summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp701
1 files changed, 699 insertions, 2 deletions
diff --git a/contrib/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp b/contrib/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
index 011fd0f..95c9381 100644
--- a/contrib/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
+++ b/contrib/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
@@ -34,6 +34,10 @@
// Variable uniformity checks are inspired by:
// Karrenberg, R. and Hack, S. Whole Function Vectorization.
//
+// The interleaved access vectorization is based on the paper:
+// Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved
+// Data for SIMD
+//
// Other ideas/concepts are from:
// A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
//
@@ -134,6 +138,16 @@ static cl::opt<bool> EnableMemAccessVersioning(
"enable-mem-access-versioning", cl::init(true), cl::Hidden,
cl::desc("Enable symblic stride memory access versioning"));
+static cl::opt<bool> EnableInterleavedMemAccesses(
+ "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
+ cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
+
+/// Maximum factor for an interleaved memory access.
+static cl::opt<unsigned> MaxInterleaveGroupFactor(
+ "max-interleave-group-factor", cl::Hidden,
+ cl::desc("Maximum factor for an interleaved access group (default = 8)"),
+ cl::init(8));
+
/// We don't unroll loops with a known constant trip count below this number.
static const unsigned TinyTripCountUnrollThreshold = 128;
@@ -351,6 +365,9 @@ protected:
/// broadcast them into a vector.
VectorParts &getVectorValue(Value *V);
+ /// Try to vectorize the interleaved access group that \p Instr belongs to.
+ void vectorizeInterleaveGroup(Instruction *Instr);
+
/// Generate a shuffle sequence that will reverse the vector Vec.
virtual Value *reverseVector(Value *Vec);
@@ -545,6 +562,219 @@ static void propagateMetadata(SmallVectorImpl<Value *> &To, const Instruction *F
propagateMetadata(I, From);
}
+/// \brief The group of interleaved loads/stores sharing the same stride and
+/// close to each other.
+///
+/// Each member in this group has an index starting from 0, and the largest
+/// index should be less than interleaved factor, which is equal to the absolute
+/// value of the access's stride.
+///
+/// E.g. An interleaved load group of factor 4:
+/// for (unsigned i = 0; i < 1024; i+=4) {
+/// a = A[i]; // Member of index 0
+/// b = A[i+1]; // Member of index 1
+/// d = A[i+3]; // Member of index 3
+/// ...
+/// }
+///
+/// An interleaved store group of factor 4:
+/// for (unsigned i = 0; i < 1024; i+=4) {
+/// ...
+/// A[i] = a; // Member of index 0
+/// A[i+1] = b; // Member of index 1
+/// A[i+2] = c; // Member of index 2
+/// A[i+3] = d; // Member of index 3
+/// }
+///
+/// Note: the interleaved load group could have gaps (missing members), but
+/// the interleaved store group doesn't allow gaps.
+class InterleaveGroup {
+public:
+ InterleaveGroup(Instruction *Instr, int Stride, unsigned Align)
+ : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) {
+ assert(Align && "The alignment should be non-zero");
+
+ Factor = std::abs(Stride);
+ assert(Factor > 1 && "Invalid interleave factor");
+
+ Reverse = Stride < 0;
+ Members[0] = Instr;
+ }
+
+ bool isReverse() const { return Reverse; }
+ unsigned getFactor() const { return Factor; }
+ unsigned getAlignment() const { return Align; }
+ unsigned getNumMembers() const { return Members.size(); }
+
+ /// \brief Try to insert a new member \p Instr with index \p Index and
+ /// alignment \p NewAlign. The index is related to the leader and it could be
+ /// negative if it is the new leader.
+ ///
+ /// \returns false if the instruction doesn't belong to the group.
+ bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) {
+ assert(NewAlign && "The new member's alignment should be non-zero");
+
+ int Key = Index + SmallestKey;
+
+ // Skip if there is already a member with the same index.
+ if (Members.count(Key))
+ return false;
+
+ if (Key > LargestKey) {
+ // The largest index is always less than the interleave factor.
+ if (Index >= static_cast<int>(Factor))
+ return false;
+
+ LargestKey = Key;
+ } else if (Key < SmallestKey) {
+ // The largest index is always less than the interleave factor.
