summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Vectorize
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Vectorize')
-rw-r--r--contrib/llvm/lib/Transforms/Vectorize/BBVectorize.cpp3183
-rw-r--r--contrib/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp5157
-rw-r--r--contrib/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp2665
-rw-r--r--contrib/llvm/lib/Transforms/Vectorize/Vectorize.cpp48
4 files changed, 11053 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Vectorize/BBVectorize.cpp b/contrib/llvm/lib/Transforms/Vectorize/BBVectorize.cpp
new file mode 100644
index 0000000..c5e1dcb
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Vectorize/BBVectorize.cpp
@@ -0,0 +1,3183 @@
+//===- BBVectorize.cpp - A Basic-Block Vectorizer -------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements a basic-block vectorization pass. The algorithm was
+// inspired by that used by the Vienna MAP Vectorizor by Franchetti and Kral,
+// et al. It works by looking for chains of pairable operations and then
+// pairing them.
+//
+//===----------------------------------------------------------------------===//
+
+#define BBV_NAME "bb-vectorize"
+#define DEBUG_TYPE BBV_NAME
+#include "llvm/Transforms/Vectorize.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AliasSetTracker.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ValueHandle.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include <algorithm>
+using namespace llvm;
+
+static cl::opt<bool>
+IgnoreTargetInfo("bb-vectorize-ignore-target-info", cl::init(false),
+ cl::Hidden, cl::desc("Ignore target information"));
+
+static cl::opt<unsigned>
+ReqChainDepth("bb-vectorize-req-chain-depth", cl::init(6), cl::Hidden,
+ cl::desc("The required chain depth for vectorization"));
+
+static cl::opt<bool>
+UseChainDepthWithTI("bb-vectorize-use-chain-depth", cl::init(false),
+ cl::Hidden, cl::desc("Use the chain depth requirement with"
+ " target information"));
+
+static cl::opt<unsigned>
+SearchLimit("bb-vectorize-search-limit", cl::init(400), cl::Hidden,
+ cl::desc("The maximum search distance for instruction pairs"));
+
+static cl::opt<bool>
+SplatBreaksChain("bb-vectorize-splat-breaks-chain", cl::init(false), cl::Hidden,
+ cl::desc("Replicating one element to a pair breaks the chain"));
+
+static cl::opt<unsigned>
+VectorBits("bb-vectorize-vector-bits", cl::init(128), cl::Hidden,
+ cl::desc("The size of the native vector registers"));
+
+static cl::opt<unsigned>
+MaxIter("bb-vectorize-max-iter", cl::init(0), cl::Hidden,
+ cl::desc("The maximum number of pairing iterations"));
+
+static cl::opt<bool>
+Pow2LenOnly("bb-vectorize-pow2-len-only", cl::init(false), cl::Hidden,
+ cl::desc("Don't try to form non-2^n-length vectors"));
+
+static cl::opt<unsigned>
+MaxInsts("bb-vectorize-max-instr-per-group", cl::init(500), cl::Hidden,
+ cl::desc("The maximum number of pairable instructions per group"));
+
+static cl::opt<unsigned>
+MaxPairs("bb-vectorize-max-pairs-per-group", cl::init(3000), cl::Hidden,
+ cl::desc("The maximum number of candidate instruction pairs per group"));
+
+static cl::opt<unsigned>
+MaxCandPairsForCycleCheck("bb-vectorize-max-cycle-check-pairs", cl::init(200),
+ cl::Hidden, cl::desc("The maximum number of candidate pairs with which to use"
+ " a full cycle check"));
+
+static cl::opt<bool>
+NoBools("bb-vectorize-no-bools", cl::init(false), cl::Hidden,
+ cl::desc("Don't try to vectorize boolean (i1) values"));
+
+static cl::opt<bool>
+NoInts("bb-vectorize-no-ints", cl::init(false), cl::Hidden,
+ cl::desc("Don't try to vectorize integer values"));
+
+static cl::opt<bool>
+NoFloats("bb-vectorize-no-floats", cl::init(false), cl::Hidden,
+ cl::desc("Don't try to vectorize floating-point values"));
+
+// FIXME: This should default to false once pointer vector support works.
+static cl::opt<bool>
+NoPointers("bb-vectorize-no-pointers", cl::init(/*false*/ true), cl::Hidden,
+ cl::desc("Don't try to vectorize pointer values"));
+
+static cl::opt<bool>
+NoCasts("bb-vectorize-no-casts", cl::init(false), cl::Hidden,
+ cl::desc("Don't try to vectorize casting (conversion) operations"));
+
+static cl::opt<bool>
+NoMath("bb-vectorize-no-math", cl::init(false), cl::Hidden,
+ cl::desc("Don't try to vectorize floating-point math intrinsics"));
+
+static cl::opt<bool>
+NoFMA("bb-vectorize-no-fma", cl::init(false), cl::Hidden,
+ cl::desc("Don't try to vectorize the fused-multiply-add intrinsic"));
+
+static cl::opt<bool>
+NoSelect("bb-vectorize-no-select", cl::init(false), cl::Hidden,
+ cl::desc("Don't try to vectorize select instructions"));
+
+static cl::opt<bool>
+NoCmp("bb-vectorize-no-cmp", cl::init(false), cl::Hidden,
+ cl::desc("Don't try to vectorize comparison instructions"));
+
+static cl::opt<bool>
+NoGEP("bb-vectorize-no-gep", cl::init(false), cl::Hidden,
+ cl::desc("Don't try to vectorize getelementptr instructions"));
+
+static cl::opt<bool>
+NoMemOps("bb-vectorize-no-mem-ops", cl::init(false), cl::Hidden,
+ cl::desc("Don't try to vectorize loads and stores"));
+
+static cl::opt<bool>
+AlignedOnly("bb-vectorize-aligned-only", cl::init(false), cl::Hidden,
+ cl::desc("Only generate aligned loads and stores"));
+
+static cl::opt<bool>
+NoMemOpBoost("bb-vectorize-no-mem-op-boost",
+ cl::init(false), cl::Hidden,
+ cl::desc("Don't boost the chain-depth contribution of loads and stores"));
+
+static cl::opt<bool>
+FastDep("bb-vectorize-fast-dep", cl::init(false), cl::Hidden,
+ cl::desc("Use a fast instruction dependency analysis"));
+
+#ifndef NDEBUG
+static cl::opt<bool>
+DebugInstructionExamination("bb-vectorize-debug-instruction-examination",
+ cl::init(false), cl::Hidden,
+ cl::desc("When debugging is enabled, output information on the"
+ " instruction-examination process"));
+static cl::opt<bool>
+DebugCandidateSelection("bb-vectorize-debug-candidate-selection",
+ cl::init(false), cl::Hidden,
+ cl::desc("When debugging is enabled, output information on the"
+ " candidate-selection process"));
+static cl::opt<bool>
+DebugPairSelection("bb-vectorize-debug-pair-selection",
+ cl::init(false), cl::Hidden,
+ cl::desc("When debugging is enabled, output information on the"
+ " pair-selection process"));
+static cl::opt<bool>
+DebugCycleCheck("bb-vectorize-debug-cycle-check",
+ cl::init(false), cl::Hidden,
+ cl::desc("When debugging is enabled, output information on the"
+ " cycle-checking process"));
+
+static cl::opt<bool>
+PrintAfterEveryPair("bb-vectorize-debug-print-after-every-pair",
+ cl::init(false), cl::Hidden,
+ cl::desc("When debugging is enabled, dump the basic block after"
+ " every pair is fused"));
+#endif
+
+STATISTIC(NumFusedOps, "Number of operations fused by bb-vectorize");
+
+namespace {
+ struct BBVectorize : public BasicBlockPass {
+ static char ID; // Pass identification, replacement for typeid
+
+ const VectorizeConfig Config;
+
+ BBVectorize(const VectorizeConfig &C = VectorizeConfig())
+ : BasicBlockPass(ID), Config(C) {
+ initializeBBVectorizePass(*PassRegistry::getPassRegistry());
+ }
+
+ BBVectorize(Pass *P, const VectorizeConfig &C)
+ : BasicBlockPass(ID), Config(C) {
+ AA = &P->getAnalysis<AliasAnalysis>();
+ DT = &P->getAnalysis<DominatorTree>();
+ SE = &P->getAnalysis<ScalarEvolution>();
+ TD = P->getAnalysisIfAvailable<DataLayout>();
+ TTI = IgnoreTargetInfo ? 0 : &P->getAnalysis<TargetTransformInfo>();
+ }
+
+ typedef std::pair<Value *, Value *> ValuePair;
+ typedef std::pair<ValuePair, int> ValuePairWithCost;
+ typedef std::pair<ValuePair, size_t> ValuePairWithDepth;
+ typedef std::pair<ValuePair, ValuePair> VPPair; // A ValuePair pair
+ typedef std::pair<VPPair, unsigned> VPPairWithType;
+
+ AliasAnalysis *AA;
+ DominatorTree *DT;
+ ScalarEvolution *SE;
+ DataLayout *TD;
+ const TargetTransformInfo *TTI;
+
+ // FIXME: const correct?
+
+ bool vectorizePairs(BasicBlock &BB, bool NonPow2Len = false);
+
+ bool getCandidatePairs(BasicBlock &BB,
+ BasicBlock::iterator &Start,
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ DenseSet<ValuePair> &FixedOrderPairs,
+ DenseMap<ValuePair, int> &CandidatePairCostSavings,
+ std::vector<Value *> &PairableInsts, bool NonPow2Len);
+
+ // FIXME: The current implementation does not account for pairs that
+ // are connected in multiple ways. For example:
+ // C1 = A1 / A2; C2 = A2 / A1 (which may be both direct and a swap)
+ enum PairConnectionType {
+ PairConnectionDirect,
+ PairConnectionSwap,
+ PairConnectionSplat
+ };
+
+ void computeConnectedPairs(
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ DenseSet<ValuePair> &CandidatePairsSet,
+ std::vector<Value *> &PairableInsts,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseMap<VPPair, unsigned> &PairConnectionTypes);
+
+ void buildDepMap(BasicBlock &BB,
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ std::vector<Value *> &PairableInsts,
+ DenseSet<ValuePair> &PairableInstUsers);
+
+ void choosePairs(DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ DenseSet<ValuePair> &CandidatePairsSet,
+ DenseMap<ValuePair, int> &CandidatePairCostSavings,
+ std::vector<Value *> &PairableInsts,
+ DenseSet<ValuePair> &FixedOrderPairs,
+ DenseMap<VPPair, unsigned> &PairConnectionTypes,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps,
+ DenseSet<ValuePair> &PairableInstUsers,
+ DenseMap<Value *, Value *>& ChosenPairs);
+
+ void fuseChosenPairs(BasicBlock &BB,
+ std::vector<Value *> &PairableInsts,
+ DenseMap<Value *, Value *>& ChosenPairs,
+ DenseSet<ValuePair> &FixedOrderPairs,
+ DenseMap<VPPair, unsigned> &PairConnectionTypes,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps);
+
+
+ bool isInstVectorizable(Instruction *I, bool &IsSimpleLoadStore);
+
+ bool areInstsCompatible(Instruction *I, Instruction *J,
+ bool IsSimpleLoadStore, bool NonPow2Len,
+ int &CostSavings, int &FixedOrder);
+
+ bool trackUsesOfI(DenseSet<Value *> &Users,
+ AliasSetTracker &WriteSet, Instruction *I,
+ Instruction *J, bool UpdateUsers = true,
+ DenseSet<ValuePair> *LoadMoveSetPairs = 0);
+
+ void computePairsConnectedTo(
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ DenseSet<ValuePair> &CandidatePairsSet,
+ std::vector<Value *> &PairableInsts,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseMap<VPPair, unsigned> &PairConnectionTypes,
+ ValuePair P);
+
+ bool pairsConflict(ValuePair P, ValuePair Q,
+ DenseSet<ValuePair> &PairableInstUsers,
+ DenseMap<ValuePair, std::vector<ValuePair> >
+ *PairableInstUserMap = 0,
+ DenseSet<VPPair> *PairableInstUserPairSet = 0);
+
+ bool pairWillFormCycle(ValuePair P,
+ DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUsers,
+ DenseSet<ValuePair> &CurrentPairs);
+
+ void pruneDAGFor(
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ std::vector<Value *> &PairableInsts,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseSet<ValuePair> &PairableInstUsers,
+ DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
+ DenseSet<VPPair> &PairableInstUserPairSet,
+ DenseMap<Value *, Value *> &ChosenPairs,
+ DenseMap<ValuePair, size_t> &DAG,
+ DenseSet<ValuePair> &PrunedDAG, ValuePair J,
+ bool UseCycleCheck);
+
+ void buildInitialDAGFor(
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ DenseSet<ValuePair> &CandidatePairsSet,
+ std::vector<Value *> &PairableInsts,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseSet<ValuePair> &PairableInstUsers,
+ DenseMap<Value *, Value *> &ChosenPairs,
+ DenseMap<ValuePair, size_t> &DAG, ValuePair J);
+
+ void findBestDAGFor(
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ DenseSet<ValuePair> &CandidatePairsSet,
+ DenseMap<ValuePair, int> &CandidatePairCostSavings,
+ std::vector<Value *> &PairableInsts,
+ DenseSet<ValuePair> &FixedOrderPairs,
+ DenseMap<VPPair, unsigned> &PairConnectionTypes,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps,
+ DenseSet<ValuePair> &PairableInstUsers,
+ DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
+ DenseSet<VPPair> &PairableInstUserPairSet,
+ DenseMap<Value *, Value *> &ChosenPairs,
+ DenseSet<ValuePair> &BestDAG, size_t &BestMaxDepth,
+ int &BestEffSize, Value *II, std::vector<Value *>&JJ,
+ bool UseCycleCheck);
+
+ Value *getReplacementPointerInput(LLVMContext& Context, Instruction *I,
+ Instruction *J, unsigned o);
+
+ void fillNewShuffleMask(LLVMContext& Context, Instruction *J,
+ unsigned MaskOffset, unsigned NumInElem,
+ unsigned NumInElem1, unsigned IdxOffset,
+ std::vector<Constant*> &Mask);
+
+ Value *getReplacementShuffleMask(LLVMContext& Context, Instruction *I,
+ Instruction *J);
+
+ bool expandIEChain(LLVMContext& Context, Instruction *I, Instruction *J,
+ unsigned o, Value *&LOp, unsigned numElemL,
+ Type *ArgTypeL, Type *ArgTypeR, bool IBeforeJ,
+ unsigned IdxOff = 0);
+
+ Value *getReplacementInput(LLVMContext& Context, Instruction *I,
+ Instruction *J, unsigned o, bool IBeforeJ);
+
+ void getReplacementInputsForPair(LLVMContext& Context, Instruction *I,
+ Instruction *J, SmallVectorImpl<Value *> &ReplacedOperands,
+ bool IBeforeJ);
+
+ void replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
+ Instruction *J, Instruction *K,
+ Instruction *&InsertionPt, Instruction *&K1,
+ Instruction *&K2);
+
+ void collectPairLoadMoveSet(BasicBlock &BB,
+ DenseMap<Value *, Value *> &ChosenPairs,
+ DenseMap<Value *, std::vector<Value *> > &LoadMoveSet,
+ DenseSet<ValuePair> &LoadMoveSetPairs,
+ Instruction *I);
+
+ void collectLoadMoveSet(BasicBlock &BB,
+ std::vector<Value *> &PairableInsts,
+ DenseMap<Value *, Value *> &ChosenPairs,
+ DenseMap<Value *, std::vector<Value *> > &LoadMoveSet,
+ DenseSet<ValuePair> &LoadMoveSetPairs);
+
+ bool canMoveUsesOfIAfterJ(BasicBlock &BB,
+ DenseSet<ValuePair> &LoadMoveSetPairs,
+ Instruction *I, Instruction *J);
+
+ void moveUsesOfIAfterJ(BasicBlock &BB,
+ DenseSet<ValuePair> &LoadMoveSetPairs,
+ Instruction *&InsertionPt,
+ Instruction *I, Instruction *J);
+
+ void combineMetadata(Instruction *K, const Instruction *J);
+
+ bool vectorizeBB(BasicBlock &BB) {
+ if (!DT->isReachableFromEntry(&BB)) {
+ DEBUG(dbgs() << "BBV: skipping unreachable " << BB.getName() <<
+ " in " << BB.getParent()->getName() << "\n");
+ return false;
+ }
+
+ DEBUG(if (TTI) dbgs() << "BBV: using target information\n");
+
+ bool changed = false;
+ // Iterate a sufficient number of times to merge types of size 1 bit,
+ // then 2 bits, then 4, etc. up to half of the target vector width of the
+ // target vector register.
+ unsigned n = 1;
+ for (unsigned v = 2;
+ (TTI || v <= Config.VectorBits) &&
+ (!Config.MaxIter || n <= Config.MaxIter);
+ v *= 2, ++n) {
+ DEBUG(dbgs() << "BBV: fusing loop #" << n <<
+ " for " << BB.getName() << " in " <<
+ BB.getParent()->getName() << "...\n");
+ if (vectorizePairs(BB))
+ changed = true;
+ else
+ break;
+ }
+
+ if (changed && !Pow2LenOnly) {
+ ++n;
+ for (; !Config.MaxIter || n <= Config.MaxIter; ++n) {
+ DEBUG(dbgs() << "BBV: fusing for non-2^n-length vectors loop #: " <<
+ n << " for " << BB.getName() << " in " <<
+ BB.getParent()->getName() << "...\n");
+ if (!vectorizePairs(BB, true)) break;
+ }
+ }
+
+ DEBUG(dbgs() << "BBV: done!\n");
+ return changed;
+ }
+
+ virtual bool runOnBasicBlock(BasicBlock &BB) {
+ AA = &getAnalysis<AliasAnalysis>();
+ DT = &getAnalysis<DominatorTree>();
+ SE = &getAnalysis<ScalarEvolution>();
+ TD = getAnalysisIfAvailable<DataLayout>();
+ TTI = IgnoreTargetInfo ? 0 : &getAnalysis<TargetTransformInfo>();
+
+ return vectorizeBB(BB);
+ }
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ BasicBlockPass::getAnalysisUsage(AU);
+ AU.addRequired<AliasAnalysis>();
+ AU.addRequired<DominatorTree>();
+ AU.addRequired<ScalarEvolution>();
+ AU.addRequired<TargetTransformInfo>();
+ AU.addPreserved<AliasAnalysis>();
+ AU.addPreserved<DominatorTree>();
+ AU.addPreserved<ScalarEvolution>();
+ AU.setPreservesCFG();
+ }
+
+ static inline VectorType *getVecTypeForPair(Type *ElemTy, Type *Elem2Ty) {
+ assert(ElemTy->getScalarType() == Elem2Ty->getScalarType() &&
+ "Cannot form vector from incompatible scalar types");
+ Type *STy = ElemTy->getScalarType();
+
+ unsigned numElem;
+ if (VectorType *VTy = dyn_cast<VectorType>(ElemTy)) {
+ numElem = VTy->getNumElements();
+ } else {
+ numElem = 1;
+ }
+
+ if (VectorType *VTy = dyn_cast<VectorType>(Elem2Ty)) {
+ numElem += VTy->getNumElements();
+ } else {
+ numElem += 1;
+ }
+
+ return VectorType::get(STy, numElem);
+ }
+
+ static inline void getInstructionTypes(Instruction *I,
+ Type *&T1, Type *&T2) {
+ if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
+ // For stores, it is the value type, not the pointer type that matters
+ // because the value is what will come from a vector register.
+
+ Value *IVal = SI->getValueOperand();
+ T1 = IVal->getType();
+ } else {
+ T1 = I->getType();
+ }
+
+ if (CastInst *CI = dyn_cast<CastInst>(I))
+ T2 = CI->getSrcTy();
+ else
+ T2 = T1;
+
+ if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
+ T2 = SI->getCondition()->getType();
+ } else if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(I)) {
+ T2 = SI->getOperand(0)->getType();
+ } else if (CmpInst *CI = dyn_cast<CmpInst>(I)) {
+ T2 = CI->getOperand(0)->getType();
+ }
+ }
+
+ // Returns the weight associated with the provided value. A chain of
+ // candidate pairs has a length given by the sum of the weights of its
+ // members (one weight per pair; the weight of each member of the pair
+ // is assumed to be the same). This length is then compared to the
+ // chain-length threshold to determine if a given chain is significant
+ // enough to be vectorized. The length is also used in comparing
+ // candidate chains where longer chains are considered to be better.
+ // Note: when this function returns 0, the resulting instructions are
+ // not actually fused.
+ inline size_t getDepthFactor(Value *V) {
+ // InsertElement and ExtractElement have a depth factor of zero. This is
+ // for two reasons: First, they cannot be usefully fused. Second, because
+ // the pass generates a lot of these, they can confuse the simple metric
+ // used to compare the dags in the next iteration. Thus, giving them a
+ // weight of zero allows the pass to essentially ignore them in
+ // subsequent iterations when looking for vectorization opportunities
+ // while still tracking dependency chains that flow through those
+ // instructions.
+ if (isa<InsertElementInst>(V) || isa<ExtractElementInst>(V))
+ return 0;
+
+ // Give a load or store half of the required depth so that load/store
+ // pairs will vectorize.
+ if (!Config.NoMemOpBoost && (isa<LoadInst>(V) || isa<StoreInst>(V)))
+ return Config.ReqChainDepth/2;
+
+ return 1;
+ }
+
+ // Returns the cost of the provided instruction using TTI.
+ // This does not handle loads and stores.
+ unsigned getInstrCost(unsigned Opcode, Type *T1, Type *T2) {
+ switch (Opcode) {
+ default: break;
+ case Instruction::GetElementPtr:
+ // We mark this instruction as zero-cost because scalar GEPs are usually
+ // lowered to the instruction addressing mode. At the moment we don't
+ // generate vector GEPs.
+ return 0;
+ case Instruction::Br:
+ return TTI->getCFInstrCost(Opcode);
+ case Instruction::PHI:
+ return 0;
+ case Instruction::Add:
+ case Instruction::FAdd:
+ case Instruction::Sub:
+ case Instruction::FSub:
+ case Instruction::Mul:
+ case Instruction::FMul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::FDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::FRem:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ return TTI->getArithmeticInstrCost(Opcode, T1);
+ case Instruction::Select:
+ case Instruction::ICmp:
+ case Instruction::FCmp:
+ return TTI->getCmpSelInstrCost(Opcode, T1, T2);
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::FPExt:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::SIToFP:
+ case Instruction::UIToFP:
+ case Instruction::Trunc:
+ case Instruction::FPTrunc:
+ case Instruction::BitCast:
+ case Instruction::ShuffleVector:
+ return TTI->getCastInstrCost(Opcode, T1, T2);
+ }
+
+ return 1;
+ }
+
+ // This determines the relative offset of two loads or stores, returning
+ // true if the offset could be determined to be some constant value.
+ // For example, if OffsetInElmts == 1, then J accesses the memory directly
+ // after I; if OffsetInElmts == -1 then I accesses the memory
+ // directly after J.
+ bool getPairPtrInfo(Instruction *I, Instruction *J,
+ Value *&IPtr, Value *&JPtr, unsigned &IAlignment, unsigned &JAlignment,
+ unsigned &IAddressSpace, unsigned &JAddressSpace,
+ int64_t &OffsetInElmts, bool ComputeOffset = true) {
+ OffsetInElmts = 0;
+ if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
+ LoadInst *LJ = cast<LoadInst>(J);
+ IPtr = LI->getPointerOperand();
+ JPtr = LJ->getPointerOperand();
+ IAlignment = LI->getAlignment();
+ JAlignment = LJ->getAlignment();
+ IAddressSpace = LI->getPointerAddressSpace();
+ JAddressSpace = LJ->getPointerAddressSpace();
+ } else {
+ StoreInst *SI = cast<StoreInst>(I), *SJ = cast<StoreInst>(J);
+ IPtr = SI->getPointerOperand();
+ JPtr = SJ->getPointerOperand();
+ IAlignment = SI->getAlignment();
+ JAlignment = SJ->getAlignment();
+ IAddressSpace = SI->getPointerAddressSpace();
+ JAddressSpace = SJ->getPointerAddressSpace();
+ }
+
+ if (!ComputeOffset)
+ return true;
+
+ const SCEV *IPtrSCEV = SE->getSCEV(IPtr);
+ const SCEV *JPtrSCEV = SE->getSCEV(JPtr);
+
+ // If this is a trivial offset, then we'll get something like
+ // 1*sizeof(type). With target data, which we need anyway, this will get
+ // constant folded into a number.
+ const SCEV *OffsetSCEV = SE->getMinusSCEV(JPtrSCEV, IPtrSCEV);
+ if (const SCEVConstant *ConstOffSCEV =
+ dyn_cast<SCEVConstant>(OffsetSCEV)) {
+ ConstantInt *IntOff = ConstOffSCEV->getValue();
+ int64_t Offset = IntOff->getSExtValue();
+
+ Type *VTy = IPtr->getType()->getPointerElementType();
+ int64_t VTyTSS = (int64_t) TD->getTypeStoreSize(VTy);
+
+ Type *VTy2 = JPtr->getType()->getPointerElementType();
+ if (VTy != VTy2 && Offset < 0) {
+ int64_t VTy2TSS = (int64_t) TD->getTypeStoreSize(VTy2);
+ OffsetInElmts = Offset/VTy2TSS;
+ return (abs64(Offset) % VTy2TSS) == 0;
+ }
+
+ OffsetInElmts = Offset/VTyTSS;
+ return (abs64(Offset) % VTyTSS) == 0;
+ }
+
+ return false;
+ }
+
+ // Returns true if the provided CallInst represents an intrinsic that can
+ // be vectorized.
+ bool isVectorizableIntrinsic(CallInst* I) {
+ Function *F = I->getCalledFunction();
+ if (!F) return false;
+
+ Intrinsic::ID IID = (Intrinsic::ID) F->getIntrinsicID();
+ if (!IID) return false;
+
+ switch(IID) {
+ default:
+ return false;
+ case Intrinsic::sqrt:
+ case Intrinsic::powi:
+ case Intrinsic::sin:
+ case Intrinsic::cos:
+ case Intrinsic::log:
+ case Intrinsic::log2:
+ case Intrinsic::log10:
+ case Intrinsic::exp:
+ case Intrinsic::exp2:
+ case Intrinsic::pow:
+ return Config.VectorizeMath;
+ case Intrinsic::fma:
+ case Intrinsic::fmuladd:
+ return Config.VectorizeFMA;
+ }
+ }
+
+ bool isPureIEChain(InsertElementInst *IE) {
+ InsertElementInst *IENext = IE;
+ do {
+ if (!isa<UndefValue>(IENext->getOperand(0)) &&
+ !isa<InsertElementInst>(IENext->getOperand(0))) {
+ return false;
+ }
+ } while ((IENext =
+ dyn_cast<InsertElementInst>(IENext->getOperand(0))));
+
+ return true;
+ }
+ };
+
+ // This function implements one vectorization iteration on the provided
+ // basic block. It returns true if the block is changed.
+ bool BBVectorize::vectorizePairs(BasicBlock &BB, bool NonPow2Len) {
+ bool ShouldContinue;
+ BasicBlock::iterator Start = BB.getFirstInsertionPt();
+
+ std::vector<Value *> AllPairableInsts;
+ DenseMap<Value *, Value *> AllChosenPairs;
+ DenseSet<ValuePair> AllFixedOrderPairs;
+ DenseMap<VPPair, unsigned> AllPairConnectionTypes;
+ DenseMap<ValuePair, std::vector<ValuePair> > AllConnectedPairs,
+ AllConnectedPairDeps;
+
+ do {
+ std::vector<Value *> PairableInsts;
+ DenseMap<Value *, std::vector<Value *> > CandidatePairs;
+ DenseSet<ValuePair> FixedOrderPairs;
+ DenseMap<ValuePair, int> CandidatePairCostSavings;
+ ShouldContinue = getCandidatePairs(BB, Start, CandidatePairs,
+ FixedOrderPairs,
+ CandidatePairCostSavings,
+ PairableInsts, NonPow2Len);
+ if (PairableInsts.empty()) continue;
+
+ // Build the candidate pair set for faster lookups.
+ DenseSet<ValuePair> CandidatePairsSet;
+ for (DenseMap<Value *, std::vector<Value *> >::iterator I =
+ CandidatePairs.begin(), E = CandidatePairs.end(); I != E; ++I)
+ for (std::vector<Value *>::iterator J = I->second.begin(),
+ JE = I->second.end(); J != JE; ++J)
+ CandidatePairsSet.insert(ValuePair(I->first, *J));
+
+ // Now we have a map of all of the pairable instructions and we need to
+ // select the best possible pairing. A good pairing is one such that the
+ // users of the pair are also paired. This defines a (directed) forest
+ // over the pairs such that two pairs are connected iff the second pair
+ // uses the first.
+
+ // Note that it only matters that both members of the second pair use some
+ // element of the first pair (to allow for splatting).
+
+ DenseMap<ValuePair, std::vector<ValuePair> > ConnectedPairs,
+ ConnectedPairDeps;
+ DenseMap<VPPair, unsigned> PairConnectionTypes;
+ computeConnectedPairs(CandidatePairs, CandidatePairsSet,
+ PairableInsts, ConnectedPairs, PairConnectionTypes);
+ if (ConnectedPairs.empty()) continue;
+
+ for (DenseMap<ValuePair, std::vector<ValuePair> >::iterator
+ I = ConnectedPairs.begin(), IE = ConnectedPairs.end();
+ I != IE; ++I)
+ for (std::vector<ValuePair>::iterator J = I->second.begin(),
+ JE = I->second.end(); J != JE; ++J)
+ ConnectedPairDeps[*J].push_back(I->first);
+
+ // Build the pairable-instruction dependency map
+ DenseSet<ValuePair> PairableInstUsers;
+ buildDepMap(BB, CandidatePairs, PairableInsts, PairableInstUsers);
+
+ // There is now a graph of the connected pairs. For each variable, pick
+ // the pairing with the largest dag meeting the depth requirement on at
+ // least one branch. Then select all pairings that are part of that dag
+ // and remove them from the list of available pairings and pairable
+ // variables.
+
+ DenseMap<Value *, Value *> ChosenPairs;
+ choosePairs(CandidatePairs, CandidatePairsSet,
+ CandidatePairCostSavings,
+ PairableInsts, FixedOrderPairs, PairConnectionTypes,
+ ConnectedPairs, ConnectedPairDeps,
+ PairableInstUsers, ChosenPairs);
+
+ if (ChosenPairs.empty()) continue;
+ AllPairableInsts.insert(AllPairableInsts.end(), PairableInsts.begin(),
+ PairableInsts.end());
+ AllChosenPairs.insert(ChosenPairs.begin(), ChosenPairs.end());
+
+ // Only for the chosen pairs, propagate information on fixed-order pairs,
+ // pair connections, and their types to the data structures used by the
+ // pair fusion procedures.
+ for (DenseMap<Value *, Value *>::iterator I = ChosenPairs.begin(),
+ IE = ChosenPairs.end(); I != IE; ++I) {
+ if (FixedOrderPairs.count(*I))
+ AllFixedOrderPairs.insert(*I);
+ else if (FixedOrderPairs.count(ValuePair(I->second, I->first)))
+ AllFixedOrderPairs.insert(ValuePair(I->second, I->first));
+
+ for (DenseMap<Value *, Value *>::iterator J = ChosenPairs.begin();
+ J != IE; ++J) {
+ DenseMap<VPPair, unsigned>::iterator K =
+ PairConnectionTypes.find(VPPair(*I, *J));
+ if (K != PairConnectionTypes.end()) {
+ AllPairConnectionTypes.insert(*K);
+ } else {
+ K = PairConnectionTypes.find(VPPair(*J, *I));
+ if (K != PairConnectionTypes.end())
+ AllPairConnectionTypes.insert(*K);
+ }
+ }
+ }
+
+ for (DenseMap<ValuePair, std::vector<ValuePair> >::iterator
+ I = ConnectedPairs.begin(), IE = ConnectedPairs.end();
+ I != IE; ++I)
+ for (std::vector<ValuePair>::iterator J = I->second.begin(),
+ JE = I->second.end(); J != JE; ++J)
+ if (AllPairConnectionTypes.count(VPPair(I->first, *J))) {
+ AllConnectedPairs[I->first].push_back(*J);
+ AllConnectedPairDeps[*J].push_back(I->first);
+ }
+ } while (ShouldContinue);
+
+ if (AllChosenPairs.empty()) return false;
+ NumFusedOps += AllChosenPairs.size();
+
+ // A set of pairs has now been selected. It is now necessary to replace the
+ // paired instructions with vector instructions. For this procedure each
+ // operand must be replaced with a vector operand. This vector is formed
+ // by using build_vector on the old operands. The replaced values are then
+ // replaced with a vector_extract on the result. Subsequent optimization
+ // passes should coalesce the build/extract combinations.
+
+ fuseChosenPairs(BB, AllPairableInsts, AllChosenPairs, AllFixedOrderPairs,
+ AllPairConnectionTypes,
+ AllConnectedPairs, AllConnectedPairDeps);
+
+ // It is important to cleanup here so that future iterations of this
+ // function have less work to do.
+ (void) SimplifyInstructionsInBlock(&BB, TD, AA->getTargetLibraryInfo());
+ return true;
+ }
+
+ // This function returns true if the provided instruction is capable of being
+ // fused into a vector instruction. This determination is based only on the
+ // type and other attributes of the instruction.
+ bool BBVectorize::isInstVectorizable(Instruction *I,
+ bool &IsSimpleLoadStore) {
+ IsSimpleLoadStore = false;
+
+ if (CallInst *C = dyn_cast<CallInst>(I)) {
+ if (!isVectorizableIntrinsic(C))
+ return false;
+ } else if (LoadInst *L = dyn_cast<LoadInst>(I)) {
+ // Vectorize simple loads if possbile:
+ IsSimpleLoadStore = L->isSimple();
+ if (!IsSimpleLoadStore || !Config.VectorizeMemOps)
+ return false;
+ } else if (StoreInst *S = dyn_cast<StoreInst>(I)) {
+ // Vectorize simple stores if possbile:
+ IsSimpleLoadStore = S->isSimple();
+ if (!IsSimpleLoadStore || !Config.VectorizeMemOps)
+ return false;
+ } else if (CastInst *C = dyn_cast<CastInst>(I)) {
+ // We can vectorize casts, but not casts of pointer types, etc.
+ if (!Config.VectorizeCasts)
+ return false;
+
+ Type *SrcTy = C->getSrcTy();
+ if (!SrcTy->isSingleValueType())
+ return false;
+
+ Type *DestTy = C->getDestTy();
+ if (!DestTy->isSingleValueType())
+ return false;
+ } else if (isa<SelectInst>(I)) {
+ if (!Config.VectorizeSelect)
+ return false;
+ } else if (isa<CmpInst>(I)) {
+ if (!Config.VectorizeCmp)
+ return false;
+ } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(I)) {
+ if (!Config.VectorizeGEP)
+ return false;
+
+ // Currently, vector GEPs exist only with one index.
+ if (G->getNumIndices() != 1)
+ return false;
+ } else if (!(I->isBinaryOp() || isa<ShuffleVectorInst>(I) ||
+ isa<ExtractElementInst>(I) || isa<InsertElementInst>(I))) {
+ return false;
+ }
+
+ // We can't vectorize memory operations without target data
+ if (TD == 0 && IsSimpleLoadStore)
+ return false;
+
+ Type *T1, *T2;
+ getInstructionTypes(I, T1, T2);
+
+ // Not every type can be vectorized...
+ if (!(VectorType::isValidElementType(T1) || T1->isVectorTy()) ||
+ !(VectorType::isValidElementType(T2) || T2->isVectorTy()))
+ return false;
+
+ if (T1->getScalarSizeInBits() == 1) {
+ if (!Config.VectorizeBools)
+ return false;
+ } else {
+ if (!Config.VectorizeInts && T1->isIntOrIntVectorTy())
+ return false;
+ }
+
+ if (T2->getScalarSizeInBits() == 1) {
+ if (!Config.VectorizeBools)
+ return false;
+ } else {
+ if (!Config.VectorizeInts && T2->isIntOrIntVectorTy())
+ return false;
+ }
+
+ if (!Config.VectorizeFloats
+ && (T1->isFPOrFPVectorTy() || T2->isFPOrFPVectorTy()))
+ return false;
+
+ // Don't vectorize target-specific types.
+ if (T1->isX86_FP80Ty() || T1->isPPC_FP128Ty() || T1->isX86_MMXTy())
+ return false;
+ if (T2->isX86_FP80Ty() || T2->isPPC_FP128Ty() || T2->isX86_MMXTy())
+ return false;
+
+ if ((!Config.VectorizePointers || TD == 0) &&
+ (T1->getScalarType()->isPointerTy() ||
+ T2->getScalarType()->isPointerTy()))
+ return false;
+
+ if (!TTI && (T1->getPrimitiveSizeInBits() >= Config.VectorBits ||
+ T2->getPrimitiveSizeInBits() >= Config.VectorBits))
+ return false;
+
+ return true;
+ }
+
+ // This function returns true if the two provided instructions are compatible
+ // (meaning that they can be fused into a vector instruction). This assumes
+ // that I has already been determined to be vectorizable and that J is not
+ // in the use dag of I.
+ bool BBVectorize::areInstsCompatible(Instruction *I, Instruction *J,
+ bool IsSimpleLoadStore, bool NonPow2Len,
+ int &CostSavings, int &FixedOrder) {
+ DEBUG(if (DebugInstructionExamination) dbgs() << "BBV: looking at " << *I <<
+ " <-> " << *J << "\n");
+
+ CostSavings = 0;
+ FixedOrder = 0;
+
+ // Loads and stores can be merged if they have different alignments,
+ // but are otherwise the same.
+ if (!J->isSameOperationAs(I, Instruction::CompareIgnoringAlignment |
+ (NonPow2Len ? Instruction::CompareUsingScalarTypes : 0)))
+ return false;
+
+ Type *IT1, *IT2, *JT1, *JT2;
+ getInstructionTypes(I, IT1, IT2);
+ getInstructionTypes(J, JT1, JT2);
+ unsigned MaxTypeBits = std::max(
+ IT1->getPrimitiveSizeInBits() + JT1->getPrimitiveSizeInBits(),
+ IT2->getPrimitiveSizeInBits() + JT2->getPrimitiveSizeInBits());
+ if (!TTI && MaxTypeBits > Config.VectorBits)
+ return false;
+
+ // FIXME: handle addsub-type operations!
+
+ if (IsSimpleLoadStore) {
+ Value *IPtr, *JPtr;
+ unsigned IAlignment, JAlignment, IAddressSpace, JAddressSpace;
+ int64_t OffsetInElmts = 0;
+ if (getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
+ IAddressSpace, JAddressSpace,
+ OffsetInElmts) && abs64(OffsetInElmts) == 1) {
+ FixedOrder = (int) OffsetInElmts;
+ unsigned BottomAlignment = IAlignment;
+ if (OffsetInElmts < 0) BottomAlignment = JAlignment;
+
+ Type *aTypeI = isa<StoreInst>(I) ?
+ cast<StoreInst>(I)->getValueOperand()->getType() : I->getType();
+ Type *aTypeJ = isa<StoreInst>(J) ?
+ cast<StoreInst>(J)->getValueOperand()->getType() : J->getType();
+ Type *VType = getVecTypeForPair(aTypeI, aTypeJ);
+
+ if (Config.AlignedOnly) {
+ // An aligned load or store is possible only if the instruction
+ // with the lower offset has an alignment suitable for the
+ // vector type.
+
+ unsigned VecAlignment = TD->getPrefTypeAlignment(VType);
+ if (BottomAlignment < VecAlignment)
+ return false;
+ }
+
+ if (TTI) {
+ unsigned ICost = TTI->getMemoryOpCost(I->getOpcode(), aTypeI,
+ IAlignment, IAddressSpace);
+ unsigned JCost = TTI->getMemoryOpCost(J->getOpcode(), aTypeJ,
+ JAlignment, JAddressSpace);
+ unsigned VCost = TTI->getMemoryOpCost(I->getOpcode(), VType,
+ BottomAlignment,
+ IAddressSpace);
+
+ ICost += TTI->getAddressComputationCost(aTypeI);
+ JCost += TTI->getAddressComputationCost(aTypeJ);
+ VCost += TTI->getAddressComputationCost(VType);
+
+ if (VCost > ICost + JCost)
+ return false;
+
+ // We don't want to fuse to a type that will be split, even
+ // if the two input types will also be split and there is no other
+ // associated cost.
+ unsigned VParts = TTI->getNumberOfParts(VType);
+ if (VParts > 1)
+ return false;
+ else if (!VParts && VCost == ICost + JCost)
+ return false;
+
+ CostSavings = ICost + JCost - VCost;
+ }
+ } else {
+ return false;
+ }
+ } else if (TTI) {
+ unsigned ICost = getInstrCost(I->getOpcode(), IT1, IT2);
+ unsigned JCost = getInstrCost(J->getOpcode(), JT1, JT2);
+ Type *VT1 = getVecTypeForPair(IT1, JT1),
+ *VT2 = getVecTypeForPair(IT2, JT2);
+
+ // Note that this procedure is incorrect for insert and extract element
+ // instructions (because combining these often results in a shuffle),
+ // but this cost is ignored (because insert and extract element
+ // instructions are assigned a zero depth factor and are not really
+ // fused in general).
+ unsigned VCost = getInstrCost(I->getOpcode(), VT1, VT2);
+
+ if (VCost > ICost + JCost)
+ return false;
+
+ // We don't want to fuse to a type that will be split, even
+ // if the two input types will also be split and there is no other
+ // associated cost.
+ unsigned VParts1 = TTI->getNumberOfParts(VT1),
+ VParts2 = TTI->getNumberOfParts(VT2);
+ if (VParts1 > 1 || VParts2 > 1)
+ return false;
+ else if ((!VParts1 || !VParts2) && VCost == ICost + JCost)
+ return false;
+
+ CostSavings = ICost + JCost - VCost;
+ }
+
+ // The powi intrinsic is special because only the first argument is
+ // vectorized, the second arguments must be equal.
+ CallInst *CI = dyn_cast<CallInst>(I);
+ Function *FI;
+ if (CI && (FI = CI->getCalledFunction())) {
+ Intrinsic::ID IID = (Intrinsic::ID) FI->getIntrinsicID();
+ if (IID == Intrinsic::powi) {
+ Value *A1I = CI->getArgOperand(1),
+ *A1J = cast<CallInst>(J)->getArgOperand(1);
+ const SCEV *A1ISCEV = SE->getSCEV(A1I),
+ *A1JSCEV = SE->getSCEV(A1J);
+ return (A1ISCEV == A1JSCEV);
+ }
+
+ if (IID && TTI) {
+ SmallVector<Type*, 4> Tys;
+ for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
+ Tys.push_back(CI->getArgOperand(i)->getType());
+ unsigned ICost = TTI->getIntrinsicInstrCost(IID, IT1, Tys);
+
+ Tys.clear();
+ CallInst *CJ = cast<CallInst>(J);
+ for (unsigned i = 0, ie = CJ->getNumArgOperands(); i != ie; ++i)
+ Tys.push_back(CJ->getArgOperand(i)->getType());
+ unsigned JCost = TTI->getIntrinsicInstrCost(IID, JT1, Tys);
+
+ Tys.clear();
+ assert(CI->getNumArgOperands() == CJ->getNumArgOperands() &&
+ "Intrinsic argument counts differ");
+ for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
+ if (IID == Intrinsic::powi && i == 1)
+ Tys.push_back(CI->getArgOperand(i)->getType());
+ else
+ Tys.push_back(getVecTypeForPair(CI->getArgOperand(i)->getType(),
+ CJ->getArgOperand(i)->getType()));
+ }
+
+ Type *RetTy = getVecTypeForPair(IT1, JT1);
+ unsigned VCost = TTI->getIntrinsicInstrCost(IID, RetTy, Tys);
+
+ if (VCost > ICost + JCost)
+ return false;
+
+ // We don't want to fuse to a type that will be split, even
+ // if the two input types will also be split and there is no other
+ // associated cost.
+ unsigned RetParts = TTI->getNumberOfParts(RetTy);
+ if (RetParts > 1)
+ return false;
+ else if (!RetParts && VCost == ICost + JCost)
+ return false;
+
+ for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
+ if (!Tys[i]->isVectorTy())
+ continue;
+
+ unsigned NumParts = TTI->getNumberOfParts(Tys[i]);
+ if (NumParts > 1)
+ return false;
+ else if (!NumParts && VCost == ICost + JCost)
+ return false;
+ }
+
+ CostSavings = ICost + JCost - VCost;
+ }
+ }
+
+ return true;
+ }
+
+ // Figure out whether or not J uses I and update the users and write-set
+ // structures associated with I. Specifically, Users represents the set of
+ // instructions that depend on I. WriteSet represents the set
+ // of memory locations that are dependent on I. If UpdateUsers is true,
+ // and J uses I, then Users is updated to contain J and WriteSet is updated
+ // to contain any memory locations to which J writes. The function returns
+ // true if J uses I. By default, alias analysis is used to determine
+ // whether J reads from memory that overlaps with a location in WriteSet.
+ // If LoadMoveSet is not null, then it is a previously-computed map
+ // where the key is the memory-based user instruction and the value is
+ // the instruction to be compared with I. So, if LoadMoveSet is provided,
+ // then the alias analysis is not used. This is necessary because this
+ // function is called during the process of moving instructions during
+ // vectorization and the results of the alias analysis are not stable during
+ // that process.
+ bool BBVectorize::trackUsesOfI(DenseSet<Value *> &Users,
+ AliasSetTracker &WriteSet, Instruction *I,
+ Instruction *J, bool UpdateUsers,
+ DenseSet<ValuePair> *LoadMoveSetPairs) {
+ bool UsesI = false;
+
+ // This instruction may already be marked as a user due, for example, to
+ // being a member of a selected pair.
+ if (Users.count(J))
+ UsesI = true;
+
+ if (!UsesI)
+ for (User::op_iterator JU = J->op_begin(), JE = J->op_end();
+ JU != JE; ++JU) {
+ Value *V = *JU;
+ if (I == V || Users.count(V)) {
+ UsesI = true;
+ break;
+ }
+ }
+ if (!UsesI && J->mayReadFromMemory()) {
+ if (LoadMoveSetPairs) {
+ UsesI = LoadMoveSetPairs->count(ValuePair(J, I));
+ } else {
+ for (AliasSetTracker::iterator W = WriteSet.begin(),
+ WE = WriteSet.end(); W != WE; ++W) {
+ if (W->aliasesUnknownInst(J, *AA)) {
+ UsesI = true;
+ break;
+ }
+ }
+ }
+ }
+
+ if (UsesI && UpdateUsers) {
+ if (J->mayWriteToMemory()) WriteSet.add(J);
+ Users.insert(J);
+ }
+
+ return UsesI;
+ }
+
+ // This function iterates over all instruction pairs in the provided
+ // basic block and collects all candidate pairs for vectorization.
+ bool BBVectorize::getCandidatePairs(BasicBlock &BB,
+ BasicBlock::iterator &Start,
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ DenseSet<ValuePair> &FixedOrderPairs,
+ DenseMap<ValuePair, int> &CandidatePairCostSavings,
+ std::vector<Value *> &PairableInsts, bool NonPow2Len) {
+ size_t TotalPairs = 0;
+ BasicBlock::iterator E = BB.end();
+ if (Start == E) return false;
+
+ bool ShouldContinue = false, IAfterStart = false;
+ for (BasicBlock::iterator I = Start++; I != E; ++I) {
+ if (I == Start) IAfterStart = true;
+
+ bool IsSimpleLoadStore;
+ if (!isInstVectorizable(I, IsSimpleLoadStore)) continue;
+
+ // Look for an instruction with which to pair instruction *I...
+ DenseSet<Value *> Users;
+ AliasSetTracker WriteSet(*AA);
+ if (I->mayWriteToMemory()) WriteSet.add(I);
+
+ bool JAfterStart = IAfterStart;
+ BasicBlock::iterator J = llvm::next(I);
+ for (unsigned ss = 0; J != E && ss <= Config.SearchLimit; ++J, ++ss) {
+ if (J == Start) JAfterStart = true;
+
+ // Determine if J uses I, if so, exit the loop.
+ bool UsesI = trackUsesOfI(Users, WriteSet, I, J, !Config.FastDep);
+ if (Config.FastDep) {
+ // Note: For this heuristic to be effective, independent operations
+ // must tend to be intermixed. This is likely to be true from some
+ // kinds of grouped loop unrolling (but not the generic LLVM pass),
+ // but otherwise may require some kind of reordering pass.
