidTy(C), Params, /*isVarArg=*/false),
+ Attr);
+ }
+ return StoreStrongCallee;
+}
+
+Constant *ObjCARCContract::getRetainAutoreleaseCallee(Module *M) {
+ if (!RetainAutoreleaseCallee) {
+ LLVMContext &C = M->getContext();
+ Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
+ Type *Params[] = { I8X };
+ FunctionType *FTy = FunctionType::get(I8X, Params, /*isVarArg=*/false);
+ AttributeSet Attribute =
+ AttributeSet().addAttribute(M->getContext(), AttributeSet::FunctionIndex,
+ Attribute::NoUnwind);
+ RetainAutoreleaseCallee =
+ M->getOrInsertFunction("objc_retainAutorelease", FTy, Attribute);
+ }
+ return RetainAutoreleaseCallee;
+}
+
+Constant *ObjCARCContract::getRetainAutoreleaseRVCallee(Module *M) {
+ if (!RetainAutoreleaseRVCallee) {
+ LLVMContext &C = M->getContext();
+ Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
+ Type *Params[] = { I8X };
+ FunctionType *FTy = FunctionType::get(I8X, Params, /*isVarArg=*/false);
+ AttributeSet Attribute =
+ AttributeSet().addAttribute(M->getContext(), AttributeSet::FunctionIndex,
+ Attribute::NoUnwind);
+ RetainAutoreleaseRVCallee =
+ M->getOrInsertFunction("objc_retainAutoreleaseReturnValue", FTy,
+ Attribute);
+ }
+ return RetainAutoreleaseRVCallee;
+}
+
+/// Merge an autorelease with a retain into a fused call.
+bool
+ObjCARCContract::ContractAutorelease(Function &F, Instruction *Autorelease,
+ InstructionClass Class,
+ SmallPtrSet<Instruction *, 4>
+ &DependingInstructions,
+ SmallPtrSet<const BasicBlock *, 4>
+ &Visited) {
+ const Value *Arg = GetObjCArg(Autorelease);
+
+ // Check that there are no instructions between the retain and the autorelease
+ // (such as an autorelease_pop) which may change the count.
+ CallInst *Retain = 0;
+ if (Class == IC_AutoreleaseRV)
+ FindDependencies(RetainAutoreleaseRVDep, Arg,
+ Autorelease->getParent(), Autorelease,
+ DependingInstructions, Visited, PA);
+ else
+ FindDependencies(RetainAutoreleaseDep, Arg,
+ Autorelease->getParent(), Autorelease,
+ DependingInstructions, Visited, PA);
+
+ Visited.clear();
+ if (DependingInstructions.size() != 1) {
+ DependingInstructions.clear();
+ return false;
+ }
+
+ Retain = dyn_cast_or_null<CallInst>(*DependingInstructions.begin());
+ DependingInstructions.clear();
+
+ if (!Retain ||
+ GetBasicInstructionClass(Retain) != IC_Retain ||
+ GetObjCArg(Retain) != Arg)
+ return false;
+
+ Changed = true;
+ ++NumPeeps;
+
+ DEBUG(dbgs() << "ObjCARCContract::ContractAutorelease: Fusing "
+ "retain/autorelease. Erasing: " << *Autorelease << "\n"
+ " Old Retain: "
+ << *Retain << "\n");
+
+ if (Class == IC_AutoreleaseRV)
+ Retain->setCalledFunction(getRetainAutoreleaseRVCallee(F.getParent()));
+ else
+ Retain->setCalledFunction(getRetainAutoreleaseCallee(F.getParent()));
+
+ DEBUG(dbgs() << " New Retain: "
+ << *Retain << "\n");
+
+ EraseInstruction(Autorelease);
+ return true;
+}
+
+/// Attempt to merge an objc_release with a store, load, and objc_retain to form
+/// an objc_storeStrong. This can be a little tricky because the instructions
+/// don't always appear in order, and there may be unrelated intervening
+/// instructions.
+void ObjCARCContract::ContractRelease(Instruction *Release,
+ inst_iterator &Iter) {
+ LoadInst *Load = dyn_cast<LoadInst>(GetObjCArg(Release));
+ if (!Load || !Load->isSimple()) return;
+
+ // For now, require everything to be in one basic block.
+ BasicBlock *BB = Release->getParent();
+ if (Load->getParent() != BB) return;
+
+ // Walk down to find the store and the release, which may be in either order.
+ BasicBlock::iterator I = Load, End = BB->end();
+ ++I;
+ AliasAnalysis::Location Loc = AA->getLocation(Load);
+ StoreInst *Store = 0;
+ bool SawRelease = false;
+ for (; !Store || !SawRelease; ++I) {
+ if (I == End)
+ return;
+
+ Instruction *Inst = I;
+ if (Inst == Release) {
+ SawRelease = true;
+ continue;
+ }
+
+ InstructionClass Class = GetBasicInstructionClass(Inst);
+
+ // Unrelated retains are harmless.
+ if (IsRetain(Class))
+ continue;
+
+ if (Store) {
+ // The store is the point where we're going to put the objc_storeStrong,
+ // so make sure there are no uses after it.
+ if (CanUse(Inst, Load, PA, Class))
+ return;
+ } else if (AA->getModRefInfo(Inst, Loc) & AliasAnalysis::Mod) {
+ // We are moving the load down to the store, so check for anything
+ // else which writes to the memory between the load and the store.
+ Store = dyn_cast<StoreInst>(Inst);
+ if (!Store || !Store->isSimple()) return;
+ if (Store->getPointerOperand() != Loc.Ptr) return;
+ }
+ }
+
+ Value *New = StripPointerCastsAndObjCCalls(Store->getValueOperand());
+
+ // Walk up to find the retain.
+ I = Store;
+ BasicBlock::iterator Begin = BB->begin();
+ while (I != Begin && GetBasicInstructionClass(I) != IC_Retain)
+ --I;
+ Instruction *Retain = I;
+ if (GetBasicInstructionClass(Retain) != IC_Retain) return;
+ if (GetObjCArg(Retain) != New) return;
+
+ Changed = true;
+ ++NumStoreStrongs;
+
+ LLVMContext &C = Release->getContext();
+ Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
+ Type *I8XX = PointerType::getUnqual(I8X);
+
+ Value *Args[] = { Load->getPointerOperand(), New };
+ if (Args[0]->getType() != I8XX)
+ Args[0] = new BitCastInst(Args[0], I8XX, "", Store);
+ if (Args[1]->getType() != I8X)
+ Args[1] = new BitCastInst(Args[1], I8X, "", Store);
+ CallInst *StoreStrong =
+ CallInst::Create(getStoreStrongCallee(BB->getParent()->getParent()),
+ Args, "", Store);
+ StoreStrong->setDoesNotThrow();
+ StoreStrong->setDebugLoc(Store->getDebugLoc());
+
+ // We can't set the tail flag yet, because we haven't yet determined
+ // whether there are any escaping allocas. Remember this call, so that
+ // we can set the tail flag once we know it's safe.
+ StoreStrongCalls.insert(StoreStrong);
+
+ if (&*Iter == Store) ++Iter;
+ Store->eraseFromParent();
+ Release->eraseFromParent();
+ EraseInstruction(Retain);
+ if (Load->use_empty())
+ Load->eraseFromParent();
+}
+
+bool ObjCARCContract::doInitialization(Module &M) {
+ // If nothing in the Module uses ARC, don't do anything.
+ Run = ModuleHasARC(M);
+ if (!Run)
+ return false;
+
+ // These are initialized lazily.
+ StoreStrongCallee = 0;
+ RetainAutoreleaseCallee = 0;
+ RetainAutoreleaseRVCallee = 0;
+
+ // Initialize RetainRVMarker.
+ RetainRVMarker = 0;
+ if (NamedMDNode *NMD =
+ M.getNamedMetadata("clang.arc.retainAutoreleasedReturnValueMarker"))
+ if (NMD->getNumOperands() == 1) {
+ const MDNode *N = NMD->getOperand(0);
+ if (N->getNumOperands() == 1)
+ if (const MDString *S = dyn_cast<MDString>(N->getOperand(0)))
+ RetainRVMarker = S;
+ }
+
+ return false;
+}
+
+bool ObjCARCContract::runOnFunction(Function &F) {
+ if (!EnableARCOpts)
+ return false;
+
+ // If nothing in the Module uses ARC, don't do anything.
+ if (!Run)
+ return false;
+
+ Changed = false;
+ AA = &getAnalysis<AliasAnalysis>();
+ DT = &getAnalysis<DominatorTree>();
+
+ PA.setAA(&getAnalysis<AliasAnalysis>());
+
+ // Track whether it's ok to mark objc_storeStrong calls with the "tail"
+ // keyword. Be conservative if the function has variadic arguments.
+ // It seems that functions which "return twice" are also unsafe for the
+ // "tail" argument, because they are setjmp, which could need to
+ // return to an earlier stack state.
+ bool TailOkForStoreStrongs = !F.isVarArg() &&
+ !F.callsFunctionThatReturnsTwice();
+
+ // For ObjC library calls which return their argument, replace uses of the
+ // argument with uses of the call return value, if it dominates the use. This
+ // reduces register pressure.
+ SmallPtrSet<Instruction *, 4> DependingInstructions;
+ SmallPtrSet<const BasicBlock *, 4> Visited;
+ for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
+ Instruction *Inst = &*I++;
+
+ DEBUG(dbgs() << "ObjCARCContract: Visiting: " << *Inst << "\n");
+
+ // Only these library routines return their argument. In particular,
+ // objc_retainBlock does not necessarily return its argument.
+ InstructionClass Class = GetBasicInstructionClass(Inst);
+ switch (Class) {
+ case IC_Retain:
+ case IC_FusedRetainAutorelease:
+ case IC_FusedRetainAutoreleaseRV:
+ break;
+ case IC_Autorelease:
+ case IC_AutoreleaseRV:
+ if (ContractAutorelease(F, Inst, Class, DependingInstructions, Visited))
+ continue;
+ break;
+ case IC_RetainRV: {
+ // If we're compiling for a target which needs a special inline-asm
+ // marker to do the retainAutoreleasedReturnValue optimization,
+ // insert it now.
+ if (!RetainRVMarker)
+ break;
+ BasicBlock::iterator BBI = Inst;
+ BasicBlock *InstParent = Inst->getParent();
+
+ // Step up to see if the call immediately precedes the RetainRV call.
+ // If it's an invoke, we have to cross a block boundary. And we have
+ // to carefully dodge no-op instructions.
+ do {
+ if (&*BBI == InstParent->begin()) {
+ BasicBlock *Pred = InstParent->getSinglePredecessor();
+ if (!Pred)
+ goto decline_rv_optimization;
+ BBI = Pred->getTerminator();
+ break;
+ }
+ --BBI;
+ } while (IsNoopInstruction(BBI));
+
+ if (&*BBI == GetObjCArg(Inst)) {
+ DEBUG(dbgs() << "ObjCARCContract: Adding inline asm marker for "
+ "retainAutoreleasedReturnValue optimization.\n");
+ Changed = true;
+ InlineAsm *IA =
+ InlineAsm::get(FunctionType::get(Type::getVoidTy(Inst->getContext()),
+ /*isVarArg=*/false),
+ RetainRVMarker->getString(),
+ /*Constraints=*/"", /*hasSideEffects=*/true);
+ CallInst::Create(IA, "", Inst);
+ }
+ decline_rv_optimization:
+ break;
+ }
+ case IC_InitWeak: {
+ // objc_initWeak(p, null) => *p = null
+ CallInst *CI = cast<CallInst>(Inst);
+ if (IsNullOrUndef(CI->getArgOperand(1))) {
+ Value *Null =
+ ConstantPointerNull::get(cast<PointerType>(CI->getType()));
+ Changed = true;
+ new StoreInst(Null, CI->getArgOperand(0), CI);
+
+ DEBUG(dbgs() << "OBJCARCContract: Old = " << *CI << "\n"
+ << " New = " << *Null << "\n");
+
+ CI->replaceAllUsesWith(Null);
+ CI->eraseFromParent();
+ }
+ continue;
+ }
+ case IC_Release:
+ ContractRelease(Inst, I);
+ continue;
+ case IC_User:
+ // Be conservative if the function has any alloca instructions.
+ // Technically we only care about escaping alloca instructions,
+ // but this is sufficient to handle some interesting cases.
+ if (isa<AllocaInst>(Inst))
+ TailOkForStoreStrongs = false;
+ continue;
+ case IC_IntrinsicUser:
+ // Remove calls to @clang.arc.use(...).
+ Inst->eraseFromParent();
+ continue;
+ default:
+ continue;
+ }
+
+ DEBUG(dbgs() << "ObjCARCContract: Finished List.\n\n");
+
+ // Don't use GetObjCArg because we don't want to look through bitcasts
+ // and such; to do the replacement, the argument must have type i8*.
+ const Value *Arg = cast<CallInst>(Inst)->getArgOperand(0);
+ for (;;) {
+ // If we're compiling bugpointed code, don't get in trouble.
+ if (!isa<Instruction>(Arg) && !isa<Argument>(Arg))
+ break;
+ // Look through the uses of the pointer.
+ for (Value::const_use_iterator UI = Arg->use_begin(), UE = Arg->use_end();
+ UI != UE; ) {
+ Use &U = UI.getUse();
+ unsigned OperandNo = UI.getOperandNo();
+ ++UI; // Increment UI now, because we may unlink its element.
+
+ // If the call's return value dominates a use of the call's argument
+ // value, rewrite the use to use the return value. We check for
+ // reachability here because an unreachable call is considered to
+ // trivially dominate itself, which would lead us to rewriting its
+ // argument in terms of its return value, which would lead to
+ // infinite loops in GetObjCArg.
+ if (DT->isReachableFromEntry(U) && DT->dominates(Inst, U)) {
+ Changed = true;
+ Instruction *Replacement = Inst;
+ Type *UseTy = U.get()->getType();
+ if (PHINode *PHI = dyn_cast<PHINode>(U.getUser())) {
+ // For PHI nodes, insert the bitcast in the predecessor block.
+ unsigned ValNo = PHINode::getIncomingValueNumForOperand(OperandNo);
+ BasicBlock *BB = PHI->getIncomingBlock(ValNo);
+ if (Replacement->getType() != UseTy)
+ Replacement = new BitCastInst(Replacement, UseTy, "",
+ &BB->back());
+ // While we're here, rewrite all edges for this PHI, rather
+ // than just one use at a time, to minimize the number of
+ // bitcasts we emit.
+ for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
+ if (PHI->getIncomingBlock(i) == BB) {
+ // Keep the UI iterator valid.
+ if (&PHI->getOperandUse(
+ PHINode::getOperandNumForIncomingValue(i)) ==
+ &UI.getUse())
+ ++UI;
+ PHI->setIncomingValue(i, Replacement);
+ }
+ } else {
+ if (Replacement->getType() != UseTy)
+ Replacement = new BitCastInst(Replacement, UseTy, "",
+ cast<Instruction>(U.getUser()));
+ U.set(Replacement);
+ }
+ }
+ }
+
+ // If Arg is a no-op casted pointer, strip one level of casts and iterate.
+ if (const BitCastInst *BI = dyn_cast<BitCastInst>(Arg))
+ Arg = BI->getOperand(0);
+ else if (isa<GEPOperator>(Arg) &&
+ cast<GEPOperator>(Arg)->hasAllZeroIndices())
+ Arg = cast<GEPOperator>(Arg)->getPointerOperand();
+ else if (isa<GlobalAlias>(Arg) &&
+ !cast<GlobalAlias>(Arg)->mayBeOverridden())
+ Arg = cast<GlobalAlias>(Arg)->getAliasee();
+ else
+ break;
+ }
+ }
+
+ // If this function has no escaping allocas or suspicious vararg usage,
+ // objc_storeStrong calls can be marked with the "tail" keyword.
+ if (TailOkForStoreStrongs)
+ for (SmallPtrSet<CallInst *, 8>::iterator I = StoreStrongCalls.begin(),
+ E = StoreStrongCalls.end(); I != E; ++I)
+ (*I)->setTailCall();
+ StoreStrongCalls.clear();
+
+ return Changed;
+}
diff --git a/contrib/llvm/lib/Transforms/ObjCARC/ObjCARCExpand.cpp b/contrib/llvm/lib/Transforms/ObjCARC/ObjCARCExpand.cpp
new file mode 100644
index 0000000..39bf8f3
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/ObjCARC/ObjCARCExpand.cpp
@@ -0,0 +1,128 @@
+//===- ObjCARCExpand.cpp - ObjC ARC Optimization --------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file defines ObjC ARC optimizations. ARC stands for Automatic
+/// Reference Counting and is a system for managing reference counts for objects
+/// in Objective C.
+///
+/// This specific file deals with early optimizations which perform certain
+/// cleanup operations.
+///
+/// WARNING: This file knows about certain library functions. It recognizes them
+/// by name, and hardwires knowledge of their semantics.
+///
+/// WARNING: This file knows about how certain Objective-C library functions are
+/// used. Naive LLVM IR transformations which would otherwise be
+/// behavior-preserving may break these assumptions.
+///
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "objc-arc-expand"
+
+#include "ObjCARC.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Pass.h"
+#include "llvm/PassAnalysisSupport.h"
+#include "llvm/PassRegistry.h"
+#include "llvm/PassSupport.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/InstIterator.h"
+#include "llvm/Support/raw_ostream.h"
+
+namespace llvm {
+ class Module;
+}
+
+using namespace llvm;
+using namespace llvm::objcarc;
+
+namespace {
+ /// \brief Early ARC transformations.
+ class ObjCARCExpand : public FunctionPass {
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const;
+ virtual bool doInitialization(Module &M);
+ virtual bool runOnFunction(Function &F);
+
+ /// A flag indicating whether this optimization pass should run.
+ bool Run;
+
+ public:
+ static char ID;
+ ObjCARCExpand() : FunctionPass(ID) {
+ initializeObjCARCExpandPass(*PassRegistry::getPassRegistry());
+ }
+ };
+}
+
+char ObjCARCExpand::ID = 0;
+INITIALIZE_PASS(ObjCARCExpand,
+ "objc-arc-expand", "ObjC ARC expansion", false, false)
+
+Pass *llvm::createObjCARCExpandPass() {
+ return new ObjCARCExpand();
+}
+
+void ObjCARCExpand::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+}
+
+bool ObjCARCExpand::doInitialization(Module &M) {
+ Run = ModuleHasARC(M);
+ return false;
+}
+
+bool ObjCARCExpand::runOnFunction(Function &F) {
+ if (!EnableARCOpts)
+ return false;
+
+ // If nothing in the Module uses ARC, don't do anything.
+ if (!Run)
+ return false;
+
+ bool Changed = false;
+
+ DEBUG(dbgs() << "ObjCARCExpand: Visiting Function: " << F.getName() << "\n");
+
+ for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
+ Instruction *Inst = &*I;
+
+ DEBUG(dbgs() << "ObjCARCExpand: Visiting: " << *Inst << "\n");
+
+ switch (GetBasicInstructionClass(Inst)) {
+ case IC_Retain:
+ case IC_RetainRV:
+ case IC_Autorelease:
+ case IC_AutoreleaseRV:
+ case IC_FusedRetainAutorelease:
+ case IC_FusedRetainAutoreleaseRV: {
+ // These calls return their argument verbatim, as a low-level
+ // optimization. However, this makes high-level optimizations
+ // harder. Undo any uses of this optimization that the front-end
+ // emitted here. We'll redo them in the contract pass.
+ Changed = true;
+ Value *Value = cast<CallInst>(Inst)->getArgOperand(0);
+ DEBUG(dbgs() << "ObjCARCExpand: Old = " << *Inst << "\n"
+ " New = " << *Value << "\n");
+ Inst->replaceAllUsesWith(Value);
+ break;
+ }
+ default:
+ break;
+ }
+ }
+
+ DEBUG(dbgs() << "ObjCARCExpand: Finished List.\n\n");
+
+ return Changed;
+}
diff --git a/contrib/llvm/lib/Transforms/ObjCARC/ObjCARCOpts.cpp b/contrib/llvm/lib/Transforms/ObjCARC/ObjCARCOpts.cpp
new file mode 100644
index 0000000..92d6fc4
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/ObjCARC/ObjCARCOpts.cpp
@@ -0,0 +1,3026 @@
+//===- ObjCARCOpts.cpp - ObjC ARC Optimization ----------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file defines ObjC ARC optimizations. ARC stands for Automatic
+/// Reference Counting and is a system for managing reference counts for objects
+/// in Objective C.
+///
+/// The optimizations performed include elimination of redundant, partially
+/// redundant, and inconsequential reference count operations, elimination of
+/// redundant weak pointer operations, and numerous minor simplifications.
+///
+/// WARNING: This file knows about certain library functions. It recognizes them
+/// by name, and hardwires knowledge of their semantics.
+///
+/// WARNING: This file knows about how certain Objective-C library functions are
+/// used. Naive LLVM IR transformations which would otherwise be
+/// behavior-preserving may break these assumptions.
+///
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "objc-arc-opts"
+#include "ObjCARC.h"
+#include "DependencyAnalysis.h"
+#include "ObjCARCAliasAnalysis.h"
+#include "ProvenanceAnalysis.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+using namespace llvm::objcarc;
+
+/// \defgroup MiscUtils Miscellaneous utilities that are not ARC specific.
+/// @{
+
+namespace {
+ /// \brief An associative container with fast insertion-order (deterministic)
+ /// iteration over its elements. Plus the special blot operation.
+ template<class KeyT, class ValueT>
+ class MapVector {
+ /// Map keys to indices in Vector.
+ typedef DenseMap<KeyT, size_t> MapTy;
+ MapTy Map;
+
+ typedef std::vector<std::pair<KeyT, ValueT> > VectorTy;
+ /// Keys and values.
+ VectorTy Vector;
+
+ public:
+ typedef typename VectorTy::iterator iterator;
+ typedef typename VectorTy::const_iterator const_iterator;
+ iterator begin() { return Vector.begin(); }
+ iterator end() { return Vector.end(); }
+ const_iterator begin() const { return Vector.begin(); }
+ const_iterator end() const { return Vector.end(); }
+
+#ifdef XDEBUG
+ ~MapVector() {
+ assert(Vector.size() >= Map.size()); // May differ due to blotting.
+ for (typename MapTy::const_iterator I = Map.begin(), E = Map.end();
+ I != E; ++I) {
+ assert(I->second < Vector.size());
+ assert(Vector[I->second].first == I->first);
+ }
+ for (typename VectorTy::const_iterator I = Vector.begin(),
+ E = Vector.end(); I != E; ++I)
+ assert(!I->first ||
+ (Map.count(I->first) &&
+ Map[I->first] == size_t(I - Vector.begin())));
+ }
+#endif
+
+ ValueT &operator[](const KeyT &Arg) {
+ std::pair<typename MapTy::iterator, bool> Pair =
+ Map.insert(std::make_pair(Arg, size_t(0)));
+ if (Pair.second) {
+ size_t Num = Vector.size();
+ Pair.first->second = Num;
+ Vector.push_back(std::make_pair(Arg, ValueT()));
+ return Vector[Num].second;
+ }
+ return Vector[Pair.first->second].second;
+ }
+
+ std::pair<iterator, bool>
+ insert(const std::pair<KeyT, ValueT> &InsertPair) {
+ std::pair<typename MapTy::iterator, bool> Pair =
+ Map.insert(std::make_pair(InsertPair.first, size_t(0)));
+ if (Pair.second) {
+ size_t Num = Vector.size();
+ Pair.first->second = Num;
+ Vector.push_back(InsertPair);
+ return std::make_pair(Vector.begin() + Num, true);
+ }
+ return std::make_pair(Vector.begin() + Pair.first->second, false);
+ }
+
+ const_iterator find(const KeyT &Key) const {
+ typename MapTy::const_iterator It = Map.find(Key);
+ if (It == Map.end()) return Vector.end();
+ return Vector.begin() + It->second;
+ }
+
+ /// This is similar to erase, but instead of removing the element from the
+ /// vector, it just zeros out the key in the vector. This leaves iterators
+ /// intact, but clients must be prepared for zeroed-out keys when iterating.
+ void blot(const KeyT &Key) {
+ typename MapTy::iterator It = Map.find(Key);
+ if (It == Map.end()) return;
+ Vector[It->second].first = KeyT();
+ Map.erase(It);
+ }
+
+ void clear() {
+ Map.clear();
+ Vector.clear();
+ }
+ };
+}
+
+/// @}
+///
+/// \defgroup ARCUtilities Utility declarations/definitions specific to ARC.
+/// @{
+
+/// \brief This is similar to StripPointerCastsAndObjCCalls but it stops as soon
+/// as it finds a value with multiple uses.
+static const Value *FindSingleUseIdentifiedObject(const Value *Arg) {
+ if (Arg->hasOneUse()) {
+ if (const BitCastInst *BC = dyn_cast<BitCastInst>(Arg))
+ return FindSingleUseIdentifiedObject(BC->getOperand(0));
+ if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Arg))
+ if (GEP->hasAllZeroIndices())
+ return FindSingleUseIdentifiedObject(GEP->getPointerOperand());
+ if (IsForwarding(GetBasicInstructionClass(Arg)))
+ return FindSingleUseIdentifiedObject(
+ cast<CallInst>(Arg)->getArgOperand(0));
+ if (!IsObjCIdentifiedObject(Arg))
+ return 0;
+ return Arg;
+ }
+
+ // If we found an identifiable object but it has multiple uses, but they are
+ // trivial uses, we can still consider this to be a single-use value.
+ if (IsObjCIdentifiedObject(Arg)) {
+ for (Value::const_use_iterator UI = Arg->use_begin(), UE = Arg->use_end();
+ UI != UE; ++UI) {
+ const User *U = *UI;
+ if (!U->use_empty() || StripPointerCastsAndObjCCalls(U) != Arg)
+ return 0;
+ }
+
+ return Arg;
+ }
+
+ return 0;
+}
+
+/// \brief Test whether the given retainable object pointer escapes.
+///
+/// This differs from regular escape analysis in that a use as an
+/// argument to a call is not considered an escape.
+///
+static bool DoesRetainableObjPtrEscape(const User *Ptr) {
+ DEBUG(dbgs() << "DoesRetainableObjPtrEscape: Target: " << *Ptr << "\n");
+
+ // Walk the def-use chains.
+ SmallVector<const Value *, 4> Worklist;
+ Worklist.push_back(Ptr);
+ // If Ptr has any operands add them as well.
+ for (User::const_op_iterator I = Ptr->op_begin(), E = Ptr->op_end(); I != E;
+ ++I) {
+ Worklist.push_back(*I);
+ }
+
+ // Ensure we do not visit any value twice.
+ SmallPtrSet<const Value *, 8> VisitedSet;
+
+ do {
+ const Value *V = Worklist.pop_back_val();
+
+ DEBUG(dbgs() << "DoesRetainableObjPtrEscape: Visiting: " << *V << "\n");
+
+ for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
+ UI != UE; ++UI) {
+ const User *UUser = *UI;
+
+ DEBUG(dbgs() << "DoesRetainableObjPtrEscape: User: " << *UUser << "\n");
+
+ // Special - Use by a call (callee or argument) is not considered
+ // to be an escape.
+ switch (GetBasicInstructionClass(UUser)) {
+ case IC_StoreWeak:
+ case IC_InitWeak:
+ case IC_StoreStrong:
+ case IC_Autorelease:
+ case IC_AutoreleaseRV: {
+ DEBUG(dbgs() << "DoesRetainableObjPtrEscape: User copies pointer "
+ "arguments. Pointer Escapes!\n");
+ // These special functions make copies of their pointer arguments.
+ return true;
+ }
+ case IC_IntrinsicUser:
+ // Use by the use intrinsic is not an escape.
+ continue;
+ case IC_User:
+ case IC_None:
+ // Use by an instruction which copies the value is an escape if the
+ // result is an escape.
+ if (isa<BitCastInst>(UUser) || isa<GetElementPtrInst>(UUser) ||
+ isa<PHINode>(UUser) || isa<SelectInst>(UUser)) {
+
+ if (VisitedSet.insert(UUser)) {
+ DEBUG(dbgs() << "DoesRetainableObjPtrEscape: User copies value. "
+ "Ptr escapes if result escapes. Adding to list.\n");
+ Worklist.push_back(UUser);
+ } else {
+ DEBUG(dbgs() << "DoesRetainableObjPtrEscape: Already visited node."
+ "\n");
+ }
+ continue;
+ }
+ // Use by a load is not an escape.
+ if (isa<LoadInst>(UUser))
+ continue;
+ // Use by a store is not an escape if the use is the address.
+ if (const StoreInst *SI = dyn_cast<StoreInst>(UUser))
+ if (V != SI->getValueOperand())
+ continue;
+ break;
+ default:
+ // Regular calls and other stuff are not considered escapes.
+ continue;
+ }
+ // Otherwise, conservatively assume an escape.
+ DEBUG(dbgs() << "DoesRetainableObjPtrEscape: Assuming ptr escapes.\n");
+ return true;
+ }
+ } while (!Worklist.empty());
+
+ // No escapes found.
+ DEBUG(dbgs() << "DoesRetainableObjPtrEscape: Ptr does not escape.\n");
+ return false;
+}
+
+/// @}
+///
+/// \defgroup ARCOpt ARC Optimization.
+/// @{
+
+// TODO: On code like this:
+//
+// objc_retain(%x)
+// stuff_that_cannot_release()
+// objc_autorelease(%x)
+// stuff_that_cannot_release()
+// objc_retain(%x)
+// stuff_that_cannot_release()
+// objc_autorelease(%x)
+//
+// The second retain and autorelease can be deleted.
+
+// TODO: It should be possible to delete
+// objc_autoreleasePoolPush and objc_autoreleasePoolPop
+// pairs if nothing is actually autoreleased between them. Also, autorelease
+// calls followed by objc_autoreleasePoolPop calls (perhaps in ObjC++ code
+// after inlining) can be turned into plain release calls.
+
+// TODO: Critical-edge splitting. If the optimial insertion point is
+// a critical edge, the current algorithm has to fail, because it doesn't
+// know how to split edges. It should be possible to make the optimizer
+// think in terms of edges, rather than blocks, and then split critical
+// edges on demand.
+
+// TODO: OptimizeSequences could generalized to be Interprocedural.
+
+// TODO: Recognize that a bunch of other objc runtime calls have
+// non-escaping arguments and non-releasing arguments, and may be
+// non-autoreleasing.
+
+// TODO: Sink autorelease calls as far as possible. Unfortunately we
+// usually can't sink them past other calls, which would be the main
+// case where it would be useful.
+
+// TODO: The pointer returned from objc_loadWeakRetained is retained.
+
+// TODO: Delete release+retain pairs (rare).
+
+STATISTIC(NumNoops, "Number of no-op objc calls eliminated");
+STATISTIC(NumPartialNoops, "Number of partially no-op objc calls eliminated");
+STATISTIC(NumAutoreleases,"Number of autoreleases converted to releases");
+STATISTIC(NumRets, "Number of return value forwarding "
+ "retain+autoreleaes eliminated");
+STATISTIC(NumRRs, "Number of retain+release paths eliminated");
+STATISTIC(NumPeeps, "Number of calls peephole-optimized");
+
+namespace {
+ /// \enum Sequence
+ ///
+ /// \brief A sequence of states that a pointer may go through in which an
+ /// objc_retain and objc_release are actually needed.
+ enum Sequence {
+ S_None,
+ S_Retain, ///< objc_retain(x).
+ S_CanRelease, ///< foo(x) -- x could possibly see a ref count decrement.
+ S_Use, ///< any use of x.
+ S_Stop, ///< like S_Release, but code motion is stopped.
+ S_Release, ///< objc_release(x).
+ S_MovableRelease ///< objc_release(x), !clang.imprecise_release.
+ };
+
+ raw_ostream &operator<<(raw_ostream &OS, const Sequence S)
+ LLVM_ATTRIBUTE_UNUSED;
+ raw_ostream &operator<<(raw_ostream &OS, const Sequence S) {
+ switch (S) {
+ case S_None:
+ return OS << "S_None";
+ case S_Retain:
+ return OS << "S_Retain";
+ case S_CanRelease:
+ return OS << "S_CanRelease";
+ case S_Use:
+ return OS << "S_Use";
+ case S_Release:
+ return OS << "S_Release";
+ case S_MovableRelease:
+ return OS << "S_MovableRelease";
+ case S_Stop:
+ return OS << "S_Stop";
+ }
+ llvm_unreachable("Unknown sequence type.");
+ }
+}
+
+static Sequence MergeSeqs(Sequence A, Sequence B, bool TopDown) {
+ // The easy cases.
+ if (A == B)
+ return A;
+ if (A == S_None || B == S_None)
+ return S_None;
+
+ if (A > B) std::swap(A, B);
+ if (TopDown) {
+ // Choose the side which is further along in the sequence.
+ if ((A == S_Retain || A == S_CanRelease) &&
+ (B == S_CanRelease || B == S_Use))
+ return B;
+ } else {
+ // Choose the side which is further along in the sequence.
+ if ((A == S_Use || A == S_CanRelease) &&
+ (B == S_Use || B == S_Release || B == S_Stop || B == S_MovableRelease))
+ return A;
+ // If both sides are releases, choose the more conservative one.
+ if (A == S_Stop && (B == S_Release || B == S_MovableRelease))
+ return A;
+ if (A == S_Release && B == S_MovableRelease)
+ return A;
+ }
+
+ return S_None;
+}
+
+namespace {
+ /// \brief Unidirectional information about either a
+ /// retain-decrement-use-release sequence or release-use-decrement-retain
+ /// reverese sequence.
+ struct RRInfo {
+ /// After an objc_retain, the reference count of the referenced
+ /// object is known to be positive. Similarly, before an objc_release, the
+ /// reference count of the referenced object is known to be positive. If
+ /// there are retain-release pairs in code regions where the retain count
+ /// is known to be positive, they can be eliminated, regardless of any side
+ /// effects between them.
+ ///
+ /// Also, a retain+release pair nested within another retain+release
+ /// pair all on the known same pointer value can be eliminated, regardless
+ /// of any intervening side effects.
+ ///
+ /// KnownSafe is true when either of these conditions is satisfied.
+ bool KnownSafe;
+
+ /// True of the objc_release calls are all marked with the "tail" keyword.
+ bool IsTailCallRelease;
+
+ /// If the Calls are objc_release calls and they all have a
+ /// clang.imprecise_release tag, this is the metadata tag.
+ MDNode *ReleaseMetadata;
+
+ /// For a top-down sequence, the set of objc_retains or
+ /// objc_retainBlocks. For bottom-up, the set of objc_releases.
+ SmallPtrSet<Instruction *, 2> Calls;
+
+ /// The set of optimal insert positions for moving calls in the opposite
+ /// sequence.
+ SmallPtrSet<Instruction *, 2> ReverseInsertPts;
+
+ RRInfo() :
+ KnownSafe(false), IsTailCallRelease(false), ReleaseMetadata(0) {}
+
+ void clear();
+ };
+}
+
+void RRInfo::clear() {
+ KnownSafe = false;
+ IsTailCallRelease = false;
+ ReleaseMetadata = 0;
+ Calls.clear();
+ ReverseInsertPts.clear();
+}
+
+namespace {
+ /// \brief This class summarizes several per-pointer runtime properties which
+ /// are propogated through the flow graph.
+ class PtrState {
+ /// True if the reference count is known to be incremented.
+ bool KnownPositiveRefCount;
+
+ /// True of we've seen an opportunity for partial RR elimination, such as
+ /// pushing calls into a CFG triangle or into one side of a CFG diamond.
+ bool Partial;
+
+ /// The current position in the sequence.
+ Sequence Seq : 8;
+
+ public:
+ /// Unidirectional information about the current sequence.
+ ///
+ /// TODO: Encapsulate this better.
+ RRInfo RRI;
+
+ PtrState() : KnownPositiveRefCount(false), Partial(false),
+ Seq(S_None) {}
+
+ void SetKnownPositiveRefCount() {
+ KnownPositiveRefCount = true;
+ }
+
+ void ClearKnownPositiveRefCount() {
+ KnownPositiveRefCount = false;
+ }
+
+ bool HasKnownPositiveRefCount() const {
+ return KnownPositiveRefCount;
+ }
+
+ void SetSeq(Sequence NewSeq) {
+ Seq = NewSeq;
+ }
+
+ Sequence GetSeq() const {
+ return Seq;
+ }
+
+ void ClearSequenceProgress() {
+ ResetSequenceProgress(S_None);
+ }
+
+ void ResetSequenceProgress(Sequence NewSeq) {
+ Seq = NewSeq;
+ Partial = false;
+ RRI.clear();
+ }
+
+ void Merge(const PtrState &Other, bool TopDown);
+ };
+}
+
+void
+PtrState::Merge(const PtrState &Other, bool TopDown) {
+ Seq = MergeSeqs(Seq, Other.Seq, TopDown);
+ KnownPositiveRefCount = KnownPositiveRefCount && Other.KnownPositiveRefCount;
+
+ // If we're not in a sequence (anymore), drop all associated state.
+ if (Seq == S_None) {
+ Partial = false;
+ RRI.clear();
+ } else if (Partial || Other.Partial) {
+ // If we're doing a merge on a path that's previously seen a partial
+ // merge, conservatively drop the sequence, to avoid doing partial
+ // RR elimination. If the branch predicates for the two merge differ,
+ // mixing them is unsafe.
+ ClearSequenceProgress();
+ } else {
+ // Conservatively merge the ReleaseMetadata information.
+ if (RRI.ReleaseMetadata != Other.RRI.ReleaseMetadata)
+ RRI.ReleaseMetadata = 0;
+
+ RRI.KnownSafe = RRI.KnownSafe && Other.RRI.KnownSafe;
+ RRI.IsTailCallRelease = RRI.IsTailCallRelease &&
+ Other.RRI.IsTailCallRelease;
+ RRI.Calls.insert(Other.RRI.Calls.begin(), Other.RRI.Calls.end());
+
+ // Merge the insert point sets. If there are any differences,
+ // that makes this a partial merge.
+ Partial = RRI.ReverseInsertPts.size() != Other.RRI.ReverseInsertPts.size();
+ for (SmallPtrSet<Instruction *, 2>::const_iterator
+ I = Other.RRI.ReverseInsertPts.begin(),
+ E = Other.RRI.ReverseInsertPts.end(); I != E; ++I)
+ Partial |= RRI.ReverseInsertPts.insert(*I);
+ }
+}
+
+namespace {
+ /// \brief Per-BasicBlock state.
+ class BBState {
+ /// The number of unique control paths from the entry which can reach this
+ /// block.
+ unsigned TopDownPathCount;
+
+ /// The number of unique control paths to exits from this block.
+ unsigned BottomUpPathCount;
+
+ /// A type for PerPtrTopDown and PerPtrBottomUp.
+ typedef MapVector<const Value *, PtrState> MapTy;
+
+ /// The top-down traversal uses this to record information known about a
+ /// pointer at the bottom of each block.
+ MapTy PerPtrTopDown;
+
+ /// The bottom-up traversal uses this to record information known about a
+ /// pointer at the top of each block.
+ MapTy PerPtrBottomUp;
+
+ /// Effective predecessors of the current block ignoring ignorable edges and
+ /// ignored backedges.
+ SmallVector<BasicBlock *, 2> Preds;
+ /// Effective successors of the current block ignoring ignorable edges and
+ /// ignored backedges.
+ SmallVector<BasicBlock *, 2> Succs;
+
+ public:
+ BBState() : TopDownPathCount(0), BottomUpPathCount(0) {}
+
+ typedef MapTy::iterator ptr_iterator;
+ typedef MapTy::const_iterator ptr_const_iterator;
+
+ ptr_iterator top_down_ptr_begin() { return PerPtrTopDown.begin(); }
+ ptr_iterator top_down_ptr_end() { return PerPtrTopDown.end(); }
+ ptr_const_iterator top_down_ptr_begin() const {
+ return PerPtrTopDown.begin();
+ }
+ ptr_const_iterator top_down_ptr_end() const {
+ return PerPtrTopDown.end();
+ }
+
+ ptr_iterator bottom_up_ptr_begin() { return PerPtrBottomUp.begin(); }
+ ptr_iterator bottom_up_ptr_end() { return PerPtrBottomUp.end(); }
+ ptr_const_iterator bottom_up_ptr_begin() const {
+ return PerPtrBottomUp.begin();
+ }
+ ptr_const_iterator bottom_up_ptr_end() const {
+ return PerPtrBottomUp.end();
+ }
+
+ /// Mark this block as being an entry block, which has one path from the
+ /// entry by definition.
+ void SetAsEntry() { TopDownPathCount = 1; }
+
+ /// Mark this block as being an exit block, which has one path to an exit by
+ /// definition.
+ void SetAsExit() { BottomUpPathCount = 1; }
+
+ PtrState &getPtrTopDownState(const Value *Arg) {
+ return PerPtrTopDown[Arg];
+ }
+
+ PtrState &getPtrBottomUpState(const Value *Arg) {
+ return PerPtrBottomUp[Arg];
+ }
+
+ void clearBottomUpPointers() {
+ PerPtrBottomUp.clear();
+ }
+
+ void clearTopDownPointers() {
+ PerPtrTopDown.clear();
+ }
+
+ void InitFromPred(const BBState &Other);
+ void InitFromSucc(const BBState &Other);
+ void MergePred(const BBState &Other);
+ void MergeSucc(const BBState &Other);
+
+ /// Return the number of possible unique paths from an entry to an exit
+ /// which pass through this block. This is only valid after both the
+ /// top-down and bottom-up traversals are complete.
+ unsigned GetAllPathCount() const {
+ assert(TopDownPathCount != 0);
+ assert(BottomUpPathCount != 0);
+ return TopDownPathCount * BottomUpPathCount;
+ }
+
+ // Specialized CFG utilities.
+ typedef SmallVectorImpl<BasicBlock *>::const_iterator edge_iterator;
+ edge_iterator pred_begin() { return Preds.begin(); }
+ edge_iterator pred_end() { return Preds.end(); }
+ edge_iterator succ_begin() { return Succs.begin(); }
+ edge_iterator succ_end() { return Succs.end(); }
+
+ void addSucc(BasicBlock *Succ) { Succs.push_back(Succ); }
+ void addPred(BasicBlock *Pred) { Preds.push_back(Pred); }
+
+ bool isExit() const { return Succs.empty(); }
+ };
+}
+
+void BBState::InitFromPred(const BBState &Other) {
+ PerPtrTopDown = Other.PerPtrTopDown;
+ TopDownPathCount = Other.TopDownPathCount;
+}
+
+void BBState::InitFromSucc(const BBState &Other) {
+ PerPtrBottomUp = Other.PerPtrBottomUp;
+ BottomUpPathCount = Other.BottomUpPathCount;
+}
+
+/// The top-down traversal uses this to merge information about predecessors to
+/// form the initial state for a new block.
+void BBState::MergePred(const BBState &Other) {
+ // Other.TopDownPathCount can be 0, in which case it is either dead or a
+ // loop backedge. Loop backedges are special.
+ TopDownPathCount += Other.TopDownPathCount;
+
+ // Check for overflow. If we have overflow, fall back to conservative
+ // behavior.
+ if (TopDownPathCount < Other.TopDownPathCount) {
+ clearTopDownPointers();
+ return;
+ }
+
+ // For each entry in the other set, if our set has an entry with the same key,
+ // merge the entries. Otherwise, copy the entry and merge it with an empty
+ // entry.
+ for (ptr_const_iterator MI = Other.top_down_ptr_begin(),
+ ME = Other.top_down_ptr_end(); MI != ME; ++MI) {
+ std::pair<ptr_iterator, bool> Pair = PerPtrTopDown.insert(*MI);
+ Pair.first->second.Merge(Pair.second ? PtrState() : MI->second,
+ /*TopDown=*/true);
+ }
+
+ // For each entry in our set, if the other set doesn't have an entry with the
+ // same key, force it to merge with an empty entry.
+ for (ptr_iterator MI = top_down_ptr_begin(),
+ ME = top_down_ptr_end(); MI != ME; ++MI)
+ if (Other.PerPtrTopDown.find(MI->first) == Other.PerPtrTopDown.end())
+ MI->second.Merge(PtrState(), /*TopDown=*/true);
+}
+
+/// The bottom-up traversal uses this to merge information about successors to
+/// form the initial state for a new block.
+void BBState::MergeSucc(const BBState &Other) {
+ // Other.BottomUpPathCount can be 0, in which case it is either dead or a
+ // loop backedge. Loop backedges are special.
+ BottomUpPathCount += Other.BottomUpPathCount;
+
+ // Check for overflow. If we have overflow, fall back to conservative
+ // behavior.
+ if (BottomUpPathCount < Other.BottomUpPathCount) {
+ clearBottomUpPointers();
+ return;
+ }
+
+ // For each entry in the other set, if our set has an entry with the
+ // same key, merge the entries. Otherwise, copy the entry and merge
+ // it with an empty entry.
+ for (ptr_const_iterator MI = Other.bottom_up_ptr_begin(),
+ ME = Other.bottom_up_ptr_end(); MI != ME; ++MI) {
+ std::pair<ptr_iterator, bool> Pair = PerPtrBottomUp.insert(*MI);
+ Pair.first->second.Merge(Pair.second ? PtrState() : MI->second,
+ /*TopDown=*/false);
+ }
+
+ // For each entry in our set, if the other set doesn't have an entry
+ // with the same key, force it to merge with an empty entry.
+ for (ptr_iterator MI = bottom_up_ptr_begin(),
+ ME = bottom_up_ptr_end(); MI != ME; ++MI)
+ if (Other.PerPtrBottomUp.find(MI->first) == Other.PerPtrBottomUp.end())
+ MI->second.Merge(PtrState(), /*TopDown=*/false);
+}
+
+// Only enable ARC Annotations if we are building a debug version of
+// libObjCARCOpts.
+#ifndef NDEBUG
+#define ARC_ANNOTATIONS
+#endif
+
+// Define some macros along the lines of DEBUG and some helper functions to make
+// it cleaner to create annotations in the source code and to no-op when not
+// building in debug mode.
+#ifdef ARC_ANNOTATIONS
+
+#include "llvm/Support/CommandLine.h"
+
+/// Enable/disable ARC sequence annotations.
+static cl::opt<bool>
+EnableARCAnnotations("enable-objc-arc-annotations", cl::init(false));
+
+/// This function appends a unique ARCAnnotationProvenanceSourceMDKind id to an
+/// instruction so that we can track backwards when post processing via the llvm
+/// arc annotation processor tool. If the function is an
+static MDString *AppendMDNodeToSourcePtr(unsigned NodeId,
+ Value *Ptr) {
+ MDString *Hash = 0;
+
+ // If pointer is a result of an instruction and it does not have a source
+ // MDNode it, attach a new MDNode onto it. If pointer is a result of
+ // an instruction and does have a source MDNode attached to it, return a
+ // reference to said Node. Otherwise just return 0.
+ if (Instruction *Inst = dyn_cast<Instruction>(Ptr)) {
+ MDNode *Node;
+ if (!(Node = Inst->getMetadata(NodeId))) {
+ // We do not have any node. Generate and attatch the hash MDString to the
+ // instruction.
+
+ // We just use an MDString to ensure that this metadata gets written out
+ // of line at the module level and to provide a very simple format
+ // encoding the information herein. Both of these makes it simpler to
+ // parse the annotations by a simple external program.
+ std::string Str;
+ raw_string_ostream os(Str);
+ os << "(" << Inst->getParent()->getParent()->getName() << ",%"
+ << Inst->getName() << ")";
+
+ Hash = MDString::get(Inst->getContext(), os.str());
+ Inst->setMetadata(NodeId, MDNode::get(Inst->getContext(),Hash));
+ } else {
+ // We have a node. Grab its hash and return it.
+ assert(Node->getNumOperands() == 1 &&
+ "An ARCAnnotationProvenanceSourceMDKind can only have 1 operand.");
+ Hash = cast<MDString>(Node->getOperand(0));
+ }
+ } else if (Argument *Arg = dyn_cast<Argument>(Ptr)) {
+ std::string str;
+ raw_string_ostream os(str);
+ os << "(" << Arg->getParent()->getName() << ",%" << Arg->getName()
+ << ")";
+ Hash = MDString::get(Arg->getContext(), os.str());
+ }
+
+ return Hash;
+}
+
+static std::string SequenceToString(Sequence A) {
+ std::string str;
+ raw_string_ostream os(str);
+ os << A;
+ return os.str();
+}
+
+/// Helper function to change a Sequence into a String object using our overload
+/// for raw_ostream so we only have printing code in one location.
+static MDString *SequenceToMDString(LLVMContext &Context,
+ Sequence A) {
+ return MDString::get(Context, SequenceToString(A));
+}
+
+/// A simple function to generate a MDNode which describes the change in state
+/// for Value *Ptr caused by Instruction *Inst.
+static void AppendMDNodeToInstForPtr(unsigned NodeId,
+ Instruction *Inst,
+ Value *Ptr,
+ MDString *PtrSourceMDNodeID,
+ Sequence OldSeq,
+ Sequence NewSeq) {
+ MDNode *Node = 0;
+ Value *tmp[3] = {PtrSourceMDNodeID,
+ SequenceToMDString(Inst->getContext(),
+ OldSeq),
+ SequenceToMDString(Inst->getContext(),
+ NewSeq)};
+ Node = MDNode::get(Inst->getContext(),
+ ArrayRef<Value*>(tmp, 3));
+
+ Inst->setMetadata(NodeId, Node);
+}
+
+/// Add to the beginning of the basic block llvm.ptr.annotations which show the
+/// state of a pointer at the entrance to a basic block.
+static void GenerateARCBBEntranceAnnotation(const char *Name, BasicBlock *BB,
+ Value *Ptr, Sequence Seq) {
+ Module *M = BB->getParent()->getParent();
+ LLVMContext &C = M->getContext();
+ Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
+ Type *I8XX = PointerType::getUnqual(I8X);
+ Type *Params[] = {I8XX, I8XX};
+ FunctionType *FTy = FunctionType::get(Type::getVoidTy(C),
+ ArrayRef<Type*>(Params, 2),
+ /*isVarArg=*/false);
+ Constant *Callee = M->getOrInsertFunction(Name, FTy);
+
+ IRBuilder<> Builder(BB, BB->getFirstInsertionPt());
+
+ Value *PtrName;
+ StringRef Tmp = Ptr->getName();
+ if (0 == (PtrName = M->getGlobalVariable(Tmp, true))) {
+ Value *ActualPtrName = Builder.CreateGlobalStringPtr(Tmp,
+ Tmp + "_STR");
+ PtrName = new GlobalVariable(*M, I8X, true, GlobalVariable::InternalLinkage,
+ cast<Constant>(ActualPtrName), Tmp);
+ }
+
+ Value *S;
+ std::string SeqStr = SequenceToString(Seq);
+ if (0 == (S = M->getGlobalVariable(SeqStr, true))) {
+ Value *ActualPtrName = Builder.CreateGlobalStringPtr(SeqStr,
+ SeqStr + "_STR");
+ S = new GlobalVariable(*M, I8X, true, GlobalVariable::InternalLinkage,
+ cast<Constant>(ActualPtrName), SeqStr);
+ }
+
+ Builder.CreateCall2(Callee, PtrName, S);
+}
+
+/// Add to the end of the basic block llvm.ptr.annotations which show the state
+/// of the pointer at the bottom of the basic block.
+static void GenerateARCBBTerminatorAnnotation(const char *Name, BasicBlock *BB,
+ Value *Ptr, Sequence Seq) {
+ Module *M = BB->getParent()->getParent();
+ LLVMContext &C = M->getContext();
+ Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
+ Type *I8XX = PointerType::getUnqual(I8X);
+ Type *Params[] = {I8XX, I8XX};
+ FunctionType *FTy = FunctionType::get(Type::getVoidTy(C),
+ ArrayRef<Type*>(Params, 2),
+ /*isVarArg=*/false);
+ Constant *Callee = M->getOrInsertFunction(Name, FTy);
+
+ IRBuilder<> Builder(BB, llvm::prior(BB->end()));
+
+ Value *PtrName;
+ StringRef Tmp = Ptr->getName();
+ if (0 == (PtrName = M->getGlobalVariable(Tmp, true))) {
+ Value *ActualPtrName = Builder.CreateGlobalStringPtr(Tmp,
+ Tmp + "_STR");
+ PtrName = new GlobalVariable(*M, I8X, true, GlobalVariable::InternalLinkage,
+ cast<Constant>(ActualPtrName), Tmp);
+ }
+
+ Value *S;
+ std::string SeqStr = SequenceToString(Seq);
+ if (0 == (S = M->getGlobalVariable(SeqStr, true))) {
+ Value *ActualPtrName = Builder.CreateGlobalStringPtr(SeqStr,
+ SeqStr + "_STR");
+ S = new GlobalVariable(*M, I8X, true, GlobalVariable::InternalLinkage,
+ cast<Constant>(ActualPtrName), SeqStr);
+ }
+ Builder.CreateCall2(Callee, PtrName, S);
+}
+
+/// Adds a source annotation to pointer and a state change annotation to Inst
+/// referencing the source annotation and the old/new state of pointer.
+static void GenerateARCAnnotation(unsigned InstMDId,
+ unsigned PtrMDId,
+ Instruction *Inst,
+ Value *Ptr,
+ Sequence OldSeq,
+ Sequence NewSeq) {
+ if (EnableARCAnnotations) {
+ // First generate the source annotation on our pointer. This will return an
+ // MDString* if Ptr actually comes from an instruction implying we can put
+ // in a source annotation. If AppendMDNodeToSourcePtr returns 0 (i.e. NULL),
+ // then we know that our pointer is from an Argument so we put a reference
+ // to the argument number.
+ //
+ // The point of this is to make it easy for the
+ // llvm-arc-annotation-processor tool to cross reference where the source
+ // pointer is in the LLVM IR since the LLVM IR parser does not submit such
+ // information via debug info for backends to use (since why would anyone
+ // need such a thing from LLVM IR besides in non standard cases
+ // [i.e. this]).
+ MDString *SourcePtrMDNode =
+ AppendMDNodeToSourcePtr(PtrMDId, Ptr);
+ AppendMDNodeToInstForPtr(InstMDId, Inst, Ptr, SourcePtrMDNode, OldSeq,
+ NewSeq);
+ }
+}
+
+// The actual interface for accessing the above functionality is defined via
+// some simple macros which are defined below. We do this so that the user does
+// not need to pass in what metadata id is needed resulting in cleaner code and
+// additionally since it provides an easy way to conditionally no-op all
+// annotation support in a non-debug build.
+
+/// Use this macro to annotate a sequence state change when processing
+/// instructions bottom up,
+#define ANNOTATE_BOTTOMUP(inst, ptr, old, new) \
+ GenerateARCAnnotation(ARCAnnotationBottomUpMDKind, \
+ ARCAnnotationProvenanceSourceMDKind, (inst), \
+ const_cast<Value*>(ptr), (old), (new))
+/// Use this macro to annotate a sequence state change when processing
+/// instructions top down.
+#define ANNOTATE_TOPDOWN(inst, ptr, old, new) \
+ GenerateARCAnnotation(ARCAnnotationTopDownMDKind, \
+ ARCAnnotationProvenanceSourceMDKind, (inst), \
+ const_cast<Value*>(ptr), (old), (new))
+
+#define ANNOTATE_BB(_states, _bb, _name, _type, _direction) \
+ do { \
+ if (EnableARCAnnotations) { \
+ for(BBState::ptr_const_iterator I = (_states)._direction##_ptr_begin(), \
+ E = (_states)._direction##_ptr_end(); I != E; ++I) { \
+ Value *Ptr = const_cast<Value*>(I->first); \
+ Sequence Seq = I->second.GetSeq(); \
+ GenerateARCBB ## _type ## Annotation(_name, (_bb), Ptr, Seq); \
+ } \
+ } \
+} while (0)
+
+#define ANNOTATE_BOTTOMUP_BBSTART(_states, _basicblock) \
+ ANNOTATE_BB(_states, _basicblock, "llvm.arc.annotation.bottomup.bbstart", \
+ Entrance, bottom_up)
+#define ANNOTATE_BOTTOMUP_BBEND(_states, _basicblock) \
+ ANNOTATE_BB(_states, _basicblock, "llvm.arc.annotation.bottomup.bbend", \
+ Terminator, bottom_up)
+#define ANNOTATE_TOPDOWN_BBSTART(_states, _basicblock) \
+ ANNOTATE_BB(_states, _basicblock, "llvm.arc.annotation.topdown.bbstart", \
+ Entrance, top_down)
+#define ANNOTATE_TOPDOWN_BBEND(_states, _basicblock) \
+ ANNOTATE_BB(_states, _basicblock, "llvm.arc.annotation.topdown.bbend", \
+ Terminator, top_down)
+
+#else // !ARC_ANNOTATION
+// If annotations are off, noop.
+#define ANNOTATE_BOTTOMUP(inst, ptr, old, new)
+#define ANNOTATE_TOPDOWN(inst, ptr, old, new)
+#define ANNOTATE_BOTTOMUP_BBSTART(states, basicblock)
+#define ANNOTATE_BOTTOMUP_BBEND(states, basicblock)
+#define ANNOTATE_TOPDOWN_BBSTART(states, basicblock)
+#define ANNOTATE_TOPDOWN_BBEND(states, basicblock)
+#endif // !ARC_ANNOTATION
+
+namespace {
+ /// \brief The main ARC optimization pass.
+ class ObjCARCOpt : public FunctionPass {
+ bool Changed;
+ ProvenanceAnalysis PA;
+
+ /// A flag indicating whether this optimization pass should run.
+ bool Run;
+
+ /// Declarations for ObjC runtime functions, for use in creating calls to
+ /// them. These are initialized lazily to avoid cluttering up the Module
+ /// with unused declarations.
+
+ /// Declaration for ObjC runtime function
+ /// objc_retainAutoreleasedReturnValue.
+ Constant *RetainRVCallee;
+ /// Declaration for ObjC runtime function objc_autoreleaseReturnValue.
+ Constant *AutoreleaseRVCallee;
+ /// Declaration for ObjC runtime function objc_release.
+ Constant *ReleaseCallee;
+ /// Declaration for ObjC runtime function objc_retain.
+ Constant *RetainCallee;
+ /// Declaration for ObjC runtime function objc_retainBlock.
+ Constant *RetainBlockCallee;
+ /// Declaration for ObjC runtime function objc_autorelease.
+ Constant *AutoreleaseCallee;
+
+ /// Flags which determine whether each of the interesting runtine functions
+ /// is in fact used in the current function.
+ unsigned UsedInThisFunction;
+
+ /// The Metadata Kind for clang.imprecise_release metadata.
+ unsigned ImpreciseReleaseMDKind;
+
+ /// The Metadata Kind for clang.arc.copy_on_escape metadata.
+ unsigned CopyOnEscapeMDKind;
+
+ /// The Metadata Kind for clang.arc.no_objc_arc_exceptions metadata.
+ unsigned NoObjCARCExceptionsMDKind;
+
+#ifdef ARC_ANNOTATIONS
+ /// The Metadata Kind for llvm.arc.annotation.bottomup metadata.
+ unsigned ARCAnnotationBottomUpMDKind;
+ /// The Metadata Kind for llvm.arc.annotation.topdown metadata.
+ unsigned ARCAnnotationTopDownMDKind;
+ /// The Metadata Kind for llvm.arc.annotation.provenancesource metadata.
+ unsigned ARCAnnotationProvenanceSourceMDKind;
+#endif // ARC_ANNOATIONS
+
+ Constant *getRetainRVCallee(Module *M);
+ Constant *getAutoreleaseRVCallee(Module *M);
+ Constant *getReleaseCallee(Module *M);
+ Constant *getRetainCallee(Module *M);
+ Constant *getRetainBlockCallee(Module *M);
+ Constant *getAutoreleaseCallee(Module *M);
+
+ bool IsRetainBlockOptimizable(const Instruction *Inst);
+
+ void OptimizeRetainCall(Function &F, Instruction *Retain);
+ bool OptimizeRetainRVCall(Function &F, Instruction *RetainRV);
+ void OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV,
+ InstructionClass &Class);
+ bool OptimizeRetainBlockCall(Function &F, Instruction *RetainBlock,
+ InstructionClass &Class);
+ void OptimizeIndividualCalls(Function &F);
+
+ void CheckForCFGHazards(const BasicBlock *BB,
+ DenseMap<const BasicBlock *, BBState> &BBStates,
+ BBState &MyStates) const;
+ bool VisitInstructionBottomUp(Instruction *Inst,
+ BasicBlock *BB,
+ MapVector<Value *, RRInfo> &Retains,
+ BBState &MyStates);
+ bool VisitBottomUp(BasicBlock *BB,
+ DenseMap<const BasicBlock *, BBState> &BBStates,
+ MapVector<Value *, RRInfo> &Retains);
+ bool VisitInstructionTopDown(Instruction *Inst,
+ DenseMap<Value *, RRInfo> &Releases,
+ BBState &MyStates);
+ bool VisitTopDown(BasicBlock *BB,
+ DenseMap<const BasicBlock *, BBState> &BBStates,
+ DenseMap<Value *, RRInfo> &Releases);
+ bool Visit(Function &F,
+ DenseMap<const BasicBlock *, BBState> &BBStates,
+ MapVector<Value *, RRInfo> &Retains,
+ DenseMap<Value *, RRInfo> &Releases);
+
+ void MoveCalls(Value *Arg, RRInfo &RetainsToMove, RRInfo &ReleasesToMove,
+ MapVector<Value *, RRInfo> &Retains,
+ DenseMap<Value *, RRInfo> &Releases,
+ SmallVectorImpl<Instruction *> &DeadInsts,
+ Module *M);
+
+ bool ConnectTDBUTraversals(DenseMap<const BasicBlock *, BBState> &BBStates,
+ MapVector<Value *, RRInfo> &Retains,
+ DenseMap<Value *, RRInfo> &Releases,
+ Module *M,
+ SmallVector<Instruction *, 4> &NewRetains,
+ SmallVector<Instruction *, 4> &NewReleases,
+ SmallVector<Instruction *, 8> &DeadInsts,
+ RRInfo &RetainsToMove,
+ RRInfo &ReleasesToMove,
+ Value *Arg,
+ bool KnownSafe,
+ bool &AnyPairsCompletelyEliminated);
+
+ bool PerformCodePlacement(DenseMap<const BasicBlock *, BBState> &BBStates,
+ MapVector<Value *, RRInfo> &Retains,
+ DenseMap<Value *, RRInfo> &Releases,
+ Module *M);
+
+ void OptimizeWeakCalls(Function &F);
+
+ bool OptimizeSequences(Function &F);
+
+ void OptimizeReturns(Function &F);
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const;
+ virtual bool doInitialization(Module &M);
+ virtual bool runOnFunction(Function &F);
+ virtual void releaseMemory();
+
+ public:
+ static char ID;
+ ObjCARCOpt() : FunctionPass(ID) {
+ initializeObjCARCOptPass(*PassRegistry::getPassRegistry());
+ }
+ };
+}
+
+char ObjCARCOpt::ID = 0;
+INITIALIZE_PASS_BEGIN(ObjCARCOpt,
+ "objc-arc", "ObjC ARC optimization", false, false)
+INITIALIZE_PASS_DEPENDENCY(ObjCARCAliasAnalysis)
+INITIALIZE_PASS_END(ObjCARCOpt,
+ "objc-arc", "ObjC ARC optimization", false, false)
+
+Pass *llvm::createObjCARCOptPass() {
+ return new ObjCARCOpt();
+}
+
+void ObjCARCOpt::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<ObjCARCAliasAnalysis>();
+ AU.addRequired<AliasAnalysis>();
+ // ARC optimization doesn't currently split critical edges.
+ AU.setPreservesCFG();
+}
+
+bool ObjCARCOpt::IsRetainBlockOptimizable(const Instruction *Inst) {
+ // Without the magic metadata tag, we have to assume this might be an
+ // objc_retainBlock call inserted to convert a block pointer to an id,
+ // in which case it really is needed.
+ if (!Inst->getMetadata(CopyOnEscapeMDKind))
+ return false;
+
+ // If the pointer "escapes" (not including being used in a call),
+ // the copy may be needed.
+ if (DoesRetainableObjPtrEscape(Inst))
+ return false;
+
+ // Otherwise, it's not needed.
+ return true;
+}
+
+Constant *ObjCARCOpt::getRetainRVCallee(Module *M) {
+ if (!RetainRVCallee) {
+ LLVMContext &C = M->getContext();
+ Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
+ Type *Params[] = { I8X };
+ FunctionType *FTy = FunctionType::get(I8X, Params, /*isVarArg=*/false);
+ AttributeSet Attribute =
+ AttributeSet().addAttribute(M->getContext(), AttributeSet::FunctionIndex,
+ Attribute::NoUnwind);
+ RetainRVCallee =
+ M->getOrInsertFunction("objc_retainAutoreleasedReturnValue", FTy,
+ Attribute);
+ }
+ return RetainRVCallee;
+}
+
+Constant *ObjCARCOpt::getAutoreleaseRVCallee(Module *M) {
+ if (!AutoreleaseRVCallee) {
+ LLVMContext &C = M->getContext();
+ Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
+ Type *Params[] = { I8X };
+ FunctionType *FTy = FunctionType::get(I8X, Params, /*isVarArg=*/false);
+ AttributeSet Attribute =
+ AttributeSet().addAttribute(M->getContext(), AttributeSet::FunctionIndex,
+ Attribute::NoUnwind);
+ AutoreleaseRVCallee =
+ M->getOrInsertFunction("objc_autoreleaseReturnValue", FTy,
+ Attribute);
+ }
+ return AutoreleaseRVCallee;
+}
+
+Constant *ObjCARCOpt::getReleaseCallee(Module *M) {
+ if (!ReleaseCallee) {
+ LLVMContext &C = M->getContext();
+ Type *Params[] = { PointerType::getUnqual(Type::getInt8Ty(C)) };
+ AttributeSet Attribute =
+ AttributeSet().addAttribute(M->getContext(), AttributeSet::FunctionIndex,
+ Attribute::NoUnwind);
+ ReleaseCallee =
+ M->getOrInsertFunction(
+ "objc_release",
+ FunctionType::get(Type::getVoidTy(C), Params, /*isVarArg=*/false),
+ Attribute);
+ }
+ return ReleaseCallee;
+}
+
+Constant *ObjCARCOpt::getRetainCallee(Module *M) {
+ if (!RetainCallee) {
+ LLVMContext &C = M->getContext();
+ Type *Params[] = { PointerType::getUnqual(Type::getInt8Ty(C)) };
+ AttributeSet Attribute =
+ AttributeSet().addAttribute(M->getContext(), AttributeSet::FunctionIndex,
+ Attribute::NoUnwind);
+ RetainCallee =
+ M->getOrInsertFunction(
+ "objc_retain",
+ FunctionType::get(Params[0], Params, /*isVarArg=*/false),
+ Attribute);
+ }
+ return RetainCallee;
+}
+
+Constant *ObjCARCOpt::getRetainBlockCallee(Module *M) {
+ if (!RetainBlockCallee) {
+ LLVMContext &C = M->getContext();
+ Type *Params[] = { PointerType::getUnqual(Type::getInt8Ty(C)) };
+ // objc_retainBlock is not nounwind because it calls user copy constructors
+ // which could theoretically throw.
+ RetainBlockCallee =
+ M->getOrInsertFunction(
+ "objc_retainBlock",
+ FunctionType::get(Params[0], Params, /*isVarArg=*/false),
+ AttributeSet());
+ }
+ return RetainBlockCallee;
+}
+
+Constant *ObjCARCOpt::getAutoreleaseCallee(Module *M) {
+ if (!AutoreleaseCallee) {
+ LLVMContext &C = M->getContext();
+ Type *Params[] = { PointerType::getUnqual(Type::getInt8Ty(C)) };
+ AttributeSet Attribute =
+ AttributeSet().addAttribute(M->getContext(), AttributeSet::FunctionIndex,
+ Attribute::NoUnwind);
+ AutoreleaseCallee =
+ M->getOrInsertFunction(
+ "objc_autorelease",
+ FunctionType::get(Params[0], Params, /*isVarArg=*/false),
+ Attribute);
+ }
+ return AutoreleaseCallee;
+}
+
+/// Turn objc_retain into objc_retainAutoreleasedReturnValue if the operand is a
+/// return value.
+void
+ObjCARCOpt::OptimizeRetainCall(Function &F, Instruction *Retain) {
+ ImmutableCallSite CS(GetObjCArg(Retain));
+ const Instruction *Call = CS.getInstruction();
+ if (!Call) return;
+ if (Call->getParent() != Retain->getParent()) return;
+
+ // Check that the call is next to the retain.
+ BasicBlock::const_iterator I = Call;
+ ++I;
+ while (IsNoopInstruction(I)) ++I;
+ if (&*I != Retain)
+ return;
+
+ // Turn it to an objc_retainAutoreleasedReturnValue..
+ Changed = true;
+ ++NumPeeps;
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeRetainCall: Transforming "
+ "objc_retain => objc_retainAutoreleasedReturnValue"
+ " since the operand is a return value.\n"
+ " Old: "
+ << *Retain << "\n");
+
+ cast<CallInst>(Retain)->setCalledFunction(getRetainRVCallee(F.getParent()));
+
+ DEBUG(dbgs() << " New: "
+ << *Retain << "\n");
+}
+
+/// Turn objc_retainAutoreleasedReturnValue into objc_retain if the operand is
+/// not a return value. Or, if it can be paired with an
+/// objc_autoreleaseReturnValue, delete the pair and return true.
+bool
+ObjCARCOpt::OptimizeRetainRVCall(Function &F, Instruction *RetainRV) {
+ // Check for the argument being from an immediately preceding call or invoke.
+ const Value *Arg = GetObjCArg(RetainRV);
+ ImmutableCallSite CS(Arg);
+ if (const Instruction *Call = CS.getInstruction()) {
+ if (Call->getParent() == RetainRV->getParent()) {
+ BasicBlock::const_iterator I = Call;
+ ++I;
+ while (IsNoopInstruction(I)) ++I;
+ if (&*I == RetainRV)
+ return false;
+ } else if (const InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
+ BasicBlock *RetainRVParent = RetainRV->getParent();
+ if (II->getNormalDest() == RetainRVParent) {
+ BasicBlock::const_iterator I = RetainRVParent->begin();
+ while (IsNoopInstruction(I)) ++I;
+ if (&*I == RetainRV)
+ return false;
+ }
+ }
+ }
+
+ // Check for being preceded by an objc_autoreleaseReturnValue on the same
+ // pointer. In this case, we can delete the pair.
+ BasicBlock::iterator I = RetainRV, Begin = RetainRV->getParent()->begin();
+ if (I != Begin) {
+ do --I; while (I != Begin && IsNoopInstruction(I));
+ if (GetBasicInstructionClass(I) == IC_AutoreleaseRV &&
+ GetObjCArg(I) == Arg) {
+ Changed = true;
+ ++NumPeeps;
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeRetainRVCall: Erasing " << *I << "\n"
+ << " Erasing " << *RetainRV
+ << "\n");
+
+ EraseInstruction(I);
+ EraseInstruction(RetainRV);
+ return true;
+ }
+ }
+
+ // Turn it to a plain objc_retain.
+ Changed = true;
+ ++NumPeeps;
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeRetainRVCall: Transforming "
+ "objc_retainAutoreleasedReturnValue => "
+ "objc_retain since the operand is not a return value.\n"
+ " Old: "
+ << *RetainRV << "\n");
+
+ cast<CallInst>(RetainRV)->setCalledFunction(getRetainCallee(F.getParent()));
+
+ DEBUG(dbgs() << " New: "
+ << *RetainRV << "\n");
+
+ return false;
+}
+
+/// Turn objc_autoreleaseReturnValue into objc_autorelease if the result is not
+/// used as a return value.
+void
+ObjCARCOpt::OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV,
+ InstructionClass &Class) {
+ // Check for a return of the pointer value.
+ const Value *Ptr = GetObjCArg(AutoreleaseRV);
+ SmallVector<const Value *, 2> Users;
+ Users.push_back(Ptr);
+ do {
+ Ptr = Users.pop_back_val();
+ for (Value::const_use_iterator UI = Ptr->use_begin(), UE = Ptr->use_end();
+ UI != UE; ++UI) {
+ const User *I = *UI;
+ if (isa<ReturnInst>(I) || GetBasicInstructionClass(I) == IC_RetainRV)
+ return;
+ if (isa<BitCastInst>(I))
+ Users.push_back(I);
+ }
+ } while (!Users.empty());
+
+ Changed = true;
+ ++NumPeeps;
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeAutoreleaseRVCall: Transforming "
+ "objc_autoreleaseReturnValue => "
+ "objc_autorelease since its operand is not used as a return "
+ "value.\n"
+ " Old: "
+ << *AutoreleaseRV << "\n");
+
+ CallInst *AutoreleaseRVCI = cast<CallInst>(AutoreleaseRV);
+ AutoreleaseRVCI->
+ setCalledFunction(getAutoreleaseCallee(F.getParent()));
+ AutoreleaseRVCI->setTailCall(false); // Never tail call objc_autorelease.
+ Class = IC_Autorelease;
+
+ DEBUG(dbgs() << " New: "
+ << *AutoreleaseRV << "\n");
+
+}
+
+// \brief Attempt to strength reduce objc_retainBlock calls to objc_retain
+// calls.
+//
+// Specifically: If an objc_retainBlock call has the copy_on_escape metadata and
+// does not escape (following the rules of block escaping), strength reduce the
+// objc_retainBlock to an objc_retain.
+//
+// TODO: If an objc_retainBlock call is dominated period by a previous
+// objc_retainBlock call, strength reduce the objc_retainBlock to an
+// objc_retain.
+bool
+ObjCARCOpt::OptimizeRetainBlockCall(Function &F, Instruction *Inst,
+ InstructionClass &Class) {
+ assert(GetBasicInstructionClass(Inst) == Class);
+ assert(IC_RetainBlock == Class);
+
+ // If we can not optimize Inst, return false.
+ if (!IsRetainBlockOptimizable(Inst))
+ return false;
+
+ CallInst *RetainBlock = cast<CallInst>(Inst);
+ RetainBlock->setCalledFunction(getRetainCallee(F.getParent()));
+ // Remove copy_on_escape metadata.
+ RetainBlock->setMetadata(CopyOnEscapeMDKind, 0);
+ Class = IC_Retain;
+
+ return true;
+}
+
+/// Visit each call, one at a time, and make simplifications without doing any
+/// additional analysis.
+void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
+ // Reset all the flags in preparation for recomputing them.
+ UsedInThisFunction = 0;
+
+ // Visit all objc_* calls in F.
+ for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
+ Instruction *Inst = &*I++;
+
+ InstructionClass Class = GetBasicInstructionClass(Inst);
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: Visiting: Class: "
+ << Class << "; " << *Inst << "\n");
+
+ switch (Class) {
+ default: break;
+
+ // Delete no-op casts. These function calls have special semantics, but
+ // the semantics are entirely implemented via lowering in the front-end,
+ // so by the time they reach the optimizer, they are just no-op calls
+ // which return their argument.
+ //
+ // There are gray areas here, as the ability to cast reference-counted
+ // pointers to raw void* and back allows code to break ARC assumptions,
+ // however these are currently considered to be unimportant.
+ case IC_NoopCast:
+ Changed = true;
+ ++NumNoops;
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: Erasing no-op cast:"
+ " " << *Inst << "\n");
+ EraseInstruction(Inst);
+ continue;
+
+ // If the pointer-to-weak-pointer is null, it's undefined behavior.
+ case IC_StoreWeak:
+ case IC_LoadWeak:
+ case IC_LoadWeakRetained:
+ case IC_InitWeak:
+ case IC_DestroyWeak: {
+ CallInst *CI = cast<CallInst>(Inst);
+ if (IsNullOrUndef(CI->getArgOperand(0))) {
+ Changed = true;
+ Type *Ty = CI->getArgOperand(0)->getType();
+ new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
+ Constant::getNullValue(Ty),
+ CI);
+ llvm::Value *NewValue = UndefValue::get(CI->getType());
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: A null "
+ "pointer-to-weak-pointer is undefined behavior.\n"
+ " Old = " << *CI <<
+ "\n New = " <<
+ *NewValue << "\n");
+ CI->replaceAllUsesWith(NewValue);
+ CI->eraseFromParent();
+ continue;
+ }
+ break;
+ }
+ case IC_CopyWeak:
+ case IC_MoveWeak: {
+ CallInst *CI = cast<CallInst>(Inst);
+ if (IsNullOrUndef(CI->getArgOperand(0)) ||
+ IsNullOrUndef(CI->getArgOperand(1))) {
+ Changed = true;
+ Type *Ty = CI->getArgOperand(0)->getType();
+ new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
+ Constant::getNullValue(Ty),
+ CI);
+
+ llvm::Value *NewValue = UndefValue::get(CI->getType());
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: A null "
+ "pointer-to-weak-pointer is undefined behavior.\n"
+ " Old = " << *CI <<
+ "\n New = " <<
+ *NewValue << "\n");
+
+ CI->replaceAllUsesWith(NewValue);
+ CI->eraseFromParent();
+ continue;
+ }
+ break;
+ }
+ case IC_RetainBlock:
+ // If we strength reduce an objc_retainBlock to amn objc_retain, continue
+ // onto the objc_retain peephole optimizations. Otherwise break.
+ if (!OptimizeRetainBlockCall(F, Inst, Class))
+ break;
+ // FALLTHROUGH
+ case IC_Retain:
+ OptimizeRetainCall(F, Inst);
+ break;
+ case IC_RetainRV:
+ if (OptimizeRetainRVCall(F, Inst))
+ continue;
+ break;
+ case IC_AutoreleaseRV:
+ OptimizeAutoreleaseRVCall(F, Inst, Class);
+ break;
+ }
+
+ // objc_autorelease(x) -> objc_release(x) if x is otherwise unused.
+ if (IsAutorelease(Class) && Inst->use_empty()) {
+ CallInst *Call = cast<CallInst>(Inst);
+ const Value *Arg = Call->getArgOperand(0);
+ Arg = FindSingleUseIdentifiedObject(Arg);
+ if (Arg) {
+ Changed = true;
+ ++NumAutoreleases;
+
+ // Create the declaration lazily.
+ LLVMContext &C = Inst->getContext();
+ CallInst *NewCall =
+ CallInst::Create(getReleaseCallee(F.getParent()),
+ Call->getArgOperand(0), "", Call);
+ NewCall->setMetadata(ImpreciseReleaseMDKind,
+ MDNode::get(C, ArrayRef<Value *>()));
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: Replacing "
+ "objc_autorelease(x) with objc_release(x) since x is "
+ "otherwise unused.\n"
+ " Old: " << *Call <<
+ "\n New: " <<
+ *NewCall << "\n");
+
+ EraseInstruction(Call);
+ Inst = NewCall;
+ Class = IC_Release;
+ }
+ }
+
+ // For functions which can never be passed stack arguments, add
+ // a tail keyword.
+ if (IsAlwaysTail(Class)) {
+ Changed = true;
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: Adding tail keyword"
+ " to function since it can never be passed stack args: " << *Inst <<
+ "\n");
+ cast<CallInst>(Inst)->setTailCall();
+ }
+
+ // Ensure that functions that can never have a "tail" keyword due to the
+ // semantics of ARC truly do not do so.
+ if (IsNeverTail(Class)) {
+ Changed = true;
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: Removing tail "
+ "keyword from function: " << *Inst <<
+ "\n");
+ cast<CallInst>(Inst)->setTailCall(false);
+ }
+
+ // Set nounwind as needed.
+ if (IsNoThrow(Class)) {
+ Changed = true;
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: Found no throw"
+ " class. Setting nounwind on: " << *Inst << "\n");
+ cast<CallInst>(Inst)->setDoesNotThrow();
+ }
+
+ if (!IsNoopOnNull(Class)) {
+ UsedInThisFunction |= 1 << Class;
+ continue;
+ }
+
+ const Value *Arg = GetObjCArg(Inst);
+
+ // ARC calls with null are no-ops. Delete them.
+ if (IsNullOrUndef(Arg)) {
+ Changed = true;
+ ++NumNoops;
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: ARC calls with "
+ " null are no-ops. Erasing: " << *Inst << "\n");
+ EraseInstruction(Inst);
+ continue;
+ }
+
+ // Keep track of which of retain, release, autorelease, and retain_block
+ // are actually present in this function.
+ UsedInThisFunction |= 1 << Class;
+
+ // If Arg is a PHI, and one or more incoming values to the
+ // PHI are null, and the call is control-equivalent to the PHI, and there
+ // are no relevant side effects between the PHI and the call, the call
+ // could be pushed up to just those paths with non-null incoming values.
+ // For now, don't bother splitting critical edges for this.
+ SmallVector<std::pair<Instruction *, const Value *>, 4> Worklist;
+ Worklist.push_back(std::make_pair(Inst, Arg));
+ do {
+ std::pair<Instruction *, const Value *> Pair = Worklist.pop_back_val();
+ Inst = Pair.first;
+ Arg = Pair.second;
+
+ const PHINode *PN = dyn_cast<PHINode>(Arg);
+ if (!PN) continue;
+
+ // Determine if the PHI has any null operands, or any incoming
+ // critical edges.
+ bool HasNull = false;
+ bool HasCriticalEdges = false;
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ Value *Incoming =
+ StripPointerCastsAndObjCCalls(PN->getIncomingValue(i));
+ if (IsNullOrUndef(Incoming))
+ HasNull = true;
+ else if (cast<TerminatorInst>(PN->getIncomingBlock(i)->back())
+ .getNumSuccessors() != 1) {
+ HasCriticalEdges = true;
+ break;
+ }
+ }
+ // If we have null operands and no critical edges, optimize.
+ if (!HasCriticalEdges && HasNull) {
+ SmallPtrSet<Instruction *, 4> DependingInstructions;
+ SmallPtrSet<const BasicBlock *, 4> Visited;
+
+ // Check that there is nothing that cares about the reference
+ // count between the call and the phi.
+ switch (Class) {
+ case IC_Retain:
+ case IC_RetainBlock:
+ // These can always be moved up.
+ break;
+ case IC_Release:
+ // These can't be moved across things that care about the retain
+ // count.
+ FindDependencies(NeedsPositiveRetainCount, Arg,
+ Inst->getParent(), Inst,
+ DependingInstructions, Visited, PA);
+ break;
+ case IC_Autorelease:
+ // These can't be moved across autorelease pool scope boundaries.
+ FindDependencies(AutoreleasePoolBoundary, Arg,
+ Inst->getParent(), Inst,
+ DependingInstructions, Visited, PA);
+ break;
+ case IC_RetainRV:
+ case IC_AutoreleaseRV:
+ // Don't move these; the RV optimization depends on the autoreleaseRV
+ // being tail called, and the retainRV being immediately after a call
+ // (which might still happen if we get lucky with codegen layout, but
+ // it's not worth taking the chance).
+ continue;
+ default:
+ llvm_unreachable("Invalid dependence flavor");
+ }
+
+ if (DependingInstructions.size() == 1 &&
+ *DependingInstructions.begin() == PN) {
+ Changed = true;
+ ++NumPartialNoops;
+ // Clone the call into each predecessor that has a non-null value.
+ CallInst *CInst = cast<CallInst>(Inst);
+ Type *ParamTy = CInst->getArgOperand(0)->getType();
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ Value *Incoming =
+ StripPointerCastsAndObjCCalls(PN->getIncomingValue(i));
+ if (!IsNullOrUndef(Incoming)) {
+ CallInst *Clone = cast<CallInst>(CInst->clone());
+ Value *Op = PN->getIncomingValue(i);
+ Instruction *InsertPos = &PN->getIncomingBlock(i)->back();
+ if (Op->getType() != ParamTy)
+ Op = new BitCastInst(Op, ParamTy, "", InsertPos);
+ Clone->setArgOperand(0, Op);
+ Clone->insertBefore(InsertPos);
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: Cloning "
+ << *CInst << "\n"
+ " And inserting "
+ "clone at " << *InsertPos << "\n");
+ Worklist.push_back(std::make_pair(Clone, Incoming));
+ }
+ }
+ // Erase the original call.
+ DEBUG(dbgs() << "Erasing: " << *CInst << "\n");
+ EraseInstruction(CInst);
+ continue;
+ }
+ }
+ } while (!Worklist.empty());
+ }
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: Finished List.\n");
+}
+
+/// Check for critical edges, loop boundaries, irreducible control flow, or
+/// other CFG structures where moving code across the edge would result in it
+/// being executed more.
+void
+ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB,
+ DenseMap<const BasicBlock *, BBState> &BBStates,
+ BBState &MyStates) const {
+ // If any top-down local-use or possible-dec has a succ which is earlier in
+ // the sequence, forget it.
+ for (BBState::ptr_iterator I = MyStates.top_down_ptr_begin(),
+ E = MyStates.top_down_ptr_end(); I != E; ++I)
+ switch (I->second.GetSeq()) {
+ default: break;
+ case S_Use: {
+ const Value *Arg = I->first;
+ const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
+ bool SomeSuccHasSame = false;
+ bool AllSuccsHaveSame = true;
+ PtrState &S = I->second;
+ succ_const_iterator SI(TI), SE(TI, false);
+
+ for (; SI != SE; ++SI) {
+ Sequence SuccSSeq = S_None;
+ bool SuccSRRIKnownSafe = false;
+ // If VisitBottomUp has pointer information for this successor, take
+ // what we know about it.
+ DenseMap<const BasicBlock *, BBState>::iterator BBI =
+ BBStates.find(*SI);
+ assert(BBI != BBStates.end());
+ const PtrState &SuccS = BBI->second.getPtrBottomUpState(Arg);
+ SuccSSeq = SuccS.GetSeq();
+ SuccSRRIKnownSafe = SuccS.RRI.KnownSafe;
+ switch (SuccSSeq) {
+ case S_None:
+ case S_CanRelease: {
+ if (!S.RRI.KnownSafe && !SuccSRRIKnownSafe) {
+ S.ClearSequenceProgress();
+ break;
+ }
+ continue;
+ }
+ case S_Use:
+ SomeSuccHasSame = true;
+ break;
+ case S_Stop:
+ case S_Release:
+ case S_MovableRelease:
+ if (!S.RRI.KnownSafe && !SuccSRRIKnownSafe)
+ AllSuccsHaveSame = false;
+ break;
+ case S_Retain:
+ llvm_unreachable("bottom-up pointer in retain state!");
+ }
+ }
+ // If the state at the other end of any of the successor edges
+ // matches the current state, require all edges to match. This
+ // guards against loops in the middle of a sequence.
+ if (SomeSuccHasSame && !AllSuccsHaveSame)
+ S.ClearSequenceProgress();
+ break;
+ }
+ case S_CanRelease: {
+ const Value *Arg = I->first;
+ const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
+ bool SomeSuccHasSame = false;
+ bool AllSuccsHaveSame = true;
+ PtrState &S = I->second;
+ succ_const_iterator SI(TI), SE(TI, false);
+
+ for (; SI != SE; ++SI) {
+ Sequence SuccSSeq = S_None;
+ bool SuccSRRIKnownSafe = false;
+ // If VisitBottomUp has pointer information for this successor, take
+ // what we know about it.
+ DenseMap<const BasicBlock *, BBState>::iterator BBI =
+ BBStates.find(*SI);
+ assert(BBI != BBStates.end());
+ const PtrState &SuccS = BBI->second.getPtrBottomUpState(Arg);
+ SuccSSeq = SuccS.GetSeq();
+ SuccSRRIKnownSafe = SuccS.RRI.KnownSafe;
+ switch (SuccSSeq) {
+ case S_None: {
+ if (!S.RRI.KnownSafe && !SuccSRRIKnownSafe) {
+ S.ClearSequenceProgress();
+ break;
+ }
+ continue;
+ }
+ case S_CanRelease:
+ SomeSuccHasSame = true;
+ break;
+ case S_Stop:
+ case S_Release:
+ case S_MovableRelease:
+ case S_Use:
+ if (!S.RRI.KnownSafe && !SuccSRRIKnownSafe)
+ AllSuccsHaveSame = false;
+ break;
+ case S_Retain:
+ llvm_unreachable("bottom-up pointer in retain state!");
+ }
+ }
+ // If the state at the other end of any of the successor edges
+ // matches the current state, require all edges to match. This
+ // guards against loops in the middle of a sequence.
+ if (SomeSuccHasSame && !AllSuccsHaveSame)
+ S.ClearSequenceProgress();
+ break;
+ }
+ }
+}
+
+bool
+ObjCARCOpt::VisitInstructionBottomUp(Instruction *Inst,
+ BasicBlock *BB,
+ MapVector<Value *, RRInfo> &Retains,
+ BBState &MyStates) {
+ bool NestingDetected = false;
+ InstructionClass Class = GetInstructionClass(Inst);
+ const Value *Arg = 0;
+
+ switch (Class) {
+ case IC_Release: {
+ Arg = GetObjCArg(Inst);
+
+ PtrState &S = MyStates.getPtrBottomUpState(Arg);
+
+ // If we see two releases in a row on the same pointer. If so, make
+ // a note, and we'll cicle back to revisit it after we've
+ // hopefully eliminated the second release, which may allow us to
+ // eliminate the first release too.
+ // Theoretically we could implement removal of nested retain+release
+ // pairs by making PtrState hold a stack of states, but this is
+ // simple and avoids adding overhead for the non-nested case.
+ if (S.GetSeq() == S_Release || S.GetSeq() == S_MovableRelease) {
+ DEBUG(dbgs() << "ObjCARCOpt::VisitInstructionBottomUp: Found nested "
+ "releases (i.e. a release pair)\n");
+ NestingDetected = true;
+ }
+
+ MDNode *ReleaseMetadata = Inst->getMetadata(ImpreciseReleaseMDKind);
+ Sequence NewSeq = ReleaseMetadata ? S_MovableRelease : S_Release;
+ ANNOTATE_BOTTOMUP(Inst, Arg, S.GetSeq(), NewSeq);
+ S.ResetSequenceProgress(NewSeq);
+ S.RRI.ReleaseMetadata = ReleaseMetadata;
+ S.RRI.KnownSafe = S.HasKnownPositiveRefCount();
+ S.RRI.IsTailCallRelease = cast<CallInst>(Inst)->isTailCall();
+ S.RRI.Calls.insert(Inst);
+ S.SetKnownPositiveRefCount();
+ break;
+ }
+ case IC_RetainBlock:
+ // In OptimizeIndividualCalls, we have strength reduced all optimizable
+ // objc_retainBlocks to objc_retains. Thus at this point any
+ // objc_retainBlocks that we see are not optimizable.
+ break;
+ case IC_Retain:
+ case IC_RetainRV: {
+ Arg = GetObjCArg(Inst);
+
+ PtrState &S = MyStates.getPtrBottomUpState(Arg);
+ S.SetKnownPositiveRefCount();
+
+ Sequence OldSeq = S.GetSeq();
+ switch (OldSeq) {
+ case S_Stop:
+ case S_Release:
+ case S_MovableRelease:
+ case S_Use:
+ S.RRI.ReverseInsertPts.clear();
+ // FALL THROUGH
+ case S_CanRelease:
+ // Don't do retain+release tracking for IC_RetainRV, because it's
+ // better to let it remain as the first instruction after a call.
+ if (Class != IC_RetainRV)
+ Retains[Inst] = S.RRI;
+ S.ClearSequenceProgress();
+ break;
+ case S_None:
+ break;
+ case S_Retain:
+ llvm_unreachable("bottom-up pointer in retain state!");
+ }
+ ANNOTATE_BOTTOMUP(Inst, Arg, OldSeq, S.GetSeq());
+ return NestingDetected;
+ }
+ case IC_AutoreleasepoolPop:
+ // Conservatively, clear MyStates for all known pointers.
+ MyStates.clearBottomUpPointers();
+ return NestingDetected;
+ case IC_AutoreleasepoolPush:
+ case IC_None:
+ // These are irrelevant.
+ return NestingDetected;
+ default:
+ break;
+ }
+
+ // Consider any other possible effects of this instruction on each
+ // pointer being tracked.
+ for (BBState::ptr_iterator MI = MyStates.bottom_up_ptr_begin(),
+ ME = MyStates.bottom_up_ptr_end(); MI != ME; ++MI) {
+ const Value *Ptr = MI->first;
+ if (Ptr == Arg)
+ continue; // Handled above.
+ PtrState &S = MI->second;
+ Sequence Seq = S.GetSeq();
+
+ // Check for possible releases.
+ if (CanAlterRefCount(Inst, Ptr, PA, Class)) {
+ S.ClearKnownPositiveRefCount();
+ switch (Seq) {
+ case S_Use:
+ S.SetSeq(S_CanRelease);
+ ANNOTATE_BOTTOMUP(Inst, Ptr, Seq, S.GetSeq());
+ continue;
+ case S_CanRelease:
+ case S_Release:
+ case S_MovableRelease:
+ case S_Stop:
+ case S_None:
+ break;
+ case S_Retain:
+ llvm_unreachable("bottom-up pointer in retain state!");
+ }
+ }
+
+ // Check for possible direct uses.
+ switch (Seq) {
+ case S_Release:
+ case S_MovableRelease:
+ if (CanUse(Inst, Ptr, PA, Class)) {
+ assert(S.RRI.ReverseInsertPts.empty());
+ // If this is an invoke instruction, we're scanning it as part of
+ // one of its successor blocks, since we can't insert code after it
+ // in its own block, and we don't want to split critical edges.
+ if (isa<InvokeInst>(Inst))
+ S.RRI.ReverseInsertPts.insert(BB->getFirstInsertionPt());
+ else
+ S.RRI.ReverseInsertPts.insert(llvm::next(BasicBlock::iterator(Inst)));
+ S.SetSeq(S_Use);
+ ANNOTATE_BOTTOMUP(Inst, Ptr, Seq, S_Use);
+ } else if (Seq == S_Release && IsUser(Class)) {
+ // Non-movable releases depend on any possible objc pointer use.
+ S.SetSeq(S_Stop);
+ ANNOTATE_BOTTOMUP(Inst, Ptr, S_Release, S_Stop);
+ assert(S.RRI.ReverseInsertPts.empty());
+ // As above; handle invoke specially.
+ if (isa<InvokeInst>(Inst))
+ S.RRI.ReverseInsertPts.insert(BB->getFirstInsertionPt());
+ else
+ S.RRI.ReverseInsertPts.insert(llvm::next(BasicBlock::iterator(Inst)));
+ }
+ break;
+ case S_Stop:
+ if (CanUse(Inst, Ptr, PA, Class)) {
+ S.SetSeq(S_Use);
+ ANNOTATE_BOTTOMUP(Inst, Ptr, Seq, S_Use);
+ }
+ break;
+ case S_CanRelease:
+ case S_Use:
+ case S_None:
+ break;
+ case S_Retain:
+ llvm_unreachable("bottom-up pointer in retain state!");
+ }
+ }
+
+ return NestingDetected;
+}
+
+bool
+ObjCARCOpt::VisitBottomUp(BasicBlock *BB,
+ DenseMap<const BasicBlock *, BBState> &BBStates,
+ MapVector<Value *, RRInfo> &Retains) {
+ bool NestingDetected = false;
+ BBState &MyStates = BBStates[BB];
+
+ // Merge the states from each successor to compute the initial state
+ // for the current block.
+ BBState::edge_iterator SI(MyStates.succ_begin()),
+ SE(MyStates.succ_end());
+ if (SI != SE) {
+ const BasicBlock *Succ = *SI;
+ DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Succ);
+ assert(I != BBStates.end());
+ MyStates.InitFromSucc(I->second);
+ ++SI;
+ for (; SI != SE; ++SI) {
+ Succ = *SI;
+ I = BBStates.find(Succ);
+ assert(I != BBStates.end());
+ MyStates.MergeSucc(I->second);
+ }
+ }
+
+ // If ARC Annotations are enabled, output the current state of pointers at the
+ // bottom of the basic block.
+ ANNOTATE_BOTTOMUP_BBEND(MyStates, BB);
+
+ // Visit all the instructions, bottom-up.
+ for (BasicBlock::iterator I = BB->end(), E = BB->begin(); I != E; --I) {
+ Instruction *Inst = llvm::prior(I);
+
+ // Invoke instructions are visited as part of their successors (below).
+ if (isa<InvokeInst>(Inst))
+ continue;
+
+ DEBUG(dbgs() << "ObjCARCOpt::VisitButtonUp: Visiting " << *Inst << "\n");
+
+ NestingDetected |= VisitInstructionBottomUp(Inst, BB, Retains, MyStates);
+ }
+
+ // If there's a predecessor with an invoke, visit the invoke as if it were
+ // part of this block, since we can't insert code after an invoke in its own
+ // block, and we don't want to split critical edges.
+ for (BBState::edge_iterator PI(MyStates.pred_begin()),
+ PE(MyStates.pred_end()); PI != PE; ++PI) {
+ BasicBlock *Pred = *PI;
+ if (InvokeInst *II = dyn_cast<InvokeInst>(&Pred->back()))
+ NestingDetected |= VisitInstructionBottomUp(II, BB, Retains, MyStates);
+ }
+
+ // If ARC Annotations are enabled, output the current state of pointers at the
+ // top of the basic block.
+ ANNOTATE_BOTTOMUP_BBSTART(MyStates, BB);
+
+ return NestingDetected;
+}
+
+bool
+ObjCARCOpt::VisitInstructionTopDown(Instruction *Inst,
+ DenseMap<Value *, RRInfo> &Releases,
+ BBState &MyStates) {
+ bool NestingDetected = false;
+ InstructionClass Class = GetInstructionClass(Inst);
+ const Value *Arg = 0;
+
+ switch (Class) {
+ case IC_RetainBlock:
+ // In OptimizeIndividualCalls, we have strength reduced all optimizable
+ // objc_retainBlocks to objc_retains. Thus at this point any
+ // objc_retainBlocks that we see are not optimizable.
+ break;
+ case IC_Retain:
+ case IC_RetainRV: {
+ Arg = GetObjCArg(Inst);
+
+ PtrState &S = MyStates.getPtrTopDownState(Arg);
+
+ // Don't do retain+release tracking for IC_RetainRV, because it's
+ // better to let it remain as the first instruction after a call.
+ if (Class != IC_RetainRV) {
+ // If we see two retains in a row on the same pointer. If so, make
+ // a note, and we'll cicle back to revisit it after we've
+ // hopefully eliminated the second retain, which may allow us to
+ // eliminate the first retain too.
+ // Theoretically we could implement removal of nested retain+release
+ // pairs by making PtrState hold a stack of states, but this is
+ // simple and avoids adding overhead for the non-nested case.
+ if (S.GetSeq() == S_Retain)
+ NestingDetected = true;
+
+ ANNOTATE_TOPDOWN(Inst, Arg, S.GetSeq(), S_Retain);
+ S.ResetSequenceProgress(S_Retain);
+ S.RRI.KnownSafe = S.HasKnownPositiveRefCount();
+ S.RRI.Calls.insert(Inst);
+ }
+
+ S.SetKnownPositiveRefCount();
+
+ // A retain can be a potential use; procede to the generic checking
+ // code below.
+ break;
+ }
+ case IC_Release: {
+ Arg = GetObjCArg(Inst);
+
+ PtrState &S = MyStates.getPtrTopDownState(Arg);
+ S.ClearKnownPositiveRefCount();
+
+ switch (S.GetSeq()) {
+ case S_Retain:
+ case S_CanRelease:
+ S.RRI.ReverseInsertPts.clear();
+ // FALL THROUGH
+ case S_Use:
+ S.RRI.ReleaseMetadata = Inst->getMetadata(ImpreciseReleaseMDKind);
+ S.RRI.IsTailCallRelease = cast<CallInst>(Inst)->isTailCall();
+ Releases[Inst] = S.RRI;
+ ANNOTATE_TOPDOWN(Inst, Arg, S.GetSeq(), S_None);
+ S.ClearSequenceProgress();
+ break;
+ case S_None:
+ break;
+ case S_Stop:
+ case S_Release:
+ case S_MovableRelease:
+ llvm_unreachable("top-down pointer in release state!");
+ }
+ break;
+ }
+ case IC_AutoreleasepoolPop:
+ // Conservatively, clear MyStates for all known pointers.
+ MyStates.clearTopDownPointers();
+ return NestingDetected;
+ case IC_AutoreleasepoolPush:
+ case IC_None:
+ // These are irrelevant.
+ return NestingDetected;
+ default:
+ break;
+ }
+
+ // Consider any other possible effects of this instruction on each
+ // pointer being tracked.
+ for (BBState::ptr_iterator MI = MyStates.top_down_ptr_begin(),
+ ME = MyStates.top_down_ptr_end(); MI != ME; ++MI) {
+ const Value *Ptr = MI->first;
+ if (Ptr == Arg)
+ continue; // Handled above.
+ PtrState &S = MI->second;
+ Sequence Seq = S.GetSeq();
+
+ // Check for possible releases.
+ if (CanAlterRefCount(Inst, Ptr, PA, Class)) {
+ S.ClearKnownPositiveRefCount();
+ switch (Seq) {
+ case S_Retain:
+ S.SetSeq(S_CanRelease);
+ ANNOTATE_TOPDOWN(Inst, Ptr, Seq, S_CanRelease);
+ assert(S.RRI.ReverseInsertPts.empty());
+ S.RRI.ReverseInsertPts.insert(Inst);
+
+ // One call can't cause a transition from S_Retain to S_CanRelease
+ // and S_CanRelease to S_Use. If we've made the first transition,
+ // we're done.
+ continue;
+ case S_Use:
+ case S_CanRelease:
+ case S_None:
+ break;
+ case S_Stop:
+ case S_Release:
+ case S_MovableRelease:
+ llvm_unreachable("top-down pointer in release state!");
+ }
+ }
+
+ // Check for possible direct uses.
+ switch (Seq) {
+ case S_CanRelease:
+ if (CanUse(Inst, Ptr, PA, Class)) {
+ S.SetSeq(S_Use);
+ ANNOTATE_TOPDOWN(Inst, Ptr, Seq, S_Use);
+ }
+ break;
+ case S_Retain:
+ case S_Use:
+ case S_None:
+ break;
+ case S_Stop:
+ case S_Release:
+ case S_MovableRelease:
+ llvm_unreachable("top-down pointer in release state!");
+ }
+ }
+
+ return NestingDetected;
+}
+
+bool
+ObjCARCOpt::VisitTopDown(BasicBlock *BB,
+ DenseMap<const BasicBlock *, BBState> &BBStates,
+ DenseMap<Value *, RRInfo> &Releases) {
+ bool NestingDetected = false;
+ BBState &MyStates = BBStates[BB];
+
+ // Merge the states from each predecessor to compute the initial state
+ // for the current block.
+ BBState::edge_iterator PI(MyStates.pred_begin()),
+ PE(MyStates.pred_end());
+ if (PI != PE) {
+ const BasicBlock *Pred = *PI;
+ DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Pred);
+ assert(I != BBStates.end());
+ MyStates.InitFromPred(I->second);
+ ++PI;
+ for (; PI != PE; ++PI) {
+ Pred = *PI;
+ I = BBStates.find(Pred);
+ assert(I != BBStates.end());
+ MyStates.MergePred(I->second);
+ }
+ }
+
+ // If ARC Annotations are enabled, output the current state of pointers at the
+ // top of the basic block.
+ ANNOTATE_TOPDOWN_BBSTART(MyStates, BB);
+
+ // Visit all the instructions, top-down.
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
+ Instruction *Inst = I;
+
+ DEBUG(dbgs() << "ObjCARCOpt::VisitTopDown: Visiting " << *Inst << "\n");
+
+ NestingDetected |= VisitInstructionTopDown(Inst, Releases, MyStates);
+ }
+
+ // If ARC Annotations are enabled, output the current state of pointers at the
+ // bottom of the basic block.
+ ANNOTATE_TOPDOWN_BBEND(MyStates, BB);
+
+ CheckForCFGHazards(BB, BBStates, MyStates);
+ return NestingDetected;
+}
+
+static void
+ComputePostOrders(Function &F,
+ SmallVectorImpl<BasicBlock *> &PostOrder,
+ SmallVectorImpl<BasicBlock *> &ReverseCFGPostOrder,
+ unsigned NoObjCARCExceptionsMDKind,
+ DenseMap<const BasicBlock *, BBState> &BBStates) {
+ /// The visited set, for doing DFS walks.
+ SmallPtrSet<BasicBlock *, 16> Visited;
+
+ // Do DFS, computing the PostOrder.
+ SmallPtrSet<BasicBlock *, 16> OnStack;
+ SmallVector<std::pair<BasicBlock *, succ_iterator>, 16> SuccStack;
+
+ // Functions always have exactly one entry block, and we don't have
+ // any other block that we treat like an entry block.
+ BasicBlock *EntryBB = &F.getEntryBlock();
+ BBState &MyStates = BBStates[EntryBB];
+ MyStates.SetAsEntry();
+ TerminatorInst *EntryTI = cast<TerminatorInst>(&EntryBB->back());
+ SuccStack.push_back(std::make_pair(EntryBB, succ_iterator(EntryTI)));
+ Visited.insert(EntryBB);
+ OnStack.insert(EntryBB);
+ do {
+ dfs_next_succ:
+ BasicBlock *CurrBB = SuccStack.back().first;
+ TerminatorInst *TI = cast<TerminatorInst>(&CurrBB->back());
+ succ_iterator SE(TI, false);
+
+ while (SuccStack.back().second != SE) {
+ BasicBlock *SuccBB = *SuccStack.back().second++;
+ if (Visited.insert(SuccBB)) {
+ TerminatorInst *TI = cast<TerminatorInst>(&SuccBB->back());
+ SuccStack.push_back(std::make_pair(SuccBB, succ_iterator(TI)));
+ BBStates[CurrBB].addSucc(SuccBB);
+ BBState &SuccStates = BBStates[SuccBB];
+ SuccStates.addPred(CurrBB);
+ OnStack.insert(SuccBB);
+ goto dfs_next_succ;
+ }
+
+ if (!OnStack.count(SuccBB)) {
+ BBStates[CurrBB].addSucc(SuccBB);
+ BBStates[SuccBB].addPred(CurrBB);
+ }
+ }
+ OnStack.erase(CurrBB);
+ PostOrder.push_back(CurrBB);
+ SuccStack.pop_back();
+ } while (!SuccStack.empty());
+
+ Visited.clear();
+
+ // Do reverse-CFG DFS, computing the reverse-CFG PostOrder.
+ // Functions may have many exits, and there also blocks which we treat
+ // as exits due to ignored edges.
+ SmallVector<std::pair<BasicBlock *, BBState::edge_iterator>, 16> PredStack;
+ for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
+ BasicBlock *ExitBB = I;
+ BBState &MyStates = BBStates[ExitBB];
+ if (!MyStates.isExit())
+ continue;
+
+ MyStates.SetAsExit();
+
+ PredStack.push_back(std::make_pair(ExitBB, MyStates.pred_begin()));
+ Visited.insert(ExitBB);
+ while (!PredStack.empty()) {
+ reverse_dfs_next_succ:
+ BBState::edge_iterator PE = BBStates[PredStack.back().first].pred_end();
+ while (PredStack.back().second != PE) {
+ BasicBlock *BB = *PredStack.back().second++;
+ if (Visited.insert(BB)) {
+ PredStack.push_back(std::make_pair(BB, BBStates[BB].pred_begin()));
+ goto reverse_dfs_next_succ;
+ }
+ }
+ ReverseCFGPostOrder.push_back(PredStack.pop_back_val().first);
+ }
+ }
+}
+
+// Visit the function both top-down and bottom-up.
+bool
+ObjCARCOpt::Visit(Function &F,
+ DenseMap<const BasicBlock *, BBState> &BBStates,
+ MapVector<Value *, RRInfo> &Retains,
+ DenseMap<Value *, RRInfo> &Releases) {
+
+ // Use reverse-postorder traversals, because we magically know that loops
+ // will be well behaved, i.e. they won't repeatedly call retain on a single
+ // pointer without doing a release. We can't use the ReversePostOrderTraversal
+ // class here because we want the reverse-CFG postorder to consider each
+ // function exit point, and we want to ignore selected cycle edges.
+ SmallVector<BasicBlock *, 16> PostOrder;
+ SmallVector<BasicBlock *, 16> ReverseCFGPostOrder;
+ ComputePostOrders(F, PostOrder, ReverseCFGPostOrder,
+ NoObjCARCExceptionsMDKind,
+ BBStates);
+
+ // Use reverse-postorder on the reverse CFG for bottom-up.
+ bool BottomUpNestingDetected = false;
+ for (SmallVectorImpl<BasicBlock *>::const_reverse_iterator I =
+ ReverseCFGPostOrder.rbegin(), E = ReverseCFGPostOrder.rend();
+ I != E; ++I)
+ BottomUpNestingDetected |= VisitBottomUp(*I, BBStates, Retains);
+
+ // Use reverse-postorder for top-down.
+ bool TopDownNestingDetected = false;
+ for (SmallVectorImpl<BasicBlock *>::const_reverse_iterator I =
+ PostOrder.rbegin(), E = PostOrder.rend();
+ I != E; ++I)
+ TopDownNestingDetected |= VisitTopDown(*I, BBStates, Releases);
+
+ return TopDownNestingDetected && BottomUpNestingDetected;
+}
+
+/// Move the calls in RetainsToMove and ReleasesToMove.
+void ObjCARCOpt::MoveCalls(Value *Arg,
+ RRInfo &RetainsToMove,
+ RRInfo &ReleasesToMove,
+ MapVector<Value *, RRInfo> &Retains,
+ DenseMap<Value *, RRInfo> &Releases,
+ SmallVectorImpl<Instruction *> &DeadInsts,
+ Module *M) {
+ Type *ArgTy = Arg->getType();
+ Type *ParamTy = PointerType::getUnqual(Type::getInt8Ty(ArgTy->getContext()));
+
+ // Insert the new retain and release calls.
+ for (SmallPtrSet<Instruction *, 2>::const_iterator
+ PI = ReleasesToMove.ReverseInsertPts.begin(),
+ PE = ReleasesToMove.ReverseInsertPts.end(); PI != PE; ++PI) {
+ Instruction *InsertPt = *PI;
+ Value *MyArg = ArgTy == ParamTy ? Arg :
+ new BitCastInst(Arg, ParamTy, "", InsertPt);
+ CallInst *Call =
+ CallInst::Create(getRetainCallee(M), MyArg, "", InsertPt);
+ Call->setDoesNotThrow();
+ Call->setTailCall();
+
+ DEBUG(dbgs() << "ObjCARCOpt::MoveCalls: Inserting new Release: " << *Call
+ << "\n"
+ " At insertion point: " << *InsertPt
+ << "\n");
+ }
+ for (SmallPtrSet<Instruction *, 2>::const_iterator
+ PI = RetainsToMove.ReverseInsertPts.begin(),
+ PE = RetainsToMove.ReverseInsertPts.end(); PI != PE; ++PI) {
+ Instruction *InsertPt = *PI;
+ Value *MyArg = ArgTy == ParamTy ? Arg :
+ new BitCastInst(Arg, ParamTy, "", InsertPt);
+ CallInst *Call = CallInst::Create(getReleaseCallee(M), MyArg,
+ "", InsertPt);
+ // Attach a clang.imprecise_release metadata tag, if appropriate.
+ if (MDNode *M = ReleasesToMove.ReleaseMetadata)
+ Call->setMetadata(ImpreciseReleaseMDKind, M);
+ Call->setDoesNotThrow();
+ if (ReleasesToMove.IsTailCallRelease)
+ Call->setTailCall();
+
+ DEBUG(dbgs() << "ObjCARCOpt::MoveCalls: Inserting new Retain: " << *Call
+ << "\n"
+ " At insertion point: " << *InsertPt
+ << "\n");
+ }
+
+ // Delete the original retain and release calls.
+ for (SmallPtrSet<Instruction *, 2>::const_iterator
+ AI = RetainsToMove.Calls.begin(),
+ AE = RetainsToMove.Calls.end(); AI != AE; ++AI) {
+ Instruction *OrigRetain = *AI;
+ Retains.blot(OrigRetain);
+ DeadInsts.push_back(OrigRetain);
+ DEBUG(dbgs() << "ObjCARCOpt::MoveCalls: Deleting retain: " << *OrigRetain <<
+ "\n");
+ }
+ for (SmallPtrSet<Instruction *, 2>::const_iterator
+ AI = ReleasesToMove.Calls.begin(),
+ AE = ReleasesToMove.Calls.end(); AI != AE; ++AI) {
+ Instruction *OrigRelease = *AI;
+ Releases.erase(OrigRelease);
+ DeadInsts.push_back(OrigRelease);
+ DEBUG(dbgs() << "ObjCARCOpt::MoveCalls: Deleting release: " << *OrigRelease
+ << "\n");
+ }
+}
+
+bool
+ObjCARCOpt::ConnectTDBUTraversals(DenseMap<const BasicBlock *, BBState>
+ &BBStates,
+ MapVector<Value *, RRInfo> &Retains,
+ DenseMap<Value *, RRInfo> &Releases,
+ Module *M,
+ SmallVector<Instruction *, 4> &NewRetains,
+ SmallVector<Instruction *, 4> &NewReleases,
+ SmallVector<Instruction *, 8> &DeadInsts,
+ RRInfo &RetainsToMove,
+ RRInfo &ReleasesToMove,
+ Value *Arg,
+ bool KnownSafe,
+ bool &AnyPairsCompletelyEliminated) {
+ // If a pair happens in a region where it is known that the reference count
+ // is already incremented, we can similarly ignore possible decrements.
+ bool KnownSafeTD = true, KnownSafeBU = true;
+
+ // Connect the dots between the top-down-collected RetainsToMove and
+ // bottom-up-collected ReleasesToMove to form sets of related calls.
+ // This is an iterative process so that we connect multiple releases
+ // to multiple retains if needed.
+ unsigned OldDelta = 0;
+ unsigned NewDelta = 0;
+ unsigned OldCount = 0;
+ unsigned NewCount = 0;
+ bool FirstRelease = true;
+ for (;;) {
+ for (SmallVectorImpl<Instruction *>::const_iterator
+ NI = NewRetains.begin(), NE = NewRetains.end(); NI != NE; ++NI) {
+ Instruction *NewRetain = *NI;
+ MapVector<Value *, RRInfo>::const_iterator It = Retains.find(NewRetain);
+ assert(It != Retains.end());
+ const RRInfo &NewRetainRRI = It->second;
+ KnownSafeTD &= NewRetainRRI.KnownSafe;
+ for (SmallPtrSet<Instruction *, 2>::const_iterator
+ LI = NewRetainRRI.Calls.begin(),
+ LE = NewRetainRRI.Calls.end(); LI != LE; ++LI) {
+ Instruction *NewRetainRelease = *LI;
+ DenseMap<Value *, RRInfo>::const_iterator Jt =
+ Releases.find(NewRetainRelease);
+ if (Jt == Releases.end())
+ return false;
+ const RRInfo &NewRetainReleaseRRI = Jt->second;
+ assert(NewRetainReleaseRRI.Calls.count(NewRetain));
+ if (ReleasesToMove.Calls.insert(NewRetainRelease)) {
+ OldDelta -=
+ BBStates[NewRetainRelease->getParent()].GetAllPathCount();
+
+ // Merge the ReleaseMetadata and IsTailCallRelease values.
+ if (FirstRelease) {
+ ReleasesToMove.ReleaseMetadata =
+ NewRetainReleaseRRI.ReleaseMetadata;
+ ReleasesToMove.IsTailCallRelease =
+ NewRetainReleaseRRI.IsTailCallRelease;
+ FirstRelease = false;
+ } else {
+ if (ReleasesToMove.ReleaseMetadata !=
+ NewRetainReleaseRRI.ReleaseMetadata)
+ ReleasesToMove.ReleaseMetadata = 0;
+ if (ReleasesToMove.IsTailCallRelease !=
+ NewRetainReleaseRRI.IsTailCallRelease)
+ ReleasesToMove.IsTailCallRelease = false;
+ }
+
+ // Collect the optimal insertion points.
+ if (!KnownSafe)
+ for (SmallPtrSet<Instruction *, 2>::const_iterator
+ RI = NewRetainReleaseRRI.ReverseInsertPts.begin(),
+ RE = NewRetainReleaseRRI.ReverseInsertPts.end();
+ RI != RE; ++RI) {
+ Instruction *RIP = *RI;
+ if (ReleasesToMove.ReverseInsertPts.insert(RIP))
+ NewDelta -= BBStates[RIP->getParent()].GetAllPathCount();
+ }
+ NewReleases.push_back(NewRetainRelease);
+ }
+ }
+ }
+ NewRetains.clear();
+ if (NewReleases.empty()) break;
+
+ // Back the other way.
+ for (SmallVectorImpl<Instruction *>::const_iterator
+ NI = NewReleases.begin(), NE = NewReleases.end(); NI != NE; ++NI) {
+ Instruction *NewRelease = *NI;
+ DenseMap<Value *, RRInfo>::const_iterator It =
+ Releases.find(NewRelease);
+ assert(It != Releases.end());
+ const RRInfo &NewReleaseRRI = It->second;
+ KnownSafeBU &= NewReleaseRRI.KnownSafe;
+ for (SmallPtrSet<Instruction *, 2>::const_iterator
+ LI = NewReleaseRRI.Calls.begin(),
+ LE = NewReleaseRRI.Calls.end(); LI != LE; ++LI) {
+ Instruction *NewReleaseRetain = *LI;
+ MapVector<Value *, RRInfo>::const_iterator Jt =
+ Retains.find(NewReleaseRetain);
+ if (Jt == Retains.end())
+ return false;
+ const RRInfo &NewReleaseRetainRRI = Jt->second;
+ assert(NewReleaseRetainRRI.Calls.count(NewRelease));
+ if (RetainsToMove.Calls.insert(NewReleaseRetain)) {
+ unsigned PathCount =
+ BBStates[NewReleaseRetain->getParent()].GetAllPathCount();
+ OldDelta += PathCount;
+ OldCount += PathCount;
+
+ // Collect the optimal insertion points.
+ if (!KnownSafe)
+ for (SmallPtrSet<Instruction *, 2>::const_iterator
+ RI = NewReleaseRetainRRI.ReverseInsertPts.begin(),
+ RE = NewReleaseRetainRRI.ReverseInsertPts.end();
+ RI != RE; ++RI) {
+ Instruction *RIP = *RI;
+ if (RetainsToMove.ReverseInsertPts.insert(RIP)) {
+ PathCount = BBStates[RIP->getParent()].GetAllPathCount();
+ NewDelta += PathCount;
+ NewCount += PathCount;
+ }
+ }
+ NewRetains.push_back(NewReleaseRetain);
+ }
+ }
+ }
+ NewReleases.clear();
+ if (NewRetains.empty()) break;
+ }
+
+ // If the pointer is known incremented or nested, we can safely delete the
+ // pair regardless of what's between them.
+ if (KnownSafeTD || KnownSafeBU) {
+ RetainsToMove.ReverseInsertPts.clear();
+ ReleasesToMove.ReverseInsertPts.clear();
+ NewCount = 0;
+ } else {
+ // Determine whether the new insertion points we computed preserve the
+ // balance of retain and release calls through the program.
+ // TODO: If the fully aggressive solution isn't valid, try to find a
+ // less aggressive solution which is.
+ if (NewDelta != 0)
+ return false;
+ }
+
+ // Determine whether the original call points are balanced in the retain and
+ // release calls through the program. If not, conservatively don't touch
+ // them.
+ // TODO: It's theoretically possible to do code motion in this case, as
+ // long as the existing imbalances are maintained.
+ if (OldDelta != 0)
+ return false;
+
+ Changed = true;
+ assert(OldCount != 0 && "Unreachable code?");
+ NumRRs += OldCount - NewCount;
+ // Set to true if we completely removed any RR pairs.
+ AnyPairsCompletelyEliminated = NewCount == 0;
+
+ // We can move calls!
+ return true;
+}
+
+/// Identify pairings between the retains and releases, and delete and/or move
+/// them.
+bool
+ObjCARCOpt::PerformCodePlacement(DenseMap<const BasicBlock *, BBState>
+ &BBStates,
+ MapVector<Value *, RRInfo> &Retains,
+ DenseMap<Value *, RRInfo> &Releases,
+ Module *M) {
+ bool AnyPairsCompletelyEliminated = false;
+ RRInfo RetainsToMove;
+ RRInfo ReleasesToMove;
+ SmallVector<Instruction *, 4> NewRetains;
+ SmallVector<Instruction *, 4> NewReleases;
+ SmallVector<Instruction *, 8> DeadInsts;
+
+ // Visit each retain.
+ for (MapVector<Value *, RRInfo>::const_iterator I = Retains.begin(),
+ E = Retains.end(); I != E; ++I) {
+ Value *V = I->first;
+ if (!V) continue; // blotted
+
+ Instruction *Retain = cast<Instruction>(V);
+
+ DEBUG(dbgs() << "ObjCARCOpt::PerformCodePlacement: Visiting: " << *Retain
+ << "\n");
+
+ Value *Arg = GetObjCArg(Retain);
+
+ // If the object being released is in static or stack storage, we know it's
+ // not being managed by ObjC reference counting, so we can delete pairs
+ // regardless of what possible decrements or uses lie between them.
+ bool KnownSafe = isa<Constant>(Arg) || isa<AllocaInst>(Arg);
+
+ // A constant pointer can't be pointing to an object on the heap. It may
+ // be reference-counted, but it won't be deleted.
+ if (const LoadInst *LI = dyn_cast<LoadInst>(Arg))
+ if (const GlobalVariable *GV =
+ dyn_cast<GlobalVariable>(
+ StripPointerCastsAndObjCCalls(LI->getPointerOperand())))
+ if (GV->isConstant())
+ KnownSafe = true;
+
+ // Connect the dots between the top-down-collected RetainsToMove and
+ // bottom-up-collected ReleasesToMove to form sets of related calls.
+ NewRetains.push_back(Retain);
+ bool PerformMoveCalls =
+ ConnectTDBUTraversals(BBStates, Retains, Releases, M, NewRetains,
+ NewReleases, DeadInsts, RetainsToMove,
+ ReleasesToMove, Arg, KnownSafe,
+ AnyPairsCompletelyEliminated);
+
+#ifdef ARC_ANNOTATIONS
+ // Do not move calls if ARC annotations are requested. If we were to move
+ // calls in this case, we would not be able
+ PerformMoveCalls = PerformMoveCalls && !EnableARCAnnotations;
+#endif // ARC_ANNOTATIONS
+
+ if (PerformMoveCalls) {
+ // Ok, everything checks out and we're all set. Let's move/delete some
+ // code!
+ MoveCalls(Arg, RetainsToMove, ReleasesToMove,
+ Retains, Releases, DeadInsts, M);
+ }
+
+ // Clean up state for next retain.
+ NewReleases.clear();
+ NewRetains.clear();
+ RetainsToMove.clear();
+ ReleasesToMove.clear();
+ }
+
+ // Now that we're done moving everything, we can delete the newly dead
+ // instructions, as we no longer need them as insert points.
+ while (!DeadInsts.empty())
+ EraseInstruction(DeadInsts.pop_back_val());
+
+ return AnyPairsCompletelyEliminated;
+}
+
+/// Weak pointer optimizations.
+void ObjCARCOpt::OptimizeWeakCalls(Function &F) {
+ // First, do memdep-style RLE and S2L optimizations. We can't use memdep
+ // itself because it uses AliasAnalysis and we need to do provenance
+ // queries instead.
+ for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
+ Instruction *Inst = &*I++;
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeWeakCalls: Visiting: " << *Inst <<
+ "\n");
+
+ InstructionClass Class = GetBasicInstructionClass(Inst);
+ if (Class != IC_LoadWeak && Class != IC_LoadWeakRetained)
+ continue;
+
+ // Delete objc_loadWeak calls with no users.
+ if (Class == IC_LoadWeak && Inst->use_empty()) {
+ Inst->eraseFromParent();
+ continue;
+ }
+
+ // TODO: For now, just look for an earlier available version of this value
+ // within the same block. Theoretically, we could do memdep-style non-local
+ // analysis too, but that would want caching. A better approach would be to
+ // use the technique that EarlyCSE uses.
+ inst_iterator Current = llvm::prior(I);
+ BasicBlock *CurrentBB = Current.getBasicBlockIterator();
+ for (BasicBlock::iterator B = CurrentBB->begin(),
+ J = Current.getInstructionIterator();
+ J != B; --J) {
+ Instruction *EarlierInst = &*llvm::prior(J);
+ InstructionClass EarlierClass = GetInstructionClass(EarlierInst);
+ switch (EarlierClass) {
+ case IC_LoadWeak:
+ case IC_LoadWeakRetained: {
+ // If this is loading from the same pointer, replace this load's value
+ // with that one.
+ CallInst *Call = cast<CallInst>(Inst);
+ CallInst *EarlierCall = cast<CallInst>(EarlierInst);
+ Value *Arg = Call->getArgOperand(0);
+ Value *EarlierArg = EarlierCall->getArgOperand(0);
+ switch (PA.getAA()->alias(Arg, EarlierArg)) {
+ case AliasAnalysis::MustAlias:
+ Changed = true;
+ // If the load has a builtin retain, insert a plain retain for it.
+ if (Class == IC_LoadWeakRetained) {
+ CallInst *CI =
+ CallInst::Create(getRetainCallee(F.getParent()), EarlierCall,
+ "", Call);
+ CI->setTailCall();
+ }
+ // Zap the fully redundant load.
+ Call->replaceAllUsesWith(EarlierCall);
+ Call->eraseFromParent();
+ goto clobbered;
+ case AliasAnalysis::MayAlias:
+ case AliasAnalysis::PartialAlias:
+ goto clobbered;
+ case AliasAnalysis::NoAlias:
+ break;
+ }
+ break;
+ }
+ case IC_StoreWeak:
+ case IC_InitWeak: {
+ // If this is storing to the same pointer and has the same size etc.
+ // replace this load's value with the stored value.
+ CallInst *Call = cast<CallInst>(Inst);
+ CallInst *EarlierCall = cast<CallInst>(EarlierInst);
+ Value *Arg = Call->getArgOperand(0);
+ Value *EarlierArg = EarlierCall->getArgOperand(0);
+ switch (PA.getAA()->alias(Arg, EarlierArg)) {
+ case AliasAnalysis::MustAlias:
+ Changed = true;
+ // If the load has a builtin retain, insert a plain retain for it.
+ if (Class == IC_LoadWeakRetained) {
+ CallInst *CI =
+ CallInst::Create(getRetainCallee(F.getParent()), EarlierCall,
+ "", Call);
+ CI->setTailCall();
+ }
+ // Zap the fully redundant load.