+ if (LargestKey - Key >= static_cast<int>(Factor))
+ return false;
+
+ SmallestKey = Key;
+ }
+
+ // It's always safe to select the minimum alignment.
+ Align = std::min(Align, NewAlign);
+ Members[Key] = Instr;
+ return true;
+ }
+
+ /// \brief Get the member with the given index \p Index
+ ///
+ /// \returns nullptr if contains no such member.
+ Instruction *getMember(unsigned Index) const {
+ int Key = SmallestKey + Index;
+ if (!Members.count(Key))
+ return nullptr;
+
+ return Members.find(Key)->second;
+ }
+
+ /// \brief Get the index for the given member. Unlike the key in the member
+ /// map, the index starts from 0.
+ unsigned getIndex(Instruction *Instr) const {
+ for (auto I : Members)
+ if (I.second == Instr)
+ return I.first - SmallestKey;
+
+ llvm_unreachable("InterleaveGroup contains no such member");
+ }
+
+ Instruction *getInsertPos() const { return InsertPos; }
+ void setInsertPos(Instruction *Inst) { InsertPos = Inst; }
+
+private:
+ unsigned Factor; // Interleave Factor.
+ bool Reverse;
+ unsigned Align;
+ DenseMap<int, Instruction *> Members;
+ int SmallestKey;
+ int LargestKey;
+
+ // To avoid breaking dependences, vectorized instructions of an interleave
+ // group should be inserted at either the first load or the last store in
+ // program order.
+ //
+ // E.g. %even = load i32 // Insert Position
+ // %add = add i32 %even // Use of %even
+ // %odd = load i32
+ //
+ // store i32 %even
+ // %odd = add i32 // Def of %odd
+ // store i32 %odd // Insert Position
+ Instruction *InsertPos;
+};
+
+/// \brief Drive the analysis of interleaved memory accesses in the loop.
+///
+/// Use this class to analyze interleaved accesses only when we can vectorize
+/// a loop. Otherwise it's meaningless to do analysis as the vectorization
+/// on interleaved accesses is unsafe.
+///
+/// The analysis collects interleave groups and records the relationships
+/// between the member and the group in a map.
+class InterleavedAccessInfo {
+public:
+ InterleavedAccessInfo(ScalarEvolution *SE, Loop *L, DominatorTree *DT)
+ : SE(SE), TheLoop(L), DT(DT) {}
+
+ ~InterleavedAccessInfo() {
+ SmallSet<InterleaveGroup *, 4> DelSet;
+ // Avoid releasing a pointer twice.
+ for (auto &I : InterleaveGroupMap)
+ DelSet.insert(I.second);
+ for (auto *Ptr : DelSet)
+ delete Ptr;
+ }
+
+ /// \brief Analyze the interleaved accesses and collect them in interleave
+ /// groups. Substitute symbolic strides using \p Strides.
+ void analyzeInterleaving(const ValueToValueMap &Strides);
+
+ /// \brief Check if \p Instr belongs to any interleave group.
+ bool isInterleaved(Instruction *Instr) const {
+ return InterleaveGroupMap.count(Instr);
+ }
+
+ /// \brief Get the interleave group that \p Instr belongs to.
+ ///
+ /// \returns nullptr if doesn't have such group.
+ InterleaveGroup *getInterleaveGroup(Instruction *Instr) const {
+ if (InterleaveGroupMap.count(Instr))
+ return InterleaveGroupMap.find(Instr)->second;
+ return nullptr;
+ }
+
+private:
+ ScalarEvolution *SE;
+ Loop *TheLoop;
+ DominatorTree *DT;
+
+ /// Holds the relationships between the members and the interleave group.
+ DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap;
+
+ /// \brief The descriptor for a strided memory access.
+ struct StrideDescriptor {
+ StrideDescriptor(int Stride, const SCEV *Scev, unsigned Size,
+ unsigned Align)
+ : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {}
+
+ StrideDescriptor() : Stride(0), Scev(nullptr), Size(0), Align(0) {}
+
+ int Stride; // The access's stride. It is negative for a reverse access.
+ const SCEV *Scev; // The scalar expression of this access
+ unsigned Size; // The size of the memory object.
+ unsigned Align; // The alignment of this access.
+ };
+
+ /// \brief Create a new interleave group with the given instruction \p Instr,
+ /// stride \p Stride and alignment \p Align.