+
+ // When using fast dependency analysis,
+ // stop searching after first use:
+ if (UsesI) break;
+ } else {
+ if (UsesI) continue;
+ }
+
+ // J does not use I, and comes before the first use of I, so it can be
+ // merged with I if the instructions are compatible.
+ int CostSavings, FixedOrder;
+ if (!areInstsCompatible(I, J, IsSimpleLoadStore, NonPow2Len,
+ CostSavings, FixedOrder)) continue;
+
+ // J is a candidate for merging with I.
+ if (!PairableInsts.size() ||
+ PairableInsts[PairableInsts.size()-1] != I) {
+ PairableInsts.push_back(I);
+ }
+
+ CandidatePairs[I].push_back(J);
+ ++TotalPairs;
+ if (TTI)
+ CandidatePairCostSavings.insert(ValuePairWithCost(ValuePair(I, J),
+ CostSavings));
+
+ if (FixedOrder == 1)
+ FixedOrderPairs.insert(ValuePair(I, J));
+ else if (FixedOrder == -1)
+ FixedOrderPairs.insert(ValuePair(J, I));
+
+ // The next call to this function must start after the last instruction
+ // selected during this invocation.
+ if (JAfterStart) {
+ Start = llvm::next(J);
+ IAfterStart = JAfterStart = false;
+ }
+
+ DEBUG(if (DebugCandidateSelection) dbgs() << "BBV: candidate pair "
+ << *I << " <-> " << *J << " (cost savings: " <<
+ CostSavings << ")\n");
+
+ // If we have already found too many pairs, break here and this function
+ // will be called again starting after the last instruction selected
+ // during this invocation.
+ if (PairableInsts.size() >= Config.MaxInsts ||
+ TotalPairs >= Config.MaxPairs) {
+ ShouldContinue = true;
+ break;
+ }
+ }
+
+ if (ShouldContinue)
+ break;
+ }
+
+ DEBUG(dbgs() << "BBV: found " << PairableInsts.size()
+ << " instructions with candidate pairs\n");
+
+ return ShouldContinue;
+ }
+
+ // Finds candidate pairs connected to the pair P = <PI, PJ>. This means that
+ // it looks for pairs such that both members have an input which is an
+ // output of PI or PJ.
+ void BBVectorize::computePairsConnectedTo(
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ DenseSet<ValuePair> &CandidatePairsSet,
+ std::vector<Value *> &PairableInsts,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseMap<VPPair, unsigned> &PairConnectionTypes,
+ ValuePair P) {
+ StoreInst *SI, *SJ;
+
+ // For each possible pairing for this variable, look at the uses of
+ // the first value...
+ for (Value::use_iterator I = P.first->use_begin(),
+ E = P.first->use_end(); I != E; ++I) {
+ if (isa<LoadInst>(*I)) {
+ // A pair cannot be connected to a load because the load only takes one
+ // operand (the address) and it is a scalar even after vectorization.
+ continue;
+ } else if ((SI = dyn_cast<StoreInst>(*I)) &&
+ P.first == SI->getPointerOperand()) {
+ // Similarly, a pair cannot be connected to a store through its
+ // pointer operand.
+ continue;
+ }
+
+ // For each use of the first variable, look for uses of the second
+ // variable...
+ for (Value::use_iterator J = P.second->use_begin(),
+ E2 = P.second->use_end(); J != E2; ++J) {
+ if ((SJ = dyn_cast<StoreInst>(*J)) &&
+ P.second == SJ->getPointerOperand())
+ continue;
+
+ // Look for <I, J>:
+ if (CandidatePairsSet.count(ValuePair(*I, *J))) {
+ VPPair VP(P, ValuePair(*I, *J));
+ ConnectedPairs[VP.first].push_back(VP.second);
+ PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionDirect));
+ }
+
+ // Look for <J, I>:
+ if (CandidatePairsSet.count(ValuePair(*J, *I))) {
+ VPPair VP(P, ValuePair(*J, *I));
+ ConnectedPairs[VP.first].push_back(VP.second);
+ PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSwap));
+ }
+ }
+
+ if (Config.SplatBreaksChain) continue;
+ // Look for cases where just the first value in the pair is used by
+ // both members of another pair (splatting).
+ for (Value::use_iterator J = P.first->use_begin(); J != E; ++J) {
+ if ((SJ = dyn_cast<StoreInst>(*J)) &&
+ P.first == SJ->getPointerOperand())
+ continue;
+
+ if (CandidatePairsSet.count(ValuePair(*I, *J))) {
+ VPPair VP(P, ValuePair(*I, *J));
+ ConnectedPairs[VP.first].push_back(VP.second);
+ PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSplat));
+ }
+ }
+ }
+
+ if (Config.SplatBreaksChain) return;
+ // Look for cases where just the second value in the pair is used by
+ // both members of another pair (splatting).
+ for (Value::use_iterator I = P.second->use_begin(),
+ E = P.second->use_end(); I != E; ++I) {
+ if (isa<LoadInst>(*I))
+ continue;
+ else if ((SI = dyn_cast<StoreInst>(*I)) &&
+ P.second == SI->getPointerOperand())
+ continue;
+
+ for (Value::use_iterator J = P.second->use_begin(); J != E; ++J) {
+ if ((SJ = dyn_cast<StoreInst>(*J)) &&
+ P.second == SJ->getPointerOperand())
+ continue;
+
+ if (CandidatePairsSet.count(ValuePair(*I, *J))) {
+ VPPair VP(P, ValuePair(*I, *J));
+ ConnectedPairs[VP.first].push_back(VP.second);
+ PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSplat));
+ }
+ }
+ }
+ }
+
+ // This function figures out which pairs are connected. Two pairs are
+ // connected if some output of the first pair forms an input to both members
+ // of the second pair.
+ void BBVectorize::computeConnectedPairs(
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ DenseSet<ValuePair> &CandidatePairsSet,
+ std::vector<Value *> &PairableInsts,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseMap<VPPair, unsigned> &PairConnectionTypes) {
+ for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
+ PE = PairableInsts.end(); PI != PE; ++PI) {
+ DenseMap<Value *, std::vector<Value *> >::iterator PP =
+ CandidatePairs.find(*PI);
+ if (PP == CandidatePairs.end())
+ continue;
+
+ for (std::vector<Value *>::iterator P = PP->second.begin(),
+ E = PP->second.end(); P != E; ++P)
+ computePairsConnectedTo(CandidatePairs, CandidatePairsSet,
+ PairableInsts, ConnectedPairs,
+ PairConnectionTypes, ValuePair(*PI, *P));
+ }
+
+ DEBUG(size_t TotalPairs = 0;
+ for (DenseMap<ValuePair, std::vector<ValuePair> >::iterator I =
+ ConnectedPairs.begin(), IE = ConnectedPairs.end(); I != IE; ++I)
+ TotalPairs += I->second.size();
+ dbgs() << "BBV: found " << TotalPairs
+ << " pair connections.\n");
+ }
+
+ // This function builds a set of use tuples such that <A, B> is in the set
+ // if B is in the use dag of A. If B is in the use dag of A, then B
+ // depends on the output of A.
+ void BBVectorize::buildDepMap(
+ BasicBlock &BB,
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ std::vector<Value *> &PairableInsts,
+ DenseSet<ValuePair> &PairableInstUsers) {
+ DenseSet<Value *> IsInPair;
+ for (DenseMap<Value *, std::vector<Value *> >::iterator C =
+ CandidatePairs.begin(), E = CandidatePairs.end(); C != E; ++C) {
+ IsInPair.insert(C->first);
+ IsInPair.insert(C->second.begin(), C->second.end());
+ }
+
+ // Iterate through the basic block, recording all users of each
+ // pairable instruction.
+
+ BasicBlock::iterator E = BB.end(), EL =
+ BasicBlock::iterator(cast<Instruction>(PairableInsts.back()));
+ for (BasicBlock::iterator I = BB.getFirstInsertionPt(); I != E; ++I) {
+ if (IsInPair.find(I) == IsInPair.end()) continue;
+
+ DenseSet<Value *> Users;
+ AliasSetTracker WriteSet(*AA);
+ if (I->mayWriteToMemory()) WriteSet.add(I);
+
+ for (BasicBlock::iterator J = llvm::next(I); J != E; ++J) {
+ (void) trackUsesOfI(Users, WriteSet, I, J);
+
+ if (J == EL)
+ break;
+ }
+
+ for (DenseSet<Value *>::iterator U = Users.begin(), E = Users.end();
+ U != E; ++U) {
+ if (IsInPair.find(*U) == IsInPair.end()) continue;
+ PairableInstUsers.insert(ValuePair(I, *U));
+ }
+
+ if (I == EL)
+ break;
+ }
+ }
+
+ // Returns true if an input to pair P is an output of pair Q and also an
+ // input of pair Q is an output of pair P. If this is the case, then these
+ // two pairs cannot be simultaneously fused.
+ bool BBVectorize::pairsConflict(ValuePair P, ValuePair Q,
+ DenseSet<ValuePair> &PairableInstUsers,
+ DenseMap<ValuePair, std::vector<ValuePair> > *PairableInstUserMap,
+ DenseSet<VPPair> *PairableInstUserPairSet) {
+ // Two pairs are in conflict if they are mutual Users of eachother.
+ bool QUsesP = PairableInstUsers.count(ValuePair(P.first, Q.first)) ||
+ PairableInstUsers.count(ValuePair(P.first, Q.second)) ||
+ PairableInstUsers.count(ValuePair(P.second, Q.first)) ||
+ PairableInstUsers.count(ValuePair(P.second, Q.second));
+ bool PUsesQ = PairableInstUsers.count(ValuePair(Q.first, P.first)) ||
+ PairableInstUsers.count(ValuePair(Q.first, P.second)) ||
+ PairableInstUsers.count(ValuePair(Q.second, P.first)) ||
+ PairableInstUsers.count(ValuePair(Q.second, P.second));
+ if (PairableInstUserMap) {
+ // FIXME: The expensive part of the cycle check is not so much the cycle
+ // check itself but this edge insertion procedure. This needs some
+ // profiling and probably a different data structure.
+ if (PUsesQ) {
+ if (PairableInstUserPairSet->insert(VPPair(Q, P)).second)
+ (*PairableInstUserMap)[Q].push_back(P);
+ }
+ if (QUsesP) {
+ if (PairableInstUserPairSet->insert(VPPair(P, Q)).second)
+ (*PairableInstUserMap)[P].push_back(Q);
+ }
+ }
+
+ return (QUsesP && PUsesQ);
+ }
+
+ // This function walks the use graph of current pairs to see if, starting
+ // from P, the walk returns to P.
+ bool BBVectorize::pairWillFormCycle(ValuePair P,
+ DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
+ DenseSet<ValuePair> &CurrentPairs) {
+ DEBUG(if (DebugCycleCheck)
+ dbgs() << "BBV: starting cycle check for : " << *P.first << " <-> "
+ << *P.second << "\n");
+ // A lookup table of visisted pairs is kept because the PairableInstUserMap
+ // contains non-direct associations.
+ DenseSet<ValuePair> Visited;
+ SmallVector<ValuePair, 32> Q;
+ // General depth-first post-order traversal:
+ Q.push_back(P);
+ do {
+ ValuePair QTop = Q.pop_back_val();
+ Visited.insert(QTop);
+
+ DEBUG(if (DebugCycleCheck)
+ dbgs() << "BBV: cycle check visiting: " << *QTop.first << " <-> "
+ << *QTop.second << "\n");
+ DenseMap<ValuePair, std::vector<ValuePair> >::iterator QQ =
+ PairableInstUserMap.find(QTop);
+ if (QQ == PairableInstUserMap.end())
+ continue;
+
+ for (std::vector<ValuePair>::iterator C = QQ->second.begin(),
+ CE = QQ->second.end(); C != CE; ++C) {
+ if (*C == P) {
+ DEBUG(dbgs()
+ << "BBV: rejected to prevent non-trivial cycle formation: "
+ << QTop.first << " <-> " << C->second << "\n");
+ return true;
+ }
+
+ if (CurrentPairs.count(*C) && !Visited.count(*C))
+ Q.push_back(*C);
+ }
+ } while (!Q.empty());
+
+ return false;
+ }
+
+ // This function builds the initial dag of connected pairs with the
+ // pair J at the root.
+ void BBVectorize::buildInitialDAGFor(
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ DenseSet<ValuePair> &CandidatePairsSet,
+ std::vector<Value *> &PairableInsts,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseSet<ValuePair> &PairableInstUsers,
+ DenseMap<Value *, Value *> &ChosenPairs,
+ DenseMap<ValuePair, size_t> &DAG, ValuePair J) {
+ // Each of these pairs is viewed as the root node of a DAG. The DAG
+ // is then walked (depth-first). As this happens, we keep track of
+ // the pairs that compose the DAG and the maximum depth of the DAG.
+ SmallVector<ValuePairWithDepth, 32> Q;
+ // General depth-first post-order traversal:
+ Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
+ do {
+ ValuePairWithDepth QTop = Q.back();
+
+ // Push each child onto the queue:
+ bool MoreChildren = false;
+ size_t MaxChildDepth = QTop.second;
+ DenseMap<ValuePair, std::vector<ValuePair> >::iterator QQ =
+ ConnectedPairs.find(QTop.first);
+ if (QQ != ConnectedPairs.end())
+ for (std::vector<ValuePair>::iterator k = QQ->second.begin(),
+ ke = QQ->second.end(); k != ke; ++k) {
+ // Make sure that this child pair is still a candidate:
+ if (CandidatePairsSet.count(*k)) {
+ DenseMap<ValuePair, size_t>::iterator C = DAG.find(*k);
+ if (C == DAG.end()) {
+ size_t d = getDepthFactor(k->first);
+ Q.push_back(ValuePairWithDepth(*k, QTop.second+d));
+ MoreChildren = true;
+ } else {
+ MaxChildDepth = std::max(MaxChildDepth, C->second);
+ }
+ }
+ }
+
+ if (!MoreChildren) {
+ // Record the current pair as part of the DAG:
+ DAG.insert(ValuePairWithDepth(QTop.first, MaxChildDepth));
+ Q.pop_back();
+ }
+ } while (!Q.empty());
+ }
+
+ // Given some initial dag, prune it by removing conflicting pairs (pairs
+ // that cannot be simultaneously chosen for vectorization).
+ void BBVectorize::pruneDAGFor(
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ std::vector<Value *> &PairableInsts,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseSet<ValuePair> &PairableInstUsers,
+ DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
+ DenseSet<VPPair> &PairableInstUserPairSet,
+ DenseMap<Value *, Value *> &ChosenPairs,
+ DenseMap<ValuePair, size_t> &DAG,
+ DenseSet<ValuePair> &PrunedDAG, ValuePair J,
+ bool UseCycleCheck) {
+ SmallVector<ValuePairWithDepth, 32> Q;
+ // General depth-first post-order traversal:
+ Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
+ do {
+ ValuePairWithDepth QTop = Q.pop_back_val();
+ PrunedDAG.insert(QTop.first);
+
+ // Visit each child, pruning as necessary...
+ SmallVector<ValuePairWithDepth, 8> BestChildren;
+ DenseMap<ValuePair, std::vector<ValuePair> >::iterator QQ =
+ ConnectedPairs.find(QTop.first);
+ if (QQ == ConnectedPairs.end())
+ continue;
+
+ for (std::vector<ValuePair>::iterator K = QQ->second.begin(),
+ KE = QQ->second.end(); K != KE; ++K) {
+ DenseMap<ValuePair, size_t>::iterator C = DAG.find(*K);
+ if (C == DAG.end()) continue;
+
+ // This child is in the DAG, now we need to make sure it is the
+ // best of any conflicting children. There could be multiple
+ // conflicting children, so first, determine if we're keeping
+ // this child, then delete conflicting children as necessary.
+
+ // It is also necessary to guard against pairing-induced
+ // dependencies. Consider instructions a .. x .. y .. b
+ // such that (a,b) are to be fused and (x,y) are to be fused
+ // but a is an input to x and b is an output from y. This
+ // means that y cannot be moved after b but x must be moved
+ // after b for (a,b) to be fused. In other words, after
+ // fusing (a,b) we have y .. a/b .. x where y is an input
+ // to a/b and x is an output to a/b: x and y can no longer
+ // be legally fused. To prevent this condition, we must
+ // make sure that a child pair added to the DAG is not
+ // both an input and output of an already-selected pair.
+
+ // Pairing-induced dependencies can also form from more complicated
+ // cycles. The pair vs. pair conflicts are easy to check, and so
+ // that is done explicitly for "fast rejection", and because for
+ // child vs. child conflicts, we may prefer to keep the current
+ // pair in preference to the already-selected child.
+ DenseSet<ValuePair> CurrentPairs;
+
+ bool CanAdd = true;
+ for (SmallVectorImpl<ValuePairWithDepth>::iterator C2
+ = BestChildren.begin(), E2 = BestChildren.end();
+ C2 != E2; ++C2) {
+ if (C2->first.first == C->first.first ||
+ C2->first.first == C->first.second ||
+ C2->first.second == C->first.first ||
+ C2->first.second == C->first.second ||
+ pairsConflict(C2->first, C->first, PairableInstUsers,
+ UseCycleCheck ? &PairableInstUserMap : 0,
+ UseCycleCheck ? &PairableInstUserPairSet : 0)) {
+ if (C2->second >= C->second) {
+ CanAdd = false;
+ break;
+ }
+
+ CurrentPairs.insert(C2->first);
+ }
+ }
+ if (!CanAdd) continue;
+
+ // Even worse, this child could conflict with another node already
+ // selected for the DAG. If that is the case, ignore this child.
+ for (DenseSet<ValuePair>::iterator T = PrunedDAG.begin(),
+ E2 = PrunedDAG.end(); T != E2; ++T) {
+ if (T->first == C->first.first ||
+ T->first == C->first.second ||
+ T->second == C->first.first ||
+ T->second == C->first.second ||
+ pairsConflict(*T, C->first, PairableInstUsers,
+ UseCycleCheck ? &PairableInstUserMap : 0,
+ UseCycleCheck ? &PairableInstUserPairSet : 0)) {
+ CanAdd = false;
+ break;
+ }
+
+ CurrentPairs.insert(*T);
+ }
+ if (!CanAdd) continue;
+
+ // And check the queue too...
+ for (SmallVectorImpl<ValuePairWithDepth>::iterator C2 = Q.begin(),
+ E2 = Q.end(); C2 != E2; ++C2) {
+ if (C2->first.first == C->first.first ||
+ C2->first.first == C->first.second ||
+ C2->first.second == C->first.first ||
+ C2->first.second == C->first.second ||
+ pairsConflict(C2->first, C->first, PairableInstUsers,
+ UseCycleCheck ? &PairableInstUserMap : 0,
+ UseCycleCheck ? &PairableInstUserPairSet : 0)) {
+ CanAdd = false;
+ break;
+ }
+
+ CurrentPairs.insert(C2->first);
+ }
+ if (!CanAdd) continue;
+
+ // Last but not least, check for a conflict with any of the
+ // already-chosen pairs.
+ for (DenseMap<Value *, Value *>::iterator C2 =
+ ChosenPairs.begin(), E2 = ChosenPairs.end();
+ C2 != E2; ++C2) {
+ if (pairsConflict(*C2, C->first, PairableInstUsers,
+ UseCycleCheck ? &PairableInstUserMap : 0,
+ UseCycleCheck ? &PairableInstUserPairSet : 0)) {
+ CanAdd = false;
+ break;
+ }
+
+ CurrentPairs.insert(*C2);
+ }
+ if (!CanAdd) continue;
+
+ // To check for non-trivial cycles formed by the addition of the
+ // current pair we've formed a list of all relevant pairs, now use a
+ // graph walk to check for a cycle. We start from the current pair and
+ // walk the use dag to see if we again reach the current pair. If we
+ // do, then the current pair is rejected.
+
+ // FIXME: It may be more efficient to use a topological-ordering
+ // algorithm to improve the cycle check. This should be investigated.
+ if (UseCycleCheck &&
+ pairWillFormCycle(C->first, PairableInstUserMap, CurrentPairs))
+ continue;
+
+ // This child can be added, but we may have chosen it in preference
+ // to an already-selected child. Check for this here, and if a
+ // conflict is found, then remove the previously-selected child
+ // before adding this one in its place.
+ for (SmallVectorImpl<ValuePairWithDepth>::iterator C2
+ = BestChildren.begin(); C2 != BestChildren.end();) {
+ if (C2->first.first == C->first.first ||
+ C2->first.first == C->first.second ||
+ C2->first.second == C->first.first ||
+ C2->first.second == C->first.second ||
+ pairsConflict(C2->first, C->first, PairableInstUsers))
+ C2 = BestChildren.erase(C2);
+ else
+ ++C2;
+ }
+
+ BestChildren.push_back(ValuePairWithDepth(C->first, C->second));
+ }
+
+ for (SmallVectorImpl<ValuePairWithDepth>::iterator C
+ = BestChildren.begin(), E2 = BestChildren.end();
+ C != E2; ++C) {
+ size_t DepthF = getDepthFactor(C->first.first);
+ Q.push_back(ValuePairWithDepth(C->first, QTop.second+DepthF));
+ }
+ } while (!Q.empty());
+ }
+
+ // This function finds the best dag of mututally-compatible connected
+ // pairs, given the choice of root pairs as an iterator range.
+ void BBVectorize::findBestDAGFor(
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ DenseSet<ValuePair> &CandidatePairsSet,
+ DenseMap<ValuePair, int> &CandidatePairCostSavings,
+ std::vector<Value *> &PairableInsts,
+ DenseSet<ValuePair> &FixedOrderPairs,
+ DenseMap<VPPair, unsigned> &PairConnectionTypes,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps,
+ DenseSet<ValuePair> &PairableInstUsers,
+ DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
+ DenseSet<VPPair> &PairableInstUserPairSet,
+ DenseMap<Value *, Value *> &ChosenPairs,
+ DenseSet<ValuePair> &BestDAG, size_t &BestMaxDepth,
+ int &BestEffSize, Value *II, std::vector<Value *>&JJ,
+ bool UseCycleCheck) {
+ for (std::vector<Value *>::iterator J = JJ.begin(), JE = JJ.end();
+ J != JE; ++J) {
+ ValuePair IJ(II, *J);
+ if (!CandidatePairsSet.count(IJ))
+ continue;
+
+ // Before going any further, make sure that this pair does not
+ // conflict with any already-selected pairs (see comment below
+ // near the DAG pruning for more details).
+ DenseSet<ValuePair> ChosenPairSet;
+ bool DoesConflict = false;
+ for (DenseMap<Value *, Value *>::iterator C = ChosenPairs.begin(),
+ E = ChosenPairs.end(); C != E; ++C) {
+ if (pairsConflict(*C, IJ, PairableInstUsers,
+ UseCycleCheck ? &PairableInstUserMap : 0,
+ UseCycleCheck ? &PairableInstUserPairSet : 0)) {
+ DoesConflict = true;
+ break;
+ }
+
+ ChosenPairSet.insert(*C);
+ }
+ if (DoesConflict) continue;
+
+ if (UseCycleCheck &&
+ pairWillFormCycle(IJ, PairableInstUserMap, ChosenPairSet))
+ continue;
+
+ DenseMap<ValuePair, size_t> DAG;
+ buildInitialDAGFor(CandidatePairs, CandidatePairsSet,
+ PairableInsts, ConnectedPairs,
+ PairableInstUsers, ChosenPairs, DAG, IJ);
+
+ // Because we'll keep the child with the largest depth, the largest
+ // depth is still the same in the unpruned DAG.
+ size_t MaxDepth = DAG.lookup(IJ);
+
+ DEBUG(if (DebugPairSelection) dbgs() << "BBV: found DAG for pair {"
+ << *IJ.first << " <-> " << *IJ.second << "} of depth " <<
+ MaxDepth << " and size " << DAG.size() << "\n");
+
+ // At this point the DAG has been constructed, but, may contain
+ // contradictory children (meaning that different children of
+ // some dag node may be attempting to fuse the same instruction).
+ // So now we walk the dag again, in the case of a conflict,
+ // keep only the child with the largest depth. To break a tie,
+ // favor the first child.
+
+ DenseSet<ValuePair> PrunedDAG;
+ pruneDAGFor(CandidatePairs, PairableInsts, ConnectedPairs,
+ PairableInstUsers, PairableInstUserMap,
+ PairableInstUserPairSet,
+ ChosenPairs, DAG, PrunedDAG, IJ, UseCycleCheck);
+
+ int EffSize = 0;
+ if (TTI) {
+ DenseSet<Value *> PrunedDAGInstrs;
+ for (DenseSet<ValuePair>::iterator S = PrunedDAG.begin(),
+ E = PrunedDAG.end(); S != E; ++S) {
+ PrunedDAGInstrs.insert(S->first);
+ PrunedDAGInstrs.insert(S->second);
+ }
+
+ // The set of pairs that have already contributed to the total cost.
+ DenseSet<ValuePair> IncomingPairs;
+
+ // If the cost model were perfect, this might not be necessary; but we
+ // need to make sure that we don't get stuck vectorizing our own
+ // shuffle chains.
+ bool HasNontrivialInsts = false;
+
+ // The node weights represent the cost savings associated with
+ // fusing the pair of instructions.
+ for (DenseSet<ValuePair>::iterator S = PrunedDAG.begin(),
+ E = PrunedDAG.end(); S != E; ++S) {
+ if (!isa<ShuffleVectorInst>(S->first) &&
+ !isa<InsertElementInst>(S->first) &&
+ !isa<ExtractElementInst>(S->first))
+ HasNontrivialInsts = true;
+
+ bool FlipOrder = false;
+
+ if (getDepthFactor(S->first)) {
+ int ESContrib = CandidatePairCostSavings.find(*S)->second;
+ DEBUG(if (DebugPairSelection) dbgs() << "\tweight {"
+ << *S->first << " <-> " << *S->second << "} = " <<
+ ESContrib << "\n");
+ EffSize += ESContrib;
+ }
+
+ // The edge weights contribute in a negative sense: they represent
+ // the cost of shuffles.
+ DenseMap<ValuePair, std::vector<ValuePair> >::iterator SS =
+ ConnectedPairDeps.find(*S);
+ if (SS != ConnectedPairDeps.end()) {
+ unsigned NumDepsDirect = 0, NumDepsSwap = 0;
+ for (std::vector<ValuePair>::iterator T = SS->second.begin(),
+ TE = SS->second.end(); T != TE; ++T) {
+ VPPair Q(*S, *T);
+ if (!PrunedDAG.count(Q.second))
+ continue;
+ DenseMap<VPPair, unsigned>::iterator R =
+ PairConnectionTypes.find(VPPair(Q.second, Q.first));
+ assert(R != PairConnectionTypes.end() &&
+ "Cannot find pair connection type");
+ if (R->second == PairConnectionDirect)
+ ++NumDepsDirect;
+ else if (R->second == PairConnectionSwap)
+ ++NumDepsSwap;
+ }
+
+ // If there are more swaps than direct connections, then
+ // the pair order will be flipped during fusion. So the real
+ // number of swaps is the minimum number.
+ FlipOrder = !FixedOrderPairs.count(*S) &&
+ ((NumDepsSwap > NumDepsDirect) ||
+ FixedOrderPairs.count(ValuePair(S->second, S->first)));
+
+ for (std::vector<ValuePair>::iterator T = SS->second.begin(),
+ TE = SS->second.end(); T != TE; ++T) {
+ VPPair Q(*S, *T);
+ if (!PrunedDAG.count(Q.second))
+ continue;
+ DenseMap<VPPair, unsigned>::iterator R =
+ PairConnectionTypes.find(VPPair(Q.second, Q.first));
+ assert(R != PairConnectionTypes.end() &&
+ "Cannot find pair connection type");
+ Type *Ty1 = Q.second.first->getType(),
+ *Ty2 = Q.second.second->getType();
+ Type *VTy = getVecTypeForPair(Ty1, Ty2);
+ if ((R->second == PairConnectionDirect && FlipOrder) ||
+ (R->second == PairConnectionSwap && !FlipOrder) ||
+ R->second == PairConnectionSplat) {
+ int ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
+ VTy, VTy);
+
+ if (VTy->getVectorNumElements() == 2) {
+ if (R->second == PairConnectionSplat)
+ ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
+ TargetTransformInfo::SK_Broadcast, VTy));
+ else
+ ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
+ TargetTransformInfo::SK_Reverse, VTy));
+ }
+
+ DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" <<
+ *Q.second.first << " <-> " << *Q.second.second <<
+ "} -> {" <<
+ *S->first << " <-> " << *S->second << "} = " <<
+ ESContrib << "\n");
+ EffSize -= ESContrib;
+ }
+ }
+ }
+
+ // Compute the cost of outgoing edges. We assume that edges outgoing
+ // to shuffles, inserts or extracts can be merged, and so contribute
+ // no additional cost.
+ if (!S->first->getType()->isVoidTy()) {
+ Type *Ty1 = S->first->getType(),
+ *Ty2 = S->second->getType();
+ Type *VTy = getVecTypeForPair(Ty1, Ty2);
+
+ bool NeedsExtraction = false;
+ for (Value::use_iterator I = S->first->use_begin(),
+ IE = S->first->use_end(); I != IE; ++I) {
+ if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(*I)) {
+ // Shuffle can be folded if it has no other input
+ if (isa<UndefValue>(SI->getOperand(1)))
+ continue;
+ }
+ if (isa<ExtractElementInst>(*I))
+ continue;
+ if (PrunedDAGInstrs.count(*I))
+ continue;
+ NeedsExtraction = true;
+ break;
+ }
+
+ if (NeedsExtraction) {
+ int ESContrib;
+ if (Ty1->isVectorTy()) {
+ ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
+ Ty1, VTy);
+ ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
+ TargetTransformInfo::SK_ExtractSubvector, VTy, 0, Ty1));
+ } else
+ ESContrib = (int) TTI->getVectorInstrCost(
+ Instruction::ExtractElement, VTy, 0);
+
+ DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" <<
+ *S->first << "} = " << ESContrib << "\n");
+ EffSize -= ESContrib;
+ }
+
+ NeedsExtraction = false;
+ for (Value::use_iterator I = S->second->use_begin(),
+ IE = S->second->use_end(); I != IE; ++I) {
+ if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(*I)) {
+ // Shuffle can be folded if it has no other input
+ if (isa<UndefValue>(SI->getOperand(1)))
+ continue;
+ }
+ if (isa<ExtractElementInst>(*I))
+ continue;
+ if (PrunedDAGInstrs.count(*I))
+ continue;
+ NeedsExtraction = true;
+ break;
+ }
+
+ if (NeedsExtraction) {
+ int ESContrib;
+ if (Ty2->isVectorTy()) {
+ ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
+ Ty2, VTy);
+ ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
+ TargetTransformInfo::SK_ExtractSubvector, VTy,
+ Ty1->isVectorTy() ? Ty1->getVectorNumElements() : 1, Ty2));
+ } else
+ ESContrib = (int) TTI->getVectorInstrCost(
+ Instruction::ExtractElement, VTy, 1);
+ DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" <<
+ *S->second << "} = " << ESContrib << "\n");
+ EffSize -= ESContrib;
+ }
+ }
+
+ // Compute the cost of incoming edges.
+ if (!isa<LoadInst>(S->first) && !isa<StoreInst>(S->first)) {
+ Instruction *S1 = cast<Instruction>(S->first),
+ *S2 = cast<Instruction>(S->second);
+ for (unsigned o = 0; o < S1->getNumOperands(); ++o) {
+ Value *O1 = S1->getOperand(o), *O2 = S2->getOperand(o);
+
+ // Combining constants into vector constants (or small vector
+ // constants into larger ones are assumed free).
+ if (isa<Constant>(O1) && isa<Constant>(O2))
+ continue;
+
+ if (FlipOrder)
+ std::swap(O1, O2);
+
+ ValuePair VP = ValuePair(O1, O2);
+ ValuePair VPR = ValuePair(O2, O1);
+
+ // Internal edges are not handled here.
+ if (PrunedDAG.count(VP) || PrunedDAG.count(VPR))
+ continue;
+
+ Type *Ty1 = O1->getType(),
+ *Ty2 = O2->getType();
+ Type *VTy = getVecTypeForPair(Ty1, Ty2);
+
+ // Combining vector operations of the same type is also assumed
+ // folded with other operations.
+ if (Ty1 == Ty2) {
+ // If both are insert elements, then both can be widened.
+ InsertElementInst *IEO1 = dyn_cast<InsertElementInst>(O1),
+ *IEO2 = dyn_cast<InsertElementInst>(O2);
+ if (IEO1 && IEO2 && isPureIEChain(IEO1) && isPureIEChain(IEO2))
+ continue;
+ // If both are extract elements, and both have the same input
+ // type, then they can be replaced with a shuffle
+ ExtractElementInst *EIO1 = dyn_cast<ExtractElementInst>(O1),
+ *EIO2 = dyn_cast<ExtractElementInst>(O2);
+ if (EIO1 && EIO2 &&
+ EIO1->getOperand(0)->getType() ==
+ EIO2->getOperand(0)->getType())
+ continue;
+ // If both are a shuffle with equal operand types and only two
+ // unqiue operands, then they can be replaced with a single
+ // shuffle
+ ShuffleVectorInst *SIO1 = dyn_cast<ShuffleVectorInst>(O1),
+ *SIO2 = dyn_cast<ShuffleVectorInst>(O2);
+ if (SIO1 && SIO2 &&
+ SIO1->getOperand(0)->getType() ==
+ SIO2->getOperand(0)->getType()) {
+ SmallSet<Value *, 4> SIOps;
+ SIOps.insert(SIO1->getOperand(0));
+ SIOps.insert(SIO1->getOperand(1));
+ SIOps.insert(SIO2->getOperand(0));
+ SIOps.insert(SIO2->getOperand(1));
+ if (SIOps.size() <= 2)
+ continue;
+ }
+ }
+
+ int ESContrib;
+ // This pair has already been formed.
+ if (IncomingPairs.count(VP)) {
+ continue;
+ } else if (IncomingPairs.count(VPR)) {
+ ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
+ VTy, VTy);
+
+ if (VTy->getVectorNumElements() == 2)
+ ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
+ TargetTransformInfo::SK_Reverse, VTy));
+ } else if (!Ty1->isVectorTy() && !Ty2->isVectorTy()) {
+ ESContrib = (int) TTI->getVectorInstrCost(
+ Instruction::InsertElement, VTy, 0);
+ ESContrib += (int) TTI->getVectorInstrCost(
+ Instruction::InsertElement, VTy, 1);
+ } else if (!Ty1->isVectorTy()) {
+ // O1 needs to be inserted into a vector of size O2, and then
+ // both need to be shuffled together.
+ ESContrib = (int) TTI->getVectorInstrCost(
+ Instruction::InsertElement, Ty2, 0);
+ ESContrib += (int) getInstrCost(Instruction::ShuffleVector,
+ VTy, Ty2);
+ } else if (!Ty2->isVectorTy()) {
+ // O2 needs to be inserted into a vector of size O1, and then
+ // both need to be shuffled together.
+ ESContrib = (int) TTI->getVectorInstrCost(
+ Instruction::InsertElement, Ty1, 0);
+ ESContrib += (int) getInstrCost(Instruction::ShuffleVector,
+ VTy, Ty1);
+ } else {
+ Type *TyBig = Ty1, *TySmall = Ty2;
+ if (Ty2->getVectorNumElements() > Ty1->getVectorNumElements())
+ std::swap(TyBig, TySmall);
+
+ ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
+ VTy, TyBig);
+ if (TyBig != TySmall)
+ ESContrib += (int) getInstrCost(Instruction::ShuffleVector,
+ TyBig, TySmall);
+ }
+
+ DEBUG(if (DebugPairSelection) dbgs() << "\tcost {"
+ << *O1 << " <-> " << *O2 << "} = " <<
+ ESContrib << "\n");
+ EffSize -= ESContrib;
+ IncomingPairs.insert(VP);
+ }
+ }
+ }
+
+ if (!HasNontrivialInsts) {
+ DEBUG(if (DebugPairSelection) dbgs() <<
+ "\tNo non-trivial instructions in DAG;"
+ " override to zero effective size\n");
+ EffSize = 0;
+ }
+ } else {
+ for (DenseSet<ValuePair>::iterator S = PrunedDAG.begin(),
+ E = PrunedDAG.end(); S != E; ++S)
+ EffSize += (int) getDepthFactor(S->first);
+ }
+
+ DEBUG(if (DebugPairSelection)
+ dbgs() << "BBV: found pruned DAG for pair {"
+ << *IJ.first << " <-> " << *IJ.second << "} of depth " <<
+ MaxDepth << " and size " << PrunedDAG.size() <<
+ " (effective size: " << EffSize << ")\n");
+ if (((TTI && !UseChainDepthWithTI) ||
+ MaxDepth >= Config.ReqChainDepth) &&
+ EffSize > 0 && EffSize > BestEffSize) {
+ BestMaxDepth = MaxDepth;
+ BestEffSize = EffSize;
+ BestDAG = PrunedDAG;
+ }
+ }
+ }
+
+ // Given the list of candidate pairs, this function selects those
+ // that will be fused into vector instructions.
+ void BBVectorize::choosePairs(
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ DenseSet<ValuePair> &CandidatePairsSet,
+ DenseMap<ValuePair, int> &CandidatePairCostSavings,
+ std::vector<Value *> &PairableInsts,
+ DenseSet<ValuePair> &FixedOrderPairs,
+ DenseMap<VPPair, unsigned> &PairConnectionTypes,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps,
+ DenseSet<ValuePair> &PairableInstUsers,
+ DenseMap<Value *, Value *>& ChosenPairs) {
+ bool UseCycleCheck =
+ CandidatePairsSet.size() <= Config.MaxCandPairsForCycleCheck;
+
+ DenseMap<Value *, std::vector<Value *> > CandidatePairs2;
+ for (DenseSet<ValuePair>::iterator I = CandidatePairsSet.begin(),
+ E = CandidatePairsSet.end(); I != E; ++I) {
+ std::vector<Value *> &JJ = CandidatePairs2[I->second];
+ if (JJ.empty()) JJ.reserve(32);
+ JJ.push_back(I->first);
+ }
+
+ DenseMap<ValuePair, std::vector<ValuePair> > PairableInstUserMap;
+ DenseSet<VPPair> PairableInstUserPairSet;
+ for (std::vector<Value *>::iterator I = PairableInsts.begin(),
+ E = PairableInsts.end(); I != E; ++I) {
+ // The number of possible pairings for this variable:
+ size_t NumChoices = CandidatePairs.lookup(*I).size();
+ if (!NumChoices) continue;
+
+ std::vector<Value *> &JJ = CandidatePairs[*I];
+
+ // The best pair to choose and its dag:
+ size_t BestMaxDepth = 0;
+ int BestEffSize = 0;
+ DenseSet<ValuePair> BestDAG;
+ findBestDAGFor(CandidatePairs, CandidatePairsSet,
+ CandidatePairCostSavings,
+ PairableInsts, FixedOrderPairs, PairConnectionTypes,
+ ConnectedPairs, ConnectedPairDeps,
+ PairableInstUsers, PairableInstUserMap,
+ PairableInstUserPairSet, ChosenPairs,
+ BestDAG, BestMaxDepth, BestEffSize, *I, JJ,
+ UseCycleCheck);
+
+ if (BestDAG.empty())
+ continue;
+
+ // A dag has been chosen (or not) at this point. If no dag was
+ // chosen, then this instruction, I, cannot be paired (and is no longer
+ // considered).
+
+ DEBUG(dbgs() << "BBV: selected pairs in the best DAG for: "
+ << *cast<Instruction>(*I) << "\n");
+
+ for (DenseSet<ValuePair>::iterator S = BestDAG.begin(),
+ SE2 = BestDAG.end(); S != SE2; ++S) {
+ // Insert the members of this dag into the list of chosen pairs.
+ ChosenPairs.insert(ValuePair(S->first, S->second));
+ DEBUG(dbgs() << "BBV: selected pair: " << *S->first << " <-> " <<
+ *S->second << "\n");
+
+ // Remove all candidate pairs that have values in the chosen dag.
+ std::vector<Value *> &KK = CandidatePairs[S->first];
+ for (std::vector<Value *>::iterator K = KK.begin(), KE = KK.end();
+ K != KE; ++K) {
+ if (*K == S->second)
+ continue;
+
+ CandidatePairsSet.erase(ValuePair(S->first, *K));
+ }
+
+ std::vector<Value *> &LL = CandidatePairs2[S->second];
+ for (std::vector<Value *>::iterator L = LL.begin(), LE = LL.end();
+ L != LE; ++L) {
+ if (*L == S->first)
+ continue;
+
+ CandidatePairsSet.erase(ValuePair(*L, S->second));
+ }
+
+ std::vector<Value *> &MM = CandidatePairs[S->second];
+ for (std::vector<Value *>::iterator M = MM.begin(), ME = MM.end();
+ M != ME; ++M) {
+ assert(*M != S->first && "Flipped pair in candidate list?");
+ CandidatePairsSet.erase(ValuePair(S->second, *M));
+ }
+
+ std::vector<Value *> &NN = CandidatePairs2[S->first];
+ for (std::vector<Value *>::iterator N = NN.begin(), NE = NN.end();
+ N != NE; ++N) {
+ assert(*N != S->second && "Flipped pair in candidate list?");
+ CandidatePairsSet.erase(ValuePair(*N, S->first));
+ }
+ }
+ }
+
+ DEBUG(dbgs() << "BBV: selected " << ChosenPairs.size() << " pairs.\n");
+ }
+
+ std::string getReplacementName(Instruction *I, bool IsInput, unsigned o,
+ unsigned n = 0) {
+ if (!I->hasName())
+ return "";
+
+ return (I->getName() + (IsInput ? ".v.i" : ".v.r") + utostr(o) +
+ (n > 0 ? "." + utostr(n) : "")).str();
+ }
+
+ // Returns the value that is to be used as the pointer input to the vector
+ // instruction that fuses I with J.
+ Value *BBVectorize::getReplacementPointerInput(LLVMContext& Context,
+ Instruction *I, Instruction *J, unsigned o) {
+ Value *IPtr, *JPtr;
+ unsigned IAlignment, JAlignment, IAddressSpace, JAddressSpace;
+ int64_t OffsetInElmts;
+
+ // Note: the analysis might fail here, that is why the pair order has
+ // been precomputed (OffsetInElmts must be unused here).
+ (void) getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
+ IAddressSpace, JAddressSpace,
+ OffsetInElmts, false);
+
+ // The pointer value is taken to be the one with the lowest offset.
+ Value *VPtr = IPtr;
+
+ Type *ArgTypeI = IPtr->getType()->getPointerElementType();
+ Type *ArgTypeJ = JPtr->getType()->getPointerElementType();
+ Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
+ Type *VArgPtrType
+ = PointerType::get(VArgType,
+ IPtr->getType()->getPointerAddressSpace());
+ return new BitCastInst(VPtr, VArgPtrType, getReplacementName(I, true, o),
+ /* insert before */ I);
+ }
+
+ void BBVectorize::fillNewShuffleMask(LLVMContext& Context, Instruction *J,
+ unsigned MaskOffset, unsigned NumInElem,
+ unsigned NumInElem1, unsigned IdxOffset,
+ std::vector<Constant*> &Mask) {
+ unsigned NumElem1 = J->getType()->getVectorNumElements();
+ for (unsigned v = 0; v < NumElem1; ++v) {
+ int m = cast<ShuffleVectorInst>(J)->getMaskValue(v);
+ if (m < 0) {
+ Mask[v+MaskOffset] = UndefValue::get(Type::getInt32Ty(Context));
+ } else {
+ unsigned mm = m + (int) IdxOffset;
+ if (m >= (int) NumInElem1)
+ mm += (int) NumInElem;
+
+ Mask[v+MaskOffset] =
+ ConstantInt::get(Type::getInt32Ty(Context), mm);
+ }
+ }
+ }
+
+ // Returns the value that is to be used as the vector-shuffle mask to the
+ // vector instruction that fuses I with J.
+ Value *BBVectorize::getReplacementShuffleMask(LLVMContext& Context,
+ Instruction *I, Instruction *J) {
+ // This is the shuffle mask. We need to append the second
+ // mask to the first, and the numbers need to be adjusted.
+
+ Type *ArgTypeI = I->getType();
+ Type *ArgTypeJ = J->getType();
+ Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
+
+ unsigned NumElemI = ArgTypeI->getVectorNumElements();
+
+ // Get the total number of elements in the fused vector type.
+ // By definition, this must equal the number of elements in
+ // the final mask.
+ unsigned NumElem = VArgType->getVectorNumElements();
+ std::vector<Constant*> Mask(NumElem);
+
+ Type *OpTypeI = I->getOperand(0)->getType();
+ unsigned NumInElemI = OpTypeI->getVectorNumElements();
+ Type *OpTypeJ = J->getOperand(0)->getType();
+ unsigned NumInElemJ = OpTypeJ->getVectorNumElements();
+
+ // The fused vector will be:
+ // -----------------------------------------------------
+ // | NumInElemI | NumInElemJ | NumInElemI | NumInElemJ |
+ // -----------------------------------------------------
+ // from which we'll extract NumElem total elements (where the first NumElemI
+ // of them come from the mask in I and the remainder come from the mask
+ // in J.
+
+ // For the mask from the first pair...
+ fillNewShuffleMask(Context, I, 0, NumInElemJ, NumInElemI,
+ 0, Mask);
+
+ // For the mask from the second pair...
+ fillNewShuffleMask(Context, J, NumElemI, NumInElemI, NumInElemJ,
+ NumInElemI, Mask);
+
+ return ConstantVector::get(Mask);
+ }
+
+ bool BBVectorize::expandIEChain(LLVMContext& Context, Instruction *I,
+ Instruction *J, unsigned o, Value *&LOp,
+ unsigned numElemL,
+ Type *ArgTypeL, Type *ArgTypeH,
+ bool IBeforeJ, unsigned IdxOff) {
+ bool ExpandedIEChain = false;
+ if (InsertElementInst *LIE = dyn_cast<InsertElementInst>(LOp)) {
+ // If we have a pure insertelement chain, then this can be rewritten
+ // into a chain that directly builds the larger type.
+ if (isPureIEChain(LIE)) {
+ SmallVector<Value *, 8> VectElemts(numElemL,
+ UndefValue::get(ArgTypeL->getScalarType()));
+ InsertElementInst *LIENext = LIE;
+ do {
+ unsigned Idx =
+ cast<ConstantInt>(LIENext->getOperand(2))->getSExtValue();
+ VectElemts[Idx] = LIENext->getOperand(1);
+ } while ((LIENext =
+ dyn_cast<InsertElementInst>(LIENext->getOperand(0))));
+
+ LIENext = 0;
+ Value *LIEPrev = UndefValue::get(ArgTypeH);
+ for (unsigned i = 0; i < numElemL; ++i) {
+ if (isa<UndefValue>(VectElemts[i])) continue;
+ LIENext = InsertElementInst::Create(LIEPrev, VectElemts[i],
+ ConstantInt::get(Type::getInt32Ty(Context),
+ i + IdxOff),
+ getReplacementName(IBeforeJ ? I : J,
+ true, o, i+1));
+ LIENext->insertBefore(IBeforeJ ? J : I);
+ LIEPrev = LIENext;
+ }
+
+ LOp = LIENext ? (Value*) LIENext : UndefValue::get(ArgTypeH);
+ ExpandedIEChain = true;
+ }
+ }
+
+ return ExpandedIEChain;
+ }
+
+ static unsigned getNumScalarElements(Type *Ty) {
+ if (VectorType *VecTy = dyn_cast<VectorType>(Ty))
+ return VecTy->getNumElements();
+ return 1;
+ }
+
+ // Returns the value to be used as the specified operand of the vector
+ // instruction that fuses I with J.
+ Value *BBVectorize::getReplacementInput(LLVMContext& Context, Instruction *I,
+ Instruction *J, unsigned o, bool IBeforeJ) {
+ Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
+ Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), 1);
+
+ // Compute the fused vector type for this operand
+ Type *ArgTypeI = I->getOperand(o)->getType();
+ Type *ArgTypeJ = J->getOperand(o)->getType();
+ VectorType *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
+
+ Instruction *L = I, *H = J;
+ Type *ArgTypeL = ArgTypeI, *ArgTypeH = ArgTypeJ;
+
+ unsigned numElemL = getNumScalarElements(ArgTypeL);
+ unsigned numElemH = getNumScalarElements(ArgTypeH);
+
+ Value *LOp = L->getOperand(o);
+ Value *HOp = H->getOperand(o);
+ unsigned numElem = VArgType->getNumElements();
+
+ // First, we check if we can reuse the "original" vector outputs (if these
+ // exist). We might need a shuffle.