+ Call->replaceAllUsesWith(EarlierCall->getArgOperand(1));
+ Call->eraseFromParent();
+ goto clobbered;
+ case AliasAnalysis::MayAlias:
+ case AliasAnalysis::PartialAlias:
+ goto clobbered;
+ case AliasAnalysis::NoAlias:
+ break;
+ }
+ break;
+ }
+ case IC_MoveWeak:
+ case IC_CopyWeak:
+ // TOOD: Grab the copied value.
+ goto clobbered;
+ case IC_AutoreleasepoolPush:
+ case IC_None:
+ case IC_IntrinsicUser:
+ case IC_User:
+ // Weak pointers are only modified through the weak entry points
+ // (and arbitrary calls, which could call the weak entry points).
+ break;
+ default:
+ // Anything else could modify the weak pointer.
+ goto clobbered;
+ }
+ }
+ clobbered:;
+ }
+
+ // Then, for each destroyWeak with an alloca operand, check to see if
+ // the alloca and all its users can be zapped.
+ for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
+ Instruction *Inst = &*I++;
+ InstructionClass Class = GetBasicInstructionClass(Inst);
+ if (Class != IC_DestroyWeak)
+ continue;
+
+ CallInst *Call = cast<CallInst>(Inst);
+ Value *Arg = Call->getArgOperand(0);
+ if (AllocaInst *Alloca = dyn_cast<AllocaInst>(Arg)) {
+ for (Value::use_iterator UI = Alloca->use_begin(),
+ UE = Alloca->use_end(); UI != UE; ++UI) {
+ const Instruction *UserInst = cast<Instruction>(*UI);
+ switch (GetBasicInstructionClass(UserInst)) {
+ case IC_InitWeak:
+ case IC_StoreWeak:
+ case IC_DestroyWeak:
+ continue;
+ default:
+ goto done;
+ }
+ }
+ Changed = true;
+ for (Value::use_iterator UI = Alloca->use_begin(),
+ UE = Alloca->use_end(); UI != UE; ) {
+ CallInst *UserInst = cast<CallInst>(*UI++);
+ switch (GetBasicInstructionClass(UserInst)) {
+ case IC_InitWeak:
+ case IC_StoreWeak:
+ // These functions return their second argument.
+ UserInst->replaceAllUsesWith(UserInst->getArgOperand(1));
+ break;
+ case IC_DestroyWeak:
+ // No return value.
+ break;
+ default:
+ llvm_unreachable("alloca really is used!");
+ }
+ UserInst->eraseFromParent();
+ }
+ Alloca->eraseFromParent();
+ done:;
+ }
+ }
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeWeakCalls: Finished List.\n\n");
+
+}
+
+/// Identify program paths which execute sequences of retains and releases which
+/// can be eliminated.
+bool ObjCARCOpt::OptimizeSequences(Function &F) {
+ /// Releases, Retains - These are used to store the results of the main flow
+ /// analysis. These use Value* as the key instead of Instruction* so that the
+ /// map stays valid when we get around to rewriting code and calls get
+ /// replaced by arguments.
+ DenseMap<Value *, RRInfo> Releases;
+ MapVector<Value *, RRInfo> Retains;
+
+ /// This is used during the traversal of the function to track the
+ /// states for each identified object at each block.
+ DenseMap<const BasicBlock *, BBState> BBStates;
+
+ // Analyze the CFG of the function, and all instructions.
+ bool NestingDetected = Visit(F, BBStates, Retains, Releases);
+
+ // Transform.
+ return PerformCodePlacement(BBStates, Retains, Releases, F.getParent()) &&
+ NestingDetected;
+}
+
+/// Check if there is a dependent call earlier that does not have anything in
+/// between the Retain and the call that can affect the reference count of their
+/// shared pointer argument. Note that Retain need not be in BB.
+static bool
+HasSafePathToPredecessorCall(const Value *Arg, Instruction *Retain,
+ SmallPtrSet<Instruction *, 4> &DepInsts,
+ SmallPtrSet<const BasicBlock *, 4> &Visited,
+ ProvenanceAnalysis &PA) {
+ FindDependencies(CanChangeRetainCount, Arg, Retain->getParent(), Retain,
+ DepInsts, Visited, PA);
+ if (DepInsts.size() != 1)
+ return false;
+
+ CallInst *Call =
+ dyn_cast_or_null<CallInst>(*DepInsts.begin());
+
+ // Check that the pointer is the return value of the call.
+ if (!Call || Arg != Call)
+ return false;
+
+ // Check that the call is a regular call.
+ InstructionClass Class = GetBasicInstructionClass(Call);
+ if (Class != IC_CallOrUser && Class != IC_Call)
+ return false;
+
+ return true;
+}
+
+/// Find a dependent retain that precedes the given autorelease for which there
+/// is nothing in between the two instructions that can affect the ref count of
+/// Arg.
+static CallInst *
+FindPredecessorRetainWithSafePath(const Value *Arg, BasicBlock *BB,
+ Instruction *Autorelease,
+ SmallPtrSet<Instruction *, 4> &DepInsts,
+ SmallPtrSet<const BasicBlock *, 4> &Visited,
+ ProvenanceAnalysis &PA) {
+ FindDependencies(CanChangeRetainCount, Arg,
+ BB, Autorelease, DepInsts, Visited, PA);
+ if (DepInsts.size() != 1)
+ return 0;
+
+ CallInst *Retain =
+ dyn_cast_or_null<CallInst>(*DepInsts.begin());
+
+ // Check that we found a retain with the same argument.
+ if (!Retain ||
+ !IsRetain(GetBasicInstructionClass(Retain)) ||
+ GetObjCArg(Retain) != Arg) {
+ return 0;
+ }
+
+ return Retain;
+}
+
+/// Look for an ``autorelease'' instruction dependent on Arg such that there are
+/// no instructions dependent on Arg that need a positive ref count in between
+/// the autorelease and the ret.
+static CallInst *
+FindPredecessorAutoreleaseWithSafePath(const Value *Arg, BasicBlock *BB,
+ ReturnInst *Ret,
+ SmallPtrSet<Instruction *, 4> &DepInsts,
+ SmallPtrSet<const BasicBlock *, 4> &V,
+ ProvenanceAnalysis &PA) {
+ FindDependencies(NeedsPositiveRetainCount, Arg,
+ BB, Ret, DepInsts, V, PA);
+ if (DepInsts.size() != 1)
+ return 0;
+
+ CallInst *Autorelease =
+ dyn_cast_or_null<CallInst>(*DepInsts.begin());
+ if (!Autorelease)
+ return 0;
+ InstructionClass AutoreleaseClass = GetBasicInstructionClass(Autorelease);
+ if (!IsAutorelease(AutoreleaseClass))
+ return 0;
+ if (GetObjCArg(Autorelease) != Arg)
+ return 0;
+
+ return Autorelease;
+}
+
+/// Look for this pattern:
+/// \code
+/// %call = call i8* @something(...)
+/// %2 = call i8* @objc_retain(i8* %call)
+/// %3 = call i8* @objc_autorelease(i8* %2)
+/// ret i8* %3
+/// \endcode
+/// And delete the retain and autorelease.
+void ObjCARCOpt::OptimizeReturns(Function &F) {
+ if (!F.getReturnType()->isPointerTy())
+ return;
+
+ SmallPtrSet<Instruction *, 4> DependingInstructions;
+ SmallPtrSet<const BasicBlock *, 4> Visited;
+ for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
+ BasicBlock *BB = FI;
+ ReturnInst *Ret = dyn_cast<ReturnInst>(&BB->back());
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeReturns: Visiting: " << *Ret << "\n");
+
+ if (!Ret)
+ continue;
+
+ const Value *Arg = StripPointerCastsAndObjCCalls(Ret->getOperand(0));
+
+ // Look for an ``autorelease'' instruction that is a predecssor of Ret and
+ // dependent on Arg such that there are no instructions dependent on Arg
+ // that need a positive ref count in between the autorelease and Ret.
+ CallInst *Autorelease =
+ FindPredecessorAutoreleaseWithSafePath(Arg, BB, Ret,
+ DependingInstructions, Visited,
+ PA);
+ if (Autorelease) {
+ DependingInstructions.clear();
+ Visited.clear();
+
+ CallInst *Retain =
+ FindPredecessorRetainWithSafePath(Arg, BB, Autorelease,
+ DependingInstructions, Visited, PA);
+ if (Retain) {
+ DependingInstructions.clear();
+ Visited.clear();
+
+ // Check that there is nothing that can affect the reference count
+ // between the retain and the call. Note that Retain need not be in BB.
+ if (HasSafePathToPredecessorCall(Arg, Retain, DependingInstructions,
+ Visited, PA)) {
+ // If so, we can zap the retain and autorelease.
+ Changed = true;
+ ++NumRets;
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeReturns: Erasing: " << *Retain
+ << "\n Erasing: "
+ << *Autorelease << "\n");
+ EraseInstruction(Retain);
+ EraseInstruction(Autorelease);
+ }
+ }
+ }
+
+ DependingInstructions.clear();
+ Visited.clear();
+ }
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeReturns: Finished List.\n\n");
+
+}
+
+bool ObjCARCOpt::doInitialization(Module &M) {
+ if (!EnableARCOpts)
+ return false;
+
+ // If nothing in the Module uses ARC, don't do anything.
+ Run = ModuleHasARC(M);
+ if (!Run)
+ return false;
+
+ // Identify the imprecise release metadata kind.
+ ImpreciseReleaseMDKind =
+ M.getContext().getMDKindID("clang.imprecise_release");
+ CopyOnEscapeMDKind =
+ M.getContext().getMDKindID("clang.arc.copy_on_escape");
+ NoObjCARCExceptionsMDKind =
+ M.getContext().getMDKindID("clang.arc.no_objc_arc_exceptions");
+#ifdef ARC_ANNOTATIONS
+ ARCAnnotationBottomUpMDKind =
+ M.getContext().getMDKindID("llvm.arc.annotation.bottomup");
+ ARCAnnotationTopDownMDKind =
+ M.getContext().getMDKindID("llvm.arc.annotation.topdown");
+ ARCAnnotationProvenanceSourceMDKind =
+ M.getContext().getMDKindID("llvm.arc.annotation.provenancesource");
+#endif // ARC_ANNOTATIONS
+
+ // Intuitively, objc_retain and others are nocapture, however in practice
+ // they are not, because they return their argument value. And objc_release
+ // calls finalizers which can have arbitrary side effects.
+
+ // These are initialized lazily.
+ RetainRVCallee = 0;
+ AutoreleaseRVCallee = 0;
+ ReleaseCallee = 0;
+ RetainCallee = 0;
+ RetainBlockCallee = 0;
+ AutoreleaseCallee = 0;
+
+ return false;
+}
+
+bool ObjCARCOpt::runOnFunction(Function &F) {
+ if (!EnableARCOpts)
+ return false;
+
+ // If nothing in the Module uses ARC, don't do anything.
+ if (!Run)
+ return false;
+
+ Changed = false;
+
+ DEBUG(dbgs() << "ObjCARCOpt: Visiting Function: " << F.getName() << "\n");
+
+ PA.setAA(&getAnalysis<AliasAnalysis>());
+
+ // This pass performs several distinct transformations. As a compile-time aid
+ // when compiling code that isn't ObjC, skip these if the relevant ObjC
+ // library functions aren't declared.
+
+ // Preliminary optimizations. This also computs UsedInThisFunction.
+ OptimizeIndividualCalls(F);
+
+ // Optimizations for weak pointers.
+ if (UsedInThisFunction & ((1 << IC_LoadWeak) |
+ (1 << IC_LoadWeakRetained) |
+ (1 << IC_StoreWeak) |
+ (1 << IC_InitWeak) |
+ (1 << IC_CopyWeak) |
+ (1 << IC_MoveWeak) |
+ (1 << IC_DestroyWeak)))
+ OptimizeWeakCalls(F);
+
+ // Optimizations for retain+release pairs.
+ if (UsedInThisFunction & ((1 << IC_Retain) |
+ (1 << IC_RetainRV) |
+ (1 << IC_RetainBlock)))
+ if (UsedInThisFunction & (1 << IC_Release))
+ // Run OptimizeSequences until it either stops making changes or
+ // no retain+release pair nesting is detected.
+ while (OptimizeSequences(F)) {}
+
+ // Optimizations if objc_autorelease is used.
+ if (UsedInThisFunction & ((1 << IC_Autorelease) |
+ (1 << IC_AutoreleaseRV)))
+ OptimizeReturns(F);
+
+ DEBUG(dbgs() << "\n");
+
+ return Changed;
+}
+
+void ObjCARCOpt::releaseMemory() {
+ PA.clear();
+}
+
+/// @}
+///
diff --git a/contrib/llvm/lib/Transforms/ObjCARC/ObjCARCUtil.cpp b/contrib/llvm/lib/Transforms/ObjCARC/ObjCARCUtil.cpp
new file mode 100644
index 0000000..03e12d4
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/ObjCARC/ObjCARCUtil.cpp
@@ -0,0 +1,252 @@
+//===- ObjCARCUtil.cpp - ObjC ARC Optimization --------*- mode: c++ -*-----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file defines several utility functions used by various ARC
+/// optimizations which are IMHO too big to be in a header file.
+///
+/// WARNING: This file knows about certain library functions. It recognizes them
+/// by name, and hardwires knowledge of their semantics.
+///
+/// WARNING: This file knows about how certain Objective-C library functions are
+/// used. Naive LLVM IR transformations which would otherwise be
+/// behavior-preserving may break these assumptions.
+///
+//===----------------------------------------------------------------------===//
+
+#include "ObjCARC.h"
+#include "llvm/IR/Intrinsics.h"
+
+using namespace llvm;
+using namespace llvm::objcarc;
+
+raw_ostream &llvm::objcarc::operator<<(raw_ostream &OS,
+ const InstructionClass Class) {
+ switch (Class) {
+ case IC_Retain:
+ return OS << "IC_Retain";
+ case IC_RetainRV:
+ return OS << "IC_RetainRV";
+ case IC_RetainBlock:
+ return OS << "IC_RetainBlock";
+ case IC_Release:
+ return OS << "IC_Release";
+ case IC_Autorelease:
+ return OS << "IC_Autorelease";
+ case IC_AutoreleaseRV:
+ return OS << "IC_AutoreleaseRV";
+ case IC_AutoreleasepoolPush:
+ return OS << "IC_AutoreleasepoolPush";
+ case IC_AutoreleasepoolPop:
+ return OS << "IC_AutoreleasepoolPop";
+ case IC_NoopCast:
+ return OS << "IC_NoopCast";
+ case IC_FusedRetainAutorelease:
+ return OS << "IC_FusedRetainAutorelease";
+ case IC_FusedRetainAutoreleaseRV:
+ return OS << "IC_FusedRetainAutoreleaseRV";
+ case IC_LoadWeakRetained:
+ return OS << "IC_LoadWeakRetained";
+ case IC_StoreWeak:
+ return OS << "IC_StoreWeak";
+ case IC_InitWeak:
+ return OS << "IC_InitWeak";
+ case IC_LoadWeak:
+ return OS << "IC_LoadWeak";
+ case IC_MoveWeak:
+ return OS << "IC_MoveWeak";
+ case IC_CopyWeak:
+ return OS << "IC_CopyWeak";
+ case IC_DestroyWeak:
+ return OS << "IC_DestroyWeak";
+ case IC_StoreStrong:
+ return OS << "IC_StoreStrong";
+ case IC_CallOrUser:
+ return OS << "IC_CallOrUser";
+ case IC_Call:
+ return OS << "IC_Call";
+ case IC_User:
+ return OS << "IC_User";
+ case IC_IntrinsicUser:
+ return OS << "IC_IntrinsicUser";
+ case IC_None:
+ return OS << "IC_None";
+ }
+ llvm_unreachable("Unknown instruction class!");
+}
+
+InstructionClass llvm::objcarc::GetFunctionClass(const Function *F) {
+ Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
+
+ // No (mandatory) arguments.
+ if (AI == AE)
+ return StringSwitch<InstructionClass>(F->getName())
+ .Case("objc_autoreleasePoolPush", IC_AutoreleasepoolPush)
+ .Case("clang.arc.use", IC_IntrinsicUser)
+ .Default(IC_CallOrUser);
+
+ // One argument.
+ const Argument *A0 = AI++;
+ if (AI == AE)
+ // Argument is a pointer.
+ if (PointerType *PTy = dyn_cast<PointerType>(A0->getType())) {
+ Type *ETy = PTy->getElementType();
+ // Argument is i8*.
+ if (ETy->isIntegerTy(8))
+ return StringSwitch<InstructionClass>(F->getName())
+ .Case("objc_retain", IC_Retain)
+ .Case("objc_retainAutoreleasedReturnValue", IC_RetainRV)
+ .Case("objc_retainBlock", IC_RetainBlock)
+ .Case("objc_release", IC_Release)
+ .Case("objc_autorelease", IC_Autorelease)
+ .Case("objc_autoreleaseReturnValue", IC_AutoreleaseRV)
+ .Case("objc_autoreleasePoolPop", IC_AutoreleasepoolPop)
+ .Case("objc_retainedObject", IC_NoopCast)
+ .Case("objc_unretainedObject", IC_NoopCast)
+ .Case("objc_unretainedPointer", IC_NoopCast)
+ .Case("objc_retain_autorelease", IC_FusedRetainAutorelease)
+ .Case("objc_retainAutorelease", IC_FusedRetainAutorelease)
+ .Case("objc_retainAutoreleaseReturnValue",IC_FusedRetainAutoreleaseRV)
+ .Default(IC_CallOrUser);
+
+ // Argument is i8**
+ if (PointerType *Pte = dyn_cast<PointerType>(ETy))
+ if (Pte->getElementType()->isIntegerTy(8))
+ return StringSwitch<InstructionClass>(F->getName())
+ .Case("objc_loadWeakRetained", IC_LoadWeakRetained)
+ .Case("objc_loadWeak", IC_LoadWeak)
+ .Case("objc_destroyWeak", IC_DestroyWeak)
+ .Default(IC_CallOrUser);
+ }
+
+ // Two arguments, first is i8**.
+ const Argument *A1 = AI++;
+ if (AI == AE)
+ if (PointerType *PTy = dyn_cast<PointerType>(A0->getType()))
+ if (PointerType *Pte = dyn_cast<PointerType>(PTy->getElementType()))
+ if (Pte->getElementType()->isIntegerTy(8))
+ if (PointerType *PTy1 = dyn_cast<PointerType>(A1->getType())) {
+ Type *ETy1 = PTy1->getElementType();
+ // Second argument is i8*
+ if (ETy1->isIntegerTy(8))
+ return StringSwitch<InstructionClass>(F->getName())
+ .Case("objc_storeWeak", IC_StoreWeak)
+ .Case("objc_initWeak", IC_InitWeak)
+ .Case("objc_storeStrong", IC_StoreStrong)
+ .Default(IC_CallOrUser);
+ // Second argument is i8**.
+ if (PointerType *Pte1 = dyn_cast<PointerType>(ETy1))
+ if (Pte1->getElementType()->isIntegerTy(8))
+ return StringSwitch<InstructionClass>(F->getName())
+ .Case("objc_moveWeak", IC_MoveWeak)
+ .Case("objc_copyWeak", IC_CopyWeak)
+ // Ignore annotation calls. This is important to stop the
+ // optimizer from treating annotations as uses which would
+ // make the state of the pointers they are attempting to
+ // elucidate to be incorrect.
+ .Case("llvm.arc.annotation.topdown.bbstart", IC_None)
+ .Case("llvm.arc.annotation.topdown.bbend", IC_None)
+ .Case("llvm.arc.annotation.bottomup.bbstart", IC_None)
+ .Case("llvm.arc.annotation.bottomup.bbend", IC_None)
+ .Default(IC_CallOrUser);
+ }
+
+ // Anything else.
+ return IC_CallOrUser;
+}
+
+/// \brief Determine what kind of construct V is.
+InstructionClass
+llvm::objcarc::GetInstructionClass(const Value *V) {
+ if (const Instruction *I = dyn_cast<Instruction>(V)) {
+ // Any instruction other than bitcast and gep with a pointer operand have a
+ // use of an objc pointer. Bitcasts, GEPs, Selects, PHIs transfer a pointer
+ // to a subsequent use, rather than using it themselves, in this sense.
+ // As a short cut, several other opcodes are known to have no pointer
+ // operands of interest. And ret is never followed by a release, so it's
+ // not interesting to examine.
+ switch (I->getOpcode()) {
+ case Instruction::Call: {
+ const CallInst *CI = cast<CallInst>(I);
+ // Check for calls to special functions.
+ if (const Function *F = CI->getCalledFunction()) {
+ InstructionClass Class = GetFunctionClass(F);
+ if (Class != IC_CallOrUser)
+ return Class;
+
+ // None of the intrinsic functions do objc_release. For intrinsics, the
+ // only question is whether or not they may be users.
+ switch (F->getIntrinsicID()) {
+ case Intrinsic::returnaddress: case Intrinsic::frameaddress:
+ case Intrinsic::stacksave: case Intrinsic::stackrestore:
+ case Intrinsic::vastart: case Intrinsic::vacopy: case Intrinsic::vaend:
+ case Intrinsic::objectsize: case Intrinsic::prefetch:
+ case Intrinsic::stackprotector:
+ case Intrinsic::eh_return_i32: case Intrinsic::eh_return_i64:
+ case Intrinsic::eh_typeid_for: case Intrinsic::eh_dwarf_cfa:
+ case Intrinsic::eh_sjlj_lsda: case Intrinsic::eh_sjlj_functioncontext:
+ case Intrinsic::init_trampoline: case Intrinsic::adjust_trampoline:
+ case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
+ case Intrinsic::invariant_start: case Intrinsic::invariant_end:
+ // Don't let dbg info affect our results.
+ case Intrinsic::dbg_declare: case Intrinsic::dbg_value:
+ // Short cut: Some intrinsics obviously don't use ObjC pointers.
+ return IC_None;
+ default:
+ break;
+ }
+ }
+ return GetCallSiteClass(CI);
+ }
+ case Instruction::Invoke:
+ return GetCallSiteClass(cast<InvokeInst>(I));
+ case Instruction::BitCast:
+ case Instruction::GetElementPtr:
+ case Instruction::Select: case Instruction::PHI:
+ case Instruction::Ret: case Instruction::Br:
+ case Instruction::Switch: case Instruction::IndirectBr:
+ case Instruction::Alloca: case Instruction::VAArg:
+ case Instruction::Add: case Instruction::FAdd:
+ case Instruction::Sub: case Instruction::FSub:
+ case Instruction::Mul: case Instruction::FMul:
+ case Instruction::SDiv: case Instruction::UDiv: case Instruction::FDiv:
+ case Instruction::SRem: case Instruction::URem: case Instruction::FRem:
+ case Instruction::Shl: case Instruction::LShr: case Instruction::AShr:
+ case Instruction::And: case Instruction::Or: case Instruction::Xor:
+ case Instruction::SExt: case Instruction::ZExt: case Instruction::Trunc:
+ case Instruction::IntToPtr: case Instruction::FCmp:
+ case Instruction::FPTrunc: case Instruction::FPExt:
+ case Instruction::FPToUI: case Instruction::FPToSI:
+ case Instruction::UIToFP: case Instruction::SIToFP:
+ case Instruction::InsertElement: case Instruction::ExtractElement:
+ case Instruction::ShuffleVector:
+ case Instruction::ExtractValue:
+ break;
+ case Instruction::ICmp:
+ // Comparing a pointer with null, or any other constant, isn't an
+ // interesting use, because we don't care what the pointer points to, or
+ // about the values of any other dynamic reference-counted pointers.
+ if (IsPotentialRetainableObjPtr(I->getOperand(1)))
+ return IC_User;
+ break;
+ default:
+ // For anything else, check all the operands.
+ // Note that this includes both operands of a Store: while the first
+ // operand isn't actually being dereferenced, it is being stored to
+ // memory where we can no longer track who might read it and dereference
+ // it, so we have to consider it potentially used.
+ for (User::const_op_iterator OI = I->op_begin(), OE = I->op_end();
+ OI != OE; ++OI)
+ if (IsPotentialRetainableObjPtr(*OI))
+ return IC_User;
+ }
+ }
+
+ // Otherwise, it's totally inert for ARC purposes.
+ return IC_None;
+}
diff --git a/contrib/llvm/lib/Transforms/ObjCARC/ProvenanceAnalysis.cpp b/contrib/llvm/lib/Transforms/ObjCARC/ProvenanceAnalysis.cpp
new file mode 100644
index 0000000..ae3c628
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/ObjCARC/ProvenanceAnalysis.cpp
@@ -0,0 +1,177 @@
+//===- ProvenanceAnalysis.cpp - ObjC ARC Optimization ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+///
+/// This file defines a special form of Alias Analysis called ``Provenance
+/// Analysis''. The word ``provenance'' refers to the history of the ownership
+/// of an object. Thus ``Provenance Analysis'' is an analysis which attempts to
+/// use various techniques to determine if locally
+///
+/// WARNING: This file knows about certain library functions. It recognizes them
+/// by name, and hardwires knowledge of their semantics.
+///
+/// WARNING: This file knows about how certain Objective-C library functions are
+/// used. Naive LLVM IR transformations which would otherwise be
+/// behavior-preserving may break these assumptions.
+///
+//===----------------------------------------------------------------------===//
+
+#include "ObjCARC.h"
+#include "ProvenanceAnalysis.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+
+using namespace llvm;
+using namespace llvm::objcarc;
+
+bool ProvenanceAnalysis::relatedSelect(const SelectInst *A,
+ const Value *B) {
+ // If the values are Selects with the same condition, we can do a more precise
+ // check: just check for relations between the values on corresponding arms.
+ if (const SelectInst *SB = dyn_cast<SelectInst>(B))
+ if (A->getCondition() == SB->getCondition())
+ return related(A->getTrueValue(), SB->getTrueValue()) ||
+ related(A->getFalseValue(), SB->getFalseValue());
+
+ // Check both arms of the Select node individually.
+ return related(A->getTrueValue(), B) ||
+ related(A->getFalseValue(), B);
+}
+
+bool ProvenanceAnalysis::relatedPHI(const PHINode *A,
+ const Value *B) {
+ // If the values are PHIs in the same block, we can do a more precise as well
+ // as efficient check: just check for relations between the values on
+ // corresponding edges.
+ if (const PHINode *PNB = dyn_cast<PHINode>(B))
+ if (PNB->getParent() == A->getParent()) {
+ for (unsigned i = 0, e = A->getNumIncomingValues(); i != e; ++i)
+ if (related(A->getIncomingValue(i),
+ PNB->getIncomingValueForBlock(A->getIncomingBlock(i))))
+ return true;
+ return false;
+ }
+
+ // Check each unique source of the PHI node against B.
+ SmallPtrSet<const Value *, 4> UniqueSrc;
+ for (unsigned i = 0, e = A->getNumIncomingValues(); i != e; ++i) {
+ const Value *PV1 = A->getIncomingValue(i);
+ if (UniqueSrc.insert(PV1) && related(PV1, B))
+ return true;
+ }
+
+ // All of the arms checked out.
+ return false;
+}
+
+/// Test if the value of P, or any value covered by its provenance, is ever
+/// stored within the function (not counting callees).
+static bool IsStoredObjCPointer(const Value *P) {
+ SmallPtrSet<const Value *, 8> Visited;
+ SmallVector<const Value *, 8> Worklist;
+ Worklist.push_back(P);
+ Visited.insert(P);
+ do {
+ P = Worklist.pop_back_val();
+ for (Value::const_use_iterator UI = P->use_begin(), UE = P->use_end();
+ UI != UE; ++UI) {
+ const User *Ur = *UI;
+ if (isa<StoreInst>(Ur)) {
+ if (UI.getOperandNo() == 0)
+ // The pointer is stored.
+ return true;
+ // The pointed is stored through.
+ continue;
+ }
+ if (isa<CallInst>(Ur))
+ // The pointer is passed as an argument, ignore this.
+ continue;
+ if (isa<PtrToIntInst>(P))
+ // Assume the worst.
+ return true;
+ if (Visited.insert(Ur))
+ Worklist.push_back(Ur);
+ }
+ } while (!Worklist.empty());
+
+ // Everything checked out.
+ return false;
+}
+
+bool ProvenanceAnalysis::relatedCheck(const Value *A,
+ const Value *B) {
+ // Skip past provenance pass-throughs.
+ A = GetUnderlyingObjCPtr(A);
+ B = GetUnderlyingObjCPtr(B);
+
+ // Quick check.
+ if (A == B)
+ return true;
+
+ // Ask regular AliasAnalysis, for a first approximation.
+ switch (AA->alias(A, B)) {
+ case AliasAnalysis::NoAlias:
+ return false;
+ case AliasAnalysis::MustAlias:
+ case AliasAnalysis::PartialAlias:
+ return true;
+ case AliasAnalysis::MayAlias:
+ break;
+ }
+
+ bool AIsIdentified = IsObjCIdentifiedObject(A);
+ bool BIsIdentified = IsObjCIdentifiedObject(B);
+
+ // An ObjC-Identified object can't alias a load if it is never locally stored.
+ if (AIsIdentified) {
+ // Check for an obvious escape.
+ if (isa<LoadInst>(B))
+ return IsStoredObjCPointer(A);
+ if (BIsIdentified) {
+ // Check for an obvious escape.
+ if (isa<LoadInst>(A))
+ return IsStoredObjCPointer(B);
+ // Both pointers are identified and escapes aren't an evident problem.
+ return false;
+ }
+ } else if (BIsIdentified) {
+ // Check for an obvious escape.
+ if (isa<LoadInst>(A))
+ return IsStoredObjCPointer(B);
+ }
+
+ // Special handling for PHI and Select.
+ if (const PHINode *PN = dyn_cast<PHINode>(A))
+ return relatedPHI(PN, B);
+ if (const PHINode *PN = dyn_cast<PHINode>(B))
+ return relatedPHI(PN, A);
+ if (const SelectInst *S = dyn_cast<SelectInst>(A))
+ return relatedSelect(S, B);
+ if (const SelectInst *S = dyn_cast<SelectInst>(B))
+ return relatedSelect(S, A);
+
+ // Conservative.
+ return true;
+}
+
+bool ProvenanceAnalysis::related(const Value *A,
+ const Value *B) {
+ // Begin by inserting a conservative value into the map. If the insertion
+ // fails, we have the answer already. If it succeeds, leave it there until we
+ // compute the real answer to guard against recursive queries.
+ if (A > B) std::swap(A, B);
+ std::pair<CachedResultsTy::iterator, bool> Pair =
+ CachedResults.insert(std::make_pair(ValuePairTy(A, B), true));
+ if (!Pair.second)
+ return Pair.first->second;
+
+ bool Result = relatedCheck(A, B);
+ CachedResults[ValuePairTy(A, B)] = Result;
+ return Result;
+}
diff --git a/contrib/llvm/lib/Transforms/ObjCARC/ProvenanceAnalysis.h b/contrib/llvm/lib/Transforms/ObjCARC/ProvenanceAnalysis.h
new file mode 100644
index 0000000..ec449fd8e
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/ObjCARC/ProvenanceAnalysis.h
@@ -0,0 +1,80 @@
+//===- ProvenanceAnalysis.h - ObjC ARC Optimization ---*- mode: c++ -*-----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+///
+/// This file declares a special form of Alias Analysis called ``Provenance
+/// Analysis''. The word ``provenance'' refers to the history of the ownership
+/// of an object. Thus ``Provenance Analysis'' is an analysis which attempts to
+/// use various techniques to determine if locally
+///
+/// WARNING: This file knows about certain library functions. It recognizes them
+/// by name, and hardwires knowledge of their semantics.
+///
+/// WARNING: This file knows about how certain Objective-C library functions are
+/// used. Naive LLVM IR transformations which would otherwise be
+/// behavior-preserving may break these assumptions.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TRANSFORMS_OBJCARC_PROVENANCEANALYSIS_H
+#define LLVM_TRANSFORMS_OBJCARC_PROVENANCEANALYSIS_H
+
+#include "llvm/ADT/DenseMap.h"
+
+namespace llvm {
+ class Value;
+ class AliasAnalysis;
+ class PHINode;
+ class SelectInst;
+}
+
+namespace llvm {
+namespace objcarc {
+
+/// \brief This is similar to BasicAliasAnalysis, and it uses many of the same
+/// techniques, except it uses special ObjC-specific reasoning about pointer
+/// relationships.
+///
+/// In this context ``Provenance'' is defined as the history of an object's
+/// ownership. Thus ``Provenance Analysis'' is defined by using the notion of
+/// an ``independent provenance source'' of a pointer to determine whether or
+/// not two pointers have the same provenance source and thus could
+/// potentially be related.
+class ProvenanceAnalysis {
+ AliasAnalysis *AA;
+
+ typedef std::pair<const Value *, const Value *> ValuePairTy;
+ typedef DenseMap<ValuePairTy, bool> CachedResultsTy;
+ CachedResultsTy CachedResults;
+
+ bool relatedCheck(const Value *A, const Value *B);
+ bool relatedSelect(const SelectInst *A, const Value *B);
+ bool relatedPHI(const PHINode *A, const Value *B);
+
+ void operator=(const ProvenanceAnalysis &) LLVM_DELETED_FUNCTION;
+ ProvenanceAnalysis(const ProvenanceAnalysis &) LLVM_DELETED_FUNCTION;
+
+public:
+ ProvenanceAnalysis() {}
+
+ void setAA(AliasAnalysis *aa) { AA = aa; }
+
+ AliasAnalysis *getAA() const { return AA; }
+
+ bool related(const Value *A, const Value *B);
+
+ void clear() {
+ CachedResults.clear();
+ }
+};
+
+} // end namespace objcarc
+} // end namespace llvm
+
+#endif // LLVM_TRANSFORMS_OBJCARC_PROVENANCEANALYSIS_H
diff --git a/contrib/llvm/lib/Transforms/Scalar/ADCE.cpp b/contrib/llvm/lib/Transforms/Scalar/ADCE.cpp
index b344952..a097308 100644
--- a/contrib/llvm/lib/Transforms/Scalar/ADCE.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/ADCE.cpp
@@ -16,16 +16,16 @@
#define DEBUG_TYPE "adce"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/BasicBlock.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/CFG.h"
-#include "llvm/Support/InstIterator.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Support/InstIterator.h"
using namespace llvm;
STATISTIC(NumRemoved, "Number of instructions removed");
diff --git a/contrib/llvm/lib/Transforms/Scalar/BasicBlockPlacement.cpp b/contrib/llvm/lib/Transforms/Scalar/BasicBlockPlacement.cpp
index cee5502..e755008 100644
--- a/contrib/llvm/lib/Transforms/Scalar/BasicBlockPlacement.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/BasicBlockPlacement.cpp
@@ -27,12 +27,12 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "block-placement"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ProfileInfo.h"
-#include "llvm/Function.h"
+#include "llvm/IR/Function.h"
#include "llvm/Pass.h"
#include "llvm/Support/CFG.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Transforms/Scalar.h"
#include <set>
using namespace llvm;
diff --git a/contrib/llvm/lib/Transforms/Scalar/CodeGenPrepare.cpp b/contrib/llvm/lib/Transforms/Scalar/CodeGenPrepare.cpp
index 123ed0f..015fd2e 100644
--- a/contrib/llvm/lib/Transforms/Scalar/CodeGenPrepare.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/CodeGenPrepare.cpp
@@ -15,22 +15,23 @@
#define DEBUG_TYPE "codegenprepare"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/InlineAsm.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Pass.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/DominatorInternals.h"
+#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/ProfileInfo.h"
#include "llvm/Assembly/Writer.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/Pass.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
@@ -38,10 +39,8 @@
#include "llvm/Support/PatternMatch.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/DataLayout.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Target/TargetLowering.h"
-#include "llvm/Transforms/Utils/AddrModeMatcher.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/BuildLibCalls.h"
#include "llvm/Transforms/Utils/BypassSlowDivision.h"
@@ -106,6 +105,8 @@ namespace {
}
bool runOnFunction(Function &F);
+ const char *getPassName() const { return "CodeGen Prepare"; }
+
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addPreserved<DominatorTree>();
AU.addPreserved<ProfileInfo>();
@@ -125,7 +126,7 @@ namespace {
bool MoveExtToFormExtLoad(Instruction *I);
bool OptimizeExtUses(Instruction *I);
bool OptimizeSelectInst(SelectInst *SI);
- bool DupRetToEnableTailCallOpts(ReturnInst *RI);
+ bool DupRetToEnableTailCallOpts(BasicBlock *BB);
bool PlaceDbgValues(Function &F);
};
}
@@ -148,11 +149,12 @@ bool CodeGenPrepare::runOnFunction(Function &F) {
TLInfo = &getAnalysis<TargetLibraryInfo>();
DT = getAnalysisIfAvailable<DominatorTree>();
PFI = getAnalysisIfAvailable<ProfileInfo>();
- OptSize = F.getFnAttributes().hasAttribute(Attributes::OptimizeForSize);
+ OptSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::OptimizeForSize);
/// This optimization identifies DIV instructions that can be
/// profitably bypassed and carried out with a shorter, faster divide.
- if (TLI && TLI->isSlowDivBypassed()) {
+ if (!OptSize && TLI && TLI->isSlowDivBypassed()) {
const DenseMap<unsigned int, unsigned int> &BypassWidths =
TLI->getBypassSlowDivWidths();
for (Function::iterator I = F.begin(); I != F.end(); I++)
@@ -194,9 +196,20 @@ bool CodeGenPrepare::runOnFunction(Function &F) {
WorkList.insert(*II);
}
- for (SmallPtrSet<BasicBlock*, 8>::iterator
- I = WorkList.begin(), E = WorkList.end(); I != E; ++I)
- DeleteDeadBlock(*I);
+ // Delete the dead blocks and any of their dead successors.
+ MadeChange |= !WorkList.empty();
+ while (!WorkList.empty()) {
+ BasicBlock *BB = *WorkList.begin();
+ WorkList.erase(BB);
+ SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
+
+ DeleteDeadBlock(BB);
+
+ for (SmallVectorImpl<BasicBlock*>::iterator
+ II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
+ if (pred_begin(*II) == pred_end(*II))
+ WorkList.insert(*II);
+ }
// Merge pairs of basic blocks with unconditional branches, connected by
// a single edge.
@@ -689,10 +702,14 @@ bool CodeGenPrepare::OptimizeCallInst(CallInst *CI) {
/// %tmp2 = tail call i32 @f2()
/// ret i32 %tmp2
/// @endcode
-bool CodeGenPrepare::DupRetToEnableTailCallOpts(ReturnInst *RI) {
+bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) {
if (!TLI)
return false;
+ ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
+ if (!RI)
+ return false;
+
PHINode *PN = 0;
BitCastInst *BCI = 0;
Value *V = RI->getReturnValue();
@@ -706,16 +723,15 @@ bool CodeGenPrepare::DupRetToEnableTailCallOpts(ReturnInst *RI) {
return false;
}
- BasicBlock *BB = RI->getParent();
if (PN && PN->getParent() != BB)
return false;
// It's not safe to eliminate the sign / zero extension of the return value.
// See llvm::isInTailCallPosition().
const Function *F = BB->getParent();
- Attributes CallerRetAttr = F->getAttributes().getRetAttributes();
- if (CallerRetAttr.hasAttribute(Attributes::ZExt) ||
- CallerRetAttr.hasAttribute(Attributes::SExt))
+ AttributeSet CallerAttrs = F->getAttributes();
+ if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
+ CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
return false;
// Make sure there are no instructions between the PHI and return, or that the
@@ -772,11 +788,11 @@ bool CodeGenPrepare::DupRetToEnableTailCallOpts(ReturnInst *RI) {
// Conservatively require the attributes of the call to match those of the
// return. Ignore noalias because it doesn't affect the call sequence.
- Attributes CalleeRetAttr = CS.getAttributes().getRetAttributes();
- if (AttrBuilder(CalleeRetAttr).
- removeAttribute(Attributes::NoAlias) !=
- AttrBuilder(CallerRetAttr).
- removeAttribute(Attributes::NoAlias))
+ AttributeSet CalleeAttrs = CS.getAttributes();
+ if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
+ removeAttribute(Attribute::NoAlias) !=
+ AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
+ removeAttribute(Attribute::NoAlias))
continue;
// Make sure the call instruction is followed by an unconditional branch to
@@ -803,6 +819,629 @@ bool CodeGenPrepare::DupRetToEnableTailCallOpts(ReturnInst *RI) {
// Memory Optimization
//===----------------------------------------------------------------------===//
+namespace {
+
+/// ExtAddrMode - This is an extended version of TargetLowering::AddrMode
+/// which holds actual Value*'s for register values.
+struct ExtAddrMode : public TargetLowering::AddrMode {
+ Value *BaseReg;
+ Value *ScaledReg;
+ ExtAddrMode() : BaseReg(0), ScaledReg(0) {}
+ void print(raw_ostream &OS) const;
+ void dump() const;
+
+ bool operator==(const ExtAddrMode& O) const {
+ return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) &&
+ (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) &&
+ (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale);
+ }
+};
+
+static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
+ AM.print(OS);
+ return OS;
+}
+
+void ExtAddrMode::print(raw_ostream &OS) const {
+ bool NeedPlus = false;
+ OS << "[";
+ if (BaseGV) {
+ OS << (NeedPlus ? " + " : "")
+ << "GV:";
+ WriteAsOperand(OS, BaseGV, /*PrintType=*/false);
+ NeedPlus = true;
+ }
+
+ if (BaseOffs)
+ OS << (NeedPlus ? " + " : "") << BaseOffs, NeedPlus = true;
+
+ if (BaseReg) {
+ OS << (NeedPlus ? " + " : "")
+ << "Base:";
+ WriteAsOperand(OS, BaseReg, /*PrintType=*/false);
+ NeedPlus = true;
+ }
+ if (Scale) {
+ OS << (NeedPlus ? " + " : "")
+ << Scale << "*";
+ WriteAsOperand(OS, ScaledReg, /*PrintType=*/false);
+ NeedPlus = true;
+ }
+
+ OS << ']';
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+void ExtAddrMode::dump() const {
+ print(dbgs());
+ dbgs() << '\n';
+}
+#endif
+
+
+/// \brief A helper class for matching addressing modes.
+///
+/// This encapsulates the logic for matching the target-legal addressing modes.
+class AddressingModeMatcher {
+ SmallVectorImpl<Instruction*> &AddrModeInsts;
+ const TargetLowering &TLI;
+
+ /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
+ /// the memory instruction that we're computing this address for.
+ Type *AccessTy;
+ Instruction *MemoryInst;
+
+ /// AddrMode - This is the addressing mode that we're building up. This is
+ /// part of the return value of this addressing mode matching stuff.
+ ExtAddrMode &AddrMode;
+
+ /// IgnoreProfitability - This is set to true when we should not do
+ /// profitability checks. When true, IsProfitableToFoldIntoAddressingMode
+ /// always returns true.
+ bool IgnoreProfitability;
+
+ AddressingModeMatcher(SmallVectorImpl<Instruction*> &AMI,
+ const TargetLowering &T, Type *AT,
+ Instruction *MI, ExtAddrMode &AM)
+ : AddrModeInsts(AMI), TLI(T), AccessTy(AT), MemoryInst(MI), AddrMode(AM) {
+ IgnoreProfitability = false;
+ }
+public:
+
+ /// Match - Find the maximal addressing mode that a load/store of V can fold,
+ /// give an access type of AccessTy. This returns a list of involved
+ /// instructions in AddrModeInsts.
+ static ExtAddrMode Match(Value *V, Type *AccessTy,
+ Instruction *MemoryInst,
+ SmallVectorImpl<Instruction*> &AddrModeInsts,
+ const TargetLowering &TLI) {
+ ExtAddrMode Result;
+
+ bool Success =
+ AddressingModeMatcher(AddrModeInsts, TLI, AccessTy,
+ MemoryInst, Result).MatchAddr(V, 0);
+ (void)Success; assert(Success && "Couldn't select *anything*?");
+ return Result;
+ }
+private:
+ bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
+ bool MatchAddr(Value *V, unsigned Depth);
+ bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth);
+ bool IsProfitableToFoldIntoAddressingMode(Instruction *I,
+ ExtAddrMode &AMBefore,
+ ExtAddrMode &AMAfter);
+ bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
+};
+
+/// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode.
+/// Return true and update AddrMode if this addr mode is legal for the target,
+/// false if not.
+bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale,
+ unsigned Depth) {
+ // If Scale is 1, then this is the same as adding ScaleReg to the addressing
+ // mode. Just process that directly.
+ if (Scale == 1)
+ return MatchAddr(ScaleReg, Depth);
+
+ // If the scale is 0, it takes nothing to add this.
+ if (Scale == 0)
+ return true;
+
+ // If we already have a scale of this value, we can add to it, otherwise, we
+ // need an available scale field.
+ if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
+ return false;
+
+ ExtAddrMode TestAddrMode = AddrMode;
+
+ // Add scale to turn X*4+X*3 -> X*7. This could also do things like
+ // [A+B + A*7] -> [B+A*8].
+ TestAddrMode.Scale += Scale;
+ TestAddrMode.ScaledReg = ScaleReg;
+
+ // If the new address isn't legal, bail out.
+ if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy))
+ return false;
+
+ // It was legal, so commit it.
+ AddrMode = TestAddrMode;
+
+ // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
+ // to see if ScaleReg is actually X+C. If so, we can turn this into adding
+ // X*Scale + C*Scale to addr mode.
+ ConstantInt *CI = 0; Value *AddLHS = 0;
+ if (isa<Instruction>(ScaleReg) && // not a constant expr.
+ match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
+ TestAddrMode.ScaledReg = AddLHS;
+ TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
+
+ // If this addressing mode is legal, commit it and remember that we folded
+ // this instruction.
+ if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) {
+ AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
+ AddrMode = TestAddrMode;
+ return true;
+ }
+ }
+
+ // Otherwise, not (x+c)*scale, just return what we have.
+ return true;
+}
+
+/// MightBeFoldableInst - This is a little filter, which returns true if an
+/// addressing computation involving I might be folded into a load/store
+/// accessing it. This doesn't need to be perfect, but needs to accept at least
+/// the set of instructions that MatchOperationAddr can.
+static bool MightBeFoldableInst(Instruction *I) {
+ switch (I->getOpcode()) {
+ case Instruction::BitCast:
+ // Don't touch identity bitcasts.
+ if (I->getType() == I->getOperand(0)->getType())
+ return false;
+ return I->getType()->isPointerTy() || I->getType()->isIntegerTy();
+ case Instruction::PtrToInt:
+ // PtrToInt is always a noop, as we know that the int type is pointer sized.
+ return true;
+ case Instruction::IntToPtr:
+ // We know the input is intptr_t, so this is foldable.
+ return true;
+ case Instruction::Add:
+ return true;
+ case Instruction::Mul:
+ case Instruction::Shl:
+ // Can only handle X*C and X << C.
+ return isa<ConstantInt>(I->getOperand(1));
+ case Instruction::GetElementPtr:
+ return true;
+ default:
+ return false;
+ }
+}
+
+/// MatchOperationAddr - Given an instruction or constant expr, see if we can
+/// fold the operation into the addressing mode. If so, update the addressing
+/// mode and return true, otherwise return false without modifying AddrMode.
+bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode,
+ unsigned Depth) {
+ // Avoid exponential behavior on extremely deep expression trees.
+ if (Depth >= 5) return false;
+
+ switch (Opcode) {
+ case Instruction::PtrToInt:
+ // PtrToInt is always a noop, as we know that the int type is pointer sized.
+ return MatchAddr(AddrInst->getOperand(0), Depth);
+ case Instruction::IntToPtr:
+ // This inttoptr is a no-op if the integer type is pointer sized.
+ if (TLI.getValueType(AddrInst->getOperand(0)->getType()) ==
+ TLI.getPointerTy())
+ return MatchAddr(AddrInst->getOperand(0), Depth);
+ return false;
+ case Instruction::BitCast:
+ // BitCast is always a noop, and we can handle it as long as it is
+ // int->int or pointer->pointer (we don't want int<->fp or something).
+ if ((AddrInst->getOperand(0)->getType()->isPointerTy() ||
+ AddrInst->getOperand(0)->getType()->isIntegerTy()) &&
+ // Don't touch identity bitcasts. These were probably put here by LSR,
+ // and we don't want to mess around with them. Assume it knows what it
+ // is doing.
+ AddrInst->getOperand(0)->getType() != AddrInst->getType())
+ return MatchAddr(AddrInst->getOperand(0), Depth);
+ return false;
+ case Instruction::Add: {
+ // Check to see if we can merge in the RHS then the LHS. If so, we win.
+ ExtAddrMode BackupAddrMode = AddrMode;
+ unsigned OldSize = AddrModeInsts.size();
+ if (MatchAddr(AddrInst->getOperand(1), Depth+1) &&
+ MatchAddr(AddrInst->getOperand(0), Depth+1))
+ return true;
+
+ // Restore the old addr mode info.
+ AddrMode = BackupAddrMode;
+ AddrModeInsts.resize(OldSize);
+
+ // Otherwise this was over-aggressive. Try merging in the LHS then the RHS.
+ if (MatchAddr(AddrInst->getOperand(0), Depth+1) &&
+ MatchAddr(AddrInst->getOperand(1), Depth+1))
+ return true;
+
+ // Otherwise we definitely can't merge the ADD in.
+ AddrMode = BackupAddrMode;
+ AddrModeInsts.resize(OldSize);
+ break;
+ }
+ //case Instruction::Or:
+ // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
+ //break;
+ case Instruction::Mul:
+ case Instruction::Shl: {
+ // Can only handle X*C and X << C.
+ ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
+ if (!RHS) return false;
+ int64_t Scale = RHS->getSExtValue();
+ if (Opcode == Instruction::Shl)
+ Scale = 1LL << Scale;
+
+ return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth);
+ }
+ case Instruction::GetElementPtr: {
+ // Scan the GEP. We check it if it contains constant offsets and at most
+ // one variable offset.
+ int VariableOperand = -1;
+ unsigned VariableScale = 0;
+
+ int64_t ConstantOffset = 0;
+ const DataLayout *TD = TLI.getDataLayout();
+ gep_type_iterator GTI = gep_type_begin(AddrInst);
+ for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
+ if (StructType *STy = dyn_cast<StructType>(*GTI)) {
+ const StructLayout *SL = TD->getStructLayout(STy);
+ unsigned Idx =
+ cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
+ ConstantOffset += SL->getElementOffset(Idx);
+ } else {
+ uint64_t TypeSize = TD->getTypeAllocSize(GTI.getIndexedType());
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
+ ConstantOffset += CI->getSExtValue()*TypeSize;
+ } else if (TypeSize) { // Scales of zero don't do anything.
+ // We only allow one variable index at the moment.
+ if (VariableOperand != -1)
+ return false;
+
+ // Remember the variable index.
+ VariableOperand = i;
+ VariableScale = TypeSize;
+ }
+ }
+ }
+
+ // A common case is for the GEP to only do a constant offset. In this case,
+ // just add it to the disp field and check validity.
+ if (VariableOperand == -1) {
+ AddrMode.BaseOffs += ConstantOffset;
+ if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){
+ // Check to see if we can fold the base pointer in too.
+ if (MatchAddr(AddrInst->getOperand(0), Depth+1))
+ return true;
+ }
+ AddrMode.BaseOffs -= ConstantOffset;
+ return false;
+ }
+
+ // Save the valid addressing mode in case we can't match.
+ ExtAddrMode BackupAddrMode = AddrMode;
+ unsigned OldSize = AddrModeInsts.size();
+
+ // See if the scale and offset amount is valid for this target.
+ AddrMode.BaseOffs += ConstantOffset;
+
+ // Match the base operand of the GEP.
+ if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) {
+ // If it couldn't be matched, just stuff the value in a register.
+ if (AddrMode.HasBaseReg) {
+ AddrMode = BackupAddrMode;
+ AddrModeInsts.resize(OldSize);
+ return false;
+ }
+ AddrMode.HasBaseReg = true;
+ AddrMode.BaseReg = AddrInst->getOperand(0);
+ }
+
+ // Match the remaining variable portion of the GEP.
+ if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
+ Depth)) {
+ // If it couldn't be matched, try stuffing the base into a register
+ // instead of matching it, and retrying the match of the scale.
+ AddrMode = BackupAddrMode;
+ AddrModeInsts.resize(OldSize);
+ if (AddrMode.HasBaseReg)
+ return false;
+ AddrMode.HasBaseReg = true;
+ AddrMode.BaseReg = AddrInst->getOperand(0);
+ AddrMode.BaseOffs += ConstantOffset;
+ if (!MatchScaledValue(AddrInst->getOperand(VariableOperand),
+ VariableScale, Depth)) {
+ // If even that didn't work, bail.
+ AddrMode = BackupAddrMode;
+ AddrModeInsts.resize(OldSize);
+ return false;
+ }
+ }
+
+ return true;
+ }
+ }
+ return false;
+}
+
+/// MatchAddr - If we can, try to add the value of 'Addr' into the current
+/// addressing mode. If Addr can't be added to AddrMode this returns false and
+/// leaves AddrMode unmodified. This assumes that Addr is either a pointer type
+/// or intptr_t for the target.
+///
+bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
+ // Fold in immediates if legal for the target.
+ AddrMode.BaseOffs += CI->getSExtValue();
+ if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
+ return true;
+ AddrMode.BaseOffs -= CI->getSExtValue();
+ } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
+ // If this is a global variable, try to fold it into the addressing mode.
+ if (AddrMode.BaseGV == 0) {
+ AddrMode.BaseGV = GV;
+ if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
+ return true;
+ AddrMode.BaseGV = 0;
+ }
+ } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
+ ExtAddrMode BackupAddrMode = AddrMode;
+ unsigned OldSize = AddrModeInsts.size();
+
+ // Check to see if it is possible to fold this operation.
+ if (MatchOperationAddr(I, I->getOpcode(), Depth)) {
+ // Okay, it's possible to fold this. Check to see if it is actually
+ // *profitable* to do so. We use a simple cost model to avoid increasing
+ // register pressure too much.
+ if (I->hasOneUse() ||
+ IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
+ AddrModeInsts.push_back(I);
+ return true;
+ }
+
+ // It isn't profitable to do this, roll back.
+ //cerr << "NOT FOLDING: " << *I;
+ AddrMode = BackupAddrMode;
+ AddrModeInsts.resize(OldSize);
+ }
+ } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
+ if (MatchOperationAddr(CE, CE->getOpcode(), Depth))
+ return true;
+ } else if (isa<ConstantPointerNull>(Addr)) {
+ // Null pointer gets folded without affecting the addressing mode.
+ return true;
+ }
+
+ // Worse case, the target should support [reg] addressing modes. :)
+ if (!AddrMode.HasBaseReg) {
+ AddrMode.HasBaseReg = true;
+ AddrMode.BaseReg = Addr;
+ // Still check for legality in case the target supports [imm] but not [i+r].
+ if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
+ return true;
+ AddrMode.HasBaseReg = false;
+ AddrMode.BaseReg = 0;
+ }
+
+ // If the base register is already taken, see if we can do [r+r].
+ if (AddrMode.Scale == 0) {
+ AddrMode.Scale = 1;
+ AddrMode.ScaledReg = Addr;
+ if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
+ return true;
+ AddrMode.Scale = 0;
+ AddrMode.ScaledReg = 0;
+ }
+ // Couldn't match.
+ return false;
+}
+
+/// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified
+/// inline asm call are due to memory operands. If so, return true, otherwise
+/// return false.
+static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
+ const TargetLowering &TLI) {
+ TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(ImmutableCallSite(CI));
+ for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
+ TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
+
+ // Compute the constraint code and ConstraintType to use.
+ TLI.ComputeConstraintToUse(OpInfo, SDValue());
+
+ // If this asm operand is our Value*, and if it isn't an indirect memory
+ // operand, we can't fold it!
+ if (OpInfo.CallOperandVal == OpVal &&
+ (OpInfo.ConstraintType != TargetLowering::C_Memory ||
+ !OpInfo.isIndirect))
+ return false;
+ }
+
+ return true;
+}
+
+/// FindAllMemoryUses - Recursively walk all the uses of I until we find a
+/// memory use. If we find an obviously non-foldable instruction, return true.
+/// Add the ultimately found memory instructions to MemoryUses.
+static bool FindAllMemoryUses(Instruction *I,
+ SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses,
+ SmallPtrSet<Instruction*, 16> &ConsideredInsts,
+ const TargetLowering &TLI) {
+ // If we already considered this instruction, we're done.
+ if (!ConsideredInsts.insert(I))
+ return false;
+
+ // If this is an obviously unfoldable instruction, bail out.
+ if (!MightBeFoldableInst(I))
+ return true;
+
+ // Loop over all the uses, recursively processing them.
+ for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
+ UI != E; ++UI) {
+ User *U = *UI;
+
+ if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
+ MemoryUses.push_back(std::make_pair(LI, UI.getOperandNo()));
+ continue;
+ }
+
+ if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
+ unsigned opNo = UI.getOperandNo();
+ if (opNo == 0) return true; // Storing addr, not into addr.
+ MemoryUses.push_back(std::make_pair(SI, opNo));
+ continue;
+ }
+
+ if (CallInst *CI = dyn_cast<CallInst>(U)) {
+ InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
+ if (!IA) return true;
+
+ // If this is a memory operand, we're cool, otherwise bail out.
+ if (!IsOperandAMemoryOperand(CI, IA, I, TLI))
+ return true;
+ continue;
+ }
+
+ if (FindAllMemoryUses(cast<Instruction>(U), MemoryUses, ConsideredInsts,
+ TLI))
+ return true;
+ }
+
+ return false;
+}
+
+/// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at
+/// the use site that we're folding it into. If so, there is no cost to
+/// include it in the addressing mode. KnownLive1 and KnownLive2 are two values
+/// that we know are live at the instruction already.
+bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
+ Value *KnownLive2) {
+ // If Val is either of the known-live values, we know it is live!
+ if (Val == 0 || Val == KnownLive1 || Val == KnownLive2)
+ return true;
+
+ // All values other than instructions and arguments (e.g. constants) are live.
+ if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
+
+ // If Val is a constant sized alloca in the entry block, it is live, this is
+ // true because it is just a reference to the stack/frame pointer, which is
+ // live for the whole function.
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
+ if (AI->isStaticAlloca())
+ return true;
+
+ // Check to see if this value is already used in the memory instruction's
+ // block. If so, it's already live into the block at the very least, so we
+ // can reasonably fold it.
+ return Val->isUsedInBasicBlock(MemoryInst->getParent());
+}
+
+/// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing
+/// mode of the machine to fold the specified instruction into a load or store
+/// that ultimately uses it. However, the specified instruction has multiple
+/// uses. Given this, it may actually increase register pressure to fold it
+/// into the load. For example, consider this code:
+///
+/// X = ...
+/// Y = X+1
+/// use(Y) -> nonload/store
+/// Z = Y+1
+/// load Z
+///
+/// In this case, Y has multiple uses, and can be folded into the load of Z
+/// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to
+/// be live at the use(Y) line. If we don't fold Y into load Z, we use one
+/// fewer register. Since Y can't be folded into "use(Y)" we don't increase the
+/// number of computations either.
+///
+/// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If
+/// X was live across 'load Z' for other reasons, we actually *would* want to
+/// fold the addressing mode in the Z case. This would make Y die earlier.
+bool AddressingModeMatcher::
+IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
+ ExtAddrMode &AMAfter) {
+ if (IgnoreProfitability) return true;
+
+ // AMBefore is the addressing mode before this instruction was folded into it,
+ // and AMAfter is the addressing mode after the instruction was folded. Get
+ // the set of registers referenced by AMAfter and subtract out those
+ // referenced by AMBefore: this is the set of values which folding in this
+ // address extends the lifetime of.
+ //
+ // Note that there are only two potential values being referenced here,
+ // BaseReg and ScaleReg (global addresses are always available, as are any
+ // folded immediates).
+ Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
+
+ // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
+ // lifetime wasn't extended by adding this instruction.
+ if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
+ BaseReg = 0;
+ if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
+ ScaledReg = 0;
+
+ // If folding this instruction (and it's subexprs) didn't extend any live
+ // ranges, we're ok with it.
+ if (BaseReg == 0 && ScaledReg == 0)
+ return true;
+
+ // If all uses of this instruction are ultimately load/store/inlineasm's,
+ // check to see if their addressing modes will include this instruction. If
+ // so, we can fold it into all uses, so it doesn't matter if it has multiple
+ // uses.
+ SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
+ SmallPtrSet<Instruction*, 16> ConsideredInsts;
+ if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI))
+ return false; // Has a non-memory, non-foldable use!
+
+ // Now that we know that all uses of this instruction are part of a chain of
+ // computation involving only operations that could theoretically be folded
+ // into a memory use, loop over each of these uses and see if they could
+ // *actually* fold the instruction.
+ SmallVector<Instruction*, 32> MatchedAddrModeInsts;
+ for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
+ Instruction *User = MemoryUses[i].first;
+ unsigned OpNo = MemoryUses[i].second;
+
+ // Get the access type of this use. If the use isn't a pointer, we don't
+ // know what it accesses.
+ Value *Address = User->getOperand(OpNo);
+ if (!Address->getType()->isPointerTy())
+ return false;
+ Type *AddressAccessTy =
+ cast<PointerType>(Address->getType())->getElementType();
+
+ // Do a match against the root of this address, ignoring profitability. This
+ // will tell us if the addressing mode for the memory operation will
+ // *actually* cover the shared instruction.
+ ExtAddrMode Result;
+ AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy,
+ MemoryInst, Result);
+ Matcher.IgnoreProfitability = true;
+ bool Success = Matcher.MatchAddr(Address, 0);
+ (void)Success; assert(Success && "Couldn't select *anything*?");
+
+ // If the match didn't cover I, then it won't be shared by it.
+ if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(),
+ I) == MatchedAddrModeInsts.end())
+ return false;
+
+ MatchedAddrModeInsts.clear();
+ }
+
+ return true;
+}
+
+} // end anonymous namespace
+
/// IsNonLocalValue - Return true if the specified values are defined in a
/// different basic block than BB.
static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
@@ -1319,9 +1958,6 @@ bool CodeGenPrepare::OptimizeInst(Instruction *I) {
if (CallInst *CI = dyn_cast<CallInst>(I))
return OptimizeCallInst(CI);
- if (ReturnInst *RI = dyn_cast<ReturnInst>(I))
- return DupRetToEnableTailCallOpts(RI);
-
if (SelectInst *SI = dyn_cast<SelectInst>(I))
return OptimizeSelectInst(SI);
@@ -1339,6 +1975,8 @@ bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
while (CurInstIterator != BB.end())
MadeChange |= OptimizeInst(CurInstIterator++);
+ MadeChange |= DupRetToEnableTailCallOpts(&BB);
+
return MadeChange;
}
diff --git a/contrib/llvm/lib/Transforms/Scalar/ConstantProp.cpp b/contrib/llvm/lib/Transforms/Scalar/ConstantProp.cpp
index 369720b..d5a96ec 100644
--- a/contrib/llvm/lib/Transforms/Scalar/ConstantProp.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/ConstantProp.cpp
@@ -20,14 +20,14 @@
#define DEBUG_TYPE "constprop"
#include "llvm/Transforms/Scalar.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ConstantFolding.h"
-#include "llvm/Constant.h"
-#include "llvm/Instruction.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Instruction.h"
#include "llvm/Pass.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Support/InstIterator.h"
-#include "llvm/ADT/Statistic.h"
+#include "llvm/Target/TargetLibraryInfo.h"
#include <set>
using namespace llvm;
diff --git a/contrib/llvm/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp b/contrib/llvm/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp
index 3ec6f3d..995782e 100644
--- a/contrib/llvm/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp
@@ -13,15 +13,17 @@
#define DEBUG_TYPE "correlated-value-propagation"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Constants.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/Pass.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LazyValueInfo.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/Pass.h"
#include "llvm/Support/CFG.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/ADT/Statistic.h"
using namespace llvm;
STATISTIC(NumPhis, "Number of phis propagated");
@@ -97,12 +99,29 @@ bool CorrelatedValuePropagation::processPHI(PHINode *P) {
Value *Incoming = P->getIncomingValue(i);
if (isa<Constant>(Incoming)) continue;
- Constant *C = LVI->getConstantOnEdge(P->getIncomingValue(i),
- P->getIncomingBlock(i),
- BB);
- if (!C) continue;
+ Value *V = LVI->getConstantOnEdge(Incoming, P->getIncomingBlock(i), BB);
+
+ // Look if the incoming value is a select with a constant but LVI tells us
+ // that the incoming value can never be that constant. In that case replace
+ // the incoming value with the other value of the select. This often allows
+ // us to remove the select later.
+ if (!V) {
+ SelectInst *SI = dyn_cast<SelectInst>(Incoming);
+ if (!SI) continue;
+
+ Constant *C = dyn_cast<Constant>(SI->getFalseValue());
+ if (!C) continue;
+
+ if (LVI->getPredicateOnEdge(ICmpInst::ICMP_EQ, SI, C,
+ P->getIncomingBlock(i), BB) !=
+ LazyValueInfo::False)
+ continue;
+
+ DEBUG(dbgs() << "CVP: Threading PHI over " << *SI << '\n');
+ V = SI->getTrueValue();
+ }
- P->setIncomingValue(i, C);
+ P->setIncomingValue(i, V);
Changed = true;
}
diff --git a/contrib/llvm/lib/Transforms/Scalar/DCE.cpp b/contrib/llvm/lib/Transforms/Scalar/DCE.cpp
index a2e074f..e8a090a 100644
--- a/contrib/llvm/lib/Transforms/Scalar/DCE.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/DCE.cpp
@@ -18,12 +18,12 @@
#define DEBUG_TYPE "dce"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Instruction.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/IR/Instruction.h"
#include "llvm/Pass.h"
#include "llvm/Support/InstIterator.h"
#include "llvm/Target/TargetLibraryInfo.h"
-#include "llvm/ADT/Statistic.h"
+#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
STATISTIC(DIEEliminated, "Number of insts removed by DIE pass");
diff --git a/contrib/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp b/contrib/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp
index 736cc05..57432c7 100644
--- a/contrib/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp
@@ -17,25 +17,25 @@
#define DEBUG_TYPE "dse"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Constants.h"
-#include "llvm/Function.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Pass.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/DataLayout.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/STLExtras.h"
using namespace llvm;
STATISTIC(NumFastStores, "Number of stores deleted");
@@ -376,10 +376,10 @@ static OverwriteResult isOverwrite(const AliasAnalysis::Location &Later,
// Check to see if the later store is to the entire object (either a global,
// an alloca, or a byval argument). If so, then it clearly overwrites any
// other store to the same object.
- const DataLayout &TD = *AA.getDataLayout();
+ const DataLayout *TD = AA.getDataLayout();
- const Value *UO1 = GetUnderlyingObject(P1, &TD),
- *UO2 = GetUnderlyingObject(P2, &TD);
+ const Value *UO1 = GetUnderlyingObject(P1, TD),
+ *UO2 = GetUnderlyingObject(P2, TD);
// If we can't resolve the same pointers to the same object, then we can't
// analyze them at all.
diff --git a/contrib/llvm/lib/Transforms/Scalar/EarlyCSE.cpp b/contrib/llvm/lib/Transforms/Scalar/EarlyCSE.cpp
index 101009d..3c08634 100644
--- a/contrib/llvm/lib/Transforms/Scalar/EarlyCSE.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/EarlyCSE.cpp
@@ -14,18 +14,18 @@
#define DEBUG_TYPE "early-cse"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Instructions.h"
-#include "llvm/Pass.h"
+#include "llvm/ADT/Hashing.h"
+#include "llvm/ADT/ScopedHashTable.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Target/TargetLibraryInfo.h"
-#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/RecyclingAllocator.h"
-#include "llvm/ADT/Hashing.h"
-#include "llvm/ADT/ScopedHashTable.h"
-#include "llvm/ADT/Statistic.h"
+#include "llvm/Target/TargetLibraryInfo.h"
+#include "llvm/Transforms/Utils/Local.h"
#include <deque>
using namespace llvm;
diff --git a/contrib/llvm/lib/Transforms/Scalar/GVN.cpp b/contrib/llvm/lib/Transforms/Scalar/GVN.cpp
index f003e06..129af8d 100644
--- a/contrib/llvm/lib/Transforms/Scalar/GVN.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/GVN.cpp
@@ -17,11 +17,6 @@
#define DEBUG_TYPE "gvn"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Metadata.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Hashing.h"
@@ -37,11 +32,16 @@
#include "llvm/Analysis/PHITransAddr.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Assembly/Writer.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/PatternMatch.h"
-#include "llvm/DataLayout.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
@@ -849,8 +849,8 @@ static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
return -1;
int64_t StoreOffset = 0, LoadOffset = 0;
- Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr, StoreOffset,TD);
- Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, TD);
+ Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr,StoreOffset,&TD);
+ Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, &TD);
if (StoreBase != LoadBase)
return -1;
@@ -945,7 +945,7 @@ static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
// then we should widen it!
int64_t LoadOffs = 0;
const Value *LoadBase =
- GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, TD);
+ GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, &TD);
unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
unsigned Size = MemoryDependenceAnalysis::
@@ -1526,10 +1526,8 @@ bool GVN::processNonLocalLoad(LoadInst *LI) {
BasicBlock *LoadBB = LI->getParent();
BasicBlock *TmpBB = LoadBB;
- bool isSinglePred = false;
bool allSingleSucc = true;
while (TmpBB->getSinglePredecessor()) {
- isSinglePred = true;
TmpBB = TmpBB->getSinglePredecessor();
if (TmpBB == LoadBB) // Infinite (unreachable) loop.
return false;
@@ -1548,28 +1546,6 @@ bool GVN::processNonLocalLoad(LoadInst *LI) {
assert(TmpBB);
LoadBB = TmpBB;
- // FIXME: It is extremely unclear what this loop is doing, other than
- // artificially restricting loadpre.
- if (isSinglePred) {
- bool isHot = false;
- for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
- const AvailableValueInBlock &AV = ValuesPerBlock[i];
- if (AV.isSimpleValue())
- // "Hot" Instruction is in some loop (because it dominates its dep.
- // instruction).
- if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
- if (DT->dominates(LI, I)) {
- isHot = true;
- break;
- }
- }
-
- // We are interested only in "hot" instructions. We don't want to do any
- // mis-optimizations here.
- if (!isHot)
- return false;
- }
-
// Check to see how many predecessors have the loaded value fully
// available.
DenseMap<BasicBlock*, Value*> PredLoads;
@@ -1738,7 +1714,7 @@ bool GVN::processNonLocalLoad(LoadInst *LI) {
return true;
}
-static void patchReplacementInstruction(Value *Repl, Instruction *I) {
+static void patchReplacementInstruction(Instruction *I, Value *Repl) {
// Patch the replacement so that it is not more restrictive than the value
// being replaced.
BinaryOperator *Op = dyn_cast<BinaryOperator>(I);
@@ -1780,8 +1756,8 @@ static void patchReplacementInstruction(Value *Repl, Instruction *I) {
}
}
-static void patchAndReplaceAllUsesWith(Value *Repl, Instruction *I) {
- patchReplacementInstruction(Repl, I);
+static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
+ patchReplacementInstruction(I, Repl);
I->replaceAllUsesWith(Repl);
}
@@ -1943,7 +1919,7 @@ bool GVN::processLoad(LoadInst *L) {
}
// Remove it!
- patchAndReplaceAllUsesWith(AvailableVal, L);
+ patchAndReplaceAllUsesWith(L, AvailableVal);
if (DepLI->getType()->getScalarType()->isPointerTy())
MD->invalidateCachedPointerInfo(DepLI);
markInstructionForDeletion(L);
@@ -2284,7 +2260,7 @@ bool GVN::processInstruction(Instruction *I) {
}
// Remove it!
- patchAndReplaceAllUsesWith(repl, I);
+ patchAndReplaceAllUsesWith(I, repl);
if (MD && repl->getType()->getScalarType()->isPointerTy())
MD->invalidateCachedPointerInfo(repl);
markInstructionForDeletion(I);
@@ -2371,8 +2347,8 @@ bool GVN::processBlock(BasicBlock *BB) {
E = InstrsToErase.end(); I != E; ++I) {
DEBUG(dbgs() << "GVN removed: " << **I << '\n');
if (MD) MD->removeInstruction(*I);
- (*I)->eraseFromParent();
DEBUG(verifyRemoved(*I));
+ (*I)->eraseFromParent();
}
InstrsToErase.clear();
@@ -2389,7 +2365,7 @@ bool GVN::processBlock(BasicBlock *BB) {
/// control flow patterns and attempts to perform simple PRE at the join point.
bool GVN::performPRE(Function &F) {
bool Changed = false;
- DenseMap<BasicBlock*, Value*> predMap;
+ SmallVector<std::pair<Value*, BasicBlock*>, 8> predMap;
for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
BasicBlock *CurrentBlock = *DI;
@@ -2445,19 +2421,22 @@ bool GVN::performPRE(Function &F) {
if (P == CurrentBlock) {
NumWithout = 2;
break;
- } else if (!DT->dominates(&F.getEntryBlock(), P)) {
+ } else if (!DT->isReachableFromEntry(P)) {
NumWithout = 2;
break;
}
Value* predV = findLeader(P, ValNo);
if (predV == 0) {
+ predMap.push_back(std::make_pair(static_cast<Value *>(0), P));
PREPred = P;
++NumWithout;
} else if (predV == CurInst) {
+ /* CurInst dominates this predecessor. */
NumWithout = 2;
+ break;
} else {
- predMap[P] = predV;
+ predMap.push_back(std::make_pair(predV, P));
++NumWith;
}
}
@@ -2504,15 +2483,14 @@ bool GVN::performPRE(Function &F) {
// the PRE predecessor. This is typically because of loads which
// are not value numbered precisely.
if (!success) {
- delete PREInstr;
DEBUG(verifyRemoved(PREInstr));
+ delete PREInstr;
continue;
}
PREInstr->insertBefore(PREPred->getTerminator());
PREInstr->setName(CurInst->getName() + ".pre");
PREInstr->setDebugLoc(CurInst->getDebugLoc());
- predMap[PREPred] = PREInstr;
VN.add(PREInstr, ValNo);
++NumGVNPRE;
@@ -2520,13 +2498,14 @@ bool GVN::performPRE(Function &F) {
addToLeaderTable(ValNo, PREInstr, PREPred);
// Create a PHI to make the value available in this block.
- pred_iterator PB = pred_begin(CurrentBlock), PE = pred_end(CurrentBlock);
- PHINode* Phi = PHINode::Create(CurInst->getType(), std::distance(PB, PE),
+ PHINode* Phi = PHINode::Create(CurInst->getType(), predMap.size(),
CurInst->getName() + ".pre-phi",
CurrentBlock->begin());
- for (pred_iterator PI = PB; PI != PE; ++PI) {
- BasicBlock *P = *PI;
- Phi->addIncoming(predMap[P], P);
+ for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
+ if (Value *V = predMap[i].first)
+ Phi->addIncoming(V, predMap[i].second);
+ else
+ Phi->addIncoming(PREInstr, PREPred);
}
VN.add(Phi, ValNo);
@@ -2551,8 +2530,8 @@ bool GVN::performPRE(Function &F) {
DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
if (MD) MD->removeInstruction(CurInst);
- CurInst->eraseFromParent();
DEBUG(verifyRemoved(CurInst));
+ CurInst->eraseFromParent();
Changed = true;
}
}
diff --git a/contrib/llvm/lib/Transforms/Scalar/GlobalMerge.cpp b/contrib/llvm/lib/Transforms/Scalar/GlobalMerge.cpp
index 6301aad..5d02c68 100644
--- a/contrib/llvm/lib/Transforms/Scalar/GlobalMerge.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/GlobalMerge.cpp
@@ -53,21 +53,28 @@
#define DEBUG_TYPE "global-merge"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Attributes.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/Instructions.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/Module.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
-#include "llvm/DataLayout.h"
+#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
-#include "llvm/ADT/Statistic.h"
using namespace llvm;
+static cl::opt<bool>
+EnableGlobalMergeOnConst("global-merge-on-const", cl::Hidden,
+ cl::desc("Enable global merge pass on constants"),
+ cl::init(false));
+
STATISTIC(NumMerged , "Number of globals merged");
namespace {
class GlobalMerge : public FunctionPass {
@@ -76,7 +83,24 @@ namespace {
const TargetLowering *TLI;
bool doMerge(SmallVectorImpl<GlobalVariable*> &Globals,
- Module &M, bool isConst) const;
+ Module &M, bool isConst, unsigned AddrSpace) const;
+
+ /// \brief Check if the given variable has been identified as must keep
+ /// \pre setMustKeepGlobalVariables must have been called on the Module that
+ /// contains GV
+ bool isMustKeepGlobalVariable(const GlobalVariable *GV) const {
+ return MustKeepGlobalVariables.count(GV);
+ }
+
+ /// Collect every variables marked as "used" or used in a landing pad
+ /// instruction for this Module.
+ void setMustKeepGlobalVariables(Module &M);
+
+ /// Collect every variables marked as "used"
+ void collectUsedGlobalVariables(Module &M);
+
+ /// Keep track of the GlobalVariable that must not be merged away
+ SmallPtrSet<const GlobalVariable *, 16> MustKeepGlobalVariables;
public:
static char ID; // Pass identification, replacement for typeid.
@@ -87,6 +111,7 @@ namespace {
virtual bool doInitialization(Module &M);
virtual bool runOnFunction(Function &F);
+ virtual bool doFinalization(Module &M);
const char *getPassName() const {
return "Merge internal globals";
@@ -118,7 +143,7 @@ INITIALIZE_PASS(GlobalMerge, "global-merge",
bool GlobalMerge::doMerge(SmallVectorImpl<GlobalVariable*> &Globals,
- Module &M, bool isConst) const {
+ Module &M, bool isConst, unsigned AddrSpace) const {
const DataLayout *TD = TLI->getDataLayout();
// FIXME: Infer the maximum possible offset depending on the actual users
@@ -150,7 +175,9 @@ bool GlobalMerge::doMerge(SmallVectorImpl<GlobalVariable*> &Globals,
Constant *MergedInit = ConstantStruct::get(MergedTy, Inits);
GlobalVariable *MergedGV = new GlobalVariable(M, MergedTy, isConst,
GlobalValue::InternalLinkage,
- MergedInit, "_MergedGlobals");
+ MergedInit, "_MergedGlobals",
+ 0, GlobalVariable::NotThreadLocal,
+ AddrSpace);
for (size_t k = i; k < j; ++k) {
Constant *Idx[2] = {
ConstantInt::get(Int32Ty, 0),
@@ -167,12 +194,51 @@ bool GlobalMerge::doMerge(SmallVectorImpl<GlobalVariable*> &Globals,
return true;
}
+void GlobalMerge::collectUsedGlobalVariables(Module &M) {
+ // Extract global variables from llvm.used array
+ const GlobalVariable *GV = M.getGlobalVariable("llvm.used");
+ if (!GV || !GV->hasInitializer()) return;
+
+ // Should be an array of 'i8*'.
+ const ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
+ if (InitList == 0) return;
+
+ for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
+ if (const GlobalVariable *G =
+ dyn_cast<GlobalVariable>(InitList->getOperand(i)->stripPointerCasts()))
+ MustKeepGlobalVariables.insert(G);
+}
+
+void GlobalMerge::setMustKeepGlobalVariables(Module &M) {
+ collectUsedGlobalVariables(M);
+
+ for (Module::iterator IFn = M.begin(), IEndFn = M.end(); IFn != IEndFn;
+ ++IFn) {
+ for (Function::iterator IBB = IFn->begin(), IEndBB = IFn->end();
+ IBB != IEndBB; ++IBB) {
+ // Follow the inwoke link to find the landing pad instruction
+ const InvokeInst *II = dyn_cast<InvokeInst>(IBB->getTerminator());
+ if (!II) continue;
+
+ const LandingPadInst *LPInst = II->getUnwindDest()->getLandingPadInst();
+ // Look for globals in the clauses of the landing pad instruction
+ for (unsigned Idx = 0, NumClauses = LPInst->getNumClauses();
+ Idx != NumClauses; ++Idx)
+ if (const GlobalVariable *GV =
+ dyn_cast<GlobalVariable>(LPInst->getClause(Idx)
+ ->stripPointerCasts()))
+ MustKeepGlobalVariables.insert(GV);
+ }
+ }
+}
bool GlobalMerge::doInitialization(Module &M) {
- SmallVector<GlobalVariable*, 16> Globals, ConstGlobals, BSSGlobals;
+ DenseMap<unsigned, SmallVector<GlobalVariable*, 16> > Globals, ConstGlobals,
+ BSSGlobals;
const DataLayout *TD = TLI->getDataLayout();
unsigned MaxOffset = TLI->getMaximalGlobalOffset();
bool Changed = false;
+ setMustKeepGlobalVariables(M);
// Grab all non-const globals.
for (Module::global_iterator I = M.global_begin(),
@@ -181,6 +247,11 @@ bool GlobalMerge::doInitialization(Module &M) {
if (!I->hasLocalLinkage() || I->isThreadLocal() || I->hasSection())
continue;
+ PointerType *PT = dyn_cast<PointerType>(I->getType());
+ assert(PT && "Global variable is not a pointer!");
+
+ unsigned AddressSpace = PT->getAddressSpace();
+
// Ignore fancy-aligned globals for now.
unsigned Alignment = TD->getPreferredAlignment(I);
Type *Ty = I->getType()->getElementType();
@@ -192,27 +263,36 @@ bool GlobalMerge::doInitialization(Module &M) {
I->getName().startswith(".llvm."))
continue;
+ // Ignore all "required" globals:
+ if (isMustKeepGlobalVariable(I))
+ continue;
+
if (TD->getTypeAllocSize(Ty) < MaxOffset) {
if (TargetLoweringObjectFile::getKindForGlobal(I, TLI->getTargetMachine())
.isBSSLocal())
- BSSGlobals.push_back(I);
+ BSSGlobals[AddressSpace].push_back(I);
else if (I->isConstant())
- ConstGlobals.push_back(I);
+ ConstGlobals[AddressSpace].push_back(I);
else
- Globals.push_back(I);
+ Globals[AddressSpace].push_back(I);
}
}
- if (Globals.size() > 1)
- Changed |= doMerge(Globals, M, false);
- if (BSSGlobals.size() > 1)
- Changed |= doMerge(BSSGlobals, M, false);
+ for (DenseMap<unsigned, SmallVector<GlobalVariable*, 16> >::iterator
+ I = Globals.begin(), E = Globals.end(); I != E; ++I)
+ if (I->second.size() > 1)
+ Changed |= doMerge(I->second, M, false, I->first);
+
+ for (DenseMap<unsigned, SmallVector<GlobalVariable*, 16> >::iterator
+ I = BSSGlobals.begin(), E = BSSGlobals.end(); I != E; ++I)
+ if (I->second.size() > 1)
+ Changed |= doMerge(I->second, M, false, I->first);
- // FIXME: This currently breaks the EH processing due to way how the
- // typeinfo detection works. We might want to detect the TIs and ignore
- // them in the future.
- // if (ConstGlobals.size() > 1)
- // Changed |= doMerge(ConstGlobals, M, true);
+ if (EnableGlobalMergeOnConst)
+ for (DenseMap<unsigned, SmallVector<GlobalVariable*, 16> >::iterator
+ I = ConstGlobals.begin(), E = ConstGlobals.end(); I != E; ++I)
+ if (I->second.size() > 1)
+ Changed |= doMerge(I->second, M, true, I->first);
return Changed;
}
@@ -221,6 +301,11 @@ bool GlobalMerge::runOnFunction(Function &F) {
return false;
}
+bool GlobalMerge::doFinalization(Module &M) {
+ MustKeepGlobalVariables.clear();
+ return false;
+}
+
Pass *llvm::createGlobalMergePass(const TargetLowering *tli) {
return new GlobalMerge(tli);
}
diff --git a/contrib/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp b/contrib/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp
index 310fd61..8e76c78 100644
--- a/contrib/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp
@@ -26,28 +26,28 @@
#define DEBUG_TYPE "indvars"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/BasicBlock.h"
-#include "llvm/Constants.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Type.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
-#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/ScalarEvolutionExpander.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Type.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/SimplifyIndVar.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Target/TargetLibraryInfo.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
using namespace llvm;
STATISTIC(NumWidened , "Number of indvars widened");
@@ -535,6 +535,45 @@ void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
if (!SE->isLoopInvariant(ExitValue, L))
continue;
+ // Computing the value outside of the loop brings no benefit if :
+ // - it is definitely used inside the loop in a way which can not be
+ // optimized away.
+ // - no use outside of the loop can take advantage of hoisting the
+ // computation out of the loop
+ if (ExitValue->getSCEVType()>=scMulExpr) {
+ unsigned NumHardInternalUses = 0;
+ unsigned NumSoftExternalUses = 0;
+ unsigned NumUses = 0;
+ for (Value::use_iterator IB=Inst->use_begin(), IE=Inst->use_end();
+ IB!=IE && NumUses<=6 ; ++IB) {
+ Instruction *UseInstr = cast<Instruction>(*IB);
+ unsigned Opc = UseInstr->getOpcode();
+ NumUses++;
+ if (L->contains(UseInstr)) {
+ if (Opc == Instruction::Call || Opc == Instruction::Ret)
+ NumHardInternalUses++;
+ } else {
+ if (Opc == Instruction::PHI) {
+ // Do not count the Phi as a use. LCSSA may have inserted
+ // plenty of trivial ones.
+ NumUses--;
+ for (Value::use_iterator PB=UseInstr->use_begin(),
+ PE=UseInstr->use_end();
+ PB!=PE && NumUses<=6 ; ++PB, ++NumUses) {
+ unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode();
+ if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret)
+ NumSoftExternalUses++;
+ }
+ continue;
+ }
+ if (Opc != Instruction::Call && Opc != Instruction::Ret)
+ NumSoftExternalUses++;
+ }
+ }
+ if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses)
+ continue;
+ }
+
Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
diff --git a/contrib/llvm/lib/Transforms/Scalar/JumpThreading.cpp b/contrib/llvm/lib/Transforms/Scalar/JumpThreading.cpp
index e7ffa09..b61c5ba 100644
--- a/contrib/llvm/lib/Transforms/Scalar/JumpThreading.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/JumpThreading.cpp
@@ -13,28 +13,28 @@
#define DEBUG_TYPE "jump-threading"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Pass.h"
-#include "llvm/Analysis/ConstantFolding.h"
-#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/Analysis/LazyValueInfo.h"
-#include "llvm/Analysis/Loads.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Transforms/Utils/SSAUpdater.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
-#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LazyValueInfo.h"
+#include "llvm/Analysis/Loads.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetLibraryInfo.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/SSAUpdater.h"
using namespace llvm;
STATISTIC(NumThreads, "Number of jumps threaded");
@@ -216,19 +216,24 @@ bool JumpThreading::runOnFunction(Function &F) {
}
/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
-/// thread across it.
-static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
+/// thread across it. Stop scanning the block when passing the threshold.
+static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB,
+ unsigned Threshold) {
/// Ignore PHI nodes, these will be flattened when duplication happens.
BasicBlock::const_iterator I = BB->getFirstNonPHI();
// FIXME: THREADING will delete values that are just used to compute the
// branch, so they shouldn't count against the duplication cost.
-
// Sum up the cost of each instruction until we get to the terminator. Don't
// include the terminator because the copy won't include it.
unsigned Size = 0;
for (; !isa<TerminatorInst>(I); ++I) {
+
+ // Stop scanning the block if we've reached the threshold.
+ if (Size > Threshold)
+ return Size;
+
// Debugger intrinsics don't incur code size.
if (isa<DbgInfoIntrinsic>(I)) continue;
@@ -244,7 +249,11 @@ static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
// as having cost of 2 total, and if they are a vector intrinsic, we model
// them as having cost 1.
if (const CallInst *CI = dyn_cast<CallInst>(I)) {
- if (!isa<IntrinsicInst>(CI))
+ if (CI->hasFnAttr(Attribute::NoDuplicate))
+ // Blocks with NoDuplicate are modelled as having infinite cost, so they
+ // are never duplicated.
+ return ~0U;
+ else if (!isa<IntrinsicInst>(CI))
Size += 3;
else if (!CI->getType()->isVectorTy())
Size += 1;
@@ -1337,7 +1346,7 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB,
return false;
}
- unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
+ unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, Threshold);
if (JumpThreadCost > Threshold) {
DEBUG(dbgs() << " Not threading BB '" << BB->getName()
<< "' - Cost is too high: " << JumpThreadCost << "\n");
@@ -1481,7 +1490,7 @@ bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
return false;
}
- unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
+ unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, Threshold);
if (DuplicationCost > Threshold) {
DEBUG(dbgs() << " Not duplicating BB '" << BB->getName()
<< "' - Cost is too high: " << DuplicationCost << "\n");
diff --git a/contrib/llvm/lib/Transforms/Scalar/LICM.cpp b/contrib/llvm/lib/Transforms/Scalar/LICM.cpp
index 4818437..f94cd2a 100644
--- a/contrib/llvm/lib/Transforms/Scalar/LICM.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/LICM.cpp
@@ -32,27 +32,28 @@
#define DEBUG_TYPE "licm"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Instructions.h"
-#include "llvm/LLVMContext.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AliasSetTracker.h"
#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
-#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Transforms/Utils/SSAUpdater.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Target/TargetLibraryInfo.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/Debug.h"
-#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetLibraryInfo.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/SSAUpdater.h"
#include <algorithm>
using namespace llvm;
@@ -90,6 +91,8 @@ namespace {
AU.addRequired<TargetLibraryInfo>();
}
+ using llvm::Pass::doFinalization;
+
bool doFinalization() {
assert(LoopToAliasSetMap.empty() && "Didn't free loop alias sets");
return false;
@@ -437,13 +440,12 @@ bool LICM::canSinkOrHoistInst(Instruction &I) {
}
// Only these instructions are hoistable/sinkable.
- bool HoistableKind = (isa<BinaryOperator>(I) || isa<CastInst>(I) ||
- isa<SelectInst>(I) || isa<GetElementPtrInst>(I) ||
- isa<CmpInst>(I) || isa<InsertElementInst>(I) ||
- isa<ExtractElementInst>(I) ||
- isa<ShuffleVectorInst>(I));
- if (!HoistableKind)
- return false;
+ if (!isa<BinaryOperator>(I) && !isa<CastInst>(I) && !isa<SelectInst>(I) &&
+ !isa<GetElementPtrInst>(I) && !isa<CmpInst>(I) &&
+ !isa<InsertElementInst>(I) && !isa<ExtractElementInst>(I) &&
+ !isa<ShuffleVectorInst>(I) && !isa<ExtractValueInst>(I) &&
+ !isa<InsertValueInst>(I))
+ return false;
return isSafeToExecuteUnconditionally(I);
}
@@ -663,16 +665,18 @@ namespace {
AliasSetTracker &AST;
DebugLoc DL;
int Alignment;
+ MDNode *TBAATag;
public:
LoopPromoter(Value *SP,
const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
SmallPtrSet<Value*, 4> &PMA,
SmallVectorImpl<BasicBlock*> &LEB,
SmallVectorImpl<Instruction*> &LIP,
- AliasSetTracker &ast, DebugLoc dl, int alignment)
+ AliasSetTracker &ast, DebugLoc dl, int alignment,
+ MDNode *TBAATag)
: LoadAndStorePromoter(Insts, S), SomePtr(SP),
PointerMustAliases(PMA), LoopExitBlocks(LEB), LoopInsertPts(LIP),
- AST(ast), DL(dl), Alignment(alignment) {}
+ AST(ast), DL(dl), Alignment(alignment), TBAATag(TBAATag) {}
virtual bool isInstInList(Instruction *I,
const SmallVectorImpl<Instruction*> &) const {
@@ -696,6 +700,7 @@ namespace {
StoreInst *NewSI = new StoreInst(LiveInValue, SomePtr, InsertPos);
NewSI->setAlignment(Alignment);
NewSI->setDebugLoc(DL);
+ if (TBAATag) NewSI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
}
}
@@ -749,10 +754,11 @@ void LICM::PromoteAliasSet(AliasSet &AS,
// We start with an alignment of one and try to find instructions that allow
// us to prove better alignment.
unsigned Alignment = 1;
+ MDNode *TBAATag = 0;
// Check that all of the pointers in the alias set have the same type. We
// cannot (yet) promote a memory location that is loaded and stored in
- // different sizes.
+ // different sizes. While we are at it, collect alignment and TBAA info.
for (AliasSet::iterator ASI = AS.begin(), E = AS.end(); ASI != E; ++ASI) {
Value *ASIV = ASI->getValue();
PointerMustAliases.insert(ASIV);
@@ -794,8 +800,7 @@ void LICM::PromoteAliasSet(AliasSet &AS,
// instruction will be executed, update the alignment.
// Larger is better, with the exception of 0 being the best alignment.
unsigned InstAlignment = store->getAlignment();
- if ((InstAlignment > Alignment || InstAlignment == 0)
- && (Alignment != 0))
+ if ((InstAlignment > Alignment || InstAlignment == 0) && Alignment != 0)
if (isGuaranteedToExecute(*Use)) {
GuaranteedToExecute = true;
Alignment = InstAlignment;
@@ -807,6 +812,15 @@ void LICM::PromoteAliasSet(AliasSet &AS,
} else
return; // Not a load or store.
+ // Merge the TBAA tags.
+ if (LoopUses.empty()) {
+ // On the first load/store, just take its TBAA tag.
+ TBAATag = Use->getMetadata(LLVMContext::MD_tbaa);
+ } else if (TBAATag) {
+ TBAATag = MDNode::getMostGenericTBAA(TBAATag,
+ Use->getMetadata(LLVMContext::MD_tbaa));
+ }
+
LoopUses.push_back(Use);
}
}
@@ -839,7 +853,7 @@ void LICM::PromoteAliasSet(AliasSet &AS,
SmallVector<PHINode*, 16> NewPHIs;
SSAUpdater SSA(&NewPHIs);
LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
- InsertPts, *CurAST, DL, Alignment);
+ InsertPts, *CurAST, DL, Alignment, TBAATag);
// Set up the preheader to have a definition of the value. It is the live-out
// value from the preheader that uses in the loop will use.
@@ -848,6 +862,7 @@ void LICM::PromoteAliasSet(AliasSet &AS,
Preheader->getTerminator());
PreheaderLoad->setAlignment(Alignment);
PreheaderLoad->setDebugLoc(DL);
+ if (TBAATag) PreheaderLoad->setMetadata(LLVMContext::MD_tbaa, TBAATag);
SSA.AddAvailableValue(Preheader, PreheaderLoad);
// Rewrite all the loads in the loop and remember all the definitions from
diff --git a/contrib/llvm/lib/Transforms/Scalar/LoopDeletion.cpp b/contrib/llvm/lib/Transforms/Scalar/LoopDeletion.cpp
index 3771f5a..0b62050 100644
--- a/contrib/llvm/lib/Transforms/Scalar/LoopDeletion.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/LoopDeletion.cpp
@@ -16,11 +16,11 @@
#define DEBUG_TYPE "loop-delete"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Analysis/LoopPass.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
+#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/SmallVector.h"
using namespace llvm;
STATISTIC(NumDeleted, "Number of loops deleted");
@@ -34,13 +34,9 @@ namespace {
}
// Possibly eliminate loop L if it is dead.
- bool runOnLoop(Loop* L, LPPassManager& LPM);
+ bool runOnLoop(Loop *L, LPPassManager &LPM);
- bool IsLoopDead(Loop* L, SmallVector<BasicBlock*, 4>& exitingBlocks,
- SmallVector<BasicBlock*, 4>& exitBlocks,
- bool &Changed, BasicBlock *Preheader);
-
- virtual void getAnalysisUsage(AnalysisUsage& AU) const {
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<DominatorTree>();
AU.addRequired<LoopInfo>();
AU.addRequired<ScalarEvolution>();
@@ -53,6 +49,12 @@ namespace {
AU.addPreservedID(LoopSimplifyID);
AU.addPreservedID(LCSSAID);
}
+
+ private:
+ bool isLoopDead(Loop *L, SmallVector<BasicBlock*, 4> &exitingBlocks,
+ SmallVector<BasicBlock*, 4> &exitBlocks,
+ bool &Changed, BasicBlock *Preheader);
+
};
}
@@ -67,18 +69,18 @@ INITIALIZE_PASS_DEPENDENCY(LCSSA)
INITIALIZE_PASS_END(LoopDeletion, "loop-deletion",
"Delete dead loops", false, false)
-Pass* llvm::createLoopDeletionPass() {
+Pass *llvm::createLoopDeletionPass() {
return new LoopDeletion();
}
-/// IsLoopDead - Determined if a loop is dead. This assumes that we've already
+/// isLoopDead - Determined if a loop is dead. This assumes that we've already
/// checked for unique exit and exiting blocks, and that the code is in LCSSA
/// form.
-bool LoopDeletion::IsLoopDead(Loop* L,
- SmallVector<BasicBlock*, 4>& exitingBlocks,
- SmallVector<BasicBlock*, 4>& exitBlocks,
+bool LoopDeletion::isLoopDead(Loop *L,
+ SmallVector<BasicBlock*, 4> &exitingBlocks,
+ SmallVector<BasicBlock*, 4> &exitBlocks,
bool &Changed, BasicBlock *Preheader) {
- BasicBlock* exitBlock = exitBlocks[0];
+ BasicBlock *exitBlock = exitBlocks[0];
// Make sure that all PHI entries coming from the loop are loop invariant.
// Because the code is in LCSSA form, any values used outside of the loop
@@ -86,19 +88,19 @@ bool LoopDeletion::IsLoopDead(Loop* L,
// sufficient to guarantee that no loop-variant values are used outside
// of the loop.
BasicBlock::iterator BI = exitBlock->begin();
- while (PHINode* P = dyn_cast<PHINode>(BI)) {
- Value* incoming = P->getIncomingValueForBlock(exitingBlocks[0]);
+ while (PHINode *P = dyn_cast<PHINode>(BI)) {
+ Value *incoming = P->getIncomingValueForBlock(exitingBlocks[0]);
// Make sure all exiting blocks produce the same incoming value for the exit
// block. If there are different incoming values for different exiting
// blocks, then it is impossible to statically determine which value should
// be used.
- for (unsigned i = 1; i < exitingBlocks.size(); ++i) {
+ for (unsigned i = 1, e = exitingBlocks.size(); i < e; ++i) {
if (incoming != P->getIncomingValueForBlock(exitingBlocks[i]))
return false;
}
- if (Instruction* I = dyn_cast<Instruction>(incoming))
+ if (Instruction *I = dyn_cast<Instruction>(incoming))
if (!L->makeLoopInvariant(I, Changed, Preheader->getTerminator()))
return false;
@@ -127,10 +129,10 @@ bool LoopDeletion::IsLoopDead(Loop* L,
/// so could change the halting/non-halting nature of a program.
/// NOTE: This entire process relies pretty heavily on LoopSimplify and LCSSA
/// in order to make various safety checks work.
-bool LoopDeletion::runOnLoop(Loop* L, LPPassManager& LPM) {
+bool LoopDeletion::runOnLoop(Loop *L, LPPassManager &LPM) {
// We can only remove the loop if there is a preheader that we can
// branch from after removing it.
- BasicBlock* preheader = L->getLoopPreheader();
+ BasicBlock *preheader = L->getLoopPreheader();
if (!preheader)
return false;
@@ -158,19 +160,19 @@ bool LoopDeletion::runOnLoop(Loop* L, LPPassManager& LPM) {
// Finally, we have to check that the loop really is dead.
bool Changed = false;
- if (!IsLoopDead(L, exitingBlocks, exitBlocks, Changed, preheader))
+ if (!isLoopDead(L, exitingBlocks, exitBlocks, Changed, preheader))
return Changed;
// Don't remove loops for which we can't solve the trip count.
// They could be infinite, in which case we'd be changing program behavior.
- ScalarEvolution& SE = getAnalysis<ScalarEvolution>();
+ ScalarEvolution &SE = getAnalysis<ScalarEvolution>();
const SCEV *S = SE.getMaxBackedgeTakenCount(L);
if (isa<SCEVCouldNotCompute>(S))
return Changed;
// Now that we know the removal is safe, remove the loop by changing the
// branch from the preheader to go to the single exit block.
- BasicBlock* exitBlock = exitBlocks[0];
+ BasicBlock *exitBlock = exitBlocks[0];
// Because we're deleting a large chunk of code at once, the sequence in which
// we remove things is very important to avoid invalidation issues. Don't
@@ -182,14 +184,14 @@ bool LoopDeletion::runOnLoop(Loop* L, LPPassManager& LPM) {
SE.forgetLoop(L);
// Connect the preheader directly to the exit block.
- TerminatorInst* TI = preheader->getTerminator();
+ TerminatorInst *TI = preheader->getTerminator();
TI->replaceUsesOfWith(L->getHeader(), exitBlock);
// Rewrite phis in the exit block to get their inputs from
// the preheader instead of the exiting block.
- BasicBlock* exitingBlock = exitingBlocks[0];
+ BasicBlock *exitingBlock = exitingBlocks[0];
BasicBlock::iterator BI = exitBlock->begin();
- while (PHINode* P = dyn_cast<PHINode>(BI)) {
+ while (PHINode *P = dyn_cast<PHINode>(BI)) {
int j = P->getBasicBlockIndex(exitingBlock);
assert(j >= 0 && "Can't find exiting block in exit block's phi node!");
P->setIncomingBlock(j, preheader);
@@ -200,7 +202,7 @@ bool LoopDeletion::runOnLoop(Loop* L, LPPassManager& LPM) {
// Update the dominator tree and remove the instructions and blocks that will
// be deleted from the reference counting scheme.
- DominatorTree& DT = getAnalysis<DominatorTree>();
+ DominatorTree &DT = getAnalysis<DominatorTree>();
SmallVector<DomTreeNode*, 8> ChildNodes;
for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
LI != LE; ++LI) {
@@ -230,7 +232,7 @@ bool LoopDeletion::runOnLoop(Loop* L, LPPassManager& LPM) {
// Finally, the blocks from loopinfo. This has to happen late because
// otherwise our loop iterators won't work.
- LoopInfo& loopInfo = getAnalysis<LoopInfo>();
+ LoopInfo &loopInfo = getAnalysis<LoopInfo>();
SmallPtrSet<BasicBlock*, 8> blocks;
blocks.insert(L->block_begin(), L->block_end());
for (SmallPtrSet<BasicBlock*,8>::iterator I = blocks.begin(),
diff --git a/contrib/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp b/contrib/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
index a44e798..8258719 100644
--- a/contrib/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
@@ -43,18 +43,19 @@
#define DEBUG_TYPE "loop-idiom"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Module.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/DataLayout.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
@@ -63,16 +64,83 @@ STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
namespace {
+
+ class LoopIdiomRecognize;
+
+ /// This class defines some utility functions for loop idiom recognization.
+ class LIRUtil {
+ public:
+ /// Return true iff the block contains nothing but an uncondition branch
+ /// (aka goto instruction).
+ static bool isAlmostEmpty(BasicBlock *);
+
+ static BranchInst *getBranch(BasicBlock *BB) {
+ return dyn_cast<BranchInst>(BB->getTerminator());
+ }
+
+ /// Return the condition of the branch terminating the given basic block.
+ static Value *getBrCondtion(BasicBlock *);
+
+ /// Derive the precondition block (i.e the block that guards the loop
+ /// preheader) from the given preheader.
+ static BasicBlock *getPrecondBb(BasicBlock *PreHead);
+ };
+
+ /// This class is to recoginize idioms of population-count conducted in
+ /// a noncountable loop. Currently it only recognizes this pattern:
+ /// \code
+ /// while(x) {cnt++; ...; x &= x - 1; ...}
+ /// \endcode
+ class NclPopcountRecognize {
+ LoopIdiomRecognize &LIR;
+ Loop *CurLoop;
+ BasicBlock *PreCondBB;
+
+ typedef IRBuilder<> IRBuilderTy;
+
+ public:
+ explicit NclPopcountRecognize(LoopIdiomRecognize &TheLIR);
+ bool recognize();
+
+ private:
+ /// Take a glimpse of the loop to see if we need to go ahead recoginizing
+ /// the idiom.
+ bool preliminaryScreen();
+
+ /// Check if the given conditional branch is based on the comparison
+ /// beween a variable and zero, and if the variable is non-zero, the
+ /// control yeilds to the loop entry. If the branch matches the behavior,
+ /// the variable involved in the comparion is returned. This function will
+ /// be called to see if the precondition and postcondition of the loop
+ /// are in desirable form.
+ Value *matchCondition (BranchInst *Br, BasicBlock *NonZeroTarget) const;
+
+ /// Return true iff the idiom is detected in the loop. and 1) \p CntInst
+ /// is set to the instruction counting the pupulation bit. 2) \p CntPhi
+ /// is set to the corresponding phi node. 3) \p Var is set to the value
+ /// whose population bits are being counted.
+ bool detectIdiom
+ (Instruction *&CntInst, PHINode *&CntPhi, Value *&Var) const;
+
+ /// Insert ctpop intrinsic function and some obviously dead instructions.
+ void transform (Instruction *CntInst, PHINode *CntPhi, Value *Var);
+
+ /// Create llvm.ctpop.* intrinsic function.
+ CallInst *createPopcntIntrinsic(IRBuilderTy &IRB, Value *Val, DebugLoc DL);
+ };
+
class LoopIdiomRecognize : public LoopPass {
Loop *CurLoop;
const DataLayout *TD;
DominatorTree *DT;
ScalarEvolution *SE;
TargetLibraryInfo *TLI;
+ const TargetTransformInfo *TTI;
public:
static char ID;
explicit LoopIdiomRecognize() : LoopPass(ID) {
initializeLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
+ TD = 0; DT = 0; SE = 0; TLI = 0; TTI = 0;
}
bool runOnLoop(Loop *L, LPPassManager &LPM);
@@ -109,7 +177,34 @@ namespace {
AU.addPreserved<DominatorTree>();
AU.addRequired<DominatorTree>();
AU.addRequired<TargetLibraryInfo>();
+ AU.addRequired<TargetTransformInfo>();
+ }
+
+ const DataLayout *getDataLayout() {
+ return TD ? TD : TD=getAnalysisIfAvailable<DataLayout>();
+ }
+
+ DominatorTree *getDominatorTree() {
+ return DT ? DT : (DT=&getAnalysis<DominatorTree>());
+ }
+
+ ScalarEvolution *getScalarEvolution() {
+ return SE ? SE : (SE = &getAnalysis<ScalarEvolution>());
}
+
+ TargetLibraryInfo *getTargetLibraryInfo() {
+ return TLI ? TLI : (TLI = &getAnalysis<TargetLibraryInfo>());
+ }
+
+ const TargetTransformInfo *getTargetTransformInfo() {
+ return TTI ? TTI : (TTI = &getAnalysis<TargetTransformInfo>());
+ }
+
+ Loop *getLoop() const { return CurLoop; }
+
+ private:
+ bool runOnNoncountableLoop();
+ bool runOnCountableLoop();
};
}
@@ -123,6 +218,7 @@ INITIALIZE_PASS_DEPENDENCY(LCSSA)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
INITIALIZE_PASS_END(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
false, false)
@@ -172,24 +268,393 @@ static void deleteIfDeadInstruction(Value *V, ScalarEvolution &SE,
deleteDeadInstruction(I, SE, TLI);
}
-bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
- CurLoop = L;
+//===----------------------------------------------------------------------===//
+//
+// Implementation of LIRUtil
+//
+//===----------------------------------------------------------------------===//
- // If the loop could not be converted to canonical form, it must have an
- // indirectbr in it, just give up.
- if (!L->getLoopPreheader())
+// This fucntion will return true iff the given block contains nothing but goto.
+// A typical usage of this function is to check if the preheader fucntion is
+// "almost" empty such that generated intrinsic function can be moved across
+// preheader and to be placed at the end of the preconditiona block without
+// concerning of breaking data dependence.
+bool LIRUtil::isAlmostEmpty(BasicBlock *BB) {
+ if (BranchInst *Br = getBranch(BB)) {
+ return Br->isUnconditional() && BB->size() == 1;
+ }
+ return false;
+}
+
+Value *LIRUtil::getBrCondtion(BasicBlock *BB) {
+ BranchInst *Br = getBranch(BB);
+ return Br ? Br->getCondition() : 0;
+}
+
+BasicBlock *LIRUtil::getPrecondBb(BasicBlock *PreHead) {
+ if (BasicBlock *BB = PreHead->getSinglePredecessor()) {
+ BranchInst *Br = getBranch(BB);
+ return Br && Br->isConditional() ? BB : 0;
+ }
+ return 0;
+}
+
+//===----------------------------------------------------------------------===//
+//
+// Implementation of NclPopcountRecognize
+//
+//===----------------------------------------------------------------------===//
+
+NclPopcountRecognize::NclPopcountRecognize(LoopIdiomRecognize &TheLIR):
+ LIR(TheLIR), CurLoop(TheLIR.getLoop()), PreCondBB(0) {
+}
+
+bool NclPopcountRecognize::preliminaryScreen() {
+ const TargetTransformInfo *TTI = LIR.getTargetTransformInfo();
+ if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
return false;
- // Disable loop idiom recognition if the function's name is a common idiom.
- StringRef Name = L->getHeader()->getParent()->getName();
- if (Name == "memset" || Name == "memcpy")
+ // Counting population are usually conducted by few arithmetic instrutions.
+ // Such instructions can be easilly "absorbed" by vacant slots in a
+ // non-compact loop. Therefore, recognizing popcount idiom only makes sense
+ // in a compact loop.
+
+ // Give up if the loop has multiple blocks or multiple backedges.
+ if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
return false;
- // The trip count of the loop must be analyzable.
- SE = &getAnalysis<ScalarEvolution>();
- if (!SE->hasLoopInvariantBackedgeTakenCount(L))
+ BasicBlock *LoopBody = *(CurLoop->block_begin());
+ if (LoopBody->size() >= 20) {
+ // The loop is too big, bail out.
+ return false;
+ }
+
+ // It should have a preheader containing nothing but a goto instruction.
+ BasicBlock *PreHead = CurLoop->getLoopPreheader();
+ if (!PreHead || !LIRUtil::isAlmostEmpty(PreHead))
+ return false;
+
+ // It should have a precondition block where the generated popcount instrinsic
+ // function will be inserted.
+ PreCondBB = LIRUtil::getPrecondBb(PreHead);
+ if (!PreCondBB)
+ return false;
+
+ return true;
+}
+
+Value *NclPopcountRecognize::matchCondition (BranchInst *Br,
+ BasicBlock *LoopEntry) const {
+ if (!Br || !Br->isConditional())
+ return 0;
+
+ ICmpInst *Cond = dyn_cast<ICmpInst>(Br->getCondition());
+ if (!Cond)
+ return 0;
+
+ ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
+ if (!CmpZero || !CmpZero->isZero())
+ return 0;
+
+ ICmpInst::Predicate Pred = Cond->getPredicate();
+ if ((Pred == ICmpInst::ICMP_NE && Br->getSuccessor(0) == LoopEntry) ||
+ (Pred == ICmpInst::ICMP_EQ && Br->getSuccessor(1) == LoopEntry))
+ return Cond->getOperand(0);
+
+ return 0;
+}
+
+bool NclPopcountRecognize::detectIdiom(Instruction *&CntInst,
+ PHINode *&CntPhi,
+ Value *&Var) const {
+ // Following code tries to detect this idiom:
+ //
+ // if (x0 != 0)
+ // goto loop-exit // the precondition of the loop
+ // cnt0 = init-val;
+ // do {
+ // x1 = phi (x0, x2);
+ // cnt1 = phi(cnt0, cnt2);
+ //
+ // cnt2 = cnt1 + 1;
+ // ...
+ // x2 = x1 & (x1 - 1);
+ // ...
+ // } while(x != 0);
+ //
+ // loop-exit:
+ //
+
+ // step 1: Check to see if the look-back branch match this pattern:
+ // "if (a!=0) goto loop-entry".
+ BasicBlock *LoopEntry;
+ Instruction *DefX2, *CountInst;
+ Value *VarX1, *VarX0;
+ PHINode *PhiX, *CountPhi;
+
+ DefX2 = CountInst = 0;
+ VarX1 = VarX0 = 0;
+ PhiX = CountPhi = 0;
+ LoopEntry = *(CurLoop->block_begin());
+
+ // step 1: Check if the loop-back branch is in desirable form.
+ {
+ if (Value *T = matchCondition (LIRUtil::getBranch(LoopEntry), LoopEntry))
+ DefX2 = dyn_cast<Instruction>(T);
+ else
+ return false;
+ }
+
+ // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
+ {
+ if (!DefX2 || DefX2->getOpcode() != Instruction::And)
+ return false;
+
+ BinaryOperator *SubOneOp;
+
+ if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
+ VarX1 = DefX2->getOperand(1);
+ else {
+ VarX1 = DefX2->getOperand(0);
+ SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
+ }
+ if (!SubOneOp)
+ return false;
+
+ Instruction *SubInst = cast<Instruction>(SubOneOp);
+ ConstantInt *Dec = dyn_cast<ConstantInt>(SubInst->getOperand(1));
+ if (!Dec ||
+ !((SubInst->getOpcode() == Instruction::Sub && Dec->isOne()) ||
+ (SubInst->getOpcode() == Instruction::Add && Dec->isAllOnesValue()))) {
+ return false;
+ }
+ }
+
+ // step 3: Check the recurrence of variable X
+ {
+ PhiX = dyn_cast<PHINode>(VarX1);
+ if (!PhiX ||
+ (PhiX->getOperand(0) != DefX2 && PhiX->getOperand(1) != DefX2)) {
+ return false;
+ }
+ }
+
+ // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
+ {
+ CountInst = NULL;
+ for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI(),
+ IterE = LoopEntry->end(); Iter != IterE; Iter++) {
+ Instruction *Inst = Iter;
+ if (Inst->getOpcode() != Instruction::Add)
+ continue;
+
+ ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
+ if (!Inc || !Inc->isOne())
+ continue;
+
+ PHINode *Phi = dyn_cast<PHINode>(Inst->getOperand(0));
+ if (!Phi || Phi->getParent() != LoopEntry)
+ continue;
+
+ // Check if the result of the instruction is live of the loop.
+ bool LiveOutLoop = false;
+ for (Value::use_iterator I = Inst->use_begin(), E = Inst->use_end();
+ I != E; I++) {
+ if ((cast<Instruction>(*I))->getParent() != LoopEntry) {
+ LiveOutLoop = true; break;
+ }
+ }
+
+ if (LiveOutLoop) {
+ CountInst = Inst;
+ CountPhi = Phi;
+ break;
+ }
+ }
+
+ if (!CountInst)
+ return false;
+ }
+
+ // step 5: check if the precondition is in this form:
+ // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
+ {
+ BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB);
+ Value *T = matchCondition (PreCondBr, CurLoop->getLoopPreheader());
+ if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
+ return false;
+
+ CntInst = CountInst;
+ CntPhi = CountPhi;
+ Var = T;
+ }
+
+ return true;
+}
+
+void NclPopcountRecognize::transform(Instruction *CntInst,
+ PHINode *CntPhi, Value *Var) {
+
+ ScalarEvolution *SE = LIR.getScalarEvolution();
+ TargetLibraryInfo *TLI = LIR.getTargetLibraryInfo();
+ BasicBlock *PreHead = CurLoop->getLoopPreheader();
+ BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB);
+ const DebugLoc DL = CntInst->getDebugLoc();
+
+ // Assuming before transformation, the loop is following:
+ // if (x) // the precondition
+ // do { cnt++; x &= x - 1; } while(x);
+
+ // Step 1: Insert the ctpop instruction at the end of the precondition block
+ IRBuilderTy Builder(PreCondBr);
+ Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
+ {
+ PopCnt = createPopcntIntrinsic(Builder, Var, DL);
+ NewCount = PopCntZext =
+ Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
+
+ if (NewCount != PopCnt)
+ (cast<Instruction>(NewCount))->setDebugLoc(DL);
+
+ // TripCnt is exactly the number of iterations the loop has
+ TripCnt = NewCount;
+
+ // If the popoulation counter's initial value is not zero, insert Add Inst.
+ Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
+ ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
+ if (!InitConst || !InitConst->isZero()) {
+ NewCount = Builder.CreateAdd(NewCount, CntInitVal);
+ (cast<Instruction>(NewCount))->setDebugLoc(DL);
+ }
+ }
+
+ // Step 2: Replace the precondition from "if(x == 0) goto loop-exit" to
+ // "if(NewCount == 0) loop-exit". Withtout this change, the intrinsic
+ // function would be partial dead code, and downstream passes will drag
+ // it back from the precondition block to the preheader.
+ {
+ ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
+
+ Value *Opnd0 = PopCntZext;
+ Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
+ if (PreCond->getOperand(0) != Var)
+ std::swap(Opnd0, Opnd1);
+
+ ICmpInst *NewPreCond =
+ cast<ICmpInst>(Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
+ PreCond->replaceAllUsesWith(NewPreCond);
+
+ deleteDeadInstruction(PreCond, *SE, TLI);
+ }
+
+ // Step 3: Note that the population count is exactly the trip count of the
+ // loop in question, which enble us to to convert the loop from noncountable
+ // loop into a countable one. The benefit is twofold:
+ //
+ // - If the loop only counts population, the entire loop become dead after
+ // the transformation. It is lots easier to prove a countable loop dead
+ // than to prove a noncountable one. (In some C dialects, a infite loop
+ // isn't dead even if it computes nothing useful. In general, DCE needs
+ // to prove a noncountable loop finite before safely delete it.)
+ //
+ // - If the loop also performs something else, it remains alive.
+ // Since it is transformed to countable form, it can be aggressively
+ // optimized by some optimizations which are in general not applicable
+ // to a noncountable loop.
+ //
+ // After this step, this loop (conceptually) would look like following:
+ // newcnt = __builtin_ctpop(x);
+ // t = newcnt;
+ // if (x)
+ // do { cnt++; x &= x-1; t--) } while (t > 0);
+ BasicBlock *Body = *(CurLoop->block_begin());
+ {
+ BranchInst *LbBr = LIRUtil::getBranch(Body);
+ ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
+ Type *Ty = TripCnt->getType();
+
+ PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", Body->begin());
+
+ Builder.SetInsertPoint(LbCond);
+ Value *Opnd1 = cast<Value>(TcPhi);
+ Value *Opnd2 = cast<Value>(ConstantInt::get(Ty, 1));
+ Instruction *TcDec =
+ cast<Instruction>(Builder.CreateSub(Opnd1, Opnd2, "tcdec", false, true));
+
+ TcPhi->addIncoming(TripCnt, PreHead);
+ TcPhi->addIncoming(TcDec, Body);
+
+ CmpInst::Predicate Pred = (LbBr->getSuccessor(0) == Body) ?
+ CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
+ LbCond->setPredicate(Pred);
+ LbCond->setOperand(0, TcDec);
+ LbCond->setOperand(1, cast<Value>(ConstantInt::get(Ty, 0)));
+ }
+
+ // Step 4: All the references to the original population counter outside
+ // the loop are replaced with the NewCount -- the value returned from
+ // __builtin_ctpop().
+ {
+ SmallVector<Value *, 4> CntUses;
+ for (Value::use_iterator I = CntInst->use_begin(), E = CntInst->use_end();
+ I != E; I++) {
+ if (cast<Instruction>(*I)->getParent() != Body)
+ CntUses.push_back(*I);
+ }
+ for (unsigned Idx = 0; Idx < CntUses.size(); Idx++) {
+ (cast<Instruction>(CntUses[Idx]))->replaceUsesOfWith(CntInst, NewCount);
+ }
+ }
+
+ // step 5: Forget the "non-computable" trip-count SCEV associated with the
+ // loop. The loop would otherwise not be deleted even if it becomes empty.
+ SE->forgetLoop(CurLoop);
+}
+
+CallInst *NclPopcountRecognize::createPopcntIntrinsic(IRBuilderTy &IRBuilder,
+ Value *Val, DebugLoc DL) {
+ Value *Ops[] = { Val };
+ Type *Tys[] = { Val->getType() };
+
+ Module *M = (*(CurLoop->block_begin()))->getParent()->getParent();
+ Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
+ CallInst *CI = IRBuilder.CreateCall(Func, Ops);
+ CI->setDebugLoc(DL);
+
+ return CI;
+}
+
+/// recognize - detect population count idiom in a non-countable loop. If
+/// detected, transform the relevant code to popcount intrinsic function
+/// call, and return true; otherwise, return false.
+bool NclPopcountRecognize::recognize() {
+
+ if (!LIR.getTargetTransformInfo())
+ return false;
+
+ LIR.getScalarEvolution();
+
+ if (!preliminaryScreen())
return false;
- const SCEV *BECount = SE->getBackedgeTakenCount(L);
+
+ Instruction *CntInst;
+ PHINode *CntPhi;
+ Value *Val;
+ if (!detectIdiom(CntInst, CntPhi, Val))
+ return false;
+
+ transform(CntInst, CntPhi, Val);
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+//
+// Implementation of LoopIdiomRecognize
+//
+//===----------------------------------------------------------------------===//
+
+bool LoopIdiomRecognize::runOnCountableLoop() {
+ const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
if (isa<SCEVCouldNotCompute>(BECount)) return false;
// If this loop executes exactly one time, then it should be peeled, not
@@ -199,24 +664,29 @@ bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
return false;
// We require target data for now.
- TD = getAnalysisIfAvailable<DataLayout>();
- if (TD == 0) return false;
+ if (!getDataLayout())
+ return false;
+
+ // set DT
+ (void)getDominatorTree();
- DT = &getAnalysis<DominatorTree>();
LoopInfo &LI = getAnalysis<LoopInfo>();
TLI = &getAnalysis<TargetLibraryInfo>();
+ // set TLI
+ (void)getTargetLibraryInfo();
+
SmallVector<BasicBlock*, 8> ExitBlocks;
CurLoop->getUniqueExitBlocks(ExitBlocks);
DEBUG(dbgs() << "loop-idiom Scanning: F["
- << L->getHeader()->getParent()->getName()
- << "] Loop %" << L->getHeader()->getName() << "\n");
+ << CurLoop->getHeader()->getParent()->getName()
+ << "] Loop %" << CurLoop->getHeader()->getName() << "\n");
bool MadeChange = false;
// Scan all the blocks in the loop that are not in subloops.
- for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
- ++BI) {
+ for (Loop::block_iterator BI = CurLoop->block_begin(),
+ E = CurLoop->block_end(); BI != E; ++BI) {
// Ignore blocks in subloops.
if (LI.getLoopFor(*BI) != CurLoop)
continue;
@@ -226,6 +696,33 @@ bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
return MadeChange;
}
+bool LoopIdiomRecognize::runOnNoncountableLoop() {
+ NclPopcountRecognize Popcount(*this);
+ if (Popcount.recognize())
+ return true;
+
+ return false;
+}
+
+bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
+ CurLoop = L;
+
+ // If the loop could not be converted to canonical form, it must have an
+ // indirectbr in it, just give up.
+ if (!L->getLoopPreheader())
+ return false;
+
+ // Disable loop idiom recognition if the function's name is a common idiom.
+ StringRef Name = L->getHeader()->getParent()->getName();
+ if (Name == "memset" || Name == "memcpy")
+ return false;
+
+ SE = &getAnalysis<ScalarEvolution>();
+ if (SE->hasLoopInvariantBackedgeTakenCount(L))
+ return runOnCountableLoop();
+ return runOnNoncountableLoop();
+}
+
/// runOnLoopBlock - Process the specified block, which lives in a counted loop
/// with the specified backedge count. This block is known to be in the current
/// loop and not in any subloops.
diff --git a/contrib/llvm/lib/Transforms/Scalar/LoopInstSimplify.cpp b/contrib/llvm/lib/Transforms/Scalar/LoopInstSimplify.cpp
index 558f62e..a23860a 100644
--- a/contrib/llvm/lib/Transforms/Scalar/LoopInstSimplify.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/LoopInstSimplify.cpp
@@ -12,17 +12,18 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "loop-instsimplify"
-#include "llvm/Instructions.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Instructions.h"
#include "llvm/Support/Debug.h"
-#include "llvm/DataLayout.h"
#include "llvm/Target/TargetLibraryInfo.h"
-#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/ADT/Statistic.h"
using namespace llvm;
STATISTIC(NumSimplified, "Number of redundant instructions simplified");
diff --git a/contrib/llvm/lib/Transforms/Scalar/LoopRotation.cpp b/contrib/llvm/lib/Transforms/Scalar/LoopRotation.cpp
index abe07aa..e98ae95 100644
--- a/contrib/llvm/lib/Transforms/Scalar/LoopRotation.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/LoopRotation.cpp
@@ -13,20 +13,21 @@
#define DEBUG_TYPE "loop-rotate"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Function.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/CodeMetrics.h"
-#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
-#include "llvm/Support/CFG.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/ADT/Statistic.h"
using namespace llvm;
#define MAX_HEADER_SIZE 16
@@ -51,6 +52,7 @@ namespace {
AU.addRequiredID(LCSSAID);
AU.addPreservedID(LCSSAID);
AU.addPreserved<ScalarEvolution>();
+ AU.addRequired<TargetTransformInfo>();
}
bool runOnLoop(Loop *L, LPPassManager &LPM);
@@ -59,11 +61,13 @@ namespace {
private:
LoopInfo *LI;
+ const TargetTransformInfo *TTI;
};
}
char LoopRotate::ID = 0;
INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
+INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(LCSSA)
@@ -75,6 +79,7 @@ Pass *llvm::createLoopRotatePass() { return new LoopRotate(); }
/// the loop is rotated at least once.
bool LoopRotate::runOnLoop(Loop *L, LPPassManager &LPM) {
LI = &getAnalysis<LoopInfo>();
+ TTI = &getAnalysis<TargetTransformInfo>();
// Simplify the loop latch before attempting to rotate the header
// upward. Rotation may not be needed if the loop tail can be folded into the
@@ -274,10 +279,16 @@ bool LoopRotate::rotateLoop(Loop *L) {
if (OrigLatch == 0 || L->isLoopExiting(OrigLatch))
return false;
- // Check size of original header and reject loop if it is very big.
+ // Check size of original header and reject loop if it is very big or we can't
+ // duplicate blocks inside it.
{
CodeMetrics Metrics;
- Metrics.analyzeBasicBlock(OrigHeader);
+ Metrics.analyzeBasicBlock(OrigHeader, *TTI);
+ if (Metrics.notDuplicatable) {
+ DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non duplicatable"
+ << " instructions: "; L->dump());
+ return false;
+ }
if (Metrics.NumInsts > MAX_HEADER_SIZE)
return false;
}
diff --git a/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp b/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp
index 958348d..73e44d7 100644
--- a/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp
@@ -37,8 +37,8 @@
//
// TODO: Handle multiple loops at a time.