+ ///
+ /// \returns the newly created interleave group.
+ InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride,
+ unsigned Align) {
+ assert(!InterleaveGroupMap.count(Instr) &&
+ "Already in an interleaved access group");
+ InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align);
+ return InterleaveGroupMap[Instr];
+ }
+
+ /// \brief Release the group and remove all the relationships.
+ void releaseGroup(InterleaveGroup *Group) {
+ for (unsigned i = 0; i < Group->getFactor(); i++)
+ if (Instruction *Member = Group->getMember(i))
+ InterleaveGroupMap.erase(Member);
+
+ delete Group;
+ }
+
+ /// \brief Collect all the accesses with a constant stride in program order.
+ void collectConstStridedAccesses(
+ MapVector<Instruction *, StrideDescriptor> &StrideAccesses,
+ const ValueToValueMap &Strides);
+};
+
/// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
/// to what vectorization factor.
/// This class does not look at the profitability of vectorization, only the
@@ -565,8 +795,8 @@ public:
Function *F, const TargetTransformInfo *TTI,
LoopAccessAnalysis *LAA)
: NumPredStores(0), TheLoop(L), SE(SE), TLI(TLI), TheFunction(F),
- TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr), Induction(nullptr),
- WidestIndTy(nullptr), HasFunNoNaNAttr(false) {}
+ TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr), InterleaveInfo(SE, L, DT),
+ Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false) {}
/// This enum represents the kinds of inductions that we support.
enum InductionKind {
@@ -697,6 +927,16 @@ public:
return LAI;
}
+ /// \brief Check if \p Instr belongs to any interleaved access group.
+ bool isAccessInterleaved(Instruction *Instr) {
+ return InterleaveInfo.isInterleaved(Instr);
+ }
+
+ /// \brief Get the interleaved access group that \p Instr belongs to.
+ const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) {
+ return InterleaveInfo.getInterleaveGroup(Instr);
+ }
+
unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); }
bool hasStride(Value *V) { return StrideSet.count(V); }
@@ -792,6 +1032,10 @@ private:
// null until canVectorizeMemory sets it up.
const LoopAccessInfo *LAI;
+ /// The interleave access information contains groups of interleaved accesses
+ /// with the same stride and close to each other.
+ InterleavedAccessInfo InterleaveInfo;
+
// --- vectorization state --- //
/// Holds the integer induction variable. This is the counter of the
@@ -1657,6 +1901,251 @@ Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
"reverse");
}
+// Get a mask to interleave \p NumVec vectors into a wide vector.
+// I.e. <0, VF, VF*2, ..., VF*(NumVec-1), 1, VF+1, VF*2+1, ...>
+// E.g. For 2 interleaved vectors, if VF is 4, the mask is:
+// <0, 4, 1, 5, 2, 6, 3, 7>
+static Constant *getInterleavedMask(IRBuilder<> &Builder, unsigned VF,
+ unsigned NumVec) {
+ SmallVector<Constant *, 16> Mask;
+ for (unsigned i = 0; i < VF; i++)
+ for (unsigned j = 0; j < NumVec; j++)
+ Mask.push_back(Builder.getInt32(j * VF + i));
+
+ return ConstantVector::get(Mask);
+}
+
+// Get the strided mask starting from index \p Start.
+// I.e. <Start, Start + Stride, ..., Start + Stride*(VF-1)>
+static Constant *getStridedMask(IRBuilder<> &Builder, unsigned Start,
+ unsigned Stride, unsigned VF) {
+ SmallVector<Constant *, 16> Mask;
+ for (unsigned i = 0; i < VF; i++)
+ Mask.push_back(Builder.getInt32(Start + i * Stride));
+
+ return ConstantVector::get(Mask);
+}
+
+// Get a mask of two parts: The first part consists of sequential integers
+// starting from 0, The second part consists of UNDEFs.
+// I.e. <0, 1, 2, ..., NumInt - 1, undef, ..., undef>
+static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned NumInt,
+ unsigned NumUndef) {
+ SmallVector<Constant *, 16> Mask;
+ for (unsigned i = 0; i < NumInt; i++)
+ Mask.push_back(Builder.getInt32(i));
+
+ Constant *Undef = UndefValue::get(Builder.getInt32Ty());
+ for (unsigned i = 0; i < NumUndef; i++)
+ Mask.push_back(Undef);
+
+ return ConstantVector::get(Mask);
+}
+
+// Concatenate two vectors with the same element type. The 2nd vector should
+// not have more elements than the 1st vector. If the 2nd vector has less
+// elements, extend it with UNDEFs.