+ ExtractElementInst *LEE = dyn_cast<ExtractElementInst>(LOp);
+ ExtractElementInst *HEE = dyn_cast<ExtractElementInst>(HOp);
+ ShuffleVectorInst *LSV = dyn_cast<ShuffleVectorInst>(LOp);
+ ShuffleVectorInst *HSV = dyn_cast<ShuffleVectorInst>(HOp);
+
+ // FIXME: If we're fusing shuffle instructions, then we can't apply this
+ // optimization. The input vectors to the shuffle might be a different
+ // length from the shuffle outputs. Unfortunately, the replacement
+ // shuffle mask has already been formed, and the mask entries are sensitive
+ // to the sizes of the inputs.
+ bool IsSizeChangeShuffle =
+ isa<ShuffleVectorInst>(L) &&
+ (LOp->getType() != L->getType() || HOp->getType() != H->getType());
+
+ if ((LEE || LSV) && (HEE || HSV) && !IsSizeChangeShuffle) {
+ // We can have at most two unique vector inputs.
+ bool CanUseInputs = true;
+ Value *I1, *I2 = 0;
+ if (LEE) {
+ I1 = LEE->getOperand(0);
+ } else {
+ I1 = LSV->getOperand(0);
+ I2 = LSV->getOperand(1);
+ if (I2 == I1 || isa<UndefValue>(I2))
+ I2 = 0;
+ }
+
+ if (HEE) {
+ Value *I3 = HEE->getOperand(0);
+ if (!I2 && I3 != I1)
+ I2 = I3;
+ else if (I3 != I1 && I3 != I2)
+ CanUseInputs = false;
+ } else {
+ Value *I3 = HSV->getOperand(0);
+ if (!I2 && I3 != I1)
+ I2 = I3;
+ else if (I3 != I1 && I3 != I2)
+ CanUseInputs = false;
+
+ if (CanUseInputs) {
+ Value *I4 = HSV->getOperand(1);
+ if (!isa<UndefValue>(I4)) {
+ if (!I2 && I4 != I1)
+ I2 = I4;
+ else if (I4 != I1 && I4 != I2)
+ CanUseInputs = false;
+ }
+ }
+ }
+
+ if (CanUseInputs) {
+ unsigned LOpElem =
+ cast<Instruction>(LOp)->getOperand(0)->getType()
+ ->getVectorNumElements();
+
+ unsigned HOpElem =
+ cast<Instruction>(HOp)->getOperand(0)->getType()
+ ->getVectorNumElements();
+
+ // We have one or two input vectors. We need to map each index of the
+ // operands to the index of the original vector.
+ SmallVector<std::pair<int, int>, 8> II(numElem);
+ for (unsigned i = 0; i < numElemL; ++i) {
+ int Idx, INum;
+ if (LEE) {
+ Idx =
+ cast<ConstantInt>(LEE->getOperand(1))->getSExtValue();
+ INum = LEE->getOperand(0) == I1 ? 0 : 1;
+ } else {
+ Idx = LSV->getMaskValue(i);
+ if (Idx < (int) LOpElem) {
+ INum = LSV->getOperand(0) == I1 ? 0 : 1;
+ } else {
+ Idx -= LOpElem;
+ INum = LSV->getOperand(1) == I1 ? 0 : 1;
+ }
+ }
+
+ II[i] = std::pair<int, int>(Idx, INum);
+ }
+ for (unsigned i = 0; i < numElemH; ++i) {
+ int Idx, INum;
+ if (HEE) {
+ Idx =
+ cast<ConstantInt>(HEE->getOperand(1))->getSExtValue();
+ INum = HEE->getOperand(0) == I1 ? 0 : 1;
+ } else {
+ Idx = HSV->getMaskValue(i);
+ if (Idx < (int) HOpElem) {
+ INum = HSV->getOperand(0) == I1 ? 0 : 1;
+ } else {
+ Idx -= HOpElem;
+ INum = HSV->getOperand(1) == I1 ? 0 : 1;
+ }
+ }
+
+ II[i + numElemL] = std::pair<int, int>(Idx, INum);
+ }
+
+ // We now have an array which tells us from which index of which
+ // input vector each element of the operand comes.
+ VectorType *I1T = cast<VectorType>(I1->getType());
+ unsigned I1Elem = I1T->getNumElements();
+
+ if (!I2) {
+ // In this case there is only one underlying vector input. Check for
+ // the trivial case where we can use the input directly.
+ if (I1Elem == numElem) {
+ bool ElemInOrder = true;
+ for (unsigned i = 0; i < numElem; ++i) {
+ if (II[i].first != (int) i && II[i].first != -1) {
+ ElemInOrder = false;
+ break;
+ }
+ }
+
+ if (ElemInOrder)
+ return I1;
+ }
+
+ // A shuffle is needed.
+ std::vector<Constant *> Mask(numElem);
+ for (unsigned i = 0; i < numElem; ++i) {
+ int Idx = II[i].first;
+ if (Idx == -1)
+ Mask[i] = UndefValue::get(Type::getInt32Ty(Context));
+ else
+ Mask[i] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
+ }
+
+ Instruction *S =
+ new ShuffleVectorInst(I1, UndefValue::get(I1T),
+ ConstantVector::get(Mask),
+ getReplacementName(IBeforeJ ? I : J,
+ true, o));
+ S->insertBefore(IBeforeJ ? J : I);
+ return S;
+ }
+
+ VectorType *I2T = cast<VectorType>(I2->getType());
+ unsigned I2Elem = I2T->getNumElements();
+
+ // This input comes from two distinct vectors. The first step is to
+ // make sure that both vectors are the same length. If not, the
+ // smaller one will need to grow before they can be shuffled together.
+ if (I1Elem < I2Elem) {
+ std::vector<Constant *> Mask(I2Elem);
+ unsigned v = 0;
+ for (; v < I1Elem; ++v)
+ Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
+ for (; v < I2Elem; ++v)
+ Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
+
+ Instruction *NewI1 =
+ new ShuffleVectorInst(I1, UndefValue::get(I1T),
+ ConstantVector::get(Mask),
+ getReplacementName(IBeforeJ ? I : J,
+ true, o, 1));
+ NewI1->insertBefore(IBeforeJ ? J : I);
+ I1 = NewI1;
+ I1T = I2T;
+ I1Elem = I2Elem;
+ } else if (I1Elem > I2Elem) {
+ std::vector<Constant *> Mask(I1Elem);
+ unsigned v = 0;
+ for (; v < I2Elem; ++v)
+ Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
+ for (; v < I1Elem; ++v)
+ Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
+
+ Instruction *NewI2 =
+ new ShuffleVectorInst(I2, UndefValue::get(I2T),
+ ConstantVector::get(Mask),
+ getReplacementName(IBeforeJ ? I : J,
+ true, o, 1));
+ NewI2->insertBefore(IBeforeJ ? J : I);
+ I2 = NewI2;
+ I2T = I1T;
+ I2Elem = I1Elem;
+ }
+
+ // Now that both I1 and I2 are the same length we can shuffle them
+ // together (and use the result).
+ std::vector<Constant *> Mask(numElem);
+ for (unsigned v = 0; v < numElem; ++v) {
+ if (II[v].first == -1) {
+ Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
+ } else {
+ int Idx = II[v].first + II[v].second * I1Elem;
+ Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
+ }
+ }
+
+ Instruction *NewOp =
+ new ShuffleVectorInst(I1, I2, ConstantVector::get(Mask),
+ getReplacementName(IBeforeJ ? I : J, true, o));
+ NewOp->insertBefore(IBeforeJ ? J : I);
+ return NewOp;
+ }
+ }
+
+ Type *ArgType = ArgTypeL;
+ if (numElemL < numElemH) {
+ if (numElemL == 1 && expandIEChain(Context, I, J, o, HOp, numElemH,
+ ArgTypeL, VArgType, IBeforeJ, 1)) {
+ // This is another short-circuit case: we're combining a scalar into
+ // a vector that is formed by an IE chain. We've just expanded the IE
+ // chain, now insert the scalar and we're done.
+
+ Instruction *S = InsertElementInst::Create(HOp, LOp, CV0,
+ getReplacementName(IBeforeJ ? I : J, true, o));
+ S->insertBefore(IBeforeJ ? J : I);
+ return S;
+ } else if (!expandIEChain(Context, I, J, o, LOp, numElemL, ArgTypeL,
+ ArgTypeH, IBeforeJ)) {
+ // The two vector inputs to the shuffle must be the same length,
+ // so extend the smaller vector to be the same length as the larger one.
+ Instruction *NLOp;
+ if (numElemL > 1) {
+
+ std::vector<Constant *> Mask(numElemH);
+ unsigned v = 0;
+ for (; v < numElemL; ++v)
+ Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
+ for (; v < numElemH; ++v)
+ Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
+
+ NLOp = new ShuffleVectorInst(LOp, UndefValue::get(ArgTypeL),
+ ConstantVector::get(Mask),
+ getReplacementName(IBeforeJ ? I : J,
+ true, o, 1));
+ } else {
+ NLOp = InsertElementInst::Create(UndefValue::get(ArgTypeH), LOp, CV0,
+ getReplacementName(IBeforeJ ? I : J,
+ true, o, 1));
+ }
+
+ NLOp->insertBefore(IBeforeJ ? J : I);
+ LOp = NLOp;
+ }
+
+ ArgType = ArgTypeH;
+ } else if (numElemL > numElemH) {
+ if (numElemH == 1 && expandIEChain(Context, I, J, o, LOp, numElemL,
+ ArgTypeH, VArgType, IBeforeJ)) {
+ Instruction *S =
+ InsertElementInst::Create(LOp, HOp,
+ ConstantInt::get(Type::getInt32Ty(Context),
+ numElemL),
+ getReplacementName(IBeforeJ ? I : J,
+ true, o));
+ S->insertBefore(IBeforeJ ? J : I);
+ return S;
+ } else if (!expandIEChain(Context, I, J, o, HOp, numElemH, ArgTypeH,
+ ArgTypeL, IBeforeJ)) {
+ Instruction *NHOp;
+ if (numElemH > 1) {
+ std::vector<Constant *> Mask(numElemL);
+ unsigned v = 0;
+ for (; v < numElemH; ++v)
+ Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
+ for (; v < numElemL; ++v)
+ Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
+
+ NHOp = new ShuffleVectorInst(HOp, UndefValue::get(ArgTypeH),
+ ConstantVector::get(Mask),
+ getReplacementName(IBeforeJ ? I : J,
+ true, o, 1));
+ } else {
+ NHOp = InsertElementInst::Create(UndefValue::get(ArgTypeL), HOp, CV0,
+ getReplacementName(IBeforeJ ? I : J,
+ true, o, 1));
+ }
+
+ NHOp->insertBefore(IBeforeJ ? J : I);
+ HOp = NHOp;
+ }
+ }
+
+ if (ArgType->isVectorTy()) {
+ unsigned numElem = VArgType->getVectorNumElements();
+ std::vector<Constant*> Mask(numElem);
+ for (unsigned v = 0; v < numElem; ++v) {
+ unsigned Idx = v;
+ // If the low vector was expanded, we need to skip the extra
+ // undefined entries.
+ if (v >= numElemL && numElemH > numElemL)
+ Idx += (numElemH - numElemL);
+ Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
+ }
+
+ Instruction *BV = new ShuffleVectorInst(LOp, HOp,
+ ConstantVector::get(Mask),
+ getReplacementName(IBeforeJ ? I : J, true, o));
+ BV->insertBefore(IBeforeJ ? J : I);
+ return BV;
+ }
+
+ Instruction *BV1 = InsertElementInst::Create(
+ UndefValue::get(VArgType), LOp, CV0,
+ getReplacementName(IBeforeJ ? I : J,
+ true, o, 1));
+ BV1->insertBefore(IBeforeJ ? J : I);
+ Instruction *BV2 = InsertElementInst::Create(BV1, HOp, CV1,
+ getReplacementName(IBeforeJ ? I : J,
+ true, o, 2));
+ BV2->insertBefore(IBeforeJ ? J : I);
+ return BV2;
+ }
+
+ // This function creates an array of values that will be used as the inputs
+ // to the vector instruction that fuses I with J.
+ void BBVectorize::getReplacementInputsForPair(LLVMContext& Context,
+ Instruction *I, Instruction *J,
+ SmallVectorImpl<Value *> &ReplacedOperands,
+ bool IBeforeJ) {
+ unsigned NumOperands = I->getNumOperands();
+
+ for (unsigned p = 0, o = NumOperands-1; p < NumOperands; ++p, --o) {
+ // Iterate backward so that we look at the store pointer
+ // first and know whether or not we need to flip the inputs.
+
+ if (isa<LoadInst>(I) || (o == 1 && isa<StoreInst>(I))) {
+ // This is the pointer for a load/store instruction.
+ ReplacedOperands[o] = getReplacementPointerInput(Context, I, J, o);
+ continue;
+ } else if (isa<CallInst>(I)) {
+ Function *F = cast<CallInst>(I)->getCalledFunction();
+ Intrinsic::ID IID = (Intrinsic::ID) F->getIntrinsicID();
+ if (o == NumOperands-1) {
+ BasicBlock &BB = *I->getParent();
+
+ Module *M = BB.getParent()->getParent();
+ Type *ArgTypeI = I->getType();
+ Type *ArgTypeJ = J->getType();
+ Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
+
+ ReplacedOperands[o] = Intrinsic::getDeclaration(M, IID, VArgType);
+ continue;
+ } else if (IID == Intrinsic::powi && o == 1) {
+ // The second argument of powi is a single integer and we've already
+ // checked that both arguments are equal. As a result, we just keep
+ // I's second argument.
+ ReplacedOperands[o] = I->getOperand(o);
+ continue;
+ }
+ } else if (isa<ShuffleVectorInst>(I) && o == NumOperands-1) {
+ ReplacedOperands[o] = getReplacementShuffleMask(Context, I, J);
+ continue;
+ }
+
+ ReplacedOperands[o] = getReplacementInput(Context, I, J, o, IBeforeJ);
+ }
+ }
+
+ // This function creates two values that represent the outputs of the
+ // original I and J instructions. These are generally vector shuffles
+ // or extracts. In many cases, these will end up being unused and, thus,
+ // eliminated by later passes.
+ void BBVectorize::replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
+ Instruction *J, Instruction *K,
+ Instruction *&InsertionPt,
+ Instruction *&K1, Instruction *&K2) {
+ if (isa<StoreInst>(I)) {
+ AA->replaceWithNewValue(I, K);
+ AA->replaceWithNewValue(J, K);
+ } else {
+ Type *IType = I->getType();
+ Type *JType = J->getType();
+
+ VectorType *VType = getVecTypeForPair(IType, JType);
+ unsigned numElem = VType->getNumElements();
+
+ unsigned numElemI = getNumScalarElements(IType);
+ unsigned numElemJ = getNumScalarElements(JType);
+
+ if (IType->isVectorTy()) {
+ std::vector<Constant*> Mask1(numElemI), Mask2(numElemI);
+ for (unsigned v = 0; v < numElemI; ++v) {
+ Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
+ Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElemJ+v);
+ }
+
+ K1 = new ShuffleVectorInst(K, UndefValue::get(VType),
+ ConstantVector::get( Mask1),
+ getReplacementName(K, false, 1));
+ } else {
+ Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
+ K1 = ExtractElementInst::Create(K, CV0,
+ getReplacementName(K, false, 1));
+ }
+
+ if (JType->isVectorTy()) {
+ std::vector<Constant*> Mask1(numElemJ), Mask2(numElemJ);
+ for (unsigned v = 0; v < numElemJ; ++v) {
+ Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
+ Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElemI+v);
+ }
+
+ K2 = new ShuffleVectorInst(K, UndefValue::get(VType),
+ ConstantVector::get( Mask2),
+ getReplacementName(K, false, 2));
+ } else {
+ Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), numElem-1);
+ K2 = ExtractElementInst::Create(K, CV1,
+ getReplacementName(K, false, 2));
+ }
+
+ K1->insertAfter(K);
+ K2->insertAfter(K1);
+ InsertionPt = K2;
+ }
+ }
+
+ // Move all uses of the function I (including pairing-induced uses) after J.
+ bool BBVectorize::canMoveUsesOfIAfterJ(BasicBlock &BB,
+ DenseSet<ValuePair> &LoadMoveSetPairs,
+ Instruction *I, Instruction *J) {
+ // Skip to the first instruction past I.
+ BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
+
+ DenseSet<Value *> Users;
+ AliasSetTracker WriteSet(*AA);
+ if (I->mayWriteToMemory()) WriteSet.add(I);
+
+ for (; cast<Instruction>(L) != J; ++L)
+ (void) trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSetPairs);
+
+ assert(cast<Instruction>(L) == J &&
+ "Tracking has not proceeded far enough to check for dependencies");
+ // If J is now in the use set of I, then trackUsesOfI will return true
+ // and we have a dependency cycle (and the fusing operation must abort).
+ return !trackUsesOfI(Users, WriteSet, I, J, true, &LoadMoveSetPairs);
+ }
+
+ // Move all uses of the function I (including pairing-induced uses) after J.
+ void BBVectorize::moveUsesOfIAfterJ(BasicBlock &BB,
+ DenseSet<ValuePair> &LoadMoveSetPairs,
+ Instruction *&InsertionPt,
+ Instruction *I, Instruction *J) {
+ // Skip to the first instruction past I.
+ BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
+
+ DenseSet<Value *> Users;
+ AliasSetTracker WriteSet(*AA);
+ if (I->mayWriteToMemory()) WriteSet.add(I);
+
+ for (; cast<Instruction>(L) != J;) {
+ if (trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSetPairs)) {
+ // Move this instruction
+ Instruction *InstToMove = L; ++L;
+
+ DEBUG(dbgs() << "BBV: moving: " << *InstToMove <<
+ " to after " << *InsertionPt << "\n");
+ InstToMove->removeFromParent();
+ InstToMove->insertAfter(InsertionPt);
+ InsertionPt = InstToMove;
+ } else {
+ ++L;
+ }
+ }
+ }
+
+ // Collect all load instruction that are in the move set of a given first
+ // pair member. These loads depend on the first instruction, I, and so need
+ // to be moved after J (the second instruction) when the pair is fused.
+ void BBVectorize::collectPairLoadMoveSet(BasicBlock &BB,
+ DenseMap<Value *, Value *> &ChosenPairs,
+ DenseMap<Value *, std::vector<Value *> > &LoadMoveSet,
+ DenseSet<ValuePair> &LoadMoveSetPairs,
+ Instruction *I) {
+ // Skip to the first instruction past I.
+ BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
+
+ DenseSet<Value *> Users;
+ AliasSetTracker WriteSet(*AA);
+ if (I->mayWriteToMemory()) WriteSet.add(I);
+
+ // Note: We cannot end the loop when we reach J because J could be moved
+ // farther down the use chain by another instruction pairing. Also, J
+ // could be before I if this is an inverted input.
+ for (BasicBlock::iterator E = BB.end(); cast<Instruction>(L) != E; ++L) {
+ if (trackUsesOfI(Users, WriteSet, I, L)) {
+ if (L->mayReadFromMemory()) {
+ LoadMoveSet[L].push_back(I);
+ LoadMoveSetPairs.insert(ValuePair(L, I));
+ }
+ }
+ }
+ }
+
+ // In cases where both load/stores and the computation of their pointers
+ // are chosen for vectorization, we can end up in a situation where the
+ // aliasing analysis starts returning different query results as the
+ // process of fusing instruction pairs continues. Because the algorithm
+ // relies on finding the same use dags here as were found earlier, we'll
+ // need to precompute the necessary aliasing information here and then
+ // manually update it during the fusion process.
+ void BBVectorize::collectLoadMoveSet(BasicBlock &BB,
+ std::vector<Value *> &PairableInsts,
+ DenseMap<Value *, Value *> &ChosenPairs,
+ DenseMap<Value *, std::vector<Value *> > &LoadMoveSet,
+ DenseSet<ValuePair> &LoadMoveSetPairs) {
+ for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
+ PIE = PairableInsts.end(); PI != PIE; ++PI) {
+ DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(*PI);
+ if (P == ChosenPairs.end()) continue;
+
+ Instruction *I = cast<Instruction>(P->first);
+ collectPairLoadMoveSet(BB, ChosenPairs, LoadMoveSet,
+ LoadMoveSetPairs, I);
+ }
+ }
+
+ // When the first instruction in each pair is cloned, it will inherit its
+ // parent's metadata. This metadata must be combined with that of the other
+ // instruction in a safe way.
+ void BBVectorize::combineMetadata(Instruction *K, const Instruction *J) {
+ SmallVector<std::pair<unsigned, MDNode*>, 4> Metadata;
+ K->getAllMetadataOtherThanDebugLoc(Metadata);
+ for (unsigned i = 0, n = Metadata.size(); i < n; ++i) {
+ unsigned Kind = Metadata[i].first;
+ MDNode *JMD = J->getMetadata(Kind);
+ MDNode *KMD = Metadata[i].second;
+
+ switch (Kind) {
+ default:
+ K->setMetadata(Kind, 0); // Remove unknown metadata
+ break;
+ case LLVMContext::MD_tbaa:
+ K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
+ break;
+ case LLVMContext::MD_fpmath:
+ K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
+ break;
+ }
+ }
+ }
+
+ // This function fuses the chosen instruction pairs into vector instructions,
+ // taking care preserve any needed scalar outputs and, then, it reorders the
+ // remaining instructions as needed (users of the first member of the pair
+ // need to be moved to after the location of the second member of the pair
+ // because the vector instruction is inserted in the location of the pair's
+ // second member).
+ void BBVectorize::fuseChosenPairs(BasicBlock &BB,
+ std::vector<Value *> &PairableInsts,
+ DenseMap<Value *, Value *> &ChosenPairs,
+ DenseSet<ValuePair> &FixedOrderPairs,
+ DenseMap<VPPair, unsigned> &PairConnectionTypes,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps) {
+ LLVMContext& Context = BB.getContext();
+
+ // During the vectorization process, the order of the pairs to be fused
+ // could be flipped. So we'll add each pair, flipped, into the ChosenPairs
+ // list. After a pair is fused, the flipped pair is removed from the list.
+ DenseSet<ValuePair> FlippedPairs;
+ for (DenseMap<Value *, Value *>::iterator P = ChosenPairs.begin(),
+ E = ChosenPairs.end(); P != E; ++P)
+ FlippedPairs.insert(ValuePair(P->second, P->first));
+ for (DenseSet<ValuePair>::iterator P = FlippedPairs.begin(),
+ E = FlippedPairs.end(); P != E; ++P)
+ ChosenPairs.insert(*P);
+
+ DenseMap<Value *, std::vector<Value *> > LoadMoveSet;
+ DenseSet<ValuePair> LoadMoveSetPairs;
+ collectLoadMoveSet(BB, PairableInsts, ChosenPairs,
+ LoadMoveSet, LoadMoveSetPairs);
+
+ DEBUG(dbgs() << "BBV: initial: \n" << BB << "\n");
+
+ for (BasicBlock::iterator PI = BB.getFirstInsertionPt(); PI != BB.end();) {
+ DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(PI);
+ if (P == ChosenPairs.end()) {
+ ++PI;
+ continue;
+ }
+
+ if (getDepthFactor(P->first) == 0) {
+ // These instructions are not really fused, but are tracked as though
+ // they are. Any case in which it would be interesting to fuse them
+ // will be taken care of by InstCombine.
+ --NumFusedOps;
+ ++PI;
+ continue;
+ }
+
+ Instruction *I = cast<Instruction>(P->first),
+ *J = cast<Instruction>(P->second);
+
+ DEBUG(dbgs() << "BBV: fusing: " << *I <<
+ " <-> " << *J << "\n");
+
+ // Remove the pair and flipped pair from the list.
+ DenseMap<Value *, Value *>::iterator FP = ChosenPairs.find(P->second);
+ assert(FP != ChosenPairs.end() && "Flipped pair not found in list");
+ ChosenPairs.erase(FP);
+ ChosenPairs.erase(P);
+
+ if (!canMoveUsesOfIAfterJ(BB, LoadMoveSetPairs, I, J)) {
+ DEBUG(dbgs() << "BBV: fusion of: " << *I <<
+ " <-> " << *J <<
+ " aborted because of non-trivial dependency cycle\n");
+ --NumFusedOps;
+ ++PI;
+ continue;
+ }
+
+ // If the pair must have the other order, then flip it.
+ bool FlipPairOrder = FixedOrderPairs.count(ValuePair(J, I));
+ if (!FlipPairOrder && !FixedOrderPairs.count(ValuePair(I, J))) {
+ // This pair does not have a fixed order, and so we might want to
+ // flip it if that will yield fewer shuffles. We count the number
+ // of dependencies connected via swaps, and those directly connected,
+ // and flip the order if the number of swaps is greater.
+ bool OrigOrder = true;
+ DenseMap<ValuePair, std::vector<ValuePair> >::iterator IJ =
+ ConnectedPairDeps.find(ValuePair(I, J));
+ if (IJ == ConnectedPairDeps.end()) {
+ IJ = ConnectedPairDeps.find(ValuePair(J, I));
+ OrigOrder = false;
+ }
+
+ if (IJ != ConnectedPairDeps.end()) {
+ unsigned NumDepsDirect = 0, NumDepsSwap = 0;
+ for (std::vector<ValuePair>::iterator T = IJ->second.begin(),
+ TE = IJ->second.end(); T != TE; ++T) {
+ VPPair Q(IJ->first, *T);
+ DenseMap<VPPair, unsigned>::iterator R =
+ PairConnectionTypes.find(VPPair(Q.second, Q.first));
+ assert(R != PairConnectionTypes.end() &&
+ "Cannot find pair connection type");
+ if (R->second == PairConnectionDirect)
+ ++NumDepsDirect;
+ else if (R->second == PairConnectionSwap)
+ ++NumDepsSwap;
+ }
+
+ if (!OrigOrder)
+ std::swap(NumDepsDirect, NumDepsSwap);
+
+ if (NumDepsSwap > NumDepsDirect) {
+ FlipPairOrder = true;
+ DEBUG(dbgs() << "BBV: reordering pair: " << *I <<
+ " <-> " << *J << "\n");
+ }
+ }
+ }
+
+ Instruction *L = I, *H = J;
+ if (FlipPairOrder)
+ std::swap(H, L);
+
+ // If the pair being fused uses the opposite order from that in the pair
+ // connection map, then we need to flip the types.
+ DenseMap<ValuePair, std::vector<ValuePair> >::iterator HL =
+ ConnectedPairs.find(ValuePair(H, L));
+ if (HL != ConnectedPairs.end())
+ for (std::vector<ValuePair>::iterator T = HL->second.begin(),
+ TE = HL->second.end(); T != TE; ++T) {
+ VPPair Q(HL->first, *T);
+ DenseMap<VPPair, unsigned>::iterator R = PairConnectionTypes.find(Q);
+ assert(R != PairConnectionTypes.end() &&
+ "Cannot find pair connection type");
+ if (R->second == PairConnectionDirect)
+ R->second = PairConnectionSwap;
+ else if (R->second == PairConnectionSwap)
+ R->second = PairConnectionDirect;
+ }
+
+ bool LBeforeH = !FlipPairOrder;
+ unsigned NumOperands = I->getNumOperands();
+ SmallVector<Value *, 3> ReplacedOperands(NumOperands);
+ getReplacementInputsForPair(Context, L, H, ReplacedOperands,
+ LBeforeH);
+
+ // Make a copy of the original operation, change its type to the vector
+ // type and replace its operands with the vector operands.
+ Instruction *K = L->clone();
+ if (L->hasName())
+ K->takeName(L);
+ else if (H->hasName())
+ K->takeName(H);
+
+ if (!isa<StoreInst>(K))
+ K->mutateType(getVecTypeForPair(L->getType(), H->getType()));
+
+ combineMetadata(K, H);
+ K->intersectOptionalDataWith(H);
+
+ for (unsigned o = 0; o < NumOperands; ++o)
+ K->setOperand(o, ReplacedOperands[o]);
+
+ K->insertAfter(J);
+
+ // Instruction insertion point:
+ Instruction *InsertionPt = K;
+ Instruction *K1 = 0, *K2 = 0;
+ replaceOutputsOfPair(Context, L, H, K, InsertionPt, K1, K2);
+
+ // The use dag of the first original instruction must be moved to after
+ // the location of the second instruction. The entire use dag of the
+ // first instruction is disjoint from the input dag of the second
+ // (by definition), and so commutes with it.
+
+ moveUsesOfIAfterJ(BB, LoadMoveSetPairs, InsertionPt, I, J);
+
+ if (!isa<StoreInst>(I)) {
+ L->replaceAllUsesWith(K1);
+ H->replaceAllUsesWith(K2);
+ AA->replaceWithNewValue(L, K1);
+ AA->replaceWithNewValue(H, K2);
+ }
+
+ // Instructions that may read from memory may be in the load move set.
+ // Once an instruction is fused, we no longer need its move set, and so
+ // the values of the map never need to be updated. However, when a load
+ // is fused, we need to merge the entries from both instructions in the
+ // pair in case those instructions were in the move set of some other
+ // yet-to-be-fused pair. The loads in question are the keys of the map.
+ if (I->mayReadFromMemory()) {
+ std::vector<ValuePair> NewSetMembers;
+ DenseMap<Value *, std::vector<Value *> >::iterator II =
+ LoadMoveSet.find(I);
+ if (II != LoadMoveSet.end())
+ for (std::vector<Value *>::iterator N = II->second.begin(),
+ NE = II->second.end(); N != NE; ++N)
+ NewSetMembers.push_back(ValuePair(K, *N));
+ DenseMap<Value *, std::vector<Value *> >::iterator JJ =
+ LoadMoveSet.find(J);
+ if (JJ != LoadMoveSet.end())
+ for (std::vector<Value *>::iterator N = JJ->second.begin(),
+ NE = JJ->second.end(); N != NE; ++N)
+ NewSetMembers.push_back(ValuePair(K, *N));
+ for (std::vector<ValuePair>::iterator A = NewSetMembers.begin(),
+ AE = NewSetMembers.end(); A != AE; ++A) {
+ LoadMoveSet[A->first].push_back(A->second);
+ LoadMoveSetPairs.insert(*A);
+ }
+ }
+
+ // Before removing I, set the iterator to the next instruction.
+ PI = llvm::next(BasicBlock::iterator(I));
+ if (cast<Instruction>(PI) == J)
+ ++PI;
+
+ SE->forgetValue(I);
+ SE->forgetValue(J);
+ I->eraseFromParent();
+ J->eraseFromParent();
+
+ DEBUG(if (PrintAfterEveryPair) dbgs() << "BBV: block is now: \n" <<
+ BB << "\n");
+ }
+
+ DEBUG(dbgs() << "BBV: final: \n" << BB << "\n");
+ }
+}
+
+char BBVectorize::ID = 0;
+static const char bb_vectorize_name[] = "Basic-Block Vectorization";
+INITIALIZE_PASS_BEGIN(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
+INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
+INITIALIZE_PASS_DEPENDENCY(DominatorTree)
+INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
+INITIALIZE_PASS_END(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
+
+BasicBlockPass *llvm::createBBVectorizePass(const VectorizeConfig &C) {
+ return new BBVectorize(C);
+}
+
+bool
+llvm::vectorizeBasicBlock(Pass *P, BasicBlock &BB, const VectorizeConfig &C) {
+ BBVectorize BBVectorizer(P, C);
+ return BBVectorizer.vectorizeBB(BB);
+}
+
+//===----------------------------------------------------------------------===//
+VectorizeConfig::VectorizeConfig() {
+ VectorBits = ::VectorBits;
+ VectorizeBools = !::NoBools;
+ VectorizeInts = !::NoInts;
+ VectorizeFloats = !::NoFloats;
+ VectorizePointers = !::NoPointers;
+ VectorizeCasts = !::NoCasts;
+ VectorizeMath = !::NoMath;
+ VectorizeFMA = !::NoFMA;
+ VectorizeSelect = !::NoSelect;
+ VectorizeCmp = !::NoCmp;
+ VectorizeGEP = !::NoGEP;
+ VectorizeMemOps = !::NoMemOps;
+ AlignedOnly = ::AlignedOnly;
+ ReqChainDepth= ::ReqChainDepth;
+ SearchLimit = ::SearchLimit;
+ MaxCandPairsForCycleCheck = ::MaxCandPairsForCycleCheck;
+ SplatBreaksChain = ::SplatBreaksChain;
+ MaxInsts = ::MaxInsts;
+ MaxPairs = ::MaxPairs;
+ MaxIter = ::MaxIter;
+ Pow2LenOnly = ::Pow2LenOnly;
+ NoMemOpBoost = ::NoMemOpBoost;
+ FastDep = ::FastDep;
+}
diff --git a/contrib/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp b/contrib/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
new file mode 100644
index 0000000..5e75871
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
@@ -0,0 +1,5157 @@
+//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
+// and generates target-independent LLVM-IR.
+// The vectorizer uses the TargetTransformInfo analysis to estimate the costs
+// of instructions in order to estimate the profitability of vectorization.
+//
+// The loop vectorizer combines consecutive loop iterations into a single
+// 'wide' iteration. After this transformation the index is incremented
+// by the SIMD vector width, and not by one.
+//
+// This pass has three parts:
+// 1. The main loop pass that drives the different parts.
+// 2. LoopVectorizationLegality - A unit that checks for the legality
+// of the vectorization.
+// 3. InnerLoopVectorizer - A unit that performs the actual
+// widening of instructions.
+// 4. LoopVectorizationCostModel - A unit that checks for the profitability
+// of vectorization. It decides on the optimal vector width, which
+// can be one, if vectorization is not profitable.
+//
+//===----------------------------------------------------------------------===//
+//
+// The reduction-variable vectorization is based on the paper:
+// D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
+//
+// Variable uniformity checks are inspired by:
+// Karrenberg, R. and Hack, S. Whole Function Vectorization.
+//
+// Other ideas/concepts are from:
+// A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
+//
+// S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
+// Vectorizing Compilers.
+//
+//===----------------------------------------------------------------------===//
+
+#define LV_NAME "loop-vectorize"
+#define DEBUG_TYPE LV_NAME
+
+#include "llvm/Transforms/Vectorize.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/EquivalenceClasses.h"
+#include "llvm/ADT/Hashing.h"
+#include "llvm/ADT/MapVector.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/LoopIterator.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpander.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Analysis/Verifier.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/PatternMatch.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/ValueHandle.h"
+#include "llvm/Target/TargetLibraryInfo.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include <algorithm>
+#include <map>
+
+using namespace llvm;
+using namespace llvm::PatternMatch;
+
+static cl::opt<unsigned>
+VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
+ cl::desc("Sets the SIMD width. Zero is autoselect."));
+
+static cl::opt<unsigned>
+VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden,
+ cl::desc("Sets the vectorization unroll count. "
+ "Zero is autoselect."));
+
+static cl::opt<bool>
+EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
+ cl::desc("Enable if-conversion during vectorization."));
+
+/// We don't vectorize loops with a known constant trip count below this number.
+static cl::opt<unsigned>
+TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16),
+ cl::Hidden,
+ cl::desc("Don't vectorize loops with a constant "
+ "trip count that is smaller than this "
+ "value."));
+
+/// We don't unroll loops with a known constant trip count below this number.
+static const unsigned TinyTripCountUnrollThreshold = 128;
+
+/// When performing memory disambiguation checks at runtime do not make more
+/// than this number of comparisons.
+static const unsigned RuntimeMemoryCheckThreshold = 8;
+
+/// Maximum simd width.
+static const unsigned MaxVectorWidth = 64;
+
+/// Maximum vectorization unroll count.
+static const unsigned MaxUnrollFactor = 16;
+
+/// The cost of a loop that is considered 'small' by the unroller.
+static const unsigned SmallLoopCost = 20;
+
+namespace {
+
+// Forward declarations.
+class LoopVectorizationLegality;
+class LoopVectorizationCostModel;
+
+/// InnerLoopVectorizer vectorizes loops which contain only one basic
+/// block to a specified vectorization factor (VF).
+/// This class performs the widening of scalars into vectors, or multiple
+/// scalars. This class also implements the following features:
+/// * It inserts an epilogue loop for handling loops that don't have iteration
+/// counts that are known to be a multiple of the vectorization factor.
+/// * It handles the code generation for reduction variables.
+/// * Scalarization (implementation using scalars) of un-vectorizable
+/// instructions.
+/// InnerLoopVectorizer does not perform any vectorization-legality
+/// checks, and relies on the caller to check for the different legality
+/// aspects. The InnerLoopVectorizer relies on the
+/// LoopVectorizationLegality class to provide information about the induction
+/// and reduction variables that were found to a given vectorization factor.
+class InnerLoopVectorizer {
+public:
+ InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
+ DominatorTree *DT, DataLayout *DL,
+ const TargetLibraryInfo *TLI, unsigned VecWidth,
+ unsigned UnrollFactor)
+ : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI),
+ VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), Induction(0),
+ OldInduction(0), WidenMap(UnrollFactor) {}
+
+ // Perform the actual loop widening (vectorization).
+ void vectorize(LoopVectorizationLegality *Legal) {
+ // Create a new empty loop. Unlink the old loop and connect the new one.
+ createEmptyLoop(Legal);
+ // Widen each instruction in the old loop to a new one in the new loop.
+ // Use the Legality module to find the induction and reduction variables.
+ vectorizeLoop(Legal);
+ // Register the new loop and update the analysis passes.
+ updateAnalysis();
+ }
+
+ virtual ~InnerLoopVectorizer() {}
+
+protected:
+ /// A small list of PHINodes.
+ typedef SmallVector<PHINode*, 4> PhiVector;
+ /// When we unroll loops we have multiple vector values for each scalar.
+ /// This data structure holds the unrolled and vectorized values that
+ /// originated from one scalar instruction.
+ typedef SmallVector<Value*, 2> VectorParts;
+
+ // When we if-convert we need create edge masks. We have to cache values so
+ // that we don't end up with exponential recursion/IR.
+ typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>,
+ VectorParts> EdgeMaskCache;
+
+ /// Add code that checks at runtime if the accessed arrays overlap.
+ /// Returns the comparator value or NULL if no check is needed.
+ Instruction *addRuntimeCheck(LoopVectorizationLegality *Legal,
+ Instruction *Loc);
+ /// Create an empty loop, based on the loop ranges of the old loop.
+ void createEmptyLoop(LoopVectorizationLegality *Legal);
+ /// Copy and widen the instructions from the old loop.
+ virtual void vectorizeLoop(LoopVectorizationLegality *Legal);
+
+ /// \brief The Loop exit block may have single value PHI nodes where the
+ /// incoming value is 'Undef'. While vectorizing we only handled real values
+ /// that were defined inside the loop. Here we fix the 'undef case'.
+ /// See PR14725.
+ void fixLCSSAPHIs();
+
+ /// A helper function that computes the predicate of the block BB, assuming
+ /// that the header block of the loop is set to True. It returns the *entry*
+ /// mask for the block BB.
+ VectorParts createBlockInMask(BasicBlock *BB);
+ /// A helper function that computes the predicate of the edge between SRC
+ /// and DST.
+ VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
+
+ /// A helper function to vectorize a single BB within the innermost loop.
+ void vectorizeBlockInLoop(LoopVectorizationLegality *Legal, BasicBlock *BB,
+ PhiVector *PV);
+
+ /// Vectorize a single PHINode in a block. This method handles the induction
+ /// variable canonicalization. It supports both VF = 1 for unrolled loops and
+ /// arbitrary length vectors.
+ void widenPHIInstruction(Instruction *PN, VectorParts &Entry,
+ LoopVectorizationLegality *Legal,
+ unsigned UF, unsigned VF, PhiVector *PV);
+
+ /// Insert the new loop to the loop hierarchy and pass manager
+ /// and update the analysis passes.
+ void updateAnalysis();
+
+ /// This instruction is un-vectorizable. Implement it as a sequence
+ /// of scalars.
+ virtual void scalarizeInstruction(Instruction *Instr);
+
+ /// Vectorize Load and Store instructions,
+ virtual void vectorizeMemoryInstruction(Instruction *Instr,
+ LoopVectorizationLegality *Legal);
+
+ /// Create a broadcast instruction. This method generates a broadcast
+ /// instruction (shuffle) for loop invariant values and for the induction
+ /// value. If this is the induction variable then we extend it to N, N+1, ...
+ /// this is needed because each iteration in the loop corresponds to a SIMD
+ /// element.
+ virtual Value *getBroadcastInstrs(Value *V);
+
+ /// This function adds 0, 1, 2 ... to each vector element, starting at zero.
+ /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...).
+ /// The sequence starts at StartIndex.
+ virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate);
+
+ /// When we go over instructions in the basic block we rely on previous
+ /// values within the current basic block or on loop invariant values.
+ /// When we widen (vectorize) values we place them in the map. If the values
+ /// are not within the map, they have to be loop invariant, so we simply
+ /// broadcast them into a vector.
+ VectorParts &getVectorValue(Value *V);
+
+ /// Generate a shuffle sequence that will reverse the vector Vec.
+ virtual Value *reverseVector(Value *Vec);
+
+ /// This is a helper class that holds the vectorizer state. It maps scalar
+ /// instructions to vector instructions. When the code is 'unrolled' then
+ /// then a single scalar value is mapped to multiple vector parts. The parts
+ /// are stored in the VectorPart type.
+ struct ValueMap {
+ /// C'tor. UnrollFactor controls the number of vectors ('parts') that
+ /// are mapped.
+ ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
+
+ /// \return True if 'Key' is saved in the Value Map.
+ bool has(Value *Key) const { return MapStorage.count(Key); }
+
+ /// Initializes a new entry in the map. Sets all of the vector parts to the
+ /// save value in 'Val'.
+ /// \return A reference to a vector with splat values.
+ VectorParts &splat(Value *Key, Value *Val) {
+ VectorParts &Entry = MapStorage[Key];
+ Entry.assign(UF, Val);
+ return Entry;
+ }
+
+ ///\return A reference to the value that is stored at 'Key'.
+ VectorParts &get(Value *Key) {
+ VectorParts &Entry = MapStorage[Key];
+ if (Entry.empty())
+ Entry.resize(UF);
+ assert(Entry.size() == UF);
+ return Entry;
+ }
+
+ private:
+ /// The unroll factor. Each entry in the map stores this number of vector
+ /// elements.
+ unsigned UF;
+
+ /// Map storage. We use std::map and not DenseMap because insertions to a
+ /// dense map invalidates its iterators.
+ std::map<Value *, VectorParts> MapStorage;
+ };
+
+ /// The original loop.
+ Loop *OrigLoop;
+ /// Scev analysis to use.
+ ScalarEvolution *SE;
+ /// Loop Info.
+ LoopInfo *LI;
+ /// Dominator Tree.
+ DominatorTree *DT;
+ /// Data Layout.
+ DataLayout *DL;
+ /// Target Library Info.
+ const TargetLibraryInfo *TLI;
+
+ /// The vectorization SIMD factor to use. Each vector will have this many
+ /// vector elements.
+ unsigned VF;
+
+protected:
+ /// The vectorization unroll factor to use. Each scalar is vectorized to this
+ /// many different vector instructions.
+ unsigned UF;
+
+ /// The builder that we use
+ IRBuilder<> Builder;
+
+ // --- Vectorization state ---
+
+ /// The vector-loop preheader.
+ BasicBlock *LoopVectorPreHeader;
+ /// The scalar-loop preheader.
+ BasicBlock *LoopScalarPreHeader;
+ /// Middle Block between the vector and the scalar.
+ BasicBlock *LoopMiddleBlock;
+ ///The ExitBlock of the scalar loop.
+ BasicBlock *LoopExitBlock;
+ ///The vector loop body.
+ BasicBlock *LoopVectorBody;
+ ///The scalar loop body.
+ BasicBlock *LoopScalarBody;
+ /// A list of all bypass blocks. The first block is the entry of the loop.
+ SmallVector<BasicBlock *, 4> LoopBypassBlocks;
+
+ /// The new Induction variable which was added to the new block.
+ PHINode *Induction;
+ /// The induction variable of the old basic block.
+ PHINode *OldInduction;
+ /// Holds the extended (to the widest induction type) start index.
+ Value *ExtendedIdx;
+ /// Maps scalars to widened vectors.
+ ValueMap WidenMap;
+ EdgeMaskCache MaskCache;
+};
+
+class InnerLoopUnroller : public InnerLoopVectorizer {
+public:
+ InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
+ DominatorTree *DT, DataLayout *DL,
+ const TargetLibraryInfo *TLI, unsigned UnrollFactor) :
+ InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { }
+
+private:
+ virtual void scalarizeInstruction(Instruction *Instr);
+ virtual void vectorizeMemoryInstruction(Instruction *Instr,
+ LoopVectorizationLegality *Legal);
+ virtual Value *getBroadcastInstrs(Value *V);
+ virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate);
+ virtual Value *reverseVector(Value *Vec);
+};
+
+/// \brief Look for a meaningful debug location on the instruction or it's
+/// operands.
+static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
+ if (!I)
+ return I;
+
+ DebugLoc Empty;
+ if (I->getDebugLoc() != Empty)
+ return I;
+
+ for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
+ if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
+ if (OpInst->getDebugLoc() != Empty)
+ return OpInst;
+ }
+
+ return I;
+}
+
+/// \brief Set the debug location in the builder using the debug location in the
+/// instruction.
+static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
+ if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr))
+ B.SetCurrentDebugLocation(Inst->getDebugLoc());
+ else
+ B.SetCurrentDebugLocation(DebugLoc());
+}
+
+/// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
+/// to what vectorization factor.
+/// This class does not look at the profitability of vectorization, only the
+/// legality. This class has two main kinds of checks:
+/// * Memory checks - The code in canVectorizeMemory checks if vectorization
+/// will change the order of memory accesses in a way that will change the
+/// correctness of the program.
+/// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
+/// checks for a number of different conditions, such as the availability of a
+/// single induction variable, that all types are supported and vectorize-able,
+/// etc. This code reflects the capabilities of InnerLoopVectorizer.
+/// This class is also used by InnerLoopVectorizer for identifying
+/// induction variable and the different reduction variables.
+class LoopVectorizationLegality {
+public:
+ LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DataLayout *DL,
+ DominatorTree *DT, TargetLibraryInfo *TLI)
+ : TheLoop(L), SE(SE), DL(DL), DT(DT), TLI(TLI),
+ Induction(0), WidestIndTy(0), HasFunNoNaNAttr(false),
+ MaxSafeDepDistBytes(-1U) {}
+
+ /// This enum represents the kinds of reductions that we support.
+ enum ReductionKind {
+ RK_NoReduction, ///< Not a reduction.
+ RK_IntegerAdd, ///< Sum of integers.
+ RK_IntegerMult, ///< Product of integers.
+ RK_IntegerOr, ///< Bitwise or logical OR of numbers.
+ RK_IntegerAnd, ///< Bitwise or logical AND of numbers.
+ RK_IntegerXor, ///< Bitwise or logical XOR of numbers.
+ RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()).
+ RK_FloatAdd, ///< Sum of floats.
+ RK_FloatMult, ///< Product of floats.
+ RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()).
+ };
+
+ /// This enum represents the kinds of inductions that we support.
+ enum InductionKind {
+ IK_NoInduction, ///< Not an induction variable.
+ IK_IntInduction, ///< Integer induction variable. Step = 1.
+ IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1.
+ IK_PtrInduction, ///< Pointer induction var. Step = sizeof(elem).
+ IK_ReversePtrInduction ///< Reverse ptr indvar. Step = - sizeof(elem).
+ };
+
+ // This enum represents the kind of minmax reduction.
+ enum MinMaxReductionKind {
+ MRK_Invalid,
+ MRK_UIntMin,
+ MRK_UIntMax,
+ MRK_SIntMin,
+ MRK_SIntMax,
+ MRK_FloatMin,
+ MRK_FloatMax
+ };
+
+ /// This struct holds information about reduction variables.
+ struct ReductionDescriptor {
+ ReductionDescriptor() : StartValue(0), LoopExitInstr(0),
+ Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {}
+
+ ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K,
+ MinMaxReductionKind MK)
+ : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {}
+
+ // The starting value of the reduction.
+ // It does not have to be zero!
+ TrackingVH<Value> StartValue;
+ // The instruction who's value is used outside the loop.
+ Instruction *LoopExitInstr;
+ // The kind of the reduction.
+ ReductionKind Kind;
+ // If this a min/max reduction the kind of reduction.
+ MinMaxReductionKind MinMaxKind;
+ };
+
+ /// This POD struct holds information about a potential reduction operation.
+ struct ReductionInstDesc {
+ ReductionInstDesc(bool IsRedux, Instruction *I) :
+ IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {}
+
+ ReductionInstDesc(Instruction *I, MinMaxReductionKind K) :
+ IsReduction(true), PatternLastInst(I), MinMaxKind(K) {}
+
+ // Is this instruction a reduction candidate.
+ bool IsReduction;
+ // The last instruction in a min/max pattern (select of the select(icmp())
+ // pattern), or the current reduction instruction otherwise.