//
-// TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr
-// instead of a GlobalValue?
+// TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
+// of a GlobalValue?
//
// TODO: When truncation is free, truncate ICmp users' operands to make it a
// smaller encoding (on x86 at least).
@@ -54,27 +54,27 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "loop-reduce"
-#include "llvm/AddressingMode.h"
-#include "llvm/Constants.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Analysis/IVUsers.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallBitVector.h"
+#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/Dominators.h"
+#include "llvm/Analysis/IVUsers.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Assembly/Writer.h"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/ADT/SmallBitVector.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/ADT/DenseSet.h"
-#include "llvm/Support/Debug.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetLowering.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
using namespace llvm;
@@ -224,16 +224,24 @@ namespace {
/// computing satisfying a use. It may include broken-out immediates and scaled
/// registers.
struct Formula {
- /// AM - This is used to represent complex addressing, as well as other kinds
- /// of interesting uses.
- AddrMode AM;
+ /// Global base address used for complex addressing.
+ GlobalValue *BaseGV;
+
+ /// Base offset for complex addressing.
+ int64_t BaseOffset;
+
+ /// Whether any complex addressing has a base register.
+ bool HasBaseReg;
+
+ /// The scale of any complex addressing.
+ int64_t Scale;
/// BaseRegs - The list of "base" registers for this use. When this is
- /// non-empty, AM.HasBaseReg should be set to true.
- SmallVector<const SCEV *, 2> BaseRegs;
+ /// non-empty,
+ SmallVector<const SCEV *, 4> BaseRegs;
/// ScaledReg - The 'scaled' register for this use. This should be non-null
- /// when AM.Scale is not zero.
+ /// when Scale is not zero.
const SCEV *ScaledReg;
/// UnfoldedOffset - An additional constant offset which added near the
@@ -241,7 +249,9 @@ struct Formula {
/// live in an add immediate field rather than a register.
int64_t UnfoldedOffset;
- Formula() : ScaledReg(0), UnfoldedOffset(0) {}
+ Formula()
+ : BaseGV(0), BaseOffset(0), HasBaseReg(false), Scale(0), ScaledReg(0),
+ UnfoldedOffset(0) {}
void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
@@ -327,13 +337,13 @@ void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
const SCEV *Sum = SE.getAddExpr(Good);
if (!Sum->isZero())
BaseRegs.push_back(Sum);
- AM.HasBaseReg = true;
+ HasBaseReg = true;
}
if (!Bad.empty()) {
const SCEV *Sum = SE.getAddExpr(Bad);
if (!Sum->isZero())
BaseRegs.push_back(Sum);
- AM.HasBaseReg = true;
+ HasBaseReg = true;
}
}
@@ -349,7 +359,7 @@ unsigned Formula::getNumRegs() const {
Type *Formula::getType() const {
return !BaseRegs.empty() ? BaseRegs.front()->getType() :
ScaledReg ? ScaledReg->getType() :
- AM.BaseGV ? AM.BaseGV->getType() :
+ BaseGV ? BaseGV->getType() :
0;
}
@@ -382,29 +392,29 @@ bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
void Formula::print(raw_ostream &OS) const {
bool First = true;
- if (AM.BaseGV) {
+ if (BaseGV) {
if (!First) OS << " + "; else First = false;
- WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false);
+ WriteAsOperand(OS, BaseGV, /*PrintType=*/false);
}
- if (AM.BaseOffs != 0) {
+ if (BaseOffset != 0) {
if (!First) OS << " + "; else First = false;
- OS << AM.BaseOffs;
+ OS << BaseOffset;
}
for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
E = BaseRegs.end(); I != E; ++I) {
if (!First) OS << " + "; else First = false;
OS << "reg(" << **I << ')';
}
- if (AM.HasBaseReg && BaseRegs.empty()) {
+ if (HasBaseReg && BaseRegs.empty()) {
if (!First) OS << " + "; else First = false;
OS << "**error: HasBaseReg**";
- } else if (!AM.HasBaseReg && !BaseRegs.empty()) {
+ } else if (!HasBaseReg && !BaseRegs.empty()) {
if (!First) OS << " + "; else First = false;
OS << "**error: !HasBaseReg**";
}
- if (AM.Scale != 0) {
+ if (Scale != 0) {
if (!First) OS << " + "; else First = false;
- OS << AM.Scale << "*reg(";
+ OS << Scale << "*reg(";
if (ScaledReg)
OS << *ScaledReg;
else
@@ -885,7 +895,7 @@ void Cost::RatePrimaryRegister(const SCEV *Reg,
}
if (Regs.insert(Reg)) {
RateRegister(Reg, Regs, L, SE, DT);
- if (isLoser())
+ if (LoserRegs && isLoser())
LoserRegs->insert(Reg);
}
}
@@ -927,8 +937,8 @@ void Cost::RateFormula(const Formula &F,
// Tally up the non-zero immediates.
for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
E = Offsets.end(); I != E; ++I) {
- int64_t Offset = (uint64_t)*I + F.AM.BaseOffs;
- if (F.AM.BaseGV)
+ int64_t Offset = (uint64_t)*I + F.BaseOffset;
+ if (F.BaseGV)
ImmCost += 64; // Handle symbolic values conservatively.
// TODO: This should probably be the pointer size.
else if (Offset != 0)
@@ -1078,19 +1088,19 @@ namespace {
/// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
/// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
struct UniquifierDenseMapInfo {
- static SmallVector<const SCEV *, 2> getEmptyKey() {
- SmallVector<const SCEV *, 2> V;
+ static SmallVector<const SCEV *, 4> getEmptyKey() {
+ SmallVector<const SCEV *, 4> V;
V.push_back(reinterpret_cast<const SCEV *>(-1));
return V;
}
- static SmallVector<const SCEV *, 2> getTombstoneKey() {
- SmallVector<const SCEV *, 2> V;
+ static SmallVector<const SCEV *, 4> getTombstoneKey() {
+ SmallVector<const SCEV *, 4> V;
V.push_back(reinterpret_cast<const SCEV *>(-2));
return V;
}
- static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) {
+ static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
unsigned Result = 0;
for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(),
E = V.end(); I != E; ++I)
@@ -1098,8 +1108,8 @@ struct UniquifierDenseMapInfo {
return Result;
}
- static bool isEqual(const SmallVector<const SCEV *, 2> &LHS,
- const SmallVector<const SCEV *, 2> &RHS) {
+ static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
+ const SmallVector<const SCEV *, 4> &RHS) {
return LHS == RHS;
}
};
@@ -1110,7 +1120,7 @@ struct UniquifierDenseMapInfo {
/// the user itself, and information about how the use may be satisfied.
/// TODO: Represent multiple users of the same expression in common?
class LSRUse {
- DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier;
+ DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
public:
/// KindType - An enum for a kind of use, indicating what types of
@@ -1169,7 +1179,7 @@ public:
/// HasFormula - Test whether this use as a formula which has the same
/// registers as the given formula.
bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
- SmallVector<const SCEV *, 2> Key = F.BaseRegs;
+ SmallVector<const SCEV *, 4> Key = F.BaseRegs;
if (F.ScaledReg) Key.push_back(F.ScaledReg);
// Unstable sort by host order ok, because this is only used for uniquifying.
std::sort(Key.begin(), Key.end());
@@ -1179,7 +1189,7 @@ bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
/// InsertFormula - If the given formula has not yet been inserted, add it to
/// the list, and return true. Return false otherwise.
bool LSRUse::InsertFormula(const Formula &F) {
- SmallVector<const SCEV *, 2> Key = F.BaseRegs;
+ SmallVector<const SCEV *, 4> Key = F.BaseRegs;
if (F.ScaledReg) Key.push_back(F.ScaledReg);
// Unstable sort by host order ok, because this is only used for uniquifying.
std::sort(Key.begin(), Key.end());
@@ -1270,46 +1280,42 @@ void LSRUse::dump() const {
/// isLegalUse - Test whether the use described by AM is "legal", meaning it can
/// be completely folded into the user instruction at isel time. This includes
/// address-mode folding and special icmp tricks.
-static bool isLegalUse(const AddrMode &AM,
- LSRUse::KindType Kind, Type *AccessTy,
- const TargetLowering *TLI) {
+static bool isLegalUse(const TargetTransformInfo &TTI, LSRUse::KindType Kind,
+ Type *AccessTy, GlobalValue *BaseGV, int64_t BaseOffset,
+ bool HasBaseReg, int64_t Scale) {
switch (Kind) {
case LSRUse::Address:
- // If we have low-level target information, ask the target if it can
- // completely fold this address.
- if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy);
+ return TTI.isLegalAddressingMode(AccessTy, BaseGV, BaseOffset, HasBaseReg, Scale);
// Otherwise, just guess that reg+reg addressing is legal.
- return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1;
+ //return ;
case LSRUse::ICmpZero:
// There's not even a target hook for querying whether it would be legal to
// fold a GV into an ICmp.
- if (AM.BaseGV)
+ if (BaseGV)
return false;
// ICmp only has two operands; don't allow more than two non-trivial parts.
- if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0)
+ if (Scale != 0 && HasBaseReg && BaseOffset != 0)
return false;
// ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
// putting the scaled register in the other operand of the icmp.
- if (AM.Scale != 0 && AM.Scale != -1)
+ if (Scale != 0 && Scale != -1)
return false;
// If we have low-level target information, ask the target if it can fold an
// integer immediate on an icmp.
- if (AM.BaseOffs != 0) {
- if (!TLI)
- return false;
+ if (BaseOffset != 0) {
// We have one of:
- // ICmpZero BaseReg + Offset => ICmp BaseReg, -Offset
- // ICmpZero -1*ScaleReg + Offset => ICmp ScaleReg, Offset
+ // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
+ // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
// Offs is the ICmp immediate.
- int64_t Offs = AM.BaseOffs;
- if (AM.Scale == 0)
- Offs = -(uint64_t)Offs; // The cast does the right thing with INT64_MIN.
- return TLI->isLegalICmpImmediate(Offs);
+ if (Scale == 0)
+ // The cast does the right thing with INT64_MIN.
+ BaseOffset = -(uint64_t)BaseOffset;
+ return TTI.isLegalICmpImmediate(BaseOffset);
}
// ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
@@ -1317,92 +1323,87 @@ static bool isLegalUse(const AddrMode &AM,
case LSRUse::Basic:
// Only handle single-register values.
- return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0;
+ return !BaseGV && Scale == 0 && BaseOffset == 0;
case LSRUse::Special:
// Special case Basic to handle -1 scales.
- return !AM.BaseGV && (AM.Scale == 0 || AM.Scale == -1) && AM.BaseOffs == 0;
+ return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
}
llvm_unreachable("Invalid LSRUse Kind!");
}
-static bool isLegalUse(AddrMode AM,
- int64_t MinOffset, int64_t MaxOffset,
- LSRUse::KindType Kind, Type *AccessTy,
- const TargetLowering *TLI) {
+static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
+ int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy,
+ GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg,
+ int64_t Scale) {
// Check for overflow.
- if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) !=
+ if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
(MinOffset > 0))
return false;
- AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset;
- if (isLegalUse(AM, Kind, AccessTy, TLI)) {
- AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset;
- // Check for overflow.
- if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) !=
- (MaxOffset > 0))
- return false;
- AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset;
- return isLegalUse(AM, Kind, AccessTy, TLI);
- }
- return false;
+ MinOffset = (uint64_t)BaseOffset + MinOffset;
+ if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
+ (MaxOffset > 0))
+ return false;
+ MaxOffset = (uint64_t)BaseOffset + MaxOffset;
+
+ return isLegalUse(TTI, Kind, AccessTy, BaseGV, MinOffset, HasBaseReg,
+ Scale) &&
+ isLegalUse(TTI, Kind, AccessTy, BaseGV, MaxOffset, HasBaseReg, Scale);
+}
+
+static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
+ int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy,
+ const Formula &F) {
+ return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
+ F.BaseOffset, F.HasBaseReg, F.Scale);
}
-static bool isAlwaysFoldable(int64_t BaseOffs,
- GlobalValue *BaseGV,
- bool HasBaseReg,
+static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
LSRUse::KindType Kind, Type *AccessTy,
- const TargetLowering *TLI) {
+ GlobalValue *BaseGV, int64_t BaseOffset,
+ bool HasBaseReg) {
// Fast-path: zero is always foldable.
- if (BaseOffs == 0 && !BaseGV) return true;
+ if (BaseOffset == 0 && !BaseGV) return true;
// Conservatively, create an address with an immediate and a
// base and a scale.
- AddrMode AM;
- AM.BaseOffs = BaseOffs;
- AM.BaseGV = BaseGV;
- AM.HasBaseReg = HasBaseReg;
- AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
+ int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
// Canonicalize a scale of 1 to a base register if the formula doesn't
// already have a base register.
- if (!AM.HasBaseReg && AM.Scale == 1) {
- AM.Scale = 0;
- AM.HasBaseReg = true;
+ if (!HasBaseReg && Scale == 1) {
+ Scale = 0;
+ HasBaseReg = true;
}
- return isLegalUse(AM, Kind, AccessTy, TLI);
+ return isLegalUse(TTI, Kind, AccessTy, BaseGV, BaseOffset, HasBaseReg, Scale);
}
-static bool isAlwaysFoldable(const SCEV *S,
- int64_t MinOffset, int64_t MaxOffset,
- bool HasBaseReg,
- LSRUse::KindType Kind, Type *AccessTy,
- const TargetLowering *TLI,
- ScalarEvolution &SE) {
+static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
+ ScalarEvolution &SE, int64_t MinOffset,
+ int64_t MaxOffset, LSRUse::KindType Kind,
+ Type *AccessTy, const SCEV *S, bool HasBaseReg) {
// Fast-path: zero is always foldable.
if (S->isZero()) return true;
// Conservatively, create an address with an immediate and a
// base and a scale.
- int64_t BaseOffs = ExtractImmediate(S, SE);
+ int64_t BaseOffset = ExtractImmediate(S, SE);
GlobalValue *BaseGV = ExtractSymbol(S, SE);
// If there's anything else involved, it's not foldable.
if (!S->isZero()) return false;
// Fast-path: zero is always foldable.
- if (BaseOffs == 0 && !BaseGV) return true;
+ if (BaseOffset == 0 && !BaseGV) return true;
// Conservatively, create an address with an immediate and a
// base and a scale.
- AddrMode AM;
- AM.BaseOffs = BaseOffs;
- AM.BaseGV = BaseGV;
- AM.HasBaseReg = HasBaseReg;
- AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
+ int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
- return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI);
+ return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
+ BaseOffset, HasBaseReg, Scale);
}
namespace {
@@ -1502,7 +1503,7 @@ class LSRInstance {
ScalarEvolution &SE;
DominatorTree &DT;
LoopInfo &LI;
- const TargetLowering *const TLI;
+ const TargetTransformInfo &TTI;
Loop *const L;
bool Changed;
@@ -1638,7 +1639,7 @@ class LSRInstance {
Pass *P);
public:
- LSRInstance(const TargetLowering *tli, Loop *l, Pass *P);
+ LSRInstance(Loop *L, Pass *P);
bool getChanged() const { return Changed; }
@@ -1688,12 +1689,9 @@ void LSRInstance::OptimizeShadowIV() {
}
if (!DestTy) continue;
- if (TLI) {
- // If target does not support DestTy natively then do not apply
- // this transformation.
- EVT DVT = TLI->getValueType(DestTy);
- if (!TLI->isTypeLegal(DVT)) continue;
- }
+ // If target does not support DestTy natively then do not apply
+ // this transformation.
+ if (!TTI.isTypeLegal(DestTy)) continue;
PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
if (!PH) continue;
@@ -1897,15 +1895,13 @@ ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
if (ICmpInst::isTrueWhenEqual(Pred)) {
// Look for n+1, and grab n.
if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
- if (isa<ConstantInt>(BO->getOperand(1)) &&
- cast<ConstantInt>(BO->getOperand(1))->isOne() &&
- SE.getSCEV(BO->getOperand(0)) == MaxRHS)
- NewRHS = BO->getOperand(0);
+ if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
+ if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
+ NewRHS = BO->getOperand(0);
if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
- if (isa<ConstantInt>(BO->getOperand(1)) &&
- cast<ConstantInt>(BO->getOperand(1))->isOne() &&
- SE.getSCEV(BO->getOperand(0)) == MaxRHS)
- NewRHS = BO->getOperand(0);
+ if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
+ if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
+ NewRHS = BO->getOperand(0);
if (!NewRHS)
return Cond;
} else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
@@ -2015,18 +2011,17 @@ LSRInstance::OptimizeLoopTermCond() {
if (C->getValue().getMinSignedBits() >= 64 ||
C->getValue().isMinSignedValue())
goto decline_post_inc;
- // Without TLI, assume that any stride might be valid, and so any
- // use might be shared.
- if (!TLI)
- goto decline_post_inc;
// Check for possible scaled-address reuse.
Type *AccessTy = getAccessType(UI->getUser());
- AddrMode AM;
- AM.Scale = C->getSExtValue();
- if (TLI->isLegalAddressingMode(AM, AccessTy))
+ int64_t Scale = C->getSExtValue();
+ if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ 0,
+ /*BaseOffset=*/ 0,
+ /*HasBaseReg=*/ false, Scale))
goto decline_post_inc;
- AM.Scale = -AM.Scale;
- if (TLI->isLegalAddressingMode(AM, AccessTy))
+ Scale = -Scale;
+ if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ 0,
+ /*BaseOffset=*/ 0,
+ /*HasBaseReg=*/ false, Scale))
goto decline_post_inc;
}
}
@@ -2096,13 +2091,13 @@ LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
return false;
// Conservatively assume HasBaseReg is true for now.
if (NewOffset < LU.MinOffset) {
- if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg,
- Kind, AccessTy, TLI))
+ if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ 0,
+ LU.MaxOffset - NewOffset, HasBaseReg))
return false;
NewMinOffset = NewOffset;
} else if (NewOffset > LU.MaxOffset) {
- if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg,
- Kind, AccessTy, TLI))
+ if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ 0,
+ NewOffset - LU.MinOffset, HasBaseReg))
return false;
NewMaxOffset = NewOffset;
}
@@ -2131,7 +2126,8 @@ LSRInstance::getUse(const SCEV *&Expr,
int64_t Offset = ExtractImmediate(Expr, SE);
// Basic uses can't accept any offset, for example.
- if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) {
+ if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ 0,
+ Offset, /*HasBaseReg=*/ true)) {
Expr = Copy;
Offset = 0;
}
@@ -2199,10 +2195,10 @@ LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
// as OrigF.
if (F.BaseRegs == OrigF.BaseRegs &&
F.ScaledReg == OrigF.ScaledReg &&
- F.AM.BaseGV == OrigF.AM.BaseGV &&
- F.AM.Scale == OrigF.AM.Scale &&
+ F.BaseGV == OrigF.BaseGV &&
+ F.Scale == OrigF.Scale &&
F.UnfoldedOffset == OrigF.UnfoldedOffset) {
- if (F.AM.BaseOffs == 0)
+ if (F.BaseOffset == 0)
return &LU;
// This is the formula where all the registers and symbols matched;
// there aren't going to be any others. Since we declined it, we
@@ -2396,7 +2392,7 @@ bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
/// TODO: Consider IVInc free if it's already used in another chains.
static bool
isProfitableChain(IVChain &Chain, SmallPtrSet<Instruction*, 4> &Users,
- ScalarEvolution &SE, const TargetLowering *TLI) {
+ ScalarEvolution &SE, const TargetTransformInfo &TTI) {
if (StressIVChain)
return true;
@@ -2539,6 +2535,7 @@ void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
// Add this IV user to the end of the chain.
IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
}
+ IVChain &Chain = IVChainVec[ChainIdx];
SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
// This chain's NearUsers become FarUsers.
@@ -2556,8 +2553,19 @@ void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
for (Value::use_iterator UseIter = IVOper->use_begin(),
UseEnd = IVOper->use_end(); UseIter != UseEnd; ++UseIter) {
Instruction *OtherUse = dyn_cast<Instruction>(*UseIter);
- if (!OtherUse || OtherUse == UserInst)
+ if (!OtherUse)
continue;
+ // Uses in the chain will no longer be uses if the chain is formed.
+ // Include the head of the chain in this iteration (not Chain.begin()).
+ IVChain::const_iterator IncIter = Chain.Incs.begin();
+ IVChain::const_iterator IncEnd = Chain.Incs.end();
+ for( ; IncIter != IncEnd; ++IncIter) {
+ if (IncIter->UserInst == OtherUse)
+ break;
+ }
+ if (IncIter != IncEnd)
+ continue;
+
if (SE.isSCEVable(OtherUse->getType())
&& !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
&& IU.isIVUserOrOperand(OtherUse)) {
@@ -2654,7 +2662,7 @@ void LSRInstance::CollectChains() {
for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
UsersIdx < NChains; ++UsersIdx) {
if (!isProfitableChain(IVChainVec[UsersIdx],
- ChainUsersVec[UsersIdx].FarUsers, SE, TLI))
+ ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
continue;
// Preserve the chain at UsesIdx.
if (ChainIdx != UsersIdx)
@@ -2681,7 +2689,7 @@ void LSRInstance::FinalizeChain(IVChain &Chain) {
/// Return true if the IVInc can be folded into an addressing mode.
static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
- Value *Operand, const TargetLowering *TLI) {
+ Value *Operand, const TargetTransformInfo &TTI) {
const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
if (!IncConst || !isAddressUse(UserInst, Operand))
return false;
@@ -2690,8 +2698,9 @@ static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
return false;
int64_t IncOffset = IncConst->getValue()->getSExtValue();
- if (!isAlwaysFoldable(IncOffset, /*BaseGV=*/0, /*HaseBaseReg=*/false,
- LSRUse::Address, getAccessType(UserInst), TLI))
+ if (!isAlwaysFoldable(TTI, LSRUse::Address,
+ getAccessType(UserInst), /*BaseGV=*/ 0,
+ IncOffset, /*HaseBaseReg=*/ false))
return false;
return true;
@@ -2705,6 +2714,7 @@ void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
// by LSR.
const IVInc &Head = Chain.Incs[0];
User::op_iterator IVOpEnd = Head.UserInst->op_end();
+ // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
IVOpEnd, L, SE);
Value *IVSrc = 0;
@@ -2762,7 +2772,7 @@ void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
// If an IV increment can't be folded, use it as the next IV value.
if (!canFoldIVIncExpr(LeftOverExpr, IncI->UserInst, IncI->IVOperand,
- TLI)) {
+ TTI)) {
assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
IVSrc = IVOper;
LeftOverExpr = 0;
@@ -2904,7 +2914,7 @@ LSRInstance::InsertSupplementalFormula(const SCEV *S,
LSRUse &LU, size_t LUIdx) {
Formula F;
F.BaseRegs.push_back(S);
- F.AM.HasBaseReg = true;
+ F.HasBaseReg = true;
bool Inserted = InsertFormula(LU, LUIdx, F);
assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
}
@@ -3106,9 +3116,8 @@ void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
// Don't pull a constant into a register if the constant could be folded
// into an immediate field.
- if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset,
- Base.getNumRegs() > 1,
- LU.Kind, LU.AccessTy, TLI, SE))
+ if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
+ LU.AccessTy, *J, Base.getNumRegs() > 1))
continue;
// Collect all operands except *J.
@@ -3120,9 +3129,8 @@ void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
// Don't leave just a constant behind in a register if the constant could
// be folded into an immediate field.
if (InnerAddOps.size() == 1 &&
- isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset,
- Base.getNumRegs() > 1,
- LU.Kind, LU.AccessTy, TLI, SE))
+ isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
+ LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
continue;
const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
@@ -3132,10 +3140,10 @@ void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
// Add the remaining pieces of the add back into the new formula.
const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
- if (TLI && InnerSumSC &&
+ if (InnerSumSC &&
SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
- TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
- InnerSumSC->getValue()->getZExtValue())) {
+ TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
+ InnerSumSC->getValue()->getZExtValue())) {
F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
InnerSumSC->getValue()->getZExtValue();
F.BaseRegs.erase(F.BaseRegs.begin() + i);
@@ -3144,9 +3152,9 @@ void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
// Add J as its own register, or an unfolded immediate.
const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
- if (TLI && SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
- TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
- SC->getValue()->getZExtValue()))
+ if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
+ TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
+ SC->getValue()->getZExtValue()))
F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
SC->getValue()->getZExtValue();
else
@@ -3195,7 +3203,7 @@ void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
Formula Base) {
// We can't add a symbolic offset if the address already contains one.
- if (Base.AM.BaseGV) return;
+ if (Base.BaseGV) return;
for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
const SCEV *G = Base.BaseRegs[i];
@@ -3203,9 +3211,8 @@ void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
if (G->isZero() || !GV)
continue;
Formula F = Base;
- F.AM.BaseGV = GV;
- if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
- LU.Kind, LU.AccessTy, TLI))
+ F.BaseGV = GV;
+ if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
continue;
F.BaseRegs[i] = G;
(void)InsertFormula(LU, LUIdx, F);
@@ -3228,9 +3235,9 @@ void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
E = Worklist.end(); I != E; ++I) {
Formula F = Base;
- F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I;
- if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I,
- LU.Kind, LU.AccessTy, TLI)) {
+ F.BaseOffset = (uint64_t)Base.BaseOffset - *I;
+ if (isLegalUse(TTI, LU.MinOffset - *I, LU.MaxOffset - *I, LU.Kind,
+ LU.AccessTy, F)) {
// Add the offset to the base register.
const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G);
// If it cancelled out, drop the base register, otherwise update it.
@@ -3248,9 +3255,8 @@ void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
if (G->isZero() || Imm == 0)
continue;
Formula F = Base;
- F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm;
- if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
- LU.Kind, LU.AccessTy, TLI))
+ F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
+ if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
continue;
F.BaseRegs[i] = G;
(void)InsertFormula(LU, LUIdx, F);
@@ -3271,7 +3277,7 @@ void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
// Don't do this if there is more than one offset.
if (LU.MinOffset != LU.MaxOffset) return;
- assert(!Base.AM.BaseGV && "ICmpZero use is not legal!");
+ assert(!Base.BaseGV && "ICmpZero use is not legal!");
// Check each interesting stride.
for (SmallSetVector<int64_t, 8>::const_iterator
@@ -3279,10 +3285,10 @@ void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
int64_t Factor = *I;
// Check that the multiplication doesn't overflow.
- if (Base.AM.BaseOffs == INT64_MIN && Factor == -1)
+ if (Base.BaseOffset == INT64_MIN && Factor == -1)
continue;
- int64_t NewBaseOffs = (uint64_t)Base.AM.BaseOffs * Factor;
- if (NewBaseOffs / Factor != Base.AM.BaseOffs)
+ int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
+ if (NewBaseOffset / Factor != Base.BaseOffset)
continue;
// Check that multiplying with the use offset doesn't overflow.
@@ -3294,14 +3300,14 @@ void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
continue;
Formula F = Base;
- F.AM.BaseOffs = NewBaseOffs;
+ F.BaseOffset = NewBaseOffset;
// Check that this scale is legal.
- if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI))
+ if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
continue;
// Compensate for the use having MinOffset built into it.
- F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset;
+ F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
const SCEV *FactorS = SE.getConstant(IntTy, Factor);
@@ -3342,23 +3348,23 @@ void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
if (!IntTy) return;
// If this Formula already has a scaled register, we can't add another one.
- if (Base.AM.Scale != 0) return;
+ if (Base.Scale != 0) return;
// Check each interesting stride.
for (SmallSetVector<int64_t, 8>::const_iterator
I = Factors.begin(), E = Factors.end(); I != E; ++I) {
int64_t Factor = *I;
- Base.AM.Scale = Factor;
- Base.AM.HasBaseReg = Base.BaseRegs.size() > 1;
+ Base.Scale = Factor;
+ Base.HasBaseReg = Base.BaseRegs.size() > 1;
// Check whether this scale is going to be legal.
- if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
- LU.Kind, LU.AccessTy, TLI)) {
+ if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
+ Base)) {
// As a special-case, handle special out-of-loop Basic users specially.
// TODO: Reconsider this special case.
if (LU.Kind == LSRUse::Basic &&
- isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
- LSRUse::Special, LU.AccessTy, TLI) &&
+ isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
+ LU.AccessTy, Base) &&
LU.AllFixupsOutsideLoop)
LU.Kind = LSRUse::Special;
else
@@ -3367,7 +3373,7 @@ void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
// For an ICmpZero, negating a solitary base register won't lead to
// new solutions.
if (LU.Kind == LSRUse::ICmpZero &&
- !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV)
+ !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
continue;
// For each addrec base reg, apply the scale, if possible.
for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
@@ -3391,11 +3397,8 @@ void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
/// GenerateTruncates - Generate reuse formulae from different IV types.
void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
- // This requires TargetLowering to tell us which truncates are free.
- if (!TLI) return;
-
// Don't bother truncating symbolic values.
- if (Base.AM.BaseGV) return;
+ if (Base.BaseGV) return;
// Determine the integer type for the base formula.
Type *DstTy = Base.getType();
@@ -3405,7 +3408,7 @@ void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
for (SmallSetVector<Type *, 4>::const_iterator
I = Types.begin(), E = Types.end(); I != E; ++I) {
Type *SrcTy = *I;
- if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) {
+ if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
Formula F = Base;
if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
@@ -3552,16 +3555,15 @@ void LSRInstance::GenerateCrossUseConstantOffsets() {
const Formula &F = LU.Formulae[L];
// Use the immediate in the scaled register.
if (F.ScaledReg == OrigReg) {
- int64_t Offs = (uint64_t)F.AM.BaseOffs +
- Imm * (uint64_t)F.AM.Scale;
+ int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
// Don't create 50 + reg(-50).
if (F.referencesReg(SE.getSCEV(
- ConstantInt::get(IntTy, -(uint64_t)Offs))))
+ ConstantInt::get(IntTy, -(uint64_t)Offset))))
continue;
Formula NewF = F;
- NewF.AM.BaseOffs = Offs;
- if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
- LU.Kind, LU.AccessTy, TLI))
+ NewF.BaseOffset = Offset;
+ if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
+ NewF))
continue;
NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
@@ -3570,9 +3572,9 @@ void LSRInstance::GenerateCrossUseConstantOffsets() {
// immediate itself, then the formula isn't worthwhile.
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
if (C->getValue()->isNegative() !=
- (NewF.AM.BaseOffs < 0) &&
- (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale))
- .ule(abs64(NewF.AM.BaseOffs)))
+ (NewF.BaseOffset < 0) &&
+ (C->getValue()->getValue().abs() * APInt(BitWidth, F.Scale))
+ .ule(abs64(NewF.BaseOffset)))
continue;
// OK, looks good.
@@ -3584,11 +3586,10 @@ void LSRInstance::GenerateCrossUseConstantOffsets() {
if (BaseReg != OrigReg)
continue;
Formula NewF = F;
- NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm;
- if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
- LU.Kind, LU.AccessTy, TLI)) {
- if (!TLI ||
- !TLI->isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
+ NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
+ if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
+ LU.Kind, LU.AccessTy, NewF)) {
+ if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
continue;
NewF = F;
NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
@@ -3602,11 +3603,11 @@ void LSRInstance::GenerateCrossUseConstantOffsets() {
J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
J != JE; ++J)
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
- if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt(
- abs64(NewF.AM.BaseOffs)) &&
+ if ((C->getValue()->getValue() + NewF.BaseOffset).abs().slt(
+ abs64(NewF.BaseOffset)) &&
(C->getValue()->getValue() +
- NewF.AM.BaseOffs).countTrailingZeros() >=
- CountTrailingZeros_64(NewF.AM.BaseOffs))
+ NewF.BaseOffset).countTrailingZeros() >=
+ CountTrailingZeros_64(NewF.BaseOffset))
goto skip_formula;
// Ok, looks good.
@@ -3667,7 +3668,7 @@ void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
// Collect the best formula for each unique set of shared registers. This
// is reset for each use.
- typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo>
+ typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>
BestFormulaeTy;
BestFormulaeTy BestFormulae;
@@ -3702,7 +3703,7 @@ void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
dbgs() << "\n");
}
else {
- SmallVector<const SCEV *, 2> Key;
+ SmallVector<const SCEV *, 4> Key;
for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
JE = F.BaseRegs.end(); J != JE; ++J) {
const SCEV *Reg = *J;
@@ -3804,7 +3805,7 @@ void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
Formula NewF = F;
- NewF.AM.BaseOffs += C->getValue()->getSExtValue();
+ NewF.BaseOffset += C->getValue()->getSExtValue();
NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
(I - F.BaseRegs.begin()));
if (LU.HasFormulaWithSameRegs(NewF)) {
@@ -3817,9 +3818,9 @@ void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
}
} else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
- if (!F.AM.BaseGV) {
+ if (!F.BaseGV) {
Formula NewF = F;
- NewF.AM.BaseGV = GV;
+ NewF.BaseGV = GV;
NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
(I - F.BaseRegs.begin()));
if (LU.HasFormulaWithSameRegs(NewF)) {
@@ -3848,84 +3849,83 @@ void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
/// for expressions like A, A+1, A+2, etc., allocate a single register for
/// them.
void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
- if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
- DEBUG(dbgs() << "The search space is too complex.\n");
+ if (EstimateSearchSpaceComplexity() < ComplexityLimit)
+ return;
- DEBUG(dbgs() << "Narrowing the search space by assuming that uses "
- "separated by a constant offset will use the same "
- "registers.\n");
+ DEBUG(dbgs() << "The search space is too complex.\n"
+ "Narrowing the search space by assuming that uses separated "
+ "by a constant offset will use the same registers.\n");
- // This is especially useful for unrolled loops.
+ // This is especially useful for unrolled loops.
- for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
- LSRUse &LU = Uses[LUIdx];
- for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
- E = LU.Formulae.end(); I != E; ++I) {
- const Formula &F = *I;
- if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) {
- if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) {
- if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs,
- /*HasBaseReg=*/false,
- LU.Kind, LU.AccessTy)) {
- DEBUG(dbgs() << " Deleting use "; LU.print(dbgs());
- dbgs() << '\n');
-
- LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
-
- // Update the relocs to reference the new use.
- for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(),
- E = Fixups.end(); I != E; ++I) {
- LSRFixup &Fixup = *I;
- if (Fixup.LUIdx == LUIdx) {
- Fixup.LUIdx = LUThatHas - &Uses.front();
- Fixup.Offset += F.AM.BaseOffs;
- // Add the new offset to LUThatHas' offset list.
- if (LUThatHas->Offsets.back() != Fixup.Offset) {
- LUThatHas->Offsets.push_back(Fixup.Offset);
- if (Fixup.Offset > LUThatHas->MaxOffset)
- LUThatHas->MaxOffset = Fixup.Offset;
- if (Fixup.Offset < LUThatHas->MinOffset)
- LUThatHas->MinOffset = Fixup.Offset;
- }
- DEBUG(dbgs() << "New fixup has offset "
- << Fixup.Offset << '\n');
- }
- if (Fixup.LUIdx == NumUses-1)
- Fixup.LUIdx = LUIdx;
- }
+ for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
+ LSRUse &LU = Uses[LUIdx];
+ for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
+ E = LU.Formulae.end(); I != E; ++I) {
+ const Formula &F = *I;
+ if (F.BaseOffset == 0 || F.Scale != 0)
+ continue;
- // Delete formulae from the new use which are no longer legal.
- bool Any = false;
- for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
- Formula &F = LUThatHas->Formulae[i];
- if (!isLegalUse(F.AM,
- LUThatHas->MinOffset, LUThatHas->MaxOffset,
- LUThatHas->Kind, LUThatHas->AccessTy, TLI)) {
- DEBUG(dbgs() << " Deleting "; F.print(dbgs());
- dbgs() << '\n');
- LUThatHas->DeleteFormula(F);
- --i;
- --e;
- Any = true;
- }
- }
- if (Any)
- LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
+ LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
+ if (!LUThatHas)
+ continue;
- // Delete the old use.
- DeleteUse(LU, LUIdx);
- --LUIdx;
- --NumUses;
- break;
- }
+ if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
+ LU.Kind, LU.AccessTy))
+ continue;
+
+ DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n');
+
+ LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
+
+ // Update the relocs to reference the new use.
+ for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(),
+ E = Fixups.end(); I != E; ++I) {
+ LSRFixup &Fixup = *I;
+ if (Fixup.LUIdx == LUIdx) {
+ Fixup.LUIdx = LUThatHas - &Uses.front();
+ Fixup.Offset += F.BaseOffset;
+ // Add the new offset to LUThatHas' offset list.
+ if (LUThatHas->Offsets.back() != Fixup.Offset) {
+ LUThatHas->Offsets.push_back(Fixup.Offset);
+ if (Fixup.Offset > LUThatHas->MaxOffset)
+ LUThatHas->MaxOffset = Fixup.Offset;
+ if (Fixup.Offset < LUThatHas->MinOffset)
+ LUThatHas->MinOffset = Fixup.Offset;
}
+ DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
}
+ if (Fixup.LUIdx == NumUses-1)
+ Fixup.LUIdx = LUIdx;
}
- }
- DEBUG(dbgs() << "After pre-selection:\n";
- print_uses(dbgs()));
+ // Delete formulae from the new use which are no longer legal.
+ bool Any = false;
+ for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
+ Formula &F = LUThatHas->Formulae[i];
+ if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
+ LUThatHas->Kind, LUThatHas->AccessTy, F)) {
+ DEBUG(dbgs() << " Deleting "; F.print(dbgs());
+ dbgs() << '\n');
+ LUThatHas->DeleteFormula(F);
+ --i;
+ --e;
+ Any = true;
+ }
+ }
+
+ if (Any)
+ LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
+
+ // Delete the old use.
+ DeleteUse(LU, LUIdx);
+ --LUIdx;
+ --NumUses;
+ break;
+ }
}
+
+ DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
}
/// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call
@@ -4308,7 +4308,7 @@ Value *LSRInstance::Expand(const LSRFixup &LF,
// Expand the ScaledReg portion.
Value *ICmpScaledV = 0;
- if (F.AM.Scale != 0) {
+ if (F.Scale != 0) {
const SCEV *ScaledS = F.ScaledReg;
// If we're expanding for a post-inc user, make the post-inc adjustment.
@@ -4321,7 +4321,7 @@ Value *LSRInstance::Expand(const LSRFixup &LF,
// An interesting way of "folding" with an icmp is to use a negated
// scale, which we'll implement by inserting it into the other operand
// of the icmp.
- assert(F.AM.Scale == -1 &&
+ assert(F.Scale == -1 &&
"The only scale supported by ICmpZero uses is -1!");
ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
} else {
@@ -4336,20 +4336,20 @@ Value *LSRInstance::Expand(const LSRFixup &LF,
}
ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
ScaledS = SE.getMulExpr(ScaledS,
- SE.getConstant(ScaledS->getType(), F.AM.Scale));
+ SE.getConstant(ScaledS->getType(), F.Scale));
Ops.push_back(ScaledS);
}
}
// Expand the GV portion.
- if (F.AM.BaseGV) {
+ if (F.BaseGV) {
// Flush the operand list to suppress SCEVExpander hoisting.
if (!Ops.empty()) {
Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
Ops.clear();
Ops.push_back(SE.getUnknown(FullV));
}
- Ops.push_back(SE.getUnknown(F.AM.BaseGV));
+ Ops.push_back(SE.getUnknown(F.BaseGV));
}
// Flush the operand list to suppress SCEVExpander hoisting of both folded and
@@ -4361,7 +4361,7 @@ Value *LSRInstance::Expand(const LSRFixup &LF,
}
// Expand the immediate portion.
- int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset;
+ int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
if (Offset != 0) {
if (LU.Kind == LSRUse::ICmpZero) {
// The other interesting way of "folding" with an ICmpZero is to use a
@@ -4402,9 +4402,9 @@ Value *LSRInstance::Expand(const LSRFixup &LF,
if (LU.Kind == LSRUse::ICmpZero) {
ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
DeadInsts.push_back(CI->getOperand(1));
- assert(!F.AM.BaseGV && "ICmp does not support folding a global value and "
+ assert(!F.BaseGV && "ICmp does not support folding a global value and "
"a scale at the same time!");
- if (F.AM.Scale == -1) {
+ if (F.Scale == -1) {
if (ICmpScaledV->getType() != OpTy) {
Instruction *Cast =
CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
@@ -4414,7 +4414,7 @@ Value *LSRInstance::Expand(const LSRFixup &LF,
}
CI->setOperand(1, ICmpScaledV);
} else {
- assert(F.AM.Scale == 0 &&
+ assert(F.Scale == 0 &&
"ICmp does not support folding a global value and "
"a scale at the same time!");
Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
@@ -4589,13 +4589,11 @@ LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
}
-LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
- : IU(P->getAnalysis<IVUsers>()),
- SE(P->getAnalysis<ScalarEvolution>()),
- DT(P->getAnalysis<DominatorTree>()),
- LI(P->getAnalysis<LoopInfo>()),
- TLI(tli), L(l), Changed(false), IVIncInsertPos(0) {
-
+LSRInstance::LSRInstance(Loop *L, Pass *P)
+ : IU(P->getAnalysis<IVUsers>()), SE(P->getAnalysis<ScalarEvolution>()),
+ DT(P->getAnalysis<DominatorTree>()), LI(P->getAnalysis<LoopInfo>()),
+ TTI(P->getAnalysis<TargetTransformInfo>()), L(L), Changed(false),
+ IVIncInsertPos(0) {
// If LoopSimplify form is not available, stay out of trouble.
if (!L->isLoopSimplifyForm())
return;
@@ -4678,14 +4676,14 @@ LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
#ifndef NDEBUG
// Formulae should be legal.
- for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
- E = Uses.end(); I != E; ++I) {
- const LSRUse &LU = *I;
- for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
- JE = LU.Formulae.end(); J != JE; ++J)
- assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset,
- LU.Kind, LU.AccessTy, TLI) &&
- "Illegal formula generated!");
+ for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), E = Uses.end();
+ I != E; ++I) {
+ const LSRUse &LU = *I;
+ for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
+ JE = LU.Formulae.end();
+ J != JE; ++J)
+ assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
+ *J) && "Illegal formula generated!");
};
#endif
@@ -4757,13 +4755,9 @@ void LSRInstance::dump() const {
namespace {
class LoopStrengthReduce : public LoopPass {
- /// TLI - Keep a pointer of a TargetLowering to consult for determining
- /// transformation profitability.
- const TargetLowering *const TLI;
-
public:
static char ID; // Pass ID, replacement for typeid
- explicit LoopStrengthReduce(const TargetLowering *tli = 0);
+ LoopStrengthReduce();
private:
bool runOnLoop(Loop *L, LPPassManager &LPM);
@@ -4775,6 +4769,7 @@ private:
char LoopStrengthReduce::ID = 0;
INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
"Loop Strength Reduction", false, false)
+INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_DEPENDENCY(IVUsers)
@@ -4784,14 +4779,13 @@ INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
"Loop Strength Reduction", false, false)
-Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
- return new LoopStrengthReduce(TLI);
+Pass *llvm::createLoopStrengthReducePass() {
+ return new LoopStrengthReduce();
}
-LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli)
- : LoopPass(ID), TLI(tli) {
- initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
- }
+LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
+ initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
+}
void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
// We split critical edges, so we change the CFG. However, we do update
@@ -4810,24 +4804,27 @@ void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequiredID(LoopSimplifyID);
AU.addRequired<IVUsers>();
AU.addPreserved<IVUsers>();
+ AU.addRequired<TargetTransformInfo>();
}
bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
bool Changed = false;
// Run the main LSR transformation.
- Changed |= LSRInstance(TLI, L, this).getChanged();
+ Changed |= LSRInstance(L, this).getChanged();
// Remove any extra phis created by processing inner loops.
Changed |= DeleteDeadPHIs(L->getHeader());
- if (EnablePhiElim) {
+ if (EnablePhiElim && L->isLoopSimplifyForm()) {
SmallVector<WeakVH, 16> DeadInsts;
SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), "lsr");
#ifndef NDEBUG
Rewriter.setDebugType(DEBUG_TYPE);
#endif
- unsigned numFolded = Rewriter.
- replaceCongruentIVs(L, &getAnalysis<DominatorTree>(), DeadInsts, TLI);
+ unsigned numFolded =
+ Rewriter.replaceCongruentIVs(L, &getAnalysis<DominatorTree>(),
+ DeadInsts,
+ &getAnalysis<TargetTransformInfo>());
if (numFolded) {
Changed = true;
DeleteTriviallyDeadInstructions(DeadInsts);
diff --git a/contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp b/contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp
index 0d781ac..80d060b 100644
--- a/contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp
@@ -13,16 +13,17 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "loop-unroll"
-#include "llvm/IntrinsicInst.h"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/CodeMetrics.h"
+#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/UnrollLoop.h"
-#include "llvm/DataLayout.h"
#include <climits>
using namespace llvm;
@@ -90,6 +91,7 @@ namespace {
AU.addPreservedID(LCSSAID);
AU.addRequired<ScalarEvolution>();
AU.addPreserved<ScalarEvolution>();
+ AU.addRequired<TargetTransformInfo>();
// FIXME: Loop unroll requires LCSSA. And LCSSA requires dom info.
// If loop unroll does not preserve dom info then LCSSA pass on next
// loop will receive invalid dom info.
@@ -101,6 +103,7 @@ namespace {
char LoopUnroll::ID = 0;
INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
+INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(LCSSA)
@@ -113,12 +116,14 @@ Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial) {
/// ApproximateLoopSize - Approximate the size of the loop.
static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls,
- const DataLayout *TD) {
+ bool &NotDuplicatable,
+ const TargetTransformInfo &TTI) {
CodeMetrics Metrics;
for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
I != E; ++I)
- Metrics.analyzeBasicBlock(*I, TD);
+ Metrics.analyzeBasicBlock(*I, TTI);
NumCalls = Metrics.NumInlineCandidates;
+ NotDuplicatable = Metrics.notDuplicatable;
unsigned LoopSize = Metrics.NumInsts;
@@ -133,6 +138,7 @@ static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls,
bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
LoopInfo *LI = &getAnalysis<LoopInfo>();
ScalarEvolution *SE = &getAnalysis<ScalarEvolution>();
+ const TargetTransformInfo &TTI = getAnalysis<TargetTransformInfo>();
BasicBlock *Header = L->getHeader();
DEBUG(dbgs() << "Loop Unroll: F[" << Header->getParent()->getName()
@@ -145,8 +151,9 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
// not user specified.
unsigned Threshold = CurrentThreshold;
if (!UserThreshold &&
- Header->getParent()->getFnAttributes().
- hasAttribute(Attributes::OptimizeForSize))
+ Header->getParent()->getAttributes().
+ hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::OptimizeForSize))
Threshold = OptSizeUnrollThreshold;
// Find trip count and trip multiple if count is not available
@@ -179,10 +186,16 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
// Enforce the threshold.
if (Threshold != NoThreshold) {
- const DataLayout *TD = getAnalysisIfAvailable<DataLayout>();
unsigned NumInlineCandidates;
- unsigned LoopSize = ApproximateLoopSize(L, NumInlineCandidates, TD);
+ bool notDuplicatable;
+ unsigned LoopSize = ApproximateLoopSize(L, NumInlineCandidates,
+ notDuplicatable, TTI);
DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n");
+ if (notDuplicatable) {
+ DEBUG(dbgs() << " Not unrolling loop which contains non duplicatable"
+ << " instructions.\n");
+ return false;
+ }
if (NumInlineCandidates != 0) {
DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n");
return false;
diff --git a/contrib/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp b/contrib/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp
index 047b43e..0e8199f 100644
--- a/contrib/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp
@@ -28,25 +28,26 @@
#define DEBUG_TYPE "loop-unswitch"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/CodeMetrics.h"
+#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
-#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/Transforms/Utils/Cloning.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/STLExtras.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
#include <map>
#include <set>
@@ -101,7 +102,7 @@ namespace {
// Analyze loop. Check its size, calculate is it possible to unswitch
// it. Returns true if we can unswitch this loop.
- bool countLoop(const Loop* L);
+ bool countLoop(const Loop* L, const TargetTransformInfo &TTI);
// Clean all data related to given loop.
void forgetLoop(const Loop* L);
@@ -170,6 +171,7 @@ namespace {
AU.addPreservedID(LCSSAID);
AU.addPreserved<DominatorTree>();
AU.addPreserved<ScalarEvolution>();
+ AU.addRequired<TargetTransformInfo>();
}
private:
@@ -221,7 +223,7 @@ namespace {
// Analyze loop. Check its size, calculate is it possible to unswitch
// it. Returns true if we can unswitch this loop.
-bool LUAnalysisCache::countLoop(const Loop* L) {
+bool LUAnalysisCache::countLoop(const Loop *L, const TargetTransformInfo &TTI) {
std::pair<LoopPropsMapIt, bool> InsertRes =
LoopsProperties.insert(std::make_pair(L, LoopProperties()));
@@ -243,11 +245,18 @@ bool LUAnalysisCache::countLoop(const Loop* L) {
for (Loop::block_iterator I = L->block_begin(),
E = L->block_end();
I != E; ++I)
- Metrics.analyzeBasicBlock(*I);
+ Metrics.analyzeBasicBlock(*I, TTI);
Props.SizeEstimation = std::min(Metrics.NumInsts, Metrics.NumBlocks * 5);
Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation);
MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount;
+
+ if (Metrics.notDuplicatable) {
+ DEBUG(dbgs() << "NOT unswitching loop %"
+ << L->getHeader()->getName() << ", contents cannot be "
+ << "duplicated!\n");
+ return false;
+ }
}
if (!Props.CanBeUnswitchedCount) {
@@ -327,6 +336,7 @@ void LUAnalysisCache::cloneData(const Loop* NewLoop, const Loop* OldLoop,
char LoopUnswitch::ID = 0;
INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
false, false)
+INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
INITIALIZE_PASS_DEPENDENCY(LCSSA)
@@ -417,7 +427,7 @@ bool LoopUnswitch::processCurrentLoop() {
// Probably we reach the quota of branches for this loop. If so
// stop unswitching.
- if (!BranchesInfo.countLoop(currentLoop))
+ if (!BranchesInfo.countLoop(currentLoop, getAnalysis<TargetTransformInfo>()))
return false;
// Loop over all of the basic blocks in the loop. If we find an interior
@@ -639,7 +649,8 @@ bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val) {
// Do not do non-trivial unswitch while optimizing for size.
if (OptimizeForSize ||
- F->getFnAttributes().hasAttribute(Attributes::OptimizeForSize))
+ F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::OptimizeForSize))
return false;
UnswitchNontrivialCondition(LoopCond, Val, currentLoop);
diff --git a/contrib/llvm/lib/Transforms/Scalar/LowerAtomic.cpp b/contrib/llvm/lib/Transforms/Scalar/LowerAtomic.cpp
index 7419a65..8ced494 100644
--- a/contrib/llvm/lib/Transforms/Scalar/LowerAtomic.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/LowerAtomic.cpp
@@ -14,9 +14,9 @@
#define DEBUG_TYPE "loweratomic"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Function.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Pass.h"
using namespace llvm;
diff --git a/contrib/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp b/contrib/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp
index 517657cf..be0f0e8 100644
--- a/contrib/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp
@@ -14,20 +14,20 @@
#define DEBUG_TYPE "memcpyopt"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/DataLayout.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/Local.h"
#include <list>
diff --git a/contrib/llvm/lib/Transforms/Scalar/ObjCARC.cpp b/contrib/llvm/lib/Transforms/Scalar/ObjCARC.cpp
deleted file mode 100644
index dfdf505..0000000
--- a/contrib/llvm/lib/Transforms/Scalar/ObjCARC.cpp
+++ /dev/null
@@ -1,4232 +0,0 @@
-//===- ObjCARC.cpp - ObjC ARC Optimization --------------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines ObjC ARC optimizations. ARC stands for
-// Automatic Reference Counting and is a system for managing reference counts
-// for objects in Objective C.
-//
-// The optimizations performed include elimination of redundant, partially
-// redundant, and inconsequential reference count operations, elimination of
-// redundant weak pointer operations, pattern-matching and replacement of
-// low-level operations into higher-level operations, and numerous minor
-// simplifications.
-//
-// This file also defines a simple ARC-aware AliasAnalysis.
-//
-// WARNING: This file knows about certain library functions. It recognizes them
-// by name, and hardwires knowledge of their semantics.
-//
-// WARNING: This file knows about how certain Objective-C library functions are
-// used. Naive LLVM IR transformations which would otherwise be
-// behavior-preserving may break these assumptions.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "objc-arc"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/ADT/DenseMap.h"
-using namespace llvm;
-
-// A handy option to enable/disable all optimizations in this file.
-static cl::opt<bool> EnableARCOpts("enable-objc-arc-opts", cl::init(true));
-
-//===----------------------------------------------------------------------===//
-// Misc. Utilities
-//===----------------------------------------------------------------------===//
-
-namespace {
- /// MapVector - An associative container with fast insertion-order
- /// (deterministic) iteration over its elements. Plus the special
- /// blot operation.
- template<class KeyT, class ValueT>
- class MapVector {
- /// Map - Map keys to indices in Vector.
- typedef DenseMap<KeyT, size_t> MapTy;
- MapTy Map;
-
- /// Vector - Keys and values.
- typedef std::vector<std::pair<KeyT, ValueT> > VectorTy;
- VectorTy Vector;
-
- public:
- typedef typename VectorTy::iterator iterator;
- typedef typename VectorTy::const_iterator const_iterator;
- iterator begin() { return Vector.begin(); }
- iterator end() { return Vector.end(); }
- const_iterator begin() const { return Vector.begin(); }
- const_iterator end() const { return Vector.end(); }
-
-#ifdef XDEBUG
- ~MapVector() {
- assert(Vector.size() >= Map.size()); // May differ due to blotting.
- for (typename MapTy::const_iterator I = Map.begin(), E = Map.end();
- I != E; ++I) {
- assert(I->second < Vector.size());
- assert(Vector[I->second].first == I->first);
- }
- for (typename VectorTy::const_iterator I = Vector.begin(),
- E = Vector.end(); I != E; ++I)
- assert(!I->first ||
- (Map.count(I->first) &&
- Map[I->first] == size_t(I - Vector.begin())));
- }
-#endif
-
- ValueT &operator[](const KeyT &Arg) {
- std::pair<typename MapTy::iterator, bool> Pair =
- Map.insert(std::make_pair(Arg, size_t(0)));
- if (Pair.second) {
- size_t Num = Vector.size();
- Pair.first->second = Num;
- Vector.push_back(std::make_pair(Arg, ValueT()));
- return Vector[Num].second;
- }
- return Vector[Pair.first->second].second;
- }
-
- std::pair<iterator, bool>
- insert(const std::pair<KeyT, ValueT> &InsertPair) {
- std::pair<typename MapTy::iterator, bool> Pair =
- Map.insert(std::make_pair(InsertPair.first, size_t(0)));
- if (Pair.second) {
- size_t Num = Vector.size();
- Pair.first->second = Num;
- Vector.push_back(InsertPair);
- return std::make_pair(Vector.begin() + Num, true);
- }
- return std::make_pair(Vector.begin() + Pair.first->second, false);
- }
-
- const_iterator find(const KeyT &Key) const {
- typename MapTy::const_iterator It = Map.find(Key);
- if (It == Map.end()) return Vector.end();
- return Vector.begin() + It->second;
- }
-
- /// blot - This is similar to erase, but instead of removing the element
- /// from the vector, it just zeros out the key in the vector. This leaves
- /// iterators intact, but clients must be prepared for zeroed-out keys when
- /// iterating.
- void blot(const KeyT &Key) {
- typename MapTy::iterator It = Map.find(Key);
- if (It == Map.end()) return;
- Vector[It->second].first = KeyT();
- Map.erase(It);
- }
-
- void clear() {
- Map.clear();
- Vector.clear();
- }
- };
-}
-
-//===----------------------------------------------------------------------===//
-// ARC Utilities.
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Intrinsics.h"
-#include "llvm/Module.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Support/CallSite.h"
-#include "llvm/ADT/StringSwitch.h"
-
-namespace {
- /// InstructionClass - A simple classification for instructions.
- enum InstructionClass {
- IC_Retain, ///< objc_retain
- IC_RetainRV, ///< objc_retainAutoreleasedReturnValue
- IC_RetainBlock, ///< objc_retainBlock
- IC_Release, ///< objc_release
- IC_Autorelease, ///< objc_autorelease
- IC_AutoreleaseRV, ///< objc_autoreleaseReturnValue
- IC_AutoreleasepoolPush, ///< objc_autoreleasePoolPush
- IC_AutoreleasepoolPop, ///< objc_autoreleasePoolPop
- IC_NoopCast, ///< objc_retainedObject, etc.
- IC_FusedRetainAutorelease, ///< objc_retainAutorelease
- IC_FusedRetainAutoreleaseRV, ///< objc_retainAutoreleaseReturnValue
- IC_LoadWeakRetained, ///< objc_loadWeakRetained (primitive)
- IC_StoreWeak, ///< objc_storeWeak (primitive)
- IC_InitWeak, ///< objc_initWeak (derived)
- IC_LoadWeak, ///< objc_loadWeak (derived)
- IC_MoveWeak, ///< objc_moveWeak (derived)
- IC_CopyWeak, ///< objc_copyWeak (derived)
- IC_DestroyWeak, ///< objc_destroyWeak (derived)
- IC_StoreStrong, ///< objc_storeStrong (derived)
- IC_CallOrUser, ///< could call objc_release and/or "use" pointers
- IC_Call, ///< could call objc_release
- IC_User, ///< could "use" a pointer
- IC_None ///< anything else
- };
-}
-
-/// IsPotentialUse - Test whether the given value is possible a
-/// reference-counted pointer.
-static bool IsPotentialUse(const Value *Op) {
- // Pointers to static or stack storage are not reference-counted pointers.
- if (isa<Constant>(Op) || isa<AllocaInst>(Op))
- return false;
- // Special arguments are not reference-counted.
- if (const Argument *Arg = dyn_cast<Argument>(Op))
- if (Arg->hasByValAttr() ||
- Arg->hasNestAttr() ||
- Arg->hasStructRetAttr())
- return false;
- // Only consider values with pointer types.
- // It seemes intuitive to exclude function pointer types as well, since
- // functions are never reference-counted, however clang occasionally
- // bitcasts reference-counted pointers to function-pointer type
- // temporarily.
- PointerType *Ty = dyn_cast<PointerType>(Op->getType());
- if (!Ty)
- return false;
- // Conservatively assume anything else is a potential use.
- return true;
-}
-
-/// GetCallSiteClass - Helper for GetInstructionClass. Determines what kind
-/// of construct CS is.
-static InstructionClass GetCallSiteClass(ImmutableCallSite CS) {
- for (ImmutableCallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
- I != E; ++I)
- if (IsPotentialUse(*I))
- return CS.onlyReadsMemory() ? IC_User : IC_CallOrUser;
-
- return CS.onlyReadsMemory() ? IC_None : IC_Call;
-}
-
-/// GetFunctionClass - Determine if F is one of the special known Functions.
-/// If it isn't, return IC_CallOrUser.
-static InstructionClass GetFunctionClass(const Function *F) {
- Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
-
- // No arguments.
- if (AI == AE)
- return StringSwitch<InstructionClass>(F->getName())
- .Case("objc_autoreleasePoolPush", IC_AutoreleasepoolPush)
- .Default(IC_CallOrUser);
-
- // One argument.
- const Argument *A0 = AI++;
- if (AI == AE)
- // Argument is a pointer.
- if (PointerType *PTy = dyn_cast<PointerType>(A0->getType())) {
- Type *ETy = PTy->getElementType();
- // Argument is i8*.
- if (ETy->isIntegerTy(8))
- return StringSwitch<InstructionClass>(F->getName())
- .Case("objc_retain", IC_Retain)
- .Case("objc_retainAutoreleasedReturnValue", IC_RetainRV)
- .Case("objc_retainBlock", IC_RetainBlock)
- .Case("objc_release", IC_Release)
- .Case("objc_autorelease", IC_Autorelease)
- .Case("objc_autoreleaseReturnValue", IC_AutoreleaseRV)
- .Case("objc_autoreleasePoolPop", IC_AutoreleasepoolPop)
- .Case("objc_retainedObject", IC_NoopCast)
- .Case("objc_unretainedObject", IC_NoopCast)
- .Case("objc_unretainedPointer", IC_NoopCast)
- .Case("objc_retain_autorelease", IC_FusedRetainAutorelease)
- .Case("objc_retainAutorelease", IC_FusedRetainAutorelease)
- .Case("objc_retainAutoreleaseReturnValue",IC_FusedRetainAutoreleaseRV)
- .Default(IC_CallOrUser);
-
- // Argument is i8**
- if (PointerType *Pte = dyn_cast<PointerType>(ETy))
- if (Pte->getElementType()->isIntegerTy(8))
- return StringSwitch<InstructionClass>(F->getName())
- .Case("objc_loadWeakRetained", IC_LoadWeakRetained)
- .Case("objc_loadWeak", IC_LoadWeak)
- .Case("objc_destroyWeak", IC_DestroyWeak)
- .Default(IC_CallOrUser);
- }
-
- // Two arguments, first is i8**.
- const Argument *A1 = AI++;
- if (AI == AE)
- if (PointerType *PTy = dyn_cast<PointerType>(A0->getType()))
- if (PointerType *Pte = dyn_cast<PointerType>(PTy->getElementType()))
- if (Pte->getElementType()->isIntegerTy(8))
- if (PointerType *PTy1 = dyn_cast<PointerType>(A1->getType())) {
- Type *ETy1 = PTy1->getElementType();
- // Second argument is i8*
- if (ETy1->isIntegerTy(8))
- return StringSwitch<InstructionClass>(F->getName())
- .Case("objc_storeWeak", IC_StoreWeak)
- .Case("objc_initWeak", IC_InitWeak)
- .Case("objc_storeStrong", IC_StoreStrong)
- .Default(IC_CallOrUser);
- // Second argument is i8**.
- if (PointerType *Pte1 = dyn_cast<PointerType>(ETy1))
- if (Pte1->getElementType()->isIntegerTy(8))
- return StringSwitch<InstructionClass>(F->getName())
- .Case("objc_moveWeak", IC_MoveWeak)
- .Case("objc_copyWeak", IC_CopyWeak)
- .Default(IC_CallOrUser);
- }
-
- // Anything else.
- return IC_CallOrUser;
-}
-
-/// GetInstructionClass - Determine what kind of construct V is.
-static InstructionClass GetInstructionClass(const Value *V) {
- if (const Instruction *I = dyn_cast<Instruction>(V)) {
- // Any instruction other than bitcast and gep with a pointer operand have a
- // use of an objc pointer. Bitcasts, GEPs, Selects, PHIs transfer a pointer
- // to a subsequent use, rather than using it themselves, in this sense.
- // As a short cut, several other opcodes are known to have no pointer
- // operands of interest. And ret is never followed by a release, so it's
- // not interesting to examine.
- switch (I->getOpcode()) {
- case Instruction::Call: {
- const CallInst *CI = cast<CallInst>(I);
- // Check for calls to special functions.
- if (const Function *F = CI->getCalledFunction()) {
- InstructionClass Class = GetFunctionClass(F);
- if (Class != IC_CallOrUser)
- return Class;
-
- // None of the intrinsic functions do objc_release. For intrinsics, the
- // only question is whether or not they may be users.
- switch (F->getIntrinsicID()) {
- case Intrinsic::returnaddress: case Intrinsic::frameaddress:
- case Intrinsic::stacksave: case Intrinsic::stackrestore:
- case Intrinsic::vastart: case Intrinsic::vacopy: case Intrinsic::vaend:
- case Intrinsic::objectsize: case Intrinsic::prefetch:
- case Intrinsic::stackprotector:
- case Intrinsic::eh_return_i32: case Intrinsic::eh_return_i64:
- case Intrinsic::eh_typeid_for: case Intrinsic::eh_dwarf_cfa:
- case Intrinsic::eh_sjlj_lsda: case Intrinsic::eh_sjlj_functioncontext:
- case Intrinsic::init_trampoline: case Intrinsic::adjust_trampoline:
- case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
- case Intrinsic::invariant_start: case Intrinsic::invariant_end:
- // Don't let dbg info affect our results.
- case Intrinsic::dbg_declare: case Intrinsic::dbg_value:
- // Short cut: Some intrinsics obviously don't use ObjC pointers.
- return IC_None;
- default:
- break;
- }
- }
- return GetCallSiteClass(CI);
- }
- case Instruction::Invoke:
- return GetCallSiteClass(cast<InvokeInst>(I));
- case Instruction::BitCast:
- case Instruction::GetElementPtr:
- case Instruction::Select: case Instruction::PHI:
- case Instruction::Ret: case Instruction::Br:
- case Instruction::Switch: case Instruction::IndirectBr:
- case Instruction::Alloca: case Instruction::VAArg:
- case Instruction::Add: case Instruction::FAdd:
- case Instruction::Sub: case Instruction::FSub:
- case Instruction::Mul: case Instruction::FMul:
- case Instruction::SDiv: case Instruction::UDiv: case Instruction::FDiv:
- case Instruction::SRem: case Instruction::URem: case Instruction::FRem:
- case Instruction::Shl: case Instruction::LShr: case Instruction::AShr:
- case Instruction::And: case Instruction::Or: case Instruction::Xor:
- case Instruction::SExt: case Instruction::ZExt: case Instruction::Trunc:
- case Instruction::IntToPtr: case Instruction::FCmp:
- case Instruction::FPTrunc: case Instruction::FPExt:
- case Instruction::FPToUI: case Instruction::FPToSI:
- case Instruction::UIToFP: case Instruction::SIToFP:
- case Instruction::InsertElement: case Instruction::ExtractElement:
- case Instruction::ShuffleVector:
- case Instruction::ExtractValue:
- break;
- case Instruction::ICmp:
- // Comparing a pointer with null, or any other constant, isn't an
- // interesting use, because we don't care what the pointer points to, or
- // about the values of any other dynamic reference-counted pointers.
- if (IsPotentialUse(I->getOperand(1)))
- return IC_User;
- break;
- default:
- // For anything else, check all the operands.
- // Note that this includes both operands of a Store: while the first
- // operand isn't actually being dereferenced, it is being stored to
- // memory where we can no longer track who might read it and dereference
- // it, so we have to consider it potentially used.
- for (User::const_op_iterator OI = I->op_begin(), OE = I->op_end();
- OI != OE; ++OI)
- if (IsPotentialUse(*OI))
- return IC_User;
- }
- }
-
- // Otherwise, it's totally inert for ARC purposes.
- return IC_None;
-}
-
-/// GetBasicInstructionClass - Determine what kind of construct V is. This is
-/// similar to GetInstructionClass except that it only detects objc runtine
-/// calls. This allows it to be faster.
-static InstructionClass GetBasicInstructionClass(const Value *V) {
- if (const CallInst *CI = dyn_cast<CallInst>(V)) {
- if (const Function *F = CI->getCalledFunction())
- return GetFunctionClass(F);
- // Otherwise, be conservative.
- return IC_CallOrUser;
- }
-
- // Otherwise, be conservative.
- return isa<InvokeInst>(V) ? IC_CallOrUser : IC_User;
-}
-
-/// IsRetain - Test if the given class is objc_retain or
-/// equivalent.
-static bool IsRetain(InstructionClass Class) {
- return Class == IC_Retain ||
- Class == IC_RetainRV;
-}
-
-/// IsAutorelease - Test if the given class is objc_autorelease or
-/// equivalent.
-static bool IsAutorelease(InstructionClass Class) {
- return Class == IC_Autorelease ||
- Class == IC_AutoreleaseRV;
-}
-
-/// IsForwarding - Test if the given class represents instructions which return
-/// their argument verbatim.
-static bool IsForwarding(InstructionClass Class) {
- // objc_retainBlock technically doesn't always return its argument
- // verbatim, but it doesn't matter for our purposes here.
- return Class == IC_Retain ||
- Class == IC_RetainRV ||
- Class == IC_Autorelease ||
- Class == IC_AutoreleaseRV ||
- Class == IC_RetainBlock ||
- Class == IC_NoopCast;
-}
-
-/// IsNoopOnNull - Test if the given class represents instructions which do
-/// nothing if passed a null pointer.
-static bool IsNoopOnNull(InstructionClass Class) {
- return Class == IC_Retain ||
- Class == IC_RetainRV ||
- Class == IC_Release ||
- Class == IC_Autorelease ||
- Class == IC_AutoreleaseRV ||
- Class == IC_RetainBlock;
-}
-
-/// IsAlwaysTail - Test if the given class represents instructions which are
-/// always safe to mark with the "tail" keyword.
-static bool IsAlwaysTail(InstructionClass Class) {
- // IC_RetainBlock may be given a stack argument.
- return Class == IC_Retain ||
- Class == IC_RetainRV ||
- Class == IC_Autorelease ||
- Class == IC_AutoreleaseRV;
-}
-
-/// IsNoThrow - Test if the given class represents instructions which are always
-/// safe to mark with the nounwind attribute..
-static bool IsNoThrow(InstructionClass Class) {
- // objc_retainBlock is not nounwind because it calls user copy constructors
- // which could theoretically throw.
- return Class == IC_Retain ||
- Class == IC_RetainRV ||
- Class == IC_Release ||
- Class == IC_Autorelease ||
- Class == IC_AutoreleaseRV ||
- Class == IC_AutoreleasepoolPush ||
- Class == IC_AutoreleasepoolPop;
-}
-
-/// EraseInstruction - Erase the given instruction. Many ObjC calls return their
-/// argument verbatim, so if it's such a call and the return value has users,
-/// replace them with the argument value.
-static void EraseInstruction(Instruction *CI) {
- Value *OldArg = cast<CallInst>(CI)->getArgOperand(0);
-
- bool Unused = CI->use_empty();
-
- if (!Unused) {
- // Replace the return value with the argument.
- assert(IsForwarding(GetBasicInstructionClass(CI)) &&
- "Can't delete non-forwarding instruction with users!");
- CI->replaceAllUsesWith(OldArg);
- }
-
- CI->eraseFromParent();
-
- if (Unused)
- RecursivelyDeleteTriviallyDeadInstructions(OldArg);
-}
-
-/// GetUnderlyingObjCPtr - This is a wrapper around getUnderlyingObject which
-/// also knows how to look through objc_retain and objc_autorelease calls, which
-/// we know to return their argument verbatim.
-static const Value *GetUnderlyingObjCPtr(const Value *V) {
- for (;;) {
- V = GetUnderlyingObject(V);
- if (!IsForwarding(GetBasicInstructionClass(V)))
- break;
- V = cast<CallInst>(V)->getArgOperand(0);
- }
-
- return V;
-}
-
-/// StripPointerCastsAndObjCCalls - This is a wrapper around
-/// Value::stripPointerCasts which also knows how to look through objc_retain
-/// and objc_autorelease calls, which we know to return their argument verbatim.
-static const Value *StripPointerCastsAndObjCCalls(const Value *V) {
- for (;;) {
- V = V->stripPointerCasts();
- if (!IsForwarding(GetBasicInstructionClass(V)))
- break;
- V = cast<CallInst>(V)->getArgOperand(0);
- }
- return V;
-}
-
-/// StripPointerCastsAndObjCCalls - This is a wrapper around
-/// Value::stripPointerCasts which also knows how to look through objc_retain
-/// and objc_autorelease calls, which we know to return their argument verbatim.
-static Value *StripPointerCastsAndObjCCalls(Value *V) {
- for (;;) {
- V = V->stripPointerCasts();
- if (!IsForwarding(GetBasicInstructionClass(V)))
- break;
- V = cast<CallInst>(V)->getArgOperand(0);
- }
- return V;
-}
-
-/// GetObjCArg - Assuming the given instruction is one of the special calls such
-/// as objc_retain or objc_release, return the argument value, stripped of no-op
-/// casts and forwarding calls.
-static Value *GetObjCArg(Value *Inst) {
- return StripPointerCastsAndObjCCalls(cast<CallInst>(Inst)->getArgOperand(0));
-}
-
-/// IsObjCIdentifiedObject - This is similar to AliasAnalysis'
-/// isObjCIdentifiedObject, except that it uses special knowledge of
-/// ObjC conventions...
-static bool IsObjCIdentifiedObject(const Value *V) {
- // Assume that call results and arguments have their own "provenance".
- // Constants (including GlobalVariables) and Allocas are never
- // reference-counted.
- if (isa<CallInst>(V) || isa<InvokeInst>(V) ||
- isa<Argument>(V) || isa<Constant>(V) ||
- isa<AllocaInst>(V))
- return true;
-
- if (const LoadInst *LI = dyn_cast<LoadInst>(V)) {
- const Value *Pointer =
- StripPointerCastsAndObjCCalls(LI->getPointerOperand());
- if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Pointer)) {
- // A constant pointer can't be pointing to an object on the heap. It may
- // be reference-counted, but it won't be deleted.
- if (GV->isConstant())
- return true;
- StringRef Name = GV->getName();
- // These special variables are known to hold values which are not
- // reference-counted pointers.
- if (Name.startswith("\01L_OBJC_SELECTOR_REFERENCES_") ||
- Name.startswith("\01L_OBJC_CLASSLIST_REFERENCES_") ||
- Name.startswith("\01L_OBJC_CLASSLIST_SUP_REFS_$_") ||
- Name.startswith("\01L_OBJC_METH_VAR_NAME_") ||
- Name.startswith("\01l_objc_msgSend_fixup_"))
- return true;
- }
- }
-
- return false;
-}
-
-/// FindSingleUseIdentifiedObject - This is similar to
-/// StripPointerCastsAndObjCCalls but it stops as soon as it finds a value
-/// with multiple uses.
-static const Value *FindSingleUseIdentifiedObject(const Value *Arg) {
- if (Arg->hasOneUse()) {
- if (const BitCastInst *BC = dyn_cast<BitCastInst>(Arg))
- return FindSingleUseIdentifiedObject(BC->getOperand(0));
- if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Arg))
- if (GEP->hasAllZeroIndices())
- return FindSingleUseIdentifiedObject(GEP->getPointerOperand());
- if (IsForwarding(GetBasicInstructionClass(Arg)))
- return FindSingleUseIdentifiedObject(
- cast<CallInst>(Arg)->getArgOperand(0));
- if (!IsObjCIdentifiedObject(Arg))
- return 0;
- return Arg;
- }
-
- // If we found an identifiable object but it has multiple uses, but they are
- // trivial uses, we can still consider this to be a single-use value.
- if (IsObjCIdentifiedObject(Arg)) {
- for (Value::const_use_iterator UI = Arg->use_begin(), UE = Arg->use_end();
- UI != UE; ++UI) {
- const User *U = *UI;
- if (!U->use_empty() || StripPointerCastsAndObjCCalls(U) != Arg)
- return 0;
- }
-
- return Arg;
- }
-
- return 0;
-}
-
-/// ModuleHasARC - Test if the given module looks interesting to run ARC
-/// optimization on.
-static bool ModuleHasARC(const Module &M) {
- return
- M.getNamedValue("objc_retain") ||
- M.getNamedValue("objc_release") ||
- M.getNamedValue("objc_autorelease") ||
- M.getNamedValue("objc_retainAutoreleasedReturnValue") ||
- M.getNamedValue("objc_retainBlock") ||
- M.getNamedValue("objc_autoreleaseReturnValue") ||
- M.getNamedValue("objc_autoreleasePoolPush") ||
- M.getNamedValue("objc_loadWeakRetained") ||
- M.getNamedValue("objc_loadWeak") ||
- M.getNamedValue("objc_destroyWeak") ||
- M.getNamedValue("objc_storeWeak") ||
- M.getNamedValue("objc_initWeak") ||
- M.getNamedValue("objc_moveWeak") ||
- M.getNamedValue("objc_copyWeak") ||
- M.getNamedValue("objc_retainedObject") ||
- M.getNamedValue("objc_unretainedObject") ||
- M.getNamedValue("objc_unretainedPointer");
-}
-
-/// DoesObjCBlockEscape - Test whether the given pointer, which is an
-/// Objective C block pointer, does not "escape". This differs from regular
-/// escape analysis in that a use as an argument to a call is not considered
-/// an escape.
-static bool DoesObjCBlockEscape(const Value *BlockPtr) {
- // Walk the def-use chains.
- SmallVector<const Value *, 4> Worklist;
- Worklist.push_back(BlockPtr);
- do {
- const Value *V = Worklist.pop_back_val();
- for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
- UI != UE; ++UI) {
- const User *UUser = *UI;
- // Special - Use by a call (callee or argument) is not considered
- // to be an escape.
- switch (GetBasicInstructionClass(UUser)) {
- case IC_StoreWeak:
- case IC_InitWeak:
- case IC_StoreStrong:
- case IC_Autorelease:
- case IC_AutoreleaseRV:
- // These special functions make copies of their pointer arguments.
- return true;
- case IC_User:
- case IC_None:
- // Use by an instruction which copies the value is an escape if the
- // result is an escape.
- if (isa<BitCastInst>(UUser) || isa<GetElementPtrInst>(UUser) ||
- isa<PHINode>(UUser) || isa<SelectInst>(UUser)) {
- Worklist.push_back(UUser);
- continue;
- }
- // Use by a load is not an escape.
- if (isa<LoadInst>(UUser))
- continue;
- // Use by a store is not an escape if the use is the address.
- if (const StoreInst *SI = dyn_cast<StoreInst>(UUser))
- if (V != SI->getValueOperand())
- continue;
- break;
- default:
- // Regular calls and other stuff are not considered escapes.
- continue;
- }
- // Otherwise, conservatively assume an escape.
- return true;
- }
- } while (!Worklist.empty());
-
- // No escapes found.
- return false;
-}
-
-//===----------------------------------------------------------------------===//
-// ARC AliasAnalysis.
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Pass.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/Passes.h"
-
-namespace {
- /// ObjCARCAliasAnalysis - This is a simple alias analysis
- /// implementation that uses knowledge of ARC constructs to answer queries.
- ///
- /// TODO: This class could be generalized to know about other ObjC-specific
- /// tricks. Such as knowing that ivars in the non-fragile ABI are non-aliasing
- /// even though their offsets are dynamic.
- class ObjCARCAliasAnalysis : public ImmutablePass,
- public AliasAnalysis {
- public:
- static char ID; // Class identification, replacement for typeinfo
- ObjCARCAliasAnalysis() : ImmutablePass(ID) {
- initializeObjCARCAliasAnalysisPass(*PassRegistry::getPassRegistry());
- }
-
- private:
- virtual void initializePass() {
- InitializeAliasAnalysis(this);
- }
-
- /// getAdjustedAnalysisPointer - This method is used when a pass implements
- /// an analysis interface through multiple inheritance. If needed, it
- /// should override this to adjust the this pointer as needed for the
- /// specified pass info.
- virtual void *getAdjustedAnalysisPointer(const void *PI) {
- if (PI == &AliasAnalysis::ID)
- return static_cast<AliasAnalysis *>(this);
- return this;
- }
-
- virtual void getAnalysisUsage(AnalysisUsage &AU) const;
- virtual AliasResult alias(const Location &LocA, const Location &LocB);
- virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal);
- virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
- virtual ModRefBehavior getModRefBehavior(const Function *F);
- virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
- const Location &Loc);
- virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
- ImmutableCallSite CS2);
- };
-} // End of anonymous namespace
-
-// Register this pass...
-char ObjCARCAliasAnalysis::ID = 0;
-INITIALIZE_AG_PASS(ObjCARCAliasAnalysis, AliasAnalysis, "objc-arc-aa",
- "ObjC-ARC-Based Alias Analysis", false, true, false)
-
-ImmutablePass *llvm::createObjCARCAliasAnalysisPass() {
- return new ObjCARCAliasAnalysis();
-}
-
-void
-ObjCARCAliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
- AliasAnalysis::getAnalysisUsage(AU);
-}
-
-AliasAnalysis::AliasResult
-ObjCARCAliasAnalysis::alias(const Location &LocA, const Location &LocB) {
- if (!EnableARCOpts)
- return AliasAnalysis::alias(LocA, LocB);
-
- // First, strip off no-ops, including ObjC-specific no-ops, and try making a
- // precise alias query.
- const Value *SA = StripPointerCastsAndObjCCalls(LocA.Ptr);
- const Value *SB = StripPointerCastsAndObjCCalls(LocB.Ptr);
- AliasResult Result =
- AliasAnalysis::alias(Location(SA, LocA.Size, LocA.TBAATag),
- Location(SB, LocB.Size, LocB.TBAATag));
- if (Result != MayAlias)
- return Result;
-
- // If that failed, climb to the underlying object, including climbing through
- // ObjC-specific no-ops, and try making an imprecise alias query.
- const Value *UA = GetUnderlyingObjCPtr(SA);
- const Value *UB = GetUnderlyingObjCPtr(SB);
- if (UA != SA || UB != SB) {
- Result = AliasAnalysis::alias(Location(UA), Location(UB));
- // We can't use MustAlias or PartialAlias results here because
- // GetUnderlyingObjCPtr may return an offsetted pointer value.
- if (Result == NoAlias)
- return NoAlias;
- }
-
- // If that failed, fail. We don't need to chain here, since that's covered
- // by the earlier precise query.
- return MayAlias;
-}
-
-bool
-ObjCARCAliasAnalysis::pointsToConstantMemory(const Location &Loc,
- bool OrLocal) {
- if (!EnableARCOpts)
- return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
-
- // First, strip off no-ops, including ObjC-specific no-ops, and try making
- // a precise alias query.
- const Value *S = StripPointerCastsAndObjCCalls(Loc.Ptr);
- if (AliasAnalysis::pointsToConstantMemory(Location(S, Loc.Size, Loc.TBAATag),
- OrLocal))
- return true;
-
- // If that failed, climb to the underlying object, including climbing through
- // ObjC-specific no-ops, and try making an imprecise alias query.
- const Value *U = GetUnderlyingObjCPtr(S);
- if (U != S)
- return AliasAnalysis::pointsToConstantMemory(Location(U), OrLocal);
-
- // If that failed, fail. We don't need to chain here, since that's covered
- // by the earlier precise query.
- return false;
-}
-
-AliasAnalysis::ModRefBehavior
-ObjCARCAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
- // We have nothing to do. Just chain to the next AliasAnalysis.
- return AliasAnalysis::getModRefBehavior(CS);
-}
-
-AliasAnalysis::ModRefBehavior
-ObjCARCAliasAnalysis::getModRefBehavior(const Function *F) {
- if (!EnableARCOpts)
- return AliasAnalysis::getModRefBehavior(F);
-
- switch (GetFunctionClass(F)) {
- case IC_NoopCast:
- return DoesNotAccessMemory;
- default:
- break;
- }
-
- return AliasAnalysis::getModRefBehavior(F);
-}
-
-AliasAnalysis::ModRefResult
-ObjCARCAliasAnalysis::getModRefInfo(ImmutableCallSite CS, const Location &Loc) {
- if (!EnableARCOpts)
- return AliasAnalysis::getModRefInfo(CS, Loc);
-
- switch (GetBasicInstructionClass(CS.getInstruction())) {
- case IC_Retain:
- case IC_RetainRV:
- case IC_Autorelease:
- case IC_AutoreleaseRV:
- case IC_NoopCast:
- case IC_AutoreleasepoolPush:
- case IC_FusedRetainAutorelease:
- case IC_FusedRetainAutoreleaseRV:
- // These functions don't access any memory visible to the compiler.
- // Note that this doesn't include objc_retainBlock, because it updates
- // pointers when it copies block data.
- return NoModRef;
- default:
- break;
- }
-
- return AliasAnalysis::getModRefInfo(CS, Loc);
-}
-
-AliasAnalysis::ModRefResult
-ObjCARCAliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
- ImmutableCallSite CS2) {
- // TODO: Theoretically we could check for dependencies between objc_* calls
- // and OnlyAccessesArgumentPointees calls or other well-behaved calls.
- return AliasAnalysis::getModRefInfo(CS1, CS2);
-}
-
-//===----------------------------------------------------------------------===//
-// ARC expansion.
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Support/InstIterator.h"
-#include "llvm/Transforms/Scalar.h"
-
-namespace {
- /// ObjCARCExpand - Early ARC transformations.
- class ObjCARCExpand : public FunctionPass {
- virtual void getAnalysisUsage(AnalysisUsage &AU) const;
- virtual bool doInitialization(Module &M);
- virtual bool runOnFunction(Function &F);
-
- /// Run - A flag indicating whether this optimization pass should run.
- bool Run;
-
- public:
- static char ID;
- ObjCARCExpand() : FunctionPass(ID) {
- initializeObjCARCExpandPass(*PassRegistry::getPassRegistry());
- }
- };
-}
-
-char ObjCARCExpand::ID = 0;
-INITIALIZE_PASS(ObjCARCExpand,
- "objc-arc-expand", "ObjC ARC expansion", false, false)
-
-Pass *llvm::createObjCARCExpandPass() {
- return new ObjCARCExpand();
-}
-
-void ObjCARCExpand::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesCFG();
-}
-
-bool ObjCARCExpand::doInitialization(Module &M) {
- Run = ModuleHasARC(M);
- return false;
-}
-
-bool ObjCARCExpand::runOnFunction(Function &F) {
- if (!EnableARCOpts)
- return false;
-
- // If nothing in the Module uses ARC, don't do anything.
- if (!Run)
- return false;
-
- bool Changed = false;
-
- for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
- Instruction *Inst = &*I;
-
- switch (GetBasicInstructionClass(Inst)) {
- case IC_Retain:
- case IC_RetainRV:
- case IC_Autorelease:
- case IC_AutoreleaseRV:
- case IC_FusedRetainAutorelease:
- case IC_FusedRetainAutoreleaseRV:
- // These calls return their argument verbatim, as a low-level
- // optimization. However, this makes high-level optimizations
- // harder. Undo any uses of this optimization that the front-end
- // emitted here. We'll redo them in the contract pass.
- Changed = true;
- Inst->replaceAllUsesWith(cast<CallInst>(Inst)->getArgOperand(0));
- break;
- default:
- break;
- }
- }
-
- return Changed;
-}
-
-//===----------------------------------------------------------------------===//
-// ARC autorelease pool elimination.
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Constants.h"
-#include "llvm/ADT/STLExtras.h"
-
-namespace {
- /// ObjCARCAPElim - Autorelease pool elimination.
- class ObjCARCAPElim : public ModulePass {
- virtual void getAnalysisUsage(AnalysisUsage &AU) const;
- virtual bool runOnModule(Module &M);
-
- static bool MayAutorelease(ImmutableCallSite CS, unsigned Depth = 0);
- static bool OptimizeBB(BasicBlock *BB);
-
- public:
- static char ID;
- ObjCARCAPElim() : ModulePass(ID) {
- initializeObjCARCAPElimPass(*PassRegistry::getPassRegistry());
- }
- };
-}
-
-char ObjCARCAPElim::ID = 0;
-INITIALIZE_PASS(ObjCARCAPElim,
- "objc-arc-apelim",
- "ObjC ARC autorelease pool elimination",
- false, false)
-
-Pass *llvm::createObjCARCAPElimPass() {
- return new ObjCARCAPElim();
-}
-
-void ObjCARCAPElim::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesCFG();
-}
-
-/// MayAutorelease - Interprocedurally determine if calls made by the
-/// given call site can possibly produce autoreleases.
-bool ObjCARCAPElim::MayAutorelease(ImmutableCallSite CS, unsigned Depth) {
- if (const Function *Callee = CS.getCalledFunction()) {
- if (Callee->isDeclaration() || Callee->mayBeOverridden())
- return true;
- for (Function::const_iterator I = Callee->begin(), E = Callee->end();
- I != E; ++I) {
- const BasicBlock *BB = I;
- for (BasicBlock::const_iterator J = BB->begin(), F = BB->end();
- J != F; ++J)
- if (ImmutableCallSite JCS = ImmutableCallSite(J))
- // This recursion depth limit is arbitrary. It's just great
- // enough to cover known interesting testcases.
- if (Depth < 3 &&
- !JCS.onlyReadsMemory() &&
- MayAutorelease(JCS, Depth + 1))
- return true;
- }
- return false;
- }
-
- return true;
-}
-
-bool ObjCARCAPElim::OptimizeBB(BasicBlock *BB) {
- bool Changed = false;
-
- Instruction *Push = 0;
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
- Instruction *Inst = I++;
- switch (GetBasicInstructionClass(Inst)) {
- case IC_AutoreleasepoolPush:
- Push = Inst;
- break;
- case IC_AutoreleasepoolPop:
- // If this pop matches a push and nothing in between can autorelease,
- // zap the pair.
- if (Push && cast<CallInst>(Inst)->getArgOperand(0) == Push) {
- Changed = true;
- Inst->eraseFromParent();
- Push->eraseFromParent();
- }
- Push = 0;
- break;
- case IC_CallOrUser:
- if (MayAutorelease(ImmutableCallSite(Inst)))
- Push = 0;
- break;
- default:
- break;
- }
- }
-
- return Changed;
-}
-
-bool ObjCARCAPElim::runOnModule(Module &M) {
- if (!EnableARCOpts)
- return false;
-
- // If nothing in the Module uses ARC, don't do anything.
- if (!ModuleHasARC(M))
- return false;
-
- // Find the llvm.global_ctors variable, as the first step in
- // identifying the global constructors. In theory, unnecessary autorelease
- // pools could occur anywhere, but in practice it's pretty rare. Global
- // ctors are a place where autorelease pools get inserted automatically,
- // so it's pretty common for them to be unnecessary, and it's pretty
- // profitable to eliminate them.
- GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
- if (!GV)
- return false;
-
- assert(GV->hasDefinitiveInitializer() &&
- "llvm.global_ctors is uncooperative!");
-
- bool Changed = false;
-
- // Dig the constructor functions out of GV's initializer.
- ConstantArray *Init = cast<ConstantArray>(GV->getInitializer());
- for (User::op_iterator OI = Init->op_begin(), OE = Init->op_end();
- OI != OE; ++OI) {
- Value *Op = *OI;
- // llvm.global_ctors is an array of pairs where the second members
- // are constructor functions.
- Function *F = dyn_cast<Function>(cast<ConstantStruct>(Op)->getOperand(1));
- // If the user used a constructor function with the wrong signature and
- // it got bitcasted or whatever, look the other way.
- if (!F)
- continue;
- // Only look at function definitions.
- if (F->isDeclaration())
- continue;
- // Only look at functions with one basic block.
- if (llvm::next(F->begin()) != F->end())
- continue;
- // Ok, a single-block constructor function definition. Try to optimize it.
- Changed |= OptimizeBB(F->begin());
- }
-
- return Changed;
-}
-
-//===----------------------------------------------------------------------===//
-// ARC optimization.
-//===----------------------------------------------------------------------===//
-
-// TODO: On code like this:
-//
-// objc_retain(%x)
-// stuff_that_cannot_release()
-// objc_autorelease(%x)
-// stuff_that_cannot_release()
-// objc_retain(%x)
-// stuff_that_cannot_release()
-// objc_autorelease(%x)
-//
-// The second retain and autorelease can be deleted.
-
-// TODO: It should be possible to delete
-// objc_autoreleasePoolPush and objc_autoreleasePoolPop
-// pairs if nothing is actually autoreleased between them. Also, autorelease
-// calls followed by objc_autoreleasePoolPop calls (perhaps in ObjC++ code
-// after inlining) can be turned into plain release calls.
-
-// TODO: Critical-edge splitting. If the optimial insertion point is
-// a critical edge, the current algorithm has to fail, because it doesn't
-// know how to split edges. It should be possible to make the optimizer
-// think in terms of edges, rather than blocks, and then split critical
-// edges on demand.
-
-// TODO: OptimizeSequences could generalized to be Interprocedural.
-
-// TODO: Recognize that a bunch of other objc runtime calls have
-// non-escaping arguments and non-releasing arguments, and may be
-// non-autoreleasing.
-
-// TODO: Sink autorelease calls as far as possible. Unfortunately we
-// usually can't sink them past other calls, which would be the main
-// case where it would be useful.
-
-// TODO: The pointer returned from objc_loadWeakRetained is retained.
-
-// TODO: Delete release+retain pairs (rare).
-
-#include "llvm/LLVMContext.h"
-#include "llvm/Support/CFG.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/SmallPtrSet.h"
-
-STATISTIC(NumNoops, "Number of no-op objc calls eliminated");
-STATISTIC(NumPartialNoops, "Number of partially no-op objc calls eliminated");
-STATISTIC(NumAutoreleases,"Number of autoreleases converted to releases");
-STATISTIC(NumRets, "Number of return value forwarding "
- "retain+autoreleaes eliminated");
-STATISTIC(NumRRs, "Number of retain+release paths eliminated");
-STATISTIC(NumPeeps, "Number of calls peephole-optimized");
-
-namespace {
- /// ProvenanceAnalysis - This is similar to BasicAliasAnalysis, and it
- /// uses many of the same techniques, except it uses special ObjC-specific
- /// reasoning about pointer relationships.
- class ProvenanceAnalysis {
- AliasAnalysis *AA;
-
- typedef std::pair<const Value *, const Value *> ValuePairTy;
- typedef DenseMap<ValuePairTy, bool> CachedResultsTy;
- CachedResultsTy CachedResults;
-
- bool relatedCheck(const Value *A, const Value *B);
- bool relatedSelect(const SelectInst *A, const Value *B);
- bool relatedPHI(const PHINode *A, const Value *B);
-
- void operator=(const ProvenanceAnalysis &) LLVM_DELETED_FUNCTION;
- ProvenanceAnalysis(const ProvenanceAnalysis &) LLVM_DELETED_FUNCTION;
-
- public:
- ProvenanceAnalysis() {}
-
- void setAA(AliasAnalysis *aa) { AA = aa; }
-
- AliasAnalysis *getAA() const { return AA; }
-
- bool related(const Value *A, const Value *B);
-
- void clear() {
- CachedResults.clear();
- }
- };
-}
-
-bool ProvenanceAnalysis::relatedSelect(const SelectInst *A, const Value *B) {
- // If the values are Selects with the same condition, we can do a more precise
- // check: just check for relations between the values on corresponding arms.
- if (const SelectInst *SB = dyn_cast<SelectInst>(B))
- if (A->getCondition() == SB->getCondition())
- return related(A->getTrueValue(), SB->getTrueValue()) ||
- related(A->getFalseValue(), SB->getFalseValue());
-
- // Check both arms of the Select node individually.
- return related(A->getTrueValue(), B) ||
- related(A->getFalseValue(), B);
-}
-
-bool ProvenanceAnalysis::relatedPHI(const PHINode *A, const Value *B) {
- // If the values are PHIs in the same block, we can do a more precise as well
- // as efficient check: just check for relations between the values on
- // corresponding edges.
- if (const PHINode *PNB = dyn_cast<PHINode>(B))
- if (PNB->getParent() == A->getParent()) {
- for (unsigned i = 0, e = A->getNumIncomingValues(); i != e; ++i)
- if (related(A->getIncomingValue(i),
- PNB->getIncomingValueForBlock(A->getIncomingBlock(i))))
- return true;
- return false;
- }
-
- // Check each unique source of the PHI node against B.
- SmallPtrSet<const Value *, 4> UniqueSrc;
- for (unsigned i = 0, e = A->getNumIncomingValues(); i != e; ++i) {
- const Value *PV1 = A->getIncomingValue(i);
- if (UniqueSrc.insert(PV1) && related(PV1, B))
- return true;
- }
-
- // All of the arms checked out.
- return false;
-}
-
-/// isStoredObjCPointer - Test if the value of P, or any value covered by its
-/// provenance, is ever stored within the function (not counting callees).
-static bool isStoredObjCPointer(const Value *P) {
- SmallPtrSet<const Value *, 8> Visited;
- SmallVector<const Value *, 8> Worklist;
- Worklist.push_back(P);
- Visited.insert(P);
- do {
- P = Worklist.pop_back_val();
- for (Value::const_use_iterator UI = P->use_begin(), UE = P->use_end();
- UI != UE; ++UI) {
- const User *Ur = *UI;
- if (isa<StoreInst>(Ur)) {
- if (UI.getOperandNo() == 0)
- // The pointer is stored.
- return true;
- // The pointed is stored through.
- continue;
- }
- if (isa<CallInst>(Ur))
- // The pointer is passed as an argument, ignore this.
- continue;
- if (isa<PtrToIntInst>(P))
- // Assume the worst.
- return true;
- if (Visited.insert(Ur))
- Worklist.push_back(Ur);
- }
- } while (!Worklist.empty());
-
- // Everything checked out.
- return false;
-}
-
-bool ProvenanceAnalysis::relatedCheck(const Value *A, const Value *B) {
- // Skip past provenance pass-throughs.
- A = GetUnderlyingObjCPtr(A);
- B = GetUnderlyingObjCPtr(B);
-
- // Quick check.
- if (A == B)
- return true;
-
- // Ask regular AliasAnalysis, for a first approximation.
- switch (AA->alias(A, B)) {
- case AliasAnalysis::NoAlias:
- return false;
- case AliasAnalysis::MustAlias:
- case AliasAnalysis::PartialAlias:
- return true;
- case AliasAnalysis::MayAlias:
- break;
- }
-
- bool AIsIdentified = IsObjCIdentifiedObject(A);
- bool BIsIdentified = IsObjCIdentifiedObject(B);
-
- // An ObjC-Identified object can't alias a load if it is never locally stored.
- if (AIsIdentified) {
- // Check for an obvious escape.
- if (isa<LoadInst>(B))
- return isStoredObjCPointer(A);
- if (BIsIdentified) {
- // Check for an obvious escape.
- if (isa<LoadInst>(A))
- return isStoredObjCPointer(B);
- // Both pointers are identified and escapes aren't an evident problem.
- return false;
- }
- } else if (BIsIdentified) {
- // Check for an obvious escape.
- if (isa<LoadInst>(A))
- return isStoredObjCPointer(B);
- }
-
- // Special handling for PHI and Select.
- if (const PHINode *PN = dyn_cast<PHINode>(A))
- return relatedPHI(PN, B);
- if (const PHINode *PN = dyn_cast<PHINode>(B))
- return relatedPHI(PN, A);
- if (const SelectInst *S = dyn_cast<SelectInst>(A))
- return relatedSelect(S, B);
- if (const SelectInst *S = dyn_cast<SelectInst>(B))
- return relatedSelect(S, A);
-
- // Conservative.
- return true;
-}
-
-bool ProvenanceAnalysis::related(const Value *A, const Value *B) {
- // Begin by inserting a conservative value into the map. If the insertion
- // fails, we have the answer already. If it succeeds, leave it there until we
- // compute the real answer to guard against recursive queries.
- if (A > B) std::swap(A, B);
- std::pair<CachedResultsTy::iterator, bool> Pair =
- CachedResults.insert(std::make_pair(ValuePairTy(A, B), true));
- if (!Pair.second)
- return Pair.first->second;
-
- bool Result = relatedCheck(A, B);
- CachedResults[ValuePairTy(A, B)] = Result;
- return Result;
-}
-
-namespace {
- // Sequence - A sequence of states that a pointer may go through in which an
- // objc_retain and objc_release are actually needed.
- enum Sequence {
- S_None,
- S_Retain, ///< objc_retain(x)
- S_CanRelease, ///< foo(x) -- x could possibly see a ref count decrement
- S_Use, ///< any use of x
- S_Stop, ///< like S_Release, but code motion is stopped
- S_Release, ///< objc_release(x)
- S_MovableRelease ///< objc_release(x), !clang.imprecise_release
- };
-}
-
-static Sequence MergeSeqs(Sequence A, Sequence B, bool TopDown) {
- // The easy cases.
- if (A == B)
- return A;
- if (A == S_None || B == S_None)
- return S_None;
-
- if (A > B) std::swap(A, B);
- if (TopDown) {
- // Choose the side which is further along in the sequence.
- if ((A == S_Retain || A == S_CanRelease) &&
- (B == S_CanRelease || B == S_Use))
- return B;
- } else {
- // Choose the side which is further along in the sequence.
- if ((A == S_Use || A == S_CanRelease) &&
- (B == S_Use || B == S_Release || B == S_Stop || B == S_MovableRelease))
- return A;
- // If both sides are releases, choose the more conservative one.
- if (A == S_Stop && (B == S_Release || B == S_MovableRelease))
- return A;
- if (A == S_Release && B == S_MovableRelease)
- return A;
- }
-
- return S_None;
-}
-
-namespace {
- /// RRInfo - Unidirectional information about either a
- /// retain-decrement-use-release sequence or release-use-decrement-retain
- /// reverese sequence.
- struct RRInfo {
- /// KnownSafe - After an objc_retain, the reference count of the referenced
- /// object is known to be positive. Similarly, before an objc_release, the
- /// reference count of the referenced object is known to be positive. If
- /// there are retain-release pairs in code regions where the retain count
- /// is known to be positive, they can be eliminated, regardless of any side
- /// effects between them.
- ///
- /// Also, a retain+release pair nested within another retain+release
- /// pair all on the known same pointer value can be eliminated, regardless
- /// of any intervening side effects.
- ///
- /// KnownSafe is true when either of these conditions is satisfied.
- bool KnownSafe;
-
- /// IsRetainBlock - True if the Calls are objc_retainBlock calls (as
- /// opposed to objc_retain calls).
- bool IsRetainBlock;
-
- /// IsTailCallRelease - True of the objc_release calls are all marked
- /// with the "tail" keyword.
- bool IsTailCallRelease;
-
- /// ReleaseMetadata - If the Calls are objc_release calls and they all have
- /// a clang.imprecise_release tag, this is the metadata tag.
- MDNode *ReleaseMetadata;
-
- /// Calls - For a top-down sequence, the set of objc_retains or
- /// objc_retainBlocks. For bottom-up, the set of objc_releases.
- SmallPtrSet<Instruction *, 2> Calls;
-
- /// ReverseInsertPts - The set of optimal insert positions for
- /// moving calls in the opposite sequence.
- SmallPtrSet<Instruction *, 2> ReverseInsertPts;
-
- RRInfo() :
- KnownSafe(false), IsRetainBlock(false),
- IsTailCallRelease(false),
- ReleaseMetadata(0) {}
-
- void clear();
- };
-}
-
-void RRInfo::clear() {
- KnownSafe = false;
- IsRetainBlock = false;
- IsTailCallRelease = false;
- ReleaseMetadata = 0;
- Calls.clear();
- ReverseInsertPts.clear();
-}
-
-namespace {
- /// PtrState - This class summarizes several per-pointer runtime properties
- /// which are propogated through the flow graph.
- class PtrState {
- /// KnownPositiveRefCount - True if the reference count is known to
- /// be incremented.
- bool KnownPositiveRefCount;
-
- /// Partial - True of we've seen an opportunity for partial RR elimination,
- /// such as pushing calls into a CFG triangle or into one side of a
- /// CFG diamond.
- bool Partial;
-
- /// Seq - The current position in the sequence.
- Sequence Seq : 8;
-
- public:
- /// RRI - Unidirectional information about the current sequence.
- /// TODO: Encapsulate this better.
- RRInfo RRI;
-
- PtrState() : KnownPositiveRefCount(false), Partial(false),
- Seq(S_None) {}
-
- void SetKnownPositiveRefCount() {
- KnownPositiveRefCount = true;
- }
-
- void ClearRefCount() {
- KnownPositiveRefCount = false;
- }
-
- bool IsKnownIncremented() const {
- return KnownPositiveRefCount;
- }
-
- void SetSeq(Sequence NewSeq) {
- Seq = NewSeq;
- }
-
- Sequence GetSeq() const {
- return Seq;
- }
-
- void ClearSequenceProgress() {
- ResetSequenceProgress(S_None);
- }
-
- void ResetSequenceProgress(Sequence NewSeq) {
- Seq = NewSeq;
- Partial = false;
- RRI.clear();
- }
-
- void Merge(const PtrState &Other, bool TopDown);
- };
-}
-
-void
-PtrState::Merge(const PtrState &Other, bool TopDown) {
- Seq = MergeSeqs(Seq, Other.Seq, TopDown);
- KnownPositiveRefCount = KnownPositiveRefCount && Other.KnownPositiveRefCount;
-
- // We can't merge a plain objc_retain with an objc_retainBlock.
- if (RRI.IsRetainBlock != Other.RRI.IsRetainBlock)
- Seq = S_None;
-
- // If we're not in a sequence (anymore), drop all associated state.
- if (Seq == S_None) {
- Partial = false;
- RRI.clear();
- } else if (Partial || Other.Partial) {
- // If we're doing a merge on a path that's previously seen a partial
- // merge, conservatively drop the sequence, to avoid doing partial
- // RR elimination. If the branch predicates for the two merge differ,
- // mixing them is unsafe.
- ClearSequenceProgress();
- } else {
- // Conservatively merge the ReleaseMetadata information.
- if (RRI.ReleaseMetadata != Other.RRI.ReleaseMetadata)
- RRI.ReleaseMetadata = 0;
-
- RRI.KnownSafe = RRI.KnownSafe && Other.RRI.KnownSafe;
- RRI.IsTailCallRelease = RRI.IsTailCallRelease &&
- Other.RRI.IsTailCallRelease;
- RRI.Calls.insert(Other.RRI.Calls.begin(), Other.RRI.Calls.end());
-
- // Merge the insert point sets. If there are any differences,
- // that makes this a partial merge.
- Partial = RRI.ReverseInsertPts.size() != Other.RRI.ReverseInsertPts.size();
- for (SmallPtrSet<Instruction *, 2>::const_iterator
- I = Other.RRI.ReverseInsertPts.begin(),
- E = Other.RRI.ReverseInsertPts.end(); I != E; ++I)
- Partial |= RRI.ReverseInsertPts.insert(*I);
- }
-}
-
-namespace {
- /// BBState - Per-BasicBlock state.
- class BBState {
- /// TopDownPathCount - The number of unique control paths from the entry
- /// which can reach this block.
- unsigned TopDownPathCount;
-
- /// BottomUpPathCount - The number of unique control paths to exits
- /// from this block.
- unsigned BottomUpPathCount;
-
- /// MapTy - A type for PerPtrTopDown and PerPtrBottomUp.
- typedef MapVector<const Value *, PtrState> MapTy;
-
- /// PerPtrTopDown - The top-down traversal uses this to record information
- /// known about a pointer at the bottom of each block.
- MapTy PerPtrTopDown;
-
- /// PerPtrBottomUp - The bottom-up traversal uses this to record information
- /// known about a pointer at the top of each block.
- MapTy PerPtrBottomUp;
-
- /// Preds, Succs - Effective successors and predecessors of the current
- /// block (this ignores ignorable edges and ignored backedges).
- SmallVector<BasicBlock *, 2> Preds;
- SmallVector<BasicBlock *, 2> Succs;
-
- public:
- BBState() : TopDownPathCount(0), BottomUpPathCount(0) {}
-
- typedef MapTy::iterator ptr_iterator;
- typedef MapTy::const_iterator ptr_const_iterator;
-
- ptr_iterator top_down_ptr_begin() { return PerPtrTopDown.begin(); }
- ptr_iterator top_down_ptr_end() { return PerPtrTopDown.end(); }
- ptr_const_iterator top_down_ptr_begin() const {
- return PerPtrTopDown.begin();
- }
- ptr_const_iterator top_down_ptr_end() const {
- return PerPtrTopDown.end();
- }
-
- ptr_iterator bottom_up_ptr_begin() { return PerPtrBottomUp.begin(); }
- ptr_iterator bottom_up_ptr_end() { return PerPtrBottomUp.end(); }
- ptr_const_iterator bottom_up_ptr_begin() const {
- return PerPtrBottomUp.begin();
- }
- ptr_const_iterator bottom_up_ptr_end() const {
- return PerPtrBottomUp.end();
- }
-
- /// SetAsEntry - Mark this block as being an entry block, which has one
- /// path from the entry by definition.
- void SetAsEntry() { TopDownPathCount = 1; }
-
- /// SetAsExit - Mark this block as being an exit block, which has one
- /// path to an exit by definition.
- void SetAsExit() { BottomUpPathCount = 1; }
-
- PtrState &getPtrTopDownState(const Value *Arg) {
- return PerPtrTopDown[Arg];
- }
-
- PtrState &getPtrBottomUpState(const Value *Arg) {
- return PerPtrBottomUp[Arg];
- }
-
- void clearBottomUpPointers() {
- PerPtrBottomUp.clear();
- }
-
- void clearTopDownPointers() {
- PerPtrTopDown.clear();
- }
-
- void InitFromPred(const BBState &Other);
- void InitFromSucc(const BBState &Other);
- void MergePred(const BBState &Other);
- void MergeSucc(const BBState &Other);
-
- /// GetAllPathCount - Return the number of possible unique paths from an
- /// entry to an exit which pass through this block. This is only valid
- /// after both the top-down and bottom-up traversals are complete.
- unsigned GetAllPathCount() const {
- assert(TopDownPathCount != 0);
- assert(BottomUpPathCount != 0);
- return TopDownPathCount * BottomUpPathCount;
- }
-
- // Specialized CFG utilities.
- typedef SmallVectorImpl<BasicBlock *>::const_iterator edge_iterator;
- edge_iterator pred_begin() { return Preds.begin(); }
- edge_iterator pred_end() { return Preds.end(); }
- edge_iterator succ_begin() { return Succs.begin(); }
- edge_iterator succ_end() { return Succs.end(); }
-
- void addSucc(BasicBlock *Succ) { Succs.push_back(Succ); }
- void addPred(BasicBlock *Pred) { Preds.push_back(Pred); }
-
- bool isExit() const { return Succs.empty(); }
- };
-}
-
-void BBState::InitFromPred(const BBState &Other) {
- PerPtrTopDown = Other.PerPtrTopDown;
- TopDownPathCount = Other.TopDownPathCount;
-}
-
-void BBState::InitFromSucc(const BBState &Other) {
- PerPtrBottomUp = Other.PerPtrBottomUp;
- BottomUpPathCount = Other.BottomUpPathCount;
-}
-
-/// MergePred - The top-down traversal uses this to merge information about
-/// predecessors to form the initial state for a new block.
-void BBState::MergePred(const BBState &Other) {
- // Other.TopDownPathCount can be 0, in which case it is either dead or a
- // loop backedge. Loop backedges are special.
- TopDownPathCount += Other.TopDownPathCount;
-
- // Check for overflow. If we have overflow, fall back to conservative behavior.
- if (TopDownPathCount < Other.TopDownPathCount) {
- clearTopDownPointers();
- return;
- }
-
- // For each entry in the other set, if our set has an entry with the same key,
- // merge the entries. Otherwise, copy the entry and merge it with an empty
- // entry.
- for (ptr_const_iterator MI = Other.top_down_ptr_begin(),
- ME = Other.top_down_ptr_end(); MI != ME; ++MI) {
- std::pair<ptr_iterator, bool> Pair = PerPtrTopDown.insert(*MI);
- Pair.first->second.Merge(Pair.second ? PtrState() : MI->second,
- /*TopDown=*/true);
- }
-
- // For each entry in our set, if the other set doesn't have an entry with the
- // same key, force it to merge with an empty entry.
- for (ptr_iterator MI = top_down_ptr_begin(),
- ME = top_down_ptr_end(); MI != ME; ++MI)
- if (Other.PerPtrTopDown.find(MI->first) == Other.PerPtrTopDown.end())
- MI->second.Merge(PtrState(), /*TopDown=*/true);
-}
-
-/// MergeSucc - The bottom-up traversal uses this to merge information about
-/// successors to form the initial state for a new block.
-void BBState::MergeSucc(const BBState &Other) {
- // Other.BottomUpPathCount can be 0, in which case it is either dead or a
- // loop backedge. Loop backedges are special.
- BottomUpPathCount += Other.BottomUpPathCount;
-
- // Check for overflow. If we have overflow, fall back to conservative behavior.
- if (BottomUpPathCount < Other.BottomUpPathCount) {
- clearBottomUpPointers();
- return;
- }
-
- // For each entry in the other set, if our set has an entry with the
- // same key, merge the entries. Otherwise, copy the entry and merge
- // it with an empty entry.
- for (ptr_const_iterator MI = Other.bottom_up_ptr_begin(),
- ME = Other.bottom_up_ptr_end(); MI != ME; ++MI) {
- std::pair<ptr_iterator, bool> Pair = PerPtrBottomUp.insert(*MI);
- Pair.first->second.Merge(Pair.second ? PtrState() : MI->second,
- /*TopDown=*/false);
- }
-
- // For each entry in our set, if the other set doesn't have an entry
- // with the same key, force it to merge with an empty entry.
- for (ptr_iterator MI = bottom_up_ptr_begin(),
- ME = bottom_up_ptr_end(); MI != ME; ++MI)
- if (Other.PerPtrBottomUp.find(MI->first) == Other.PerPtrBottomUp.end())
- MI->second.Merge(PtrState(), /*TopDown=*/false);
-}
-
-namespace {
- /// ObjCARCOpt - The main ARC optimization pass.
- class ObjCARCOpt : public FunctionPass {
- bool Changed;
- ProvenanceAnalysis PA;
-
- /// Run - A flag indicating whether this optimization pass should run.
- bool Run;
-
- /// RetainRVCallee, etc. - Declarations for ObjC runtime
- /// functions, for use in creating calls to them. These are initialized
- /// lazily to avoid cluttering up the Module with unused declarations.
- Constant *RetainRVCallee, *AutoreleaseRVCallee, *ReleaseCallee,
- *RetainCallee, *RetainBlockCallee, *AutoreleaseCallee;
-
- /// UsedInThisFunciton - Flags which determine whether each of the
- /// interesting runtine functions is in fact used in the current function.
- unsigned UsedInThisFunction;
-
- /// ImpreciseReleaseMDKind - The Metadata Kind for clang.imprecise_release
- /// metadata.
- unsigned ImpreciseReleaseMDKind;
-
- /// CopyOnEscapeMDKind - The Metadata Kind for clang.arc.copy_on_escape
- /// metadata.
- unsigned CopyOnEscapeMDKind;
-
- /// NoObjCARCExceptionsMDKind - The Metadata Kind for
- /// clang.arc.no_objc_arc_exceptions metadata.
- unsigned NoObjCARCExceptionsMDKind;
-
- Constant *getRetainRVCallee(Module *M);
- Constant *getAutoreleaseRVCallee(Module *M);
- Constant *getReleaseCallee(Module *M);
- Constant *getRetainCallee(Module *M);
- Constant *getRetainBlockCallee(Module *M);
- Constant *getAutoreleaseCallee(Module *M);
-
- bool IsRetainBlockOptimizable(const Instruction *Inst);
-
- void OptimizeRetainCall(Function &F, Instruction *Retain);
- bool OptimizeRetainRVCall(Function &F, Instruction *RetainRV);
- void OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV);
- void OptimizeIndividualCalls(Function &F);
-
- void CheckForCFGHazards(const BasicBlock *BB,
- DenseMap<const BasicBlock *, BBState> &BBStates,
- BBState &MyStates) const;
- bool VisitInstructionBottomUp(Instruction *Inst,
- BasicBlock *BB,
- MapVector<Value *, RRInfo> &Retains,
- BBState &MyStates);
- bool VisitBottomUp(BasicBlock *BB,
- DenseMap<const BasicBlock *, BBState> &BBStates,
- MapVector<Value *, RRInfo> &Retains);
- bool VisitInstructionTopDown(Instruction *Inst,
- DenseMap<Value *, RRInfo> &Releases,
- BBState &MyStates);
- bool VisitTopDown(BasicBlock *BB,
- DenseMap<const BasicBlock *, BBState> &BBStates,
- DenseMap<Value *, RRInfo> &Releases);
- bool Visit(Function &F,
- DenseMap<const BasicBlock *, BBState> &BBStates,
- MapVector<Value *, RRInfo> &Retains,
- DenseMap<Value *, RRInfo> &Releases);
-
- void MoveCalls(Value *Arg, RRInfo &RetainsToMove, RRInfo &ReleasesToMove,
- MapVector<Value *, RRInfo> &Retains,
- DenseMap<Value *, RRInfo> &Releases,
- SmallVectorImpl<Instruction *> &DeadInsts,
- Module *M);
-
- bool PerformCodePlacement(DenseMap<const BasicBlock *, BBState> &BBStates,
- MapVector<Value *, RRInfo> &Retains,
- DenseMap<Value *, RRInfo> &Releases,
- Module *M);
-
- void OptimizeWeakCalls(Function &F);
-
- bool OptimizeSequences(Function &F);
-
- void OptimizeReturns(Function &F);
-
- virtual void getAnalysisUsage(AnalysisUsage &AU) const;
- virtual bool doInitialization(Module &M);
- virtual bool runOnFunction(Function &F);
- virtual void releaseMemory();
-
- public:
- static char ID;
- ObjCARCOpt() : FunctionPass(ID) {
- initializeObjCARCOptPass(*PassRegistry::getPassRegistry());
- }
- };
-}
-
-char ObjCARCOpt::ID = 0;
-INITIALIZE_PASS_BEGIN(ObjCARCOpt,
- "objc-arc", "ObjC ARC optimization", false, false)
-INITIALIZE_PASS_DEPENDENCY(ObjCARCAliasAnalysis)
-INITIALIZE_PASS_END(ObjCARCOpt,
- "objc-arc", "ObjC ARC optimization", false, false)
-
-Pass *llvm::createObjCARCOptPass() {
- return new ObjCARCOpt();
-}
-
-void ObjCARCOpt::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequired<ObjCARCAliasAnalysis>();
- AU.addRequired<AliasAnalysis>();
- // ARC optimization doesn't currently split critical edges.
- AU.setPreservesCFG();
-}
-
-bool ObjCARCOpt::IsRetainBlockOptimizable(const Instruction *Inst) {
- // Without the magic metadata tag, we have to assume this might be an
- // objc_retainBlock call inserted to convert a block pointer to an id,
- // in which case it really is needed.
- if (!Inst->getMetadata(CopyOnEscapeMDKind))
- return false;
-
- // If the pointer "escapes" (not including being used in a call),
- // the copy may be needed.
- if (DoesObjCBlockEscape(Inst))
- return false;
-
- // Otherwise, it's not needed.
- return true;
-}
-
-Constant *ObjCARCOpt::getRetainRVCallee(Module *M) {
- if (!RetainRVCallee) {
- LLVMContext &C = M->getContext();
- Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
- Type *Params[] = { I8X };
- FunctionType *FTy = FunctionType::get(I8X, Params, /*isVarArg=*/false);
- AttrListPtr Attributes =
- AttrListPtr().addAttr(M->getContext(), AttrListPtr::FunctionIndex,
- Attributes::get(C, Attributes::NoUnwind));
- RetainRVCallee =
- M->getOrInsertFunction("objc_retainAutoreleasedReturnValue", FTy,
- Attributes);
- }
- return RetainRVCallee;
-}
-
-Constant *ObjCARCOpt::getAutoreleaseRVCallee(Module *M) {
- if (!AutoreleaseRVCallee) {
- LLVMContext &C = M->getContext();
- Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
- Type *Params[] = { I8X };
- FunctionType *FTy = FunctionType::get(I8X, Params, /*isVarArg=*/false);
- AttrListPtr Attributes =
- AttrListPtr().addAttr(M->getContext(), AttrListPtr::FunctionIndex,
- Attributes::get(C, Attributes::NoUnwind));
- AutoreleaseRVCallee =
- M->getOrInsertFunction("objc_autoreleaseReturnValue", FTy,
- Attributes);
- }
- return AutoreleaseRVCallee;
-}
-
-Constant *ObjCARCOpt::getReleaseCallee(Module *M) {
- if (!ReleaseCallee) {
- LLVMContext &C = M->getContext();
- Type *Params[] = { PointerType::getUnqual(Type::getInt8Ty(C)) };
- AttrListPtr Attributes =
- AttrListPtr().addAttr(M->getContext(), AttrListPtr::FunctionIndex,
- Attributes::get(C, Attributes::NoUnwind));
- ReleaseCallee =
- M->getOrInsertFunction(
- "objc_release",
- FunctionType::get(Type::getVoidTy(C), Params, /*isVarArg=*/false),
- Attributes);
- }
- return ReleaseCallee;
-}
-
-Constant *ObjCARCOpt::getRetainCallee(Module *M) {
- if (!RetainCallee) {
- LLVMContext &C = M->getContext();
- Type *Params[] = { PointerType::getUnqual(Type::getInt8Ty(C)) };
- AttrListPtr Attributes =
- AttrListPtr().addAttr(M->getContext(), AttrListPtr::FunctionIndex,
- Attributes::get(C, Attributes::NoUnwind));
- RetainCallee =
- M->getOrInsertFunction(
- "objc_retain",
- FunctionType::get(Params[0], Params, /*isVarArg=*/false),
- Attributes);
- }
- return RetainCallee;
-}
-
-Constant *ObjCARCOpt::getRetainBlockCallee(Module *M) {
- if (!RetainBlockCallee) {
- LLVMContext &C = M->getContext();
- Type *Params[] = { PointerType::getUnqual(Type::getInt8Ty(C)) };
- // objc_retainBlock is not nounwind because it calls user copy constructors
- // which could theoretically throw.
- RetainBlockCallee =
- M->getOrInsertFunction(
- "objc_retainBlock",
- FunctionType::get(Params[0], Params, /*isVarArg=*/false),
- AttrListPtr());
- }
- return RetainBlockCallee;
-}
-
-Constant *ObjCARCOpt::getAutoreleaseCallee(Module *M) {
- if (!AutoreleaseCallee) {
- LLVMContext &C = M->getContext();
- Type *Params[] = { PointerType::getUnqual(Type::getInt8Ty(C)) };
- AttrListPtr Attributes =
- AttrListPtr().addAttr(M->getContext(), AttrListPtr::FunctionIndex,
- Attributes::get(C, Attributes::NoUnwind));
- AutoreleaseCallee =
- M->getOrInsertFunction(
- "objc_autorelease",
- FunctionType::get(Params[0], Params, /*isVarArg=*/false),
- Attributes);
- }
- return AutoreleaseCallee;
-}
-
-/// IsPotentialUse - Test whether the given value is possible a
-/// reference-counted pointer, including tests which utilize AliasAnalysis.
-static bool IsPotentialUse(const Value *Op, AliasAnalysis &AA) {
- // First make the rudimentary check.
- if (!IsPotentialUse(Op))
- return false;
-
- // Objects in constant memory are not reference-counted.
- if (AA.pointsToConstantMemory(Op))
- return false;
-
- // Pointers in constant memory are not pointing to reference-counted objects.
- if (const LoadInst *LI = dyn_cast<LoadInst>(Op))
- if (AA.pointsToConstantMemory(LI->getPointerOperand()))
- return false;
-
- // Otherwise assume the worst.
- return true;
-}
-
-/// CanAlterRefCount - Test whether the given instruction can result in a
-/// reference count modification (positive or negative) for the pointer's
-/// object.
-static bool
-CanAlterRefCount(const Instruction *Inst, const Value *Ptr,
- ProvenanceAnalysis &PA, InstructionClass Class) {
- switch (Class) {
- case IC_Autorelease:
- case IC_AutoreleaseRV:
- case IC_User:
- // These operations never directly modify a reference count.
- return false;
- default: break;
- }
-
- ImmutableCallSite CS = static_cast<const Value *>(Inst);
- assert(CS && "Only calls can alter reference counts!");
-
- // See if AliasAnalysis can help us with the call.
- AliasAnalysis::ModRefBehavior MRB = PA.getAA()->getModRefBehavior(CS);
- if (AliasAnalysis::onlyReadsMemory(MRB))
- return false;
- if (AliasAnalysis::onlyAccessesArgPointees(MRB)) {
- for (ImmutableCallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
- I != E; ++I) {
- const Value *Op = *I;
- if (IsPotentialUse(Op, *PA.getAA()) && PA.related(Ptr, Op))
- return true;
- }
- return false;
- }
-
- // Assume the worst.
- return true;
-}
-
-/// CanUse - Test whether the given instruction can "use" the given pointer's
-/// object in a way that requires the reference count to be positive.
-static bool
-CanUse(const Instruction *Inst, const Value *Ptr, ProvenanceAnalysis &PA,
- InstructionClass Class) {
- // IC_Call operations (as opposed to IC_CallOrUser) never "use" objc pointers.
- if (Class == IC_Call)
- return false;
-
- // Consider various instructions which may have pointer arguments which are
- // not "uses".
- if (const ICmpInst *ICI = dyn_cast<ICmpInst>(Inst)) {
- // Comparing a pointer with null, or any other constant, isn't really a use,
- // because we don't care what the pointer points to, or about the values
- // of any other dynamic reference-counted pointers.
- if (!IsPotentialUse(ICI->getOperand(1), *PA.getAA()))
- return false;
- } else if (ImmutableCallSite CS = static_cast<const Value *>(Inst)) {
- // For calls, just check the arguments (and not the callee operand).
- for (ImmutableCallSite::arg_iterator OI = CS.arg_begin(),
- OE = CS.arg_end(); OI != OE; ++OI) {
- const Value *Op = *OI;
- if (IsPotentialUse(Op, *PA.getAA()) && PA.related(Ptr, Op))
- return true;
- }
- return false;
- } else if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
- // Special-case stores, because we don't care about the stored value, just
- // the store address.
- const Value *Op = GetUnderlyingObjCPtr(SI->getPointerOperand());
- // If we can't tell what the underlying object was, assume there is a
- // dependence.
- return IsPotentialUse(Op, *PA.getAA()) && PA.related(Op, Ptr);
- }
-
- // Check each operand for a match.
- for (User::const_op_iterator OI = Inst->op_begin(), OE = Inst->op_end();
- OI != OE; ++OI) {
- const Value *Op = *OI;
- if (IsPotentialUse(Op, *PA.getAA()) && PA.related(Ptr, Op))
- return true;
- }
- return false;
-}
-
-/// CanInterruptRV - Test whether the given instruction can autorelease
-/// any pointer or cause an autoreleasepool pop.
-static bool
-CanInterruptRV(InstructionClass Class) {
- switch (Class) {
- case IC_AutoreleasepoolPop:
- case IC_CallOrUser:
- case IC_Call:
- case IC_Autorelease:
- case IC_AutoreleaseRV:
- case IC_FusedRetainAutorelease:
- case IC_FusedRetainAutoreleaseRV:
- return true;
- default:
- return false;
- }
-}
-
-namespace {
- /// DependenceKind - There are several kinds of dependence-like concepts in
- /// use here.
- enum DependenceKind {
- NeedsPositiveRetainCount,
- AutoreleasePoolBoundary,
- CanChangeRetainCount,
- RetainAutoreleaseDep, ///< Blocks objc_retainAutorelease.
- RetainAutoreleaseRVDep, ///< Blocks objc_retainAutoreleaseReturnValue.