+static Value *ConcatenateTwoVectors(IRBuilder<> &Builder, Value *V1,
+ Value *V2) {
+ VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
+ VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
+ assert(VecTy1 && VecTy2 &&
+ VecTy1->getScalarType() == VecTy2->getScalarType() &&
+ "Expect two vectors with the same element type");
+
+ unsigned NumElts1 = VecTy1->getNumElements();
+ unsigned NumElts2 = VecTy2->getNumElements();
+ assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
+
+ if (NumElts1 > NumElts2) {
+ // Extend with UNDEFs.
+ Constant *ExtMask =
+ getSequentialMask(Builder, NumElts2, NumElts1 - NumElts2);
+ V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask);
+ }
+
+ Constant *Mask = getSequentialMask(Builder, NumElts1 + NumElts2, 0);
+ return Builder.CreateShuffleVector(V1, V2, Mask);
+}
+
+// Concatenate vectors in the given list. All vectors have the same type.
+static Value *ConcatenateVectors(IRBuilder<> &Builder,
+ ArrayRef<Value *> InputList) {
+ unsigned NumVec = InputList.size();
+ assert(NumVec > 1 && "Should be at least two vectors");
+
+ SmallVector<Value *, 8> ResList;
+ ResList.append(InputList.begin(), InputList.end());
+ do {
+ SmallVector<Value *, 8> TmpList;
+ for (unsigned i = 0; i < NumVec - 1; i += 2) {
+ Value *V0 = ResList[i], *V1 = ResList[i + 1];
+ assert((V0->getType() == V1->getType() || i == NumVec - 2) &&
+ "Only the last vector may have a different type");
+
+ TmpList.push_back(ConcatenateTwoVectors(Builder, V0, V1));
+ }
+
+ // Push the last vector if the total number of vectors is odd.
+ if (NumVec % 2 != 0)
+ TmpList.push_back(ResList[NumVec - 1]);
+
+ ResList = TmpList;
+ NumVec = ResList.size();
+ } while (NumVec > 1);
+
+ return ResList[0];
+}
+
+// Try to vectorize the interleave group that \p Instr belongs to.
+//
+// E.g. Translate following interleaved load group (factor = 3):
+// for (i = 0; i < N; i+=3) {
+// R = Pic[i]; // Member of index 0
+// G = Pic[i+1]; // Member of index 1
+// B = Pic[i+2]; // Member of index 2
+// ... // do something to R, G, B
+// }
+// To:
+// %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B
+// %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements
+// %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements
+// %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements
+//
+// Or translate following interleaved store group (factor = 3):
+// for (i = 0; i < N; i+=3) {
+// ... do something to R, G, B
+// Pic[i] = R; // Member of index 0
+// Pic[i+1] = G; // Member of index 1
+// Pic[i+2] = B; // Member of index 2
+// }
+// To:
+// %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
+// %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u>
+// %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
+// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements
+// store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B
+void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) {
+ const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr);
+ assert(Group && "Fail to get an interleaved access group.");
+
+ // Skip if current instruction is not the insert position.
+ if (Instr != Group->getInsertPos())
+ return;
+
+ LoadInst *LI = dyn_cast<LoadInst>(Instr);
+ StoreInst *SI = dyn_cast<StoreInst>(Instr);
+ Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
+
+ // Prepare for the vector type of the interleaved load/store.
+ Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
+ unsigned InterleaveFactor = Group->getFactor();
+ Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF);
+ Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace());
+
+ // Prepare for the new pointers.
+ setDebugLocFromInst(Builder, Ptr);
+ VectorParts &PtrParts = getVectorValue(Ptr);
+ SmallVector<Value *, 2> NewPtrs;
+ unsigned Index = Group->getIndex(Instr);
+ for (unsigned Part = 0; Part < UF; Part++) {
+ // Extract the pointer for current instruction from the pointer vector. A
+ // reverse access uses the pointer in the last lane.