+ Instruction *PatternLastInst;
+ // If this is a min/max pattern the comparison predicate.
+ MinMaxReductionKind MinMaxKind;
+ };
+
+ /// This struct holds information about the memory runtime legality
+ /// check that a group of pointers do not overlap.
+ struct RuntimePointerCheck {
+ RuntimePointerCheck() : Need(false) {}
+
+ /// Reset the state of the pointer runtime information.
+ void reset() {
+ Need = false;
+ Pointers.clear();
+ Starts.clear();
+ Ends.clear();
+ IsWritePtr.clear();
+ DependencySetId.clear();
+ }
+
+ /// Insert a pointer and calculate the start and end SCEVs.
+ void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr,
+ unsigned DepSetId);
+
+ /// This flag indicates if we need to add the runtime check.
+ bool Need;
+ /// Holds the pointers that we need to check.
+ SmallVector<TrackingVH<Value>, 2> Pointers;
+ /// Holds the pointer value at the beginning of the loop.
+ SmallVector<const SCEV*, 2> Starts;
+ /// Holds the pointer value at the end of the loop.
+ SmallVector<const SCEV*, 2> Ends;
+ /// Holds the information if this pointer is used for writing to memory.
+ SmallVector<bool, 2> IsWritePtr;
+ /// Holds the id of the set of pointers that could be dependent because of a
+ /// shared underlying object.
+ SmallVector<unsigned, 2> DependencySetId;
+ };
+
+ /// A struct for saving information about induction variables.
+ struct InductionInfo {
+ InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {}
+ InductionInfo() : StartValue(0), IK(IK_NoInduction) {}
+ /// Start value.
+ TrackingVH<Value> StartValue;
+ /// Induction kind.
+ InductionKind IK;
+ };
+
+ /// ReductionList contains the reduction descriptors for all
+ /// of the reductions that were found in the loop.
+ typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
+
+ /// InductionList saves induction variables and maps them to the
+ /// induction descriptor.
+ typedef MapVector<PHINode*, InductionInfo> InductionList;
+
+ /// Returns true if it is legal to vectorize this loop.
+ /// This does not mean that it is profitable to vectorize this
+ /// loop, only that it is legal to do so.
+ bool canVectorize();
+
+ /// Returns the Induction variable.
+ PHINode *getInduction() { return Induction; }
+
+ /// Returns the reduction variables found in the loop.
+ ReductionList *getReductionVars() { return &Reductions; }
+
+ /// Returns the induction variables found in the loop.
+ InductionList *getInductionVars() { return &Inductions; }
+
+ /// Returns the widest induction type.
+ Type *getWidestInductionType() { return WidestIndTy; }
+
+ /// Returns True if V is an induction variable in this loop.
+ bool isInductionVariable(const Value *V);
+
+ /// Return true if the block BB needs to be predicated in order for the loop
+ /// to be vectorized.
+ bool blockNeedsPredication(BasicBlock *BB);
+
+ /// Check if this pointer is consecutive when vectorizing. This happens
+ /// when the last index of the GEP is the induction variable, or that the
+ /// pointer itself is an induction variable.
+ /// This check allows us to vectorize A[idx] into a wide load/store.
+ /// Returns:
+ /// 0 - Stride is unknown or non consecutive.
+ /// 1 - Address is consecutive.
+ /// -1 - Address is consecutive, and decreasing.
+ int isConsecutivePtr(Value *Ptr);
+
+ /// Returns true if the value V is uniform within the loop.
+ bool isUniform(Value *V);
+
+ /// Returns true if this instruction will remain scalar after vectorization.
+ bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
+
+ /// Returns the information that we collected about runtime memory check.
+ RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; }
+
+ /// This function returns the identity element (or neutral element) for
+ /// the operation K.
+ static Constant *getReductionIdentity(ReductionKind K, Type *Tp);
+
+ unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
+
+private:
+ /// Check if a single basic block loop is vectorizable.
+ /// At this point we know that this is a loop with a constant trip count
+ /// and we only need to check individual instructions.
+ bool canVectorizeInstrs();
+
+ /// When we vectorize loops we may change the order in which
+ /// we read and write from memory. This method checks if it is
+ /// legal to vectorize the code, considering only memory constrains.
+ /// Returns true if the loop is vectorizable
+ bool canVectorizeMemory();
+
+ /// Return true if we can vectorize this loop using the IF-conversion
+ /// transformation.
+ bool canVectorizeWithIfConvert();
+
+ /// Collect the variables that need to stay uniform after vectorization.
+ void collectLoopUniforms();
+
+ /// Return true if all of the instructions in the block can be speculatively
+ /// executed. \p SafePtrs is a list of addresses that are known to be legal
+ /// and we know that we can read from them without segfault.
+ bool blockCanBePredicated(BasicBlock *BB, SmallPtrSet<Value *, 8>& SafePtrs);
+
+ /// Returns True, if 'Phi' is the kind of reduction variable for type
+ /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
+ bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
+ /// Returns a struct describing if the instruction 'I' can be a reduction
+ /// variable of type 'Kind'. If the reduction is a min/max pattern of
+ /// select(icmp()) this function advances the instruction pointer 'I' from the
+ /// compare instruction to the select instruction and stores this pointer in
+ /// 'PatternLastInst' member of the returned struct.
+ ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind,
+ ReductionInstDesc &Desc);
+ /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
+ /// pattern corresponding to a min(X, Y) or max(X, Y).
+ static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I,
+ ReductionInstDesc &Prev);
+ /// Returns the induction kind of Phi. This function may return NoInduction
+ /// if the PHI is not an induction variable.
+ InductionKind isInductionVariable(PHINode *Phi);
+
+ /// The loop that we evaluate.
+ Loop *TheLoop;
+ /// Scev analysis.
+ ScalarEvolution *SE;
+ /// DataLayout analysis.
+ DataLayout *DL;
+ /// Dominators.
+ DominatorTree *DT;
+ /// Target Library Info.
+ TargetLibraryInfo *TLI;
+
+ // --- vectorization state --- //
+
+ /// Holds the integer induction variable. This is the counter of the
+ /// loop.
+ PHINode *Induction;
+ /// Holds the reduction variables.
+ ReductionList Reductions;
+ /// Holds all of the induction variables that we found in the loop.
+ /// Notice that inductions don't need to start at zero and that induction
+ /// variables can be pointers.
+ InductionList Inductions;
+ /// Holds the widest induction type encountered.
+ Type *WidestIndTy;
+
+ /// Allowed outside users. This holds the reduction
+ /// vars which can be accessed from outside the loop.
+ SmallPtrSet<Value*, 4> AllowedExit;
+ /// This set holds the variables which are known to be uniform after
+ /// vectorization.
+ SmallPtrSet<Instruction*, 4> Uniforms;
+ /// We need to check that all of the pointers in this list are disjoint
+ /// at runtime.
+ RuntimePointerCheck PtrRtCheck;
+ /// Can we assume the absence of NaNs.
+ bool HasFunNoNaNAttr;
+
+ unsigned MaxSafeDepDistBytes;
+};
+
+/// LoopVectorizationCostModel - estimates the expected speedups due to
+/// vectorization.
+/// In many cases vectorization is not profitable. This can happen because of
+/// a number of reasons. In this class we mainly attempt to predict the
+/// expected speedup/slowdowns due to the supported instruction set. We use the
+/// TargetTransformInfo to query the different backends for the cost of
+/// different operations.
+class LoopVectorizationCostModel {
+public:
+ LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI,
+ LoopVectorizationLegality *Legal,
+ const TargetTransformInfo &TTI,
+ DataLayout *DL, const TargetLibraryInfo *TLI)
+ : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI) {}
+
+ /// Information about vectorization costs
+ struct VectorizationFactor {
+ unsigned Width; // Vector width with best cost
+ unsigned Cost; // Cost of the loop with that width
+ };
+ /// \return The most profitable vectorization factor and the cost of that VF.
+ /// This method checks every power of two up to VF. If UserVF is not ZERO
+ /// then this vectorization factor will be selected if vectorization is
+ /// possible.
+ VectorizationFactor selectVectorizationFactor(bool OptForSize,
+ unsigned UserVF);
+
+ /// \return The size (in bits) of the widest type in the code that
+ /// needs to be vectorized. We ignore values that remain scalar such as
+ /// 64 bit loop indices.
+ unsigned getWidestType();
+
+ /// \return The most profitable unroll factor.
+ /// If UserUF is non-zero then this method finds the best unroll-factor
+ /// based on register pressure and other parameters.
+ /// VF and LoopCost are the selected vectorization factor and the cost of the
+ /// selected VF.
+ unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF, unsigned VF,
+ unsigned LoopCost);
+
+ /// \brief A struct that represents some properties of the register usage
+ /// of a loop.
+ struct RegisterUsage {
+ /// Holds the number of loop invariant values that are used in the loop.
+ unsigned LoopInvariantRegs;
+ /// Holds the maximum number of concurrent live intervals in the loop.
+ unsigned MaxLocalUsers;
+ /// Holds the number of instructions in the loop.
+ unsigned NumInstructions;
+ };
+
+ /// \return information about the register usage of the loop.
+ RegisterUsage calculateRegisterUsage();
+
+private:
+ /// Returns the expected execution cost. The unit of the cost does
+ /// not matter because we use the 'cost' units to compare different
+ /// vector widths. The cost that is returned is *not* normalized by
+ /// the factor width.
+ unsigned expectedCost(unsigned VF);
+
+ /// Returns the execution time cost of an instruction for a given vector
+ /// width. Vector width of one means scalar.
+ unsigned getInstructionCost(Instruction *I, unsigned VF);
+
+ /// A helper function for converting Scalar types to vector types.
+ /// If the incoming type is void, we return void. If the VF is 1, we return
+ /// the scalar type.
+ static Type* ToVectorTy(Type *Scalar, unsigned VF);
+
+ /// Returns whether the instruction is a load or store and will be a emitted
+ /// as a vector operation.
+ bool isConsecutiveLoadOrStore(Instruction *I);
+
+ /// The loop that we evaluate.
+ Loop *TheLoop;
+ /// Scev analysis.
+ ScalarEvolution *SE;
+ /// Loop Info analysis.
+ LoopInfo *LI;
+ /// Vectorization legality.
+ LoopVectorizationLegality *Legal;
+ /// Vector target information.
+ const TargetTransformInfo &TTI;
+ /// Target data layout information.
+ DataLayout *DL;
+ /// Target Library Info.
+ const TargetLibraryInfo *TLI;
+};
+
+/// Utility class for getting and setting loop vectorizer hints in the form
+/// of loop metadata.
+struct LoopVectorizeHints {
+ /// Vectorization width.
+ unsigned Width;
+ /// Vectorization unroll factor.
+ unsigned Unroll;
+
+ LoopVectorizeHints(const Loop *L, bool DisableUnrolling)
+ : Width(VectorizationFactor)
+ , Unroll(DisableUnrolling ? 1 : VectorizationUnroll)
+ , LoopID(L->getLoopID()) {
+ getHints(L);
+ // The command line options override any loop metadata except for when
+ // width == 1 which is used to indicate the loop is already vectorized.
+ if (VectorizationFactor.getNumOccurrences() > 0 && Width != 1)
+ Width = VectorizationFactor;
+ if (VectorizationUnroll.getNumOccurrences() > 0)
+ Unroll = VectorizationUnroll;
+
+ DEBUG(if (DisableUnrolling && Unroll == 1)
+ dbgs() << "LV: Unrolling disabled by the pass manager\n");
+ }
+
+ /// Return the loop vectorizer metadata prefix.
+ static StringRef Prefix() { return "llvm.vectorizer."; }
+
+ MDNode *createHint(LLVMContext &Context, StringRef Name, unsigned V) {
+ SmallVector<Value*, 2> Vals;
+ Vals.push_back(MDString::get(Context, Name));
+ Vals.push_back(ConstantInt::get(Type::getInt32Ty(Context), V));
+ return MDNode::get(Context, Vals);
+ }
+
+ /// Mark the loop L as already vectorized by setting the width to 1.
+ void setAlreadyVectorized(Loop *L) {
+ LLVMContext &Context = L->getHeader()->getContext();
+
+ Width = 1;
+
+ // Create a new loop id with one more operand for the already_vectorized
+ // hint. If the loop already has a loop id then copy the existing operands.
+ SmallVector<Value*, 4> Vals(1);
+ if (LoopID)
+ for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i)
+ Vals.push_back(LoopID->getOperand(i));
+
+ Vals.push_back(createHint(Context, Twine(Prefix(), "width").str(), Width));
+ Vals.push_back(createHint(Context, Twine(Prefix(), "unroll").str(), 1));
+
+ MDNode *NewLoopID = MDNode::get(Context, Vals);
+ // Set operand 0 to refer to the loop id itself.
+ NewLoopID->replaceOperandWith(0, NewLoopID);
+
+ L->setLoopID(NewLoopID);
+ if (LoopID)
+ LoopID->replaceAllUsesWith(NewLoopID);
+
+ LoopID = NewLoopID;
+ }
+
+private:
+ MDNode *LoopID;
+
+ /// Find hints specified in the loop metadata.
+ void getHints(const Loop *L) {
+ if (!LoopID)
+ return;
+
+ // First operand should refer to the loop id itself.
+ assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
+ assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
+
+ for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
+ const MDString *S = 0;
+ SmallVector<Value*, 4> Args;
+
+ // The expected hint is either a MDString or a MDNode with the first
+ // operand a MDString.
+ if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
+ if (!MD || MD->getNumOperands() == 0)
+ continue;
+ S = dyn_cast<MDString>(MD->getOperand(0));
+ for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
+ Args.push_back(MD->getOperand(i));
+ } else {
+ S = dyn_cast<MDString>(LoopID->getOperand(i));
+ assert(Args.size() == 0 && "too many arguments for MDString");
+ }
+
+ if (!S)
+ continue;
+
+ // Check if the hint starts with the vectorizer prefix.
+ StringRef Hint = S->getString();
+ if (!Hint.startswith(Prefix()))
+ continue;
+ // Remove the prefix.
+ Hint = Hint.substr(Prefix().size(), StringRef::npos);
+
+ if (Args.size() == 1)
+ getHint(Hint, Args[0]);
+ }
+ }
+
+ // Check string hint with one operand.
+ void getHint(StringRef Hint, Value *Arg) {
+ const ConstantInt *C = dyn_cast<ConstantInt>(Arg);
+ if (!C) return;
+ unsigned Val = C->getZExtValue();
+
+ if (Hint == "width") {
+ if (isPowerOf2_32(Val) && Val <= MaxVectorWidth)
+ Width = Val;
+ else
+ DEBUG(dbgs() << "LV: ignoring invalid width hint metadata\n");
+ } else if (Hint == "unroll") {
+ if (isPowerOf2_32(Val) && Val <= MaxUnrollFactor)
+ Unroll = Val;
+ else
+ DEBUG(dbgs() << "LV: ignoring invalid unroll hint metadata\n");
+ } else {
+ DEBUG(dbgs() << "LV: ignoring unknown hint " << Hint << '\n');
+ }
+ }
+};
+
+/// The LoopVectorize Pass.
+struct LoopVectorize : public LoopPass {
+ /// Pass identification, replacement for typeid
+ static char ID;
+
+ explicit LoopVectorize(bool NoUnrolling = false)
+ : LoopPass(ID), DisableUnrolling(NoUnrolling) {
+ initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
+ }
+
+ ScalarEvolution *SE;
+ DataLayout *DL;
+ LoopInfo *LI;
+ TargetTransformInfo *TTI;
+ DominatorTree *DT;
+ TargetLibraryInfo *TLI;
+ bool DisableUnrolling;
+
+ virtual bool runOnLoop(Loop *L, LPPassManager &LPM) {
+ // We only vectorize innermost loops.
+ if (!L->empty())
+ return false;
+
+ SE = &getAnalysis<ScalarEvolution>();
+ DL = getAnalysisIfAvailable<DataLayout>();
+ LI = &getAnalysis<LoopInfo>();
+ TTI = &getAnalysis<TargetTransformInfo>();
+ DT = &getAnalysis<DominatorTree>();
+ TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
+
+ // If the target claims to have no vector registers don't attempt
+ // vectorization.
+ if (!TTI->getNumberOfRegisters(true))
+ return false;
+
+ if (DL == NULL) {
+ DEBUG(dbgs() << "LV: Not vectorizing because of missing data layout\n");
+ return false;
+ }
+
+ DEBUG(dbgs() << "LV: Checking a loop in \"" <<
+ L->getHeader()->getParent()->getName() << "\"\n");
+
+ LoopVectorizeHints Hints(L, DisableUnrolling);
+
+ if (Hints.Width == 1 && Hints.Unroll == 1) {
+ DEBUG(dbgs() << "LV: Not vectorizing.\n");
+ return false;
+ }
+
+ // Check if it is legal to vectorize the loop.
+ LoopVectorizationLegality LVL(L, SE, DL, DT, TLI);
+ if (!LVL.canVectorize()) {
+ DEBUG(dbgs() << "LV: Not vectorizing.\n");
+ return false;
+ }
+
+ // Use the cost model.
+ LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI);
+
+ // Check the function attributes to find out if this function should be
+ // optimized for size.
+ Function *F = L->getHeader()->getParent();
+ Attribute::AttrKind SzAttr = Attribute::OptimizeForSize;
+ Attribute::AttrKind FlAttr = Attribute::NoImplicitFloat;
+ unsigned FnIndex = AttributeSet::FunctionIndex;
+ bool OptForSize = F->getAttributes().hasAttribute(FnIndex, SzAttr);
+ bool NoFloat = F->getAttributes().hasAttribute(FnIndex, FlAttr);
+
+ if (NoFloat) {
+ DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
+ "attribute is used.\n");
+ return false;
+ }
+
+ // Select the optimal vectorization factor.
+ LoopVectorizationCostModel::VectorizationFactor VF;
+ VF = CM.selectVectorizationFactor(OptForSize, Hints.Width);
+ // Select the unroll factor.
+ unsigned UF = CM.selectUnrollFactor(OptForSize, Hints.Unroll, VF.Width,
+ VF.Cost);
+
+ DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF.Width << ") in "<<
+ F->getParent()->getModuleIdentifier() << '\n');
+ DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n');
+
+ if (VF.Width == 1) {
+ DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
+ if (UF == 1)
+ return false;
+ // We decided not to vectorize, but we may want to unroll.
+ InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF);
+ Unroller.vectorize(&LVL);
+ } else {
+ // If we decided that it is *legal* to vectorize the loop then do it.
+ InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF);
+ LB.vectorize(&LVL);
+ }
+
+ // Mark the loop as already vectorized to avoid vectorizing again.
+ Hints.setAlreadyVectorized(L);
+
+ DEBUG(verifyFunction(*L->getHeader()->getParent()));
+ return true;
+ }
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ LoopPass::getAnalysisUsage(AU);
+ AU.addRequiredID(LoopSimplifyID);
+ AU.addRequiredID(LCSSAID);
+ AU.addRequired<DominatorTree>();
+ AU.addRequired<LoopInfo>();
+ AU.addRequired<ScalarEvolution>();
+ AU.addRequired<TargetTransformInfo>();
+ AU.addPreserved<LoopInfo>();
+ AU.addPreserved<DominatorTree>();
+ }
+
+};
+
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
+// LoopVectorizationCostModel.
+//===----------------------------------------------------------------------===//
+
+void
+LoopVectorizationLegality::RuntimePointerCheck::insert(ScalarEvolution *SE,
+ Loop *Lp, Value *Ptr,
+ bool WritePtr,
+ unsigned DepSetId) {
+ const SCEV *Sc = SE->getSCEV(Ptr);
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
+ assert(AR && "Invalid addrec expression");
+ const SCEV *Ex = SE->getBackedgeTakenCount(Lp);
+ const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
+ Pointers.push_back(Ptr);
+ Starts.push_back(AR->getStart());
+ Ends.push_back(ScEnd);
+ IsWritePtr.push_back(WritePtr);
+ DependencySetId.push_back(DepSetId);
+}
+
+Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
+ // We need to place the broadcast of invariant variables outside the loop.
+ Instruction *Instr = dyn_cast<Instruction>(V);
+ bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody);
+ bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
+
+ // Place the code for broadcasting invariant variables in the new preheader.
+ IRBuilder<>::InsertPointGuard Guard(Builder);
+ if (Invariant)
+ Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
+
+ // Broadcast the scalar into all locations in the vector.
+ Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
+
+ return Shuf;
+}
+
+Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx,
+ bool Negate) {
+ assert(Val->getType()->isVectorTy() && "Must be a vector");
+ assert(Val->getType()->getScalarType()->isIntegerTy() &&
+ "Elem must be an integer");
+ // Create the types.
+ Type *ITy = Val->getType()->getScalarType();
+ VectorType *Ty = cast<VectorType>(Val->getType());
+ int VLen = Ty->getNumElements();
+ SmallVector<Constant*, 8> Indices;
+
+ // Create a vector of consecutive numbers from zero to VF.
+ for (int i = 0; i < VLen; ++i) {
+ int64_t Idx = Negate ? (-i) : i;
+ Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate));
+ }
+
+ // Add the consecutive indices to the vector value.
+ Constant *Cv = ConstantVector::get(Indices);
+ assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
+ return Builder.CreateAdd(Val, Cv, "induction");
+}
+
+/// \brief Find the operand of the GEP that should be checked for consecutive
+/// stores. This ignores trailing indices that have no effect on the final
+/// pointer.
+static unsigned getGEPInductionOperand(DataLayout *DL,
+ const GetElementPtrInst *Gep) {
+ unsigned LastOperand = Gep->getNumOperands() - 1;
+ unsigned GEPAllocSize = DL->getTypeAllocSize(
+ cast<PointerType>(Gep->getType()->getScalarType())->getElementType());
+
+ // Walk backwards and try to peel off zeros.
+ while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
+ // Find the type we're currently indexing into.
+ gep_type_iterator GEPTI = gep_type_begin(Gep);
+ std::advance(GEPTI, LastOperand - 1);
+
+ // If it's a type with the same allocation size as the result of the GEP we
+ // can peel off the zero index.
+ if (DL->getTypeAllocSize(*GEPTI) != GEPAllocSize)
+ break;
+ --LastOperand;
+ }
+
+ return LastOperand;
+}
+
+int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
+ assert(Ptr->getType()->isPointerTy() && "Unexpected non ptr");
+ // Make sure that the pointer does not point to structs.
+ if (Ptr->getType()->getPointerElementType()->isAggregateType())
+ return 0;
+
+ // If this value is a pointer induction variable we know it is consecutive.
+ PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
+ if (Phi && Inductions.count(Phi)) {
+ InductionInfo II = Inductions[Phi];
+ if (IK_PtrInduction == II.IK)
+ return 1;
+ else if (IK_ReversePtrInduction == II.IK)
+ return -1;
+ }
+
+ GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
+ if (!Gep)
+ return 0;
+
+ unsigned NumOperands = Gep->getNumOperands();
+ Value *GpPtr = Gep->getPointerOperand();
+ // If this GEP value is a consecutive pointer induction variable and all of
+ // the indices are constant then we know it is consecutive. We can
+ Phi = dyn_cast<PHINode>(GpPtr);
+ if (Phi && Inductions.count(Phi)) {
+
+ // Make sure that the pointer does not point to structs.
+ PointerType *GepPtrType = cast<PointerType>(GpPtr->getType());
+ if (GepPtrType->getElementType()->isAggregateType())
+ return 0;
+
+ // Make sure that all of the index operands are loop invariant.
+ for (unsigned i = 1; i < NumOperands; ++i)
+ if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
+ return 0;
+
+ InductionInfo II = Inductions[Phi];
+ if (IK_PtrInduction == II.IK)
+ return 1;
+ else if (IK_ReversePtrInduction == II.IK)
+ return -1;
+ }
+
+ unsigned InductionOperand = getGEPInductionOperand(DL, Gep);
+
+ // Check that all of the gep indices are uniform except for our induction
+ // operand.
+ for (unsigned i = 0; i != NumOperands; ++i)
+ if (i != InductionOperand &&
+ !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
+ return 0;
+
+ // We can emit wide load/stores only if the last non-zero index is the
+ // induction variable.
+ const SCEV *Last = SE->getSCEV(Gep->getOperand(InductionOperand));
+ if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
+ const SCEV *Step = AR->getStepRecurrence(*SE);
+
+ // The memory is consecutive because the last index is consecutive
+ // and all other indices are loop invariant.
+ if (Step->isOne())
+ return 1;
+ if (Step->isAllOnesValue())
+ return -1;
+ }
+
+ return 0;
+}
+
+bool LoopVectorizationLegality::isUniform(Value *V) {
+ return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
+}
+
+InnerLoopVectorizer::VectorParts&
+InnerLoopVectorizer::getVectorValue(Value *V) {
+ assert(V != Induction && "The new induction variable should not be used.");
+ assert(!V->getType()->isVectorTy() && "Can't widen a vector");
+
+ // If we have this scalar in the map, return it.
+ if (WidenMap.has(V))
+ return WidenMap.get(V);
+
+ // If this scalar is unknown, assume that it is a constant or that it is
+ // loop invariant. Broadcast V and save the value for future uses.
+ Value *B = getBroadcastInstrs(V);
+ return WidenMap.splat(V, B);
+}
+
+Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
+ assert(Vec->getType()->isVectorTy() && "Invalid type");
+ SmallVector<Constant*, 8> ShuffleMask;
+ for (unsigned i = 0; i < VF; ++i)
+ ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
+
+ return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
+ ConstantVector::get(ShuffleMask),
+ "reverse");
+}
+
+
+void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
+ LoopVectorizationLegality *Legal) {
+ // Attempt to issue a wide load.
+ LoadInst *LI = dyn_cast<LoadInst>(Instr);
+ StoreInst *SI = dyn_cast<StoreInst>(Instr);
+
+ assert((LI || SI) && "Invalid Load/Store instruction");
+
+ Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType();
+ Type *DataTy = VectorType::get(ScalarDataTy, VF);
+ Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
+ unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment();
+ // An alignment of 0 means target abi alignment. We need to use the scalar's
+ // target abi alignment in such a case.
+ if (!Alignment)
+ Alignment = DL->getABITypeAlignment(ScalarDataTy);
+ unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
+ unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy);
+ unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF;
+
+ if (ScalarAllocatedSize != VectorElementSize)
+ return scalarizeInstruction(Instr);
+
+ // If the pointer is loop invariant or if it is non consecutive,
+ // scalarize the load.
+ int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
+ bool Reverse = ConsecutiveStride < 0;
+ bool UniformLoad = LI && Legal->isUniform(Ptr);
+ if (!ConsecutiveStride || UniformLoad)
+ return scalarizeInstruction(Instr);
+
+ Constant *Zero = Builder.getInt32(0);
+ VectorParts &Entry = WidenMap.get(Instr);
+
+ // Handle consecutive loads/stores.
+ GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
+ if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) {
+ setDebugLocFromInst(Builder, Gep);
+ Value *PtrOperand = Gep->getPointerOperand();
+ Value *FirstBasePtr = getVectorValue(PtrOperand)[0];
+ FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero);
+
+ // Create the new GEP with the new induction variable.
+ GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
+ Gep2->setOperand(0, FirstBasePtr);
+ Gep2->setName("gep.indvar.base");
+ Ptr = Builder.Insert(Gep2);
+ } else if (Gep) {
+ setDebugLocFromInst(Builder, Gep);
+ assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()),
+ OrigLoop) && "Base ptr must be invariant");
+
+ // The last index does not have to be the induction. It can be
+ // consecutive and be a function of the index. For example A[I+1];
+ unsigned NumOperands = Gep->getNumOperands();
+ unsigned InductionOperand = getGEPInductionOperand(DL, Gep);
+ // Create the new GEP with the new induction variable.
+ GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
+
+ for (unsigned i = 0; i < NumOperands; ++i) {
+ Value *GepOperand = Gep->getOperand(i);
+ Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand);
+
+ // Update last index or loop invariant instruction anchored in loop.
+ if (i == InductionOperand ||
+ (GepOperandInst && OrigLoop->contains(GepOperandInst))) {
+ assert((i == InductionOperand ||
+ SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) &&
+ "Must be last index or loop invariant");
+
+ VectorParts &GEPParts = getVectorValue(GepOperand);
+ Value *Index = GEPParts[0];
+ Index = Builder.CreateExtractElement(Index, Zero);
+ Gep2->setOperand(i, Index);
+ Gep2->setName("gep.indvar.idx");
+ }
+ }
+ Ptr = Builder.Insert(Gep2);
+ } else {
+ // Use the induction element ptr.
+ assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
+ setDebugLocFromInst(Builder, Ptr);
+ VectorParts &PtrVal = getVectorValue(Ptr);
+ Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
+ }
+
+ // Handle Stores:
+ if (SI) {
+ assert(!Legal->isUniform(SI->getPointerOperand()) &&
+ "We do not allow storing to uniform addresses");
+ setDebugLocFromInst(Builder, SI);
+ // We don't want to update the value in the map as it might be used in
+ // another expression. So don't use a reference type for "StoredVal".
+ VectorParts StoredVal = getVectorValue(SI->getValueOperand());
+
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ // Calculate the pointer for the specific unroll-part.
+ Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
+
+ if (Reverse) {
+ // If we store to reverse consecutive memory locations then we need
+ // to reverse the order of elements in the stored value.
+ StoredVal[Part] = reverseVector(StoredVal[Part]);
+ // If the address is consecutive but reversed, then the
+ // wide store needs to start at the last vector element.
+ PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
+ PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
+ }
+
+ Value *VecPtr = Builder.CreateBitCast(PartPtr,
+ DataTy->getPointerTo(AddressSpace));
+ Builder.CreateStore(StoredVal[Part], VecPtr)->setAlignment(Alignment);
+ }
+ return;
+ }
+
+ // Handle loads.
+ assert(LI && "Must have a load instruction");
+ setDebugLocFromInst(Builder, LI);
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ // Calculate the pointer for the specific unroll-part.
+ Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
+
+ if (Reverse) {
+ // If the address is consecutive but reversed, then the
+ // wide store needs to start at the last vector element.
+ PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
+ PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
+ }
+
+ Value *VecPtr = Builder.CreateBitCast(PartPtr,
+ DataTy->getPointerTo(AddressSpace));
+ Value *LI = Builder.CreateLoad(VecPtr, "wide.load");
+ cast<LoadInst>(LI)->setAlignment(Alignment);
+ Entry[Part] = Reverse ? reverseVector(LI) : LI;
+ }
+}
+
+void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
+ assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
+ // Holds vector parameters or scalars, in case of uniform vals.
+ SmallVector<VectorParts, 4> Params;
+
+ setDebugLocFromInst(Builder, Instr);
+
+ // Find all of the vectorized parameters.
+ for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
+ Value *SrcOp = Instr->getOperand(op);
+
+ // If we are accessing the old induction variable, use the new one.
+ if (SrcOp == OldInduction) {
+ Params.push_back(getVectorValue(SrcOp));
+ continue;
+ }
+
+ // Try using previously calculated values.
+ Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
+
+ // If the src is an instruction that appeared earlier in the basic block
+ // then it should already be vectorized.
+ if (SrcInst && OrigLoop->contains(SrcInst)) {
+ assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
+ // The parameter is a vector value from earlier.
+ Params.push_back(WidenMap.get(SrcInst));
+ } else {
+ // The parameter is a scalar from outside the loop. Maybe even a constant.
+ VectorParts Scalars;
+ Scalars.append(UF, SrcOp);
+ Params.push_back(Scalars);
+ }
+ }
+
+ assert(Params.size() == Instr->getNumOperands() &&
+ "Invalid number of operands");
+
+ // Does this instruction return a value ?
+ bool IsVoidRetTy = Instr->getType()->isVoidTy();
+
+ Value *UndefVec = IsVoidRetTy ? 0 :
+ UndefValue::get(VectorType::get(Instr->getType(), VF));
+ // Create a new entry in the WidenMap and initialize it to Undef or Null.
+ VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
+
+ // For each vector unroll 'part':
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ // For each scalar that we create:
+ for (unsigned Width = 0; Width < VF; ++Width) {
+ Instruction *Cloned = Instr->clone();
+ if (!IsVoidRetTy)
+ Cloned->setName(Instr->getName() + ".cloned");
+ // Replace the operands of the cloned instructions with extracted scalars.
+ for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
+ Value *Op = Params[op][Part];
+ // Param is a vector. Need to extract the right lane.
+ if (Op->getType()->isVectorTy())
+ Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width));
+ Cloned->setOperand(op, Op);
+ }
+
+ // Place the cloned scalar in the new loop.
+ Builder.Insert(Cloned);
+
+ // If the original scalar returns a value we need to place it in a vector
+ // so that future users will be able to use it.
+ if (!IsVoidRetTy)
+ VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
+ Builder.getInt32(Width));
+ }
+ }
+}
+
+Instruction *
+InnerLoopVectorizer::addRuntimeCheck(LoopVectorizationLegality *Legal,
+ Instruction *Loc) {
+ LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck =
+ Legal->getRuntimePointerCheck();
+
+ if (!PtrRtCheck->Need)
+ return NULL;
+
+ unsigned NumPointers = PtrRtCheck->Pointers.size();
+ SmallVector<TrackingVH<Value> , 2> Starts;
+ SmallVector<TrackingVH<Value> , 2> Ends;
+
+ LLVMContext &Ctx = Loc->getContext();
+ SCEVExpander Exp(*SE, "induction");
+
+ for (unsigned i = 0; i < NumPointers; ++i) {
+ Value *Ptr = PtrRtCheck->Pointers[i];
+ const SCEV *Sc = SE->getSCEV(Ptr);
+
+ if (SE->isLoopInvariant(Sc, OrigLoop)) {
+ DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" <<
+ *Ptr <<"\n");
+ Starts.push_back(Ptr);
+ Ends.push_back(Ptr);
+ } else {
+ DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n');
+ unsigned AS = Ptr->getType()->getPointerAddressSpace();
+
+ // Use this type for pointer arithmetic.
+ Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
+
+ Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc);
+ Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc);
+ Starts.push_back(Start);
+ Ends.push_back(End);
+ }
+ }
+
+ IRBuilder<> ChkBuilder(Loc);
+ // Our instructions might fold to a constant.
+ Value *MemoryRuntimeCheck = 0;
+ for (unsigned i = 0; i < NumPointers; ++i) {
+ for (unsigned j = i+1; j < NumPointers; ++j) {
+ // No need to check if two readonly pointers intersect.
+ if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j])
+ continue;
+
+ // Only need to check pointers between two different dependency sets.
+ if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j])
+ continue;
+
+ unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace();
+ unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace();
+
+ assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) &&
+ (AS1 == Ends[i]->getType()->getPointerAddressSpace()) &&
+ "Trying to bounds check pointers with different address spaces");
+
+ Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
+ Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
+
+ Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc");
+ Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc");
+ Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc");
+ Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc");
+
+ Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
+ Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
+ Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
+ if (MemoryRuntimeCheck)
+ IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict,
+ "conflict.rdx");
+ MemoryRuntimeCheck = IsConflict;
+ }
+ }
+
+ // We have to do this trickery because the IRBuilder might fold the check to a
+ // constant expression in which case there is no Instruction anchored in a
+ // the block.
+ Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
+ ConstantInt::getTrue(Ctx));
+ ChkBuilder.Insert(Check, "memcheck.conflict");
+ return Check;
+}
+
+void
+InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
+ /*
+ In this function we generate a new loop. The new loop will contain
+ the vectorized instructions while the old loop will continue to run the
+ scalar remainder.
+
+ [ ] <-- vector loop bypass (may consist of multiple blocks).
+ / |
+ / v
+ | [ ] <-- vector pre header.
+ | |
+ | v
+ | [ ] \
+ | [ ]_| <-- vector loop.
+ | |
+ \ v
+ >[ ] <--- middle-block.
+ / |
+ / v
+ | [ ] <--- new preheader.
+ | |
+ | v
+ | [ ] \
+ | [ ]_| <-- old scalar loop to handle remainder.
+ \ |
+ \ v
+ >[ ] <-- exit block.
+ ...
+ */
+
+ BasicBlock *OldBasicBlock = OrigLoop->getHeader();
+ BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
+ BasicBlock *ExitBlock = OrigLoop->getExitBlock();
+ assert(ExitBlock && "Must have an exit block");
+
+ // Some loops have a single integer induction variable, while other loops
+ // don't. One example is c++ iterators that often have multiple pointer
+ // induction variables. In the code below we also support a case where we
+ // don't have a single induction variable.
+ OldInduction = Legal->getInduction();
+ Type *IdxTy = Legal->getWidestInductionType();
+
+ // Find the loop boundaries.
+ const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop);
+ assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
+
+ // The exit count might have the type of i64 while the phi is i32. This can
+ // happen if we have an induction variable that is sign extended before the
+ // compare. The only way that we get a backedge taken count is that the
+ // induction variable was signed and as such will not overflow. In such a case
+ // truncation is legal.
+ if (ExitCount->getType()->getPrimitiveSizeInBits() >
+ IdxTy->getPrimitiveSizeInBits())
+ ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy);
+
+ ExitCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy);
+ // Get the total trip count from the count by adding 1.
+ ExitCount = SE->getAddExpr(ExitCount,
+ SE->getConstant(ExitCount->getType(), 1));
+
+ // Expand the trip count and place the new instructions in the preheader.
+ // Notice that the pre-header does not change, only the loop body.
+ SCEVExpander Exp(*SE, "induction");
+
+ // Count holds the overall loop count (N).
+ Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
+ BypassBlock->getTerminator());
+
+ // The loop index does not have to start at Zero. Find the original start
+ // value from the induction PHI node. If we don't have an induction variable
+ // then we know that it starts at zero.
+ Builder.SetInsertPoint(BypassBlock->getTerminator());
+ Value *StartIdx = ExtendedIdx = OldInduction ?
+ Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock),
+ IdxTy):
+ ConstantInt::get(IdxTy, 0);
+
+ assert(BypassBlock && "Invalid loop structure");
+ LoopBypassBlocks.push_back(BypassBlock);
+
+ // Split the single block loop into the two loop structure described above.
+ BasicBlock *VectorPH =
+ BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
+ BasicBlock *VecBody =
+ VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
+ BasicBlock *MiddleBlock =
+ VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
+ BasicBlock *ScalarPH =
+ MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
+
+ // Create and register the new vector loop.
+ Loop* Lp = new Loop();
+ Loop *ParentLoop = OrigLoop->getParentLoop();
+
+ // Insert the new loop into the loop nest and register the new basic blocks
+ // before calling any utilities such as SCEV that require valid LoopInfo.
+ if (ParentLoop) {
+ ParentLoop->addChildLoop(Lp);
+ ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase());
+ ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
+ ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
+ } else {
+ LI->addTopLevelLoop(Lp);
+ }
+ Lp->addBasicBlockToLoop(VecBody, LI->getBase());
+
+ // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
+ // inside the loop.
+ Builder.SetInsertPoint(VecBody->getFirstNonPHI());
+
+ // Generate the induction variable.
+ setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction));
+ Induction = Builder.CreatePHI(IdxTy, 2, "index");
+ // The loop step is equal to the vectorization factor (num of SIMD elements)
+ // times the unroll factor (num of SIMD instructions).
+ Constant *Step = ConstantInt::get(IdxTy, VF * UF);
+
+ // This is the IR builder that we use to add all of the logic for bypassing
+ // the new vector loop.
+ IRBuilder<> BypassBuilder(BypassBlock->getTerminator());
+ setDebugLocFromInst(BypassBuilder,
+ getDebugLocFromInstOrOperands(OldInduction));
+
+ // We may need to extend the index in case there is a type mismatch.
+ // We know that the count starts at zero and does not overflow.
+ if (Count->getType() != IdxTy) {
+ // The exit count can be of pointer type. Convert it to the correct
+ // integer type.
+ if (ExitCount->getType()->isPointerTy())
+ Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int");
+ else
+ Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast");
+ }
+
+ // Add the start index to the loop count to get the new end index.
+ Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx");
+
+ // Now we need to generate the expression for N - (N % VF), which is
+ // the part that the vectorized body will execute.
+ Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf");
+ Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec");
+ Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx,
+ "end.idx.rnd.down");
+
+ // Now, compare the new count to zero. If it is zero skip the vector loop and
+ // jump to the scalar loop.
+ Value *Cmp = BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx,
+ "cmp.zero");
+
+ BasicBlock *LastBypassBlock = BypassBlock;
+
+ // Generate the code that checks in runtime if arrays overlap. We put the
+ // checks into a separate block to make the more common case of few elements
+ // faster.
+ Instruction *MemRuntimeCheck = addRuntimeCheck(Legal,
+ BypassBlock->getTerminator());
+ if (MemRuntimeCheck) {
+ // Create a new block containing the memory check.
+ BasicBlock *CheckBlock = BypassBlock->splitBasicBlock(MemRuntimeCheck,
+ "vector.memcheck");
+ if (ParentLoop)
+ ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase());
+ LoopBypassBlocks.push_back(CheckBlock);
+
+ // Replace the branch into the memory check block with a conditional branch
+ // for the "few elements case".
+ Instruction *OldTerm = BypassBlock->getTerminator();
+ BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
+ OldTerm->eraseFromParent();
+
+ Cmp = MemRuntimeCheck;
+ LastBypassBlock = CheckBlock;
+ }
+
+ LastBypassBlock->getTerminator()->eraseFromParent();
+ BranchInst::Create(MiddleBlock, VectorPH, Cmp,
+ LastBypassBlock);
+
+ // We are going to resume the execution of the scalar loop.
+ // Go over all of the induction variables that we found and fix the
+ // PHIs that are left in the scalar version of the loop.
+ // The starting values of PHI nodes depend on the counter of the last
+ // iteration in the vectorized loop.
+ // If we come from a bypass edge then we need to start from the original
+ // start value.
+
+ // This variable saves the new starting index for the scalar loop.
+ PHINode *ResumeIndex = 0;
+ LoopVectorizationLegality::InductionList::iterator I, E;
+ LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
+ // Set builder to point to last bypass block.
+ BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator());
+ for (I = List->begin(), E = List->end(); I != E; ++I) {
+ PHINode *OrigPhi = I->first;
+ LoopVectorizationLegality::InductionInfo II = I->second;
+
+ Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType();
+ PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val",
+ MiddleBlock->getTerminator());
+ // We might have extended the type of the induction variable but we need a
+ // truncated version for the scalar loop.
+ PHINode *TruncResumeVal = (OrigPhi == OldInduction) ?
+ PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val",
+ MiddleBlock->getTerminator()) : 0;
+
+ Value *EndValue = 0;
+ switch (II.IK) {
+ case LoopVectorizationLegality::IK_NoInduction:
+ llvm_unreachable("Unknown induction");
+ case LoopVectorizationLegality::IK_IntInduction: {
+ // Handle the integer induction counter.
+ assert(OrigPhi->getType()->isIntegerTy() && "Invalid type");
+
+ // We have the canonical induction variable.
+ if (OrigPhi == OldInduction) {
+ // Create a truncated version of the resume value for the scalar loop,
+ // we might have promoted the type to a larger width.
+ EndValue =
+ BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType());
+ // The new PHI merges the original incoming value, in case of a bypass,
+ // or the value at the end of the vectorized loop.
+ for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
+ TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
+ TruncResumeVal->addIncoming(EndValue, VecBody);
+
+ // We know what the end value is.
+ EndValue = IdxEndRoundDown;
+ // We also know which PHI node holds it.
+ ResumeIndex = ResumeVal;
+ break;
+ }
+
+ // Not the canonical induction variable - add the vector loop count to the
+ // start value.
+ Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
+ II.StartValue->getType(),
+ "cast.crd");
+ EndValue = BypassBuilder.CreateAdd(CRD, II.StartValue , "ind.end");
+ break;
+ }
+ case LoopVectorizationLegality::IK_ReverseIntInduction: {
+ // Convert the CountRoundDown variable to the PHI size.
+ Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
+ II.StartValue->getType(),
+ "cast.crd");
+ // Handle reverse integer induction counter.
+ EndValue = BypassBuilder.CreateSub(II.StartValue, CRD, "rev.ind.end");
+ break;
+ }
+ case LoopVectorizationLegality::IK_PtrInduction: {
+ // For pointer induction variables, calculate the offset using
+ // the end index.
+ EndValue = BypassBuilder.CreateGEP(II.StartValue, CountRoundDown,
+ "ptr.ind.end");
+ break;
+ }
+ case LoopVectorizationLegality::IK_ReversePtrInduction: {
+ // The value at the end of the loop for the reverse pointer is calculated
+ // by creating a GEP with a negative index starting from the start value.
+ Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0);
+ Value *NegIdx = BypassBuilder.CreateSub(Zero, CountRoundDown,
+ "rev.ind.end");
+ EndValue = BypassBuilder.CreateGEP(II.StartValue, NegIdx,
+ "rev.ptr.ind.end");
+ break;
+ }
+ }// end of case
+
+ // The new PHI merges the original incoming value, in case of a bypass,
+ // or the value at the end of the vectorized loop.
+ for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) {
+ if (OrigPhi == OldInduction)
+ ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]);
+ else
+ ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
+ }
+ ResumeVal->addIncoming(EndValue, VecBody);
+
+ // Fix the scalar body counter (PHI node).
+ unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
+ // The old inductions phi node in the scalar body needs the truncated value.
+ if (OrigPhi == OldInduction)
+ OrigPhi->setIncomingValue(BlockIdx, TruncResumeVal);
+ else
+ OrigPhi->setIncomingValue(BlockIdx, ResumeVal);
+ }
+
+ // If we are generating a new induction variable then we also need to
+ // generate the code that calculates the exit value. This value is not
+ // simply the end of the counter because we may skip the vectorized body
+ // in case of a runtime check.
+ if (!OldInduction){
+ assert(!ResumeIndex && "Unexpected resume value found");
+ ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val",
+ MiddleBlock->getTerminator());
+ for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
+ ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]);
+ ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
+ }
+
+ // Make sure that we found the index where scalar loop needs to continue.
+ assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() &&
+ "Invalid resume Index");
+
+ // Add a check in the middle block to see if we have completed
+ // all of the iterations in the first vector loop.
+ // If (N - N%VF) == N, then we *don't* need to run the remainder.
+ Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd,
+ ResumeIndex, "cmp.n",
+ MiddleBlock->getTerminator());
+
+ BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator());
+ // Remove the old terminator.
+ MiddleBlock->getTerminator()->eraseFromParent();
+
+ // Create i+1 and fill the PHINode.
+ Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next");
+ Induction->addIncoming(StartIdx, VectorPH);
+ Induction->addIncoming(NextIdx, VecBody);
+ // Create the compare.
+ Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown);
+ Builder.CreateCondBr(ICmp, MiddleBlock, VecBody);
+
+ // Now we have two terminators. Remove the old one from the block.
+ VecBody->getTerminator()->eraseFromParent();
+
+ // Get ready to start creating new instructions into the vectorized body.
+ Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
+
+ // Save the state.
+ LoopVectorPreHeader = VectorPH;
+ LoopScalarPreHeader = ScalarPH;
+ LoopMiddleBlock = MiddleBlock;
+ LoopExitBlock = ExitBlock;
+ LoopVectorBody = VecBody;
+ LoopScalarBody = OldBasicBlock;
+
+ LoopVectorizeHints Hints(Lp, true);
+ Hints.setAlreadyVectorized(Lp);
+}
+
+/// This function returns the identity element (or neutral element) for
+/// the operation K.
+Constant*
+LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) {
+ switch (K) {
+ case RK_IntegerXor:
+ case RK_IntegerAdd:
+ case RK_IntegerOr:
+ // Adding, Xoring, Oring zero to a number does not change it.
+ return ConstantInt::get(Tp, 0);
+ case RK_IntegerMult:
+ // Multiplying a number by 1 does not change it.
+ return ConstantInt::get(Tp, 1);
+ case RK_IntegerAnd:
+ // AND-ing a number with an all-1 value does not change it.
+ return ConstantInt::get(Tp, -1, true);
+ case RK_FloatMult:
+ // Multiplying a number by 1 does not change it.
+ return ConstantFP::get(Tp, 1.0L);
+ case RK_FloatAdd:
+ // Adding zero to a number does not change it.
+ return ConstantFP::get(Tp, 0.0L);
+ default:
+ llvm_unreachable("Unknown reduction kind");
+ }
+}
+
+static Intrinsic::ID checkUnaryFloatSignature(const CallInst &I,
+ Intrinsic::ID ValidIntrinsicID) {
+ if (I.getNumArgOperands() != 1 ||
+ !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
+ I.getType() != I.getArgOperand(0)->getType() ||
+ !I.onlyReadsMemory())
+ return Intrinsic::not_intrinsic;
+
+ return ValidIntrinsicID;
+}
+
+static Intrinsic::ID checkBinaryFloatSignature(const CallInst &I,
+ Intrinsic::ID ValidIntrinsicID) {
+ if (I.getNumArgOperands() != 2 ||
+ !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
+ !I.getArgOperand(1)->getType()->isFloatingPointTy() ||
+ I.getType() != I.getArgOperand(0)->getType() ||
+ I.getType() != I.getArgOperand(1)->getType() ||
+ !I.onlyReadsMemory())
+ return Intrinsic::not_intrinsic;
+
+ return ValidIntrinsicID;
+}
+
+
+static Intrinsic::ID
+getIntrinsicIDForCall(CallInst *CI, const TargetLibraryInfo *TLI) {
+ // If we have an intrinsic call, check if it is trivially vectorizable.