- RetainRVDep ///< Blocks objc_retainAutoreleasedReturnValue.
- };
-}
-
-/// Depends - Test if there can be dependencies on Inst through Arg. This
-/// function only tests dependencies relevant for removing pairs of calls.
-static bool
-Depends(DependenceKind Flavor, Instruction *Inst, const Value *Arg,
- ProvenanceAnalysis &PA) {
- // If we've reached the definition of Arg, stop.
- if (Inst == Arg)
- return true;
-
- switch (Flavor) {
- case NeedsPositiveRetainCount: {
- InstructionClass Class = GetInstructionClass(Inst);
- switch (Class) {
- case IC_AutoreleasepoolPop:
- case IC_AutoreleasepoolPush:
- case IC_None:
- return false;
- default:
- return CanUse(Inst, Arg, PA, Class);
- }
- }
-
- case AutoreleasePoolBoundary: {
- InstructionClass Class = GetInstructionClass(Inst);
- switch (Class) {
- case IC_AutoreleasepoolPop:
- case IC_AutoreleasepoolPush:
- // These mark the end and begin of an autorelease pool scope.
- return true;
- default:
- // Nothing else does this.
- return false;
- }
- }
-
- case CanChangeRetainCount: {
- InstructionClass Class = GetInstructionClass(Inst);
- switch (Class) {
- case IC_AutoreleasepoolPop:
- // Conservatively assume this can decrement any count.
- return true;
- case IC_AutoreleasepoolPush:
- case IC_None:
- return false;
- default:
- return CanAlterRefCount(Inst, Arg, PA, Class);
- }
- }
-
- case RetainAutoreleaseDep:
- switch (GetBasicInstructionClass(Inst)) {
- case IC_AutoreleasepoolPop:
- case IC_AutoreleasepoolPush:
- // Don't merge an objc_autorelease with an objc_retain inside a different
- // autoreleasepool scope.
- return true;
- case IC_Retain:
- case IC_RetainRV:
- // Check for a retain of the same pointer for merging.
- return GetObjCArg(Inst) == Arg;
- default:
- // Nothing else matters for objc_retainAutorelease formation.
- return false;
- }
-
- case RetainAutoreleaseRVDep: {
- InstructionClass Class = GetBasicInstructionClass(Inst);
- switch (Class) {
- case IC_Retain:
- case IC_RetainRV:
- // Check for a retain of the same pointer for merging.
- return GetObjCArg(Inst) == Arg;
- default:
- // Anything that can autorelease interrupts
- // retainAutoreleaseReturnValue formation.
- return CanInterruptRV(Class);
- }
- }
-
- case RetainRVDep:
- return CanInterruptRV(GetBasicInstructionClass(Inst));
- }
-
- llvm_unreachable("Invalid dependence flavor");
-}
-
-/// FindDependencies - Walk up the CFG from StartPos (which is in StartBB) and
-/// find local and non-local dependencies on Arg.
-/// TODO: Cache results?
-static void
-FindDependencies(DependenceKind Flavor,
- const Value *Arg,
- BasicBlock *StartBB, Instruction *StartInst,
- SmallPtrSet<Instruction *, 4> &DependingInstructions,
- SmallPtrSet<const BasicBlock *, 4> &Visited,
- ProvenanceAnalysis &PA) {
- BasicBlock::iterator StartPos = StartInst;
-
- SmallVector<std::pair<BasicBlock *, BasicBlock::iterator>, 4> Worklist;
- Worklist.push_back(std::make_pair(StartBB, StartPos));
- do {
- std::pair<BasicBlock *, BasicBlock::iterator> Pair =
- Worklist.pop_back_val();
- BasicBlock *LocalStartBB = Pair.first;
- BasicBlock::iterator LocalStartPos = Pair.second;
- BasicBlock::iterator StartBBBegin = LocalStartBB->begin();
- for (;;) {
- if (LocalStartPos == StartBBBegin) {
- pred_iterator PI(LocalStartBB), PE(LocalStartBB, false);
- if (PI == PE)
- // If we've reached the function entry, produce a null dependence.
- DependingInstructions.insert(0);
- else
- // Add the predecessors to the worklist.
- do {
- BasicBlock *PredBB = *PI;
- if (Visited.insert(PredBB))
- Worklist.push_back(std::make_pair(PredBB, PredBB->end()));
- } while (++PI != PE);
- break;
- }
-
- Instruction *Inst = --LocalStartPos;
- if (Depends(Flavor, Inst, Arg, PA)) {
- DependingInstructions.insert(Inst);
- break;
- }
- }
- } while (!Worklist.empty());
-
- // Determine whether the original StartBB post-dominates all of the blocks we
- // visited. If not, insert a sentinal indicating that most optimizations are
- // not safe.
- for (SmallPtrSet<const BasicBlock *, 4>::const_iterator I = Visited.begin(),
- E = Visited.end(); I != E; ++I) {
- const BasicBlock *BB = *I;
- if (BB == StartBB)
- continue;
- const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
- for (succ_const_iterator SI(TI), SE(TI, false); SI != SE; ++SI) {
- const BasicBlock *Succ = *SI;
- if (Succ != StartBB && !Visited.count(Succ)) {
- DependingInstructions.insert(reinterpret_cast<Instruction *>(-1));
- return;
- }
- }
- }
-}
-
-static bool isNullOrUndef(const Value *V) {
- return isa<ConstantPointerNull>(V) || isa<UndefValue>(V);
-}
-
-static bool isNoopInstruction(const Instruction *I) {
- return isa<BitCastInst>(I) ||
- (isa<GetElementPtrInst>(I) &&
- cast<GetElementPtrInst>(I)->hasAllZeroIndices());
-}
-
-/// OptimizeRetainCall - Turn objc_retain into
-/// objc_retainAutoreleasedReturnValue if the operand is a return value.
-void
-ObjCARCOpt::OptimizeRetainCall(Function &F, Instruction *Retain) {
- ImmutableCallSite CS(GetObjCArg(Retain));
- const Instruction *Call = CS.getInstruction();
- if (!Call) return;
- if (Call->getParent() != Retain->getParent()) return;
-
- // Check that the call is next to the retain.
- BasicBlock::const_iterator I = Call;
- ++I;
- while (isNoopInstruction(I)) ++I;
- if (&*I != Retain)
- return;
-
- // Turn it to an objc_retainAutoreleasedReturnValue..
- Changed = true;
- ++NumPeeps;
- cast<CallInst>(Retain)->setCalledFunction(getRetainRVCallee(F.getParent()));
-}
-
-/// OptimizeRetainRVCall - Turn objc_retainAutoreleasedReturnValue into
-/// objc_retain if the operand is not a return value. Or, if it can be paired
-/// with an objc_autoreleaseReturnValue, delete the pair and return true.
-bool
-ObjCARCOpt::OptimizeRetainRVCall(Function &F, Instruction *RetainRV) {
- // Check for the argument being from an immediately preceding call or invoke.
- const Value *Arg = GetObjCArg(RetainRV);
- ImmutableCallSite CS(Arg);
- if (const Instruction *Call = CS.getInstruction()) {
- if (Call->getParent() == RetainRV->getParent()) {
- BasicBlock::const_iterator I = Call;
- ++I;
- while (isNoopInstruction(I)) ++I;
- if (&*I == RetainRV)
- return false;
- } else if (const InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
- BasicBlock *RetainRVParent = RetainRV->getParent();
- if (II->getNormalDest() == RetainRVParent) {
- BasicBlock::const_iterator I = RetainRVParent->begin();
- while (isNoopInstruction(I)) ++I;
- if (&*I == RetainRV)
- return false;
- }
- }
- }
-
- // Check for being preceded by an objc_autoreleaseReturnValue on the same
- // pointer. In this case, we can delete the pair.
- BasicBlock::iterator I = RetainRV, Begin = RetainRV->getParent()->begin();
- if (I != Begin) {
- do --I; while (I != Begin && isNoopInstruction(I));
- if (GetBasicInstructionClass(I) == IC_AutoreleaseRV &&
- GetObjCArg(I) == Arg) {
- Changed = true;
- ++NumPeeps;
- EraseInstruction(I);
- EraseInstruction(RetainRV);
- return true;
- }
- }
-
- // Turn it to a plain objc_retain.
- Changed = true;
- ++NumPeeps;
- cast<CallInst>(RetainRV)->setCalledFunction(getRetainCallee(F.getParent()));
- return false;
-}
-
-/// OptimizeAutoreleaseRVCall - Turn objc_autoreleaseReturnValue into
-/// objc_autorelease if the result is not used as a return value.
-void
-ObjCARCOpt::OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV) {
- // Check for a return of the pointer value.
- const Value *Ptr = GetObjCArg(AutoreleaseRV);
- SmallVector<const Value *, 2> Users;
- Users.push_back(Ptr);
- do {
- Ptr = Users.pop_back_val();
- for (Value::const_use_iterator UI = Ptr->use_begin(), UE = Ptr->use_end();
- UI != UE; ++UI) {
- const User *I = *UI;
- if (isa<ReturnInst>(I) || GetBasicInstructionClass(I) == IC_RetainRV)
- return;
- if (isa<BitCastInst>(I))
- Users.push_back(I);
- }
- } while (!Users.empty());
-
- Changed = true;
- ++NumPeeps;
- cast<CallInst>(AutoreleaseRV)->
- setCalledFunction(getAutoreleaseCallee(F.getParent()));
-}
-
-/// OptimizeIndividualCalls - Visit each call, one at a time, and make
-/// simplifications without doing any additional analysis.
-void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
- // Reset all the flags in preparation for recomputing them.
- UsedInThisFunction = 0;
-
- // Visit all objc_* calls in F.
- for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
- Instruction *Inst = &*I++;
- InstructionClass Class = GetBasicInstructionClass(Inst);
-
- switch (Class) {
- default: break;
-
- // Delete no-op casts. These function calls have special semantics, but
- // the semantics are entirely implemented via lowering in the front-end,
- // so by the time they reach the optimizer, they are just no-op calls
- // which return their argument.
- //
- // There are gray areas here, as the ability to cast reference-counted
- // pointers to raw void* and back allows code to break ARC assumptions,
- // however these are currently considered to be unimportant.
- case IC_NoopCast:
- Changed = true;
- ++NumNoops;
- EraseInstruction(Inst);
- continue;
-
- // If the pointer-to-weak-pointer is null, it's undefined behavior.
- case IC_StoreWeak:
- case IC_LoadWeak:
- case IC_LoadWeakRetained:
- case IC_InitWeak:
- case IC_DestroyWeak: {
- CallInst *CI = cast<CallInst>(Inst);
- if (isNullOrUndef(CI->getArgOperand(0))) {
- Changed = true;
- Type *Ty = CI->getArgOperand(0)->getType();
- new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
- Constant::getNullValue(Ty),
- CI);
- CI->replaceAllUsesWith(UndefValue::get(CI->getType()));
- CI->eraseFromParent();
- continue;
- }
- break;
- }
- case IC_CopyWeak:
- case IC_MoveWeak: {
- CallInst *CI = cast<CallInst>(Inst);
- if (isNullOrUndef(CI->getArgOperand(0)) ||
- isNullOrUndef(CI->getArgOperand(1))) {
- Changed = true;
- Type *Ty = CI->getArgOperand(0)->getType();
- new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
- Constant::getNullValue(Ty),
- CI);
- CI->replaceAllUsesWith(UndefValue::get(CI->getType()));
- CI->eraseFromParent();
- continue;
- }
- break;
- }
- case IC_Retain:
- OptimizeRetainCall(F, Inst);
- break;
- case IC_RetainRV:
- if (OptimizeRetainRVCall(F, Inst))
- continue;
- break;
- case IC_AutoreleaseRV:
- OptimizeAutoreleaseRVCall(F, Inst);
- break;
- }
-
- // objc_autorelease(x) -> objc_release(x) if x is otherwise unused.
- if (IsAutorelease(Class) && Inst->use_empty()) {
- CallInst *Call = cast<CallInst>(Inst);
- const Value *Arg = Call->getArgOperand(0);
- Arg = FindSingleUseIdentifiedObject(Arg);
- if (Arg) {
- Changed = true;
- ++NumAutoreleases;
-
- // Create the declaration lazily.
- LLVMContext &C = Inst->getContext();
- CallInst *NewCall =
- CallInst::Create(getReleaseCallee(F.getParent()),
- Call->getArgOperand(0), "", Call);
- NewCall->setMetadata(ImpreciseReleaseMDKind,
- MDNode::get(C, ArrayRef<Value *>()));
- EraseInstruction(Call);
- Inst = NewCall;
- Class = IC_Release;
- }
- }
-
- // For functions which can never be passed stack arguments, add
- // a tail keyword.
- if (IsAlwaysTail(Class)) {
- Changed = true;
- cast<CallInst>(Inst)->setTailCall();
- }
-
- // Set nounwind as needed.
- if (IsNoThrow(Class)) {
- Changed = true;
- cast<CallInst>(Inst)->setDoesNotThrow();
- }
-
- if (!IsNoopOnNull(Class)) {
- UsedInThisFunction |= 1 << Class;
- continue;
- }
-
- const Value *Arg = GetObjCArg(Inst);
-
- // ARC calls with null are no-ops. Delete them.
- if (isNullOrUndef(Arg)) {
- Changed = true;
- ++NumNoops;
- EraseInstruction(Inst);
- continue;
- }
-
- // Keep track of which of retain, release, autorelease, and retain_block
- // are actually present in this function.
- UsedInThisFunction |= 1 << Class;
-
- // If Arg is a PHI, and one or more incoming values to the
- // PHI are null, and the call is control-equivalent to the PHI, and there
- // are no relevant side effects between the PHI and the call, the call
- // could be pushed up to just those paths with non-null incoming values.
- // For now, don't bother splitting critical edges for this.
- SmallVector<std::pair<Instruction *, const Value *>, 4> Worklist;
- Worklist.push_back(std::make_pair(Inst, Arg));
- do {
- std::pair<Instruction *, const Value *> Pair = Worklist.pop_back_val();
- Inst = Pair.first;
- Arg = Pair.second;
-
- const PHINode *PN = dyn_cast<PHINode>(Arg);
- if (!PN) continue;
-
- // Determine if the PHI has any null operands, or any incoming
- // critical edges.
- bool HasNull = false;
- bool HasCriticalEdges = false;
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- Value *Incoming =
- StripPointerCastsAndObjCCalls(PN->getIncomingValue(i));
- if (isNullOrUndef(Incoming))
- HasNull = true;
- else if (cast<TerminatorInst>(PN->getIncomingBlock(i)->back())
- .getNumSuccessors() != 1) {
- HasCriticalEdges = true;
- break;
- }
- }
- // If we have null operands and no critical edges, optimize.
- if (!HasCriticalEdges && HasNull) {
- SmallPtrSet<Instruction *, 4> DependingInstructions;
- SmallPtrSet<const BasicBlock *, 4> Visited;
-
- // Check that there is nothing that cares about the reference
- // count between the call and the phi.
- switch (Class) {
- case IC_Retain:
- case IC_RetainBlock:
- // These can always be moved up.
- break;
- case IC_Release:
- // These can't be moved across things that care about the retain
- // count.
- FindDependencies(NeedsPositiveRetainCount, Arg,
- Inst->getParent(), Inst,
- DependingInstructions, Visited, PA);
- break;
- case IC_Autorelease:
- // These can't be moved across autorelease pool scope boundaries.
- FindDependencies(AutoreleasePoolBoundary, Arg,
- Inst->getParent(), Inst,
- DependingInstructions, Visited, PA);
- break;
- case IC_RetainRV:
- case IC_AutoreleaseRV:
- // Don't move these; the RV optimization depends on the autoreleaseRV
- // being tail called, and the retainRV being immediately after a call
- // (which might still happen if we get lucky with codegen layout, but
- // it's not worth taking the chance).
- continue;
- default:
- llvm_unreachable("Invalid dependence flavor");
- }
-
- if (DependingInstructions.size() == 1 &&
- *DependingInstructions.begin() == PN) {
- Changed = true;
- ++NumPartialNoops;
- // Clone the call into each predecessor that has a non-null value.
- CallInst *CInst = cast<CallInst>(Inst);
- Type *ParamTy = CInst->getArgOperand(0)->getType();
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- Value *Incoming =
- StripPointerCastsAndObjCCalls(PN->getIncomingValue(i));
- if (!isNullOrUndef(Incoming)) {
- CallInst *Clone = cast<CallInst>(CInst->clone());
- Value *Op = PN->getIncomingValue(i);
- Instruction *InsertPos = &PN->getIncomingBlock(i)->back();
- if (Op->getType() != ParamTy)
- Op = new BitCastInst(Op, ParamTy, "", InsertPos);
- Clone->setArgOperand(0, Op);
- Clone->insertBefore(InsertPos);
- Worklist.push_back(std::make_pair(Clone, Incoming));
- }
- }
- // Erase the original call.
- EraseInstruction(CInst);
- continue;
- }
- }
- } while (!Worklist.empty());
- }
-}
-
-/// CheckForCFGHazards - Check for critical edges, loop boundaries, irreducible
-/// control flow, or other CFG structures where moving code across the edge
-/// would result in it being executed more.
-void
-ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB,
- DenseMap<const BasicBlock *, BBState> &BBStates,
- BBState &MyStates) const {
- // If any top-down local-use or possible-dec has a succ which is earlier in
- // the sequence, forget it.
- for (BBState::ptr_iterator I = MyStates.top_down_ptr_begin(),
- E = MyStates.top_down_ptr_end(); I != E; ++I)
- switch (I->second.GetSeq()) {
- default: break;
- case S_Use: {
- const Value *Arg = I->first;
- const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
- bool SomeSuccHasSame = false;
- bool AllSuccsHaveSame = true;
- PtrState &S = I->second;
- succ_const_iterator SI(TI), SE(TI, false);
-
- // If the terminator is an invoke marked with the
- // clang.arc.no_objc_arc_exceptions metadata, the unwind edge can be
- // ignored, for ARC purposes.
- if (isa<InvokeInst>(TI) && TI->getMetadata(NoObjCARCExceptionsMDKind))
- --SE;
-
- for (; SI != SE; ++SI) {
- Sequence SuccSSeq = S_None;
- bool SuccSRRIKnownSafe = false;
- // If VisitBottomUp has pointer information for this successor, take
- // what we know about it.
- DenseMap<const BasicBlock *, BBState>::iterator BBI =
- BBStates.find(*SI);
- assert(BBI != BBStates.end());
- const PtrState &SuccS = BBI->second.getPtrBottomUpState(Arg);
- SuccSSeq = SuccS.GetSeq();
- SuccSRRIKnownSafe = SuccS.RRI.KnownSafe;
- switch (SuccSSeq) {
- case S_None:
- case S_CanRelease: {
- if (!S.RRI.KnownSafe && !SuccSRRIKnownSafe) {
- S.ClearSequenceProgress();
- break;
- }
- continue;
- }
- case S_Use:
- SomeSuccHasSame = true;
- break;
- case S_Stop:
- case S_Release:
- case S_MovableRelease:
- if (!S.RRI.KnownSafe && !SuccSRRIKnownSafe)
- AllSuccsHaveSame = false;
- break;
- case S_Retain:
- llvm_unreachable("bottom-up pointer in retain state!");
- }
- }
- // If the state at the other end of any of the successor edges
- // matches the current state, require all edges to match. This
- // guards against loops in the middle of a sequence.
- if (SomeSuccHasSame && !AllSuccsHaveSame)
- S.ClearSequenceProgress();
- break;
- }
- case S_CanRelease: {
- const Value *Arg = I->first;
- const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
- bool SomeSuccHasSame = false;
- bool AllSuccsHaveSame = true;
- PtrState &S = I->second;
- succ_const_iterator SI(TI), SE(TI, false);
-
- // If the terminator is an invoke marked with the
- // clang.arc.no_objc_arc_exceptions metadata, the unwind edge can be
- // ignored, for ARC purposes.
- if (isa<InvokeInst>(TI) && TI->getMetadata(NoObjCARCExceptionsMDKind))
- --SE;
-
- for (; SI != SE; ++SI) {
- Sequence SuccSSeq = S_None;
- bool SuccSRRIKnownSafe = false;
- // If VisitBottomUp has pointer information for this successor, take
- // what we know about it.
- DenseMap<const BasicBlock *, BBState>::iterator BBI =
- BBStates.find(*SI);
- assert(BBI != BBStates.end());
- const PtrState &SuccS = BBI->second.getPtrBottomUpState(Arg);
- SuccSSeq = SuccS.GetSeq();
- SuccSRRIKnownSafe = SuccS.RRI.KnownSafe;
- switch (SuccSSeq) {
- case S_None: {
- if (!S.RRI.KnownSafe && !SuccSRRIKnownSafe) {
- S.ClearSequenceProgress();
- break;
- }
- continue;
- }
- case S_CanRelease:
- SomeSuccHasSame = true;
- break;
- case S_Stop:
- case S_Release:
- case S_MovableRelease:
- case S_Use:
- if (!S.RRI.KnownSafe && !SuccSRRIKnownSafe)
- AllSuccsHaveSame = false;
- break;
- case S_Retain:
- llvm_unreachable("bottom-up pointer in retain state!");
- }
- }
- // If the state at the other end of any of the successor edges
- // matches the current state, require all edges to match. This
- // guards against loops in the middle of a sequence.
- if (SomeSuccHasSame && !AllSuccsHaveSame)
- S.ClearSequenceProgress();
- break;
- }
- }
-}
-
-bool
-ObjCARCOpt::VisitInstructionBottomUp(Instruction *Inst,
- BasicBlock *BB,
- MapVector<Value *, RRInfo> &Retains,
- BBState &MyStates) {
- bool NestingDetected = false;
- InstructionClass Class = GetInstructionClass(Inst);
- const Value *Arg = 0;
-
- switch (Class) {
- case IC_Release: {
- Arg = GetObjCArg(Inst);
-
- PtrState &S = MyStates.getPtrBottomUpState(Arg);
-
- // If we see two releases in a row on the same pointer. If so, make
- // a note, and we'll cicle back to revisit it after we've
- // hopefully eliminated the second release, which may allow us to
- // eliminate the first release too.
- // Theoretically we could implement removal of nested retain+release
- // pairs by making PtrState hold a stack of states, but this is
- // simple and avoids adding overhead for the non-nested case.
- if (S.GetSeq() == S_Release || S.GetSeq() == S_MovableRelease)
- NestingDetected = true;
-
- MDNode *ReleaseMetadata = Inst->getMetadata(ImpreciseReleaseMDKind);
- S.ResetSequenceProgress(ReleaseMetadata ? S_MovableRelease : S_Release);
- S.RRI.ReleaseMetadata = ReleaseMetadata;
- S.RRI.KnownSafe = S.IsKnownIncremented();
- S.RRI.IsTailCallRelease = cast<CallInst>(Inst)->isTailCall();
- S.RRI.Calls.insert(Inst);
-
- S.SetKnownPositiveRefCount();
- break;
- }
- case IC_RetainBlock:
- // An objc_retainBlock call with just a use may need to be kept,
- // because it may be copying a block from the stack to the heap.
- if (!IsRetainBlockOptimizable(Inst))
- break;
- // FALLTHROUGH
- case IC_Retain:
- case IC_RetainRV: {
- Arg = GetObjCArg(Inst);
-
- PtrState &S = MyStates.getPtrBottomUpState(Arg);
- S.SetKnownPositiveRefCount();
-
- switch (S.GetSeq()) {
- case S_Stop:
- case S_Release:
- case S_MovableRelease:
- case S_Use:
- S.RRI.ReverseInsertPts.clear();
- // FALL THROUGH
- case S_CanRelease:
- // Don't do retain+release tracking for IC_RetainRV, because it's
- // better to let it remain as the first instruction after a call.
- if (Class != IC_RetainRV) {
- S.RRI.IsRetainBlock = Class == IC_RetainBlock;
- Retains[Inst] = S.RRI;
- }
- S.ClearSequenceProgress();
- break;
- case S_None:
- break;
- case S_Retain:
- llvm_unreachable("bottom-up pointer in retain state!");
- }
- return NestingDetected;
- }
- case IC_AutoreleasepoolPop:
- // Conservatively, clear MyStates for all known pointers.
- MyStates.clearBottomUpPointers();
- return NestingDetected;
- case IC_AutoreleasepoolPush:
- case IC_None:
- // These are irrelevant.
- return NestingDetected;
- default:
- break;
- }
-
- // Consider any other possible effects of this instruction on each
- // pointer being tracked.
- for (BBState::ptr_iterator MI = MyStates.bottom_up_ptr_begin(),
- ME = MyStates.bottom_up_ptr_end(); MI != ME; ++MI) {
- const Value *Ptr = MI->first;
- if (Ptr == Arg)
- continue; // Handled above.
- PtrState &S = MI->second;
- Sequence Seq = S.GetSeq();
-
- // Check for possible releases.
- if (CanAlterRefCount(Inst, Ptr, PA, Class)) {
- S.ClearRefCount();
- switch (Seq) {
- case S_Use:
- S.SetSeq(S_CanRelease);
- continue;
- case S_CanRelease:
- case S_Release:
- case S_MovableRelease:
- case S_Stop:
- case S_None:
- break;
- case S_Retain:
- llvm_unreachable("bottom-up pointer in retain state!");
- }
- }
-
- // Check for possible direct uses.
- switch (Seq) {
- case S_Release:
- case S_MovableRelease:
- if (CanUse(Inst, Ptr, PA, Class)) {
- assert(S.RRI.ReverseInsertPts.empty());
- // If this is an invoke instruction, we're scanning it as part of
- // one of its successor blocks, since we can't insert code after it
- // in its own block, and we don't want to split critical edges.
- if (isa<InvokeInst>(Inst))
- S.RRI.ReverseInsertPts.insert(BB->getFirstInsertionPt());
- else
- S.RRI.ReverseInsertPts.insert(llvm::next(BasicBlock::iterator(Inst)));
- S.SetSeq(S_Use);
- } else if (Seq == S_Release &&
- (Class == IC_User || Class == IC_CallOrUser)) {
- // Non-movable releases depend on any possible objc pointer use.
- S.SetSeq(S_Stop);
- assert(S.RRI.ReverseInsertPts.empty());
- // As above; handle invoke specially.
- if (isa<InvokeInst>(Inst))
- S.RRI.ReverseInsertPts.insert(BB->getFirstInsertionPt());
- else
- S.RRI.ReverseInsertPts.insert(llvm::next(BasicBlock::iterator(Inst)));
- }
- break;
- case S_Stop:
- if (CanUse(Inst, Ptr, PA, Class))
- S.SetSeq(S_Use);
- break;
- case S_CanRelease:
- case S_Use:
- case S_None:
- break;
- case S_Retain:
- llvm_unreachable("bottom-up pointer in retain state!");
- }
- }
-
- return NestingDetected;
-}
-
-bool
-ObjCARCOpt::VisitBottomUp(BasicBlock *BB,
- DenseMap<const BasicBlock *, BBState> &BBStates,
- MapVector<Value *, RRInfo> &Retains) {
- bool NestingDetected = false;
- BBState &MyStates = BBStates[BB];
-
- // Merge the states from each successor to compute the initial state
- // for the current block.
- BBState::edge_iterator SI(MyStates.succ_begin()),
- SE(MyStates.succ_end());
- if (SI != SE) {
- const BasicBlock *Succ = *SI;
- DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Succ);
- assert(I != BBStates.end());
- MyStates.InitFromSucc(I->second);
- ++SI;
- for (; SI != SE; ++SI) {
- Succ = *SI;
- I = BBStates.find(Succ);
- assert(I != BBStates.end());
- MyStates.MergeSucc(I->second);
- }
- }
-
- // Visit all the instructions, bottom-up.
- for (BasicBlock::iterator I = BB->end(), E = BB->begin(); I != E; --I) {
- Instruction *Inst = llvm::prior(I);
-
- // Invoke instructions are visited as part of their successors (below).
- if (isa<InvokeInst>(Inst))
- continue;
-
- NestingDetected |= VisitInstructionBottomUp(Inst, BB, Retains, MyStates);
- }
-
- // If there's a predecessor with an invoke, visit the invoke as if it were
- // part of this block, since we can't insert code after an invoke in its own
- // block, and we don't want to split critical edges.
- for (BBState::edge_iterator PI(MyStates.pred_begin()),
- PE(MyStates.pred_end()); PI != PE; ++PI) {
- BasicBlock *Pred = *PI;
- if (InvokeInst *II = dyn_cast<InvokeInst>(&Pred->back()))
- NestingDetected |= VisitInstructionBottomUp(II, BB, Retains, MyStates);
- }
-
- return NestingDetected;
-}
-
-bool
-ObjCARCOpt::VisitInstructionTopDown(Instruction *Inst,
- DenseMap<Value *, RRInfo> &Releases,
- BBState &MyStates) {
- bool NestingDetected = false;
- InstructionClass Class = GetInstructionClass(Inst);
- const Value *Arg = 0;
-
- switch (Class) {
- case IC_RetainBlock:
- // An objc_retainBlock call with just a use may need to be kept,
- // because it may be copying a block from the stack to the heap.
- if (!IsRetainBlockOptimizable(Inst))
- break;
- // FALLTHROUGH
- case IC_Retain:
- case IC_RetainRV: {
- Arg = GetObjCArg(Inst);
-
- PtrState &S = MyStates.getPtrTopDownState(Arg);
-
- // Don't do retain+release tracking for IC_RetainRV, because it's
- // better to let it remain as the first instruction after a call.
- if (Class != IC_RetainRV) {
- // If we see two retains in a row on the same pointer. If so, make
- // a note, and we'll cicle back to revisit it after we've
- // hopefully eliminated the second retain, which may allow us to
- // eliminate the first retain too.
- // Theoretically we could implement removal of nested retain+release
- // pairs by making PtrState hold a stack of states, but this is
- // simple and avoids adding overhead for the non-nested case.
- if (S.GetSeq() == S_Retain)
- NestingDetected = true;
-
- S.ResetSequenceProgress(S_Retain);
- S.RRI.IsRetainBlock = Class == IC_RetainBlock;
- S.RRI.KnownSafe = S.IsKnownIncremented();
- S.RRI.Calls.insert(Inst);
- }
-
- S.SetKnownPositiveRefCount();
-
- // A retain can be a potential use; procede to the generic checking
- // code below.
- break;
- }
- case IC_Release: {
- Arg = GetObjCArg(Inst);
-
- PtrState &S = MyStates.getPtrTopDownState(Arg);
- S.ClearRefCount();
-
- switch (S.GetSeq()) {
- case S_Retain:
- case S_CanRelease:
- S.RRI.ReverseInsertPts.clear();
- // FALL THROUGH
- case S_Use:
- S.RRI.ReleaseMetadata = Inst->getMetadata(ImpreciseReleaseMDKind);
- S.RRI.IsTailCallRelease = cast<CallInst>(Inst)->isTailCall();
- Releases[Inst] = S.RRI;
- S.ClearSequenceProgress();
- break;
- case S_None:
- break;
- case S_Stop:
- case S_Release:
- case S_MovableRelease:
- llvm_unreachable("top-down pointer in release state!");
- }
- break;
- }
- case IC_AutoreleasepoolPop:
- // Conservatively, clear MyStates for all known pointers.
- MyStates.clearTopDownPointers();
- return NestingDetected;
- case IC_AutoreleasepoolPush:
- case IC_None:
- // These are irrelevant.
- return NestingDetected;
- default:
- break;
- }
-
- // Consider any other possible effects of this instruction on each
- // pointer being tracked.
- for (BBState::ptr_iterator MI = MyStates.top_down_ptr_begin(),
- ME = MyStates.top_down_ptr_end(); MI != ME; ++MI) {
- const Value *Ptr = MI->first;
- if (Ptr == Arg)
- continue; // Handled above.
- PtrState &S = MI->second;
- Sequence Seq = S.GetSeq();
-
- // Check for possible releases.
- if (CanAlterRefCount(Inst, Ptr, PA, Class)) {
- S.ClearRefCount();
- switch (Seq) {
- case S_Retain:
- S.SetSeq(S_CanRelease);
- assert(S.RRI.ReverseInsertPts.empty());
- S.RRI.ReverseInsertPts.insert(Inst);
-
- // One call can't cause a transition from S_Retain to S_CanRelease
- // and S_CanRelease to S_Use. If we've made the first transition,
- // we're done.
- continue;
- case S_Use:
- case S_CanRelease:
- case S_None:
- break;
- case S_Stop:
- case S_Release:
- case S_MovableRelease:
- llvm_unreachable("top-down pointer in release state!");
- }
- }
-
- // Check for possible direct uses.
- switch (Seq) {
- case S_CanRelease:
- if (CanUse(Inst, Ptr, PA, Class))
- S.SetSeq(S_Use);
- break;
- case S_Retain:
- case S_Use:
- case S_None:
- break;
- case S_Stop:
- case S_Release:
- case S_MovableRelease:
- llvm_unreachable("top-down pointer in release state!");
- }
- }
-
- return NestingDetected;
-}
-
-bool
-ObjCARCOpt::VisitTopDown(BasicBlock *BB,
- DenseMap<const BasicBlock *, BBState> &BBStates,
- DenseMap<Value *, RRInfo> &Releases) {
- bool NestingDetected = false;
- BBState &MyStates = BBStates[BB];
-
- // Merge the states from each predecessor to compute the initial state
- // for the current block.
- BBState::edge_iterator PI(MyStates.pred_begin()),
- PE(MyStates.pred_end());
- if (PI != PE) {
- const BasicBlock *Pred = *PI;
- DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Pred);
- assert(I != BBStates.end());
- MyStates.InitFromPred(I->second);
- ++PI;
- for (; PI != PE; ++PI) {
- Pred = *PI;
- I = BBStates.find(Pred);
- assert(I != BBStates.end());
- MyStates.MergePred(I->second);
- }
- }
-
- // Visit all the instructions, top-down.
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
- Instruction *Inst = I;
- NestingDetected |= VisitInstructionTopDown(Inst, Releases, MyStates);
- }
-
- CheckForCFGHazards(BB, BBStates, MyStates);
- return NestingDetected;
-}
-
-static void
-ComputePostOrders(Function &F,
- SmallVectorImpl<BasicBlock *> &PostOrder,
- SmallVectorImpl<BasicBlock *> &ReverseCFGPostOrder,
- unsigned NoObjCARCExceptionsMDKind,
- DenseMap<const BasicBlock *, BBState> &BBStates) {
- /// Visited - The visited set, for doing DFS walks.
- SmallPtrSet<BasicBlock *, 16> Visited;
-
- // Do DFS, computing the PostOrder.
- SmallPtrSet<BasicBlock *, 16> OnStack;
- SmallVector<std::pair<BasicBlock *, succ_iterator>, 16> SuccStack;
-
- // Functions always have exactly one entry block, and we don't have
- // any other block that we treat like an entry block.
- BasicBlock *EntryBB = &F.getEntryBlock();
- BBState &MyStates = BBStates[EntryBB];
- MyStates.SetAsEntry();
- TerminatorInst *EntryTI = cast<TerminatorInst>(&EntryBB->back());
- SuccStack.push_back(std::make_pair(EntryBB, succ_iterator(EntryTI)));
- Visited.insert(EntryBB);
- OnStack.insert(EntryBB);
- do {
- dfs_next_succ:
- BasicBlock *CurrBB = SuccStack.back().first;
- TerminatorInst *TI = cast<TerminatorInst>(&CurrBB->back());
- succ_iterator SE(TI, false);
-
- // If the terminator is an invoke marked with the
- // clang.arc.no_objc_arc_exceptions metadata, the unwind edge can be
- // ignored, for ARC purposes.
- if (isa<InvokeInst>(TI) && TI->getMetadata(NoObjCARCExceptionsMDKind))
- --SE;
-
- while (SuccStack.back().second != SE) {
- BasicBlock *SuccBB = *SuccStack.back().second++;
- if (Visited.insert(SuccBB)) {
- TerminatorInst *TI = cast<TerminatorInst>(&SuccBB->back());
- SuccStack.push_back(std::make_pair(SuccBB, succ_iterator(TI)));
- BBStates[CurrBB].addSucc(SuccBB);
- BBState &SuccStates = BBStates[SuccBB];
- SuccStates.addPred(CurrBB);
- OnStack.insert(SuccBB);
- goto dfs_next_succ;
- }
-
- if (!OnStack.count(SuccBB)) {
- BBStates[CurrBB].addSucc(SuccBB);
- BBStates[SuccBB].addPred(CurrBB);
- }
- }
- OnStack.erase(CurrBB);
- PostOrder.push_back(CurrBB);
- SuccStack.pop_back();
- } while (!SuccStack.empty());
-
- Visited.clear();
-
- // Do reverse-CFG DFS, computing the reverse-CFG PostOrder.
- // Functions may have many exits, and there also blocks which we treat
- // as exits due to ignored edges.
- SmallVector<std::pair<BasicBlock *, BBState::edge_iterator>, 16> PredStack;
- for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
- BasicBlock *ExitBB = I;
- BBState &MyStates = BBStates[ExitBB];
- if (!MyStates.isExit())
- continue;
-
- MyStates.SetAsExit();
-
- PredStack.push_back(std::make_pair(ExitBB, MyStates.pred_begin()));
- Visited.insert(ExitBB);
- while (!PredStack.empty()) {
- reverse_dfs_next_succ:
- BBState::edge_iterator PE = BBStates[PredStack.back().first].pred_end();
- while (PredStack.back().second != PE) {
- BasicBlock *BB = *PredStack.back().second++;
- if (Visited.insert(BB)) {
- PredStack.push_back(std::make_pair(BB, BBStates[BB].pred_begin()));
- goto reverse_dfs_next_succ;
- }
- }
- ReverseCFGPostOrder.push_back(PredStack.pop_back_val().first);
- }
- }
-}
-
-// Visit - Visit the function both top-down and bottom-up.
-bool
-ObjCARCOpt::Visit(Function &F,
- DenseMap<const BasicBlock *, BBState> &BBStates,
- MapVector<Value *, RRInfo> &Retains,
- DenseMap<Value *, RRInfo> &Releases) {
-
- // Use reverse-postorder traversals, because we magically know that loops
- // will be well behaved, i.e. they won't repeatedly call retain on a single
- // pointer without doing a release. We can't use the ReversePostOrderTraversal
- // class here because we want the reverse-CFG postorder to consider each
- // function exit point, and we want to ignore selected cycle edges.
- SmallVector<BasicBlock *, 16> PostOrder;
- SmallVector<BasicBlock *, 16> ReverseCFGPostOrder;
- ComputePostOrders(F, PostOrder, ReverseCFGPostOrder,
- NoObjCARCExceptionsMDKind,
- BBStates);
-
- // Use reverse-postorder on the reverse CFG for bottom-up.
- bool BottomUpNestingDetected = false;
- for (SmallVectorImpl<BasicBlock *>::const_reverse_iterator I =
- ReverseCFGPostOrder.rbegin(), E = ReverseCFGPostOrder.rend();
- I != E; ++I)
- BottomUpNestingDetected |= VisitBottomUp(*I, BBStates, Retains);
-
- // Use reverse-postorder for top-down.
- bool TopDownNestingDetected = false;
- for (SmallVectorImpl<BasicBlock *>::const_reverse_iterator I =
- PostOrder.rbegin(), E = PostOrder.rend();
- I != E; ++I)
- TopDownNestingDetected |= VisitTopDown(*I, BBStates, Releases);
-
- return TopDownNestingDetected && BottomUpNestingDetected;
-}
-
-/// MoveCalls - Move the calls in RetainsToMove and ReleasesToMove.
-void ObjCARCOpt::MoveCalls(Value *Arg,
- RRInfo &RetainsToMove,
- RRInfo &ReleasesToMove,
- MapVector<Value *, RRInfo> &Retains,
- DenseMap<Value *, RRInfo> &Releases,
- SmallVectorImpl<Instruction *> &DeadInsts,
- Module *M) {
- Type *ArgTy = Arg->getType();
- Type *ParamTy = PointerType::getUnqual(Type::getInt8Ty(ArgTy->getContext()));
-
- // Insert the new retain and release calls.
- for (SmallPtrSet<Instruction *, 2>::const_iterator
- PI = ReleasesToMove.ReverseInsertPts.begin(),
- PE = ReleasesToMove.ReverseInsertPts.end(); PI != PE; ++PI) {
- Instruction *InsertPt = *PI;
- Value *MyArg = ArgTy == ParamTy ? Arg :
- new BitCastInst(Arg, ParamTy, "", InsertPt);
- CallInst *Call =
- CallInst::Create(RetainsToMove.IsRetainBlock ?
- getRetainBlockCallee(M) : getRetainCallee(M),
- MyArg, "", InsertPt);
- Call->setDoesNotThrow();
- if (RetainsToMove.IsRetainBlock)
- Call->setMetadata(CopyOnEscapeMDKind,
- MDNode::get(M->getContext(), ArrayRef<Value *>()));
- else
- Call->setTailCall();
- }
- for (SmallPtrSet<Instruction *, 2>::const_iterator
- PI = RetainsToMove.ReverseInsertPts.begin(),
- PE = RetainsToMove.ReverseInsertPts.end(); PI != PE; ++PI) {
- Instruction *InsertPt = *PI;
- Value *MyArg = ArgTy == ParamTy ? Arg :
- new BitCastInst(Arg, ParamTy, "", InsertPt);
- CallInst *Call = CallInst::Create(getReleaseCallee(M), MyArg,
- "", InsertPt);
- // Attach a clang.imprecise_release metadata tag, if appropriate.
- if (MDNode *M = ReleasesToMove.ReleaseMetadata)
- Call->setMetadata(ImpreciseReleaseMDKind, M);
- Call->setDoesNotThrow();
- if (ReleasesToMove.IsTailCallRelease)
- Call->setTailCall();
- }
-
- // Delete the original retain and release calls.
- for (SmallPtrSet<Instruction *, 2>::const_iterator
- AI = RetainsToMove.Calls.begin(),
- AE = RetainsToMove.Calls.end(); AI != AE; ++AI) {
- Instruction *OrigRetain = *AI;
- Retains.blot(OrigRetain);
- DeadInsts.push_back(OrigRetain);
- }
- for (SmallPtrSet<Instruction *, 2>::const_iterator
- AI = ReleasesToMove.Calls.begin(),
- AE = ReleasesToMove.Calls.end(); AI != AE; ++AI) {
- Instruction *OrigRelease = *AI;
- Releases.erase(OrigRelease);
- DeadInsts.push_back(OrigRelease);
- }
-}
-
-/// PerformCodePlacement - Identify pairings between the retains and releases,
-/// and delete and/or move them.
-bool
-ObjCARCOpt::PerformCodePlacement(DenseMap<const BasicBlock *, BBState>
- &BBStates,
- MapVector<Value *, RRInfo> &Retains,
- DenseMap<Value *, RRInfo> &Releases,
- Module *M) {
- bool AnyPairsCompletelyEliminated = false;
- RRInfo RetainsToMove;
- RRInfo ReleasesToMove;
- SmallVector<Instruction *, 4> NewRetains;
- SmallVector<Instruction *, 4> NewReleases;
- SmallVector<Instruction *, 8> DeadInsts;
-
- // Visit each retain.
- for (MapVector<Value *, RRInfo>::const_iterator I = Retains.begin(),
- E = Retains.end(); I != E; ++I) {
- Value *V = I->first;
- if (!V) continue; // blotted
-
- Instruction *Retain = cast<Instruction>(V);
- Value *Arg = GetObjCArg(Retain);
-
- // If the object being released is in static or stack storage, we know it's
- // not being managed by ObjC reference counting, so we can delete pairs
- // regardless of what possible decrements or uses lie between them.
- bool KnownSafe = isa<Constant>(Arg) || isa<AllocaInst>(Arg);
-
- // A constant pointer can't be pointing to an object on the heap. It may
- // be reference-counted, but it won't be deleted.
- if (const LoadInst *LI = dyn_cast<LoadInst>(Arg))
- if (const GlobalVariable *GV =
- dyn_cast<GlobalVariable>(
- StripPointerCastsAndObjCCalls(LI->getPointerOperand())))
- if (GV->isConstant())
- KnownSafe = true;
-
- // If a pair happens in a region where it is known that the reference count
- // is already incremented, we can similarly ignore possible decrements.
- bool KnownSafeTD = true, KnownSafeBU = true;
-
- // Connect the dots between the top-down-collected RetainsToMove and
- // bottom-up-collected ReleasesToMove to form sets of related calls.
- // This is an iterative process so that we connect multiple releases
- // to multiple retains if needed.
- unsigned OldDelta = 0;
- unsigned NewDelta = 0;
- unsigned OldCount = 0;
- unsigned NewCount = 0;
- bool FirstRelease = true;
- bool FirstRetain = true;
- NewRetains.push_back(Retain);
- for (;;) {
- for (SmallVectorImpl<Instruction *>::const_iterator
- NI = NewRetains.begin(), NE = NewRetains.end(); NI != NE; ++NI) {
- Instruction *NewRetain = *NI;
- MapVector<Value *, RRInfo>::const_iterator It = Retains.find(NewRetain);
- assert(It != Retains.end());
- const RRInfo &NewRetainRRI = It->second;
- KnownSafeTD &= NewRetainRRI.KnownSafe;
- for (SmallPtrSet<Instruction *, 2>::const_iterator
- LI = NewRetainRRI.Calls.begin(),
- LE = NewRetainRRI.Calls.end(); LI != LE; ++LI) {
- Instruction *NewRetainRelease = *LI;
- DenseMap<Value *, RRInfo>::const_iterator Jt =
- Releases.find(NewRetainRelease);
- if (Jt == Releases.end())
- goto next_retain;
- const RRInfo &NewRetainReleaseRRI = Jt->second;
- assert(NewRetainReleaseRRI.Calls.count(NewRetain));
- if (ReleasesToMove.Calls.insert(NewRetainRelease)) {
- OldDelta -=
- BBStates[NewRetainRelease->getParent()].GetAllPathCount();
-
- // Merge the ReleaseMetadata and IsTailCallRelease values.
- if (FirstRelease) {
- ReleasesToMove.ReleaseMetadata =
- NewRetainReleaseRRI.ReleaseMetadata;
- ReleasesToMove.IsTailCallRelease =
- NewRetainReleaseRRI.IsTailCallRelease;
- FirstRelease = false;
- } else {
- if (ReleasesToMove.ReleaseMetadata !=
- NewRetainReleaseRRI.ReleaseMetadata)
- ReleasesToMove.ReleaseMetadata = 0;
- if (ReleasesToMove.IsTailCallRelease !=
- NewRetainReleaseRRI.IsTailCallRelease)
- ReleasesToMove.IsTailCallRelease = false;
- }
-
- // Collect the optimal insertion points.
- if (!KnownSafe)
- for (SmallPtrSet<Instruction *, 2>::const_iterator
- RI = NewRetainReleaseRRI.ReverseInsertPts.begin(),
- RE = NewRetainReleaseRRI.ReverseInsertPts.end();
- RI != RE; ++RI) {
- Instruction *RIP = *RI;
- if (ReleasesToMove.ReverseInsertPts.insert(RIP))
- NewDelta -= BBStates[RIP->getParent()].GetAllPathCount();
- }
- NewReleases.push_back(NewRetainRelease);
- }
- }
- }
- NewRetains.clear();
- if (NewReleases.empty()) break;
-
- // Back the other way.
- for (SmallVectorImpl<Instruction *>::const_iterator
- NI = NewReleases.begin(), NE = NewReleases.end(); NI != NE; ++NI) {
- Instruction *NewRelease = *NI;
- DenseMap<Value *, RRInfo>::const_iterator It =
- Releases.find(NewRelease);
- assert(It != Releases.end());
- const RRInfo &NewReleaseRRI = It->second;
- KnownSafeBU &= NewReleaseRRI.KnownSafe;
- for (SmallPtrSet<Instruction *, 2>::const_iterator
- LI = NewReleaseRRI.Calls.begin(),
- LE = NewReleaseRRI.Calls.end(); LI != LE; ++LI) {
- Instruction *NewReleaseRetain = *LI;
- MapVector<Value *, RRInfo>::const_iterator Jt =
- Retains.find(NewReleaseRetain);
- if (Jt == Retains.end())
- goto next_retain;
- const RRInfo &NewReleaseRetainRRI = Jt->second;
- assert(NewReleaseRetainRRI.Calls.count(NewRelease));
- if (RetainsToMove.Calls.insert(NewReleaseRetain)) {
- unsigned PathCount =
- BBStates[NewReleaseRetain->getParent()].GetAllPathCount();
- OldDelta += PathCount;
- OldCount += PathCount;
-
- // Merge the IsRetainBlock values.
- if (FirstRetain) {
- RetainsToMove.IsRetainBlock = NewReleaseRetainRRI.IsRetainBlock;
- FirstRetain = false;
- } else if (ReleasesToMove.IsRetainBlock !=
- NewReleaseRetainRRI.IsRetainBlock)
- // It's not possible to merge the sequences if one uses
- // objc_retain and the other uses objc_retainBlock.
- goto next_retain;
-
- // Collect the optimal insertion points.
- if (!KnownSafe)
- for (SmallPtrSet<Instruction *, 2>::const_iterator
- RI = NewReleaseRetainRRI.ReverseInsertPts.begin(),
- RE = NewReleaseRetainRRI.ReverseInsertPts.end();
- RI != RE; ++RI) {
- Instruction *RIP = *RI;
- if (RetainsToMove.ReverseInsertPts.insert(RIP)) {
- PathCount = BBStates[RIP->getParent()].GetAllPathCount();
- NewDelta += PathCount;
- NewCount += PathCount;
- }
- }
- NewRetains.push_back(NewReleaseRetain);
- }
- }
- }
- NewReleases.clear();
- if (NewRetains.empty()) break;
- }
-
- // If the pointer is known incremented or nested, we can safely delete the
- // pair regardless of what's between them.
- if (KnownSafeTD || KnownSafeBU) {
- RetainsToMove.ReverseInsertPts.clear();
- ReleasesToMove.ReverseInsertPts.clear();
- NewCount = 0;
- } else {
- // Determine whether the new insertion points we computed preserve the
- // balance of retain and release calls through the program.
- // TODO: If the fully aggressive solution isn't valid, try to find a
- // less aggressive solution which is.
- if (NewDelta != 0)
- goto next_retain;
- }
-
- // Determine whether the original call points are balanced in the retain and
- // release calls through the program. If not, conservatively don't touch
- // them.
- // TODO: It's theoretically possible to do code motion in this case, as
- // long as the existing imbalances are maintained.
- if (OldDelta != 0)
- goto next_retain;
-
- // Ok, everything checks out and we're all set. Let's move some code!
- Changed = true;
- assert(OldCount != 0 && "Unreachable code?");
- AnyPairsCompletelyEliminated = NewCount == 0;
- NumRRs += OldCount - NewCount;
- MoveCalls(Arg, RetainsToMove, ReleasesToMove,
- Retains, Releases, DeadInsts, M);
-
- next_retain:
- NewReleases.clear();
- NewRetains.clear();
- RetainsToMove.clear();
- ReleasesToMove.clear();
- }
-
- // Now that we're done moving everything, we can delete the newly dead
- // instructions, as we no longer need them as insert points.
- while (!DeadInsts.empty())
- EraseInstruction(DeadInsts.pop_back_val());
-
- return AnyPairsCompletelyEliminated;
-}
-
-/// OptimizeWeakCalls - Weak pointer optimizations.
-void ObjCARCOpt::OptimizeWeakCalls(Function &F) {
- // First, do memdep-style RLE and S2L optimizations. We can't use memdep
- // itself because it uses AliasAnalysis and we need to do provenance
- // queries instead.
- for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
- Instruction *Inst = &*I++;
- InstructionClass Class = GetBasicInstructionClass(Inst);
- if (Class != IC_LoadWeak && Class != IC_LoadWeakRetained)
- continue;
-
- // Delete objc_loadWeak calls with no users.
- if (Class == IC_LoadWeak && Inst->use_empty()) {
- Inst->eraseFromParent();
- continue;
- }
-
- // TODO: For now, just look for an earlier available version of this value
- // within the same block. Theoretically, we could do memdep-style non-local
- // analysis too, but that would want caching. A better approach would be to
- // use the technique that EarlyCSE uses.
- inst_iterator Current = llvm::prior(I);
- BasicBlock *CurrentBB = Current.getBasicBlockIterator();
- for (BasicBlock::iterator B = CurrentBB->begin(),
- J = Current.getInstructionIterator();
- J != B; --J) {
- Instruction *EarlierInst = &*llvm::prior(J);
- InstructionClass EarlierClass = GetInstructionClass(EarlierInst);
- switch (EarlierClass) {
- case IC_LoadWeak:
- case IC_LoadWeakRetained: {
- // If this is loading from the same pointer, replace this load's value
- // with that one.
- CallInst *Call = cast<CallInst>(Inst);
- CallInst *EarlierCall = cast<CallInst>(EarlierInst);
- Value *Arg = Call->getArgOperand(0);
- Value *EarlierArg = EarlierCall->getArgOperand(0);
- switch (PA.getAA()->alias(Arg, EarlierArg)) {
- case AliasAnalysis::MustAlias:
- Changed = true;
- // If the load has a builtin retain, insert a plain retain for it.
- if (Class == IC_LoadWeakRetained) {
- CallInst *CI =
- CallInst::Create(getRetainCallee(F.getParent()), EarlierCall,
- "", Call);
- CI->setTailCall();
- }
- // Zap the fully redundant load.
- Call->replaceAllUsesWith(EarlierCall);
- Call->eraseFromParent();
- goto clobbered;
- case AliasAnalysis::MayAlias:
- case AliasAnalysis::PartialAlias:
- goto clobbered;
- case AliasAnalysis::NoAlias:
- break;
- }
- break;
- }
- case IC_StoreWeak:
- case IC_InitWeak: {
- // If this is storing to the same pointer and has the same size etc.
- // replace this load's value with the stored value.
- CallInst *Call = cast<CallInst>(Inst);
- CallInst *EarlierCall = cast<CallInst>(EarlierInst);
- Value *Arg = Call->getArgOperand(0);
- Value *EarlierArg = EarlierCall->getArgOperand(0);
- switch (PA.getAA()->alias(Arg, EarlierArg)) {
- case AliasAnalysis::MustAlias:
- Changed = true;
- // If the load has a builtin retain, insert a plain retain for it.
- if (Class == IC_LoadWeakRetained) {
- CallInst *CI =
- CallInst::Create(getRetainCallee(F.getParent()), EarlierCall,
- "", Call);
- CI->setTailCall();
- }
- // Zap the fully redundant load.
- Call->replaceAllUsesWith(EarlierCall->getArgOperand(1));
- Call->eraseFromParent();
- goto clobbered;
- case AliasAnalysis::MayAlias:
- case AliasAnalysis::PartialAlias:
- goto clobbered;
- case AliasAnalysis::NoAlias:
- break;
- }
- break;
- }
- case IC_MoveWeak:
- case IC_CopyWeak:
- // TOOD: Grab the copied value.
- goto clobbered;
- case IC_AutoreleasepoolPush:
- case IC_None:
- case IC_User:
- // Weak pointers are only modified through the weak entry points
- // (and arbitrary calls, which could call the weak entry points).
- break;
- default:
- // Anything else could modify the weak pointer.
- goto clobbered;
- }
- }
- clobbered:;
- }
-
- // Then, for each destroyWeak with an alloca operand, check to see if
- // the alloca and all its users can be zapped.
- for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
- Instruction *Inst = &*I++;
- InstructionClass Class = GetBasicInstructionClass(Inst);
- if (Class != IC_DestroyWeak)
- continue;
-
- CallInst *Call = cast<CallInst>(Inst);
- Value *Arg = Call->getArgOperand(0);
- if (AllocaInst *Alloca = dyn_cast<AllocaInst>(Arg)) {
- for (Value::use_iterator UI = Alloca->use_begin(),
- UE = Alloca->use_end(); UI != UE; ++UI) {
- const Instruction *UserInst = cast<Instruction>(*UI);
- switch (GetBasicInstructionClass(UserInst)) {
- case IC_InitWeak:
- case IC_StoreWeak:
- case IC_DestroyWeak:
- continue;
- default:
- goto done;
- }
- }
- Changed = true;
- for (Value::use_iterator UI = Alloca->use_begin(),
- UE = Alloca->use_end(); UI != UE; ) {
- CallInst *UserInst = cast<CallInst>(*UI++);
- switch (GetBasicInstructionClass(UserInst)) {
- case IC_InitWeak:
- case IC_StoreWeak:
- // These functions return their second argument.
- UserInst->replaceAllUsesWith(UserInst->getArgOperand(1));
- break;
- case IC_DestroyWeak:
- // No return value.
- break;
- default:
- llvm_unreachable("alloca really is used!");
- }
- UserInst->eraseFromParent();
- }
- Alloca->eraseFromParent();
- done:;
- }
- }
-}
-
-/// OptimizeSequences - Identify program paths which execute sequences of
-/// retains and releases which can be eliminated.
-bool ObjCARCOpt::OptimizeSequences(Function &F) {
- /// Releases, Retains - These are used to store the results of the main flow
- /// analysis. These use Value* as the key instead of Instruction* so that the
- /// map stays valid when we get around to rewriting code and calls get
- /// replaced by arguments.
- DenseMap<Value *, RRInfo> Releases;
- MapVector<Value *, RRInfo> Retains;
-
- /// BBStates, This is used during the traversal of the function to track the
- /// states for each identified object at each block.
- DenseMap<const BasicBlock *, BBState> BBStates;
-
- // Analyze the CFG of the function, and all instructions.
- bool NestingDetected = Visit(F, BBStates, Retains, Releases);
-
- // Transform.
- return PerformCodePlacement(BBStates, Retains, Releases, F.getParent()) &&
- NestingDetected;
-}
-
-/// OptimizeReturns - Look for this pattern:
-/// \code
-/// %call = call i8* @something(...)
-/// %2 = call i8* @objc_retain(i8* %call)
-/// %3 = call i8* @objc_autorelease(i8* %2)
-/// ret i8* %3
-/// \endcode
-/// And delete the retain and autorelease.
-///
-/// Otherwise if it's just this:
-/// \code
-/// %3 = call i8* @objc_autorelease(i8* %2)
-/// ret i8* %3
-/// \endcode
-/// convert the autorelease to autoreleaseRV.
-void ObjCARCOpt::OptimizeReturns(Function &F) {
- if (!F.getReturnType()->isPointerTy())
- return;
-
- SmallPtrSet<Instruction *, 4> DependingInstructions;
- SmallPtrSet<const BasicBlock *, 4> Visited;
- for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
- BasicBlock *BB = FI;
- ReturnInst *Ret = dyn_cast<ReturnInst>(&BB->back());
- if (!Ret) continue;
-
- const Value *Arg = StripPointerCastsAndObjCCalls(Ret->getOperand(0));
- FindDependencies(NeedsPositiveRetainCount, Arg,
- BB, Ret, DependingInstructions, Visited, PA);
- if (DependingInstructions.size() != 1)
- goto next_block;
-
- {
- CallInst *Autorelease =
- dyn_cast_or_null<CallInst>(*DependingInstructions.begin());
- if (!Autorelease)
- goto next_block;
- InstructionClass AutoreleaseClass = GetBasicInstructionClass(Autorelease);
- if (!IsAutorelease(AutoreleaseClass))
- goto next_block;
- if (GetObjCArg(Autorelease) != Arg)
- goto next_block;
-
- DependingInstructions.clear();
- Visited.clear();
-
- // Check that there is nothing that can affect the reference
- // count between the autorelease and the retain.
- FindDependencies(CanChangeRetainCount, Arg,
- BB, Autorelease, DependingInstructions, Visited, PA);
- if (DependingInstructions.size() != 1)
- goto next_block;
-
- {
- CallInst *Retain =
- dyn_cast_or_null<CallInst>(*DependingInstructions.begin());
-
- // Check that we found a retain with the same argument.
- if (!Retain ||
- !IsRetain(GetBasicInstructionClass(Retain)) ||
- GetObjCArg(Retain) != Arg)
- goto next_block;
-
- DependingInstructions.clear();
- Visited.clear();
-
- // Convert the autorelease to an autoreleaseRV, since it's
- // returning the value.
- if (AutoreleaseClass == IC_Autorelease) {
- Autorelease->setCalledFunction(getAutoreleaseRVCallee(F.getParent()));
- AutoreleaseClass = IC_AutoreleaseRV;
- }
-
- // Check that there is nothing that can affect the reference
- // count between the retain and the call.
- // Note that Retain need not be in BB.
- FindDependencies(CanChangeRetainCount, Arg, Retain->getParent(), Retain,
- DependingInstructions, Visited, PA);
- if (DependingInstructions.size() != 1)
- goto next_block;
-
- {
- CallInst *Call =
- dyn_cast_or_null<CallInst>(*DependingInstructions.begin());
-
- // Check that the pointer is the return value of the call.
- if (!Call || Arg != Call)
- goto next_block;
-
- // Check that the call is a regular call.
- InstructionClass Class = GetBasicInstructionClass(Call);
- if (Class != IC_CallOrUser && Class != IC_Call)
- goto next_block;
-
- // If so, we can zap the retain and autorelease.
- Changed = true;
- ++NumRets;
- EraseInstruction(Retain);
- EraseInstruction(Autorelease);
- }
- }
- }
-
- next_block:
- DependingInstructions.clear();
- Visited.clear();
- }
-}
-
-bool ObjCARCOpt::doInitialization(Module &M) {
- if (!EnableARCOpts)
- return false;
-
- // If nothing in the Module uses ARC, don't do anything.
- Run = ModuleHasARC(M);
- if (!Run)
- return false;
-
- // Identify the imprecise release metadata kind.
- ImpreciseReleaseMDKind =
- M.getContext().getMDKindID("clang.imprecise_release");
- CopyOnEscapeMDKind =
- M.getContext().getMDKindID("clang.arc.copy_on_escape");
- NoObjCARCExceptionsMDKind =
- M.getContext().getMDKindID("clang.arc.no_objc_arc_exceptions");
-
- // Intuitively, objc_retain and others are nocapture, however in practice
- // they are not, because they return their argument value. And objc_release
- // calls finalizers which can have arbitrary side effects.
-
- // These are initialized lazily.
- RetainRVCallee = 0;
- AutoreleaseRVCallee = 0;
- ReleaseCallee = 0;
- RetainCallee = 0;
- RetainBlockCallee = 0;
- AutoreleaseCallee = 0;
-
- return false;
-}
-
-bool ObjCARCOpt::runOnFunction(Function &F) {
- if (!EnableARCOpts)
- return false;
-
- // If nothing in the Module uses ARC, don't do anything.
- if (!Run)
- return false;
-
- Changed = false;
-
- PA.setAA(&getAnalysis<AliasAnalysis>());
-
- // This pass performs several distinct transformations. As a compile-time aid
- // when compiling code that isn't ObjC, skip these if the relevant ObjC
- // library functions aren't declared.
-
- // Preliminary optimizations. This also computs UsedInThisFunction.
- OptimizeIndividualCalls(F);
-
- // Optimizations for weak pointers.
- if (UsedInThisFunction & ((1 << IC_LoadWeak) |
- (1 << IC_LoadWeakRetained) |
- (1 << IC_StoreWeak) |
- (1 << IC_InitWeak) |
- (1 << IC_CopyWeak) |
- (1 << IC_MoveWeak) |
- (1 << IC_DestroyWeak)))
- OptimizeWeakCalls(F);
-
- // Optimizations for retain+release pairs.
- if (UsedInThisFunction & ((1 << IC_Retain) |
- (1 << IC_RetainRV) |
- (1 << IC_RetainBlock)))
- if (UsedInThisFunction & (1 << IC_Release))
- // Run OptimizeSequences until it either stops making changes or
- // no retain+release pair nesting is detected.
- while (OptimizeSequences(F)) {}
-
- // Optimizations if objc_autorelease is used.
- if (UsedInThisFunction & ((1 << IC_Autorelease) |
- (1 << IC_AutoreleaseRV)))
- OptimizeReturns(F);
-
- return Changed;
-}
-
-void ObjCARCOpt::releaseMemory() {
- PA.clear();
-}
-
-//===----------------------------------------------------------------------===//
-// ARC contraction.
-//===----------------------------------------------------------------------===//
-
-// TODO: ObjCARCContract could insert PHI nodes when uses aren't
-// dominated by single calls.
-
-#include "llvm/Operator.h"
-#include "llvm/InlineAsm.h"
-#include "llvm/Analysis/Dominators.h"
-
-STATISTIC(NumStoreStrongs, "Number objc_storeStrong calls formed");
-
-namespace {
- /// ObjCARCContract - Late ARC optimizations. These change the IR in a way
- /// that makes it difficult to be analyzed by ObjCARCOpt, so it's run late.
- class ObjCARCContract : public FunctionPass {
- bool Changed;
- AliasAnalysis *AA;
- DominatorTree *DT;
- ProvenanceAnalysis PA;
-
- /// Run - A flag indicating whether this optimization pass should run.
- bool Run;
-
- /// StoreStrongCallee, etc. - Declarations for ObjC runtime
- /// functions, for use in creating calls to them. These are initialized
- /// lazily to avoid cluttering up the Module with unused declarations.
- Constant *StoreStrongCallee,
- *RetainAutoreleaseCallee, *RetainAutoreleaseRVCallee;
-
- /// RetainRVMarker - The inline asm string to insert between calls and
- /// RetainRV calls to make the optimization work on targets which need it.
- const MDString *RetainRVMarker;
-
- /// StoreStrongCalls - The set of inserted objc_storeStrong calls. If
- /// at the end of walking the function we have found no alloca
- /// instructions, these calls can be marked "tail".
- SmallPtrSet<CallInst *, 8> StoreStrongCalls;
-
- Constant *getStoreStrongCallee(Module *M);
- Constant *getRetainAutoreleaseCallee(Module *M);
- Constant *getRetainAutoreleaseRVCallee(Module *M);
-
- bool ContractAutorelease(Function &F, Instruction *Autorelease,
- InstructionClass Class,
- SmallPtrSet<Instruction *, 4>
- &DependingInstructions,
- SmallPtrSet<const BasicBlock *, 4>
- &Visited);
-
- void ContractRelease(Instruction *Release,
- inst_iterator &Iter);
-
- virtual void getAnalysisUsage(AnalysisUsage &AU) const;
- virtual bool doInitialization(Module &M);
- virtual bool runOnFunction(Function &F);
-
- public:
- static char ID;
- ObjCARCContract() : FunctionPass(ID) {
- initializeObjCARCContractPass(*PassRegistry::getPassRegistry());
- }
- };
-}
-
-char ObjCARCContract::ID = 0;
-INITIALIZE_PASS_BEGIN(ObjCARCContract,
- "objc-arc-contract", "ObjC ARC contraction", false, false)
-INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
-INITIALIZE_PASS_DEPENDENCY(DominatorTree)
-INITIALIZE_PASS_END(ObjCARCContract,
- "objc-arc-contract", "ObjC ARC contraction", false, false)
-
-Pass *llvm::createObjCARCContractPass() {
- return new ObjCARCContract();
-}
-
-void ObjCARCContract::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequired<AliasAnalysis>();
- AU.addRequired<DominatorTree>();
- AU.setPreservesCFG();
-}
-
-Constant *ObjCARCContract::getStoreStrongCallee(Module *M) {
- if (!StoreStrongCallee) {
- LLVMContext &C = M->getContext();
- Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
- Type *I8XX = PointerType::getUnqual(I8X);
- Type *Params[] = { I8XX, I8X };
-
- AttrListPtr Attributes = AttrListPtr()
- .addAttr(M->getContext(), AttrListPtr::FunctionIndex,
- Attributes::get(C, Attributes::NoUnwind))
- .addAttr(M->getContext(), 1, Attributes::get(C, Attributes::NoCapture));
-
- StoreStrongCallee =
- M->getOrInsertFunction(
- "objc_storeStrong",
- FunctionType::get(Type::getVoidTy(C), Params, /*isVarArg=*/false),
- Attributes);
- }
- return StoreStrongCallee;
-}
-
-Constant *ObjCARCContract::getRetainAutoreleaseCallee(Module *M) {
- if (!RetainAutoreleaseCallee) {
- LLVMContext &C = M->getContext();
- Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
- Type *Params[] = { I8X };
- FunctionType *FTy = FunctionType::get(I8X, Params, /*isVarArg=*/false);
- AttrListPtr Attributes =
- AttrListPtr().addAttr(M->getContext(), AttrListPtr::FunctionIndex,
- Attributes::get(C, Attributes::NoUnwind));
- RetainAutoreleaseCallee =
- M->getOrInsertFunction("objc_retainAutorelease", FTy, Attributes);
- }
- return RetainAutoreleaseCallee;
-}
-
-Constant *ObjCARCContract::getRetainAutoreleaseRVCallee(Module *M) {
- if (!RetainAutoreleaseRVCallee) {
- LLVMContext &C = M->getContext();
- Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
- Type *Params[] = { I8X };
- FunctionType *FTy = FunctionType::get(I8X, Params, /*isVarArg=*/false);
- AttrListPtr Attributes =
- AttrListPtr().addAttr(M->getContext(), AttrListPtr::FunctionIndex,
- Attributes::get(C, Attributes::NoUnwind));
- RetainAutoreleaseRVCallee =
- M->getOrInsertFunction("objc_retainAutoreleaseReturnValue", FTy,
- Attributes);
- }
- return RetainAutoreleaseRVCallee;
-}
-
-/// ContractAutorelease - Merge an autorelease with a retain into a fused call.
-bool
-ObjCARCContract::ContractAutorelease(Function &F, Instruction *Autorelease,
- InstructionClass Class,
- SmallPtrSet<Instruction *, 4>
- &DependingInstructions,
- SmallPtrSet<const BasicBlock *, 4>
- &Visited) {
- const Value *Arg = GetObjCArg(Autorelease);
-
- // Check that there are no instructions between the retain and the autorelease
- // (such as an autorelease_pop) which may change the count.
- CallInst *Retain = 0;
- if (Class == IC_AutoreleaseRV)
- FindDependencies(RetainAutoreleaseRVDep, Arg,
- Autorelease->getParent(), Autorelease,
- DependingInstructions, Visited, PA);
- else
- FindDependencies(RetainAutoreleaseDep, Arg,
- Autorelease->getParent(), Autorelease,
- DependingInstructions, Visited, PA);
-
- Visited.clear();
- if (DependingInstructions.size() != 1) {
- DependingInstructions.clear();
- return false;
- }
-
- Retain = dyn_cast_or_null<CallInst>(*DependingInstructions.begin());
- DependingInstructions.clear();
-
- if (!Retain ||
- GetBasicInstructionClass(Retain) != IC_Retain ||
- GetObjCArg(Retain) != Arg)
- return false;
-
- Changed = true;
- ++NumPeeps;
-
- if (Class == IC_AutoreleaseRV)
- Retain->setCalledFunction(getRetainAutoreleaseRVCallee(F.getParent()));
- else
- Retain->setCalledFunction(getRetainAutoreleaseCallee(F.getParent()));
-
- EraseInstruction(Autorelease);
- return true;
-}
-
-/// ContractRelease - Attempt to merge an objc_release with a store, load, and
-/// objc_retain to form an objc_storeStrong. This can be a little tricky because
-/// the instructions don't always appear in order, and there may be unrelated
-/// intervening instructions.
-void ObjCARCContract::ContractRelease(Instruction *Release,
- inst_iterator &Iter) {
- LoadInst *Load = dyn_cast<LoadInst>(GetObjCArg(Release));
- if (!Load || !Load->isSimple()) return;
-
- // For now, require everything to be in one basic block.
- BasicBlock *BB = Release->getParent();
- if (Load->getParent() != BB) return;
-
- // Walk down to find the store and the release, which may be in either order.
- BasicBlock::iterator I = Load, End = BB->end();
- ++I;
- AliasAnalysis::Location Loc = AA->getLocation(Load);
- StoreInst *Store = 0;
- bool SawRelease = false;
- for (; !Store || !SawRelease; ++I) {
- if (I == End)
- return;
-
- Instruction *Inst = I;
- if (Inst == Release) {
- SawRelease = true;
- continue;
- }
-
- InstructionClass Class = GetBasicInstructionClass(Inst);
-
- // Unrelated retains are harmless.
- if (IsRetain(Class))
- continue;
-
- if (Store) {
- // The store is the point where we're going to put the objc_storeStrong,
- // so make sure there are no uses after it.
- if (CanUse(Inst, Load, PA, Class))
- return;
- } else if (AA->getModRefInfo(Inst, Loc) & AliasAnalysis::Mod) {
- // We are moving the load down to the store, so check for anything
- // else which writes to the memory between the load and the store.
- Store = dyn_cast<StoreInst>(Inst);
- if (!Store || !Store->isSimple()) return;
- if (Store->getPointerOperand() != Loc.Ptr) return;
- }
- }
-
- Value *New = StripPointerCastsAndObjCCalls(Store->getValueOperand());
-
- // Walk up to find the retain.
- I = Store;
- BasicBlock::iterator Begin = BB->begin();
- while (I != Begin && GetBasicInstructionClass(I) != IC_Retain)
- --I;
- Instruction *Retain = I;
- if (GetBasicInstructionClass(Retain) != IC_Retain) return;
- if (GetObjCArg(Retain) != New) return;
-
- Changed = true;
- ++NumStoreStrongs;
-
- LLVMContext &C = Release->getContext();
- Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
- Type *I8XX = PointerType::getUnqual(I8X);
-
- Value *Args[] = { Load->getPointerOperand(), New };
- if (Args[0]->getType() != I8XX)
- Args[0] = new BitCastInst(Args[0], I8XX, "", Store);
- if (Args[1]->getType() != I8X)
- Args[1] = new BitCastInst(Args[1], I8X, "", Store);
- CallInst *StoreStrong =
- CallInst::Create(getStoreStrongCallee(BB->getParent()->getParent()),
- Args, "", Store);
- StoreStrong->setDoesNotThrow();
- StoreStrong->setDebugLoc(Store->getDebugLoc());
-
- // We can't set the tail flag yet, because we haven't yet determined
- // whether there are any escaping allocas. Remember this call, so that
- // we can set the tail flag once we know it's safe.
- StoreStrongCalls.insert(StoreStrong);
-
- if (&*Iter == Store) ++Iter;
- Store->eraseFromParent();
- Release->eraseFromParent();
- EraseInstruction(Retain);
- if (Load->use_empty())
- Load->eraseFromParent();
-}
-
-bool ObjCARCContract::doInitialization(Module &M) {
- // If nothing in the Module uses ARC, don't do anything.
- Run = ModuleHasARC(M);
- if (!Run)
- return false;
-
- // These are initialized lazily.
- StoreStrongCallee = 0;
- RetainAutoreleaseCallee = 0;
- RetainAutoreleaseRVCallee = 0;
-
- // Initialize RetainRVMarker.
- RetainRVMarker = 0;
- if (NamedMDNode *NMD =
- M.getNamedMetadata("clang.arc.retainAutoreleasedReturnValueMarker"))
- if (NMD->getNumOperands() == 1) {
- const MDNode *N = NMD->getOperand(0);
- if (N->getNumOperands() == 1)
- if (const MDString *S = dyn_cast<MDString>(N->getOperand(0)))
- RetainRVMarker = S;
- }
-
- return false;
-}
-
-bool ObjCARCContract::runOnFunction(Function &F) {
- if (!EnableARCOpts)
- return false;
-
- // If nothing in the Module uses ARC, don't do anything.
- if (!Run)
- return false;
-
- Changed = false;
- AA = &getAnalysis<AliasAnalysis>();
- DT = &getAnalysis<DominatorTree>();
-
- PA.setAA(&getAnalysis<AliasAnalysis>());
-
- // Track whether it's ok to mark objc_storeStrong calls with the "tail"
- // keyword. Be conservative if the function has variadic arguments.
- // It seems that functions which "return twice" are also unsafe for the
- // "tail" argument, because they are setjmp, which could need to
- // return to an earlier stack state.
- bool TailOkForStoreStrongs = !F.isVarArg() &&
- !F.callsFunctionThatReturnsTwice();
-
- // For ObjC library calls which return their argument, replace uses of the
- // argument with uses of the call return value, if it dominates the use. This
- // reduces register pressure.
- SmallPtrSet<Instruction *, 4> DependingInstructions;
- SmallPtrSet<const BasicBlock *, 4> Visited;
- for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
- Instruction *Inst = &*I++;
-
- // Only these library routines return their argument. In particular,
- // objc_retainBlock does not necessarily return its argument.
- InstructionClass Class = GetBasicInstructionClass(Inst);
- switch (Class) {
- case IC_Retain:
- case IC_FusedRetainAutorelease:
- case IC_FusedRetainAutoreleaseRV:
- break;
- case IC_Autorelease:
- case IC_AutoreleaseRV:
- if (ContractAutorelease(F, Inst, Class, DependingInstructions, Visited))
- continue;
- break;
- case IC_RetainRV: {
- // If we're compiling for a target which needs a special inline-asm
- // marker to do the retainAutoreleasedReturnValue optimization,
- // insert it now.
- if (!RetainRVMarker)
- break;
- BasicBlock::iterator BBI = Inst;
- BasicBlock *InstParent = Inst->getParent();
-
- // Step up to see if the call immediately precedes the RetainRV call.
- // If it's an invoke, we have to cross a block boundary. And we have
- // to carefully dodge no-op instructions.
- do {
- if (&*BBI == InstParent->begin()) {
- BasicBlock *Pred = InstParent->getSinglePredecessor();
- if (!Pred)
- goto decline_rv_optimization;
- BBI = Pred->getTerminator();
- break;
- }
- --BBI;
- } while (isNoopInstruction(BBI));
-
- if (&*BBI == GetObjCArg(Inst)) {
- Changed = true;
- InlineAsm *IA =
- InlineAsm::get(FunctionType::get(Type::getVoidTy(Inst->getContext()),
- /*isVarArg=*/false),
- RetainRVMarker->getString(),
- /*Constraints=*/"", /*hasSideEffects=*/true);
- CallInst::Create(IA, "", Inst);
- }
- decline_rv_optimization:
- break;
- }
- case IC_InitWeak: {
- // objc_initWeak(p, null) => *p = null
- CallInst *CI = cast<CallInst>(Inst);
- if (isNullOrUndef(CI->getArgOperand(1))) {
- Value *Null =
- ConstantPointerNull::get(cast<PointerType>(CI->getType()));
- Changed = true;
- new StoreInst(Null, CI->getArgOperand(0), CI);
- CI->replaceAllUsesWith(Null);
- CI->eraseFromParent();
- }
- continue;
- }
- case IC_Release:
- ContractRelease(Inst, I);
- continue;
- case IC_User:
- // Be conservative if the function has any alloca instructions.
- // Technically we only care about escaping alloca instructions,
- // but this is sufficient to handle some interesting cases.
- if (isa<AllocaInst>(Inst))
- TailOkForStoreStrongs = false;
- continue;
- default:
- continue;
- }
-
- // Don't use GetObjCArg because we don't want to look through bitcasts
- // and such; to do the replacement, the argument must have type i8*.
- const Value *Arg = cast<CallInst>(Inst)->getArgOperand(0);
- for (;;) {
- // If we're compiling bugpointed code, don't get in trouble.
- if (!isa<Instruction>(Arg) && !isa<Argument>(Arg))
- break;
- // Look through the uses of the pointer.
- for (Value::const_use_iterator UI = Arg->use_begin(), UE = Arg->use_end();
- UI != UE; ) {
- Use &U = UI.getUse();
- unsigned OperandNo = UI.getOperandNo();
- ++UI; // Increment UI now, because we may unlink its element.
-
- // If the call's return value dominates a use of the call's argument
- // value, rewrite the use to use the return value. We check for
- // reachability here because an unreachable call is considered to
- // trivially dominate itself, which would lead us to rewriting its
- // argument in terms of its return value, which would lead to
- // infinite loops in GetObjCArg.
- if (DT->isReachableFromEntry(U) && DT->dominates(Inst, U)) {
- Changed = true;
- Instruction *Replacement = Inst;
- Type *UseTy = U.get()->getType();
- if (PHINode *PHI = dyn_cast<PHINode>(U.getUser())) {
- // For PHI nodes, insert the bitcast in the predecessor block.
- unsigned ValNo = PHINode::getIncomingValueNumForOperand(OperandNo);
- BasicBlock *BB = PHI->getIncomingBlock(ValNo);
- if (Replacement->getType() != UseTy)
- Replacement = new BitCastInst(Replacement, UseTy, "",
- &BB->back());
- // While we're here, rewrite all edges for this PHI, rather
- // than just one use at a time, to minimize the number of
- // bitcasts we emit.
- for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
- if (PHI->getIncomingBlock(i) == BB) {
- // Keep the UI iterator valid.
- if (&PHI->getOperandUse(
- PHINode::getOperandNumForIncomingValue(i)) ==
- &UI.getUse())
- ++UI;
- PHI->setIncomingValue(i, Replacement);
- }
- } else {
- if (Replacement->getType() != UseTy)
- Replacement = new BitCastInst(Replacement, UseTy, "",
- cast<Instruction>(U.getUser()));
- U.set(Replacement);
- }
- }
- }
-
- // If Arg is a no-op casted pointer, strip one level of casts and iterate.
- if (const BitCastInst *BI = dyn_cast<BitCastInst>(Arg))
- Arg = BI->getOperand(0);
- else if (isa<GEPOperator>(Arg) &&
- cast<GEPOperator>(Arg)->hasAllZeroIndices())
- Arg = cast<GEPOperator>(Arg)->getPointerOperand();
- else if (isa<GlobalAlias>(Arg) &&
- !cast<GlobalAlias>(Arg)->mayBeOverridden())
- Arg = cast<GlobalAlias>(Arg)->getAliasee();
- else
- break;
- }
- }
-
- // If this function has no escaping allocas or suspicious vararg usage,
- // objc_storeStrong calls can be marked with the "tail" keyword.
- if (TailOkForStoreStrongs)
- for (SmallPtrSet<CallInst *, 8>::iterator I = StoreStrongCalls.begin(),
- E = StoreStrongCalls.end(); I != E; ++I)
- (*I)->setTailCall();
- StoreStrongCalls.clear();
-
- return Changed;
-}
diff --git a/contrib/llvm/lib/Transforms/Scalar/Reassociate.cpp b/contrib/llvm/lib/Transforms/Scalar/Reassociate.cpp
index 7a40797..7ee4027 100644
--- a/contrib/llvm/lib/Transforms/Scalar/Reassociate.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/Reassociate.cpp
@@ -22,24 +22,24 @@
#define DEBUG_TYPE "reassociate"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Pass.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Assembly/Writer.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/Pass.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
using namespace llvm;
@@ -110,6 +110,55 @@ namespace {
}
};
};
+
+ /// Utility class representing a non-constant Xor-operand. We classify
+ /// non-constant Xor-Operands into two categories:
+ /// C1) The operand is in the form "X & C", where C is a constant and C != ~0
+ /// C2)
+ /// C2.1) The operand is in the form of "X | C", where C is a non-zero
+ /// constant.
+ /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
+ /// operand as "E | 0"
+ class XorOpnd {
+ public:
+ XorOpnd(Value *V);
+ const XorOpnd &operator=(const XorOpnd &That);
+
+ bool isInvalid() const { return SymbolicPart == 0; }
+ bool isOrExpr() const { return isOr; }
+ Value *getValue() const { return OrigVal; }
+ Value *getSymbolicPart() const { return SymbolicPart; }
+ unsigned getSymbolicRank() const { return SymbolicRank; }
+ const APInt &getConstPart() const { return ConstPart; }
+
+ void Invalidate() { SymbolicPart = OrigVal = 0; }
+ void setSymbolicRank(unsigned R) { SymbolicRank = R; }
+
+ // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank.
+ // The purpose is twofold:
+ // 1) Cluster together the operands sharing the same symbolic-value.
+ // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
+ // could potentially shorten crital path, and expose more loop-invariants.
+ // Note that values' rank are basically defined in RPO order (FIXME).
+ // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
+ // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
+ // "z" in the order of X-Y-Z is better than any other orders.
+ class PtrSortFunctor {
+ ArrayRef<XorOpnd> A;
+
+ public:
+ PtrSortFunctor(ArrayRef<XorOpnd> Array) : A(Array) {}
+ bool operator()(unsigned LHSIndex, unsigned RHSIndex) {
+ return A[LHSIndex].getSymbolicRank() < A[RHSIndex].getSymbolicRank();
+ }
+ };
+ private:
+ Value *OrigVal;
+ Value *SymbolicPart;
+ APInt ConstPart;
+ unsigned SymbolicRank;
+ bool isOr;
+ };
}
namespace {
@@ -137,6 +186,11 @@ namespace {
Value *OptimizeExpression(BinaryOperator *I,
SmallVectorImpl<ValueEntry> &Ops);
Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
+ Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
+ bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd,
+ Value *&Res);
+ bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
+ APInt &ConstOpnd, Value *&Res);
bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
SmallVectorImpl<Factor> &Factors);
Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
@@ -148,6 +202,42 @@ namespace {
};
}
+XorOpnd::XorOpnd(Value *V) {
+ assert(!isa<ConstantInt>(V) && "No ConstantInt");
+ OrigVal = V;
+ Instruction *I = dyn_cast<Instruction>(V);
+ SymbolicRank = 0;
+
+ if (I && (I->getOpcode() == Instruction::Or ||
+ I->getOpcode() == Instruction::And)) {
+ Value *V0 = I->getOperand(0);
+ Value *V1 = I->getOperand(1);
+ if (isa<ConstantInt>(V0))
+ std::swap(V0, V1);
+
+ if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) {
+ ConstPart = C->getValue();
+ SymbolicPart = V0;
+ isOr = (I->getOpcode() == Instruction::Or);
+ return;
+ }
+ }
+
+ // view the operand as "V | 0"
+ SymbolicPart = V;
+ ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth());
+ isOr = true;
+}
+
+const XorOpnd &XorOpnd::operator=(const XorOpnd &That) {
+ OrigVal = That.OrigVal;
+ SymbolicPart = That.SymbolicPart;
+ ConstPart = That.ConstPart;
+ SymbolicRank = That.SymbolicRank;
+ isOr = That.isOr;
+ return *this;
+}
+
char Reassociate::ID = 0;
INITIALIZE_PASS(Reassociate, "reassociate",
"Reassociate expressions", false, false)
@@ -423,10 +513,6 @@ static bool LinearizeExprTree(BinaryOperator *I,
assert(Instruction::isAssociative(Opcode) &&
Instruction::isCommutative(Opcode) &&
"Expected an associative and commutative operation!");
- // If we see an absorbing element then the entire expression must be equal to
- // it. For example, if this is a multiplication expression and zero occurs as
- // an operand somewhere in it then the result of the expression must be zero.
- Constant *Absorber = ConstantExpr::getBinOpAbsorber(Opcode, I->getType());
// Visit all operands of the expression, keeping track of their weight (the
// number of paths from the expression root to the operand, or if you like
@@ -474,13 +560,6 @@ static bool LinearizeExprTree(BinaryOperator *I,
DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
assert(!Op->use_empty() && "No uses, so how did we get to it?!");
- // If the expression contains an absorbing element then there is no need
- // to analyze it further: it must evaluate to the absorbing element.
- if (Op == Absorber && !Weight.isMinValue()) {
- Ops.push_back(std::make_pair(Absorber, APInt(Bitwidth, 1)));
- return MadeChange;
- }
-
// If this is a binary operation of the right kind with only one use then
// add its operands to the expression.
if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
@@ -1051,6 +1130,241 @@ static Value *OptimizeAndOrXor(unsigned Opcode,
return 0;
}
+/// Helper funciton of CombineXorOpnd(). It creates a bitwise-and
+/// instruction with the given two operands, and return the resulting
+/// instruction. There are two special cases: 1) if the constant operand is 0,
+/// it will return NULL. 2) if the constant is ~0, the symbolic operand will
+/// be returned.
+static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
+ const APInt &ConstOpnd) {
+ if (ConstOpnd != 0) {
+ if (!ConstOpnd.isAllOnesValue()) {
+ LLVMContext &Ctx = Opnd->getType()->getContext();
+ Instruction *I;
+ I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd),
+ "and.ra", InsertBefore);
+ I->setDebugLoc(InsertBefore->getDebugLoc());
+ return I;
+ }
+ return Opnd;
+ }
+ return 0;
+}
+
+// Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
+// into "R ^ C", where C would be 0, and R is a symbolic value.
+//
+// If it was successful, true is returned, and the "R" and "C" is returned
+// via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
+// and both "Res" and "ConstOpnd" remain unchanged.
+//
+bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
+ APInt &ConstOpnd, Value *&Res) {
+ // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
+ // = ((x | c1) ^ c1) ^ (c1 ^ c2)
+ // = (x & ~c1) ^ (c1 ^ c2)
+ // It is useful only when c1 == c2.
+ if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) {
+ if (!Opnd1->getValue()->hasOneUse())
+ return false;
+
+ const APInt &C1 = Opnd1->getConstPart();
+ if (C1 != ConstOpnd)
+ return false;
+
+ Value *X = Opnd1->getSymbolicPart();
+ Res = createAndInstr(I, X, ~C1);
+ // ConstOpnd was C2, now C1 ^ C2.
+ ConstOpnd ^= C1;
+
+ if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
+ RedoInsts.insert(T);
+ return true;
+ }
+ return false;
+}
+
+
+// Helper function of OptimizeXor(). It tries to simplify
+// "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
+// symbolic value.
+//
+// If it was successful, true is returned, and the "R" and "C" is returned
+// via "Res" and "ConstOpnd", respectively (If the entire expression is
+// evaluated to a constant, the Res is set to NULL); otherwise, false is
+// returned, and both "Res" and "ConstOpnd" remain unchanged.
+bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
+ APInt &ConstOpnd, Value *&Res) {
+ Value *X = Opnd1->getSymbolicPart();
+ if (X != Opnd2->getSymbolicPart())
+ return false;
+
+ const APInt &C1 = Opnd1->getConstPart();
+ const APInt &C2 = Opnd2->getConstPart();
+
+ // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
+ int DeadInstNum = 1;
+ if (Opnd1->getValue()->hasOneUse())
+ DeadInstNum++;
+ if (Opnd2->getValue()->hasOneUse())
+ DeadInstNum++;
+
+ // Xor-Rule 2:
+ // (x | c1) ^ (x & c2)
+ // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
+ // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1
+ // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3
+ //
+ if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
+ if (Opnd2->isOrExpr())
+ std::swap(Opnd1, Opnd2);
+
+ APInt C3((~C1) ^ C2);
+
+ // Do not increase code size!
+ if (C3 != 0 && !C3.isAllOnesValue()) {
+ int NewInstNum = ConstOpnd != 0 ? 1 : 2;
+ if (NewInstNum > DeadInstNum)
+ return false;
+ }
+
+ Res = createAndInstr(I, X, C3);
+ ConstOpnd ^= C1;
+
+ } else if (Opnd1->isOrExpr()) {
+ // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
+ //
+ APInt C3 = C1 ^ C2;
+
+ // Do not increase code size
+ if (C3 != 0 && !C3.isAllOnesValue()) {
+ int NewInstNum = ConstOpnd != 0 ? 1 : 2;
+ if (NewInstNum > DeadInstNum)
+ return false;
+ }
+
+ Res = createAndInstr(I, X, C3);
+ ConstOpnd ^= C3;
+ } else {
+ // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
+ //
+ APInt C3 = C1 ^ C2;
+ Res = createAndInstr(I, X, C3);
+ }
+
+ // Put the original operands in the Redo list; hope they will be deleted
+ // as dead code.
+ if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
+ RedoInsts.insert(T);
+ if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
+ RedoInsts.insert(T);
+
+ return true;
+}
+
+/// Optimize a series of operands to an 'xor' instruction. If it can be reduced
+/// to a single Value, it is returned, otherwise the Ops list is mutated as
+/// necessary.
+Value *Reassociate::OptimizeXor(Instruction *I,
+ SmallVectorImpl<ValueEntry> &Ops) {
+ if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
+ return V;
+
+ if (Ops.size() == 1)
+ return 0;
+
+ SmallVector<XorOpnd, 8> Opnds;
+ SmallVector<unsigned, 8> OpndIndices;
+ Type *Ty = Ops[0].Op->getType();
+ APInt ConstOpnd(Ty->getIntegerBitWidth(), 0);
+
+ // Step 1: Convert ValueEntry to XorOpnd
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
+ Value *V = Ops[i].Op;
+ if (!isa<ConstantInt>(V)) {
+ XorOpnd O(V);
+ O.setSymbolicRank(getRank(O.getSymbolicPart()));
+ Opnds.push_back(O);
+ OpndIndices.push_back(Opnds.size() - 1);
+ } else
+ ConstOpnd ^= cast<ConstantInt>(V)->getValue();
+ }
+
+ // Step 2: Sort the Xor-Operands in a way such that the operands containing
+ // the same symbolic value cluster together. For instance, the input operand
+ // sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
+ // ("x | 123", "x & 789", "y & 456").
+ std::sort(OpndIndices.begin(), OpndIndices.end(),
+ XorOpnd::PtrSortFunctor(Opnds));
+
+ // Step 3: Combine adjacent operands
+ XorOpnd *PrevOpnd = 0;
+ bool Changed = false;
+ for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
+ XorOpnd *CurrOpnd = &Opnds[OpndIndices[i]];
+ // The combined value
+ Value *CV;
+
+ // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
+ if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
+ Changed = true;
+ if (CV)
+ *CurrOpnd = XorOpnd(CV);
+ else {
+ CurrOpnd->Invalidate();
+ continue;
+ }
+ }
+
+ if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
+ PrevOpnd = CurrOpnd;
+ continue;
+ }
+
+ // step 3.2: When previous and current operands share the same symbolic
+ // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
+ //
+ if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
+ // Remove previous operand
+ PrevOpnd->Invalidate();
+ if (CV) {
+ *CurrOpnd = XorOpnd(CV);
+ PrevOpnd = CurrOpnd;
+ } else {
+ CurrOpnd->Invalidate();
+ PrevOpnd = 0;
+ }
+ Changed = true;
+ }
+ }
+
+ // Step 4: Reassemble the Ops
+ if (Changed) {
+ Ops.clear();
+ for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
+ XorOpnd &O = Opnds[i];
+ if (O.isInvalid())
+ continue;
+ ValueEntry VE(getRank(O.getValue()), O.getValue());
+ Ops.push_back(VE);
+ }
+ if (ConstOpnd != 0) {
+ Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd);
+ ValueEntry VE(getRank(C), C);
+ Ops.push_back(VE);
+ }
+ int Sz = Ops.size();
+ if (Sz == 1)
+ return Ops.back().Op;
+ else if (Sz == 0) {
+ assert(ConstOpnd == 0);
+ return ConstantInt::get(Ty->getContext(), ConstOpnd);
+ }
+ }
+
+ return 0;
+}
+
/// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This
/// optimizes based on identities. If it can be reduced to a single Value, it
/// is returned, otherwise the Ops list is mutated as necessary.
@@ -1442,11 +1756,15 @@ Value *Reassociate::OptimizeExpression(BinaryOperator *I,
default: break;
case Instruction::And:
case Instruction::Or:
- case Instruction::Xor:
if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
return Result;
break;
+ case Instruction::Xor:
+ if (Value *Result = OptimizeXor(I, Ops))
+ return Result;
+ break;
+
case Instruction::Add:
if (Value *Result = OptimizeAdd(I, Ops))
return Result;
diff --git a/contrib/llvm/lib/Transforms/Scalar/Reg2Mem.cpp b/contrib/llvm/lib/Transforms/Scalar/Reg2Mem.cpp
index ea1de63..07f540a 100644
--- a/contrib/llvm/lib/Transforms/Scalar/Reg2Mem.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/Reg2Mem.cpp
@@ -18,15 +18,15 @@
#define DEBUG_TYPE "reg2mem"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Pass.h"
-#include "llvm/Function.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
-#include "llvm/BasicBlock.h"
-#include "llvm/Instructions.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
#include "llvm/Support/CFG.h"
+#include "llvm/Transforms/Utils/Local.h"
#include <list>
using namespace llvm;
diff --git a/contrib/llvm/lib/Transforms/Scalar/SCCP.cpp b/contrib/llvm/lib/Transforms/Scalar/SCCP.cpp
index 686520e..e30a274 100644
--- a/contrib/llvm/lib/Transforms/Scalar/SCCP.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/SCCP.cpp
@@ -19,26 +19,26 @@
#define DEBUG_TYPE "sccp"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/IPO.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/Pass.h"
-#include "llvm/Analysis/ConstantFolding.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Target/TargetLibraryInfo.h"
-#include "llvm/Support/CallSite.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/InstVisitor.h"
-#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/InstVisitor.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CallSite.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetLibraryInfo.h"
+#include "llvm/Transforms/IPO.h"
+#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
using namespace llvm;
@@ -271,13 +271,6 @@ public:
return I->second;
}
- /*LatticeVal getStructLatticeValueFor(Value *V, unsigned i) const {
- DenseMap<std::pair<Value*, unsigned>, LatticeVal>::const_iterator I =
- StructValueState.find(std::make_pair(V, i));
- assert(I != StructValueState.end() && "V is not in valuemap!");
- return I->second;
- }*/
-
/// getTrackedRetVals - Get the inferred return value map.
///
const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
@@ -710,9 +703,6 @@ void SCCPSolver::visitPHINode(PHINode &PN) {
markConstant(&PN, OperandVal); // Acquire operand value
}
-
-
-
void SCCPSolver::visitReturnInst(ReturnInst &I) {
if (I.getNumOperands() == 0) return; // ret void
@@ -1185,7 +1175,7 @@ void SCCPSolver::Solve() {
DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
// "I" got into the work list because it either made the transition from
- // bottom to constant
+ // bottom to constant, or to overdefined.
//
// Anything on this worklist that is overdefined need not be visited
// since all of its users will have already been marked as overdefined
diff --git a/contrib/llvm/lib/Transforms/Scalar/SROA.cpp b/contrib/llvm/lib/Transforms/Scalar/SROA.cpp
index 640ea31..f6bb365 100644
--- a/contrib/llvm/lib/Transforms/Scalar/SROA.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/SROA.cpp
@@ -25,44 +25,47 @@
#define DEBUG_TYPE "sroa"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Constants.h"
-#include "llvm/DIBuilder.h"
-#include "llvm/DebugInfo.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
-#include "llvm/Operator.h"
-#include "llvm/Pass.h"
+#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/Loads.h"
+#include "llvm/Analysis/PtrUseVisitor.h"
#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/DIBuilder.h"
+#include "llvm/DebugInfo.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/InstVisitor.h"
+#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/GetElementPtrTypeIterator.h"
-#include "llvm/Support/InstVisitor.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/DataLayout.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
using namespace llvm;
STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
-STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
-STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
+STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed");
+STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions");
+STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses found");
+STATISTIC(MaxPartitionUsesPerAlloca, "Maximum number of partition uses");
+STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
+STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
-STATISTIC(NumDeleted, "Number of instructions deleted");
-STATISTIC(NumVectorized, "Number of vectorized aggregates");
+STATISTIC(NumDeleted, "Number of instructions deleted");
+STATISTIC(NumVectorized, "Number of vectorized aggregates");
/// Hidden option to force the pass to not use DomTree and mem2reg, instead
/// forming SSA values through the SSAUpdater infrastructure.
@@ -70,112 +73,167 @@ static cl::opt<bool>
ForceSSAUpdater("force-ssa-updater", cl::init(false), cl::Hidden);
namespace {
-/// \brief Alloca partitioning representation.
-///
-/// This class represents a partitioning of an alloca into slices, and
-/// information about the nature of uses of each slice of the alloca. The goal
-/// is that this information is sufficient to decide if and how to split the
-/// alloca apart and replace slices with scalars. It is also intended that this
-/// structure can capture the relevant information needed both to decide about
-/// and to enact these transformations.
-class AllocaPartitioning {
+/// \brief A custom IRBuilder inserter which prefixes all names if they are
+/// preserved.
+template <bool preserveNames = true>
+class IRBuilderPrefixedInserter :
+ public IRBuilderDefaultInserter<preserveNames> {
+ std::string Prefix;
+
public:
- /// \brief A common base class for representing a half-open byte range.
- struct ByteRange {
- /// \brief The beginning offset of the range.
- uint64_t BeginOffset;
+ void SetNamePrefix(const Twine &P) { Prefix = P.str(); }
- /// \brief The ending offset, not included in the range.
- uint64_t EndOffset;
+protected:
+ void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
+ BasicBlock::iterator InsertPt) const {
+ IRBuilderDefaultInserter<preserveNames>::InsertHelper(
+ I, Name.isTriviallyEmpty() ? Name : Prefix + Name, BB, InsertPt);
+ }
+};
- ByteRange() : BeginOffset(), EndOffset() {}
- ByteRange(uint64_t BeginOffset, uint64_t EndOffset)
- : BeginOffset(BeginOffset), EndOffset(EndOffset) {}
+// Specialization for not preserving the name is trivial.
+template <>
+class IRBuilderPrefixedInserter<false> :
+ public IRBuilderDefaultInserter<false> {
+public:
+ void SetNamePrefix(const Twine &P) {}
+};
- /// \brief Support for ordering ranges.
- ///
- /// This provides an ordering over ranges such that start offsets are
- /// always increasing, and within equal start offsets, the end offsets are
- /// decreasing. Thus the spanning range comes first in a cluster with the
- /// same start position.
- bool operator<(const ByteRange &RHS) const {
- if (BeginOffset < RHS.BeginOffset) return true;
- if (BeginOffset > RHS.BeginOffset) return false;
- if (EndOffset > RHS.EndOffset) return true;
- return false;
- }
+/// \brief Provide a typedef for IRBuilder that drops names in release builds.
+#ifndef NDEBUG
+typedef llvm::IRBuilder<true, ConstantFolder,
+ IRBuilderPrefixedInserter<true> > IRBuilderTy;
+#else
+typedef llvm::IRBuilder<false, ConstantFolder,
+ IRBuilderPrefixedInserter<false> > IRBuilderTy;
+#endif
+}
- /// \brief Support comparison with a single offset to allow binary searches.
- friend bool operator<(const ByteRange &LHS, uint64_t RHSOffset) {
- return LHS.BeginOffset < RHSOffset;
- }
+namespace {
+/// \brief A common base class for representing a half-open byte range.
+struct ByteRange {
+ /// \brief The beginning offset of the range.
+ uint64_t BeginOffset;
- friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
- const ByteRange &RHS) {
- return LHSOffset < RHS.BeginOffset;
- }
+ /// \brief The ending offset, not included in the range.
+ uint64_t EndOffset;
- bool operator==(const ByteRange &RHS) const {
- return BeginOffset == RHS.BeginOffset && EndOffset == RHS.EndOffset;
- }
- bool operator!=(const ByteRange &RHS) const { return !operator==(RHS); }
- };
+ ByteRange() : BeginOffset(), EndOffset() {}
+ ByteRange(uint64_t BeginOffset, uint64_t EndOffset)
+ : BeginOffset(BeginOffset), EndOffset(EndOffset) {}
- /// \brief A partition of an alloca.
+ /// \brief Support for ordering ranges.
///
- /// This structure represents a contiguous partition of the alloca. These are
- /// formed by examining the uses of the alloca. During formation, they may
- /// overlap but once an AllocaPartitioning is built, the Partitions within it
- /// are all disjoint.
- struct Partition : public ByteRange {
- /// \brief Whether this partition is splittable into smaller partitions.
- ///
- /// We flag partitions as splittable when they are formed entirely due to
- /// accesses by trivially splittable operations such as memset and memcpy.
- bool IsSplittable;
+ /// This provides an ordering over ranges such that start offsets are
+ /// always increasing, and within equal start offsets, the end offsets are
+ /// decreasing. Thus the spanning range comes first in a cluster with the
+ /// same start position.
+ bool operator<(const ByteRange &RHS) const {
+ if (BeginOffset < RHS.BeginOffset) return true;
+ if (BeginOffset > RHS.BeginOffset) return false;
+ if (EndOffset > RHS.EndOffset) return true;
+ return false;
+ }
- /// \brief Test whether a partition has been marked as dead.
- bool isDead() const {
- if (BeginOffset == UINT64_MAX) {
- assert(EndOffset == UINT64_MAX);
- return true;
- }
- return false;
- }
+ /// \brief Support comparison with a single offset to allow binary searches.
+ friend bool operator<(const ByteRange &LHS, uint64_t RHSOffset) {
+ return LHS.BeginOffset < RHSOffset;
+ }
+
+ friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
+ const ByteRange &RHS) {
+ return LHSOffset < RHS.BeginOffset;
+ }
+
+ bool operator==(const ByteRange &RHS) const {
+ return BeginOffset == RHS.BeginOffset && EndOffset == RHS.EndOffset;
+ }
+ bool operator!=(const ByteRange &RHS) const { return !operator==(RHS); }
+};
- /// \brief Kill a partition.
- /// This is accomplished by setting both its beginning and end offset to
- /// the maximum possible value.
- void kill() {
- assert(!isDead() && "He's Dead, Jim!");
- BeginOffset = EndOffset = UINT64_MAX;
+/// \brief A partition of an alloca.
+///
+/// This structure represents a contiguous partition of the alloca. These are
+/// formed by examining the uses of the alloca. During formation, they may
+/// overlap but once an AllocaPartitioning is built, the Partitions within it
+/// are all disjoint.
+struct Partition : public ByteRange {
+ /// \brief Whether this partition is splittable into smaller partitions.
+ ///
+ /// We flag partitions as splittable when they are formed entirely due to
+ /// accesses by trivially splittable operations such as memset and memcpy.
+ bool IsSplittable;
+
+ /// \brief Test whether a partition has been marked as dead.
+ bool isDead() const {
+ if (BeginOffset == UINT64_MAX) {
+ assert(EndOffset == UINT64_MAX);
+ return true;
}
+ return false;
+ }
- Partition() : ByteRange(), IsSplittable() {}
- Partition(uint64_t BeginOffset, uint64_t EndOffset, bool IsSplittable)
- : ByteRange(BeginOffset, EndOffset), IsSplittable(IsSplittable) {}
- };
+ /// \brief Kill a partition.
+ /// This is accomplished by setting both its beginning and end offset to
+ /// the maximum possible value.
+ void kill() {
+ assert(!isDead() && "He's Dead, Jim!");
+ BeginOffset = EndOffset = UINT64_MAX;
+ }
+
+ Partition() : ByteRange(), IsSplittable() {}
+ Partition(uint64_t BeginOffset, uint64_t EndOffset, bool IsSplittable)
+ : ByteRange(BeginOffset, EndOffset), IsSplittable(IsSplittable) {}
+};
+
+/// \brief A particular use of a partition of the alloca.
+///
+/// This structure is used to associate uses of a partition with it. They
+/// mark the range of bytes which are referenced by a particular instruction,
+/// and includes a handle to the user itself and the pointer value in use.
+/// The bounds of these uses are determined by intersecting the bounds of the
+/// memory use itself with a particular partition. As a consequence there is
+/// intentionally overlap between various uses of the same partition.
+class PartitionUse : public ByteRange {
+ /// \brief Combined storage for both the Use* and split state.
+ PointerIntPair<Use*, 1, bool> UsePtrAndIsSplit;
+
+public:
+ PartitionUse() : ByteRange(), UsePtrAndIsSplit() {}
+ PartitionUse(uint64_t BeginOffset, uint64_t EndOffset, Use *U,
+ bool IsSplit)
+ : ByteRange(BeginOffset, EndOffset), UsePtrAndIsSplit(U, IsSplit) {}
- /// \brief A particular use of a partition of the alloca.
+ /// \brief The use in question. Provides access to both user and used value.
///
- /// This structure is used to associate uses of a partition with it. They
- /// mark the range of bytes which are referenced by a particular instruction,
- /// and includes a handle to the user itself and the pointer value in use.
- /// The bounds of these uses are determined by intersecting the bounds of the
- /// memory use itself with a particular partition. As a consequence there is
- /// intentionally overlap between various uses of the same partition.
- struct PartitionUse : public ByteRange {
- /// \brief The use in question. Provides access to both user and used value.
- ///
- /// Note that this may be null if the partition use is *dead*, that is, it
- /// should be ignored.
- Use *U;
+ /// Note that this may be null if the partition use is *dead*, that is, it
+ /// should be ignored.
+ Use *getUse() const { return UsePtrAndIsSplit.getPointer(); }
- PartitionUse() : ByteRange(), U() {}
- PartitionUse(uint64_t BeginOffset, uint64_t EndOffset, Use *U)
- : ByteRange(BeginOffset, EndOffset), U(U) {}
- };
+ /// \brief Set the use for this partition use range.
+ void setUse(Use *U) { UsePtrAndIsSplit.setPointer(U); }
+
+ /// \brief Whether this use is split across multiple partitions.
+ bool isSplit() const { return UsePtrAndIsSplit.getInt(); }
+};
+}
+namespace llvm {
+template <> struct isPodLike<Partition> : llvm::true_type {};
+template <> struct isPodLike<PartitionUse> : llvm::true_type {};
+}
+
+namespace {
+/// \brief Alloca partitioning representation.
+///
+/// This class represents a partitioning of an alloca into slices, and
+/// information about the nature of uses of each slice of the alloca. The goal
+/// is that this information is sufficient to decide if and how to split the
+/// alloca apart and replace slices with scalars. It is also intended that this
+/// structure can capture the relevant information needed both to decide about
+/// and to enact these transformations.
+class AllocaPartitioning {
+public:
/// \brief Construct a partitioning of a particular alloca.
///
/// Construction does most of the work for partitioning the alloca. This
@@ -334,7 +392,7 @@ private:
class UseBuilder;
friend class AllocaPartitioning::UseBuilder;
-#ifndef NDEBUG
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// \brief Handle to alloca instruction to simplify method interfaces.
AllocaInst &AI;
#endif
@@ -404,106 +462,17 @@ private:
};
}
-template <typename DerivedT, typename RetT>
-class AllocaPartitioning::BuilderBase
- : public InstVisitor<DerivedT, RetT> {
-public:
- BuilderBase(const DataLayout &TD, AllocaInst &AI, AllocaPartitioning &P)
- : TD(TD),
- AllocSize(TD.getTypeAllocSize(AI.getAllocatedType())),
- P(P) {
- enqueueUsers(AI, 0);
- }
-
-protected:
- const DataLayout &TD;
- const uint64_t AllocSize;
- AllocaPartitioning &P;
-
- SmallPtrSet<Use *, 8> VisitedUses;
+static Value *foldSelectInst(SelectInst &SI) {
+ // If the condition being selected on is a constant or the same value is
+ // being selected between, fold the select. Yes this does (rarely) happen
+ // early on.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
+ return SI.getOperand(1+CI->isZero());
+ if (SI.getOperand(1) == SI.getOperand(2))
+ return SI.getOperand(1);
- struct OffsetUse {
- Use *U;
- int64_t Offset;
- };
- SmallVector<OffsetUse, 8> Queue;
-
- // The active offset and use while visiting.
- Use *U;
- int64_t Offset;
-
- void enqueueUsers(Instruction &I, int64_t UserOffset) {
- for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
- UI != UE; ++UI) {
- if (VisitedUses.insert(&UI.getUse())) {
- OffsetUse OU = { &UI.getUse(), UserOffset };
- Queue.push_back(OU);
- }
- }
- }
-
- bool computeConstantGEPOffset(GetElementPtrInst &GEPI, int64_t &GEPOffset) {
- GEPOffset = Offset;
- for (gep_type_iterator GTI = gep_type_begin(GEPI), GTE = gep_type_end(GEPI);
- GTI != GTE; ++GTI) {
- ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
- if (!OpC)
- return false;
- if (OpC->isZero())
- continue;
-
- // Handle a struct index, which adds its field offset to the pointer.
- if (StructType *STy = dyn_cast<StructType>(*GTI)) {
- unsigned ElementIdx = OpC->getZExtValue();
- const StructLayout *SL = TD.getStructLayout(STy);
- uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
- // Check that we can continue to model this GEP in a signed 64-bit offset.
- if (ElementOffset > INT64_MAX ||
- (GEPOffset >= 0 &&
- ((uint64_t)GEPOffset + ElementOffset) > INT64_MAX)) {
- DEBUG(dbgs() << "WARNING: Encountered a cumulative offset exceeding "
- << "what can be represented in an int64_t!\n"
- << " alloca: " << P.AI << "\n");
- return false;
- }
- if (GEPOffset < 0)
- GEPOffset = ElementOffset + (uint64_t)-GEPOffset;
- else
- GEPOffset += ElementOffset;
- continue;
- }
-
- APInt Index = OpC->getValue().sextOrTrunc(TD.getPointerSizeInBits());
- Index *= APInt(Index.getBitWidth(),
- TD.getTypeAllocSize(GTI.getIndexedType()));
- Index += APInt(Index.getBitWidth(), (uint64_t)GEPOffset,
- /*isSigned*/true);
- // Check if the result can be stored in our int64_t offset.
- if (!Index.isSignedIntN(sizeof(GEPOffset) * 8)) {
- DEBUG(dbgs() << "WARNING: Encountered a cumulative offset exceeding "
- << "what can be represented in an int64_t!\n"
- << " alloca: " << P.AI << "\n");
- return false;
- }
-
- GEPOffset = Index.getSExtValue();
- }
- return true;
- }
-
- Value *foldSelectInst(SelectInst &SI) {
- // If the condition being selected on is a constant or the same value is
- // being selected between, fold the select. Yes this does (rarely) happen
- // early on.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
- return SI.getOperand(1+CI->isZero());
- if (SI.getOperand(1) == SI.getOperand(2)) {
- assert(*U == SI.getOperand(1));
- return SI.getOperand(1);
- }
- return 0;
- }
-};
+ return 0;
+}
/// \brief Builder for the alloca partitioning.
///
@@ -511,67 +480,45 @@ protected:
/// of an alloca and splitting the partitions for each load and store at each
/// offset.
class AllocaPartitioning::PartitionBuilder
- : public BuilderBase<PartitionBuilder, bool> {
- friend class InstVisitor<PartitionBuilder, bool>;
+ : public PtrUseVisitor<PartitionBuilder> {
+ friend class PtrUseVisitor<PartitionBuilder>;
+ friend class InstVisitor<PartitionBuilder>;
+ typedef PtrUseVisitor<PartitionBuilder> Base;
+
+ const uint64_t AllocSize;
+ AllocaPartitioning &P;
SmallDenseMap<Instruction *, unsigned> MemTransferPartitionMap;
public:
- PartitionBuilder(const DataLayout &TD, AllocaInst &AI, AllocaPartitioning &P)
- : BuilderBase<PartitionBuilder, bool>(TD, AI, P) {}
-
- /// \brief Run the builder over the allocation.
- bool operator()() {
- // Note that we have to re-evaluate size on each trip through the loop as
- // the queue grows at the tail.
- for (unsigned Idx = 0; Idx < Queue.size(); ++Idx) {
- U = Queue[Idx].U;
- Offset = Queue[Idx].Offset;
- if (!visit(cast<Instruction>(U->getUser())))
- return false;
- }
- return true;
- }
+ PartitionBuilder(const DataLayout &DL, AllocaInst &AI, AllocaPartitioning &P)
+ : PtrUseVisitor<PartitionBuilder>(DL),
+ AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())),
+ P(P) {}
private:
- bool markAsEscaping(Instruction &I) {
- P.PointerEscapingInstr = &I;
- return false;
- }
-
- void insertUse(Instruction &I, int64_t Offset, uint64_t Size,
+ void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
bool IsSplittable = false) {
- // Completely skip uses which have a zero size or don't overlap the
- // allocation.
- if (Size == 0 ||
- (Offset >= 0 && (uint64_t)Offset >= AllocSize) ||
- (Offset < 0 && (uint64_t)-Offset >= Size)) {
+ // Completely skip uses which have a zero size or start either before or
+ // past the end of the allocation.
+ if (Size == 0 || Offset.isNegative() || Offset.uge(AllocSize)) {
DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset
- << " which starts past the end of the " << AllocSize
- << " byte alloca:\n"
+ << " which has zero size or starts outside of the "
+ << AllocSize << " byte alloca:\n"
<< " alloca: " << P.AI << "\n"
<< " use: " << I << "\n");
return;
}
- // Clamp the start to the beginning of the allocation.
- if (Offset < 0) {
- DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset
- << " to start at the beginning of the alloca:\n"
- << " alloca: " << P.AI << "\n"
- << " use: " << I << "\n");
- Size -= (uint64_t)-Offset;
- Offset = 0;
- }
-
- uint64_t BeginOffset = Offset, EndOffset = BeginOffset + Size;
+ uint64_t BeginOffset = Offset.getZExtValue();
+ uint64_t EndOffset = BeginOffset + Size;
// Clamp the end offset to the end of the allocation. Note that this is
// formulated to handle even the case where "BeginOffset + Size" overflows.
- // NOTE! This may appear superficially to be something we could ignore
- // entirely, but that is not so! There may be PHI-node uses where some
- // instructions are dead but not others. We can't completely ignore the
- // PHI node, and so have to record at least the information here.
+ // This may appear superficially to be something we could ignore entirely,
+ // but that is not so! There may be widened loads or PHI-node uses where
+ // some instructions are dead but not others. We can't completely ignore
+ // them, and so have to record at least the information here.
assert(AllocSize >= BeginOffset); // Established above.
if (Size > AllocSize - BeginOffset) {
DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset
@@ -585,9 +532,41 @@ private:
P.Partitions.push_back(New);
}
- bool handleLoadOrStore(Type *Ty, Instruction &I, int64_t Offset,
- bool IsVolatile) {
- uint64_t Size = TD.getTypeStoreSize(Ty);
+ void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
+ uint64_t Size, bool IsVolatile) {
+ // We allow splitting of loads and stores where the type is an integer type
+ // and cover the entire alloca. This prevents us from splitting over
+ // eagerly.
+ // FIXME: In the great blue eventually, we should eagerly split all integer
+ // loads and stores, and then have a separate step that merges adjacent
+ // alloca partitions into a single partition suitable for integer widening.
+ // Or we should skip the merge step and rely on GVN and other passes to
+ // merge adjacent loads and stores that survive mem2reg.
+ bool IsSplittable =
+ Ty->isIntegerTy() && !IsVolatile && Offset == 0 && Size >= AllocSize;
+
+ insertUse(I, Offset, Size, IsSplittable);
+ }
+
+ void visitLoadInst(LoadInst &LI) {
+ assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
+ "All simple FCA loads should have been pre-split");
+
+ if (!IsOffsetKnown)
+ return PI.setAborted(&LI);
+
+ uint64_t Size = DL.getTypeStoreSize(LI.getType());
+ return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile());
+ }
+
+ void visitStoreInst(StoreInst &SI) {
+ Value *ValOp = SI.getValueOperand();
+ if (ValOp == *U)
+ return PI.setEscapedAndAborted(&SI);
+ if (!IsOffsetKnown)
+ return PI.setAborted(&SI);
+
+ uint64_t Size = DL.getTypeStoreSize(ValOp->getType());
// If this memory access can be shown to *statically* extend outside the
// bounds of of the allocation, it's behavior is undefined, so simply
@@ -596,73 +575,52 @@ private:
// risk of overflow.
// FIXME: We should instead consider the pointer to have escaped if this
// function is being instrumented for addressing bugs or race conditions.
- if (Offset < 0 || (uint64_t)Offset >= AllocSize ||
- Size > (AllocSize - (uint64_t)Offset)) {
- DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte "
- << (isa<LoadInst>(I) ? "load" : "store") << " @" << Offset
+ if (Offset.isNegative() || Size > AllocSize ||
+ Offset.ugt(AllocSize - Size)) {
+ DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @" << Offset
<< " which extends past the end of the " << AllocSize
<< " byte alloca:\n"
<< " alloca: " << P.AI << "\n"
- << " use: " << I << "\n");
- return true;
+ << " use: " << SI << "\n");
+ return;
}
- // We allow splitting of loads and stores where the type is an integer type
- // and which cover the entire alloca. Such integer loads and stores
- // often require decomposition into fine grained loads and stores.
- bool IsSplittable = false;
- if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
- IsSplittable = !IsVolatile && ITy->getBitWidth() == AllocSize*8;
-
- insertUse(I, Offset, Size, IsSplittable);
- return true;
- }
-
- bool visitBitCastInst(BitCastInst &BC) {
- enqueueUsers(BC, Offset);
- return true;
- }
-
- bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
- int64_t GEPOffset;
- if (!computeConstantGEPOffset(GEPI, GEPOffset))
- return markAsEscaping(GEPI);
-
- enqueueUsers(GEPI, GEPOffset);
- return true;
- }
-
- bool visitLoadInst(LoadInst &LI) {
- assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
- "All simple FCA loads should have been pre-split");
- return handleLoadOrStore(LI.getType(), LI, Offset, LI.isVolatile());
- }
-
- bool visitStoreInst(StoreInst &SI) {
- Value *ValOp = SI.getValueOperand();
- if (ValOp == *U)
- return markAsEscaping(SI);
-
assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
"All simple FCA stores should have been pre-split");
- return handleLoadOrStore(ValOp->getType(), SI, Offset, SI.isVolatile());
+ handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile());
}
- bool visitMemSetInst(MemSetInst &II) {
+ void visitMemSetInst(MemSetInst &II) {
assert(II.getRawDest() == *U && "Pointer use is not the destination?");
ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
- uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
- insertUse(II, Offset, Size, Length);
- return true;
+ if ((Length && Length->getValue() == 0) ||
+ (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
+ // Zero-length mem transfer intrinsics can be ignored entirely.
+ return;
+
+ if (!IsOffsetKnown)
+ return PI.setAborted(&II);
+
+ insertUse(II, Offset,
+ Length ? Length->getLimitedValue()
+ : AllocSize - Offset.getLimitedValue(),
+ (bool)Length);
}
- bool visitMemTransferInst(MemTransferInst &II) {
+ void visitMemTransferInst(MemTransferInst &II) {
ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
- uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
- if (!Size)
+ if ((Length && Length->getValue() == 0) ||
+ (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
// Zero-length mem transfer intrinsics can be ignored entirely.
- return true;
+ return;
+
+ if (!IsOffsetKnown)
+ return PI.setAborted(&II);
+
+ uint64_t RawOffset = Offset.getLimitedValue();
+ uint64_t Size = Length ? Length->getLimitedValue()
+ : AllocSize - RawOffset;
MemTransferOffsets &Offsets = P.MemTransferInstData[&II];
@@ -670,12 +628,12 @@ private:
Offsets.IsSplittable = Length;
if (*U == II.getRawDest()) {
- Offsets.DestBegin = Offset;
- Offsets.DestEnd = Offset + Size;
+ Offsets.DestBegin = RawOffset;
+ Offsets.DestEnd = RawOffset + Size;
}
if (*U == II.getRawSource()) {
- Offsets.SourceBegin = Offset;
- Offsets.SourceEnd = Offset + Size;
+ Offsets.SourceBegin = RawOffset;
+ Offsets.SourceEnd = RawOffset + Size;
}
// If we have set up end offsets for both the source and the destination,
@@ -688,7 +646,7 @@ private:
// In that case, we can completely elide the transfer.
if (!II.isVolatile() && Offsets.SourceBegin == Offsets.DestBegin) {
P.Partitions[PrevIdx].kill();
- return true;
+ return;
}
// Otherwise we have an offset transfer within the same alloca. We can't
@@ -701,7 +659,7 @@ private:
// For non-volatile transfers this is a no-op.
if (!II.isVolatile())
- return true;
+ return;
// Otherwise just suppress splitting.
Offsets.IsSplittable = false;
@@ -721,23 +679,25 @@ private:
"Already have intrinsic in map but haven't seen both ends");
(void)Inserted;
}
-
- return true;
}
// Disable SRoA for any intrinsics except for lifetime invariants.
- // FIXME: What about debug instrinsics? This matches old behavior, but
+ // FIXME: What about debug intrinsics? This matches old behavior, but
// doesn't make sense.
- bool visitIntrinsicInst(IntrinsicInst &II) {
+ void visitIntrinsicInst(IntrinsicInst &II) {
+ if (!IsOffsetKnown)
+ return PI.setAborted(&II);
+
if (II.getIntrinsicID() == Intrinsic::lifetime_start ||
II.getIntrinsicID() == Intrinsic::lifetime_end) {
ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
- uint64_t Size = std::min(AllocSize - Offset, Length->getLimitedValue());
+ uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(),
+ Length->getLimitedValue());
insertUse(II, Offset, Size, true);
- return true;
+ return;
}
- return markAsEscaping(II);
+ Base::visitIntrinsicInst(II);
}
Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
@@ -757,14 +717,14 @@ private:
llvm::tie(UsedI, I) = Uses.pop_back_val();
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
- Size = std::max(Size, TD.getTypeStoreSize(LI->getType()));
+ Size = std::max(Size, DL.getTypeStoreSize(LI->getType()));
continue;
}
if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
Value *Op = SI->getOperand(0);
if (Op == UsedI)
return SI;
- Size = std::max(Size, TD.getTypeStoreSize(Op->getType()));
+ Size = std::max(Size, DL.getTypeStoreSize(Op->getType()));
continue;
}
@@ -785,54 +745,62 @@ private:
return 0;
}
- bool visitPHINode(PHINode &PN) {
+ void visitPHINode(PHINode &PN) {
+ if (PN.use_empty())
+ return;
+ if (!IsOffsetKnown)
+ return PI.setAborted(&PN);
+
// See if we already have computed info on this node.
std::pair<uint64_t, bool> &PHIInfo = P.PHIOrSelectSizes[&PN];
if (PHIInfo.first) {
PHIInfo.second = true;
insertUse(PN, Offset, PHIInfo.first);
- return true;
+ return;
}
// Check for an unsafe use of the PHI node.
- if (Instruction *EscapingI = hasUnsafePHIOrSelectUse(&PN, PHIInfo.first))
- return markAsEscaping(*EscapingI);
+ if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&PN, PHIInfo.first))
+ return PI.setAborted(UnsafeI);
insertUse(PN, Offset, PHIInfo.first);
- return true;
}
- bool visitSelectInst(SelectInst &SI) {
+ void visitSelectInst(SelectInst &SI) {
+ if (SI.use_empty())
+ return;
if (Value *Result = foldSelectInst(SI)) {
if (Result == *U)
// If the result of the constant fold will be the pointer, recurse
// through the select as if we had RAUW'ed it.
- enqueueUsers(SI, Offset);
+ enqueueUsers(SI);
- return true;
+ return;
}
+ if (!IsOffsetKnown)
+ return PI.setAborted(&SI);
// See if we already have computed info on this node.
std::pair<uint64_t, bool> &SelectInfo = P.PHIOrSelectSizes[&SI];
if (SelectInfo.first) {
SelectInfo.second = true;
insertUse(SI, Offset, SelectInfo.first);
- return true;
+ return;
}
// Check for an unsafe use of the PHI node.