+ Value *NewPtr = Builder.CreateExtractElement(
+ PtrParts[Part],
+ Group->isReverse() ? Builder.getInt32(VF - 1) : Builder.getInt32(0));
+
+ // Notice current instruction could be any index. Need to adjust the address
+ // to the member of index 0.
+ //
+ // E.g. a = A[i+1]; // Member of index 1 (Current instruction)
+ // b = A[i]; // Member of index 0
+ // Current pointer is pointed to A[i+1], adjust it to A[i].
+ //
+ // E.g. A[i+1] = a; // Member of index 1
+ // A[i] = b; // Member of index 0
+ // A[i+2] = c; // Member of index 2 (Current instruction)
+ // Current pointer is pointed to A[i+2], adjust it to A[i].
+ NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index));
+
+ // Cast to the vector pointer type.
+ NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy));
+ }
+
+ setDebugLocFromInst(Builder, Instr);
+ Value *UndefVec = UndefValue::get(VecTy);
+
+ // Vectorize the interleaved load group.
+ if (LI) {
+ for (unsigned Part = 0; Part < UF; Part++) {
+ Instruction *NewLoadInstr = Builder.CreateAlignedLoad(
+ NewPtrs[Part], Group->getAlignment(), "wide.vec");
+
+ for (unsigned i = 0; i < InterleaveFactor; i++) {
+ Instruction *Member = Group->getMember(i);
+
+ // Skip the gaps in the group.
+ if (!Member)
+ continue;
+
+ Constant *StrideMask = getStridedMask(Builder, i, InterleaveFactor, VF);
+ Value *StridedVec = Builder.CreateShuffleVector(
+ NewLoadInstr, UndefVec, StrideMask, "strided.vec");
+
+ // If this member has different type, cast the result type.
+ if (Member->getType() != ScalarTy) {
+ VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
+ StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy);
+ }
+
+ VectorParts &Entry = WidenMap.get(Member);
+ Entry[Part] =
+ Group->isReverse() ? reverseVector(StridedVec) : StridedVec;
+ }
+
+ propagateMetadata(NewLoadInstr, Instr);
+ }
+ return;
+ }
+
+ // The sub vector type for current instruction.
+ VectorType *SubVT = VectorType::get(ScalarTy, VF);
+
+ // Vectorize the interleaved store group.
+ for (unsigned Part = 0; Part < UF; Part++) {
+ // Collect the stored vector from each member.
+ SmallVector<Value *, 4> StoredVecs;
+ for (unsigned i = 0; i < InterleaveFactor; i++) {
+ // Interleaved store group doesn't allow a gap, so each index has a member
+ Instruction *Member = Group->getMember(i);
+ assert(Member && "Fail to get a member from an interleaved store group");
+
+ Value *StoredVec =
+ getVectorValue(dyn_cast<StoreInst>(Member)->getValueOperand())[Part];
+ if (Group->isReverse())
+ StoredVec = reverseVector(StoredVec);
+
+ // If this member has different type, cast it to an unified type.
+ if (StoredVec->getType() != SubVT)
+ StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT);
+
+ StoredVecs.push_back(StoredVec);
+ }
+
+ // Concatenate all vectors into a wide vector.
+ Value *WideVec = ConcatenateVectors(Builder, StoredVecs);
+
+ // Interleave the elements in the wide vector.
+ Constant *IMask = getInterleavedMask(Builder, VF, InterleaveFactor);
+ Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask,
+ "interleaved.vec");
+
+ Instruction *NewStoreInstr =
+ Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment());
+ propagateMetadata(NewStoreInstr, Instr);
+ }
+}
+
void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
// Attempt to issue a wide load.
LoadInst *LI = dyn_cast<LoadInst>(Instr);
@@ -1664,6 +2153,10 @@ void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
assert((LI || SI) && "Invalid Load/Store instruction");
+ // Try to vectorize the interleave group if this access is interleaved.
+ if (Legal->isAccessInterleaved(Instr))
+ return vectorizeInterleaveGroup(Instr);
+
Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType();
Type *DataTy = VectorType::get(ScalarDataTy, VF);
Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
@@ -3408,6 +3901,10 @@ bool LoopVectorizationLegality::canVectorize() {
"")
<<"!\n");
+ // Analyze interleaved memory accesses.