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
+ switch (II->getIntrinsicID()) {
+ case Intrinsic::sqrt:
+ case Intrinsic::sin:
+ case Intrinsic::cos:
+ case Intrinsic::exp:
+ case Intrinsic::exp2:
+ case Intrinsic::log:
+ case Intrinsic::log10:
+ case Intrinsic::log2:
+ case Intrinsic::fabs:
+ case Intrinsic::copysign:
+ case Intrinsic::floor:
+ case Intrinsic::ceil:
+ case Intrinsic::trunc:
+ case Intrinsic::rint:
+ case Intrinsic::nearbyint:
+ case Intrinsic::round:
+ case Intrinsic::pow:
+ case Intrinsic::fma:
+ case Intrinsic::fmuladd:
+ case Intrinsic::lifetime_start:
+ case Intrinsic::lifetime_end:
+ return II->getIntrinsicID();
+ default:
+ return Intrinsic::not_intrinsic;
+ }
+ }
+
+ if (!TLI)
+ return Intrinsic::not_intrinsic;
+
+ LibFunc::Func Func;
+ Function *F = CI->getCalledFunction();
+ // We're going to make assumptions on the semantics of the functions, check
+ // that the target knows that it's available in this environment and it does
+ // not have local linkage.
+ if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(F->getName(), Func))
+ return Intrinsic::not_intrinsic;
+
+ // Otherwise check if we have a call to a function that can be turned into a
+ // vector intrinsic.
+ switch (Func) {
+ default:
+ break;
+ case LibFunc::sin:
+ case LibFunc::sinf:
+ case LibFunc::sinl:
+ return checkUnaryFloatSignature(*CI, Intrinsic::sin);
+ case LibFunc::cos:
+ case LibFunc::cosf:
+ case LibFunc::cosl:
+ return checkUnaryFloatSignature(*CI, Intrinsic::cos);
+ case LibFunc::exp:
+ case LibFunc::expf:
+ case LibFunc::expl:
+ return checkUnaryFloatSignature(*CI, Intrinsic::exp);
+ case LibFunc::exp2:
+ case LibFunc::exp2f:
+ case LibFunc::exp2l:
+ return checkUnaryFloatSignature(*CI, Intrinsic::exp2);
+ case LibFunc::log:
+ case LibFunc::logf:
+ case LibFunc::logl:
+ return checkUnaryFloatSignature(*CI, Intrinsic::log);
+ case LibFunc::log10:
+ case LibFunc::log10f:
+ case LibFunc::log10l:
+ return checkUnaryFloatSignature(*CI, Intrinsic::log10);
+ case LibFunc::log2:
+ case LibFunc::log2f:
+ case LibFunc::log2l:
+ return checkUnaryFloatSignature(*CI, Intrinsic::log2);
+ case LibFunc::fabs:
+ case LibFunc::fabsf:
+ case LibFunc::fabsl:
+ return checkUnaryFloatSignature(*CI, Intrinsic::fabs);
+ case LibFunc::copysign:
+ case LibFunc::copysignf:
+ case LibFunc::copysignl:
+ return checkBinaryFloatSignature(*CI, Intrinsic::copysign);
+ case LibFunc::floor:
+ case LibFunc::floorf:
+ case LibFunc::floorl:
+ return checkUnaryFloatSignature(*CI, Intrinsic::floor);
+ case LibFunc::ceil:
+ case LibFunc::ceilf:
+ case LibFunc::ceill:
+ return checkUnaryFloatSignature(*CI, Intrinsic::ceil);
+ case LibFunc::trunc:
+ case LibFunc::truncf:
+ case LibFunc::truncl:
+ return checkUnaryFloatSignature(*CI, Intrinsic::trunc);
+ case LibFunc::rint:
+ case LibFunc::rintf:
+ case LibFunc::rintl:
+ return checkUnaryFloatSignature(*CI, Intrinsic::rint);
+ case LibFunc::nearbyint:
+ case LibFunc::nearbyintf:
+ case LibFunc::nearbyintl:
+ return checkUnaryFloatSignature(*CI, Intrinsic::nearbyint);
+ case LibFunc::round:
+ case LibFunc::roundf:
+ case LibFunc::roundl:
+ return checkUnaryFloatSignature(*CI, Intrinsic::round);
+ case LibFunc::pow:
+ case LibFunc::powf:
+ case LibFunc::powl:
+ return checkBinaryFloatSignature(*CI, Intrinsic::pow);
+ }
+
+ return Intrinsic::not_intrinsic;
+}
+
+/// This function translates the reduction kind to an LLVM binary operator.
+static unsigned
+getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) {
+ switch (Kind) {
+ case LoopVectorizationLegality::RK_IntegerAdd:
+ return Instruction::Add;
+ case LoopVectorizationLegality::RK_IntegerMult:
+ return Instruction::Mul;
+ case LoopVectorizationLegality::RK_IntegerOr:
+ return Instruction::Or;
+ case LoopVectorizationLegality::RK_IntegerAnd:
+ return Instruction::And;
+ case LoopVectorizationLegality::RK_IntegerXor:
+ return Instruction::Xor;
+ case LoopVectorizationLegality::RK_FloatMult:
+ return Instruction::FMul;
+ case LoopVectorizationLegality::RK_FloatAdd:
+ return Instruction::FAdd;
+ case LoopVectorizationLegality::RK_IntegerMinMax:
+ return Instruction::ICmp;
+ case LoopVectorizationLegality::RK_FloatMinMax:
+ return Instruction::FCmp;
+ default:
+ llvm_unreachable("Unknown reduction operation");
+ }
+}
+
+Value *createMinMaxOp(IRBuilder<> &Builder,
+ LoopVectorizationLegality::MinMaxReductionKind RK,
+ Value *Left,
+ Value *Right) {
+ CmpInst::Predicate P = CmpInst::ICMP_NE;
+ switch (RK) {
+ default:
+ llvm_unreachable("Unknown min/max reduction kind");
+ case LoopVectorizationLegality::MRK_UIntMin:
+ P = CmpInst::ICMP_ULT;
+ break;
+ case LoopVectorizationLegality::MRK_UIntMax:
+ P = CmpInst::ICMP_UGT;
+ break;
+ case LoopVectorizationLegality::MRK_SIntMin:
+ P = CmpInst::ICMP_SLT;
+ break;
+ case LoopVectorizationLegality::MRK_SIntMax:
+ P = CmpInst::ICMP_SGT;
+ break;
+ case LoopVectorizationLegality::MRK_FloatMin:
+ P = CmpInst::FCMP_OLT;
+ break;
+ case LoopVectorizationLegality::MRK_FloatMax:
+ P = CmpInst::FCMP_OGT;
+ break;
+ }
+
+ Value *Cmp;
+ if (RK == LoopVectorizationLegality::MRK_FloatMin ||
+ RK == LoopVectorizationLegality::MRK_FloatMax)
+ Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
+ else
+ Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
+
+ Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
+ return Select;
+}
+
+namespace {
+struct CSEDenseMapInfo {
+ static bool canHandle(Instruction *I) {
+ return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
+ isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
+ }
+ static inline Instruction *getEmptyKey() {
+ return DenseMapInfo<Instruction *>::getEmptyKey();
+ }
+ static inline Instruction *getTombstoneKey() {
+ return DenseMapInfo<Instruction *>::getTombstoneKey();
+ }
+ static unsigned getHashValue(Instruction *I) {
+ assert(canHandle(I) && "Unknown instruction!");
+ return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
+ I->value_op_end()));
+ }
+ static bool isEqual(Instruction *LHS, Instruction *RHS) {
+ if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
+ LHS == getTombstoneKey() || RHS == getTombstoneKey())
+ return LHS == RHS;
+ return LHS->isIdenticalTo(RHS);
+ }
+};
+}
+
+///\brief Perform cse of induction variable instructions.
+static void cse(BasicBlock *BB) {
+ // Perform simple cse.
+ SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
+ Instruction *In = I++;
+
+ if (!CSEDenseMapInfo::canHandle(In))
+ continue;
+
+ // Check if we can replace this instruction with any of the
+ // visited instructions.
+ if (Instruction *V = CSEMap.lookup(In)) {
+ In->replaceAllUsesWith(V);
+ In->eraseFromParent();
+ continue;
+ }
+
+ CSEMap[In] = In;
+ }
+}
+
+void
+InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
+ //===------------------------------------------------===//
+ //
+ // Notice: any optimization or new instruction that go
+ // into the code below should be also be implemented in
+ // the cost-model.
+ //
+ //===------------------------------------------------===//
+ Constant *Zero = Builder.getInt32(0);
+
+ // In order to support reduction variables we need to be able to vectorize
+ // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
+ // stages. First, we create a new vector PHI node with no incoming edges.
+ // We use this value when we vectorize all of the instructions that use the
+ // PHI. Next, after all of the instructions in the block are complete we
+ // add the new incoming edges to the PHI. At this point all of the
+ // instructions in the basic block are vectorized, so we can use them to
+ // construct the PHI.
+ PhiVector RdxPHIsToFix;
+
+ // Scan the loop in a topological order to ensure that defs are vectorized
+ // before users.
+ LoopBlocksDFS DFS(OrigLoop);
+ DFS.perform(LI);
+
+ // Vectorize all of the blocks in the original loop.
+ for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
+ be = DFS.endRPO(); bb != be; ++bb)
+ vectorizeBlockInLoop(Legal, *bb, &RdxPHIsToFix);
+
+ // At this point every instruction in the original loop is widened to
+ // a vector form. We are almost done. Now, we need to fix the PHI nodes
+ // that we vectorized. The PHI nodes are currently empty because we did
+ // not want to introduce cycles. Notice that the remaining PHI nodes
+ // that we need to fix are reduction variables.
+
+ // Create the 'reduced' values for each of the induction vars.
+ // The reduced values are the vector values that we scalarize and combine
+ // after the loop is finished.
+ for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
+ it != e; ++it) {
+ PHINode *RdxPhi = *it;
+ assert(RdxPhi && "Unable to recover vectorized PHI");
+
+ // Find the reduction variable descriptor.
+ assert(Legal->getReductionVars()->count(RdxPhi) &&
+ "Unable to find the reduction variable");
+ LoopVectorizationLegality::ReductionDescriptor RdxDesc =
+ (*Legal->getReductionVars())[RdxPhi];
+
+ setDebugLocFromInst(Builder, RdxDesc.StartValue);
+
+ // We need to generate a reduction vector from the incoming scalar.
+ // To do so, we need to generate the 'identity' vector and overide
+ // one of the elements with the incoming scalar reduction. We need
+ // to do it in the vector-loop preheader.
+ Builder.SetInsertPoint(LoopBypassBlocks.front()->getTerminator());
+
+ // This is the vector-clone of the value that leaves the loop.
+ VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
+ Type *VecTy = VectorExit[0]->getType();
+
+ // Find the reduction identity variable. Zero for addition, or, xor,
+ // one for multiplication, -1 for And.
+ Value *Identity;
+ Value *VectorStart;
+ if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax ||
+ RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) {
+ // MinMax reduction have the start value as their identify.
+ if (VF == 1) {
+ VectorStart = Identity = RdxDesc.StartValue;
+ } else {
+ VectorStart = Identity = Builder.CreateVectorSplat(VF,
+ RdxDesc.StartValue,
+ "minmax.ident");
+ }
+ } else {
+ // Handle other reduction kinds:
+ Constant *Iden =
+ LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind,
+ VecTy->getScalarType());
+ if (VF == 1) {
+ Identity = Iden;
+ // This vector is the Identity vector where the first element is the
+ // incoming scalar reduction.
+ VectorStart = RdxDesc.StartValue;
+ } else {
+ Identity = ConstantVector::getSplat(VF, Iden);
+
+ // This vector is the Identity vector where the first element is the
+ // incoming scalar reduction.
+ VectorStart = Builder.CreateInsertElement(Identity,
+ RdxDesc.StartValue, Zero);
+ }
+ }
+
+ // Fix the vector-loop phi.
+ // We created the induction variable so we know that the
+ // preheader is the first entry.
+ BasicBlock *VecPreheader = Induction->getIncomingBlock(0);
+
+ // Reductions do not have to start at zero. They can start with
+ // any loop invariant values.
+ VectorParts &VecRdxPhi = WidenMap.get(RdxPhi);
+ BasicBlock *Latch = OrigLoop->getLoopLatch();
+ Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch);
+ VectorParts &Val = getVectorValue(LoopVal);
+ for (unsigned part = 0; part < UF; ++part) {
+ // Make sure to add the reduction stat value only to the
+ // first unroll part.
+ Value *StartVal = (part == 0) ? VectorStart : Identity;
+ cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader);
+ cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], LoopVectorBody);
+ }
+
+ // Before each round, move the insertion point right between
+ // the PHIs and the values we are going to write.
+ // This allows us to write both PHINodes and the extractelement
+ // instructions.
+ Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
+
+ VectorParts RdxParts;
+ setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr);
+ for (unsigned part = 0; part < UF; ++part) {
+ // This PHINode contains the vectorized reduction variable, or
+ // the initial value vector, if we bypass the vector loop.
+ VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr);
+ PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
+ Value *StartVal = (part == 0) ? VectorStart : Identity;
+ for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
+ NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]);
+ NewPhi->addIncoming(RdxExitVal[part], LoopVectorBody);
+ RdxParts.push_back(NewPhi);
+ }
+
+ // Reduce all of the unrolled parts into a single vector.
+ Value *ReducedPartRdx = RdxParts[0];
+ unsigned Op = getReductionBinOp(RdxDesc.Kind);
+ setDebugLocFromInst(Builder, ReducedPartRdx);
+ for (unsigned part = 1; part < UF; ++part) {
+ if (Op != Instruction::ICmp && Op != Instruction::FCmp)
+ ReducedPartRdx = Builder.CreateBinOp((Instruction::BinaryOps)Op,
+ RdxParts[part], ReducedPartRdx,
+ "bin.rdx");
+ else
+ ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind,
+ ReducedPartRdx, RdxParts[part]);
+ }
+
+ if (VF > 1) {
+ // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
+ // and vector ops, reducing the set of values being computed by half each
+ // round.
+ assert(isPowerOf2_32(VF) &&
+ "Reduction emission only supported for pow2 vectors!");
+ Value *TmpVec = ReducedPartRdx;
+ SmallVector<Constant*, 32> ShuffleMask(VF, 0);
+ for (unsigned i = VF; i != 1; i >>= 1) {
+ // Move the upper half of the vector to the lower half.
+ for (unsigned j = 0; j != i/2; ++j)
+ ShuffleMask[j] = Builder.getInt32(i/2 + j);
+
+ // Fill the rest of the mask with undef.
+ std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
+ UndefValue::get(Builder.getInt32Ty()));
+
+ Value *Shuf =
+ Builder.CreateShuffleVector(TmpVec,
+ UndefValue::get(TmpVec->getType()),
+ ConstantVector::get(ShuffleMask),
+ "rdx.shuf");
+
+ if (Op != Instruction::ICmp && Op != Instruction::FCmp)
+ TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
+ "bin.rdx");
+ else
+ TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf);
+ }
+
+ // The result is in the first element of the vector.
+ ReducedPartRdx = Builder.CreateExtractElement(TmpVec,
+ Builder.getInt32(0));
+ }
+
+ // Now, we need to fix the users of the reduction variable
+ // inside and outside of the scalar remainder loop.
+ // We know that the loop is in LCSSA form. We need to update the
+ // PHI nodes in the exit blocks.
+ for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
+ LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
+ PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
+ if (!LCSSAPhi) break;
+
+ // All PHINodes need to have a single entry edge, or two if
+ // we already fixed them.
+ assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
+
+ // We found our reduction value exit-PHI. Update it with the
+ // incoming bypass edge.
+ if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) {
+ // Add an edge coming from the bypass.
+ LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
+ break;
+ }
+ }// end of the LCSSA phi scan.
+
+ // Fix the scalar loop reduction variable with the incoming reduction sum
+ // from the vector body and from the backedge value.
+ int IncomingEdgeBlockIdx =
+ (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch());
+ assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
+ // Pick the other block.
+ int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
+ (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, ReducedPartRdx);
+ (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
+ }// end of for each redux variable.
+
+ fixLCSSAPHIs();
+
+ // Remove redundant induction instructions.
+ cse(LoopVectorBody);
+}
+
+void InnerLoopVectorizer::fixLCSSAPHIs() {
+ for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
+ LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
+ PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
+ if (!LCSSAPhi) break;
+ if (LCSSAPhi->getNumIncomingValues() == 1)
+ LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
+ LoopMiddleBlock);
+ }
+}
+
+InnerLoopVectorizer::VectorParts
+InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
+ assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
+ "Invalid edge");
+
+ // Look for cached value.
+ std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst);
+ EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge);
+ if (ECEntryIt != MaskCache.end())
+ return ECEntryIt->second;
+
+ VectorParts SrcMask = createBlockInMask(Src);
+
+ // The terminator has to be a branch inst!
+ BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
+ assert(BI && "Unexpected terminator found");
+
+ if (BI->isConditional()) {
+ VectorParts EdgeMask = getVectorValue(BI->getCondition());
+
+ if (BI->getSuccessor(0) != Dst)
+ for (unsigned part = 0; part < UF; ++part)
+ EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
+
+ for (unsigned part = 0; part < UF; ++part)
+ EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
+
+ MaskCache[Edge] = EdgeMask;
+ return EdgeMask;
+ }
+
+ MaskCache[Edge] = SrcMask;
+ return SrcMask;
+}
+
+InnerLoopVectorizer::VectorParts
+InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
+ assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
+
+ // Loop incoming mask is all-one.
+ if (OrigLoop->getHeader() == BB) {
+ Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
+ return getVectorValue(C);
+ }
+
+ // This is the block mask. We OR all incoming edges, and with zero.
+ Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
+ VectorParts BlockMask = getVectorValue(Zero);
+
+ // For each pred:
+ for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
+ VectorParts EM = createEdgeMask(*it, BB);
+ for (unsigned part = 0; part < UF; ++part)
+ BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
+ }
+
+ return BlockMask;
+}
+
+void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
+ InnerLoopVectorizer::VectorParts &Entry,
+ LoopVectorizationLegality *Legal,
+ unsigned UF, unsigned VF, PhiVector *PV) {
+ PHINode* P = cast<PHINode>(PN);
+ // Handle reduction variables:
+ if (Legal->getReductionVars()->count(P)) {
+ for (unsigned part = 0; part < UF; ++part) {
+ // This is phase one of vectorizing PHIs.
+ Type *VecTy = (VF == 1) ? PN->getType() :
+ VectorType::get(PN->getType(), VF);
+ Entry[part] = PHINode::Create(VecTy, 2, "vec.phi",
+ LoopVectorBody-> getFirstInsertionPt());
+ }
+ PV->push_back(P);
+ return;
+ }
+
+ setDebugLocFromInst(Builder, P);
+ // Check for PHI nodes that are lowered to vector selects.
+ if (P->getParent() != OrigLoop->getHeader()) {
+ // We know that all PHIs in non header blocks are converted into
+ // selects, so we don't have to worry about the insertion order and we
+ // can just use the builder.
+ // At this point we generate the predication tree. There may be
+ // duplications since this is a simple recursive scan, but future
+ // optimizations will clean it up.
+
+ unsigned NumIncoming = P->getNumIncomingValues();
+
+ // Generate a sequence of selects of the form:
+ // SELECT(Mask3, In3,
+ // SELECT(Mask2, In2,
+ // ( ...)))
+ for (unsigned In = 0; In < NumIncoming; In++) {
+ VectorParts Cond = createEdgeMask(P->getIncomingBlock(In),
+ P->getParent());
+ VectorParts &In0 = getVectorValue(P->getIncomingValue(In));
+
+ for (unsigned part = 0; part < UF; ++part) {
+ // We might have single edge PHIs (blocks) - use an identity
+ // 'select' for the first PHI operand.
+ if (In == 0)
+ Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
+ In0[part]);
+ else
+ // Select between the current value and the previous incoming edge
+ // based on the incoming mask.
+ Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
+ Entry[part], "predphi");
+ }
+ }
+ return;
+ }
+
+ // This PHINode must be an induction variable.
+ // Make sure that we know about it.
+ assert(Legal->getInductionVars()->count(P) &&
+ "Not an induction variable");
+
+ LoopVectorizationLegality::InductionInfo II =
+ Legal->getInductionVars()->lookup(P);
+
+ switch (II.IK) {
+ case LoopVectorizationLegality::IK_NoInduction:
+ llvm_unreachable("Unknown induction");
+ case LoopVectorizationLegality::IK_IntInduction: {
+ assert(P->getType() == II.StartValue->getType() && "Types must match");
+ Type *PhiTy = P->getType();
+ Value *Broadcasted;
+ if (P == OldInduction) {
+ // Handle the canonical induction variable. We might have had to
+ // extend the type.
+ Broadcasted = Builder.CreateTrunc(Induction, PhiTy);
+ } else {
+ // Handle other induction variables that are now based on the
+ // canonical one.
+ Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx,
+ "normalized.idx");
+ NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy);
+ Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx,
+ "offset.idx");
+ }
+ Broadcasted = getBroadcastInstrs(Broadcasted);
+ // After broadcasting the induction variable we need to make the vector
+ // consecutive by adding 0, 1, 2, etc.
+ for (unsigned part = 0; part < UF; ++part)
+ Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false);
+ return;
+ }
+ case LoopVectorizationLegality::IK_ReverseIntInduction:
+ case LoopVectorizationLegality::IK_PtrInduction:
+ case LoopVectorizationLegality::IK_ReversePtrInduction:
+ // Handle reverse integer and pointer inductions.
+ Value *StartIdx = ExtendedIdx;
+ // This is the normalized GEP that starts counting at zero.
+ Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx,
+ "normalized.idx");
+
+ // Handle the reverse integer induction variable case.
+ if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) {
+ IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType());
+ Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy,
+ "resize.norm.idx");
+ Value *ReverseInd = Builder.CreateSub(II.StartValue, CNI,
+ "reverse.idx");
+
+ // This is a new value so do not hoist it out.
+ Value *Broadcasted = getBroadcastInstrs(ReverseInd);
+ // After broadcasting the induction variable we need to make the
+ // vector consecutive by adding ... -3, -2, -1, 0.
+ for (unsigned part = 0; part < UF; ++part)
+ Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part,
+ true);
+ return;
+ }
+
+ // Handle the pointer induction variable case.
+ assert(P->getType()->isPointerTy() && "Unexpected type.");
+
+ // Is this a reverse induction ptr or a consecutive induction ptr.
+ bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction ==
+ II.IK);
+
+ // This is the vector of results. Notice that we don't generate
+ // vector geps because scalar geps result in better code.
+ for (unsigned part = 0; part < UF; ++part) {
+ if (VF == 1) {
+ int EltIndex = (part) * (Reverse ? -1 : 1);
+ Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
+ Value *GlobalIdx;
+ if (Reverse)
+ GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
+ else
+ GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
+
+ Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
+ "next.gep");
+ Entry[part] = SclrGep;
+ continue;
+ }
+
+ Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
+ for (unsigned int i = 0; i < VF; ++i) {
+ int EltIndex = (i + part * VF) * (Reverse ? -1 : 1);
+ Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
+ Value *GlobalIdx;
+ if (!Reverse)
+ GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
+ else
+ GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
+
+ Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
+ "next.gep");
+ VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
+ Builder.getInt32(i),
+ "insert.gep");
+ }
+ Entry[part] = VecVal;
+ }
+ return;
+ }
+}
+
+void
+InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
+ BasicBlock *BB, PhiVector *PV) {
+ // For each instruction in the old loop.
+ for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
+ VectorParts &Entry = WidenMap.get(it);
+ switch (it->getOpcode()) {
+ case Instruction::Br:
+ // Nothing to do for PHIs and BR, since we already took care of the
+ // loop control flow instructions.
+ continue;
+ case Instruction::PHI:{
+ // Vectorize PHINodes.
+ widenPHIInstruction(it, Entry, Legal, UF, VF, PV);
+ continue;
+ }// End of PHI.
+
+ case Instruction::Add:
+ case Instruction::FAdd:
+ case Instruction::Sub:
+ case Instruction::FSub:
+ case Instruction::Mul:
+ case Instruction::FMul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::FDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::FRem:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor: {
+ // Just widen binops.
+ BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it);
+ setDebugLocFromInst(Builder, BinOp);
+ VectorParts &A = getVectorValue(it->getOperand(0));
+ VectorParts &B = getVectorValue(it->getOperand(1));
+
+ // Use this vector value for all users of the original instruction.
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
+
+ // Update the NSW, NUW and Exact flags. Notice: V can be an Undef.
+ BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V);
+ if (VecOp && isa<OverflowingBinaryOperator>(BinOp)) {
+ VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap());
+ VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap());
+ }
+ if (VecOp && isa<PossiblyExactOperator>(VecOp))
+ VecOp->setIsExact(BinOp->isExact());
+
+ Entry[Part] = V;
+ }
+ break;
+ }
+ case Instruction::Select: {
+ // Widen selects.
+ // If the selector is loop invariant we can create a select
+ // instruction with a scalar condition. Otherwise, use vector-select.
+ bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)),
+ OrigLoop);
+ setDebugLocFromInst(Builder, it);
+
+ // The condition can be loop invariant but still defined inside the
+ // loop. This means that we can't just use the original 'cond' value.
+ // We have to take the 'vectorized' value and pick the first lane.
+ // Instcombine will make this a no-op.
+ VectorParts &Cond = getVectorValue(it->getOperand(0));
+ VectorParts &Op0 = getVectorValue(it->getOperand(1));
+ VectorParts &Op1 = getVectorValue(it->getOperand(2));
+
+ Value *ScalarCond = (VF == 1) ? Cond[0] :
+ Builder.CreateExtractElement(Cond[0], Builder.getInt32(0));
+
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ Entry[Part] = Builder.CreateSelect(
+ InvariantCond ? ScalarCond : Cond[Part],
+ Op0[Part],
+ Op1[Part]);
+ }
+ break;
+ }
+
+ case Instruction::ICmp:
+ case Instruction::FCmp: {
+ // Widen compares. Generate vector compares.
+ bool FCmp = (it->getOpcode() == Instruction::FCmp);
+ CmpInst *Cmp = dyn_cast<CmpInst>(it);
+ setDebugLocFromInst(Builder, it);
+ VectorParts &A = getVectorValue(it->getOperand(0));
+ VectorParts &B = getVectorValue(it->getOperand(1));
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ Value *C = 0;
+ if (FCmp)
+ C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
+ else
+ C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
+ Entry[Part] = C;
+ }
+ break;
+ }
+
+ case Instruction::Store:
+ case Instruction::Load:
+ vectorizeMemoryInstruction(it, Legal);
+ break;
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::FPExt:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::SIToFP:
+ case Instruction::UIToFP:
+ case Instruction::Trunc:
+ case Instruction::FPTrunc:
+ case Instruction::BitCast: {
+ CastInst *CI = dyn_cast<CastInst>(it);
+ setDebugLocFromInst(Builder, it);
+ /// Optimize the special case where the source is the induction
+ /// variable. Notice that we can only optimize the 'trunc' case
+ /// because: a. FP conversions lose precision, b. sext/zext may wrap,
+ /// c. other casts depend on pointer size.
+ if (CI->getOperand(0) == OldInduction &&
+ it->getOpcode() == Instruction::Trunc) {
+ Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction,
+ CI->getType());
+ Value *Broadcasted = getBroadcastInstrs(ScalarCast);
+ for (unsigned Part = 0; Part < UF; ++Part)
+ Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false);
+ break;
+ }
+ /// Vectorize casts.
+ Type *DestTy = (VF == 1) ? CI->getType() :
+ VectorType::get(CI->getType(), VF);
+
+ VectorParts &A = getVectorValue(it->getOperand(0));
+ for (unsigned Part = 0; Part < UF; ++Part)
+ Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
+ break;
+ }
+
+ case Instruction::Call: {
+ // Ignore dbg intrinsics.
+ if (isa<DbgInfoIntrinsic>(it))
+ break;
+ setDebugLocFromInst(Builder, it);
+
+ Module *M = BB->getParent()->getParent();
+ CallInst *CI = cast<CallInst>(it);
+ Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
+ assert(ID && "Not an intrinsic call!");
+ switch (ID) {
+ case Intrinsic::lifetime_end:
+ case Intrinsic::lifetime_start:
+ scalarizeInstruction(it);
+ break;
+ default:
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ SmallVector<Value *, 4> Args;
+ for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
+ VectorParts &Arg = getVectorValue(CI->getArgOperand(i));
+ Args.push_back(Arg[Part]);
+ }
+ Type *Tys[] = {CI->getType()};
+ if (VF > 1)
+ Tys[0] = VectorType::get(CI->getType()->getScalarType(), VF);
+
+ Function *F = Intrinsic::getDeclaration(M, ID, Tys);
+ Entry[Part] = Builder.CreateCall(F, Args);
+ }
+ break;
+ }
+ break;
+ }
+
+ default:
+ // All other instructions are unsupported. Scalarize them.
+ scalarizeInstruction(it);
+ break;
+ }// end of switch.
+ }// end of for_each instr.
+}
+
+void InnerLoopVectorizer::updateAnalysis() {
+ // Forget the original basic block.
+ SE->forgetLoop(OrigLoop);
+
+ // Update the dominator tree information.
+ assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
+ "Entry does not dominate exit.");
+
+ for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
+ DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]);
+ DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back());
+ DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader);
+ DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks.front());
+ DT->addNewBlock(LoopScalarPreHeader, LoopMiddleBlock);
+ DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
+ DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
+
+ DEBUG(DT->verifyAnalysis());
+}
+
+/// \brief Check whether it is safe to if-convert this phi node.
+///
+/// Phi nodes with constant expressions that can trap are not safe to if
+/// convert.
+static bool canIfConvertPHINodes(BasicBlock *BB) {
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
+ PHINode *Phi = dyn_cast<PHINode>(I);
+ if (!Phi)
+ return true;
+ for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p)
+ if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p)))
+ if (C->canTrap())
+ return false;
+ }
+ return true;
+}
+
+bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
+ if (!EnableIfConversion)
+ return false;
+
+ assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
+
+ // A list of pointers that we can safely read and write to.
+ SmallPtrSet<Value *, 8> SafePointes;
+
+ // Collect safe addresses.
+ for (Loop::block_iterator BI = TheLoop->block_begin(),
+ BE = TheLoop->block_end(); BI != BE; ++BI) {
+ BasicBlock *BB = *BI;
+
+ if (blockNeedsPredication(BB))
+ continue;
+
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
+ if (LoadInst *LI = dyn_cast<LoadInst>(I))
+ SafePointes.insert(LI->getPointerOperand());
+ else if (StoreInst *SI = dyn_cast<StoreInst>(I))
+ SafePointes.insert(SI->getPointerOperand());
+ }
+ }
+
+ // Collect the blocks that need predication.
+ BasicBlock *Header = TheLoop->getHeader();
+ for (Loop::block_iterator BI = TheLoop->block_begin(),
+ BE = TheLoop->block_end(); BI != BE; ++BI) {
+ BasicBlock *BB = *BI;
+
+ // We don't support switch statements inside loops.
+ if (!isa<BranchInst>(BB->getTerminator()))
+ return false;
+
+ // We must be able to predicate all blocks that need to be predicated.
+ if (blockNeedsPredication(BB)) {
+ if (!blockCanBePredicated(BB, SafePointes))
+ return false;
+ } else if (BB != Header && !canIfConvertPHINodes(BB))
+ return false;
+
+ }
+
+ // We can if-convert this loop.
+ return true;
+}
+
+bool LoopVectorizationLegality::canVectorize() {
+ // We must have a loop in canonical form. Loops with indirectbr in them cannot
+ // be canonicalized.
+ if (!TheLoop->getLoopPreheader())
+ return false;
+
+ // We can only vectorize innermost loops.
+ if (TheLoop->getSubLoopsVector().size())
+ return false;
+
+ // We must have a single backedge.
+ if (TheLoop->getNumBackEdges() != 1)
+ return false;
+
+ // We must have a single exiting block.
+ if (!TheLoop->getExitingBlock())
+ return false;
+
+ // We need to have a loop header.
+ DEBUG(dbgs() << "LV: Found a loop: " <<
+ TheLoop->getHeader()->getName() << '\n');
+
+ // Check if we can if-convert non single-bb loops.
+ unsigned NumBlocks = TheLoop->getNumBlocks();
+ if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
+ DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
+ return false;
+ }
+
+ // ScalarEvolution needs to be able to find the exit count.
+ const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop);
+ if (ExitCount == SE->getCouldNotCompute()) {
+ DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
+ return false;
+ }
+
+ // Do not loop-vectorize loops with a tiny trip count.
+ BasicBlock *Latch = TheLoop->getLoopLatch();
+ unsigned TC = SE->getSmallConstantTripCount(TheLoop, Latch);
+ if (TC > 0u && TC < TinyTripCountVectorThreshold) {
+ DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " <<
+ "This loop is not worth vectorizing.\n");
+ return false;
+ }
+
+ // Check if we can vectorize the instructions and CFG in this loop.
+ if (!canVectorizeInstrs()) {
+ DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
+ return false;
+ }
+
+ // Go over each instruction and look at memory deps.
+ if (!canVectorizeMemory()) {
+ DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
+ return false;
+ }
+
+ // Collect all of the variables that remain uniform after vectorization.
+ collectLoopUniforms();
+
+ DEBUG(dbgs() << "LV: We can vectorize this loop" <<
+ (PtrRtCheck.Need ? " (with a runtime bound check)" : "")
+ <<"!\n");
+
+ // Okay! We can vectorize. At this point we don't have any other mem analysis
+ // which may limit our maximum vectorization factor, so just return true with
+ // no restrictions.
+ return true;
+}
+
+static Type *convertPointerToIntegerType(DataLayout &DL, Type *Ty) {
+ if (Ty->isPointerTy())
+ return DL.getIntPtrType(Ty);
+
+ // It is possible that char's or short's overflow when we ask for the loop's
+ // trip count, work around this by changing the type size.
+ if (Ty->getScalarSizeInBits() < 32)
+ return Type::getInt32Ty(Ty->getContext());
+
+ return Ty;
+}
+
+static Type* getWiderType(DataLayout &DL, Type *Ty0, Type *Ty1) {
+ Ty0 = convertPointerToIntegerType(DL, Ty0);
+ Ty1 = convertPointerToIntegerType(DL, Ty1);
+ if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
+ return Ty0;
+ return Ty1;
+}
+
+/// \brief Check that the instruction has outside loop users and is not an
+/// identified reduction variable.
+static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
+ SmallPtrSet<Value *, 4> &Reductions) {
+ // Reduction instructions are allowed to have exit users. All other
+ // instructions must not have external users.
+ if (!Reductions.count(Inst))
+ //Check that all of the users of the loop are inside the BB.
+ for (Value::use_iterator I = Inst->use_begin(), E = Inst->use_end();
+ I != E; ++I) {
+ Instruction *U = cast<Instruction>(*I);
+ // This user may be a reduction exit value.
+ if (!TheLoop->contains(U)) {
+ DEBUG(dbgs() << "LV: Found an outside user for : " << *U << '\n');
+ return true;
+ }
+ }
+ return false;
+}
+
+bool LoopVectorizationLegality::canVectorizeInstrs() {
+ BasicBlock *PreHeader = TheLoop->getLoopPreheader();
+ BasicBlock *Header = TheLoop->getHeader();
+
+ // Look for the attribute signaling the absence of NaNs.
+ Function &F = *Header->getParent();
+ if (F.hasFnAttribute("no-nans-fp-math"))
+ HasFunNoNaNAttr = F.getAttributes().getAttribute(
+ AttributeSet::FunctionIndex,
+ "no-nans-fp-math").getValueAsString() == "true";
+
+ // For each block in the loop.
+ for (Loop::block_iterator bb = TheLoop->block_begin(),
+ be = TheLoop->block_end(); bb != be; ++bb) {
+
+ // Scan the instructions in the block and look for hazards.
+ for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
+ ++it) {
+
+ if (PHINode *Phi = dyn_cast<PHINode>(it)) {
+ Type *PhiTy = Phi->getType();
+ // Check that this PHI type is allowed.
+ if (!PhiTy->isIntegerTy() &&
+ !PhiTy->isFloatingPointTy() &&
+ !PhiTy->isPointerTy()) {
+ DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
+ return false;
+ }
+
+ // If this PHINode is not in the header block, then we know that we
+ // can convert it to select during if-conversion. No need to check if
+ // the PHIs in this block are induction or reduction variables.
+ if (*bb != Header) {
+ // Check that this instruction has no outside users or is an
+ // identified reduction value with an outside user.
+ if(!hasOutsideLoopUser(TheLoop, it, AllowedExit))
+ continue;
+ return false;
+ }
+
+ // We only allow if-converted PHIs with more than two incoming values.
+ if (Phi->getNumIncomingValues() != 2) {
+ DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
+ return false;
+ }
+
+ // This is the value coming from the preheader.
+ Value *StartValue = Phi->getIncomingValueForBlock(PreHeader);
+ // Check if this is an induction variable.
+ InductionKind IK = isInductionVariable(Phi);
+
+ if (IK_NoInduction != IK) {
+ // Get the widest type.
+ if (!WidestIndTy)
+ WidestIndTy = convertPointerToIntegerType(*DL, PhiTy);
+ else
+ WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy);
+
+ // Int inductions are special because we only allow one IV.
+ if (IK == IK_IntInduction) {
+ // Use the phi node with the widest type as induction. Use the last
+ // one if there are multiple (no good reason for doing this other
+ // than it is expedient).
+ if (!Induction || PhiTy == WidestIndTy)
+ Induction = Phi;
+ }
+
+ DEBUG(dbgs() << "LV: Found an induction variable.\n");
+ Inductions[Phi] = InductionInfo(StartValue, IK);
+
+ // Until we explicitly handle the case of an induction variable with
+ // an outside loop user we have to give up vectorizing this loop.
+ if (hasOutsideLoopUser(TheLoop, it, AllowedExit))
+ return false;
+
+ continue;
+ }
+
+ if (AddReductionVar(Phi, RK_IntegerAdd)) {
+ DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
+ continue;
+ }
+ if (AddReductionVar(Phi, RK_IntegerMult)) {
+ DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
+ continue;
+ }
+ if (AddReductionVar(Phi, RK_IntegerOr)) {
+ DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
+ continue;
+ }
+ if (AddReductionVar(Phi, RK_IntegerAnd)) {
+ DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
+ continue;
+ }
+ if (AddReductionVar(Phi, RK_IntegerXor)) {
+ DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
+ continue;
+ }
+ if (AddReductionVar(Phi, RK_IntegerMinMax)) {
+ DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n");
+ continue;
+ }
+ if (AddReductionVar(Phi, RK_FloatMult)) {
+ DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n");
+ continue;
+ }
+ if (AddReductionVar(Phi, RK_FloatAdd)) {
+ DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n");
+ continue;
+ }
+ if (AddReductionVar(Phi, RK_FloatMinMax)) {
+ DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi <<
+ "\n");
+ continue;
+ }
+
+ DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
+ return false;
+ }// end of PHI handling
+
+ // We still don't handle functions. However, we can ignore dbg intrinsic
+ // calls and we do handle certain intrinsic and libm functions.
+ CallInst *CI = dyn_cast<CallInst>(it);
+ if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) {
+ DEBUG(dbgs() << "LV: Found a call site.\n");
+ return false;
+ }
+
+ // Check that the instruction return type is vectorizable.
+ // Also, we can't vectorize extractelement instructions.
+ if ((!VectorType::isValidElementType(it->getType()) &&
+ !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) {
+ DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
+ return false;
+ }
+
+ // Check that the stored type is vectorizable.
+ if (StoreInst *ST = dyn_cast<StoreInst>(it)) {
+ Type *T = ST->getValueOperand()->getType();
+ if (!VectorType::isValidElementType(T))
+ return false;
+ }
+
+ // Reduction instructions are allowed to have exit users.
+ // All other instructions must not have external users.
+ if (hasOutsideLoopUser(TheLoop, it, AllowedExit))
+ return false;
+
+ } // next instr.
+
+ }
+
+ if (!Induction) {
+ DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
+ if (Inductions.empty())
+ return false;
+ }
+
+ return true;
+}
+
+void LoopVectorizationLegality::collectLoopUniforms() {
+ // We now know that the loop is vectorizable!
+ // Collect variables that will remain uniform after vectorization.
+ std::vector<Value*> Worklist;
+ BasicBlock *Latch = TheLoop->getLoopLatch();
+
+ // Start with the conditional branch and walk up the block.
+ Worklist.push_back(Latch->getTerminator()->getOperand(0));
+
+ while (Worklist.size()) {
+ Instruction *I = dyn_cast<Instruction>(Worklist.back());
+ Worklist.pop_back();
+
+ // Look at instructions inside this loop.
+ // Stop when reaching PHI nodes.
+ // TODO: we need to follow values all over the loop, not only in this block.
+ if (!I || !TheLoop->contains(I) || isa<PHINode>(I))
+ continue;
+
+ // This is a known uniform.
+ Uniforms.insert(I);
+
+ // Insert all operands.
+ Worklist.insert(Worklist.end(), I->op_begin(), I->op_end());
+ }
+}
+
+namespace {
+/// \brief Analyses memory accesses in a loop.
+///
+/// Checks whether run time pointer checks are needed and builds sets for data
+/// dependence checking.
+class AccessAnalysis {
+public:
+ /// \brief Read or write access location.
+ typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
+ typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
+
+ /// \brief Set of potential dependent memory accesses.
+ typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
+
+ AccessAnalysis(DataLayout *Dl, DepCandidates &DA) :
+ DL(Dl), DepCands(DA), AreAllWritesIdentified(true),
+ AreAllReadsIdentified(true), IsRTCheckNeeded(false) {}
+
+ /// \brief Register a load and whether it is only read from.
+ void addLoad(Value *Ptr, bool IsReadOnly) {
+ Accesses.insert(MemAccessInfo(Ptr, false));
+ if (IsReadOnly)
+ ReadOnlyPtr.insert(Ptr);
+ }
+
+ /// \brief Register a store.
+ void addStore(Value *Ptr) {
+ Accesses.insert(MemAccessInfo(Ptr, true));
+ }
+
+ /// \brief Check whether we can check the pointers at runtime for
+ /// non-intersection.
+ bool canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck &RtCheck,
+ unsigned &NumComparisons, ScalarEvolution *SE,
+ Loop *TheLoop, bool ShouldCheckStride = false);
+
+ /// \brief Goes over all memory accesses, checks whether a RT check is needed
+ /// and builds sets of dependent accesses.
+ void buildDependenceSets() {
+ // Process read-write pointers first.
+ processMemAccesses(false);
+ // Next, process read pointers.
+ processMemAccesses(true);
+ }
+
+ bool isRTCheckNeeded() { return IsRTCheckNeeded; }
+
+ bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
+ void resetDepChecks() { CheckDeps.clear(); }
+
+ MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
+
+private:
+ typedef SetVector<MemAccessInfo> PtrAccessSet;
+ typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
+
+ /// \brief Go over all memory access or only the deferred ones if
+ /// \p UseDeferred is true and check whether runtime pointer checks are needed
+ /// and build sets of dependency check candidates.
+ void processMemAccesses(bool UseDeferred);
+
+ /// Set of all accesses.
+ PtrAccessSet Accesses;
+
+ /// Set of access to check after all writes have been processed.
+ PtrAccessSet DeferredAccesses;
+
+ /// Map of pointers to last access encountered.
+ UnderlyingObjToAccessMap ObjToLastAccess;
+
+ /// Set of accesses that need a further dependence check.
+ MemAccessInfoSet CheckDeps;
+
+ /// Set of pointers that are read only.
+ SmallPtrSet<Value*, 16> ReadOnlyPtr;
+
+ /// Set of underlying objects already written to.
+ SmallPtrSet<Value*, 16> WriteObjects;
+
+ DataLayout *DL;
+
+ /// Sets of potentially dependent accesses - members of one set share an
+ /// underlying pointer. The set "CheckDeps" identfies which sets really need a
+ /// dependence check.
+ DepCandidates &DepCands;
+
+ bool AreAllWritesIdentified;
+ bool AreAllReadsIdentified;
+ bool IsRTCheckNeeded;
+};
+
+} // end anonymous namespace
+
+/// \brief Check whether a pointer can participate in a runtime bounds check.
+static bool hasComputableBounds(ScalarEvolution *SE, Value *Ptr) {
+ const SCEV *PtrScev = SE->getSCEV(Ptr);
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
+ if (!AR)
+ return false;
+
+ return AR->isAffine();
+}
+
+/// \brief Check the stride of the pointer and ensure that it does not wrap in
+/// the address space.
+static int isStridedPtr(ScalarEvolution *SE, DataLayout *DL, Value *Ptr,
+ const Loop *Lp);
+
+bool AccessAnalysis::canCheckPtrAtRT(
+ LoopVectorizationLegality::RuntimePointerCheck &RtCheck,
+ unsigned &NumComparisons, ScalarEvolution *SE,
+ Loop *TheLoop, bool ShouldCheckStride) {
+ // Find pointers with computable bounds. We are going to use this information
+ // to place a runtime bound check.
+ unsigned NumReadPtrChecks = 0;
+ unsigned NumWritePtrChecks = 0;
+ bool CanDoRT = true;
+
+ bool IsDepCheckNeeded = isDependencyCheckNeeded();
+ // We assign consecutive id to access from different dependence sets.
+ // Accesses within the same set don't need a runtime check.
+ unsigned RunningDepId = 1;
+ DenseMap<Value *, unsigned> DepSetId;
+
+ for (PtrAccessSet::iterator AI = Accesses.begin(), AE = Accesses.end();
+ AI != AE; ++AI) {
+ const MemAccessInfo &Access = *AI;
+ Value *Ptr = Access.getPointer();
+ bool IsWrite = Access.getInt();
+
+ // Just add write checks if we have both.
+ if (!IsWrite && Accesses.count(MemAccessInfo(Ptr, true)))
+ continue;
+
+ if (IsWrite)
+ ++NumWritePtrChecks;
+ else
+ ++NumReadPtrChecks;
+
+ if (hasComputableBounds(SE, Ptr) &&
+ // When we run after a failing dependency check we have to make sure we
+ // don't have wrapping pointers.
+ (!ShouldCheckStride || isStridedPtr(SE, DL, Ptr, TheLoop) == 1)) {
+ // The id of the dependence set.
+ unsigned DepId;
+
+ if (IsDepCheckNeeded) {
+ Value *Leader = DepCands.getLeaderValue(Access).getPointer();
+ unsigned &LeaderId = DepSetId[Leader];
+ if (!LeaderId)
+ LeaderId = RunningDepId++;
+ DepId = LeaderId;
+ } else
+ // Each access has its own dependence set.
+ DepId = RunningDepId++;
+
+ RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId);
+
+ DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr << '\n');
+ } else {
+ CanDoRT = false;
+ }
+ }
+
+ if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2)
+ NumComparisons = 0; // Only one dependence set.
+ else {
+ NumComparisons = (NumWritePtrChecks * (NumReadPtrChecks +
+ NumWritePtrChecks - 1));
+ }
+
+ // If the pointers that we would use for the bounds comparison have different
+ // address spaces, assume the values aren't directly comparable, so we can't
+ // use them for the runtime check. We also have to assume they could
+ // overlap. In the future there should be metadata for whether address spaces
+ // are disjoint.
+ unsigned NumPointers = RtCheck.Pointers.size();
+ for (unsigned i = 0; i < NumPointers; ++i) {
+ for (unsigned j = i + 1; j < NumPointers; ++j) {
+ // Only need to check pointers between two different dependency sets.
+ if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j])
+ continue;
+
+ Value *PtrI = RtCheck.Pointers[i];
+ Value *PtrJ = RtCheck.Pointers[j];
+
+ unsigned ASi = PtrI->getType()->getPointerAddressSpace();
+ unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
+ if (ASi != ASj) {
+ DEBUG(dbgs() << "LV: Runtime check would require comparison between"
+ " different address spaces\n");
+ return false;
+ }
+ }
+ }
+
+ return CanDoRT;
+}
+
+static bool isFunctionScopeIdentifiedObject(Value *Ptr) {
+ return isNoAliasArgument(Ptr) || isNoAliasCall(Ptr) || isa<AllocaInst>(Ptr);
+}
+
+void AccessAnalysis::processMemAccesses(bool UseDeferred) {
+ // We process the set twice: first we process read-write pointers, last we
+ // process read-only pointers. This allows us to skip dependence tests for
+ // read-only pointers.