- if (Instruction *EscapingI = hasUnsafePHIOrSelectUse(&SI, SelectInfo.first))
- return markAsEscaping(*EscapingI);
+ if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&SI, SelectInfo.first))
+ return PI.setAborted(UnsafeI);
insertUse(SI, Offset, SelectInfo.first);
- return true;
}
/// \brief Disable SROA entirely if there are unhandled users of the alloca.
- bool visitInstruction(Instruction &I) { return markAsEscaping(I); }
+ void visitInstruction(Instruction &I) {
+ PI.setAborted(&I);
+ }
};
-
/// \brief Use adder for the alloca partitioning.
///
/// This class adds the uses of an alloca to all of the partitions which they
@@ -851,26 +819,22 @@ private:
/// partition space is pre-sorted, and do a logarithmic search for the
/// partition needed, making the total visit a classical ((N + M) * log(N))
/// complexity operation.
-class AllocaPartitioning::UseBuilder : public BuilderBase<UseBuilder> {
+class AllocaPartitioning::UseBuilder : public PtrUseVisitor<UseBuilder> {
+ friend class PtrUseVisitor<UseBuilder>;
friend class InstVisitor<UseBuilder>;
+ typedef PtrUseVisitor<UseBuilder> Base;
+
+ const uint64_t AllocSize;
+ AllocaPartitioning &P;
/// \brief Set to de-duplicate dead instructions found in the use walk.
SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
public:
UseBuilder(const DataLayout &TD, AllocaInst &AI, AllocaPartitioning &P)
- : BuilderBase<UseBuilder>(TD, AI, P) {}
-
- /// \brief Run the builder over the allocation.
- void operator()() {
- // Note that we have to re-evaluate size on each trip through the loop as
- // the queue grows at the tail.
- for (unsigned Idx = 0; Idx < Queue.size(); ++Idx) {
- U = Queue[Idx].U;
- Offset = Queue[Idx].Offset;
- this->visit(cast<Instruction>(U->getUser()));
- }
- }
+ : PtrUseVisitor<UseBuilder>(TD),
+ AllocSize(TD.getTypeAllocSize(AI.getAllocatedType())),
+ P(P) {}
private:
void markAsDead(Instruction &I) {
@@ -878,20 +842,14 @@ private:
P.DeadUsers.push_back(&I);
}
- void insertUse(Instruction &User, int64_t Offset, uint64_t Size) {
+ void insertUse(Instruction &User, const APInt &Offset, uint64_t Size) {
// If the use has a zero size or extends outside of the allocation, record
// it as a dead use for elimination later.
- if (Size == 0 || (uint64_t)Offset >= AllocSize ||
- (Offset < 0 && (uint64_t)-Offset >= Size))
+ if (Size == 0 || Offset.isNegative() || Offset.uge(AllocSize))
return markAsDead(User);
- // Clamp the start to the beginning of the allocation.
- if (Offset < 0) {
- Size -= (uint64_t)-Offset;
- Offset = 0;
- }
-
- uint64_t BeginOffset = Offset, EndOffset = BeginOffset + Size;
+ uint64_t BeginOffset = Offset.getZExtValue();
+ uint64_t EndOffset = BeginOffset + Size;
// Clamp the end offset to the end of the allocation. Note that this is
// formulated to handle even the case where "BeginOffset + Size" overflows.
@@ -900,13 +858,14 @@ private:
EndOffset = AllocSize;
// NB: This only works if we have zero overlapping partitions.
- iterator B = std::lower_bound(P.begin(), P.end(), BeginOffset);
- if (B != P.begin() && llvm::prior(B)->EndOffset > BeginOffset)
- B = llvm::prior(B);
- for (iterator I = B, E = P.end(); I != E && I->BeginOffset < EndOffset;
- ++I) {
+ iterator I = std::lower_bound(P.begin(), P.end(), BeginOffset);
+ if (I != P.begin() && llvm::prior(I)->EndOffset > BeginOffset)
+ I = llvm::prior(I);
+ iterator E = P.end();
+ bool IsSplit = llvm::next(I) != E && llvm::next(I)->BeginOffset < EndOffset;
+ for (; I != E && I->BeginOffset < EndOffset; ++I) {
PartitionUse NewPU(std::max(I->BeginOffset, BeginOffset),
- std::min(I->EndOffset, EndOffset), U);
+ std::min(I->EndOffset, EndOffset), U, IsSplit);
P.use_push_back(I, NewPU);
if (isa<PHINode>(U->getUser()) || isa<SelectInst>(U->getUser()))
P.PHIOrSelectOpMap[U]
@@ -914,59 +873,63 @@ private:
}
}
- void handleLoadOrStore(Type *Ty, Instruction &I, int64_t Offset) {
- uint64_t Size = TD.getTypeStoreSize(Ty);
-
- // If this memory access can be shown to *statically* extend outside the
- // bounds of of the allocation, it's behavior is undefined, so simply
- // ignore it. Note that this is more strict than the generic clamping
- // behavior of insertUse.
- if (Offset < 0 || (uint64_t)Offset >= AllocSize ||
- Size > (AllocSize - (uint64_t)Offset))
- return markAsDead(I);
-
- insertUse(I, Offset, Size);
- }
-
void visitBitCastInst(BitCastInst &BC) {
if (BC.use_empty())
return markAsDead(BC);
- enqueueUsers(BC, Offset);
+ return Base::visitBitCastInst(BC);
}
void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
if (GEPI.use_empty())
return markAsDead(GEPI);
- int64_t GEPOffset;
- if (!computeConstantGEPOffset(GEPI, GEPOffset))
- llvm_unreachable("Unable to compute constant offset for use");
-
- enqueueUsers(GEPI, GEPOffset);
+ return Base::visitGetElementPtrInst(GEPI);
}
void visitLoadInst(LoadInst &LI) {
- handleLoadOrStore(LI.getType(), LI, Offset);
+ assert(IsOffsetKnown);
+ uint64_t Size = DL.getTypeStoreSize(LI.getType());
+ insertUse(LI, Offset, Size);
}
void visitStoreInst(StoreInst &SI) {
- handleLoadOrStore(SI.getOperand(0)->getType(), SI, Offset);
+ assert(IsOffsetKnown);
+ uint64_t Size = DL.getTypeStoreSize(SI.getOperand(0)->getType());
+
+ // If this memory access can be shown to *statically* extend outside the
+ // bounds of of the allocation, it's behavior is undefined, so simply
+ // ignore it. Note that this is more strict than the generic clamping
+ // behavior of insertUse.
+ if (Offset.isNegative() || Size > AllocSize ||
+ Offset.ugt(AllocSize - Size))
+ return markAsDead(SI);
+
+ insertUse(SI, Offset, Size);
}
void visitMemSetInst(MemSetInst &II) {
ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
- uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
- insertUse(II, Offset, Size);
+ if ((Length && Length->getValue() == 0) ||
+ (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
+ return markAsDead(II);
+
+ assert(IsOffsetKnown);
+ insertUse(II, Offset, Length ? Length->getLimitedValue()
+ : AllocSize - Offset.getLimitedValue());
}
void visitMemTransferInst(MemTransferInst &II) {
ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
- uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
- if (!Size)
+ if ((Length && Length->getValue() == 0) ||
+ (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
return markAsDead(II);
- MemTransferOffsets &Offsets = P.MemTransferInstData[&II];
+ assert(IsOffsetKnown);
+ uint64_t Size = Length ? Length->getLimitedValue()
+ : AllocSize - Offset.getLimitedValue();
+
+ const MemTransferOffsets &Offsets = P.MemTransferInstData[&II];
if (!II.isVolatile() && Offsets.DestEnd && Offsets.SourceEnd &&
Offsets.DestBegin == Offsets.SourceBegin)
return markAsDead(II); // Skip identity transfers without side-effects.
@@ -975,34 +938,39 @@ private:
}
void visitIntrinsicInst(IntrinsicInst &II) {
+ assert(IsOffsetKnown);
assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
II.getIntrinsicID() == Intrinsic::lifetime_end);
ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
- insertUse(II, Offset,
- std::min(AllocSize - Offset, Length->getLimitedValue()));
+ insertUse(II, Offset, std::min(Length->getLimitedValue(),
+ AllocSize - Offset.getLimitedValue()));
}
- void insertPHIOrSelect(Instruction &User, uint64_t Offset) {
+ void insertPHIOrSelect(Instruction &User, const APInt &Offset) {
uint64_t Size = P.PHIOrSelectSizes.lookup(&User).first;
// For PHI and select operands outside the alloca, we can't nuke the entire
// phi or select -- the other side might still be relevant, so we special
// case them here and use a separate structure to track the operands
// themselves which should be replaced with undef.
- if (Offset >= AllocSize) {
+ if ((Offset.isNegative() && Offset.uge(Size)) ||
+ (!Offset.isNegative() && Offset.uge(AllocSize))) {
P.DeadOperands.push_back(U);
return;
}
insertUse(User, Offset, Size);
}
+
void visitPHINode(PHINode &PN) {
if (PN.use_empty())
return markAsDead(PN);
+ assert(IsOffsetKnown);
insertPHIOrSelect(PN, Offset);
}
+
void visitSelectInst(SelectInst &SI) {
if (SI.use_empty())
return markAsDead(SI);
@@ -1011,7 +979,7 @@ private:
if (Result == *U)
// If the result of the constant fold will be the pointer, recurse
// through the select as if we had RAUW'ed it.
- enqueueUsers(SI, Offset);
+ enqueueUsers(SI);
else
// Otherwise the operand to the select is dead, and we can replace it
// with undef.
@@ -1020,6 +988,7 @@ private:
return;
}
+ assert(IsOffsetKnown);
insertPHIOrSelect(SI, Offset);
}
@@ -1126,13 +1095,20 @@ void AllocaPartitioning::splitAndMergePartitions() {
AllocaPartitioning::AllocaPartitioning(const DataLayout &TD, AllocaInst &AI)
:
-#ifndef NDEBUG
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
AI(AI),
#endif
PointerEscapingInstr(0) {
PartitionBuilder PB(TD, AI, *this);
- if (!PB())
+ PartitionBuilder::PtrInfo PtrI = PB.visitPtr(AI);
+ if (PtrI.isEscaped() || PtrI.isAborted()) {
+ // FIXME: We should sink the escape vs. abort info into the caller nicely,
+ // possibly by just storing the PtrInfo in the AllocaPartitioning.
+ PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst()
+ : PtrI.getAbortingInst();
+ assert(PointerEscapingInstr && "Did not track a bad instruction");
return;
+ }
// Sort the uses. This arranges for the offsets to be in ascending order,
// and the sizes to be in descending order.
@@ -1162,31 +1138,45 @@ AllocaPartitioning::AllocaPartitioning(const DataLayout &TD, AllocaInst &AI)
splitAndMergePartitions();
}
+ // Record how many partitions we end up with.
+ NumAllocaPartitions += Partitions.size();
+ MaxPartitionsPerAlloca = std::max<unsigned>(Partitions.size(), MaxPartitionsPerAlloca);
+
// Now build up the user lists for each of these disjoint partitions by
// re-walking the recursive users of the alloca.
Uses.resize(Partitions.size());
UseBuilder UB(TD, AI, *this);
- UB();
+ PtrI = UB.visitPtr(AI);
+ assert(!PtrI.isEscaped() && "Previously analyzed pointer now escapes!");
+ assert(!PtrI.isAborted() && "Early aborted the visit of the pointer.");
+
+ unsigned NumUses = 0;
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_STATS)
+ for (unsigned Idx = 0, Size = Uses.size(); Idx != Size; ++Idx)
+ NumUses += Uses[Idx].size();
+#endif
+ NumAllocaPartitionUses += NumUses;
+ MaxPartitionUsesPerAlloca = std::max<unsigned>(NumUses, MaxPartitionUsesPerAlloca);
}
Type *AllocaPartitioning::getCommonType(iterator I) const {
Type *Ty = 0;
for (const_use_iterator UI = use_begin(I), UE = use_end(I); UI != UE; ++UI) {
- if (!UI->U)
+ Use *U = UI->getUse();
+ if (!U)
continue; // Skip dead uses.
- if (isa<IntrinsicInst>(*UI->U->getUser()))
+ if (isa<IntrinsicInst>(*U->getUser()))
continue;
if (UI->BeginOffset != I->BeginOffset || UI->EndOffset != I->EndOffset)
continue;
Type *UserTy = 0;
- if (LoadInst *LI = dyn_cast<LoadInst>(UI->U->getUser())) {
+ if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser()))
UserTy = LI->getType();
- } else if (StoreInst *SI = dyn_cast<StoreInst>(UI->U->getUser())) {
+ else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser()))
UserTy = SI->getValueOperand()->getType();
- } else {
+ else
return 0; // Bail if we have weird uses.
- }
if (IntegerType *ITy = dyn_cast<IntegerType>(UserTy)) {
// If the type is larger than the partition, skip it. We only encounter
@@ -1222,13 +1212,13 @@ void AllocaPartitioning::print(raw_ostream &OS, const_iterator I,
void AllocaPartitioning::printUsers(raw_ostream &OS, const_iterator I,
StringRef Indent) const {
- for (const_use_iterator UI = use_begin(I), UE = use_end(I);
- UI != UE; ++UI) {
- if (!UI->U)
+ for (const_use_iterator UI = use_begin(I), UE = use_end(I); UI != UE; ++UI) {
+ if (!UI->getUse())
continue; // Skip dead uses.
OS << Indent << " [" << UI->BeginOffset << "," << UI->EndOffset << ") "
- << "used by: " << *UI->U->getUser() << "\n";
- if (MemTransferInst *II = dyn_cast<MemTransferInst>(UI->U->getUser())) {
+ << "used by: " << *UI->getUse()->getUser() << "\n";
+ if (MemTransferInst *II =
+ dyn_cast<MemTransferInst>(UI->getUse()->getUser())) {
const MemTransferOffsets &MTO = MemTransferInstData.lookup(II);
bool IsDest;
if (!MTO.IsSplittable)
@@ -1251,8 +1241,7 @@ void AllocaPartitioning::print(raw_ostream &OS) const {
}
OS << "Partitioning of alloca: " << AI << "\n";
- unsigned Num = 0;
- for (const_iterator I = begin(), E = end(); I != E; ++I, ++Num) {
+ for (const_iterator I = begin(), E = end(); I != E; ++I) {
print(OS, I);
printUsers(OS, I);
}
@@ -1323,18 +1312,18 @@ public:
for (SmallVector<DbgValueInst *, 4>::const_iterator I = DVIs.begin(),
E = DVIs.end(); I != E; ++I) {
DbgValueInst *DVI = *I;
- Value *Arg = NULL;
+ Value *Arg = 0;
if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
// If an argument is zero extended then use argument directly. The ZExt
// may be zapped by an optimization pass in future.
if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
Arg = dyn_cast<Argument>(ZExt->getOperand(0));
- if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
+ else if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
Arg = dyn_cast<Argument>(SExt->getOperand(0));
if (!Arg)
- Arg = SI->getOperand(0);
+ Arg = SI->getValueOperand();
} else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
- Arg = LI->getOperand(0);
+ Arg = LI->getPointerOperand();
} else {
continue;
}
@@ -1358,7 +1347,7 @@ namespace {
/// 1) It takes allocations of aggregates and analyzes the ways in which they
/// are used to try to split them into smaller allocations, ideally of
/// a single scalar data type. It will split up memcpy and memset accesses
-/// as necessary and try to isolate invidual scalar accesses.
+/// as necessary and try to isolate individual scalar accesses.
/// 2) It will transform accesses into forms which are suitable for SSA value
/// promotion. This can be replacing a memset with a scalar store of an
/// integer value, or it can involve speculating operations on a PHI or
@@ -1460,11 +1449,11 @@ public:
// may be grown during speculation. However, we never need to re-visit the
// new uses, and so we can use the initial size bound.
for (unsigned Idx = 0, Size = P.use_size(PI); Idx != Size; ++Idx) {
- const AllocaPartitioning::PartitionUse &PU = P.getUse(PI, Idx);
- if (!PU.U)
+ const PartitionUse &PU = P.getUse(PI, Idx);
+ if (!PU.getUse())
continue; // Skip dead use.
- visit(cast<Instruction>(PU.U->getUser()));
+ visit(cast<Instruction>(PU.getUse()->getUser()));
}
}
@@ -1520,8 +1509,7 @@ private:
// We can only transform this if it is safe to push the loads into the
// predecessor blocks. The only thing to watch out for is that we can't put
// a possibly trapping load in the predecessor if it is a critical edge.
- for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num;
- ++Idx) {
+ for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator();
Value *InVal = PN.getIncomingValue(Idx);
@@ -1559,12 +1547,12 @@ private:
assert(!Loads.empty());
Type *LoadTy = cast<PointerType>(PN.getType())->getElementType();
- IRBuilder<> PHIBuilder(&PN);
+ IRBuilderTy PHIBuilder(&PN);
PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
PN.getName() + ".sroa.speculated");
// Get the TBAA tag and alignment to use from one of the loads. It doesn't
- // matter which one we get and if any differ, it doesn't matter.
+ // matter which one we get and if any differ.
LoadInst *SomeLoad = cast<LoadInst>(Loads.back());
MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
unsigned Align = SomeLoad->getAlignment();
@@ -1582,7 +1570,7 @@ private:
TerminatorInst *TI = Pred->getTerminator();
Use *InUse = &PN.getOperandUse(PN.getOperandNumForIncomingValue(Idx));
Value *InVal = PN.getIncomingValue(Idx);
- IRBuilder<> PredBuilder(TI);
+ IRBuilderTy PredBuilder(TI);
LoadInst *Load
= PredBuilder.CreateLoad(InVal, (PN.getName() + ".sroa.speculate.load." +
@@ -1609,8 +1597,8 @@ private:
// inside the load.
AllocaPartitioning::use_iterator UI
= P.findPartitionUseForPHIOrSelectOperand(InUse);
- assert(isa<PHINode>(*UI->U->getUser()));
- UI->U = &Load->getOperandUse(Load->getPointerOperandIndex());
+ assert(isa<PHINode>(*UI->getUse()->getUser()));
+ UI->setUse(&Load->getOperandUse(Load->getPointerOperandIndex()));
}
DEBUG(dbgs() << " speculated to: " << *NewPN << "\n");
}
@@ -1657,16 +1645,16 @@ private:
void visitSelectInst(SelectInst &SI) {
DEBUG(dbgs() << " original: " << SI << "\n");
- IRBuilder<> IRB(&SI);
// If the select isn't safe to speculate, just use simple logic to emit it.
SmallVector<LoadInst *, 4> Loads;
if (!isSafeSelectToSpeculate(SI, Loads))
return;
+ IRBuilderTy IRB(&SI);
Use *Ops[2] = { &SI.getOperandUse(1), &SI.getOperandUse(2) };
AllocaPartitioning::iterator PIs[2];
- AllocaPartitioning::PartitionUse PUs[2];
+ PartitionUse PUs[2];
for (unsigned i = 0, e = 2; i != e; ++i) {
PIs[i] = P.findPartitionForPHIOrSelectOperand(Ops[i]);
if (PIs[i] != P.end()) {
@@ -1677,7 +1665,7 @@ private:
PUs[i] = *UI;
// Clear out the use here so that the offsets into the use list remain
// stable but this use is ignored when rewriting.
- UI->U = 0;
+ UI->setUse(0);
}
}
@@ -1709,8 +1697,8 @@ private:
for (unsigned i = 0, e = 2; i != e; ++i) {
if (PIs[i] != P.end()) {
Use *LoadUse = &Loads[i]->getOperandUse(0);
- assert(PUs[i].U->get() == LoadUse->get());
- PUs[i].U = LoadUse;
+ assert(PUs[i].getUse()->get() == LoadUse->get());
+ PUs[i].setUse(LoadUse);
P.use_push_back(PIs[i], PUs[i]);
}
}
@@ -1723,51 +1711,12 @@ private:
};
}
-/// \brief Accumulate the constant offsets in a GEP into a single APInt offset.
-///
-/// If the provided GEP is all-constant, the total byte offset formed by the
-/// GEP is computed and Offset is set to it. If the GEP has any non-constant
-/// operands, the function returns false and the value of Offset is unmodified.
-static bool accumulateGEPOffsets(const DataLayout &TD, GEPOperator &GEP,
- APInt &Offset) {
- APInt GEPOffset(Offset.getBitWidth(), 0);
- for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
- GTI != GTE; ++GTI) {
- ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
- if (!OpC)
- return false;
- if (OpC->isZero()) continue;
-
- // Handle a struct index, which adds its field offset to the pointer.
- if (StructType *STy = dyn_cast<StructType>(*GTI)) {
- unsigned ElementIdx = OpC->getZExtValue();
- const StructLayout *SL = TD.getStructLayout(STy);
- GEPOffset += APInt(Offset.getBitWidth(),
- SL->getElementOffset(ElementIdx));
- continue;
- }
-
- APInt TypeSize(Offset.getBitWidth(),
- TD.getTypeAllocSize(GTI.getIndexedType()));
- if (VectorType *VTy = dyn_cast<VectorType>(*GTI)) {
- assert((VTy->getScalarSizeInBits() % 8) == 0 &&
- "vector element size is not a multiple of 8, cannot GEP over it");
- TypeSize = VTy->getScalarSizeInBits() / 8;
- }
-
- GEPOffset += OpC->getValue().sextOrTrunc(Offset.getBitWidth()) * TypeSize;
- }
- Offset = GEPOffset;
- return true;
-}
-
/// \brief Build a GEP out of a base pointer and indices.
///
/// This will return the BasePtr if that is valid, or build a new GEP
/// instruction using the IRBuilder if GEP-ing is needed.
-static Value *buildGEP(IRBuilder<> &IRB, Value *BasePtr,
- SmallVectorImpl<Value *> &Indices,
- const Twine &Prefix) {
+static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr,
+ SmallVectorImpl<Value *> &Indices) {
if (Indices.empty())
return BasePtr;
@@ -1776,7 +1725,7 @@ static Value *buildGEP(IRBuilder<> &IRB, Value *BasePtr,
if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
return BasePtr;
- return IRB.CreateInBoundsGEP(BasePtr, Indices, Prefix + ".idx");
+ return IRB.CreateInBoundsGEP(BasePtr, Indices, "idx");
}
/// \brief Get a natural GEP off of the BasePtr walking through Ty toward
@@ -1788,12 +1737,11 @@ static Value *buildGEP(IRBuilder<> &IRB, Value *BasePtr,
/// TargetTy. If we can't find one with the same type, we at least try to use
/// one with the same size. If none of that works, we just produce the GEP as
/// indicated by Indices to have the correct offset.
-static Value *getNaturalGEPWithType(IRBuilder<> &IRB, const DataLayout &TD,
+static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &TD,
Value *BasePtr, Type *Ty, Type *TargetTy,
- SmallVectorImpl<Value *> &Indices,
- const Twine &Prefix) {
+ SmallVectorImpl<Value *> &Indices) {
if (Ty == TargetTy)
- return buildGEP(IRB, BasePtr, Indices, Prefix);
+ return buildGEP(IRB, BasePtr, Indices);
// See if we can descend into a struct and locate a field with the correct
// type.
@@ -1820,20 +1768,19 @@ static Value *getNaturalGEPWithType(IRBuilder<> &IRB, const DataLayout &TD,
if (ElementTy != TargetTy)
Indices.erase(Indices.end() - NumLayers, Indices.end());
- return buildGEP(IRB, BasePtr, Indices, Prefix);
+ return buildGEP(IRB, BasePtr, Indices);
}
/// \brief Recursively compute indices for a natural GEP.
///
/// This is the recursive step for getNaturalGEPWithOffset that walks down the
/// element types adding appropriate indices for the GEP.
-static Value *getNaturalGEPRecursively(IRBuilder<> &IRB, const DataLayout &TD,
+static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &TD,
Value *Ptr, Type *Ty, APInt &Offset,
Type *TargetTy,
- SmallVectorImpl<Value *> &Indices,
- const Twine &Prefix) {
+ SmallVectorImpl<Value *> &Indices) {
if (Offset == 0)
- return getNaturalGEPWithType(IRB, TD, Ptr, Ty, TargetTy, Indices, Prefix);
+ return getNaturalGEPWithType(IRB, TD, Ptr, Ty, TargetTy, Indices);
// We can't recurse through pointer types.
if (Ty->isPointerTy())
@@ -1843,7 +1790,7 @@ static Value *getNaturalGEPRecursively(IRBuilder<> &IRB, const DataLayout &TD,
// extremely poorly defined currently. The long-term goal is to remove GEPing
// over a vector from the IR completely.
if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
- unsigned ElementSizeInBits = VecTy->getScalarSizeInBits();
+ unsigned ElementSizeInBits = TD.getTypeSizeInBits(VecTy->getScalarType());
if (ElementSizeInBits % 8)
return 0; // GEPs over non-multiple of 8 size vector elements are invalid.
APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
@@ -1853,7 +1800,7 @@ static Value *getNaturalGEPRecursively(IRBuilder<> &IRB, const DataLayout &TD,
Offset -= NumSkippedElements * ElementSize;
Indices.push_back(IRB.getInt(NumSkippedElements));
return getNaturalGEPRecursively(IRB, TD, Ptr, VecTy->getElementType(),
- Offset, TargetTy, Indices, Prefix);
+ Offset, TargetTy, Indices);
}
if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
@@ -1866,7 +1813,7 @@ static Value *getNaturalGEPRecursively(IRBuilder<> &IRB, const DataLayout &TD,
Offset -= NumSkippedElements * ElementSize;
Indices.push_back(IRB.getInt(NumSkippedElements));
return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
- Indices, Prefix);
+ Indices);
}
StructType *STy = dyn_cast<StructType>(Ty);
@@ -1885,7 +1832,7 @@ static Value *getNaturalGEPRecursively(IRBuilder<> &IRB, const DataLayout &TD,
Indices.push_back(IRB.getInt32(Index));
return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
- Indices, Prefix);
+ Indices);
}
/// \brief Get a natural GEP from a base pointer to a particular offset and
@@ -1898,10 +1845,9 @@ static Value *getNaturalGEPRecursively(IRBuilder<> &IRB, const DataLayout &TD,
/// Indices, and setting Ty to the result subtype.
///
/// If no natural GEP can be constructed, this function returns null.
-static Value *getNaturalGEPWithOffset(IRBuilder<> &IRB, const DataLayout &TD,
+static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &TD,
Value *Ptr, APInt Offset, Type *TargetTy,
- SmallVectorImpl<Value *> &Indices,
- const Twine &Prefix) {
+ SmallVectorImpl<Value *> &Indices) {
PointerType *Ty = cast<PointerType>(Ptr->getType());
// Don't consider any GEPs through an i8* as natural unless the TargetTy is
@@ -1920,7 +1866,7 @@ static Value *getNaturalGEPWithOffset(IRBuilder<> &IRB, const DataLayout &TD,
Offset -= NumSkippedElements * ElementSize;
Indices.push_back(IRB.getInt(NumSkippedElements));
return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
- Indices, Prefix);
+ Indices);
}
/// \brief Compute an adjusted pointer from Ptr by Offset bytes where the
@@ -1935,12 +1881,11 @@ static Value *getNaturalGEPWithOffset(IRBuilder<> &IRB, const DataLayout &TD,
/// The strategy for finding the more natural GEPs is to peel off layers of the
/// pointer, walking back through bit casts and GEPs, searching for a base
/// pointer from which we can compute a natural GEP with the desired
-/// properities. The algorithm tries to fold as many constant indices into
+/// properties. The algorithm tries to fold as many constant indices into
/// a single GEP as possible, thus making each GEP more independent of the
/// surrounding code.
-static Value *getAdjustedPtr(IRBuilder<> &IRB, const DataLayout &TD,
- Value *Ptr, APInt Offset, Type *PointerTy,
- const Twine &Prefix) {
+static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &TD,
+ Value *Ptr, APInt Offset, Type *PointerTy) {
// Even though we don't look through PHI nodes, we could be called on an
// instruction in an unreachable block, which may be on a cycle.
SmallPtrSet<Value *, 4> Visited;
@@ -1963,7 +1908,7 @@ static Value *getAdjustedPtr(IRBuilder<> &IRB, const DataLayout &TD,
// First fold any existing GEPs into the offset.
while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
APInt GEPOffset(Offset.getBitWidth(), 0);
- if (!accumulateGEPOffsets(TD, *GEP, GEPOffset))
+ if (!GEP->accumulateConstantOffset(TD, GEPOffset))
break;
Offset += GEPOffset;
Ptr = GEP->getPointerOperand();
@@ -1974,7 +1919,7 @@ static Value *getAdjustedPtr(IRBuilder<> &IRB, const DataLayout &TD,
// See if we can perform a natural GEP here.
Indices.clear();
if (Value *P = getNaturalGEPWithOffset(IRB, TD, Ptr, Offset, TargetTy,
- Indices, Prefix)) {
+ Indices)) {
if (P->getType() == PointerTy) {
// Zap any offset pointer that we ended up computing in previous rounds.
if (OffsetPtr && OffsetPtr->use_empty())
@@ -2009,19 +1954,19 @@ static Value *getAdjustedPtr(IRBuilder<> &IRB, const DataLayout &TD,
if (!OffsetPtr) {
if (!Int8Ptr) {
Int8Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy(),
- Prefix + ".raw_cast");
+ "raw_cast");
Int8PtrOffset = Offset;
}
OffsetPtr = Int8PtrOffset == 0 ? Int8Ptr :
IRB.CreateInBoundsGEP(Int8Ptr, IRB.getInt(Int8PtrOffset),
- Prefix + ".raw_idx");
+ "raw_idx");
}
Ptr = OffsetPtr;
// On the off chance we were targeting i8*, guard the bitcast here.
if (Ptr->getType() != PointerTy)
- Ptr = IRB.CreateBitCast(Ptr, PointerTy, Prefix + ".cast");
+ Ptr = IRB.CreateBitCast(Ptr, PointerTy, "cast");
return Ptr;
}
@@ -2035,6 +1980,10 @@ static Value *getAdjustedPtr(IRBuilder<> &IRB, const DataLayout &TD,
static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
if (OldTy == NewTy)
return true;
+ if (IntegerType *OldITy = dyn_cast<IntegerType>(OldTy))
+ if (IntegerType *NewITy = dyn_cast<IntegerType>(NewTy))
+ if (NewITy->getBitWidth() >= OldITy->getBitWidth())
+ return true;
if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy))
return false;
if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
@@ -2057,12 +2006,16 @@ static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
/// This will try various different casting techniques, such as bitcasts,
/// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
/// two types for viability with this routine.
-static Value *convertValue(const DataLayout &DL, IRBuilder<> &IRB, Value *V,
+static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
Type *Ty) {
assert(canConvertValue(DL, V->getType(), Ty) &&
"Value not convertable to type");
if (V->getType() == Ty)
return V;
+ if (IntegerType *OldITy = dyn_cast<IntegerType>(V->getType()))
+ if (IntegerType *NewITy = dyn_cast<IntegerType>(Ty))
+ if (NewITy->getBitWidth() > OldITy->getBitWidth())
+ return IRB.CreateZExt(V, NewITy);
if (V->getType()->isIntegerTy() && Ty->isPointerTy())
return IRB.CreateIntToPtr(V, Ty);
if (V->getType()->isPointerTy() && Ty->isIntegerTy())
@@ -2090,19 +2043,19 @@ static bool isVectorPromotionViable(const DataLayout &TD,
if (!Ty)
return false;
- uint64_t VecSize = TD.getTypeSizeInBits(Ty);
- uint64_t ElementSize = Ty->getScalarSizeInBits();
+ uint64_t ElementSize = TD.getTypeSizeInBits(Ty->getScalarType());
// While the definition of LLVM vectors is bitpacked, we don't support sizes
// that aren't byte sized.
if (ElementSize % 8)
return false;
- assert((VecSize % 8) == 0 && "vector size not a multiple of element size?");
- VecSize /= 8;
+ assert((TD.getTypeSizeInBits(Ty) % 8) == 0 &&
+ "vector size not a multiple of element size?");
ElementSize /= 8;
for (; I != E; ++I) {
- if (!I->U)
+ Use *U = I->getUse();
+ if (!U)
continue; // Skip dead use.
uint64_t BeginOffset = I->BeginOffset - PartitionBeginOffset;
@@ -2116,30 +2069,34 @@ static bool isVectorPromotionViable(const DataLayout &TD,
EndIndex > Ty->getNumElements())
return false;
- // FIXME: We should build shuffle vector instructions to handle
- // non-element-sized accesses.
- if ((EndOffset - BeginOffset) != ElementSize &&
- (EndOffset - BeginOffset) != VecSize)
- return false;
+ assert(EndIndex > BeginIndex && "Empty vector!");
+ uint64_t NumElements = EndIndex - BeginIndex;
+ Type *PartitionTy
+ = (NumElements == 1) ? Ty->getElementType()
+ : VectorType::get(Ty->getElementType(), NumElements);
- if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I->U->getUser())) {
+ if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
if (MI->isVolatile())
return false;
- if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(I->U->getUser())) {
+ if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U->getUser())) {
const AllocaPartitioning::MemTransferOffsets &MTO
= P.getMemTransferOffsets(*MTI);
if (!MTO.IsSplittable)
return false;
}
- } else if (I->U->get()->getType()->getPointerElementType()->isStructTy()) {
+ } else if (U->get()->getType()->getPointerElementType()->isStructTy()) {
// Disable vector promotion when there are loads or stores of an FCA.
return false;
- } else if (LoadInst *LI = dyn_cast<LoadInst>(I->U->getUser())) {
+ } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
if (LI->isVolatile())
return false;
- } else if (StoreInst *SI = dyn_cast<StoreInst>(I->U->getUser())) {
+ if (!canConvertValue(TD, PartitionTy, LI->getType()))
+ return false;
+ } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
if (SI->isVolatile())
return false;
+ if (!canConvertValue(TD, SI->getValueOperand()->getType(), PartitionTy))
+ return false;
} else {
return false;
}
@@ -2178,13 +2135,14 @@ static bool isIntegerWideningViable(const DataLayout &TD,
uint64_t Size = TD.getTypeStoreSize(AllocaTy);
- // Check the uses to ensure the uses are (likely) promoteable integer uses.
+ // Check the uses to ensure the uses are (likely) promotable integer uses.
// Also ensure that the alloca has a covering load or store. We don't want
- // to widen the integer operotains only to fail to promote due to some other
+ // to widen the integer operations only to fail to promote due to some other
// unsplittable entry (which we may make splittable later).
bool WholeAllocaOp = false;
for (; I != E; ++I) {
- if (!I->U)
+ Use *U = I->getUse();
+ if (!U)
continue; // Skip dead use.
uint64_t RelBegin = I->BeginOffset - AllocBeginOffset;
@@ -2195,7 +2153,7 @@ static bool isIntegerWideningViable(const DataLayout &TD,
if (RelEnd > Size)
return false;
- if (LoadInst *LI = dyn_cast<LoadInst>(I->U->getUser())) {
+ if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
if (LI->isVolatile())
return false;
if (RelBegin == 0 && RelEnd == Size)
@@ -2210,7 +2168,7 @@ static bool isIntegerWideningViable(const DataLayout &TD,
if (RelBegin != 0 || RelEnd != Size ||
!canConvertValue(TD, AllocaTy, LI->getType()))
return false;
- } else if (StoreInst *SI = dyn_cast<StoreInst>(I->U->getUser())) {
+ } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
Type *ValueTy = SI->getValueOperand()->getType();
if (SI->isVolatile())
return false;
@@ -2226,16 +2184,16 @@ static bool isIntegerWideningViable(const DataLayout &TD,
if (RelBegin != 0 || RelEnd != Size ||
!canConvertValue(TD, ValueTy, AllocaTy))
return false;
- } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I->U->getUser())) {
+ } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
return false;
- if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(I->U->getUser())) {
+ if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U->getUser())) {
const AllocaPartitioning::MemTransferOffsets &MTO
= P.getMemTransferOffsets(*MTI);
if (!MTO.IsSplittable)
return false;
}
- } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->U->getUser())) {
+ } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
II->getIntrinsicID() != Intrinsic::lifetime_end)
return false;
@@ -2246,7 +2204,7 @@ static bool isIntegerWideningViable(const DataLayout &TD,
return WholeAllocaOp;
}
-static Value *extractInteger(const DataLayout &DL, IRBuilder<> &IRB, Value *V,
+static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
IntegerType *Ty, uint64_t Offset,
const Twine &Name) {
DEBUG(dbgs() << " start: " << *V << "\n");
@@ -2269,7 +2227,7 @@ static Value *extractInteger(const DataLayout &DL, IRBuilder<> &IRB, Value *V,
return V;
}
-static Value *insertInteger(const DataLayout &DL, IRBuilder<> &IRB, Value *Old,
+static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old,
Value *V, uint64_t Offset, const Twine &Name) {
IntegerType *IntTy = cast<IntegerType>(Old->getType());
IntegerType *Ty = cast<IntegerType>(V->getType());
@@ -2300,6 +2258,84 @@ static Value *insertInteger(const DataLayout &DL, IRBuilder<> &IRB, Value *Old,
return V;
}
+static Value *extractVector(IRBuilderTy &IRB, Value *V,
+ unsigned BeginIndex, unsigned EndIndex,
+ const Twine &Name) {
+ VectorType *VecTy = cast<VectorType>(V->getType());
+ unsigned NumElements = EndIndex - BeginIndex;
+ assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
+
+ if (NumElements == VecTy->getNumElements())
+ return V;
+
+ if (NumElements == 1) {
+ V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
+ Name + ".extract");
+ DEBUG(dbgs() << " extract: " << *V << "\n");
+ return V;
+ }
+
+ SmallVector<Constant*, 8> Mask;
+ Mask.reserve(NumElements);
+ for (unsigned i = BeginIndex; i != EndIndex; ++i)
+ Mask.push_back(IRB.getInt32(i));
+ V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
+ ConstantVector::get(Mask),
+ Name + ".extract");
+ DEBUG(dbgs() << " shuffle: " << *V << "\n");
+ return V;
+}
+
+static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V,
+ unsigned BeginIndex, const Twine &Name) {
+ VectorType *VecTy = cast<VectorType>(Old->getType());
+ assert(VecTy && "Can only insert a vector into a vector");
+
+ VectorType *Ty = dyn_cast<VectorType>(V->getType());
+ if (!Ty) {
+ // Single element to insert.
+ V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex),
+ Name + ".insert");
+ DEBUG(dbgs() << " insert: " << *V << "\n");
+ return V;
+ }
+
+ assert(Ty->getNumElements() <= VecTy->getNumElements() &&
+ "Too many elements!");
+ if (Ty->getNumElements() == VecTy->getNumElements()) {
+ assert(V->getType() == VecTy && "Vector type mismatch");
+ return V;
+ }
+ unsigned EndIndex = BeginIndex + Ty->getNumElements();
+
+ // When inserting a smaller vector into the larger to store, we first
+ // use a shuffle vector to widen it with undef elements, and then
+ // a second shuffle vector to select between the loaded vector and the
+ // incoming vector.
+ SmallVector<Constant*, 8> Mask;
+ Mask.reserve(VecTy->getNumElements());
+ for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
+ if (i >= BeginIndex && i < EndIndex)
+ Mask.push_back(IRB.getInt32(i - BeginIndex));
+ else
+ Mask.push_back(UndefValue::get(IRB.getInt32Ty()));
+ V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
+ ConstantVector::get(Mask),
+ Name + ".expand");
+ DEBUG(dbgs() << " shuffle1: " << *V << "\n");
+
+ Mask.clear();
+ for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
+ if (i >= BeginIndex && i < EndIndex)
+ Mask.push_back(IRB.getInt32(i));
+ else
+ Mask.push_back(IRB.getInt32(i + VecTy->getNumElements()));
+ V = IRB.CreateShuffleVector(V, Old, ConstantVector::get(Mask),
+ Name + "insert");
+ DEBUG(dbgs() << " shuffle2: " << *V << "\n");
+ return V;
+}
+
namespace {
/// \brief Visitor to rewrite instructions using a partition of an alloca to
/// use a new alloca.
@@ -2321,7 +2357,7 @@ class AllocaPartitionRewriter : public InstVisitor<AllocaPartitionRewriter,
// If we are rewriting an alloca partition which can be written as pure
// vector operations, we stash extra information here. When VecTy is
- // non-null, we have some strict guarantees about the rewriten alloca:
+ // non-null, we have some strict guarantees about the rewritten alloca:
// - The new alloca is exactly the size of the vector type here.
// - The accesses all either map to the entire vector or to a single
// element.
@@ -2340,11 +2376,13 @@ class AllocaPartitionRewriter : public InstVisitor<AllocaPartitionRewriter,
// The offset of the partition user currently being rewritten.
uint64_t BeginOffset, EndOffset;
+ bool IsSplit;
Use *OldUse;
Instruction *OldPtr;
- // The name prefix to use when rewriting instructions for this alloca.
- std::string NamePrefix;
+ // Utility IR builder, whose name prefix is setup for each visited use, and
+ // the insertion point is set to point to the user.
+ IRBuilderTy IRB;
public:
AllocaPartitionRewriter(const DataLayout &TD, AllocaPartitioning &P,
@@ -2357,7 +2395,8 @@ public:
NewAllocaEndOffset(NewEndOffset),
NewAllocaTy(NewAI.getAllocatedType()),
VecTy(), ElementTy(), ElementSize(), IntTy(),
- BeginOffset(), EndOffset() {
+ BeginOffset(), EndOffset(), IsSplit(), OldUse(), OldPtr(),
+ IRB(NewAI.getContext(), ConstantFolder()) {
}
/// \brief Visit the users of the alloca partition and rewrite them.
@@ -2369,9 +2408,9 @@ public:
++NumVectorized;
VecTy = cast<VectorType>(NewAI.getAllocatedType());
ElementTy = VecTy->getElementType();
- assert((VecTy->getScalarSizeInBits() % 8) == 0 &&
+ assert((TD.getTypeSizeInBits(VecTy->getScalarType()) % 8) == 0 &&
"Only multiple-of-8 sized vector elements are viable");
- ElementSize = VecTy->getScalarSizeInBits() / 8;
+ ElementSize = TD.getTypeSizeInBits(VecTy->getScalarType()) / 8;
} else if (isIntegerWideningViable(TD, NewAI.getAllocatedType(),
NewAllocaBeginOffset, P, I, E)) {
IntTy = Type::getIntNTy(NewAI.getContext(),
@@ -2379,14 +2418,21 @@ public:
}
bool CanSROA = true;
for (; I != E; ++I) {
- if (!I->U)
+ if (!I->getUse())
continue; // Skip dead uses.
BeginOffset = I->BeginOffset;
EndOffset = I->EndOffset;
- OldUse = I->U;
- OldPtr = cast<Instruction>(I->U->get());
- NamePrefix = (Twine(NewAI.getName()) + "." + Twine(BeginOffset)).str();
- CanSROA &= visit(cast<Instruction>(I->U->getUser()));
+ IsSplit = I->isSplit();
+ OldUse = I->getUse();
+ OldPtr = cast<Instruction>(OldUse->get());
+
+ Instruction *OldUserI = cast<Instruction>(OldUse->getUser());
+ IRB.SetInsertPoint(OldUserI);
+ IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc());
+ IRB.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) +
+ ".");
+
+ CanSROA &= visit(cast<Instruction>(OldUse->getUser()));
}
if (VecTy) {
assert(CanSROA);
@@ -2408,14 +2454,10 @@ private:
llvm_unreachable("No rewrite rule for this instruction!");
}
- Twine getName(const Twine &Suffix) {
- return NamePrefix + Suffix;
- }
-
- Value *getAdjustedAllocaPtr(IRBuilder<> &IRB, Type *PointerTy) {
+ Value *getAdjustedAllocaPtr(IRBuilderTy &IRB, Type *PointerTy) {
assert(BeginOffset >= NewAllocaBeginOffset);
APInt Offset(TD.getPointerSizeInBits(), BeginOffset - NewAllocaBeginOffset);
- return getAdjustedPtr(IRB, TD, &NewAI, Offset, PointerTy, getName(""));
+ return getAdjustedPtr(IRB, TD, &NewAI, Offset, PointerTy);
}
/// \brief Compute suitable alignment to access an offset into the new alloca.
@@ -2450,13 +2492,13 @@ private:
return getOffsetTypeAlign(Ty, BeginOffset - NewAllocaBeginOffset);
}
- ConstantInt *getIndex(IRBuilder<> &IRB, uint64_t Offset) {
+ unsigned getIndex(uint64_t Offset) {
assert(VecTy && "Can only call getIndex when rewriting a vector");
uint64_t RelOffset = Offset - NewAllocaBeginOffset;
assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
uint32_t Index = RelOffset / ElementSize;
assert(Index * ElementSize == RelOffset);
- return IRB.getInt32(Index);
+ return Index;
}
void deleteIfTriviallyDead(Value *V) {
@@ -2465,28 +2507,27 @@ private:
Pass.DeadInsts.insert(I);
}
- Value *rewriteVectorizedLoadInst(IRBuilder<> &IRB, LoadInst &LI, Value *OldOp) {
+ Value *rewriteVectorizedLoadInst() {
+ unsigned BeginIndex = getIndex(BeginOffset);
+ unsigned EndIndex = getIndex(EndOffset);
+ assert(EndIndex > BeginIndex && "Empty vector!");
+
Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
- getName(".load"));
- if (LI.getType() == VecTy->getElementType() ||
- BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset) {
- V = IRB.CreateExtractElement(V, getIndex(IRB, BeginOffset),
- getName(".extract"));
- }
- return V;
+ "load");
+ return extractVector(IRB, V, BeginIndex, EndIndex, "vec");
}
- Value *rewriteIntegerLoad(IRBuilder<> &IRB, LoadInst &LI) {
+ Value *rewriteIntegerLoad(LoadInst &LI) {
assert(IntTy && "We cannot insert an integer to the alloca");
assert(!LI.isVolatile());
Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
- getName(".load"));
+ "load");
V = convertValue(TD, IRB, V, IntTy);
assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
if (Offset > 0 || EndOffset < NewAllocaEndOffset)
V = extractInteger(TD, IRB, V, cast<IntegerType>(LI.getType()), Offset,
- getName(".extract"));
+ "extract");
return V;
}
@@ -2494,58 +2535,39 @@ private:
DEBUG(dbgs() << " original: " << LI << "\n");
Value *OldOp = LI.getOperand(0);
assert(OldOp == OldPtr);
- IRBuilder<> IRB(&LI);
uint64_t Size = EndOffset - BeginOffset;
- bool IsSplitIntLoad = Size < TD.getTypeStoreSize(LI.getType());
-
- // If this memory access can be shown to *statically* extend outside the
- // bounds of the original allocation it's behavior is undefined. Rather
- // than trying to transform it, just replace it with undef.
- // FIXME: We should do something more clever for functions being
- // instrumented by asan.
- // FIXME: Eventually, once ASan and friends can flush out bugs here, this
- // should be transformed to a load of null making it unreachable.
- uint64_t OldAllocSize = TD.getTypeAllocSize(OldAI.getAllocatedType());
- if (TD.getTypeStoreSize(LI.getType()) > OldAllocSize) {
- LI.replaceAllUsesWith(UndefValue::get(LI.getType()));
- Pass.DeadInsts.insert(&LI);
- deleteIfTriviallyDead(OldOp);
- DEBUG(dbgs() << " to: undef!!\n");
- return true;
- }
- Type *TargetTy = IsSplitIntLoad ? Type::getIntNTy(LI.getContext(), Size * 8)
- : LI.getType();
+ Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), Size * 8)
+ : LI.getType();
bool IsPtrAdjusted = false;
Value *V;
if (VecTy) {
- V = rewriteVectorizedLoadInst(IRB, LI, OldOp);
+ V = rewriteVectorizedLoadInst();
} else if (IntTy && LI.getType()->isIntegerTy()) {
- V = rewriteIntegerLoad(IRB, LI);
+ V = rewriteIntegerLoad(LI);
} else if (BeginOffset == NewAllocaBeginOffset &&
canConvertValue(TD, NewAllocaTy, LI.getType())) {
V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
- LI.isVolatile(), getName(".load"));
+ LI.isVolatile(), "load");
} else {
Type *LTy = TargetTy->getPointerTo();
V = IRB.CreateAlignedLoad(getAdjustedAllocaPtr(IRB, LTy),
getPartitionTypeAlign(TargetTy),
- LI.isVolatile(), getName(".load"));
+ LI.isVolatile(), "load");
IsPtrAdjusted = true;
}
V = convertValue(TD, IRB, V, TargetTy);
- if (IsSplitIntLoad) {
+ if (IsSplit) {
assert(!LI.isVolatile());
assert(LI.getType()->isIntegerTy() &&
"Only integer type loads and stores are split");
+ assert(Size < TD.getTypeStoreSize(LI.getType()) &&
+ "Split load isn't smaller than original load");
assert(LI.getType()->getIntegerBitWidth() ==
TD.getTypeStoreSizeInBits(LI.getType()) &&
"Non-byte-multiple bit width");
- assert(LI.getType()->getIntegerBitWidth() ==
- TD.getTypeAllocSizeInBits(OldAI.getAllocatedType()) &&
- "Only alloca-wide loads can be split and recomposed");
// Move the insertion point just past the load so that we can refer to it.
IRB.SetInsertPoint(llvm::next(BasicBlock::iterator(&LI)));
// Create a placeholder value with the same type as LI to use as the
@@ -2555,7 +2577,7 @@ private:
Value *Placeholder
= new LoadInst(UndefValue::get(LI.getType()->getPointerTo()));
V = insertInteger(TD, IRB, Placeholder, V, BeginOffset,
- getName(".insert"));
+ "insert");
LI.replaceAllUsesWith(V);
Placeholder->replaceAllUsesWith(&LI);
delete Placeholder;
@@ -2569,19 +2591,24 @@ private:
return !LI.isVolatile() && !IsPtrAdjusted;
}
- bool rewriteVectorizedStoreInst(IRBuilder<> &IRB, Value *V,
+ bool rewriteVectorizedStoreInst(Value *V,
StoreInst &SI, Value *OldOp) {
- if (V->getType() == ElementTy ||
- BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset) {
- if (V->getType() != ElementTy)
- V = convertValue(TD, IRB, V, ElementTy);
- LoadInst *LI = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
- getName(".load"));
- V = IRB.CreateInsertElement(LI, V, getIndex(IRB, BeginOffset),
- getName(".insert"));
- } else if (V->getType() != VecTy) {
- V = convertValue(TD, IRB, V, VecTy);
- }
+ unsigned BeginIndex = getIndex(BeginOffset);
+ unsigned EndIndex = getIndex(EndOffset);
+ assert(EndIndex > BeginIndex && "Empty vector!");
+ unsigned NumElements = EndIndex - BeginIndex;
+ assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
+ Type *PartitionTy
+ = (NumElements == 1) ? ElementTy
+ : VectorType::get(ElementTy, NumElements);
+ if (V->getType() != PartitionTy)
+ V = convertValue(TD, IRB, V, PartitionTy);
+
+ // Mix in the existing elements.
+ Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
+ "load");
+ V = insertVector(IRB, Old, V, BeginIndex, "vec");
+
StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
Pass.DeadInsts.insert(&SI);
@@ -2590,17 +2617,17 @@ private:
return true;
}
- bool rewriteIntegerStore(IRBuilder<> &IRB, Value *V, StoreInst &SI) {
+ bool rewriteIntegerStore(Value *V, StoreInst &SI) {
assert(IntTy && "We cannot extract an integer from the alloca");
assert(!SI.isVolatile());
if (TD.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) {
Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
- getName(".oldload"));
+ "oldload");
Old = convertValue(TD, IRB, Old, IntTy);
assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
V = insertInteger(TD, IRB, Old, SI.getValueOperand(), Offset,
- getName(".insert"));
+ "insert");
}
V = convertValue(TD, IRB, V, NewAllocaTy);
StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
@@ -2614,7 +2641,6 @@ private:
DEBUG(dbgs() << " original: " << SI << "\n");
Value *OldOp = SI.getOperand(1);
assert(OldOp == OldPtr);
- IRBuilder<> IRB(&SI);
Value *V = SI.getValueOperand();
@@ -2627,23 +2653,21 @@ private:
uint64_t Size = EndOffset - BeginOffset;
if (Size < TD.getTypeStoreSize(V->getType())) {
assert(!SI.isVolatile());
+ assert(IsSplit && "A seemingly split store isn't splittable");
assert(V->getType()->isIntegerTy() &&
"Only integer type loads and stores are split");
assert(V->getType()->getIntegerBitWidth() ==
TD.getTypeStoreSizeInBits(V->getType()) &&
"Non-byte-multiple bit width");
- assert(V->getType()->getIntegerBitWidth() ==
- TD.getTypeSizeInBits(OldAI.getAllocatedType()) &&
- "Only alloca-wide stores can be split and recomposed");
IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), Size * 8);
V = extractInteger(TD, IRB, V, NarrowTy, BeginOffset,
- getName(".extract"));
+ "extract");
}
if (VecTy)
- return rewriteVectorizedStoreInst(IRB, V, SI, OldOp);
+ return rewriteVectorizedStoreInst(V, SI, OldOp);
if (IntTy && V->getType()->isIntegerTy())
- return rewriteIntegerStore(IRB, V, SI);
+ return rewriteIntegerStore(V, SI);
StoreInst *NewSI;
if (BeginOffset == NewAllocaBeginOffset &&
@@ -2665,9 +2689,42 @@ private:
return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile();
}
+ /// \brief Compute an integer value from splatting an i8 across the given
+ /// number of bytes.
+ ///
+ /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
+ /// call this routine.
+ /// FIXME: Heed the advice above.
+ ///
+ /// \param V The i8 value to splat.
+ /// \param Size The number of bytes in the output (assuming i8 is one byte)
+ Value *getIntegerSplat(Value *V, unsigned Size) {
+ assert(Size > 0 && "Expected a positive number of bytes.");
+ IntegerType *VTy = cast<IntegerType>(V->getType());
+ assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte");
+ if (Size == 1)
+ return V;
+
+ Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size*8);
+ V = IRB.CreateMul(IRB.CreateZExt(V, SplatIntTy, "zext"),
+ ConstantExpr::getUDiv(
+ Constant::getAllOnesValue(SplatIntTy),
+ ConstantExpr::getZExt(
+ Constant::getAllOnesValue(V->getType()),
+ SplatIntTy)),
+ "isplat");
+ return V;
+ }
+
+ /// \brief Compute a vector splat for a given element value.
+ Value *getVectorSplat(Value *V, unsigned NumElements) {
+ V = IRB.CreateVectorSplat(NumElements, V, "vsplat");
+ DEBUG(dbgs() << " splat: " << *V << "\n");
+ return V;
+ }
+
bool visitMemSetInst(MemSetInst &II) {
DEBUG(dbgs() << " original: " << II << "\n");
- IRBuilder<> IRB(&II);
assert(II.getRawDest() == OldPtr);
// If the memset has a variable size, it cannot be split, just adjust the
@@ -2693,7 +2750,8 @@ private:
(BeginOffset != NewAllocaBeginOffset ||
EndOffset != NewAllocaEndOffset ||
!AllocaTy->isSingleValueType() ||
- !TD.isLegalInteger(TD.getTypeSizeInBits(ScalarTy)))) {
+ !TD.isLegalInteger(TD.getTypeSizeInBits(ScalarTy)) ||
+ TD.getTypeSizeInBits(ScalarTy)%8 != 0)) {
Type *SizeTy = II.getLength()->getType();
Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset);
CallInst *New
@@ -2709,53 +2767,61 @@ private:
// If we can represent this as a simple value, we have to build the actual
// value to store, which requires expanding the byte present in memset to
// a sensible representation for the alloca type. This is essentially
- // splatting the byte to a sufficiently wide integer, bitcasting to the
- // desired scalar type, and splatting it across any desired vector type.
- uint64_t Size = EndOffset - BeginOffset;
- Value *V = II.getValue();
- IntegerType *VTy = cast<IntegerType>(V->getType());
- Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size*8);
- if (Size*8 > VTy->getBitWidth())
- V = IRB.CreateMul(IRB.CreateZExt(V, SplatIntTy, getName(".zext")),
- ConstantExpr::getUDiv(
- Constant::getAllOnesValue(SplatIntTy),
- ConstantExpr::getZExt(
- Constant::getAllOnesValue(V->getType()),
- SplatIntTy)),
- getName(".isplat"));
-
- // If this is an element-wide memset of a vectorizable alloca, insert it.
- if (VecTy && (BeginOffset > NewAllocaBeginOffset ||
- EndOffset < NewAllocaEndOffset)) {
- if (V->getType() != ScalarTy)
- V = convertValue(TD, IRB, V, ScalarTy);
- StoreInst *Store = IRB.CreateAlignedStore(
- IRB.CreateInsertElement(IRB.CreateAlignedLoad(&NewAI,
- NewAI.getAlignment(),
- getName(".load")),
- V, getIndex(IRB, BeginOffset),
- getName(".insert")),
- &NewAI, NewAI.getAlignment());
- (void)Store;
- DEBUG(dbgs() << " to: " << *Store << "\n");
- return true;
- }
+ // splatting the byte to a sufficiently wide integer, splatting it across
+ // any desired vector width, and bitcasting to the final type.
+ Value *V;
+
+ if (VecTy) {
+ // If this is a memset of a vectorized alloca, insert it.
+ assert(ElementTy == ScalarTy);
+
+ unsigned BeginIndex = getIndex(BeginOffset);
+ unsigned EndIndex = getIndex(EndOffset);
+ assert(EndIndex > BeginIndex && "Empty vector!");
+ unsigned NumElements = EndIndex - BeginIndex;
+ assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
+
+ Value *Splat =
+ getIntegerSplat(II.getValue(), TD.getTypeSizeInBits(ElementTy) / 8);
+ Splat = convertValue(TD, IRB, Splat, ElementTy);
+ if (NumElements > 1)
+ Splat = getVectorSplat(Splat, NumElements);
- // If this is a memset on an alloca where we can widen stores, insert the
- // set integer.
- if (IntTy && (BeginOffset > NewAllocaBeginOffset ||
- EndOffset < NewAllocaEndOffset)) {
- assert(!II.isVolatile());
Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
- getName(".oldload"));
- Old = convertValue(TD, IRB, Old, IntTy);
- assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
- uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
- V = insertInteger(TD, IRB, Old, V, Offset, getName(".insert"));
- }
+ "oldload");
+ V = insertVector(IRB, Old, Splat, BeginIndex, "vec");
+ } else if (IntTy) {
+ // If this is a memset on an alloca where we can widen stores, insert the
+ // set integer.
+ assert(!II.isVolatile());
+
+ uint64_t Size = EndOffset - BeginOffset;
+ V = getIntegerSplat(II.getValue(), Size);
+
+ if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
+ EndOffset != NewAllocaBeginOffset)) {
+ Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
+ "oldload");
+ Old = convertValue(TD, IRB, Old, IntTy);
+ assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
+ uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
+ V = insertInteger(TD, IRB, Old, V, Offset, "insert");
+ } else {
+ assert(V->getType() == IntTy &&
+ "Wrong type for an alloca wide integer!");
+ }
+ V = convertValue(TD, IRB, V, AllocaTy);
+ } else {
+ // Established these invariants above.
+ assert(BeginOffset == NewAllocaBeginOffset);
+ assert(EndOffset == NewAllocaEndOffset);
+
+ V = getIntegerSplat(II.getValue(), TD.getTypeSizeInBits(ScalarTy) / 8);
+ if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy))
+ V = getVectorSplat(V, AllocaVecTy->getNumElements());
- if (V->getType() != AllocaTy)
V = convertValue(TD, IRB, V, AllocaTy);
+ }
Value *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
II.isVolatile());
@@ -2769,7 +2835,6 @@ private:
// them into two categories: split intrinsics and unsplit intrinsics.
DEBUG(dbgs() << " original: " << II << "\n");
- IRBuilder<> IRB(&II);
assert(II.getRawSource() == OldPtr || II.getRawDest() == OldPtr);
bool IsDest = II.getRawDest() == OldPtr;
@@ -2840,37 +2905,21 @@ private:
// Record this instruction for deletion.
Pass.DeadInsts.insert(&II);
- bool IsWholeAlloca = BeginOffset == NewAllocaBeginOffset &&
- EndOffset == NewAllocaEndOffset;
- bool IsVectorElement = VecTy && !IsWholeAlloca;
- uint64_t Size = EndOffset - BeginOffset;
- IntegerType *SubIntTy
- = IntTy ? Type::getIntNTy(IntTy->getContext(), Size*8) : 0;
-
- Type *OtherPtrTy = IsDest ? II.getRawSource()->getType()
- : II.getRawDest()->getType();
- if (!EmitMemCpy) {
- if (IsVectorElement)
- OtherPtrTy = VecTy->getElementType()->getPointerTo();
- else if (IntTy && !IsWholeAlloca)
- OtherPtrTy = SubIntTy->getPointerTo();
- else
- OtherPtrTy = NewAI.getType();
- }
-
- // Compute the other pointer, folding as much as possible to produce
- // a single, simple GEP in most cases.
- Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
- OtherPtr = getAdjustedPtr(IRB, TD, OtherPtr, RelOffset, OtherPtrTy,
- getName("." + OtherPtr->getName()));
-
// Strip all inbounds GEPs and pointer casts to try to dig out any root
// alloca that should be re-examined after rewriting this instruction.
+ Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
if (AllocaInst *AI
= dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets()))
Pass.Worklist.insert(AI);
if (EmitMemCpy) {
+ Type *OtherPtrTy = IsDest ? II.getRawSource()->getType()
+ : II.getRawDest()->getType();
+
+ // Compute the other pointer, folding as much as possible to produce
+ // a single, simple GEP in most cases.
+ OtherPtr = getAdjustedPtr(IRB, TD, OtherPtr, RelOffset, OtherPtrTy);
+
Value *OurPtr
= getAdjustedAllocaPtr(IRB, IsDest ? II.getRawDest()->getType()
: II.getRawSource()->getType());
@@ -2891,48 +2940,63 @@ private:
if (!Align)
Align = 1;
- Value *SrcPtr = OtherPtr;
+ bool IsWholeAlloca = BeginOffset == NewAllocaBeginOffset &&
+ EndOffset == NewAllocaEndOffset;
+ uint64_t Size = EndOffset - BeginOffset;
+ unsigned BeginIndex = VecTy ? getIndex(BeginOffset) : 0;
+ unsigned EndIndex = VecTy ? getIndex(EndOffset) : 0;
+ unsigned NumElements = EndIndex - BeginIndex;
+ IntegerType *SubIntTy
+ = IntTy ? Type::getIntNTy(IntTy->getContext(), Size*8) : 0;
+
+ Type *OtherPtrTy = NewAI.getType();
+ if (VecTy && !IsWholeAlloca) {
+ if (NumElements == 1)
+ OtherPtrTy = VecTy->getElementType();
+ else
+ OtherPtrTy = VectorType::get(VecTy->getElementType(), NumElements);
+
+ OtherPtrTy = OtherPtrTy->getPointerTo();
+ } else if (IntTy && !IsWholeAlloca) {
+ OtherPtrTy = SubIntTy->getPointerTo();
+ }
+
+ Value *SrcPtr = getAdjustedPtr(IRB, TD, OtherPtr, RelOffset, OtherPtrTy);
Value *DstPtr = &NewAI;
if (!IsDest)
std::swap(SrcPtr, DstPtr);
Value *Src;
- if (IsVectorElement && !IsDest) {
- // We have to extract rather than load.
- Src = IRB.CreateExtractElement(
- IRB.CreateAlignedLoad(SrcPtr, Align, getName(".copyload")),
- getIndex(IRB, BeginOffset),
- getName(".copyextract"));
+ if (VecTy && !IsWholeAlloca && !IsDest) {
+ Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
+ "load");
+ Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec");
} else if (IntTy && !IsWholeAlloca && !IsDest) {
Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
- getName(".load"));
+ "load");
Src = convertValue(TD, IRB, Src, IntTy);
assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
- Src = extractInteger(TD, IRB, Src, SubIntTy, Offset, getName(".extract"));
+ Src = extractInteger(TD, IRB, Src, SubIntTy, Offset, "extract");
} else {
Src = IRB.CreateAlignedLoad(SrcPtr, Align, II.isVolatile(),
- getName(".copyload"));
+ "copyload");
}
- if (IntTy && !IsWholeAlloca && IsDest) {
+ if (VecTy && !IsWholeAlloca && IsDest) {
Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
- getName(".oldload"));
+ "oldload");
+ Src = insertVector(IRB, Old, Src, BeginIndex, "vec");
+ } else if (IntTy && !IsWholeAlloca && IsDest) {
+ Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
+ "oldload");
Old = convertValue(TD, IRB, Old, IntTy);
assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
- Src = insertInteger(TD, IRB, Old, Src, Offset, getName(".insert"));
+ Src = insertInteger(TD, IRB, Old, Src, Offset, "insert");
Src = convertValue(TD, IRB, Src, NewAllocaTy);
}
- if (IsVectorElement && IsDest) {
- // We have to insert into a loaded copy before storing.
- Src = IRB.CreateInsertElement(
- IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), getName(".load")),
- Src, getIndex(IRB, BeginOffset),
- getName(".insert"));
- }
-
StoreInst *Store = cast<StoreInst>(
IRB.CreateAlignedStore(Src, DstPtr, Align, II.isVolatile()));
(void)Store;
@@ -2944,7 +3008,6 @@ private:
assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
II.getIntrinsicID() == Intrinsic::lifetime_end);
DEBUG(dbgs() << " original: " << II << "\n");
- IRBuilder<> IRB(&II);
assert(II.getArgOperand(1) == OldPtr);
// Record this instruction for deletion.
@@ -2960,6 +3023,7 @@ private:
else
New = IRB.CreateLifetimeEnd(Ptr, Size);
+ (void)New;
DEBUG(dbgs() << " to: " << *New << "\n");
return true;
}
@@ -2971,7 +3035,9 @@ private:
// as local as possible to the PHI. To do that, we re-use the location of
// the old pointer, which necessarily must be in the right position to
// dominate the PHI.
- IRBuilder<> PtrBuilder(cast<Instruction>(OldPtr));
+ IRBuilderTy PtrBuilder(cast<Instruction>(OldPtr));
+ PtrBuilder.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) +
+ ".");
Value *NewPtr = getAdjustedAllocaPtr(PtrBuilder, OldPtr->getType());
// Replace the operands which were using the old pointer.
@@ -2984,7 +3050,6 @@ private:
bool visitSelectInst(SelectInst &SI) {
DEBUG(dbgs() << " original: " << SI << "\n");
- IRBuilder<> IRB(&SI);
// Find the operand we need to rewrite here.
bool IsTrueVal = SI.getTrueValue() == OldPtr;
@@ -3059,7 +3124,7 @@ private:
class OpSplitter {
protected:
/// The builder used to form new instructions.
- IRBuilder<> IRB;
+ IRBuilderTy IRB;
/// The indices which to be used with insert- or extractvalue to select the
/// appropriate value within the aggregate.
SmallVector<unsigned, 4> Indices;
@@ -3136,9 +3201,8 @@ private:
void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
assert(Ty->isSingleValueType());
// Load the single value and insert it using the indices.
- Value *Load = IRB.CreateLoad(IRB.CreateInBoundsGEP(Ptr, GEPIndices,
- Name + ".gep"),
- Name + ".load");
+ Value *GEP = IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep");
+ Value *Load = IRB.CreateLoad(GEP, Name + ".load");
Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
DEBUG(dbgs() << " to: " << *Load << "\n");
}
@@ -3272,12 +3336,13 @@ static Type *getTypePartition(const DataLayout &TD, Type *Ty,
Type *ElementTy = SeqTy->getElementType();
uint64_t ElementSize = TD.getTypeAllocSize(ElementTy);
uint64_t NumSkippedElements = Offset / ElementSize;
- if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy))
+ if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy)) {
if (NumSkippedElements >= ArrTy->getNumElements())
return 0;
- if (VectorType *VecTy = dyn_cast<VectorType>(SeqTy))
+ } else if (VectorType *VecTy = dyn_cast<VectorType>(SeqTy)) {
if (NumSkippedElements >= VecTy->getNumElements())
return 0;
+ }
Offset -= NumSkippedElements * ElementSize;
// First check if we need to recurse.
@@ -3375,7 +3440,7 @@ bool SROA::rewriteAllocaPartition(AllocaInst &AI,
for (AllocaPartitioning::use_iterator UI = P.use_begin(PI),
UE = P.use_end(PI);
UI != UE && !IsLive; ++UI)
- if (UI->U)
+ if (UI->getUse())
IsLive = true;
if (!IsLive)
return false; // No live uses left of this partition.
@@ -3411,7 +3476,7 @@ bool SROA::rewriteAllocaPartition(AllocaInst &AI,
// Check for the case where we're going to rewrite to a new alloca of the
// exact same type as the original, and with the same access offsets. In that
// case, re-use the existing alloca, but still run through the rewriter to
- // performe phi and select speculation.
+ // perform phi and select speculation.
AllocaInst *NewAI;
if (AllocaTy == AI.getAllocatedType()) {
assert(PI->BeginOffset == 0 &&
@@ -3578,7 +3643,7 @@ void SROA::deleteDeadInstructions(SmallPtrSet<AllocaInst*, 4> &DeletedAllocas) {
/// If there is a domtree available, we attempt to promote using the full power
/// of mem2reg. Otherwise, we build and use the AllocaPromoter above which is
/// based on the SSAUpdater utilities. This function returns whether any
-/// promotion occured.
+/// promotion occurred.
bool SROA::promoteAllocas(Function &F) {
if (PromotableAllocas.empty())
return false;
diff --git a/contrib/llvm/lib/Transforms/Scalar/Scalar.cpp b/contrib/llvm/lib/Transforms/Scalar/Scalar.cpp
index 39630fd..8a9c7da 100644
--- a/contrib/llvm/lib/Transforms/Scalar/Scalar.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/Scalar.cpp
@@ -13,14 +13,14 @@
//
//===----------------------------------------------------------------------===//
-#include "llvm-c/Transforms/Scalar.h"
+#include "llvm/Transforms/Scalar.h"
#include "llvm-c/Initialization.h"
-#include "llvm/InitializePasses.h"
-#include "llvm/PassManager.h"
+#include "llvm-c/Transforms/Scalar.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/Verifier.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Transforms/Scalar.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/PassManager.h"
using namespace llvm;
@@ -50,11 +50,6 @@ void llvm::initializeScalarOpts(PassRegistry &Registry) {
initializeLowerAtomicPass(Registry);
initializeLowerExpectIntrinsicPass(Registry);
initializeMemCpyOptPass(Registry);
- initializeObjCARCAliasAnalysisPass(Registry);
- initializeObjCARCAPElimPass(Registry);
- initializeObjCARCExpandPass(Registry);
- initializeObjCARCContractPass(Registry);
- initializeObjCARCOptPass(Registry);
initializeReassociatePass(Registry);
initializeRegToMemPass(Registry);
initializeSCCPPass(Registry);
diff --git a/contrib/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp b/contrib/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp
index a46d09c..e590a37 100644
--- a/contrib/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp
@@ -21,32 +21,32 @@
#define DEBUG_TYPE "scalarrepl"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Constants.h"
-#include "llvm/DIBuilder.h"
-#include "llvm/DebugInfo.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
-#include "llvm/Operator.h"
-#include "llvm/Pass.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/DIBuilder.h"
+#include "llvm/DebugInfo.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/Pass.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/DataLayout.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
diff --git a/contrib/llvm/lib/Transforms/Scalar/SimplifyCFGPass.cpp b/contrib/llvm/lib/Transforms/Scalar/SimplifyCFGPass.cpp
index 9f24bb6..c243d34 100644
--- a/contrib/llvm/lib/Transforms/Scalar/SimplifyCFGPass.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/SimplifyCFGPass.cpp
@@ -23,19 +23,19 @@
#define DEBUG_TYPE "simplifycfg"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Constants.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Module.h"
-#include "llvm/Attributes.h"
-#include "llvm/Support/CFG.h"
-#include "llvm/Pass.h"
-#include "llvm/DataLayout.h"
-#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/TargetTransformInfo.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
STATISTIC(NumSimpl, "Number of blocks simplified");
@@ -48,12 +48,19 @@ namespace {
}
virtual bool runOnFunction(Function &F);
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<TargetTransformInfo>();
+ }
};
}
char CFGSimplifyPass::ID = 0;
-INITIALIZE_PASS(CFGSimplifyPass, "simplifycfg",
- "Simplify the CFG", false, false)
+INITIALIZE_PASS_BEGIN(CFGSimplifyPass, "simplifycfg", "Simplify the CFG",
+ false, false)
+INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
+INITIALIZE_PASS_END(CFGSimplifyPass, "simplifycfg", "Simplify the CFG",
+ false, false)
// Public interface to the CFGSimplification pass
FunctionPass *llvm::createCFGSimplificationPass() {
@@ -111,13 +118,11 @@ static bool markAliveBlocks(BasicBlock *BB,
SmallVector<BasicBlock*, 128> Worklist;
Worklist.push_back(BB);
+ Reachable.insert(BB);
bool Changed = false;
do {
BB = Worklist.pop_back_val();
- if (!Reachable.insert(BB))
- continue;
-
// Do a quick scan of the basic block, turning any obviously unreachable
// instructions into LLVM unreachable insts. The instruction combining pass
// canonicalizes unreachable insts into stores to null or undef.
@@ -176,7 +181,8 @@ static bool markAliveBlocks(BasicBlock *BB,
Changed |= ConstantFoldTerminator(BB, true);
for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
- Worklist.push_back(*SI);
+ if (Reachable.insert(*SI))
+ Worklist.push_back(*SI);
} while (!Worklist.empty());
return Changed;
}
@@ -294,8 +300,8 @@ static bool mergeEmptyReturnBlocks(Function &F) {
/// iterativelySimplifyCFG - Call SimplifyCFG on all the blocks in the function,
/// iterating until no more changes are made.
-static bool iterativelySimplifyCFG(Function &F, const DataLayout *TD,
- const TargetTransformInfo *TTI) {
+static bool iterativelySimplifyCFG(Function &F, const TargetTransformInfo &TTI,
+ const DataLayout *TD) {
bool Changed = false;
bool LocalChange = true;
while (LocalChange) {
@@ -304,7 +310,7 @@ static bool iterativelySimplifyCFG(Function &F, const DataLayout *TD,
// Loop over all of the basic blocks and remove them if they are unneeded...
//
for (Function::iterator BBIt = F.begin(); BBIt != F.end(); ) {
- if (SimplifyCFG(BBIt++, TD, TTI)) {
+ if (SimplifyCFG(BBIt++, TTI, TD)) {
LocalChange = true;
++NumSimpl;
}
@@ -318,12 +324,11 @@ static bool iterativelySimplifyCFG(Function &F, const DataLayout *TD,
// simplify the CFG.
//
bool CFGSimplifyPass::runOnFunction(Function &F) {
+ const TargetTransformInfo &TTI = getAnalysis<TargetTransformInfo>();
const DataLayout *TD = getAnalysisIfAvailable<DataLayout>();
- const TargetTransformInfo *TTI =
- getAnalysisIfAvailable<TargetTransformInfo>();
bool EverChanged = removeUnreachableBlocksFromFn(F);
EverChanged |= mergeEmptyReturnBlocks(F);
- EverChanged |= iterativelySimplifyCFG(F, TD, TTI);
+ EverChanged |= iterativelySimplifyCFG(F, TTI, TD);
// If neither pass changed anything, we're done.
if (!EverChanged) return false;
@@ -337,7 +342,7 @@ bool CFGSimplifyPass::runOnFunction(Function &F) {
return true;
do {
- EverChanged = iterativelySimplifyCFG(F, TD, TTI);
+ EverChanged = iterativelySimplifyCFG(F, TTI, TD);
EverChanged |= removeUnreachableBlocksFromFn(F);
} while (EverChanged);
diff --git a/contrib/llvm/lib/Transforms/Scalar/SimplifyLibCalls.cpp b/contrib/llvm/lib/Transforms/Scalar/SimplifyLibCalls.cpp
index 17d07cd..3514e6c 100644
--- a/contrib/llvm/lib/Transforms/Scalar/SimplifyLibCalls.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/SimplifyLibCalls.cpp
@@ -17,32 +17,24 @@
#define DEBUG_TYPE "simplify-libcalls"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Utils/BuildLibCalls.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
-#include "llvm/Pass.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Config/config.h" // FIXME: Shouldn't depend on host!
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/DataLayout.h"
#include "llvm/Target/TargetLibraryInfo.h"
-#include "llvm/Config/config.h" // FIXME: Shouldn't depend on host!
+#include "llvm/Transforms/Utils/BuildLibCalls.h"
using namespace llvm;
-STATISTIC(NumSimplified, "Number of library calls simplified");
-STATISTIC(NumAnnotated, "Number of attributes added to library functions");
-static cl::opt<bool> UnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
- cl::init(false),
- cl::desc("Enable unsafe double to float "
- "shrinking for math lib calls"));
//===----------------------------------------------------------------------===//
// Optimizer Base Class
//===----------------------------------------------------------------------===//
@@ -87,677 +79,6 @@ public:
//===----------------------------------------------------------------------===//
-// Helper Functions
-//===----------------------------------------------------------------------===//
-
-static bool CallHasFloatingPointArgument(const CallInst *CI) {
- for (CallInst::const_op_iterator it = CI->op_begin(), e = CI->op_end();
- it != e; ++it) {
- if ((*it)->getType()->isFloatingPointTy())
- return true;
- }
- return false;
-}
-
-namespace {
-//===----------------------------------------------------------------------===//
-// Math Library Optimizations
-//===----------------------------------------------------------------------===//
-
-//===---------------------------------------===//
-// Double -> Float Shrinking Optimizations for Unary Functions like 'floor'
-
-struct UnaryDoubleFPOpt : public LibCallOptimization {
- bool CheckRetType;
- UnaryDoubleFPOpt(bool CheckReturnType): CheckRetType(CheckReturnType) {}
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
- !FT->getParamType(0)->isDoubleTy())
- return 0;
-
- if (CheckRetType) {
- // Check if all the uses for function like 'sin' are converted to float.
- for (Value::use_iterator UseI = CI->use_begin(); UseI != CI->use_end();
- ++UseI) {
- FPTruncInst *Cast = dyn_cast<FPTruncInst>(*UseI);
- if (Cast == 0 || !Cast->getType()->isFloatTy())
- return 0;
- }
- }
-
- // If this is something like 'floor((double)floatval)', convert to floorf.
- FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getArgOperand(0));
- if (Cast == 0 || !Cast->getOperand(0)->getType()->isFloatTy())
- return 0;
-
- // floor((double)floatval) -> (double)floorf(floatval)
- Value *V = Cast->getOperand(0);
- V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
- return B.CreateFPExt(V, B.getDoubleTy());
- }
-};
-
-//===---------------------------------------===//
-// 'cos*' Optimizations
-struct CosOpt : public LibCallOptimization {
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- Value *Ret = NULL;
- if (UnsafeFPShrink && Callee->getName() == "cos" &&
- TLI->has(LibFunc::cosf)) {
- UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
- Ret = UnsafeUnaryDoubleFP.CallOptimizer(Callee, CI, B);
- }
-
- FunctionType *FT = Callee->getFunctionType();
- // Just make sure this has 1 argument of FP type, which matches the
- // result type.
- if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
- !FT->getParamType(0)->isFloatingPointTy())
- return Ret;
-
- // cos(-x) -> cos(x)
- Value *Op1 = CI->getArgOperand(0);
- if (BinaryOperator::isFNeg(Op1)) {
- BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
- return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
- }
- return Ret;
- }
-};
-
-//===---------------------------------------===//
-// 'pow*' Optimizations
-
-struct PowOpt : public LibCallOptimization {
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- Value *Ret = NULL;
- if (UnsafeFPShrink && Callee->getName() == "pow" &&
- TLI->has(LibFunc::powf)) {
- UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
- Ret = UnsafeUnaryDoubleFP.CallOptimizer(Callee, CI, B);
- }
-
- FunctionType *FT = Callee->getFunctionType();
- // Just make sure this has 2 arguments of the same FP type, which match the
- // result type.
- if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
- FT->getParamType(0) != FT->getParamType(1) ||
- !FT->getParamType(0)->isFloatingPointTy())
- return Ret;
-
- Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
- if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
- if (Op1C->isExactlyValue(1.0)) // pow(1.0, x) -> 1.0
- return Op1C;
- if (Op1C->isExactlyValue(2.0)) // pow(2.0, x) -> exp2(x)
- return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes());
- }
-
- ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
- if (Op2C == 0) return Ret;
-
- if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
- return ConstantFP::get(CI->getType(), 1.0);
-
- if (Op2C->isExactlyValue(0.5)) {
- // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
- // This is faster than calling pow, and still handles negative zero
- // and negative infinity correctly.
- // TODO: In fast-math mode, this could be just sqrt(x).
- // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
- Value *Inf = ConstantFP::getInfinity(CI->getType());
- Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
- Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B,
- Callee->getAttributes());
- Value *FAbs = EmitUnaryFloatFnCall(Sqrt, "fabs", B,
- Callee->getAttributes());
- Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
- Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
- return Sel;
- }
-
- if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
- return Op1;
- if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
- return B.CreateFMul(Op1, Op1, "pow2");
- if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
- return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0),
- Op1, "powrecip");
- return 0;
- }
-};
-
-//===---------------------------------------===//
-// 'exp2' Optimizations
-
-struct Exp2Opt : public LibCallOptimization {
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- Value *Ret = NULL;
- if (UnsafeFPShrink && Callee->getName() == "exp2" &&
- TLI->has(LibFunc::exp2)) {
- UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
- Ret = UnsafeUnaryDoubleFP.CallOptimizer(Callee, CI, B);
- }
-
- FunctionType *FT = Callee->getFunctionType();
- // Just make sure this has 1 argument of FP type, which matches the
- // result type.
- if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
- !FT->getParamType(0)->isFloatingPointTy())
- return Ret;
-
- Value *Op = CI->getArgOperand(0);
- // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32
- // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32
- Value *LdExpArg = 0;
- if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
- if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
- LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
- } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
- if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
- LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
- }
-
- if (LdExpArg) {
- const char *Name;
- if (Op->getType()->isFloatTy())
- Name = "ldexpf";
- else if (Op->getType()->isDoubleTy())
- Name = "ldexp";
- else
- Name = "ldexpl";
-
- Constant *One = ConstantFP::get(*Context, APFloat(1.0f));
- if (!Op->getType()->isFloatTy())
- One = ConstantExpr::getFPExtend(One, Op->getType());
-
- Module *M = Caller->getParent();
- Value *Callee = M->getOrInsertFunction(Name, Op->getType(),
- Op->getType(),
- B.getInt32Ty(), NULL);
- CallInst *CI = B.CreateCall2(Callee, One, LdExpArg);
- if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
- CI->setCallingConv(F->getCallingConv());
-
- return CI;
- }
- return Ret;
- }
-};
-
-//===----------------------------------------------------------------------===//
-// Integer Optimizations
-//===----------------------------------------------------------------------===//
-
-//===---------------------------------------===//
-// 'ffs*' Optimizations
-
-struct FFSOpt : public LibCallOptimization {
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- FunctionType *FT = Callee->getFunctionType();
- // Just make sure this has 2 arguments of the same FP type, which match the
- // result type.
- if (FT->getNumParams() != 1 ||
- !FT->getReturnType()->isIntegerTy(32) ||
- !FT->getParamType(0)->isIntegerTy())
- return 0;
-
- Value *Op = CI->getArgOperand(0);
-
- // Constant fold.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
- if (CI->isZero()) // ffs(0) -> 0.
- return B.getInt32(0);
- // ffs(c) -> cttz(c)+1
- return B.getInt32(CI->getValue().countTrailingZeros() + 1);
- }
-
- // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
- Type *ArgType = Op->getType();
- Value *F = Intrinsic::getDeclaration(Callee->getParent(),
- Intrinsic::cttz, ArgType);
- Value *V = B.CreateCall2(F, Op, B.getFalse(), "cttz");
- V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
- V = B.CreateIntCast(V, B.getInt32Ty(), false);
-
- Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
- return B.CreateSelect(Cond, V, B.getInt32(0));
- }
-};
-
-//===---------------------------------------===//
-// 'isdigit' Optimizations
-
-struct IsDigitOpt : public LibCallOptimization {
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- FunctionType *FT = Callee->getFunctionType();
- // We require integer(i32)
- if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
- !FT->getParamType(0)->isIntegerTy(32))
- return 0;
-
- // isdigit(c) -> (c-'0') <u 10
- Value *Op = CI->getArgOperand(0);
- Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
- Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
- return B.CreateZExt(Op, CI->getType());
- }
-};
-
-//===---------------------------------------===//
-// 'isascii' Optimizations
-
-struct IsAsciiOpt : public LibCallOptimization {
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- FunctionType *FT = Callee->getFunctionType();
- // We require integer(i32)
- if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
- !FT->getParamType(0)->isIntegerTy(32))
- return 0;
-
- // isascii(c) -> c <u 128
- Value *Op = CI->getArgOperand(0);
- Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
- return B.CreateZExt(Op, CI->getType());
- }
-};
-
-//===---------------------------------------===//
-// 'abs', 'labs', 'llabs' Optimizations
-
-struct AbsOpt : public LibCallOptimization {
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- FunctionType *FT = Callee->getFunctionType();
- // We require integer(integer) where the types agree.
- if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
- FT->getParamType(0) != FT->getReturnType())
- return 0;
-
- // abs(x) -> x >s -1 ? x : -x
- Value *Op = CI->getArgOperand(0);
- Value *Pos = B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()),
- "ispos");
- Value *Neg = B.CreateNeg(Op, "neg");
- return B.CreateSelect(Pos, Op, Neg);
- }
-};
-
-
-//===---------------------------------------===//
-// 'toascii' Optimizations
-
-struct ToAsciiOpt : public LibCallOptimization {
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- FunctionType *FT = Callee->getFunctionType();
- // We require i32(i32)
- if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
- !FT->getParamType(0)->isIntegerTy(32))
- return 0;
-
- // isascii(c) -> c & 0x7f
- return B.CreateAnd(CI->getArgOperand(0),
- ConstantInt::get(CI->getType(),0x7F));
- }
-};
-
-//===----------------------------------------------------------------------===//
-// Formatting and IO Optimizations
-//===----------------------------------------------------------------------===//
-
-//===---------------------------------------===//
-// 'printf' Optimizations
-
-struct PrintFOpt : public LibCallOptimization {
- Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI,
- IRBuilder<> &B) {
- // Check for a fixed format string.
- StringRef FormatStr;
- if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
- return 0;
-
- // Empty format string -> noop.
- if (FormatStr.empty()) // Tolerate printf's declared void.
- return CI->use_empty() ? (Value*)CI :
- ConstantInt::get(CI->getType(), 0);
-
- // Do not do any of the following transformations if the printf return value
- // is used, in general the printf return value is not compatible with either
- // putchar() or puts().
- if (!CI->use_empty())
- return 0;
-
- // printf("x") -> putchar('x'), even for '%'.
- if (FormatStr.size() == 1) {
- Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, TD, TLI);
- if (CI->use_empty() || !Res) return Res;
- return B.CreateIntCast(Res, CI->getType(), true);
- }
-
- // printf("foo\n") --> puts("foo")
- if (FormatStr[FormatStr.size()-1] == '\n' &&
- FormatStr.find('%') == std::string::npos) { // no format characters.
- // Create a string literal with no \n on it. We expect the constant merge
- // pass to be run after this pass, to merge duplicate strings.
- FormatStr = FormatStr.drop_back();
- Value *GV = B.CreateGlobalString(FormatStr, "str");
- Value *NewCI = EmitPutS(GV, B, TD, TLI);
- return (CI->use_empty() || !NewCI) ?
- NewCI :
- ConstantInt::get(CI->getType(), FormatStr.size()+1);
- }
-
- // Optimize specific format strings.
- // printf("%c", chr) --> putchar(chr)
- if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
- CI->getArgOperand(1)->getType()->isIntegerTy()) {
- Value *Res = EmitPutChar(CI->getArgOperand(1), B, TD, TLI);
-
- if (CI->use_empty() || !Res) return Res;
- return B.CreateIntCast(Res, CI->getType(), true);
- }
-
- // printf("%s\n", str) --> puts(str)
- if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
- CI->getArgOperand(1)->getType()->isPointerTy()) {
- return EmitPutS(CI->getArgOperand(1), B, TD, TLI);
- }
- return 0;
- }
-
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- // Require one fixed pointer argument and an integer/void result.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
- !(FT->getReturnType()->isIntegerTy() ||
- FT->getReturnType()->isVoidTy()))
- return 0;
-
- if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) {
- return V;
- }
-
- // printf(format, ...) -> iprintf(format, ...) if no floating point
- // arguments.
- if (TLI->has(LibFunc::iprintf) && !CallHasFloatingPointArgument(CI)) {
- Module *M = B.GetInsertBlock()->getParent()->getParent();
- Constant *IPrintFFn =
- M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
- CallInst *New = cast<CallInst>(CI->clone());
- New->setCalledFunction(IPrintFFn);
- B.Insert(New);
- return New;
- }
- return 0;
- }
-};
-
-//===---------------------------------------===//
-// 'sprintf' Optimizations
-
-struct SPrintFOpt : public LibCallOptimization {
- Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI,
- IRBuilder<> &B) {
- // Check for a fixed format string.
- StringRef FormatStr;
- if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
- return 0;
-
- // If we just have a format string (nothing else crazy) transform it.
- if (CI->getNumArgOperands() == 2) {
- // Make sure there's no % in the constant array. We could try to handle
- // %% -> % in the future if we cared.
- for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
- if (FormatStr[i] == '%')
- return 0; // we found a format specifier, bail out.
-
- // These optimizations require DataLayout.
- if (!TD) return 0;
-
- // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
- B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
- ConstantInt::get(TD->getIntPtrType(*Context), // Copy the
- FormatStr.size() + 1), 1); // nul byte.
- return ConstantInt::get(CI->getType(), FormatStr.size());
- }
-
- // The remaining optimizations require the format string to be "%s" or "%c"
- // and have an extra operand.
- if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
- CI->getNumArgOperands() < 3)
- return 0;
-
- // Decode the second character of the format string.
- if (FormatStr[1] == 'c') {
- // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
- if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return 0;
- Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
- Value *Ptr = CastToCStr(CI->getArgOperand(0), B);
- B.CreateStore(V, Ptr);
- Ptr = B.CreateGEP(Ptr, B.getInt32(1), "nul");
- B.CreateStore(B.getInt8(0), Ptr);
-
- return ConstantInt::get(CI->getType(), 1);
- }
-
- if (FormatStr[1] == 's') {
- // These optimizations require DataLayout.
- if (!TD) return 0;
-
- // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
- if (!CI->getArgOperand(2)->getType()->isPointerTy()) return 0;
-
- Value *Len = EmitStrLen(CI->getArgOperand(2), B, TD, TLI);
- if (!Len)
- return 0;
- Value *IncLen = B.CreateAdd(Len,
- ConstantInt::get(Len->getType(), 1),
- "leninc");
- B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
-
- // The sprintf result is the unincremented number of bytes in the string.
- return B.CreateIntCast(Len, CI->getType(), false);
- }
- return 0;
- }
-
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- // Require two fixed pointer arguments and an integer result.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
- !FT->getParamType(1)->isPointerTy() ||
- !FT->getReturnType()->isIntegerTy())
- return 0;
-
- if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) {
- return V;
- }
-
- // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
- // point arguments.
- if (TLI->has(LibFunc::siprintf) && !CallHasFloatingPointArgument(CI)) {
- Module *M = B.GetInsertBlock()->getParent()->getParent();
- Constant *SIPrintFFn =
- M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
- CallInst *New = cast<CallInst>(CI->clone());
- New->setCalledFunction(SIPrintFFn);
- B.Insert(New);
- return New;
- }
- return 0;
- }
-};
-
-//===---------------------------------------===//
-// 'fwrite' Optimizations
-
-struct FWriteOpt : public LibCallOptimization {
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- // Require a pointer, an integer, an integer, a pointer, returning integer.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() ||
- !FT->getParamType(1)->isIntegerTy() ||
- !FT->getParamType(2)->isIntegerTy() ||
- !FT->getParamType(3)->isPointerTy() ||
- !FT->getReturnType()->isIntegerTy())
- return 0;
-
- // Get the element size and count.
- ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
- ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
- if (!SizeC || !CountC) return 0;
- uint64_t Bytes = SizeC->getZExtValue()*CountC->getZExtValue();
-
- // If this is writing zero records, remove the call (it's a noop).
- if (Bytes == 0)
- return ConstantInt::get(CI->getType(), 0);
-
- // If this is writing one byte, turn it into fputc.
- // This optimisation is only valid, if the return value is unused.
- if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
- Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char");
- Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, TD, TLI);
- return NewCI ? ConstantInt::get(CI->getType(), 1) : 0;
- }
-
- return 0;
- }
-};
-
-//===---------------------------------------===//
-// 'fputs' Optimizations
-
-struct FPutsOpt : public LibCallOptimization {
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- // These optimizations require DataLayout.
- if (!TD) return 0;
-
- // Require two pointers. Also, we can't optimize if return value is used.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
- !FT->getParamType(1)->isPointerTy() ||
- !CI->use_empty())
- return 0;
-
- // fputs(s,F) --> fwrite(s,1,strlen(s),F)
- uint64_t Len = GetStringLength(CI->getArgOperand(0));
- if (!Len) return 0;
- // Known to have no uses (see above).
- return EmitFWrite(CI->getArgOperand(0),
- ConstantInt::get(TD->getIntPtrType(*Context), Len-1),
- CI->getArgOperand(1), B, TD, TLI);
- }
-};
-
-//===---------------------------------------===//
-// 'fprintf' Optimizations
-
-struct FPrintFOpt : public LibCallOptimization {
- Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI,
- IRBuilder<> &B) {
- // All the optimizations depend on the format string.
- StringRef FormatStr;
- if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
- return 0;
-
- // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
- if (CI->getNumArgOperands() == 2) {
- for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
- if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
- return 0; // We found a format specifier.
-
- // These optimizations require DataLayout.
- if (!TD) return 0;
-
- Value *NewCI = EmitFWrite(CI->getArgOperand(1),
- ConstantInt::get(TD->getIntPtrType(*Context),
- FormatStr.size()),
- CI->getArgOperand(0), B, TD, TLI);
- return NewCI ? ConstantInt::get(CI->getType(), FormatStr.size()) : 0;
- }
-
- // The remaining optimizations require the format string to be "%s" or "%c"
- // and have an extra operand.
- if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
- CI->getNumArgOperands() < 3)
- return 0;
-
- // Decode the second character of the format string.
- if (FormatStr[1] == 'c') {
- // fprintf(F, "%c", chr) --> fputc(chr, F)
- if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return 0;
- Value *NewCI = EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B,
- TD, TLI);
- return NewCI ? ConstantInt::get(CI->getType(), 1) : 0;
- }
-
- if (FormatStr[1] == 's') {
- // fprintf(F, "%s", str) --> fputs(str, F)
- if (!CI->getArgOperand(2)->getType()->isPointerTy() || !CI->use_empty())
- return 0;
- return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TD, TLI);
- }
- return 0;
- }
-
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- // Require two fixed paramters as pointers and integer result.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
- !FT->getParamType(1)->isPointerTy() ||
- !FT->getReturnType()->isIntegerTy())
- return 0;
-
- if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) {
- return V;
- }
-
- // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
- // floating point arguments.
- if (TLI->has(LibFunc::fiprintf) && !CallHasFloatingPointArgument(CI)) {
- Module *M = B.GetInsertBlock()->getParent()->getParent();
- Constant *FIPrintFFn =
- M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
- CallInst *New = cast<CallInst>(CI->clone());
- New->setCalledFunction(FIPrintFFn);
- B.Insert(New);
- return New;
- }
- return 0;
- }
-};
-
-//===---------------------------------------===//
-// 'puts' Optimizations
-
-struct PutsOpt : public LibCallOptimization {
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- // Require one fixed pointer argument and an integer/void result.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
- !(FT->getReturnType()->isIntegerTy() ||
- FT->getReturnType()->isVoidTy()))
- return 0;
-
- // Check for a constant string.
- StringRef Str;
- if (!getConstantStringInfo(CI->getArgOperand(0), Str))
- return 0;
-
- if (Str.empty() && CI->use_empty()) {
- // puts("") -> putchar('\n')
- Value *Res = EmitPutChar(B.getInt32('\n'), B, TD, TLI);
- if (CI->use_empty() || !Res) return Res;
- return B.CreateIntCast(Res, CI->getType(), true);
- }
-
- return 0;
- }
-};
-
-} // end anonymous namespace.
-
-//===----------------------------------------------------------------------===//
// SimplifyLibCalls Pass Implementation
//===----------------------------------------------------------------------===//
@@ -768,22 +89,9 @@ namespace {
TargetLibraryInfo *TLI;
StringMap<LibCallOptimization*> Optimizations;
- // Math Library Optimizations
- CosOpt Cos; PowOpt Pow; Exp2Opt Exp2;
- UnaryDoubleFPOpt UnaryDoubleFP, UnsafeUnaryDoubleFP;
- // Integer Optimizations
- FFSOpt FFS; AbsOpt Abs; IsDigitOpt IsDigit; IsAsciiOpt IsAscii;
- ToAsciiOpt ToAscii;
- // Formatting and IO Optimizations
- SPrintFOpt SPrintF; PrintFOpt PrintF;
- FWriteOpt FWrite; FPutsOpt FPuts; FPrintFOpt FPrintF;
- PutsOpt Puts;
-
- bool Modified; // This is only used by doInitialization.
public:
static char ID; // Pass identification
- SimplifyLibCalls() : FunctionPass(ID), UnaryDoubleFP(false),
- UnsafeUnaryDoubleFP(true) {
+ SimplifyLibCalls() : FunctionPass(ID) {
initializeSimplifyLibCallsPass(*PassRegistry::getPassRegistry());
}
void AddOpt(LibFunc::Func F, LibCallOptimization* Opt);
@@ -792,14 +100,6 @@ namespace {
void InitOptimizations();
bool runOnFunction(Function &F);
- void setDoesNotAccessMemory(Function &F);
- void setOnlyReadsMemory(Function &F);
- void setDoesNotThrow(Function &F);
- void setDoesNotCapture(Function &F, unsigned n);
- void setDoesNotAlias(Function &F, unsigned n);
- bool doInitialization(Module &M);
-
- void inferPrototypeAttributes(Function &F);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<TargetLibraryInfo>();
}
@@ -833,77 +133,6 @@ void SimplifyLibCalls::AddOpt(LibFunc::Func F1, LibFunc::Func F2,
/// Optimizations - Populate the Optimizations map with all the optimizations
/// we know.
void SimplifyLibCalls::InitOptimizations() {
- // Math Library Optimizations
- Optimizations["cosf"] = &Cos;
- Optimizations["cos"] = &Cos;
- Optimizations["cosl"] = &Cos;
- Optimizations["powf"] = &Pow;
- Optimizations["pow"] = &Pow;
- Optimizations["powl"] = &Pow;
- Optimizations["llvm.pow.f32"] = &Pow;
- Optimizations["llvm.pow.f64"] = &Pow;
- Optimizations["llvm.pow.f80"] = &Pow;
- Optimizations["llvm.pow.f128"] = &Pow;
- Optimizations["llvm.pow.ppcf128"] = &Pow;
- Optimizations["exp2l"] = &Exp2;
- Optimizations["exp2"] = &Exp2;
- Optimizations["exp2f"] = &Exp2;
- Optimizations["llvm.exp2.ppcf128"] = &Exp2;
- Optimizations["llvm.exp2.f128"] = &Exp2;
- Optimizations["llvm.exp2.f80"] = &Exp2;
- Optimizations["llvm.exp2.f64"] = &Exp2;
- Optimizations["llvm.exp2.f32"] = &Exp2;
-
- AddOpt(LibFunc::ceil, LibFunc::ceilf, &UnaryDoubleFP);
- AddOpt(LibFunc::fabs, LibFunc::fabsf, &UnaryDoubleFP);
- AddOpt(LibFunc::floor, LibFunc::floorf, &UnaryDoubleFP);
- AddOpt(LibFunc::rint, LibFunc::rintf, &UnaryDoubleFP);
- AddOpt(LibFunc::round, LibFunc::roundf, &UnaryDoubleFP);
- AddOpt(LibFunc::nearbyint, LibFunc::nearbyintf, &UnaryDoubleFP);
- AddOpt(LibFunc::trunc, LibFunc::truncf, &UnaryDoubleFP);
-
- if(UnsafeFPShrink) {
- AddOpt(LibFunc::acos, LibFunc::acosf, &UnsafeUnaryDoubleFP);
- AddOpt(LibFunc::acosh, LibFunc::acoshf, &UnsafeUnaryDoubleFP);
- AddOpt(LibFunc::asin, LibFunc::asinf, &UnsafeUnaryDoubleFP);
- AddOpt(LibFunc::asinh, LibFunc::asinhf, &UnsafeUnaryDoubleFP);
- AddOpt(LibFunc::atan, LibFunc::atanf, &UnsafeUnaryDoubleFP);
- AddOpt(LibFunc::atanh, LibFunc::atanhf, &UnsafeUnaryDoubleFP);
- AddOpt(LibFunc::cbrt, LibFunc::cbrtf, &UnsafeUnaryDoubleFP);
- AddOpt(LibFunc::cosh, LibFunc::coshf, &UnsafeUnaryDoubleFP);
- AddOpt(LibFunc::exp, LibFunc::expf, &UnsafeUnaryDoubleFP);
- AddOpt(LibFunc::exp10, LibFunc::exp10f, &UnsafeUnaryDoubleFP);
- AddOpt(LibFunc::expm1, LibFunc::expm1f, &UnsafeUnaryDoubleFP);
- AddOpt(LibFunc::log, LibFunc::logf, &UnsafeUnaryDoubleFP);
- AddOpt(LibFunc::log10, LibFunc::log10f, &UnsafeUnaryDoubleFP);
- AddOpt(LibFunc::log1p, LibFunc::log1pf, &UnsafeUnaryDoubleFP);
- AddOpt(LibFunc::log2, LibFunc::log2f, &UnsafeUnaryDoubleFP);
- AddOpt(LibFunc::logb, LibFunc::logbf, &UnsafeUnaryDoubleFP);
- AddOpt(LibFunc::sin, LibFunc::sinf, &UnsafeUnaryDoubleFP);
- AddOpt(LibFunc::sinh, LibFunc::sinhf, &UnsafeUnaryDoubleFP);
- AddOpt(LibFunc::sqrt, LibFunc::sqrtf, &UnsafeUnaryDoubleFP);
- AddOpt(LibFunc::tan, LibFunc::tanf, &UnsafeUnaryDoubleFP);
- AddOpt(LibFunc::tanh, LibFunc::tanhf, &UnsafeUnaryDoubleFP);
- }
-
- // Integer Optimizations
- Optimizations["ffs"] = &FFS;
- Optimizations["ffsl"] = &FFS;
- Optimizations["ffsll"] = &FFS;
- Optimizations["abs"] = &Abs;
- Optimizations["labs"] = &Abs;
- Optimizations["llabs"] = &Abs;
- Optimizations["isdigit"] = &IsDigit;
- Optimizations["isascii"] = &IsAscii;
- Optimizations["toascii"] = &ToAscii;
-
- // Formatting and IO Optimizations
- Optimizations["sprintf"] = &SPrintF;
- Optimizations["printf"] = &PrintF;
- AddOpt(LibFunc::fwrite, &FWrite);
- AddOpt(LibFunc::fputs, &FPuts);
- Optimizations["fprintf"] = &FPrintF;
- Optimizations["puts"] = &Puts;
}
@@ -924,7 +153,7 @@ bool SimplifyLibCalls::runOnFunction(Function &F) {
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
// Ignore non-calls.
CallInst *CI = dyn_cast<CallInst>(I++);
- if (!CI) continue;
+ if (!CI || CI->hasFnAttr(Attribute::NoBuiltin)) continue;
// Ignore indirect calls and calls to non-external functions.
Function *Callee = CI->getCalledFunction();
@@ -951,7 +180,6 @@ bool SimplifyLibCalls::runOnFunction(Function &F) {
// Something changed!
Changed = true;
- ++NumSimplified;
// Inspect the instruction after the call (which was potentially just
// added) next.
@@ -968,697 +196,6 @@ bool SimplifyLibCalls::runOnFunction(Function &F) {
return Changed;
}
-// Utility methods for doInitialization.
-
-void SimplifyLibCalls::setDoesNotAccessMemory(Function &F) {
- if (!F.doesNotAccessMemory()) {
- F.setDoesNotAccessMemory();
- ++NumAnnotated;
- Modified = true;
- }
-}
-void SimplifyLibCalls::setOnlyReadsMemory(Function &F) {
- if (!F.onlyReadsMemory()) {
- F.setOnlyReadsMemory();
- ++NumAnnotated;
- Modified = true;
- }
-}
-void SimplifyLibCalls::setDoesNotThrow(Function &F) {
- if (!F.doesNotThrow()) {
- F.setDoesNotThrow();
- ++NumAnnotated;
- Modified = true;
- }
-}
-void SimplifyLibCalls::setDoesNotCapture(Function &F, unsigned n) {
- if (!F.doesNotCapture(n)) {
- F.setDoesNotCapture(n);
- ++NumAnnotated;
- Modified = true;
- }
-}
-void SimplifyLibCalls::setDoesNotAlias(Function &F, unsigned n) {
- if (!F.doesNotAlias(n)) {
- F.setDoesNotAlias(n);
- ++NumAnnotated;
- Modified = true;
- }
-}
-
-
-void SimplifyLibCalls::inferPrototypeAttributes(Function &F) {
- FunctionType *FTy = F.getFunctionType();
-
- StringRef Name = F.getName();
- switch (Name[0]) {
- case 's':
- if (Name == "strlen") {
- if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy())
- return;
- setOnlyReadsMemory(F);
- setDoesNotThrow(F);
- setDoesNotCapture(F, 1);
- } else if (Name == "strchr" ||
- Name == "strrchr") {
- if (FTy->getNumParams() != 2 ||
- !FTy->getParamType(0)->isPointerTy() ||
- !FTy->getParamType(1)->isIntegerTy())
- return;
- setOnlyReadsMemory(F);
- setDoesNotThrow(F);
- } else if (Name == "strcpy" ||
- Name == "stpcpy" ||
- Name == "strcat" ||
- Name == "strtol" ||
- Name == "strtod" ||
- Name == "strtof" ||
- Name == "strtoul" ||
- Name == "strtoll" ||
- Name == "strtold" ||
- Name == "strncat" ||
- Name == "strncpy" ||
- Name == "stpncpy" ||
- Name == "strtoull") {
- if (FTy->getNumParams() < 2 ||
- !FTy->getParamType(1)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 2);
- } else if (Name == "strxfrm") {
- if (FTy->getNumParams() != 3 ||
- !FTy->getParamType(0)->isPointerTy() ||
- !FTy->getParamType(1)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 1);
- setDoesNotCapture(F, 2);
- } else if (Name == "strcmp" ||
- Name == "strspn" ||
- Name == "strncmp" ||
- Name == "strcspn" ||
- Name == "strcoll" ||
- Name == "strcasecmp" ||
- Name == "strncasecmp") {
- if (FTy->getNumParams() < 2 ||
- !FTy->getParamType(0)->isPointerTy() ||
- !FTy->getParamType(1)->isPointerTy())
- return;
- setOnlyReadsMemory(F);
- setDoesNotThrow(F);
- setDoesNotCapture(F, 1);
- setDoesNotCapture(F, 2);
- } else if (Name == "strstr" ||
- Name == "strpbrk") {
- if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy())
- return;
- setOnlyReadsMemory(F);
- setDoesNotThrow(F);
- setDoesNotCapture(F, 2);
- } else if (Name == "strtok" ||
- Name == "strtok_r") {
- if (FTy->getNumParams() < 2 || !FTy->getParamType(1)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 2);
- } else if (Name == "scanf" ||
- Name == "setbuf" ||
- Name == "setvbuf") {
- if (FTy->getNumParams() < 1 || !FTy->getParamType(0)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 1);
- } else if (Name == "strdup" ||
- Name == "strndup") {
- if (FTy->getNumParams() < 1 || !FTy->getReturnType()->isPointerTy() ||
- !FTy->getParamType(0)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotAlias(F, 0);
- setDoesNotCapture(F, 1);
- } else if (Name == "stat" ||
- Name == "sscanf" ||
- Name == "sprintf" ||
- Name == "statvfs") {
- if (FTy->getNumParams() < 2 ||
- !FTy->getParamType(0)->isPointerTy() ||
- !FTy->getParamType(1)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 1);
- setDoesNotCapture(F, 2);
- } else if (Name == "snprintf") {
- if (FTy->getNumParams() != 3 ||
- !FTy->getParamType(0)->isPointerTy() ||
- !FTy->getParamType(2)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 1);
- setDoesNotCapture(F, 3);
- } else if (Name == "setitimer") {
- if (FTy->getNumParams() != 3 ||
- !FTy->getParamType(1)->isPointerTy() ||
- !FTy->getParamType(2)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 2);
- setDoesNotCapture(F, 3);
- } else if (Name == "system") {
- if (FTy->getNumParams() != 1 ||
- !FTy->getParamType(0)->isPointerTy())
- return;
- // May throw; "system" is a valid pthread cancellation point.
- setDoesNotCapture(F, 1);
- }
- break;
- case 'm':
- if (Name == "malloc") {
- if (FTy->getNumParams() != 1 ||
- !FTy->getReturnType()->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotAlias(F, 0);
- } else if (Name == "memcmp") {
- if (FTy->getNumParams() != 3 ||
- !FTy->getParamType(0)->isPointerTy() ||
- !FTy->getParamType(1)->isPointerTy())
- return;
- setOnlyReadsMemory(F);
- setDoesNotThrow(F);
- setDoesNotCapture(F, 1);
- setDoesNotCapture(F, 2);
- } else if (Name == "memchr" ||
- Name == "memrchr") {
- if (FTy->getNumParams() != 3)
- return;
- setOnlyReadsMemory(F);
- setDoesNotThrow(F);
- } else if (Name == "modf" ||
- Name == "modff" ||
- Name == "modfl" ||
- Name == "memcpy" ||
- Name == "memccpy" ||
- Name == "memmove") {
- if (FTy->getNumParams() < 2 ||
- !FTy->getParamType(1)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 2);
- } else if (Name == "memalign") {
- if (!FTy->getReturnType()->isPointerTy())
- return;
- setDoesNotAlias(F, 0);
- } else if (Name == "mkdir" ||
- Name == "mktime") {
- if (FTy->getNumParams() == 0 ||
- !FTy->getParamType(0)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 1);
- }
- break;
- case 'r':
- if (Name == "realloc") {
- if (FTy->getNumParams() != 2 ||
- !FTy->getParamType(0)->isPointerTy() ||
- !FTy->getReturnType()->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotAlias(F, 0);
- setDoesNotCapture(F, 1);
- } else if (Name == "read") {
- if (FTy->getNumParams() != 3 ||
- !FTy->getParamType(1)->isPointerTy())
- return;
- // May throw; "read" is a valid pthread cancellation point.
- setDoesNotCapture(F, 2);
- } else if (Name == "rmdir" ||
- Name == "rewind" ||
- Name == "remove" ||
- Name == "realpath") {
- if (FTy->getNumParams() < 1 ||
- !FTy->getParamType(0)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 1);
- } else if (Name == "rename" ||
- Name == "readlink") {
- if (FTy->getNumParams() < 2 ||
- !FTy->getParamType(0)->isPointerTy() ||
- !FTy->getParamType(1)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 1);
- setDoesNotCapture(F, 2);
- }
- break;
- case 'w':
- if (Name == "write") {
- if (FTy->getNumParams() != 3 || !FTy->getParamType(1)->isPointerTy())
- return;
- // May throw; "write" is a valid pthread cancellation point.
- setDoesNotCapture(F, 2);
- }
- break;
- case 'b':
- if (Name == "bcopy") {
- if (FTy->getNumParams() != 3 ||
- !FTy->getParamType(0)->isPointerTy() ||
- !FTy->getParamType(1)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 1);
- setDoesNotCapture(F, 2);
- } else if (Name == "bcmp") {
- if (FTy->getNumParams() != 3 ||
- !FTy->getParamType(0)->isPointerTy() ||
- !FTy->getParamType(1)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setOnlyReadsMemory(F);
- setDoesNotCapture(F, 1);
- setDoesNotCapture(F, 2);
- } else if (Name == "bzero") {
- if (FTy->getNumParams() != 2 || !FTy->getParamType(0)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 1);
- }
- break;
- case 'c':
- if (Name == "calloc") {
- if (FTy->getNumParams() != 2 ||
- !FTy->getReturnType()->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotAlias(F, 0);
- } else if (Name == "chmod" ||
- Name == "chown" ||
- Name == "ctermid" ||
- Name == "clearerr" ||
- Name == "closedir") {
- if (FTy->getNumParams() == 0 || !FTy->getParamType(0)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 1);
- }
- break;
- case 'a':
- if (Name == "atoi" ||
- Name == "atol" ||
- Name == "atof" ||
- Name == "atoll") {
- if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setOnlyReadsMemory(F);
- setDoesNotCapture(F, 1);
- } else if (Name == "access") {
- if (FTy->getNumParams() != 2 || !FTy->getParamType(0)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 1);
- }
- break;
- case 'f':
- if (Name == "fopen") {
- if (FTy->getNumParams() != 2 ||
- !FTy->getReturnType()->isPointerTy() ||
- !FTy->getParamType(0)->isPointerTy() ||
- !FTy->getParamType(1)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotAlias(F, 0);
- setDoesNotCapture(F, 1);
- setDoesNotCapture(F, 2);
- } else if (Name == "fdopen") {
- if (FTy->getNumParams() != 2 ||
- !FTy->getReturnType()->isPointerTy() ||
- !FTy->getParamType(1)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotAlias(F, 0);
- setDoesNotCapture(F, 2);
- } else if (Name == "feof" ||
- Name == "free" ||
- Name == "fseek" ||
- Name == "ftell" ||
- Name == "fgetc" ||
- Name == "fseeko" ||
- Name == "ftello" ||
- Name == "fileno" ||
- Name == "fflush" ||
- Name == "fclose" ||
- Name == "fsetpos" ||
- Name == "flockfile" ||
- Name == "funlockfile" ||
- Name == "ftrylockfile") {
- if (FTy->getNumParams() == 0 || !FTy->getParamType(0)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 1);
- } else if (Name == "ferror") {
- if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 1);
- setOnlyReadsMemory(F);
- } else if (Name == "fputc" ||
- Name == "fstat" ||
- Name == "frexp" ||
- Name == "frexpf" ||
- Name == "frexpl" ||
- Name == "fstatvfs") {
- if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 2);
- } else if (Name == "fgets") {
- if (FTy->getNumParams() != 3 ||
- !FTy->getParamType(0)->isPointerTy() ||
- !FTy->getParamType(2)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 3);
- } else if (Name == "fread" ||
- Name == "fwrite") {
- if (FTy->getNumParams() != 4 ||
- !FTy->getParamType(0)->isPointerTy() ||
- !FTy->getParamType(3)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 1);
- setDoesNotCapture(F, 4);
- } else if (Name == "fputs" ||
- Name == "fscanf" ||
- Name == "fprintf" ||
- Name == "fgetpos") {
- if (FTy->getNumParams() < 2 ||
- !FTy->getParamType(0)->isPointerTy() ||
- !FTy->getParamType(1)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 1);
- setDoesNotCapture(F, 2);
- }
- break;
- case 'g':
- if (Name == "getc" ||
- Name == "getlogin_r" ||
- Name == "getc_unlocked") {
- if (FTy->getNumParams() == 0 || !FTy->getParamType(0)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 1);
- } else if (Name == "getenv") {
- if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setOnlyReadsMemory(F);
- setDoesNotCapture(F, 1);
- } else if (Name == "gets" ||
- Name == "getchar") {
- setDoesNotThrow(F);
- } else if (Name == "getitimer") {
- if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 2);
- } else if (Name == "getpwnam") {
- if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 1);
- }
- break;
- case 'u':
- if (Name == "ungetc") {
- if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 2);
- } else if (Name == "uname" ||
- Name == "unlink" ||
- Name == "unsetenv") {
- if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 1);
- } else if (Name == "utime" ||
- Name == "utimes") {
- if (FTy->getNumParams() != 2 ||
- !FTy->getParamType(0)->isPointerTy() ||
- !FTy->getParamType(1)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 1);
- setDoesNotCapture(F, 2);
- }
- break;
- case 'p':
- if (Name == "putc") {
- if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 2);
- } else if (Name == "puts" ||
- Name == "printf" ||
- Name == "perror") {
- if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 1);
- } else if (Name == "pread" ||
- Name == "pwrite") {
- if (FTy->getNumParams() != 4 || !FTy->getParamType(1)->isPointerTy())
- return;
- // May throw; these are valid pthread cancellation points.
- setDoesNotCapture(F, 2);
- } else if (Name == "putchar") {
- setDoesNotThrow(F);
- } else if (Name == "popen") {
- if (FTy->getNumParams() != 2 ||
- !FTy->getReturnType()->isPointerTy() ||
- !FTy->getParamType(0)->isPointerTy() ||
- !FTy->getParamType(1)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotAlias(F, 0);
- setDoesNotCapture(F, 1);
- setDoesNotCapture(F, 2);
- } else if (Name == "pclose") {
- if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 1);
- }
- break;
- case 'v':
- if (Name == "vscanf") {
- if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 1);
- } else if (Name == "vsscanf" ||
- Name == "vfscanf") {
- if (FTy->getNumParams() != 3 ||
- !FTy->getParamType(1)->isPointerTy() ||
- !FTy->getParamType(2)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 1);
- setDoesNotCapture(F, 2);
- } else if (Name == "valloc") {
- if (!FTy->getReturnType()->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotAlias(F, 0);
- } else if (Name == "vprintf") {
- if (FTy->getNumParams() != 2 || !FTy->getParamType(0)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 1);
- } else if (Name == "vfprintf" ||
- Name == "vsprintf") {
- if (FTy->getNumParams() != 3 ||
- !FTy->getParamType(0)->isPointerTy() ||
- !FTy->getParamType(1)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 1);
- setDoesNotCapture(F, 2);
- } else if (Name == "vsnprintf") {
- if (FTy->getNumParams() != 4 ||
- !FTy->getParamType(0)->isPointerTy() ||
- !FTy->getParamType(2)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 1);
- setDoesNotCapture(F, 3);
- }
- break;
- case 'o':
- if (Name == "open") {
- if (FTy->getNumParams() < 2 || !FTy->getParamType(0)->isPointerTy())
- return;
- // May throw; "open" is a valid pthread cancellation point.
- setDoesNotCapture(F, 1);
- } else if (Name == "opendir") {
- if (FTy->getNumParams() != 1 ||
- !FTy->getReturnType()->isPointerTy() ||
- !FTy->getParamType(0)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotAlias(F, 0);
- setDoesNotCapture(F, 1);
- }
- break;
- case 't':
- if (Name == "tmpfile") {
- if (!FTy->getReturnType()->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotAlias(F, 0);
- } else if (Name == "times") {
- if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 1);
- }
- break;
- case 'h':
- if (Name == "htonl" ||
- Name == "htons") {
- setDoesNotThrow(F);
- setDoesNotAccessMemory(F);
- }
- break;
- case 'n':
- if (Name == "ntohl" ||
- Name == "ntohs") {
- setDoesNotThrow(F);
- setDoesNotAccessMemory(F);
- }
- break;
- case 'l':
- if (Name == "lstat") {
- if (FTy->getNumParams() != 2 ||
- !FTy->getParamType(0)->isPointerTy() ||
- !FTy->getParamType(1)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 1);
- setDoesNotCapture(F, 2);
- } else if (Name == "lchown") {
- if (FTy->getNumParams() != 3 || !FTy->getParamType(0)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 1);
- }
- break;
- case 'q':
- if (Name == "qsort") {
- if (FTy->getNumParams() != 4 || !FTy->getParamType(3)->isPointerTy())
- return;
- // May throw; places call through function pointer.
- setDoesNotCapture(F, 4);
- }
- break;
- case '_':
- if (Name == "__strdup" ||
- Name == "__strndup") {
- if (FTy->getNumParams() < 1 ||
- !FTy->getReturnType()->isPointerTy() ||
- !FTy->getParamType(0)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotAlias(F, 0);
- setDoesNotCapture(F, 1);
- } else if (Name == "__strtok_r") {
- if (FTy->getNumParams() != 3 ||
- !FTy->getParamType(1)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 2);
- } else if (Name == "_IO_getc") {
- if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 1);
- } else if (Name == "_IO_putc") {
- if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 2);
- }
- break;
- case 1:
- if (Name == "\1__isoc99_scanf") {
- if (FTy->getNumParams() < 1 ||
- !FTy->getParamType(0)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 1);
- } else if (Name == "\1stat64" ||
- Name == "\1lstat64" ||
- Name == "\1statvfs64" ||
- Name == "\1__isoc99_sscanf") {
- if (FTy->getNumParams() < 1 ||
- !FTy->getParamType(0)->isPointerTy() ||
- !FTy->getParamType(1)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 1);
- setDoesNotCapture(F, 2);
- } else if (Name == "\1fopen64") {
- if (FTy->getNumParams() != 2 ||
- !FTy->getReturnType()->isPointerTy() ||
- !FTy->getParamType(0)->isPointerTy() ||
- !FTy->getParamType(1)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotAlias(F, 0);
- setDoesNotCapture(F, 1);
- setDoesNotCapture(F, 2);
- } else if (Name == "\1fseeko64" ||
- Name == "\1ftello64") {
- if (FTy->getNumParams() == 0 || !FTy->getParamType(0)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 1);
- } else if (Name == "\1tmpfile64") {
- if (!FTy->getReturnType()->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotAlias(F, 0);
- } else if (Name == "\1fstat64" ||
- Name == "\1fstatvfs64") {
- if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy())
- return;
- setDoesNotThrow(F);
- setDoesNotCapture(F, 2);
- } else if (Name == "\1open64") {
- if (FTy->getNumParams() < 2 || !FTy->getParamType(0)->isPointerTy())
- return;
- // May throw; "open" is a valid pthread cancellation point.
- setDoesNotCapture(F, 1);
- }
- break;
- }
-}
-
-/// doInitialization - Add attributes to well-known functions.
-///
-bool SimplifyLibCalls::doInitialization(Module &M) {
- Modified = false;
- for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
- Function &F = *I;
- if (F.isDeclaration() && F.hasName())
- inferPrototypeAttributes(F);
- }
- return Modified;
-}
-
// TODO:
// Additional cases that we need to add to this file:
//
diff --git a/contrib/llvm/lib/Transforms/Scalar/Sink.cpp b/contrib/llvm/lib/Transforms/Scalar/Sink.cpp
index 34f1d6c..d4595bb 100644
--- a/contrib/llvm/lib/Transforms/Scalar/Sink.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/Sink.cpp
@@ -14,13 +14,13 @@
#define DEBUG_TYPE "sink"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Assembly/Writer.h"
-#include "llvm/ADT/Statistic.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
diff --git a/contrib/llvm/lib/Transforms/Scalar/TailRecursionElimination.cpp b/contrib/llvm/lib/Transforms/Scalar/TailRecursionElimination.cpp
index 6557d63..2002e68 100644
--- a/contrib/llvm/lib/Transforms/Scalar/TailRecursionElimination.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/TailRecursionElimination.cpp
@@ -52,25 +52,26 @@
#define DEBUG_TYPE "tailcallelim"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Module.h"
-#include "llvm/Pass.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/Loads.h"
-#include "llvm/Support/CallSite.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
#include "llvm/Support/CFG.h"
+#include "llvm/Support/CallSite.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/STLExtras.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
STATISTIC(NumEliminated, "Number of tail calls removed");
@@ -79,11 +80,15 @@ STATISTIC(NumAccumAdded, "Number of accumulators introduced");
namespace {
struct TailCallElim : public FunctionPass {
+ const TargetTransformInfo *TTI;
+
static char ID; // Pass identification, replacement for typeid
TailCallElim() : FunctionPass(ID) {
initializeTailCallElimPass(*PassRegistry::getPassRegistry());
}
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const;
+
virtual bool runOnFunction(Function &F);
private:
@@ -109,14 +114,21 @@ namespace {
}
char TailCallElim::ID = 0;
-INITIALIZE_PASS(TailCallElim, "tailcallelim",
- "Tail Call Elimination", false, false)
+INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim",
+ "Tail Call Elimination", false, false)
+INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
+INITIALIZE_PASS_END(TailCallElim, "tailcallelim",
+ "Tail Call Elimination", false, false)
// Public interface to the TailCallElimination pass
FunctionPass *llvm::createTailCallEliminationPass() {
return new TailCallElim();
}
+void TailCallElim::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<TargetTransformInfo>();
+}
+
/// AllocaMightEscapeToCalls - Return true if this alloca may be accessed by
/// callees of this function. We only do very simple analysis right now, this
/// could be expanded in the future to use mod/ref information for particular
@@ -151,6 +163,7 @@ bool TailCallElim::runOnFunction(Function &F) {
// right, so don't even try to convert it...
if (F.getFunctionType()->isVarArg()) return false;
+ TTI = &getAnalysis<TargetTransformInfo>();
BasicBlock *OldEntry = 0;
bool TailCallsAreMarkedTail = false;
SmallVector<PHINode*, 8> ArgumentPHIs;
@@ -391,7 +404,8 @@ TailCallElim::FindTRECandidate(Instruction *TI,
if (BB == &F->getEntryBlock() &&
FirstNonDbg(BB->front()) == CI &&
FirstNonDbg(llvm::next(BB->begin())) == TI &&
- callIsSmall(CI)) {
+ CI->getCalledFunction() &&
+ !TTI->isLoweredToCall(CI->getCalledFunction())) {
// A single-block function with just a call and a return. Check that
// the arguments match.