+ if (EnableInterleavedMemAccesses)
+ InterleaveInfo.analyzeInterleaving(Strides);
+
// Okay! We can vectorize. At this point we don't have any other mem analysis
// which may limit our maximum vectorization factor, so just return true with
// no restrictions.
@@ -3923,6 +4420,166 @@ bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB,
return true;
}
+void InterleavedAccessInfo::collectConstStridedAccesses(
+ MapVector<Instruction *, StrideDescriptor> &StrideAccesses,
+ const ValueToValueMap &Strides) {
+ // Holds load/store instructions in program order.
+ SmallVector<Instruction *, 16> AccessList;
+
+ for (auto *BB : TheLoop->getBlocks()) {
+ bool IsPred = LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
+
+ for (auto &I : *BB) {
+ if (!isa<LoadInst>(&I) && !isa<StoreInst>(&I))
+ continue;
+ // FIXME: Currently we can't handle mixed accesses and predicated accesses
+ if (IsPred)
+ return;
+
+ AccessList.push_back(&I);
+ }
+ }
+
+ if (AccessList.empty())
+ return;
+
+ auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
+ for (auto I : AccessList) {
+ LoadInst *LI = dyn_cast<LoadInst>(I);
+ StoreInst *SI = dyn_cast<StoreInst>(I);
+
+ Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
+ int Stride = isStridedPtr(SE, Ptr, TheLoop, Strides);
+
+ // The factor of the corresponding interleave group.
+ unsigned Factor = std::abs(Stride);
+
+ // Ignore the access if the factor is too small or too large.
+ if (Factor < 2 || Factor > MaxInterleaveGroupFactor)
+ continue;
+
+ const SCEV *Scev = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
+ PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
+ unsigned Size = DL.getTypeAllocSize(PtrTy->getElementType());
+
+ // An alignment of 0 means target ABI alignment.
+ unsigned Align = LI ? LI->getAlignment() : SI->getAlignment();
+ if (!Align)
+ Align = DL.getABITypeAlignment(PtrTy->getElementType());
+
+ StrideAccesses[I] = StrideDescriptor(Stride, Scev, Size, Align);
+ }
+}
+
+// Analyze interleaved accesses and collect them into interleave groups.
+//
+// Notice that the vectorization on interleaved groups will change instruction
+// orders and may break dependences. But the memory dependence check guarantees
+// that there is no overlap between two pointers of different strides, element
+// sizes or underlying bases.
+//
+// For pointers sharing the same stride, element size and underlying base, no
+// need to worry about Read-After-Write dependences and Write-After-Read
+// dependences.
+//
+// E.g. The RAW dependence: A[i] = a;
+// b = A[i];
+// This won't exist as it is a store-load forwarding conflict, which has
+// already been checked and forbidden in the dependence check.
+//
+// E.g. The WAR dependence: a = A[i]; // (1)
+// A[i] = b; // (2)
+// The store group of (2) is always inserted at or below (2), and the load group
+// of (1) is always inserted at or above (1). The dependence is safe.
+void InterleavedAccessInfo::analyzeInterleaving(
+ const ValueToValueMap &Strides) {
+ DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
+
+ // Holds all the stride accesses.
+ MapVector<Instruction *, StrideDescriptor> StrideAccesses;
+ collectConstStridedAccesses(StrideAccesses, Strides);
+
+ if (StrideAccesses.empty())
+ return;
+
+ // Holds all interleaved store groups temporarily.
+ SmallSetVector<InterleaveGroup *, 4> StoreGroups;
+
+ // Search the load-load/write-write pair B-A in bottom-up order and try to
+ // insert B into the interleave group of A according to 3 rules:
+ // 1. A and B have the same stride.
+ // 2. A and B have the same memory object size.
+ // 3. B belongs to the group according to the distance.
+ //
+ // The bottom-up order can avoid breaking the Write-After-Write dependences
+ // between two pointers of the same base.
+ // E.g. A[i] = a; (1)
+ // A[i] = b; (2)
+ // A[i+1] = c (3)
+ // We form the group (2)+(3) in front, so (1) has to form groups with accesses
+ // above (1), which guarantees that (1) is always above (2).