+
+ PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
+ for (PtrAccessSet::iterator AI = S.begin(), AE = S.end(); AI != AE; ++AI) {
+ const MemAccessInfo &Access = *AI;
+ Value *Ptr = Access.getPointer();
+ bool IsWrite = Access.getInt();
+
+ DepCands.insert(Access);
+
+ // Memorize read-only pointers for later processing and skip them in the
+ // first round (they need to be checked after we have seen all write
+ // pointers). Note: we also mark pointer that are not consecutive as
+ // "read-only" pointers (so that we check "a[b[i]] +="). Hence, we need the
+ // second check for "!IsWrite".
+ bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
+ if (!UseDeferred && IsReadOnlyPtr) {
+ DeferredAccesses.insert(Access);
+ continue;
+ }
+
+ bool NeedDepCheck = false;
+ // Check whether there is the possiblity of dependency because of underlying
+ // objects being the same.
+ typedef SmallVector<Value*, 16> ValueVector;
+ ValueVector TempObjects;
+ GetUnderlyingObjects(Ptr, TempObjects, DL);
+ for (ValueVector::iterator UI = TempObjects.begin(), UE = TempObjects.end();
+ UI != UE; ++UI) {
+ Value *UnderlyingObj = *UI;
+
+ // If this is a write then it needs to be an identified object. If this a
+ // read and all writes (so far) are identified function scope objects we
+ // don't need an identified underlying object but only an Argument (the
+ // next write is going to invalidate this assumption if it is
+ // unidentified).
+ // This is a micro-optimization for the case where all writes are
+ // identified and we have one argument pointer.
+ // Otherwise, we do need a runtime check.
+ if ((IsWrite && !isFunctionScopeIdentifiedObject(UnderlyingObj)) ||
+ (!IsWrite && (!AreAllWritesIdentified ||
+ !isa<Argument>(UnderlyingObj)) &&
+ !isIdentifiedObject(UnderlyingObj))) {
+ DEBUG(dbgs() << "LV: Found an unidentified " <<
+ (IsWrite ? "write" : "read" ) << " ptr: " << *UnderlyingObj <<
+ "\n");
+ IsRTCheckNeeded = (IsRTCheckNeeded ||
+ !isIdentifiedObject(UnderlyingObj) ||
+ !AreAllReadsIdentified);
+
+ if (IsWrite)
+ AreAllWritesIdentified = false;
+ if (!IsWrite)
+ AreAllReadsIdentified = false;
+ }
+
+ // If this is a write - check other reads and writes for conflicts. If
+ // this is a read only check other writes for conflicts (but only if there
+ // is no other write to the ptr - this is an optimization to catch "a[i] =
+ // a[i] + " without having to do a dependence check).
+ if ((IsWrite || IsReadOnlyPtr) && WriteObjects.count(UnderlyingObj))
+ NeedDepCheck = true;
+
+ if (IsWrite)
+ WriteObjects.insert(UnderlyingObj);
+
+ // Create sets of pointers connected by shared underlying objects.
+ UnderlyingObjToAccessMap::iterator Prev =
+ ObjToLastAccess.find(UnderlyingObj);
+ if (Prev != ObjToLastAccess.end())
+ DepCands.unionSets(Access, Prev->second);
+
+ ObjToLastAccess[UnderlyingObj] = Access;
+ }
+
+ if (NeedDepCheck)
+ CheckDeps.insert(Access);
+ }
+}
+
+namespace {
+/// \brief Checks memory dependences among accesses to the same underlying
+/// object to determine whether there vectorization is legal or not (and at
+/// which vectorization factor).
+///
+/// This class works under the assumption that we already checked that memory
+/// locations with different underlying pointers are "must-not alias".
+/// We use the ScalarEvolution framework to symbolically evalutate access
+/// functions pairs. Since we currently don't restructure the loop we can rely
+/// on the program order of memory accesses to determine their safety.
+/// At the moment we will only deem accesses as safe for:
+/// * A negative constant distance assuming program order.
+///
+/// Safe: tmp = a[i + 1]; OR a[i + 1] = x;
+/// a[i] = tmp; y = a[i];
+///
+/// The latter case is safe because later checks guarantuee that there can't
+/// be a cycle through a phi node (that is, we check that "x" and "y" is not
+/// the same variable: a header phi can only be an induction or a reduction, a
+/// reduction can't have a memory sink, an induction can't have a memory
+/// source). This is important and must not be violated (or we have to
+/// resort to checking for cycles through memory).
+///
+/// * A positive constant distance assuming program order that is bigger
+/// than the biggest memory access.
+///
+/// tmp = a[i] OR b[i] = x
+/// a[i+2] = tmp y = b[i+2];
+///
+/// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
+///
+/// * Zero distances and all accesses have the same size.
+///
+class MemoryDepChecker {
+public:
+ typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
+ typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
+
+ MemoryDepChecker(ScalarEvolution *Se, DataLayout *Dl, const Loop *L)
+ : SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0),
+ ShouldRetryWithRuntimeCheck(false) {}
+
+ /// \brief Register the location (instructions are given increasing numbers)
+ /// of a write access.
+ void addAccess(StoreInst *SI) {
+ Value *Ptr = SI->getPointerOperand();
+ Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
+ InstMap.push_back(SI);
+ ++AccessIdx;
+ }
+
+ /// \brief Register the location (instructions are given increasing numbers)
+ /// of a write access.
+ void addAccess(LoadInst *LI) {
+ Value *Ptr = LI->getPointerOperand();
+ Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
+ InstMap.push_back(LI);
+ ++AccessIdx;
+ }
+
+ /// \brief Check whether the dependencies between the accesses are safe.
+ ///
+ /// Only checks sets with elements in \p CheckDeps.
+ bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
+ MemAccessInfoSet &CheckDeps);
+
+ /// \brief The maximum number of bytes of a vector register we can vectorize
+ /// the accesses safely with.
+ unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
+
+ /// \brief In same cases when the dependency check fails we can still
+ /// vectorize the loop with a dynamic array access check.
+ bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; }
+
+private:
+ ScalarEvolution *SE;
+ DataLayout *DL;
+ const Loop *InnermostLoop;
+
+ /// \brief Maps access locations (ptr, read/write) to program order.
+ DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
+
+ /// \brief Memory access instructions in program order.
+ SmallVector<Instruction *, 16> InstMap;
+
+ /// \brief The program order index to be used for the next instruction.
+ unsigned AccessIdx;
+
+ // We can access this many bytes in parallel safely.
+ unsigned MaxSafeDepDistBytes;
+
+ /// \brief If we see a non constant dependence distance we can still try to
+ /// vectorize this loop with runtime checks.
+ bool ShouldRetryWithRuntimeCheck;
+
+ /// \brief Check whether there is a plausible dependence between the two
+ /// accesses.
+ ///
+ /// Access \p A must happen before \p B in program order. The two indices
+ /// identify the index into the program order map.
+ ///
+ /// This function checks whether there is a plausible dependence (or the
+ /// absence of such can't be proved) between the two accesses. If there is a
+ /// plausible dependence but the dependence distance is bigger than one
+ /// element access it records this distance in \p MaxSafeDepDistBytes (if this
+ /// distance is smaller than any other distance encountered so far).
+ /// Otherwise, this function returns true signaling a possible dependence.
+ bool isDependent(const MemAccessInfo &A, unsigned AIdx,
+ const MemAccessInfo &B, unsigned BIdx);
+
+ /// \brief Check whether the data dependence could prevent store-load
+ /// forwarding.
+ bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize);
+};
+
+} // end anonymous namespace
+
+static bool isInBoundsGep(Value *Ptr) {
+ if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
+ return GEP->isInBounds();
+ return false;
+}
+
+/// \brief Check whether the access through \p Ptr has a constant stride.
+static int isStridedPtr(ScalarEvolution *SE, DataLayout *DL, Value *Ptr,
+ const Loop *Lp) {
+ const Type *Ty = Ptr->getType();
+ assert(Ty->isPointerTy() && "Unexpected non ptr");
+
+ // Make sure that the pointer does not point to aggregate types.
+ const PointerType *PtrTy = cast<PointerType>(Ty);
+ if (PtrTy->getElementType()->isAggregateType()) {
+ DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr <<
+ "\n");
+ return 0;
+ }
+
+ const SCEV *PtrScev = SE->getSCEV(Ptr);
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
+ if (!AR) {
+ DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer "
+ << *Ptr << " SCEV: " << *PtrScev << "\n");
+ return 0;
+ }
+
+ // The accesss function must stride over the innermost loop.
+ if (Lp != AR->getLoop()) {
+ DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " <<
+ *Ptr << " SCEV: " << *PtrScev << "\n");
+ }
+
+ // The address calculation must not wrap. Otherwise, a dependence could be
+ // inverted.
+ // An inbounds getelementptr that is a AddRec with a unit stride
+ // cannot wrap per definition. The unit stride requirement is checked later.
+ // An getelementptr without an inbounds attribute and unit stride would have
+ // to access the pointer value "0" which is undefined behavior in address
+ // space 0, therefore we can also vectorize this case.
+ bool IsInBoundsGEP = isInBoundsGep(Ptr);
+ bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask);
+ bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
+ if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
+ DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space "
+ << *Ptr << " SCEV: " << *PtrScev << "\n");
+ return 0;
+ }
+
+ // Check the step is constant.
+ const SCEV *Step = AR->getStepRecurrence(*SE);
+
+ // Calculate the pointer stride and check if it is consecutive.
+ const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
+ if (!C) {
+ DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr <<
+ " SCEV: " << *PtrScev << "\n");
+ return 0;
+ }
+
+ int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType());
+ const APInt &APStepVal = C->getValue()->getValue();
+
+ // Huge step value - give up.
+ if (APStepVal.getBitWidth() > 64)
+ return 0;
+
+ int64_t StepVal = APStepVal.getSExtValue();
+
+ // Strided access.
+ int64_t Stride = StepVal / Size;
+ int64_t Rem = StepVal % Size;
+ if (Rem)
+ return 0;
+
+ // If the SCEV could wrap but we have an inbounds gep with a unit stride we
+ // know we can't "wrap around the address space". In case of address space
+ // zero we know that this won't happen without triggering undefined behavior.
+ if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
+ Stride != 1 && Stride != -1)
+ return 0;
+
+ return Stride;
+}
+
+bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
+ unsigned TypeByteSize) {
+ // If loads occur at a distance that is not a multiple of a feasible vector
+ // factor store-load forwarding does not take place.
+ // Positive dependences might cause troubles because vectorizing them might
+ // prevent store-load forwarding making vectorized code run a lot slower.
+ // a[i] = a[i-3] ^ a[i-8];
+ // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
+ // hence on your typical architecture store-load forwarding does not take
+ // place. Vectorizing in such cases does not make sense.
+ // Store-load forwarding distance.
+ const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize;
+ // Maximum vector factor.
+ unsigned MaxVFWithoutSLForwardIssues = MaxVectorWidth*TypeByteSize;
+ if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues)
+ MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes;
+
+ for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues;
+ vf *= 2) {
+ if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) {
+ MaxVFWithoutSLForwardIssues = (vf >>=1);
+ break;
+ }
+ }
+
+ if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) {
+ DEBUG(dbgs() << "LV: Distance " << Distance <<
+ " that could cause a store-load forwarding conflict\n");
+ return true;
+ }
+
+ if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
+ MaxVFWithoutSLForwardIssues != MaxVectorWidth*TypeByteSize)
+ MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
+ return false;
+}
+
+bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
+ const MemAccessInfo &B, unsigned BIdx) {
+ assert (AIdx < BIdx && "Must pass arguments in program order");
+
+ Value *APtr = A.getPointer();
+ Value *BPtr = B.getPointer();
+ bool AIsWrite = A.getInt();
+ bool BIsWrite = B.getInt();
+
+ // Two reads are independent.
+ if (!AIsWrite && !BIsWrite)
+ return false;
+
+ const SCEV *AScev = SE->getSCEV(APtr);
+ const SCEV *BScev = SE->getSCEV(BPtr);
+
+ int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop);
+ int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop);
+
+ const SCEV *Src = AScev;
+ const SCEV *Sink = BScev;
+
+ // If the induction step is negative we have to invert source and sink of the
+ // dependence.
+ if (StrideAPtr < 0) {
+ //Src = BScev;
+ //Sink = AScev;
+ std::swap(APtr, BPtr);
+ std::swap(Src, Sink);
+ std::swap(AIsWrite, BIsWrite);
+ std::swap(AIdx, BIdx);
+ std::swap(StrideAPtr, StrideBPtr);
+ }
+
+ const SCEV *Dist = SE->getMinusSCEV(Sink, Src);
+
+ DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink
+ << "(Induction step: " << StrideAPtr << ")\n");
+ DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to "
+ << *InstMap[BIdx] << ": " << *Dist << "\n");
+
+ // Need consecutive accesses. We don't want to vectorize
+ // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
+ // the address space.
+ if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
+ DEBUG(dbgs() << "Non-consecutive pointer access\n");
+ return true;
+ }
+
+ const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
+ if (!C) {
+ DEBUG(dbgs() << "LV: Dependence because of non constant distance\n");
+ ShouldRetryWithRuntimeCheck = true;
+ return true;
+ }
+
+ Type *ATy = APtr->getType()->getPointerElementType();
+ Type *BTy = BPtr->getType()->getPointerElementType();
+ unsigned TypeByteSize = DL->getTypeAllocSize(ATy);
+
+ // Negative distances are not plausible dependencies.
+ const APInt &Val = C->getValue()->getValue();
+ if (Val.isNegative()) {
+ bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
+ if (IsTrueDataDependence &&
+ (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
+ ATy != BTy))
+ return true;
+
+ DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n");
+ return false;
+ }
+
+ // Write to the same location with the same size.
+ // Could be improved to assert type sizes are the same (i32 == float, etc).
+ if (Val == 0) {
+ if (ATy == BTy)
+ return false;
+ DEBUG(dbgs() << "LV: Zero dependence difference but different types\n");
+ return true;
+ }
+
+ assert(Val.isStrictlyPositive() && "Expect a positive value");
+
+ // Positive distance bigger than max vectorization factor.
+ if (ATy != BTy) {
+ DEBUG(dbgs() <<
+ "LV: ReadWrite-Write positive dependency with different types\n");
+ return false;
+ }
+
+ unsigned Distance = (unsigned) Val.getZExtValue();
+
+ // Bail out early if passed-in parameters make vectorization not feasible.
+ unsigned ForcedFactor = VectorizationFactor ? VectorizationFactor : 1;
+ unsigned ForcedUnroll = VectorizationUnroll ? VectorizationUnroll : 1;
+
+ // The distance must be bigger than the size needed for a vectorized version
+ // of the operation and the size of the vectorized operation must not be
+ // bigger than the currrent maximum size.
+ if (Distance < 2*TypeByteSize ||
+ 2*TypeByteSize > MaxSafeDepDistBytes ||
+ Distance < TypeByteSize * ForcedUnroll * ForcedFactor) {
+ DEBUG(dbgs() << "LV: Failure because of Positive distance "
+ << Val.getSExtValue() << '\n');
+ return true;
+ }
+
+ MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ?
+ Distance : MaxSafeDepDistBytes;
+
+ bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
+ if (IsTrueDataDependence &&
+ couldPreventStoreLoadForward(Distance, TypeByteSize))
+ return true;
+
+ DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() <<
+ " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n');
+
+ return false;
+}
+
+bool
+MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
+ MemAccessInfoSet &CheckDeps) {
+
+ MaxSafeDepDistBytes = -1U;
+ while (!CheckDeps.empty()) {
+ MemAccessInfo CurAccess = *CheckDeps.begin();
+
+ // Get the relevant memory access set.
+ EquivalenceClasses<MemAccessInfo>::iterator I =
+ AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
+
+ // Check accesses within this set.
+ EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE;
+ AI = AccessSets.member_begin(I), AE = AccessSets.member_end();
+
+ // Check every access pair.
+ while (AI != AE) {
+ CheckDeps.erase(*AI);
+ EquivalenceClasses<MemAccessInfo>::member_iterator OI = llvm::next(AI);
+ while (OI != AE) {
+ // Check every accessing instruction pair in program order.
+ for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
+ I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
+ for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
+ I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
+ if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2))
+ return false;
+ if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1))
+ return false;
+ }
+ ++OI;
+ }
+ AI++;
+ }
+ }
+ return true;
+}
+
+bool LoopVectorizationLegality::canVectorizeMemory() {
+
+ typedef SmallVector<Value*, 16> ValueVector;
+ typedef SmallPtrSet<Value*, 16> ValueSet;
+
+ // Holds the Load and Store *instructions*.
+ ValueVector Loads;
+ ValueVector Stores;
+
+ // Holds all the different accesses in the loop.
+ unsigned NumReads = 0;
+ unsigned NumReadWrites = 0;
+
+ PtrRtCheck.Pointers.clear();
+ PtrRtCheck.Need = false;
+
+ const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
+ MemoryDepChecker DepChecker(SE, DL, TheLoop);
+
+ // For each block.
+ for (Loop::block_iterator bb = TheLoop->block_begin(),
+ be = TheLoop->block_end(); bb != be; ++bb) {
+
+ // Scan the BB and collect legal loads and stores.
+ for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
+ ++it) {
+
+ // If this is a load, save it. If this instruction can read from memory
+ // but is not a load, then we quit. Notice that we don't handle function
+ // calls that read or write.
+ if (it->mayReadFromMemory()) {
+ // Many math library functions read the rounding mode. We will only
+ // vectorize a loop if it contains known function calls that don't set
+ // the flag. Therefore, it is safe to ignore this read from memory.
+ CallInst *Call = dyn_cast<CallInst>(it);
+ if (Call && getIntrinsicIDForCall(Call, TLI))
+ continue;
+
+ LoadInst *Ld = dyn_cast<LoadInst>(it);
+ if (!Ld) return false;
+ if (!Ld->isSimple() && !IsAnnotatedParallel) {
+ DEBUG(dbgs() << "LV: Found a non-simple load.\n");
+ return false;
+ }
+ Loads.push_back(Ld);
+ DepChecker.addAccess(Ld);
+ continue;
+ }
+
+ // Save 'store' instructions. Abort if other instructions write to memory.
+ if (it->mayWriteToMemory()) {
+ StoreInst *St = dyn_cast<StoreInst>(it);
+ if (!St) return false;
+ if (!St->isSimple() && !IsAnnotatedParallel) {
+ DEBUG(dbgs() << "LV: Found a non-simple store.\n");
+ return false;
+ }
+ Stores.push_back(St);
+ DepChecker.addAccess(St);
+ }
+ } // Next instr.
+ } // Next block.
+
+ // Now we have two lists that hold the loads and the stores.
+ // Next, we find the pointers that they use.
+
+ // Check if we see any stores. If there are no stores, then we don't
+ // care if the pointers are *restrict*.
+ if (!Stores.size()) {
+ DEBUG(dbgs() << "LV: Found a read-only loop!\n");
+ return true;
+ }
+
+ AccessAnalysis::DepCandidates DependentAccesses;
+ AccessAnalysis Accesses(DL, DependentAccesses);
+
+ // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
+ // multiple times on the same object. If the ptr is accessed twice, once
+ // for read and once for write, it will only appear once (on the write
+ // list). This is okay, since we are going to check for conflicts between
+ // writes and between reads and writes, but not between reads and reads.
+ ValueSet Seen;
+
+ ValueVector::iterator I, IE;
+ for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
+ StoreInst *ST = cast<StoreInst>(*I);
+ Value* Ptr = ST->getPointerOperand();
+
+ if (isUniform(Ptr)) {
+ DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
+ return false;
+ }
+
+ // If we did *not* see this pointer before, insert it to the read-write
+ // list. At this phase it is only a 'write' list.
+ if (Seen.insert(Ptr)) {
+ ++NumReadWrites;
+ Accesses.addStore(Ptr);
+ }
+ }
+
+ if (IsAnnotatedParallel) {
+ DEBUG(dbgs()
+ << "LV: A loop annotated parallel, ignore memory dependency "
+ << "checks.\n");
+ return true;
+ }
+
+ for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
+ LoadInst *LD = cast<LoadInst>(*I);
+ Value* Ptr = LD->getPointerOperand();
+ // If we did *not* see this pointer before, insert it to the
+ // read list. If we *did* see it before, then it is already in
+ // the read-write list. This allows us to vectorize expressions
+ // such as A[i] += x; Because the address of A[i] is a read-write
+ // pointer. This only works if the index of A[i] is consecutive.
+ // If the address of i is unknown (for example A[B[i]]) then we may
+ // read a few words, modify, and write a few words, and some of the
+ // words may be written to the same address.
+ bool IsReadOnlyPtr = false;
+ if (Seen.insert(Ptr) || !isStridedPtr(SE, DL, Ptr, TheLoop)) {
+ ++NumReads;
+ IsReadOnlyPtr = true;
+ }
+ Accesses.addLoad(Ptr, IsReadOnlyPtr);
+ }
+
+ // If we write (or read-write) to a single destination and there are no
+ // other reads in this loop then is it safe to vectorize.
+ if (NumReadWrites == 1 && NumReads == 0) {
+ DEBUG(dbgs() << "LV: Found a write-only loop!\n");
+ return true;
+ }
+
+ // Build dependence sets and check whether we need a runtime pointer bounds
+ // check.
+ Accesses.buildDependenceSets();
+ bool NeedRTCheck = Accesses.isRTCheckNeeded();
+
+ // Find pointers with computable bounds. We are going to use this information
+ // to place a runtime bound check.
+ unsigned NumComparisons = 0;
+ bool CanDoRT = false;
+ if (NeedRTCheck)
+ CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop);
+
+
+ DEBUG(dbgs() << "LV: We need to do " << NumComparisons <<
+ " pointer comparisons.\n");
+
+ // If we only have one set of dependences to check pointers among we don't
+ // need a runtime check.
+ if (NumComparisons == 0 && NeedRTCheck)
+ NeedRTCheck = false;
+
+ // Check that we did not collect too many pointers or found an unsizeable
+ // pointer.
+ if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
+ PtrRtCheck.reset();
+ CanDoRT = false;
+ }
+
+ if (CanDoRT) {
+ DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n");
+ }
+
+ if (NeedRTCheck && !CanDoRT) {
+ DEBUG(dbgs() << "LV: We can't vectorize because we can't find " <<
+ "the array bounds.\n");
+ PtrRtCheck.reset();
+ return false;
+ }
+
+ PtrRtCheck.Need = NeedRTCheck;
+
+ bool CanVecMem = true;
+ if (Accesses.isDependencyCheckNeeded()) {
+ DEBUG(dbgs() << "LV: Checking memory dependencies\n");
+ CanVecMem = DepChecker.areDepsSafe(DependentAccesses,
+ Accesses.getDependenciesToCheck());
+ MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
+
+ if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) {
+ DEBUG(dbgs() << "LV: Retrying with memory checks\n");
+ NeedRTCheck = true;
+
+ // Clear the dependency checks. We assume they are not needed.
+ Accesses.resetDepChecks();
+
+ PtrRtCheck.reset();
+ PtrRtCheck.Need = true;
+
+ CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE,
+ TheLoop, true);
+ // Check that we did not collect too many pointers or found an unsizeable
+ // pointer.
+ if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
+ DEBUG(dbgs() << "LV: Can't vectorize with memory checks\n");
+ PtrRtCheck.reset();
+ return false;
+ }
+
+ CanVecMem = true;
+ }
+ }
+
+ DEBUG(dbgs() << "LV: We" << (NeedRTCheck ? "" : " don't") <<
+ " need a runtime memory check.\n");
+
+ return CanVecMem;
+}
+
+static bool hasMultipleUsesOf(Instruction *I,
+ SmallPtrSet<Instruction *, 8> &Insts) {
+ unsigned NumUses = 0;
+ for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) {
+ if (Insts.count(dyn_cast<Instruction>(*Use)))
+ ++NumUses;
+ if (NumUses > 1)
+ return true;
+ }
+
+ return false;
+}
+
+static bool areAllUsesIn(Instruction *I, SmallPtrSet<Instruction *, 8> &Set) {
+ for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
+ if (!Set.count(dyn_cast<Instruction>(*Use)))
+ return false;
+ return true;
+}
+
+bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
+ ReductionKind Kind) {
+ if (Phi->getNumIncomingValues() != 2)
+ return false;
+
+ // Reduction variables are only found in the loop header block.
+ if (Phi->getParent() != TheLoop->getHeader())
+ return false;
+
+ // Obtain the reduction start value from the value that comes from the loop
+ // preheader.
+ Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
+
+ // ExitInstruction is the single value which is used outside the loop.
+ // We only allow for a single reduction value to be used outside the loop.
+ // This includes users of the reduction, variables (which form a cycle
+ // which ends in the phi node).
+ Instruction *ExitInstruction = 0;
+ // Indicates that we found a reduction operation in our scan.
+ bool FoundReduxOp = false;
+
+ // We start with the PHI node and scan for all of the users of this
+ // instruction. All users must be instructions that can be used as reduction
+ // variables (such as ADD). We must have a single out-of-block user. The cycle
+ // must include the original PHI.
+ bool FoundStartPHI = false;
+
+ // To recognize min/max patterns formed by a icmp select sequence, we store
+ // the number of instruction we saw from the recognized min/max pattern,
+ // to make sure we only see exactly the two instructions.
+ unsigned NumCmpSelectPatternInst = 0;
+ ReductionInstDesc ReduxDesc(false, 0);
+
+ SmallPtrSet<Instruction *, 8> VisitedInsts;
+ SmallVector<Instruction *, 8> Worklist;
+ Worklist.push_back(Phi);
+ VisitedInsts.insert(Phi);
+
+ // A value in the reduction can be used:
+ // - By the reduction:
+ // - Reduction operation:
+ // - One use of reduction value (safe).
+ // - Multiple use of reduction value (not safe).
+ // - PHI:
+ // - All uses of the PHI must be the reduction (safe).
+ // - Otherwise, not safe.
+ // - By one instruction outside of the loop (safe).
+ // - By further instructions outside of the loop (not safe).
+ // - By an instruction that is not part of the reduction (not safe).
+ // This is either:
+ // * An instruction type other than PHI or the reduction operation.
+ // * A PHI in the header other than the initial PHI.
+ while (!Worklist.empty()) {
+ Instruction *Cur = Worklist.back();
+ Worklist.pop_back();
+
+ // No Users.
+ // If the instruction has no users then this is a broken chain and can't be
+ // a reduction variable.
+ if (Cur->use_empty())
+ return false;
+
+ bool IsAPhi = isa<PHINode>(Cur);
+
+ // A header PHI use other than the original PHI.
+ if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
+ return false;
+
+ // Reductions of instructions such as Div, and Sub is only possible if the
+ // LHS is the reduction variable.
+ if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
+ !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
+ !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
+ return false;
+
+ // Any reduction instruction must be of one of the allowed kinds.
+ ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc);
+ if (!ReduxDesc.IsReduction)
+ return false;
+
+ // A reduction operation must only have one use of the reduction value.
+ if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
+ hasMultipleUsesOf(Cur, VisitedInsts))
+ return false;
+
+ // All inputs to a PHI node must be a reduction value.
+ if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
+ return false;
+
+ if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) ||
+ isa<SelectInst>(Cur)))
+ ++NumCmpSelectPatternInst;
+ if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) ||
+ isa<SelectInst>(Cur)))
+ ++NumCmpSelectPatternInst;
+
+ // Check whether we found a reduction operator.
+ FoundReduxOp |= !IsAPhi;
+
+ // Process users of current instruction. Push non PHI nodes after PHI nodes
+ // onto the stack. This way we are going to have seen all inputs to PHI
+ // nodes once we get to them.
+ SmallVector<Instruction *, 8> NonPHIs;
+ SmallVector<Instruction *, 8> PHIs;
+ for (Value::use_iterator UI = Cur->use_begin(), E = Cur->use_end(); UI != E;
+ ++UI) {
+ Instruction *Usr = cast<Instruction>(*UI);
+
+ // Check if we found the exit user.
+ BasicBlock *Parent = Usr->getParent();
+ if (!TheLoop->contains(Parent)) {
+ // Exit if you find multiple outside users or if the header phi node is
+ // being used. In this case the user uses the value of the previous
+ // iteration, in which case we would loose "VF-1" iterations of the
+ // reduction operation if we vectorize.
+ if (ExitInstruction != 0 || Cur == Phi)
+ return false;
+
+ // The instruction used by an outside user must be the last instruction
+ // before we feed back to the reduction phi. Otherwise, we loose VF-1
+ // operations on the value.
+ if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end())
+ return false;
+
+ ExitInstruction = Cur;
+ continue;
+ }
+
+ // Process instructions only once (termination).
+ if (VisitedInsts.insert(Usr)) {
+ if (isa<PHINode>(Usr))
+ PHIs.push_back(Usr);
+ else
+ NonPHIs.push_back(Usr);
+ }
+ // Remember that we completed the cycle.
+ if (Usr == Phi)
+ FoundStartPHI = true;
+ }
+ Worklist.append(PHIs.begin(), PHIs.end());
+ Worklist.append(NonPHIs.begin(), NonPHIs.end());
+ }
+
+ // This means we have seen one but not the other instruction of the
+ // pattern or more than just a select and cmp.
+ if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
+ NumCmpSelectPatternInst != 2)
+ return false;
+
+ if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
+ return false;
+
+ // We found a reduction var if we have reached the original phi node and we
+ // only have a single instruction with out-of-loop users.
+
+ // This instruction is allowed to have out-of-loop users.
+ AllowedExit.insert(ExitInstruction);
+
+ // Save the description of this reduction variable.
+ ReductionDescriptor RD(RdxStart, ExitInstruction, Kind,
+ ReduxDesc.MinMaxKind);
+ Reductions[Phi] = RD;
+ // We've ended the cycle. This is a reduction variable if we have an
+ // outside user and it has a binary op.
+
+ return true;
+}
+
+/// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
+/// pattern corresponding to a min(X, Y) or max(X, Y).
+LoopVectorizationLegality::ReductionInstDesc
+LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I,
+ ReductionInstDesc &Prev) {
+
+ assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
+ "Expect a select instruction");
+ Instruction *Cmp = 0;
+ SelectInst *Select = 0;
+
+ // We must handle the select(cmp()) as a single instruction. Advance to the
+ // select.
+ if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
+ if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->use_begin())))
+ return ReductionInstDesc(false, I);
+ return ReductionInstDesc(Select, Prev.MinMaxKind);
+ }
+
+ // Only handle single use cases for now.
+ if (!(Select = dyn_cast<SelectInst>(I)))
+ return ReductionInstDesc(false, I);
+ if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
+ !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
+ return ReductionInstDesc(false, I);
+ if (!Cmp->hasOneUse())
+ return ReductionInstDesc(false, I);
+
+ Value *CmpLeft;
+ Value *CmpRight;
+
+ // Look for a min/max pattern.
+ if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+ return ReductionInstDesc(Select, MRK_UIntMin);
+ else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+ return ReductionInstDesc(Select, MRK_UIntMax);
+ else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+ return ReductionInstDesc(Select, MRK_SIntMax);
+ else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+ return ReductionInstDesc(Select, MRK_SIntMin);
+ else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+ return ReductionInstDesc(Select, MRK_FloatMin);
+ else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+ return ReductionInstDesc(Select, MRK_FloatMax);
+ else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+ return ReductionInstDesc(Select, MRK_FloatMin);
+ else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+ return ReductionInstDesc(Select, MRK_FloatMax);
+
+ return ReductionInstDesc(false, I);
+}
+
+LoopVectorizationLegality::ReductionInstDesc
+LoopVectorizationLegality::isReductionInstr(Instruction *I,
+ ReductionKind Kind,
+ ReductionInstDesc &Prev) {
+ bool FP = I->getType()->isFloatingPointTy();
+ bool FastMath = (FP && I->isCommutative() && I->isAssociative());
+ switch (I->getOpcode()) {
+ default:
+ return ReductionInstDesc(false, I);
+ case Instruction::PHI:
+ if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd &&
+ Kind != RK_FloatMinMax))
+ return ReductionInstDesc(false, I);
+ return ReductionInstDesc(I, Prev.MinMaxKind);
+ case Instruction::Sub:
+ case Instruction::Add:
+ return ReductionInstDesc(Kind == RK_IntegerAdd, I);
+ case Instruction::Mul:
+ return ReductionInstDesc(Kind == RK_IntegerMult, I);
+ case Instruction::And:
+ return ReductionInstDesc(Kind == RK_IntegerAnd, I);
+ case Instruction::Or:
+ return ReductionInstDesc(Kind == RK_IntegerOr, I);
+ case Instruction::Xor:
+ return ReductionInstDesc(Kind == RK_IntegerXor, I);
+ case Instruction::FMul:
+ return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I);
+ case Instruction::FAdd:
+ return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I);
+ case Instruction::FCmp:
+ case Instruction::ICmp:
+ case Instruction::Select:
+ if (Kind != RK_IntegerMinMax &&
+ (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
+ return ReductionInstDesc(false, I);
+ return isMinMaxSelectCmpPattern(I, Prev);
+ }
+}
+
+LoopVectorizationLegality::InductionKind
+LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
+ Type *PhiTy = Phi->getType();
+ // We only handle integer and pointer inductions variables.
+ if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
+ return IK_NoInduction;
+
+ // Check that the PHI is consecutive.
+ const SCEV *PhiScev = SE->getSCEV(Phi);
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
+ if (!AR) {
+ DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
+ return IK_NoInduction;
+ }
+ const SCEV *Step = AR->getStepRecurrence(*SE);
+
+ // Integer inductions need to have a stride of one.
+ if (PhiTy->isIntegerTy()) {
+ if (Step->isOne())
+ return IK_IntInduction;
+ if (Step->isAllOnesValue())
+ return IK_ReverseIntInduction;
+ return IK_NoInduction;
+ }
+
+ // Calculate the pointer stride and check if it is consecutive.
+ const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
+ if (!C)
+ return IK_NoInduction;
+
+ assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
+ uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType());
+ if (C->getValue()->equalsInt(Size))
+ return IK_PtrInduction;
+ else if (C->getValue()->equalsInt(0 - Size))
+ return IK_ReversePtrInduction;
+
+ return IK_NoInduction;
+}
+
+bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
+ Value *In0 = const_cast<Value*>(V);
+ PHINode *PN = dyn_cast_or_null<PHINode>(In0);
+ if (!PN)
+ return false;
+
+ return Inductions.count(PN);
+}
+
+bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
+ assert(TheLoop->contains(BB) && "Unknown block used");
+
+ // Blocks that do not dominate the latch need predication.
+ BasicBlock* Latch = TheLoop->getLoopLatch();
+ return !DT->dominates(BB, Latch);
+}
+
+bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB,
+ SmallPtrSet<Value *, 8>& SafePtrs) {
+ for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
+ // We might be able to hoist the load.
+ if (it->mayReadFromMemory()) {
+ LoadInst *LI = dyn_cast<LoadInst>(it);
+ if (!LI || !SafePtrs.count(LI->getPointerOperand()))
+ return false;
+ }
+
+ // We don't predicate stores at the moment.
+ if (it->mayWriteToMemory() || it->mayThrow())
+ return false;
+
+ // Check that we don't have a constant expression that can trap as operand.
+ for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end();
+ OI != OE; ++OI) {
+ if (Constant *C = dyn_cast<Constant>(*OI))
+ if (C->canTrap())
+ return false;
+ }
+
+ // The instructions below can trap.
+ switch (it->getOpcode()) {
+ default: continue;
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ return false;
+ }
+ }
+
+ return true;
+}
+
+LoopVectorizationCostModel::VectorizationFactor
+LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
+ unsigned UserVF) {
+ // Width 1 means no vectorize
+ VectorizationFactor Factor = { 1U, 0U };
+ if (OptForSize && Legal->getRuntimePointerCheck()->Need) {
+ DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n");
+ return Factor;
+ }
+
+ // Find the trip count.
+ unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch());
+ DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
+
+ unsigned WidestType = getWidestType();
+ unsigned WidestRegister = TTI.getRegisterBitWidth(true);
+ unsigned MaxSafeDepDist = -1U;
+ if (Legal->getMaxSafeDepDistBytes() != -1U)
+ MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
+ WidestRegister = ((WidestRegister < MaxSafeDepDist) ?
+ WidestRegister : MaxSafeDepDist);
+ unsigned MaxVectorSize = WidestRegister / WidestType;
+ DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n");
+ DEBUG(dbgs() << "LV: The Widest register is: "
+ << WidestRegister << " bits.\n");
+
+ if (MaxVectorSize == 0) {
+ DEBUG(dbgs() << "LV: The target has no vector registers.\n");
+ MaxVectorSize = 1;
+ }
+
+ assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements"
+ " into one vector!");
+
+ unsigned VF = MaxVectorSize;
+
+ // If we optimize the program for size, avoid creating the tail loop.
+ if (OptForSize) {
+ // If we are unable to calculate the trip count then don't try to vectorize.
+ if (TC < 2) {
+ DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
+ return Factor;
+ }
+
+ // Find the maximum SIMD width that can fit within the trip count.
+ VF = TC % MaxVectorSize;
+
+ if (VF == 0)
+ VF = MaxVectorSize;
+
+ // If the trip count that we found modulo the vectorization factor is not
+ // zero then we require a tail.
+ if (VF < 2) {
+ DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
+ return Factor;
+ }
+ }
+
+ if (UserVF != 0) {
+ assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
+ DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
+
+ Factor.Width = UserVF;
+ return Factor;
+ }
+
+ float Cost = expectedCost(1);
+ unsigned Width = 1;
+ DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)Cost << ".\n");
+ for (unsigned i=2; i <= VF; i*=2) {
+ // Notice that the vector loop needs to be executed less times, so
+ // we need to divide the cost of the vector loops by the width of
+ // the vector elements.
+ float VectorCost = expectedCost(i) / (float)i;
+ DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " <<
+ (int)VectorCost << ".\n");
+ if (VectorCost < Cost) {
+ Cost = VectorCost;
+ Width = i;
+ }
+ }
+
+ DEBUG(dbgs() << "LV: Selecting VF = : "<< Width << ".\n");
+ Factor.Width = Width;
+ Factor.Cost = Width * Cost;
+ return Factor;
+}
+
+unsigned LoopVectorizationCostModel::getWidestType() {
+ unsigned MaxWidth = 8;
+
+ // For each block.
+ for (Loop::block_iterator bb = TheLoop->block_begin(),
+ be = TheLoop->block_end(); bb != be; ++bb) {
+ BasicBlock *BB = *bb;
+
+ // For each instruction in the loop.
+ for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
+ Type *T = it->getType();
+
+ // Only examine Loads, Stores and PHINodes.
+ if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it))
+ continue;
+
+ // Examine PHI nodes that are reduction variables.
+ if (PHINode *PN = dyn_cast<PHINode>(it))
+ if (!Legal->getReductionVars()->count(PN))
+ continue;
+
+ // Examine the stored values.
+ if (StoreInst *ST = dyn_cast<StoreInst>(it))
+ T = ST->getValueOperand()->getType();
+
+ // Ignore loaded pointer types and stored pointer types that are not
+ // consecutive. However, we do want to take consecutive stores/loads of
+ // pointer vectors into account.
+ if (T->isPointerTy() && !isConsecutiveLoadOrStore(it))
+ continue;
+
+ MaxWidth = std::max(MaxWidth,
+ (unsigned)DL->getTypeSizeInBits(T->getScalarType()));
+ }
+ }
+
+ return MaxWidth;
+}
+
+unsigned
+LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
+ unsigned UserUF,
+ unsigned VF,
+ unsigned LoopCost) {
+
+ // -- The unroll heuristics --
+ // We unroll the loop in order to expose ILP and reduce the loop overhead.
+ // There are many micro-architectural considerations that we can't predict
+ // at this level. For example frontend pressure (on decode or fetch) due to
+ // code size, or the number and capabilities of the execution ports.
+ //
+ // We use the following heuristics to select the unroll factor:
+ // 1. If the code has reductions the we unroll in order to break the cross
+ // iteration dependency.
+ // 2. If the loop is really small then we unroll in order to reduce the loop
+ // overhead.
+ // 3. We don't unroll if we think that we will spill registers to memory due
+ // to the increased register pressure.
+
+ // Use the user preference, unless 'auto' is selected.
+ if (UserUF != 0)
+ return UserUF;
+
+ // When we optimize for size we don't unroll.
+ if (OptForSize)
+ return 1;
+
+ // We used the distance for the unroll factor.
+ if (Legal->getMaxSafeDepDistBytes() != -1U)
+ return 1;
+
+ // Do not unroll loops with a relatively small trip count.
+ unsigned TC = SE->getSmallConstantTripCount(TheLoop,
+ TheLoop->getLoopLatch());
+ if (TC > 1 && TC < TinyTripCountUnrollThreshold)
+ return 1;
+
+ unsigned TargetVectorRegisters = TTI.getNumberOfRegisters(true);
+ DEBUG(dbgs() << "LV: The target has " << TargetVectorRegisters <<
+ " vector registers\n");
+
+ LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage();
+ // We divide by these constants so assume that we have at least one
+ // instruction that uses at least one register.
+ R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
+ R.NumInstructions = std::max(R.NumInstructions, 1U);
+
+ // We calculate the unroll factor using the following formula.
+ // Subtract the number of loop invariants from the number of available
+ // registers. These registers are used by all of the unrolled instances.
+ // Next, divide the remaining registers by the number of registers that is
+ // required by the loop, in order to estimate how many parallel instances
+ // fit without causing spills.
+ unsigned UF = (TargetVectorRegisters - R.LoopInvariantRegs) / R.MaxLocalUsers;
+
+ // Clamp the unroll factor ranges to reasonable factors.
+ unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor();
+
+ // If we did not calculate the cost for VF (because the user selected the VF)
+ // then we calculate the cost of VF here.
+ if (LoopCost == 0)
+ LoopCost = expectedCost(VF);
+
+ // Clamp the calculated UF to be between the 1 and the max unroll factor
+ // that the target allows.
+ if (UF > MaxUnrollSize)
+ UF = MaxUnrollSize;
+ else if (UF < 1)
+ UF = 1;
+
+ bool HasReductions = Legal->getReductionVars()->size();
+
+ // Decide if we want to unroll if we decided that it is legal to vectorize
+ // but not profitable.
+ if (VF == 1) {
+ if (TheLoop->getNumBlocks() > 1 || !HasReductions ||
+ LoopCost > SmallLoopCost)
+ return 1;
+
+ return UF;
+ }
+
+ if (HasReductions) {
+ DEBUG(dbgs() << "LV: Unrolling because of reductions.\n");
+ return UF;
+ }
+
+ // We want to unroll tiny loops in order to reduce the loop overhead.
+ // We assume that the cost overhead is 1 and we use the cost model
+ // to estimate the cost of the loop and unroll until the cost of the
+ // loop overhead is about 5% of the cost of the loop.
+ DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
+ if (LoopCost < SmallLoopCost) {
+ DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n");
+ unsigned NewUF = SmallLoopCost / (LoopCost + 1);
+ return std::min(NewUF, UF);
+ }
+
+ DEBUG(dbgs() << "LV: Not Unrolling.\n");
+ return 1;
+}
+
+LoopVectorizationCostModel::RegisterUsage
+LoopVectorizationCostModel::calculateRegisterUsage() {
+ // This function calculates the register usage by measuring the highest number
+ // of values that are alive at a single location. Obviously, this is a very
+ // rough estimation. We scan the loop in a topological order in order and
+ // assign a number to each instruction. We use RPO to ensure that defs are
+ // met before their users. We assume that each instruction that has in-loop
+ // users starts an interval. We record every time that an in-loop value is
+ // used, so we have a list of the first and last occurrences of each
+ // instruction. Next, we transpose this data structure into a multi map that
+ // holds the list of intervals that *end* at a specific location. This multi
+ // map allows us to perform a linear search. We scan the instructions linearly
+ // and record each time that a new interval starts, by placing it in a set.
+ // If we find this value in the multi-map then we remove it from the set.
+ // The max register usage is the maximum size of the set.
+ // We also search for instructions that are defined outside the loop, but are
+ // used inside the loop. We need this number separately from the max-interval
+ // usage number because when we unroll, loop-invariant values do not take
+ // more register.
+ LoopBlocksDFS DFS(TheLoop);
+ DFS.perform(LI);
+
+ RegisterUsage R;
+ R.NumInstructions = 0;
+
+ // Each 'key' in the map opens a new interval. The values
+ // of the map are the index of the 'last seen' usage of the
+ // instruction that is the key.
+ typedef DenseMap<Instruction*, unsigned> IntervalMap;
+ // Maps instruction to its index.
+ DenseMap<unsigned, Instruction*> IdxToInstr;
+ // Marks the end of each interval.
+ IntervalMap EndPoint;
+ // Saves the list of instruction indices that are used in the loop.
+ SmallSet<Instruction*, 8> Ends;
+ // Saves the list of values that are used in the loop but are
+ // defined outside the loop, such as arguments and constants.
+ SmallPtrSet<Value*, 8> LoopInvariants;
+
+ unsigned Index = 0;
+ for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
+ be = DFS.endRPO(); bb != be; ++bb) {
+ R.NumInstructions += (*bb)->size();
+ for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
+ ++it) {
+ Instruction *I = it;
+ IdxToInstr[Index++] = I;
+
+ // Save the end location of each USE.
+ for (unsigned i = 0; i < I->getNumOperands(); ++i) {
+ Value *U = I->getOperand(i);
+ Instruction *Instr = dyn_cast<Instruction>(U);
+
+ // Ignore non-instruction values such as arguments, constants, etc.
+ if (!Instr) continue;
+
+ // If this instruction is outside the loop then record it and continue.
+ if (!TheLoop->contains(Instr)) {
+ LoopInvariants.insert(Instr);
+ continue;
+ }
+
+ // Overwrite previous end points.
+ EndPoint[Instr] = Index;
+ Ends.insert(Instr);
+ }
+ }
+ }
+
+ // Saves the list of intervals that end with the index in 'key'.
+ typedef SmallVector<Instruction*, 2> InstrList;
+ DenseMap<unsigned, InstrList> TransposeEnds;
+
+ // Transpose the EndPoints to a list of values that end at each index.
+ for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end();
+ it != e; ++it)
+ TransposeEnds[it->second].push_back(it->first);
+
+ SmallSet<Instruction*, 8> OpenIntervals;
+ unsigned MaxUsage = 0;
+
+
+ DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
+ for (unsigned int i = 0; i < Index; ++i) {
+ Instruction *I = IdxToInstr[i];
+ // Ignore instructions that are never used within the loop.
+ if (!Ends.count(I)) continue;
+
+ // Remove all of the instructions that end at this location.
+ InstrList &List = TransposeEnds[i];
+ for (unsigned int j=0, e = List.size(); j < e; ++j)
+ OpenIntervals.erase(List[j]);
+
+ // Count the number of live interals.
+ MaxUsage = std::max(MaxUsage, OpenIntervals.size());
+
+ DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " <<
+ OpenIntervals.size() << '\n');
+
+ // Add the current instruction to the list of open intervals.
+ OpenIntervals.insert(I);
+ }
+
+ unsigned Invariant = LoopInvariants.size();
+ DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n');
+ DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n');
+ DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n');
+
+ R.LoopInvariantRegs = Invariant;
+ R.MaxLocalUsers = MaxUsage;
+ return R;
+}
+
+unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
+ unsigned Cost = 0;
+
+ // For each block.
+ for (Loop::block_iterator bb = TheLoop->block_begin(),
+ be = TheLoop->block_end(); bb != be; ++bb) {
+ unsigned BlockCost = 0;
+ BasicBlock *BB = *bb;
+
+ // For each instruction in the old loop.
+ for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
+ // Skip dbg intrinsics.
+ if (isa<DbgInfoIntrinsic>(it))
+ continue;
+
+ unsigned C = getInstructionCost(it, VF);
+ BlockCost += C;
+ DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " <<
+ VF << " For instruction: " << *it << '\n');
+ }
+
+ // We assume that if-converted blocks have a 50% chance of being executed.
+ // When the code is scalar then some of the blocks are avoided due to CF.
+ // When the code is vectorized we execute all code paths.
+ if (VF == 1 && Legal->blockNeedsPredication(*bb))
+ BlockCost /= 2;
+
+ Cost += BlockCost;
+ }
+
+ return Cost;
+}
+
+/// \brief Check whether the address computation for a non-consecutive memory
+/// access looks like an unlikely candidate for being merged into the indexing
+/// mode.