CallSite::arg_iterator I = CallSite(CI).arg_begin(),
diff --git a/contrib/llvm/lib/Transforms/Utils/AddrModeMatcher.cpp b/contrib/llvm/lib/Transforms/Utils/AddrModeMatcher.cpp
deleted file mode 100644
index 6815e41..0000000
--- a/contrib/llvm/lib/Transforms/Utils/AddrModeMatcher.cpp
+++ /dev/null
@@ -1,577 +0,0 @@
-//===- AddrModeMatcher.cpp - Addressing mode matching facility --*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements target addressing mode matcher class.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/Utils/AddrModeMatcher.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/GlobalValue.h"
-#include "llvm/Instruction.h"
-#include "llvm/Assembly/Writer.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/GetElementPtrTypeIterator.h"
-#include "llvm/Support/PatternMatch.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Support/CallSite.h"
-
-using namespace llvm;
-using namespace llvm::PatternMatch;
-
-void ExtAddrMode::print(raw_ostream &OS) const {
- bool NeedPlus = false;
- OS << "[";
- if (BaseGV) {
- OS << (NeedPlus ? " + " : "")
- << "GV:";
- WriteAsOperand(OS, BaseGV, /*PrintType=*/false);
- NeedPlus = true;
- }
-
- if (BaseOffs)
- OS << (NeedPlus ? " + " : "") << BaseOffs, NeedPlus = true;
-
- if (BaseReg) {
- OS << (NeedPlus ? " + " : "")
- << "Base:";
- WriteAsOperand(OS, BaseReg, /*PrintType=*/false);
- NeedPlus = true;
- }
- if (Scale) {
- OS << (NeedPlus ? " + " : "")
- << Scale << "*";
- WriteAsOperand(OS, ScaledReg, /*PrintType=*/false);
- NeedPlus = true;
- }
-
- OS << ']';
-}
-
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
-void ExtAddrMode::dump() const {
- print(dbgs());
- dbgs() << '\n';
-}
-#endif
-
-
-/// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode.
-/// Return true and update AddrMode if this addr mode is legal for the target,
-/// false if not.
-bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale,
- unsigned Depth) {
- // If Scale is 1, then this is the same as adding ScaleReg to the addressing
- // mode. Just process that directly.
- if (Scale == 1)
- return MatchAddr(ScaleReg, Depth);
-
- // If the scale is 0, it takes nothing to add this.
- if (Scale == 0)
- return true;
-
- // If we already have a scale of this value, we can add to it, otherwise, we
- // need an available scale field.
- if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
- return false;
-
- ExtAddrMode TestAddrMode = AddrMode;
-
- // Add scale to turn X*4+X*3 -> X*7. This could also do things like
- // [A+B + A*7] -> [B+A*8].
- TestAddrMode.Scale += Scale;
- TestAddrMode.ScaledReg = ScaleReg;
-
- // If the new address isn't legal, bail out.
- if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy))
- return false;
-
- // It was legal, so commit it.
- AddrMode = TestAddrMode;
-
- // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
- // to see if ScaleReg is actually X+C. If so, we can turn this into adding
- // X*Scale + C*Scale to addr mode.
- ConstantInt *CI = 0; Value *AddLHS = 0;
- if (isa<Instruction>(ScaleReg) && // not a constant expr.
- match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
- TestAddrMode.ScaledReg = AddLHS;
- TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
-
- // If this addressing mode is legal, commit it and remember that we folded
- // this instruction.
- if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) {
- AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
- AddrMode = TestAddrMode;
- return true;
- }
- }
-
- // Otherwise, not (x+c)*scale, just return what we have.
- return true;
-}
-
-/// MightBeFoldableInst - This is a little filter, which returns true if an
-/// addressing computation involving I might be folded into a load/store
-/// accessing it. This doesn't need to be perfect, but needs to accept at least
-/// the set of instructions that MatchOperationAddr can.
-static bool MightBeFoldableInst(Instruction *I) {
- switch (I->getOpcode()) {
- case Instruction::BitCast:
- // Don't touch identity bitcasts.
- if (I->getType() == I->getOperand(0)->getType())
- return false;
- return I->getType()->isPointerTy() || I->getType()->isIntegerTy();
- case Instruction::PtrToInt:
- // PtrToInt is always a noop, as we know that the int type is pointer sized.
- return true;
- case Instruction::IntToPtr:
- // We know the input is intptr_t, so this is foldable.
- return true;
- case Instruction::Add:
- return true;
- case Instruction::Mul:
- case Instruction::Shl:
- // Can only handle X*C and X << C.
- return isa<ConstantInt>(I->getOperand(1));
- case Instruction::GetElementPtr:
- return true;
- default:
- return false;
- }
-}
-
-
-/// MatchOperationAddr - Given an instruction or constant expr, see if we can
-/// fold the operation into the addressing mode. If so, update the addressing
-/// mode and return true, otherwise return false without modifying AddrMode.
-bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode,
- unsigned Depth) {
- // Avoid exponential behavior on extremely deep expression trees.
- if (Depth >= 5) return false;
-
- switch (Opcode) {
- case Instruction::PtrToInt:
- // PtrToInt is always a noop, as we know that the int type is pointer sized.
- return MatchAddr(AddrInst->getOperand(0), Depth);
- case Instruction::IntToPtr:
- // This inttoptr is a no-op if the integer type is pointer sized.
- if (TLI.getValueType(AddrInst->getOperand(0)->getType()) ==
- TLI.getPointerTy())
- return MatchAddr(AddrInst->getOperand(0), Depth);
- return false;
- case Instruction::BitCast:
- // BitCast is always a noop, and we can handle it as long as it is
- // int->int or pointer->pointer (we don't want int<->fp or something).
- if ((AddrInst->getOperand(0)->getType()->isPointerTy() ||
- AddrInst->getOperand(0)->getType()->isIntegerTy()) &&
- // Don't touch identity bitcasts. These were probably put here by LSR,
- // and we don't want to mess around with them. Assume it knows what it
- // is doing.
- AddrInst->getOperand(0)->getType() != AddrInst->getType())
- return MatchAddr(AddrInst->getOperand(0), Depth);
- return false;
- case Instruction::Add: {
- // Check to see if we can merge in the RHS then the LHS. If so, we win.
- ExtAddrMode BackupAddrMode = AddrMode;
- unsigned OldSize = AddrModeInsts.size();
- if (MatchAddr(AddrInst->getOperand(1), Depth+1) &&
- MatchAddr(AddrInst->getOperand(0), Depth+1))
- return true;
-
- // Restore the old addr mode info.
- AddrMode = BackupAddrMode;
- AddrModeInsts.resize(OldSize);
-
- // Otherwise this was over-aggressive. Try merging in the LHS then the RHS.
- if (MatchAddr(AddrInst->getOperand(0), Depth+1) &&
- MatchAddr(AddrInst->getOperand(1), Depth+1))
- return true;
-
- // Otherwise we definitely can't merge the ADD in.
- AddrMode = BackupAddrMode;
- AddrModeInsts.resize(OldSize);
- break;
- }
- //case Instruction::Or:
- // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
- //break;
- case Instruction::Mul:
- case Instruction::Shl: {
- // Can only handle X*C and X << C.
- ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
- if (!RHS) return false;
- int64_t Scale = RHS->getSExtValue();
- if (Opcode == Instruction::Shl)
- Scale = 1LL << Scale;
-
- return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth);
- }
- case Instruction::GetElementPtr: {
- // Scan the GEP. We check it if it contains constant offsets and at most
- // one variable offset.
- int VariableOperand = -1;
- unsigned VariableScale = 0;
-
- int64_t ConstantOffset = 0;
- const DataLayout *TD = TLI.getDataLayout();
- gep_type_iterator GTI = gep_type_begin(AddrInst);
- for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
- if (StructType *STy = dyn_cast<StructType>(*GTI)) {
- const StructLayout *SL = TD->getStructLayout(STy);
- unsigned Idx =
- cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
- ConstantOffset += SL->getElementOffset(Idx);
- } else {
- uint64_t TypeSize = TD->getTypeAllocSize(GTI.getIndexedType());
- if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
- ConstantOffset += CI->getSExtValue()*TypeSize;
- } else if (TypeSize) { // Scales of zero don't do anything.
- // We only allow one variable index at the moment.
- if (VariableOperand != -1)
- return false;
-
- // Remember the variable index.
- VariableOperand = i;
- VariableScale = TypeSize;
- }
- }
- }
-
- // A common case is for the GEP to only do a constant offset. In this case,
- // just add it to the disp field and check validity.
- if (VariableOperand == -1) {
- AddrMode.BaseOffs += ConstantOffset;
- if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){
- // Check to see if we can fold the base pointer in too.
- if (MatchAddr(AddrInst->getOperand(0), Depth+1))
- return true;
- }
- AddrMode.BaseOffs -= ConstantOffset;
- return false;
- }
-
- // Save the valid addressing mode in case we can't match.
- ExtAddrMode BackupAddrMode = AddrMode;
- unsigned OldSize = AddrModeInsts.size();
-
- // See if the scale and offset amount is valid for this target.
- AddrMode.BaseOffs += ConstantOffset;
-
- // Match the base operand of the GEP.
- if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) {
- // If it couldn't be matched, just stuff the value in a register.
- if (AddrMode.HasBaseReg) {
- AddrMode = BackupAddrMode;
- AddrModeInsts.resize(OldSize);
- return false;
- }
- AddrMode.HasBaseReg = true;
- AddrMode.BaseReg = AddrInst->getOperand(0);
- }
-
- // Match the remaining variable portion of the GEP.
- if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
- Depth)) {
- // If it couldn't be matched, try stuffing the base into a register
- // instead of matching it, and retrying the match of the scale.
- AddrMode = BackupAddrMode;
- AddrModeInsts.resize(OldSize);
- if (AddrMode.HasBaseReg)
- return false;
- AddrMode.HasBaseReg = true;
- AddrMode.BaseReg = AddrInst->getOperand(0);
- AddrMode.BaseOffs += ConstantOffset;
- if (!MatchScaledValue(AddrInst->getOperand(VariableOperand),
- VariableScale, Depth)) {
- // If even that didn't work, bail.
- AddrMode = BackupAddrMode;
- AddrModeInsts.resize(OldSize);
- return false;
- }
- }
-
- return true;
- }
- }
- return false;
-}
-
-/// MatchAddr - If we can, try to add the value of 'Addr' into the current
-/// addressing mode. If Addr can't be added to AddrMode this returns false and
-/// leaves AddrMode unmodified. This assumes that Addr is either a pointer type
-/// or intptr_t for the target.
-///
-bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) {
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
- // Fold in immediates if legal for the target.
- AddrMode.BaseOffs += CI->getSExtValue();
- if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
- return true;
- AddrMode.BaseOffs -= CI->getSExtValue();
- } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
- // If this is a global variable, try to fold it into the addressing mode.
- if (AddrMode.BaseGV == 0) {
- AddrMode.BaseGV = GV;
- if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
- return true;
- AddrMode.BaseGV = 0;
- }
- } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
- ExtAddrMode BackupAddrMode = AddrMode;
- unsigned OldSize = AddrModeInsts.size();
-
- // Check to see if it is possible to fold this operation.
- if (MatchOperationAddr(I, I->getOpcode(), Depth)) {
- // Okay, it's possible to fold this. Check to see if it is actually
- // *profitable* to do so. We use a simple cost model to avoid increasing
- // register pressure too much.
- if (I->hasOneUse() ||
- IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
- AddrModeInsts.push_back(I);
- return true;
- }
-
- // It isn't profitable to do this, roll back.
- //cerr << "NOT FOLDING: " << *I;
- AddrMode = BackupAddrMode;
- AddrModeInsts.resize(OldSize);
- }
- } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
- if (MatchOperationAddr(CE, CE->getOpcode(), Depth))
- return true;
- } else if (isa<ConstantPointerNull>(Addr)) {
- // Null pointer gets folded without affecting the addressing mode.
- return true;
- }
-
- // Worse case, the target should support [reg] addressing modes. :)
- if (!AddrMode.HasBaseReg) {
- AddrMode.HasBaseReg = true;
- AddrMode.BaseReg = Addr;
- // Still check for legality in case the target supports [imm] but not [i+r].
- if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
- return true;
- AddrMode.HasBaseReg = false;
- AddrMode.BaseReg = 0;
- }
-
- // If the base register is already taken, see if we can do [r+r].
- if (AddrMode.Scale == 0) {
- AddrMode.Scale = 1;
- AddrMode.ScaledReg = Addr;
- if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
- return true;
- AddrMode.Scale = 0;
- AddrMode.ScaledReg = 0;
- }
- // Couldn't match.
- return false;
-}
-
-
-/// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified
-/// inline asm call are due to memory operands. If so, return true, otherwise
-/// return false.
-static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
- const TargetLowering &TLI) {
- TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(ImmutableCallSite(CI));
- for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
- TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
-
- // Compute the constraint code and ConstraintType to use.
- TLI.ComputeConstraintToUse(OpInfo, SDValue());
-
- // If this asm operand is our Value*, and if it isn't an indirect memory
- // operand, we can't fold it!
- if (OpInfo.CallOperandVal == OpVal &&
- (OpInfo.ConstraintType != TargetLowering::C_Memory ||
- !OpInfo.isIndirect))
- return false;
- }
-
- return true;
-}
-
-
-/// FindAllMemoryUses - Recursively walk all the uses of I until we find a
-/// memory use. If we find an obviously non-foldable instruction, return true.
-/// Add the ultimately found memory instructions to MemoryUses.
-static bool FindAllMemoryUses(Instruction *I,
- SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses,
- SmallPtrSet<Instruction*, 16> &ConsideredInsts,
- const TargetLowering &TLI) {
- // If we already considered this instruction, we're done.
- if (!ConsideredInsts.insert(I))
- return false;
-
- // If this is an obviously unfoldable instruction, bail out.
- if (!MightBeFoldableInst(I))
- return true;
-
- // Loop over all the uses, recursively processing them.
- for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
- UI != E; ++UI) {
- User *U = *UI;
-
- if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
- MemoryUses.push_back(std::make_pair(LI, UI.getOperandNo()));
- continue;
- }
-
- if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
- unsigned opNo = UI.getOperandNo();
- if (opNo == 0) return true; // Storing addr, not into addr.
- MemoryUses.push_back(std::make_pair(SI, opNo));
- continue;
- }
-
- if (CallInst *CI = dyn_cast<CallInst>(U)) {
- InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
- if (!IA) return true;
-
- // If this is a memory operand, we're cool, otherwise bail out.
- if (!IsOperandAMemoryOperand(CI, IA, I, TLI))
- return true;
- continue;
- }
-
- if (FindAllMemoryUses(cast<Instruction>(U), MemoryUses, ConsideredInsts,
- TLI))
- return true;
- }
-
- return false;
-}
-
-
-/// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at
-/// the use site that we're folding it into. If so, there is no cost to
-/// include it in the addressing mode. KnownLive1 and KnownLive2 are two values
-/// that we know are live at the instruction already.
-bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
- Value *KnownLive2) {
- // If Val is either of the known-live values, we know it is live!
- if (Val == 0 || Val == KnownLive1 || Val == KnownLive2)
- return true;
-
- // All values other than instructions and arguments (e.g. constants) are live.
- if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
-
- // If Val is a constant sized alloca in the entry block, it is live, this is
- // true because it is just a reference to the stack/frame pointer, which is
- // live for the whole function.
- if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
- if (AI->isStaticAlloca())
- return true;
-
- // Check to see if this value is already used in the memory instruction's
- // block. If so, it's already live into the block at the very least, so we
- // can reasonably fold it.
- return Val->isUsedInBasicBlock(MemoryInst->getParent());
-}
-
-
-
-/// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing
-/// mode of the machine to fold the specified instruction into a load or store
-/// that ultimately uses it. However, the specified instruction has multiple
-/// uses. Given this, it may actually increase register pressure to fold it
-/// into the load. For example, consider this code:
-///
-/// X = ...
-/// Y = X+1
-/// use(Y) -> nonload/store
-/// Z = Y+1
-/// load Z
-///
-/// In this case, Y has multiple uses, and can be folded into the load of Z
-/// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to
-/// be live at the use(Y) line. If we don't fold Y into load Z, we use one
-/// fewer register. Since Y can't be folded into "use(Y)" we don't increase the
-/// number of computations either.
-///
-/// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If
-/// X was live across 'load Z' for other reasons, we actually *would* want to
-/// fold the addressing mode in the Z case. This would make Y die earlier.
-bool AddressingModeMatcher::
-IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
- ExtAddrMode &AMAfter) {
- if (IgnoreProfitability) return true;
-
- // AMBefore is the addressing mode before this instruction was folded into it,
- // and AMAfter is the addressing mode after the instruction was folded. Get
- // the set of registers referenced by AMAfter and subtract out those
- // referenced by AMBefore: this is the set of values which folding in this
- // address extends the lifetime of.
- //
- // Note that there are only two potential values being referenced here,
- // BaseReg and ScaleReg (global addresses are always available, as are any
- // folded immediates).
- Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
-
- // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
- // lifetime wasn't extended by adding this instruction.
- if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
- BaseReg = 0;
- if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
- ScaledReg = 0;
-
- // If folding this instruction (and it's subexprs) didn't extend any live
- // ranges, we're ok with it.
- if (BaseReg == 0 && ScaledReg == 0)
- return true;
-
- // If all uses of this instruction are ultimately load/store/inlineasm's,
- // check to see if their addressing modes will include this instruction. If
- // so, we can fold it into all uses, so it doesn't matter if it has multiple
- // uses.
- SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
- SmallPtrSet<Instruction*, 16> ConsideredInsts;
- if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI))
- return false; // Has a non-memory, non-foldable use!
-
- // Now that we know that all uses of this instruction are part of a chain of
- // computation involving only operations that could theoretically be folded
- // into a memory use, loop over each of these uses and see if they could
- // *actually* fold the instruction.
- SmallVector<Instruction*, 32> MatchedAddrModeInsts;
- for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
- Instruction *User = MemoryUses[i].first;
- unsigned OpNo = MemoryUses[i].second;
-
- // Get the access type of this use. If the use isn't a pointer, we don't
- // know what it accesses.
- Value *Address = User->getOperand(OpNo);
- if (!Address->getType()->isPointerTy())
- return false;
- Type *AddressAccessTy =
- cast<PointerType>(Address->getType())->getElementType();
-
- // Do a match against the root of this address, ignoring profitability. This
- // will tell us if the addressing mode for the memory operation will
- // *actually* cover the shared instruction.
- ExtAddrMode Result;
- AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy,
- MemoryInst, Result);
- Matcher.IgnoreProfitability = true;
- bool Success = Matcher.MatchAddr(Address, 0);
- (void)Success; assert(Success && "Couldn't select *anything*?");
-
- // If the match didn't cover I, then it won't be shared by it.
- if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(),
- I) == MatchedAddrModeInsts.end())
- return false;
-
- MatchedAddrModeInsts.clear();
- }
-
- return true;
-}
diff --git a/contrib/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp b/contrib/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp
index 9fea113..ba99d2e 100644
--- a/contrib/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp
@@ -13,20 +13,20 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Constant.h"
-#include "llvm/Type.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Transforms/Scalar.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Type.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ValueHandle.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
using namespace llvm;
@@ -37,12 +37,12 @@ void llvm::DeleteDeadBlock(BasicBlock *BB) {
// Can delete self loop.
BB->getSinglePredecessor() == BB) && "Block is not dead!");
TerminatorInst *BBTerm = BB->getTerminator();
-
+
// Loop through all of our successors and make sure they know that one
// of their predecessors is going away.
for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i)
BBTerm->getSuccessor(i)->removePredecessor(BB);
-
+
// Zap all the instructions in the block.
while (!BB->empty()) {
Instruction &I = BB->back();
@@ -55,7 +55,7 @@ void llvm::DeleteDeadBlock(BasicBlock *BB) {
I.replaceAllUsesWith(UndefValue::get(I.getType()));
BB->getInstList().pop_back();
}
-
+
// Zap the block!
BB->eraseFromParent();
}
@@ -66,25 +66,25 @@ void llvm::DeleteDeadBlock(BasicBlock *BB) {
/// when the block has exactly one predecessor.
void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, Pass *P) {
if (!isa<PHINode>(BB->begin())) return;
-
+
AliasAnalysis *AA = 0;
MemoryDependenceAnalysis *MemDep = 0;
if (P) {
AA = P->getAnalysisIfAvailable<AliasAnalysis>();
MemDep = P->getAnalysisIfAvailable<MemoryDependenceAnalysis>();
}
-
+
while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
if (PN->getIncomingValue(0) != PN)
PN->replaceAllUsesWith(PN->getIncomingValue(0));
else
PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
-
+
if (MemDep)
MemDep->removeInstruction(PN); // Memdep updates AA itself.
else if (AA && isa<PointerType>(PN->getType()))
AA->deleteValue(PN);
-
+
PN->eraseFromParent();
}
}
@@ -115,7 +115,7 @@ bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) {
// Don't merge away blocks who have their address taken.
if (BB->hasAddressTaken()) return false;
-
+
// Can't merge if there are multiple predecessors, or no predecessors.
BasicBlock *PredBB = BB->getUniquePredecessor();
if (!PredBB) return false;
@@ -124,7 +124,7 @@ bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) {
if (PredBB == BB) return false;
// Don't break invokes.
if (isa<InvokeInst>(PredBB->getTerminator())) return false;
-
+
succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
BasicBlock *OnlySucc = BB;
for (; SI != SE; ++SI)
@@ -132,7 +132,7 @@ bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) {
OnlySucc = 0; // There are multiple distinct successors!
break;
}
-
+
// Can't merge if there are multiple successors.
if (!OnlySucc) return false;
@@ -149,21 +149,21 @@ bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) {
// Begin by getting rid of unneeded PHIs.
if (isa<PHINode>(BB->front()))
FoldSingleEntryPHINodes(BB, P);
-
+
// Delete the unconditional branch from the predecessor...
PredBB->getInstList().pop_back();
-
+
// Make all PHI nodes that referred to BB now refer to Pred as their
// source...
BB->replaceAllUsesWith(PredBB);
-
+
// Move all definitions in the successor to the predecessor...
PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
-
+
// Inherit predecessors name if it exists.
if (!PredBB->hasName())
PredBB->takeName(BB);
-
+
// Finally, erase the old block and update dominator info.
if (P) {
if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) {
@@ -176,16 +176,16 @@ bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) {
DT->eraseNode(BB);
}
-
+
if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>())
LI->removeBlock(BB);
-
+
if (MemoryDependenceAnalysis *MD =
P->getAnalysisIfAvailable<MemoryDependenceAnalysis>())
MD->invalidateCachedPredecessors();
}
}
-
+
BB->eraseFromParent();
return true;
}
@@ -251,11 +251,11 @@ unsigned llvm::GetSuccessorNumber(BasicBlock *BB, BasicBlock *Succ) {
}
}
-/// SplitEdge - Split the edge connecting specified block. Pass P must
-/// not be NULL.
+/// SplitEdge - Split the edge connecting specified block. Pass P must
+/// not be NULL.
BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) {
unsigned SuccNum = GetSuccessorNumber(BB, Succ);
-
+
// If this is a critical edge, let SplitCriticalEdge do it.
TerminatorInst *LatchTerm = BB->getTerminator();
if (SplitCriticalEdge(LatchTerm, SuccNum, P))
@@ -271,11 +271,11 @@ BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) {
SP = NULL;
return SplitBlock(Succ, Succ->begin(), P);
}
-
+
// Otherwise, if BB has a single successor, split it at the bottom of the
// block.
assert(BB->getTerminator()->getNumSuccessors() == 1 &&
- "Should have a single succ!");
+ "Should have a single succ!");
return SplitBlock(BB, BB->getTerminator(), P);
}
@@ -301,12 +301,12 @@ BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
if (DomTreeNode *OldNode = DT->getNode(Old)) {
std::vector<DomTreeNode *> Children;
for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
- I != E; ++I)
+ I != E; ++I)
Children.push_back(*I);
DomTreeNode *NewNode = DT->addNewBlock(New,Old);
for (std::vector<DomTreeNode *>::iterator I = Children.begin(),
- E = Children.end(); I != E; ++I)
+ E = Children.end(); I != E; ++I)
DT->changeImmediateDominator(*I, NewNode);
}
}
@@ -424,7 +424,7 @@ static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
PHINode *NewPHI =
PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
if (AA) AA->copyValue(PN, NewPHI);
-
+
// Move all of the PHI values for 'Preds' to the new PHI.
for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
Value *V = PN->removeIncomingValue(Preds[i], false);
@@ -451,16 +451,16 @@ static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
/// preserve LoopSimplify (because it's complicated to handle the case where one
/// of the edges being split is an exit of a loop with other exits).
///
-BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
+BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
ArrayRef<BasicBlock*> Preds,
const char *Suffix, Pass *P) {
// Create new basic block, insert right before the original block.
BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), BB->getName()+Suffix,
BB->getParent(), BB);
-
+
// The new block unconditionally branches to the old block.
BranchInst *BI = BranchInst::Create(BB, NewBB);
-
+
// Move the edges from Preds to point to NewBB instead of BB.
for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
// This is slightly more strict than necessary; the minimum requirement
@@ -497,13 +497,13 @@ BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
/// block gets the remaining predecessors of OrigBB. The landingpad instruction
/// OrigBB is clone into both of the new basic blocks. The new blocks are given
/// the suffixes 'Suffix1' and 'Suffix2', and are returned in the NewBBs vector.
-///
+///
/// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
/// DominanceFrontier, LoopInfo, and LCCSA but no other analyses. In particular,
/// it does not preserve LoopSimplify (because it's complicated to handle the
/// case where one of the edges being split is an exit of a loop with other
/// exits).
-///
+///
void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
ArrayRef<BasicBlock*> Preds,
const char *Suffix1, const char *Suffix2,
@@ -608,11 +608,11 @@ void llvm::FindFunctionBackedges(const Function &F,
const BasicBlock *BB = &F.getEntryBlock();
if (succ_begin(BB) == succ_end(BB))
return;
-
+
SmallPtrSet<const BasicBlock*, 8> Visited;
SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack;
SmallPtrSet<const BasicBlock*, 8> InStack;
-
+
Visited.insert(BB);
VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
InStack.insert(BB);
@@ -620,7 +620,7 @@ void llvm::FindFunctionBackedges(const Function &F,
std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back();
const BasicBlock *ParentBB = Top.first;
succ_const_iterator &I = Top.second;
-
+
bool FoundNew = false;
while (I != succ_end(ParentBB)) {
BB = *I++;
@@ -632,7 +632,7 @@ void llvm::FindFunctionBackedges(const Function &F,
if (InStack.count(BB))
Result.push_back(std::make_pair(ParentBB, BB));
}
-
+
if (FoundNew) {
// Go down one level if there is a unvisited successor.
InStack.insert(BB);
@@ -641,7 +641,7 @@ void llvm::FindFunctionBackedges(const Function &F,
// Go up one level.
InStack.erase(VisitStack.pop_back_val().first);
}
- } while (!VisitStack.empty());
+ } while (!VisitStack.empty());
}
/// FoldReturnIntoUncondBranch - This method duplicates the specified return
@@ -655,7 +655,7 @@ ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
// Clone the return and add it to the end of the predecessor.
Instruction *NewRet = RI->clone();
Pred->getInstList().push_back(NewRet);
-
+
// If the return instruction returns a value, and if the value was a
// PHI node in "BB", propagate the right value into the return.
for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
@@ -679,7 +679,7 @@ ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
}
}
}
-
+
// Update any PHI nodes in the returning block to realize that we no
// longer branch to them.
BB->removePredecessor(Pred);
diff --git a/contrib/llvm/lib/Transforms/Utils/BreakCriticalEdges.cpp b/contrib/llvm/lib/Transforms/Utils/BreakCriticalEdges.cpp
index 6b04e3d..8513772 100644
--- a/contrib/llvm/lib/Transforms/Utils/BreakCriticalEdges.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/BreakCriticalEdges.cpp
@@ -17,17 +17,17 @@
#define DEBUG_TYPE "break-crit-edges"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ProfileInfo.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/Type.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Type.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/ErrorHandling.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
using namespace llvm;
STATISTIC(NumBroken, "Number of blocks inserted");
diff --git a/contrib/llvm/lib/Transforms/Utils/BuildLibCalls.cpp b/contrib/llvm/lib/Transforms/Utils/BuildLibCalls.cpp
index 74b2ee1..6d13217 100644
--- a/contrib/llvm/lib/Transforms/Utils/BuildLibCalls.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/BuildLibCalls.cpp
@@ -12,17 +12,15 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/BuildLibCalls.h"
-#include "llvm/Constants.h"
-#include "llvm/Function.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
-#include "llvm/Type.h"
#include "llvm/ADT/SmallString.h"
-#include "llvm/DataLayout.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
#include "llvm/Target/TargetLibraryInfo.h"
using namespace llvm;
@@ -40,16 +38,16 @@ Value *llvm::EmitStrLen(Value *Ptr, IRBuilder<> &B, const DataLayout *TD,
return 0;
Module *M = B.GetInsertBlock()->getParent()->getParent();
- AttributeWithIndex AWI[2];
- AWI[0] = AttributeWithIndex::get(M->getContext(), 1, Attributes::NoCapture);
- Attributes::AttrVal AVs[2] = { Attributes::ReadOnly, Attributes::NoUnwind };
- AWI[1] = AttributeWithIndex::get(M->getContext(), AttrListPtr::FunctionIndex,
- ArrayRef<Attributes::AttrVal>(AVs, 2));
+ AttributeSet AS[2];
+ AS[0] = AttributeSet::get(M->getContext(), 1, Attribute::NoCapture);
+ Attribute::AttrKind AVs[2] = { Attribute::ReadOnly, Attribute::NoUnwind };
+ AS[1] = AttributeSet::get(M->getContext(), AttributeSet::FunctionIndex,
+ ArrayRef<Attribute::AttrKind>(AVs, 2));
LLVMContext &Context = B.GetInsertBlock()->getContext();
Constant *StrLen = M->getOrInsertFunction("strlen",
- AttrListPtr::get(M->getContext(),
- AWI),
+ AttributeSet::get(M->getContext(),
+ AS),
TD->getIntPtrType(Context),
B.getInt8PtrTy(),
NULL);
@@ -69,16 +67,16 @@ Value *llvm::EmitStrNLen(Value *Ptr, Value *MaxLen, IRBuilder<> &B,
return 0;
Module *M = B.GetInsertBlock()->getParent()->getParent();
- AttributeWithIndex AWI[2];
- AWI[0] = AttributeWithIndex::get(M->getContext(), 1, Attributes::NoCapture);
- Attributes::AttrVal AVs[2] = { Attributes::ReadOnly, Attributes::NoUnwind };
- AWI[1] = AttributeWithIndex::get(M->getContext(), AttrListPtr::FunctionIndex,
- ArrayRef<Attributes::AttrVal>(AVs, 2));
+ AttributeSet AS[2];
+ AS[0] = AttributeSet::get(M->getContext(), 1, Attribute::NoCapture);
+ Attribute::AttrKind AVs[2] = { Attribute::ReadOnly, Attribute::NoUnwind };
+ AS[1] = AttributeSet::get(M->getContext(), AttributeSet::FunctionIndex,
+ ArrayRef<Attribute::AttrKind>(AVs, 2));
LLVMContext &Context = B.GetInsertBlock()->getContext();
Constant *StrNLen = M->getOrInsertFunction("strnlen",
- AttrListPtr::get(M->getContext(),
- AWI),
+ AttributeSet::get(M->getContext(),
+ AS),
TD->getIntPtrType(Context),
B.getInt8PtrTy(),
TD->getIntPtrType(Context),
@@ -99,16 +97,16 @@ Value *llvm::EmitStrChr(Value *Ptr, char C, IRBuilder<> &B,
return 0;
Module *M = B.GetInsertBlock()->getParent()->getParent();
- Attributes::AttrVal AVs[2] = { Attributes::ReadOnly, Attributes::NoUnwind };
- AttributeWithIndex AWI =
- AttributeWithIndex::get(M->getContext(), AttrListPtr::FunctionIndex,
- ArrayRef<Attributes::AttrVal>(AVs, 2));
+ Attribute::AttrKind AVs[2] = { Attribute::ReadOnly, Attribute::NoUnwind };
+ AttributeSet AS =
+ AttributeSet::get(M->getContext(), AttributeSet::FunctionIndex,
+ ArrayRef<Attribute::AttrKind>(AVs, 2));
Type *I8Ptr = B.getInt8PtrTy();
Type *I32Ty = B.getInt32Ty();
Constant *StrChr = M->getOrInsertFunction("strchr",
- AttrListPtr::get(M->getContext(),
- AWI),
+ AttributeSet::get(M->getContext(),
+ AS),
I8Ptr, I8Ptr, I32Ty, NULL);
CallInst *CI = B.CreateCall2(StrChr, CastToCStr(Ptr, B),
ConstantInt::get(I32Ty, C), "strchr");
@@ -125,17 +123,17 @@ Value *llvm::EmitStrNCmp(Value *Ptr1, Value *Ptr2, Value *Len,
return 0;
Module *M = B.GetInsertBlock()->getParent()->getParent();
- AttributeWithIndex AWI[3];
- AWI[0] = AttributeWithIndex::get(M->getContext(), 1, Attributes::NoCapture);
- AWI[1] = AttributeWithIndex::get(M->getContext(), 2, Attributes::NoCapture);
- Attributes::AttrVal AVs[2] = { Attributes::ReadOnly, Attributes::NoUnwind };
- AWI[2] = AttributeWithIndex::get(M->getContext(), AttrListPtr::FunctionIndex,
- ArrayRef<Attributes::AttrVal>(AVs, 2));
+ AttributeSet AS[3];
+ AS[0] = AttributeSet::get(M->getContext(), 1, Attribute::NoCapture);
+ AS[1] = AttributeSet::get(M->getContext(), 2, Attribute::NoCapture);
+ Attribute::AttrKind AVs[2] = { Attribute::ReadOnly, Attribute::NoUnwind };
+ AS[2] = AttributeSet::get(M->getContext(), AttributeSet::FunctionIndex,
+ ArrayRef<Attribute::AttrKind>(AVs, 2));
LLVMContext &Context = B.GetInsertBlock()->getContext();
Value *StrNCmp = M->getOrInsertFunction("strncmp",
- AttrListPtr::get(M->getContext(),
- AWI),
+ AttributeSet::get(M->getContext(),
+ AS),
B.getInt32Ty(),
B.getInt8PtrTy(),
B.getInt8PtrTy(),
@@ -158,13 +156,13 @@ Value *llvm::EmitStrCpy(Value *Dst, Value *Src, IRBuilder<> &B,
return 0;
Module *M = B.GetInsertBlock()->getParent()->getParent();
- AttributeWithIndex AWI[2];
- AWI[0] = AttributeWithIndex::get(M->getContext(), 2, Attributes::NoCapture);
- AWI[1] = AttributeWithIndex::get(M->getContext(), AttrListPtr::FunctionIndex,
- Attributes::NoUnwind);
+ AttributeSet AS[2];
+ AS[0] = AttributeSet::get(M->getContext(), 2, Attribute::NoCapture);
+ AS[1] = AttributeSet::get(M->getContext(), AttributeSet::FunctionIndex,
+ Attribute::NoUnwind);
Type *I8Ptr = B.getInt8PtrTy();
Value *StrCpy = M->getOrInsertFunction(Name,
- AttrListPtr::get(M->getContext(), AWI),
+ AttributeSet::get(M->getContext(), AS),
I8Ptr, I8Ptr, I8Ptr, NULL);
CallInst *CI = B.CreateCall2(StrCpy, CastToCStr(Dst, B), CastToCStr(Src, B),
Name);
@@ -182,14 +180,14 @@ Value *llvm::EmitStrNCpy(Value *Dst, Value *Src, Value *Len,
return 0;
Module *M = B.GetInsertBlock()->getParent()->getParent();
- AttributeWithIndex AWI[2];
- AWI[0] = AttributeWithIndex::get(M->getContext(), 2, Attributes::NoCapture);
- AWI[1] = AttributeWithIndex::get(M->getContext(), AttrListPtr::FunctionIndex,
- Attributes::NoUnwind);
+ AttributeSet AS[2];
+ AS[0] = AttributeSet::get(M->getContext(), 2, Attribute::NoCapture);
+ AS[1] = AttributeSet::get(M->getContext(), AttributeSet::FunctionIndex,
+ Attribute::NoUnwind);
Type *I8Ptr = B.getInt8PtrTy();
Value *StrNCpy = M->getOrInsertFunction(Name,
- AttrListPtr::get(M->getContext(),
- AWI),
+ AttributeSet::get(M->getContext(),
+ AS),
I8Ptr, I8Ptr, I8Ptr,
Len->getType(), NULL);
CallInst *CI = B.CreateCall3(StrNCpy, CastToCStr(Dst, B), CastToCStr(Src, B),
@@ -209,12 +207,12 @@ Value *llvm::EmitMemCpyChk(Value *Dst, Value *Src, Value *Len, Value *ObjSize,
return 0;
Module *M = B.GetInsertBlock()->getParent()->getParent();
- AttributeWithIndex AWI;
- AWI = AttributeWithIndex::get(M->getContext(), AttrListPtr::FunctionIndex,
- Attributes::NoUnwind);
+ AttributeSet AS;
+ AS = AttributeSet::get(M->getContext(), AttributeSet::FunctionIndex,
+ Attribute::NoUnwind);
LLVMContext &Context = B.GetInsertBlock()->getContext();
Value *MemCpy = M->getOrInsertFunction("__memcpy_chk",
- AttrListPtr::get(M->getContext(), AWI),
+ AttributeSet::get(M->getContext(), AS),
B.getInt8PtrTy(),
B.getInt8PtrTy(),
B.getInt8PtrTy(),
@@ -237,13 +235,13 @@ Value *llvm::EmitMemChr(Value *Ptr, Value *Val,
return 0;
Module *M = B.GetInsertBlock()->getParent()->getParent();
- AttributeWithIndex AWI;
- Attributes::AttrVal AVs[2] = { Attributes::ReadOnly, Attributes::NoUnwind };
- AWI = AttributeWithIndex::get(M->getContext(), AttrListPtr::FunctionIndex,
- ArrayRef<Attributes::AttrVal>(AVs, 2));
+ AttributeSet AS;
+ Attribute::AttrKind AVs[2] = { Attribute::ReadOnly, Attribute::NoUnwind };
+ AS = AttributeSet::get(M->getContext(), AttributeSet::FunctionIndex,
+ ArrayRef<Attribute::AttrKind>(AVs, 2));
LLVMContext &Context = B.GetInsertBlock()->getContext();
Value *MemChr = M->getOrInsertFunction("memchr",
- AttrListPtr::get(M->getContext(), AWI),
+ AttributeSet::get(M->getContext(), AS),
B.getInt8PtrTy(),
B.getInt8PtrTy(),
B.getInt32Ty(),
@@ -265,16 +263,16 @@ Value *llvm::EmitMemCmp(Value *Ptr1, Value *Ptr2,
return 0;
Module *M = B.GetInsertBlock()->getParent()->getParent();
- AttributeWithIndex AWI[3];
- AWI[0] = AttributeWithIndex::get(M->getContext(), 1, Attributes::NoCapture);
- AWI[1] = AttributeWithIndex::get(M->getContext(), 2, Attributes::NoCapture);
- Attributes::AttrVal AVs[2] = { Attributes::ReadOnly, Attributes::NoUnwind };
- AWI[2] = AttributeWithIndex::get(M->getContext(), AttrListPtr::FunctionIndex,
- ArrayRef<Attributes::AttrVal>(AVs, 2));
+ AttributeSet AS[3];
+ AS[0] = AttributeSet::get(M->getContext(), 1, Attribute::NoCapture);
+ AS[1] = AttributeSet::get(M->getContext(), 2, Attribute::NoCapture);
+ Attribute::AttrKind AVs[2] = { Attribute::ReadOnly, Attribute::NoUnwind };
+ AS[2] = AttributeSet::get(M->getContext(), AttributeSet::FunctionIndex,
+ ArrayRef<Attribute::AttrKind>(AVs, 2));
LLVMContext &Context = B.GetInsertBlock()->getContext();
Value *MemCmp = M->getOrInsertFunction("memcmp",
- AttrListPtr::get(M->getContext(), AWI),
+ AttributeSet::get(M->getContext(), AS),
B.getInt32Ty(),
B.getInt8PtrTy(),
B.getInt8PtrTy(),
@@ -293,7 +291,7 @@ Value *llvm::EmitMemCmp(Value *Ptr1, Value *Ptr2,
/// returns one value with the same type. If 'Op' is a long double, 'l' is
/// added as the suffix of name, if 'Op' is a float, we add a 'f' suffix.
Value *llvm::EmitUnaryFloatFnCall(Value *Op, StringRef Name, IRBuilder<> &B,
- const AttrListPtr &Attrs) {
+ const AttributeSet &Attrs) {
SmallString<20> NameBuffer;
if (!Op->getType()->isDoubleTy()) {
// If we need to add a suffix, copy into NameBuffer.
@@ -346,13 +344,13 @@ Value *llvm::EmitPutS(Value *Str, IRBuilder<> &B, const DataLayout *TD,
return 0;
Module *M = B.GetInsertBlock()->getParent()->getParent();
- AttributeWithIndex AWI[2];
- AWI[0] = AttributeWithIndex::get(M->getContext(), 1, Attributes::NoCapture);
- AWI[1] = AttributeWithIndex::get(M->getContext(), AttrListPtr::FunctionIndex,
- Attributes::NoUnwind);
+ AttributeSet AS[2];
+ AS[0] = AttributeSet::get(M->getContext(), 1, Attribute::NoCapture);
+ AS[1] = AttributeSet::get(M->getContext(), AttributeSet::FunctionIndex,
+ Attribute::NoUnwind);
Value *PutS = M->getOrInsertFunction("puts",
- AttrListPtr::get(M->getContext(), AWI),
+ AttributeSet::get(M->getContext(), AS),
B.getInt32Ty(),
B.getInt8PtrTy(),
NULL);
@@ -370,14 +368,14 @@ Value *llvm::EmitFPutC(Value *Char, Value *File, IRBuilder<> &B,
return 0;
Module *M = B.GetInsertBlock()->getParent()->getParent();
- AttributeWithIndex AWI[2];
- AWI[0] = AttributeWithIndex::get(M->getContext(), 2, Attributes::NoCapture);
- AWI[1] = AttributeWithIndex::get(M->getContext(), AttrListPtr::FunctionIndex,
- Attributes::NoUnwind);
+ AttributeSet AS[2];
+ AS[0] = AttributeSet::get(M->getContext(), 2, Attribute::NoCapture);
+ AS[1] = AttributeSet::get(M->getContext(), AttributeSet::FunctionIndex,
+ Attribute::NoUnwind);
Constant *F;
if (File->getType()->isPointerTy())
F = M->getOrInsertFunction("fputc",
- AttrListPtr::get(M->getContext(), AWI),
+ AttributeSet::get(M->getContext(), AS),
B.getInt32Ty(),
B.getInt32Ty(), File->getType(),
NULL);
@@ -403,16 +401,16 @@ Value *llvm::EmitFPutS(Value *Str, Value *File, IRBuilder<> &B,
return 0;
Module *M = B.GetInsertBlock()->getParent()->getParent();
- AttributeWithIndex AWI[3];
- AWI[0] = AttributeWithIndex::get(M->getContext(), 1, Attributes::NoCapture);
- AWI[1] = AttributeWithIndex::get(M->getContext(), 2, Attributes::NoCapture);
- AWI[2] = AttributeWithIndex::get(M->getContext(), AttrListPtr::FunctionIndex,
- Attributes::NoUnwind);
+ AttributeSet AS[3];
+ AS[0] = AttributeSet::get(M->getContext(), 1, Attribute::NoCapture);
+ AS[1] = AttributeSet::get(M->getContext(), 2, Attribute::NoCapture);
+ AS[2] = AttributeSet::get(M->getContext(), AttributeSet::FunctionIndex,
+ Attribute::NoUnwind);
StringRef FPutsName = TLI->getName(LibFunc::fputs);
Constant *F;
if (File->getType()->isPointerTy())
F = M->getOrInsertFunction(FPutsName,
- AttrListPtr::get(M->getContext(), AWI),
+ AttributeSet::get(M->getContext(), AS),
B.getInt32Ty(),
B.getInt8PtrTy(),
File->getType(), NULL);
@@ -436,17 +434,17 @@ Value *llvm::EmitFWrite(Value *Ptr, Value *Size, Value *File,
return 0;
Module *M = B.GetInsertBlock()->getParent()->getParent();
- AttributeWithIndex AWI[3];
- AWI[0] = AttributeWithIndex::get(M->getContext(), 1, Attributes::NoCapture);
- AWI[1] = AttributeWithIndex::get(M->getContext(), 4, Attributes::NoCapture);
- AWI[2] = AttributeWithIndex::get(M->getContext(), AttrListPtr::FunctionIndex,
- Attributes::NoUnwind);
+ AttributeSet AS[3];
+ AS[0] = AttributeSet::get(M->getContext(), 1, Attribute::NoCapture);
+ AS[1] = AttributeSet::get(M->getContext(), 4, Attribute::NoCapture);
+ AS[2] = AttributeSet::get(M->getContext(), AttributeSet::FunctionIndex,
+ Attribute::NoUnwind);
LLVMContext &Context = B.GetInsertBlock()->getContext();
StringRef FWriteName = TLI->getName(LibFunc::fwrite);
Constant *F;
if (File->getType()->isPointerTy())
F = M->getOrInsertFunction(FWriteName,
- AttrListPtr::get(M->getContext(), AWI),
+ AttributeSet::get(M->getContext(), AS),
TD->getIntPtrType(Context),
B.getInt8PtrTy(),
TD->getIntPtrType(Context),
diff --git a/contrib/llvm/lib/Transforms/Utils/BypassSlowDivision.cpp b/contrib/llvm/lib/Transforms/Utils/BypassSlowDivision.cpp
index bee2f7b..1f517d0 100644
--- a/contrib/llvm/lib/Transforms/Utils/BypassSlowDivision.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/BypassSlowDivision.cpp
@@ -16,11 +16,11 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "bypass-slow-division"
-#include "llvm/Instructions.h"
-#include "llvm/Function.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/ADT/DenseMap.h"
#include "llvm/Transforms/Utils/BypassSlowDivision.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
using namespace llvm;
@@ -163,7 +163,7 @@ static bool insertFastDiv(Function &F,
Value *AndV = MainBuilder.CreateAnd(OrV, BitMask);
// Compare operand values and branch
- Value *ZeroV = MainBuilder.getInt32(0);
+ Value *ZeroV = ConstantInt::getSigned(Dividend->getType(), 0);
Value *CmpV = MainBuilder.CreateICmpEQ(AndV, ZeroV);
MainBuilder.CreateCondBr(CmpV, FastBB, SlowBB);
@@ -244,7 +244,7 @@ bool llvm::bypassSlowDivision(Function &F,
// Get bitwidth of div/rem instruction
IntegerType *T = cast<IntegerType>(J->getType());
- int bitwidth = T->getBitWidth();
+ unsigned int bitwidth = T->getBitWidth();
// Continue if bitwidth is not bypassed
DenseMap<unsigned int, unsigned int>::const_iterator BI = BypassWidths.find(bitwidth);
diff --git a/contrib/llvm/lib/Transforms/Utils/CloneFunction.cpp b/contrib/llvm/lib/Transforms/Utils/CloneFunction.cpp
index 7ba9f6d..63d7a1d 100644
--- a/contrib/llvm/lib/Transforms/Utils/CloneFunction.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/CloneFunction.cpp
@@ -14,22 +14,22 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/Cloning.h"
-#include "llvm/Constants.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/DebugInfo.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/Function.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Metadata.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
#include "llvm/Support/CFG.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
-#include "llvm/Analysis/ConstantFolding.h"
-#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/ADT/SmallVector.h"
#include <map>
using namespace llvm;
@@ -94,19 +94,20 @@ void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
//Some arguments were deleted with the VMap. Copy arguments one by one
for (Function::const_arg_iterator I = OldFunc->arg_begin(),
E = OldFunc->arg_end(); I != E; ++I)
- if (Argument* Anew = dyn_cast<Argument>(VMap[I]))
- Anew->addAttr( OldFunc->getAttributes()
- .getParamAttributes(I->getArgNo() + 1));
+ if (Argument* Anew = dyn_cast<Argument>(VMap[I])) {
+ AttributeSet attrs = OldFunc->getAttributes()
+ .getParamAttributes(I->getArgNo() + 1);
+ if (attrs.getNumSlots() > 0)
+ Anew->addAttr(attrs);
+ }
NewFunc->setAttributes(NewFunc->getAttributes()
- .addAttr(NewFunc->getContext(),
- AttrListPtr::ReturnIndex,
- OldFunc->getAttributes()
- .getRetAttributes()));
+ .addAttributes(NewFunc->getContext(),
+ AttributeSet::ReturnIndex,
+ OldFunc->getAttributes()));
NewFunc->setAttributes(NewFunc->getAttributes()
- .addAttr(NewFunc->getContext(),
- AttrListPtr::FunctionIndex,
- OldFunc->getAttributes()
- .getFnAttributes()));
+ .addAttributes(NewFunc->getContext(),
+ AttributeSet::FunctionIndex,
+ OldFunc->getAttributes()));
}
diff --git a/contrib/llvm/lib/Transforms/Utils/CloneModule.cpp b/contrib/llvm/lib/Transforms/Utils/CloneModule.cpp
index 1dac6b5..64df089 100644
--- a/contrib/llvm/lib/Transforms/Utils/CloneModule.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/CloneModule.cpp
@@ -13,9 +13,9 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/Cloning.h"
-#include "llvm/Module.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Constant.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Module.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
using namespace llvm;
@@ -38,10 +38,6 @@ Module *llvm::CloneModule(const Module *M, ValueToValueMapTy &VMap) {
New->setTargetTriple(M->getTargetTriple());
New->setModuleInlineAsm(M->getModuleInlineAsm());
- // Copy all of the dependent libraries over.
- for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
- New->addLibrary(*I);
-
// Loop over all of the global variables, making corresponding globals in the
// new module. Here we add them to the VMap and to the new Module. We
// don't worry about attributes or initializers, they will come later.
diff --git a/contrib/llvm/lib/Transforms/Utils/CmpInstAnalysis.cpp b/contrib/llvm/lib/Transforms/Utils/CmpInstAnalysis.cpp
index 9b09915..8fa412a 100644
--- a/contrib/llvm/lib/Transforms/Utils/CmpInstAnalysis.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/CmpInstAnalysis.cpp
@@ -13,8 +13,8 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/CmpInstAnalysis.h"
-#include "llvm/Constants.h"
-#include "llvm/Instructions.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Instructions.h"
using namespace llvm;
diff --git a/contrib/llvm/lib/Transforms/Utils/CodeExtractor.cpp b/contrib/llvm/lib/Transforms/Utils/CodeExtractor.cpp
index 281714f..f7c659f 100644
--- a/contrib/llvm/lib/Transforms/Utils/CodeExtractor.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/CodeExtractor.cpp
@@ -14,25 +14,26 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/CodeExtractor.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
-#include "llvm/Pass.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/Analysis/RegionIterator.h"
#include "llvm/Analysis/Verifier.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/ADT/StringExtras.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <algorithm>
#include <set>
using namespace llvm;
diff --git a/contrib/llvm/lib/Transforms/Utils/DemoteRegToStack.cpp b/contrib/llvm/lib/Transforms/Utils/DemoteRegToStack.cpp
index 99b5830..db525cd 100644
--- a/contrib/llvm/lib/Transforms/Utils/DemoteRegToStack.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/DemoteRegToStack.cpp
@@ -7,11 +7,12 @@
//
//===----------------------------------------------------------------------===//
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/Type.h"
#include "llvm/ADT/DenseMap.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Type.h"
using namespace llvm;
/// DemoteRegToStack - This function takes a virtual register computed by an
@@ -78,12 +79,21 @@ AllocaInst *llvm::DemoteRegToStack(Instruction &I, bool VolatileLoads,
InsertPt = &I;
++InsertPt;
} else {
- // We cannot demote invoke instructions to the stack if their normal edge
- // is critical.
InvokeInst &II = cast<InvokeInst>(I);
- assert(II.getNormalDest()->getSinglePredecessor() &&
- "Cannot demote invoke with a critical successor!");
- InsertPt = II.getNormalDest()->begin();
+ if (II.getNormalDest()->getSinglePredecessor())
+ InsertPt = II.getNormalDest()->getFirstInsertionPt();
+ else {
+ // We cannot demote invoke instructions to the stack if their normal edge
+ // is critical. Therefore, split the critical edge and insert the store
+ // in the newly created basic block.
+ unsigned SuccNum = GetSuccessorNumber(I.getParent(), II.getNormalDest());
+ TerminatorInst *TI = &cast<TerminatorInst>(I);
+ assert (isCriticalEdge(TI, SuccNum) &&
+ "Expected a critical edge!");
+ BasicBlock *BB = SplitCriticalEdge(TI, SuccNum);
+ assert (BB && "Unable to split critical edge.");
+ InsertPt = BB->getFirstInsertionPt();
+ }
}
for (; isa<PHINode>(InsertPt) || isa<LandingPadInst>(InsertPt); ++InsertPt)
@@ -124,7 +134,12 @@ AllocaInst *llvm::DemotePHIToStack(PHINode *P, Instruction *AllocaPoint) {
}
// Insert a load in place of the PHI and replace all uses.
- Value *V = new LoadInst(Slot, P->getName()+".reload", P);
+ BasicBlock::iterator InsertPt = P;
+
+ for (; isa<PHINode>(InsertPt) || isa<LandingPadInst>(InsertPt); ++InsertPt)
+ /* empty */; // Don't insert before PHI nodes or landingpad instrs.
+
+ Value *V = new LoadInst(Slot, P->getName()+".reload", InsertPt);
P->replaceAllUsesWith(V);
// Delete PHI.
diff --git a/contrib/llvm/lib/Transforms/Utils/InlineFunction.cpp b/contrib/llvm/lib/Transforms/Utils/InlineFunction.cpp
index 009847f..e9828d6 100644
--- a/contrib/llvm/lib/Transforms/Utils/InlineFunction.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/InlineFunction.cpp
@@ -13,21 +13,21 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/Cloning.h"
-#include "llvm/Attributes.h"
-#include "llvm/Constants.h"
-#include "llvm/DebugInfo.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/Module.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/DebugInfo.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Module.h"
#include "llvm/Support/CallSite.h"
-#include "llvm/DataLayout.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
@@ -82,7 +82,8 @@ namespace {
/// a simple branch. When there is more than one predecessor, we need to
/// split the landing pad block after the landingpad instruction and jump
/// to there.
- void forwardResume(ResumeInst *RI);
+ void forwardResume(ResumeInst *RI,
+ SmallPtrSet<LandingPadInst*, 16> &InlinedLPads);
/// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind
/// destination block for the given basic block, using the values for the
@@ -140,8 +141,10 @@ BasicBlock *InvokeInliningInfo::getInnerResumeDest() {
/// block. When the landing pad block has only one predecessor, this is a simple
/// branch. When there is more than one predecessor, we need to split the
/// landing pad block after the landingpad instruction and jump to there.
-void InvokeInliningInfo::forwardResume(ResumeInst *RI) {
+void InvokeInliningInfo::forwardResume(ResumeInst *RI,
+ SmallPtrSet<LandingPadInst*, 16> &InlinedLPads) {
BasicBlock *Dest = getInnerResumeDest();
+ LandingPadInst *OuterLPad = getLandingPadInst();
BasicBlock *Src = RI->getParent();
BranchInst::Create(Dest, Src);
@@ -152,6 +155,16 @@ void InvokeInliningInfo::forwardResume(ResumeInst *RI) {
InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
RI->eraseFromParent();
+
+ // Append the clauses from the outer landing pad instruction into the inlined
+ // landing pad instructions.
+ for (SmallPtrSet<LandingPadInst*, 16>::iterator I = InlinedLPads.begin(),
+ E = InlinedLPads.end(); I != E; ++I) {
+ LandingPadInst *InlinedLPad = *I;
+ for (unsigned OuterIdx = 0, OuterNum = OuterLPad->getNumClauses();
+ OuterIdx != OuterNum; ++OuterIdx)
+ InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
+ }
}
/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
@@ -229,19 +242,15 @@ static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
// The inlined code is currently at the end of the function, scan from the
// start of the inlined code to its end, checking for stuff we need to
- // rewrite. If the code doesn't have calls or unwinds, we know there is
- // nothing to rewrite.
- if (!InlinedCodeInfo.ContainsCalls) {
- // Now that everything is happy, we have one final detail. The PHI nodes in
- // the exception destination block still have entries due to the original
- // invoke instruction. Eliminate these entries (which might even delete the
- // PHI node) now.
- InvokeDest->removePredecessor(II->getParent());
- return;
- }
-
+ // rewrite.
InvokeInliningInfo Invoke(II);
-
+
+ // Get all of the inlined landing pad instructions.
+ SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
+ for (Function::iterator I = FirstNewBlock, E = Caller->end(); I != E; ++I)
+ if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
+ InlinedLPads.insert(II->getLandingPadInst());
+
for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
if (InlinedCodeInfo.ContainsCalls)
if (HandleCallsInBlockInlinedThroughInvoke(BB, Invoke)) {
@@ -250,13 +259,14 @@ static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
continue;
}
+ // Forward any resumes that are remaining here.
if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
- Invoke.forwardResume(RI);
+ Invoke.forwardResume(RI, InlinedLPads);
}
// Now that everything is happy, we have one final detail. The PHI nodes in
// the exception destination block still have entries due to the original
- // invoke instruction. Eliminate these entries (which might even delete the
+ // invoke instruction. Eliminate these entries (which might even delete the
// PHI node) now.
InvokeDest->removePredecessor(II->getParent());
}
@@ -668,10 +678,29 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
if (hasLifetimeMarkers(AI))
continue;
- builder.CreateLifetimeStart(AI);
+ // Try to determine the size of the allocation.
+ ConstantInt *AllocaSize = 0;
+ if (ConstantInt *AIArraySize =
+ dyn_cast<ConstantInt>(AI->getArraySize())) {
+ if (IFI.TD) {
+ Type *AllocaType = AI->getAllocatedType();
+ uint64_t AllocaTypeSize = IFI.TD->getTypeAllocSize(AllocaType);
+ uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
+ assert(AllocaArraySize > 0 && "array size of AllocaInst is zero");
+ // Check that array size doesn't saturate uint64_t and doesn't
+ // overflow when it's multiplied by type size.
+ if (AllocaArraySize != ~0ULL &&
+ UINT64_MAX / AllocaArraySize >= AllocaTypeSize) {
+ AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
+ AllocaArraySize * AllocaTypeSize);
+ }
+ }
+ }
+
+ builder.CreateLifetimeStart(AI, AllocaSize);
for (unsigned ri = 0, re = Returns.size(); ri != re; ++ri) {
IRBuilder<> builder(Returns[ri]);
- builder.CreateLifetimeEnd(AI);
+ builder.CreateLifetimeEnd(AI, AllocaSize);
}
}
}
diff --git a/contrib/llvm/lib/Transforms/Utils/InstructionNamer.cpp b/contrib/llvm/lib/Transforms/Utils/InstructionNamer.cpp
index 45c15de..a020bc7 100644
--- a/contrib/llvm/lib/Transforms/Utils/InstructionNamer.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/InstructionNamer.cpp
@@ -15,9 +15,9 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Function.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Type.h"
#include "llvm/Pass.h"
-#include "llvm/Type.h"
using namespace llvm;
namespace {
diff --git a/contrib/llvm/lib/Transforms/Utils/IntegerDivision.cpp b/contrib/llvm/lib/Transforms/Utils/IntegerDivision.cpp
index 55227e2..3cb8ded 100644
--- a/contrib/llvm/lib/Transforms/Utils/IntegerDivision.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/IntegerDivision.cpp
@@ -15,11 +15,11 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "integer-division"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/IRBuilder.h"
#include "llvm/Transforms/Utils/IntegerDivision.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
using namespace llvm;
@@ -418,3 +418,107 @@ bool llvm::expandDivision(BinaryOperator *Div) {
return true;
}
+
+/// Generate code to compute the remainder of two integers of bitwidth up to
+/// 32 bits. Uses the above routines and extends the inputs/truncates the
+/// outputs to operate in 32 bits; that is, these routines are good for targets
+/// that have no or very little suppport for smaller than 32 bit integer
+/// arithmetic.
+///
+/// @brief Replace Rem with emulation code.
+bool llvm::expandRemainderUpTo32Bits(BinaryOperator *Rem) {
+ assert((Rem->getOpcode() == Instruction::SRem ||
+ Rem->getOpcode() == Instruction::URem) &&
+ "Trying to expand remainder from a non-remainder function");
+
+ Type *RemTy = Rem->getType();
+ if (RemTy->isVectorTy())
+ llvm_unreachable("Div over vectors not supported");
+
+ unsigned RemTyBitWidth = RemTy->getIntegerBitWidth();
+
+ if (RemTyBitWidth > 32)
+ llvm_unreachable("Div of bitwidth greater than 32 not supported");
+
+ if (RemTyBitWidth == 32)
+ return expandRemainder(Rem);
+
+ // If bitwidth smaller than 32 extend inputs, truncate output and proceed
+ // with 32 bit division.
+ IRBuilder<> Builder(Rem);
+
+ Value *ExtDividend;
+ Value *ExtDivisor;
+ Value *ExtRem;
+ Value *Trunc;
+ Type *Int32Ty = Builder.getInt32Ty();
+
+ if (Rem->getOpcode() == Instruction::SRem) {
+ ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int32Ty);
+ ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int32Ty);
+ ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor);
+ } else {
+ ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int32Ty);
+ ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int32Ty);
+ ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor);
+ }
+ Trunc = Builder.CreateTrunc(ExtRem, RemTy);
+
+ Rem->replaceAllUsesWith(Trunc);
+ Rem->dropAllReferences();
+ Rem->eraseFromParent();
+
+ return expandRemainder(cast<BinaryOperator>(ExtRem));
+}
+
+
+/// Generate code to divide two integers of bitwidth up to 32 bits. Uses the
+/// above routines and extends the inputs/truncates the outputs to operate
+/// in 32 bits; that is, these routines are good for targets that have no
+/// or very little support for smaller than 32 bit integer arithmetic.
+///
+/// @brief Replace Div with emulation code.
+bool llvm::expandDivisionUpTo32Bits(BinaryOperator *Div) {
+ assert((Div->getOpcode() == Instruction::SDiv ||
+ Div->getOpcode() == Instruction::UDiv) &&
+ "Trying to expand division from a non-division function");
+
+ Type *DivTy = Div->getType();
+ if (DivTy->isVectorTy())
+ llvm_unreachable("Div over vectors not supported");
+
+ unsigned DivTyBitWidth = DivTy->getIntegerBitWidth();
+
+ if (DivTyBitWidth > 32)
+ llvm_unreachable("Div of bitwidth greater than 32 not supported");
+
+ if (DivTyBitWidth == 32)
+ return expandDivision(Div);
+
+ // If bitwidth smaller than 32 extend inputs, truncate output and proceed
+ // with 32 bit division.
+ IRBuilder<> Builder(Div);
+
+ Value *ExtDividend;
+ Value *ExtDivisor;
+ Value *ExtDiv;
+ Value *Trunc;
+ Type *Int32Ty = Builder.getInt32Ty();
+
+ if (Div->getOpcode() == Instruction::SDiv) {
+ ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int32Ty);
+ ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int32Ty);
+ ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor);
+ } else {
+ ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int32Ty);
+ ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int32Ty);
+ ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor);
+ }
+ Trunc = Builder.CreateTrunc(ExtDiv, DivTy);
+
+ Div->replaceAllUsesWith(Trunc);
+ Div->dropAllReferences();
+ Div->eraseFromParent();
+
+ return expandDivision(cast<BinaryOperator>(ExtDiv));
+}
diff --git a/contrib/llvm/lib/Transforms/Utils/LCSSA.cpp b/contrib/llvm/lib/Transforms/Utils/LCSSA.cpp
index 5e05c83..2d1b166 100644
--- a/contrib/llvm/lib/Transforms/Utils/LCSSA.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/LCSSA.cpp
@@ -29,17 +29,17 @@
#define DEBUG_TYPE "lcssa"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Constants.h"
-#include "llvm/Pass.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/Transforms/Utils/SSAUpdater.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/STLExtras.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/Pass.h"
#include "llvm/Support/PredIteratorCache.h"
+#include "llvm/Transforms/Utils/SSAUpdater.h"
using namespace llvm;
STATISTIC(NumLCSSA, "Number of live out of a loop variables");
diff --git a/contrib/llvm/lib/Transforms/Utils/Local.cpp b/contrib/llvm/lib/Transforms/Utils/Local.cpp
index a954d82..be80d34 100644
--- a/contrib/llvm/lib/Transforms/Utils/Local.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/Local.cpp
@@ -13,33 +13,34 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Constants.h"
-#include "llvm/DIBuilder.h"
-#include "llvm/DebugInfo.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/GlobalAlias.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/MDBuilder.h"
-#include "llvm/Metadata.h"
-#include "llvm/Operator.h"
#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/ProfileInfo.h"
#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/DIBuilder.h"
+#include "llvm/DebugInfo.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Operator.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/DataLayout.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
@@ -604,7 +605,7 @@ bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
// possible to handle such cases, but difficult: it requires checking whether
// BB dominates Succ, which is non-trivial to calculate in the case where
// Succ has multiple predecessors. Also, it requires checking whether
- // constructing the necessary self-referential PHI node doesn't intoduce any
+ // constructing the necessary self-referential PHI node doesn't introduce any
// conflicts; this isn't too difficult, but the previous code for doing this
// was incorrect.
//
@@ -928,3 +929,73 @@ DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
return 0;
}
+
+bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
+ DIBuilder &Builder) {
+ DbgDeclareInst *DDI = FindAllocaDbgDeclare(AI);
+ if (!DDI)
+ return false;
+ DIVariable DIVar(DDI->getVariable());
+ if (!DIVar.Verify())
+ return false;
+
+ // Create a copy of the original DIDescriptor for user variable, appending
+ // "deref" operation to a list of address elements, as new llvm.dbg.declare
+ // will take a value storing address of the memory for variable, not
+ // alloca itself.
+ Type *Int64Ty = Type::getInt64Ty(AI->getContext());
+ SmallVector<Value*, 4> NewDIVarAddress;
+ if (DIVar.hasComplexAddress()) {
+ for (unsigned i = 0, n = DIVar.getNumAddrElements(); i < n; ++i) {
+ NewDIVarAddress.push_back(
+ ConstantInt::get(Int64Ty, DIVar.getAddrElement(i)));
+ }
+ }
+ NewDIVarAddress.push_back(ConstantInt::get(Int64Ty, DIBuilder::OpDeref));
+ DIVariable NewDIVar = Builder.createComplexVariable(
+ DIVar.getTag(), DIVar.getContext(), DIVar.getName(),
+ DIVar.getFile(), DIVar.getLineNumber(), DIVar.getType(),
+ NewDIVarAddress, DIVar.getArgNumber());
+
+ // Insert llvm.dbg.declare in the same basic block as the original alloca,
+ // and remove old llvm.dbg.declare.
+ BasicBlock *BB = AI->getParent();
+ Builder.insertDeclare(NewAllocaAddress, NewDIVar, BB);
+ DDI->eraseFromParent();
+ return true;
+}
+
+bool llvm::removeUnreachableBlocks(Function &F) {
+ SmallPtrSet<BasicBlock*, 16> Reachable;
+ SmallVector<BasicBlock*, 128> Worklist;
+ Worklist.push_back(&F.getEntryBlock());
+ Reachable.insert(&F.getEntryBlock());
+ do {
+ BasicBlock *BB = Worklist.pop_back_val();
+ for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
+ if (Reachable.insert(*SI))
+ Worklist.push_back(*SI);
+ } while (!Worklist.empty());
+
+ if (Reachable.size() == F.size())
+ return false;
+
+ assert(Reachable.size() < F.size());
+ for (Function::iterator I = llvm::next(F.begin()), E = F.end(); I != E; ++I) {
+ if (Reachable.count(I))
+ continue;
+
+ for (succ_iterator SI = succ_begin(I), SE = succ_end(I); SI != SE; ++SI)
+ if (Reachable.count(*SI))
+ (*SI)->removePredecessor(I);
+ I->dropAllReferences();
+ }
+
+ for (Function::iterator I = llvm::next(F.begin()), E=F.end(); I != E;)
+ if (!Reachable.count(I))
+ I = F.getBasicBlockList().erase(I);
+ else
+ ++I;
+
+ return true;
+}
diff --git a/contrib/llvm/lib/Transforms/Utils/LoopSimplify.cpp b/contrib/llvm/lib/Transforms/Utils/LoopSimplify.cpp
index 9d9e201..37819cc 100644
--- a/contrib/llvm/lib/Transforms/Utils/LoopSimplify.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/LoopSimplify.cpp
@@ -39,26 +39,26 @@
#define DEBUG_TYPE "loop-simplify"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Constants.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Function.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Type.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/SetOperations.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/DependenceAnalysis.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Type.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
-#include "llvm/ADT/SetOperations.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
diff --git a/contrib/llvm/lib/Transforms/Utils/LoopUnroll.cpp b/contrib/llvm/lib/Transforms/Utils/LoopUnroll.cpp
index 2023750..cb581b3 100644
--- a/contrib/llvm/lib/Transforms/Utils/LoopUnroll.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/LoopUnroll.cpp
@@ -18,12 +18,12 @@
#define DEBUG_TYPE "loop-unroll"
#include "llvm/Transforms/Utils/UnrollLoop.h"
-#include "llvm/BasicBlock.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/IR/BasicBlock.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
diff --git a/contrib/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp b/contrib/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp
index 67e17f4..d801d5f 100644
--- a/contrib/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp
@@ -23,12 +23,12 @@
#define DEBUG_TYPE "loop-unroll"
#include "llvm/Transforms/Utils/UnrollLoop.h"
-#include "llvm/BasicBlock.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
+#include "llvm/IR/BasicBlock.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
diff --git a/contrib/llvm/lib/Transforms/Utils/LowerExpectIntrinsic.cpp b/contrib/llvm/lib/Transforms/Utils/LowerExpectIntrinsic.cpp
index 02bdcda..4aee8ff 100644
--- a/contrib/llvm/lib/Transforms/Utils/LowerExpectIntrinsic.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/LowerExpectIntrinsic.cpp
@@ -12,17 +12,17 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "lower-expect-intrinsic"
-#include "llvm/BasicBlock.h"
-#include "llvm/Constants.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/MDBuilder.h"
-#include "llvm/Metadata.h"
-#include "llvm/Pass.h"
-#include "llvm/ADT/Statistic.h"
#include "llvm/Transforms/Scalar.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include <vector>
diff --git a/contrib/llvm/lib/Transforms/Utils/LowerInvoke.cpp b/contrib/llvm/lib/Transforms/Utils/LowerInvoke.cpp
index 9305554..9ec84d7 100644
--- a/contrib/llvm/lib/Transforms/Utils/LowerInvoke.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/LowerInvoke.cpp
@@ -36,19 +36,19 @@
#define DEBUG_TYPE "lowerinvoke"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
-#include "llvm/Pass.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Transforms/Utils/Local.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetLowering.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
#include <csetjmp>
#include <set>
using namespace llvm;
diff --git a/contrib/llvm/lib/Transforms/Utils/LowerSwitch.cpp b/contrib/llvm/lib/Transforms/Utils/LowerSwitch.cpp
index 1547439..955b853 100644
--- a/contrib/llvm/lib/Transforms/Utils/LowerSwitch.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/LowerSwitch.cpp
@@ -14,16 +14,16 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
-#include "llvm/Constants.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Pass.h"
#include "llvm/ADT/STLExtras.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/Pass.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
#include <algorithm>
using namespace llvm;
diff --git a/contrib/llvm/lib/Transforms/Utils/Mem2Reg.cpp b/contrib/llvm/lib/Transforms/Utils/Mem2Reg.cpp
index f4ca81a..61b3965 100644
--- a/contrib/llvm/lib/Transforms/Utils/Mem2Reg.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/Mem2Reg.cpp
@@ -14,12 +14,12 @@
#define DEBUG_TYPE "mem2reg"
#include "llvm/Transforms/Scalar.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
-#include "llvm/Analysis/Dominators.h"
-#include "llvm/Instructions.h"
-#include "llvm/Function.h"
-#include "llvm/ADT/Statistic.h"
using namespace llvm;
STATISTIC(NumPromoted, "Number of alloca's promoted");
diff --git a/contrib/llvm/lib/Transforms/Utils/MetaRenamer.cpp b/contrib/llvm/lib/Transforms/Utils/MetaRenamer.cpp
index 233bc12..3716f58 100644
--- a/contrib/llvm/lib/Transforms/Utils/MetaRenamer.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/MetaRenamer.cpp
@@ -13,16 +13,15 @@
//
//===----------------------------------------------------------------------===//
+#include "llvm/Transforms/IPO.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
-#include "llvm/Transforms/IPO.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/Module.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/TypeFinder.h"
#include "llvm/Pass.h"
-#include "llvm/Type.h"
-#include "llvm/TypeFinder.h"
-
using namespace llvm;
namespace {
@@ -37,7 +36,7 @@ namespace {
next = seed;
}
- int rand(void) {
+ int rand() {
next = next * 1103515245 + 12345;
return (unsigned int)(next / 65536) % 32768;
}
@@ -73,13 +72,23 @@ namespace {
// Rename all aliases
for (Module::alias_iterator AI = M.alias_begin(), AE = M.alias_end();
- AI != AE; ++AI)
- AI->setName("alias");
+ AI != AE; ++AI) {
+ StringRef Name = AI->getName();
+ if (Name.startswith("llvm.") || (!Name.empty() && Name[0] == 1))
+ continue;
+ AI->setName("alias");
+ }
+
// Rename all global variables
for (Module::global_iterator GI = M.global_begin(), GE = M.global_end();
- GI != GE; ++GI)
+ GI != GE; ++GI) {
+ StringRef Name = GI->getName();
+ if (Name.startswith("llvm.") || (!Name.empty() && Name[0] == 1))
+ continue;
+
GI->setName("global");
+ }
// Rename all struct types
TypeFinder StructTypes;
@@ -96,6 +105,10 @@ namespace {
// Rename all functions
for (Module::iterator FI = M.begin(), FE = M.end();
FI != FE; ++FI) {
+ StringRef Name = FI->getName();
+ if (Name.startswith("llvm.") || (!Name.empty() && Name[0] == 1))
+ continue;
+
FI->setName(metaNames[prng.rand() % array_lengthof(metaNames)]);
runOnFunction(*FI);
}
diff --git a/contrib/llvm/lib/Transforms/Utils/ModuleUtils.cpp b/contrib/llvm/lib/Transforms/Utils/ModuleUtils.cpp
index dbcf3b2..d090b48 100644
--- a/contrib/llvm/lib/Transforms/Utils/ModuleUtils.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/ModuleUtils.cpp
@@ -12,10 +12,10 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/ModuleUtils.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Module.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Module.h"
using namespace llvm;
diff --git a/contrib/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp b/contrib/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
index 558de9d..de335ec 100644
--- a/contrib/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
@@ -27,26 +27,26 @@
#define DEBUG_TYPE "mem2reg"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
-#include "llvm/Constants.h"
-#include "llvm/DebugInfo.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/DIBuilder.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Metadata.h"
-#include "llvm/Analysis/AliasSetTracker.h"
-#include "llvm/Analysis/Dominators.h"
-#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Transforms/Utils/Local.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Hashing.h"
+#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/STLExtras.h"
+#include "llvm/Analysis/AliasSetTracker.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/DIBuilder.h"
+#include "llvm/DebugInfo.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Metadata.h"
#include "llvm/Support/CFG.h"
+#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
#include <queue>
using namespace llvm;
diff --git a/contrib/llvm/lib/Transforms/Utils/SSAUpdater.cpp b/contrib/llvm/lib/Transforms/Utils/SSAUpdater.cpp
index 72d4199..9d90fbe 100644
--- a/contrib/llvm/lib/Transforms/Utils/SSAUpdater.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/SSAUpdater.cpp
@@ -12,12 +12,13 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "ssaupdater"
-#include "llvm/Constants.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/Transforms/Utils/SSAUpdater.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/AlignOf.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/CFG.h"
@@ -25,7 +26,6 @@
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Transforms/Utils/SSAUpdater.h"
#include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
using namespace llvm;
diff --git a/contrib/llvm/lib/Transforms/Utils/SimplifyCFG.cpp b/contrib/llvm/lib/Transforms/Utils/SimplifyCFG.cpp
index c767da6..681bf9c 100644
--- a/contrib/llvm/lib/Transforms/Utils/SimplifyCFG.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/SimplifyCFG.cpp
@@ -13,19 +13,6 @@
#define DEBUG_TYPE "simplifycfg"
#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Constants.h"
-#include "llvm/DataLayout.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/MDBuilder.h"
-#include "llvm/Metadata.h"
-#include "llvm/Module.h"
-#include "llvm/Operator.h"
-#include "llvm/Type.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
@@ -33,18 +20,31 @@
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/Type.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ConstantRange.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/NoFolder.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/TargetTransformInfo.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <algorithm>
-#include <set>
#include <map>
+#include <set>
using namespace llvm;
static cl::opt<unsigned>
@@ -82,8 +82,8 @@ namespace {
};
class SimplifyCFGOpt {
+ const TargetTransformInfo &TTI;
const DataLayout *const TD;
- const TargetTransformInfo *const TTI;
Value *isValueEqualityComparison(TerminatorInst *TI);
BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
@@ -103,8 +103,8 @@ class SimplifyCFGOpt {
bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
public:
- SimplifyCFGOpt(const DataLayout *td, const TargetTransformInfo *tti)
- : TD(td), TTI(tti) {}
+ SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout *TD)
+ : TTI(TTI), TD(TD) {}
bool run(BasicBlock *BB);
};
}
@@ -858,7 +858,7 @@ bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
if (PredHasWeights) {
GetBranchWeights(PTI, Weights);
- // branch-weight metadata is inconsistant here.
+ // branch-weight metadata is inconsistent here.
if (Weights.size() != 1 + PredCases.size())
PredHasWeights = SuccHasWeights = false;
} else if (SuccHasWeights)
@@ -870,7 +870,7 @@ bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
SmallVector<uint64_t, 8> SuccWeights;
if (SuccHasWeights) {
GetBranchWeights(TI, SuccWeights);
- // branch-weight metadata is inconsistant here.
+ // branch-weight metadata is inconsistent here.
if (SuccWeights.size() != 1 + BBCases.size())
PredHasWeights = SuccHasWeights = false;
} else if (PredHasWeights)
@@ -967,8 +967,8 @@ bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
PTIHandled.begin(),
E = PTIHandled.end(); I != E; ++I) {
- if (PredHasWeights || SuccHasWeights)
- Weights.push_back(WeightsForHandled[*I]);
+ if (PredHasWeights || SuccHasWeights)
+ Weights.push_back(WeightsForHandled[*I]);
PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault));
NewSuccessors.push_back(BBDefault);
}
@@ -1193,7 +1193,7 @@ static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
I != E; ++I) {
if (PHINode *PN = dyn_cast<PHINode>(I)) {
Value *BB1V = PN->getIncomingValueForBlock(BB1);
- Value *BB2V = PN->getIncomingValueForBlock(BB2);
+ Value *BB2V = PN->getIncomingValueForBlock(BB2);
MapValueFromBB1ToBB2[BB1V] = std::make_pair(BB2V, PN);
} else {
FirstNonPhiInBBEnd = &*I;
@@ -1202,7 +1202,7 @@ static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
}
if (!FirstNonPhiInBBEnd)
return false;
-
+
// This does very trivial matching, with limited scanning, to find identical
// instructions in the two blocks. We scan backward for obviously identical
@@ -1332,149 +1332,180 @@ static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
return Changed;
}
-/// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
-/// and an BB2 and the only successor of BB1 is BB2, hoist simple code
-/// (for now, restricted to a single instruction that's side effect free) from
-/// the BB1 into the branch block to speculatively execute it.
+/// \brief Speculate a conditional basic block flattening the CFG.
+///
+/// Note that this is a very risky transform currently. Speculating
+/// instructions like this is most often not desirable. Instead, there is an MI
+/// pass which can do it with full awareness of the resource constraints.
+/// However, some cases are "obvious" and we should do directly. An example of
+/// this is speculating a single, reasonably cheap instruction.
+///
+/// There is only one distinct advantage to flattening the CFG at the IR level:
+/// it makes very common but simplistic optimizations such as are common in
+/// instcombine and the DAG combiner more powerful by removing CFG edges and
+/// modeling their effects with easier to reason about SSA value graphs.
///
-/// Turn
-/// BB:
-/// %t1 = icmp
-/// br i1 %t1, label %BB1, label %BB2
-/// BB1:
-/// %t3 = add %t2, c
+///
+/// An illustration of this transform is turning this IR:
+/// \code
+/// BB:
+/// %cmp = icmp ult %x, %y
+/// br i1 %cmp, label %EndBB, label %ThenBB
+/// ThenBB:
+/// %sub = sub %x, %y
/// br label BB2
-/// BB2:
-/// =>
-/// BB:
-/// %t1 = icmp
-/// %t4 = add %t2, c
-/// %t3 = select i1 %t1, %t2, %t3
-static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) {
- // Only speculatively execution a single instruction (not counting the
- // terminator) for now.
- Instruction *HInst = NULL;
- Instruction *Term = BB1->getTerminator();
- for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end();
+/// EndBB:
+/// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
+/// ...
+/// \endcode
+///
+/// Into this IR:
+/// \code
+/// BB:
+/// %cmp = icmp ult %x, %y
+/// %sub = sub %x, %y
+/// %cond = select i1 %cmp, 0, %sub
+/// ...
+/// \endcode
+///
+/// \returns true if the conditional block is removed.
+static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB) {
+ // Be conservative for now. FP select instruction can often be expensive.
+ Value *BrCond = BI->getCondition();
+ if (isa<FCmpInst>(BrCond))
+ return false;
+
+ BasicBlock *BB = BI->getParent();
+ BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
+
+ // If ThenBB is actually on the false edge of the conditional branch, remember
+ // to swap the select operands later.
+ bool Invert = false;
+ if (ThenBB != BI->getSuccessor(0)) {
+ assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
+ Invert = true;
+ }
+ assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
+
+ // Keep a count of how many times instructions are used within CondBB when
+ // they are candidates for sinking into CondBB. Specifically:
+ // - They are defined in BB, and
+ // - They have no side effects, and
+ // - All of their uses are in CondBB.
+ SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
+
+ unsigned SpeculationCost = 0;
+ for (BasicBlock::iterator BBI = ThenBB->begin(),
+ BBE = llvm::prior(ThenBB->end());
BBI != BBE; ++BBI) {
Instruction *I = BBI;
// Skip debug info.
- if (isa<DbgInfoIntrinsic>(I)) continue;
- if (I == Term) break;
+ if (isa<DbgInfoIntrinsic>(I))
+ continue;
- if (HInst)
+ // Only speculatively execution a single instruction (not counting the
+ // terminator) for now.
+ ++SpeculationCost;
+ if (SpeculationCost > 1)
return false;
- HInst = I;
- }
-
- BasicBlock *BIParent = BI->getParent();
- // Check the instruction to be hoisted, if there is one.
- if (HInst) {
// Don't hoist the instruction if it's unsafe or expensive.
- if (!isSafeToSpeculativelyExecute(HInst))
+ if (!isSafeToSpeculativelyExecute(I))
return false;
- if (ComputeSpeculationCost(HInst) > PHINodeFoldingThreshold)
+ if (ComputeSpeculationCost(I) > PHINodeFoldingThreshold)
return false;
// Do not hoist the instruction if any of its operands are defined but not
// used in this BB. The transformation will prevent the operand from
// being sunk into the use block.
- for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end();
+ for (User::op_iterator i = I->op_begin(), e = I->op_end();
i != e; ++i) {
Instruction *OpI = dyn_cast<Instruction>(*i);
- if (OpI && OpI->getParent() == BIParent &&
- !OpI->mayHaveSideEffects() &&
- !OpI->isUsedInBasicBlock(BIParent))
- return false;
+ if (!OpI || OpI->getParent() != BB ||
+ OpI->mayHaveSideEffects())
+ continue; // Not a candidate for sinking.
+
+ ++SinkCandidateUseCounts[OpI];
}
}
- // Be conservative for now. FP select instruction can often be expensive.
- Value *BrCond = BI->getCondition();
- if (isa<FCmpInst>(BrCond))
- return false;
-
- // If BB1 is actually on the false edge of the conditional branch, remember
- // to swap the select operands later.
- bool Invert = false;
- if (BB1 != BI->getSuccessor(0)) {
- assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?");
- Invert = true;
- }
+ // Consider any sink candidates which are only used in CondBB as costs for
+ // speculation. Note, while we iterate over a DenseMap here, we are summing
+ // and so iteration order isn't significant.
+ for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I =
+ SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end();
+ I != E; ++I)
+ if (I->first->getNumUses() == I->second) {
+ ++SpeculationCost;
+ if (SpeculationCost > 1)
+ return false;
+ }
- // Collect interesting PHIs, and scan for hazards.
- SmallSetVector<std::pair<Value *, Value *>, 4> PHIs;
- BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0);
- for (BasicBlock::iterator I = BB2->begin();
+ // Check that the PHI nodes can be converted to selects.
+ bool HaveRewritablePHIs = false;
+ for (BasicBlock::iterator I = EndBB->begin();
PHINode *PN = dyn_cast<PHINode>(I); ++I) {
- Value *BB1V = PN->getIncomingValueForBlock(BB1);
- Value *BIParentV = PN->getIncomingValueForBlock(BIParent);
+ Value *OrigV = PN->getIncomingValueForBlock(BB);
+ Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
// Skip PHIs which are trivial.
- if (BB1V == BIParentV)
+ if (ThenV == OrigV)
continue;
- // Check for saftey.
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BB1V)) {
- // An unfolded ConstantExpr could end up getting expanded into
- // Instructions. Don't speculate this and another instruction at
- // the same time.
- if (HInst)
- return false;
- if (!isSafeToSpeculativelyExecute(CE))
- return false;
- if (ComputeSpeculationCost(CE) > PHINodeFoldingThreshold)
- return false;
- }
+ HaveRewritablePHIs = true;
+ ConstantExpr *CE = dyn_cast<ConstantExpr>(ThenV);
+ if (!CE)
+ continue; // Known safe and cheap.
- // Ok, we may insert a select for this PHI.
- PHIs.insert(std::make_pair(BB1V, BIParentV));
+ if (!isSafeToSpeculativelyExecute(CE))
+ return false;
+ if (ComputeSpeculationCost(CE) > PHINodeFoldingThreshold)
+ return false;
+
+ // Account for the cost of an unfolded ConstantExpr which could end up
+ // getting expanded into Instructions.
+ // FIXME: This doesn't account for how many operations are combined in the
+ // constant expression.
+ ++SpeculationCost;
+ if (SpeculationCost > 1)
+ return false;
}
// If there are no PHIs to process, bail early. This helps ensure idempotence
// as well.
- if (PHIs.empty())
+ if (!HaveRewritablePHIs)
return false;
// If we get here, we can hoist the instruction and if-convert.
- DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *BB1 << "\n";);
+ DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
- // Hoist the instruction.
- if (HInst)
- BIParent->getInstList().splice(BI, BB1->getInstList(), HInst);
+ // Hoist the instructions.
+ BB->getInstList().splice(BI, ThenBB->getInstList(), ThenBB->begin(),
+ llvm::prior(ThenBB->end()));
// Insert selects and rewrite the PHI operands.
IRBuilder<true, NoFolder> Builder(BI);
- for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
- Value *TrueV = PHIs[i].first;
- Value *FalseV = PHIs[i].second;
+ for (BasicBlock::iterator I = EndBB->begin();
+ PHINode *PN = dyn_cast<PHINode>(I); ++I) {
+ unsigned OrigI = PN->getBasicBlockIndex(BB);
+ unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
+ Value *OrigV = PN->getIncomingValue(OrigI);
+ Value *ThenV = PN->getIncomingValue(ThenI);
+
+ // Skip PHIs which are trivial.
+ if (OrigV == ThenV)
+ continue;
// Create a select whose true value is the speculatively executed value and
- // false value is the previously determined FalseV.
- SelectInst *SI;
+ // false value is the preexisting value. Swap them if the branch
+ // destinations were inverted.
+ Value *TrueV = ThenV, *FalseV = OrigV;
if (Invert)
- SI = cast<SelectInst>
- (Builder.CreateSelect(BrCond, FalseV, TrueV,
- FalseV->getName() + "." + TrueV->getName()));
- else
- SI = cast<SelectInst>
- (Builder.CreateSelect(BrCond, TrueV, FalseV,
- TrueV->getName() + "." + FalseV->getName()));
-
- // Make the PHI node use the select for all incoming values for "then" and
- // "if" blocks.
- for (BasicBlock::iterator I = BB2->begin();
- PHINode *PN = dyn_cast<PHINode>(I); ++I) {
- unsigned BB1I = PN->getBasicBlockIndex(BB1);
- unsigned BIParentI = PN->getBasicBlockIndex(BIParent);
- Value *BB1V = PN->getIncomingValue(BB1I);
- Value *BIParentV = PN->getIncomingValue(BIParentI);
- if (TrueV == BB1V && FalseV == BIParentV) {
- PN->setIncomingValue(BB1I, SI);
- PN->setIncomingValue(BIParentI, SI);
- }
- }
+ std::swap(TrueV, FalseV);
+ Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV,
+ TrueV->getName() + "." + FalseV->getName());
+ PN->setIncomingValue(OrigI, V);
+ PN->setIncomingValue(ThenI, V);
}
++NumSpeculations;
@@ -2522,9 +2553,9 @@ static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
///
/// We prefer to split the edge to 'end' so that there is a true/false entry to
/// the PHI, merging the third icmp into the switch.
-static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
- const DataLayout *TD,
- IRBuilder<> &Builder) {
+static bool TryToSimplifyUncondBranchWithICmpInIt(
+ ICmpInst *ICI, IRBuilder<> &Builder, const TargetTransformInfo &TTI,
+ const DataLayout *TD) {
BasicBlock *BB = ICI->getParent();
// If the block has any PHIs in it or the icmp has multiple uses, it is too
@@ -2557,7 +2588,7 @@ static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
ICI->eraseFromParent();
}
// BB is now empty, so it is likely to simplify away.
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
}
// Ok, the block is reachable from the default dest. If the constant we're
@@ -2573,7 +2604,7 @@ static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
ICI->replaceAllUsesWith(V);
ICI->eraseFromParent();
// BB is now empty, so it is likely to simplify away.
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
}
// The use of the icmp has to be in the 'end' block, by the only PHI node in
@@ -2758,9 +2789,20 @@ bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
return false;
// Turn all invokes that unwind here into calls and delete the basic block.
+ bool InvokeRequiresTableEntry = false;
+ bool Changed = false;
for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator());
+
+ if (II->hasFnAttr(Attribute::UWTable)) {
+ // Don't remove an `invoke' instruction if the ABI requires an entry into
+ // the table.
+ InvokeRequiresTableEntry = true;
+ continue;
+ }
+
SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
+
// Insert a call instruction before the invoke.
CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II);
Call->takeName(II);
@@ -2780,11 +2822,14 @@ bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
// Finally, delete the invoke instruction!
II->eraseFromParent();
+ Changed = true;
}
- // The landingpad is now unreachable. Zap it.
- BB->eraseFromParent();
- return true;
+ if (!InvokeRequiresTableEntry)
+ // The landingpad is now unreachable. Zap it.
+ BB->eraseFromParent();
+
+ return Changed;
}
bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
@@ -3382,7 +3427,8 @@ SwitchLookupTable::SwitchLookupTable(Module &M,
ConstantInt *Offset,
const SmallVector<std::pair<ConstantInt*, Constant*>, 4>& Values,
Constant *DefaultValue,
- const DataLayout *TD) {
+ const DataLayout *TD)
+ : SingleValue(0), BitMap(0), BitMapElementTy(0), Array(0) {
assert(Values.size() && "Can't build lookup table without values!");
assert(TableSize >= Values.size() && "Can't fit values in table!");
@@ -3510,23 +3556,44 @@ bool SwitchLookupTable::WouldFitInRegister(const DataLayout *TD,
/// types of the results.
static bool ShouldBuildLookupTable(SwitchInst *SI,
uint64_t TableSize,
+ const TargetTransformInfo &TTI,
const DataLayout *TD,
const SmallDenseMap<PHINode*, Type*>& ResultTypes) {
- // The table density should be at least 40%. This is the same criterion as for
- // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
- // FIXME: Find the best cut-off.
if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
return false; // TableSize overflowed, or mul below might overflow.
- if (SI->getNumCases() * 10 >= TableSize * 4)
- return true;
- // If each table would fit in a register, we should build it anyway.
+ bool AllTablesFitInRegister = true;
+ bool HasIllegalType = false;
for (SmallDenseMap<PHINode*, Type*>::const_iterator I = ResultTypes.begin(),
E = ResultTypes.end(); I != E; ++I) {
- if (!SwitchLookupTable::WouldFitInRegister(TD, TableSize, I->second))
- return false;
+ Type *Ty = I->second;
+
+ // Saturate this flag to true.
+ HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
+
+ // Saturate this flag to false.
+ AllTablesFitInRegister = AllTablesFitInRegister &&
+ SwitchLookupTable::WouldFitInRegister(TD, TableSize, Ty);
+
+ // If both flags saturate, we're done. NOTE: This *only* works with
+ // saturating flags, and all flags have to saturate first due to the
+ // non-deterministic behavior of iterating over a dense map.
+ if (HasIllegalType && !AllTablesFitInRegister)
+ break;
}
- return true;
+
+ // If each table would fit in a register, we should build it anyway.
+ if (AllTablesFitInRegister)
+ return true;
+
+ // Don't build a table that doesn't fit in-register if it has illegal types.
+ if (HasIllegalType)
+ return false;
+
+ // The table density should be at least 40%. This is the same criterion as for
+ // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
+ // FIXME: Find the best cut-off.
+ return SI->getNumCases() * 10 >= TableSize * 4;
}
/// SwitchToLookupTable - If the switch is only used to initialize one or more
@@ -3534,13 +3601,12 @@ static bool ShouldBuildLookupTable(SwitchInst *SI,
/// replace the switch with lookup tables.
static bool SwitchToLookupTable(SwitchInst *SI,
IRBuilder<> &Builder,
- const DataLayout* TD,
- const TargetTransformInfo *TTI) {
+ const TargetTransformInfo &TTI,
+ const DataLayout* TD) {
assert(SI->getNumCases() > 1 && "Degenerate switch?");
// Only build lookup table when we have a target that supports it.
- if (!TTI || !TTI->getScalarTargetTransformInfo() ||
- !TTI->getScalarTargetTransformInfo()->shouldBuildLookupTables())
+ if (!TTI.shouldBuildLookupTables())
return false;
// FIXME: If the switch is too sparse for a lookup table, perhaps we could
@@ -3607,7 +3673,7 @@ static bool SwitchToLookupTable(SwitchInst *SI,
APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
- if (!ShouldBuildLookupTable(SI, TableSize, TD, ResultTypes))
+ if (!ShouldBuildLookupTable(SI, TableSize, TTI, TD, ResultTypes))
return false;
// Create the BB that does the lookups.
@@ -3672,12 +3738,12 @@ bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
// see if that predecessor totally determines the outcome of this switch.
if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
Value *Cond = SI->getCondition();
if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
if (SimplifySwitchOnSelect(SI, Select))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
// If the block only contains the switch, see if we can fold the block
// away into any preds.
@@ -3687,22 +3753,22 @@ bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
++BBI;
if (SI == &*BBI)
if (FoldValueComparisonIntoPredecessors(SI, Builder))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
}
// Try to transform the switch into an icmp and a branch.
if (TurnSwitchRangeIntoICmp(SI, Builder))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
// Remove unreachable cases.
if (EliminateDeadSwitchCases(SI))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
if (ForwardSwitchConditionToPHI(SI))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
- if (SwitchToLookupTable(SI, Builder, TD, TTI))
- return SimplifyCFG(BB) | true;
+ if (SwitchToLookupTable(SI, Builder, TTI, TD))
+ return SimplifyCFG(BB, TTI, TD) | true;
return false;
}
@@ -3739,7 +3805,7 @@ bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
if (SimplifyIndirectBrOnSelect(IBI, SI))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
}
return Changed;
}
@@ -3763,7 +3829,7 @@ bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
for (++I; isa<DbgInfoIntrinsic>(I); ++I)
;
if (I->isTerminator() &&
- TryToSimplifyUncondBranchWithICmpInIt(ICI, TD, Builder))
+ TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, TTI, TD))
return true;
}
@@ -3772,7 +3838,7 @@ bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
// predecessor and use logical operations to update the incoming value
// for PHI nodes in common successor.
if (FoldBranchToCommonDest(BI))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
return false;
}
@@ -3787,7 +3853,7 @@ bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
// switch.
if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
// This block must be empty, except for the setcond inst, if it exists.
// Ignore dbg intrinsics.
@@ -3797,14 +3863,14 @@ bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
++I;
if (&*I == BI) {
if (FoldValueComparisonIntoPredecessors(BI, Builder))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
} else if (&*I == cast<Instruction>(BI->getCondition())){
++I;
// Ignore dbg intrinsics.
while (isa<DbgInfoIntrinsic>(I))
++I;
if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
}
}
@@ -3816,7 +3882,7 @@ bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
// branches to us and one of our successors, fold the comparison into the
// predecessor and use logical operations to pick the right destination.
if (FoldBranchToCommonDest(BI))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
// We have a conditional branch to two blocks that are only reachable
// from BI. We know that the condbr dominates the two blocks, so see if
@@ -3825,7 +3891,7 @@ bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
if (BI->getSuccessor(0)->getSinglePredecessor() != 0) {
if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
if (HoistThenElseCodeToIf(BI))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
} else {
// If Successor #1 has multiple preds, we may be able to conditionally
// execute Successor #0 if it branches to successor #1.
@@ -3833,7 +3899,7 @@ bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
if (Succ0TI->getNumSuccessors() == 1 &&
Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0)))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
}
} else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
// If Successor #0 has multiple preds, we may be able to conditionally
@@ -3842,7 +3908,7 @@ bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
if (Succ1TI->getNumSuccessors() == 1 &&
Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1)))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
}
// If this is a branch on a phi node in the current block, thread control
@@ -3850,14 +3916,14 @@ bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
if (PN->getParent() == BI->getParent())
if (FoldCondBranchOnPHI(BI, TD))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
// Scan predecessor blocks for conditional branches.
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
if (PBI != BI && PBI->isConditional())
if (SimplifyCondBranchToCondBranch(PBI, BI))
- return SimplifyCFG(BB) | true;
+ return SimplifyCFG(BB, TTI, TD) | true;
return false;
}
@@ -3892,11 +3958,13 @@ static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
// Load from null is undefined.
if (LoadInst *LI = dyn_cast<LoadInst>(Use))
- return LI->getPointerAddressSpace() == 0;
+ if (!LI->isVolatile())
+ return LI->getPointerAddressSpace() == 0;
// Store to null is undefined.
if (StoreInst *SI = dyn_cast<StoreInst>(Use))
- return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
+ if (!SI->isVolatile())
+ return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
}
return false;
}
@@ -3998,7 +4066,7 @@ bool SimplifyCFGOpt::run(BasicBlock *BB) {
/// eliminates unreachable basic blocks, and does other "peephole" optimization
/// of the CFG. It returns true if a modification was made.
///
-bool llvm::SimplifyCFG(BasicBlock *BB, const DataLayout *TD,
- const TargetTransformInfo *TTI) {
- return SimplifyCFGOpt(TD, TTI).run(BB);
+bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
+ const DataLayout *TD) {
+ return SimplifyCFGOpt(TTI, TD).run(BB);
}
diff --git a/contrib/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp b/contrib/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp
index 110f3808..41c207c 100644
--- a/contrib/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp
@@ -15,18 +15,18 @@
#define DEBUG_TYPE "indvars"
-#include "llvm/Instructions.h"
+#include "llvm/Transforms/Utils/SimplifyIndVar.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/IVUsers.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Instructions.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Utils/SimplifyIndVar.h"
-#include "llvm/DataLayout.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
using namespace llvm;
diff --git a/contrib/llvm/lib/Transforms/Utils/SimplifyInstructions.cpp b/contrib/llvm/lib/Transforms/Utils/SimplifyInstructions.cpp
index 65353dc..f9687e4d 100644
--- a/contrib/llvm/lib/Transforms/Utils/SimplifyInstructions.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/SimplifyInstructions.cpp
@@ -15,17 +15,17 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "instsimplify"
-#include "llvm/Function.h"
-#include "llvm/Pass.h"
-#include "llvm/Type.h"
+#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/DataLayout.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Pass.h"
#include "llvm/Target/TargetLibraryInfo.h"
-#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
diff --git a/contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp b/contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp
index c3ea638..c231704 100644
--- a/contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp
@@ -15,12 +15,17 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
-#include "llvm/DataLayout.h"
+#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Function.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/LLVMContext.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/Allocator.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/BuildLibCalls.h"
@@ -48,6 +53,10 @@ public:
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B)
=0;
+ /// ignoreCallingConv - Returns false if this transformation could possibly
+ /// change the calling convention.
+ virtual bool ignoreCallingConv() { return false; }
+
Value *optimizeCall(CallInst *CI, const DataLayout *TD,
const TargetLibraryInfo *TLI,
const LibCallSimplifier *LCS, IRBuilder<> &B) {
@@ -59,7 +68,7 @@ public:
Context = &CI->getCalledFunction()->getContext();
// We never change the calling convention.
- if (CI->getCallingConv() != llvm::CallingConv::C)
+ if (!ignoreCallingConv() && CI->getCallingConv() != llvm::CallingConv::C)
return NULL;
return callOptimizer(CI->getCalledFunction(), CI, B);
@@ -100,6 +109,15 @@ static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
return true;
}
+static bool callHasFloatingPointArgument(const CallInst *CI) {
+ for (CallInst::const_op_iterator it = CI->op_begin(), e = CI->op_end();
+ it != e; ++it) {
+ if ((*it)->getType()->isFloatingPointTy())
+ return true;
+ }
+ return false;
+}
+
//===----------------------------------------------------------------------===//
// Fortified Library Call Optimizations
//===----------------------------------------------------------------------===//
@@ -713,6 +731,7 @@ struct StrNCpyOpt : public LibCallOptimization {
};
struct StrLenOpt : public LibCallOptimization {
+ virtual bool ignoreCallingConv() { return true; }
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 1 ||
@@ -781,8 +800,7 @@ struct StrToOpt : public LibCallOptimization {
if (isa<ConstantPointerNull>(EndPtr)) {
// With a null EndPtr, this function won't capture the main argument.
// It would be readonly too, except that it still may write to errno.
- CI->addAttribute(1, Attributes::get(Callee->getContext(),
- Attributes::NoCapture));
+ CI->addAttribute(1, Attribute::NoCapture);
}
return 0;
@@ -951,7 +969,14 @@ struct MemCmpOpt : public LibCallOptimization {
// Make sure we're not reading out-of-bounds memory.
if (Len > LHSStr.size() || Len > RHSStr.size())
return 0;
- uint64_t Ret = memcmp(LHSStr.data(), RHSStr.data(), Len);
+ // Fold the memcmp and normalize the result. This way we get consistent
+ // results across multiple platforms.
+ uint64_t Ret = 0;
+ int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
+ if (Cmp < 0)
+ Ret = -1;
+ else if (Cmp > 0)
+ Ret = 1;
return ConstantInt::get(CI->getType(), Ret);
}
@@ -1016,6 +1041,630 @@ struct MemSetOpt : public LibCallOptimization {
}
};
+//===----------------------------------------------------------------------===//
+// Math Library Optimizations
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Double -> Float Shrinking Optimizations for Unary Functions like 'floor'
+
+struct UnaryDoubleFPOpt : public LibCallOptimization {
+ bool CheckRetType;
+ UnaryDoubleFPOpt(bool CheckReturnType): CheckRetType(CheckReturnType) {}
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
+ !FT->getParamType(0)->isDoubleTy())
+ return 0;
+
+ if (CheckRetType) {
+ // Check if all the uses for function like 'sin' are converted to float.
+ for (Value::use_iterator UseI = CI->use_begin(); UseI != CI->use_end();
+ ++UseI) {
+ FPTruncInst *Cast = dyn_cast<FPTruncInst>(*UseI);
+ if (Cast == 0 || !Cast->getType()->isFloatTy())
+ return 0;
+ }
+ }
+
+ // If this is something like 'floor((double)floatval)', convert to floorf.
+ FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getArgOperand(0));
+ if (Cast == 0 || !Cast->getOperand(0)->getType()->isFloatTy())
+ return 0;
+
+ // floor((double)floatval) -> (double)floorf(floatval)
+ Value *V = Cast->getOperand(0);
+ V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
+ return B.CreateFPExt(V, B.getDoubleTy());
+ }
+};
+
+struct UnsafeFPLibCallOptimization : public LibCallOptimization {
+ bool UnsafeFPShrink;
+ UnsafeFPLibCallOptimization(bool UnsafeFPShrink) {
+ this->UnsafeFPShrink = UnsafeFPShrink;
+ }
+};
+
+struct CosOpt : public UnsafeFPLibCallOptimization {
+ CosOpt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ Value *Ret = NULL;
+ if (UnsafeFPShrink && Callee->getName() == "cos" &&
+ TLI->has(LibFunc::cosf)) {
+ UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
+ Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
+ }
+
+ FunctionType *FT = Callee->getFunctionType();
+ // Just make sure this has 1 argument of FP type, which matches the
+ // result type.
+ if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
+ !FT->getParamType(0)->isFloatingPointTy())
+ return Ret;
+
+ // cos(-x) -> cos(x)
+ Value *Op1 = CI->getArgOperand(0);
+ if (BinaryOperator::isFNeg(Op1)) {
+ BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
+ return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
+ }
+ return Ret;
+ }
+};
+
+struct PowOpt : public UnsafeFPLibCallOptimization {
+ PowOpt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ Value *Ret = NULL;
+ if (UnsafeFPShrink && Callee->getName() == "pow" &&
+ TLI->has(LibFunc::powf)) {
+ UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
+ Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
+ }
+
+ FunctionType *FT = Callee->getFunctionType();
+ // Just make sure this has 2 arguments of the same FP type, which match the
+ // result type.
+ if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
+ FT->getParamType(0) != FT->getParamType(1) ||
+ !FT->getParamType(0)->isFloatingPointTy())
+ return Ret;
+
+ Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
+ if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
+ if (Op1C->isExactlyValue(1.0)) // pow(1.0, x) -> 1.0
+ return Op1C;
+ if (Op1C->isExactlyValue(2.0)) // pow(2.0, x) -> exp2(x)
+ return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes());
+ }
+
+ ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
+ if (Op2C == 0) return Ret;
+
+ if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
+ return ConstantFP::get(CI->getType(), 1.0);
+
+ if (Op2C->isExactlyValue(0.5)) {
+ // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
+ // This is faster than calling pow, and still handles negative zero
+ // and negative infinity correctly.
+ // TODO: In fast-math mode, this could be just sqrt(x).
+ // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
+ Value *Inf = ConstantFP::getInfinity(CI->getType());
+ Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
+ Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B,
+ Callee->getAttributes());
+ Value *FAbs = EmitUnaryFloatFnCall(Sqrt, "fabs", B,
+ Callee->getAttributes());
+ Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
+ Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
+ return Sel;
+ }
+
+ if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
+ return Op1;
+ if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
+ return B.CreateFMul(Op1, Op1, "pow2");
+ if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
+ return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0),
+ Op1, "powrecip");
+ return 0;
+ }
+};
+
+struct Exp2Opt : public UnsafeFPLibCallOptimization {
+ Exp2Opt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ Value *Ret = NULL;
+ if (UnsafeFPShrink && Callee->getName() == "exp2" &&
+ TLI->has(LibFunc::exp2)) {
+ UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
+ Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
+ }
+
+ FunctionType *FT = Callee->getFunctionType();
+ // Just make sure this has 1 argument of FP type, which matches the
+ // result type.
+ if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
+ !FT->getParamType(0)->isFloatingPointTy())
+ return Ret;
+
+ Value *Op = CI->getArgOperand(0);
+ // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32
+ // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32
+ Value *LdExpArg = 0;
+ if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
+ if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
+ LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
+ } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
+ if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
+ LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
+ }
+
+ if (LdExpArg) {
+ const char *Name;
+ if (Op->getType()->isFloatTy())
+ Name = "ldexpf";
+ else if (Op->getType()->isDoubleTy())
+ Name = "ldexp";
+ else
+ Name = "ldexpl";
+
+ Constant *One = ConstantFP::get(*Context, APFloat(1.0f));
+ if (!Op->getType()->isFloatTy())
+ One = ConstantExpr::getFPExtend(One, Op->getType());
+
+ Module *M = Caller->getParent();
+ Value *Callee = M->getOrInsertFunction(Name, Op->getType(),
+ Op->getType(),
+ B.getInt32Ty(), NULL);
+ CallInst *CI = B.CreateCall2(Callee, One, LdExpArg);
+ if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
+ CI->setCallingConv(F->getCallingConv());
+
+ return CI;
+ }
+ return Ret;
+ }
+};
+
+//===----------------------------------------------------------------------===//
+// Integer Library Call Optimizations
+//===----------------------------------------------------------------------===//
+
+struct FFSOpt : public LibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ FunctionType *FT = Callee->getFunctionType();
+ // Just make sure this has 2 arguments of the same FP type, which match the
+ // result type.
+ if (FT->getNumParams() != 1 ||
+ !FT->getReturnType()->isIntegerTy(32) ||
+ !FT->getParamType(0)->isIntegerTy())
+ return 0;
+
+ Value *Op = CI->getArgOperand(0);
+
+ // Constant fold.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
+ if (CI->isZero()) // ffs(0) -> 0.
+ return B.getInt32(0);
+ // ffs(c) -> cttz(c)+1
+ return B.getInt32(CI->getValue().countTrailingZeros() + 1);
+ }
+
+ // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
+ Type *ArgType = Op->getType();
+ Value *F = Intrinsic::getDeclaration(Callee->getParent(),
+ Intrinsic::cttz, ArgType);
+ Value *V = B.CreateCall2(F, Op, B.getFalse(), "cttz");
+ V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
+ V = B.CreateIntCast(V, B.getInt32Ty(), false);
+
+ Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
+ return B.CreateSelect(Cond, V, B.getInt32(0));
+ }
+};
+
+struct AbsOpt : public LibCallOptimization {
+ virtual bool ignoreCallingConv() { return true; }
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ FunctionType *FT = Callee->getFunctionType();
+ // We require integer(integer) where the types agree.
+ if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
+ FT->getParamType(0) != FT->getReturnType())
+ return 0;
+
+ // abs(x) -> x >s -1 ? x : -x
+ Value *Op = CI->getArgOperand(0);
+ Value *Pos = B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()),
+ "ispos");
+ Value *Neg = B.CreateNeg(Op, "neg");
+ return B.CreateSelect(Pos, Op, Neg);
+ }
+};
+
+struct IsDigitOpt : public LibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ FunctionType *FT = Callee->getFunctionType();
+ // We require integer(i32)
+ if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
+ !FT->getParamType(0)->isIntegerTy(32))
+ return 0;
+
+ // isdigit(c) -> (c-'0') <u 10
+ Value *Op = CI->getArgOperand(0);
+ Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
+ Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
+ return B.CreateZExt(Op, CI->getType());
+ }
+};
+
+struct IsAsciiOpt : public LibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ FunctionType *FT = Callee->getFunctionType();
+ // We require integer(i32)
+ if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
+ !FT->getParamType(0)->isIntegerTy(32))
+ return 0;
+
+ // isascii(c) -> c <u 128
+ Value *Op = CI->getArgOperand(0);
+ Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
+ return B.CreateZExt(Op, CI->getType());
+ }
+};
+
+struct ToAsciiOpt : public LibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ FunctionType *FT = Callee->getFunctionType();
+ // We require i32(i32)
+ if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
+ !FT->getParamType(0)->isIntegerTy(32))
+ return 0;
+
+ // toascii(c) -> c & 0x7f
+ return B.CreateAnd(CI->getArgOperand(0),
+ ConstantInt::get(CI->getType(),0x7F));
+ }
+};
+
+//===----------------------------------------------------------------------===//
+// Formatting and IO Library Call Optimizations
+//===----------------------------------------------------------------------===//
+
+struct PrintFOpt : public LibCallOptimization {
+ Value *optimizeFixedFormatString(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) {
+ // Check for a fixed format string.
+ StringRef FormatStr;
+ if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
+ return 0;
+
+ // Empty format string -> noop.
+ if (FormatStr.empty()) // Tolerate printf's declared void.
+ return CI->use_empty() ? (Value*)CI :
+ ConstantInt::get(CI->getType(), 0);
+
+ // Do not do any of the following transformations if the printf return value
+ // is used, in general the printf return value is not compatible with either
+ // putchar() or puts().
+ if (!CI->use_empty())
+ return 0;
+
+ // printf("x") -> putchar('x'), even for '%'.
+ if (FormatStr.size() == 1) {
+ Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, TD, TLI);
+ if (CI->use_empty() || !Res) return Res;
+ return B.CreateIntCast(Res, CI->getType(), true);
+ }
+
+ // printf("foo\n") --> puts("foo")
+ if (FormatStr[FormatStr.size()-1] == '\n' &&
+ FormatStr.find('%') == std::string::npos) { // no format characters.
+ // Create a string literal with no \n on it. We expect the constant merge
+ // pass to be run after this pass, to merge duplicate strings.
+ FormatStr = FormatStr.drop_back();
+ Value *GV = B.CreateGlobalString(FormatStr, "str");
+ Value *NewCI = EmitPutS(GV, B, TD, TLI);
+ return (CI->use_empty() || !NewCI) ?
+ NewCI :
+ ConstantInt::get(CI->getType(), FormatStr.size()+1);
+ }
+
+ // Optimize specific format strings.
+ // printf("%c", chr) --> putchar(chr)
+ if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
+ CI->getArgOperand(1)->getType()->isIntegerTy()) {
+ Value *Res = EmitPutChar(CI->getArgOperand(1), B, TD, TLI);
+
+ if (CI->use_empty() || !Res) return Res;
+ return B.CreateIntCast(Res, CI->getType(), true);
+ }
+
+ // printf("%s\n", str) --> puts(str)
+ if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
+ CI->getArgOperand(1)->getType()->isPointerTy()) {
+ return EmitPutS(CI->getArgOperand(1), B, TD, TLI);
+ }
+ return 0;
+ }
+
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ // Require one fixed pointer argument and an integer/void result.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
+ !(FT->getReturnType()->isIntegerTy() ||
+ FT->getReturnType()->isVoidTy()))
+ return 0;
+
+ if (Value *V = optimizeFixedFormatString(Callee, CI, B)) {
+ return V;
+ }
+
+ // printf(format, ...) -> iprintf(format, ...) if no floating point
+ // arguments.
+ if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) {
+ Module *M = B.GetInsertBlock()->getParent()->getParent();
+ Constant *IPrintFFn =
+ M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
+ CallInst *New = cast<CallInst>(CI->clone());
+ New->setCalledFunction(IPrintFFn);
+ B.Insert(New);
+ return New;
+ }
+ return 0;
+ }
+};
+
+struct SPrintFOpt : public LibCallOptimization {
+ Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) {
+ // Check for a fixed format string.
+ StringRef FormatStr;
+ if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
+ return 0;
+
+ // If we just have a format string (nothing else crazy) transform it.
+ if (CI->getNumArgOperands() == 2) {
+ // Make sure there's no % in the constant array. We could try to handle
+ // %% -> % in the future if we cared.
+ for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
+ if (FormatStr[i] == '%')
+ return 0; // we found a format specifier, bail out.
+
+ // These optimizations require DataLayout.
+ if (!TD) return 0;
+
+ // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
+ B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
+ ConstantInt::get(TD->getIntPtrType(*Context), // Copy the
+ FormatStr.size() + 1), 1); // nul byte.
+ return ConstantInt::get(CI->getType(), FormatStr.size());
+ }
+
+ // The remaining optimizations require the format string to be "%s" or "%c"
+ // and have an extra operand.
+ if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
+ CI->getNumArgOperands() < 3)
+ return 0;
+
+ // Decode the second character of the format string.
+ if (FormatStr[1] == 'c') {
+ // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
+ if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return 0;
+ Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
+ Value *Ptr = CastToCStr(CI->getArgOperand(0), B);
+ B.CreateStore(V, Ptr);
+ Ptr = B.CreateGEP(Ptr, B.getInt32(1), "nul");
+ B.CreateStore(B.getInt8(0), Ptr);
+
+ return ConstantInt::get(CI->getType(), 1);
+ }
+
+ if (FormatStr[1] == 's') {
+ // These optimizations require DataLayout.
+ if (!TD) return 0;
+
+ // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
+ if (!CI->getArgOperand(2)->getType()->isPointerTy()) return 0;
+
+ Value *Len = EmitStrLen(CI->getArgOperand(2), B, TD, TLI);
+ if (!Len)
+ return 0;
+ Value *IncLen = B.CreateAdd(Len,
+ ConstantInt::get(Len->getType(), 1),
+ "leninc");
+ B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
+
+ // The sprintf result is the unincremented number of bytes in the string.
+ return B.CreateIntCast(Len, CI->getType(), false);
+ }
+ return 0;
+ }
+
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ // Require two fixed pointer arguments and an integer result.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isPointerTy() ||
+ !FT->getReturnType()->isIntegerTy())
+ return 0;
+
+ if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) {
+ return V;
+ }
+
+ // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
+ // point arguments.
+ if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) {
+ Module *M = B.GetInsertBlock()->getParent()->getParent();
+ Constant *SIPrintFFn =
+ M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
+ CallInst *New = cast<CallInst>(CI->clone());
+ New->setCalledFunction(SIPrintFFn);
+ B.Insert(New);
+ return New;
+ }
+ return 0;
+ }
+};
+
+struct FPrintFOpt : public LibCallOptimization {
+ Value *optimizeFixedFormatString(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) {
+ // All the optimizations depend on the format string.
+ StringRef FormatStr;
+ if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
+ return 0;
+
+ // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
+ if (CI->getNumArgOperands() == 2) {
+ for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
+ if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
+ return 0; // We found a format specifier.
+
+ // These optimizations require DataLayout.
+ if (!TD) return 0;
+
+ Value *NewCI = EmitFWrite(CI->getArgOperand(1),
+ ConstantInt::get(TD->getIntPtrType(*Context),
+ FormatStr.size()),
+ CI->getArgOperand(0), B, TD, TLI);
+ return NewCI ? ConstantInt::get(CI->getType(), FormatStr.size()) : 0;
+ }
+
+ // The remaining optimizations require the format string to be "%s" or "%c"
+ // and have an extra operand.
+ if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
+ CI->getNumArgOperands() < 3)
+ return 0;
+
+ // Decode the second character of the format string.
+ if (FormatStr[1] == 'c') {
+ // fprintf(F, "%c", chr) --> fputc(chr, F)
+ if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return 0;
+ Value *NewCI = EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B,
+ TD, TLI);
+ return NewCI ? ConstantInt::get(CI->getType(), 1) : 0;
+ }
+
+ if (FormatStr[1] == 's') {
+ // fprintf(F, "%s", str) --> fputs(str, F)
+ if (!CI->getArgOperand(2)->getType()->isPointerTy() || !CI->use_empty())
+ return 0;
+ return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TD, TLI);
+ }
+ return 0;
+ }
+
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ // Require two fixed paramters as pointers and integer result.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isPointerTy() ||
+ !FT->getReturnType()->isIntegerTy())
+ return 0;
+
+ if (Value *V = optimizeFixedFormatString(Callee, CI, B)) {
+ return V;
+ }
+
+ // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
+ // floating point arguments.
+ if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) {
+ Module *M = B.GetInsertBlock()->getParent()->getParent();
+ Constant *FIPrintFFn =
+ M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
+ CallInst *New = cast<CallInst>(CI->clone());
+ New->setCalledFunction(FIPrintFFn);
+ B.Insert(New);
+ return New;
+ }
+ return 0;
+ }
+};
+
+struct FWriteOpt : public LibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ // Require a pointer, an integer, an integer, a pointer, returning integer.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isIntegerTy() ||
+ !FT->getParamType(2)->isIntegerTy() ||
+ !FT->getParamType(3)->isPointerTy() ||
+ !FT->getReturnType()->isIntegerTy())
+ return 0;
+
+ // Get the element size and count.
+ ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
+ ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
+ if (!SizeC || !CountC) return 0;
+ uint64_t Bytes = SizeC->getZExtValue()*CountC->getZExtValue();
+
+ // If this is writing zero records, remove the call (it's a noop).
+ if (Bytes == 0)
+ return ConstantInt::get(CI->getType(), 0);
+
+ // If this is writing one byte, turn it into fputc.
+ // This optimisation is only valid, if the return value is unused.
+ if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
+ Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char");
+ Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, TD, TLI);
+ return NewCI ? ConstantInt::get(CI->getType(), 1) : 0;
+ }
+
+ return 0;
+ }
+};
+
+struct FPutsOpt : public LibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ // These optimizations require DataLayout.
+ if (!TD) return 0;
+
+ // Require two pointers. Also, we can't optimize if return value is used.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isPointerTy() ||
+ !CI->use_empty())
+ return 0;
+
+ // fputs(s,F) --> fwrite(s,1,strlen(s),F)
+ uint64_t Len = GetStringLength(CI->getArgOperand(0));
+ if (!Len) return 0;
+ // Known to have no uses (see above).
+ return EmitFWrite(CI->getArgOperand(0),
+ ConstantInt::get(TD->getIntPtrType(*Context), Len-1),
+ CI->getArgOperand(1), B, TD, TLI);
+ }
+};
+
+struct PutsOpt : public LibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ // Require one fixed pointer argument and an integer/void result.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
+ !(FT->getReturnType()->isIntegerTy() ||
+ FT->getReturnType()->isVoidTy()))
+ return 0;
+
+ // Check for a constant string.
+ StringRef Str;
+ if (!getConstantStringInfo(CI->getArgOperand(0), Str))
+ return 0;
+
+ if (Str.empty() && CI->use_empty()) {
+ // puts("") -> putchar('\n')
+ Value *Res = EmitPutChar(B.getInt32('\n'), B, TD, TLI);
+ if (CI->use_empty() || !Res) return Res;
+ return B.CreateIntCast(Res, CI->getType(), true);
+ }
+
+ return 0;
+ }
+};
+
} // End anonymous namespace.
namespace llvm {
@@ -1024,98 +1673,252 @@ class LibCallSimplifierImpl {
const DataLayout *TD;
const TargetLibraryInfo *TLI;
const LibCallSimplifier *LCS;
- StringMap<LibCallOptimization*> Optimizations;
-
- // Fortified library call optimizations.
- MemCpyChkOpt MemCpyChk;
- MemMoveChkOpt MemMoveChk;
- MemSetChkOpt MemSetChk;
- StrCpyChkOpt StrCpyChk;
- StpCpyChkOpt StpCpyChk;
- StrNCpyChkOpt StrNCpyChk;
-
- // String library call optimizations.
- StrCatOpt StrCat;
- StrNCatOpt StrNCat;
- StrChrOpt StrChr;
- StrRChrOpt StrRChr;
- StrCmpOpt StrCmp;
- StrNCmpOpt StrNCmp;
- StrCpyOpt StrCpy;
- StpCpyOpt StpCpy;
- StrNCpyOpt StrNCpy;
- StrLenOpt StrLen;
- StrPBrkOpt StrPBrk;
- StrToOpt StrTo;
- StrSpnOpt StrSpn;
- StrCSpnOpt StrCSpn;
- StrStrOpt StrStr;
-
- // Memory library call optimizations.
- MemCmpOpt MemCmp;
- MemCpyOpt MemCpy;
- MemMoveOpt MemMove;
- MemSetOpt MemSet;
-
- void initOptimizations();
- void addOpt(LibFunc::Func F, LibCallOptimization* Opt);
+ bool UnsafeFPShrink;
+
+ // Math library call optimizations.
+ CosOpt Cos;
+ PowOpt Pow;
+ Exp2Opt Exp2;
public:
LibCallSimplifierImpl(const DataLayout *TD, const TargetLibraryInfo *TLI,
- const LibCallSimplifier *LCS) {
+ const LibCallSimplifier *LCS,
+ bool UnsafeFPShrink = false)
+ : Cos(UnsafeFPShrink), Pow(UnsafeFPShrink), Exp2(UnsafeFPShrink) {
this->TD = TD;
this->TLI = TLI;
this->LCS = LCS;
+ this->UnsafeFPShrink = UnsafeFPShrink;
}
Value *optimizeCall(CallInst *CI);
+ LibCallOptimization *lookupOptimization(CallInst *CI);
+ bool hasFloatVersion(StringRef FuncName);
};
-void LibCallSimplifierImpl::initOptimizations() {
- // Fortified library call optimizations.
- Optimizations["__memcpy_chk"] = &MemCpyChk;
- Optimizations["__memmove_chk"] = &MemMoveChk;
- Optimizations["__memset_chk"] = &MemSetChk;
- Optimizations["__strcpy_chk"] = &StrCpyChk;
- Optimizations["__stpcpy_chk"] = &StpCpyChk;
- Optimizations["__strncpy_chk"] = &StrNCpyChk;
- Optimizations["__stpncpy_chk"] = &StrNCpyChk;
-
- // String library call optimizations.
- addOpt(LibFunc::strcat, &StrCat);
- addOpt(LibFunc::strncat, &StrNCat);
- addOpt(LibFunc::strchr, &StrChr);
- addOpt(LibFunc::strrchr, &StrRChr);
- addOpt(LibFunc::strcmp, &StrCmp);
- addOpt(LibFunc::strncmp, &StrNCmp);
- addOpt(LibFunc::strcpy, &StrCpy);
- addOpt(LibFunc::stpcpy, &StpCpy);
- addOpt(LibFunc::strncpy, &StrNCpy);
- addOpt(LibFunc::strlen, &StrLen);
- addOpt(LibFunc::strpbrk, &StrPBrk);
- addOpt(LibFunc::strtol, &StrTo);
- addOpt(LibFunc::strtod, &StrTo);
- addOpt(LibFunc::strtof, &StrTo);
- addOpt(LibFunc::strtoul, &StrTo);
- addOpt(LibFunc::strtoll, &StrTo);
- addOpt(LibFunc::strtold, &StrTo);
- addOpt(LibFunc::strtoull, &StrTo);
- addOpt(LibFunc::strspn, &StrSpn);
- addOpt(LibFunc::strcspn, &StrCSpn);
- addOpt(LibFunc::strstr, &StrStr);
-
- // Memory library call optimizations.