+ for (auto I = StrideAccesses.rbegin(), E = StrideAccesses.rend(); I != E;
+ ++I) {
+ Instruction *A = I->first;
+ StrideDescriptor DesA = I->second;
+
+ InterleaveGroup *Group = getInterleaveGroup(A);
+ if (!Group) {
+ DEBUG(dbgs() << "LV: Creating an interleave group with:" << *A << '\n');
+ Group = createInterleaveGroup(A, DesA.Stride, DesA.Align);
+ }
+
+ if (A->mayWriteToMemory())
+ StoreGroups.insert(Group);
+
+ for (auto II = std::next(I); II != E; ++II) {
+ Instruction *B = II->first;
+ StrideDescriptor DesB = II->second;
+
+ // Ignore if B is already in a group or B is a different memory operation.
+ if (isInterleaved(B) || A->mayReadFromMemory() != B->mayReadFromMemory())
+ continue;
+
+ // Check the rule 1 and 2.
+ if (DesB.Stride != DesA.Stride || DesB.Size != DesA.Size)
+ continue;
+
+ // Calculate the distance and prepare for the rule 3.
+ const SCEVConstant *DistToA =
+ dyn_cast<SCEVConstant>(SE->getMinusSCEV(DesB.Scev, DesA.Scev));
+ if (!DistToA)
+ continue;
+
+ int DistanceToA = DistToA->getValue()->getValue().getSExtValue();
+
+ // Skip if the distance is not multiple of size as they are not in the
+ // same group.
+ if (DistanceToA % static_cast<int>(DesA.Size))
+ continue;
+
+ // The index of B is the index of A plus the related index to A.
+ int IndexB =
+ Group->getIndex(A) + DistanceToA / static_cast<int>(DesA.Size);
+
+ // Try to insert B into the group.
+ if (Group->insertMember(B, IndexB, DesB.Align)) {
+ DEBUG(dbgs() << "LV: Inserted:" << *B << '\n'
+ << " into the interleave group with" << *A << '\n');
+ InterleaveGroupMap[B] = Group;
+
+ // Set the first load in program order as the insert position.
+ if (B->mayReadFromMemory())
+ Group->setInsertPos(B);
+ }
+ } // Iteration on instruction B
+ } // Iteration on instruction A
+
+ // Remove interleaved store groups with gaps.
+ for (InterleaveGroup *Group : StoreGroups)
+ if (Group->getNumMembers() != Group->getFactor())
+ releaseGroup(Group);
+}
+
LoopVectorizationCostModel::VectorizationFactor
LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) {
// Width 1 means no vectorize
@@ -4575,6 +5232,46 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
return TTI.getAddressComputationCost(VectorTy) +
TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
+ // For an interleaved access, calculate the total cost of the whole
+ // interleave group.
+ if (Legal->isAccessInterleaved(I)) {
+ auto Group = Legal->getInterleavedAccessGroup(I);
+ assert(Group && "Fail to get an interleaved access group.");
+
+ // Only calculate the cost once at the insert position.
+ if (Group->getInsertPos() != I)
+ return 0;
+
+ unsigned InterleaveFactor = Group->getFactor();
+ Type *WideVecTy =
+ VectorType::get(VectorTy->getVectorElementType(),
+ VectorTy->getVectorNumElements() * InterleaveFactor);
+
+ // Holds the indices of existing members in an interleaved load group.
+ // An interleaved store group doesn't need this as it dones't allow gaps.
+ SmallVector<unsigned, 4> Indices;
+ if (LI) {
+ for (unsigned i = 0; i < InterleaveFactor; i++)
+ if (Group->getMember(i))
+ Indices.push_back(i);
+ }
+
+ // Calculate the cost of the whole interleaved group.
+ unsigned Cost = TTI.getInterleavedMemoryOpCost(
+ I->getOpcode(), WideVecTy, Group->getFactor(), Indices,
+ Group->getAlignment(), AS);
+
+ if (Group->isReverse())
+ Cost +=
+ Group->getNumMembers() *
+ TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
+
+ // FIXME: The interleaved load group with a huge gap could be even more
+ // expensive than scalar operations. Then we could ignore such group and
+ // use scalar operations instead.
+ return Cost;
+ }
+
// Scalarized loads/stores.
int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
bool Reverse = ConsecutiveStride < 0;
OpenPOWER on IntegriCloud