+///
+/// We look for a GEP which has one index that is an induction variable and all
+/// other indices are loop invariant. If the stride of this access is also
+/// within a small bound we decide that this address computation can likely be
+/// merged into the addressing mode.
+/// In all other cases, we identify the address computation as complex.
+static bool isLikelyComplexAddressComputation(Value *Ptr,
+ LoopVectorizationLegality *Legal,
+ ScalarEvolution *SE,
+ const Loop *TheLoop) {
+ GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
+ if (!Gep)
+ return true;
+
+ // We are looking for a gep with all loop invariant indices except for one
+ // which should be an induction variable.
+ unsigned NumOperands = Gep->getNumOperands();
+ for (unsigned i = 1; i < NumOperands; ++i) {
+ Value *Opd = Gep->getOperand(i);
+ if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
+ !Legal->isInductionVariable(Opd))
+ return true;
+ }
+
+ // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step
+ // can likely be merged into the address computation.
+ unsigned MaxMergeDistance = 64;
+
+ const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr));
+ if (!AddRec)
+ return true;
+
+ // Check the step is constant.
+ const SCEV *Step = AddRec->getStepRecurrence(*SE);
+ // Calculate the pointer stride and check if it is consecutive.
+ const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
+ if (!C)
+ return true;
+
+ const APInt &APStepVal = C->getValue()->getValue();
+
+ // Huge step value - give up.
+ if (APStepVal.getBitWidth() > 64)
+ return true;
+
+ int64_t StepVal = APStepVal.getSExtValue();
+
+ return StepVal > MaxMergeDistance;
+}
+
+unsigned
+LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
+ // If we know that this instruction will remain uniform, check the cost of
+ // the scalar version.
+ if (Legal->isUniformAfterVectorization(I))
+ VF = 1;
+
+ Type *RetTy = I->getType();
+ Type *VectorTy = ToVectorTy(RetTy, VF);
+
+ // TODO: We need to estimate the cost of intrinsic calls.
+ switch (I->getOpcode()) {
+ case Instruction::GetElementPtr:
+ // We mark this instruction as zero-cost because the cost of GEPs in
+ // vectorized code depends on whether the corresponding memory instruction
+ // is scalarized or not. Therefore, we handle GEPs with the memory
+ // instruction cost.
+ return 0;
+ case Instruction::Br: {
+ return TTI.getCFInstrCost(I->getOpcode());
+ }
+ case Instruction::PHI:
+ //TODO: IF-converted IFs become selects.
+ return 0;
+ case Instruction::Add:
+ case Instruction::FAdd:
+ case Instruction::Sub:
+ case Instruction::FSub:
+ case Instruction::Mul:
+ case Instruction::FMul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::FDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::FRem:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor: {
+ // Certain instructions can be cheaper to vectorize if they have a constant
+ // second vector operand. One example of this are shifts on x86.
+ TargetTransformInfo::OperandValueKind Op1VK =
+ TargetTransformInfo::OK_AnyValue;
+ TargetTransformInfo::OperandValueKind Op2VK =
+ TargetTransformInfo::OK_AnyValue;
+
+ if (isa<ConstantInt>(I->getOperand(1)))
+ Op2VK = TargetTransformInfo::OK_UniformConstantValue;
+
+ return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK);
+ }
+ case Instruction::Select: {
+ SelectInst *SI = cast<SelectInst>(I);
+ const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
+ bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
+ Type *CondTy = SI->getCondition()->getType();
+ if (!ScalarCond)
+ CondTy = VectorType::get(CondTy, VF);
+
+ return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
+ }
+ case Instruction::ICmp:
+ case Instruction::FCmp: {
+ Type *ValTy = I->getOperand(0)->getType();
+ VectorTy = ToVectorTy(ValTy, VF);
+ return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy);
+ }
+ case Instruction::Store:
+ case Instruction::Load: {
+ StoreInst *SI = dyn_cast<StoreInst>(I);
+ LoadInst *LI = dyn_cast<LoadInst>(I);
+ Type *ValTy = (SI ? SI->getValueOperand()->getType() :
+ LI->getType());
+ VectorTy = ToVectorTy(ValTy, VF);
+
+ unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment();
+ unsigned AS = SI ? SI->getPointerAddressSpace() :
+ LI->getPointerAddressSpace();
+ Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand();
+ // We add the cost of address computation here instead of with the gep
+ // instruction because only here we know whether the operation is
+ // scalarized.
+ if (VF == 1)
+ return TTI.getAddressComputationCost(VectorTy) +
+ TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
+
+ // Scalarized loads/stores.
+ int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
+ bool Reverse = ConsecutiveStride < 0;
+ unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy);
+ unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF;
+ if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) {
+ bool IsComplexComputation =
+ isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop);
+ unsigned Cost = 0;
+ // The cost of extracting from the value vector and pointer vector.
+ Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
+ for (unsigned i = 0; i < VF; ++i) {
+ // The cost of extracting the pointer operand.
+ Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
+ // In case of STORE, the cost of ExtractElement from the vector.
+ // In case of LOAD, the cost of InsertElement into the returned
+ // vector.
+ Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement :
+ Instruction::InsertElement,
+ VectorTy, i);
+ }
+
+ // The cost of the scalar loads/stores.
+ Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation);
+ Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
+ Alignment, AS);
+ return Cost;
+ }
+
+ // Wide load/stores.
+ unsigned Cost = TTI.getAddressComputationCost(VectorTy);
+ Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
+
+ if (Reverse)
+ Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
+ VectorTy, 0);
+ return Cost;
+ }
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::FPExt:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::SIToFP:
+ case Instruction::UIToFP:
+ case Instruction::Trunc:
+ case Instruction::FPTrunc:
+ case Instruction::BitCast: {
+ // We optimize the truncation of induction variable.
+ // The cost of these is the same as the scalar operation.
+ if (I->getOpcode() == Instruction::Trunc &&
+ Legal->isInductionVariable(I->getOperand(0)))
+ return TTI.getCastInstrCost(I->getOpcode(), I->getType(),
+ I->getOperand(0)->getType());
+
+ Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF);
+ return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
+ }
+ case Instruction::Call: {
+ CallInst *CI = cast<CallInst>(I);
+ Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
+ assert(ID && "Not an intrinsic call!");
+ Type *RetTy = ToVectorTy(CI->getType(), VF);
+ SmallVector<Type*, 4> Tys;
+ for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
+ Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF));
+ return TTI.getIntrinsicInstrCost(ID, RetTy, Tys);
+ }
+ default: {
+ // We are scalarizing the instruction. Return the cost of the scalar
+ // instruction, plus the cost of insert and extract into vector
+ // elements, times the vector width.
+ unsigned Cost = 0;
+
+ if (!RetTy->isVoidTy() && VF != 1) {
+ unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement,
+ VectorTy);
+ unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement,
+ VectorTy);
+
+ // The cost of inserting the results plus extracting each one of the
+ // operands.
+ Cost += VF * (InsCost + ExtCost * I->getNumOperands());
+ }
+
+ // The cost of executing VF copies of the scalar instruction. This opcode
+ // is unknown. Assume that it is the same as 'mul'.
+ Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy);
+ return Cost;
+ }
+ }// end of switch.
+}
+
+Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) {
+ if (Scalar->isVoidTy() || VF == 1)
+ return Scalar;
+ return VectorType::get(Scalar, VF);
+}
+
+char LoopVectorize::ID = 0;
+static const char lv_name[] = "Loop Vectorization";
+INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
+INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
+INITIALIZE_PASS_DEPENDENCY(DominatorTree)
+INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
+INITIALIZE_PASS_DEPENDENCY(LCSSA)
+INITIALIZE_PASS_DEPENDENCY(LoopInfo)
+INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
+INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
+
+namespace llvm {
+ Pass *createLoopVectorizePass(bool NoUnrolling) {
+ return new LoopVectorize(NoUnrolling);
+ }
+}
+
+bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
+ // Check for a store.
+ if (StoreInst *ST = dyn_cast<StoreInst>(Inst))
+ return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0;
+
+ // Check for a load.
+ if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
+ return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0;
+
+ return false;
+}
+
+
+void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr) {
+ assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
+ // Holds vector parameters or scalars, in case of uniform vals.
+ SmallVector<VectorParts, 4> Params;
+
+ setDebugLocFromInst(Builder, Instr);
+
+ // Find all of the vectorized parameters.
+ for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
+ Value *SrcOp = Instr->getOperand(op);
+
+ // If we are accessing the old induction variable, use the new one.
+ if (SrcOp == OldInduction) {
+ Params.push_back(getVectorValue(SrcOp));
+ continue;
+ }
+
+ // Try using previously calculated values.
+ Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
+
+ // If the src is an instruction that appeared earlier in the basic block
+ // then it should already be vectorized.
+ if (SrcInst && OrigLoop->contains(SrcInst)) {
+ assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
+ // The parameter is a vector value from earlier.
+ Params.push_back(WidenMap.get(SrcInst));
+ } else {
+ // The parameter is a scalar from outside the loop. Maybe even a constant.
+ VectorParts Scalars;
+ Scalars.append(UF, SrcOp);
+ Params.push_back(Scalars);
+ }
+ }
+
+ assert(Params.size() == Instr->getNumOperands() &&
+ "Invalid number of operands");
+
+ // Does this instruction return a value ?
+ bool IsVoidRetTy = Instr->getType()->isVoidTy();
+
+ Value *UndefVec = IsVoidRetTy ? 0 :
+ UndefValue::get(Instr->getType());
+ // Create a new entry in the WidenMap and initialize it to Undef or Null.
+ VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
+
+ // For each vector unroll 'part':
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ // For each scalar that we create:
+
+ Instruction *Cloned = Instr->clone();
+ if (!IsVoidRetTy)
+ Cloned->setName(Instr->getName() + ".cloned");
+ // Replace the operands of the cloned instructions with extracted scalars.
+ for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
+ Value *Op = Params[op][Part];
+ Cloned->setOperand(op, Op);
+ }
+
+ // Place the cloned scalar in the new loop.
+ Builder.Insert(Cloned);
+
+ // If the original scalar returns a value we need to place it in a vector
+ // so that future users will be able to use it.
+ if (!IsVoidRetTy)
+ VecResults[Part] = Cloned;
+ }
+}
+
+void
+InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr,
+ LoopVectorizationLegality*) {
+ return scalarizeInstruction(Instr);
+}
+
+Value *InnerLoopUnroller::reverseVector(Value *Vec) {
+ return Vec;
+}
+
+Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) {
+ return V;
+}
+
+Value *InnerLoopUnroller::getConsecutiveVector(Value* Val, int StartIdx,
+ bool Negate) {
+ // When unrolling and the VF is 1, we only need to add a simple scalar.
+ Type *ITy = Val->getType();
+ assert(!ITy->isVectorTy() && "Val must be a scalar");
+ Constant *C = ConstantInt::get(ITy, StartIdx, Negate);
+ return Builder.CreateAdd(Val, C, "induction");
+}
+
diff --git a/contrib/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp b/contrib/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp
new file mode 100644
index 0000000..c72b51f
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp
@@ -0,0 +1,2665 @@
+//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+// This pass implements the Bottom Up SLP vectorizer. It detects consecutive
+// stores that can be put together into vector-stores. Next, it attempts to
+// construct vectorizable tree using the use-def chains. If a profitable tree
+// was found, the SLP vectorizer performs vectorization on the tree.
+//
+// The pass is inspired by the work described in the paper:
+// "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
+//
+//===----------------------------------------------------------------------===//
+#define SV_NAME "slp-vectorizer"
+#define DEBUG_TYPE "SLP"
+
+#include "llvm/Transforms/Vectorize.h"
+#include "llvm/ADT/MapVector.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Analysis/Verifier.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <map>
+
+using namespace llvm;
+
+static cl::opt<int>
+ SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
+ cl::desc("Only vectorize if you gain more than this "
+ "number "));
+
+static cl::opt<bool>
+ShouldVectorizeHor("slp-vectorize-hor", cl::init(false), cl::Hidden,
+ cl::desc("Attempt to vectorize horizontal reductions"));
+
+static cl::opt<bool> ShouldStartVectorizeHorAtStore(
+ "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
+ cl::desc(
+ "Attempt to vectorize horizontal reductions feeding into a store"));
+
+namespace {
+
+static const unsigned MinVecRegSize = 128;
+
+static const unsigned RecursionMaxDepth = 12;
+
+/// A helper class for numbering instructions in multiple blocks.
+/// Numbers start at zero for each basic block.
+struct BlockNumbering {
+
+ BlockNumbering(BasicBlock *Bb) : BB(Bb), Valid(false) {}
+
+ BlockNumbering() : BB(0), Valid(false) {}
+
+ void numberInstructions() {
+ unsigned Loc = 0;
+ InstrIdx.clear();
+ InstrVec.clear();
+ // Number the instructions in the block.
+ for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
+ InstrIdx[it] = Loc++;
+ InstrVec.push_back(it);
+ assert(InstrVec[InstrIdx[it]] == it && "Invalid allocation");
+ }
+ Valid = true;
+ }
+
+ int getIndex(Instruction *I) {
+ assert(I->getParent() == BB && "Invalid instruction");
+ if (!Valid)
+ numberInstructions();
+ assert(InstrIdx.count(I) && "Unknown instruction");
+ return InstrIdx[I];
+ }
+
+ Instruction *getInstruction(unsigned loc) {
+ if (!Valid)
+ numberInstructions();
+ assert(InstrVec.size() > loc && "Invalid Index");
+ return InstrVec[loc];
+ }
+
+ void forget() { Valid = false; }
+
+private:
+ /// The block we are numbering.
+ BasicBlock *BB;
+ /// Is the block numbered.
+ bool Valid;
+ /// Maps instructions to numbers and back.
+ SmallDenseMap<Instruction *, int> InstrIdx;
+ /// Maps integers to Instructions.
+ SmallVector<Instruction *, 32> InstrVec;
+};
+
+/// \returns the parent basic block if all of the instructions in \p VL
+/// are in the same block or null otherwise.
+static BasicBlock *getSameBlock(ArrayRef<Value *> VL) {
+ Instruction *I0 = dyn_cast<Instruction>(VL[0]);
+ if (!I0)
+ return 0;
+ BasicBlock *BB = I0->getParent();
+ for (int i = 1, e = VL.size(); i < e; i++) {
+ Instruction *I = dyn_cast<Instruction>(VL[i]);
+ if (!I)
+ return 0;
+
+ if (BB != I->getParent())
+ return 0;
+ }
+ return BB;
+}
+
+/// \returns True if all of the values in \p VL are constants.
+static bool allConstant(ArrayRef<Value *> VL) {
+ for (unsigned i = 0, e = VL.size(); i < e; ++i)
+ if (!isa<Constant>(VL[i]))
+ return false;
+ return true;
+}
+
+/// \returns True if all of the values in \p VL are identical.
+static bool isSplat(ArrayRef<Value *> VL) {
+ for (unsigned i = 1, e = VL.size(); i < e; ++i)
+ if (VL[i] != VL[0])
+ return false;
+ return true;
+}
+
+/// \returns The opcode if all of the Instructions in \p VL have the same
+/// opcode, or zero.
+static unsigned getSameOpcode(ArrayRef<Value *> VL) {
+ Instruction *I0 = dyn_cast<Instruction>(VL[0]);
+ if (!I0)
+ return 0;
+ unsigned Opcode = I0->getOpcode();
+ for (int i = 1, e = VL.size(); i < e; i++) {
+ Instruction *I = dyn_cast<Instruction>(VL[i]);
+ if (!I || Opcode != I->getOpcode())
+ return 0;
+ }
+ return Opcode;
+}
+
+/// \returns \p I after propagating metadata from \p VL.
+static Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL) {
+ Instruction *I0 = cast<Instruction>(VL[0]);
+ SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
+ I0->getAllMetadataOtherThanDebugLoc(Metadata);
+
+ for (unsigned i = 0, n = Metadata.size(); i != n; ++i) {
+ unsigned Kind = Metadata[i].first;
+ MDNode *MD = Metadata[i].second;
+
+ for (int i = 1, e = VL.size(); MD && i != e; i++) {
+ Instruction *I = cast<Instruction>(VL[i]);
+ MDNode *IMD = I->getMetadata(Kind);
+
+ switch (Kind) {
+ default:
+ MD = 0; // Remove unknown metadata
+ break;
+ case LLVMContext::MD_tbaa:
+ MD = MDNode::getMostGenericTBAA(MD, IMD);
+ break;
+ case LLVMContext::MD_fpmath:
+ MD = MDNode::getMostGenericFPMath(MD, IMD);
+ break;
+ }
+ }
+ I->setMetadata(Kind, MD);
+ }
+ return I;
+}
+
+/// \returns The type that all of the values in \p VL have or null if there
+/// are different types.
+static Type* getSameType(ArrayRef<Value *> VL) {
+ Type *Ty = VL[0]->getType();
+ for (int i = 1, e = VL.size(); i < e; i++)
+ if (VL[i]->getType() != Ty)
+ return 0;
+
+ return Ty;
+}
+
+/// \returns True if the ExtractElement instructions in VL can be vectorized
+/// to use the original vector.
+static bool CanReuseExtract(ArrayRef<Value *> VL) {
+ assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode");
+ // Check if all of the extracts come from the same vector and from the
+ // correct offset.
+ Value *VL0 = VL[0];
+ ExtractElementInst *E0 = cast<ExtractElementInst>(VL0);
+ Value *Vec = E0->getOperand(0);
+
+ // We have to extract from the same vector type.
+ unsigned NElts = Vec->getType()->getVectorNumElements();
+
+ if (NElts != VL.size())
+ return false;
+
+ // Check that all of the indices extract from the correct offset.
+ ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1));
+ if (!CI || CI->getZExtValue())
+ return false;
+
+ for (unsigned i = 1, e = VL.size(); i < e; ++i) {
+ ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
+ ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1));
+
+ if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec)
+ return false;
+ }
+
+ return true;
+}
+
+static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
+ SmallVectorImpl<Value *> &Left,
+ SmallVectorImpl<Value *> &Right) {
+
+ SmallVector<Value *, 16> OrigLeft, OrigRight;
+
+ bool AllSameOpcodeLeft = true;
+ bool AllSameOpcodeRight = true;
+ for (unsigned i = 0, e = VL.size(); i != e; ++i) {
+ Instruction *I = cast<Instruction>(VL[i]);
+ Value *V0 = I->getOperand(0);
+ Value *V1 = I->getOperand(1);
+
+ OrigLeft.push_back(V0);
+ OrigRight.push_back(V1);
+
+ Instruction *I0 = dyn_cast<Instruction>(V0);
+ Instruction *I1 = dyn_cast<Instruction>(V1);
+
+ // Check whether all operands on one side have the same opcode. In this case
+ // we want to preserve the original order and not make things worse by
+ // reordering.
+ AllSameOpcodeLeft = I0;
+ AllSameOpcodeRight = I1;
+
+ if (i && AllSameOpcodeLeft) {
+ if(Instruction *P0 = dyn_cast<Instruction>(OrigLeft[i-1])) {
+ if(P0->getOpcode() != I0->getOpcode())
+ AllSameOpcodeLeft = false;
+ } else
+ AllSameOpcodeLeft = false;
+ }
+ if (i && AllSameOpcodeRight) {
+ if(Instruction *P1 = dyn_cast<Instruction>(OrigRight[i-1])) {
+ if(P1->getOpcode() != I1->getOpcode())
+ AllSameOpcodeRight = false;
+ } else
+ AllSameOpcodeRight = false;
+ }
+
+ // Sort two opcodes. In the code below we try to preserve the ability to use
+ // broadcast of values instead of individual inserts.
+ // vl1 = load
+ // vl2 = phi
+ // vr1 = load
+ // vr2 = vr2
+ // = vl1 x vr1
+ // = vl2 x vr2
+ // If we just sorted according to opcode we would leave the first line in
+ // tact but we would swap vl2 with vr2 because opcode(phi) > opcode(load).
+ // = vl1 x vr1
+ // = vr2 x vl2
+ // Because vr2 and vr1 are from the same load we loose the opportunity of a
+ // broadcast for the packed right side in the backend: we have [vr1, vl2]
+ // instead of [vr1, vr2=vr1].
+ if (I0 && I1) {
+ if(!i && I0->getOpcode() > I1->getOpcode()) {
+ Left.push_back(I1);
+ Right.push_back(I0);
+ } else if (i && I0->getOpcode() > I1->getOpcode() && Right[i-1] != I1) {
+ // Try not to destroy a broad cast for no apparent benefit.
+ Left.push_back(I1);
+ Right.push_back(I0);
+ } else if (i && I0->getOpcode() == I1->getOpcode() && Right[i-1] == I0) {
+ // Try preserve broadcasts.
+ Left.push_back(I1);
+ Right.push_back(I0);
+ } else if (i && I0->getOpcode() == I1->getOpcode() && Left[i-1] == I1) {
+ // Try preserve broadcasts.
+ Left.push_back(I1);
+ Right.push_back(I0);
+ } else {
+ Left.push_back(I0);
+ Right.push_back(I1);
+ }
+ continue;
+ }
+ // One opcode, put the instruction on the right.
+ if (I0) {
+ Left.push_back(V1);
+ Right.push_back(I0);
+ continue;
+ }
+ Left.push_back(V0);
+ Right.push_back(V1);
+ }
+
+ bool LeftBroadcast = isSplat(Left);
+ bool RightBroadcast = isSplat(Right);
+
+ // Don't reorder if the operands where good to begin with.
+ if (!(LeftBroadcast || RightBroadcast) &&
+ (AllSameOpcodeRight || AllSameOpcodeLeft)) {
+ Left = OrigLeft;
+ Right = OrigRight;
+ }
+}
+
+/// Bottom Up SLP Vectorizer.
+class BoUpSLP {
+public:
+ typedef SmallVector<Value *, 8> ValueList;
+ typedef SmallVector<Instruction *, 16> InstrList;
+ typedef SmallPtrSet<Value *, 16> ValueSet;
+ typedef SmallVector<StoreInst *, 8> StoreList;
+
+ BoUpSLP(Function *Func, ScalarEvolution *Se, DataLayout *Dl,
+ TargetTransformInfo *Tti, AliasAnalysis *Aa, LoopInfo *Li,
+ DominatorTree *Dt) :
+ F(Func), SE(Se), DL(Dl), TTI(Tti), AA(Aa), LI(Li), DT(Dt),
+ Builder(Se->getContext()) {
+ // Setup the block numbering utility for all of the blocks in the
+ // function.
+ for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) {
+ BasicBlock *BB = it;
+ BlocksNumbers[BB] = BlockNumbering(BB);
+ }
+ }
+
+ /// \brief Vectorize the tree that starts with the elements in \p VL.
+ /// Returns the vectorized root.
+ Value *vectorizeTree();
+
+ /// \returns the vectorization cost of the subtree that starts at \p VL.
+ /// A negative number means that this is profitable.
+ int getTreeCost();
+
+ /// Construct a vectorizable tree that starts at \p Roots and is possibly
+ /// used by a reduction of \p RdxOps.
+ void buildTree(ArrayRef<Value *> Roots, ValueSet *RdxOps = 0);
+
+ /// Clear the internal data structures that are created by 'buildTree'.
+ void deleteTree() {
+ RdxOps = 0;
+ VectorizableTree.clear();
+ ScalarToTreeEntry.clear();
+ MustGather.clear();
+ ExternalUses.clear();
+ MemBarrierIgnoreList.clear();
+ }
+
+ /// \returns true if the memory operations A and B are consecutive.
+ bool isConsecutiveAccess(Value *A, Value *B);
+
+ /// \brief Perform LICM and CSE on the newly generated gather sequences.
+ void optimizeGatherSequence();
+private:
+ struct TreeEntry;
+
+ /// \returns the cost of the vectorizable entry.
+ int getEntryCost(TreeEntry *E);
+
+ /// This is the recursive part of buildTree.
+ void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth);
+
+ /// Vectorize a single entry in the tree.
+ Value *vectorizeTree(TreeEntry *E);
+
+ /// Vectorize a single entry in the tree, starting in \p VL.
+ Value *vectorizeTree(ArrayRef<Value *> VL);
+
+ /// \returns the pointer to the vectorized value if \p VL is already
+ /// vectorized, or NULL. They may happen in cycles.
+ Value *alreadyVectorized(ArrayRef<Value *> VL) const;
+
+ /// \brief Take the pointer operand from the Load/Store instruction.
+ /// \returns NULL if this is not a valid Load/Store instruction.
+ static Value *getPointerOperand(Value *I);
+
+ /// \brief Take the address space operand from the Load/Store instruction.
+ /// \returns -1 if this is not a valid Load/Store instruction.
+ static unsigned getAddressSpaceOperand(Value *I);
+
+ /// \returns the scalarization cost for this type. Scalarization in this
+ /// context means the creation of vectors from a group of scalars.
+ int getGatherCost(Type *Ty);
+
+ /// \returns the scalarization cost for this list of values. Assuming that
+ /// this subtree gets vectorized, we may need to extract the values from the
+ /// roots. This method calculates the cost of extracting the values.
+ int getGatherCost(ArrayRef<Value *> VL);
+
+ /// \returns the AA location that is being access by the instruction.
+ AliasAnalysis::Location getLocation(Instruction *I);
+
+ /// \brief Checks if it is possible to sink an instruction from
+ /// \p Src to \p Dst.
+ /// \returns the pointer to the barrier instruction if we can't sink.
+ Value *getSinkBarrier(Instruction *Src, Instruction *Dst);
+
+ /// \returns the index of the last instruction in the BB from \p VL.
+ int getLastIndex(ArrayRef<Value *> VL);
+
+ /// \returns the Instruction in the bundle \p VL.
+ Instruction *getLastInstruction(ArrayRef<Value *> VL);
+
+ /// \brief Set the Builder insert point to one after the last instruction in
+ /// the bundle
+ void setInsertPointAfterBundle(ArrayRef<Value *> VL);
+
+ /// \returns a vector from a collection of scalars in \p VL.
+ Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
+
+ /// \returns whether the VectorizableTree is fully vectoriable and will
+ /// be beneficial even the tree height is tiny.
+ bool isFullyVectorizableTinyTree();
+
+ struct TreeEntry {
+ TreeEntry() : Scalars(), VectorizedValue(0), LastScalarIndex(0),
+ NeedToGather(0) {}
+
+ /// \returns true if the scalars in VL are equal to this entry.
+ bool isSame(ArrayRef<Value *> VL) const {
+ assert(VL.size() == Scalars.size() && "Invalid size");
+ return std::equal(VL.begin(), VL.end(), Scalars.begin());
+ }
+
+ /// A vector of scalars.
+ ValueList Scalars;
+
+ /// The Scalars are vectorized into this value. It is initialized to Null.
+ Value *VectorizedValue;
+
+ /// The index in the basic block of the last scalar.
+ int LastScalarIndex;
+
+ /// Do we need to gather this sequence ?
+ bool NeedToGather;
+ };
+
+ /// Create a new VectorizableTree entry.
+ TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) {
+ VectorizableTree.push_back(TreeEntry());
+ int idx = VectorizableTree.size() - 1;
+ TreeEntry *Last = &VectorizableTree[idx];
+ Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
+ Last->NeedToGather = !Vectorized;
+ if (Vectorized) {
+ Last->LastScalarIndex = getLastIndex(VL);
+ for (int i = 0, e = VL.size(); i != e; ++i) {
+ assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!");
+ ScalarToTreeEntry[VL[i]] = idx;
+ }
+ } else {
+ Last->LastScalarIndex = 0;
+ MustGather.insert(VL.begin(), VL.end());
+ }
+ return Last;
+ }
+
+ /// -- Vectorization State --
+ /// Holds all of the tree entries.
+ std::vector<TreeEntry> VectorizableTree;
+
+ /// Maps a specific scalar to its tree entry.
+ SmallDenseMap<Value*, int> ScalarToTreeEntry;
+
+ /// A list of scalars that we found that we need to keep as scalars.
+ ValueSet MustGather;
+
+ /// This POD struct describes one external user in the vectorized tree.
+ struct ExternalUser {
+ ExternalUser (Value *S, llvm::User *U, int L) :
+ Scalar(S), User(U), Lane(L){};
+ // Which scalar in our function.
+ Value *Scalar;
+ // Which user that uses the scalar.
+ llvm::User *User;
+ // Which lane does the scalar belong to.
+ int Lane;
+ };
+ typedef SmallVector<ExternalUser, 16> UserList;
+
+ /// A list of values that need to extracted out of the tree.
+ /// This list holds pairs of (Internal Scalar : External User).
+ UserList ExternalUses;
+
+ /// A list of instructions to ignore while sinking
+ /// memory instructions. This map must be reset between runs of getCost.
+ ValueSet MemBarrierIgnoreList;
+
+ /// Holds all of the instructions that we gathered.
+ SetVector<Instruction *> GatherSeq;
+ /// A list of blocks that we are going to CSE.
+ SmallSet<BasicBlock *, 8> CSEBlocks;
+
+ /// Numbers instructions in different blocks.
+ DenseMap<BasicBlock *, BlockNumbering> BlocksNumbers;
+
+ /// Reduction operators.
+ ValueSet *RdxOps;
+
+ // Analysis and block reference.
+ Function *F;
+ ScalarEvolution *SE;
+ DataLayout *DL;
+ TargetTransformInfo *TTI;
+ AliasAnalysis *AA;
+ LoopInfo *LI;
+ DominatorTree *DT;
+ /// Instruction builder to construct the vectorized tree.
+ IRBuilder<> Builder;
+};
+
+void BoUpSLP::buildTree(ArrayRef<Value *> Roots, ValueSet *Rdx) {
+ deleteTree();
+ RdxOps = Rdx;
+ if (!getSameType(Roots))
+ return;
+ buildTree_rec(Roots, 0);
+
+ // Collect the values that we need to extract from the tree.
+ for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
+ TreeEntry *Entry = &VectorizableTree[EIdx];
+
+ // For each lane:
+ for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
+ Value *Scalar = Entry->Scalars[Lane];
+
+ // No need to handle users of gathered values.
+ if (Entry->NeedToGather)
+ continue;
+
+ for (Value::use_iterator User = Scalar->use_begin(),
+ UE = Scalar->use_end(); User != UE; ++User) {
+ DEBUG(dbgs() << "SLP: Checking user:" << **User << ".\n");
+
+ // Skip in-tree scalars that become vectors.
+ if (ScalarToTreeEntry.count(*User)) {
+ DEBUG(dbgs() << "SLP: \tInternal user will be removed:" <<
+ **User << ".\n");
+ int Idx = ScalarToTreeEntry[*User]; (void) Idx;
+ assert(!VectorizableTree[Idx].NeedToGather && "Bad state");
+ continue;
+ }
+ Instruction *UserInst = dyn_cast<Instruction>(*User);
+ if (!UserInst)
+ continue;
+
+ // Ignore uses that are part of the reduction.
+ if (Rdx && std::find(Rdx->begin(), Rdx->end(), UserInst) != Rdx->end())
+ continue;
+
+ DEBUG(dbgs() << "SLP: Need to extract:" << **User << " from lane " <<
+ Lane << " from " << *Scalar << ".\n");
+ ExternalUses.push_back(ExternalUser(Scalar, *User, Lane));
+ }
+ }
+ }
+}
+
+
+void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
+ bool SameTy = getSameType(VL); (void)SameTy;
+ assert(SameTy && "Invalid types!");
+
+ if (Depth == RecursionMaxDepth) {
+ DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
+ newTreeEntry(VL, false);
+ return;
+ }
+
+ // Don't handle vectors.
+ if (VL[0]->getType()->isVectorTy()) {
+ DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
+ newTreeEntry(VL, false);
+ return;
+ }
+
+ if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
+ if (SI->getValueOperand()->getType()->isVectorTy()) {
+ DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
+ newTreeEntry(VL, false);
+ return;
+ }
+
+ // If all of the operands are identical or constant we have a simple solution.
+ if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) ||
+ !getSameOpcode(VL)) {
+ DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
+ newTreeEntry(VL, false);
+ return;
+ }
+
+ // We now know that this is a vector of instructions of the same type from
+ // the same block.
+
+ // Check if this is a duplicate of another entry.
+ if (ScalarToTreeEntry.count(VL[0])) {
+ int Idx = ScalarToTreeEntry[VL[0]];
+ TreeEntry *E = &VectorizableTree[Idx];
+ for (unsigned i = 0, e = VL.size(); i != e; ++i) {
+ DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n");
+ if (E->Scalars[i] != VL[i]) {
+ DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
+ newTreeEntry(VL, false);
+ return;
+ }
+ }
+ DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n");
+ return;
+ }
+
+ // Check that none of the instructions in the bundle are already in the tree.
+ for (unsigned i = 0, e = VL.size(); i != e; ++i) {
+ if (ScalarToTreeEntry.count(VL[i])) {
+ DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
+ ") is already in tree.\n");
+ newTreeEntry(VL, false);
+ return;
+ }
+ }
+
+ // If any of the scalars appears in the table OR it is marked as a value that
+ // needs to stat scalar then we need to gather the scalars.
+ for (unsigned i = 0, e = VL.size(); i != e; ++i) {
+ if (ScalarToTreeEntry.count(VL[i]) || MustGather.count(VL[i])) {
+ DEBUG(dbgs() << "SLP: Gathering due to gathered scalar. \n");
+ newTreeEntry(VL, false);
+ return;
+ }
+ }
+
+ // Check that all of the users of the scalars that we want to vectorize are
+ // schedulable.
+ Instruction *VL0 = cast<Instruction>(VL[0]);
+ int MyLastIndex = getLastIndex(VL);
+ BasicBlock *BB = cast<Instruction>(VL0)->getParent();
+
+ for (unsigned i = 0, e = VL.size(); i != e; ++i) {
+ Instruction *Scalar = cast<Instruction>(VL[i]);
+ DEBUG(dbgs() << "SLP: Checking users of " << *Scalar << ". \n");
+ for (Value::use_iterator U = Scalar->use_begin(), UE = Scalar->use_end();
+ U != UE; ++U) {
+ DEBUG(dbgs() << "SLP: \tUser " << **U << ". \n");
+ Instruction *User = dyn_cast<Instruction>(*U);
+ if (!User) {
+ DEBUG(dbgs() << "SLP: Gathering due unknown user. \n");
+ newTreeEntry(VL, false);
+ return;
+ }
+
+ // We don't care if the user is in a different basic block.
+ BasicBlock *UserBlock = User->getParent();
+ if (UserBlock != BB) {
+ DEBUG(dbgs() << "SLP: User from a different basic block "
+ << *User << ". \n");
+ continue;
+ }
+
+ // If this is a PHINode within this basic block then we can place the
+ // extract wherever we want.
+ if (isa<PHINode>(*User)) {
+ DEBUG(dbgs() << "SLP: \tWe can schedule PHIs:" << *User << ". \n");
+ continue;
+ }
+
+ // Check if this is a safe in-tree user.
+ if (ScalarToTreeEntry.count(User)) {
+ int Idx = ScalarToTreeEntry[User];
+ int VecLocation = VectorizableTree[Idx].LastScalarIndex;
+ if (VecLocation <= MyLastIndex) {
+ DEBUG(dbgs() << "SLP: Gathering due to unschedulable vector. \n");
+ newTreeEntry(VL, false);
+ return;
+ }
+ DEBUG(dbgs() << "SLP: In-tree user (" << *User << ") at #" <<
+ VecLocation << " vector value (" << *Scalar << ") at #"
+ << MyLastIndex << ".\n");
+ continue;
+ }
+
+ // This user is part of the reduction.
+ if (RdxOps && RdxOps->count(User))
+ continue;
+
+ // Make sure that we can schedule this unknown user.
+ BlockNumbering &BN = BlocksNumbers[BB];
+ int UserIndex = BN.getIndex(User);
+ if (UserIndex < MyLastIndex) {
+
+ DEBUG(dbgs() << "SLP: Can't schedule extractelement for "
+ << *User << ". \n");
+ newTreeEntry(VL, false);
+ return;
+ }
+ }
+ }
+
+ // Check that every instructions appears once in this bundle.
+ for (unsigned i = 0, e = VL.size(); i < e; ++i)
+ for (unsigned j = i+1; j < e; ++j)
+ if (VL[i] == VL[j]) {
+ DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
+ newTreeEntry(VL, false);
+ return;
+ }
+
+ // Check that instructions in this bundle don't reference other instructions.
+ // The runtime of this check is O(N * N-1 * uses(N)) and a typical N is 4.
+ for (unsigned i = 0, e = VL.size(); i < e; ++i) {
+ for (Value::use_iterator U = VL[i]->use_begin(), UE = VL[i]->use_end();
+ U != UE; ++U) {
+ for (unsigned j = 0; j < e; ++j) {
+ if (i != j && *U == VL[j]) {
+ DEBUG(dbgs() << "SLP: Intra-bundle dependencies!" << **U << ". \n");
+ newTreeEntry(VL, false);
+ return;
+ }
+ }
+ }
+ }
+
+ DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
+
+ unsigned Opcode = getSameOpcode(VL);
+
+ // Check if it is safe to sink the loads or the stores.
+ if (Opcode == Instruction::Load || Opcode == Instruction::Store) {
+ Instruction *Last = getLastInstruction(VL);
+
+ for (unsigned i = 0, e = VL.size(); i < e; ++i) {
+ if (VL[i] == Last)
+ continue;
+ Value *Barrier = getSinkBarrier(cast<Instruction>(VL[i]), Last);
+ if (Barrier) {
+ DEBUG(dbgs() << "SLP: Can't sink " << *VL[i] << "\n down to " << *Last
+ << "\n because of " << *Barrier << ". Gathering.\n");
+ newTreeEntry(VL, false);
+ return;
+ }
+ }
+ }
+
+ switch (Opcode) {
+ case Instruction::PHI: {
+ PHINode *PH = dyn_cast<PHINode>(VL0);
+
+ // Check for terminator values (e.g. invoke).
+ for (unsigned j = 0; j < VL.size(); ++j)
+ for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
+ TerminatorInst *Term = dyn_cast<TerminatorInst>(cast<PHINode>(VL[j])->getIncomingValue(i));
+ if (Term) {
+ DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n");
+ newTreeEntry(VL, false);
+ return;
+ }
+ }
+
+ newTreeEntry(VL, true);
+ DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
+
+ for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
+ ValueList Operands;
+ // Prepare the operand vector.
+ for (unsigned j = 0; j < VL.size(); ++j)
+ Operands.push_back(cast<PHINode>(VL[j])->getIncomingValue(i));
+
+ buildTree_rec(Operands, Depth + 1);
+ }
+ return;
+ }
+ case Instruction::ExtractElement: {
+ bool Reuse = CanReuseExtract(VL);
+ if (Reuse) {
+ DEBUG(dbgs() << "SLP: Reusing extract sequence.\n");
+ }
+ newTreeEntry(VL, Reuse);
+ return;
+ }
+ case Instruction::Load: {
+ // Check if the loads are consecutive or of we need to swizzle them.
+ for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
+ LoadInst *L = cast<LoadInst>(VL[i]);
+ if (!L->isSimple() || !isConsecutiveAccess(VL[i], VL[i + 1])) {
+ newTreeEntry(VL, false);
+ DEBUG(dbgs() << "SLP: Need to swizzle loads.\n");
+ return;
+ }
+ }
+ newTreeEntry(VL, true);
+ DEBUG(dbgs() << "SLP: added a vector of loads.\n");
+ return;
+ }
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::FPExt:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::SIToFP:
+ case Instruction::UIToFP:
+ case Instruction::Trunc:
+ case Instruction::FPTrunc:
+ case Instruction::BitCast: {
+ Type *SrcTy = VL0->getOperand(0)->getType();
+ for (unsigned i = 0; i < VL.size(); ++i) {
+ Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
+ if (Ty != SrcTy || Ty->isAggregateType() || Ty->isVectorTy()) {
+ newTreeEntry(VL, false);
+ DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n");
+ return;
+ }
+ }
+ newTreeEntry(VL, true);
+ DEBUG(dbgs() << "SLP: added a vector of casts.\n");
+
+ for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
+ ValueList Operands;
+ // Prepare the operand vector.
+ for (unsigned j = 0; j < VL.size(); ++j)
+ Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
+
+ buildTree_rec(Operands, Depth+1);
+ }
+ return;
+ }
+ case Instruction::ICmp:
+ case Instruction::FCmp: {
+ // Check that all of the compares have the same predicate.
+ CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
+ Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType();
+ for (unsigned i = 1, e = VL.size(); i < e; ++i) {
+ CmpInst *Cmp = cast<CmpInst>(VL[i]);
+ if (Cmp->getPredicate() != P0 ||
+ Cmp->getOperand(0)->getType() != ComparedTy) {
+ newTreeEntry(VL, false);
+ DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n");
+ return;
+ }
+ }
+
+ newTreeEntry(VL, true);
+ DEBUG(dbgs() << "SLP: added a vector of compares.\n");
+
+ for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
+ ValueList Operands;
+ // Prepare the operand vector.
+ for (unsigned j = 0; j < VL.size(); ++j)
+ Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
+
+ buildTree_rec(Operands, Depth+1);
+ }
+ return;
+ }
+ case Instruction::Select:
+ case Instruction::Add:
+ case Instruction::FAdd:
+ case Instruction::Sub:
+ case Instruction::FSub:
+ case Instruction::Mul:
+ case Instruction::FMul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::FDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::FRem:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor: {
+ newTreeEntry(VL, true);
+ DEBUG(dbgs() << "SLP: added a vector of bin op.\n");
+
+ // Sort operands of the instructions so that each side is more likely to
+ // have the same opcode.
+ if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
+ ValueList Left, Right;
+ reorderInputsAccordingToOpcode(VL, Left, Right);
+ buildTree_rec(Left, Depth + 1);
+ buildTree_rec(Right, Depth + 1);
+ return;
+ }
+
+ for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
+ ValueList Operands;
+ // Prepare the operand vector.
+ for (unsigned j = 0; j < VL.size(); ++j)
+ Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
+
+ buildTree_rec(Operands, Depth+1);
+ }
+ return;
+ }
+ case Instruction::Store: {
+ // Check if the stores are consecutive or of we need to swizzle them.
+ for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
+ if (!isConsecutiveAccess(VL[i], VL[i + 1])) {
+ newTreeEntry(VL, false);
+ DEBUG(dbgs() << "SLP: Non consecutive store.\n");
+ return;
+ }
+
+ newTreeEntry(VL, true);
+ DEBUG(dbgs() << "SLP: added a vector of stores.\n");
+
+ ValueList Operands;
+ for (unsigned j = 0; j < VL.size(); ++j)
+ Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
+
+ // We can ignore these values because we are sinking them down.
+ MemBarrierIgnoreList.insert(VL.begin(), VL.end());
+ buildTree_rec(Operands, Depth + 1);
+ return;
+ }
+ default:
+ newTreeEntry(VL, false);
+ DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
+ return;
+ }
+}
+
+int BoUpSLP::getEntryCost(TreeEntry *E) {
+ ArrayRef<Value*> VL = E->Scalars;
+
+ Type *ScalarTy = VL[0]->getType();
+ if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
+ ScalarTy = SI->getValueOperand()->getType();
+ VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
+
+ if (E->NeedToGather) {
+ if (allConstant(VL))
+ return 0;
+ if (isSplat(VL)) {
+ return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
+ }
+ return getGatherCost(E->Scalars);
+ }
+
+ assert(getSameOpcode(VL) && getSameType(VL) && getSameBlock(VL) &&
+ "Invalid VL");
+ Instruction *VL0 = cast<Instruction>(VL[0]);
+ unsigned Opcode = VL0->getOpcode();
+ switch (Opcode) {
+ case Instruction::PHI: {
+ return 0;
+ }
+ case Instruction::ExtractElement: {
+ if (CanReuseExtract(VL))
+ return 0;
+ return getGatherCost(VecTy);
+ }
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::FPExt:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::SIToFP:
+ case Instruction::UIToFP:
+ case Instruction::Trunc:
+ case Instruction::FPTrunc:
+ case Instruction::BitCast: {
+ Type *SrcTy = VL0->getOperand(0)->getType();
+
+ // Calculate the cost of this instruction.
+ int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
+ VL0->getType(), SrcTy);
+
+ VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
+ int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy);
+ return VecCost - ScalarCost;
+ }
+ case Instruction::FCmp:
+ case Instruction::ICmp:
+ case Instruction::Select:
+ case Instruction::Add:
+ case Instruction::FAdd:
+ case Instruction::Sub:
+ case Instruction::FSub:
+ case Instruction::Mul:
+ case Instruction::FMul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::FDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::FRem:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor: {
+ // Calculate the cost of this instruction.
+ int ScalarCost = 0;
+ int VecCost = 0;
+ if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp ||
+ Opcode == Instruction::Select) {
+ VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
+ ScalarCost = VecTy->getNumElements() *
+ TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty());
+ VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy);
+ } else {
+ // Certain instructions can be cheaper to vectorize if they have a
+ // constant second vector operand.
+ TargetTransformInfo::OperandValueKind Op1VK =
+ TargetTransformInfo::OK_AnyValue;
+ TargetTransformInfo::OperandValueKind Op2VK =
+ TargetTransformInfo::OK_UniformConstantValue;
+
+ // Check whether all second operands are constant.
+ for (unsigned i = 0; i < VL.size(); ++i)
+ if (!isa<ConstantInt>(cast<Instruction>(VL[i])->getOperand(1))) {
+ Op2VK = TargetTransformInfo::OK_AnyValue;
+ break;
+ }
+
+ ScalarCost =
+ VecTy->getNumElements() *
+ TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK);
+ VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK);
+ }
+ return VecCost - ScalarCost;
+ }
+ case Instruction::Load: {
+ // Cost of wide load - cost of scalar loads.
+ int ScalarLdCost = VecTy->getNumElements() *
+ TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
+ int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, 1, 0);
+ return VecLdCost - ScalarLdCost;
+ }
+ case Instruction::Store: {
+ // We know that we can merge the stores. Calculate the cost.
+ int ScalarStCost = VecTy->getNumElements() *
+ TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
+ int VecStCost = TTI->getMemoryOpCost(Instruction::Store, VecTy, 1, 0);
+ return VecStCost - ScalarStCost;
+ }
+ default:
+ llvm_unreachable("Unknown instruction");
+ }
+}
+
+bool BoUpSLP::isFullyVectorizableTinyTree() {
+ DEBUG(dbgs() << "SLP: Check whether the tree with height " <<
+ VectorizableTree.size() << " is fully vectorizable .\n");
+
+ // We only handle trees of height 2.
+ if (VectorizableTree.size() != 2)
+ return false;
+
+ // Gathering cost would be too much for tiny trees.
+ if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather)
+ return false;
+
+ return true;
+}
+
+int BoUpSLP::getTreeCost() {
+ int Cost = 0;
+ DEBUG(dbgs() << "SLP: Calculating cost for tree of size " <<
+ VectorizableTree.size() << ".\n");
+
+ // We only vectorize tiny trees if it is fully vectorizable.
+ if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) {
+ if (!VectorizableTree.size()) {
+ assert(!ExternalUses.size() && "We should not have any external users");
+ }
+ return INT_MAX;
+ }
+
+ unsigned BundleWidth = VectorizableTree[0].Scalars.size();
+
+ for (unsigned i = 0, e = VectorizableTree.size(); i != e; ++i) {
+ int C = getEntryCost(&VectorizableTree[i]);
+ DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with "
+ << *VectorizableTree[i].Scalars[0] << " .\n");
+ Cost += C;
+ }
+
+ int ExtractCost = 0;
+ for (UserList::iterator I = ExternalUses.begin(), E = ExternalUses.end();
+ I != E; ++I) {
+
+ VectorType *VecTy = VectorType::get(I->Scalar->getType(), BundleWidth);
+ ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
+ I->Lane);
+ }
+
+
+ DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost<< ".\n");
+ return Cost + ExtractCost;
+}
+
+int BoUpSLP::getGatherCost(Type *Ty) {
+ int Cost = 0;
+ for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
+ Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
+ return Cost;
+}
+
+int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) {
+ // Find the type of the operands in VL.
+ Type *ScalarTy = VL[0]->getType();
+ if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
+ ScalarTy = SI->getValueOperand()->getType();
+ VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
+ // Find the cost of inserting/extracting values from the vector.