- addOpt(LibFunc::memcmp, &MemCmp);
- addOpt(LibFunc::memcpy, &MemCpy);
- addOpt(LibFunc::memmove, &MemMove);
- addOpt(LibFunc::memset, &MemSet);
+bool LibCallSimplifierImpl::hasFloatVersion(StringRef FuncName) {
+ LibFunc::Func Func;
+ SmallString<20> FloatFuncName = FuncName;
+ FloatFuncName += 'f';
+ if (TLI->getLibFunc(FloatFuncName, Func))
+ return TLI->has(Func);
+ return false;
}
-Value *LibCallSimplifierImpl::optimizeCall(CallInst *CI) {
- if (Optimizations.empty())
- initOptimizations();
-
+// Fortified library call optimizations.
+static MemCpyChkOpt MemCpyChk;
+static MemMoveChkOpt MemMoveChk;
+static MemSetChkOpt MemSetChk;
+static StrCpyChkOpt StrCpyChk;
+static StpCpyChkOpt StpCpyChk;
+static StrNCpyChkOpt StrNCpyChk;
+
+// String library call optimizations.
+static StrCatOpt StrCat;
+static StrNCatOpt StrNCat;
+static StrChrOpt StrChr;
+static StrRChrOpt StrRChr;
+static StrCmpOpt StrCmp;
+static StrNCmpOpt StrNCmp;
+static StrCpyOpt StrCpy;
+static StpCpyOpt StpCpy;
+static StrNCpyOpt StrNCpy;
+static StrLenOpt StrLen;
+static StrPBrkOpt StrPBrk;
+static StrToOpt StrTo;
+static StrSpnOpt StrSpn;
+static StrCSpnOpt StrCSpn;
+static StrStrOpt StrStr;
+
+// Memory library call optimizations.
+static MemCmpOpt MemCmp;
+static MemCpyOpt MemCpy;
+static MemMoveOpt MemMove;
+static MemSetOpt MemSet;
+
+// Math library call optimizations.
+static UnaryDoubleFPOpt UnaryDoubleFP(false);
+static UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
+
+ // Integer library call optimizations.
+static FFSOpt FFS;
+static AbsOpt Abs;
+static IsDigitOpt IsDigit;
+static IsAsciiOpt IsAscii;
+static ToAsciiOpt ToAscii;
+
+// Formatting and IO library call optimizations.
+static PrintFOpt PrintF;
+static SPrintFOpt SPrintF;
+static FPrintFOpt FPrintF;
+static FWriteOpt FWrite;
+static FPutsOpt FPuts;
+static PutsOpt Puts;
+
+LibCallOptimization *LibCallSimplifierImpl::lookupOptimization(CallInst *CI) {
+ LibFunc::Func Func;
Function *Callee = CI->getCalledFunction();
- LibCallOptimization *LCO = Optimizations.lookup(Callee->getName());
+ StringRef FuncName = Callee->getName();
+
+ // Next check for intrinsics.
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
+ switch (II->getIntrinsicID()) {
+ case Intrinsic::pow:
+ return &Pow;
+ case Intrinsic::exp2:
+ return &Exp2;
+ default:
+ return 0;
+ }
+ }
+
+ // Then check for known library functions.
+ if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) {
+ switch (Func) {
+ case LibFunc::strcat:
+ return &StrCat;
+ case LibFunc::strncat:
+ return &StrNCat;
+ case LibFunc::strchr:
+ return &StrChr;
+ case LibFunc::strrchr:
+ return &StrRChr;
+ case LibFunc::strcmp:
+ return &StrCmp;
+ case LibFunc::strncmp:
+ return &StrNCmp;
+ case LibFunc::strcpy:
+ return &StrCpy;
+ case LibFunc::stpcpy:
+ return &StpCpy;
+ case LibFunc::strncpy:
+ return &StrNCpy;
+ case LibFunc::strlen:
+ return &StrLen;
+ case LibFunc::strpbrk:
+ return &StrPBrk;
+ case LibFunc::strtol:
+ case LibFunc::strtod:
+ case LibFunc::strtof:
+ case LibFunc::strtoul:
+ case LibFunc::strtoll:
+ case LibFunc::strtold:
+ case LibFunc::strtoull:
+ return &StrTo;
+ case LibFunc::strspn:
+ return &StrSpn;
+ case LibFunc::strcspn:
+ return &StrCSpn;
+ case LibFunc::strstr:
+ return &StrStr;
+ case LibFunc::memcmp:
+ return &MemCmp;
+ case LibFunc::memcpy:
+ return &MemCpy;
+ case LibFunc::memmove:
+ return &MemMove;
+ case LibFunc::memset:
+ return &MemSet;
+ case LibFunc::cosf:
+ case LibFunc::cos:
+ case LibFunc::cosl:
+ return &Cos;
+ case LibFunc::powf:
+ case LibFunc::pow:
+ case LibFunc::powl:
+ return &Pow;
+ case LibFunc::exp2l:
+ case LibFunc::exp2:
+ case LibFunc::exp2f:
+ return &Exp2;
+ case LibFunc::ffs:
+ case LibFunc::ffsl:
+ case LibFunc::ffsll:
+ return &FFS;
+ case LibFunc::abs:
+ case LibFunc::labs:
+ case LibFunc::llabs:
+ return &Abs;
+ case LibFunc::isdigit:
+ return &IsDigit;
+ case LibFunc::isascii:
+ return &IsAscii;
+ case LibFunc::toascii:
+ return &ToAscii;
+ case LibFunc::printf:
+ return &PrintF;
+ case LibFunc::sprintf:
+ return &SPrintF;
+ case LibFunc::fprintf:
+ return &FPrintF;
+ case LibFunc::fwrite:
+ return &FWrite;
+ case LibFunc::fputs:
+ return &FPuts;
+ case LibFunc::puts:
+ return &Puts;
+ case LibFunc::ceil:
+ case LibFunc::fabs:
+ case LibFunc::floor:
+ case LibFunc::rint:
+ case LibFunc::round:
+ case LibFunc::nearbyint:
+ case LibFunc::trunc:
+ if (hasFloatVersion(FuncName))
+ return &UnaryDoubleFP;
+ return 0;
+ case LibFunc::acos:
+ case LibFunc::acosh:
+ case LibFunc::asin:
+ case LibFunc::asinh:
+ case LibFunc::atan:
+ case LibFunc::atanh:
+ case LibFunc::cbrt:
+ case LibFunc::cosh:
+ case LibFunc::exp:
+ case LibFunc::exp10:
+ case LibFunc::expm1:
+ case LibFunc::log:
+ case LibFunc::log10:
+ case LibFunc::log1p:
+ case LibFunc::log2:
+ case LibFunc::logb:
+ case LibFunc::sin:
+ case LibFunc::sinh:
+ case LibFunc::sqrt:
+ case LibFunc::tan:
+ case LibFunc::tanh:
+ if (UnsafeFPShrink && hasFloatVersion(FuncName))
+ return &UnsafeUnaryDoubleFP;
+ return 0;
+ case LibFunc::memcpy_chk:
+ return &MemCpyChk;
+ default:
+ return 0;
+ }
+ }
+
+ // Finally check for fortified library calls.
+ if (FuncName.endswith("_chk")) {
+ if (FuncName == "__memmove_chk")
+ return &MemMoveChk;
+ else if (FuncName == "__memset_chk")
+ return &MemSetChk;
+ else if (FuncName == "__strcpy_chk")
+ return &StrCpyChk;
+ else if (FuncName == "__stpcpy_chk")
+ return &StpCpyChk;
+ else if (FuncName == "__strncpy_chk")
+ return &StrNCpyChk;
+ else if (FuncName == "__stpncpy_chk")
+ return &StrNCpyChk;
+ }
+
+ return 0;
+
+}
+
+Value *LibCallSimplifierImpl::optimizeCall(CallInst *CI) {
+ LibCallOptimization *LCO = lookupOptimization(CI);
if (LCO) {
IRBuilder<> Builder(CI);
return LCO->optimizeCall(CI, TD, TLI, LCS, Builder);
@@ -1123,14 +1926,10 @@ Value *LibCallSimplifierImpl::optimizeCall(CallInst *CI) {
return 0;
}
-void LibCallSimplifierImpl::addOpt(LibFunc::Func F, LibCallOptimization* Opt) {
- if (TLI->has(F))
- Optimizations[TLI->getName(F)] = Opt;
-}
-
LibCallSimplifier::LibCallSimplifier(const DataLayout *TD,
- const TargetLibraryInfo *TLI) {
- Impl = new LibCallSimplifierImpl(TD, TLI, this);
+ const TargetLibraryInfo *TLI,
+ bool UnsafeFPShrink) {
+ Impl = new LibCallSimplifierImpl(TD, TLI, this, UnsafeFPShrink);
}
LibCallSimplifier::~LibCallSimplifier() {
@@ -1138,6 +1937,7 @@ LibCallSimplifier::~LibCallSimplifier() {
}
Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
+ if (CI->hasFnAttr(Attribute::NoBuiltin)) return 0;
return Impl->optimizeCall(CI);
}
diff --git a/contrib/llvm/lib/Transforms/Utils/UnifyFunctionExitNodes.cpp b/contrib/llvm/lib/Transforms/Utils/UnifyFunctionExitNodes.cpp
index b1cad06..560f581 100644
--- a/contrib/llvm/lib/Transforms/Utils/UnifyFunctionExitNodes.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/UnifyFunctionExitNodes.cpp
@@ -15,12 +15,12 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/BasicBlock.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/Type.h"
#include "llvm/ADT/StringExtras.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Transforms/Scalar.h"
using namespace llvm;
char UnifyFunctionExitNodes::ID = 0;
diff --git a/contrib/llvm/lib/Transforms/Utils/ValueMapper.cpp b/contrib/llvm/lib/Transforms/Utils/ValueMapper.cpp
index a30b093..b5941bd 100644
--- a/contrib/llvm/lib/Transforms/Utils/ValueMapper.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/ValueMapper.cpp
@@ -13,11 +13,11 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/ValueMapper.h"
-#include "llvm/Constants.h"
-#include "llvm/Function.h"
-#include "llvm/InlineAsm.h"
-#include "llvm/Instructions.h"
-#include "llvm/Metadata.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Metadata.h"
using namespace llvm;
// Out of line method to get vtable etc for class.
@@ -63,14 +63,29 @@ Value *llvm::MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags,
// Check all operands to see if any need to be remapped.
for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) {
Value *OP = MD->getOperand(i);
- if (OP == 0 || MapValue(OP, VM, Flags, TypeMapper) == OP) continue;
+ if (OP == 0) continue;
+ Value *Mapped_OP = MapValue(OP, VM, Flags, TypeMapper);
+ // Use identity map if Mapped_Op is null and we can ignore missing
+ // entries.
+ if (Mapped_OP == OP ||
+ (Mapped_OP == 0 && (Flags & RF_IgnoreMissingEntries)))
+ continue;
// Ok, at least one operand needs remapping.
SmallVector<Value*, 4> Elts;
Elts.reserve(MD->getNumOperands());
for (i = 0; i != e; ++i) {
Value *Op = MD->getOperand(i);
- Elts.push_back(Op ? MapValue(Op, VM, Flags, TypeMapper) : 0);
+ if (Op == 0)
+ Elts.push_back(0);
+ else {
+ Value *Mapped_Op = MapValue(Op, VM, Flags, TypeMapper);
+ // Use identity map if Mapped_Op is null and we can ignore missing
+ // entries.
+ if (Mapped_Op == 0 && (Flags & RF_IgnoreMissingEntries))
+ Mapped_Op = Op;
+ Elts.push_back(Mapped_Op);
+ }
}
MDNode *NewMD = MDNode::get(V->getContext(), Elts);
Dummy->replaceAllUsesWith(NewMD);
diff --git a/contrib/llvm/lib/Transforms/Vectorize/BBVectorize.cpp b/contrib/llvm/lib/Transforms/Vectorize/BBVectorize.cpp
index f7be3e3..17900da 100644
--- a/contrib/llvm/lib/Transforms/Vectorize/BBVectorize.cpp
+++ b/contrib/llvm/lib/Transforms/Vectorize/BBVectorize.cpp
@@ -16,39 +16,38 @@
#define BBV_NAME "bb-vectorize"
#define DEBUG_TYPE BBV_NAME
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Metadata.h"
-#include "llvm/Pass.h"
-#include "llvm/Type.h"
+#include "llvm/Transforms/Vectorize.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AliasSetTracker.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/ValueHandle.h"
-#include "llvm/DataLayout.h"
-#include "llvm/TargetTransformInfo.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Transforms/Vectorize.h"
#include <algorithm>
-#include <map>
using namespace llvm;
static cl::opt<bool>
@@ -89,6 +88,10 @@ MaxInsts("bb-vectorize-max-instr-per-group", cl::init(500), cl::Hidden,
cl::desc("The maximum number of pairable instructions per group"));
static cl::opt<unsigned>
+MaxPairs("bb-vectorize-max-pairs-per-group", cl::init(3000), cl::Hidden,
+ cl::desc("The maximum number of candidate instruction pairs per group"));
+
+static cl::opt<unsigned>
MaxCandPairsForCycleCheck("bb-vectorize-max-cycle-check-pairs", cl::init(200),
cl::Hidden, cl::desc("The maximum number of candidate pairs with which to use"
" a full cycle check"));
@@ -199,9 +202,7 @@ namespace {
DT = &P->getAnalysis<DominatorTree>();
SE = &P->getAnalysis<ScalarEvolution>();
TD = P->getAnalysisIfAvailable<DataLayout>();
- TTI = IgnoreTargetInfo ? 0 :
- P->getAnalysisIfAvailable<TargetTransformInfo>();
- VTTI = TTI ? TTI->getVectorTargetTransformInfo() : 0;
+ TTI = IgnoreTargetInfo ? 0 : &P->getAnalysis<TargetTransformInfo>();
}
typedef std::pair<Value *, Value *> ValuePair;
@@ -209,18 +210,12 @@ namespace {
typedef std::pair<ValuePair, size_t> ValuePairWithDepth;
typedef std::pair<ValuePair, ValuePair> VPPair; // A ValuePair pair
typedef std::pair<VPPair, unsigned> VPPairWithType;
- typedef std::pair<std::multimap<Value *, Value *>::iterator,
- std::multimap<Value *, Value *>::iterator> VPIteratorPair;
- typedef std::pair<std::multimap<ValuePair, ValuePair>::iterator,
- std::multimap<ValuePair, ValuePair>::iterator>
- VPPIteratorPair;
AliasAnalysis *AA;
DominatorTree *DT;
ScalarEvolution *SE;
DataLayout *TD;
- TargetTransformInfo *TTI;
- const VectorTargetTransformInfo *VTTI;
+ const TargetTransformInfo *TTI;
// FIXME: const correct?
@@ -228,7 +223,7 @@ namespace {
bool getCandidatePairs(BasicBlock &BB,
BasicBlock::iterator &Start,
- std::multimap<Value *, Value *> &CandidatePairs,
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
DenseSet<ValuePair> &FixedOrderPairs,
DenseMap<ValuePair, int> &CandidatePairCostSavings,
std::vector<Value *> &PairableInsts, bool NonPow2Len);
@@ -242,33 +237,36 @@ namespace {
PairConnectionSplat
};
- void computeConnectedPairs(std::multimap<Value *, Value *> &CandidatePairs,
- std::vector<Value *> &PairableInsts,
- std::multimap<ValuePair, ValuePair> &ConnectedPairs,
- DenseMap<VPPair, unsigned> &PairConnectionTypes);
+ void computeConnectedPairs(
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ DenseSet<ValuePair> &CandidatePairsSet,
+ std::vector<Value *> &PairableInsts,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseMap<VPPair, unsigned> &PairConnectionTypes);
void buildDepMap(BasicBlock &BB,
- std::multimap<Value *, Value *> &CandidatePairs,
- std::vector<Value *> &PairableInsts,
- DenseSet<ValuePair> &PairableInstUsers);
-
- void choosePairs(std::multimap<Value *, Value *> &CandidatePairs,
- DenseMap<ValuePair, int> &CandidatePairCostSavings,
- std::vector<Value *> &PairableInsts,
- DenseSet<ValuePair> &FixedOrderPairs,
- DenseMap<VPPair, unsigned> &PairConnectionTypes,
- std::multimap<ValuePair, ValuePair> &ConnectedPairs,
- std::multimap<ValuePair, ValuePair> &ConnectedPairDeps,
- DenseSet<ValuePair> &PairableInstUsers,
- DenseMap<Value *, Value *>& ChosenPairs);
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ std::vector<Value *> &PairableInsts,
+ DenseSet<ValuePair> &PairableInstUsers);
+
+ void choosePairs(DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ DenseSet<ValuePair> &CandidatePairsSet,
+ DenseMap<ValuePair, int> &CandidatePairCostSavings,
+ std::vector<Value *> &PairableInsts,
+ DenseSet<ValuePair> &FixedOrderPairs,
+ DenseMap<VPPair, unsigned> &PairConnectionTypes,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps,
+ DenseSet<ValuePair> &PairableInstUsers,
+ DenseMap<Value *, Value *>& ChosenPairs);
void fuseChosenPairs(BasicBlock &BB,
- std::vector<Value *> &PairableInsts,
- DenseMap<Value *, Value *>& ChosenPairs,
- DenseSet<ValuePair> &FixedOrderPairs,
- DenseMap<VPPair, unsigned> &PairConnectionTypes,
- std::multimap<ValuePair, ValuePair> &ConnectedPairs,
- std::multimap<ValuePair, ValuePair> &ConnectedPairDeps);
+ std::vector<Value *> &PairableInsts,
+ DenseMap<Value *, Value *>& ChosenPairs,
+ DenseSet<ValuePair> &FixedOrderPairs,
+ DenseMap<VPPair, unsigned> &PairConnectionTypes,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps);
bool isInstVectorizable(Instruction *I, bool &IsSimpleLoadStore);
@@ -280,56 +278,63 @@ namespace {
bool trackUsesOfI(DenseSet<Value *> &Users,
AliasSetTracker &WriteSet, Instruction *I,
Instruction *J, bool UpdateUsers = true,
- std::multimap<Value *, Value *> *LoadMoveSet = 0);
+ DenseSet<ValuePair> *LoadMoveSetPairs = 0);
- void computePairsConnectedTo(
- std::multimap<Value *, Value *> &CandidatePairs,
- std::vector<Value *> &PairableInsts,
- std::multimap<ValuePair, ValuePair> &ConnectedPairs,
- DenseMap<VPPair, unsigned> &PairConnectionTypes,
- ValuePair P);
+ void computePairsConnectedTo(
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ DenseSet<ValuePair> &CandidatePairsSet,
+ std::vector<Value *> &PairableInsts,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseMap<VPPair, unsigned> &PairConnectionTypes,
+ ValuePair P);
bool pairsConflict(ValuePair P, ValuePair Q,
- DenseSet<ValuePair> &PairableInstUsers,
- std::multimap<ValuePair, ValuePair> *PairableInstUserMap = 0);
+ DenseSet<ValuePair> &PairableInstUsers,
+ DenseMap<ValuePair, std::vector<ValuePair> >
+ *PairableInstUserMap = 0,
+ DenseSet<VPPair> *PairableInstUserPairSet = 0);
bool pairWillFormCycle(ValuePair P,
- std::multimap<ValuePair, ValuePair> &PairableInstUsers,
- DenseSet<ValuePair> &CurrentPairs);
-
- void pruneTreeFor(
- std::multimap<Value *, Value *> &CandidatePairs,
- std::vector<Value *> &PairableInsts,
- std::multimap<ValuePair, ValuePair> &ConnectedPairs,
- DenseSet<ValuePair> &PairableInstUsers,
- std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
- DenseMap<Value *, Value *> &ChosenPairs,
- DenseMap<ValuePair, size_t> &Tree,
- DenseSet<ValuePair> &PrunedTree, ValuePair J,
- bool UseCycleCheck);
-
- void buildInitialTreeFor(
- std::multimap<Value *, Value *> &CandidatePairs,
- std::vector<Value *> &PairableInsts,
- std::multimap<ValuePair, ValuePair> &ConnectedPairs,
- DenseSet<ValuePair> &PairableInstUsers,
- DenseMap<Value *, Value *> &ChosenPairs,
- DenseMap<ValuePair, size_t> &Tree, ValuePair J);
-
- void findBestTreeFor(
- std::multimap<Value *, Value *> &CandidatePairs,
- DenseMap<ValuePair, int> &CandidatePairCostSavings,
- std::vector<Value *> &PairableInsts,
- DenseSet<ValuePair> &FixedOrderPairs,
- DenseMap<VPPair, unsigned> &PairConnectionTypes,
- std::multimap<ValuePair, ValuePair> &ConnectedPairs,
- std::multimap<ValuePair, ValuePair> &ConnectedPairDeps,
- DenseSet<ValuePair> &PairableInstUsers,
- std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
- DenseMap<Value *, Value *> &ChosenPairs,
- DenseSet<ValuePair> &BestTree, size_t &BestMaxDepth,
- int &BestEffSize, VPIteratorPair ChoiceRange,
- bool UseCycleCheck);
+ DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUsers,
+ DenseSet<ValuePair> &CurrentPairs);
+
+ void pruneDAGFor(
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ std::vector<Value *> &PairableInsts,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseSet<ValuePair> &PairableInstUsers,
+ DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
+ DenseSet<VPPair> &PairableInstUserPairSet,
+ DenseMap<Value *, Value *> &ChosenPairs,
+ DenseMap<ValuePair, size_t> &DAG,
+ DenseSet<ValuePair> &PrunedDAG, ValuePair J,
+ bool UseCycleCheck);
+
+ void buildInitialDAGFor(
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ DenseSet<ValuePair> &CandidatePairsSet,
+ std::vector<Value *> &PairableInsts,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseSet<ValuePair> &PairableInstUsers,
+ DenseMap<Value *, Value *> &ChosenPairs,
+ DenseMap<ValuePair, size_t> &DAG, ValuePair J);
+
+ void findBestDAGFor(
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ DenseSet<ValuePair> &CandidatePairsSet,
+ DenseMap<ValuePair, int> &CandidatePairCostSavings,
+ std::vector<Value *> &PairableInsts,
+ DenseSet<ValuePair> &FixedOrderPairs,
+ DenseMap<VPPair, unsigned> &PairConnectionTypes,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps,
+ DenseSet<ValuePair> &PairableInstUsers,
+ DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
+ DenseSet<VPPair> &PairableInstUserPairSet,
+ DenseMap<Value *, Value *> &ChosenPairs,
+ DenseSet<ValuePair> &BestDAG, size_t &BestMaxDepth,
+ int &BestEffSize, Value *II, std::vector<Value *>&JJ,
+ bool UseCycleCheck);
Value *getReplacementPointerInput(LLVMContext& Context, Instruction *I,
Instruction *J, unsigned o);
@@ -361,20 +366,22 @@ namespace {
void collectPairLoadMoveSet(BasicBlock &BB,
DenseMap<Value *, Value *> &ChosenPairs,
- std::multimap<Value *, Value *> &LoadMoveSet,
+ DenseMap<Value *, std::vector<Value *> > &LoadMoveSet,
+ DenseSet<ValuePair> &LoadMoveSetPairs,
Instruction *I);
void collectLoadMoveSet(BasicBlock &BB,
std::vector<Value *> &PairableInsts,
DenseMap<Value *, Value *> &ChosenPairs,
- std::multimap<Value *, Value *> &LoadMoveSet);
+ DenseMap<Value *, std::vector<Value *> > &LoadMoveSet,
+ DenseSet<ValuePair> &LoadMoveSetPairs);
bool canMoveUsesOfIAfterJ(BasicBlock &BB,
- std::multimap<Value *, Value *> &LoadMoveSet,
+ DenseSet<ValuePair> &LoadMoveSetPairs,
Instruction *I, Instruction *J);
void moveUsesOfIAfterJ(BasicBlock &BB,
- std::multimap<Value *, Value *> &LoadMoveSet,
+ DenseSet<ValuePair> &LoadMoveSetPairs,
Instruction *&InsertionPt,
Instruction *I, Instruction *J);
@@ -387,7 +394,7 @@ namespace {
return false;
}
- DEBUG(if (VTTI) dbgs() << "BBV: using target information\n");
+ DEBUG(if (TTI) dbgs() << "BBV: using target information\n");
bool changed = false;
// Iterate a sufficient number of times to merge types of size 1 bit,
@@ -395,7 +402,7 @@ namespace {
// target vector register.
unsigned n = 1;
for (unsigned v = 2;
- (VTTI || v <= Config.VectorBits) &&
+ (TTI || v <= Config.VectorBits) &&
(!Config.MaxIter || n <= Config.MaxIter);
v *= 2, ++n) {
DEBUG(dbgs() << "BBV: fusing loop #" << n <<
@@ -426,9 +433,7 @@ namespace {
DT = &getAnalysis<DominatorTree>();
SE = &getAnalysis<ScalarEvolution>();
TD = getAnalysisIfAvailable<DataLayout>();
- TTI = IgnoreTargetInfo ? 0 :
- getAnalysisIfAvailable<TargetTransformInfo>();
- VTTI = TTI ? TTI->getVectorTargetTransformInfo() : 0;
+ TTI = IgnoreTargetInfo ? 0 : &getAnalysis<TargetTransformInfo>();
return vectorizeBB(BB);
}
@@ -438,6 +443,7 @@ namespace {
AU.addRequired<AliasAnalysis>();
AU.addRequired<DominatorTree>();
AU.addRequired<ScalarEvolution>();
+ AU.addRequired<TargetTransformInfo>();
AU.addPreserved<AliasAnalysis>();
AU.addPreserved<DominatorTree>();
AU.addPreserved<ScalarEvolution>();
@@ -467,18 +473,18 @@ namespace {
static inline void getInstructionTypes(Instruction *I,
Type *&T1, Type *&T2) {
- if (isa<StoreInst>(I)) {
+ if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
// For stores, it is the value type, not the pointer type that matters
// because the value is what will come from a vector register.
- Value *IVal = cast<StoreInst>(I)->getValueOperand();
+ Value *IVal = SI->getValueOperand();
T1 = IVal->getType();
} else {
T1 = I->getType();
}
- if (I->isCast())
- T2 = cast<CastInst>(I)->getSrcTy();
+ if (CastInst *CI = dyn_cast<CastInst>(I))
+ T2 = CI->getSrcTy();
else
T2 = T1;
@@ -504,7 +510,7 @@ namespace {
// InsertElement and ExtractElement have a depth factor of zero. This is
// for two reasons: First, they cannot be usefully fused. Second, because
// the pass generates a lot of these, they can confuse the simple metric
- // used to compare the trees in the next iteration. Thus, giving them a
+ // used to compare the dags in the next iteration. Thus, giving them a
// weight of zero allows the pass to essentially ignore them in
// subsequent iterations when looking for vectorization opportunities
// while still tracking dependency chains that flow through those
@@ -520,7 +526,7 @@ namespace {
return 1;
}
- // Returns the cost of the provided instruction using VTTI.
+ // Returns the cost of the provided instruction using TTI.
// This does not handle loads and stores.
unsigned getInstrCost(unsigned Opcode, Type *T1, Type *T2) {
switch (Opcode) {
@@ -531,7 +537,7 @@ namespace {
// generate vector GEPs.
return 0;
case Instruction::Br:
- return VTTI->getCFInstrCost(Opcode);
+ return TTI->getCFInstrCost(Opcode);
case Instruction::PHI:
return 0;
case Instruction::Add:
@@ -552,11 +558,11 @@ namespace {
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
- return VTTI->getArithmeticInstrCost(Opcode, T1);
+ return TTI->getArithmeticInstrCost(Opcode, T1);
case Instruction::Select:
case Instruction::ICmp:
case Instruction::FCmp:
- return VTTI->getCmpSelInstrCost(Opcode, T1, T2);
+ return TTI->getCmpSelInstrCost(Opcode, T1, T2);
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPToUI:
@@ -570,7 +576,7 @@ namespace {
case Instruction::FPTrunc:
case Instruction::BitCast:
case Instruction::ShuffleVector:
- return VTTI->getCastInstrCost(Opcode, T1, T2);
+ return TTI->getCastInstrCost(Opcode, T1, T2);
}
return 1;
@@ -642,7 +648,7 @@ namespace {
Function *F = I->getCalledFunction();
if (!F) return false;
- unsigned IID = F->getIntrinsicID();
+ Intrinsic::ID IID = (Intrinsic::ID) F->getIntrinsicID();
if (!IID) return false;
switch(IID) {
@@ -660,23 +666,11 @@ namespace {
case Intrinsic::pow:
return Config.VectorizeMath;
case Intrinsic::fma:
+ case Intrinsic::fmuladd:
return Config.VectorizeFMA;
}
}
- // Returns true if J is the second element in some pair referenced by
- // some multimap pair iterator pair.
- template <typename V>
- bool isSecondInIteratorPair(V J, std::pair<
- typename std::multimap<V, V>::iterator,
- typename std::multimap<V, V>::iterator> PairRange) {
- for (typename std::multimap<V, V>::iterator K = PairRange.first;
- K != PairRange.second; ++K)
- if (K->second == J) return true;
-
- return false;
- }
-
bool isPureIEChain(InsertElementInst *IE) {
InsertElementInst *IENext = IE;
do {
@@ -701,11 +695,12 @@ namespace {
DenseMap<Value *, Value *> AllChosenPairs;
DenseSet<ValuePair> AllFixedOrderPairs;
DenseMap<VPPair, unsigned> AllPairConnectionTypes;
- std::multimap<ValuePair, ValuePair> AllConnectedPairs, AllConnectedPairDeps;
+ DenseMap<ValuePair, std::vector<ValuePair> > AllConnectedPairs,
+ AllConnectedPairDeps;
do {
std::vector<Value *> PairableInsts;
- std::multimap<Value *, Value *> CandidatePairs;
+ DenseMap<Value *, std::vector<Value *> > CandidatePairs;
DenseSet<ValuePair> FixedOrderPairs;
DenseMap<ValuePair, int> CandidatePairCostSavings;
ShouldContinue = getCandidatePairs(BB, Start, CandidatePairs,
@@ -714,6 +709,14 @@ namespace {
PairableInsts, NonPow2Len);
if (PairableInsts.empty()) continue;
+ // Build the candidate pair set for faster lookups.
+ DenseSet<ValuePair> CandidatePairsSet;
+ for (DenseMap<Value *, std::vector<Value *> >::iterator I =
+ CandidatePairs.begin(), E = CandidatePairs.end(); I != E; ++I)
+ for (std::vector<Value *>::iterator J = I->second.begin(),
+ JE = I->second.end(); J != JE; ++J)
+ CandidatePairsSet.insert(ValuePair(I->first, *J));
+
// Now we have a map of all of the pairable instructions and we need to
// select the best possible pairing. A good pairing is one such that the
// users of the pair are also paired. This defines a (directed) forest
@@ -723,30 +726,33 @@ namespace {
// Note that it only matters that both members of the second pair use some
// element of the first pair (to allow for splatting).
- std::multimap<ValuePair, ValuePair> ConnectedPairs, ConnectedPairDeps;
+ DenseMap<ValuePair, std::vector<ValuePair> > ConnectedPairs,
+ ConnectedPairDeps;
DenseMap<VPPair, unsigned> PairConnectionTypes;
- computeConnectedPairs(CandidatePairs, PairableInsts, ConnectedPairs,
- PairConnectionTypes);
+ computeConnectedPairs(CandidatePairs, CandidatePairsSet,
+ PairableInsts, ConnectedPairs, PairConnectionTypes);
if (ConnectedPairs.empty()) continue;
- for (std::multimap<ValuePair, ValuePair>::iterator
+ for (DenseMap<ValuePair, std::vector<ValuePair> >::iterator
I = ConnectedPairs.begin(), IE = ConnectedPairs.end();
- I != IE; ++I) {
- ConnectedPairDeps.insert(VPPair(I->second, I->first));
- }
+ I != IE; ++I)
+ for (std::vector<ValuePair>::iterator J = I->second.begin(),
+ JE = I->second.end(); J != JE; ++J)
+ ConnectedPairDeps[*J].push_back(I->first);
// Build the pairable-instruction dependency map
DenseSet<ValuePair> PairableInstUsers;
buildDepMap(BB, CandidatePairs, PairableInsts, PairableInstUsers);
// There is now a graph of the connected pairs. For each variable, pick
- // the pairing with the largest tree meeting the depth requirement on at
- // least one branch. Then select all pairings that are part of that tree
+ // the pairing with the largest dag meeting the depth requirement on at
+ // least one branch. Then select all pairings that are part of that dag
// and remove them from the list of available pairings and pairable
// variables.
DenseMap<Value *, Value *> ChosenPairs;
- choosePairs(CandidatePairs, CandidatePairCostSavings,
+ choosePairs(CandidatePairs, CandidatePairsSet,
+ CandidatePairCostSavings,
PairableInsts, FixedOrderPairs, PairConnectionTypes,
ConnectedPairs, ConnectedPairDeps,
PairableInstUsers, ChosenPairs);
@@ -780,14 +786,15 @@ namespace {
}
}
- for (std::multimap<ValuePair, ValuePair>::iterator
+ for (DenseMap<ValuePair, std::vector<ValuePair> >::iterator
I = ConnectedPairs.begin(), IE = ConnectedPairs.end();
- I != IE; ++I) {
- if (AllPairConnectionTypes.count(*I)) {
- AllConnectedPairs.insert(*I);
- AllConnectedPairDeps.insert(VPPair(I->second, I->first));
- }
- }
+ I != IE; ++I)
+ for (std::vector<ValuePair>::iterator J = I->second.begin(),
+ JE = I->second.end(); J != JE; ++J)
+ if (AllPairConnectionTypes.count(VPPair(I->first, *J))) {
+ AllConnectedPairs[I->first].push_back(*J);
+ AllConnectedPairDeps[*J].push_back(I->first);
+ }
} while (ShouldContinue);
if (AllChosenPairs.empty()) return false;
@@ -903,8 +910,8 @@ namespace {
T2->getScalarType()->isPointerTy()))
return false;
- if (!VTTI && (T1->getPrimitiveSizeInBits() >= Config.VectorBits ||
- T2->getPrimitiveSizeInBits() >= Config.VectorBits))
+ if (!TTI && (T1->getPrimitiveSizeInBits() >= Config.VectorBits ||
+ T2->getPrimitiveSizeInBits() >= Config.VectorBits))
return false;
return true;
@@ -913,7 +920,7 @@ namespace {
// This function returns true if the two provided instructions are compatible
// (meaning that they can be fused into a vector instruction). This assumes
// that I has already been determined to be vectorizable and that J is not
- // in the use tree of I.
+ // in the use dag of I.
bool BBVectorize::areInstsCompatible(Instruction *I, Instruction *J,
bool IsSimpleLoadStore, bool NonPow2Len,
int &CostSavings, int &FixedOrder) {
@@ -935,7 +942,7 @@ namespace {
unsigned MaxTypeBits = std::max(
IT1->getPrimitiveSizeInBits() + JT1->getPrimitiveSizeInBits(),
IT2->getPrimitiveSizeInBits() + JT2->getPrimitiveSizeInBits());
- if (!VTTI && MaxTypeBits > Config.VectorBits)
+ if (!TTI && MaxTypeBits > Config.VectorBits)
return false;
// FIXME: handle addsub-type operations!
@@ -967,21 +974,26 @@ namespace {
return false;
}
- if (VTTI) {
- unsigned ICost = VTTI->getMemoryOpCost(I->getOpcode(), I->getType(),
- IAlignment, IAddressSpace);
- unsigned JCost = VTTI->getMemoryOpCost(J->getOpcode(), J->getType(),
- JAlignment, JAddressSpace);
- unsigned VCost = VTTI->getMemoryOpCost(I->getOpcode(), VType,
- BottomAlignment,
- IAddressSpace);
+ if (TTI) {
+ unsigned ICost = TTI->getMemoryOpCost(I->getOpcode(), aTypeI,
+ IAlignment, IAddressSpace);
+ unsigned JCost = TTI->getMemoryOpCost(J->getOpcode(), aTypeJ,
+ JAlignment, JAddressSpace);
+ unsigned VCost = TTI->getMemoryOpCost(I->getOpcode(), VType,
+ BottomAlignment,
+ IAddressSpace);
+
+ ICost += TTI->getAddressComputationCost(aTypeI);
+ JCost += TTI->getAddressComputationCost(aTypeJ);
+ VCost += TTI->getAddressComputationCost(VType);
+
if (VCost > ICost + JCost)
return false;
// We don't want to fuse to a type that will be split, even
// if the two input types will also be split and there is no other
// associated cost.
- unsigned VParts = VTTI->getNumberOfParts(VType);
+ unsigned VParts = TTI->getNumberOfParts(VType);
if (VParts > 1)
return false;
else if (!VParts && VCost == ICost + JCost)
@@ -992,11 +1004,17 @@ namespace {
} else {
return false;
}
- } else if (VTTI) {
+ } else if (TTI) {
unsigned ICost = getInstrCost(I->getOpcode(), IT1, IT2);
unsigned JCost = getInstrCost(J->getOpcode(), JT1, JT2);
Type *VT1 = getVecTypeForPair(IT1, JT1),
*VT2 = getVecTypeForPair(IT2, JT2);
+
+ // Note that this procedure is incorrect for insert and extract element
+ // instructions (because combining these often results in a shuffle),
+ // but this cost is ignored (because insert and extract element
+ // instructions are assigned a zero depth factor and are not really
+ // fused in general).
unsigned VCost = getInstrCost(I->getOpcode(), VT1, VT2);
if (VCost > ICost + JCost)
@@ -1005,8 +1023,8 @@ namespace {
// We don't want to fuse to a type that will be split, even
// if the two input types will also be split and there is no other
// associated cost.
- unsigned VParts1 = VTTI->getNumberOfParts(VT1),
- VParts2 = VTTI->getNumberOfParts(VT2);
+ unsigned VParts1 = TTI->getNumberOfParts(VT1),
+ VParts2 = TTI->getNumberOfParts(VT2);
if (VParts1 > 1 || VParts2 > 1)
return false;
else if ((!VParts1 || !VParts2) && VCost == ICost + JCost)
@@ -1019,14 +1037,67 @@ namespace {
// vectorized, the second arguments must be equal.
CallInst *CI = dyn_cast<CallInst>(I);
Function *FI;
- if (CI && (FI = CI->getCalledFunction()) &&
- FI->getIntrinsicID() == Intrinsic::powi) {
-
- Value *A1I = CI->getArgOperand(1),
- *A1J = cast<CallInst>(J)->getArgOperand(1);
- const SCEV *A1ISCEV = SE->getSCEV(A1I),
- *A1JSCEV = SE->getSCEV(A1J);
- return (A1ISCEV == A1JSCEV);
+ if (CI && (FI = CI->getCalledFunction())) {
+ Intrinsic::ID IID = (Intrinsic::ID) FI->getIntrinsicID();
+ if (IID == Intrinsic::powi) {
+ Value *A1I = CI->getArgOperand(1),
+ *A1J = cast<CallInst>(J)->getArgOperand(1);
+ const SCEV *A1ISCEV = SE->getSCEV(A1I),
+ *A1JSCEV = SE->getSCEV(A1J);
+ return (A1ISCEV == A1JSCEV);
+ }
+
+ if (IID && TTI) {
+ SmallVector<Type*, 4> Tys;
+ for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
+ Tys.push_back(CI->getArgOperand(i)->getType());
+ unsigned ICost = TTI->getIntrinsicInstrCost(IID, IT1, Tys);
+
+ Tys.clear();
+ CallInst *CJ = cast<CallInst>(J);
+ for (unsigned i = 0, ie = CJ->getNumArgOperands(); i != ie; ++i)
+ Tys.push_back(CJ->getArgOperand(i)->getType());
+ unsigned JCost = TTI->getIntrinsicInstrCost(IID, JT1, Tys);
+
+ Tys.clear();
+ assert(CI->getNumArgOperands() == CJ->getNumArgOperands() &&
+ "Intrinsic argument counts differ");
+ for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
+ if (IID == Intrinsic::powi && i == 1)
+ Tys.push_back(CI->getArgOperand(i)->getType());
+ else
+ Tys.push_back(getVecTypeForPair(CI->getArgOperand(i)->getType(),
+ CJ->getArgOperand(i)->getType()));
+ }
+
+ Type *RetTy = getVecTypeForPair(IT1, JT1);
+ unsigned VCost = TTI->getIntrinsicInstrCost(IID, RetTy, Tys);
+
+ if (VCost > ICost + JCost)
+ return false;
+
+ // We don't want to fuse to a type that will be split, even
+ // if the two input types will also be split and there is no other
+ // associated cost.
+ unsigned RetParts = TTI->getNumberOfParts(RetTy);
+ if (RetParts > 1)
+ return false;
+ else if (!RetParts && VCost == ICost + JCost)
+ return false;
+
+ for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
+ if (!Tys[i]->isVectorTy())
+ continue;
+
+ unsigned NumParts = TTI->getNumberOfParts(Tys[i]);
+ if (NumParts > 1)
+ return false;
+ else if (!NumParts && VCost == ICost + JCost)
+ return false;
+ }
+
+ CostSavings = ICost + JCost - VCost;
+ }
}
return true;
@@ -1040,7 +1111,7 @@ namespace {
// to contain any memory locations to which J writes. The function returns
// true if J uses I. By default, alias analysis is used to determine
// whether J reads from memory that overlaps with a location in WriteSet.
- // If LoadMoveSet is not null, then it is a previously-computed multimap
+ // If LoadMoveSet is not null, then it is a previously-computed map
// where the key is the memory-based user instruction and the value is
// the instruction to be compared with I. So, if LoadMoveSet is provided,
// then the alias analysis is not used. This is necessary because this
@@ -1050,7 +1121,7 @@ namespace {
bool BBVectorize::trackUsesOfI(DenseSet<Value *> &Users,
AliasSetTracker &WriteSet, Instruction *I,
Instruction *J, bool UpdateUsers,
- std::multimap<Value *, Value *> *LoadMoveSet) {
+ DenseSet<ValuePair> *LoadMoveSetPairs) {
bool UsesI = false;
// This instruction may already be marked as a user due, for example, to
@@ -1068,9 +1139,8 @@ namespace {
}
}
if (!UsesI && J->mayReadFromMemory()) {
- if (LoadMoveSet) {
- VPIteratorPair JPairRange = LoadMoveSet->equal_range(J);
- UsesI = isSecondInIteratorPair<Value*>(I, JPairRange);
+ if (LoadMoveSetPairs) {
+ UsesI = LoadMoveSetPairs->count(ValuePair(J, I));
} else {
for (AliasSetTracker::iterator W = WriteSet.begin(),
WE = WriteSet.end(); W != WE; ++W) {
@@ -1094,10 +1164,11 @@ namespace {
// basic block and collects all candidate pairs for vectorization.
bool BBVectorize::getCandidatePairs(BasicBlock &BB,
BasicBlock::iterator &Start,
- std::multimap<Value *, Value *> &CandidatePairs,
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
DenseSet<ValuePair> &FixedOrderPairs,
DenseMap<ValuePair, int> &CandidatePairCostSavings,
std::vector<Value *> &PairableInsts, bool NonPow2Len) {
+ size_t TotalPairs = 0;
BasicBlock::iterator E = BB.end();
if (Start == E) return false;
@@ -1143,8 +1214,9 @@ namespace {
PairableInsts.push_back(I);
}
- CandidatePairs.insert(ValuePair(I, J));
- if (VTTI)
+ CandidatePairs[I].push_back(J);
+ ++TotalPairs;
+ if (TTI)
CandidatePairCostSavings.insert(ValuePairWithCost(ValuePair(I, J),
CostSavings));
@@ -1167,7 +1239,8 @@ namespace {
// If we have already found too many pairs, break here and this function
// will be called again starting after the last instruction selected
// during this invocation.
- if (PairableInsts.size() >= Config.MaxInsts) {
+ if (PairableInsts.size() >= Config.MaxInsts ||
+ TotalPairs >= Config.MaxPairs) {
ShouldContinue = true;
break;
}
@@ -1187,11 +1260,12 @@ namespace {
// it looks for pairs such that both members have an input which is an
// output of PI or PJ.
void BBVectorize::computePairsConnectedTo(
- std::multimap<Value *, Value *> &CandidatePairs,
- std::vector<Value *> &PairableInsts,
- std::multimap<ValuePair, ValuePair> &ConnectedPairs,
- DenseMap<VPPair, unsigned> &PairConnectionTypes,
- ValuePair P) {
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ DenseSet<ValuePair> &CandidatePairsSet,
+ std::vector<Value *> &PairableInsts,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseMap<VPPair, unsigned> &PairConnectionTypes,
+ ValuePair P) {
StoreInst *SI, *SJ;
// For each possible pairing for this variable, look at the uses of
@@ -1209,8 +1283,6 @@ namespace {
continue;
}
- VPIteratorPair IPairRange = CandidatePairs.equal_range(*I);
-
// For each use of the first variable, look for uses of the second
// variable...
for (Value::use_iterator J = P.second->use_begin(),
@@ -1219,19 +1291,17 @@ namespace {
P.second == SJ->getPointerOperand())
continue;
- VPIteratorPair JPairRange = CandidatePairs.equal_range(*J);
-
// Look for <I, J>:
- if (isSecondInIteratorPair<Value*>(*J, IPairRange)) {
+ if (CandidatePairsSet.count(ValuePair(*I, *J))) {
VPPair VP(P, ValuePair(*I, *J));
- ConnectedPairs.insert(VP);
+ ConnectedPairs[VP.first].push_back(VP.second);
PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionDirect));
}
// Look for <J, I>:
- if (isSecondInIteratorPair<Value*>(*I, JPairRange)) {
+ if (CandidatePairsSet.count(ValuePair(*J, *I))) {
VPPair VP(P, ValuePair(*J, *I));
- ConnectedPairs.insert(VP);
+ ConnectedPairs[VP.first].push_back(VP.second);
PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSwap));
}
}
@@ -1244,9 +1314,9 @@ namespace {
P.first == SJ->getPointerOperand())
continue;
- if (isSecondInIteratorPair<Value*>(*J, IPairRange)) {
+ if (CandidatePairsSet.count(ValuePair(*I, *J))) {
VPPair VP(P, ValuePair(*I, *J));
- ConnectedPairs.insert(VP);
+ ConnectedPairs[VP.first].push_back(VP.second);
PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSplat));
}
}
@@ -1263,16 +1333,14 @@ namespace {
P.second == SI->getPointerOperand())
continue;
- VPIteratorPair IPairRange = CandidatePairs.equal_range(*I);
-
for (Value::use_iterator J = P.second->use_begin(); J != E; ++J) {
if ((SJ = dyn_cast<StoreInst>(*J)) &&
P.second == SJ->getPointerOperand())
continue;
- if (isSecondInIteratorPair<Value*>(*J, IPairRange)) {
+ if (CandidatePairsSet.count(ValuePair(*I, *J))) {
VPPair VP(P, ValuePair(*I, *J));
- ConnectedPairs.insert(VP);
+ ConnectedPairs[VP.first].push_back(VP.second);
PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSplat));
}
}
@@ -1283,55 +1351,73 @@ namespace {
// connected if some output of the first pair forms an input to both members
// of the second pair.
void BBVectorize::computeConnectedPairs(
- std::multimap<Value *, Value *> &CandidatePairs,
- std::vector<Value *> &PairableInsts,
- std::multimap<ValuePair, ValuePair> &ConnectedPairs,
- DenseMap<VPPair, unsigned> &PairConnectionTypes) {
-
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ DenseSet<ValuePair> &CandidatePairsSet,
+ std::vector<Value *> &PairableInsts,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseMap<VPPair, unsigned> &PairConnectionTypes) {
for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
PE = PairableInsts.end(); PI != PE; ++PI) {
- VPIteratorPair choiceRange = CandidatePairs.equal_range(*PI);
+ DenseMap<Value *, std::vector<Value *> >::iterator PP =
+ CandidatePairs.find(*PI);
+ if (PP == CandidatePairs.end())
+ continue;
- for (std::multimap<Value *, Value *>::iterator P = choiceRange.first;
- P != choiceRange.second; ++P)
- computePairsConnectedTo(CandidatePairs, PairableInsts,
- ConnectedPairs, PairConnectionTypes, *P);
+ for (std::vector<Value *>::iterator P = PP->second.begin(),
+ E = PP->second.end(); P != E; ++P)
+ computePairsConnectedTo(CandidatePairs, CandidatePairsSet,
+ PairableInsts, ConnectedPairs,
+ PairConnectionTypes, ValuePair(*PI, *P));
}
- DEBUG(dbgs() << "BBV: found " << ConnectedPairs.size()
+ DEBUG(size_t TotalPairs = 0;
+ for (DenseMap<ValuePair, std::vector<ValuePair> >::iterator I =
+ ConnectedPairs.begin(), IE = ConnectedPairs.end(); I != IE; ++I)
+ TotalPairs += I->second.size();
+ dbgs() << "BBV: found " << TotalPairs
<< " pair connections.\n");
}
// This function builds a set of use tuples such that <A, B> is in the set
- // if B is in the use tree of A. If B is in the use tree of A, then B
+ // if B is in the use dag of A. If B is in the use dag of A, then B
// depends on the output of A.
void BBVectorize::buildDepMap(
BasicBlock &BB,
- std::multimap<Value *, Value *> &CandidatePairs,
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
std::vector<Value *> &PairableInsts,
DenseSet<ValuePair> &PairableInstUsers) {
DenseSet<Value *> IsInPair;
- for (std::multimap<Value *, Value *>::iterator C = CandidatePairs.begin(),
- E = CandidatePairs.end(); C != E; ++C) {
+ for (DenseMap<Value *, std::vector<Value *> >::iterator C =
+ CandidatePairs.begin(), E = CandidatePairs.end(); C != E; ++C) {
IsInPair.insert(C->first);
- IsInPair.insert(C->second);
+ IsInPair.insert(C->second.begin(), C->second.end());
}
- // Iterate through the basic block, recording all Users of each
+ // Iterate through the basic block, recording all users of each
// pairable instruction.
- BasicBlock::iterator E = BB.end();
+ BasicBlock::iterator E = BB.end(), EL =
+ BasicBlock::iterator(cast<Instruction>(PairableInsts.back()));
for (BasicBlock::iterator I = BB.getFirstInsertionPt(); I != E; ++I) {
if (IsInPair.find(I) == IsInPair.end()) continue;
DenseSet<Value *> Users;
AliasSetTracker WriteSet(*AA);
- for (BasicBlock::iterator J = llvm::next(I); J != E; ++J)
+ for (BasicBlock::iterator J = llvm::next(I); J != E; ++J) {
(void) trackUsesOfI(Users, WriteSet, I, J);
+ if (J == EL)
+ break;
+ }
+
for (DenseSet<Value *>::iterator U = Users.begin(), E = Users.end();
- U != E; ++U)
+ U != E; ++U) {
+ if (IsInPair.find(*U) == IsInPair.end()) continue;
PairableInstUsers.insert(ValuePair(I, *U));
+ }
+
+ if (I == EL)
+ break;
}
}
@@ -1339,8 +1425,9 @@ namespace {
// input of pair Q is an output of pair P. If this is the case, then these
// two pairs cannot be simultaneously fused.
bool BBVectorize::pairsConflict(ValuePair P, ValuePair Q,
- DenseSet<ValuePair> &PairableInstUsers,
- std::multimap<ValuePair, ValuePair> *PairableInstUserMap) {
+ DenseSet<ValuePair> &PairableInstUsers,
+ DenseMap<ValuePair, std::vector<ValuePair> > *PairableInstUserMap,
+ DenseSet<VPPair> *PairableInstUserPairSet) {
// Two pairs are in conflict if they are mutual Users of eachother.
bool QUsesP = PairableInstUsers.count(ValuePair(P.first, Q.first)) ||
PairableInstUsers.count(ValuePair(P.first, Q.second)) ||
@@ -1353,17 +1440,14 @@ namespace {
if (PairableInstUserMap) {
// FIXME: The expensive part of the cycle check is not so much the cycle
// check itself but this edge insertion procedure. This needs some
- // profiling and probably a different data structure (same is true of
- // most uses of std::multimap).
+ // profiling and probably a different data structure.
if (PUsesQ) {
- VPPIteratorPair QPairRange = PairableInstUserMap->equal_range(Q);
- if (!isSecondInIteratorPair(P, QPairRange))
- PairableInstUserMap->insert(VPPair(Q, P));
+ if (PairableInstUserPairSet->insert(VPPair(Q, P)).second)
+ (*PairableInstUserMap)[Q].push_back(P);
}
if (QUsesP) {
- VPPIteratorPair PPairRange = PairableInstUserMap->equal_range(P);
- if (!isSecondInIteratorPair(Q, PPairRange))
- PairableInstUserMap->insert(VPPair(P, Q));
+ if (PairableInstUserPairSet->insert(VPPair(P, Q)).second)
+ (*PairableInstUserMap)[P].push_back(Q);
}
}
@@ -1373,8 +1457,8 @@ namespace {
// This function walks the use graph of current pairs to see if, starting
// from P, the walk returns to P.
bool BBVectorize::pairWillFormCycle(ValuePair P,
- std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
- DenseSet<ValuePair> &CurrentPairs) {
+ DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
+ DenseSet<ValuePair> &CurrentPairs) {
DEBUG(if (DebugCycleCheck)
dbgs() << "BBV: starting cycle check for : " << *P.first << " <-> "
<< *P.second << "\n");
@@ -1391,36 +1475,41 @@ namespace {
DEBUG(if (DebugCycleCheck)
dbgs() << "BBV: cycle check visiting: " << *QTop.first << " <-> "
<< *QTop.second << "\n");
- VPPIteratorPair QPairRange = PairableInstUserMap.equal_range(QTop);
- for (std::multimap<ValuePair, ValuePair>::iterator C = QPairRange.first;
- C != QPairRange.second; ++C) {
- if (C->second == P) {
+ DenseMap<ValuePair, std::vector<ValuePair> >::iterator QQ =
+ PairableInstUserMap.find(QTop);
+ if (QQ == PairableInstUserMap.end())
+ continue;
+
+ for (std::vector<ValuePair>::iterator C = QQ->second.begin(),
+ CE = QQ->second.end(); C != CE; ++C) {
+ if (*C == P) {
DEBUG(dbgs()
<< "BBV: rejected to prevent non-trivial cycle formation: "
- << *C->first.first << " <-> " << *C->first.second << "\n");
+ << QTop.first << " <-> " << C->second << "\n");
return true;
}
- if (CurrentPairs.count(C->second) && !Visited.count(C->second))
- Q.push_back(C->second);
+ if (CurrentPairs.count(*C) && !Visited.count(*C))
+ Q.push_back(*C);
}
} while (!Q.empty());
return false;
}
- // This function builds the initial tree of connected pairs with the
+ // This function builds the initial dag of connected pairs with the
// pair J at the root.
- void BBVectorize::buildInitialTreeFor(
- std::multimap<Value *, Value *> &CandidatePairs,
- std::vector<Value *> &PairableInsts,
- std::multimap<ValuePair, ValuePair> &ConnectedPairs,
- DenseSet<ValuePair> &PairableInstUsers,
- DenseMap<Value *, Value *> &ChosenPairs,
- DenseMap<ValuePair, size_t> &Tree, ValuePair J) {
- // Each of these pairs is viewed as the root node of a Tree. The Tree
+ void BBVectorize::buildInitialDAGFor(
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ DenseSet<ValuePair> &CandidatePairsSet,
+ std::vector<Value *> &PairableInsts,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseSet<ValuePair> &PairableInstUsers,
+ DenseMap<Value *, Value *> &ChosenPairs,
+ DenseMap<ValuePair, size_t> &DAG, ValuePair J) {
+ // Each of these pairs is viewed as the root node of a DAG. The DAG
// is then walked (depth-first). As this happens, we keep track of
- // the pairs that compose the Tree and the maximum depth of the Tree.
+ // the pairs that compose the DAG and the maximum depth of the DAG.
SmallVector<ValuePairWithDepth, 32> Q;
// General depth-first post-order traversal:
Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
@@ -1430,69 +1519,65 @@ namespace {
// Push each child onto the queue:
bool MoreChildren = false;
size_t MaxChildDepth = QTop.second;
- VPPIteratorPair qtRange = ConnectedPairs.equal_range(QTop.first);
- for (std::multimap<ValuePair, ValuePair>::iterator k = qtRange.first;
- k != qtRange.second; ++k) {
- // Make sure that this child pair is still a candidate:
- bool IsStillCand = false;
- VPIteratorPair checkRange =
- CandidatePairs.equal_range(k->second.first);
- for (std::multimap<Value *, Value *>::iterator m = checkRange.first;
- m != checkRange.second; ++m) {
- if (m->second == k->second.second) {
- IsStillCand = true;
- break;
- }
- }
-
- if (IsStillCand) {
- DenseMap<ValuePair, size_t>::iterator C = Tree.find(k->second);
- if (C == Tree.end()) {
- size_t d = getDepthFactor(k->second.first);
- Q.push_back(ValuePairWithDepth(k->second, QTop.second+d));
- MoreChildren = true;
- } else {
- MaxChildDepth = std::max(MaxChildDepth, C->second);
+ DenseMap<ValuePair, std::vector<ValuePair> >::iterator QQ =
+ ConnectedPairs.find(QTop.first);
+ if (QQ != ConnectedPairs.end())
+ for (std::vector<ValuePair>::iterator k = QQ->second.begin(),
+ ke = QQ->second.end(); k != ke; ++k) {
+ // Make sure that this child pair is still a candidate:
+ if (CandidatePairsSet.count(*k)) {
+ DenseMap<ValuePair, size_t>::iterator C = DAG.find(*k);
+ if (C == DAG.end()) {
+ size_t d = getDepthFactor(k->first);
+ Q.push_back(ValuePairWithDepth(*k, QTop.second+d));
+ MoreChildren = true;
+ } else {
+ MaxChildDepth = std::max(MaxChildDepth, C->second);
+ }
}
}
- }
if (!MoreChildren) {
- // Record the current pair as part of the Tree:
- Tree.insert(ValuePairWithDepth(QTop.first, MaxChildDepth));
+ // Record the current pair as part of the DAG:
+ DAG.insert(ValuePairWithDepth(QTop.first, MaxChildDepth));
Q.pop_back();
}
} while (!Q.empty());
}
- // Given some initial tree, prune it by removing conflicting pairs (pairs
+ // Given some initial dag, prune it by removing conflicting pairs (pairs
// that cannot be simultaneously chosen for vectorization).
- void BBVectorize::pruneTreeFor(
- std::multimap<Value *, Value *> &CandidatePairs,
- std::vector<Value *> &PairableInsts,
- std::multimap<ValuePair, ValuePair> &ConnectedPairs,
- DenseSet<ValuePair> &PairableInstUsers,
- std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
- DenseMap<Value *, Value *> &ChosenPairs,
- DenseMap<ValuePair, size_t> &Tree,
- DenseSet<ValuePair> &PrunedTree, ValuePair J,
- bool UseCycleCheck) {
+ void BBVectorize::pruneDAGFor(
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ std::vector<Value *> &PairableInsts,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseSet<ValuePair> &PairableInstUsers,
+ DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
+ DenseSet<VPPair> &PairableInstUserPairSet,
+ DenseMap<Value *, Value *> &ChosenPairs,
+ DenseMap<ValuePair, size_t> &DAG,
+ DenseSet<ValuePair> &PrunedDAG, ValuePair J,
+ bool UseCycleCheck) {
SmallVector<ValuePairWithDepth, 32> Q;
// General depth-first post-order traversal:
Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
do {
ValuePairWithDepth QTop = Q.pop_back_val();
- PrunedTree.insert(QTop.first);
+ PrunedDAG.insert(QTop.first);
// Visit each child, pruning as necessary...
SmallVector<ValuePairWithDepth, 8> BestChildren;
- VPPIteratorPair QTopRange = ConnectedPairs.equal_range(QTop.first);
- for (std::multimap<ValuePair, ValuePair>::iterator K = QTopRange.first;
- K != QTopRange.second; ++K) {
- DenseMap<ValuePair, size_t>::iterator C = Tree.find(K->second);
- if (C == Tree.end()) continue;
+ DenseMap<ValuePair, std::vector<ValuePair> >::iterator QQ =
+ ConnectedPairs.find(QTop.first);
+ if (QQ == ConnectedPairs.end())
+ continue;
+
+ for (std::vector<ValuePair>::iterator K = QQ->second.begin(),
+ KE = QQ->second.end(); K != KE; ++K) {
+ DenseMap<ValuePair, size_t>::iterator C = DAG.find(*K);
+ if (C == DAG.end()) continue;
- // This child is in the Tree, now we need to make sure it is the
+ // This child is in the DAG, now we need to make sure it is the
// best of any conflicting children. There could be multiple
// conflicting children, so first, determine if we're keeping
// this child, then delete conflicting children as necessary.
@@ -1506,7 +1591,7 @@ namespace {
// fusing (a,b) we have y .. a/b .. x where y is an input
// to a/b and x is an output to a/b: x and y can no longer
// be legally fused. To prevent this condition, we must
- // make sure that a child pair added to the Tree is not
+ // make sure that a child pair added to the DAG is not
// both an input and output of an already-selected pair.
// Pairing-induced dependencies can also form from more complicated
@@ -1525,7 +1610,8 @@ namespace {
C2->first.second == C->first.first ||
C2->first.second == C->first.second ||
pairsConflict(C2->first, C->first, PairableInstUsers,
- UseCycleCheck ? &PairableInstUserMap : 0)) {
+ UseCycleCheck ? &PairableInstUserMap : 0,
+ UseCycleCheck ? &PairableInstUserPairSet : 0)) {
if (C2->second >= C->second) {
CanAdd = false;
break;
@@ -1537,15 +1623,16 @@ namespace {
if (!CanAdd) continue;
// Even worse, this child could conflict with another node already
- // selected for the Tree. If that is the case, ignore this child.
- for (DenseSet<ValuePair>::iterator T = PrunedTree.begin(),
- E2 = PrunedTree.end(); T != E2; ++T) {
+ // selected for the DAG. If that is the case, ignore this child.
+ for (DenseSet<ValuePair>::iterator T = PrunedDAG.begin(),
+ E2 = PrunedDAG.end(); T != E2; ++T) {
if (T->first == C->first.first ||
T->first == C->first.second ||
T->second == C->first.first ||
T->second == C->first.second ||
pairsConflict(*T, C->first, PairableInstUsers,
- UseCycleCheck ? &PairableInstUserMap : 0)) {
+ UseCycleCheck ? &PairableInstUserMap : 0,
+ UseCycleCheck ? &PairableInstUserPairSet : 0)) {
CanAdd = false;
break;
}
@@ -1562,7 +1649,8 @@ namespace {
C2->first.second == C->first.first ||
C2->first.second == C->first.second ||
pairsConflict(C2->first, C->first, PairableInstUsers,
- UseCycleCheck ? &PairableInstUserMap : 0)) {
+ UseCycleCheck ? &PairableInstUserMap : 0,
+ UseCycleCheck ? &PairableInstUserPairSet : 0)) {
CanAdd = false;
break;
}
@@ -1577,7 +1665,8 @@ namespace {
ChosenPairs.begin(), E2 = ChosenPairs.end();
C2 != E2; ++C2) {
if (pairsConflict(*C2, C->first, PairableInstUsers,
- UseCycleCheck ? &PairableInstUserMap : 0)) {
+ UseCycleCheck ? &PairableInstUserMap : 0,
+ UseCycleCheck ? &PairableInstUserPairSet : 0)) {
CanAdd = false;
break;
}
@@ -1589,7 +1678,7 @@ namespace {
// To check for non-trivial cycles formed by the addition of the
// current pair we've formed a list of all relevant pairs, now use a
// graph walk to check for a cycle. We start from the current pair and
- // walk the use tree to see if we again reach the current pair. If we
+ // walk the use dag to see if we again reach the current pair. If we
// do, then the current pair is rejected.
// FIXME: It may be more efficient to use a topological-ordering
@@ -1626,34 +1715,40 @@ namespace {
} while (!Q.empty());
}
- // This function finds the best tree of mututally-compatible connected
+ // This function finds the best dag of mututally-compatible connected
// pairs, given the choice of root pairs as an iterator range.
- void BBVectorize::findBestTreeFor(
- std::multimap<Value *, Value *> &CandidatePairs,
- DenseMap<ValuePair, int> &CandidatePairCostSavings,
- std::vector<Value *> &PairableInsts,
- DenseSet<ValuePair> &FixedOrderPairs,
- DenseMap<VPPair, unsigned> &PairConnectionTypes,
- std::multimap<ValuePair, ValuePair> &ConnectedPairs,
- std::multimap<ValuePair, ValuePair> &ConnectedPairDeps,
- DenseSet<ValuePair> &PairableInstUsers,
- std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
- DenseMap<Value *, Value *> &ChosenPairs,
- DenseSet<ValuePair> &BestTree, size_t &BestMaxDepth,
- int &BestEffSize, VPIteratorPair ChoiceRange,
- bool UseCycleCheck) {
- for (std::multimap<Value *, Value *>::iterator J = ChoiceRange.first;
- J != ChoiceRange.second; ++J) {
+ void BBVectorize::findBestDAGFor(
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ DenseSet<ValuePair> &CandidatePairsSet,
+ DenseMap<ValuePair, int> &CandidatePairCostSavings,
+ std::vector<Value *> &PairableInsts,
+ DenseSet<ValuePair> &FixedOrderPairs,
+ DenseMap<VPPair, unsigned> &PairConnectionTypes,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps,
+ DenseSet<ValuePair> &PairableInstUsers,
+ DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
+ DenseSet<VPPair> &PairableInstUserPairSet,
+ DenseMap<Value *, Value *> &ChosenPairs,
+ DenseSet<ValuePair> &BestDAG, size_t &BestMaxDepth,
+ int &BestEffSize, Value *II, std::vector<Value *>&JJ,
+ bool UseCycleCheck) {
+ for (std::vector<Value *>::iterator J = JJ.begin(), JE = JJ.end();
+ J != JE; ++J) {
+ ValuePair IJ(II, *J);
+ if (!CandidatePairsSet.count(IJ))
+ continue;
// Before going any further, make sure that this pair does not
// conflict with any already-selected pairs (see comment below
- // near the Tree pruning for more details).
+ // near the DAG pruning for more details).
DenseSet<ValuePair> ChosenPairSet;
bool DoesConflict = false;
for (DenseMap<Value *, Value *>::iterator C = ChosenPairs.begin(),
E = ChosenPairs.end(); C != E; ++C) {
- if (pairsConflict(*C, *J, PairableInstUsers,
- UseCycleCheck ? &PairableInstUserMap : 0)) {
+ if (pairsConflict(*C, IJ, PairableInstUsers,
+ UseCycleCheck ? &PairableInstUserMap : 0,
+ UseCycleCheck ? &PairableInstUserPairSet : 0)) {
DoesConflict = true;
break;
}
@@ -1663,40 +1758,42 @@ namespace {
if (DoesConflict) continue;
if (UseCycleCheck &&
- pairWillFormCycle(*J, PairableInstUserMap, ChosenPairSet))
+ pairWillFormCycle(IJ, PairableInstUserMap, ChosenPairSet))
continue;
- DenseMap<ValuePair, size_t> Tree;
- buildInitialTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
- PairableInstUsers, ChosenPairs, Tree, *J);
+ DenseMap<ValuePair, size_t> DAG;
+ buildInitialDAGFor(CandidatePairs, CandidatePairsSet,
+ PairableInsts, ConnectedPairs,
+ PairableInstUsers, ChosenPairs, DAG, IJ);
// Because we'll keep the child with the largest depth, the largest
- // depth is still the same in the unpruned Tree.
- size_t MaxDepth = Tree.lookup(*J);
+ // depth is still the same in the unpruned DAG.
+ size_t MaxDepth = DAG.lookup(IJ);
- DEBUG(if (DebugPairSelection) dbgs() << "BBV: found Tree for pair {"
- << *J->first << " <-> " << *J->second << "} of depth " <<
- MaxDepth << " and size " << Tree.size() << "\n");
+ DEBUG(if (DebugPairSelection) dbgs() << "BBV: found DAG for pair {"
+ << *IJ.first << " <-> " << *IJ.second << "} of depth " <<
+ MaxDepth << " and size " << DAG.size() << "\n");
- // At this point the Tree has been constructed, but, may contain
+ // At this point the DAG has been constructed, but, may contain
// contradictory children (meaning that different children of
- // some tree node may be attempting to fuse the same instruction).
- // So now we walk the tree again, in the case of a conflict,
+ // some dag node may be attempting to fuse the same instruction).
+ // So now we walk the dag again, in the case of a conflict,
// keep only the child with the largest depth. To break a tie,
// favor the first child.
- DenseSet<ValuePair> PrunedTree;
- pruneTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
- PairableInstUsers, PairableInstUserMap, ChosenPairs, Tree,
- PrunedTree, *J, UseCycleCheck);
+ DenseSet<ValuePair> PrunedDAG;
+ pruneDAGFor(CandidatePairs, PairableInsts, ConnectedPairs,
+ PairableInstUsers, PairableInstUserMap,
+ PairableInstUserPairSet,
+ ChosenPairs, DAG, PrunedDAG, IJ, UseCycleCheck);
int EffSize = 0;
- if (VTTI) {
- DenseSet<Value *> PrunedTreeInstrs;
- for (DenseSet<ValuePair>::iterator S = PrunedTree.begin(),
- E = PrunedTree.end(); S != E; ++S) {
- PrunedTreeInstrs.insert(S->first);
- PrunedTreeInstrs.insert(S->second);
+ if (TTI) {
+ DenseSet<Value *> PrunedDAGInstrs;
+ for (DenseSet<ValuePair>::iterator S = PrunedDAG.begin(),
+ E = PrunedDAG.end(); S != E; ++S) {
+ PrunedDAGInstrs.insert(S->first);
+ PrunedDAGInstrs.insert(S->second);
}
// The set of pairs that have already contributed to the total cost.
@@ -1709,8 +1806,8 @@ namespace {
// The node weights represent the cost savings associated with
// fusing the pair of instructions.
- for (DenseSet<ValuePair>::iterator S = PrunedTree.begin(),
- E = PrunedTree.end(); S != E; ++S) {
+ for (DenseSet<ValuePair>::iterator S = PrunedDAG.begin(),
+ E = PrunedDAG.end(); S != E; ++S) {
if (!isa<ShuffleVectorInst>(S->first) &&
!isa<InsertElementInst>(S->first) &&
!isa<ExtractElementInst>(S->first))
@@ -1728,15 +1825,17 @@ namespace {
// The edge weights contribute in a negative sense: they represent
// the cost of shuffles.
- VPPIteratorPair IP = ConnectedPairDeps.equal_range(*S);
- if (IP.first != ConnectedPairDeps.end()) {
+ DenseMap<ValuePair, std::vector<ValuePair> >::iterator SS =
+ ConnectedPairDeps.find(*S);
+ if (SS != ConnectedPairDeps.end()) {
unsigned NumDepsDirect = 0, NumDepsSwap = 0;
- for (std::multimap<ValuePair, ValuePair>::iterator Q = IP.first;
- Q != IP.second; ++Q) {
- if (!PrunedTree.count(Q->second))
+ for (std::vector<ValuePair>::iterator T = SS->second.begin(),
+ TE = SS->second.end(); T != TE; ++T) {
+ VPPair Q(*S, *T);
+ if (!PrunedDAG.count(Q.second))
continue;
DenseMap<VPPair, unsigned>::iterator R =
- PairConnectionTypes.find(VPPair(Q->second, Q->first));
+ PairConnectionTypes.find(VPPair(Q.second, Q.first));
assert(R != PairConnectionTypes.end() &&
"Cannot find pair connection type");
if (R->second == PairConnectionDirect)
@@ -1752,24 +1851,35 @@ namespace {
((NumDepsSwap > NumDepsDirect) ||
FixedOrderPairs.count(ValuePair(S->second, S->first)));
- for (std::multimap<ValuePair, ValuePair>::iterator Q = IP.first;
- Q != IP.second; ++Q) {
- if (!PrunedTree.count(Q->second))
+ for (std::vector<ValuePair>::iterator T = SS->second.begin(),
+ TE = SS->second.end(); T != TE; ++T) {
+ VPPair Q(*S, *T);
+ if (!PrunedDAG.count(Q.second))
continue;
DenseMap<VPPair, unsigned>::iterator R =
- PairConnectionTypes.find(VPPair(Q->second, Q->first));
+ PairConnectionTypes.find(VPPair(Q.second, Q.first));
assert(R != PairConnectionTypes.end() &&
"Cannot find pair connection type");
- Type *Ty1 = Q->second.first->getType(),
- *Ty2 = Q->second.second->getType();
+ Type *Ty1 = Q.second.first->getType(),
+ *Ty2 = Q.second.second->getType();
Type *VTy = getVecTypeForPair(Ty1, Ty2);
if ((R->second == PairConnectionDirect && FlipOrder) ||
(R->second == PairConnectionSwap && !FlipOrder) ||
R->second == PairConnectionSplat) {
int ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
VTy, VTy);
+
+ if (VTy->getVectorNumElements() == 2) {
+ if (R->second == PairConnectionSplat)
+ ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
+ TargetTransformInfo::SK_Broadcast, VTy));
+ else
+ ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
+ TargetTransformInfo::SK_Reverse, VTy));
+ }
+
DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" <<
- *Q->second.first << " <-> " << *Q->second.second <<
+ *Q.second.first << " <-> " << *Q.second.second <<
"} -> {" <<
*S->first << " <-> " << *S->second << "} = " <<
ESContrib << "\n");
@@ -1796,7 +1906,7 @@ namespace {
}
if (isa<ExtractElementInst>(*I))
continue;
- if (PrunedTreeInstrs.count(*I))
+ if (PrunedDAGInstrs.count(*I))
continue;
NeedsExtraction = true;
break;
@@ -1804,11 +1914,13 @@ namespace {
if (NeedsExtraction) {
int ESContrib;
- if (Ty1->isVectorTy())
+ if (Ty1->isVectorTy()) {
ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
Ty1, VTy);
- else
- ESContrib = (int) VTTI->getVectorInstrCost(
+ ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
+ TargetTransformInfo::SK_ExtractSubvector, VTy, 0, Ty1));
+ } else
+ ESContrib = (int) TTI->getVectorInstrCost(
Instruction::ExtractElement, VTy, 0);
DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" <<
@@ -1826,7 +1938,7 @@ namespace {
}
if (isa<ExtractElementInst>(*I))
continue;
- if (PrunedTreeInstrs.count(*I))
+ if (PrunedDAGInstrs.count(*I))
continue;
NeedsExtraction = true;
break;
@@ -1834,11 +1946,14 @@ namespace {
if (NeedsExtraction) {
int ESContrib;
- if (Ty2->isVectorTy())
+ if (Ty2->isVectorTy()) {
ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
Ty2, VTy);
- else
- ESContrib = (int) VTTI->getVectorInstrCost(
+ ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
+ TargetTransformInfo::SK_ExtractSubvector, VTy,
+ Ty1->isVectorTy() ? Ty1->getVectorNumElements() : 1, Ty2));
+ } else
+ ESContrib = (int) TTI->getVectorInstrCost(
Instruction::ExtractElement, VTy, 1);
DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" <<
*S->second << "} = " << ESContrib << "\n");
@@ -1865,7 +1980,7 @@ namespace {
ValuePair VPR = ValuePair(O2, O1);
// Internal edges are not handled here.
- if (PrunedTree.count(VP) || PrunedTree.count(VPR))
+ if (PrunedDAG.count(VP) || PrunedDAG.count(VPR))
continue;
Type *Ty1 = O1->getType(),
@@ -1913,22 +2028,26 @@ namespace {
} else if (IncomingPairs.count(VPR)) {
ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
VTy, VTy);
+
+ if (VTy->getVectorNumElements() == 2)
+ ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
+ TargetTransformInfo::SK_Reverse, VTy));
} else if (!Ty1->isVectorTy() && !Ty2->isVectorTy()) {
- ESContrib = (int) VTTI->getVectorInstrCost(
+ ESContrib = (int) TTI->getVectorInstrCost(
Instruction::InsertElement, VTy, 0);
- ESContrib += (int) VTTI->getVectorInstrCost(
+ ESContrib += (int) TTI->getVectorInstrCost(
Instruction::InsertElement, VTy, 1);
} else if (!Ty1->isVectorTy()) {
// O1 needs to be inserted into a vector of size O2, and then
// both need to be shuffled together.
- ESContrib = (int) VTTI->getVectorInstrCost(
+ ESContrib = (int) TTI->getVectorInstrCost(
Instruction::InsertElement, Ty2, 0);
ESContrib += (int) getInstrCost(Instruction::ShuffleVector,
VTy, Ty2);
} else if (!Ty2->isVectorTy()) {
// O2 needs to be inserted into a vector of size O1, and then
// both need to be shuffled together.
- ESContrib = (int) VTTI->getVectorInstrCost(
+ ESContrib = (int) TTI->getVectorInstrCost(
Instruction::InsertElement, Ty1, 0);
ESContrib += (int) getInstrCost(Instruction::ShuffleVector,
VTy, Ty1);
@@ -1955,27 +2074,27 @@ namespace {
if (!HasNontrivialInsts) {
DEBUG(if (DebugPairSelection) dbgs() <<
- "\tNo non-trivial instructions in tree;"
+ "\tNo non-trivial instructions in DAG;"
" override to zero effective size\n");
EffSize = 0;
}
} else {
- for (DenseSet<ValuePair>::iterator S = PrunedTree.begin(),
- E = PrunedTree.end(); S != E; ++S)
+ for (DenseSet<ValuePair>::iterator S = PrunedDAG.begin(),
+ E = PrunedDAG.end(); S != E; ++S)
EffSize += (int) getDepthFactor(S->first);
}
DEBUG(if (DebugPairSelection)
- dbgs() << "BBV: found pruned Tree for pair {"
- << *J->first << " <-> " << *J->second << "} of depth " <<
- MaxDepth << " and size " << PrunedTree.size() <<
+ dbgs() << "BBV: found pruned DAG for pair {"
+ << *IJ.first << " <-> " << *IJ.second << "} of depth " <<
+ MaxDepth << " and size " << PrunedDAG.size() <<
" (effective size: " << EffSize << ")\n");
- if (((VTTI && !UseChainDepthWithTI) ||
+ if (((TTI && !UseChainDepthWithTI) ||
MaxDepth >= Config.ReqChainDepth) &&
EffSize > 0 && EffSize > BestEffSize) {
BestMaxDepth = MaxDepth;
BestEffSize = EffSize;
- BestTree = PrunedTree;
+ BestDAG = PrunedDAG;
}
}
}
@@ -1983,66 +2102,98 @@ namespace {
// Given the list of candidate pairs, this function selects those
// that will be fused into vector instructions.
void BBVectorize::choosePairs(
- std::multimap<Value *, Value *> &CandidatePairs,
- DenseMap<ValuePair, int> &CandidatePairCostSavings,
- std::vector<Value *> &PairableInsts,
- DenseSet<ValuePair> &FixedOrderPairs,
- DenseMap<VPPair, unsigned> &PairConnectionTypes,
- std::multimap<ValuePair, ValuePair> &ConnectedPairs,
- std::multimap<ValuePair, ValuePair> &ConnectedPairDeps,
- DenseSet<ValuePair> &PairableInstUsers,
- DenseMap<Value *, Value *>& ChosenPairs) {
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ DenseSet<ValuePair> &CandidatePairsSet,
+ DenseMap<ValuePair, int> &CandidatePairCostSavings,
+ std::vector<Value *> &PairableInsts,
+ DenseSet<ValuePair> &FixedOrderPairs,
+ DenseMap<VPPair, unsigned> &PairConnectionTypes,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps,
+ DenseSet<ValuePair> &PairableInstUsers,
+ DenseMap<Value *, Value *>& ChosenPairs) {
bool UseCycleCheck =
- CandidatePairs.size() <= Config.MaxCandPairsForCycleCheck;
- std::multimap<ValuePair, ValuePair> PairableInstUserMap;
+ CandidatePairsSet.size() <= Config.MaxCandPairsForCycleCheck;
+
+ DenseMap<Value *, std::vector<Value *> > CandidatePairs2;
+ for (DenseSet<ValuePair>::iterator I = CandidatePairsSet.begin(),
+ E = CandidatePairsSet.end(); I != E; ++I) {
+ std::vector<Value *> &JJ = CandidatePairs2[I->second];
+ if (JJ.empty()) JJ.reserve(32);
+ JJ.push_back(I->first);
+ }
+
+ DenseMap<ValuePair, std::vector<ValuePair> > PairableInstUserMap;
+ DenseSet<VPPair> PairableInstUserPairSet;
for (std::vector<Value *>::iterator I = PairableInsts.begin(),
E = PairableInsts.end(); I != E; ++I) {
// The number of possible pairings for this variable:
- size_t NumChoices = CandidatePairs.count(*I);
+ size_t NumChoices = CandidatePairs.lookup(*I).size();
if (!NumChoices) continue;
- VPIteratorPair ChoiceRange = CandidatePairs.equal_range(*I);
+ std::vector<Value *> &JJ = CandidatePairs[*I];
- // The best pair to choose and its tree:
+ // The best pair to choose and its dag:
size_t BestMaxDepth = 0;
int BestEffSize = 0;
- DenseSet<ValuePair> BestTree;
- findBestTreeFor(CandidatePairs, CandidatePairCostSavings,
+ DenseSet<ValuePair> BestDAG;
+ findBestDAGFor(CandidatePairs, CandidatePairsSet,
+ CandidatePairCostSavings,
PairableInsts, FixedOrderPairs, PairConnectionTypes,
ConnectedPairs, ConnectedPairDeps,
- PairableInstUsers, PairableInstUserMap, ChosenPairs,
- BestTree, BestMaxDepth, BestEffSize, ChoiceRange,
+ PairableInstUsers, PairableInstUserMap,
+ PairableInstUserPairSet, ChosenPairs,
+ BestDAG, BestMaxDepth, BestEffSize, *I, JJ,
UseCycleCheck);
- // A tree has been chosen (or not) at this point. If no tree was
+ if (BestDAG.empty())
+ continue;
+
+ // A dag has been chosen (or not) at this point. If no dag was
// chosen, then this instruction, I, cannot be paired (and is no longer
// considered).
- DEBUG(if (BestTree.size() > 0)
- dbgs() << "BBV: selected pairs in the best tree for: "
- << *cast<Instruction>(*I) << "\n");
+ DEBUG(dbgs() << "BBV: selected pairs in the best DAG for: "
+ << *cast<Instruction>(*I) << "\n");
- for (DenseSet<ValuePair>::iterator S = BestTree.begin(),
- SE2 = BestTree.end(); S != SE2; ++S) {
- // Insert the members of this tree into the list of chosen pairs.
+ for (DenseSet<ValuePair>::iterator S = BestDAG.begin(),
+ SE2 = BestDAG.end(); S != SE2; ++S) {
+ // Insert the members of this dag into the list of chosen pairs.
ChosenPairs.insert(ValuePair(S->first, S->second));
DEBUG(dbgs() << "BBV: selected pair: " << *S->first << " <-> " <<
*S->second << "\n");
- // Remove all candidate pairs that have values in the chosen tree.
- for (std::multimap<Value *, Value *>::iterator K =
- CandidatePairs.begin(); K != CandidatePairs.end();) {
- if (K->first == S->first || K->second == S->first ||
- K->second == S->second || K->first == S->second) {
- // Don't remove the actual pair chosen so that it can be used
- // in subsequent tree selections.
- if (!(K->first == S->first && K->second == S->second))
- CandidatePairs.erase(K++);
- else
- ++K;
- } else {
- ++K;
- }
+ // Remove all candidate pairs that have values in the chosen dag.
+ std::vector<Value *> &KK = CandidatePairs[S->first];
+ for (std::vector<Value *>::iterator K = KK.begin(), KE = KK.end();
+ K != KE; ++K) {
+ if (*K == S->second)
+ continue;
+
+ CandidatePairsSet.erase(ValuePair(S->first, *K));
+ }
+
+ std::vector<Value *> &LL = CandidatePairs2[S->second];
+ for (std::vector<Value *>::iterator L = LL.begin(), LE = LL.end();
+ L != LE; ++L) {
+ if (*L == S->first)
+ continue;
+
+ CandidatePairsSet.erase(ValuePair(*L, S->second));
+ }
+
+ std::vector<Value *> &MM = CandidatePairs[S->second];
+ for (std::vector<Value *>::iterator M = MM.begin(), ME = MM.end();
+ M != ME; ++M) {
+ assert(*M != S->first && "Flipped pair in candidate list?");
+ CandidatePairsSet.erase(ValuePair(S->second, *M));
+ }
+
+ std::vector<Value *> &NN = CandidatePairs2[S->first];
+ for (std::vector<Value *>::iterator N = NN.begin(), NE = NN.end();
+ N != NE; ++N) {
+ assert(*N != S->second && "Flipped pair in candidate list?");
+ CandidatePairsSet.erase(ValuePair(*N, S->first));
}
}
}
@@ -2550,7 +2701,7 @@ namespace {
continue;
} else if (isa<CallInst>(I)) {
Function *F = cast<CallInst>(I)->getCalledFunction();
- unsigned IID = F->getIntrinsicID();
+ Intrinsic::ID IID = (Intrinsic::ID) F->getIntrinsicID();
if (o == NumOperands-1) {
BasicBlock &BB = *I->getParent();
@@ -2559,8 +2710,7 @@ namespace {
Type *ArgTypeJ = J->getType();
Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
- ReplacedOperands[o] = Intrinsic::getDeclaration(M,
- (Intrinsic::ID) IID, VArgType);
+ ReplacedOperands[o] = Intrinsic::getDeclaration(M, IID, VArgType);
continue;
} else if (IID == Intrinsic::powi && o == 1) {
// The second argument of powi is a single integer and we've already
@@ -2647,7 +2797,7 @@ namespace {
// Move all uses of the function I (including pairing-induced uses) after J.
bool BBVectorize::canMoveUsesOfIAfterJ(BasicBlock &BB,
- std::multimap<Value *, Value *> &LoadMoveSet,
+ DenseSet<ValuePair> &LoadMoveSetPairs,
Instruction *I, Instruction *J) {
// Skip to the first instruction past I.
BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
@@ -2655,18 +2805,18 @@ namespace {
DenseSet<Value *> Users;
AliasSetTracker WriteSet(*AA);
for (; cast<Instruction>(L) != J; ++L)
- (void) trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSet);
+ (void) trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSetPairs);
assert(cast<Instruction>(L) == J &&
"Tracking has not proceeded far enough to check for dependencies");
// If J is now in the use set of I, then trackUsesOfI will return true
// and we have a dependency cycle (and the fusing operation must abort).
- return !trackUsesOfI(Users, WriteSet, I, J, true, &LoadMoveSet);
+ return !trackUsesOfI(Users, WriteSet, I, J, true, &LoadMoveSetPairs);
}
// Move all uses of the function I (including pairing-induced uses) after J.
void BBVectorize::moveUsesOfIAfterJ(BasicBlock &BB,
- std::multimap<Value *, Value *> &LoadMoveSet,
+ DenseSet<ValuePair> &LoadMoveSetPairs,
Instruction *&InsertionPt,
Instruction *I, Instruction *J) {
// Skip to the first instruction past I.
@@ -2675,7 +2825,7 @@ namespace {
DenseSet<Value *> Users;
AliasSetTracker WriteSet(*AA);
for (; cast<Instruction>(L) != J;) {
- if (trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSet)) {
+ if (trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSetPairs)) {
// Move this instruction
Instruction *InstToMove = L; ++L;
@@ -2695,7 +2845,8 @@ namespace {
// to be moved after J (the second instruction) when the pair is fused.
void BBVectorize::collectPairLoadMoveSet(BasicBlock &BB,
DenseMap<Value *, Value *> &ChosenPairs,
- std::multimap<Value *, Value *> &LoadMoveSet,
+ DenseMap<Value *, std::vector<Value *> > &LoadMoveSet,
+ DenseSet<ValuePair> &LoadMoveSetPairs,
Instruction *I) {
// Skip to the first instruction past I.
BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
@@ -2708,8 +2859,10 @@ namespace {
// could be before I if this is an inverted input.
for (BasicBlock::iterator E = BB.end(); cast<Instruction>(L) != E; ++L) {
if (trackUsesOfI(Users, WriteSet, I, L)) {
- if (L->mayReadFromMemory())
- LoadMoveSet.insert(ValuePair(L, I));
+ if (L->mayReadFromMemory()) {
+ LoadMoveSet[L].push_back(I);
+ LoadMoveSetPairs.insert(ValuePair(L, I));
+ }
}
}
}
@@ -2718,20 +2871,22 @@ namespace {
// are chosen for vectorization, we can end up in a situation where the
// aliasing analysis starts returning different query results as the
// process of fusing instruction pairs continues. Because the algorithm
- // relies on finding the same use trees here as were found earlier, we'll
+ // relies on finding the same use dags here as were found earlier, we'll
// need to precompute the necessary aliasing information here and then
// manually update it during the fusion process.
void BBVectorize::collectLoadMoveSet(BasicBlock &BB,
std::vector<Value *> &PairableInsts,
DenseMap<Value *, Value *> &ChosenPairs,
- std::multimap<Value *, Value *> &LoadMoveSet) {
+ DenseMap<Value *, std::vector<Value *> > &LoadMoveSet,
+ DenseSet<ValuePair> &LoadMoveSetPairs) {
for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
PIE = PairableInsts.end(); PI != PIE; ++PI) {
DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(*PI);
if (P == ChosenPairs.end()) continue;
Instruction *I = cast<Instruction>(P->first);
- collectPairLoadMoveSet(BB, ChosenPairs, LoadMoveSet, I);
+ collectPairLoadMoveSet(BB, ChosenPairs, LoadMoveSet,
+ LoadMoveSetPairs, I);
}
}
@@ -2767,12 +2922,12 @@ namespace {
// because the vector instruction is inserted in the location of the pair's
// second member).
void BBVectorize::fuseChosenPairs(BasicBlock &BB,
- std::vector<Value *> &PairableInsts,
- DenseMap<Value *, Value *> &ChosenPairs,
- DenseSet<ValuePair> &FixedOrderPairs,
- DenseMap<VPPair, unsigned> &PairConnectionTypes,
- std::multimap<ValuePair, ValuePair> &ConnectedPairs,
- std::multimap<ValuePair, ValuePair> &ConnectedPairDeps) {
+ std::vector<Value *> &PairableInsts,
+ DenseMap<Value *, Value *> &ChosenPairs,
+ DenseSet<ValuePair> &FixedOrderPairs,
+ DenseMap<VPPair, unsigned> &PairConnectionTypes,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps) {
LLVMContext& Context = BB.getContext();
// During the vectorization process, the order of the pairs to be fused
@@ -2786,8 +2941,10 @@ namespace {
E = FlippedPairs.end(); P != E; ++P)
ChosenPairs.insert(*P);
- std::multimap<Value *, Value *> LoadMoveSet;
- collectLoadMoveSet(BB, PairableInsts, ChosenPairs, LoadMoveSet);
+ DenseMap<Value *, std::vector<Value *> > LoadMoveSet;
+ DenseSet<ValuePair> LoadMoveSetPairs;
+ collectLoadMoveSet(BB, PairableInsts, ChosenPairs,
+ LoadMoveSet, LoadMoveSetPairs);
DEBUG(dbgs() << "BBV: initial: \n" << BB << "\n");
@@ -2819,7 +2976,7 @@ namespace {
ChosenPairs.erase(FP);
ChosenPairs.erase(P);
- if (!canMoveUsesOfIAfterJ(BB, LoadMoveSet, I, J)) {
+ if (!canMoveUsesOfIAfterJ(BB, LoadMoveSetPairs, I, J)) {
DEBUG(dbgs() << "BBV: fusion of: " << *I <<
" <-> " << *J <<
" aborted because of non-trivial dependency cycle\n");
@@ -2836,18 +2993,20 @@ namespace {
// of dependencies connected via swaps, and those directly connected,
// and flip the order if the number of swaps is greater.
bool OrigOrder = true;
- VPPIteratorPair IP = ConnectedPairDeps.equal_range(ValuePair(I, J));
- if (IP.first == ConnectedPairDeps.end()) {
- IP = ConnectedPairDeps.equal_range(ValuePair(J, I));
+ DenseMap<ValuePair, std::vector<ValuePair> >::iterator IJ =
+ ConnectedPairDeps.find(ValuePair(I, J));
+ if (IJ == ConnectedPairDeps.end()) {
+ IJ = ConnectedPairDeps.find(ValuePair(J, I));
OrigOrder = false;
}
- if (IP.first != ConnectedPairDeps.end()) {
+ if (IJ != ConnectedPairDeps.end()) {
unsigned NumDepsDirect = 0, NumDepsSwap = 0;
- for (std::multimap<ValuePair, ValuePair>::iterator Q = IP.first;
- Q != IP.second; ++Q) {
+ for (std::vector<ValuePair>::iterator T = IJ->second.begin(),
+ TE = IJ->second.end(); T != TE; ++T) {
+ VPPair Q(IJ->first, *T);
DenseMap<VPPair, unsigned>::iterator R =
- PairConnectionTypes.find(VPPair(Q->second, Q->first));
+ PairConnectionTypes.find(VPPair(Q.second, Q.first));
assert(R != PairConnectionTypes.end() &&
"Cannot find pair connection type");
if (R->second == PairConnectionDirect)
@@ -2873,17 +3032,20 @@ namespace {
// If the pair being fused uses the opposite order from that in the pair
// connection map, then we need to flip the types.
- VPPIteratorPair IP = ConnectedPairs.equal_range(ValuePair(H, L));
- for (std::multimap<ValuePair, ValuePair>::iterator Q = IP.first;
- Q != IP.second; ++Q) {
- DenseMap<VPPair, unsigned>::iterator R = PairConnectionTypes.find(*Q);
- assert(R != PairConnectionTypes.end() &&
- "Cannot find pair connection type");
- if (R->second == PairConnectionDirect)
- R->second = PairConnectionSwap;
- else if (R->second == PairConnectionSwap)
- R->second = PairConnectionDirect;
- }
+ DenseMap<ValuePair, std::vector<ValuePair> >::iterator HL =
+ ConnectedPairs.find(ValuePair(H, L));
+ if (HL != ConnectedPairs.end())
+ for (std::vector<ValuePair>::iterator T = HL->second.begin(),
+ TE = HL->second.end(); T != TE; ++T) {
+ VPPair Q(HL->first, *T);
+ DenseMap<VPPair, unsigned>::iterator R = PairConnectionTypes.find(Q);
+ assert(R != PairConnectionTypes.end() &&
+ "Cannot find pair connection type");
+ if (R->second == PairConnectionDirect)
+ R->second = PairConnectionSwap;
+ else if (R->second == PairConnectionSwap)
+ R->second = PairConnectionDirect;
+ }
bool LBeforeH = !FlipPairOrder;
unsigned NumOperands = I->getNumOperands();
@@ -2915,12 +3077,12 @@ namespace {
Instruction *K1 = 0, *K2 = 0;
replaceOutputsOfPair(Context, L, H, K, InsertionPt, K1, K2);
- // The use tree of the first original instruction must be moved to after
- // the location of the second instruction. The entire use tree of the
- // first instruction is disjoint from the input tree of the second
+ // The use dag of the first original instruction must be moved to after
+ // the location of the second instruction. The entire use dag of the
+ // first instruction is disjoint from the input dag of the second
// (by definition), and so commutes with it.
- moveUsesOfIAfterJ(BB, LoadMoveSet, InsertionPt, I, J);
+ moveUsesOfIAfterJ(BB, LoadMoveSetPairs, InsertionPt, I, J);
if (!isa<StoreInst>(I)) {
L->replaceAllUsesWith(K1);
@@ -2937,17 +3099,23 @@ namespace {
// yet-to-be-fused pair. The loads in question are the keys of the map.
if (I->mayReadFromMemory()) {
std::vector<ValuePair> NewSetMembers;
- VPIteratorPair IPairRange = LoadMoveSet.equal_range(I);
- VPIteratorPair JPairRange = LoadMoveSet.equal_range(J);
- for (std::multimap<Value *, Value *>::iterator N = IPairRange.first;
- N != IPairRange.second; ++N)
- NewSetMembers.push_back(ValuePair(K, N->second));
- for (std::multimap<Value *, Value *>::iterator N = JPairRange.first;
- N != JPairRange.second; ++N)
- NewSetMembers.push_back(ValuePair(K, N->second));
+ DenseMap<Value *, std::vector<Value *> >::iterator II =
+ LoadMoveSet.find(I);
+ if (II != LoadMoveSet.end())
+ for (std::vector<Value *>::iterator N = II->second.begin(),
+ NE = II->second.end(); N != NE; ++N)
+ NewSetMembers.push_back(ValuePair(K, *N));
+ DenseMap<Value *, std::vector<Value *> >::iterator JJ =
+ LoadMoveSet.find(J);
+ if (JJ != LoadMoveSet.end())
+ for (std::vector<Value *>::iterator N = JJ->second.begin(),
+ NE = JJ->second.end(); N != NE; ++N)
+ NewSetMembers.push_back(ValuePair(K, *N));
for (std::vector<ValuePair>::iterator A = NewSetMembers.begin(),
- AE = NewSetMembers.end(); A != AE; ++A)
- LoadMoveSet.insert(*A);
+ AE = NewSetMembers.end(); A != AE; ++A) {
+ LoadMoveSet[A->first].push_back(A->second);
+ LoadMoveSetPairs.insert(*A);
+ }
}
// Before removing I, set the iterator to the next instruction.
@@ -2972,6 +3140,7 @@ char BBVectorize::ID = 0;
static const char bb_vectorize_name[] = "Basic-Block Vectorization";
INITIALIZE_PASS_BEGIN(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_END(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
@@ -3006,6 +3175,7 @@ VectorizeConfig::VectorizeConfig() {
MaxCandPairsForCycleCheck = ::MaxCandPairsForCycleCheck;
SplatBreaksChain = ::SplatBreaksChain;
MaxInsts = ::MaxInsts;
+ MaxPairs = ::MaxPairs;
MaxIter = ::MaxIter;
Pow2LenOnly = ::Pow2LenOnly;
NoMemOpBoost = ::NoMemOpBoost;
diff --git a/contrib/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp b/contrib/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
index a7ef248..acf2b81 100644
--- a/contrib/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
+++ b/contrib/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
@@ -9,10 +9,10 @@
//
// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
// and generates target-independent LLVM-IR. Legalization of the IR is done
-// in the codegen. However, the vectorizes uses (will use) the codegen
+// in the codegen. However, the vectorizer uses (will use) the codegen
// interfaces to generate IR that is likely to result in an optimal binary.
//
-// The loop vectorizer combines consecutive loop iteration into a single
+// The loop vectorizer combines consecutive loop iterations into a single
// 'wide' iteration. After this transformation the index is incremented
// by the SIMD vector width, and not by one.
//
@@ -20,67 +20,107 @@
// 1. The main loop pass that drives the different parts.
// 2. LoopVectorizationLegality - A unit that checks for the legality
// of the vectorization.
-// 3. SingleBlockLoopVectorizer - A unit that performs the actual
+// 3. InnerLoopVectorizer - A unit that performs the actual
// widening of instructions.
// 4. LoopVectorizationCostModel - A unit that checks for the profitability
// of vectorization. It decides on the optimal vector width, which
// can be one, if vectorization is not profitable.
+//
//===----------------------------------------------------------------------===//
//
// The reduction-variable vectorization is based on the paper:
// D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
//
// Variable uniformity checks are inspired by:
-// Karrenberg, R. and Hack, S. Whole Function Vectorization.
+// Karrenberg, R. and Hack, S. Whole Function Vectorization.
//
// Other ideas/concepts are from:
// A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
//
+// S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
+// Vectorizing Compilers.
+//
//===----------------------------------------------------------------------===//
+
#define LV_NAME "loop-vectorize"
#define DEBUG_TYPE LV_NAME
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Pass.h"
-#include "llvm/Analysis/LoopPass.h"
-#include "llvm/Value.h"
-#include "llvm/Function.h"
-#include "llvm/Analysis/Verifier.h"
-#include "llvm/Module.h"
-#include "llvm/Type.h"
+
+#include "llvm/Transforms/Vectorize.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/MapVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AliasSetTracker.h"
-#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/Dominators.h"
-#include "llvm/Analysis/ScalarEvolutionExpressions.h"
-#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/LoopIterator.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpander.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/TargetTransformInfo.h"
+#include "llvm/Analysis/Verifier.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/DataLayout.h"
+#include "llvm/Target/TargetLibraryInfo.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
+#include <map>
+
using namespace llvm;
static cl::opt<unsigned>
VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
- cl::desc("Set the default vectorization width. Zero is autoselect."));
+ cl::desc("Sets the SIMD width. Zero is autoselect."));
+
+static cl::opt<unsigned>
+VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden,
+ cl::desc("Sets the vectorization unroll count. "
+ "Zero is autoselect."));
+
+static cl::opt<bool>
+EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
+ cl::desc("Enable if-conversion during vectorization."));
/// We don't vectorize loops with a known constant trip count below this number.
-const unsigned TinyTripCountThreshold = 16;
+static cl::opt<unsigned>
+TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16),
+ cl::Hidden,
+ cl::desc("Don't vectorize loops with a constant "
+ "trip count that is smaller than this "
+ "value."));
+
+/// We don't unroll loops with a known constant trip count below this number.
+static const unsigned TinyTripCountUnrollThreshold = 128;
/// When performing a runtime memory check, do not check more than this
/// number of pointers. Notice that the check is quadratic!
-const unsigned RuntimeMemoryCheckThreshold = 2;
+static const unsigned RuntimeMemoryCheckThreshold = 4;
+
+/// We use a metadata with this name to indicate that a scalar loop was
+/// vectorized and that we don't need to re-vectorize it if we run into it
+/// again.
+static const char*
+AlreadyVectorizedMDName = "llvm.vectorizer.already_vectorized";
namespace {
@@ -88,7 +128,7 @@ namespace {
class LoopVectorizationLegality;
class LoopVectorizationCostModel;
-/// SingleBlockLoopVectorizer vectorizes loops which contain only one basic
+/// InnerLoopVectorizer vectorizes loops which contain only one basic
/// block to a specified vectorization factor (VF).
/// This class performs the widening of scalars into vectors, or multiple
/// scalars. This class also implements the following features:
@@ -97,36 +137,61 @@ class LoopVectorizationCostModel;
/// * It handles the code generation for reduction variables.
/// * Scalarization (implementation using scalars) of un-vectorizable
/// instructions.
-/// SingleBlockLoopVectorizer does not perform any vectorization-legality
+/// InnerLoopVectorizer does not perform any vectorization-legality
/// checks, and relies on the caller to check for the different legality
-/// aspects. The SingleBlockLoopVectorizer relies on the
+/// aspects. The InnerLoopVectorizer relies on the
/// LoopVectorizationLegality class to provide information about the induction
/// and reduction variables that were found to a given vectorization factor.
-class SingleBlockLoopVectorizer {
+class InnerLoopVectorizer {
public:
- /// Ctor.
- SingleBlockLoopVectorizer(Loop *Orig, ScalarEvolution *Se, LoopInfo *Li,
- DominatorTree *dt, LPPassManager *Lpm,
- unsigned VecWidth):
- OrigLoop(Orig), SE(Se), LI(Li), DT(dt), LPM(Lpm), VF(VecWidth),
- Builder(Se->getContext()), Induction(0), OldInduction(0) { }
+ InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
+ DominatorTree *DT, DataLayout *DL,
+ const TargetLibraryInfo *TLI, unsigned VecWidth,
+ unsigned UnrollFactor)
+ : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI),
+ VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), Induction(0),
+ OldInduction(0), WidenMap(UnrollFactor) {}
// Perform the actual loop widening (vectorization).
void vectorize(LoopVectorizationLegality *Legal) {
- ///Create a new empty loop. Unlink the old loop and connect the new one.
+ // Create a new empty loop. Unlink the old loop and connect the new one.
createEmptyLoop(Legal);
- /// Widen each instruction in the old loop to a new one in the new loop.
- /// Use the Legality module to find the induction and reduction variables.
+ // Widen each instruction in the old loop to a new one in the new loop.
+ // Use the Legality module to find the induction and reduction variables.
vectorizeLoop(Legal);
// Register the new loop and update the analysis passes.
updateAnalysis();
- }
+ }
private:
+ /// A small list of PHINodes.
+ typedef SmallVector<PHINode*, 4> PhiVector;
+ /// When we unroll loops we have multiple vector values for each scalar.
+ /// This data structure holds the unrolled and vectorized values that
+ /// originated from one scalar instruction.
+ typedef SmallVector<Value*, 2> VectorParts;
+
+ /// Add code that checks at runtime if the accessed arrays overlap.
+ /// Returns the comparator value or NULL if no check is needed.
+ Instruction *addRuntimeCheck(LoopVectorizationLegality *Legal,
+ Instruction *Loc);
/// Create an empty loop, based on the loop ranges of the old loop.
void createEmptyLoop(LoopVectorizationLegality *Legal);
/// Copy and widen the instructions from the old loop.
void vectorizeLoop(LoopVectorizationLegality *Legal);
+
+ /// A helper function that computes the predicate of the block BB, assuming
+ /// that the header block of the loop is set to True. It returns the *entry*
+ /// mask for the block BB.
+ VectorParts createBlockInMask(BasicBlock *BB);
+ /// A helper function that computes the predicate of the edge between SRC
+ /// and DST.
+ VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
+
+ /// A helper function to vectorize a single BB within the innermost loop.
+ void vectorizeBlockInLoop(LoopVectorizationLegality *Legal, BasicBlock *BB,
+ PhiVector *PV);
+
/// Insert the new loop to the loop hierarchy and pass manager
/// and update the analysis passes.
void updateAnalysis();
@@ -135,6 +200,10 @@ private:
/// of scalars.
void scalarizeInstruction(Instruction *Instr);
+ /// Vectorize Load and Store instructions,
+ void vectorizeMemoryInstruction(Instruction *Instr,
+ LoopVectorizationLegality *Legal);
+
/// Create a broadcast instruction. This method generates a broadcast
/// instruction (shuffle) for loop invariant values and for the induction
/// value. If this is the induction variable then we extend it to N, N+1, ...
@@ -142,37 +211,82 @@ private:
/// element.
Value *getBroadcastInstrs(Value *V);
- /// This is a helper function used by getBroadcastInstrs. It adds 0, 1, 2 ..
- /// for each element in the vector. Starting from zero.
- Value *getConsecutiveVector(Value* Val);
+ /// This function adds 0, 1, 2 ... to each vector element, starting at zero.
+ /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...).
+ /// The sequence starts at StartIndex.
+ Value *getConsecutiveVector(Value* Val, unsigned StartIdx, bool Negate);
/// When we go over instructions in the basic block we rely on previous
/// values within the current basic block or on loop invariant values.
/// When we widen (vectorize) values we place them in the map. If the values
/// are not within the map, they have to be loop invariant, so we simply
/// broadcast them into a vector.
- Value *getVectorValue(Value *V);
+ VectorParts &getVectorValue(Value *V);
+
+ /// Generate a shuffle sequence that will reverse the vector Vec.
+ Value *reverseVector(Value *Vec);
+
+ /// This is a helper class that holds the vectorizer state. It maps scalar
+ /// instructions to vector instructions. When the code is 'unrolled' then
+ /// then a single scalar value is mapped to multiple vector parts. The parts
+ /// are stored in the VectorPart type.
+ struct ValueMap {
+ /// C'tor. UnrollFactor controls the number of vectors ('parts') that
+ /// are mapped.
+ ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
+
+ /// \return True if 'Key' is saved in the Value Map.
+ bool has(Value *Key) const { return MapStorage.count(Key); }
+
+ /// Initializes a new entry in the map. Sets all of the vector parts to the
+ /// save value in 'Val'.
+ /// \return A reference to a vector with splat values.
+ VectorParts &splat(Value *Key, Value *Val) {
+ VectorParts &Entry = MapStorage[Key];
+ Entry.assign(UF, Val);
+ return Entry;
+ }
- /// Get a uniform vector of constant integers. We use this to get
- /// vectors of ones and zeros for the reduction code.
- Constant* getUniformVector(unsigned Val, Type* ScalarTy);
+ ///\return A reference to the value that is stored at 'Key'.
+ VectorParts &get(Value *Key) {
+ VectorParts &Entry = MapStorage[Key];
+ if (Entry.empty())
+ Entry.resize(UF);
+ assert(Entry.size() == UF);
+ return Entry;
+ }
- typedef DenseMap<Value*, Value*> ValueMap;
+ private:
+ /// The unroll factor. Each entry in the map stores this number of vector
+ /// elements.
+ unsigned UF;
+
+ /// Map storage. We use std::map and not DenseMap because insertions to a
+ /// dense map invalidates its iterators.
+ std::map<Value *, VectorParts> MapStorage;
+ };
/// The original loop.
Loop *OrigLoop;
- // Scev analysis to use.
+ /// Scev analysis to use.
ScalarEvolution *SE;
- // Loop Info.
+ /// Loop Info.
LoopInfo *LI;
- // Dominator Tree.
+ /// Dominator Tree.
DominatorTree *DT;
- // Loop Pass Manager;
- LPPassManager *LPM;
- // The vectorization factor to use.
+ /// Data Layout.
+ DataLayout *DL;
+ /// Target Library Info.
+ const TargetLibraryInfo *TLI;
+
+ /// The vectorization SIMD factor to use. Each vector will have this many
+ /// vector elements.
unsigned VF;
+ /// The vectorization unroll factor to use. Each scalar is vectorized to this
+ /// many different vector instructions.
+ unsigned UF;
- // The builder that we use
+ /// The builder that we use
IRBuilder<> Builder;
// --- Vectorization state ---
@@ -189,14 +303,14 @@ private:
BasicBlock *LoopVectorBody;
///The scalar loop body.
BasicBlock *LoopScalarBody;
- ///The first bypass block.
- BasicBlock *LoopBypassBlock;
+ /// A list of all bypass blocks. The first block is the entry of the loop.
+ SmallVector<BasicBlock *, 4> LoopBypassBlocks;
/// The new Induction variable which was added to the new block.
PHINode *Induction;
/// The induction variable of the old basic block.
PHINode *OldInduction;
- // Maps scalars to widened vectors.
+ /// Maps scalars to widened vectors.
ValueMap WidenMap;
};
@@ -207,36 +321,48 @@ private:
/// * Memory checks - The code in canVectorizeMemory checks if vectorization
/// will change the order of memory accesses in a way that will change the
/// correctness of the program.
-/// * Scalars checks - The code in canVectorizeBlock checks for a number
-/// of different conditions, such as the availability of a single induction
-/// variable, that all types are supported and vectorize-able, etc.
-/// This code reflects the capabilities of SingleBlockLoopVectorizer.
-/// This class is also used by SingleBlockLoopVectorizer for identifying
+/// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
+/// checks for a number of different conditions, such as the availability of a
+/// single induction variable, that all types are supported and vectorize-able,
+/// etc. This code reflects the capabilities of InnerLoopVectorizer.
+/// This class is also used by InnerLoopVectorizer for identifying
/// induction variable and the different reduction variables.
class LoopVectorizationLegality {
public:
- LoopVectorizationLegality(Loop *Lp, ScalarEvolution *Se, DataLayout *Dl):
- TheLoop(Lp), SE(Se), DL(Dl), Induction(0) { }
+ LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DataLayout *DL,
+ DominatorTree *DT, TargetTransformInfo* TTI,
+ AliasAnalysis *AA, TargetLibraryInfo *TLI)
+ : TheLoop(L), SE(SE), DL(DL), DT(DT), TTI(TTI), AA(AA), TLI(TLI),
+ Induction(0) {}
- /// This represents the kinds of reductions that we support.
+ /// This enum represents the kinds of reductions that we support.
enum ReductionKind {
- NoReduction, /// Not a reduction.
- IntegerAdd, /// Sum of numbers.
- IntegerMult, /// Product of numbers.
- IntegerOr, /// Bitwise or logical OR of numbers.
- IntegerAnd, /// Bitwise or logical AND of numbers.
- IntegerXor /// Bitwise or logical XOR of numbers.
+ RK_NoReduction, ///< Not a reduction.
+ RK_IntegerAdd, ///< Sum of integers.
+ RK_IntegerMult, ///< Product of integers.
+ RK_IntegerOr, ///< Bitwise or logical OR of numbers.
+ RK_IntegerAnd, ///< Bitwise or logical AND of numbers.
+ RK_IntegerXor, ///< Bitwise or logical XOR of numbers.
+ RK_FloatAdd, ///< Sum of floats.
+ RK_FloatMult ///< Product of floats.
+ };
+
+ /// This enum represents the kinds of inductions that we support.
+ enum InductionKind {
+ IK_NoInduction, ///< Not an induction variable.
+ IK_IntInduction, ///< Integer induction variable. Step = 1.
+ IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1.
+ IK_PtrInduction, ///< Pointer induction var. Step = sizeof(elem).
+ IK_ReversePtrInduction ///< Reverse ptr indvar. Step = - sizeof(elem).
};
/// This POD struct holds information about reduction variables.
struct ReductionDescriptor {
- // Default C'tor
- ReductionDescriptor():
- StartValue(0), LoopExitInstr(0), Kind(NoReduction) {}
+ ReductionDescriptor() : StartValue(0), LoopExitInstr(0),
+ Kind(RK_NoReduction) {}
- // C'tor.
- ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K):
- StartValue(Start), LoopExitInstr(Exit), Kind(K) {}
+ ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K)
+ : StartValue(Start), LoopExitInstr(Exit), Kind(K) {}
// The starting value of the reduction.
// It does not have to be zero!
@@ -250,52 +376,113 @@ public:
// This POD struct holds information about the memory runtime legality
// check that a group of pointers do not overlap.
struct RuntimePointerCheck {
+ RuntimePointerCheck() : Need(false) {}
+
+ /// Reset the state of the pointer runtime information.
+ void reset() {
+ Need = false;
+ Pointers.clear();
+ Starts.clear();
+ Ends.clear();
+ }
+
+ /// Insert a pointer and calculate the start and end SCEVs.
+ void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr);
+
/// This flag indicates if we need to add the runtime check.
bool Need;
/// Holds the pointers that we need to check.
SmallVector<Value*, 2> Pointers;
+ /// Holds the pointer value at the beginning of the loop.
+ SmallVector<const SCEV*, 2> Starts;
+ /// Holds the pointer value at the end of the loop.
+ SmallVector<const SCEV*, 2> Ends;
+ };
+
+ /// A POD for saving information about induction variables.
+ struct InductionInfo {
+ InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {}
+ InductionInfo() : StartValue(0), IK(IK_NoInduction) {}
+ /// Start value.
+ Value *StartValue;
+ /// Induction kind.
+ InductionKind IK;
};
/// ReductionList contains the reduction descriptors for all
/// of the reductions that were found in the loop.
typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
+ /// InductionList saves induction variables and maps them to the
+ /// induction descriptor.
+ typedef MapVector<PHINode*, InductionInfo> InductionList;
+
+ /// Alias(Multi)Map stores the values (GEPs or underlying objects and their
+ /// respective Store/Load instruction(s) to calculate aliasing.
+ typedef MapVector<Value*, Instruction* > AliasMap;
+ typedef DenseMap<Value*, std::vector<Instruction*> > AliasMultiMap;
+
/// Returns true if it is legal to vectorize this loop.
/// This does not mean that it is profitable to vectorize this
/// loop, only that it is legal to do so.
bool canVectorize();
/// Returns the Induction variable.
- PHINode *getInduction() {return Induction;}
+ PHINode *getInduction() { return Induction; }
/// Returns the reduction variables found in the loop.
ReductionList *getReductionVars() { return &Reductions; }
- /// Check if the pointer returned by this GEP is consecutive
- /// when the index is vectorized. This happens when the last
- /// index of the GEP is consecutive, like the induction variable.
+ /// Returns the induction variables found in the loop.
+ InductionList *getInductionVars() { return &Inductions; }
+
+ /// Returns True if V is an induction variable in this loop.
+ bool isInductionVariable(const Value *V);
+
+ /// Return true if the block BB needs to be predicated in order for the loop
+ /// to be vectorized.
+ bool blockNeedsPredication(BasicBlock *BB);
+
+ /// Check if this pointer is consecutive when vectorizing. This happens
+ /// when the last index of the GEP is the induction variable, or that the
+ /// pointer itself is an induction variable.
/// This check allows us to vectorize A[idx] into a wide load/store.
- bool isConsecutiveGep(Value *Ptr);
+ /// Returns:
+ /// 0 - Stride is unknown or non consecutive.
+ /// 1 - Address is consecutive.
+ /// -1 - Address is consecutive, and decreasing.
+ int isConsecutivePtr(Value *Ptr);
/// Returns true if the value V is uniform within the loop.
bool isUniform(Value *V);
/// Returns true if this instruction will remain scalar after vectorization.
- bool isUniformAfterVectorization(Instruction* I) {return Uniforms.count(I);}
+ bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
/// Returns the information that we collected about runtime memory check.
- RuntimePointerCheck *getRuntimePointerCheck() {return &PtrRtCheck; }
+ RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; }
private:
/// Check if a single basic block loop is vectorizable.
/// At this point we know that this is a loop with a constant trip count
/// and we only need to check individual instructions.
- bool canVectorizeBlock(BasicBlock &BB);
+ bool canVectorizeInstrs();
/// When we vectorize loops we may change the order in which
/// we read and write from memory. This method checks if it is
/// legal to vectorize the code, considering only memory constrains.
- /// Returns true if BB is vectorizable
- bool canVectorizeMemory(BasicBlock &BB);
+ /// Returns true if the loop is vectorizable
+ bool canVectorizeMemory();
+
+ /// Return true if we can vectorize this loop using the IF-conversion
+ /// transformation.
+ bool canVectorizeWithIfConvert();
+
+ /// Collect the variables that need to stay uniform after vectorization.
+ void collectLoopUniforms();
+
+ /// Return true if all of the instructions in the block can be speculatively
+ /// executed.
+ bool blockCanBePredicated(BasicBlock *BB);
/// Returns True, if 'Phi' is the kind of reduction variable for type
/// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
@@ -303,10 +490,19 @@ private:
/// Returns true if the instruction I can be a reduction variable of type
/// 'Kind'.
bool isReductionInstr(Instruction *I, ReductionKind Kind);
- /// Returns True, if 'Phi' is an induction variable.
- bool isInductionVariable(PHINode *Phi);
+ /// Returns the induction kind of Phi. This function may return NoInduction
+ /// if the PHI is not an induction variable.
+ InductionKind isInductionVariable(PHINode *Phi);
/// Return true if can compute the address bounds of Ptr within the loop.
bool hasComputableBounds(Value *Ptr);
+ /// Return true if there is the chance of write reorder.
+ bool hasPossibleGlobalWriteReorder(Value *Object,
+ Instruction *Inst,
+ AliasMultiMap &WriteObjects,
+ unsigned MaxByteWidth);
+ /// Return the AA location for a load or a store.
+ AliasAnalysis::Location getLoadStoreLocation(Instruction *Inst);
+
/// The loop that we evaluate.
Loop *TheLoop;
@@ -314,13 +510,27 @@ private:
ScalarEvolution *SE;
/// DataLayout analysis.
DataLayout *DL;
+ /// Dominators.
+ DominatorTree *DT;
+ /// Target Info.
+ TargetTransformInfo *TTI;
+ /// Alias Analysis.
+ AliasAnalysis *AA;
+ /// Target Library Info.
+ TargetLibraryInfo *TLI;
// --- vectorization state --- //
- /// Holds the induction variable.
+ /// Holds the integer induction variable. This is the counter of the
+ /// loop.
PHINode *Induction;
/// Holds the reduction variables.
ReductionList Reductions;
+ /// Holds all of the induction variables that we found in the loop.
+ /// Notice that inductions don't need to start at zero and that induction
+ /// variables can be pointers.
+ InductionList Inductions;
+
/// Allowed outside users. This holds the reduction
/// vars which can be accessed from outside the loop.
SmallPtrSet<Value*, 4> AllowedExit;
@@ -334,23 +544,57 @@ private:
/// LoopVectorizationCostModel - estimates the expected speedups due to
/// vectorization.
-/// In many cases vectorization is not profitable. This can happen because
-/// of a number of reasons. In this class we mainly attempt to predict
-/// the expected speedup/slowdowns due to the supported instruction set.
-/// We use the VectorTargetTransformInfo to query the different backends
-/// for the cost of different operations.
+/// In many cases vectorization is not profitable. This can happen because of
+/// a number of reasons. In this class we mainly attempt to predict the
+/// expected speedup/slowdowns due to the supported instruction set. We use the
+/// TargetTransformInfo to query the different backends for the cost of
+/// different operations.
class LoopVectorizationCostModel {
public:
- /// C'tor.
- LoopVectorizationCostModel(Loop *Lp, ScalarEvolution *Se,
- LoopVectorizationLegality *Leg,
- const VectorTargetTransformInfo *Vtti):
- TheLoop(Lp), SE(Se), Legal(Leg), VTTI(Vtti) { }
+ LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI,
+ LoopVectorizationLegality *Legal,
+ const TargetTransformInfo &TTI,
+ DataLayout *DL, const TargetLibraryInfo *TLI)
+ : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI) {}
+
+ /// Information about vectorization costs
+ struct VectorizationFactor {
+ unsigned Width; // Vector width with best cost
+ unsigned Cost; // Cost of the loop with that width
+ };
+ /// \return The most profitable vectorization factor and the cost of that VF.
+ /// This method checks every power of two up to VF. If UserVF is not ZERO
+ /// then this vectorization factor will be selected if vectorization is
+ /// possible.
+ VectorizationFactor selectVectorizationFactor(bool OptForSize,
+ unsigned UserVF);
+
+ /// \return The size (in bits) of the widest type in the code that
+ /// needs to be vectorized. We ignore values that remain scalar such as
+ /// 64 bit loop indices.
+ unsigned getWidestType();
+
+ /// \return The most profitable unroll factor.
+ /// If UserUF is non-zero then this method finds the best unroll-factor
+ /// based on register pressure and other parameters.
+ /// VF and LoopCost are the selected vectorization factor and the cost of the
+ /// selected VF.
+ unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF, unsigned VF,
+ unsigned LoopCost);
+
+ /// \brief A struct that represents some properties of the register usage
+ /// of a loop.
+ struct RegisterUsage {
+ /// Holds the number of loop invariant values that are used in the loop.
+ unsigned LoopInvariantRegs;
+ /// Holds the maximum number of concurrent live intervals in the loop.
+ unsigned MaxLocalUsers;
+ /// Holds the number of instructions in the loop.
+ unsigned NumInstructions;
+ };
- /// Returns the most profitable vectorization factor for the loop that is
- /// smaller or equal to the VF argument. This method checks every power
- /// of two up to VF.
- unsigned findBestVectorizationFactor(unsigned VF = 8);
+ /// \return information about the register usage of the loop.
+ RegisterUsage calculateRegisterUsage();
private:
/// Returns the expected execution cost. The unit of the cost does
@@ -368,21 +612,32 @@ private:
/// the scalar type.
static Type* ToVectorTy(Type *Scalar, unsigned VF);
+ /// Returns whether the instruction is a load or store and will be a emitted
+ /// as a vector operation.
+ bool isConsecutiveLoadOrStore(Instruction *I);
+
/// The loop that we evaluate.
Loop *TheLoop;
/// Scev analysis.
ScalarEvolution *SE;
-
+ /// Loop Info analysis.
+ LoopInfo *LI;
/// Vectorization legality.
LoopVectorizationLegality *Legal;
/// Vector target information.
- const VectorTargetTransformInfo *VTTI;
+ const TargetTransformInfo &TTI;
+ /// Target data layout information.
+ DataLayout *DL;
+ /// Target Library Info.
+ const TargetLibraryInfo *TLI;
};
+/// The LoopVectorize Pass.
struct LoopVectorize : public LoopPass {
- static char ID; // Pass identification, replacement for typeid
+ /// Pass identification, replacement for typeid
+ static char ID;
- LoopVectorize() : LoopPass(ID) {
+ explicit LoopVectorize() : LoopPass(ID) {
initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
}
@@ -391,6 +646,8 @@ struct LoopVectorize : public LoopPass {
LoopInfo *LI;
TargetTransformInfo *TTI;
DominatorTree *DT;
+ AliasAnalysis *AA;
+ TargetLibraryInfo *TLI;
virtual bool runOnLoop(Loop *L, LPPassManager &LPM) {
// We only vectorize innermost loops.
@@ -400,45 +657,57 @@ struct LoopVectorize : public LoopPass {
SE = &getAnalysis<ScalarEvolution>();
DL = getAnalysisIfAvailable<DataLayout>();
LI = &getAnalysis<LoopInfo>();
- TTI = getAnalysisIfAvailable<TargetTransformInfo>();
+ TTI = &getAnalysis<TargetTransformInfo>();
DT = &getAnalysis<DominatorTree>();
+ AA = getAnalysisIfAvailable<AliasAnalysis>();
+ TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
DEBUG(dbgs() << "LV: Checking a loop in \"" <<
L->getHeader()->getParent()->getName() << "\"\n");
// Check if it is legal to vectorize the loop.
- LoopVectorizationLegality LVL(L, SE, DL);
+ LoopVectorizationLegality LVL(L, SE, DL, DT, TTI, AA, TLI);
if (!LVL.canVectorize()) {
DEBUG(dbgs() << "LV: Not vectorizing.\n");
return false;
}
- // Select the preffered vectorization factor.
- unsigned VF = 1;
- if (VectorizationFactor == 0) {
- const VectorTargetTransformInfo *VTTI = 0;
- if (TTI)
- VTTI = TTI->getVectorTargetTransformInfo();
- // Use the cost model.
- LoopVectorizationCostModel CM(L, SE, &LVL, VTTI);
- VF = CM.findBestVectorizationFactor();
-
- if (VF == 1) {
- DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
- return false;
- }
+ // Use the cost model.
+ LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI);
+
+ // Check the function attributes to find out if this function should be
+ // optimized for size.
+ Function *F = L->getHeader()->getParent();
+ Attribute::AttrKind SzAttr = Attribute::OptimizeForSize;
+ Attribute::AttrKind FlAttr = Attribute::NoImplicitFloat;
+ unsigned FnIndex = AttributeSet::FunctionIndex;
+ bool OptForSize = F->getAttributes().hasAttribute(FnIndex, SzAttr);
+ bool NoFloat = F->getAttributes().hasAttribute(FnIndex, FlAttr);
+
+ if (NoFloat) {
+ DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
+ "attribute is used.\n");
+ return false;
+ }
- } else {
- // Use the user command flag.
- VF = VectorizationFactor;
+ // Select the optimal vectorization factor.
+ LoopVectorizationCostModel::VectorizationFactor VF;
+ VF = CM.selectVectorizationFactor(OptForSize, VectorizationFactor);
+ // Select the unroll factor.