+ return getGatherCost(VecTy);
+}
+
+AliasAnalysis::Location BoUpSLP::getLocation(Instruction *I) {
+ if (StoreInst *SI = dyn_cast<StoreInst>(I))
+ return AA->getLocation(SI);
+ if (LoadInst *LI = dyn_cast<LoadInst>(I))
+ return AA->getLocation(LI);
+ return AliasAnalysis::Location();
+}
+
+Value *BoUpSLP::getPointerOperand(Value *I) {
+ if (LoadInst *LI = dyn_cast<LoadInst>(I))
+ return LI->getPointerOperand();
+ if (StoreInst *SI = dyn_cast<StoreInst>(I))
+ return SI->getPointerOperand();
+ return 0;
+}
+
+unsigned BoUpSLP::getAddressSpaceOperand(Value *I) {
+ if (LoadInst *L = dyn_cast<LoadInst>(I))
+ return L->getPointerAddressSpace();
+ if (StoreInst *S = dyn_cast<StoreInst>(I))
+ return S->getPointerAddressSpace();
+ return -1;
+}
+
+bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B) {
+ Value *PtrA = getPointerOperand(A);
+ Value *PtrB = getPointerOperand(B);
+ unsigned ASA = getAddressSpaceOperand(A);
+ unsigned ASB = getAddressSpaceOperand(B);
+
+ // Check that the address spaces match and that the pointers are valid.
+ if (!PtrA || !PtrB || (ASA != ASB))
+ return false;
+
+ // Make sure that A and B are different pointers of the same type.
+ if (PtrA == PtrB || PtrA->getType() != PtrB->getType())
+ return false;
+
+ unsigned PtrBitWidth = DL->getPointerSizeInBits(ASA);
+ Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
+ APInt Size(PtrBitWidth, DL->getTypeStoreSize(Ty));
+
+ APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
+ PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetA);
+ PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetB);
+
+ APInt OffsetDelta = OffsetB - OffsetA;
+
+ // Check if they are based on the same pointer. That makes the offsets
+ // sufficient.
+ if (PtrA == PtrB)
+ return OffsetDelta == Size;
+
+ // Compute the necessary base pointer delta to have the necessary final delta
+ // equal to the size.
+ APInt BaseDelta = Size - OffsetDelta;
+
+ // Otherwise compute the distance with SCEV between the base pointers.
+ const SCEV *PtrSCEVA = SE->getSCEV(PtrA);
+ const SCEV *PtrSCEVB = SE->getSCEV(PtrB);
+ const SCEV *C = SE->getConstant(BaseDelta);
+ const SCEV *X = SE->getAddExpr(PtrSCEVA, C);
+ return X == PtrSCEVB;
+}
+
+Value *BoUpSLP::getSinkBarrier(Instruction *Src, Instruction *Dst) {
+ assert(Src->getParent() == Dst->getParent() && "Not the same BB");
+ BasicBlock::iterator I = Src, E = Dst;
+ /// Scan all of the instruction from SRC to DST and check if
+ /// the source may alias.
+ for (++I; I != E; ++I) {
+ // Ignore store instructions that are marked as 'ignore'.
+ if (MemBarrierIgnoreList.count(I))
+ continue;
+ if (Src->mayWriteToMemory()) /* Write */ {
+ if (!I->mayReadOrWriteMemory())
+ continue;
+ } else /* Read */ {
+ if (!I->mayWriteToMemory())
+ continue;
+ }
+ AliasAnalysis::Location A = getLocation(&*I);
+ AliasAnalysis::Location B = getLocation(Src);
+
+ if (!A.Ptr || !B.Ptr || AA->alias(A, B))
+ return I;
+ }
+ return 0;
+}
+
+int BoUpSLP::getLastIndex(ArrayRef<Value *> VL) {
+ BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
+ assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block");
+ BlockNumbering &BN = BlocksNumbers[BB];
+
+ int MaxIdx = BN.getIndex(BB->getFirstNonPHI());
+ for (unsigned i = 0, e = VL.size(); i < e; ++i)
+ MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
+ return MaxIdx;
+}
+
+Instruction *BoUpSLP::getLastInstruction(ArrayRef<Value *> VL) {
+ BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
+ assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block");
+ BlockNumbering &BN = BlocksNumbers[BB];
+
+ int MaxIdx = BN.getIndex(cast<Instruction>(VL[0]));
+ for (unsigned i = 1, e = VL.size(); i < e; ++i)
+ MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
+ Instruction *I = BN.getInstruction(MaxIdx);
+ assert(I && "bad location");
+ return I;
+}
+
+void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) {
+ Instruction *VL0 = cast<Instruction>(VL[0]);
+ Instruction *LastInst = getLastInstruction(VL);
+ BasicBlock::iterator NextInst = LastInst;
+ ++NextInst;
+ Builder.SetInsertPoint(VL0->getParent(), NextInst);
+ Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
+}
+
+Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
+ Value *Vec = UndefValue::get(Ty);
+ // Generate the 'InsertElement' instruction.
+ for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
+ Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
+ if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
+ GatherSeq.insert(Insrt);
+ CSEBlocks.insert(Insrt->getParent());
+
+ // Add to our 'need-to-extract' list.
+ if (ScalarToTreeEntry.count(VL[i])) {
+ int Idx = ScalarToTreeEntry[VL[i]];
+ TreeEntry *E = &VectorizableTree[Idx];
+ // Find which lane we need to extract.
+ int FoundLane = -1;
+ for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) {
+ // Is this the lane of the scalar that we are looking for ?
+ if (E->Scalars[Lane] == VL[i]) {
+ FoundLane = Lane;
+ break;
+ }
+ }
+ assert(FoundLane >= 0 && "Could not find the correct lane");
+ ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
+ }
+ }
+ }
+
+ return Vec;
+}
+
+Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const {
+ SmallDenseMap<Value*, int>::const_iterator Entry
+ = ScalarToTreeEntry.find(VL[0]);
+ if (Entry != ScalarToTreeEntry.end()) {
+ int Idx = Entry->second;
+ const TreeEntry *En = &VectorizableTree[Idx];
+ if (En->isSame(VL) && En->VectorizedValue)
+ return En->VectorizedValue;
+ }
+ return 0;
+}
+
+Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
+ if (ScalarToTreeEntry.count(VL[0])) {
+ int Idx = ScalarToTreeEntry[VL[0]];
+ TreeEntry *E = &VectorizableTree[Idx];
+ if (E->isSame(VL))
+ return vectorizeTree(E);
+ }
+
+ Type *ScalarTy = VL[0]->getType();
+ if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
+ ScalarTy = SI->getValueOperand()->getType();
+ VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
+
+ return Gather(VL, VecTy);
+}
+
+Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
+ IRBuilder<>::InsertPointGuard Guard(Builder);
+
+ if (E->VectorizedValue) {
+ DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
+ return E->VectorizedValue;
+ }
+
+ Instruction *VL0 = cast<Instruction>(E->Scalars[0]);
+ Type *ScalarTy = VL0->getType();
+ if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
+ ScalarTy = SI->getValueOperand()->getType();
+ VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
+
+ if (E->NeedToGather) {
+ setInsertPointAfterBundle(E->Scalars);
+ return Gather(E->Scalars, VecTy);
+ }
+
+ unsigned Opcode = VL0->getOpcode();
+ assert(Opcode == getSameOpcode(E->Scalars) && "Invalid opcode");
+
+ switch (Opcode) {
+ case Instruction::PHI: {
+ PHINode *PH = dyn_cast<PHINode>(VL0);
+ Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
+ Builder.SetCurrentDebugLocation(PH->getDebugLoc());
+ PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
+ E->VectorizedValue = NewPhi;
+
+ // PHINodes may have multiple entries from the same block. We want to
+ // visit every block once.
+ SmallSet<BasicBlock*, 4> VisitedBBs;
+
+ for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
+ ValueList Operands;
+ BasicBlock *IBB = PH->getIncomingBlock(i);
+
+ if (!VisitedBBs.insert(IBB)) {
+ NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
+ continue;
+ }
+
+ // Prepare the operand vector.
+ for (unsigned j = 0; j < E->Scalars.size(); ++j)
+ Operands.push_back(cast<PHINode>(E->Scalars[j])->
+ getIncomingValueForBlock(IBB));
+
+ Builder.SetInsertPoint(IBB->getTerminator());
+ Builder.SetCurrentDebugLocation(PH->getDebugLoc());
+ Value *Vec = vectorizeTree(Operands);
+ NewPhi->addIncoming(Vec, IBB);
+ }
+
+ assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
+ "Invalid number of incoming values");
+ return NewPhi;
+ }
+
+ case Instruction::ExtractElement: {
+ if (CanReuseExtract(E->Scalars)) {
+ Value *V = VL0->getOperand(0);
+ E->VectorizedValue = V;
+ return V;
+ }
+ return Gather(E->Scalars, VecTy);
+ }
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::FPExt:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::SIToFP:
+ case Instruction::UIToFP:
+ case Instruction::Trunc:
+ case Instruction::FPTrunc:
+ case Instruction::BitCast: {
+ ValueList INVL;
+ for (int i = 0, e = E->Scalars.size(); i < e; ++i)
+ INVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
+
+ setInsertPointAfterBundle(E->Scalars);
+
+ Value *InVec = vectorizeTree(INVL);
+
+ if (Value *V = alreadyVectorized(E->Scalars))
+ return V;
+
+ CastInst *CI = dyn_cast<CastInst>(VL0);
+ Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
+ E->VectorizedValue = V;
+ return V;
+ }
+ case Instruction::FCmp:
+ case Instruction::ICmp: {
+ ValueList LHSV, RHSV;
+ for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
+ LHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
+ RHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
+ }
+
+ setInsertPointAfterBundle(E->Scalars);
+
+ Value *L = vectorizeTree(LHSV);
+ Value *R = vectorizeTree(RHSV);
+
+ if (Value *V = alreadyVectorized(E->Scalars))
+ return V;
+
+ CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
+ Value *V;
+ if (Opcode == Instruction::FCmp)
+ V = Builder.CreateFCmp(P0, L, R);
+ else
+ V = Builder.CreateICmp(P0, L, R);
+
+ E->VectorizedValue = V;
+ return V;
+ }
+ case Instruction::Select: {
+ ValueList TrueVec, FalseVec, CondVec;
+ for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
+ CondVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
+ TrueVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
+ FalseVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(2));
+ }
+
+ setInsertPointAfterBundle(E->Scalars);
+
+ Value *Cond = vectorizeTree(CondVec);
+ Value *True = vectorizeTree(TrueVec);
+ Value *False = vectorizeTree(FalseVec);
+
+ if (Value *V = alreadyVectorized(E->Scalars))
+ return V;
+
+ Value *V = Builder.CreateSelect(Cond, True, False);
+ E->VectorizedValue = V;
+ return V;
+ }
+ case Instruction::Add:
+ case Instruction::FAdd:
+ case Instruction::Sub:
+ case Instruction::FSub:
+ case Instruction::Mul:
+ case Instruction::FMul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::FDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::FRem:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor: {
+ ValueList LHSVL, RHSVL;
+ if (isa<BinaryOperator>(VL0) && VL0->isCommutative())
+ reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL);
+ else
+ for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
+ LHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
+ RHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
+ }
+
+ setInsertPointAfterBundle(E->Scalars);
+
+ Value *LHS = vectorizeTree(LHSVL);
+ Value *RHS = vectorizeTree(RHSVL);
+
+ if (LHS == RHS && isa<Instruction>(LHS)) {
+ assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order");
+ }
+
+ if (Value *V = alreadyVectorized(E->Scalars))
+ return V;
+
+ BinaryOperator *BinOp = cast<BinaryOperator>(VL0);
+ Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS);
+ E->VectorizedValue = V;
+
+ if (Instruction *I = dyn_cast<Instruction>(V))
+ return propagateMetadata(I, E->Scalars);
+
+ return V;
+ }
+ case Instruction::Load: {
+ // Loads are inserted at the head of the tree because we don't want to
+ // sink them all the way down past store instructions.
+ setInsertPointAfterBundle(E->Scalars);
+
+ LoadInst *LI = cast<LoadInst>(VL0);
+ unsigned AS = LI->getPointerAddressSpace();
+
+ Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
+ VecTy->getPointerTo(AS));
+ unsigned Alignment = LI->getAlignment();
+ LI = Builder.CreateLoad(VecPtr);
+ LI->setAlignment(Alignment);
+ E->VectorizedValue = LI;
+ return propagateMetadata(LI, E->Scalars);
+ }
+ case Instruction::Store: {
+ StoreInst *SI = cast<StoreInst>(VL0);
+ unsigned Alignment = SI->getAlignment();
+ unsigned AS = SI->getPointerAddressSpace();
+
+ ValueList ValueOp;
+ for (int i = 0, e = E->Scalars.size(); i < e; ++i)
+ ValueOp.push_back(cast<StoreInst>(E->Scalars[i])->getValueOperand());
+
+ setInsertPointAfterBundle(E->Scalars);
+
+ Value *VecValue = vectorizeTree(ValueOp);
+ Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(),
+ VecTy->getPointerTo(AS));
+ StoreInst *S = Builder.CreateStore(VecValue, VecPtr);
+ S->setAlignment(Alignment);
+ E->VectorizedValue = S;
+ return propagateMetadata(S, E->Scalars);
+ }
+ default:
+ llvm_unreachable("unknown inst");
+ }
+ return 0;
+}
+
+Value *BoUpSLP::vectorizeTree() {
+ Builder.SetInsertPoint(F->getEntryBlock().begin());
+ vectorizeTree(&VectorizableTree[0]);
+
+ DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n");
+
+ // Extract all of the elements with the external uses.
+ for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end();
+ it != e; ++it) {
+ Value *Scalar = it->Scalar;
+ llvm::User *User = it->User;
+
+ // Skip users that we already RAUW. This happens when one instruction
+ // has multiple uses of the same value.
+ if (std::find(Scalar->use_begin(), Scalar->use_end(), User) ==
+ Scalar->use_end())
+ continue;
+ assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar");
+
+ int Idx = ScalarToTreeEntry[Scalar];
+ TreeEntry *E = &VectorizableTree[Idx];
+ assert(!E->NeedToGather && "Extracting from a gather list");
+
+ Value *Vec = E->VectorizedValue;
+ assert(Vec && "Can't find vectorizable value");
+
+ Value *Lane = Builder.getInt32(it->Lane);
+ // Generate extracts for out-of-tree users.
+ // Find the insertion point for the extractelement lane.
+ if (PHINode *PN = dyn_cast<PHINode>(Vec)) {
+ Builder.SetInsertPoint(PN->getParent()->getFirstInsertionPt());
+ Value *Ex = Builder.CreateExtractElement(Vec, Lane);
+ CSEBlocks.insert(PN->getParent());
+ User->replaceUsesOfWith(Scalar, Ex);
+ } else if (isa<Instruction>(Vec)){
+ if (PHINode *PH = dyn_cast<PHINode>(User)) {
+ for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
+ if (PH->getIncomingValue(i) == Scalar) {
+ Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
+ Value *Ex = Builder.CreateExtractElement(Vec, Lane);
+ CSEBlocks.insert(PH->getIncomingBlock(i));
+ PH->setOperand(i, Ex);
+ }
+ }
+ } else {
+ Builder.SetInsertPoint(cast<Instruction>(User));
+ Value *Ex = Builder.CreateExtractElement(Vec, Lane);
+ CSEBlocks.insert(cast<Instruction>(User)->getParent());
+ User->replaceUsesOfWith(Scalar, Ex);
+ }
+ } else {
+ Builder.SetInsertPoint(F->getEntryBlock().begin());
+ Value *Ex = Builder.CreateExtractElement(Vec, Lane);
+ CSEBlocks.insert(&F->getEntryBlock());
+ User->replaceUsesOfWith(Scalar, Ex);
+ }
+
+ DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
+ }
+
+ // For each vectorized value:
+ for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
+ TreeEntry *Entry = &VectorizableTree[EIdx];
+
+ // For each lane:
+ for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
+ Value *Scalar = Entry->Scalars[Lane];
+
+ // No need to handle users of gathered values.
+ if (Entry->NeedToGather)
+ continue;
+
+ assert(Entry->VectorizedValue && "Can't find vectorizable value");
+
+ Type *Ty = Scalar->getType();
+ if (!Ty->isVoidTy()) {
+ for (Value::use_iterator User = Scalar->use_begin(),
+ UE = Scalar->use_end(); User != UE; ++User) {
+ DEBUG(dbgs() << "SLP: \tvalidating user:" << **User << ".\n");
+
+ assert((ScalarToTreeEntry.count(*User) ||
+ // It is legal to replace the reduction users by undef.
+ (RdxOps && RdxOps->count(*User))) &&
+ "Replacing out-of-tree value with undef");
+ }
+ Value *Undef = UndefValue::get(Ty);
+ Scalar->replaceAllUsesWith(Undef);
+ }
+ DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
+ cast<Instruction>(Scalar)->eraseFromParent();
+ }
+ }
+
+ for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) {
+ BlocksNumbers[it].forget();
+ }
+ Builder.ClearInsertionPoint();
+
+ return VectorizableTree[0].VectorizedValue;
+}
+
+class DTCmp {
+ const DominatorTree *DT;
+
+public:
+ DTCmp(const DominatorTree *DT) : DT(DT) {}
+ bool operator()(const BasicBlock *A, const BasicBlock *B) const {
+ return DT->properlyDominates(A, B);
+ }
+};
+
+void BoUpSLP::optimizeGatherSequence() {
+ DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
+ << " gather sequences instructions.\n");
+ // LICM InsertElementInst sequences.
+ for (SetVector<Instruction *>::iterator it = GatherSeq.begin(),
+ e = GatherSeq.end(); it != e; ++it) {
+ InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it);
+
+ if (!Insert)
+ continue;
+
+ // Check if this block is inside a loop.
+ Loop *L = LI->getLoopFor(Insert->getParent());
+ if (!L)
+ continue;
+
+ // Check if it has a preheader.
+ BasicBlock *PreHeader = L->getLoopPreheader();
+ if (!PreHeader)
+ continue;
+
+ // If the vector or the element that we insert into it are
+ // instructions that are defined in this basic block then we can't
+ // hoist this instruction.
+ Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0));
+ Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1));
+ if (CurrVec && L->contains(CurrVec))
+ continue;
+ if (NewElem && L->contains(NewElem))
+ continue;
+
+ // We can hoist this instruction. Move it to the pre-header.
+ Insert->moveBefore(PreHeader->getTerminator());
+ }
+
+ // Sort blocks by domination. This ensures we visit a block after all blocks
+ // dominating it are visited.
+ SmallVector<BasicBlock *, 8> CSEWorkList(CSEBlocks.begin(), CSEBlocks.end());
+ std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), DTCmp(DT));
+
+ // Perform O(N^2) search over the gather sequences and merge identical
+ // instructions. TODO: We can further optimize this scan if we split the
+ // instructions into different buckets based on the insert lane.
+ SmallVector<Instruction *, 16> Visited;
+ for (SmallVectorImpl<BasicBlock *>::iterator I = CSEWorkList.begin(),
+ E = CSEWorkList.end();
+ I != E; ++I) {
+ assert((I == CSEWorkList.begin() || !DT->dominates(*I, *llvm::prior(I))) &&
+ "Worklist not sorted properly!");
+ BasicBlock *BB = *I;
+ // For all instructions in blocks containing gather sequences:
+ for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
+ Instruction *In = it++;
+ if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
+ continue;
+
+ // Check if we can replace this instruction with any of the
+ // visited instructions.
+ for (SmallVectorImpl<Instruction *>::iterator v = Visited.begin(),
+ ve = Visited.end();
+ v != ve; ++v) {
+ if (In->isIdenticalTo(*v) &&
+ DT->dominates((*v)->getParent(), In->getParent())) {
+ In->replaceAllUsesWith(*v);
+ In->eraseFromParent();
+ In = 0;
+ break;
+ }
+ }
+ if (In) {
+ assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end());
+ Visited.push_back(In);
+ }
+ }
+ }
+ CSEBlocks.clear();
+ GatherSeq.clear();
+}
+
+/// The SLPVectorizer Pass.
+struct SLPVectorizer : public FunctionPass {
+ typedef SmallVector<StoreInst *, 8> StoreList;
+ typedef MapVector<Value *, StoreList> StoreListMap;
+
+ /// Pass identification, replacement for typeid
+ static char ID;
+
+ explicit SLPVectorizer() : FunctionPass(ID) {
+ initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
+ }
+
+ ScalarEvolution *SE;
+ DataLayout *DL;
+ TargetTransformInfo *TTI;
+ AliasAnalysis *AA;
+ LoopInfo *LI;
+ DominatorTree *DT;
+
+ virtual bool runOnFunction(Function &F) {
+ SE = &getAnalysis<ScalarEvolution>();
+ DL = getAnalysisIfAvailable<DataLayout>();
+ TTI = &getAnalysis<TargetTransformInfo>();
+ AA = &getAnalysis<AliasAnalysis>();
+ LI = &getAnalysis<LoopInfo>();
+ DT = &getAnalysis<DominatorTree>();
+
+ StoreRefs.clear();
+ bool Changed = false;
+
+ // If the target claims to have no vector registers don't attempt
+ // vectorization.
+ if (!TTI->getNumberOfRegisters(true))
+ return false;
+
+ // Must have DataLayout. We can't require it because some tests run w/o
+ // triple.
+ if (!DL)
+ return false;
+
+ // Don't vectorize when the attribute NoImplicitFloat is used.
+ if (F.hasFnAttribute(Attribute::NoImplicitFloat))
+ return false;
+
+ DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
+
+ // Use the bollom up slp vectorizer to construct chains that start with
+ // he store instructions.
+ BoUpSLP R(&F, SE, DL, TTI, AA, LI, DT);
+
+ // Scan the blocks in the function in post order.
+ for (po_iterator<BasicBlock*> it = po_begin(&F.getEntryBlock()),
+ e = po_end(&F.getEntryBlock()); it != e; ++it) {
+ BasicBlock *BB = *it;
+
+ // Vectorize trees that end at stores.
+ if (unsigned count = collectStores(BB, R)) {
+ (void)count;
+ DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n");
+ Changed |= vectorizeStoreChains(R);
+ }
+
+ // Vectorize trees that end at reductions.
+ Changed |= vectorizeChainsInBlock(BB, R);
+ }
+
+ if (Changed) {
+ R.optimizeGatherSequence();
+ DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
+ DEBUG(verifyFunction(F));
+ }
+ return Changed;
+ }
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ FunctionPass::getAnalysisUsage(AU);
+ AU.addRequired<ScalarEvolution>();
+ AU.addRequired<AliasAnalysis>();
+ AU.addRequired<TargetTransformInfo>();
+ AU.addRequired<LoopInfo>();
+ AU.addRequired<DominatorTree>();
+ AU.addPreserved<LoopInfo>();
+ AU.addPreserved<DominatorTree>();
+ AU.setPreservesCFG();
+ }
+
+private:
+
+ /// \brief Collect memory references and sort them according to their base
+ /// object. We sort the stores to their base objects to reduce the cost of the
+ /// quadratic search on the stores. TODO: We can further reduce this cost
+ /// if we flush the chain creation every time we run into a memory barrier.
+ unsigned collectStores(BasicBlock *BB, BoUpSLP &R);
+
+ /// \brief Try to vectorize a chain that starts at two arithmetic instrs.
+ bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R);
+
+ /// \brief Try to vectorize a list of operands.
+ /// \returns true if a value was vectorized.
+ bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R);
+
+ /// \brief Try to vectorize a chain that may start at the operands of \V;
+ bool tryToVectorize(BinaryOperator *V, BoUpSLP &R);
+
+ /// \brief Vectorize the stores that were collected in StoreRefs.
+ bool vectorizeStoreChains(BoUpSLP &R);
+
+ /// \brief Scan the basic block and look for patterns that are likely to start
+ /// a vectorization chain.
+ bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R);
+
+ bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold,
+ BoUpSLP &R);
+
+ bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold,
+ BoUpSLP &R);
+private:
+ StoreListMap StoreRefs;
+};
+
+/// \brief Check that the Values in the slice in VL array are still existant in
+/// the WeakVH array.
+/// Vectorization of part of the VL array may cause later values in the VL array
+/// to become invalid. We track when this has happened in the WeakVH array.
+static bool hasValueBeenRAUWed(ArrayRef<Value *> &VL,
+ SmallVectorImpl<WeakVH> &VH,
+ unsigned SliceBegin,
+ unsigned SliceSize) {
+ for (unsigned i = SliceBegin; i < SliceBegin + SliceSize; ++i)
+ if (VH[i] != VL[i])
+ return true;
+
+ return false;
+}
+
+bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain,
+ int CostThreshold, BoUpSLP &R) {
+ unsigned ChainLen = Chain.size();
+ DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
+ << "\n");
+ Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType();
+ unsigned Sz = DL->getTypeSizeInBits(StoreTy);
+ unsigned VF = MinVecRegSize / Sz;
+
+ if (!isPowerOf2_32(Sz) || VF < 2)
+ return false;
+
+ // Keep track of values that were delete by vectorizing in the loop below.
+ SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end());
+
+ bool Changed = false;
+ // Look for profitable vectorizable trees at all offsets, starting at zero.
+ for (unsigned i = 0, e = ChainLen; i < e; ++i) {
+ if (i + VF > e)
+ break;
+
+ // Check that a previous iteration of this loop did not delete the Value.
+ if (hasValueBeenRAUWed(Chain, TrackValues, i, VF))
+ continue;
+
+ DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
+ << "\n");
+ ArrayRef<Value *> Operands = Chain.slice(i, VF);
+
+ R.buildTree(Operands);
+
+ int Cost = R.getTreeCost();
+
+ DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
+ if (Cost < CostThreshold) {
+ DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
+ R.vectorizeTree();
+
+ // Move to the next bundle.
+ i += VF - 1;
+ Changed = true;
+ }
+ }
+
+ return Changed;
+}
+
+bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores,
+ int costThreshold, BoUpSLP &R) {
+ SetVector<Value *> Heads, Tails;
+ SmallDenseMap<Value *, Value *> ConsecutiveChain;
+
+ // We may run into multiple chains that merge into a single chain. We mark the
+ // stores that we vectorized so that we don't visit the same store twice.
+ BoUpSLP::ValueSet VectorizedStores;
+ bool Changed = false;
+
+ // Do a quadratic search on all of the given stores and find
+ // all of the pairs of stores that follow each other.
+ for (unsigned i = 0, e = Stores.size(); i < e; ++i) {
+ for (unsigned j = 0; j < e; ++j) {
+ if (i == j)
+ continue;
+
+ if (R.isConsecutiveAccess(Stores[i], Stores[j])) {
+ Tails.insert(Stores[j]);
+ Heads.insert(Stores[i]);
+ ConsecutiveChain[Stores[i]] = Stores[j];
+ }
+ }
+ }
+
+ // For stores that start but don't end a link in the chain:
+ for (SetVector<Value *>::iterator it = Heads.begin(), e = Heads.end();
+ it != e; ++it) {
+ if (Tails.count(*it))
+ continue;
+
+ // We found a store instr that starts a chain. Now follow the chain and try
+ // to vectorize it.
+ BoUpSLP::ValueList Operands;
+ Value *I = *it;
+ // Collect the chain into a list.
+ while (Tails.count(I) || Heads.count(I)) {
+ if (VectorizedStores.count(I))
+ break;
+ Operands.push_back(I);
+ // Move to the next value in the chain.
+ I = ConsecutiveChain[I];
+ }
+
+ bool Vectorized = vectorizeStoreChain(Operands, costThreshold, R);
+
+ // Mark the vectorized stores so that we don't vectorize them again.
+ if (Vectorized)
+ VectorizedStores.insert(Operands.begin(), Operands.end());
+ Changed |= Vectorized;
+ }
+
+ return Changed;
+}
+
+
+unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) {
+ unsigned count = 0;
+ StoreRefs.clear();
+ for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
+ StoreInst *SI = dyn_cast<StoreInst>(it);
+ if (!SI)
+ continue;
+
+ // Don't touch volatile stores.
+ if (!SI->isSimple())
+ continue;
+
+ // Check that the pointer points to scalars.
+ Type *Ty = SI->getValueOperand()->getType();
+ if (Ty->isAggregateType() || Ty->isVectorTy())
+ return 0;
+
+ // Find the base pointer.
+ Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), DL);
+
+ // Save the store locations.
+ StoreRefs[Ptr].push_back(SI);
+ count++;
+ }
+ return count;
+}
+
+bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
+ if (!A || !B)
+ return false;
+ Value *VL[] = { A, B };
+ return tryToVectorizeList(VL, R);
+}
+
+bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R) {
+ if (VL.size() < 2)
+ return false;
+
+ DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n");
+
+ // Check that all of the parts are scalar instructions of the same type.
+ Instruction *I0 = dyn_cast<Instruction>(VL[0]);
+ if (!I0)
+ return false;
+
+ unsigned Opcode0 = I0->getOpcode();
+
+ Type *Ty0 = I0->getType();
+ unsigned Sz = DL->getTypeSizeInBits(Ty0);
+ unsigned VF = MinVecRegSize / Sz;
+
+ for (int i = 0, e = VL.size(); i < e; ++i) {
+ Type *Ty = VL[i]->getType();
+ if (Ty->isAggregateType() || Ty->isVectorTy())
+ return false;
+ Instruction *Inst = dyn_cast<Instruction>(VL[i]);
+ if (!Inst || Inst->getOpcode() != Opcode0)
+ return false;
+ }
+
+ bool Changed = false;
+
+ // Keep track of values that were delete by vectorizing in the loop below.
+ SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end());
+
+ for (unsigned i = 0, e = VL.size(); i < e; ++i) {
+ unsigned OpsWidth = 0;
+
+ if (i + VF > e)
+ OpsWidth = e - i;
+ else
+ OpsWidth = VF;
+
+ if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
+ break;
+
+ // Check that a previous iteration of this loop did not delete the Value.
+ if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth))
+ continue;
+
+ DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
+ << "\n");
+ ArrayRef<Value *> Ops = VL.slice(i, OpsWidth);
+
+ R.buildTree(Ops);
+ int Cost = R.getTreeCost();
+
+ if (Cost < -SLPCostThreshold) {
+ DEBUG(dbgs() << "SLP: Vectorizing pair at cost:" << Cost << ".\n");
+ R.vectorizeTree();
+
+ // Move to the next bundle.
+ i += VF - 1;
+ Changed = true;
+ }
+ }
+
+ return Changed;
+}
+
+bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) {
+ if (!V)
+ return false;
+
+ // Try to vectorize V.
+ if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R))
+ return true;
+
+ BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0));
+ BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1));
+ // Try to skip B.
+ if (B && B->hasOneUse()) {
+ BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
+ BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
+ if (tryToVectorizePair(A, B0, R)) {
+ B->moveBefore(V);
+ return true;
+ }
+ if (tryToVectorizePair(A, B1, R)) {
+ B->moveBefore(V);
+ return true;
+ }
+ }
+
+ // Try to skip A.
+ if (A && A->hasOneUse()) {
+ BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
+ BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
+ if (tryToVectorizePair(A0, B, R)) {
+ A->moveBefore(V);
+ return true;
+ }
+ if (tryToVectorizePair(A1, B, R)) {
+ A->moveBefore(V);
+ return true;
+ }
+ }
+ return 0;
+}
+
+/// \brief Generate a shuffle mask to be used in a reduction tree.
+///
+/// \param VecLen The length of the vector to be reduced.
+/// \param NumEltsToRdx The number of elements that should be reduced in the
+/// vector.
+/// \param IsPairwise Whether the reduction is a pairwise or splitting
+/// reduction. A pairwise reduction will generate a mask of
+/// <0,2,...> or <1,3,..> while a splitting reduction will generate
+/// <2,3, undef,undef> for a vector of 4 and NumElts = 2.
+/// \param IsLeft True will generate a mask of even elements, odd otherwise.
+static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
+ bool IsPairwise, bool IsLeft,
+ IRBuilder<> &Builder) {
+ assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
+
+ SmallVector<Constant *, 32> ShuffleMask(
+ VecLen, UndefValue::get(Builder.getInt32Ty()));
+
+ if (IsPairwise)
+ // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
+ for (unsigned i = 0; i != NumEltsToRdx; ++i)
+ ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
+ else
+ // Move the upper half of the vector to the lower half.
+ for (unsigned i = 0; i != NumEltsToRdx; ++i)
+ ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
+
+ return ConstantVector::get(ShuffleMask);
+}
+
+
+/// Model horizontal reductions.
+///
+/// A horizontal reduction is a tree of reduction operations (currently add and
+/// fadd) that has operations that can be put into a vector as its leaf.
+/// For example, this tree:
+///
+/// mul mul mul mul
+/// \ / \ /
+/// + +
+/// \ /
+/// +
+/// This tree has "mul" as its reduced values and "+" as its reduction
+/// operations. A reduction might be feeding into a store or a binary operation
+/// feeding a phi.
+/// ...
+/// \ /
+/// +
+/// |
+/// phi +=
+///
+/// Or:
+/// ...
+/// \ /
+/// +
+/// |
+/// *p =
+///
+class HorizontalReduction {
+ SmallPtrSet<Value *, 16> ReductionOps;
+ SmallVector<Value *, 32> ReducedVals;
+
+ BinaryOperator *ReductionRoot;
+ PHINode *ReductionPHI;
+
+ /// The opcode of the reduction.
+ unsigned ReductionOpcode;
+ /// The opcode of the values we perform a reduction on.
+ unsigned ReducedValueOpcode;
+ /// The width of one full horizontal reduction operation.
+ unsigned ReduxWidth;
+ /// Should we model this reduction as a pairwise reduction tree or a tree that
+ /// splits the vector in halves and adds those halves.
+ bool IsPairwiseReduction;
+
+public:
+ HorizontalReduction()
+ : ReductionRoot(0), ReductionPHI(0), ReductionOpcode(0),
+ ReducedValueOpcode(0), ReduxWidth(0), IsPairwiseReduction(false) {}
+
+ /// \brief Try to find a reduction tree.
+ bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B,
+ DataLayout *DL) {
+ assert((!Phi ||
+ std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) &&
+ "Thi phi needs to use the binary operator");
+
+ // We could have a initial reductions that is not an add.
+ // r *= v1 + v2 + v3 + v4
+ // In such a case start looking for a tree rooted in the first '+'.
+ if (Phi) {
+ if (B->getOperand(0) == Phi) {
+ Phi = 0;
+ B = dyn_cast<BinaryOperator>(B->getOperand(1));
+ } else if (B->getOperand(1) == Phi) {
+ Phi = 0;
+ B = dyn_cast<BinaryOperator>(B->getOperand(0));
+ }
+ }
+
+ if (!B)
+ return false;
+
+ Type *Ty = B->getType();
+ if (Ty->isVectorTy())
+ return false;
+
+ ReductionOpcode = B->getOpcode();
+ ReducedValueOpcode = 0;
+ ReduxWidth = MinVecRegSize / DL->getTypeSizeInBits(Ty);
+ ReductionRoot = B;
+ ReductionPHI = Phi;
+
+ if (ReduxWidth < 4)
+ return false;
+
+ // We currently only support adds.
+ if (ReductionOpcode != Instruction::Add &&
+ ReductionOpcode != Instruction::FAdd)
+ return false;
+
+ // Post order traverse the reduction tree starting at B. We only handle true
+ // trees containing only binary operators.
+ SmallVector<std::pair<BinaryOperator *, unsigned>, 32> Stack;
+ Stack.push_back(std::make_pair(B, 0));
+ while (!Stack.empty()) {
+ BinaryOperator *TreeN = Stack.back().first;
+ unsigned EdgeToVist = Stack.back().second++;
+ bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode;
+
+ // Only handle trees in the current basic block.
+ if (TreeN->getParent() != B->getParent())
+ return false;
+
+ // Each tree node needs to have one user except for the ultimate
+ // reduction.
+ if (!TreeN->hasOneUse() && TreeN != B)
+ return false;
+
+ // Postorder vist.
+ if (EdgeToVist == 2 || IsReducedValue) {
+ if (IsReducedValue) {
+ // Make sure that the opcodes of the operations that we are going to
+ // reduce match.
+ if (!ReducedValueOpcode)
+ ReducedValueOpcode = TreeN->getOpcode();
+ else if (ReducedValueOpcode != TreeN->getOpcode())
+ return false;
+ ReducedVals.push_back(TreeN);
+ } else {
+ // We need to be able to reassociate the adds.
+ if (!TreeN->isAssociative())
+ return false;
+ ReductionOps.insert(TreeN);
+ }
+ // Retract.
+ Stack.pop_back();
+ continue;
+ }
+
+ // Visit left or right.
+ Value *NextV = TreeN->getOperand(EdgeToVist);
+ BinaryOperator *Next = dyn_cast<BinaryOperator>(NextV);
+ if (Next)
+ Stack.push_back(std::make_pair(Next, 0));
+ else if (NextV != Phi)
+ return false;
+ }
+ return true;
+ }
+
+ /// \brief Attempt to vectorize the tree found by
+ /// matchAssociativeReduction.
+ bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
+ if (ReducedVals.empty())
+ return false;
+
+ unsigned NumReducedVals = ReducedVals.size();
+ if (NumReducedVals < ReduxWidth)
+ return false;
+
+ Value *VectorizedTree = 0;
+ IRBuilder<> Builder(ReductionRoot);
+ FastMathFlags Unsafe;
+ Unsafe.setUnsafeAlgebra();
+ Builder.SetFastMathFlags(Unsafe);
+ unsigned i = 0;
+
+ for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) {
+ ArrayRef<Value *> ValsToReduce(&ReducedVals[i], ReduxWidth);
+ V.buildTree(ValsToReduce, &ReductionOps);
+
+ // Estimate cost.
+ int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]);
+ if (Cost >= -SLPCostThreshold)
+ break;
+
+ DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost
+ << ". (HorRdx)\n");
+
+ // Vectorize a tree.
+ DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
+ Value *VectorizedRoot = V.vectorizeTree();
+
+ // Emit a reduction.
+ Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder);
+ if (VectorizedTree) {
+ Builder.SetCurrentDebugLocation(Loc);
+ VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
+ ReducedSubTree, "bin.rdx");
+ } else
+ VectorizedTree = ReducedSubTree;
+ }
+
+ if (VectorizedTree) {
+ // Finish the reduction.
+ for (; i < NumReducedVals; ++i) {
+ Builder.SetCurrentDebugLocation(
+ cast<Instruction>(ReducedVals[i])->getDebugLoc());
+ VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
+ ReducedVals[i]);
+ }
+ // Update users.
+ if (ReductionPHI) {
+ assert(ReductionRoot != NULL && "Need a reduction operation");
+ ReductionRoot->setOperand(0, VectorizedTree);
+ ReductionRoot->setOperand(1, ReductionPHI);
+ } else
+ ReductionRoot->replaceAllUsesWith(VectorizedTree);
+ }
+ return VectorizedTree != 0;
+ }
+
+private:
+
+ /// \brief Calcuate the cost of a reduction.
+ int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) {
+ Type *ScalarTy = FirstReducedVal->getType();
+ Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
+
+ int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true);
+ int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false);
+
+ IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
+ int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
+
+ int ScalarReduxCost =
+ ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy);
+
+ DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
+ << " for reduction that starts with " << *FirstReducedVal
+ << " (It is a "
+ << (IsPairwiseReduction ? "pairwise" : "splitting")
+ << " reduction)\n");
+
+ return VecReduxCost - ScalarReduxCost;
+ }
+
+ static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L,
+ Value *R, const Twine &Name = "") {
+ if (Opcode == Instruction::FAdd)
+ return Builder.CreateFAdd(L, R, Name);
+ return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name);
+ }
+
+ /// \brief Emit a horizontal reduction of the vectorized value.
+ Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) {
+ assert(VectorizedValue && "Need to have a vectorized tree node");
+ Instruction *ValToReduce = dyn_cast<Instruction>(VectorizedValue);
+ assert(isPowerOf2_32(ReduxWidth) &&
+ "We only handle power-of-two reductions for now");
+
+ Value *TmpVec = ValToReduce;
+ for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
+ if (IsPairwiseReduction) {
+ Value *LeftMask =
+ createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
+ Value *RightMask =
+ createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
+
+ Value *LeftShuf = Builder.CreateShuffleVector(
+ TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
+ Value *RightShuf = Builder.CreateShuffleVector(
+ TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
+ "rdx.shuf.r");
+ TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf,
+ "bin.rdx");
+ } else {
+ Value *UpperHalf =
+ createRdxShuffleMask(ReduxWidth, i, false, false, Builder);
+ Value *Shuf = Builder.CreateShuffleVector(
+ TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf");
+ TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx");
+ }
+ }
+
+ // The result is in the first element of the vector.
+ return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
+ }
+};
+
+/// \brief Recognize construction of vectors like
+/// %ra = insertelement <4 x float> undef, float %s0, i32 0
+/// %rb = insertelement <4 x float> %ra, float %s1, i32 1
+/// %rc = insertelement <4 x float> %rb, float %s2, i32 2
+/// %rd = insertelement <4 x float> %rc, float %s3, i32 3
+///
+/// Returns true if it matches
+///
+static bool findBuildVector(InsertElementInst *IE,
+ SmallVectorImpl<Value *> &Ops) {
+ if (!isa<UndefValue>(IE->getOperand(0)))
+ return false;
+
+ while (true) {
+ Ops.push_back(IE->getOperand(1));
+
+ if (IE->use_empty())
+ return false;
+
+ InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->use_back());
+ if (!NextUse)
+ return true;
+
+ // If this isn't the final use, make sure the next insertelement is the only
+ // use. It's OK if the final constructed vector is used multiple times
+ if (!IE->hasOneUse())
+ return false;
+
+ IE = NextUse;
+ }
+
+ return false;
+}
+
+static bool PhiTypeSorterFunc(Value *V, Value *V2) {
+ return V->getType() < V2->getType();
+}
+
+bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
+ bool Changed = false;
+ SmallVector<Value *, 4> Incoming;
+ SmallSet<Value *, 16> VisitedInstrs;
+
+ bool HaveVectorizedPhiNodes = true;
+ while (HaveVectorizedPhiNodes) {
+ HaveVectorizedPhiNodes = false;
+
+ // Collect the incoming values from the PHIs.
+ Incoming.clear();
+ for (BasicBlock::iterator instr = BB->begin(), ie = BB->end(); instr != ie;
+ ++instr) {
+ PHINode *P = dyn_cast<PHINode>(instr);
+ if (!P)
+ break;
+
+ if (!VisitedInstrs.count(P))
+ Incoming.push_back(P);
+ }
+
+ // Sort by type.
+ std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc);
+
+ // Try to vectorize elements base on their type.
+ for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
+ E = Incoming.end();
+ IncIt != E;) {
+
+ // Look for the next elements with the same type.
+ SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
+ while (SameTypeIt != E &&
+ (*SameTypeIt)->getType() == (*IncIt)->getType()) {
+ VisitedInstrs.insert(*SameTypeIt);
+ ++SameTypeIt;
+ }
+
+ // Try to vectorize them.
+ unsigned NumElts = (SameTypeIt - IncIt);
+ DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n");
+ if (NumElts > 1 &&
+ tryToVectorizeList(ArrayRef<Value *>(IncIt, NumElts), R)) {
+ // Success start over because instructions might have been changed.
+ HaveVectorizedPhiNodes = true;
+ Changed = true;
+ break;
+ }
+
+ // Start over at the next instruction of a differnt type (or the end).
+ IncIt = SameTypeIt;
+ }
+ }
+
+ VisitedInstrs.clear();
+
+ for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) {
+ // We may go through BB multiple times so skip the one we have checked.
+ if (!VisitedInstrs.insert(it))
+ continue;
+
+ if (isa<DbgInfoIntrinsic>(it))
+ continue;
+
+ // Try to vectorize reductions that use PHINodes.
+ if (PHINode *P = dyn_cast<PHINode>(it)) {
+ // Check that the PHI is a reduction PHI.
+ if (P->getNumIncomingValues() != 2)
+ return Changed;
+ Value *Rdx =
+ (P->getIncomingBlock(0) == BB
+ ? (P->getIncomingValue(0))
+ : (P->getIncomingBlock(1) == BB ? P->getIncomingValue(1) : 0));
+ // Check if this is a Binary Operator.
+ BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx);
+ if (!BI)
+ continue;
+
+ // Try to match and vectorize a horizontal reduction.
+ HorizontalReduction HorRdx;
+ if (ShouldVectorizeHor &&
+ HorRdx.matchAssociativeReduction(P, BI, DL) &&
+ HorRdx.tryToReduce(R, TTI)) {
+ Changed = true;
+ it = BB->begin();
+ e = BB->end();
+ continue;
+ }
+
+ Value *Inst = BI->getOperand(0);
+ if (Inst == P)
+ Inst = BI->getOperand(1);
+
+ if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) {
+ // We would like to start over since some instructions are deleted
+ // and the iterator may become invalid value.
+ Changed = true;
+ it = BB->begin();
+ e = BB->end();
+ continue;
+ }
+
+ continue;
+ }
+
+ // Try to vectorize horizontal reductions feeding into a store.
+ if (ShouldStartVectorizeHorAtStore)
+ if (StoreInst *SI = dyn_cast<StoreInst>(it))
+ if (BinaryOperator *BinOp =
+ dyn_cast<BinaryOperator>(SI->getValueOperand())) {
+ HorizontalReduction HorRdx;
+ if (((HorRdx.matchAssociativeReduction(0, BinOp, DL) &&
+ HorRdx.tryToReduce(R, TTI)) ||
+ tryToVectorize(BinOp, R))) {
+ Changed = true;
+ it = BB->begin();
+ e = BB->end();
+ continue;
+ }
+ }
+
+ // Try to vectorize trees that start at compare instructions.
+ if (CmpInst *CI = dyn_cast<CmpInst>(it)) {
+ if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) {
+ Changed = true;
+ // We would like to start over since some instructions are deleted
+ // and the iterator may become invalid value.
+ it = BB->begin();
+ e = BB->end();
+ continue;
+ }
+
+ for (int i = 0; i < 2; ++i) {
+ if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) {
+ if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) {
+ Changed = true;
+ // We would like to start over since some instructions are deleted
+ // and the iterator may become invalid value.
+ it = BB->begin();
+ e = BB->end();
+ }
+ }
+ }
+ continue;
+ }
+
+ // Try to vectorize trees that start at insertelement instructions.
+ if (InsertElementInst *IE = dyn_cast<InsertElementInst>(it)) {
+ SmallVector<Value *, 8> Ops;
+ if (!findBuildVector(IE, Ops))
+ continue;
+
+ if (tryToVectorizeList(Ops, R)) {
+ Changed = true;
+ it = BB->begin();
+ e = BB->end();
+ }
+
+ continue;
+ }
+ }
+
+ return Changed;
+}
+
+bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) {
+ bool Changed = false;
+ // Attempt to sort and vectorize each of the store-groups.
+ for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end();
+ it != e; ++it) {
+ if (it->second.size() < 2)
+ continue;
+
+ DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
+ << it->second.size() << ".\n");
+
+ // Process the stores in chunks of 16.
+ for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) {
+ unsigned Len = std::min<unsigned>(CE - CI, 16);
+ ArrayRef<StoreInst *> Chunk(&it->second[CI], Len);
+ Changed |= vectorizeStores(Chunk, -SLPCostThreshold, R);
+ }
+ }
+ return Changed;
+}
+
+} // end anonymous namespace
+
+char SLPVectorizer::ID = 0;
+static const char lv_name[] = "SLP Vectorizer";
+INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
+INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
+INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
+INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
+INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
+
+namespace llvm {
+Pass *createSLPVectorizerPass() { return new SLPVectorizer(); }
+}
diff --git a/contrib/llvm/lib/Transforms/Vectorize/Vectorize.cpp b/contrib/llvm/lib/Transforms/Vectorize/Vectorize.cpp
new file mode 100644
index 0000000..a927fe1
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Vectorize/Vectorize.cpp
@@ -0,0 +1,48 @@
+//===-- Vectorize.cpp -----------------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements common infrastructure for libLLVMVectorizeOpts.a, which
+// implements several vectorization transformations over the LLVM intermediate
+// representation, including the C bindings for that library.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Vectorize.h"
+#include "llvm-c/Initialization.h"
+#include "llvm-c/Transforms/Vectorize.h"
+#include "llvm/Analysis/Passes.h"
+#include "llvm/Analysis/Verifier.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/PassManager.h"
+
+using namespace llvm;
+
+/// initializeVectorizationPasses - Initialize all passes linked into the
+/// Vectorization library.
+void llvm::initializeVectorization(PassRegistry &Registry) {
+ initializeBBVectorizePass(Registry);
+ initializeLoopVectorizePass(Registry);
+ initializeSLPVectorizerPass(Registry);
+}
+
+void LLVMInitializeVectorization(LLVMPassRegistryRef R) {
+ initializeVectorization(*unwrap(R));
+}
+
+void LLVMAddBBVectorizePass(LLVMPassManagerRef PM) {
+ unwrap(PM)->add(createBBVectorizePass());
+}
+
+void LLVMAddLoopVectorizePass(LLVMPassManagerRef PM) {
+ unwrap(PM)->add(createLoopVectorizePass());
+}
+
+void LLVMAddSLPVectorizePass(LLVMPassManagerRef PM) {
+ unwrap(PM)->add(createSLPVectorizerPass());
+}
OpenPOWER on IntegriCloud