+ unsigned UF = CM.selectUnrollFactor(OptForSize, VectorizationUnroll,
+ VF.Width, VF.Cost);
+
+ if (VF.Width == 1) {
+ DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
+ return false;
}
- DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF << ") in "<<
- L->getHeader()->getParent()->getParent()->getModuleIdentifier()<<
- "\n");
+ DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF.Width << ") in "<<
+ F->getParent()->getModuleIdentifier()<<"\n");
+ DEBUG(dbgs() << "LV: Unroll Factor is " << UF << "\n");
- // If we decided that it is *legal* to vectorizer the loop then do it.
- SingleBlockLoopVectorizer LB(L, SE, LI, DT, &LPM, VF);
+ // If we decided that it is *legal* to vectorize the loop then do it.
+ InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF);
LB.vectorize(&LVL);
DEBUG(verifyFunction(*L->getHeader()->getParent()));
@@ -449,52 +718,75 @@ struct LoopVectorize : public LoopPass {
LoopPass::getAnalysisUsage(AU);
AU.addRequiredID(LoopSimplifyID);
AU.addRequiredID(LCSSAID);
+ AU.addRequired<DominatorTree>();
AU.addRequired<LoopInfo>();
AU.addRequired<ScalarEvolution>();
- AU.addRequired<DominatorTree>();
+ AU.addRequired<TargetTransformInfo>();
AU.addPreserved<LoopInfo>();
AU.addPreserved<DominatorTree>();
}
};
-Value *SingleBlockLoopVectorizer::getBroadcastInstrs(Value *V) {
- // Instructions that access the old induction variable
- // actually want to get the new one.
- if (V == OldInduction)
- V = Induction;
- // Create the types.
- LLVMContext &C = V->getContext();
- Type *VTy = VectorType::get(V->getType(), VF);
- Type *I32 = IntegerType::getInt32Ty(C);
- Constant *Zero = ConstantInt::get(I32, 0);
- Value *Zeros = ConstantAggregateZero::get(VectorType::get(I32, VF));
- Value *UndefVal = UndefValue::get(VTy);
- // Insert the value into a new vector.
- Value *SingleElem = Builder.CreateInsertElement(UndefVal, V, Zero);
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
+// LoopVectorizationCostModel.
+//===----------------------------------------------------------------------===//
+
+void
+LoopVectorizationLegality::RuntimePointerCheck::insert(ScalarEvolution *SE,
+ Loop *Lp, Value *Ptr) {
+ const SCEV *Sc = SE->getSCEV(Ptr);
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
+ assert(AR && "Invalid addrec expression");
+ const SCEV *Ex = SE->getExitCount(Lp, Lp->getLoopLatch());
+ const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
+ Pointers.push_back(Ptr);
+ Starts.push_back(AR->getStart());
+ Ends.push_back(ScEnd);
+}
+
+Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
+ // Save the current insertion location.
+ Instruction *Loc = Builder.GetInsertPoint();
+
+ // We need to place the broadcast of invariant variables outside the loop.
+ Instruction *Instr = dyn_cast<Instruction>(V);
+ bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody);
+ bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
+
+ // Place the code for broadcasting invariant variables in the new preheader.
+ if (Invariant)
+ Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
+
// Broadcast the scalar into all locations in the vector.
- Value *Shuf = Builder.CreateShuffleVector(SingleElem, UndefVal, Zeros,
- "broadcast");
- // We are accessing the induction variable. Make sure to promote the
- // index for each consecutive SIMD lane. This adds 0,1,2 ... to all lanes.
- if (V == Induction)
- return getConsecutiveVector(Shuf);
+ Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
+
+ // Restore the builder insertion point.
+ if (Invariant)
+ Builder.SetInsertPoint(Loc);
+
return Shuf;
}
-Value *SingleBlockLoopVectorizer::getConsecutiveVector(Value* Val) {
+Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, unsigned StartIdx,
+ bool Negate) {
assert(Val->getType()->isVectorTy() && "Must be a vector");
assert(Val->getType()->getScalarType()->isIntegerTy() &&
"Elem must be an integer");
// Create the types.
Type *ITy = Val->getType()->getScalarType();
VectorType *Ty = cast<VectorType>(Val->getType());
- unsigned VLen = Ty->getNumElements();
+ int VLen = Ty->getNumElements();
SmallVector<Constant*, 8> Indices;
// Create a vector of consecutive numbers from zero to VF.
- for (unsigned i = 0; i < VLen; ++i)
- Indices.push_back(ConstantInt::get(ITy, i));
+ for (int i = 0; i < VLen; ++i) {
+ int Idx = Negate ? (-i): i;
+ Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx));
+ }
// Add the consecutive indices to the vector value.
Constant *Cv = ConstantVector::get(Indices);
@@ -502,20 +794,58 @@ Value *SingleBlockLoopVectorizer::getConsecutiveVector(Value* Val) {
return Builder.CreateAdd(Val, Cv, "induction");
}
-bool LoopVectorizationLegality::isConsecutiveGep(Value *Ptr) {
+int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
+ assert(Ptr->getType()->isPointerTy() && "Unexpected non ptr");
+ // Make sure that the pointer does not point to structs.
+ if (cast<PointerType>(Ptr->getType())->getElementType()->isAggregateType())
+ return 0;
+
+ // If this value is a pointer induction variable we know it is consecutive.
+ PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
+ if (Phi && Inductions.count(Phi)) {
+ InductionInfo II = Inductions[Phi];
+ if (IK_PtrInduction == II.IK)
+ return 1;
+ else if (IK_ReversePtrInduction == II.IK)
+ return -1;
+ }
+
GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
if (!Gep)
- return false;
+ return 0;
unsigned NumOperands = Gep->getNumOperands();
Value *LastIndex = Gep->getOperand(NumOperands - 1);
+ Value *GpPtr = Gep->getPointerOperand();
+ // If this GEP value is a consecutive pointer induction variable and all of
+ // the indices are constant then we know it is consecutive. We can
+ Phi = dyn_cast<PHINode>(GpPtr);
+ if (Phi && Inductions.count(Phi)) {
+
+ // Make sure that the pointer does not point to structs.
+ PointerType *GepPtrType = cast<PointerType>(GpPtr->getType());
+ if (GepPtrType->getElementType()->isAggregateType())
+ return 0;
+
+ // Make sure that all of the index operands are loop invariant.
+ for (unsigned i = 1; i < NumOperands; ++i)
+ if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
+ return 0;
+
+ InductionInfo II = Inductions[Phi];
+ if (IK_PtrInduction == II.IK)
+ return 1;
+ else if (IK_ReversePtrInduction == II.IK)
+ return -1;
+ }
+
// Check that all of the gep indices are uniform except for the last.
for (unsigned i = 0; i < NumOperands - 1; ++i)
if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
- return false;
+ return 0;
- // We can emit wide load/stores only of the last index is the induction
+ // We can emit wide load/stores only if the last index is the induction
// variable.
const SCEV *Last = SE->getSCEV(LastIndex);
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
@@ -524,44 +854,153 @@ bool LoopVectorizationLegality::isConsecutiveGep(Value *Ptr) {
// The memory is consecutive because the last index is consecutive
// and all other indices are loop invariant.
if (Step->isOne())
- return true;
+ return 1;
+ if (Step->isAllOnesValue())
+ return -1;
}
- return false;
+ return 0;
}
bool LoopVectorizationLegality::isUniform(Value *V) {
return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
}
-Value *SingleBlockLoopVectorizer::getVectorValue(Value *V) {
+InnerLoopVectorizer::VectorParts&
+InnerLoopVectorizer::getVectorValue(Value *V) {
+ assert(V != Induction && "The new induction variable should not be used.");
assert(!V->getType()->isVectorTy() && "Can't widen a vector");
- // If we saved a vectorized copy of V, use it.
- Value *&MapEntry = WidenMap[V];
- if (MapEntry)
- return MapEntry;
- // Broadcast V and save the value for future uses.
+ // If we have this scalar in the map, return it.
+ if (WidenMap.has(V))
+ return WidenMap.get(V);
+
+ // If this scalar is unknown, assume that it is a constant or that it is
+ // loop invariant. Broadcast V and save the value for future uses.
Value *B = getBroadcastInstrs(V);
- MapEntry = B;
- return B;
+ return WidenMap.splat(V, B);
}
-Constant*
-SingleBlockLoopVectorizer::getUniformVector(unsigned Val, Type* ScalarTy) {
- SmallVector<Constant*, 8> Indices;
- // Create a vector of consecutive numbers from zero to VF.
+Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
+ assert(Vec->getType()->isVectorTy() && "Invalid type");
+ SmallVector<Constant*, 8> ShuffleMask;
for (unsigned i = 0; i < VF; ++i)
- Indices.push_back(ConstantInt::get(ScalarTy, Val, true));
+ ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
- // Add the consecutive indices to the vector value.
- return ConstantVector::get(Indices);
+ return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
+ ConstantVector::get(ShuffleMask),
+ "reverse");
}
-void SingleBlockLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
+
+void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
+ LoopVectorizationLegality *Legal) {
+ // Attempt to issue a wide load.
+ LoadInst *LI = dyn_cast<LoadInst>(Instr);
+ StoreInst *SI = dyn_cast<StoreInst>(Instr);
+
+ assert((LI || SI) && "Invalid Load/Store instruction");
+
+ Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType();
+ Type *DataTy = VectorType::get(ScalarDataTy, VF);
+ Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
+ unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment();
+
+ // If the pointer is loop invariant or if it is non consecutive,
+ // scalarize the load.
+ int Stride = Legal->isConsecutivePtr(Ptr);
+ bool Reverse = Stride < 0;
+ bool UniformLoad = LI && Legal->isUniform(Ptr);
+ if (Stride == 0 || UniformLoad)
+ return scalarizeInstruction(Instr);
+
+ Constant *Zero = Builder.getInt32(0);
+ VectorParts &Entry = WidenMap.get(Instr);
+
+ // Handle consecutive loads/stores.
+ GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
+ if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) {
+ Value *PtrOperand = Gep->getPointerOperand();
+ Value *FirstBasePtr = getVectorValue(PtrOperand)[0];
+ FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero);
+
+ // Create the new GEP with the new induction variable.
+ GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
+ Gep2->setOperand(0, FirstBasePtr);
+ Gep2->setName("gep.indvar.base");
+ Ptr = Builder.Insert(Gep2);
+ } else if (Gep) {
+ assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()),
+ OrigLoop) && "Base ptr must be invariant");
+
+ // The last index does not have to be the induction. It can be
+ // consecutive and be a function of the index. For example A[I+1];
+ unsigned NumOperands = Gep->getNumOperands();
+
+ Value *LastGepOperand = Gep->getOperand(NumOperands - 1);
+ VectorParts &GEPParts = getVectorValue(LastGepOperand);
+ Value *LastIndex = GEPParts[0];
+ LastIndex = Builder.CreateExtractElement(LastIndex, Zero);
+
+ // Create the new GEP with the new induction variable.
+ GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
+ Gep2->setOperand(NumOperands - 1, LastIndex);
+ Gep2->setName("gep.indvar.idx");
+ Ptr = Builder.Insert(Gep2);
+ } else {
+ // Use the induction element ptr.
+ assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
+ VectorParts &PtrVal = getVectorValue(Ptr);
+ Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
+ }
+
+ // Handle Stores:
+ if (SI) {
+ assert(!Legal->isUniform(SI->getPointerOperand()) &&
+ "We do not allow storing to uniform addresses");
+
+ VectorParts &StoredVal = getVectorValue(SI->getValueOperand());
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ // Calculate the pointer for the specific unroll-part.
+ Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
+
+ if (Reverse) {
+ // If we store to reverse consecutive memory locations then we need
+ // to reverse the order of elements in the stored value.
+ StoredVal[Part] = reverseVector(StoredVal[Part]);
+ // If the address is consecutive but reversed, then the
+ // wide store needs to start at the last vector element.
+ PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
+ PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
+ }
+
+ Value *VecPtr = Builder.CreateBitCast(PartPtr, DataTy->getPointerTo());
+ Builder.CreateStore(StoredVal[Part], VecPtr)->setAlignment(Alignment);
+ }
+ }
+
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ // Calculate the pointer for the specific unroll-part.
+ Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
+
+ if (Reverse) {
+ // If the address is consecutive but reversed, then the
+ // wide store needs to start at the last vector element.
+ PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
+ PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
+ }
+
+ Value *VecPtr = Builder.CreateBitCast(PartPtr, DataTy->getPointerTo());
+ Value *LI = Builder.CreateLoad(VecPtr, "wide.load");
+ cast<LoadInst>(LI)->setAlignment(Alignment);
+ Entry[Part] = Reverse ? reverseVector(LI) : LI;
+ }
+}
+
+void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
// Holds vector parameters or scalars, in case of uniform vals.
- SmallVector<Value*, 8> Params;
+ SmallVector<VectorParts, 4> Params;
// Find all of the vectorized parameters.
for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
@@ -569,7 +1008,7 @@ void SingleBlockLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
// If we are accessing the old induction variable, use the new one.
if (SrcOp == OldInduction) {
- Params.push_back(getBroadcastInstrs(Induction));
+ Params.push_back(getVectorValue(SrcOp));
continue;
}
@@ -578,13 +1017,15 @@ void SingleBlockLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
// If the src is an instruction that appeared earlier in the basic block
// then it should already be vectorized.
- if (SrcInst && SrcInst->getParent() == Instr->getParent()) {
- assert(WidenMap.count(SrcInst) && "Source operand is unavailable");
+ if (SrcInst && OrigLoop->contains(SrcInst)) {
+ assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
// The parameter is a vector value from earlier.
- Params.push_back(WidenMap[SrcInst]);
+ Params.push_back(WidenMap.get(SrcInst));
} else {
// The parameter is a scalar from outside the loop. Maybe even a constant.
- Params.push_back(SrcOp);
+ VectorParts Scalars;
+ Scalars.append(UF, SrcOp);
+ Params.push_back(Scalars);
}
}
@@ -593,112 +1034,185 @@ void SingleBlockLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
// Does this instruction return a value ?
bool IsVoidRetTy = Instr->getType()->isVoidTy();
- Value *VecResults = 0;
- // If we have a return value, create an empty vector. We place the scalarized
- // instructions in this vector.
- if (!IsVoidRetTy)
- VecResults = UndefValue::get(VectorType::get(Instr->getType(), VF));
+ Value *UndefVec = IsVoidRetTy ? 0 :
+ UndefValue::get(VectorType::get(Instr->getType(), VF));
+ // Create a new entry in the WidenMap and initialize it to Undef or Null.
+ VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
// For each scalar that we create:
- for (unsigned i = 0; i < VF; ++i) {
- Instruction *Cloned = Instr->clone();
- if (!IsVoidRetTy)
- Cloned->setName(Instr->getName() + ".cloned");
- // Replace the operands of the cloned instrucions with extracted scalars.
- for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
- Value *Op = Params[op];
- // Param is a vector. Need to extract the right lane.
- if (Op->getType()->isVectorTy())
- Op = Builder.CreateExtractElement(Op, Builder.getInt32(i));
- Cloned->setOperand(op, Op);
+ for (unsigned Width = 0; Width < VF; ++Width) {
+ // For each vector unroll 'part':
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ Instruction *Cloned = Instr->clone();
+ if (!IsVoidRetTy)
+ Cloned->setName(Instr->getName() + ".cloned");
+ // Replace the operands of the cloned instrucions with extracted scalars.
+ for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
+ Value *Op = Params[op][Part];
+ // Param is a vector. Need to extract the right lane.
+ if (Op->getType()->isVectorTy())
+ Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width));
+ Cloned->setOperand(op, Op);
+ }
+
+ // Place the cloned scalar in the new loop.
+ Builder.Insert(Cloned);
+
+ // If the original scalar returns a value we need to place it in a vector
+ // so that future users will be able to use it.
+ if (!IsVoidRetTy)
+ VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
+ Builder.getInt32(Width));
+ }
+ }
+}
+
+Instruction *
+InnerLoopVectorizer::addRuntimeCheck(LoopVectorizationLegality *Legal,
+ Instruction *Loc) {
+ LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck =
+ Legal->getRuntimePointerCheck();
+
+ if (!PtrRtCheck->Need)
+ return NULL;
+
+ Instruction *MemoryRuntimeCheck = 0;
+ unsigned NumPointers = PtrRtCheck->Pointers.size();
+ SmallVector<Value* , 2> Starts;
+ SmallVector<Value* , 2> Ends;
+
+ SCEVExpander Exp(*SE, "induction");
+
+ // Use this type for pointer arithmetic.
+ Type* PtrArithTy = Type::getInt8PtrTy(Loc->getContext(), 0);
+
+ for (unsigned i = 0; i < NumPointers; ++i) {
+ Value *Ptr = PtrRtCheck->Pointers[i];
+ const SCEV *Sc = SE->getSCEV(Ptr);
+
+ if (SE->isLoopInvariant(Sc, OrigLoop)) {
+ DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" <<
+ *Ptr <<"\n");
+ Starts.push_back(Ptr);
+ Ends.push_back(Ptr);
+ } else {
+ DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr <<"\n");
+
+ Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc);
+ Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc);
+ Starts.push_back(Start);
+ Ends.push_back(End);
}
+ }
+
+ IRBuilder<> ChkBuilder(Loc);
+
+ for (unsigned i = 0; i < NumPointers; ++i) {
+ for (unsigned j = i+1; j < NumPointers; ++j) {
+ Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy, "bc");
+ Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy, "bc");
+ Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy, "bc");
+ Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy, "bc");
- // Place the cloned scalar in the new loop.
- Builder.Insert(Cloned);
+ Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
+ Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
+ Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
+ if (MemoryRuntimeCheck)
+ IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict,
+ "conflict.rdx");
- // If the original scalar returns a value we need to place it in a vector
- // so that future users will be able to use it.
- if (!IsVoidRetTy)
- VecResults = Builder.CreateInsertElement(VecResults, Cloned,
- Builder.getInt32(i));
+ MemoryRuntimeCheck = cast<Instruction>(IsConflict);
+ }
}
- if (!IsVoidRetTy)
- WidenMap[Instr] = VecResults;
+ return MemoryRuntimeCheck;
}
void
-SingleBlockLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
+InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
/*
In this function we generate a new loop. The new loop will contain
the vectorized instructions while the old loop will continue to run the
scalar remainder.
- [ ] <-- vector loop bypass.
- / |
- / v
-| [ ] <-- vector pre header.
-| |
-| v
-| [ ] \
-| [ ]_| <-- vector loop.
-| |
- \ v
- >[ ] <--- middle-block.
- / |
- / v
-| [ ] <--- new preheader.
-| |
-| v
-| [ ] \
-| [ ]_| <-- old scalar loop to handle remainder.
- \ |
- \ v
- >[ ] <-- exit block.
+ [ ] <-- vector loop bypass (may consist of multiple blocks).
+ / |
+ / v
+ | [ ] <-- vector pre header.
+ | |
+ | v
+ | [ ] \
+ | [ ]_| <-- vector loop.
+ | |
+ \ v
+ >[ ] <--- middle-block.
+ / |
+ / v
+ | [ ] <--- new preheader.
+ | |
+ | v
+ | [ ] \
+ | [ ]_| <-- old scalar loop to handle remainder.
+ \ |
+ \ v
+ >[ ] <-- exit block.
...
*/
+ BasicBlock *OldBasicBlock = OrigLoop->getHeader();
+ BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
+ BasicBlock *ExitBlock = OrigLoop->getExitBlock();
+ assert(ExitBlock && "Must have an exit block");
+
+ // Mark the old scalar loop with metadata that tells us not to vectorize this
+ // loop again if we run into it.
+ MDNode *MD = MDNode::get(OldBasicBlock->getContext(), ArrayRef<Value*>());
+ OldBasicBlock->getTerminator()->setMetadata(AlreadyVectorizedMDName, MD);
+
+ // Some loops have a single integer induction variable, while other loops
+ // don't. One example is c++ iterators that often have multiple pointer
+ // induction variables. In the code below we also support a case where we
+ // don't have a single induction variable.
OldInduction = Legal->getInduction();
- assert(OldInduction && "We must have a single phi node.");
- Type *IdxTy = OldInduction->getType();
+ Type *IdxTy = OldInduction ? OldInduction->getType() :
+ DL->getIntPtrType(SE->getContext());
// Find the loop boundaries.
- const SCEV *ExitCount = SE->getExitCount(OrigLoop, OrigLoop->getHeader());
+ const SCEV *ExitCount = SE->getExitCount(OrigLoop, OrigLoop->getLoopLatch());
assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
// Get the total trip count from the count by adding 1.
ExitCount = SE->getAddExpr(ExitCount,
SE->getConstant(ExitCount->getType(), 1));
- // We may need to extend the index in case there is a type mismatch.
- // We know that the count starts at zero and does not overflow.
- // We are using Zext because it should be less expensive.
- if (ExitCount->getType() != IdxTy)
- ExitCount = SE->getZeroExtendExpr(ExitCount, IdxTy);
- // This is the original scalar-loop preheader.
- BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
- BasicBlock *ExitBlock = OrigLoop->getExitBlock();
- assert(ExitBlock && "Must have an exit block");
+ // Expand the trip count and place the new instructions in the preheader.
+ // Notice that the pre-header does not change, only the loop body.
+ SCEVExpander Exp(*SE, "induction");
+
+ // Count holds the overall loop count (N).
+ Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
+ BypassBlock->getTerminator());
- // The loop index does not have to start at Zero. It starts with this value.
- Value *StartIdx = OldInduction->getIncomingValueForBlock(BypassBlock);
+ // The loop index does not have to start at Zero. Find the original start
+ // value from the induction PHI node. If we don't have an induction variable
+ // then we know that it starts at zero.
+ Value *StartIdx = OldInduction ?
+ OldInduction->getIncomingValueForBlock(BypassBlock):
+ ConstantInt::get(IdxTy, 0);
- assert(OrigLoop->getNumBlocks() == 1 && "Invalid loop");
assert(BypassBlock && "Invalid loop structure");
+ LoopBypassBlocks.push_back(BypassBlock);
+ // Split the single block loop into the two loop structure described above.
BasicBlock *VectorPH =
- BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
- BasicBlock *VecBody = VectorPH->splitBasicBlock(VectorPH->getTerminator(),
- "vector.body");
-
- BasicBlock *MiddleBlock = VecBody->splitBasicBlock(VecBody->getTerminator(),
- "middle.block");
+ BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
+ BasicBlock *VecBody =
+ VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
+ BasicBlock *MiddleBlock =
+ VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
BasicBlock *ScalarPH =
- MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(),
- "scalar.preheader");
- // Find the induction variable.
- BasicBlock *OldBasicBlock = OrigLoop->getHeader();
+ MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
// Use this IR builder to create the loop instructions (Phi, Br, Cmp)
// inside the loop.
@@ -706,105 +1220,167 @@ SingleBlockLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
// Generate the induction variable.
Induction = Builder.CreatePHI(IdxTy, 2, "index");
- Constant *Step = ConstantInt::get(IdxTy, VF);
+ // The loop step is equal to the vectorization factor (num of SIMD elements)
+ // times the unroll factor (num of SIMD instructions).
+ Constant *Step = ConstantInt::get(IdxTy, VF * UF);
- // Expand the trip count and place the new instructions in the preheader.
- // Notice that the pre-header does not change, only the loop body.
- SCEVExpander Exp(*SE, "induction");
- Instruction *Loc = BypassBlock->getTerminator();
+ // This is the IR builder that we use to add all of the logic for bypassing
+ // the new vector loop.
+ IRBuilder<> BypassBuilder(BypassBlock->getTerminator());
- // Count holds the overall loop count (N).
- Value *Count = Exp.expandCodeFor(ExitCount, Induction->getType(), Loc);
+ // We may need to extend the index in case there is a type mismatch.
+ // We know that the count starts at zero and does not overflow.
+ if (Count->getType() != IdxTy) {
+ // The exit count can be of pointer type. Convert it to the correct
+ // integer type.
+ if (ExitCount->getType()->isPointerTy())
+ Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int");
+ else
+ Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast");
+ }
// Add the start index to the loop count to get the new end index.
- Value *IdxEnd = BinaryOperator::CreateAdd(Count, StartIdx, "end.idx", Loc);
+ Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx");
// Now we need to generate the expression for N - (N % VF), which is
// the part that the vectorized body will execute.
- Constant *CIVF = ConstantInt::get(IdxTy, VF);
- Value *R = BinaryOperator::CreateURem(Count, CIVF, "n.mod.vf", Loc);
- Value *CountRoundDown = BinaryOperator::CreateSub(Count, R, "n.vec", Loc);
- Value *IdxEndRoundDown = BinaryOperator::CreateAdd(CountRoundDown, StartIdx,
- "end.idx.rnd.down", Loc);
-
- // Now, compare the new count to zero. If it is zero, jump to the scalar part.
- Value *Cmp = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
- IdxEndRoundDown,
- StartIdx,
- "cmp.zero", Loc);
+ Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf");
+ Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec");
+ Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx,
+ "end.idx.rnd.down");
+
+ // Now, compare the new count to zero. If it is zero skip the vector loop and
+ // jump to the scalar loop.
+ Value *Cmp = BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx,
+ "cmp.zero");
+
+ BasicBlock *LastBypassBlock = BypassBlock;
+
+ // Generate the code that checks in runtime if arrays overlap. We put the
+ // checks into a separate block to make the more common case of few elements
+ // faster.
+ Instruction *MemRuntimeCheck = addRuntimeCheck(Legal,
+ BypassBlock->getTerminator());
+ if (MemRuntimeCheck) {
+ // Create a new block containing the memory check.
+ BasicBlock *CheckBlock = BypassBlock->splitBasicBlock(MemRuntimeCheck,
+ "vector.memcheck");
+ LoopBypassBlocks.push_back(CheckBlock);
+
+ // Replace the branch into the memory check block with a conditional branch
+ // for the "few elements case".
+ Instruction *OldTerm = BypassBlock->getTerminator();
+ BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
+ OldTerm->eraseFromParent();
+
+ Cmp = MemRuntimeCheck;
+ LastBypassBlock = CheckBlock;
+ }
- LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck =
- Legal->getRuntimePointerCheck();
- Value *MemoryRuntimeCheck = 0;
- if (PtrRtCheck->Need) {
- unsigned NumPointers = PtrRtCheck->Pointers.size();
- SmallVector<Value* , 2> Starts;
- SmallVector<Value* , 2> Ends;
-
- // Use this type for pointer arithmetic.
- Type* PtrArithTy = PtrRtCheck->Pointers[0]->getType();
-
- for (unsigned i=0; i < NumPointers; ++i) {
- Value *Ptr = PtrRtCheck->Pointers[i];
- const SCEV *Sc = SE->getSCEV(Ptr);
-
- if (SE->isLoopInvariant(Sc, OrigLoop)) {
- DEBUG(dbgs() << "LV1: Adding RT check for a loop invariant ptr:" <<
- *Ptr <<"\n");
- Starts.push_back(Ptr);
- Ends.push_back(Ptr);
- } else {
- DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr <<"\n");
- const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
- Value *Start = Exp.expandCodeFor(AR->getStart(), PtrArithTy, Loc);
- const SCEV *Ex = SE->getExitCount(OrigLoop, OrigLoop->getHeader());
- const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
- assert(!isa<SCEVCouldNotCompute>(ScEnd) && "Invalid scev range.");
- Value *End = Exp.expandCodeFor(ScEnd, PtrArithTy, Loc);
- Starts.push_back(Start);
- Ends.push_back(End);
- }
- }
+ LastBypassBlock->getTerminator()->eraseFromParent();
+ BranchInst::Create(MiddleBlock, VectorPH, Cmp,
+ LastBypassBlock);
- for (unsigned i=0; i < NumPointers; ++i) {
- for (unsigned j=i+1; j < NumPointers; ++j) {
- Value *Cmp0 = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_ULE,
- Starts[0], Ends[1], "bound0", Loc);
- Value *Cmp1 = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_ULE,
- Starts[1], Ends[0], "bound1", Loc);
- Value *IsConflict = BinaryOperator::Create(Instruction::And, Cmp0, Cmp1,
- "found.conflict", Loc);
- if (MemoryRuntimeCheck) {
- MemoryRuntimeCheck = BinaryOperator::Create(Instruction::Or,
- MemoryRuntimeCheck,
- IsConflict,
- "conflict.rdx", Loc);
- } else {
- MemoryRuntimeCheck = IsConflict;
- }
- }
+ // We are going to resume the execution of the scalar loop.
+ // Go over all of the induction variables that we found and fix the
+ // PHIs that are left in the scalar version of the loop.
+ // The starting values of PHI nodes depend on the counter of the last
+ // iteration in the vectorized loop.
+ // If we come from a bypass edge then we need to start from the original
+ // start value.
+
+ // This variable saves the new starting index for the scalar loop.
+ PHINode *ResumeIndex = 0;
+ LoopVectorizationLegality::InductionList::iterator I, E;
+ LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
+ for (I = List->begin(), E = List->end(); I != E; ++I) {
+ PHINode *OrigPhi = I->first;
+ LoopVectorizationLegality::InductionInfo II = I->second;
+ PHINode *ResumeVal = PHINode::Create(OrigPhi->getType(), 2, "resume.val",
+ MiddleBlock->getTerminator());
+ Value *EndValue = 0;
+ switch (II.IK) {
+ case LoopVectorizationLegality::IK_NoInduction:
+ llvm_unreachable("Unknown induction");
+ case LoopVectorizationLegality::IK_IntInduction: {
+ // Handle the integer induction counter:
+ assert(OrigPhi->getType()->isIntegerTy() && "Invalid type");
+ assert(OrigPhi == OldInduction && "Unknown integer PHI");
+ // We know what the end value is.
+ EndValue = IdxEndRoundDown;
+ // We also know which PHI node holds it.
+ ResumeIndex = ResumeVal;
+ break;
+ }
+ case LoopVectorizationLegality::IK_ReverseIntInduction: {
+ // Convert the CountRoundDown variable to the PHI size.
+ unsigned CRDSize = CountRoundDown->getType()->getScalarSizeInBits();
+ unsigned IISize = II.StartValue->getType()->getScalarSizeInBits();
+ Value *CRD = CountRoundDown;
+ if (CRDSize > IISize)
+ CRD = CastInst::Create(Instruction::Trunc, CountRoundDown,
+ II.StartValue->getType(), "tr.crd",
+ LoopBypassBlocks.back()->getTerminator());
+ else if (CRDSize < IISize)
+ CRD = CastInst::Create(Instruction::SExt, CountRoundDown,
+ II.StartValue->getType(),
+ "sext.crd",
+ LoopBypassBlocks.back()->getTerminator());
+ // Handle reverse integer induction counter:
+ EndValue =
+ BinaryOperator::CreateSub(II.StartValue, CRD, "rev.ind.end",
+ LoopBypassBlocks.back()->getTerminator());
+ break;
+ }
+ case LoopVectorizationLegality::IK_PtrInduction: {
+ // For pointer induction variables, calculate the offset using
+ // the end index.
+ EndValue =
+ GetElementPtrInst::Create(II.StartValue, CountRoundDown, "ptr.ind.end",
+ LoopBypassBlocks.back()->getTerminator());
+ break;
+ }
+ case LoopVectorizationLegality::IK_ReversePtrInduction: {
+ // The value at the end of the loop for the reverse pointer is calculated
+ // by creating a GEP with a negative index starting from the start value.
+ Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0);
+ Value *NegIdx = BinaryOperator::CreateSub(Zero, CountRoundDown,
+ "rev.ind.end",
+ LoopBypassBlocks.back()->getTerminator());
+ EndValue = GetElementPtrInst::Create(II.StartValue, NegIdx,
+ "rev.ptr.ind.end",
+ LoopBypassBlocks.back()->getTerminator());
+ break;
}
- }// end of need-runtime-check code.
+ }// end of case
- // If we are using memory runtime checks, include them in.
- if (MemoryRuntimeCheck) {
- Cmp = BinaryOperator::Create(Instruction::Or, Cmp, MemoryRuntimeCheck,
- "CntOrMem", Loc);
+ // The new PHI merges the original incoming value, in case of a bypass,
+ // or the value at the end of the vectorized loop.
+ for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
+ ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
+ ResumeVal->addIncoming(EndValue, VecBody);
+
+ // Fix the scalar body counter (PHI node).
+ unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
+ OrigPhi->setIncomingValue(BlockIdx, ResumeVal);
}
- BranchInst::Create(MiddleBlock, VectorPH, Cmp, Loc);
- // Remove the old terminator.
- Loc->eraseFromParent();
+ // If we are generating a new induction variable then we also need to
+ // generate the code that calculates the exit value. This value is not
+ // simply the end of the counter because we may skip the vectorized body
+ // in case of a runtime check.
+ if (!OldInduction){
+ assert(!ResumeIndex && "Unexpected resume value found");
+ ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val",
+ MiddleBlock->getTerminator());
+ for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
+ ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]);
+ ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
+ }
- // We are going to resume the execution of the scalar loop.
- // This PHI decides on what number to start. If we come from the
- // vector loop then we need to start with the end index minus the
- // index modulo VF. If we come from a bypass edge then we need to start
- // from the real start.
- PHINode* ResumeIndex = PHINode::Create(IdxTy, 2, "resume.idx",
- MiddleBlock->getTerminator());
- ResumeIndex->addIncoming(StartIdx, BypassBlock);
- ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
+ // Make sure that we found the index where scalar loop needs to continue.
+ assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() &&
+ "Invalid resume Index");
// Add a check in the middle block to see if we have completed
// all of the iterations in the first vector loop.
@@ -828,26 +1404,27 @@ SingleBlockLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
// Now we have two terminators. Remove the old one from the block.
VecBody->getTerminator()->eraseFromParent();
- // Fix the scalar body iteration count.
- unsigned BlockIdx = OldInduction->getBasicBlockIndex(ScalarPH);
- OldInduction->setIncomingValue(BlockIdx, ResumeIndex);
-
// Get ready to start creating new instructions into the vectorized body.
Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
- // Register the new loop.
+ // Create and register the new vector loop.
Loop* Lp = new Loop();
- LPM->insertLoop(Lp, OrigLoop->getParentLoop());
-
- Lp->addBasicBlockToLoop(VecBody, LI->getBase());
-
Loop *ParentLoop = OrigLoop->getParentLoop();
+
+ // Insert the new loop into the loop nest and register the new basic blocks.
if (ParentLoop) {
+ ParentLoop->addChildLoop(Lp);
+ for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
+ ParentLoop->addBasicBlockToLoop(LoopBypassBlocks[I], LI->getBase());
ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase());
ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
+ } else {
+ LI->addTopLevelLoop(Lp);
}
+ Lp->addBasicBlockToLoop(VecBody, LI->getBase());
+
// Save the state.
LoopVectorPreHeader = VectorPH;
LoopScalarPreHeader = ScalarPH;
@@ -855,32 +1432,164 @@ SingleBlockLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
LoopExitBlock = ExitBlock;
LoopVectorBody = VecBody;
LoopScalarBody = OldBasicBlock;
- LoopBypassBlock = BypassBlock;
}
/// This function returns the identity element (or neutral element) for
/// the operation K.
-static unsigned
-getReductionIdentity(LoopVectorizationLegality::ReductionKind K) {
+static Constant*
+getReductionIdentity(LoopVectorizationLegality::ReductionKind K, Type *Tp) {
switch (K) {
- case LoopVectorizationLegality::IntegerXor:
- case LoopVectorizationLegality::IntegerAdd:
- case LoopVectorizationLegality::IntegerOr:
+ case LoopVectorizationLegality:: RK_IntegerXor:
+ case LoopVectorizationLegality:: RK_IntegerAdd:
+ case LoopVectorizationLegality:: RK_IntegerOr:
// Adding, Xoring, Oring zero to a number does not change it.
- return 0;
- case LoopVectorizationLegality::IntegerMult:
+ return ConstantInt::get(Tp, 0);
+ case LoopVectorizationLegality:: RK_IntegerMult:
// Multiplying a number by 1 does not change it.
- return 1;
- case LoopVectorizationLegality::IntegerAnd:
+ return ConstantInt::get(Tp, 1);
+ case LoopVectorizationLegality:: RK_IntegerAnd:
// AND-ing a number with an all-1 value does not change it.
- return -1;
+ return ConstantInt::get(Tp, -1, true);
+ case LoopVectorizationLegality:: RK_FloatMult:
+ // Multiplying a number by 1 does not change it.
+ return ConstantFP::get(Tp, 1.0L);
+ case LoopVectorizationLegality:: RK_FloatAdd:
+ // Adding zero to a number does not change it.
+ return ConstantFP::get(Tp, 0.0L);
default:
llvm_unreachable("Unknown reduction kind");
}
}
+static Intrinsic::ID
+getIntrinsicIDForCall(CallInst *CI, const TargetLibraryInfo *TLI) {
+ // If we have an intrinsic call, check if it is trivially vectorizable.
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
+ switch (II->getIntrinsicID()) {
+ case Intrinsic::sqrt:
+ case Intrinsic::sin:
+ case Intrinsic::cos:
+ case Intrinsic::exp:
+ case Intrinsic::exp2:
+ case Intrinsic::log:
+ case Intrinsic::log10:
+ case Intrinsic::log2:
+ case Intrinsic::fabs:
+ case Intrinsic::floor:
+ case Intrinsic::ceil:
+ case Intrinsic::trunc:
+ case Intrinsic::rint:
+ case Intrinsic::nearbyint:
+ case Intrinsic::pow:
+ case Intrinsic::fma:
+ case Intrinsic::fmuladd:
+ return II->getIntrinsicID();
+ default:
+ return Intrinsic::not_intrinsic;
+ }
+ }
+
+ if (!TLI)
+ return Intrinsic::not_intrinsic;
+
+ LibFunc::Func Func;
+ Function *F = CI->getCalledFunction();
+ // We're going to make assumptions on the semantics of the functions, check
+ // that the target knows that it's available in this environment.
+ if (!F || !TLI->getLibFunc(F->getName(), Func))
+ return Intrinsic::not_intrinsic;
+
+ // Otherwise check if we have a call to a function that can be turned into a
+ // vector intrinsic.
+ switch (Func) {
+ default:
+ break;
+ case LibFunc::sin:
+ case LibFunc::sinf:
+ case LibFunc::sinl:
+ return Intrinsic::sin;
+ case LibFunc::cos:
+ case LibFunc::cosf:
+ case LibFunc::cosl:
+ return Intrinsic::cos;
+ case LibFunc::exp:
+ case LibFunc::expf:
+ case LibFunc::expl:
+ return Intrinsic::exp;
+ case LibFunc::exp2:
+ case LibFunc::exp2f:
+ case LibFunc::exp2l:
+ return Intrinsic::exp2;
+ case LibFunc::log:
+ case LibFunc::logf:
+ case LibFunc::logl:
+ return Intrinsic::log;
+ case LibFunc::log10:
+ case LibFunc::log10f:
+ case LibFunc::log10l:
+ return Intrinsic::log10;
+ case LibFunc::log2:
+ case LibFunc::log2f:
+ case LibFunc::log2l:
+ return Intrinsic::log2;
+ case LibFunc::fabs:
+ case LibFunc::fabsf:
+ case LibFunc::fabsl:
+ return Intrinsic::fabs;
+ case LibFunc::floor:
+ case LibFunc::floorf:
+ case LibFunc::floorl:
+ return Intrinsic::floor;
+ case LibFunc::ceil:
+ case LibFunc::ceilf:
+ case LibFunc::ceill:
+ return Intrinsic::ceil;
+ case LibFunc::trunc:
+ case LibFunc::truncf:
+ case LibFunc::truncl:
+ return Intrinsic::trunc;
+ case LibFunc::rint:
+ case LibFunc::rintf:
+ case LibFunc::rintl:
+ return Intrinsic::rint;
+ case LibFunc::nearbyint:
+ case LibFunc::nearbyintf:
+ case LibFunc::nearbyintl:
+ return Intrinsic::nearbyint;
+ case LibFunc::pow:
+ case LibFunc::powf:
+ case LibFunc::powl:
+ return Intrinsic::pow;
+ }
+
+ return Intrinsic::not_intrinsic;
+}
+
+/// This function translates the reduction kind to an LLVM binary operator.
+static Instruction::BinaryOps
+getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) {
+ switch (Kind) {
+ case LoopVectorizationLegality::RK_IntegerAdd:
+ return Instruction::Add;
+ case LoopVectorizationLegality::RK_IntegerMult:
+ return Instruction::Mul;
+ case LoopVectorizationLegality::RK_IntegerOr:
+ return Instruction::Or;
+ case LoopVectorizationLegality::RK_IntegerAnd:
+ return Instruction::And;
+ case LoopVectorizationLegality::RK_IntegerXor:
+ return Instruction::Xor;
+ case LoopVectorizationLegality::RK_FloatMult:
+ return Instruction::FMul;
+ case LoopVectorizationLegality::RK_FloatAdd:
+ return Instruction::FAdd;
+ default:
+ llvm_unreachable("Unknown reduction operation");
+ }
+}
+
void
-SingleBlockLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
+InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
//===------------------------------------------------===//
//
// Notice: any optimization or new instruction that go
@@ -888,208 +1597,29 @@ SingleBlockLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
// the cost-model.
//
//===------------------------------------------------===//
- typedef SmallVector<PHINode*, 4> PhiVector;
- BasicBlock &BB = *OrigLoop->getHeader();
- Constant *Zero = ConstantInt::get(
- IntegerType::getInt32Ty(BB.getContext()), 0);
+ Constant *Zero = Builder.getInt32(0);
// In order to support reduction variables we need to be able to vectorize
// Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
- // steages. First, we create a new vector PHI node with no incoming edges.
+ // stages. First, we create a new vector PHI node with no incoming edges.
// We use this value when we vectorize all of the instructions that use the
// PHI. Next, after all of the instructions in the block are complete we
// add the new incoming edges to the PHI. At this point all of the
// instructions in the basic block are vectorized, so we can use them to
// construct the PHI.
- PhiVector PHIsToFix;
+ PhiVector RdxPHIsToFix;
- // For each instruction in the old loop.
- for (BasicBlock::iterator it = BB.begin(), e = BB.end(); it != e; ++it) {
- Instruction *Inst = it;
+ // Scan the loop in a topological order to ensure that defs are vectorized
+ // before users.
+ LoopBlocksDFS DFS(OrigLoop);
+ DFS.perform(LI);
- switch (Inst->getOpcode()) {
- case Instruction::Br:
- // Nothing to do for PHIs and BR, since we already took care of the
- // loop control flow instructions.
- continue;
- case Instruction::PHI:{
- PHINode* P = cast<PHINode>(Inst);
- // Special handling for the induction var.
- if (OldInduction == Inst)
- continue;
- // This is phase one of vectorizing PHIs.
- // This has to be a reduction variable.
- assert(Legal->getReductionVars()->count(P) && "Not a Reduction");
- Type *VecTy = VectorType::get(Inst->getType(), VF);
- WidenMap[Inst] = Builder.CreatePHI(VecTy, 2, "vec.phi");
- PHIsToFix.push_back(P);
- continue;
- }
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- // Just widen binops.
- BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
- Value *A = getVectorValue(Inst->getOperand(0));
- Value *B = getVectorValue(Inst->getOperand(1));
-
- // Use this vector value for all users of the original instruction.
- Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B);
- WidenMap[Inst] = V;
-
- // Update the NSW, NUW and Exact flags.
- BinaryOperator *VecOp = cast<BinaryOperator>(V);
- if (isa<OverflowingBinaryOperator>(BinOp)) {
- VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap());
- VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap());
- }
- if (isa<PossiblyExactOperator>(VecOp))
- VecOp->setIsExact(BinOp->isExact());
- break;
- }
- case Instruction::Select: {
- // Widen selects.
- // If the selector is loop invariant we can create a select
- // instruction with a scalar condition. Otherwise, use vector-select.
- Value *Cond = Inst->getOperand(0);
- bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(Cond), OrigLoop);
-
- // The condition can be loop invariant but still defined inside the
- // loop. This means that we can't just use the original 'cond' value.
- // We have to take the 'vectorized' value and pick the first lane.
- // Instcombine will make this a no-op.
- Cond = getVectorValue(Cond);
- if (InvariantCond)
- Cond = Builder.CreateExtractElement(Cond, Builder.getInt32(0));
-
- Value *Op0 = getVectorValue(Inst->getOperand(1));
- Value *Op1 = getVectorValue(Inst->getOperand(2));
- WidenMap[Inst] = Builder.CreateSelect(Cond, Op0, Op1);
- break;
- }
-
- case Instruction::ICmp:
- case Instruction::FCmp: {
- // Widen compares. Generate vector compares.
- bool FCmp = (Inst->getOpcode() == Instruction::FCmp);
- CmpInst *Cmp = dyn_cast<CmpInst>(Inst);
- Value *A = getVectorValue(Inst->getOperand(0));
- Value *B = getVectorValue(Inst->getOperand(1));
- if (FCmp)
- WidenMap[Inst] = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
- else
- WidenMap[Inst] = Builder.CreateICmp(Cmp->getPredicate(), A, B);
- break;
- }
+ // Vectorize all of the blocks in the original loop.
+ for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
+ be = DFS.endRPO(); bb != be; ++bb)
+ vectorizeBlockInLoop(Legal, *bb, &RdxPHIsToFix);
- case Instruction::Store: {
- // Attempt to issue a wide store.
- StoreInst *SI = dyn_cast<StoreInst>(Inst);
- Type *StTy = VectorType::get(SI->getValueOperand()->getType(), VF);
- Value *Ptr = SI->getPointerOperand();
- unsigned Alignment = SI->getAlignment();
-
- assert(!Legal->isUniform(Ptr) &&
- "We do not allow storing to uniform addresses");
-
- GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
-
- // This store does not use GEPs.
- if (!Legal->isConsecutiveGep(Gep)) {
- scalarizeInstruction(Inst);
- break;
- }
-
- // The last index does not have to be the induction. It can be
- // consecutive and be a function of the index. For example A[I+1];
- unsigned NumOperands = Gep->getNumOperands();
- Value *LastIndex = getVectorValue(Gep->getOperand(NumOperands - 1));
- LastIndex = Builder.CreateExtractElement(LastIndex, Zero);
-
- // Create the new GEP with the new induction variable.
- GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
- Gep2->setOperand(NumOperands - 1, LastIndex);
- Ptr = Builder.Insert(Gep2);
- Ptr = Builder.CreateBitCast(Ptr, StTy->getPointerTo());
- Value *Val = getVectorValue(SI->getValueOperand());
- Builder.CreateStore(Val, Ptr)->setAlignment(Alignment);
- break;
- }
- case Instruction::Load: {
- // Attempt to issue a wide load.
- LoadInst *LI = dyn_cast<LoadInst>(Inst);
- Type *RetTy = VectorType::get(LI->getType(), VF);
- Value *Ptr = LI->getPointerOperand();
- unsigned Alignment = LI->getAlignment();
- GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
-
- // If we don't have a gep, or that the pointer is loop invariant,
- // scalarize the load.
- if (!Gep || Legal->isUniform(Gep) || !Legal->isConsecutiveGep(Gep)) {
- scalarizeInstruction(Inst);
- break;
- }
-
- // The last index does not have to be the induction. It can be
- // consecutive and be a function of the index. For example A[I+1];
- unsigned NumOperands = Gep->getNumOperands();
- Value *LastIndex = getVectorValue(Gep->getOperand(NumOperands -1));
- LastIndex = Builder.CreateExtractElement(LastIndex, Zero);
-
- // Create the new GEP with the new induction variable.
- GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
- Gep2->setOperand(NumOperands - 1, LastIndex);
- Ptr = Builder.Insert(Gep2);
- Ptr = Builder.CreateBitCast(Ptr, RetTy->getPointerTo());
- LI = Builder.CreateLoad(Ptr);
- LI->setAlignment(Alignment);
- // Use this vector value for all users of the load.
- WidenMap[Inst] = LI;
- break;
- }
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- case Instruction::Trunc:
- case Instruction::FPTrunc:
- case Instruction::BitCast: {
- /// Vectorize bitcasts.
- CastInst *CI = dyn_cast<CastInst>(Inst);
- Value *A = getVectorValue(Inst->getOperand(0));
- Type *DestTy = VectorType::get(CI->getType()->getScalarType(), VF);
- WidenMap[Inst] = Builder.CreateCast(CI->getOpcode(), A, DestTy);
- break;
- }
-
- default:
- /// All other instructions are unsupported. Scalarize them.
- scalarizeInstruction(Inst);
- break;
- }// end of switch.
- }// end of for_each instr.
-
- // At this point every instruction in the original loop is widended to
+ // At this point every instruction in the original loop is widened to
// a vector form. We are almost done. Now, we need to fix the PHI nodes
// that we vectorized. The PHI nodes are currently empty because we did
// not want to introduce cycles. Notice that the remaining PHI nodes
@@ -1098,38 +1628,36 @@ SingleBlockLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
// Create the 'reduced' values for each of the induction vars.
// The reduced values are the vector values that we scalarize and combine
// after the loop is finished.
- for (PhiVector::iterator it = PHIsToFix.begin(), e = PHIsToFix.end();
+ for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
it != e; ++it) {
PHINode *RdxPhi = *it;
- PHINode *VecRdxPhi = dyn_cast<PHINode>(WidenMap[RdxPhi]);
assert(RdxPhi && "Unable to recover vectorized PHI");
// Find the reduction variable descriptor.
assert(Legal->getReductionVars()->count(RdxPhi) &&
"Unable to find the reduction variable");
LoopVectorizationLegality::ReductionDescriptor RdxDesc =
- (*Legal->getReductionVars())[RdxPhi];
+ (*Legal->getReductionVars())[RdxPhi];
// We need to generate a reduction vector from the incoming scalar.
// To do so, we need to generate the 'identity' vector and overide
// one of the elements with the incoming scalar reduction. We need
// to do it in the vector-loop preheader.
- Builder.SetInsertPoint(LoopBypassBlock->getTerminator());
+ Builder.SetInsertPoint(LoopBypassBlocks.front()->getTerminator());
// This is the vector-clone of the value that leaves the loop.
- Value *VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
- Type *VecTy = VectorExit->getType();
+ VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
+ Type *VecTy = VectorExit[0]->getType();
// Find the reduction identity variable. Zero for addition, or, xor,
// one for multiplication, -1 for And.
- Constant *Identity = getUniformVector(getReductionIdentity(RdxDesc.Kind),
- VecTy->getScalarType());
+ Constant *Iden = getReductionIdentity(RdxDesc.Kind, VecTy->getScalarType());
+ Constant *Identity = ConstantVector::getSplat(VF, Iden);
// This vector is the Identity vector where the first element is the
// incoming scalar reduction.
Value *VectorStart = Builder.CreateInsertElement(Identity,
- RdxDesc.StartValue, Zero);
-
+ RdxDesc.StartValue, Zero);
// Fix the vector-loop phi.
// We created the induction variable so we know that the
@@ -1138,10 +1666,17 @@ SingleBlockLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
// Reductions do not have to start at zero. They can start with
// any loop invariant values.
- VecRdxPhi->addIncoming(VectorStart, VecPreheader);
- unsigned SelfEdgeIdx = (RdxPhi)->getBasicBlockIndex(LoopScalarBody);
- Value *Val = getVectorValue(RdxPhi->getIncomingValue(SelfEdgeIdx));
- VecRdxPhi->addIncoming(Val, LoopVectorBody);
+ VectorParts &VecRdxPhi = WidenMap.get(RdxPhi);
+ BasicBlock *Latch = OrigLoop->getLoopLatch();
+ Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch);
+ VectorParts &Val = getVectorValue(LoopVal);
+ for (unsigned part = 0; part < UF; ++part) {
+ // Make sure to add the reduction stat value only to the
+ // first unroll part.
+ Value *StartVal = (part == 0) ? VectorStart : Identity;
+ cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader);
+ cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], LoopVectorBody);
+ }
// Before each round, move the insertion point right between
// the PHIs and the values we are going to write.
@@ -1149,40 +1684,56 @@ SingleBlockLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
// instructions.
Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
- // This PHINode contains the vectorized reduction variable, or
- // the initial value vector, if we bypass the vector loop.
- PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
- NewPhi->addIncoming(VectorStart, LoopBypassBlock);
- NewPhi->addIncoming(getVectorValue(RdxDesc.LoopExitInstr), LoopVectorBody);
-
- // Extract the first scalar.
- Value *Scalar0 =
- Builder.CreateExtractElement(NewPhi, Builder.getInt32(0));
- // Extract and reduce the remaining vector elements.
- for (unsigned i=1; i < VF; ++i) {
- Value *Scalar1 =
- Builder.CreateExtractElement(NewPhi, Builder.getInt32(i));
- switch (RdxDesc.Kind) {
- case LoopVectorizationLegality::IntegerAdd:
- Scalar0 = Builder.CreateAdd(Scalar0, Scalar1);
- break;
- case LoopVectorizationLegality::IntegerMult:
- Scalar0 = Builder.CreateMul(Scalar0, Scalar1);
- break;
- case LoopVectorizationLegality::IntegerOr:
- Scalar0 = Builder.CreateOr(Scalar0, Scalar1);
- break;
- case LoopVectorizationLegality::IntegerAnd:
- Scalar0 = Builder.CreateAnd(Scalar0, Scalar1);
- break;
- case LoopVectorizationLegality::IntegerXor:
- Scalar0 = Builder.CreateXor(Scalar0, Scalar1);
- break;
- default:
- llvm_unreachable("Unknown reduction operation");
- }
+ VectorParts RdxParts;
+ for (unsigned part = 0; part < UF; ++part) {
+ // This PHINode contains the vectorized reduction variable, or
+ // the initial value vector, if we bypass the vector loop.
+ VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr);
+ PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
+ Value *StartVal = (part == 0) ? VectorStart : Identity;
+ for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
+ NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]);
+ NewPhi->addIncoming(RdxExitVal[part], LoopVectorBody);
+ RdxParts.push_back(NewPhi);
+ }
+
+ // Reduce all of the unrolled parts into a single vector.
+ Value *ReducedPartRdx = RdxParts[0];
+ for (unsigned part = 1; part < UF; ++part) {
+ Instruction::BinaryOps Op = getReductionBinOp(RdxDesc.Kind);
+ ReducedPartRdx = Builder.CreateBinOp(Op, RdxParts[part], ReducedPartRdx,
+ "bin.rdx");
}
+ // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
+ // and vector ops, reducing the set of values being computed by half each
+ // round.
+ assert(isPowerOf2_32(VF) &&
+ "Reduction emission only supported for pow2 vectors!");
+ Value *TmpVec = ReducedPartRdx;
+ SmallVector<Constant*, 32> ShuffleMask(VF, 0);
+ for (unsigned i = VF; i != 1; i >>= 1) {
+ // Move the upper half of the vector to the lower half.
+ for (unsigned j = 0; j != i/2; ++j)
+ ShuffleMask[j] = Builder.getInt32(i/2 + j);
+
+ // Fill the rest of the mask with undef.
+ std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
+ UndefValue::get(Builder.getInt32Ty()));
+
+ Value *Shuf =
+ Builder.CreateShuffleVector(TmpVec,
+ UndefValue::get(TmpVec->getType()),
+ ConstantVector::get(ShuffleMask),
+ "rdx.shuf");
+
+ Instruction::BinaryOps Op = getReductionBinOp(RdxDesc.Kind);
+ TmpVec = Builder.CreateBinOp(Op, TmpVec, Shuf, "bin.rdx");
+ }
+
+ // The result is in the first element of the vector.
+ Value *Scalar0 = Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
+
// Now, we need to fix the users of the reduction variable
// inside and outside of the scalar remainder loop.
// We know that the loop is in LCSSA form. We need to update the
@@ -1207,24 +1758,378 @@ SingleBlockLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
// Fix the scalar loop reduction variable with the incoming reduction sum
// from the vector body and from the backedge value.
- int IncomingEdgeBlockIdx = (RdxPhi)->getBasicBlockIndex(LoopScalarBody);
- int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); // The other block.
+ int IncomingEdgeBlockIdx =
+ (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch());
+ assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
+ // Pick the other block.
+ int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
(RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, Scalar0);
(RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
}// end of for each redux variable.
+
+ // The Loop exit block may have single value PHI nodes where the incoming
+ // value is 'undef'. While vectorizing we only handled real values that
+ // were defined inside the loop. Here we handle the 'undef case'.
+ // See PR14725.
+ for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
+ LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
+ PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
+ if (!LCSSAPhi) continue;
+ if (LCSSAPhi->getNumIncomingValues() == 1)
+ LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
+ LoopMiddleBlock);
+ }
+}
+
+InnerLoopVectorizer::VectorParts
+InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
+ assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
+ "Invalid edge");
+
+ VectorParts SrcMask = createBlockInMask(Src);
+
+ // The terminator has to be a branch inst!
+ BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
+ assert(BI && "Unexpected terminator found");
+
+ if (BI->isConditional()) {
+ VectorParts EdgeMask = getVectorValue(BI->getCondition());
+
+ if (BI->getSuccessor(0) != Dst)
+ for (unsigned part = 0; part < UF; ++part)
+ EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
+
+ for (unsigned part = 0; part < UF; ++part)
+ EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
+ return EdgeMask;
+ }
+
+ return SrcMask;
+}
+
+InnerLoopVectorizer::VectorParts
+InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
+ assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
+
+ // Loop incoming mask is all-one.
+ if (OrigLoop->getHeader() == BB) {
+ Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
+ return getVectorValue(C);
+ }
+
+ // This is the block mask. We OR all incoming edges, and with zero.
+ Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
+ VectorParts BlockMask = getVectorValue(Zero);
+
+ // For each pred:
+ for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
+ VectorParts EM = createEdgeMask(*it, BB);
+ for (unsigned part = 0; part < UF; ++part)
+ BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
+ }
+
+ return BlockMask;
+}
+
+void
+InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
+ BasicBlock *BB, PhiVector *PV) {
+ // For each instruction in the old loop.
+ for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
+ VectorParts &Entry = WidenMap.get(it);
+ switch (it->getOpcode()) {
+ case Instruction::Br:
+ // Nothing to do for PHIs and BR, since we already took care of the
+ // loop control flow instructions.
+ continue;
+ case Instruction::PHI:{
+ PHINode* P = cast<PHINode>(it);
+ // Handle reduction variables:
+ if (Legal->getReductionVars()->count(P)) {
+ for (unsigned part = 0; part < UF; ++part) {
+ // This is phase one of vectorizing PHIs.
+ Type *VecTy = VectorType::get(it->getType(), VF);
+ Entry[part] = PHINode::Create(VecTy, 2, "vec.phi",
+ LoopVectorBody-> getFirstInsertionPt());
+ }
+ PV->push_back(P);
+ continue;
+ }
+
+ // Check for PHI nodes that are lowered to vector selects.
+ if (P->getParent() != OrigLoop->getHeader()) {
+ // We know that all PHIs in non header blocks are converted into
+ // selects, so we don't have to worry about the insertion order and we
+ // can just use the builder.
+
+ // At this point we generate the predication tree. There may be
+ // duplications since this is a simple recursive scan, but future
+ // optimizations will clean it up.
+ VectorParts Cond = createEdgeMask(P->getIncomingBlock(0),
+ P->getParent());
+
+ for (unsigned part = 0; part < UF; ++part) {
+ VectorParts &In0 = getVectorValue(P->getIncomingValue(0));
+ VectorParts &In1 = getVectorValue(P->getIncomingValue(1));
+ Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In1[part],
+ "predphi");
+ }
+ continue;
+ }
+
+ // This PHINode must be an induction variable.
+ // Make sure that we know about it.
+ assert(Legal->getInductionVars()->count(P) &&
+ "Not an induction variable");
+
+ LoopVectorizationLegality::InductionInfo II =
+ Legal->getInductionVars()->lookup(P);
+
+ switch (II.IK) {
+ case LoopVectorizationLegality::IK_NoInduction:
+ llvm_unreachable("Unknown induction");
+ case LoopVectorizationLegality::IK_IntInduction: {
+ assert(P == OldInduction && "Unexpected PHI");
+ Value *Broadcasted = getBroadcastInstrs(Induction);
+ // After broadcasting the induction variable we need to make the
+ // vector consecutive by adding 0, 1, 2 ...
+ for (unsigned part = 0; part < UF; ++part)
+ Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false);
+ continue;
+ }
+ case LoopVectorizationLegality::IK_ReverseIntInduction:
+ case LoopVectorizationLegality::IK_PtrInduction:
+ case LoopVectorizationLegality::IK_ReversePtrInduction:
+ // Handle reverse integer and pointer inductions.
+ Value *StartIdx = 0;
+ // If we have a single integer induction variable then use it.
+ // Otherwise, start counting at zero.
+ if (OldInduction) {
+ LoopVectorizationLegality::InductionInfo OldII =
+ Legal->getInductionVars()->lookup(OldInduction);
+ StartIdx = OldII.StartValue;
+ } else {
+ StartIdx = ConstantInt::get(Induction->getType(), 0);
+ }
+ // This is the normalized GEP that starts counting at zero.
+ Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx,
+ "normalized.idx");
+
+ // Handle the reverse integer induction variable case.
+ if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) {
+ IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType());
+ Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy,
+ "resize.norm.idx");
+ Value *ReverseInd = Builder.CreateSub(II.StartValue, CNI,
+ "reverse.idx");
+
+ // This is a new value so do not hoist it out.
+ Value *Broadcasted = getBroadcastInstrs(ReverseInd);
+ // After broadcasting the induction variable we need to make the
+ // vector consecutive by adding ... -3, -2, -1, 0.
+ for (unsigned part = 0; part < UF; ++part)
+ Entry[part] = getConsecutiveVector(Broadcasted, -VF * part, true);
+ continue;
+ }
+
+ // Handle the pointer induction variable case.
+ assert(P->getType()->isPointerTy() && "Unexpected type.");
+
+ // Is this a reverse induction ptr or a consecutive induction ptr.
+ bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction ==
+ II.IK);
+
+ // This is the vector of results. Notice that we don't generate
+ // vector geps because scalar geps result in better code.
+ for (unsigned part = 0; part < UF; ++part) {
+ Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
+ for (unsigned int i = 0; i < VF; ++i) {
+ int EltIndex = (i + part * VF) * (Reverse ? -1 : 1);
+ Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
+ Value *GlobalIdx;
+ if (!Reverse)
+ GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
+ else
+ GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
+
+ Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
+ "next.gep");
+ VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
+ Builder.getInt32(i),
+ "insert.gep");
+ }
+ Entry[part] = VecVal;
+ }
+ continue;
+ }
+
+ }// End of PHI.
+
+ case Instruction::Add:
+ case Instruction::FAdd:
+ case Instruction::Sub:
+ case Instruction::FSub:
+ case Instruction::Mul:
+ case Instruction::FMul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::FDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::FRem:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor: {
+ // Just widen binops.
+ BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it);
+ VectorParts &A = getVectorValue(it->getOperand(0));
+ VectorParts &B = getVectorValue(it->getOperand(1));
+
+ // Use this vector value for all users of the original instruction.
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
+
+ // Update the NSW, NUW and Exact flags. Notice: V can be an Undef.
+ BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V);
+ if (VecOp && isa<OverflowingBinaryOperator>(BinOp)) {
+ VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap());
+ VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap());
+ }
+ if (VecOp && isa<PossiblyExactOperator>(VecOp))
+ VecOp->setIsExact(BinOp->isExact());
+
+ Entry[Part] = V;
+ }
+ break;
+ }
+ case Instruction::Select: {
+ // Widen selects.
+ // If the selector is loop invariant we can create a select
+ // instruction with a scalar condition. Otherwise, use vector-select.
+ bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)),
+ OrigLoop);
+
+ // The condition can be loop invariant but still defined inside the
+ // loop. This means that we can't just use the original 'cond' value.
+ // We have to take the 'vectorized' value and pick the first lane.
+ // Instcombine will make this a no-op.
+ VectorParts &Cond = getVectorValue(it->getOperand(0));
+ VectorParts &Op0 = getVectorValue(it->getOperand(1));
+ VectorParts &Op1 = getVectorValue(it->getOperand(2));
+ Value *ScalarCond = Builder.CreateExtractElement(Cond[0],
+ Builder.getInt32(0));
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ Entry[Part] = Builder.CreateSelect(
+ InvariantCond ? ScalarCond : Cond[Part],
+ Op0[Part],
+ Op1[Part]);
+ }
+ break;
+ }
+
+ case Instruction::ICmp:
+ case Instruction::FCmp: {
+ // Widen compares. Generate vector compares.
+ bool FCmp = (it->getOpcode() == Instruction::FCmp);
+ CmpInst *Cmp = dyn_cast<CmpInst>(it);
+ VectorParts &A = getVectorValue(it->getOperand(0));
+ VectorParts &B = getVectorValue(it->getOperand(1));
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ Value *C = 0;
+ if (FCmp)
+ C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
+ else
+ C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
+ Entry[Part] = C;
+ }
+ break;
+ }
+
+ case Instruction::Store:
+ case Instruction::Load:
+ vectorizeMemoryInstruction(it, Legal);
+ break;
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::FPExt:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::SIToFP:
+ case Instruction::UIToFP:
+ case Instruction::Trunc:
+ case Instruction::FPTrunc:
+ case Instruction::BitCast: {
+ CastInst *CI = dyn_cast<CastInst>(it);
+ /// Optimize the special case where the source is the induction
+ /// variable. Notice that we can only optimize the 'trunc' case
+ /// because: a. FP conversions lose precision, b. sext/zext may wrap,
+ /// c. other casts depend on pointer size.
+ if (CI->getOperand(0) == OldInduction &&
+ it->getOpcode() == Instruction::Trunc) {
+ Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction,
+ CI->getType());
+ Value *Broadcasted = getBroadcastInstrs(ScalarCast);
+ for (unsigned Part = 0; Part < UF; ++Part)
+ Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false);
+ break;
+ }
+ /// Vectorize casts.
+ Type *DestTy = VectorType::get(CI->getType()->getScalarType(), VF);
+
+ VectorParts &A = getVectorValue(it->getOperand(0));
+ for (unsigned Part = 0; Part < UF; ++Part)
+ Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
+ break;
+ }
+
+ case Instruction::Call: {
+ // Ignore dbg intrinsics.
+ if (isa<DbgInfoIntrinsic>(it))
+ break;
+
+ Module *M = BB->getParent()->getParent();
+ CallInst *CI = cast<CallInst>(it);
+ Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
+ assert(ID && "Not an intrinsic call!");
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ SmallVector<Value*, 4> Args;
+ for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
+ VectorParts &Arg = getVectorValue(CI->getArgOperand(i));
+ Args.push_back(Arg[Part]);
+ }
+ Type *Tys[] = { VectorType::get(CI->getType()->getScalarType(), VF) };
+ Function *F = Intrinsic::getDeclaration(M, ID, Tys);
+ Entry[Part] = Builder.CreateCall(F, Args);
+ }
+ break;
+ }
+
+ default:
+ // All other instructions are unsupported. Scalarize them.
+ scalarizeInstruction(it);
+ break;
+ }// end of switch.
+ }// end of for_each instr.
}
-void SingleBlockLoopVectorizer::updateAnalysis() {
- // The original basic block.
+void InnerLoopVectorizer::updateAnalysis() {
+ // Forget the original basic block.
SE->forgetLoop(OrigLoop);
// Update the dominator tree information.
- assert(DT->properlyDominates(LoopBypassBlock, LoopExitBlock) &&
+ assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
"Entry does not dominate exit.");
- DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlock);
+ for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
+ DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]);
+ DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back());
DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader);
- DT->addNewBlock(LoopMiddleBlock, LoopBypassBlock);
+ DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks.front());
DT->addNewBlock(LoopScalarPreHeader, LoopMiddleBlock);
DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
@@ -1232,45 +2137,94 @@ void SingleBlockLoopVectorizer::updateAnalysis() {
DEBUG(DT->verifyAnalysis());
}
-bool LoopVectorizationLegality::canVectorize() {
- if (!TheLoop->getLoopPreheader()) {
- assert(false && "No preheader!!");
- DEBUG(dbgs() << "LV: Loop not normalized." << "\n");
- return false;
+bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
+ if (!EnableIfConversion)
+ return false;
+
+ assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
+ std::vector<BasicBlock*> &LoopBlocks = TheLoop->getBlocksVector();
+
+ // Collect the blocks that need predication.
+ for (unsigned i = 0, e = LoopBlocks.size(); i < e; ++i) {
+ BasicBlock *BB = LoopBlocks[i];
+
+ // We don't support switch statements inside loops.
+ if (!isa<BranchInst>(BB->getTerminator()))
+ return false;
+
+ // We must have at most two predecessors because we need to convert
+ // all PHIs to selects.
+ unsigned Preds = std::distance(pred_begin(BB), pred_end(BB));
+ if (Preds > 2)
+ return false;
+
+ // We must be able to predicate all blocks that need to be predicated.
+ if (blockNeedsPredication(BB) && !blockCanBePredicated(BB))
+ return false;
}
- // We can only vectorize single basic block loops.
+ // We can if-convert this loop.
+ return true;
+}
+
+bool LoopVectorizationLegality::canVectorize() {
+ assert(TheLoop->getLoopPreheader() && "No preheader!!");
+
+ // We can only vectorize innermost loops.
+ if (TheLoop->getSubLoopsVector().size())
+ return false;
+
+ // We must have a single backedge.
+ if (TheLoop->getNumBackEdges() != 1)
+ return false;
+
+ // We must have a single exiting block.
+ if (!TheLoop->getExitingBlock())
+ return false;
+
unsigned NumBlocks = TheLoop->getNumBlocks();
- if (NumBlocks != 1) {
- DEBUG(dbgs() << "LV: Too many blocks:" << NumBlocks << "\n");
+
+ // Check if we can if-convert non single-bb loops.
+ if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
+ DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
return false;
}
// We need to have a loop header.
- BasicBlock *BB = TheLoop->getHeader();
- DEBUG(dbgs() << "LV: Found a loop: " << BB->getName() << "\n");
+ BasicBlock *Latch = TheLoop->getLoopLatch();
+ DEBUG(dbgs() << "LV: Found a loop: " <<
+ TheLoop->getHeader()->getName() << "\n");
// ScalarEvolution needs to be able to find the exit count.
- const SCEV *ExitCount = SE->getExitCount(TheLoop, BB);
+ const SCEV *ExitCount = SE->getExitCount(TheLoop, Latch);
if (ExitCount == SE->getCouldNotCompute()) {
DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
return false;
}
// Do not loop-vectorize loops with a tiny trip count.
- unsigned TC = SE->getSmallConstantTripCount(TheLoop, BB);
- if (TC > 0u && TC < TinyTripCountThreshold) {
+ unsigned TC = SE->getSmallConstantTripCount(TheLoop, Latch);
+ if (TC > 0u && TC < TinyTripCountVectorThreshold) {
DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " <<
"This loop is not worth vectorizing.\n");
return false;
}
+ // Check if we can vectorize the instructions and CFG in this loop.
+ if (!canVectorizeInstrs()) {
+ DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
+ return false;
+ }
+
// Go over each instruction and look at memory deps.
- if (!canVectorizeBlock(*BB)) {
- DEBUG(dbgs() << "LV: Can't vectorize this loop header\n");
+ if (!canVectorizeMemory()) {
+ DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
return false;
}
+ // Collect all of the variables that remain uniform after vectorization.
+ collectLoopUniforms();
+
DEBUG(dbgs() << "LV: We can vectorize this loop" <<
(PtrRtCheck.Need ? " (with a runtime bound check)" : "")
<<"!\n");
@@ -1281,130 +2235,220 @@ bool LoopVectorizationLegality::canVectorize() {
return true;
}
-bool LoopVectorizationLegality::canVectorizeBlock(BasicBlock &BB) {
- // Scan the instructions in the block and look for hazards.
- for (BasicBlock::iterator it = BB.begin(), e = BB.end(); it != e; ++it) {
- Instruction *I = it;
+bool LoopVectorizationLegality::canVectorizeInstrs() {
+ BasicBlock *PreHeader = TheLoop->getLoopPreheader();
+ BasicBlock *Header = TheLoop->getHeader();
- PHINode *Phi = dyn_cast<PHINode>(I);
- if (Phi) {
- // This should not happen because the loop should be normalized.
- if (Phi->getNumIncomingValues() != 2) {
- DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
- return false;
- }
- // We only look at integer phi nodes.
- if (!Phi->getType()->isIntegerTy()) {
- DEBUG(dbgs() << "LV: Found an non-int PHI.\n");
- return false;
- }
+ // If we marked the scalar loop as "already vectorized" then no need
+ // to vectorize it again.
+ if (Header->getTerminator()->getMetadata(AlreadyVectorizedMDName)) {
+ DEBUG(dbgs() << "LV: This loop was vectorized before\n");
+ return false;
+ }
+
+ // For each block in the loop.
+ for (Loop::block_iterator bb = TheLoop->block_begin(),
+ be = TheLoop->block_end(); bb != be; ++bb) {
- if (isInductionVariable(Phi)) {
- if (Induction) {
- DEBUG(dbgs() << "LV: Found too many inductions."<< *Phi <<"\n");
+ // Scan the instructions in the block and look for hazards.
+ for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
+ ++it) {
+
+ if (PHINode *Phi = dyn_cast<PHINode>(it)) {
+ // This should not happen because the loop should be normalized.
+ if (Phi->getNumIncomingValues() != 2) {
+ DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
return false;
}
- DEBUG(dbgs() << "LV: Found the induction PHI."<< *Phi <<"\n");
- Induction = Phi;
- continue;
- }
- if (AddReductionVar(Phi, IntegerAdd)) {
- DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
- continue;
- }
- if (AddReductionVar(Phi, IntegerMult)) {
- DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
- continue;
- }
- if (AddReductionVar(Phi, IntegerOr)) {
- DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
- continue;
- }
- if (AddReductionVar(Phi, IntegerAnd)) {
- DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
- continue;
- }
- if (AddReductionVar(Phi, IntegerXor)) {
- DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
- continue;
- }
- DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
- return false;
- }// end of PHI handling
+ // Check that this PHI type is allowed.
+ if (!Phi->getType()->isIntegerTy() &&
+ !Phi->getType()->isFloatingPointTy() &&
+ !Phi->getType()->isPointerTy()) {
+ DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
+ return false;
+ }
- // We still don't handle functions.
- CallInst *CI = dyn_cast<CallInst>(I);
- if (CI) {
- DEBUG(dbgs() << "LV: Found a call site.\n");
- return false;
- }
+ // If this PHINode is not in the header block, then we know that we
+ // can convert it to select during if-conversion. No need to check if
+ // the PHIs in this block are induction or reduction variables.
+ if (*bb != Header)
+ continue;
- // We do not re-vectorize vectors.
- if (!VectorType::isValidElementType(I->getType()) &&
- !I->getType()->isVoidTy()) {
- DEBUG(dbgs() << "LV: Found unvectorizable type." << "\n");
- return false;
- }
+ // This is the value coming from the preheader.
+ Value *StartValue = Phi->getIncomingValueForBlock(PreHeader);
+ // Check if this is an induction variable.
+ InductionKind IK = isInductionVariable(Phi);
+
+ if (IK_NoInduction != IK) {
+ // Int inductions are special because we only allow one IV.
+ if (IK == IK_IntInduction) {
+ if (Induction) {
+ DEBUG(dbgs() << "LV: Found too many inductions."<< *Phi <<"\n");
+ return false;
+ }
+ Induction = Phi;
+ }
+
+ DEBUG(dbgs() << "LV: Found an induction variable.\n");
+ Inductions[Phi] = InductionInfo(StartValue, IK);
+ continue;
+ }
- // Reduction instructions are allowed to have exit users.
- // All other instructions must not have external users.
- if (!AllowedExit.count(I))
- //Check that all of the users of the loop are inside the BB.
- for (Value::use_iterator it = I->use_begin(), e = I->use_end();
- it != e; ++it) {
- Instruction *U = cast<Instruction>(*it);
- // This user may be a reduction exit value.
- BasicBlock *Parent = U->getParent();
- if (Parent != &BB) {
- DEBUG(dbgs() << "LV: Found an outside user for : "<< *U << "\n");
+ if (AddReductionVar(Phi, RK_IntegerAdd)) {
+ DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
+ continue;
+ }
+ if (AddReductionVar(Phi, RK_IntegerMult)) {
+ DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
+ continue;
+ }
+ if (AddReductionVar(Phi, RK_IntegerOr)) {
+ DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
+ continue;
+ }
+ if (AddReductionVar(Phi, RK_IntegerAnd)) {
+ DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
+ continue;
+ }
+ if (AddReductionVar(Phi, RK_IntegerXor)) {
+ DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
+ continue;
+ }
+ if (AddReductionVar(Phi, RK_FloatMult)) {
+ DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n");
+ continue;
+ }
+ if (AddReductionVar(Phi, RK_FloatAdd)) {
+ DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n");
+ continue;
+ }
+
+ DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
+ return false;
+ }// end of PHI handling
+
+ // We still don't handle functions. However, we can ignore dbg intrinsic
+ // calls and we do handle certain intrinsic and libm functions.
+ CallInst *CI = dyn_cast<CallInst>(it);
+ if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) {
+ DEBUG(dbgs() << "LV: Found a call site.\n");
+ return false;
+ }
+
+ // Check that the instruction return type is vectorizable.
+ if (!VectorType::isValidElementType(it->getType()) &&
+ !it->getType()->isVoidTy()) {
+ DEBUG(dbgs() << "LV: Found unvectorizable type." << "\n");
+ return false;
+ }
+
+ // Check that the stored type is vectorizable.
+ if (StoreInst *ST = dyn_cast<StoreInst>(it)) {
+ Type *T = ST->getValueOperand()->getType();
+ if (!VectorType::isValidElementType(T))
return false;
+ }
+
+ // Reduction instructions are allowed to have exit users.
+ // All other instructions must not have external users.
+ if (!AllowedExit.count(it))
+ //Check that all of the users of the loop are inside the BB.
+ for (Value::use_iterator I = it->use_begin(), E = it->use_end();
+ I != E; ++I) {
+ Instruction *U = cast<Instruction>(*I);
+ // This user may be a reduction exit value.
+ if (!TheLoop->contains(U)) {
+ DEBUG(dbgs() << "LV: Found an outside user for : "<< *U << "\n");
+ return false;
+ }
}
- }
- } // next instr.
+ } // next instr.
+
+ }
if (!Induction) {
- DEBUG(dbgs() << "LV: Did not find an induction var.\n");
- return false;
+ DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
+ assert(getInductionVars()->size() && "No induction variables");
}
- // Don't vectorize if the memory dependencies do not allow vectorization.
- if (!canVectorizeMemory(BB))
- return false;
+ return true;
+}
+void LoopVectorizationLegality::collectLoopUniforms() {
// We now know that the loop is vectorizable!
// Collect variables that will remain uniform after vectorization.
std::vector<Value*> Worklist;
+ BasicBlock *Latch = TheLoop->getLoopLatch();
// Start with the conditional branch and walk up the block.
- Worklist.push_back(BB.getTerminator()->getOperand(0));
+ Worklist.push_back(Latch->getTerminator()->getOperand(0));
while (Worklist.size()) {
Instruction *I = dyn_cast<Instruction>(Worklist.back());
Worklist.pop_back();
- // Look at instructions inside this block.
- if (!I) continue;
- if (I->getParent() != &BB) continue;
+ // Look at instructions inside this loop.
// Stop when reaching PHI nodes.
- if (isa<PHINode>(I)) {
- assert(I == Induction && "Found a uniform PHI that is not the induction");
- break;
- }
+ // TODO: we need to follow values all over the loop, not only in this block.
+ if (!I || !TheLoop->contains(I) || isa<PHINode>(I))
+ continue;
// This is a known uniform.
Uniforms.insert(I);
// Insert all operands.
- for (int i=0, Op = I->getNumOperands(); i < Op; ++i) {
+ for (int i = 0, Op = I->getNumOperands(); i < Op; ++i) {
Worklist.push_back(I->getOperand(i));
}
}
+}
- return true;
+AliasAnalysis::Location
+LoopVectorizationLegality::getLoadStoreLocation(Instruction *Inst) {
+ if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
+ return AA->getLocation(Store);
+ else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
+ return AA->getLocation(Load);
+
+ llvm_unreachable("Should be either load or store instruction");
}
-bool LoopVectorizationLegality::canVectorizeMemory(BasicBlock &BB) {
+bool
+LoopVectorizationLegality::hasPossibleGlobalWriteReorder(
+ Value *Object,
+ Instruction *Inst,
+ AliasMultiMap& WriteObjects,
+ unsigned MaxByteWidth) {
+
+ AliasAnalysis::Location ThisLoc = getLoadStoreLocation(Inst);
+
+ std::vector<Instruction*>::iterator
+ it = WriteObjects[Object].begin(),
+ end = WriteObjects[Object].end();
+
+ for (; it != end; ++it) {
+ Instruction* I = *it;
+ if (I == Inst)
+ continue;
+
+ AliasAnalysis::Location ThatLoc = getLoadStoreLocation(I);
+ if (AA->alias(ThisLoc.getWithNewSize(MaxByteWidth),
+ ThatLoc.getWithNewSize(MaxByteWidth)))
+ return true;
+ }
+ return false;
+}
+
+bool LoopVectorizationLegality::canVectorizeMemory() {
+
+ if (TheLoop->isAnnotatedParallel()) {
+ DEBUG(dbgs()
+ << "LV: A loop annotated parallel, ignore memory dependency "
+ << "checks.\n");
+ return true;
+ }
+
typedef SmallVector<Value*, 16> ValueVector;
typedef SmallPtrSet<Value*, 16> ValueSet;
// Holds the Load and Store *instructions*.
@@ -1413,35 +2457,40 @@ bool LoopVectorizationLegality::canVectorizeMemory(BasicBlock &BB) {
PtrRtCheck.Pointers.clear();
PtrRtCheck.Need = false;
- // Scan the BB and collect legal loads and stores.
- for (BasicBlock::iterator it = BB.begin(), e = BB.end(); it != e; ++it) {
- Instruction *I = it;
-
- // If this is a load, save it. If this instruction can read from memory
- // but is not a load, then we quit. Notice that we don't handle function
- // calls that read or write.
- if (I->mayReadFromMemory()) {
- LoadInst *Ld = dyn_cast<LoadInst>(I);
- if (!Ld) return false;
- if (!Ld->isSimple()) {
- DEBUG(dbgs() << "LV: Found a non-simple load.\n");
- return false;
+ // For each block.
+ for (Loop::block_iterator bb = TheLoop->block_begin(),
+ be = TheLoop->block_end(); bb != be; ++bb) {
+
+ // Scan the BB and collect legal loads and stores.
+ for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
+ ++it) {
+
+ // If this is a load, save it. If this instruction can read from memory
+ // but is not a load, then we quit. Notice that we don't handle function
+ // calls that read or write.
+ if (it->mayReadFromMemory()) {
+ LoadInst *Ld = dyn_cast<LoadInst>(it);
+ if (!Ld) return false;
+ if (!Ld->isSimple()) {
+ DEBUG(dbgs() << "LV: Found a non-simple load.\n");
+ return false;
+ }
+ Loads.push_back(Ld);
+ continue;
}
- Loads.push_back(Ld);
- continue;
- }
- // Save store instructions. Abort if other instructions write to memory.
- if (I->mayWriteToMemory()) {
- StoreInst *St = dyn_cast<StoreInst>(I);
- if (!St) return false;
- if (!St->isSimple()) {
- DEBUG(dbgs() << "LV: Found a non-simple store.\n");
- return false;
+ // Save 'store' instructions. Abort if other instructions write to memory.
+ if (it->mayWriteToMemory()) {
+ StoreInst *St = dyn_cast<StoreInst>(it);
+ if (!St) return false;
+ if (!St->isSimple()) {
+ DEBUG(dbgs() << "LV: Found a non-simple store.\n");
+ return false;
+ }
+ Stores.push_back(St);
}
- Stores.push_back(St);
- }
- } // next instr.
+ } // next instr.
+ } // next block.
// Now we have two lists that hold the loads and the stores.
// Next, we find the pointers that they use.
@@ -1449,13 +2498,14 @@ bool LoopVectorizationLegality::canVectorizeMemory(BasicBlock &BB) {
// Check if we see any stores. If there are no stores, then we don't
// care if the pointers are *restrict*.
if (!Stores.size()) {
- DEBUG(dbgs() << "LV: Found a read-only loop!\n");
- return true;
+ DEBUG(dbgs() << "LV: Found a read-only loop!\n");
+ return true;
}
- // Holds the read and read-write *pointers* that we find.
- ValueVector Reads;
- ValueVector ReadWrites;
+ // Holds the read and read-write *pointers* that we find. These maps hold
+ // unique values for pointers (so no need for multi-map).
+ AliasMap Reads;
+ AliasMap ReadWrites;
// Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
// multiple times on the same object. If the ptr is accessed twice, once
@@ -1466,8 +2516,7 @@ bool LoopVectorizationLegality::canVectorizeMemory(BasicBlock &BB) {
ValueVector::iterator I, IE;
for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
- StoreInst *ST = dyn_cast<StoreInst>(*I);
- assert(ST && "Bad StoreInst");
+ StoreInst *ST = cast<StoreInst>(*I);
Value* Ptr = ST->getPointerOperand();
if (isUniform(Ptr)) {
@@ -1478,12 +2527,11 @@ bool LoopVectorizationLegality::canVectorizeMemory(BasicBlock &BB) {
// If we did *not* see this pointer before, insert it to
// the read-write list. At this phase it is only a 'write' list.
if (Seen.insert(Ptr))
- ReadWrites.push_back(Ptr);
+ ReadWrites.insert(std::make_pair(Ptr, ST));
}
for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
- LoadInst *LD = dyn_cast<LoadInst>(*I);
- assert(LD && "Bad LoadInst");
+ LoadInst *LD = cast<LoadInst>(*I);
Value* Ptr = LD->getPointerOperand();
// If we did *not* see this pointer before, insert it to the
// read list. If we *did* see it before, then it is already in
@@ -1493,8 +2541,8 @@ bool LoopVectorizationLegality::canVectorizeMemory(BasicBlock &BB) {
// If the address of i is unknown (for example A[B[i]]) then we may
// read a few words, modify, and write a few words, and some of the
// words may be written to the same address.
- if (Seen.insert(Ptr) || !isConsecutiveGep(Ptr))
- Reads.push_back(Ptr);
+ if (Seen.insert(Ptr) || 0 == isConsecutivePtr(Ptr))
+ Reads.insert(std::make_pair(Ptr, LD));
}
// If we write (or read-write) to a single destination and there are no
@@ -1506,84 +2554,156 @@ bool LoopVectorizationLegality::canVectorizeMemory(BasicBlock &BB) {
// Find pointers with computable bounds. We are going to use this information
// to place a runtime bound check.
- bool RT = true;
- for (I = ReadWrites.begin(), IE = ReadWrites.end(); I != IE; ++I)
- if (hasComputableBounds(*I)) {
- PtrRtCheck.Pointers.push_back(*I);
- DEBUG(dbgs() << "LV: Found a runtime check ptr:" << **I <<"\n");
+ bool CanDoRT = true;
+ AliasMap::iterator MI, ME;
+ for (MI = ReadWrites.begin(), ME = ReadWrites.end(); MI != ME; ++MI) {
+ Value *V = (*MI).first;
+ if (hasComputableBounds(V)) {
+ PtrRtCheck.insert(SE, TheLoop, V);
+ DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *V <<"\n");
} else {
- RT = false;
+ CanDoRT = false;
break;
}
- for (I = Reads.begin(), IE = Reads.end(); I != IE; ++I)
- if (hasComputableBounds(*I)) {
- PtrRtCheck.Pointers.push_back(*I);
- DEBUG(dbgs() << "LV: Found a runtime check ptr:" << **I <<"\n");
+ }
+ for (MI = Reads.begin(), ME = Reads.end(); MI != ME; ++MI) {
+ Value *V = (*MI).first;
+ if (hasComputableBounds(V)) {
+ PtrRtCheck.insert(SE, TheLoop, V);
+ DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *V <<"\n");
} else {
- RT = false;
+ CanDoRT = false;
break;
}
+ }
// Check that we did not collect too many pointers or found a
// unsizeable pointer.
- if (!RT || PtrRtCheck.Pointers.size() > RuntimeMemoryCheckThreshold) {
- PtrRtCheck.Pointers.clear();
- RT = false;
+ if (!CanDoRT || PtrRtCheck.Pointers.size() > RuntimeMemoryCheckThreshold) {
+ PtrRtCheck.reset();
+ CanDoRT = false;
}
- PtrRtCheck.Need = RT;
-
- if (RT) {
+ if (CanDoRT) {
DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n");
}
+ bool NeedRTCheck = false;
+
+ // Biggest vectorized access possible, vector width * unroll factor.
+ // TODO: We're being very pessimistic here, find a way to know the
+ // real access width before getting here.
+ unsigned MaxByteWidth = (TTI->getRegisterBitWidth(true) / 8) *
+ TTI->getMaximumUnrollFactor();
// Now that the pointers are in two lists (Reads and ReadWrites), we
// can check that there are no conflicts between each of the writes and
// between the writes to the reads.
- ValueSet WriteObjects;
+ // Note that WriteObjects duplicates the stores (indexed now by underlying
+ // objects) to avoid pointing to elements inside ReadWrites.
+ // TODO: Maybe create a new type where they can interact without duplication.
+ AliasMultiMap WriteObjects;
ValueVector TempObjects;
// Check that the read-writes do not conflict with other read-write
// pointers.
- for (I = ReadWrites.begin(), IE = ReadWrites.end(); I != IE; ++I) {
- GetUnderlyingObjects(*I, TempObjects, DL);
- for (ValueVector::iterator it=TempObjects.begin(), e=TempObjects.end();
- it != e; ++it) {
- if (!isIdentifiedObject(*it)) {
- DEBUG(dbgs() << "LV: Found an unidentified write ptr:"<< **it <<"\n");
- return RT;
+ bool AllWritesIdentified = true;
+ for (MI = ReadWrites.begin(), ME = ReadWrites.end(); MI != ME; ++MI) {
+ Value *Val = (*MI).first;
+ Instruction *Inst = (*MI).second;
+
+ GetUnderlyingObjects(Val, TempObjects, DL);
+ for (ValueVector::iterator UI=TempObjects.begin(), UE=TempObjects.end();
+ UI != UE; ++UI) {
+ if (!isIdentifiedObject(*UI)) {
+ DEBUG(dbgs() << "LV: Found an unidentified write ptr:"<< **UI <<"\n");
+ NeedRTCheck = true;
+ AllWritesIdentified = false;
}
- if (!WriteObjects.insert(*it)) {
+
+ // Never seen it before, can't alias.
+ if (WriteObjects[*UI].empty()) {
+ DEBUG(dbgs() << "LV: Adding Underlying value:" << **UI <<"\n");
+ WriteObjects[*UI].push_back(Inst);
+ continue;
+ }
+ // Direct alias found.
+ if (!AA || dyn_cast<GlobalValue>(*UI) == NULL) {
+ DEBUG(dbgs() << "LV: Found a possible write-write reorder:"
+ << **UI <<"\n");
+ return false;
+ }
+ DEBUG(dbgs() << "LV: Found a conflicting global value:"
+ << **UI <<"\n");
+ DEBUG(dbgs() << "LV: While examining store:" << *Inst <<"\n");
+ DEBUG(dbgs() << "LV: On value:" << *Val <<"\n");
+
+ // If global alias, make sure they do alias.
+ if (hasPossibleGlobalWriteReorder(*UI,
+ Inst,
+ WriteObjects,
+ MaxByteWidth)) {
DEBUG(dbgs() << "LV: Found a possible write-write reorder:"
- << **it <<"\n");
- return RT;
+ << *UI <<"\n");
+ return false;
}
+
+ // Didn't alias, insert into map for further reference.
+ WriteObjects[*UI].push_back(Inst);
}
TempObjects.clear();
}
/// Check that the reads don't conflict with the read-writes.
- for (I = Reads.begin(), IE = Reads.end(); I != IE; ++I) {
- GetUnderlyingObjects(*I, TempObjects, DL);
- for (ValueVector::iterator it=TempObjects.begin(), e=TempObjects.end();
- it != e; ++it) {
- if (!isIdentifiedObject(*it)) {
- DEBUG(dbgs() << "LV: Found an unidentified read ptr:"<< **it <<"\n");
- return RT;
+ for (MI = Reads.begin(), ME = Reads.end(); MI != ME; ++MI) {
+ Value *Val = (*MI).first;
+ GetUnderlyingObjects(Val, TempObjects, DL);
+ for (ValueVector::iterator UI=TempObjects.begin(), UE=TempObjects.end();
+ UI != UE; ++UI) {
+ // If all of the writes are identified then we don't care if the read
+ // pointer is identified or not.
+ if (!AllWritesIdentified && !isIdentifiedObject(*UI)) {
+ DEBUG(dbgs() << "LV: Found an unidentified read ptr:"<< **UI <<"\n");
+ NeedRTCheck = true;
}
- if (WriteObjects.count(*it)) {
- DEBUG(dbgs() << "LV: Found a possible read/write reorder:"
- << **it <<"\n");
- return RT;
+
+ // Never seen it before, can't alias.
+ if (WriteObjects[*UI].empty())
+ continue;
+ // Direct alias found.
+ if (!AA || dyn_cast<GlobalValue>(*UI) == NULL) {
+ DEBUG(dbgs() << "LV: Found a possible write-write reorder:"
+ << **UI <<"\n");
+ return false;
+ }
+ DEBUG(dbgs() << "LV: Found a global value: "
+ << **UI <<"\n");
+ Instruction *Inst = (*MI).second;
+ DEBUG(dbgs() << "LV: While examining load:" << *Inst <<"\n");
+ DEBUG(dbgs() << "LV: On value:" << *Val <<"\n");
+
+ // If global alias, make sure they do alias.
+ if (hasPossibleGlobalWriteReorder(*UI,
+ Inst,
+ WriteObjects,
+ MaxByteWidth)) {
+ DEBUG(dbgs() << "LV: Found a possible read-write reorder:"
+ << *UI <<"\n");
+ return false;
}
}
TempObjects.clear();
}
- // It is safe to vectorize and we don't need any runtime checks.
- DEBUG(dbgs() << "LV: We don't need a runtime memory check.\n");
- PtrRtCheck.Pointers.clear();
- PtrRtCheck.Need = false;
+ PtrRtCheck.Need = NeedRTCheck;
+ if (NeedRTCheck && !CanDoRT) {
+ DEBUG(dbgs() << "LV: We can't vectorize because we can't find " <<
+ "the array bounds.\n");
+ PtrRtCheck.reset();
+ return false;
+ }
+
+ DEBUG(dbgs() << "LV: We "<< (NeedRTCheck ? "" : "don't") <<
+ " need a runtime memory check.\n");
return true;
}
@@ -1592,38 +2712,43 @@ bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
if (Phi->getNumIncomingValues() != 2)
return false;
- // Find the possible incoming reduction variable.
- BasicBlock *BB = Phi->getParent();
- int SelfEdgeIdx = Phi->getBasicBlockIndex(BB);
- int InEdgeBlockIdx = (SelfEdgeIdx ? 0 : 1); // The other entry.
- Value *RdxStart = Phi->getIncomingValue(InEdgeBlockIdx);
+ // Reduction variables are only found in the loop header block.
+ if (Phi->getParent() != TheLoop->getHeader())
+ return false;
+
+ // Obtain the reduction start value from the value that comes from the loop
+ // preheader.
+ Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
// ExitInstruction is the single value which is used outside the loop.
// We only allow for a single reduction value to be used outside the loop.
// This includes users of the reduction, variables (which form a cycle
// which ends in the phi node).
Instruction *ExitInstruction = 0;
+ // Indicates that we found a binary operation in our scan.
+ bool FoundBinOp = false;
// Iter is our iterator. We start with the PHI node and scan for all of the
- // users of this instruction. All users must be instructions which can be
+ // users of this instruction. All users must be instructions that can be
// used as reduction variables (such as ADD). We may have a single
- // out-of-block user. They cycle must end with the original PHI.
- // Also, we can't have multiple block-local users.
+ // out-of-block user. The cycle must end with the original PHI.
Instruction *Iter = Phi;
while (true) {
- // Any reduction instr must be of one of the allowed kinds.
- if (!isReductionInstr(Iter, Kind))
+ // If the instruction has no users then this is a broken
+ // chain and can't be a reduction variable.
+ if (Iter->use_empty())
return false;
- // Did we found a user inside this block ?
+ // Did we find a user inside this loop already ?
bool FoundInBlockUser = false;
- // Did we reach the initial PHI node ?
+ // Did we reach the initial PHI node already ?
bool FoundStartPHI = false;
- // If the instruction has no users then this is a broken
- // chain and can't be a reduction variable.
- if (Iter->use_empty())
- return false;
+ // Is this a bin op ?
+ FoundBinOp |= !isa<PHINode>(Iter);
+
+ // Remember the current instruction.
+ Instruction *OldIter = Iter;
// For each of the *users* of iter.
for (Value::use_iterator it = Iter->use_begin(), e = Iter->use_end();
@@ -1634,75 +2759,171 @@ bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
FoundStartPHI = true;
continue;
}
+
// Check if we found the exit user.
BasicBlock *Parent = U->getParent();
- if (Parent != BB) {
- // We must have a single exit instruction.
+ if (!TheLoop->contains(Parent)) {
+ // Exit if you find multiple outside users.
if (ExitInstruction != 0)
return false;
ExitInstruction = Iter;
}
+
+ // We allow in-loop PHINodes which are not the original reduction PHI
+ // node. If this PHI is the only user of Iter (happens in IF w/ no ELSE
+ // structure) then don't skip this PHI.
+ if (isa<PHINode>(Iter) && isa<PHINode>(U) &&
+ U->getParent() != TheLoop->getHeader() &&
+ TheLoop->contains(U) &&
+ Iter->hasNUsesOrMore(2))
+ continue;
+
// We can't have multiple inside users.
if (FoundInBlockUser)
return false;
FoundInBlockUser = true;
+
+ // Any reduction instr must be of one of the allowed kinds.
+ if (!isReductionInstr(U, Kind))
+ return false;
+
+ // Reductions of instructions such as Div, and Sub is only
+ // possible if the LHS is the reduction variable.
+ if (!U->isCommutative() && !isa<PHINode>(U) && U->getOperand(0) != Iter)
+ return false;
+
Iter = U;
}
+ // If all uses were skipped this can't be a reduction variable.
+ if (Iter == OldIter)
+ return false;
+
// We found a reduction var if we have reached the original
// phi node and we only have a single instruction with out-of-loop
// users.
- if (FoundStartPHI && ExitInstruction) {
- // This instruction is allowed to have out-of-loop users.
- AllowedExit.insert(ExitInstruction);
-
- // Save the description of this reduction variable.
- ReductionDescriptor RD(RdxStart, ExitInstruction, Kind);
- Reductions[Phi] = RD;
- return true;
- }
+ if (FoundStartPHI) {
+ // This instruction is allowed to have out-of-loop users.
+ AllowedExit.insert(ExitInstruction);
+
+ // Save the description of this reduction variable.
+ ReductionDescriptor RD(RdxStart, ExitInstruction, Kind);
+ Reductions[Phi] = RD;
+ // We've ended the cycle. This is a reduction variable if we have an
+ // outside user and it has a binary op.
+ return FoundBinOp && ExitInstruction;
+ }
}
}
bool
LoopVectorizationLegality::isReductionInstr(Instruction *I,
ReductionKind Kind) {
- switch (I->getOpcode()) {
- default:
- return false;
- case Instruction::PHI:
- // possibly.
- return true;
- case Instruction::Add:
- case Instruction::Sub:
- return Kind == IntegerAdd;
- case Instruction::Mul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- return Kind == IntegerMult;
- case Instruction::And:
- return Kind == IntegerAnd;
- case Instruction::Or:
- return Kind == IntegerOr;
- case Instruction::Xor:
- return Kind == IntegerXor;
- }
+ bool FP = I->getType()->isFloatingPointTy();
+ bool FastMath = (FP && I->isCommutative() && I->isAssociative());
+
+ switch (I->getOpcode()) {
+ default:
+ return false;
+ case Instruction::PHI:
+ if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd))
+ return false;
+ // possibly.
+ return true;
+ case Instruction::Sub:
+ case Instruction::Add:
+ return Kind == RK_IntegerAdd;
+ case Instruction::SDiv:
+ case Instruction::UDiv:
+ case Instruction::Mul:
+ return Kind == RK_IntegerMult;
+ case Instruction::And:
+ return Kind == RK_IntegerAnd;
+ case Instruction::Or:
+ return Kind == RK_IntegerOr;
+ case Instruction::Xor:
+ return Kind == RK_IntegerXor;
+ case Instruction::FMul:
+ return Kind == RK_FloatMult && FastMath;
+ case Instruction::FAdd:
+ return Kind == RK_FloatAdd && FastMath;
+ }
}
-bool LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
- // Check that the PHI is consecutive and starts at zero.
+LoopVectorizationLegality::InductionKind
+LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
+ Type *PhiTy = Phi->getType();
+ // We only handle integer and pointer inductions variables.
+ if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
+ return IK_NoInduction;
+
+ // Check that the PHI is consecutive.
const SCEV *PhiScev = SE->getSCEV(Phi);
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
if (!AR) {
DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
- return false;
+ return IK_NoInduction;
}
const SCEV *Step = AR->getStepRecurrence(*SE);
- if (!Step->isOne()) {
- DEBUG(dbgs() << "LV: PHI stride does not equal one.\n");
+ // Integer inductions need to have a stride of one.
+ if (PhiTy->isIntegerTy()) {
+ if (Step->isOne())
+ return IK_IntInduction;
+ if (Step->isAllOnesValue())
+ return IK_ReverseIntInduction;
+ return IK_NoInduction;
+ }
+
+ // Calculate the pointer stride and check if it is consecutive.
+ const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
+ if (!C)
+ return IK_NoInduction;
+
+ assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
+ uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType());
+ if (C->getValue()->equalsInt(Size))
+ return IK_PtrInduction;
+ else if (C->getValue()->equalsInt(0 - Size))
+ return IK_ReversePtrInduction;
+
+ return IK_NoInduction;
+}
+
+bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
+ Value *In0 = const_cast<Value*>(V);
+ PHINode *PN = dyn_cast_or_null<PHINode>(In0);
+ if (!PN)
return false;
+
+ return Inductions.count(PN);
+}
+
+bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
+ assert(TheLoop->contains(BB) && "Unknown block used");
+
+ // Blocks that do not dominate the latch need predication.
+ BasicBlock* Latch = TheLoop->getLoopLatch();
+ return !DT->dominates(BB, Latch);
+}
+
+bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB) {
+ for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
+ // We don't predicate loads/stores at the moment.
+ if (it->mayReadFromMemory() || it->mayWriteToMemory() || it->mayThrow())
+ return false;
+
+ // The instructions below can trap.
+ switch (it->getOpcode()) {
+ default: continue;
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ return false;
+ }
}
+
return true;
}
@@ -1715,11 +2936,64 @@ bool LoopVectorizationLegality::hasComputableBounds(Value *Ptr) {
return AR->isAffine();
}
-unsigned
-LoopVectorizationCostModel::findBestVectorizationFactor(unsigned VF) {
- if (!VTTI) {
- DEBUG(dbgs() << "LV: No vector target information. Not vectorizing. \n");
- return 1;
+LoopVectorizationCostModel::VectorizationFactor
+LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
+ unsigned UserVF) {
+ // Width 1 means no vectorize
+ VectorizationFactor Factor = { 1U, 0U };
+ if (OptForSize && Legal->getRuntimePointerCheck()->Need) {
+ DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n");
+ return Factor;
+ }
+
+ // Find the trip count.
+ unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch());
+ DEBUG(dbgs() << "LV: Found trip count:"<<TC<<"\n");
+
+ unsigned WidestType = getWidestType();
+ unsigned WidestRegister = TTI.getRegisterBitWidth(true);
+ unsigned MaxVectorSize = WidestRegister / WidestType;
+ DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n");
+ DEBUG(dbgs() << "LV: The Widest register is:" << WidestRegister << "bits.\n");
+
+ if (MaxVectorSize == 0) {
+ DEBUG(dbgs() << "LV: The target has no vector registers.\n");
+ MaxVectorSize = 1;
+ }
+
+ assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements"
+ " into one vector!");
+
+ unsigned VF = MaxVectorSize;
+
+ // If we optimize the program for size, avoid creating the tail loop.
+ if (OptForSize) {
+ // If we are unable to calculate the trip count then don't try to vectorize.
+ if (TC < 2) {
+ DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
+ return Factor;
+ }
+
+ // Find the maximum SIMD width that can fit within the trip count.
+ VF = TC % MaxVectorSize;
+
+ if (VF == 0)
+ VF = MaxVectorSize;
+
+ // If the trip count that we found modulo the vectorization factor is not
+ // zero then we require a tail.
+ if (VF < 2) {
+ DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
+ return Factor;
+ }
+ }
+
+ if (UserVF != 0) {
+ assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
+ DEBUG(dbgs() << "LV: Using user VF "<<UserVF<<".\n");
+
+ Factor.Width = UserVF;
+ return Factor;
}
float Cost = expectedCost(1);
@@ -1739,23 +3013,278 @@ LoopVectorizationCostModel::findBestVectorizationFactor(unsigned VF) {
}
DEBUG(dbgs() << "LV: Selecting VF = : "<< Width << ".\n");
- return Width;
+ Factor.Width = Width;
+ Factor.Cost = Width * Cost;
+ return Factor;
}
-unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
- // We can only estimate the cost of single basic block loops.
- assert(1 == TheLoop->getNumBlocks() && "Too many blocks in loop");
+unsigned LoopVectorizationCostModel::getWidestType() {
+ unsigned MaxWidth = 8;
+
+ // For each block.
+ for (Loop::block_iterator bb = TheLoop->block_begin(),
+ be = TheLoop->block_end(); bb != be; ++bb) {
+ BasicBlock *BB = *bb;
+
+ // For each instruction in the loop.
+ for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
+ Type *T = it->getType();
- BasicBlock *BB = TheLoop->getHeader();
+ // Only examine Loads, Stores and PHINodes.
+ if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it))
+ continue;
+
+ // Examine PHI nodes that are reduction variables.
+ if (PHINode *PN = dyn_cast<PHINode>(it))
+ if (!Legal->getReductionVars()->count(PN))
+ continue;
+
+ // Examine the stored values.
+ if (StoreInst *ST = dyn_cast<StoreInst>(it))
+ T = ST->getValueOperand()->getType();
+
+ // Ignore loaded pointer types and stored pointer types that are not
+ // consecutive. However, we do want to take consecutive stores/loads of
+ // pointer vectors into account.
+ if (T->isPointerTy() && !isConsecutiveLoadOrStore(it))
+ continue;
+
+ MaxWidth = std::max(MaxWidth,
+ (unsigned)DL->getTypeSizeInBits(T->getScalarType()));
+ }
+ }
+
+ return MaxWidth;
+}
+
+unsigned
+LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
+ unsigned UserUF,
+ unsigned VF,
+ unsigned LoopCost) {
+
+ // -- The unroll heuristics --
+ // We unroll the loop in order to expose ILP and reduce the loop overhead.
+ // There are many micro-architectural considerations that we can't predict
+ // at this level. For example frontend pressure (on decode or fetch) due to
+ // code size, or the number and capabilities of the execution ports.
+ //
+ // We use the following heuristics to select the unroll factor:
+ // 1. If the code has reductions the we unroll in order to break the cross
+ // iteration dependency.
+ // 2. If the loop is really small then we unroll in order to reduce the loop
+ // overhead.
+ // 3. We don't unroll if we think that we will spill registers to memory due
+ // to the increased register pressure.
+
+ // Use the user preference, unless 'auto' is selected.
+ if (UserUF != 0)
+ return UserUF;
+
+ // When we optimize for size we don't unroll.
+ if (OptForSize)
+ return 1;
+
+ // Do not unroll loops with a relatively small trip count.
+ unsigned TC = SE->getSmallConstantTripCount(TheLoop,
+ TheLoop->getLoopLatch());
+ if (TC > 1 && TC < TinyTripCountUnrollThreshold)
+ return 1;
+
+ unsigned TargetVectorRegisters = TTI.getNumberOfRegisters(true);
+ DEBUG(dbgs() << "LV: The target has " << TargetVectorRegisters <<
+ " vector registers\n");
+
+ LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage();
+ // We divide by these constants so assume that we have at least one
+ // instruction that uses at least one register.
+ R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
+ R.NumInstructions = std::max(R.NumInstructions, 1U);
+
+ // We calculate the unroll factor using the following formula.
+ // Subtract the number of loop invariants from the number of available
+ // registers. These registers are used by all of the unrolled instances.
+ // Next, divide the remaining registers by the number of registers that is
+ // required by the loop, in order to estimate how many parallel instances
+ // fit without causing spills.
+ unsigned UF = (TargetVectorRegisters - R.LoopInvariantRegs) / R.MaxLocalUsers;
+
+ // Clamp the unroll factor ranges to reasonable factors.
+ unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor();
+
+ // If we did not calculate the cost for VF (because the user selected the VF)
+ // then we calculate the cost of VF here.
+ if (LoopCost == 0)
+ LoopCost = expectedCost(VF);
+
+ // Clamp the calculated UF to be between the 1 and the max unroll factor
+ // that the target allows.
+ if (UF > MaxUnrollSize)
+ UF = MaxUnrollSize;
+ else if (UF < 1)
+ UF = 1;
+
+ if (Legal->getReductionVars()->size()) {
+ DEBUG(dbgs() << "LV: Unrolling because of reductions. \n");
+ return UF;
+ }
+
+ // We want to unroll tiny loops in order to reduce the loop overhead.
+ // We assume that the cost overhead is 1 and we use the cost model
+ // to estimate the cost of the loop and unroll until the cost of the
+ // loop overhead is about 5% of the cost of the loop.
+ DEBUG(dbgs() << "LV: Loop cost is "<< LoopCost <<" \n");
+ if (LoopCost < 20) {
+ DEBUG(dbgs() << "LV: Unrolling to reduce branch cost. \n");
+ unsigned NewUF = 20/LoopCost + 1;
+ return std::min(NewUF, UF);
+ }
+
+ DEBUG(dbgs() << "LV: Not Unrolling. \n");
+ return 1;
+}
+
+LoopVectorizationCostModel::RegisterUsage
+LoopVectorizationCostModel::calculateRegisterUsage() {
+ // This function calculates the register usage by measuring the highest number
+ // of values that are alive at a single location. Obviously, this is a very
+ // rough estimation. We scan the loop in a topological order in order and
+ // assign a number to each instruction. We use RPO to ensure that defs are
+ // met before their users. We assume that each instruction that has in-loop
+ // users starts an interval. We record every time that an in-loop value is
+ // used, so we have a list of the first and last occurrences of each
+ // instruction. Next, we transpose this data structure into a multi map that
+ // holds the list of intervals that *end* at a specific location. This multi
+ // map allows us to perform a linear search. We scan the instructions linearly
+ // and record each time that a new interval starts, by placing it in a set.
+ // If we find this value in the multi-map then we remove it from the set.
+ // The max register usage is the maximum size of the set.
+ // We also search for instructions that are defined outside the loop, but are
+ // used inside the loop. We need this number separately from the max-interval
+ // usage number because when we unroll, loop-invariant values do not take
+ // more register.
+ LoopBlocksDFS DFS(TheLoop);
+ DFS.perform(LI);
+
+ RegisterUsage R;
+ R.NumInstructions = 0;
+
+ // Each 'key' in the map opens a new interval. The values
+ // of the map are the index of the 'last seen' usage of the
+ // instruction that is the key.
+ typedef DenseMap<Instruction*, unsigned> IntervalMap;
+ // Maps instruction to its index.
+ DenseMap<unsigned, Instruction*> IdxToInstr;
+ // Marks the end of each interval.
+ IntervalMap EndPoint;
+ // Saves the list of instruction indices that are used in the loop.
+ SmallSet<Instruction*, 8> Ends;
+ // Saves the list of values that are used in the loop but are
+ // defined outside the loop, such as arguments and constants.
+ SmallPtrSet<Value*, 8> LoopInvariants;
+
+ unsigned Index = 0;
+ for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
+ be = DFS.endRPO(); bb != be; ++bb) {
+ R.NumInstructions += (*bb)->size();
+ for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
+ ++it) {
+ Instruction *I = it;
+ IdxToInstr[Index++] = I;
+
+ // Save the end location of each USE.
+ for (unsigned i = 0; i < I->getNumOperands(); ++i) {
+ Value *U = I->getOperand(i);
+ Instruction *Instr = dyn_cast<Instruction>(U);
+
+ // Ignore non-instruction values such as arguments, constants, etc.
+ if (!Instr) continue;
+
+ // If this instruction is outside the loop then record it and continue.
+ if (!TheLoop->contains(Instr)) {
+ LoopInvariants.insert(Instr);
+ continue;
+ }
+
+ // Overwrite previous end points.
+ EndPoint[Instr] = Index;
+ Ends.insert(Instr);
+ }
+ }
+ }
+
+ // Saves the list of intervals that end with the index in 'key'.
+ typedef SmallVector<Instruction*, 2> InstrList;
+ DenseMap<unsigned, InstrList> TransposeEnds;
+
+ // Transpose the EndPoints to a list of values that end at each index.
+ for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end();
+ it != e; ++it)
+ TransposeEnds[it->second].push_back(it->first);
+
+ SmallSet<Instruction*, 8> OpenIntervals;
+ unsigned MaxUsage = 0;
+
+
+ DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
+ for (unsigned int i = 0; i < Index; ++i) {
+ Instruction *I = IdxToInstr[i];
+ // Ignore instructions that are never used within the loop.
+ if (!Ends.count(I)) continue;
+
+ // Remove all of the instructions that end at this location.
+ InstrList &List = TransposeEnds[i];
+ for (unsigned int j=0, e = List.size(); j < e; ++j)
+ OpenIntervals.erase(List[j]);
+
+ // Count the number of live interals.
+ MaxUsage = std::max(MaxUsage, OpenIntervals.size());
+
+ DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " <<
+ OpenIntervals.size() <<"\n");
+
+ // Add the current instruction to the list of open intervals.
+ OpenIntervals.insert(I);
+ }
+
+ unsigned Invariant = LoopInvariants.size();
+ DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << " \n");
+ DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << " \n");
+ DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << " \n");
+
+ R.LoopInvariantRegs = Invariant;
+ R.MaxLocalUsers = MaxUsage;
+ return R;
+}
+
+unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
unsigned Cost = 0;
- // For each instruction in the old loop.
- for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
- Instruction *Inst = it;
- unsigned C = getInstructionCost(Inst, VF);
- Cost += C;
- DEBUG(dbgs() << "LV: Found an estimated cost of "<< C <<" for VF "<< VF <<
- " For instruction: "<< *Inst << "\n");
+ // For each block.
+ for (Loop::block_iterator bb = TheLoop->block_begin(),
+ be = TheLoop->block_end(); bb != be; ++bb) {
+ unsigned BlockCost = 0;
+ BasicBlock *BB = *bb;
+
+ // For each instruction in the old loop.
+ for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
+ // Skip dbg intrinsics.
+ if (isa<DbgInfoIntrinsic>(it))
+ continue;
+
+ unsigned C = getInstructionCost(it, VF);
+ Cost += C;
+ DEBUG(dbgs() << "LV: Found an estimated cost of "<< C <<" for VF " <<
+ VF << " For instruction: "<< *it << "\n");
+ }
+
+ // We assume that if-converted blocks have a 50% chance of being executed.
+ // When the code is scalar then some of the blocks are avoided due to CF.
+ // When the code is vectorized we execute all code paths.
+ if (Legal->blockNeedsPredication(*bb) && VF == 1)
+ BlockCost /= 2;
+
+ Cost += BlockCost;
}
return Cost;
@@ -1763,8 +3292,6 @@ unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
unsigned
LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
- assert(VTTI && "Invalid vector target transformation info");
-
// If we know that this instruction will remain uniform, check the cost of
// the scalar version.
if (Legal->isUniformAfterVectorization(I))
@@ -1773,147 +3300,173 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
Type *RetTy = I->getType();
Type *VectorTy = ToVectorTy(RetTy, VF);
-
// TODO: We need to estimate the cost of intrinsic calls.
switch (I->getOpcode()) {
- case Instruction::GetElementPtr:
- // We mark this instruction as zero-cost because scalar GEPs are usually
- // lowered to the intruction addressing mode. At the moment we don't
- // generate vector geps.
- return 0;
- case Instruction::Br: {
- return VTTI->getCFInstrCost(I->getOpcode());
- }
- case Instruction::PHI:
- return 0;
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- return VTTI->getArithmeticInstrCost(I->getOpcode(), VectorTy);
- }
- case Instruction::Select: {
- SelectInst *SI = cast<SelectInst>(I);
- const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
- bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
- Type *CondTy = SI->getCondition()->getType();
- if (ScalarCond)
- CondTy = VectorType::get(CondTy, VF);
-
- return VTTI->getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
- }
- case Instruction::ICmp:
- case Instruction::FCmp: {
- Type *ValTy = I->getOperand(0)->getType();
- VectorTy = ToVectorTy(ValTy, VF);
- return VTTI->getCmpSelInstrCost(I->getOpcode(), VectorTy);
- }
- case Instruction::Store: {
- StoreInst *SI = cast<StoreInst>(I);
- Type *ValTy = SI->getValueOperand()->getType();
- VectorTy = ToVectorTy(ValTy, VF);
-
- if (VF == 1)
- return VTTI->getMemoryOpCost(I->getOpcode(), ValTy,
- SI->getAlignment(), SI->getPointerAddressSpace());
-
- // Scalarized stores.
- if (!Legal->isConsecutiveGep(SI->getPointerOperand())) {
- unsigned Cost = 0;
- unsigned ExtCost = VTTI->getInstrCost(Instruction::ExtractElement,
- ValTy);
- // The cost of extracting from the value vector.
- Cost += VF * (ExtCost);
- // The cost of the scalar stores.
- Cost += VF * VTTI->getMemoryOpCost(I->getOpcode(),
- ValTy->getScalarType(),
- SI->getAlignment(),
- SI->getPointerAddressSpace());
- return Cost;
- }
-
- // Wide stores.
- return VTTI->getMemoryOpCost(I->getOpcode(), VectorTy, SI->getAlignment(),
- SI->getPointerAddressSpace());
- }
- case Instruction::Load: {
- LoadInst *LI = cast<LoadInst>(I);
-
- if (VF == 1)
- return VTTI->getMemoryOpCost(I->getOpcode(), RetTy,
- LI->getAlignment(),
- LI->getPointerAddressSpace());
-
- // Scalarized loads.
- if (!Legal->isConsecutiveGep(LI->getPointerOperand())) {
- unsigned Cost = 0;
- unsigned InCost = VTTI->getInstrCost(Instruction::InsertElement, RetTy);
- // The cost of inserting the loaded value into the result vector.
- Cost += VF * (InCost);
- // The cost of the scalar stores.
- Cost += VF * VTTI->getMemoryOpCost(I->getOpcode(),
- RetTy->getScalarType(),
- LI->getAlignment(),
- LI->getPointerAddressSpace());
- return Cost;
+ case Instruction::GetElementPtr:
+ // We mark this instruction as zero-cost because the cost of GEPs in
+ // vectorized code depends on whether the corresponding memory instruction
+ // is scalarized or not. Therefore, we handle GEPs with the memory
+ // instruction cost.
+ return 0;
+ case Instruction::Br: {
+ return TTI.getCFInstrCost(I->getOpcode());
+ }
+ case Instruction::PHI:
+ //TODO: IF-converted IFs become selects.
+ return 0;
+ case Instruction::Add:
+ case Instruction::FAdd:
+ case Instruction::Sub:
+ case Instruction::FSub:
+ case Instruction::Mul:
+ case Instruction::FMul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::FDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::FRem:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor: {
+ // Certain instructions can be cheaper to vectorize if they have a constant
+ // second vector operand. One example of this are shifts on x86.
+ TargetTransformInfo::OperandValueKind Op1VK =
+ TargetTransformInfo::OK_AnyValue;
+ TargetTransformInfo::OperandValueKind Op2VK =
+ TargetTransformInfo::OK_AnyValue;
+
+ if (isa<ConstantInt>(I->getOperand(1)))
+ Op2VK = TargetTransformInfo::OK_UniformConstantValue;
+
+ return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK);
+ }
+ case Instruction::Select: {
+ SelectInst *SI = cast<SelectInst>(I);
+ const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
+ bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
+ Type *CondTy = SI->getCondition()->getType();
+ if (!ScalarCond)
+ CondTy = VectorType::get(CondTy, VF);
+
+ return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
+ }
+ case Instruction::ICmp:
+ case Instruction::FCmp: {
+ Type *ValTy = I->getOperand(0)->getType();
+ VectorTy = ToVectorTy(ValTy, VF);
+ return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy);
+ }
+ case Instruction::Store:
+ case Instruction::Load: {
+ StoreInst *SI = dyn_cast<StoreInst>(I);
+ LoadInst *LI = dyn_cast<LoadInst>(I);
+ Type *ValTy = (SI ? SI->getValueOperand()->getType() :
+ LI->getType());
+ VectorTy = ToVectorTy(ValTy, VF);
+
+ unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment();
+ unsigned AS = SI ? SI->getPointerAddressSpace() :
+ LI->getPointerAddressSpace();
+ Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand();
+ // We add the cost of address computation here instead of with the gep
+ // instruction because only here we know whether the operation is
+ // scalarized.
+ if (VF == 1)
+ return TTI.getAddressComputationCost(VectorTy) +
+ TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
+
+ // Scalarized loads/stores.
+ int Stride = Legal->isConsecutivePtr(Ptr);
+ bool Reverse = Stride < 0;
+ if (0 == Stride) {
+ unsigned Cost = 0;
+ // The cost of extracting from the value vector and pointer vector.
+ Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
+ for (unsigned i = 0; i < VF; ++i) {
+ // The cost of extracting the pointer operand.
+ Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
+ // In case of STORE, the cost of ExtractElement from the vector.
+ // In case of LOAD, the cost of InsertElement into the returned
+ // vector.
+ Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement :
+ Instruction::InsertElement,
+ VectorTy, i);
}
- // Wide loads.
- return VTTI->getMemoryOpCost(I->getOpcode(), VectorTy, LI->getAlignment(),
- LI->getPointerAddressSpace());
- }
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- case Instruction::Trunc:
- case Instruction::FPTrunc:
- case Instruction::BitCast: {
- Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF);
- return VTTI->getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
+ // The cost of the scalar loads/stores.
+ Cost += VF * TTI.getAddressComputationCost(ValTy->getScalarType());
+ Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
+ Alignment, AS);
+ return Cost;
}
- default: {
- // We are scalarizing the instruction. Return the cost of the scalar
- // instruction, plus the cost of insert and extract into vector
- // elements, times the vector width.
- unsigned Cost = 0;
- bool IsVoid = RetTy->isVoidTy();
+ // Wide load/stores.
+ unsigned Cost = TTI.getAddressComputationCost(VectorTy);
+ Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
- unsigned InsCost = (IsVoid ? 0 :
- VTTI->getInstrCost(Instruction::InsertElement,
- VectorTy));
-
- unsigned ExtCost = VTTI->getInstrCost(Instruction::ExtractElement,
- VectorTy);
+ if (Reverse)
+ Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
+ VectorTy, 0);
+ return Cost;
+ }
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::FPExt:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::SIToFP:
+ case Instruction::UIToFP:
+ case Instruction::Trunc:
+ case Instruction::FPTrunc:
+ case Instruction::BitCast: {
+ // We optimize the truncation of induction variable.
+ // The cost of these is the same as the scalar operation.
+ if (I->getOpcode() == Instruction::Trunc &&
+ Legal->isInductionVariable(I->getOperand(0)))
+ return TTI.getCastInstrCost(I->getOpcode(), I->getType(),
+ I->getOperand(0)->getType());
+
+ Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF);
+ return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
+ }
+ case Instruction::Call: {
+ CallInst *CI = cast<CallInst>(I);
+ Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
+ assert(ID && "Not an intrinsic call!");
+ Type *RetTy = ToVectorTy(CI->getType(), VF);
+ SmallVector<Type*, 4> Tys;
+ for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
+ Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF));
+ return TTI.getIntrinsicInstrCost(ID, RetTy, Tys);
+ }
+ default: {
+ // We are scalarizing the instruction. Return the cost of the scalar
+ // instruction, plus the cost of insert and extract into vector
+ // elements, times the vector width.
+ unsigned Cost = 0;
+
+ if (!RetTy->isVoidTy() && VF != 1) {
+ unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement,
+ VectorTy);
+ unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement,
+ VectorTy);
// The cost of inserting the results plus extracting each one of the
// operands.
Cost += VF * (InsCost + ExtCost * I->getNumOperands());
-
- // The cost of executing VF copies of the scalar instruction.
- Cost += VF * VTTI->getInstrCost(I->getOpcode(), RetTy);
- return Cost;
}
+
+ // The cost of executing VF copies of the scalar instruction. This opcode
+ // is unknown. Assume that it is the same as 'mul'.
+ Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy);
+ return Cost;
+ }
}// end of switch.
}
@@ -1923,12 +3476,11 @@ Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) {
return VectorType::get(Scalar, VF);
}
-} // namespace
-
char LoopVectorize::ID = 0;
static const char lv_name[] = "Loop Vectorization";
INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
@@ -1939,3 +3491,14 @@ namespace llvm {
}
}
+bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
+ // Check for a store.
+ if (StoreInst *ST = dyn_cast<StoreInst>(Inst))
+ return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0;
+
+ // Check for a load.
+ if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
+ return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0;
+
+ return false;
+}
diff --git a/contrib/llvm/lib/Transforms/Vectorize/Vectorize.cpp b/contrib/llvm/lib/Transforms/Vectorize/Vectorize.cpp
index d26973a..19eefd2 100644
--- a/contrib/llvm/lib/Transforms/Vectorize/Vectorize.cpp
+++ b/contrib/llvm/lib/Transforms/Vectorize/Vectorize.cpp
@@ -1,4 +1,4 @@
-//===-- Vectorize.cpp -----------------------------------------------------===//
+ //===-- Vectorize.cpp -----------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
@@ -13,13 +13,13 @@
//
//===----------------------------------------------------------------------===//
-#include "llvm-c/Transforms/Vectorize.h"
+#include "llvm/Transforms/Vectorize.h"
#include "llvm-c/Initialization.h"
-#include "llvm/InitializePasses.h"
-#include "llvm/PassManager.h"
+#include "llvm-c/Transforms/Vectorize.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/Verifier.h"
-#include "llvm/Transforms/Vectorize.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/PassManager.h"
using namespace llvm;
OpenPOWER on IntegriCloud